

Games, Diversions, and
Perl Culture: Best of the

Perl Journal
Jon Orwant

Editor

Linda Mui

Copyright © 2010

Portions of this book originally appeared in The Perl Journal,
currently published by CMP, Inc. Printed in the United States
of America.

O’Reilly & Associates books may be purchased for
educational, business, or sales promotional use. Online
editions are also available for most titles (safari.oreilly.com).
For more information, contact our corporate/institutional sales
department: (800) 998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the
O’Reilly logo are registered trademarks of O’Reilly &
Associates, Inc. Many of the designations used by
manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in
this book, and O’Reilly & Associates, Inc. was aware of a
trademark claim, the designations have been printed in caps
or initial caps. The association between the image of a flying

2

dragon and the topic of Perl games, diversions, and culture is
a trademark of O’Reilly & Associates, Inc.

While every precaution has been taken in the preparation of
this book, the publisher and the authors assume no
responsibility for errors or omissions, or for damages
resulting from the use of the information contained herein.

O'Reilly Media

3

Preface

This is the third of three “Best of The Perl Journal” O’Reilly
books, containing the créme de la créme of the 247 articles
published during The Perl Journal ’s five-year existence as a
standalone magazine. This particular book contains 47 articles
about the leisure pursuits of Perl programmers. You won’t
find articles on web development or object-oriented
programming here. This book is for relaxing and reveling in
Perl culture—a mindset favoring programs that are weird,
wacky, and hubristic.

This book is divided into seven sections:

Part I

This section contains six articles on the Perl culture,
including an article by Larry Wall comparing computer
languages to music, a “coffee-table” collection of the TPJ
covers, an article on Perl style, two articles on home
automation, and an analysis of the usefulness of the
Usenet newsgroup comp.lang.perl.misc.

Part II

Many scientists gravitate toward Perl when they find that
they can analyze their data more easily with Perl than
other languages. In this section, you’ll find articles on
astronomy, genetic algorithms, bioinformatics, and
scientific computing.

4

Part III

Perl was created by a linguist, and it shows; there is no
better language for manipulating text, whether it’s a
simple task involving punctuation or full-fledged natural
language processing. In this largest section of the book,
15 articles demonstrate a plethora of language-related
tasks, from speech synthesis to “bots” that answer English
queries to correcting typos and adapting your Perl
programs for other languages.

Part IV

Most of this book is about leisurely pursuits, especially if
your notion of leisure includes writing bots that converse
well enough to be hit on. If it doesn’t, this section has
more traditional games, from an overview of all the games
available on CPAN to a solitaire game. It has all of the
Perl quiz shows as well, to help you test and increase your
Perl knowledge.

Part V

Perl Poetry has been around since 1990, and has been
published in the Economist and the Guardian. In addition
to the Perl Poetry contest, this section includes an article
on reporting error messages in verse and how to search for
rhymes in Perl.

Part VI

This section has three articles on how Perl can help
maintain a stable democracy: two on voting methods, and
one on how to prevent nuclear accidents.

5

Part VII

Perl’s flexibility lets you make your code look like
readable computer programs, poetry, or modem line noise.
TPJ began the Obfuscated Perl Contest, and in this section
you’ll find the winning entries from all five contests as
well as a complete collection of the one-liners that I used
to fill up excess space in the magazine.

Be aware that this book has 31 different authors. Each
section, and the articles within them, are loosely ordered from
general to specific, and also from most accessible to least.
Since these spectra are not identical, it’s not a strict
progression. The book may be read straight through, or
sampled at random. (In deference to the Perl motto, There’s
More Than One Way To Read It.)

Normally, O’Reilly likes their books to be written by one
author, or just a few. Books that are collections of many
independently-written chapters may get to press more
quickly, but discordant tones, styles, and levels of exposition
are jarring to the reader; worse, authors writing in parallel and
under deadline rarely know what other contributors have
covered, and therefore can’t provide appropriate context.

That would indeed be a problem for this book had it been
written in two months by 31 authors writing simultaneously.
But in a sense, this book was written very carefully and
methodically over six years.

Here’s why. As editor of The Perl Journal, I had a difficult
decision to make with every issue. TPJ was a grass-roots
publication with no professional publishing experience behind
it; I couldn’t afford to take out full-color ads or launch huge
direct-mail campaigns. So word of the magazine spread

6

slowly, and instead of a steady circulation, it started tiny (400
subscribers for issue #1) and grew by several hundred each
issue until EarthWeb began producing the magazine with
issue #13.

For every issue there were new subscribers, many of whom
were new to Perl. Common sense dictated that I should
include beginner articles in every issue. But I didn’t like
where that line of reasoning led. If I catered to the novices in
every issue, far too many articles would be about beginner
topics, crowding out the advanced material. And I’d have to
find a way to cover the important material over and over,
imparting a fresh spin every time. Steve Lidie’s Perl/Tk
column was a good example: it started with the basics and
delved deeper with every article. Readers new to Perl/Tk who
began with TPJ #15 didn’t need to know about the intricacies
of Perl/Tk menus covered in that issue. They wanted to know
how to create a basic Perl/Tk application—covered way back
in TPJ #1. But if I periodically “reset” topics and ran material
already covered in past issues, I might alienate long-time
subscribers.

So I did something very unusual for a magazine: I made it
easy (and cheap) for subscribers to get every single back issue
when they subscribed, so they’d always have the introductory
material. This meant that I had to keep reprinting back issues
as I ran out. This is what business calls a Supply Chain
Management problem. The solution: my basement.

A side-effect of this approach was that the articles hold well
together: they tell a consistent “story” in a steady progression
from TPJ #1 through TPJ #20, with little redundancy between
them. TPJ was always a book—it just happened to be
published in 20 quarterly installments.

7

There is another advantage to having a book with programs
by 31 flavors of Perl expert: collectively, they constitute a
good sampling of Perl “in the wild.” Every author has his own
preferences—whether it’s use of the English pragma,
prototyping their subroutines, embracing or eschewing
object-oriented programming, or any of the other myriad
ways in which Perl’s expressivity is enjoyed. When you read
a book by one author, you experience a single coherent (and
hopefully good) style; when you read a book by dozens of
experienced authors, you benefit from the diversity. It’s an
Olympic-size meme pool.

Naturally, there’s some TPJ material that doesn’t hold up well
over time: modules become obsolete, features change, and
news becomes history. Those articles didn’t make the cut; the
rest are in this book and the two companion books, Computer
Science & Perl Programming: Best of The Perl Journal and
Web, Graphics, and Perl/Tk: Best of The Perl Journal.

Enjoy!

Finding Perl Resources

Beginning with TPJ #10, I placed boxes at the top of most
articles telling readers where they could find any resources
mentioned in the article. Often, it ended up looking like this,
because nearly everything in Perl is available on CPAN:

Perl 5.8 or later....................CPAN
Class::ISA...........................CPAN
Memoize..............................CPAN
Class::Multimethods..................CPAN

8

The CPAN (Comprehensive Perl Archive Network) is a
worldwide distributed repository of Perl modules, scripts,
documentation, and Perl itself. You can find the CPAN site
nearest you at http://cpan.org, and you can search CPAN at
http://search.cpan.org. To find, say, the Class::Multimethods
module, you can either search for “Multimethods” at
http://search.cpan.org, or you can visit http://cpan.org and
click on “Modules” and then “All Modules.” Either way,
you’ll find a link for a Class-Multimethods.tar.gz file (which
will include a version number in the filename). Download,
unpack, build, and install the module as I describe in
http://cpan.org/modules/INSTALL.html.

For information and code that isn’t available on CPAN, there
are “Reference” sections at the ends of some articles.

9

Conventions Used in This Book

The following conventions are used in this book:

Italic

Used for filenames, directory names, URLs, emphasis,
and for the first use of a technical term.

Constant width

Used for code, command output, program names,
functions, and email addresses.

Constant width bold

Used for user input and code emphasis.

Constant width italic

Used for code placeholders, e.g., open(ARGUMENTS).

10

Comments and Questions

Please address comments and questions concerning this book
to the publisher:

O’Reilly & Associates, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international/local)
(707) 829-0104 (fax)

There is a web page for this book, which lists errata,
examples, or any additional information. You can access this
page at:

http://www.oreilly.com/catalog/tpj3

To comment or ask technical questions about this book, send
email to:

bookquestions@oreilly.com

For information about books, conferences, Resource Centers,
and the O’Reilly Network, see the O’Reilly web site at:

http://www.oreilly.com

11

12

Acknowledgments

First, an obvious thanks to the 120 contributors for the three
books in this series, and a special shout-out to the most
prolific: Lincoln D. Stein, Mark Jason Dominus, Felix Gallo,
Steve Lidie, Chris Nandor, Nathan Torkington, Sean M.
Burke, and Jeffrey Friedl. Sean’s articles, in particular, are
well-represented in this book.

Next up are the people who helped with particular aspects of
TPJ production. TPJ was mostly a one-man show, but I
couldn’t have done it without the help of Nathan Torkington,
Alan Blount, David Blank-Edelman, Lisa Traffie, Ellen
Klempner-Beguin, Mike Stok, Sara Ontiveros, and Eri Izawa.

Sitting in the third row are people whose actions at particular
junctures in TPJ’s existence helped increase the quality of the
magazine and further its reach: Tim O’Reilly, Linda Walsh,
Mark Brokering, Tom Christiansen, Jeff Dearth, the staff of
Quantum Books in Cambridge, Lisa Sloan, Neil Bauman,
Monica Lee, Cammie Hufnagel, and Sandy Aronson. Best
wishes to the folks at CMP: Amber Ankerholz, Edwin
Rothrock, Jon Erickson, and Peter Westerman.

Next, the folks at O’Reilly who helped this book happen:
Hanna Dyer, Paula Ferguson, Sarmonica Jones, Linda Mui,
Erik Ray, Betsy Waliszewski, Jane Ellin, Judy Hoer, Ellie
Volckhausen, Sue Willing, and the late great Frank Willison.

People who helped out in small but crucial ways: David H.
Adler, Tim Allwine, Elaine Ashton, Sheryl Avruch, Walter
Bender, Pascal Chesnais, Damian Conway, Eamon Daly, Liza
Daly, Chris DiBona, Diego Garcia, Carolyn Grantham,

13

Jarkko Hietaniemi, Doug Koen, Uri Guttman, Dick Hardt,
Phil Hughes, Mark Jacobsen, Lorrie LeJeune, Kevin Lenzo,
LUCA, Tuomas J. Lukka, Paul Lussier, John Macdonald,
Kate McDonnell, Chris Metcalfe, Andy Oram, Curtis Pew,
Madeline Schnapp, Alex Shah, Adam Turoff, Sunil Vemuri,
and Larry Wall.

Finally, a very special thanks to my wife, Robin, and my
parents, Jack and Carol.

14

Chapter 1. Introduction

Programmers aren’t usually associated with culture, except
the sort that grows inside a fridge. But Perl is different; it’s
spawned an array of pastimes such as Obfuscated Perl and
Perl Poetry that perplex some outsiders but seem perfectly
natural to the renaissance hackers attracted to Perl. As Larry
says in Chapter 2, Perl is an intentionally postmodern
language, employing features of its ancestors with a
sang-froid that encourages Perl programmers not to take their
craft too seriously.

The seven sections of this book are a grab bag: 41 of the best
articles from The Perl Journal, plus 6 extra articles compiled
especially for this book. Together, they span the playful
aspects of Perl (with a rather broad interpretation of
“playful”).

Each of the seven sections—culture, science, language, games
and quizzes, poetry, politics, and obfuscated Perl—have their
own introductions, so let’s get on with it. First up is Part I,
where you’ll read about Perl’s postmodernism, how to
automate your household appliances, and other flavorful
topics.

Speaking for the Best of TPJ authors, we hope you enjoy this
collection, and that it inspires you not just to participate in
these pastimes, but to create your own new ones.

15

Part I. Culture

In this part:

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

In this section, six articles provide glimpses into the aesthetics
of Perl. The articles touch on music, art, style, conversation,
and the lifestyle of the lazy, impatient, and hubristic, in which
appliances do the programmer’s bidding.

We begin with the first article from the first issue of TPJ: an
essay by Perl creator Larry Wall that compares programming
languages to music. Two sentences from his article have
always resonated with me:

In trying to make programming predictable, computer
scientists have mostly succeeded in making it boring.

and:

LISP has all the visual appeal of oatmeal with fingernail
clippings mixed in.

16

Personally, I like LISP, and agree with those who think that
its Scheme dialect is ideal for teaching computer science. But
reading Larry’s sentiments made me realize why I defected
from LISP to Perl: programming languages shouldn’t make
everything look the same. When all code looks identical,
programming becomes a matter of rote instead of a creative
act of literary expression. It is that creativity that gave Perl its
culture, and is what gave rise to the topics covered throughout
this book, from the Obfuscated Perl contest to error messages
delivered in haiku.

Next, photographer Alan Blount chronicles the 20 TPJ covers.
Alan’s artwork sometimes sparked more reader mail than the
magazine content. The lack of visuals inside the magazine
made the external appearance of the magazine all the more
important, and I’m indebted to Alan for all his work. As a
software developer, Alan understands what catches the eye of
hardcore coders like us, and as an artist he has the ability to
render that visually. A rare combination.

Kurt Starsinic follows with his article on calculating the
readability of Perl programs. As Kurt mentions, Microsoft
Word uses a relatively simple algorithm to determine the
readability of a document, but programs are tougher to
analyze. Kurt’s Fathom module makes clever use of the Perl
compiler to perform the analysis.

The next two articles are on home automation: controlling
appliances such as lights and fans from your Perl programs.
Bruce Winter begins with a demonstration of his popular
Perl-based MisterHouse system, and Bill Birthisel follows up
with a look under the hood at the X10 protocol that makes it
all happen.

17

Clinton Pierce concludes the section with an analysis of the
heavily trafficked comp. lang.perl.misc Usenet newsgroup,
dispelling the myth that it’s all heat and no light.

18

Chapter 2. Wherefore Art, Thou?

Larry Wall
I don’t know whether a picture is really worth a thousand
words (most pictures seem to be considerably larger these
days), but when I give talks about Perl, I often put up a
picture (Figure 2-1) showing where some of the ideas in Perl
come from.

Figure 2-1. The origin of Perl

I usually make a joke about Linguistics not really being the
opposite of Common Sense, and then proceed to talk a lot
about both of them, with some Computer Science thrown in
for good measure. But last December as I was giving a talk in
Stockholm, someone asked me how Perl got its inspiration
from
Art. I was stumped. I mumbled something semi-irrational
(always appropriate when discussing Art) and went on to the
rest of my talk.

19

But the question continued to bother me; or more specifically,
it continued to bother my left brain. My right brain continued
to be perfectly content with the purported connection.
Unfortunately, it’s also not at all forthcoming with the
verbiage necessary to explain itself. Right brains tend to be
like that. So let me see if my left brain can make something of
it all.

Art is first of all based on the notion that there exist amoral
decisions; that is, choices you can make either way, without
feeling like you’re being naughty or nice. So let’s presume
that the Artist has free will of some sort or another, and can
therefore behave as your ordinary, everyday Creator.

Now, it’s more or less immaterial whether your Artist creates
because of a liking for Deluxe Designer Universes or merely
because of a liking for caffeine. The simple fact is, we have
Artists, and they do
Art. We just have to deal with it. We really do. You can make
life miserable for the Artist, but the Artist has ways of getting
revenge. (Of course, if you don’t make an Artist miserable,
they’ll make themselves miserable, but that’s a different
story.)

We can further subdivide the Artists into those who enjoy
getting their revenge by being more than properly miserable,
and those who prefer to get their revenge by being less than
properly miserable. Artists of the first sort will prefer to work
in a more formal medium, one that inflicts extra pain on the
Artist, such as composing sonnets, dancing ballet, or
programming C++. Artists of the second sort tend to be much
more fun-loving, free-wheeling, and undisciplined, whether
the verb in question is composing, dancing, programming, or

20

slinging. (Especially slinging. There’s nobody quite so joyful
as a B.S. artist. I should know…)

There is, of course, a third category of Artist, the one who
oscillates between the two extremes.

Perl was written first of all to let the Artist make amoral
decisions. That’s why the Perl slogan is “There’s More Than
One Way To Do It!” Perl doesn’t really care whether you use
cobalt blue or burnt umber in a particular spot in your
painting. It’s your choice—you’re the Artist. You’re
responsible for the overall effect. Indeed, your boss will hold
you responsible for the overall effect, so why should Perl?

But more than that, Perl is intended to be a medium for those
who are tired of composing in a formal computer language,
and want to write some “free verse” without arbitrary
restrictions. Sure, from a motivational point of view, arbitrary
restrictions are challenging to work with, but when’s the last
time you saw a gleeful COBOL programmer?

On the other hand, with Perl 5, we’ve made strides in making
life wonderful for those Artists who oscillate. You can have
your cake and eat it too. When you’re in a manic mood, you
can pour forth unstructured, unreadable (but expressive) code
to your heart’s content. Later on, when you are in a dour
mood, you can put a -w and a use strict at the top of
your script and greatly increase your level of discipline (read
“pain”). Next, you can prototype your function definitions.
While still in your somber state, you can go back and put
whitespace in all your regular expressions and comment every
last little bit as penance for your past indiscretions. You can
restructure all your code into modules and unit test it in a jiffy
because the Perl interpreter is so handy to invoke. Then as

21

you swing back into a more carefree frame of mind, you can
cheat by tweaking all those carefully encapsulated variables
in all those painstakingly restructured modules. Ain’t it the
life.

Now, Linguistics may not be the opposite of Common Sense,
but it’s certainly the case that over the last twenty years or so,
many Computer Scientists have come out in opposition to the
Art of Programming. In trying to make programming
predictable, they’ve mostly succeeded in making it boring.
And in so doing, they’ve lost sight of the idea that
programming is a human pursuit. They’ve designed languages
intended more to keep the computer happy than to keep the
programmer happy. Was any SQL programmer ever happy
about having to declare a value to be varchar(255) ?
Oops, now it’s a key, and can’t be longer than 60. Who comes
up with these numbers?

Computer Scientists have also lost sight of the idea known to
any Artist, that form and meaning are deeply interdependent.
One of the ideas I keep stressing in the design of Perl is that
things that are different should look different. The reason
many people hate programming in Lisp is because everything
looks the same. I’ve said it before, and I’ll say it again: Lisp
has all the visual appeal of oatmeal with fingernail clippings
mixed in. (Other than that, it’s quite a nice language.)

A large part of the design of Perl is driven by the dictates of
visual psychology. That’s why Perl lets you structure your
code with the condition on the left or on the right, depending
on which part you want to look important. That’s why the
large nested structures like while loops require an explicit
beginning and end, while the small ones like list operators
don’t. That’s why scalars start with $, arrays with @, and

22

hashes with %. That’s why file test operators look like -M,
while numeric tests look like ==, and string tests look like
eq. Perl is very much a What-You-See-Is-What-It-Does
language. You can talk about readability all you like, but
readability depends first and foremost on recognizability.

Music to My Ears

Like many computer geeks, much of my artistic training has
been in music. Of all the arts, it most clearly makes a
programmer/interpreter distinction, so perhaps it’s natural for
a musician to think about how interpreters work. But the
interpreters for a computer language are located both in the
computer and in the human brain. I don’t always know what
makes a computer sad (or happy), but I do have a pretty good
idea what makes a person mad (or sappy). Er, sorry.

Anyway, when I was young, I was taught that music has
progressed through four major periods:
Baroque,
Classical,
Romantic, and Modern. (The other so-called fine arts have
also gone through these periods, though not necessarily at the
same rate.) I always thought it rather curious that we called
the current period Modern, since definitionally the idea of
modernity seems to be a permanently latched-on state, bound
to the cursor of time, so to speak. But that was because the
word “modern” still meant something back then. This was,
after all, the 1960s. Who could have guessed that
Modern period would be followed by the Postmodern?

If you’re willing to concede by now that the design of
computer languages is an artistic medium of sorts (and

23

searches), then it’s reasonable for us to ask ourselves whether
programming languages have been progressing through the
same sequence of artistic development. Certainly, people
have occasionally claimed that Perl is “Baroque,” to which
my usual retort is, “Thanks, I like Bach too.” But this is
merest rhetoric (on both sides).

So what do we really mean when we talk about these periods?
Let’s start at the beginning, which is the Baroque period. Of
course, it’s not really the beginning. People were producing
music long before they ever invented the bucket in which to
carry the tune. But before and during the Baroque period,
there was tremendous technological progress in both the
production and publication of music. Composers and
performers could make a name for themselves. Innovators
were rewarded, but the forms of expression were heavily
influenced both by cultural expectations and by available
hardware. People were expected to improvise. What we got
was more or less the Cambrian explosion of music.

Similarly, at the dawn of the computer era, there were new
opportunities to innovate. The geniuses of that period
improvised many forms of assembly language. To them, these
languages all looked very different. But nowadays we tend to
see all assembly language as the same, just as a lot of
Baroque music seems the same to us, because the music tends
to follow particular forms and sequences. Baroque music is
structured like a weaving on a loom, and it’s no accident that
punch cards were invented to run looms before they were
used to run computers.

It’s easy to take a superior attitude toward these innovators,
but this is unfair. We owe a great debt to these people. They

24

invented the algorithms we use, even if the music does seem a
bit limited at times. (Except for Bach, and Backus, of course.)

The Classical period was a time of standardization. Most of
our modern instruments took their current form during this
period, and this continued the trend of turning virtuosity into
a marketable and portable commodity. Being able to program
in FORTRAN was like being able to play the pianoforte. It
was a skill you could use on someone else’s machinery.
Mozart could now go on tour.

The Romantic era was a time of seeing how far the classical
forms could be stretched. And considerably stretched they
were, in Beethoven and Mahler, as well as PL/1 and COBOL.
The word “excessive” has been applied to all of them, as it
will always be applied to anyone or anything that attempts to
sling the entire universe around by any of its handles. But this
is difficult at the best of times.

Finally, the typical overreaction took place, and we arrived in
the Modern era, in which subtlety and minimalism were
mandated, and antiquated cultural expectations were thrown
over and thrown out. Reductionism and deconstructionism
were the order of the day, from Bartók to Cage, and from
Pascal to C. Music wasn’t allowed to be tonal, and computer
languages weren’t allowed to do fancy I/O. All the gadgetry
had to be visible and exposed. Everything had to look
difficult, so we got stuck in the Turing Tarpit.

Of course, this is all oversimplified, and every language has
aspects of each of these periods in it. And languages
specialize in other ways: BASIC is like pop music. Tune into
REXX for your easy listening classics. Tcl is fuzzy like
jazz—you get to improvise a lot, and you’re never quite sure

25

who is interpreting what. Python is like MTV—it rocks, but it
gets to be much of a sameness after half an hour or so.

Lisp is like church music down through the ages, adapting to
whatever the popular culture is, from organ to electric guitar
to synthesizer. That would make Scheme a kind of cult music,
sung simply but with great fervor to an acoustic guitar.

C++ is like movie music, of titanic proportions, yet still
culturally derivative by and large. Especially large.
Sometimes it’s hard to sit through the whole movie. And yet,
as an intentionally Postmodern language, it’s kinda fun, and
gets the job done.

As for Java, using a subset of movie music, it’s attempting to
be the basis for every good feeling everywhere, the ground of
all emotional being. Muzak. It’s everywhere you want to be.

Shell programming is a 1950’s jukebox—great if it has your
song already.

And, of course, any language touched by ANSI starts to
sound distinctly operatic.

So where does Perl fit in to this glorious mess? Like C++,
Perl is a Postmodern language by design, unashamedly
reconstructionist and derivative. Perl is neo-Baroque,
neo-Classical, neo-Romantic, and even, in spots, neo-Modern.

What musical genre encompasses so much? Where can you
find everything from Wagner to “Shave and a Haircut, Two
Bits?” Where can you find multiple levels of abstraction,
accessible to newbies and oldsters alike? What kind of music
admits everything from harmonica to accordion to pipe
organ? What music is object-oriented, in good one-to-one
correspondence with the main action? What music is good for

26

programming in the small, but can be expanded to feature
length as necessary? What music parodies everything in the
world, yet leaves you feeling good about the world? What
music is Perl?

Why,
cartoon music, of course.

That’s all folks!

27

Chapter 3. TPJ Cover Art: From
Camels to Spam

Alan Blount

TPJ #1: The Camel

28

Figure 3-1. The Fiesta 12″ stuffed camel

Date: Fri, 1 Dec 1995 23:28:16 -0500
From: Jon Orwant
<orwant@fahrenheit-451.media.mit.edu>
To:

29

blount@media.mit.edu
Subject: resume' stuffer

Wanna be Photo Editor for The Perl
Journal? You'll get your name
listed in the masthead, plus $50/issue,
plus expenses paid, plus
a free subscription.

I'd use your fun fotos for all

cover pictures, and maybe for some
inside stuff too. F'rinstance, here's what
I was thinking for the
premiere issue: a dorky looking camel (buy
a stuffed camel and treat
it like a product shot), shot
portrait-style, like Time's "Man of the
Year." (Sunglasses, cigarettes optional.)
Think "WIRED".

I want striking, cool covers. You up for a
little creativity? WHAT
SAY YOU? Lemme put you on the payroll. You
won't regret it. No sir.

As The Perl Journal ‘s Photo Editor, I photographed covers
for 18 of the 20 standalone
TPJ magazines. I’m not a professional photographer. I’ve
done occasional portrait and catalog work—beginning when
Jon and I worked together at the MIT Media Lab—but I’ve
never tried to make a living at it. (I’m a software developer by
day, and my language tastes tend toward Python.)
Nevertheless, when Jon told me he was thinking of starting up
a Perl magazine and asked me to take care of the covers, I
figured, “Why not?” The collaborations Jon and I had

30

previously attempted, through classwork and extracurricular
projects, had always proven entertaining.

The concept for the premiere issue wasn’t much of a stretch.
“Uhhhh, what visually represents Perl? My God! O’Reilly’s
camel! But ours will be stuffed…and fuzzy! And…” You get
the idea.

The photo was shot on 35mm in a snowbank behind my
Somerville, MA apartment on a cold January afternoon. I was
hoping the snow would come out looking like the shifting
desert sands, but due to production troubles and my
poorly-conceived high-key shot, the final result came out
pretty illegible, branding us as the bunch of amateurs we
were. A second printing improved the contrast a bit, but the
concept remained: a fuzzball camel standing out in the cold. I
failed to do Jon’s idea justice, but he kept me on nonetheless.

31

TPJ #2: The Pearl
Date: Sat, 6 Apr 1996 17:23:03 -0500
From: Jon Orwant
<orwant@fahrenheit-451.media.mit.edu>
To: blount@media.mit.edu
Subject: Quantum

On my way back last night, pressed my nose
up against the Quantum
Books window to see if they put TPJ on the
front rack, or the back
rack (old issues and NeXTSTEP handbooks).
Front rack: above Forbes, to
the right of Byte, and diagonal from
WiReD. At eye level. Rock on.

32

Figure 3-2. The Swarovski little clam

TPJ #2 provided strong competition with TPJ #1 for “most
literal interpretation of Perl.” Orwant had found a lovely
crystal oyster somewhere, and I had just the macro lens for it.

33

I shot it on 35mm in full sunlight against black velvet on the
roof deck at NetCentric Corporation (now deceased), my day
job. I went for extreme contrast—we’d have no more
indecipherable camels, thank you. While we didn’t have a lot
of concept going, I liked the resulting image, with the
specular (the glint of light) placed just-so on the crystal pearl.
I’ve read that pro glassware photographers will spend hours
or days tweaking tabletop shots with tiny pieces of paper and
tinfoil positioned off-camera to create reflections where they
want them.

34

TPJ #3: RSA on Greenbar

Orwant had an article on
steganography in this issue, about how to hide
secret messages in plaintext. It was fitting, then, to hide a
secret message on the
cover: if you read alternating characters on the third line from
the bottom, you can see my hidden message. (Remember, I’m
a Python fan.) I only told Orwant after the issue went to press,
but he seemed to take it OK.

35

Figure 3-3. RSA-in-3-lines-Perl, and the artist’s conception
of same. Dot matrix on greenbar, 1996

The image is a composite. I pinched a couple sheets of old
greenbar paper from my weekend job teaching LEGO/Logo at
the Boston Museum of Science, and used their antiquated
dot-matrix printer to render the copy on plain white paper. I
then photographed both on 35mm black-and-white negative,
and passed the negs to our production people, who

36

composited the images, adding the green back in to the
monochrome photo.

For the detail-obsessed, the line noise was generated by firing
up Emacs on “RSA-in-three-lines-of-Perl”
and scattering a bunch of Ctrl-t’s around.

37

TPJ #4: Etch-a-Sketch.

Figure 3-4. The Perl interface to the GNU “Hello World”
program enables the Radio Shack Armatron to render text
on an Ohio Art Etch-a-Sketch

The first full-color

38

cover! With profits from his burgeoning Ph.D. stipend,
Orwant came up with the big dollars needed to front for color
covers, enabling the publication to look a bit less like
“Maximum Rock-and-Roll” or “R2D2 Is An Indie Rocker”
and more like a professional publication.

Orwant said that this was when people started taking the
magazine seriously. The content was the same as previous
issues, but only when the cover went glossy and full-color did
people stop calling TPJ a newsletter and start calling it a
magazine.

The photo was shot with a Burke and James 5 x 7″ monorail
with the 4 x 5″ reducing back and a Komura lens in a Copal
#1 shutter, on a NetCentric conference table. And yes, the
sketch was faked. That’s what photographers do. We fake
everything.

39

TPJ #5: Commodities

Figure 3-5. LEGO guys speculate on commodities. Some
lose shirt, some make millions. Perl makes the difference

Orwant had an article on “Futures Trading with Perl,” so we
decided to create our own futures pit in my apartment with

40

coffee beans,
red beans, and rice.

A lot of readers liked this one, but I was never too big on it. I
like “high concept” shots—this one seemed sort of muddled
to me. It was shot in early spring 1997, on 4 x 5″ Fuji Velvia.

And what to do with the leftovers? The coffee went quick, but
in 2002 I still haven’t eaten all the small red beans (Goya) or
rice (“Bombay Basmati”). I made some ham and beans the
other night with some of the Goyas. It came out pretty good,
for five-year-old beans.

41

TPJ #6: Scrabble

Figure 3-6. Why Perl programmers make lousy Scrabble
players

Orwant may have wanted this
cover to allude to the Obfuscated Perl Contest in the issue. Or
perhaps to the articles on randomness or information retrieval.

42

Either way, this was visually where I wanted to take TPJ. The
shot was clean, used whitespace well, and the high resolution
of the 4 x 5″ transparency enlarged to a grainless image. More
importantly, it had the comic tone that we were looking for.
Readers liked it, and subscriptions were going up (perhaps not
entirely due to the covers).

“Scrabble” was shot on 4 x 5″ on the floor of my apartment in
Somerville. Orwant supplied the “nonstandard” tiles. He tells
me that, fed into a Perl interpreter, this board actually
executes. And he wonders why I like Python.

43

TPJ #7: Spiderball

Figure 3-7. Here it comes

The centerpiece is a Microsoft creepyball that one of
Orwant’s friends scored at a tradeshow. It’s menacing the
“pearl,” a Brian

44

Dubé silicone juggling ball. Orwant adds, “This was around
the time that many people in the Perl community were
worried about Microsoft embracing and extending Perl
through ActiveState.”

This was the first shot made in my new loft. Tech details: 4 x
5″ Fuji Velvia, Speedotron strobe through a softbox, shot
against white seamless.

We were trying to elicit a sense of foreboding. Did it work?
Note that this was the first and only image that “violates the
title,” just like Springsteen’s head in front of “Rolling Stone,”
and most O’Reilly animal covers.

45

TPJ #8: The Coffee Cup Fiasco

Figure 3-8. Good to the last drop

Around this time, every computer magazine had an issue on
Java, and each had the same boring
cover: a coffee cup. For the TPJ issue on Java, I wanted an
alternative interpretation. This one generated some fan mail.

46

Date: Thu, 18 Dec 1997 22:06:46 -0600
Subject: cover "art"
From: [a subscriber]
To: letters@tpj.com

Hi TPJ,

I love TPJ, but I want to be one of the
first to tell you that the cover
of Issue #8 is pretty revolting. Inside
good; outside revolting. Please
try harder!

Thank you.

Date: Mon, 22 Dec 1997 08:09:22 -0700
From: [another subscriber]
To: staff@

tpj.com
Subject: Issue #8

Cover

I don't know what point, if any, you were
trying to make with the
cover of the Winter 1997 (Issue #8)
edition, but I found it to be
absolutely disgusting. I would hope you
would have better taste
than that.

From: [yet another]
To: letters@tpj.com
Subject: Comments on Winter 97 issue TPJ

I think your magazine is good. But the
Cover was in bad taste. A

47

cigarette butt floating in coffee is
sickening. I covered it with my
own art.

More comments:
Even though I might not read all the
articles, I appreciate the
variety offered. My main reason for
providing this feedback is to
express my intense dislike of the coffee
cup cover photo. I am usual
quite careful with how I treat my
periodicals since I use them for
reference after having read them. But the
coffee cup grossed me so
much that I ripped the cover off before I
stared reading the
magazine.

Thanks for an otherwise informative and
enjoyable magazine.

Also:
I began to pick up the magazine from the
top back rack where the Barnes
and Noble I go to keeps it. As my fingers
closed around it I thought,
"Good! It seems thicker this issue!". As I
began to lift it I saw the
reference to Java and I thought "This
looks good!".

Then I saw the cover. Retching violently I
dropped the disgusting image
as quickly as I could. I cannot believe
that the person who allowed that
cover to go out has anything to do with
computers. Isn't the hacker

48

aversion to the insanely stupid and
disgusting form of self-abuse called
smoking known over there?

I will not buy this issue of the Journal
which is sad as the contents
based on this questionaire look
fascinating but I will not suffer to gaze
upon that cover ever again.

Thank God I have not yet subscribed!
Stupid! Stupid!

I went all the way out to E.P. Levine’s (a pro photo shop) on
Boston’s waterfront to pick up the Formica-looking cardboard
tabletop. So sorry.

49

TPJ #9: Drummer/Coder Wanted

Figure 3-9. Funktion (opening for $_, The Scalar Formerly
Known As ARG)

Back in college, I made a lot of posters for dorm parties,
student-produced cable shows, and the like. Orwant and I
thought it’d be entertaining to cross the DIY punk stolen

50

photocopies poster aesthetic with corporate HR. The Rapture
background added that religious element so pervasive in
programming.

This was shot on 35mm, on McGrath Highway at Twin City
Plaza in Somerville. The Band:
Sigue Sigue Sputnik. The computer: TRS-80 Model 100. The
“Rapture” poster below has since been painted over, although
you can still see them plastered throughout Boston.

51

TPJ #10: The Underwood
Typewriter

Figure 3-10. The only machine that Perl doesn’t run on

This was our finest hour. I picked up the typewriter at an
antiques store in Colorado, and shot on 4 x 5″ on white

52

seamless. Orwant supplied the copy, except for the “using 1
for l” gag—that was mine.

Once I installed gcc, the rest of the configuration went fine.

TPJ got a lot of requests for making this
cover into a poster or screensaver, but Orwant’s taste for Perl
novelties began and ended with his Magnetic Perl Poetry Kits.

53

TPJ #11: The Conspiracy

This is the first of several that I produced entirely, including
the heading and all the overlaid text, which explains why it
looks so crappy. Rather than buying barcode software,
Orwant wrote a barcode generator in Perl and generated a tiff.
I cut the entire thing together in Photoshop, The Gimp, and
PowerPoint. Yes, PowerPoint. Several
TPJ covers were laid out in PowerPoint. What, pay for
Illustrator?

54

Figure 3-11. -X File: The true value is out there

I didn’t have much of a concrete idea for this issue. I was
trying to put an X-Files spin on the Cult of Larry, or
something. The film reel in the shot is 1970s 8mm pr0n.

That’s Larry at the lower left, and a Luxo lamp to his right.
The printouts are a collection of Larry’s quotes.

55

We were back to shooting on 35mm. Jon bought me a Nikon
Coolscan, which cut several days off of production time for
each
cover.

56

TPJ #12: The Atari Perl Cartridge

Do you think we fooled anyone with the Perl
game nestled in the stack of
cartridges on the left? It took several hours of tweaking the
image with The Gimp to get the look right. Yes, that’s an
original Wico Bat Handle stick in the background. And my
old Sears cartridges from circa 1980. “Target Fun” rocks.

57

Figure 3-12. Game over

Shot on 35mm with a Nikon FM2.

58

TPJ #13: Dance Remixes

Another Gimp extravaganza. Boy do I suck at layout. We
started with an ActiveState Perl CD-ROM, and my antiquated
Sony
Discman.

Orwant and I were pretty conscious of falling into the trap of
doing too many “Look—Perl in an unexpected place!”
covers. After the Armatron, Scrabble, typewriter, Atari
cartridge, and finally the CD, the concept had pretty much run
out of steam. It was time to move on. Ripping on Microsoft is
always good for a few laughs.…

59

Figure 3-13. D.J. Larry Dogg and the Porterz bring their
unique retro-millennial page-thrashing funktions to a stereo
near you. Shout-out to the Mixmasta Gimp 1.0

60

TPJ #14: Outlook Not So Good

Did anyone get this? Anyone? [Tap tap] Is this thing on?
Outlook could either be construed to mean the Microsoft
product of the same name, or the sale of TPJ to EarthWeb.
The best art allows the viewer to interpret the art in his or her
own way.

One improvement from the
EarthWeb buyout is that we got Real Designers to help with
the
cover. That’s why the title isn’t grainy and aliased.

It’s a real pain to make a
Magic 8 ball look good on film. Do you show the hand
shaking the ball? Do you want the black plastic to shine? And
if you’re not careful, every time you move the ball in the shot,
you have to re-shake it to make “Outlook not so good” appear
again. I guess that’s why professionals have photo assistants.
“Assistant, go shake the 8 ball.”

Shot on 35mm, with a Nikon FM2.

61

Figure 3-14. The spirits care not for Microsoft’s mailer

62

TPJ #15: Braille blocks

I had nothing to do with this one. Didn’t even collect a check.

This issue contained an article on
Braille (Chapter 17), and author Sean M. Burke got his friend
David
Ondrik to take a photo of the Braille tiles (made by
Tack-Tiles, Inc. at http://www.tack-tiles.com/).

The text spelled out is “<capital>The <capital>Perl
<number>5 <com>pil<er> r<ea><ch><ed> l<in>e
<number>850 <and> di<ed><period>.”

63

Figure 3-15. Alphabet blocks in Braille

64

TPJ #16: e. e. cummings’
Gravestone

Oh, the irony. The famous poet, known for his penchant for
lowercase letters, memorialized in all caps. This was for a
special issue on poetry in Perl, containing Chapter 37,
Chapter 38, and Chapter 39.

Orwant and I spent a couple of hours searching Forest Hills
cemetery for the
headstone on a beautiful fall day. It’s too bad we didn’t bring
an industrial blow-dryer to clear the rainwater off the stone.
Note the precisely positioned leaf at the lower left—that’s
Orwant’s brilliant
art direction.

We visited the cemetery on October 14, 1999, which
(unknown to us) happened to be e.e.’s birthday. Eerie.

65

Figure 3-16. e.e. cummings was one of the most innovative
contemporary poets, known for using distorted punctuation
and syntax to convey subtle shades of meaning. His name
was most often spelled in all lowercase, and the theme of
birth pervades his poems

You just don’t see a lot of lowercase on headstones these
days. I wonder if, with the current SMS/IM aesthetic, we’ll
start getting “hr li3x william denny, aka b1tr00tr, once l33t,
now ded. peece out beeatch.”

66

TPJ #17: Napster

This was back when Napster was just starting to take off, and
Lincoln Stein had an article inside on automating Napster
searches with Perl. I would have loved to have shot this
cover for some record industry magazine.

I’m indebted to Jon
Dakss for most of the
vinyl. That’s my own sad 1990s CD collection.

67

Figure 3-17. One Boston college dorm saved money
recently by buying a cheap PC instead of a stereo and
downloading MP3s instead of buying CDs. Pictured: vinyl
LPs, CDs, and disk drives

68

TPJ #18: Spam
To: Jon Orwant <orwant@tpj.com>
From: Alan

Blount <blount@alum.mit.edu>
Subject: Re:

cover foto

It was a throwaway shot at the end of the
roll. Shutter speed was too
slow to handhold the focus well. Hence the
blur on the spam.

But that's not your story. It's blurry
because it's Art. We're
looking to set a mood here. A sort of
drunk mood, after a party,
coming back to the apartment, and there's
spam in your mail, which you
can't quite recognize at first because of
your blurred vision.

69

Figure 3-18. Spam visits Apartment 12B

Simon
Cozens had an article in this issue on filtering mail with his
Mail::Audit module, so we decided on an homage to SPAM
for the
cover. Hormel has this to say about use of their delicious meat
product to mean
Unsolicited Commercial Email:

70

We do not object to use of this slang term to describe
UCE, although we do object to the use of our product
image in association with that term. Also, if the term is
to be used, it should be used in all lowercase letters to
distinguish it from our trademark SPAM, which should
be used with all uppercase letters.

This slang term does not affect the strength of our
trademark SPAM. In a Federal District Court case
involving the famous trademark STAR WARS owned
by LucasFilms, the Court ruled that the slang term used
to refer to the Strategic Defense Initiative did not
weaken the trademark and the Court refused to stop its
use as a slang term. Other examples of famous
trademarks having a different slang meaning include
MICKEY MOUSE, to describe something as
unsophisticated; TEFLON, used to describe President
Reagan; and CADILLAC, used to denote something as
being high quality.

This was shot in a New York City co-op on 35mm, using
existing light.

71

TPJ #19: Monopoly Money

Figure 3-19. Monopoly money

There were two articles on Perl’s finance modules in this
issue, so I trotted out my old Monopoly game and scanned in
some money, whitewashing the resulting image a bit so you’d
still be able to read the text overlaid on top. No camera

72

involved—just my new flatbed scanner. I love the high-res
detail.

As much as I like this
cover, it’s unfortunate that we didn’t find some way to allude
to the “DeCSS in English” article, which shows the output of
a program that uses Perl to convert C to English, applied to
the DVD decryption software.

73

TPJ #20: WAP

A digital photo by Michael
Davis. The last Earthweb issue. The last
Blount issue. And the first human—Dan Brian—on TPJ!

Figure 3-20. Dan Brian demonstrates the promise of WAP

74

It’s not that I don’t like portraiture. We had never attempted it
before for two reasons. First, Perl geeks don’t photograph
well. It’s not that they’re only-a-mother-could-love-them
ugly, but we’re not exactly in the beauty industry here. The
second reason is that while there are certainly many Perl
luminaries who merited a cover photo, the logistics of getting
to the same physical location were more than we could
manage. Most of the covers were shot sometime between
midnight and 4 a.m. the night before (or a few days after)
deadline—not the best time to ask someone to pose for the
camera.

But I really dig Dan out in the snow. The fog on his glasses
makes the shot.

With TPJ #20 and the sale to CMP, my TPJ tenure ended. I
had a great time.

75

Chapter 4. Perl Style

Kurt Starsinic
What is good coding practice? What is readable
code?

For some programmers, these questions lead to heated
arguments. In the relatively young field of programming, it’s
natural that generally accepted rules of
style and usage haven’t yet emerged. Fortunately, our
colleagues in the more mature field of philology (the study of
language as used in literature) have set examples that we can
follow. In this article, I’ll describe
Fathom, a module that grades the
readability of Perl programs.

Background

You may have experience with the grammar check feature of
some word processors, which finds likely spelling, grammar,
and usage errors in your documents. These tools can be quite
useful, particularly for people who don’t do much writing, or
for people who haven’t had much writing instruction.

As a programmer who works mostly in teams, often training
new or junior programmers during time-critical projects, I
want automated ways to encourage compliance with team
coding standards. I know that such tools can (and do) work
for business writing, but I’ve been unable to find a tool that

76

would do the job for business coding. I did some investigation
to see if any of the available grammar checkers could be
adapted for use with program
code.

77

Existing Measures

There are many well-known measures of
readability in literature. You may have heard of
Flesch-Kincaid, FOG, SMOG, Bormuth, or other readability
or grade level tests; Microsoft Word uses three
Flesch-Kincaid tools to evaluate style. These tests generally
look at the average number of syllables per word and the
average number of words per sentence, then report a single
number which indicates either the grade level (1–12) or
readability (usually 1–100) of the document. As an example,
the Flesch-Kincaid formula for determining the grade level of
a document is:

((average sentence length in words) *
0.39)
+ ((average syllables per word) * 11.8)
- 15.59

Unfortunately, these measures don’t map well onto code; for
example, how many syllables are there in ++ or { or $_? Is
select easier to read than gethostbyname?

Once I realized that I wouldn’t be able to simply run one of
the prose-readability tests on my code and get meaningful
results, I began to study the design and function of those tests.
Then, I constructed a working model for
code readability.

78

The Basic Units

After thinking about tools like Flesch-Kincaid, and discussing
the idea of a readability tool with colleagues, I came up with a
basic model for a
code readability metric. I decided to measure the number of
tokens
per expression, the number of
expressions per statement, and the number of
statements per subroutine. Some sample tokens:

++
$foo::bar
;
{
&&
any keyword

Some sample expressions:
0.2
($a + 6)
wantarray ? @a : 0

And some sample statements:
$a = $foo::bar * 7;
$x++;

79

The Tool

Given the basic model I’ve described, I wrote a module,
Fathom, that grades the
readability of a
Perl program. It rates on an open-ended scale, where 1
indicates a trivial program, 5 indicates “mature” code, 7
indicates very sophisticated code, and anything over 7 is Very
Hairy. I established the following norms for mature code:

3 tokens per expression
6 expressions per statement
20 statements per subroutine

From this, I came up with the following formula:
code complexity

=
((average expression length in tokens)

* 0.55)
+ ((average statement length in
expressions) * 0.28)
+ ((average subroutine length in
statements) * 0.08)

If you plug the norms (3, 6, 20) into this formula, you’ll see
that ideal mature
code actually gets a score of 4.93; that’s because I rounded all
the multipliers to two decimal digits, to keep things simple.

80

Usage

First, you’ll need to install
Fathom. You can find it on CPAN, under authors/id/K/KS/
KSTAR.

After installing Fathom, you can invoke it as follows:

perl -MO=Fathom filename

The output looks like this:
315 tokens
97 expressions
17 statements
1 subroutine

readability is 4.74 (easier than the norm)

81

Why This Should Be Hard To Do

Perl is an unusual programming language, in that it has
dynamic syntax; that is, any programmer can write code that
extends or changes the syntax
of Perl. Consider the following code:

use Mystery;
if (mystery /1/ . . .

You can’t parse this without knowing about Mystery.pm!
Let’s consider two different versions of Mystery.pm.

Version 1:
package Mystery;
sub main::mystery { return 5; }
1;

Version 2:
package Mystery;
sub main::mystery() { return 5; }
1;

These two packages are almost trivially different. They both
define one function, named mystery, which returns the
value 5. However, the second version uses a prototype. In the
first case, our program parses as:

if (mystery(the results of matching the
regular expression /1/ ...

In the second case, it parses as:
if (mystery() divided by 1 divided by ...

82

By the time you’ve written a program that can successfully
parse every possible case, you’ve rewritten
Perl!

83

The Perl Compiler to the Rescue

Fortunately, the
Perl compiler gives us access to the pertinent guts of Perl,
allowing us to calculate the tokens and expressions directly;
see the
Fathom source
code for details. Without the compiler, this project would
have been prohibitively difficult.

Here are some examples of Fathom evaluations:
Benchmark.pm
27 tokens
7 expressions
5 statements
1 subroutine

readability is 2.91 (very readable)

Apache::AdBlocker
47 tokens
13 expressions
6 statements
1 subroutine

readability is 3.08 (readable)

CGI/Carp.pm
66 tokens
22 expressions
11 statements
1 subroutine
readability is 3.09 (readable)

84

perl5.005/eg/travesty
259 tokens
96 expressions
33 statements
1 subroutine
readability is 4.94 (easier than the norm)

s2p
2588 tokens
826 expressions
384 statements
11 subroutines
readability is 5.12 (mature)

CGI.pm
521 tokens
180 expressions
54 statements
1 subroutine

readability is 6.85 (complex)

DBI.pm
835 tokens
252 expressions
58 statements
1 subroutine

readability is 7.68 (very difficult)

diagnostics.pm
767 tokens
272 expressions
96 statements
1 subroutine
readability is 10.02 (obfuscated)

85

Future Directions

I intend to continue to refine
Fathom in several ways: by tweaking its basic formula to
produce more accurate grades, by considering the placement
and length of comments and pods, by having it identify
problematic
code sections, and by having it make specific suggestions for
improvement.

There are also some problems I hope to address in the near
future: Fathom doesn’t see
code that executes at compile time, such as code in BEGIN
blocks or use statements, and sometimes it counts implicit
tokens, such as $_ in a foreach statement. These
limitations probably won’t make much statistical difference in
a medium-to-large program, but they could give wildly
strange grades to one-liners and other short hacks.

Fathom also opens the door to a whole suite of companion
tools: a program that checks variable names against a
site-wide naming policy; a tool, much like C’s indent, to
normalize the indentation of
Perl code; and likely several more tools, based on experience
and feedback. Some of these are already being developed by
others.

Perl’s extraordinary architecture makes it possible to produce
very powerful companion tools without having to re-invent
the wheel. Fathom was developed with a relatively small
amount of original code—it simply hooks into the
pre-existing

86

Perl internal data structures to do its job. Similarly, the Perl
debugger uses built-in features of Perl, plus a minimal amount
of black magic, to provide a full-featured debugging
environment for your Perl programs.

In most other languages, writing a tool like Fathom would
force you to start from scratch, since some of the best tools
for other languages (e.g., gdb, indent, and cxref for
C) are based on code that is completely independent from the
compilers or interpreters that they complement. In the case of
languages that are still undergoing refinement (such as C++),
maintenance of these tools can be a nightmare. However,
Fathom will continue to work even if Perl’s syntax changes,
because it’s hooked into the Perl compiler itself!

I hope that you’re so intrigued by Fathom that you’ll want to
refine it, rewrite it, or develop new tools in a similar vein. Try
this at home, kids!

87

88

Acknowledgments

Fathom would not have been possible without Malcolm
Beattie’s outstanding work on the Perl compiler. Stephen
McCamant’s
B::Deparse module was tremendously helpful in
demonstrating how to write a compiler backend. And, of
course, I couldn’t have done any of this without such a rich
language as Perl.

89

Chapter 5. Home Automation with
MisterHouse

Bruce Winter
When most people think of Home Automation (HA), they
think of “The Jetsons,” where every appliance in the house
has a mind of its own and occasionally does something you
want it to do. The classic image of a HA geek is a man who
lives in his easy chair, controlling every aspect of his life with
voice commands and buttons like you see in Figures
Figure 5-1 and Figure 5-2.

90

Figure 5-1. MisterHouse has several Web interfaces. This
one is designed for easy use with the touch screen of small
Internet appliances

Figure 5-2. This part of the web interface allows you to
toggle, brighten, or dim X10 modules

While this may actually be the ultimate dream of a few couch
potatoes, this is not what most people want. To many people,
a night alone in a
smart house would be worse than a night at the Bates Motel.
[1] [2]

This article shows you my take on HA, used for practical,
everyday chores that even your technophobe spouse or
relative might appreciate. You can do it with the computer
you have today. You don’t have to be Bill Gates to afford it.

91

And you can do it all with your favorite programing
language!

HA! Perl?

So why does Perl make an excellent choice for an HA
programming language? Let me count the ways:

Concise and object-oriented

HA is object-oriented programming in its most literal
sense, allowing Perl’s concise object syntax to shine.
What could be simpler and more intuitive than a event
like this:

set $christmas_lights ON;

Behind the scenes, we build a generic serial port object,
and then easily build objects for more specialized
serially-controlled devices that inherit the generic serial
port’s methods.

Good with strings

Every good
smart house should be able to read and write. And boy,
can Perl read and write!

As an example, consider the David Letterman Top 10 list.
Sometimes very funny, but always past my bedtime. With
a few lines of Perl, we can retrieve the previous night’s
list from the Web and convert it into a speakable string
that can then be served with the morning breakfast:

Get the HTML and translate to text
my $html = get 'http://www.cbs.com/

92

latenight/lateshow/top_ten/';
my $text = HTML::FormatText->new(lm =>
0, rm => 150)->

format(HTML::TreeBuilder->new()->parse($html));

$text =~ s/^.+?the Top Ten/The Top Ten/s;
Delete text before the list
$text =~ s/(.+\n *1\..+?)\n.+/$1\n/s;
Delete text after the list
$text =~ s/([^\.\?\!])\n/$1\.\n/g;
Add a period at end of lines.

speak $text;

The mighty eval

Rather than stopping and restarting the entire program
from scratch each time we want to change something, we
can use eval to quickly load in just the code that has
changed.

This is especially useful with a complex HA program,
where small changes to event programming can be
frequent and you don’t want your house offline for very
long.

Free and ubiquitous

Not only is Perl free, but it also runs everywhere. The HA
community is currently split between Windows (lots of
fun software/peripherals) and Unix (reliable, which is
kind of important for HA). Using Perl, we can easily
switch between platforms when it makes sense.

93

[1] [Include possibly apocryphal story about Bill Gates’ first
night in his new NT-controlled mansion, where he couldn’t
turn off the TV?—Editor 1]
[2] [We can’t verify that, so we’ll just mention it in a footnote
and say that we were unable to confirm the story. Hey, it
works for political candidates…—Editor 2]

94

MisterHouse

Now that you’re convinced that Perl is good (admittedly not a
tough sell for TPJ readers), how can you use it to control your
house? With MisterHouse! Cue the infomercial music….

In 1999 I began a Perl program called MisterHouse. We now
have an active group of over 500 users and 100 contributors
who have helped shape it into a powerful HA program with
the following features:

▪ It executes actions based on voice input, time of day, file
data, serial port data, and socket data.

▪ It has an optional
Tk interface, pictured in Figure 5-3, with menus for all
objects and voice commands.

▪ It has a
web interface that mirrors the Tk interface to allow
control and feedback from any browser, either on a local
intranet or on the Internet. Check ours out at
http://misterhouse.net:8080.

▪ On Windows systems, it uses OLE calls to Microsoft VR
(Voice Recognition)
TTS (
Text To Speech) engines.

▪ On Unix systems, it can use the
Festival TTS engine.

▪ On Linux systems, it can use the
IBM ViaVoice VR and TTS engines.

95

▪ Using the SerialPort module, it can read and write to any
serial device, on either Windows or Unix.

▪ It has modules for reading and writing to the
X10
ActiveHome (CM11) and Firecracker (CM17) interfaces.
See Chapter 6 for more details.

▪ It also has modules for reading and writing digital,
analog, and X10 signals using other HA interfaces from
JDS, HomeVision, and Weeder Technologies.

▪ Other hardware interfaces we have code for include
IRMan (for receiving IR signals),
LCDproc (for writing to various LCDs and reading
keypad input),
ham radio modems (for tracking vehicles with GPS
units), and modem code for caller ID and paging.

96

Figure 5-3. This Perl/Tk interface to MisterHouse has the
same functions as the web interface. Commands are on the
left, Tk widgets in the middle, and the speech and print logs
are on the right

It has Internet hooks for reading and writing email, HTTP, or
FTP files.

MisterHouse consists of one main Perl program called mh (no
relation to the mail reading program) and a bunch of library,
data, and user code files. The basic flow of mh is:

Setup

Load modules, read configuration files, open serial and
socket ports. This step takes about 15 seconds on a
100-MHz Pentium and consumes about 15 MB of
memory.

Read and eval user code

The user code is parsed so that all code except global
variables and object declarations are put into a loop
subroutine. This is then passed to eval.

Run the Loop

Each pass through the loop checks for voice commands,
keyboard input, and socket/serial/file data. Then the user
code loop is evaluated and global variables and objects
are set for the next pass of the loop.

Using a sleep parameter, you can control how often the
loop is executed. With a 100 millisecond sleep period, mh

97

runs about nine passes per second on a 100- MHz
Pentium, using about 15% of the CPU.

The perl2exe program from http://demobuilder.com is
used to create optional mh binaries for Windows and Linux,
so that you can run mh even if you don’t have a recent version
of Perl installed, or are missing some required modules.

98

Objects in the Home

The best way to explain how mh uses objects and methods is
with an example. This code allows for voice control of a light
that is plugged into an X10 lamp module:

$hall_light = new X10_Item 'A1';
$v_hall_light = new

Voice_Cmd 'hall light [on,off]';
set $hall_light $state if $state = said
$v_hall_light;

The A1 string is the X10 identifier we chose for the lamp
module. Each state in the Voice_Cmd enumeration creates a
separate voice command. When one of those commands is
recognized, the Voice_Cmd said method returns the
relevant state.

The set…if…said line is put in the loop subroutine, so it
is evaluated on every mh loop. If someone says “hall light
on,” then said will return on, and the X10_Item set
method is called to turn the light on. (See Chapter 6 for more
details on how the X10 protocol is implemented.)

Voice_Cmd is just one of the mh objects. Here is a list of
some of the others:

File_Item

Reads, writes, and monitors data from files.

Process_Item

Creates, kills, and monitors background processes.

99

Serial_Item

Reads, writes, and monitors serial port devices.

Socket_Item

Creates client and server sockets.

Group

Allows for groups of objects, for easier control.

Timer

Starts, stops, and monitors timers.

100

Talking and Listening

The holy grail for the would-be
smart house is reliable voice input (Voice Recognition or VR)
and understandable voice output (
Text To Speech or
TTS). Although this has progressed a long way in the last few
years, it is not quite to the point where you can tap your Star
Trek communicator badge and have a meaningful
conversation about where to point your house’s phasers to
quiet your neighbor’s dog.

You can, however, put on a microphone headset, or stand in
front of a desktop microphone in a fairly quiet room, and have
your house recognize specific, pre-programmed phrases. This
mode of VR, called Command and Control, is much more
reliable than dictation, in which any arbitrary text can be
spoken. Dictation requires you to train your VR engines to
recognize your voice; Command and Control does not.

The mh Voice_Cmd object has two types of phrase
enumeration. As shown earlier, text enclosed in [] characters
is used to control what is returned with the said method. To
allow for variations on phrasing, you can also enclose text
within {} characters. For example, this statement:

$v_lights = new Voice_Cmd '{turn the,}
{living,dining} room fan [on,off]';

would create these recognizable phrases:
turn the living room fan on/off
turn the dining room fan on/off

101

living room fan on/off
dining room fan on/off

There are currently two VR engines that mh can use. On
Windows, Microsoft has an OLE-controllable engine, and on
Linux,
IBM has made ViaVoice binaries available. There are three
TTS engines that mh can use: IBM’s Outloud on Linux,
Microsoft’s TTS engine for Windows, and the
Festival TTS engine, available on a variety of platforms.

All of these engines are freely downloadable (locations are
available in the mh install instructions), and you can mix and
match the engine of the day. mh interacts with the ViaVoice
and Festival engines through socket-based servers, so we can
run mh on a different machine and a different OS. For
example, I run mh on Windows because I prefer the TTS
engine (it uses pre-digitized voices to give an amazingly
human-like voice), but I run the VR engine on a Linux box
because of the improved accuracy of the IBM ViaVoice
engine.

102

A Smart TV Guide

I promised you some practical, don’t-scare-the-spouse-away
type of examples. Here is an example of how you can have
your house announce when a favorite TV show is starting:

my $favorite_tv_shows =
"voyager,dilbert,family guy";
$f_tv_file = new File_Item
"$config_parms{data_dir}/tv_info1.txt";

if (

time_cron '0,30 18-22 * * *') {
run qq[

get_tv_info -times $Hour:$Minute -keys
"$favorite_tv_shows"];

set_watch $f_tv_file 'favorites now';
}

if (

changed $f_tv_file) {
my @data =

read_all $f_tv_file;
speak "Notice, a favorite show is just

starting. @data";
}

The File_Item object has set_watch, changed, and
read_all methods, used to monitor and read file data. The

103

time_cron function is used to test against a
cron-formatted time string (in this case, every half hour
between six and ten in the evening).

The run function creates a separate process to run the
get_tv_info
program, so that the main mh loop does not pause while
get_tv_info runs. On Windows, run
calls Win32::Process. On Unix, fork is used.

get_tv_info is a Perl program bundled with the mh
distribution. It queries data from a DB_File database created
by another mh event that parses TV programming info from
web pages. If you have an IR output device, you can also use
an mh event to automatically record shows.

104

Whole House CallerID

Tired of being your children’s
phone secretary? With this code, you can monitor incoming
calls using your
caller ID modem:

$phone_modem = new Serial_Item
'ATE1V1X4&C1&D2S0=0+VCID=1', 'init',
'serial3';
set $phone_modem 'init' if $Startup;

Look for modem caller ID data like this:
NMBR = 507-123-4567
NAME =

WINTER BRUCE
my $modem_data;
if (my $data = said $phone_modem) {

$modem_data .= $data;
if ($data =~ /NAME =/) {

my ($caller, $number, $name) =
Caller_ID::make_speakable($modem_data);

speak(rooms => 'all', text =>
$caller);

logit_dbm("$config_parms{data_dir}/phone/
callerid.dbm",

$cid_number, "$Time_Now
$Date_Now $Year name=$cid_name");

undef $modem_data;
}

}

105

The if $Startup check sends the modem an
initialization string to put it into caller ID mode. The
Serial_Item said method returns a string each time a record
is received from the modem. Once we have the NAME record,
we use the Caller_ID::make_speakable function to
convert the data to into a string like: “Phone call from Larry
Wall from California.” It can also use an optional rule to
return a phonetic version of the name (TTS engines don’t do
well with names like Bret Favre or Galileo Galilei), a
digitized audio file, so you can have the caller announce their
call using their own voice! A snapshot of the
MisterHouse phone log is shown in Figure 5-4.

Figure 5-4. With a Caller ID unit, MisterHouse can log all
incoming and outgoing phone calls. They can then be
viewed or searched with a web interface or the Perl/Tk
interface shown here (home phone numbers blurred
intentionally)

If you really want to get fancy, you can wire up a
relay-controlled

106

PA system, and modify a pa_stub subroutine so you can
use the rooms option of the speak function to direct the
speech to specific rooms.

Finally, the logit_dbm function logs the name and number
into a DBM file so we can query it to find names and
numbers of callers.

107

Squeaky Stairs

Is your house too new to have any of those endearing squeaky
stair steps that are the bane of teenage children trying to sneak
out at night? This code monitors a wireless X10
motion sensor to play back simulated digitized squeaks:

$timer_stair_movement = new Timer();
$movement_sensor = new
Serial_Item('XA2AJ', 'stair');
if (state_now $movement_sensor eq 'stair'
and inactive $timer_stair_movement) {

set $timer_stair_movement 60;
play(file => 'stairs_creak*.wav');

}

The Timer object is used so that we have no more than one
squeak per minute, which prevents squeak-seeking kids from
doing jumping jacks in front of your sensors. The
state_now Serial_Item method returns stair when the
motion sensor (set to code A2) is triggered and sends string
A2AJ. The play function will randomly play one of the
stairs_creak*.wav files.

108

You Have Mail

This code periodically checks your
email account and summarizes incoming messages:

$p_

get_email = new Process_Item 'get_email';
start $p_get_email if $New_Minute and
!($Minute % 10) and
&

net_connect_check;

if (

done_now $p_get_email) {
my $text = file_read

"$config_parms{data_dir}/get_email.txt";
speak $text if $text;

&scan_subjects("$config_parms{data_dir}/
get_email.scan");
}

The start method of the Process_Item object runs the
get_email program every 10 minutes so long as the
net_connect_check function verifies that you’re
online. The Perl get_email program reads the headers of
new email (for accounts specified in a configuration file,
get_email.scan) and creates a summary in the file
get_email.txt. The done_now method returns true when the
get_email process is finished.

109

get_email also creates a get_email.scan file that has the
first few lines of each email. The scan_subjects
function then checks that file for remote, password-protected
commands, so you can control your house from your
email-enabled cell phone!

There are other MisterHouse programs:

Vehicle Tracking

Shows how you can use a
ham radio to track vehicle positions.

Event Reminders

Shows how you can program event reminders, directly
and using the Outlook interface.

Time and Temperature With an Attitude

Shows how to sync up with Internet clocks and weather
data.

110

Say What?

To give you a better feel for types of things our house says,
here is a list of things I copied out of a recent
speech log file:

▪ Turning furnace heat on after 23 hours at 67.6 degrees.

▪ Turning furnace heat off after 20 minutes at 69.1
degrees.

▪ Notice, the sun is bright at 32 percent, and it is cold
outside at 24 degrees, so I am opening the curtains at
8:07 a.m.

▪ The van is traveling north at 58 mph 0.8 miles west of
Wal-Mart.

▪ The car is parked at Friedell School.

▪ Email account laurel has 4 new email messages from
The S F gals.

▪ Email account nick has 1 new email message from
accountmanager.

▪ Notice, Nick has been on the computer for 2.1 hours
today.

▪ The front door has been left open.

▪ Phone call from Mal and Beth
Winter from Montana.

▪ Notice, there is 1 favorite show starting now: “Dilbert”
on channel 8.

111

▪ 8:58 p.m. VCR recording will be started in 2 minutes for
“South Park” on channel 47.

▪ Notice, there were 668 web hits from 74 clients in the
last day.

Here is an example of a VR
session. To keep it from accidentally responding to
human-to-human conversation, we use special phrases to
activate and deactivate it:

Human: Hey MisterHouse.

mh: What's up?
Human: Christmas lights on.

mh: I heard christmas lights on.
Human: What is the outside temperature.

mh: The outside temperature is 26
degrees.
Human: Go to sleep.

mh: Later.

If you have an HTTP-capable MP3 player, you can hear what
our house sounds like and optionally have a conversation with
a heavily-modified Eliza ChatBot at http://misterhouse.net:81/
mh/web/speak.

112

Give Your House a Brain

Not ready to take the plunge yet? Consider this: For $50 you
can order from
x10.com the send-only X10
FireCracker kit (described in Chapter 6) or the more flexible
send and receive
ActiveHome kit. In either case, all you need is an open serial
port and a lamp or appliance you want to control. There are
no wires to mess with, so you can even use it in a rented
apartment or dorm room.

If you don’t need or want the complexity and overhead of mh,
you can use the X10 Perl modules from CPAN and write your
own interface. Even if you don’t need X10 control, you might
still find the voice, time, and Internet functions of mh of some
use. For example, my twin sons each have a bare-bones
version of mh running on the computers in their rooms (they
call it MisterRoom), just so they can have remote and timed
control of their MP3 players (pictured in Figure 5-5).

113

Figure 5-5. All voice commands are listed by category. The
Music category allows you to remotely control various MP3
players and to build and search a database of MP3 songs

You can find the mh documentation and installation
instructions at the web site http://misterhouse.sf.net.

114

Chapter 6. Home Automation: The
X10 Nitty-Gritty

Bill Birthisel
Consider small computers. No, not notebooks, subnotebooks,
or even “embedded” single board controllers. Blackberry,
Psion, Palm—still way too big. Game consoles, microwave
oven keypads, clock radios? Getting closer. TV remotes,
computer keyboards, and talking toys are at the top end of this
class. The real foot soldier of home automation is the
microcontroller—a tiny computer optimized to do a few
things well. Tiny is the key word here—
microcontrollers need to be small, cheap, and able to run on
low power.

In this article, we will introduce some of the nitty-gritty
details of
working with home automation. We’ll talk about two
microcontroller-based boxes you can connect to your
computer: one simple (the
CM17) and one complex (the
CM11). Each sends messages to devices that plug into your
house power and control individual items (one lamp or
appliance per device). We’ll start with the CM17 and use it to
describe the commands, protocols, and timing issues common
to most home control installations. Then we’ll look at the
CM11 and the extra complications associated with receiving
commands. Finally, we’ll look at some of the issues a real
home automation application needs to consider.

115

Along the way, we’ll examine some the Perl modules you can
use to manipulate the CM17 and CM11. The examples will
run on your computer even if you don’t have any of the
hardware, although you won’t be able to “watch der blinkin’
lights.” In practice, the modules are commonly called from
within a user environment such as MisterHouse, which Bruce
Winter described in Chapter 5.

The Perl slogan, “There’s More Than One Way To Do It,”
also applies to home automation. There are lots of vendors,
lots of products, multiple protocols, and a variety of
command sets. You can build kits, purchase individual
components, or even buy complete packages. Some of the
products are even compatible. I’ve selected specific models
for this article because the CPAN modules supporting them
are the most mature, but don’t consider that a product
endorsement. Modules for other types and other vendor
protocols are in development and may be available by the
time you read this. Check the ControlX10:: namespace at
your favorite CPAN site.

The term “X10”
is a bit ambiguous; in this article, it refers to a mechanism for
sending data messages via house wiring (
power line modulation). There is also a company named X10,
Inc., that manufactures and sells the
CM11 and
CM17 controllers.

The CM17 (Figure 6-1) is a little box about twice the size of
your thumb that sends on and off commands via radio to
household appliances. It’s sold under the trade name
“FireCracker,”

116

and it plugs into a serial port (the little 9-pin connector on
most PC hardware). It draws its power from the port—no
batteries required.

Figure 6-1. The FireCracker

Simple Output Commands: The
CM17

There are at least four separate communication transport
systems found in home automation: radio (used by the
CM17), power line (CM11 and others using the X10
protocol), infrared (TV remote controls and line of sight
devices), and direct-wire (CEBus, CAN, BACnet, and other
slimmed down industrial I/O protocols). The CM17 transmits
radio signals to another box that powers on or off an
appliance plugged into it and retransmits commands via
X10 power line modulation to other device controllers. Inside
each box, a microcontroller waits to decode and implement
any commands sent its way. A box that converts
wireless signals to X10 power line commands is shown in
Figure 6-2.

117

Microcontrollers are designed to manage a small amount of
rigidly defined I/O and to talk exclusively to other
microcontrollers and computers. “Spartan” is a polite
description for the user interface; it’s tough to implement a
shell, much less a modern GUI, in 256 bytes of RAM. You
program microcontrollers by toggling individual bits or
sending a handful of encoded bytes to a serial port. Each
microcontroller implementation is different; fortunately, the
gory details can be collected in Perl modules, so most users
will never have to know them.

118

The ControlX10::CM17 and
ControlX10::CM11 Modules

The ControlX10::CM17 and ControlX10::CM11 modules are
collections of functions that make it possible for you to
manipulate CM17 and CM11 boxes from your Perl program.
We’ll see a number of examples throughout this article. The
first is so simple it requires no special hardware at all—we’ll
simply pretend we have the necessary hardware and ask a
CM17 to toggle a lamp on and off twice. (To actually turn
something on and off, we’d need a serial port, a
CM17, and a radio receiver that talks the same RF protocol.)

Figure 6-2. An X10 wireless link module, which takes
wireless signals from a computer and converts them to X10
commands sent over household wiring

The program below, cm17_no_hardware.pl, imports
SerialStub.pl (available on the web page for this book
at http://www.oreilly.com/catalog/tpj3), which creates an
object that behaves like a serial port with a CM17 box

119

plugged into it. We never talk to the actual box, but the CM17
module doesn’t care—it finds the methods it wants, so it’s
happy.

#!/usr/bin/perl -w

require 'SerialStub.pl'; # Emulate port
hardware

package main;
use

ControlX10::CM17;
use strict;

my $serial_object = SerialStub->new (); #
Creates object

print "Turning address A1 ON\n";
send_cm17($serial_object, 'A1J');
print "Turning address A1 OFF\n\n";
send_cm17($serial_object, 'A1K');

print "Repeat same toggle with
debugging:\n";
$ControlX10::CM17::DEBUG = 1;

print "Turning address A1 ON\n";
send_cm17($serial_object, 'A1J');
print "Turning address A1 OFF\n";
send_cm17($serial_object, 'A1K');

The program’s output will be something like this:
| Turning address A1 ON
| Turning address A1 OFF
|
| Repeat same toggle with debugging:

120

| Turning address A1 ON
|

CM17: SerialStub=HASH(0x804a9c4) house=A
code=1J
|

CM17: Sending:
1101010110101010011000000000000010101101
done
| Turning address A1 OFF
| CM17: SerialStub=HASH(0x804a9c4) house=A
code=1K
| CM17: Sending:
1101010110101010011000000010000010101101
done

The main part of the example turns a device on and off twice.
It creates an object and passes it to the send_cm17
function. We also turn on verbose output during the second
toggle sequence to see how the command is translated.

121

What’s in a Command?

The microcontroller in the CM17 uses only three of the wires
in the serial port: a ground and two signals called RTS and
DTR. At least one of the signals must be on at all times to
provide power to the microcontroller; both are on during idle
periods between commands. The command is a series of 40
pulses (a 0 bit is RTS pulsing off, and a 1 bit is a DTR
pulsing off). The CM17: Sending: lines above show
typical 40-bit output strings.

The send_cm17 function takes a serial object and a
command string as arguments, and calls a strange selection of
serial object methods. It doesn’t use either the read or write
lines of the serial port—it just passes them through so
something else (a terminal, or device like a
CM11) can use the port simultaneously (as long as it doesn’t
use DTR or RTS, and as long as the operating system permits
port sharing—some devices, like a serial mouse, need
exclusive access).

The command_string usually contains three parts: the
house code, the unit code, and the operation. There’s one
house code per house (out of sixteen possible: A..P), one
unit code per appliance (1..9, A..G), and seven possible
operations for the CM17, as shown in Table 6-1.

Table 6-1. CM17 operations

122

Operation Function

xJ Unit On (requires unit code x)

xK Unit Off (requires unit code x)

L Brighten Last Light Programmed 14%

M Dim Last Light Programmed 14%

N All Lights Off

O All Lights On

P All Units Off

Not all receivers support operations L, M, N, and O.

This division into sixteen house (major) and sixteen unit
(minor) parts is a common feature of the protocols. I’m not
worried about interference here in rural Wisconsin, but the
sixteen house settings mean that in a crowded apartment
building neighbors are less likely to be toggling your living
room lights.

Our second example, cm17_bit_toggle.pl, will toggle
a real lamp or appliance on and off if you have a
CM17, a transceiver, and a device
controller set to address A1. An X10 lamp module is shown
in Figure 6-3.

123

Figure 6-3. An X10 lamp module

To run cm17_bit_toggle.pl, you’ll need a serial port
module installed on your system: either
Win32::SerialPort (for Windows) or
Device::SerialPort (for Unix or Mac OS X). On some
operating systems, you will also need permission to open the
port and access the hardware. See the documentation bundled
with the
SerialPort modules for specific platform details.
cm17_bit_toggle_pl will run without a CM17, but the
results will be like those cm17_no_hardware.pl. (The
module can’t determine itself whether a CM17 is present.)

#!/usr/bin/perl -w
cm17_bit_toggle.pl
USAGE: perl cm17_bit_toggle.pl [PORT]
PORT defaults to COM1 on Win32 and /dev/
ttyS0 on linux
any command line parameter overrides the
default
you'll need to specify which port to use
on other OS

require 'start_port.pl'; #
Initialization for real ports

124

use ControlX10::CM17;
use strict;

my $serial_object = open_port (@ARGV);
Returns newly created object
for example, PORT is just passed through
if specified

print "Turning address A1 ON\n";
send_cm17($serial_object, 'A1J');
print "Turning address A1 OFF\n\n";
send_cm17($serial_object, 'A1K');

print "Repeat same toggle with
debugging:\n";
$ControlX10::

CM17::DEBUG = 1;

sleep 1;
print "Turning address A1 ON\n";
send_cm17($serial_object, 'A1J');
sleep 1;
print "Turning address A1 OFF\n";
send_cm17($serial_object, 'A1K');

cm17_bit_toggle.pl is almost exactly the same as
cm17_no_hardware.pl, and the output on your screen
will be identical. The important differences are hidden in the
require. All the initialization and operating system details
are provided by start_port.pl, shown below:

USAGE: require 'start_port.pl';
$port_object = open_port ($port);
#
$port defaults to "COM1" on Win32 and
"/dev/ttyS0" otherwise
You'll need to specify which port to use

125

on any OS other than linux

use vars qw($OS_win);

We start with some cross-platform black
magic
BEGIN { # Decide which

module to use based on the operating system
$| = 1;
$OS_win = ($^O =~ /win/i) ? 1 : 0;
if ($OS_win) { eval "use Win32::

SerialPort 0.19" }
else { eval "use

Device::SerialPort 0.07" }
die "$@\n" if $@;

}

use strict;

open_port() takes a port_name as
parameter, and provides
plausible defaults if none specified
(Win32 and linux)

sub open_port {
my $port = shift;
my $serial_port;
if ($OS_win) {

$port = "COM1" unless ($port);
$serial_port =

Win32::SerialPort->new ($port);
} else {

$port = "/dev/ttyS0" unless
($port);

$serial_port =

126

Device::SerialPort->new ($port);
print "\n=== Bypassing ioctls

===\n\n" unless $serial_port->can_ioctl;
}
die "Can't open serial port $port:

$^E\n" unless ($serial_port);
$serial_port->handshake("none");

CM17 doesn't care about other
parameters unless the pass-through

port is used. The

CM11 doesn't need ioctls--but it does have
to

set the traditional serial
parameters like baud, parity, stop bits,
etc.

$serial_port->error_msg(1); #
Use built-in error messages

$serial_port->user_msg(0);
$serial_port->databits(8);
$serial_port->baudrate(4800);
$serial_port->parity("none");
$serial_port->stopbits(1);
$serial_port->dtr_active(1);

$serial_port->write_settings || die
"Could not set up port\n";

return $serial_port;
}

1;

The BEGIN block at the start of start_port.pl is
deceptively simple. Win32::
SerialPort translates the primitive elements of the Windows
serial driver interface into more useful methods for your Perl
program. Similarly,

127

Device::SerialPort provides portability across
POSIX-compliant operating systems.

start_port.pl also checks that the OS-specific system
calls (ioctls) needed to run the
CM17 are available for your platform. If they aren’t, you
won’t be able to control real hardware, but the examples will
still run and print what they are doing. You’ll see a ===
Bypassing ioctls === message if the
module can’t issue the necessary hardware pulses.

Let’s see another example of the ControlX10::CM17 module.
Here’s slow_speed.pl:

#!/usr/bin/perl -w
USAGE: perl slow_speed.pl [PORT]
same PORT defaults as cm17_bit_toggle.pl

require 'start_port.pl'; #
Initialization for real ports

use ControlX10::CM17;
use strict;

my $serial_object = open_port (@ARGV);

print "Turning address A1 ON\n";
send_cm17($serial_object, 'A1J');
print "Turning address A2 ON\n";
send_cm17($serial_object, 'A2J');
print "Turning address A3 ON\n";
send_cm17($serial_object, 'A3J');
print "Turning address A4 ON\n";
send_cm17($serial_object, 'A4J');
print "Turning address A5 ON\n";
send_cm17($serial_object, 'A5J');

128

print "Turning all house A OFF\n";
send_cm17($serial_object, 'AP');

$serial_object->close || die "\nclose
problem with port\n";

129

Timing Issues

If you run slow_speed.pl, you’ll see output like this
after as long as ten seconds:

| Turning address A1 ON
| Turning address A2 ON
| Turning address A3 ON
| Turning address A4 ON
| Turning address A5 ON
| Turning all house A OFF

Why is it so slow? The answer might seem glib: it doesn’t
need to be any faster. I mentioned earlier that the transceiver
echoes commands to other devices via power line modulation.
The X10 power line protocol transmits one bit per power line
cycle and requires 47 cycles for a typical message—around a
second. If you have the appropriate hardware, you can run the
following experiment: set a lamp module to the same address
as a transceiver with a built-in mechanical relay. When you
send an on or off command to that unit, you’ll hear the relay
make an audible click about a second before the lamp
responds. Since
microcontrollers have small command buffers, you don’t
want to have too many operations pending. Running the
CM17 module at about the same rate as the power line
transmission reduces the amount of queueing and buffering
needed.

all_together.pl is like slow_speed.pl, but
groups the units into related house addresses, letting a single
pair of commands simultaneously alter up to 16 appliances:

130

#!/usr/bin/perl -w
FILE: all_together.pl
USAGE: perl all_together.pl [PORT]
same PORT defaults as cm17_bit_toggle.pl

require 'start_port.pl'; # Initialization
for real ports

use ControlX10::CM17;
use strict;

my $serial_object = open_port (@ARGV);

print "address A All Lamps ON\n";
send_cm17($serial_object, 'AO');
print "address A All OFF\n";
send_cm17($serial_object, 'AP');

$serial_object->close || die "\nclose
problem with port\n";

all_together.pl runs much faster than
slow_speed.pl.

131

Bidirectional I/O with the CM11

Before we look at the issues involved in designing a home
automation application, let’s look at another type of hardware
controller. The CM11 talks to a computer via a serial port,
and communicates with unit modules only via household
power lines. It also monitors the power lines for commands it
didn’t send, such as from motion detectors or RF transceivers,
and reports those to the computer. It includes a built-in clock
and even permits cron-like macro programming (“turn A3
ON at 09:00”). The
CM11 interface is so unlike the
CM17 that both devices can share the same serial port. Like
cm17_no_hardware.pl, this program
(cm11_no_hardware.pl) should run on all systems
regardless of hardware:

#!/usr/bin/perl -w
FILE:

cm11_no_hardware.pl
USAGE: perl cm11_no_hardware.pl;

require 'SerialStub.pl'; # Emulate port
hardware talking to CM11

package main;

use ControlX10::CM11;
use strict;

my $serial_object = SerialStub->new ();
creates and initializes object

132

my $no_block = 1; # Return immediately
unless data waiting

read_cm11($serial_object, $no_block);

A bit toggle like that in the earlier
CM17 examples
print "-------\n\n";
print "Sending A1 ON\n";
send_cm11($serial_object, 'A1');
send_cm11($serial_object, 'AJ');
print "Sending A1 OFF\n";
send_cm11($serial_object, 'A1');
send_cm11($serial_object, 'AK');

Emulate a "data waiting to be read"
message from the CM11
print "-------\n\n";
my $incoming = chr(0x5a);
$serial_object->fakeinput($incoming);

if (read_cm11($serial_object, $no_block)) {
my $datain =

receive_cm11($serial_object);
print "Received $datain\n" if (defined

$datain);
}

print "Sending A2 OFF\n";
send_cm11($serial_object, 'A2');
send_cm11($serial_object, 'AK');

A CM11 command consists of two parts: one or more
addresses (a house/unit combination, like A2) and one or
more operations (a house/operation combination, like AK).
This is actually closer to the command signal format sent on
the power lines than the 40-bit string we saw in the
CM17.

133

The send_cm11
method looks much like the send_cm17 method used in
earlier examples, but it does a lot more work. It computes a
checksum, validates the transmission, handles retries, and
checks for incoming data. The CM11 can also initiate
communication, sending a single character “read me” request
when it has data waiting to be processed.

Let’s look at one final example that assumes we have the
hardware we need to manipulate our appliances. The result is
follow_leader.pl. After initializing, the program
loops, waiting for activity on unit A1. If it sees any, it sets A2
to the same state. This is a somewhat contrived example, but
it illustrates some important elements of an automation
control loop—in part because it spends most of its time
scanning for inputs of interest. (I used the $block option to
get a loop timing of about a second instead of an explicit
sleep 1.)

#!/usr/bin/perl -w
USAGE: perl follow_leader.pl [PORT]
same PORT defaults as cm17_bit_toggle.pl
output A2 changes when the CM11 reports
a change in A1

require 'start_port.pl'; #
Initialization for real ports

use ControlX10::CM11;
use strict;

my $serial_object = open_port (@ARGV);

my $DUMMY = 0; # Set this to true if
running without a CM11

134

my $reps = 30;
my $block = 0;
my $a2_state = 'AK'; # OFF
my $a2_new = 'AK'; # OFF

while ($reps-- > 0) { # Loop
continuously for 30 seconds

print ".";
if (read_cm11($serial_object, $block))

{
poll CM11 for "data waiting"

my $datain =
receive_cm11($serial_object);

if (defined $datain) {
print "\nReceived $datain\n";
$a2_new = 'AJ' if $datain =~

/A1AJ/;
$a2_new = 'AK' if $datain =~

/A1AK/;
}

}

$a2_new = 'AJ' if $DUMMY && $reps ==
15;

A2 follows detected changes in A1
if ($a2_state ne $a2_new) {

if ($a2_new eq 'AK') {
print "\nSending A2 OFF\n";
$a2_new = $a2_state = 'AK';

} else {
print "\nSending A2 ON\n";
$a2_new = $a2_state = 'AJ';

}
send_

cm11($serial_object, 'A2') unless $DUMMY;
send_cm11($serial_object,

135

$a2_state) unless $DUMMY;
}

}
print "\n";

$serial_object->close || die "\nclose
problem with port\n";
undef $serial_object;

If you run follow_leader.pl without a CM11, set
$DUMMY = 1; and you’ll see a result like this:

|
| Sending A2 ON
|

The example simulates receiving an A1 ON halfway through,
and prints a dot roughly every second to indicate cycles
through the loop. With a CM11 and an external RF command
unit, you’ll see output like the following:

|
| Received A1AJ
|
| Sending A2 ON
|
| Received A1AK
|
| Sending A2 OFF
|
| Received A1AJ
|
| Sending A2 ON
|
| Received A1AK
|
| Sending A2 OFF
|

136

A Few More Considerations

So what other issues are involved in creating a real home
automation program? In Chapter 5, Bruce Winter discusses
some of the user interface issues and one approach to
managing them. I’ll concentrate on the issues that arise in a
read/write hardware setup and those associated with multiple
users as well. Most of these comments apply to both the
CM11 and CM17 (and to other computer interfaces as well):

1. It takes a long time to talk to household appliances—so
long that if you’re going to be having some appliances
depend on what others are doing, or if you’re going to
have a spiffy user interface that monitors many
appliances, you need an
event queue. This lets your computer perform other tasks
between attempts at communication.

2. A real application needs to know what is turned on and
what is turned off. We can keep track of what we’ve
done to each unit, or if CM11-style two-way
communication is available we can send an “are you on”
status query. However, this is slow, so we want to
maintain a local model of the appliances whenever
possible.

3. If we wish to allow commands from multiple sources
(say, from a web page, command line, and program
loop), or from multiple users, we need to resolve issues
such as who “owns” the port.

4. Some means of override needs to be provided in case the
state data becomes stale or invalid. When the computer

137

is rebooted (or the program stopped and restarted), we
won’t know if an appliance is on or off unless we saved
the previous state.

5. When many people have access to the same set of
appliances, you might want to restrict access for certain
user/appliance combinations. In this case,
authentication may be required.

6. We have touched only lightly on
error handling and event logging. The device controllers
can detect many kinds of errors, including collisions on
the power line and invalid commands. The CM11.pm
module uses checksums to validate communications with
the CM11 box, and the box itself can detect some errors
and retry unsuccessful transmissions. The CM17 is a
one-way device, so its error handling is more limited.

Bruce Winter has addressed most of these, and many more, in
his excellent MisterHouse program described in Chapter 5.
It’s well worth a bit of study before you reinvent the wheel.

138

Chapter 7. A Day in the Life of
comp.lang.perl.misc

Clinton Pierce
The fate of
Usenet has been bantered about quite a bit lately. Slashdot
posters have proclaimed the death of Usenet
(http://slashdot.org/article.pl?sid=00/02/04/2224201), and
even a Washington Post article claims that Usenet may have
outlived its usefulness (http://search.washingtonpost.com/
wp-srv/WPlate/2000-02/04/066l-020400-idx.html). They both
seem to suggest that Usenet
newsgroups will be replaced by special-purpose web-based
discussion forums, like Slashdot. Furthermore, flamewars and
a barrage of CGI questions in
comp.lang.perl.misc have had many in the Perl community
wondering about the viability of comp.lang.perl.misc, and
how long it can last. Figure 7-1 shows a sample posting from
the newsgroup.

139

Figure 7-1. A question and answer on comp.lang.perl.misc

Myself, I’m a big fan of the newsgroup. I learned a lot of Perl
from it, and more importantly I learned how to answer
questions for new Perl programmers. I gained a lot of
experience by simply lurking, and then posting, to the group.
What follows is an in-depth analysis of the articles posted to
comp.lang.perl.misc, all nicely trimmed and
categorized—and a little speculation on what makes the group
tick.

A Little History

The

140

Usenet group comp.lang.perl.misc was created in May 1995,
deprecating the older newsgroup comp.lang.perl. The charter
describes it as a newsgroup for “discussion of issues of all
sorts relating to Perl,” which is apt: the topics in the group
range from discussion of Perl’s guts to CGI programming.

The group is high-traffic, often receiving over 200 posts a
day. The posters are new Perl programmers, experts, and the
occasional visits by people who were looking for other
groups. The “experts” can be people who are still learning
Perl and happen to know enough to answer the question at
hand, up to gurus who speak at conferences, write books, and
hack on Perl itself.

There are six Perl
newsgroups in all:

comp.lang.perl.misc

General discussion
about Perl.

comp.lang.perl.moderated

Like c.l.p.misc, but higher quality.

comp.lang.perl.tk

Discussion of the Perl/Tk graphical toolkit.

comp.lang.perl.modules

Discussion of particular Perl modules.

alt.perl

Perl discussion for those who don’t know about c.l.p.misc.

141

comp.lang.perl.announce

Certain messages selected by the newsgroup owners.

142

How the “Day in the Life” Was
Done

Before diving into the statistics, a brief description of how
they were gathered. I analyzed all the threads with messages
posted on Groundhog Day, 2000. Why February 2? Because I
decided to write this article on the 4th, and my local newsfeed
had several days of articles remaining in the spool. This
meant that I didn’t have to use Deja News (now absorbed into
Google) to retrieve articles. I wasn’t trying to find (or avoid)
flame wars; it was just a convenient day.

Any thread that was open on February 2 was considered for
the statistics. According to my newsfeed, exactly 250 articles
were posted on that day. Once messages posted on other days
that belonged to February 2 threads were included, there were
432 articles that needed to be read, sorted, graded, and
judged.

For reading the articles, I wrote a small Perl/Tk application to
pop up each article one at a time along with a clickable
scorecard (shown in Figure 7-2). The headers (except for the
Subject: line) and the signatures were removed while I
scored to help prevent bias. After years of reading c.l.p.misc,
I was sometimes able to determine a poster just by his writing
style, but I tried not to let that affect my grading.

143

Figure 7-2. A Perl/Tk categorization tool for
comp.lang.perl.misc

Each article was judged on its own merits. The quality of the
questions (except for determining whether the poster’s subject
line was appropriate) was ignored. If a poster flamed a good
question, or counter-flamed, it was still considered a flame.
Sarcastic, flame-baited answers were considered both answers
and

144

flames—articles could fall under multiple headings—the
same message could be “off-topic,” “flame,” and an
“answer.”

145

The Raw Statistics

There were 109 questions posted to the group in that period,
of which 30 included some code. This means that the person
asking the question (and later on, the person answering)
included some attempt at writing the code and was seeking
correction, syntax help, advice, or debugging.

17 questions were simply off-topic, having no Perl content
whatsoever. The topic for c.l.p.misc is “issues of all sorts
relating to Perl,” so anything involving Perl is fair game.
Many people in c.l.p.misc feel that CGI questions are
off-topic for the group, and I do as well—except when it’s
about CGI.pm module usage, or Perl CGI programs that
aren’t working. To me, this is just the latest trend in
computing. It used to be client/server applications, and next it
might be distributed computing. Perl adapts to its
environment so well, it’s natural that c.l.p.misc’s posts would
drift toward current trends. And it’s not just CGI. Half the
off-topic posts were about SQL or databases of one kind or
another, having nothing to do with Perl (or its modules)
whatsoever.

How many of those 109 questions were answered? All but
four of them were eventually answered with code,
suggestions to move along to another group, documentation
pointers, or other helpful information. This is a response rate
of over 96%. Some of them took a few days to be answered,
and I stopped checking after four days to see if the remaining
four would be answered.

146

Of the 109 questions, only 60 had what I’d consider to be
good subject lines, where the body of the message was
adequately described. (I was being quite generous.) At this
point, I’d like to kick out a few soapboxes, and point out that
of those 49 bad subject lines, only one was changed by the
responder.

On the subject of subject lines, the articles broke down like
this for on-topic articles:

209 Perl language usage, bugs, questions, and answers
29 Windows-specific questions
20 Web questions
18 Module usage questions
14 Questions about programs Perl interacts with
(sendmail, shell questions, …)
12 Books

And like this for off-topic articles:

18 Web articles (CGI, HTTP, or web server issues)
10 Database (SQL language, database server issues, …)
9 Questions about running programs other than Perl
8 Windows, Unix, or OS conversations unrelated to Perl
4 JavaScript postings

There were 30 articles that were neither questions nor
answers, just casual on-topic conversation about Perl.

147

The Day’s Weather Report

Overall, things in the newsgroup were calm that day. 178
answers were posted to the group, and a surprising 70 of them
included code written by the responder.

Flames were moderate that day as well. Only 14 articles were
categorized as true flames: content-free, without any merit
whatsoever and existing only to say, “NO, THAT’S
WRONG!” Surprisingly (or not, depending on your view)
almost all eleven flames were from channel regulars.

Finishing on a good note, there were sixteen messages that
were Thank You’s. Not simply “TIA” (thanks in advance),
but honest thanks for information passed along. They
acknowledged the advice sent, seemed to benefit from it, and
were polite enough to respond accordingly. Who says civility
is dead?

The group c.l.p.misc has a blessing almost unique to
Usenet
newsgroups: there’s almost no spam. Only three articles out
of all 432 could be considered advertising, and two were
on-topic. The two on-topic posts were a Call for Papers for
the O’Reilly Perl Conference in Monterrey, and a job listing
for a Perl programmer (which should have been posted
elsewhere). The off-topic posting, way off the mark, was a
broadly-crossposted Call for Papers for a USENIX Windows
NT Symposium. Shame on USENIX; they should know
better.

148

Netiquette Nits

Abusive crossposting was almost non-existent. Most of the
crossposts were between
comp.lang.perl.misc and any one of alt.perl,
comp.lang.perl.modules, or the obsolete comp.lang.perl. 70
articles were crossposted total. Only 5 articles were
crossposted to three or more groups, and none (except the
aforementioned USENIX spam) to more than 5.

Despite all of the moaning about munging email addresses
when comp.lang.perl.moderated was being created, addresses
are almost never hidden in comp.lang.perl.misc. By visual
inspection, there were 418 unique email addresses over that
period. Twenty of them were obviously forged or
undeliverable. (I didn’t actually send mail to the 418
addresses to verify they were real, but I did read all of the
relevant articles and only counted those that were clearly
munged for spam protection.)

The other netiquette gripe is about trimming quoted posts and
submitting
Jeopardy-style messages—where the quoted article appears
after the response, so that reading top-to-bottom the answer
appears first and then the question. Only 248 of the 314
articles with any quoting had the quoted material trimmed
down at all. Only one person who employed Jeopardy-style
quoting trimmed the quoted material.

Of the 66 articles that weren’t trimmed at all (but contained
quoted material), 37 were Jeopardy-style and 29 were
traditional (quoted material, then response). This seems to

149

support the notion that Jeopardy-style posters do not trim at
all, and make up the majority of those posters who don’t trim.

And what about the FAQs? Of the 92 on-topic questions, only
15 were on the FAQ list (the “core” FAQ, the Win32 FAQ, or
the Idiot’s Guide). Five of the remaining questions were
questions about the FAQ—all of them because the FAQ
sometimes presents simple and complex answers to the same
question without clear explanation as to which should be
used. In one respondent’s words, “The FAQ tries to be too
cute sometimes.” This is not a new complaint. The 72
remaining questions could not clearly be answered by any of
the FAQs. What I unfortunately did not analyze were the
proportion that could have been answered by reading the
documentation. (That is, questions that were clearly about
well-documented features and did not need further
explanation by someone more experienced in the field.)

150

The Regulars

Who answers all of these questions? The group has a core of
regulars, to be sure. These folks have been reading c.l.p.misc
for years and still find time to reply to questions and to
monitor the group. Tom
Phoenix, Randal
Schwartz, and Larry
Rossler, to name a few. These guys were posting when I was
just learning Perl and they’re still going strong.

Of course, there are some who have dropped out. Larry Wall
no longer posts to
comp.lang.perl.misc, and recently Tom Christiansen has
dropped out as well. The high volume of posts, the number of
novices, and the frequency of FAQs contributes to the
dropout rate. The comp.lang.perl.moderated group and the
perl5-porters mailing list remain refuges for those who want
to hear these voices.

In addition to the hardcore old-timers are those who answer a
question here and there. As the core gets whittled down, they
find themselves taking on more and more questions.

Why do people post? A quick survey of the regulars
appearing in Greg
Bacon’s comp.lang.perl.misc statistics turned up a few
reasons. Foremost seems to be that they’re doing this as a
learning experience for themselves. As Jonathon
Stowe put it, “Every program I write now—I treat it as if it
were going to be exposed to the criticism of c.l.p.m. and so
apply those coding standards to everything I write.”

151

There is also a wish not to see Perl misrepresented, and
genuine desire to help others. The last reason common to all
the regulars who answered was to participate in the Perl
community in some small way.

152

The Future of comp.lang.perl.misc

Where does the group go from here? I asked the regulars if
they were satisfied with the state of comp.lang.perl.misc, and
almost universally they answered no. The answers were not
unexpected:

▪ Posters need to read more documentation before posting.

▪ Posters need to lurk, or search newsgroup archives
before posting.

▪ Posters need to stay on topic.

For comparison’s sake, I showed the messages to other
Usenet old-timers and the reaction was, “Well, these apply to
any group on Usenet…”

Some of the regulars have taken fanatical measures to ensure
that the group stays on track, and this lends a reputation
(deserved or not) to c.l.p.misc that it’s a newbie-hostile group.
However, like any other static institution bombarded with
change and youth, it has been changing and flexing to suit its
environment. When the newbies wear down the old regulars,
new regulars step in and take up the slack. I believe the group
is doing just fine, and isn’t getting any worse or better over
the years. A quick survey of February 2, 1998 and February 2,
1996 shows that the group hasn’t changed much. Some of the
regulars have gone, others have arrived. The topics have
changed (more DBI and web, less networking and system
administration), but the basic themes haven’t.

It would be nice if newbies lurked more, and read the
documentation before posting. But even so, the group itself

153

seems to be responding well and shaping itself to the trends it
encounters.
comp.lang.perl.misc should continue to be a useful resource
for a long time to come.

Author’s Note: Since this article was written, followup
research shows that the types of articles posted to
comp.lang.perl.misc remains the same, but with small
changes: scattered throughout the postings are mentions of
Perl 6, the “regulars” I mentioned have rotated out, and the
number of CGI questions has dropped off slightly. The most
noticeable difference, though, is the volume: on any given day
in 2002, there are only half as many active threads as there
were on the same day in 2000. Perhaps Usenet is being
replaced by other information sources such as specialized
web sites (Perl Monks, http://learn.perl.org) or mailing lists,
or people are finally reading the documentation.

154

Part II. Science

In this part:

Chapter 8

Chapter 9

Chapter 10

Chapter 11

In this section, four articles demonstrate some scientific
applications of Perl, with two hobbyist-oriented topics
followed by two professional topics. John Redford begins
with an article about how he designed and built a sundial for
his backyard, using Perl to give it accuracy down to the
minute. Brad Murray and Ken Williams follow with a tutorial
on genetic algorithms in Perl, showing how to breed functions
that incrementally evolve toward a desired solution.

One of the most popular articles in TPJ’s history was Lincoln
Stein’s Chapter 10, which chronicled how he used our
favorite language to glue together disparate data formats
originating in genome laboratories scattered around the globe.
Astronomers Karl Glazebrook and Frossie Economou
conclude the chapter with a description of the Perl Data
Language, an extension to Perl optimized for manipulating
large data sets such as high-resolution pictures.

155

Chapter 8. Perl-fect Sundials

John Redford
This article describes a Perl 4 program for making
sundials that can depict the current time to about a minute’s
accuracy. Typical
sundials are only accurate to about half an hour, but the Perl
sundials I’ll describe correct for the latitude and longitude,
and even for the eccentricity of the earth’s orbit.

To refresh your memory, sundials point to the current time
with a shadow. In Figure 8-1 you can see the tip of the
shadow of the gnomon—the upright part of a sundial—falling
on a marking that indicates the time.

Figure 8-1. A sundial with a gnomon

For our sundials, the gnomon’s shadow will fall on a plate
marked with lines of “constant time.” The plate markings are
generated in Adobe PostScript by the Perl program, and can
then be plotted and transferred to a brass sheet or some other
weatherproof surface.

156

Figure 8-2 shows such a sundial. Because the sun occupies
any particular position in the sky exactly twice per year, two
dials are needed: one for the days between the
winter solstice and the
summer solstice (December 21 to June 21), and one for the
other half of the year. The first dial is used in the winter and
spring, when the sun is descending to its lowest angle at the
winter solstice. The second dial is used in the summer and
fall, when the sun is rising toward its highest angle at the
summer solstice.

Figure 8-2. A Perl sundial, with accuracy down to the
minute

Before describing how to generate such dials, I’ll provide a
little
background.
Sundials are just about the oldest functioning machines
known. Dials have been found in Egypt dating from the reign
of Thutmose III in around 1500 BCE, and mention of them
also appears in Chinese writings from around that time. The
Greeks and Romans used them extensively, although their

157

hour lines were of equal spacing and therefore do not
represent intervals of equal time.

One of the most famous dials of antiquity, the
Tower of the Winds, still stands in Athens. It’s an octagonal
tower about fifteen meters high and five across, built around
100 CE. It has a sundial inscribed on each of its eight faces,
and is surmounted by a frieze showing figures representing
the eight winds. It uses iron rods for
gnomons, which clearly have not been out in the rain for two
thousand years, but the dials themselves could date back that
far. This is one of the only Roman devices still working
(besides perhaps a few
aqueducts).

The oldest dial in the U.S. is said to be in Salem,
Massachusetts, dating from 1650. Massachusetts can also
claim the favorite poet of gnomonists,
John Greenleaf
Whittier, who wrote in 1881:

With warning hand I mark time’s rapid flight,

From life’s glad morning to its solemn night.

Yet through the dear God’s love I also show

There’s light above me by the shade below.

This appears as a motto on nineteenth century dials all over
the country, and manages to pack a quadruple metaphor into
only four lines.
Sundials are compared to a prophet, to the course of life from
birth to death, to the promise of heaven, and finally to its
contrast with death.

158

Sundials are traditionally associated with mortality, of course,
which may be why they appealed to the Puritan strain in New
England. It may also be why they are so commonly used as
garden ornaments; they act as a memento mori in the midst of
all the greenery. This association is especially evident in a
giant dial at a Vietnam War memorial in Kentucky. An entire
plaza is marked off as a sundial, with a giant gnomon at one
end. The names of all the local men who died in the war are
inscribed on the plaza, and the tip of the gnomon’s shadow
brushes across each name on the day of the man’s death.

Most dials, though, are simply public sculpture. The Royal
Observatory at Greenwich, England, has a striking dial with a
broad cylindrical plate below two arching dolphin tails acting
as
gnomons. The Museum of Science in Worcester,
Massachusetts, has a dial where the observer acts as the
gnomon. You reach up and put your finger at the appropriate
place on a crossbar, and your finger’s shadow marks the time.
The Mount Laguna Observatory dial projects a shadow on a
cylindrical map of the world, which shows not only the time,
but the place in the world where the sun is directly overhead.
Baltimore has a dial with seventeen facets, showing the time
in Baltimore, Tokyo, Jerusalem, Sitka, Pitcairn, San
Francisco, Cape Cod, Rio Jancito, London, Fernando Po,
Cape Town, and Calcutta; it was built by the man who
supplied the granite for the Library of Congress.

Building Your Own

So how can you actually draw these dials? The mathematics
is actually quite straightforward. The key is being able to

159

express the position of the sun as a function of date and time.
Three kinds of motion have to be taken into account: the
rotation of the earth during the day, the
orbiting of the earth around the sun, and the slight speedup
and slowdown caused by the
eccentricity of the earth’s orbit.

First we pick a coordinate system. Imagine that you are
standing at the North Pole. Almost straight above your head is
Polaris, the North Star. On the
vernal equinox (March 21), one of the two days when day and
night are of exactly equal length, the sun skims exactly along
the horizon for 24 hours. Call the “up” direction the Z axis,
making the X and Y axes horizontal. Let the X axis point to
where the sun sits on the horizon at six o’clock in the evening
on the vernal equinox. With X and Z fixed, Y then points to
where the sun is at noon. Our coordinate system is shown in
Figure 8-3.

Now the position of the sun can be represented as a
vector in X, Y, and Z. At 18:00 on the equinox, the sun is
directly along the X axis, so the
sun vector S is (1, 0, 0). In Perl we write this as:

@S = (1, 0, 0); # at 18:00 on equinox

At 12:00, the sun is on the Y axis:
@S = (0, 1, 0); # at 12:00 on equinox

The sun vector rotates clockwise around the Z axis according
to the time of day, going 360 degrees in 24 hours. In polar
coordinates, the angle between the sun and the X axis is
called the right ascension, and the angle between the sun and
the horizontal plane is called the declination. However,

160

Cartesian coordinates are easier to deal with, as we’ll see later
on.

Figure 8-3. Sun position at different times and dates at the
North Pole

So let’s define a function, RotZ, that rotates a three-element
vector @V by an angle $a in radians:

sub RotZ {
local ($a, @V) = @_;
return ($V[0] * cos ($a) + $V[1] * sin

($a),
-$V[0] * sin ($a) + $V[1] * cos

($a), $V[2]);
}

Now we can express the
sun vector on the
equinox as a function
of the time in hours, $h, as:

@S = &RotZ (($h - 18) * $twopi/24, (1, 0,
0));

161

This takes a unit vector (1, 0, 0) at 18:00, and rotates it by the
number of hours after 18:00.

However, the sun is not fixed compared to the background
stars—it moves all the way around the sky in the course of a
year. Of course, it’s the earth that’s actually moving around
the sun, but for our purposes the situation is symmetric, so we
can pretend the sun is moving. The sun moves along a path
called the ecliptic, which is tilted at an angle of about 23.5
degrees to the horizon at the North Pole. At its highest point
on the summer solstice (June 21), the sun will be 23.5 degrees
above the horizon all “day” long, and at its lowest point on
the winter solstice (December 21), it’ll be 23.5 degrees below.
To work this motion into
the sun vector, an initial vector can be rotated around Z by a
date angle, and then the result rotated by the
ecliptic angle around X:

sub RotX {
local ($a, $V) = @_;

return ($V[0], $V[1] * cos ($a) +
$V[2] * sin ($a),

-$V[1] * sin ($a) +
$V[2] * cos ($a));
}

$e_angle = 23.5 * $twopi / 360; # ecliptic
angle in radians
$date_angle = ($day - $VernalEquinox) *
$twopi / 365.24;
@S = &RotX ($e_angle, &RotZ ($date_angle,
(1, 0, 0)));

Note that the date angle will be zero on the
vernal equinox.

162

One other correction needs to be made. The earth does not
move at equal speed along its orbit for the whole year. It
moves fastest when the ellipticity of its orbit brings it closest
to the
sun, and slowest when it is farthest away. This causes the sun
to be a few minutes ahead of or behind where it would be if
the orbit were a perfect circle. The point of closest approach
is called perihelion, and occurs on December 31. The most
distant point is called aphelion and occurs on July 1. The
dates of perihelion and aphelion change slowly over time, as
does the
eccentricity of the earth’s orbit. (The combination of these
two effects produces cycles hundreds of thousands of years
long. These are called Milankovitch cycles, and are thought to
have enough influence on the earth’s climate to have been a
cause
of the Ice Ages.) A first order approximation of the effect of
the eccentricity can be expressed by:

$date_angle += ((1 + $eccentricity) ** 2 -
1) *

sin (($day - $Aphelion) *
$twopi / 365.24);

where $eccentricity is 0.0169, the ratio of the distance
between the ellipse’s foci and its major axis. Circles have an
eccentricity of 0, and straight lines have an eccentricity of 1.
$Aphelion is the number of days from January 1 to July 1.

The above equations can be combined to give a
vector for the sun at any time and day at the North Pole. Since
few readers live there, however, we must adjust for other
latitudes and longitudes. The latitude can be handled by
another

163

rotation, this time around the X axis:
#latitude angle in radians
$l_angle = (90 - $latitude) * $twopi/360;

@S = &RotX ($l_angle, @S);

The longitude is a little more complicated, since clock time
matches sun time only in the center of time zones. Each time
zone is 15 degrees of longitude wide (360 degrees of
longitude divided by 24 time zones), and is centered on every
fifteenth degree. Thus Greenwich Standard Time is plus or
minus 7.5 degrees of longitude zero, Eastern Standard Time is
plus or minus 7.5 degrees of longitude 75 degrees, and so on.
The initial hour time must therefore be corrected for the
distance from the central longitude:

$h_angle += ($longitude -
$CentralLongitude) * $twopi * 15 / 360;

The central
longitudes for Eastern, Central, Mountain, and Pacific
Standard Time are 75, 90, 105, and 120 degrees respectively.
For the UK the central longitude is zero (since the British
came up with this scheme they got to put themselves in the
center), for Japan it’s -135 (longitude east of Greenwich is
negative), and for eastern Australia it’s -150. (One should
also correct by an hour if Daylight Savings Time is in effect.
Unfortunately, DST goes into effect on different days in
different countries.)

After all these transformations, we finally have a
vector for the sun at a particular day, time, and place. We now
need to find the position

164

of the tip of the gnomon on the sundial plate. This is where
the Cartesian representation of the vector becomes
convenient. Figure 8-4 shows how the
tip vector T is the sum of the gnomon vector G, minus the
sun vector scaled by a multiplier m. Since the gnomon and the
tip vectors are at right angles, their dot product is zero.

Figure 8-4. Vector diagram of sun, gnomon, and shadow

In vector notation this can be written:

T = G - mS

and:

G • T = 0

To solve for m, we can perform a dot product on both sides:

G • T = G • (G – mS)
=> 0 = G • G – m(G • S)
=> m = |G| / Sz

165

If G is defined to be the local unit Z axis (i.e., the gnomon
sticks straight up and is of unit length), then G = (0,0,1), and
in Perl we can write:

@T = (-$S[0] / $S[2], -$S[1] / $S[2], 0);

And that’s it! We can now position any kind of mark
anywhere on the dial starting with the date and time. We can
mark exact dates and times, or draw segments between points
for lines of constant time or date. The full code for finding the
sun vector is in the routine GetSunV in the code listing, and
the tip vector is in GetTipV.

In Figure 8-5, the hyperbolas are lines of constant date. That
is, they track the
gnomon shadow on the days of the summer solstice and
winter solstice. The S-shaped lines are of constant time,
where the thick lines mark the hours, and the dashed lines are
at ten minute intervals. The little round mark shows the
position
of the gnomon, and the bar above it shows how long it should
be. To use the dial, just install a gnomon of the correct length,
lay the dial exactly horizontally in a sunny place, and rotate it
until the time read matches a clock’s time. The time can be
matched down to the minute. The precision is limited by the
fuzziness of the tip of the shadow. Since the sun isn’t a point
source, the shadow tip isn’t perfectly sharp.

166

Figure 8-5. PostScript image generated by sundial.pl

The above math can even be extended to handle dials that are
not horizontal. Take the
sun vector and rotate it around Z to handle dials that are not
aligned north-south, then rotate it around X by whatever angle
it is tilted at. This allows one to create dials on surfaces other
than simple planes: cubes, icosahedrons, buckyballs, and so
on.

To see more examples of what people have done with
sundials, check out the web page of the
British Sundial Society at http://www.sundials.co.uk. They
have pointers to pictures and descriptions of dials all over the
world. The U.S. and Canada have the

167

North American Sundial Society (NASS) at
http://www.shadow.net/~bobt/nass/nass.htm. They publish a
quarterly journal called The Compendium, a compendium
being “a single instrument incorporating a variety of dial
types and ancillary tools.”

The full listing of my program can be found on the web site
for this book: http://www.oreilly.com/catalog/tpj3. The entire
program is a few hundred lines long, but you’ve seen the key
lines above. (Like most software, 10% of the code does 90%
of the work.) Still, those few lines are the distilled result of
thousands of years of mathematics and astronomy. What used
to require the career of an expert mathematician now takes a
dozen lines of Perl. Modern techniques like vector algebra,
and modern machinery like Perl and PostScript, can bring a
very old instrument to life again.

168

Chapter 9. Genetic Algorithms

Brad Murray

Ken Williams
In most programming tasks, we humans carefully state the
problem, code an algorithm to solve the problem, and turn the
computer loose to run the algorithm. Then we hope the
correct solution pops out, and if it doesn’t we send an irate
bug report to the people who developed our programming
language.

Genetic algorithms (
GAs) offer a different approach: we still carefully state the
problem, but we let the computer find a suitable algorithm
and apply that algorithm to the problem to produce a solution.
Generating algorithms programmatically usually means
working with code as data, which has traditionally left it more
in the realm of LISP and related languages. But since Perl can
generate and evaluate code on the fly, it’s capable of handling
generalized GAs.

The core principle behind a GA is that of
evolution. You start with a set of
random organisms, each of which is a program. You then run
each of these programs and determine their fitness, which is
the degree to which they succeed at the required task. Once
the

169

fitness of each is determined, you jump through some hoops
to remove bad entries (natural selection), randomly permute
some remaining entries (mutation), and intermingle other
entries (
hot algorithmic sex).

After repeating this process through several generations, the
population will begin to converge on a solution. Often, it is
not quite the solution you were expecting, and therein lies a
lot of the fun in building a GA engine.

The Genetic Code

The
genetic code we will use to describe our organisms has many
parallels to genetic code found in real plants and animals. The
processes we set in motion when simulating evolution often
look like biological processes, too. However, there is also a
huge number of differences between real and simulated
evolution. Draw analogies at your own risk.

The GA task we’ll set before ourselves in this article is to find
algebraic expressions that can generate a certain
predetermined set of data points when applied to a given set
of input data—otherwise known as “curve fitting.”
We’ll call these algebraic expressions our organisms, and
we’ll represent them as simple binary
syntax trees composed of functions and terminals. Each
function has two branches representing its arguments, and
each argument can either be another function or a terminal.
Terminals are dead-end leaf nodes and are usually constants
or one of the input parameters in the problem. For instance, in
an organism represented by the algorithm

170

add(multiply(2,x),5), we have the functions add
and multiply, and the terminals 2, x, and 5.

Each problem requires some twiddling by the
Genetic Engineer. You need to determine a set of functions
and terminals that will be part of your organisms’ makeup.
You might think of these as roughly equivalent to the various
base pairs in DNA, or perhaps to various short sequences of
base pairs. For the example we’ll show here, we’re trying to
fit a function to the data:

-1407, -931, -577, -327, -163, -67, -21,
-7, -7, -3, 23, 89, 213, 413, 707, 1113,
1649

which just happens to be the output of 3x3 + 2x2 - x - 7
applied to each integer on the interval [-8,8]. To hit this (and
we’ll assume that we have no idea what the solution should
look like), we’ll use a function set that includes:

sin(x,y)
log(x,y)
mul(x,y)
add(x,y)

We know that the real solution only needs the last two; the
first two are there just to confuse the GA. We picked
sin(x,y) because some regions on the graph look like
they might be sinusoidal. We picked log(x,y) just to drive
up the computing time and make things interesting.

We know that sin(x,y) and log(x,y) look odd, since
sin and log only take one argument apiece. But by our
definition, each function in our syntax tree has two branches.
In the case of unary functions, we simply throw the second
argument away when computing, but it is valuable to keep it

171

in the data structure since a mutation may change a sin to an
add and suddenly make the second argument interesting. As
the second argument could be a whole tree of functions on its
own, this could get very interesting indeed.

So given these functions, we build an array of functions as
strings. Remember we said that we needed
code as data? Here it is, to be eval’ed later:

my @functions = (
Format is 'function <pretty version>:

<actual code>'
'function add($a,$b): ($a+$b)',
'function mul($a,$b): ($a*$b)',
'function sin($a,$b): sin($a)',
'function log($a,$b): log($a ? abs($a)

: 1)',
);

Notice that our log function is protected from zero or
negative values. Any function that has sensitive arguments
needs to be appropriately protected, since we don’t want to
waste computing cycles on organisms that are just going to
blow up when we evaluate them. In general, you want to
make sure that all your functions can handle any data thrown
at them—if they can’t, they’re going to explode as their
complexity grows.

Next we need terminals. For this exercise we have two kinds:
x (the parameter that we will vary over the interval of interest;
i.e., the input to these algebraic expressions) and a constant
integer between -9 and 9. We specify these as subroutine
references:

my @terminals = (sub { '$x'
}, # The input parameter

172

sub { int(rand(20) -
10) }); # Some random number

which return either the name of the parameter (“x”) or the
random number.

Now, what do our organisms look like? Well, as we said,
they’re syntax trees that looks something like Figure 9-1.

Figure 9-1. A syntax tree organism

This corresponds to
mul(add(sin(x,7),-5),mul(x,x)), which in turn
reduces to (sin(x)-5)x2), which is, of course, wrong.
Let’s see if evolution can help.

173

Assembling an Organism

We’ll represent each organism as a Perl object. If making
little
genetic organisms isn’t a good opportunity to use
object-oriented programming, we don’t know what is.

Now, it’s one thing to know what a bridge looks like, but
designing and building a bridge is something else altogether.
We think it’s safe to say the same is true of organisms (unless
you—ahem—go about it in the “natural” way). We’ll build
ours
recursively, with some sanity checks.

First we check against a maximum depth value and plug in
only terminals past this point. This keeps the tree from getting
too crazy at the outset (it will get crazy enough later). If we
are inside the maximum depth, we randomly select a function
or terminal, with an arbitrary 2:1 weight toward terminals. If
we selected a function, then we call the organism’s
_buildTree method again to get two more nodes to use as
input to the function. And so on.

sub _buildTree {
my $self = shift;
my $depth = shift || 0;

my %tree;
$tree{contents} = ($depth>$maxdepth or

int rand(3)) ?
&{$terminals[rand

@terminals]} :
$functions[rand

@functions];

174

if ($tree{contents} =~ /^function /) {
$tree{'a'} =

$self->_buildTree($depth + 1);
$tree{'b'} =

$self->_buildTree($depth + 1);
}

return \%tree;
}

This builds a hash of nodes for us, each of which has three
components: $tree{contents}, which contains either a
terminal value (a constant or $x in this case) or a function,
and $tree{‘a’} and $tree{‘b’}, which are
references to other nodes. If the content is a terminal, left and
right pointers are not generated.

175

Survival of the Fittest

Just generating random organisms is not enough. We need to
rank them according to their
fitness, so we can decide which to cull. We also need to
determine
fitness so that we know when to stop: unlike real
evolution, we are trying to hit a fixed target. Evolution,
however, is a feedback mechanism, and is therefore designed
to hit a moving target. This means that once we reach a
perfect fit for the data, the algorithm will keep trying new
things even though the current fit is perfect. This will result in
the program oscillating around the correct answer, which
doesn’t help. If you are trying to find an algorithm to hit a
moving target, you still need to know the fitness at each
generation, though you will probably have to do some
statistical work on your results in order to find the mean
success rate over the changing target.

We calculate the fitness by averaging the unsigned difference
between each fixed data point and the corresponding result of
the organisms’ function (its phenotype). Thus fitness is a
non-negative number, and a fitness of zero indicates a perfect
organism. To calculate the
output of the syntax tree, we have a function called
fitness:

sub fitness { # Determine the fitness of
an organism in this crazy world

my ($org, @target) = @_;
my $sumdiff = 0;

176

foreach (0..$#target) {
$sumdiff += abs($org->

evaluate({'x'=>$_}) - $target[$_]);
}
return $sumdiff/@target;

}

fitness repeatedly calls the organism’s evaluate
method at points on the interval that interest us. Think of the
evaluate method as the organism’s whole reason for
existence; if the organism were a leech, the method would be
called suck_blood. If it were a gerbil, the method would
be called freak_out. The method simply applies the
embedded behavior of the organism to the given input data. In
this case, we evaluate a single-variable algebraic expression
for a given number.

The evaluate method is just a simple front end that calls
Perl’s eval on the result of the organism’s expression
method.

sub evaluate { # Find the value of the
organism on the input data

my $self = shift;
my $params = shift;

return $self->code->($params->{x});
}

sub code { # Turn the syntax tree into a
Perl coderef

my $self = shift;

Check the cache
return $self->{code} if defined

$self->{code};

177

my $expr = $self->

as_string;
return $self->{code} = eval "sub {my \$x

= shift; return $expr}";
}

sub as_string { # Turn the syntax tree
into a readable expression

my $self = shift;
my $tree = shift || $self->{tree};

Check the cache
return $self->{string} if defined

$self->{string};

local $_ = $tree->{contents}; # A
shortcut for the current node

if (s/^function [^:]*:\s*(.*)/$1/) { #
Extract the format picture

s/\$([a-zA-Z]+)/
$self->as_string($tree->{$1})/ge;

}

$self->{string} = $_ if $tree eq
$self->{tree}; # A nasty trick

return $_;
}

Since as_string works on a recursive data structure, it’s
natural that it’s a recursive method. If the current node
represents a function, we scan the function description and
pull out the Perl expression that implements that function.
Then we replace any embedded variables ($a or $b) with the

178

Perl expression their syntax tree represents. If the current
node is a terminal, we leave it alone.

We happen to particularly like the way the as_string
method combines its recursion and
caching techniques.
Building the Perl code
from the syntax tree is a pretty intensive process, and we
don’t want to do it over and over again for the same
organism, so we cache our results. We only want to put the
result in the cache when we’re done with the work; that is,
when we exit from the topmost call to this recursive
subroutine. We detect whether that’s the case by comparing
the node we’re currently working on to the topmost node in
$self ’s tree. If they’re the same, we cache and finish. The
trick is to compare these two references as strings. When a
reference is used in a string context, it contains a
representation of the reference’s memory address, so if the
two references evaluate to the same string, they’re the same
reference. Sneaky. Most of the time this type of caching
requires a wrapper function to handle the caching and a
recursive function to do the real work, but we’re getting away
with a single function.

So now that we know how to evaluate the success or failure
of each organism, we need to do something about it.

179

Sex and Mutation

It won’t be enough to just throw out the bottom half of the list
and generate a new set of random organisms from scratch.
This would be akin to trying to make a watch from a bucket
of parts by shaking the bucket until a watch spontaneously
assembles, or trying to cook a pot of soup by repeatedly
throwing away the worst-tasting parts and adding random
objects from the world. Evolution doesn’t work that way, and
we don’t have enough time to wait for pure randomness to
cough up the algebra we want.

Our strategy is to rank the organisms
by fitness and perform three operations on the list:

1. Cull some bad organisms from the bottom of the list.

2. Mutate some percentage of the remainder by randomly
changing a node on the syntax tree.

3. Mate some individuals with some others to produce
offspring with similar attributes.

Culling is simple: we just unshift the same number of
organisms that we are going to add by mating. In the case of
our example, we have set the parameter $mates to 5, so we
remove that many individuals. In point of fact what we
actually do is mate and pop five times. Same thing.

Mutating is also pretty straightforward: we grab an organism
at random and mutate it with its mutate method:

180

sub mutate {
my $self = shift;
my @index = $self->

_treeIndex;
%{$index[rand @index]} =

%{$self->_buildTree($maxdepth-1)};
$self->

clear_cache;
}

This is a little deceptive. What it does is generate a list of the
nodes in the syntax tree with _treeIndex, and then pick a
random one and substitute a new randomized branch. This
mutation mechanism is pretty drastic, so we don’t do it often.
The likelihood of improving an organism is very small,
though it is important to keep some random element of
change happening within the population to keep it from
settling at some local maximum that fits the function well, but
not as well as we want.

The clear_cache method simply clears the cached
information we built in the expression method, since it’s
no longer valid. The index generator looks like so:

Generates a list of all the nodes in
this tree. These are
references to the stuff in the object
itself, so changes to the
elements of this list will change the
object.
sub _treeIndex {

my $self = shift;
my $tree = shift || $self->{tree};
my @sofar = @_;

181

Dump the content nodes into a list

if ($tree->{contents} =~ /^function /) {
return(@sofar,

$tree,
$self->_treeIndex($tree->{'a'},

@sofar),
$self->_treeIndex($tree->{'b'},

@sofar)
);

} else {
return(@sofar, $tree);

}
}

And naturally it is recursive as well. Maybe this article should
have been about recursion instead, but we were confident that
you already knew all about recursion.

Finally, we take the top n
organisms and
mate them with a random other organism from the list. Each
mating involves taking a tree index of each partner, selecting
a random point in each, and grafting the end of one list on to
the beginning of the other. This is known as a crossover
permutation, which is similar to the
genetic scrambling that occurs in sexual reproduction.

The mate method also uses _treeIndex:

sub mate {
my ($self, $partner) = @_;

my $self_clone = bless { tree => dclone
$self->{tree} }, ref($self);

#Get part of a node from $partner and
stick it somewhere in $self_clone

182

my @clone_index =
$self_clone->_treeIndex;

my @partner_index = $partner->_treeIndex;

%{$clone_index[rand @clone_index]} =
%{dclone $partner_index[rand
@partner_index]};

$self_clone->clear_cache;
return $self_clone;

}

This is not so different from the
mutation, except that we know that each chunk of the new
tree previously belonged to some relatively successful
individual, so the chances are higher that the result will also
be fit than if we did a random mutation. Note that we use
dclone from the Storable module to create deep copies
of complex structures rather than write our own cloning
routine. This is because we are lazy.

183

The Terrifying Results

When all of this is plugged into a framework that iterates over
generations, tests results, and dumps the results on screen, we
discover that there is an awful lot of incomprehensible output.
This output needs to be examined by hand to determine
what’s going on, although I’m sure that someone out there is
willing to donate routines to assist in the analysis. One run we
did for 1,000 generations came up with the following results.

By generation 50 the GA had stumbled on a 12-node equation
that simplified to 3x3, which gave it a mighty good fit over
the complete interval. This is somewhat deceptive, as the
method we use for testing fitness is inordinately happy with
fitting the ends where the numbers are huge. A better fitness
test would weight the targets evenly so that the fit in the
middle would be better. Still, this gave us a substantially
complete fit and showed that the GA could establish the order
of the target polynomial very rapidly.

By generation 200 the GA had found the second term—the
results reduced to 3x3 + 2x2. Again, given the fitness
calculation it seemed unlikely that it would discover any
further refinements of interest as the “value” of such
refinements was so small. This outlines the importance of
selecting a fitness function that reflects your needs! Our
fitness function basically said that we are interested primarily
in matching the broad strokes of the curve without regard for
the details, which is what we got.

By termination the GA had started fiddling with sines and
natural logs in order to better fit the middle region of the

184

graph. This dead end caused it to actually diverge from the
real curve outside of the tested interval, while improving the
fit inside—while it better met our stated criteria, it was
actually taking us further afield. Again, it shows how
important it is to tell computers what you want rather than
make them guess.

Overall, the convergence to our stated criteria was very rapid
and effective, as we had very solid fitness levels and the order
of the polynomial correctly established by generation 50.

185

Other Applications

This GA engine could easily be extended to do different
work. Simply fitting functions to data is cute, but by altering
the function set, the terminal set, and the evaluation process,
the GA can be used to generate behavioral algorithms for
robots, control system solutions, and so on. Not that it’s going
to be easy: your evaluation routines will become very
complex for non-mathematical projects, but it’s still feasible.
Examples from John
Koza’s
Genetic Programming include:

Emulate food foraging behavior in ants

The terminal set is MoveRandomly,
MoveToNest, PickUp, and DropPheromone.

The function set contains custom routines
IfFoodHere, IfCarryingFood,
MoveToAdjacentFoodElse,
MoveToAdjacentPheromoneElse, and Progn
(which executes a list of instructions—we think we can
just drop it and eval everything, but we haven’t tried.
You tell us).

It’s not instantly clear how to do this, but it should be
possible. We look forward to hearing the results of your
own experiments on the Perl-AI mailing list!

Find the Fourier Series for a given periodic function

The terminal set is just a constant from -10.000 to 10.000.

186

The function set contains XSIN, XCOS, +, -, *,
and %. XSIN and XCOS are two-argument functions
taking the coefficient and the harmonic (truncated to an
integer). There are plenty more, including ones that
develop neural nets and other sophisticated
decision-making or controlling algorithms. We
recommend you pick up Koza’s book to investigate
further.

187

Going Further

As research in
genetic programming has advanced, some new mechanisms
have been considered. One of the more interesting ones is
“islanding.” This involves running more than one population
in isolation from others, and occasionally migrating some
small number of the fittest individuals from one “island” to
another.

When you first run your GA, you will probably notice that the
speed of convergence and the quality of the result depends
quite heavily on the initial set of organisms and the nature of
the first few mutations and matings. This is probably a flaw in
our engine somewhere, but if it is fundamental to
GAs, then islanding provides a way to occasionally introduce
“ideas” to each system that are both good and novel. In theory
this should increase the fitness of each population.

You have probably also noticed that we have built the GA so
that it can be distributed—because the algebraic expressions
are implemented as strings to be evaluated rather than as
references to subroutines, expensive runs can be designed so
that the organisms are serialized and shipped to separate
processors for the fitness runs. We haven’t done this yet, so
we’re looking forward to either your results or your donations
of hardware to facilitate the project. A farm of Sparcs would
be fine.

188

Other Fitness Functions

For the purposes of this article, we thought it best to use a
relatively naïve fitness calculation (just add the error at all the
data points), rather than spend time talking about how to
come up with a better function. If you experiment with
various other methods for calculating the fitness, you may
achieve better results or faster convergence. In particular, you
might add the squares of the calculated error rather than just
the absolute values of the error. Let us know how it works
out!

The full program described in this article, genetic.pl, is
available on the web page for this book:
http://www.oreilly.com/catalog/tpj3.

189

Resources

▪ Genetic Programming, John R. Koza, MIT Press.

▪ The Perl-AI mailing list: perl-ai@perl.org.

▪ Illinois Genetic Algorithms Lab (IlliGAl):
http://gal4.ge.uiuc.edu/.

▪ Perl’s Storable module: http://www.perl.com/CPAN.

190

Chapter 10. How Perl Saved the
Human Genome Project

Lincoln D. Stein
Author’s Note: It is now six years since I wrote this article,
and though much has changed, a surprising amount has
remained the same. The human genome was successfully
sequenced about a year ago, thanks in no small part to
thousands of Perl scripts large and small, and the human
genome project has now spawned genome sequencing
projects for such organisms as the mouse, the chicken, the
cow, the mosquito, the honeybee, the chimp, and—believe it
or not—the duck-billed platypus.

The BoulderIO system described in the body of the text has
long since been supplanted by a powerful and flexible body of
code called BioPerl (http://www.bioperl.org), the collective
work of dozens of committed programmers and biologists.

Perl remains the savior of the genome project now more than
ever. Just a few weeks ago I found myself sitting in an
auditorium listening to Jim Mullikin of the Wellcome Trust
Sanger Institute describe how he had solved a problem that
was once thought insurmountable: to assemble an entire
genome (the mouse, in this case) in a single shot, without the
tedious experimental mapping and subcloning that was
previously thought to be critical to make the problem soluble.
His genome assembly software, named Phusion, is a pipeline
of Perl scripts wrapped around a nugget of high-performance

191

C code. As Jim put it, “Perl and 70 gigabytes of main memory
is all you need!”

DATE: February 1996

LOCATION: Cambridge, England, in the conference
room of the largest
DNA sequencing center in Europe.

OCCASION: A high-level meeting between the
computer scientists of this center and the largest DNA
sequencing center in the United States.

THE PROBLEM: Although the two centers use almost
identical laboratory techniques, almost identical
databases, and almost identical data analysis tools, they
still can’t interchange data or meaningfully compare
results.

THE SOLUTION: Perl.

The human genome project was inaugurated in the early
1990s as an ambitious international effort to determine the
complete DNA sequence of human beings and several
experimental animals. The justification for this undertaking is
both scientific and medical: by understanding the genetic
makeup of an organism in excruciating detail, it’s hoped that
we’ll be better able to understand how organisms develop
from single eggs into complex multicellular beings, how food
is metabolized and transformed into the constituents of the
body,
how the nervous system assembles itself into a smoothly
functioning ensemble. From a medical perspective, the wealth
of knowledge that will come from knowing the complete

192

DNA sequence will greatly accelerate the process of finding
the causes of (and potential cures for) human diseases.

Six years after its birth, the
genome project was ahead of schedule. Detailed maps of
the human and all the experimental animals had been
completed (
mapping out the DNA using a series of landmarks is an
obligatory first step before determining the complete DNA
sequence). The sequence of the smallest model organism,
yeast, was nearly completed, and the sequence of the next
smallest, a tiny soil-dwelling worm, wasn’t far behind. Large
scale sequencing efforts for human DNA were soon to be in
full swing.

The scale of the human
DNA sequencing project is enough to send your average Unix
system administrator running for cover. From the
information-handling point of view, DNA is a very long
string consisting of the four letters G, A, T, and C (the letters
are abbreviations for the four chemical units forming the
“rungs” of the DNA double helix ladder). The goal of the
project is to determine the order of letters in the string. The
size of the string is impressive, but not particularly
mind-boggling: 3 x 109 letters long, or some three gigabytes
of
storage space if you use one byte to store each letter with no
compression techniques.

Three gigabytes is substantial, but certainly manageable by
today’s standards. Unfortunately, this is only what’s required
to store finished data. The storage needed to determine this
sequence for experimental data is far vaster. The essential
problem is that

193

sequencing technology was limited to reading stretches of at
most 500 contiguous letters. In order to determine sequences
longer than that, the DNA must be sequenced as small
overlapping fragments called “reads”
and the jigsaw puzzle reassembled by algorithms that look for
areas where the sequences match. Because the DNA sequence
is nonrandom (similar but not-entirely-identical motifs appear
many times throughout the genome), and because DNA
sequencing technology is noisy and error-prone, one ends up
having to sequence each region of DNA five to ten times in
order to reliably assemble the reads into the true sequence.

This increases the amount of data by an order of magnitude.
On top of this is all the associated information that goes along
with laboratory work: who performed the experiment, when it
was performed, the section of the genome that was
sequenced, the identity and version of the software used to
assemble the sequence, comments anyone wants to attach to
the experiment, and so forth. In addition, one generally wants
to store the raw output from the machine that performs the
sequencing. Each 500 letters of sequence generates a data file
20–30 kilobytes in length!

That’s not the whole of it. It’s not enough just to determine
the sequence of the DNA. Within the sequence are functional
areas scattered among long stretches of nonfunctional areas.
There are genes, control regions, structural regions, and even
a few viruses that got entangled in human DNA long ago and
persist as fossilized remnants. Because the genes and control
regions are responsible for health and disease, one wants to
identify and mark them as the
DNA sequence is assembled. These annotations generate yet
more data.

194

Altogether, people estimate that some one to ten terabytes of
information will need to be stored in order to see
the human
genome project to its conclusion.

Bioinformatics and Perl

So what’s
Perl got to do with it? From the beginning, researchers
realized that informatics would have to play a large role in the
genome project. An informatics core formed an integral part
of every genome center that was created. The mission of these
cores was two-fold: to provide computer support and
databasing services for their affiliated laboratories, and to
develop data analysis and management software for use by
the genome community as a whole.

The initial results of the informatics groups’ efforts were
mixed. Things were slightly better on the laboratory
management side of the coin. Some groups attempted to build
large monolithic systems on top of complex relational
databases; they were thwarted time and again by the highly
dynamic nature of biological research. By the time a system
that could deal with the ins and outs of a complex laboratory
protocol had been designed, implemented, and debugged, the
protocol had been superseded by new technology and the
software engineers had to go back to the drawing board.

Most groups, however, learned to build modular,
loosely-coupled systems whose parts could be swapped in and
out without retooling the whole system. In my group, for
example, we discovered that many data analysis tasks involve
a sequence of semi-independent

195

steps. Consider the steps that one may want to perform on a
bit of DNA that has just been sequenced.

First, there’s a basic quality check on the sequence: is it long
enough? Are the number of ambiguous letters below the
maximum limit? Then there’s the “vector check.”
For technical reasons, the human DNA must be passed
through a bacterium before it can be sequenced (this is the
process of cloning). Not infrequently, the human DNA gets
lost somewhere in the process and the sequence that’s read
consists entirely of the bacterial vector. The vector check
ensures that only human DNA gets into the database. Next,
there’s a check for repetitive sequences. Human DNA is full
of repetitive elements that make fitting the sequencing jigsaw
puzzle together challenging. The repetitive sequence check
tries to match the new sequence against a library of known
repetitive elements. A penultimate step is to attempt to match
the new sequence against other sequences in a large
community database of
DNA sequences. Often a match at this point will provide a
clue to the function of the new DNA sequence. After
performing all these checks, the sequence along with the
information that’s been gathered about it along the way is
loaded into the local laboratory database.

The process of passing a
DNA sequence through these independent analytic steps
looks kind of like a pipeline, and it didn’t take us long to
realize that a
Unix pipe could handle the job. We developed a simple
Perl-based
data exchange format called boulderio that allowed loosely
coupled programs to add information to a

196

pipe-based I/O stream. BoulderIO is based on
tag/value pairs. A
Perl module makes it easy for programs to reach into the
input stream, pull out only the tags they’re interested in, do
something with them, and drop new tags into output the
stream. Any tags that the program isn’t interested in are just
passed through to standard output so that other programs in
the pipeline can get to them.

Using this type of scheme, the process of analyzing a new
DNA sequence looks something like this (this is not exactly
the set of scripts that we use, but it’s close enough):

%

name_sequence.pl < new.DNA |
quality_check.pl | vector_check.pl |

find_repeats.pl |
search_big_database.pl |

load_lab_database.pl

A file containing the new DNA sequence is processed by a
Perl script named name_sequence.pl, which has one
job: giving the sequence a new unique name and putting it
into BoulderIO format. The output looks like this:

NAME=L26P93.2
SEQUENCE=GATTTCAGAGTCCCAGATTTCCCCCAGGGGGTTTCCAGAGAGCCC...

The output from name_sequence.pl is next passed to
the quality checking program, which looks for the
SEQUENCE tag, runs the quality checking algorithm, and
writes its conclusion to the data stream. The data stream now
looks like this:

197

NAME=L26P93.2
SEQUENCE=GATTTCAGAGTCCCAGATTTCCCCCAGGGGGTTTCCAGAGAGCCC...
QUALITY_CHECK=OK

Now the data stream enters the vector checker. It pulls the
SEQUENCE tag out of the stream and runs the vector
checking algorithm. The data stream now looks like this:

NAME=L26P93.2
SEQUENCE=GATTTCAGAGTCCCAGATTTCCCCCAGGGGGTTTCCAGAGAGCCC......
QUALITY_CHECK=OK
VECTOR_CHECK=OK
VECTOR_START=10
VECTOR_LENGTH=300

This continues down the pipeline, until at last the
load_lab_database.pl script collates all the data,
makes some final conclusions about whether the sequence is
suitable for further use, and enters all the results into the
laboratory database.

One of the nice features of the BoulderIO format is that
multiple sequence
records can be processed sequentially in the same Unix
pipeline. An = sign marks the end of one record and the
beginning of the next:

NAME=L26P93.2
SEQUENCE=GATTTCAGAGTCCCAGATTTCCCCCAGGGGGTTTCCAGAGAGCCC...
=
NAME=L26P93.3
SEQUENCE=CCCCTAGAGAGAGAGAGCCGAGTTCAAAGTCAAAACCCATTCTCTCTC...
=

There’s also a way to create subrecords within records,
allowing for structured data types.

198

Here’s an example of a script that processes the BoulderIO
format. It uses an object-oriented style, in which records are
pulled out of the input stream, modified, and dropped back in:

use Boulder::Stream;
$stream = new Boulder::Stream;
while
($record=$stream->read_record('NAME','SEQUENCE'))
{

$name = $record->get('NAME');
$sequence = $record->get('SEQUENCE');

...continue processing...

$record->add(QUALITY_CHECK => "OK");
$stream->write_record($record);

}

The interesting thing is that multiple
informatics groups independently converged on solutions that
were similar to BoulderIO. For example, several groups
involved in the worm
sequencing
project began using a data exchange format called .ace.
Although this format was initially designed as the data dump
and reload format for the
ACE database (which is tailored to biological data), it
happens to use a tag/value format that’s very similar to
BoulderIO. Soon .ace files were being processed by
Perl script pipelines and loaded into the ACE database at the
very last step.

199

Other Uses for Perl

Perl found uses in other aspects of
laboratory management. For example, many centers
(including my own) used Web-based interfaces for displaying
the status of projects and allowing researchers to take actions.
Perl scripts are the perfect engine for Web CGI scripts.
Similarly, Perl scripts run email database query servers,
supervise cron jobs, prepare nightly reports summarizing
laboratory activity, create instruction files to control robots,
and handle almost every other information management task
that a busy genome center needs.

So as far as laboratory management went, the informatics
cores were reasonably successful.
Systems integration, however, was not so rosy.

The problem will be familiar to anyone who has worked in a
large, loosely organized software project. Despite best
intentions, the project begins to drift. Programmers go off to
work on ideas that interest them, modules that need to
interface with one another are designed independently, and
the same problems get solved several times in different,
mutually incompatible ways. When the time comes to put all
the parts together, nothing works.

This is what happened in the
genome project. Despite the fact that everyone was working
on the same problems, no two groups took exactly the same
approach. Programs to solve a given problem were written
and rewritten multiple times. While a given piece of

200

software wasn’t guaranteed to work better than its counterpart
developed elsewhere, you could always count on it to sport its
own idiosyncratic user interface and data format. A typical
example is the central algorithm that assembles thousands of
short DNA reads into an ordered set of overlaps. At last count
there were at least six different programs in widespread use,
and no two of them use the same data input or output formats.

This lack of interchangeability presents a terrible dilemma for
the
genome centers. Without interchangeability, an informatics
group is locked into using the software that it developed
in-house. If another genome center develops a better software
tool to attack the same problem, a tremendous effort is
required by the first center to adopt that tool.

The long-range solution to this problem is to come up with
uniform
data interchange standards that genome software must adhere
to. This would allow common modules to be swapped in and
out easily. However, standards require time to agree on, and
while the various groups are involved in discussion and
negotiation, there is still an urgent need to adapt existing
software to the immediate needs of the genome centers.

Here is where
Perl again came to the rescue. The Cambridge summit
meeting that introduced this article was called in part to deal
with the data interchange problem. Despite the fact that the
two groups involved were close collaborators and
superficially seemed to be using the same tools to solve the
same problems, on closer inspection nothing they were doing
was exactly the same.

201

The four main software components in
DNA sequencing projects are:

▪ A trace editor to analyze, display, and allow biologists to
edit the short DNA
read chromatograms from sequencing machines.

▪ A read assembler, to find overlaps between the reads and
assemble them together into long contiguous sections.

▪ An assembly editor, to view the assemblies and make
changes in places where the assembler went wrong.

▪ A database to keep track of it all.

Over the course of a few years, the two groups had developed
suites of software that worked well in their hands. Following
the familiar genome center model, some of the components
were developed in-house while others were imported from
outside. Perl was used as the glue to fit these pieces together.
Between each pair of interacting modules were one or more
Perl scripts responsible for massaging the output of one
module into the expected input for another.

When the time came to interchange data, however, the two
groups hit a snag. Between them they were now using two
trace editors, three assemblers, two
assembly editors, and (thankfully) just one database. If two
Perl scripts were required for each pair of components (one
for each direction), one would need as many as 62 different
scripts to handle all the possible interconversion tasks. Every
time the input or output format of one of these modules
changed, 14 scripts might need to be examined and fixed.

The two groups decided to adopt a common
data exchange format known as

202

CAF (an acronym whose exact meaning was forgotten during
the course of the meeting). CAF would contain a superset of
the data that each of the analysis and editing tools needed. For
each module, two Perl scripts would be responsible for
converting from CAF into whatever format Module A expects
(“CAF2ModuleA”) and converting Module A’s output back
into CAF (“ModuleA2CAF”). This simplified the
programming and maintenance task considerably. Now there
were only 16 Perl scripts to write, and when a module
changed only two scripts would need to be examined.

This episode is not unique. Perl has been the solution of
choice for
genome centers whenever they need to exchange data, or to
retrofit one center’s software module to work with another
center’s system.

So Perl has become the software mainstay for computation
within genome centers as well as the glue that binds them
together. Although genome informatics groups are constantly
tinkering with other high-level languages such as Python, Tcl,
and Java, nothing comes close to Perl’s popularity.
How has Perl achieved this remarkable position? Several
factors are responsible:

▪ Perl is remarkably good for slicing, dicing, twisting,
wringing, smoothing, summarizing, and otherwise
mangling text. Although the biological sciences do
involve a good deal of numeric analysis now, most of the
primary data is still text: clone names, annotations,
comments, bibliographic references. Even
DNA sequences are text-like. Interconverting
incompatible data formats is a matter of text mangling
combined with some creative guesswork. Perl’s

203

powerful regular expression matching and string
manipulation operators simplify this job in a way
unequalled by any other modern language.

▪ Perl is forgiving. Biological data is often incomplete,
fields can be missing, or a field that is expected to be
present once occurs several times (because, for example,
an experiment was run in duplicate), or the data was
entered by hand and doesn’t quite fit the expected
format. Perl doesn’t particularly mind if a value is empty
or contains odd characters. Regular expressions can be
written to pick up and correct a variety of common errors
in data entry. Of course this flexibility can be also be a
curse. I talk more about the problems with Perl below.

▪ Perl is component-oriented. Perl encourages people to
write their software in small modules, either using Perl
library modules or with the classic Unix tool-oriented
approach. External programs can easily be incorporated
into a Perl script using a pipe, system call, or socket. The
dynamic loader introduced with Perl 5 allows people to
extend the Perl language with C routines or make entire
compiled libraries available for the Perl interpreter. (The
world’s collected wisdom about biological data has been
gathered into a bundle of modules called “ BioPerl.”
)

▪ Perl programs are easy to write and fast to develop. The
interpreter doesn’t require you to declare all your
function prototypes and data types in advance, new
variables spring into existence as needed, calls to
undefined functions only cause an error when the
function is needed. The debugger works well with

204

Emacs and allows a comfortable interactive style of
development.

▪ Perl is a good
prototyping language. Because Perl is quick and dirty, it
often makes sense to prototype new algorithms in Perl
before moving them to a fast compiled language.
Sometimes it turns out that Perl is fast enough so that the
algorithm doesn’t have to be ported; more frequently one
can write a small core of the algorithm in C, compile it
as a dynamically loaded module or external executable,
and leave the rest of the application in Perl. For an
example of a complex
genome mapping application implemented in this way,
see http://www.genome.wi.mit.edu/ftp/pub/software/
RHMAPPER/.

▪ Perl is a good language for CGI scripting, and is growing
in importance as more labs turn to the Web for
publishing their data.

205

Problems with Perl

My experience in using Perl in a genome center environment
has been extremely favorable overall. However, I find that
Perl has its problems too. A relaxed programming style can
lead to many errors that more uptight languages would catch.
For example, Perl lets you use a variable before it has been
assigned—a useful feature when that’s what you intend, but a
disaster when you’ve simply mistyped a variable name.
Similarly, it’s easy to forget to declare a variable local to a
subroutine, so that a global variable is modified instead.

If one uses the -w switch religiously and turns on the use
strict vars pragma, Perl catches these problems (and
others). However, there are more subtle gotchas in the
language that are not so easy to fix. A major one is Perl’s lack
of
type checking. Strings, floats, and integers all interchange
easily. While this greatly speeds up development, it can cause
major headaches. Consider a typical genome center Perl script
responsible for recording the information of short named
subsequences within a larger
DNA sequence. When the script was written, the data format
was expected to consist of tab-delimited fields: a string
followed by two integers representing the name, starting
position, and length of a DNA subsequence within a larger
sequence. An easy way to parse this would to split into a
list like this:

($name, $start, $length) = split("\t");

206

Later on in this script, some arithmetic is performed with the
two integer values, and the result is written either to a
database or STDOUT for further processing.

Then one day the input file format changes without warning.
Someone bumps the field count up by one by sticking a
comment field between the name and the first integer. Now
the unknowing script assigns a string to a variable that’s
expected to be numeric, and silently discards the last field on
the line. Rather than crashing or returning an error code, the
script merrily performs integer arithmetic on a string,
assuming a value of zero for the string (unless it happens to
start with a digit). Although the calculation is meaningless,
the output may look perfectly good, and the error may not be
caught until well downstream in the processing.

Nevertheless, when the genome project was foundering in a
sea of incompatible data formats, rapidly-changing
techniques, and monolithic data analysis programs that were
already antiquated on the day of their release, Perl saved the
day. It’s not perfect, but Perl fills the needs of the genome
centers remarkably well, and is usually the first tool we turn
to when we have a problem to solve.

207

Chapter 11. PDL: The Perl Data
Language

Karl Glazebrook

Frossie Economou
Since this article was originally written, PDL has evolved
considerably and adopted a large modular structure. The
PDL functions now number in the hundreds, preventing us
from listing them all. However, the principles behind PDL are
unchanged, and this article remains a good introduction to
them. It has been slightly updated to reflect the latest PDL
version.

Extolling the virtues of Perl and its many uses to the readers
of TPJ is preaching to the converted. Nevertheless, there is
one fundamental area in computing where Perl has been
conspicuously absent:
number crunching and data analysis.

Tarred by the same brush as other scripting languages, Perl
(which in fact is semi-compiled), is perceived as too slow and
memory-devouring for heavy numerical computations
because it doesn’t lend itself to storing and retrieving zillions
of numbers quickly. This has been a source of great
frustration to the authors, both enthusiastic Perl (ab)users who
resent being forced to use more primitive environments for
their

208

astronomical data analysis. Perl’s potential for manipulating
numerical data sets speedily and elegantly via an extension
was obvious. Hence PDL, the
Perl Data Language, was born. PDL is a Perl extension, so
you get the convenience of programming in Perl with the
speed of compiled C.

PDL introduces a new data structure: the “pdl numerical
array,” often referred to as a “piddle.” (This unfortunate
nickname has led to some rather dubious puns in the source
code.) Anyway, a piddle is a special object that can contain a
large block of efficiently-stored numbers for manipulation
with normal mathematical expressions. For example, if $a is
a piddle containing a 3 x 4 x 6 chunk of data, then the Perl
statement $b = sin($a) will do exactly what you think:
set $b equal to $a but with every value replaced by its sine.
Easy—and because each operation is implemented via
compiled C code, it’s nearly as fast as a hand-crafted C
program.

The perldl Shell

PDL can be used normally from a script—simply use PDL.
But it also has a
shell interface for interactive
data analysis and prototyping. Here we’ll play with the PDL
shell, called perldl, which we’ll invoke from the command
line. (This article assumes you have PDL-2.0 or later,
PGPLOT-2.0 (which itself requires the pgplot graphics
library), and
Perl 5.003 or later. If you also have the right versions of the
Term::ReadLine and Term::ReadKey modules, the perldl

209

shell allows interactive command line editing.)
% perldl

The perldl shell behaves like Perl’s debugger. For
instance, we can assign values to variables and print them
with p:

perldl> $b = 2
perldl> p $b/2
1
perldl> p $b/3

0.666666666666667
perldl>

Since PDL is really about
matrices, let’s create a 2 x 3 matrix and multiply it by itself:

perldl> $a = pdl [5,3,4], [6,4,3]
perldl> print $a
[

[5 3 4]
[6 4 3]

]
perldl> $b = $a * $a
perldl> print $b
[

[25 9 16]
[36 16 9]

]

But to have true fun with PDL, we’ll first need some
data. Luckily the PDL distribution comes with a picture of the
sky stored in
FITS, the standard format for
astronomical data. PDL also supplies rfits, a function that
reads FITS files and returns a piddle containing the data. So
let’s read in our image and plot it:

210

perldl> $a = rfits "PDL1.11/m51.fits"
IO loaded
BITPIX = 16, size = 65536 pixels
Reading 131072 bytes
BSCALE = 1.0000000000E0 && BZERO =
0.0000000000E0

Now we have data—and we didn’t have to spend three nights
freezing up a mountain to get it. What do we know about it?
That it is 16-bit with 65,536 elements. But is it 65536 x 1 or
256 x 256 or even 16 x 16 x 16 x 16?

perldl> p dims $a

256 256

Not surprisingly (after all, it’s a picture of the sky) we have a
square two-dimensional image: 256 x 256. dims is a PDL
function that returns the dimensions of a piddle. But what
about the data values?

perldl> stats $a
Mean = 104.193572998047, RMS =
67.425420896103, Median = 88
Min = 24, Max = 500

stats is a
PDL function that returns statistical information about a
piddle. We can even print some of it now—Jon might get
upset if we displayed 65,536 numbers, so let’s go for the
bottom left corner instead:

perldl> p sec($a, 0, 3, 252, 255)
[
[50 51 54 53]
[50 50 53 54]
[51 52 53 52]

211

[54 53 54 51]
]

sec returns a section of a piddle; the above statement
displays the rectangle between elements (0,252) and (3,255).
Additional dimensions are handled seamlessly: we just pass
the extra coordinate values as arguments. (There are more
compact ways of specifying such slices.)

Perhaps you’re getting restless at this point. Let’s abandon the
function calls and jump to the cool stuff.

perldl> use PDL::Graphics::PGPLOT
perldl> imag $a
Loaded PGPLOT
Displaying 256 x 256 image from 24 to 500
...

This pops up a window displaying Figure 11-1.

212

Figure 11-1. The Messier 51 spiral galaxy

My god, Dave, it’s full of stars! And so it should be—this is
in fact an image of Messier 51, a
spiral galaxy similar to our own but at a distance of
200,000,000,000,000,000,000 miles, give or take a few
billion. That’s too far for us to invade, but we can at least
humiliate it, as shown in Figure 11-2.

perldl> imag sin(0.05 * $a)
Displaying 256 x 256 image from
-0.999990224838257 to 0.999992072582245 ...

Figure 11-2. The Messier 51 galaxy, humiliated

Since we’re exploring cosmology, let’s create something out
of nothing:

perldl> $r = rvals zeroes 20,20

As you can see,

213

PDL functions can be chained together just like
Perl functions. Two PDL functions are cascaded here:
rvals and zeroes. First, zeroes creates a piddle full of
zeroes—in this case, a 20 x 20 matrix with every element
zero. (There’s also a ones function.)

Then rvals fills that piddle with values representing the
distance of each element from the center.

perldl> $g = exp(-($r/6)**2)/108.08
perldl> imag $g

which displays Figure 11-3.

Alert readers will note that the exp function was used to
generate a two-dimensional
Gaussian. The less mathematically inclined will say it looks
like a blob. Let’s inflict a bit more punishment on Messier 51
by convolving it with our newly-created Gaussian filter. This
enables us to simulate what we would see if we were
observing through very bad viewing conditions, such as a
(possibly drunken) haze (Figure 11-4).

perldl> use PDL::ImageND
perldl> $b = convolve $a,$g
perldl> imag $b

You might want to know that this operation takes 0.5 seconds
on a 600 Mhz iBook with PDL. Doing this with a 2D array in
normal (non-PDL) Perl takes 25 times longer and uses 11
times as much memory. Is that cool or what?

Figure 11-5 shows an unsharp masked image, often used in
astronomy to emphasize sharp features against a bright
background, such as stars in a galaxy, the giant luminous gas

214

clouds we call HII regions, or foreground objects such as
UFOs (er, weather balloons).

perldl> imag $a-$b

Figure 11-3. A two-dimensional Gaussian blob

215

Figure 11-4. Convolving a Gaussian with an image to blur
the image

216

Listing of a Few PDL Functions

Starred items (e.g., log10*) act as mutators: when you say
log10(inplace($a)), every element of $a is replaced
with its logarithm base 10.

Table 11-1 shows some of the PDL functions defined in
PDL::Core.

Figure 11-5. The FireCracker

Table 11-1. PDL::Core functions

217

Function Meaning

+ - * / > < >= <= << >> & | ^ == != +=
-= *= /= %= **= <<= >>= &= |= ^= <=> **
% ! ++ -- “” atan2* sqrt* sin* cos*
log* exp* abs*

Array
operators/
functions
(same as
Perl and C but
they act
element by
element)

X
Matrix
multiplication

~
Matrix
transpose

byte short ushort long float double
convert

Type
conversions

pdl
Create/copy a
piddle

topdl
Coerce to
piddle if scalar

howbig
Size of piddle
datatype in
bytes

nelem
Number of
elements

218

Function Meaning

dims
Return list of
dimensions

inplace
Perform
operation in
place

list

Convert piddle
to list, e.g.,
for (list
$x) { }

listindices
Return list of
index values
(1D)

log10*
Take log base
10

min max sum
Min/max/sum
of piddle

zeroes ones
Create zero/
one-filled
piddle

sequence
Create
sequence-filled
piddle

219

Function Meaning

reshape
Reshape the
dimensions of
a piddle

sec
Subsection of a
piddle

set

Setting values
of
data or
subsection

at
Return pixel
value at (x, y,
z, …)

axisvals* xvals* yvals* zvals*
Fill piddle with
axis values

rvals
Fill piddle with
distance from
its center

callext

Call external C
code in
dynamically
loadable object

convolve
Convolve
image with

220

Function Meaning

kernel (real
space)

hist
Histogram of
data

stats
Return mean
and standard
deviation

transpose
Matrix
transpose

qsort*
Quick sort
piddle

median
Median of
piddle

oddmedian
Lower odd
median of
piddle

Some functions from other PDL modules are shown in
Table 11-2.

Table 11-2. Key functions in modules other than PDL::Core

221

Module Function Meaning

PDL::Primitive fibonacci* Compute Fibonacci series

PDL::Image2D cc8compt*
Connected 8-component
labelling

PDL::Io::Misc rfits Read a FITS format file

wfits Write a FITS format file

rcols
Read columns in a text file
into piddles

rgrep
Read regexp matches into
piddles

PDL::Graphics::PGPLOT imag Display an image

(
PGPLOT graphics) ctab Load an image color table

line
Plot vector as connected
points

points Plot vector as points

errb Plot error bars

222

Module Function Meaning

cont Display image as contour map

bin
Plot vector as histogram, e.g.,
bin hist $data

hi2d Plot image as 2D histogram

poly Draw a polygon

vect
Display two images as a
vector field

hold
Hold current plot window
range, e.g., for overlays

release
Autoscale new plot window
for each command

rel Synonym for “release”

env
Define a plot window, put on
“hold”

PDL::Math asin* Inverse sine

sinh* Hyperbolic sine

223

Module Function Meaning

bessj0* Standard Bessel function

PDL::Fit::Polynomial fitpoly1d
Fit polynomial to 1D
data

224

Where Are We Now?

As of May 2002, the latest version of PDL is 2.3.2,
supporting 3D graphic manipulation using OpenGL, an
interface to the SLATEC numerical library, many other
graphics and maths libraries, access to the TIFF, GIF,
PostScript, and other formats supported by PBM+. PDL also
features virtual slicing, easy C extensions, and fast implicit
looping.

Anyone wishing to discuss the rather technical issues
surrounding PDL development is welcome to join the perldl
mailing list at perldl-request@jach.hawaii.edu or the porters
list at pdl-porters-request@jach.hawaii.edu. Send your
questions to the former and your complaints to the latter.
Finally, the obligatory URL: http://pdl.perl.org. The location
of the web site is shown in Figure 11-6.

225

Figure 11-6. Location of PDL web server

226

Part III. Language

In this part:

Chapter 12

Chapter 13

Chapter 14

Chapter 15

Chapter 16

Chapter 17

Chapter 18

Chapter 19

Chapter 20

Chapter 21

Chapter 22

Chapter 23

Chapter 24

Chapter 25

Chapter 26

In this section, Perl demonstrates what makes it the language
of choice for manipulating language, with fifteen articles
covering everything from state-of-the-art research in natural

227

language processing and speech synthesis to practical
problems like formatting text and matching names.

Natural language processing—getting a computer to
understand human language—is one of those fields that seems
easy at first but is actually fraught with difficulties. NLP
textbooks often demonstrate the perversity of English with
sentences like “Colorless green ideas sleep furiously,” which
is grammatical but nonsensical; “The horse raced past the
barn left,” which seems ungrammatical but isn’t; and “Time
flies like an arrow,” which is perfectly good English but has
four competing interpretations.

The section begins with two articles about programs that
converse: John Nolan’s article on a bot that dispenses
psychiatric advice, and Kevin Lenzo’s article on the purl bot,
which helps out Perl novices on Internet Relay Chat. The
ever-prodigious Kevin follows up with another of the research
areas that he pursues at Carnegie Mellon: open source speech
synthesis in Perl.Next, Prof.Damian Conway shows you how
to format text automatically with Text::Autoformat, which
manipulates the indentation, quoting, bulleting, and margins
of text.

Linguist Sean Burke has six articles in this book—more than
anyone else—all of them about language in one form or
another. The next two articles, on music and Braille,
demonstrate “little languages” constructed for a specific
purpose.

NLP hacker Dan Brian follows with two articles on using Perl
to give your computer programs an understanding of English.
The first article is about his Lingua::Wordnet module, which
gives your programs the ability to use relationships between

228

words—to know which are synonyms and antonyms, which
are subsets and supersets, and so on. Dan’s second article is
about the Lingua::LinkParser module, which provides a Perl
interface to the most popular natural language system
available. Prof.Khurshid Ahmad and Duncan White follow
with an article on using morphology—the structure of
words—to begin with a word (e.g., “compute”) and generate
related words from it (“computes,” “computing,”
“computationally,” and so on).

Next up is Brian Lalonde, who dissects the tricky problem of
matching variations on human names. This is not as easy as it
sounds: “Bill Gates” is the same person as “William Gates
III”, and someone named “Peggy” can also go by “Margaret.”
Simple regular expressions won’t suffice; you need a little
intelligence to reliably match names.

Sean Burke returns to help you ready your programs for the
5.7 billion people who don’t speak English as a first language,
with articles on localization and internationalization. He
follows with an article on simulating typos, comparing the
standard QWERTY keyboard to the Dvorak keyboard, with a
brief excursion into Dutch, Italian, and Tibetan. Dave Cross
continues with an article on how to correct typos in
subroutine names. Even if you don’t mistype subroutine
names frequently, every Perl coder should be aware of the
AUTOLOAD trick he uses to intercept nonexistent
subroutines. Finally, Tuomas Lukka concludes the article
with a description of how he learned Japanese via his
program, which automatically translates Japanese into
English as he surfs the Web.

229

Chapter 12. Chatbot::Eliza

John Nolan
Of all the
chatterbots—programs that converse with humans—Eliza is
the most famous. The original Eliza was written by Professor
Joseph
Weizenbaum of MIT and described in the Communications of
the ACM in 1967 (Vol. 10, No. 8). This program is older than
I am, and yet remains fascinating to this day. It’s one of the
all-time classic programs in computer science. Eliza pretends
to be a Rogerian psychiatrist; whatever the human says, it
replies—usually with a question—in an attempt to encourage
the patient to elaborate.

The
Eliza algorithm has been cloned dozens of times in all kinds
of programming languages, including Fortran, Basic, Pascal,
C, Java, and JavaScript. The first Eliza was written in a
Lisp-like language called MAD-Slip, way back in pre-Unix
days. (Eliza is named after Eliza Doolittle, the
cockney-speaking woman taught to speak proper English in
G.B. Shaw’s book Pygmalion.)

While taking a course in Natural Language Processing, I was
surprised to find that much of the research in the field still
uses Lisp. Lisp is a fine language, but Perl can do anything
Lisp can do, and Perl source code is much easier to read. I
searched the Web for Eliza clones, but I couldn’t find any
written in Perl. So I wrote one.

230

The
Chatbot::Eliza module is a faithful clone of Weizenbaum’s
Eliza algorithm. It encapsulates Eliza’s behavior within an
object.

You can install Chatbot::Eliza just like any other Perl module.
Once installed, this little bit of code is all you need to start an
interactive Eliza session:

use Chatbot::Eliza;
$mybot = new Chatbot::Eliza;
$mybot->command_interface;

Let’s see what this looks like. If you install the
Chatbot::Eliza module from CPAN, save the three lines of
code above to a file, and then execute it, here’s what the
output looks like:

Eliza: Please tell me what's been
bothering you.
you:

This is an
interactive session; type your reply to
Eliza after the you: prompt. Here’s a sample run:

Eliza: Please tell me what's been
bothering you.
you: Well, it's my boss.
Eliza: Your boss?
you: Yes. He's not very friendly.
Eliza: I see.
you: He is always upset.
Eliza: When?
you: Always. Especially when things are
hectic.
Eliza: Can you think of a specific example?
you: Well, yesterday he said he was unhappy

231

with all of us.
Eliza: That is interesting. Please
continue.
you: He says I am too lazy.
Eliza: Is it because you are too lazy that
you came to me?
you: I'm not lazy.
Eliza: Do you believe it is normal to be
not lazy?

You can set a few parameters of your Eliza object, such as its
name, or a
configuration file for it to read:

$myotherbot = new

Chatbot::Eliza "Brian", "myscript.txt";
$myotherbot->command_interface;

In this way, you can customize what the chatterbot says by
providing your own configuration file. This consists of a list
of
keywords,
decomposition rules, and
reassemble rules. If you don’t like Eliza’s default rules, you
can write your own.

For instance, the following lines in myscript.txt would have
Eliza (or Brian, as we’ve called it above) begin with one of
two otherworldly greetings, chosen at random:

initial: Greetings Earthling!
initial: Take me to your leader!

Chatbot::Eliza contains a default configuration file with
default greetings, salutations, quit -equivalents, and rules
for determining how Eliza should converse. If you want to

232

watch Eliza think, you can turn on the debugging output
before you launch your session:

$mybot->debug(1);
$mybot->command_interface;

Let’s look at the session we saw earlier but with debugging
turned on:

you: He is always upset.
1> always

: * : 0 He is always upset
--> When ?

Eliza: When?

you: Always. Especially when things are
hectic.

1> always
: * : 0 Always

--> Can you think of a
specific example?

Eliza: Can you think of a specific
example?

you: Well, yesterday he said he was
unhappy with all of us.

2> was
: * was i *
: * i was *
: * was you *

-1> xnone
: * : 0 xnone
--> That is interesting.

Please continue.
Eliza: That is interesting. Please
continue.

you: He says I am too lazy.

233

0> i
: * i @desire *
: * i am* @sad *
: * i am* @happy *
: * i was *
: * i @belief i *
: * i* @belief *you *
: * i am * : 0 He says

too lazy
--> Is it because you are

(2) that you came to me ?
Eliza: Is it because you are too lazy
that you came to me?

How It Works

The
Eliza algorithm is actually relatively straightforward. It
consists of three steps:

▪ Search the input string for a keyword.

▪ If we find a keyword, use the list of “decomposition
rules” for that keyword, and pattern-match the input
string against each rule.

▪ If the input string matches any of the decomposition
rules, then randomly select one of the “reassemble rules”
for that decomposition rule, and use it to construct the
reply.

As we saw above, Eliza read the input string He says I
am too lazy and found the keyword i. It ran through its
entire list of keywords, but i is the only one that matched.

234

The keywords are ranked; if more than one keyword matches,
it picks the most salient.

Next, it applied all the decomposition rules for the keyword i
(e.g., * i was *, * i am * @happy *, and so on)
to see if any matched. One rule did: * i am *. Using this
rule, we isolate parts of the input string around i am: the
two phrases He says and too lazy.

Next we randomly select a reassemble rule: Is it
because you are (2) that you came to
me. We use this rule to construct the reply. We replace (2)
with the text that matched the second asterisk in the
decomposition rule—in our example, the string too lazy.
Finally, Eliza replies with, Is it because you are
too lazy that you came to me?

The
Eliza algorithm has pre- and post-processing steps as well.
These handle the transformation of words like I and you;
you can read the documentation embedded in the module to
learn more.

You can also access all of the module’s internal functions
from your program. For example, using the transform
method, you can feed a string to Eliza and fetch its response:

$string = "I'm sad.";
$response = $mybot->transform($string);

The Eliza bot is an object, and its configuration data is
encapsulated, which means that you can instantiate other
Eliza bots, each with their own distinct configurations.

Here, we create two bots and make them talk to one another:

235

use

Chatbot::Eliza

my ($harry, $sally, $he_says, $she_says);

$sally = new Chatbot::Eliza "Sally";
$harry = new Chatbot::Eliza "Harry";

$he_says = "I am sad.";

srand(time ^ ($$ + ($$ << 15))); #
Seed the random number generator.

print $harry->name, ": $he_says \n";

while (1) {
$she_says = $sally->transform(

$he_says);
print $sally->name, ": $she_says \n";

$he_says = $harry->transform(
$she_says);

print $harry->name, ": $he_says \n";
}

Two bots conversing produces interesting results only if we
have clever scripts. Below, we see sample output from the
program, with both bots using the default Eliza script:

Harry: I am sad.
Sally: I'm sure it's not pleasant to be
sad.
Harry: Do you think coming here will help
you not to be sad?
Sally: You're not really talking about me
-- are you?
Harry: Perhaps I am in your fantasies.
Sally: What makes you think of my

236

fantasies?
Harry: Your fantasies?
Sally: Are you worried about someone
else's fantasies?
Harry: Would you prefer if I weren't
worried about someone else's fantasies?

In general, the default Eliza script does not produce any
sensible conversation when interacting with itself. (In
fairness, people who talk to themselves often don’t make
much sense either.)

One of the reasons the original
Eliza was so successful was Weizenbaum’s clever rules and
limited domain; the role of a mock Rogerian psychotherapist
doesn’t require much intelligence, and a relatively simple
algorithm can pull it off. But as Weizenbaum found, even this
relatively simple program fooled naive users into believing
that it understood what they were saying. Scarier still, some
people actually felt more comfortable talking to Eliza than to
a flesh-and-blood psychiatrist.

Here’s an
interactive session, this time with a human deliberately trying
to expose
Eliza’s weaknesses:

Eliza: Please tell me what's been
bothering you.
you: Why are you asking me that?
Eliza: Do you sometimes think I am asking
you that?
you: What time is it?
Eliza: Why do you ask?
you: You don't understand.
Eliza: We were discussing you -- not me.
you: Who are you?

237

Eliza: What answer would please you most?
you: I have asdwet in the asdgasdg.
Eliza: Do you say you have asdwet in the
asdgasdg for some special reason?
you: my am we are is in the always my
brother
Eliza: Your brother?
you: You your in I my me mine.
Eliza: Your you mine?
you: I have a gun. Give me your money!
Eliza: Can you elaborate on that?
you: Do you remember the Kennedy
assassination?
Eliza: Did you think I would forget the
Kennedy assassination?
you: Stop asking questions.
Eliza: That is interesting. Please
continue.

238

What Now?

The CPAN includes many modules that allow a script to
interact easily with resources on the Internet. For example, it
is straightforward to write scripts that combine the
Chatbot::Eliza module with the Net::IRC module or the CGI
module. (The CPAN distribution of Chatbot::Eliza includes a
sample CGI script—a Web-based Eliza.)

239

References

The CMU Artificial Intelligence Repository

http://www.cs.cmu.edu/afs/cs/project/ai-repository/ai/
areas/classics/0.html

Hayden’s Java Eliza

http://chayden.net/eliza/Eliza.html

Goerlich’s Java Eliza

http://philly.cyberloft.com/bgoerlic/eliza.htm

The white paper on the Loebner Prize competition

http://www.lazytd.com/lti/pub/aaai94.html

ftp://ftp.nl.cs.cmu.edu/usr/mlm/ftp/pubs/aaai94.ps.Z

Julia, an Eliza-like chatterbot that roams on TinyMUDs

http://www.lazytd.com/lti/julia/

The CYC Project

http://www.cyc.com

BotSpot

http://www.botspot.com

UMBC AgentWeb

http://www.cs.umbc.edu/agents/

240

The Simon Laven page (“Chatterbot Central”)

http://www.simonlaven.com/

241

Chapter 13. Infobots and Purl

Kevin Lenzo
<JUM> Whenever I set it to not autoload

images with
Netscape 2.01, the whole program

locks up.
Anyone know why?

<Irving> no
<JUM> Does anyone know where I can get

Netscape 2.0????
<url> i think netscape 2.0 is at

ftp://archive.netscape.com/
archive/index.html

<JUM> I am forever grateful, Url.
<JUM> Url: Are you running ver 2.01

with success?
<url> jum: bugger all, i dunno
<JUM> OK.
<JUM> Thanks, Url
<url> de nada, jum

You’ve probably heard about the Turing test, the Loebner
prize, or other contests that measure how much a program can
act like a human. Chapter 12 discussed Chatbot::Eliza, a
module that behaves like a Rogerian therapist. Instead of
asking how intelligent a program can be, let’s explore the
usefulness of impersonating a human. Enter the infobot: an
autonomous program that converses with users.
Infobots are an ongoing experiment in how we can interact as
communities with a common institutional memory. If that

242

sounds too grandiose, think of it as a study in interactive
graffiti.

IRC

The
infobots first appeared on the
EFNet (Eris-Free Net) Internet Relay Chat (IRC) in June of
1995. On IRC, people talk to one another (typically, to entire
groups of people) in channels, each devoted to a particular
topic. When a user creates a channel, he or she becomes a
channel operator, which gives them powers over other users.

Some channels are popular; the #macintosh channel has
about 50 users regardless of the time of day. The #perl
channel has 74 users as I write this. EFNet is the largest
noncommercial chat network, with about 40,000 users from
around the world at any given moment.

At Carnegie Mellon University, we have operated
irc.cs.cmu.edu as an
EFNet leaf node since 1996. I’ve been able to develop the
infobots because I was the administrator of the machine; in
general, EFNet doesn’t appreciate bots, since they are often
used for abuse. For instance, bots have been used to spam
users with advertisements for porn sites or to take control of
other people’s
channels.

Resources for IRC and bots are listed in the sidebar Using
IRC and Bots.

243

Using IRC and Bots

To experience these bots in action, sign onto IRC and
check them out. You’ll need an IRC client, which you can
download for free from the sites below. To join the Perl
channel, type /join #perl.

More information about EFNet and IRC

http://www.irchelp.org/

Infobot home pages

http://www.cs.cmu.edu/~lenzo/infobot.html and
http://www.infobot.org

The IRC Help home page

http://www.irchelp.org/

The Eggdrop home page

http://www.valuserve.com/~robey/eggdrop/

The Computer bot

http://www.networks.org/irc/computer.html

The UN bot

http://networks.org/irc/

244

Bots and Infobots

One popular type of beneficial bot is the Eggdrop, developed
by Robey
Pointer. Eggdrops are designed for channel protection; they
can be linked together to monitor people or programs that
spam users. Unfortunately, they have also been subverted for
the exact behavior they were meant to guard against. (Lest
you get the wrong idea, most of IRC is simple chatting. It’s
not populated with teenage
net.punks talking about techno-warfare, but there are vandals
in every community.)

More benign bots exist as well. Some bots run interactive
games, like chaosbot on #chaos or robbot on
#riskybus. On #chaos, people join one of two teams
and compete to guess items in a Top 10 list; on
#riskybus, the users wager with fake money in a
Jeopardy-like game. Even the IRC server administrators use
bots to monitor connections and activity.

Infobots are different. They exist to collect information and
answer questions. I have been running infobots for over two
years now, and they have continued to evolve with the help of
their communities. The bots are missed when they’re
away—when mine crash and don’t respawn, I’ll get an
immediate “Where’s the bot?” when I sign on, even before
anyone says hello.

245

So What?

Why are
infobots so popular? Well, they converse in natural language,
they serve as a community memory, and they learn. The
initial motivation for
infobots came from #macintosh, where the same tired
questions were asked again and again. We realized that if the
answers were recorded, being helpful would be less of a
chore, because we wouldn’t have to repeat ourselves all the
time. Even if no one on the channel knew the answer, the
infobot could reply. This is an act of hubris and laziness, and
thus well-suited to Perl.

There are other bots on
EFNet: aack on #unixhelp, which has a fixed set of
about 150 facts, and Computer and UN, which provide
canned answers to questions. They don’t learn anything over
time, nor do they take advantage of Perl’s wonderful text
processing. Let’s look at some examples of people using one
of my bots: url (pronounced “earl”):

<calamari> does anyone know where i can
get quicktime 3.0?

<url> somebody said quicktime 3.0 was
at

http://www.apple.com/quicktime/
information/index.html

The question here is a permutation of Where is X?, or,
more simply, X?, to which url responds with a sentence of
the form X is Y. The surface forms of the replies

246

(somebody said…) are chosen at random to make url
seem less mechanical.

My bots don’t learn in a deep Artificial Intelligence sense, but
they do get more helpful over time. url, like a sponge, soaks
up information that it hears on the channel.

247

Are You Spongeworthy?

Yes. Everyone is. Whereas other bots are strictly information
stores loaded by a priesthood of factoid keepers, mine are
egalitarian. Here’s a demonstration of purl, the infobot that
lives on the EFNet Perl channel, #perl, 24 hours a day:

<juice> i am not very happy
<juice> me?
<purl> you are, like, not very happy

purl has soaked up quite a few
factoids, as has her older brother url. (It’s interesting to note
that people often refer to purl as “she,” while url is almost
invariably a “he.”) She can learn from any declarative
statement including a verb of being (is, are, am, and so
on). url is more constrained, and requires that the part of the
sentence after the verb contain a recognizable URL. The
http:// isn’t required; both url and purl infer it when
necessary.

Here’s a short exchange from #perl:

<oznoid>

purl, status?
<purl> Since Thu May 21 17:50:02 1998,

there have been
327 modifications and 263

questions. I have been
awake for 23 hours, 49 minutes, 8

seconds this
session, and currently reference

32513 factoids.

248

On #macintosh:

<oznoid> url, status?
<url> Since Thu May 21 17:50:03 1998,

there have been 45
modifications and 509 questions.

I have been awake
for 23 hours, 57 minutes, 54

seconds this session,
and currently reference 46159

factoids.

url is also on the
EFNet
channels #macdev, #linuxos, #avara, and
#distributed. There is also a version of url running on
the Undernet; their databases were originally synchronized,
but they are now learning and interacting independently. (The
dates shown are when the current processes began, not when
the
bots began learning.) A relative of url and purl, called
rurl, hangs out on #robogeeks. It’s less an information
repository than a personification of bad attitude.

Sometimes people think they’re interacting with an actual
human being; the excerpt at the beginning of this article is
real. I’ve seen people come into a channel, ask a series of
questions and get pointers to good information, and then
thank the bot and say, “Thank God someone was listening!”
It’s even been hit on.

249

You Can’t Do That in Public!

This brings us to the question of what goes into the
interaction. Why does it sometimes fool people, and what
keeps it from making inappropriate comments? Admittedly, it
picks up many irrelevant things and occasionally spits out a
useless comment, but it doesn’t happen often, and when it
does it merely adds to the charm.

People on #macintosh endured the early development
cycle with great aplomb, providing a lot of feedback. I get
feedback from several channels now, but it’s still mainly
#macintosh and #perl that supply the most feedback.
Here’s an example of a discussion about how the bot should
behave on #macintosh. (Just to clarify, I go by the
nickname oznoid, or oz for short.)

<tonyola> oz - a suggestion - url should
only accept queries

beginning with "url,...."
<golgo13> tonyola: No.

* Zebe gives bizzy a botsnack
<bizzy> i hate having to type "url"
<bizzy> :)
<durkin> oznoid, do you plan to make his

database of facts
available. i mean, i think his

large knowledge is
one of the most coveted

features..
<barry> give him a preferences window :)

<golgo13> Half of url's usefulness is
answering questions from

people who don't know to address

250

him.
<barry> url, preferences..then you set

what ya like :)
<tonyola> but url keeps breaking in when
he's not wanted otherwise
<Fatale> is that really that much of an

inconvenience,
compared to his usefulness?

<_elle> url is allowed to interrupt
anytime :)
<Fatale> i often wonder why it's such a

problem, when you
have free access to all that

information
<bizzy> heh

<golgo13> It is ridiculous for for someone
to come in and say

"Where is stuffit expander?" and
then for a regular

to go "url: Stuffit expander?"
<durkin> url, nslookup fall.back.host.net

<url> fall.back.host.net is
205.166.250.10

Here are a few design decisions I’ve made:

▪ IRC lets you identify privileged users, but my
bots don’t use the information. There are no special
people, and everyone has equal power over the bots.
This makes it public property, and part of the
community.

▪ If the bots aren’t directly addressed, and they don’t know
anything about the question, they keep quiet. This is how
users in large
channels often act, except that humans sometimes make
ad hominem attacks at new users out of boredom. My

251

infobots are a bit more polite.

▪ If the bots are addressed, they always reply, even when
they don’t know the answer.

<picklehed>

purl, where can i find a blue petunia?
<purl> picklehed: bugger all, i

dunno

▪ The bots support interaction through private messages,
as well as on the public channel. This means people can
get information or teach the bot without annoying the
channel. When you send a personal message to the bot, it
always replies:

>purl< perl?
[purl] well, perl is the Swiss Army
Chainsaw of programming,

available at
http://www.perl.com/.

▪ The bots can tell other people about things. For instance,
“tell oznoid about X” would cause it to send oznoid a
private message, something like “nick wants you to
know: X is Y.”

<longhair_> purl, tell johnpc about fish
<purl> okay, longhair_, i did.

▪ The bots can volunteer information about things even if
there is no obvious question—as long as the key phrase
is long enough. That is, there is a minimum length
utterance for which it will always blurt out an answer.

<humblepie> the perl journal
<purl> it has been said that the

252

perl journal is at
http://www.tpj.com/

▪ Anyone can ask the
bots to leave the channel at any time, so that they can be
banished when they’re not wanted. The request must be
made in public; a private message is too sneaky. When
they leave, they say goodbye to the person in public just
before leaving. They can be messaged to rejoin by
anyone.

<fimmtiu>

purl, leave #perl
<purl> goodbye, fimmtiu.

*** purl has left channel
#perl

▪ The bots are generally polite, replying to hello,
thanks, and a few other things with random responses,
to avoid seeming mechanical.

<fimmtiu> Hey, purl.
<purl> what's up, fimmtiu

<PerlJam> hi purl
<purl> niihau, PerlJam

(“Niihau” means “hi” in Mandarin.) The bots won’t
understand all greetings, however:

<Murr> yo purl-boy
<fimmtiu> What's up, purl?

<purl> up is, like, what's not down
or the direction

parallel and opposite the
vector sum of all

gravitational forces at a
given point

253

<JohnPC> re, purl
<purl> re is short for "rehi", or

"hello again". In Perl,
it's an acronym for "regular

expression".

▪ The bots answer help requests by private message
only. This can be extended to other functions (like
internic and nslookup) at the option of the bot
master.

▪ Users can change a bot’s definitions with a comment like
this: No, purl, …. Definitions can be supplemented
with X is also … or removed with Forget ….
The bot will confirm the action when possible.

<oznoid> x?
<purl> x is, like, my friend

<oznoid> no, purl, x is y
<purl> okay, oznoid.

<oznoid> x is also z
<purl> okay, oznoid.

<oznoid> x?
<purl> rumour has it x is y or z

<PerlJam> dammit purl, listen to oznoid
when he's talking to you!
<PerlJam> ;-)
<oznoid> purl, forget x

<purl> oznoid: I forgot x

254

What Are You Thinking?

When someone enters a channel and asks a question, the bot
will answer if it understands the question and knows
something apropos. It parses the question with
rules like these:

$finalQuestionMark = (s/
\s*\?+$//); # Get the "?"

s/^\s*does any(one|body)
know\s+//i; # Remove polite
pre-query

if (s/^(who|what|where)\s+//i)
{ # We've got a question

$questionWord = $1;
}

if (s/^(is|are)\s+//i or
s/\s+(is|are)$//i) { # Get the verb

$verb = $1;
}

The bot then checks to see if it recognizes the remainder of
the sentence. It does this by reducing the sentence to a
canonical form: a standardized representation for the data that
retains only the important
information. In this case, that means no determiners (a, an,
or the), and a few other simplifications. This covers queries
such as:

Where is foo?
Does anyone know where foo is?

255

What are foo
Foo?

The
infobots actually have a long list of verbs to check; the code
shown above is for demonstration purposes only. This
example shows only portions of the text being eliminated; in
reality, the substitutions are used later to canonicalize the
sentence for more advanced
processing.

It was easier to do things this way than to have url parse a
full grammar specified in Backus-Naur Format (BNF). One
reason is that people define new words on the fly, so it’s not
possible to specify the complete grammar in advance without
using a /.*/ placeholder to allow for new words.
Furthermore, people don’t speak in well-formed sentences
very often, especially
on IRC. There are even textual equivalents of filled pauses
(um, ah) that are quite communicative, but difficult to
parse because they can appear anywhere and can be spelled in
unusual ways.

Eating fragments of the input and storing them in variables
allows the
infobots to build up the contents of a semantic frame (a data
structure containing attribute-value pairs) by eliminating the
known fragments and judging the significance of the
remainder. The approach is quite similar to Phoenix
grammars or semantic phrase parsers developed by Wayne
Ward and others, which consume chunks of the input to build
up a frame. Things like this have been used quite successfully
for parsing in speech recognition tasks such as the ATIS
(Airline Travel Information System) systems developed at

256

CMU, MIT, and elsewhere; they continue to be a part of our
work at CMU.

At a high level, the processing goes like this:

Is the sentence obviously a question?

If it is, url canonicalizes the question and replies if it has
an answer. Otherwise, url replies that it doesn’t know,
but only if it was directly addressed.
Questions also can include mathematical expressions for
evaluation or requests for
information from third parties.

If it isn’t, and if url recognizes the key (the
left-hand-side X of a statement such as X is Y, or the
right hand side of a question like Where is X?) in the
database, it volunteers the factoid from the database if the
key is long enough (e.g., more than 6 characters) or if
url was directly addressed.

Is the sentence an explicitly defined functional form?

My bots understand commands like nslookup (which
converts computer names to IP addresses) or internic
(which performs an Internic “whois” query). If the user’s
utterance is one of these commands, url executes the
external command and displays the result.

Is the sentence parseable as a statement (X is Y)?

If it is, url checks to see whether X is already in the
database. In that event, it looks to see whether the user
was aware of that—if he said, No, url, X is Y or
X is also Y. In that case, url replies ok,

257

<name_of_user>. Otherwise, it says, …but X is
Y… if it was addressed directly. This prevents the bots
from paying attention to O-dogg below:

<orwant> bless is a function that tells
a reference that it's now an object.
<O-dogg> bless is cool.

If the sentence isn’t parseable as a statement, url admits
confusion—but only if it was directly addressed.

As you can see, url can act very differently depending on
whether it was addressed directly. That happens when a user
calls url by name, or sends a private message. It replies in
kind:

<paraquat>

purl, do you have a life?
<purl> i haven't a clue, paraquat

A slightly more involved interaction:
<paraquat> purl, PDL is at

http://www.perl.org/CPAN/
modules/by-module/PDL/

<purl> ...but pdl is Perl Data
Language...
<paraquat> purl, PDL is also at

http://www.perl.org/CPAN/
modules/by-module/PDL/

<purl> okay, paraquat.
<paraquat> pdl?

<purl> pdl is probably Perl Data
Language or at

http://www.perl.org/CPAN/
modules/by-module/PDL/

258

You can see that it’s not always as fluid as one would like,
but it gets better through use. When an infobot annoys the
channel, I hear about it pretty quickly.

259

Idiot Savant

The
infobots grow every day, and some of them have over 40,000
factoids. They have to be able to access their
information quickly, and checking every item in the database
against the input would take too long. The
infobots use tie and DB_File, so that the database
appears as a pair of large hashes but actually reside on disk,
and can be looked up without requiring lots of RAM. Of
course, that means whatever you’re looking for has to match
the hash key exactly. That’s why the input must be
canonicalized, stripped of irrelevant utterances like hmm…,
a, an, and the, among others. This canonicalization is
performed both when the item is stored and when the bot tries
to answer a query. This doesn’t always work quite the way
you’d like, and so you occasionally get Rainmanesque
responses: aaaah… i know something about X…
aaah… That would be Y, yeah.

Since the entire database resides on disk, and not in memory,
the run-time memory requirements are reasonable—on the
order of 5.5 megabytes for url, the largest bot. Because no
explicit database search is required, the bot’s responses are
nearly instantaneous, which is important for the real-time
communication
on IRC. Currently, we use one database for singular entries
and another for plurals, so it’s quite easy to maintain
subject-verb agreement even when the query has no verb. I’m
merging them into a single, unified database in which each
entry has an attribute for each case.

260

A Sense of Play

url has an elder brother named hocus, who lacks the
frontend filters that restrict knowledge to URLs. hocus
soaked up anything that looked declarative—anything at all.
When the first
infobots appeared without this restraint, people quickly
became annoyed by the frivolous responses. purl is actually
quite hocus-like, but with more stop expressions, which
reject some queries and prune others.

Once people realize the bot is a bot, they often have a little
fun with it, stuffing it with questionable
information. The bots aren’t shy about expressing their
newfound ideas in public, sometimes to the annoyance of
channel curmudgeons.

Eventually, those who find the bot annoying at first usually
begin to appreciate its usefulness. Still, the play continues,
sometimes sparked by a random bot comment and leading to
the definition of a few humorous factoids.

<hindeur> purl, hinder?
<purl> hmmm... hinder is at

http://www.ubertone.ml.org/
<q[merlyn]> you need to say "is also"
<rootbeer> When debugging regexes, the $&

and related
variables can be quite

informative.
<q[merlyn]> otherwise it won't overwrite a
meaning

<hindeur> purl, hinder is also amagosa's
friend

261

<purl> okay, hindeur.
<q[merlyn]> there
<q[merlyn]> like that
<q[merlyn]> purl is also a miss take!

<hindeur> this bot is fun!
<purl> okay, q[merlyn].

<q[merlyn]> purl?
<purl> yes, q[merlyn]?

<q[merlyn]>

purl, purl?
<purl> it has been said that i am the

bot that's got
the info that's hot and a lot

that's not and all
of that rot or a knut or buggy

sometimes. or a
miss take!

<Taer> sorry. wife stole camel 2ed.
* nickm gets funky with purl

<q[merlyn]> purl is also funky

…time passes…
<nickm> purl is a commie pinko sympathizer.
<purl> ...but purl is the bot that's got

the info that's
hot and a lot that's not and all

of that rot or a
knut or buggy sometimes. or a miss

take! or funky
or a bit shy or a sweater! or a

really really cool
bot....

262

What? We Ordered No Pizzas!

Bots are a public resource, and as such are susceptible to
vandalism. Some people try to break the bots. That’s not a
bad thing if they’re just being playful and testing the limits,
but sometimes it’s an act of malice. For instance, since any
user can change or delete entries, we occasionally find useful
nuggets of information replaced by phrases like
Microsoft sucks or Apple sucks. At least the
damage is visible, and rapidly fixed by the channel.

At one point, I allowed people to get a random entry from the
database. Soon someone was steadily lobotomizing the bot,
by retrieving random entries and having the bot forget them,
one by one. Since I maintain logs of the bot’s interactions, I
was able to back out all the changes from that user, but the
experience was unpleasant.

The math handling abilities of the bot use eval, which can
be extremely dangerous. Early experience made me check the
input very carefully before evaluating it—this is why it won’t
handle all expressions. Even the Safe module isn’t adequate
protection; the documentation enumerates some of the side
effects, such as infinite loops and memory hogging, that
might occur from certain inputs. I simply reject anything
outside of a very limited subset of functions. Even with this
precaution, users found and manipulated a bug in the system
libraries that made the bot crash.

The
channels get quite defensive of the bots when they see people
trying to vandalize them, or even when people are merely

263

rude. This is prevalent on #macintosh, where url has
been a fixture for a couple of years.

264

Future Directions

The infobot code is undergoing substantial revisions; for one
thing, it is being modularized. Since there are now versions
that work standalone on the desktop, with IRC, or with
Zephyr (another messaging system), the infobot code is being
decoupled from the communications protocol. Net::IRC, a
module designed specifically for manipulating the Internet
Relay Chat protocol, will be integrated into the infobot code.
Some of us have also been talking about connecting several
bots together, expanding the types of statements and
questions, implementing per-channel “personalities,” and
connecting networks of infobots—each an expert on its own
topic. We have settled on the Bazaar model rather than the
Cathedral model of software development, as described in
Eric S. Raymond’s “The Cathedral and the Bazaar.”
We want as many people getting the source as possible,
making interesting modifications to it, and giving it back to
the community. Just like Perl itself.

265

Where to Get It

The code is a mess right now. Fortunately we have a group of
people and a mailing list, and we’re redesigning it from
scratch. By the time this article is published, we are hoping
you won’t have to use the collection of barnacles that
comprise the current infobot. The source has been available
for some time now, warts and all—I had to get over my desire
to wait until it was perfect. It’s far from perfect now, but it
has been improving quickly since the public release. To get
on the mailing list, send me mail at lenzo@cs.cmu.edu.

266

267

Acknowledgments

People who have been running infobots have been a great
resource, particularly Adam T.
Lindley (abstract on IRC), who has done extensive work
with script and set up the web site at
http://www.infobot.org. Patrick
Cole (wildfire on IRC) helped replace the IRC client
code and the user profiling system. Dennis
Taylor (fimmtiu), who is also involved with Net::IRC, was
also a great source of ideas and inspiration.

All my work is due, in one way or another, to a love of Perl
itself. Perl’s philosophy appeals to me more than any other
programming medium. Thanks to the p5p mailing list and all
of the people working on Perl. We owe ya, bigtime.

268

References

Nolan, John. Chapter 12. TPJ #9, pp. 16–18.

Raymond, Eric S. “The Cathedral and the Bazaar.”
http://earthspace.net/~esr/writings/cathedral-bazaar/
cathedral-bazaar.html.

Seneff, Stephanie. “Robust parsing for spoken language
systems.” Proceedings of the International Conference on
Acoustics, Speech, and Signal Processing, 1992, Vol. 1, pp.
189–192.

Ward, Wayne. “Understanding spontaneous speech: the
Phoenix system.” Proceedings of the International
Conference on Acoustics, Speech, and Signal Processing,
1991, Vol. 1, pp. 365–367.

269

Chapter 14. Speech Synthesis

Kevin A. Lenzo
Talking computers are ubiquitous in science fiction; machines
speak so often in the movies that we think nothing of it. From
an alien robot poised to destroy the Earth unless given a
speech key (“Klaatu barada nikto” in The Day the Earth
Stood Still and echoed in Army of Darkness) to the
terrifyingly calm HAL 9000 in 2001: A Space Odyssey,
machines have communicated with people through speech.
The computer in “Star Trek” has spoken and understood
speech since the earliest episodes. Speech sounds easy,
because it’s natural to us—but it’s not natural for computers.

Let’s ignore the problem of getting computers to think of
things worth saying, and consider only turning word
sequences into speech. Let’s ignore prosody, too.
Prosody—the intonation, rhythm, and timing of speech—is
important to how we interpret what’s said, as well as how we
feel about it, but it can’t be given proper care in the span of
this article; partly because it’s almost completely unsolved.
The input to our system is stark and minimal, as is the
output—there are no lingering pauses or dynamics, no irony
or sarcasm. (Not on purpose, anyway.)

If we are given plain text as input, how should it be spoken?
How do we make a transducer that accepts text and output
audio? In this article, we’ll walk through a series of Perl
speech synthesizers. Many of the ideas here apply to both
natural and artificial languages, and are recurrent themes in

270

the synthesis work at Carnegie Mellon University, where I
spend my days (and nights). The code in this article is
available on the web site for this book
(http://www.oreilly.com/catalog/tpj3) and at
http://www.cs.cmu.edu/~lenzo/tpj/synthesis_examples.html.
Audio samples of each method are included.

Pre-Recorded Sentences

As a first attempt, we could use
pre-recorded speech for everything we might want our
computer to say. It wouldn’t be very flexible, but it would
sound great. For every possible input, we’d need a recording.
Your phone company probably does this—“What city,
please?,” or “What listing?”

Spokesvoices like James Earl Jones are recorded as expertly
as possible to show off the sound quality, and greet you with
phrases like “Welcome to Bell Atlantic.” This sort of thing is
pretty easy to do—just play the right sound file at the right
time:

while (<>) {
say $

speech{$_};
}

%speech is a hash of speech samples, perhaps tied to a
database using tie or dbmopen. say is a subroutine that
knows about sending audio to something that can play it, and
$_ is, of course, Perl’s default scalar variable.

271

As limited as this might seem, it is the perfect solution for
applications that require only a small vocabulary—in games
like WarCraft, for instance, where the characters have a few
randomized responses they utter as you order them
about—“Yes, Master?” or “Of course, Master.” If you need
any more flexibility, though, you’ll be stuck—and if you ever
need to record new material, you have to be careful to
emulate the same recording conditions.

272

Lexical Synthesis in One s///

Let’s look some variations of the expression s/($text)/
speech $1/eg (which was the original title of this article
as it appeared in TPJ):

while (<>) {
s/($text)/$speech{$1}/g;
say $_;

}

Here’s guide to this code snippet:

▪ $text is a regular expression that accepts words

▪ %speech is a hash of
audio waveforms, one per word

▪ $1 holds each match of $text (within the parentheses)

▪ say is a subroutine that sends a waveform to an audio
device.

The s///g replaces all of the words in $text with hash
entries from %speech; this tokenizes the
input, and turns each token into an audio waveform. More
formally, $text is an expression that matches words in the
language defined by %speech. Whole words are replaced
with their audio entries. Words not in the language have no
entry in %speech, and therefore produce no output. So, for
our purposes, the expression in $text can be quite simple:

$text = '\S+|\s+'

273

\s+ matches one or more whitespace characters, and \S+
matches one or more non-whitespace characters. Clearly,
punctuation is a part of the word in this tokenization. For
example, if the previous sentence were the input text,
“Clearly,” and “tokenization” would become tokens, as would
all the other words; if the sentence you’re reading now were
the input, we’d even have quoted words as tokens. If we
remove punctuation, and fold the uppercase letters to
lowercase so that “Clearly” and “clearly” are the same word,
we can generalize our tokenization a bit. With a few changes
we can eliminate some punctuation, in much the same way
whitespace was separated from the words. For instance, we
could do this:

$text = '[.!?"]|\S+|\s+'

which turns some of the punctuation into separate tokens. We
can convert to lowercase with the lc operator:

while (<>) {
s/($text)/say $

speech{lc($1)}/eg;
}

The sample is spoken immediately, rather than explicitly
passed to say after the entire line is processed. The /e on
the end of the s/// tells Perl to evaluate say
$speech{lc($1)} as a full-fledged Perl expression.

This can work nicely for a small, constrained vocabulary, but
you need a sample for every word ever to be spoken. The
result sounds unnatural, because the words are spoken
without regard to their context in the sentence. For instance,
words at the end of an utterance are often spoken more

274

slowly, and with a final drop in pitch. This technique doesn’t
handle that.

275

The Out-of-Vocabulary Problem:
Synthesis in One s///e

How do we handle
“out-of-vocabulary” words? If we wanted our system to speak
a word for which there is no presampled audio, we could
break it down into smaller parts: phonemes. Just like our
written words are composed of an alphabet of letters, our
spoken words are composed of an alphabet of phonemes. So
we’d need to make a mapping from a sequence of text words
to phonemes, and ultimately to audio waveforms.

Now, the regex $text remains the same, but we change the
substitution:

while (<>) {
s/($text)/map { say $speech{$_} }

text2phones lc($1)/eg;
}

The %speech hash now contains phonemes. More
precisely, it contains phones, which are concrete,
context-dependent realizations of abstract phonemes. For
instance, the phoneme /T/ can be spoken as the phone [D]
in words like “butter,” or as [T] if you pronounce it in
isolation (such as at a spelling bee). The audio depends on
more than just the phoneme; it also depends on the setting and
context.

A couple of points: Notice that the language is still a
“regular” grammar—the sort that can be recognized by a
vanilla regular expression. (Perl’s so-called “regular
expressions”

276

are more powerful than we need, because they can handle
irregular grammars as well.) (A regular grammar deals with
patterns of symbols composed with only concatenation
(“and”), disjunction (“or”), and closure (zero or more
iterations of a pattern). Perl regular expressions allow things
like look-ahead assertions, which makes them able to parse
context-sensitive languages, and means that Perl’s regular
expressions aren’t regular at all.)

277

Text-to-Phoneme Conversion

What magic lies hidden in text2phones? English
spelling encodes a great deal of history, but the
pronunciations of words are not always obvious—for
instance, words such as “night,” “knight,” “ought,” and
“cough” don’t sound like they have a “gh” in them; well, at
least not the “g” as in “great” or the “h” as in “history.”
Languages such as Spanish and Greek have closer
relationships between their written and spoken forms;
Chinese, on the other hand, has no relationship whatsoever.

There are a number of possible strategies for tackling this
problem. Many
speech synthesizers use a two-tiered method—first, check if
it’s in a small dictionary of pronunciations, and, if not, resort
to a
text-to-phoneme conversion strategy. Any word pronounced
properly by the rules is removed from the dictionary, so as to
keep the total conversion package reasonably small. Festival,
a free, open source synthesizer from the University of
Edinburgh, uses this strategy, as does my own Perl-based
synthesis, phonebox.

Looking things up in a dictionary is good work when you can
get it, but you’ll always run into out-of-vocabulary words for
which there’s no predefined pronunciation. Even ignoring the
fact that human languages change all the time by adding
words and changing usages, the number of entries will get
quite large if every word is included. Building generic
text-to-phoneme transducers is an interesting problem that
requires generalization to unforeseen data; decision trees,

278

borrowed from the discipline of machine learning, work
reasonably well. A decision tree is an organization of nodes in
which each node represents a decision; you can download
Perl code to build dictionary decision trees from
http://www.cs.cmu.edu/~lenzo/t2p and from the web site for
this book. The technique is described there, and it includes the
letter-to-phoneme converter as well as some sample data.

At CMU we train
decision trees for text-to-phoneme conversion using
pronouncing dictionaries such as the CMU dictionary, the
Oxford Advanced Learner’s dictionary, the
Moby lexicon, or any number of others. Given a set of words
and their pronunciations, a set of
alignments between the letters and phones is produced,
generating a mapping from letters to phonemes. For example,
here are some possible alignments of the letters in the word
“algebraically” with a string of phonemes:

a l g e b r a i c a l l y
AE L JH AH B R EY IH K _ L _ IY

There are some tricky issues in generating good alignments;
for this example alone there are 78 possible alignments. This
number comes from C(13,11]—pronounced “thirteen choose
eleven”—which is the number of possible ways you can
choose eleven items from a set of thirteen. In this case, there
are thirteen letters and eleven phonemes, so there are eleven
slots that get phonemes, and two that don’t. The ones that
don’t get a phoneme end up aligning with a null. C(n,k) is
equal to n!/(k!(n-k)!), where n! is n factorial, or n • n-1 • n-2 •
… • 1.) Good alignments are critical for getting acceptable
results from any learning method.

279

NetTalk, a neural network for speech output that is successful
despite relatively poor performance of its
text-to-phoneme rules, uses this sort of encoding of letters in
a window of neighboring letters. Methods for generating
these alignments are discussed in [Black,
Lenzo, and Pagel] and [Pagel, Lenzo, and Black].

Once the alignments have been generated, they are exploded
into feature vectors, one per letter, that include some context:
three letters on each side. Each feature (neighboring letter, in
this case) is given a name; “L” for the letter itself, “L1” for
one to the left, “R1” for one to the right, and so on. The word
“absurdities,” for instance, ends up producing eleven feature
vectors, as shown in Table 14-1.

Table 14-1. The eleven feature vectors of “absurdities”

L3 L2 L1 L R1 R2 R3 Phoneme

- - - a b s u AH

- - a b s u r B

- a b s u r d S

a b s u r d i ER

b s u r d i t _

s u r d i t i D

280

L3 L2 L1 L R1 R2 R3 Phoneme

u r d i t i e AH

r d i t i e s T

d i t i e s - IY

i t i e s - - _

t i e s - - - Z

These vectors are taken together to build a
decision tree that tests the features and produces an output
phoneme (or no phoneme at all, denoted by the underscore in
the fifth and tenth vectors). The result is an example of a
finite state transducer, the core of several
speech synthesis systems, such as the Lucent synthesizer.
Here’s one subtree trained from the CMU dictionary:

if ($feature{'L'} eq 'C') {
if ($feature{'R1'} eq 'A') {

if ($feature{'L1'} eq 'A') {
if ($feature{'L2'} eq 'F') {

return 'S';
}

if ($feature{'L2'} eq 'R') {
if ($feature{'L3'} eq 'U') {

return 'S';
}
return 'K';

}
return 'K';

281

}
...

This snippet implies that the letter C (tested in the order L,
R1, L1, L2), should become the S phoneme (as in the
Americanized “façade”) if it has the context shown in
Table 14-2.

Table 14-2. The ç in façade

Feature L3 L2 L1 L R1 R2 R3 Phoneme

Letter ? F A C A ? ? S

Testing order - 4 3 1 2 - -

If the second letter to the left were an R instead of an F, the
subtree would output the S phoneme if there’s an R to the left
of it (“Curaçao”), and the K phoneme otherwise. You can see
that these
trees actually represent a great deal of the dictionary directly.

Once the text has been converted into a phoneme sequence
using these letter contexts, each phoneme can be immediately
replaced with its audio waveform, but only if we ignore the
context of the phoneme.

282

More Context: Two Substitutions

You’ll quickly find that simply stitching together phoneme
sequences
sounds pretty bad; examples of this are on both the book’s
web site and my own. Part of the reason is that the actual
sounds of a language depend upon the neighboring
sounds—they’re
context-dependent. Just as the letter transducer uses context to
decide which phoneme to speak, the phone depends upon the
neighboring phonemes. We need the phonemes to know who
their neighbors are, but as long as we have just one s/// that
does the whole job, we can’t do that.

For an example of why context is necessary, consider the
words “pat” and “spat.” In “pat,” the p is aspirated—it’s
spoken with a puff of air. In “spat,” there is no aspiration.
Also, when an R comes after a vowel, it colors the vowel in a
way that’s different from an R that’s before a vowel; L does
the same thing, revealing the two kinds of [L] in the word
“lateral.”

Capturing the context and using it to pick the sample can be
accomplished easily with Perl’s irregular
expressions:

s/($text)/phones lc($1)/eg;
s/(?=(^|$phoneme))\s*($phoneme)\s*(?=($phoneme|$))/
say $

speech{"$2($1,$3)"}/eg;

283

Here, the (?=) items are assertions that must be satisfied but
aren’t considered part of the matching text.

The first s/// turns a word sequence into a phoneme
sequence, and the second speaks a phoneme in the context of
its left and right neighbors; it captures some of the
coarticulation effects that smear sounds into one another. This
would be fine if you had every possible entry for every
possible phoneme in context listed in %speech. That
number can be quite large—for instance, if the size of the
phonemic inventory is, say, 51 sounds, that gives a total of
132,651 (51 cubed) entries in the table. It’s difficult to get
complete coverage of these units from a single talker, let
alone with consistent quality, so we turn that last hash table
lookup into a subroutine. A phoneme in context like this is
often called a triphone, meaning one phoneme with its left
and right neighbors fixed.

s/($text)/phonemes lc($1)/eg;
s/(?=(^|$phoneme))\s*($phoneme)\s*(?=($phoneme|$))/
say best_triphone $2, $1, $3/eg;

sub best_triphone {
my ($phoneme, $left, $right) = @_;

return
$speech{"$phoneme($left,$right)"} ||

$speech{"$phoneme(,$right)"} ||

$speech{"$phoneme($left,)"} ||
$speech{"$phoneme(,)"};

}

So the hash of samples, %speech, needs to contain some
entries for the “backed-off”

284

triphones, such as P(,R), which is the phoneme P with an R
on the right and anything on the left. It will also need P alone,
in case neither context matches.

This is effectively an implementation of optimality theory—it
finds the best non-empty subset given a partially ordered set
of constraints. The “unwrapping” of the single phoneme into
itself plus context is another example of the two-level
conversion we used in the letter-to-phoneme rules: a finite
context-sensitive language is expressed with an equivalent
regular grammar, which lets us parse in a particularly easy
way—with finite state machines. With these context-sensitive
rewrite rules, we have a triphone synthesizer. It doesn’t
consider prosody, and it performs no analysis beyond one
level of neighboring context, but it works.

285

What Else?

Even with everything described here, there’s much still
missing intonation, stress, voice quality: everything that really
makes a voice sound like an individual. A complete
speech synthesis system is more complex than what you’ve
seen here, but the basic techniques here can be applied to any
system.

Now that speech-interactive systems are actually out there, on
the phone and on the desktop, we’re seeing just how unsolved
many of these synthesis problems really are. They don’t
sound very good; there’s not a lot of individuality in the
voices; they certainly don’t sound interested in what they’re
doing; but the work goes on. I like to think we’re making
progress—the Earth does not stand still. Gort! Klaatu barada
nikto.

286

References

The Festival Speech Synthesis System.
http://www.cstr.ed.ac.uk/projects/festival.html.

Phonebox text-to-speech synthesis. http://www.cs.cmu.edu/
~lenzo/phonebox/.

t2p text-to-phoneme converter. http://www.cs.cmu.edu/
~lenzo/t2p/.

CMU Dictionary. http://www.speech.cs.cmu.edu/cgi-bin/
cmudict.

Oxford Advanced Learner’s Dictionary.
http://www.speech.cs.cmu.edu/comp.speech/Section1/
Lexical/cuvolad-dict.html.

Moby Lexicon. http://www.dcs.shef.ac.uk/research/ilash/
Moby/.

NetTalk data. http://www.boltz.cs.cmu.edu/benchmarks/
nettalk.html.

Black, Lenzo, and Pagel, “Issues in Building General Letter
to Sound Rules,” for the 1998 ESCA Speech Synthesis
Workshop, Jenolan Caves, Blue Mountains, Australia.
http://www.cs.cmu.edu/~lenzo/areas/papers/ESCA98/
ESCA98_lts.ps.

Friedl, Jeffrey. Mastering Regular Expressions. O’Reilly &
Associates, Inc., 1997.

Pagel, Lenzo, and Black. “Letter to Sound Rules for Accented
Lexicon Compression”, for the 1998 International

287

Conference on Spoken Language Processing, Sydney,
Australia. http://www.cs.cmu.edu/~lenzo/areas/papers/
ICSLP98/ICSLP98_lts.ps.

Sejnowski, T.J., and Rosenberg, C.R. Parallel networks that
learn to pronounce English text. In Complex Systems, 1,
145-168. 1987.

Sproat, Richard, editor. Multilingual Text-to-Speech
Synthesis, the Bell Labs Approach. Kluwer Academic
Publishers, 1998.

288

Chapter 15. Lazy Text Formatting

Damian Conway

Don’t you just hate getting an email that’s been for
matted
for the wrong number of columns? It’s an unprovoked ass
ault
on your poor visual cortex. And it’s a thoughtless insult, to
o.
It screams: “Hey, you aren’t even worth the eight keystr
okes
it would take me to correctly set my editor’s autowrap!”
> And, of course, it only gets worse when quoted email is
involved. > Even when someone tries to do the right
thing, they just end > up frying more of your neurons as
you attempt to untangle > the mess that most text formatters
make of the standard > quoting conventions. It’s no fun trying
to separate the meaning > from the massage.

What the world needs is a
text reformatter that looks at the contents—and context—of
the ASCII it’s munging, and then Does The Right Thing
automagically.

289

Text::Autoformat

And that’s exactly what the Text::Autoformat module gives
you. Specifically, it provides a subroutine named
autoformat that wraps text to fixed
margins. However, unlike other text
wrapping modules (such as Text::Wrap, Text::Correct, or
Text::Reflow), autoformat reformats its input by
analyzing the text’s structure: identifying and rearranging
independent paragraphs by looking for visual gaps, list
bullets, changes in quoting, centering, and underlining.

If you’re happy to live with autoformat’s reasonable
defaults, then
reformatting a single paragraph (taking it from STDIN and
printing it to STDOUT) is no more complicated than this:

use

Text::Autoformat;
autoformat;

The
default width of the reformatted
text is from column 1 to column 72, but it’s very easy to
change that (and a plethora of other defaults) by giving
autoformat the appropriate options:

autoformat {left=>8, right=>64};

Or the equivalent, but often more convenient, alternative:
autoformat {left=>8, width=>57};

If autoformat’s first argument isn’t a hash reference, that
argument is stringified and used as the

290

text to be formatted. For example:
autoformat $msg_

text;

Likewise, if it’s called in a non-void (scalar or list) context,
autoformat returns the formatted text, rather than printing
it to STDOUT.

Normally, autoformat only reformats the first paragraph
it encounters, and leaves the remainder of the text unaltered.
This behavior seems odd initially, until you realize that the
single most common use of autoformat is in the
following one-liner:

perl -MText::Autoformat -e'autoformat'

and that the obvious thing to do with this one-liner is to map
it onto a convenient keystroke in your text editor, thereby
providing intelligent, single-key,
paragraph-at-a-time reformatting. For example, if you’re a vi
user, you might add this to your .exrc file:

map f !G perl -MText::Autoformat
-eautoformat

That is: map the f key to grab every line from the current
editing position to the end of the file and filter it through Perl.
Then, to provide that filter, the Text::Autoformat module is
loaded and autoformat is called.

If autoformat’s default were to reformat everything it
was sent, then you’d have to write:

map f !} perl -MText::Autoformat
-eautoformat

291

and you’d be stuck with vi’s much less sophisticated
understanding on what constitutes a paragraph. More on that
shortly.

Of course, the real power of the module is best seen when it
operates on multiple paragraphs simultaneously. To convince
autoformat to do that—to reflow every paragraph you
send it—you need to ask explicitly, with another option:

autoformat { all=>1 };

Which leads to the obvious
“just-fix-it-all-up-for-me-would-ya” editor macro:

map F !Gperl -MText::

Autoformat -eautoformat{all=>1}

292

Paragraphs

The autoformat subroutine gives the illusion of
understanding the structure of an input
text because it has a series of very good heuristics (i.e.,
guesses) for locating and separating paragraphs.

Most
text formatters—and many
text editors—define a paragraph to be a sequence of
characters terminated by two or more consecutive newlines.
Indeed, this is Perl’s notion of a paragraph (which you can
grab with a single readline by setting the $/ variable to
an empty string, as described in the perlvar documentation).

That’s very annoying, because it doesn’t cope with how real
people write paragraphed
text. Real people leave spaces and tabs on “empty” lines. Real
people (and many web browsers) bunch up lists of bulleted
and numbered points with no whitespace at all between them.
Real people quote email messages, which transforms formerly
empty lines into non-empty \n\t>\n sequences.

Because real people do such things, autoformat
understands all these notions of a paragraph. Even when
they’re all used at once. Even when they’re used inside one
another (for example, quoting a list of bulleted points).

293

Quoting

One of Text::Autoformat’s most useful
paragraphing heuristics is that any sequence of lines
beginning with standard “quoter” characters is a single piece
of
quoted text, in which the quoters should be preserved and
only the
text to the right of them reflowed.

The standard quoters that autoformat recognizes are nested
combinations of the characters:

! # % = | : >

Angle brackets can also be preceded by alphabetic characters.
So, for example, autoformat would take a series of paragraphs
like this:

> ! > calling map in a void context is the
sign
> ! > of a sick mind
> !
> ! I don't see why.
> Me either, I regularly do it and I'm
still
> quite sane. I often split in a void
context
> too, but there's a bug in Perl that
seems to
> cause that to mess up $_[0], $_[1], etc.
> ! > Sigh. Have you bothered to read the
man
> ! > page on split??? Yes, I know I wrote

294

this
> ! > before that reply: it's a miracle.

and reformat them like so:
> ! > calling map in a void context is
> ! > the sign of a sick mind
> !
> ! I don't see why.
> Me either, I regularly do it and I'm
> still quite sane. I often split in a
> void context too, but there's a bug
> in Perl that seems to cause that to
> mess up $_[0], $_[1], etc.
> ! > Sigh. Have you bothered to read
> ! > the man page on split??? Yes, I
> ! > know I wrote this before that
> ! > reply: it's a miracle.

That’s the whole point. By understanding the structural
conventions of typical
plaintext, autoformat can reflow it logically, rather than
physically.

295

Lists

Often plaintext will include lists that are either bulleted with
punctuation characters, simply
numbered (i.e., 1., 2., 3., etc.), or hierarchically numbered (1,
1.1, 1.2, 1.3, 2, 2.1., etc.) Whether or not it is physically
separated from each of its neighbors, each bulleted item is
implicitly a separate paragraph and needs to be formatted
individually, with the appropriate indentation.

autoformat takes care of that
renumbering, and can also detect unordered bullets (the
characters *, ., +, and -), special markers that ought to be
outdented (such as NB: and p.s.), Arabic and Roman
numerals, single alphabetic letters, and
hierarchical combinations of these (for example, 2.a(ix)).

Besides
adjusting the left margin so that the marker is outdented from
the paragraph
text, autoformat renumbers each numbered point sequentially
(using the first number as its starting point). For example,
given the following
text:

You're wrong for the following reasons:
1. I'm right.
1.a. I'm *always* right
1. Even if you were right, you

have the order
wrong.

1.x. You suggested:
> D. Analyze the

296

problem carefully
> C. Design the

algorithm appropriately
> A. Code solution

systematically
> E. Test thoroughly
> B. Ship eventually

1.n. The proper sequence is:
A. Code solution

expediently
B. Ship immediately
E. Test sporadically

(charge user for
maintenance)

F. Release "upgrade"
periodically (charge

user again)

autoformat {all = 1}> produces:

You're wrong for the following reasons:
1. I'm right.
1.a. I'm *always* right

2. Even if you were right,
you have the

order wrong.
2.a. You suggested:

> D. Analyze the
problem carefully

> C. Design the
algorithm

> appropriately
> A. Code solution

systematically
> E. Test thoroughly
> B. Ship eventually

2.b. The proper sequence is:
A. Code solution

expediently

297

B. Ship immediately
C. Test sporadically

(charge user
for maintenance)

D. Release "upgrade"
periodically

(charge user
again)

Notice that autoformat got the
hierarchical ordering correct, and that it didn’t renumber the
quoted list, even though it reflowed the
text within the quoted section. That makes sense, since
renumbering the quoted list might change its meaning in a
way that
reformatting wouldn’t.

The autoformat subroutine also handles renumbering of
lists marked with
Roman numerals. For example, the list:

Examples of the five declensions are:
i. terra, terra, terram, terrae,

terrae,
terra

v. modus, mode, modum, modi,
modo, modo

x. nomen, nomen, nomen, nominis,
nomini,
nomine

ix. portus, portus, portum,
portus, portui,
portu

mmmclxiv. dies, dies, diem, diei,
diei, die

would be reformatted thus:

298

Examples of the five declensions are:
i. terra, terra, terram, terrae,

terrae, terra
ii. modus, mode, modum, modi,

modo, modo
iii. nomen, nomen, nomen, nominis,

nomini, nomine
iv. portus, portus, portum, portus,

portui, portu
v. dies, dies, diem, diei, diei,

die

autoformat is even smart enough to right-justify the
numbers, so as to align the paragraph bodies cleanly.

Of course automatically handling
lists of letters and
lists of Roman numerals presents an interesting challenge. A
list such as:

I. Put cat in box.
M. Close lid.
P. Activate Geiger counter.

should obviously be reordered as I…J…K, whereas:
I. Put cat in box.
M. Close lid.
XLI. Activate Geiger counter.

should clearly become I…II…III.

But what about:
I. Put cat in box.
M. Close lid.
L. Activate Geiger counter.

The autoformat subroutine resolves this ambiguity by
always interpreting a list with alphabetic bullets as being

299

English letters, unless the full list contains only valid Roman
numerals, and at least one of those numerals is two or more
characters long. So the final example above would become
I…J…K—as you might have expected.

300

Quotations

Literary quotations present a different challenge from quoted
email. A typical formatter would re-render the following
quotation:

"We are all of us in the gutter, but
some of us
are looking at the stars"

-- Oscar
Wilde

English playwright

like so:
"We are all of us in the gutter, but some
of us are looking at the stars" -- Oscar
Wilde English playwright

But autoformat recognizes the quotation structure and
preserves both indentation and attribution:

"We are all of us in the gutter,
but some of us are looking
at the stars"

-- Oscar Wilde
English

playwright

It even outdents the leading quotation mark nicely.

301

Widows

Did you notice that in the previous example, autoformat
broke the second line earlier than it needed to? It did that
because, if the full margin width had been used, the
formatting would have left the last line oddly short:

"We are all of us in the gutter,
but some of us are looking at the
stars"

-- Oscar Wilde
English

playwright

Typographical misdemeanors of this type (known as widows)
are heavily frowned upon in typesetting circles. They look
ugly in
plaintext too, so autoformat avoids them with a kind of
Dickensian artful dodge: stealing extra words from earlier
lines in a paragraph, to provide the widowed word with
adequate company.

The heuristic used is that final lines must be at least ten
characters long. If the last line is too short, the paragraph’s
right margin is reduced by one column, and the paragraph is
reformatted. This process iterates until either the last line
exceeds nine characters or the
margins have been narrowed by 10% of their original
separation. In the latter case, the reformatter gives up and just
uses its original
formatting.

302

Justification and Sentencing

The autoformat subroutine can also take an option that
tells it how the reformatted
text should be justified. For example:

autoformat {justify => 'right'};

The alternative values for this option are: ‘left’ (the
default), ‘right’, ‘centre’ (or ‘center’), and ‘full’.

Full justification is interesting in a fixed-width medium like
plaintext because it usually results in uneven spacing between
words. Typically,
text formatters provide for this by distributing the extra
spaces into the first available gaps of each line:

R3> Now is the Winter of our
discontent made
R3> glorious Summer by this son of York.
And all
R3> the clouds that lour'd upon our
house In
R3> the deep bosom of the ocean buried.

This produces an odd visual effect, so autoformat
reverses the strategy and inserts extra spaces at the end of
lines (which most readers find less disconcerting):

R3> Now is the Winter of our
discontent made
R3> glorious Summer by this son of York.
And all
R3> the clouds that lour'd upon our
house In
R3> the deep bosom of the ocean buried.

303

Even if explicit
centering is not specified via the {justify =>
‘centre’} option, autoformat will automatically
detect centered
paragraphs and preserve their justification. It does this by
examining each line of the paragraph and asking itself: “If
this line were part of a centered paragraph, where would the
midpoint have been?”

By making the same estimate for every line in the paragraph,
and then comparing the estimates, autoformat can deduce
whether all the lines are centered with respect to the same
axis of symmetry (with an allowance of plus or minus 1 to
cater for the inevitable integer rounding). If a common axis of
symmetry is detected, autoformat assumes that the lines
are supposed to remain centered, and automatically switches
on center-justification for that paragraph.

You can also optionally perform
case conversions on the
text being processed, using the case => option. The
alternatives are ‘upper’, ‘lower’, ‘title’, and
‘highlight’.
Title casing capitalizes the first letter of each word:

The Strange And Gruesome Case Of The
Tab-indented
Python.

and
highlight casing does the same, except that it ignores trivial
words:

304

The Strange and Gruesome Case of the
Tab-indented
Python.

A fifth alternative is {case => ‘sentence’}. This
mode attempts to produce correctly-cased sentences: first
letter in uppercase, subsequent words in lowercase (unless
that word is originally in mixed case). For example, the
paragraph:

POVERTY, MISERY, FRIENDLESSNESS, ETC. are
ever
the lot of the VisualBasic hacker. 'tis an
immutable law of Nature! Whom the GODS
would
DESTROY, they FIRST force to code Word
MACROS.

under {case => ‘sentence’} becomes:

Poverty, misery, friendlessness, etc. are
ever
the lot of the VisualBasic hacker. 'Tis an
immutable law of Nature! Whom the gods
would
destroy, they first force to code Word
macros.

Note that autoformat is clever enough to recognize that
the period in abbreviations such as “etc.” is not a sentence
terminator, and that the first capitalizable letter of “’tis” is the
“t,” and that words like “VisualBasic” and “Nature” should
retain their existing capitalizations.

305

Future Features

There is an endless list of other smart things
Text::Autoformat could be extended to do. Here’s a short
preview of some coming attractions:

Columns

A
future release of
Text::
Autoformat will recognize columns within a paragraph
and allow the user to independently control their layout
and justification, even under margin adjustments. For
example, given:

Name Mark Comment
==== ==== =======
Pat 99 Unusually high
score. Suspect?
Kim 72 Solid performance
Leslie 51 Just scraped
through this time

you’ll be able to call:
autoformat {justify => ['left',
'centre', 'left'], width => [undef,
undef, 20]};

and produce:
Name Mark Comment
==== ==== =======
Pat 99 Unusually high

score. Suspect?

306

Kim 72 Solid performance
Leslie 51 Just scraped
through

this time

Transliteration

autoformat will eventually provide smart 8-to-7 bit
transliteration (the way the
Text::StripHigh
module does now), so that
text like:

¥ This exampleÕs © Erwin Schrıdinger
N1/442(±1) Un≠ertaint" Stra§e, -stland.

could be transformed into this:
* This example's (c) Erwin Schroedinger,

No42(+/-1) Uncertainte' Strasse,
Ostland.

Mail headers

autoformat was originally developed as a lazy way to
clean up incoming and outgoing email. It does that
exceptionally well, so long as you keep it away from the
headers. Sendmail doesn’t take kindly to
autoformat’s misguided efforts with them:

To: Jon Orwant
<orwant@oreilly.com> From:
damian@

conway.org Subject: Re:
When's the next meeting of the
Secret Perl Cabal? References:

307

<200011100411.PAA17166@indy05-
.csse.monash.edu.au>

A future version of the module will detect
mail headers and either leave them alone or wrap them
intelligently.

Mark-up

Another irritation is that autoformat blindly attempts
to reformat HTML, pod, Perl code, and many other things
it should just ignore. The very next release of
Text::Autoformat will have a
“leave-it-the-hell-alone” option that causes
autoformat to disregard any (non-bulleted) text that is
indented. Later versions may also be able to automatically
diagnose marked-up sections of text—and perhaps code
examples—and just magically skip them.

Configurability

Currently, the list of abbreviations and “stop words” that
autoformat knows about is fixed, as are the set of
quoter characters, and list bullets. This should obviously
be user-configurable, and will be in a forthcoming release.

Meanwhile, despite these niggles, Text::Autoformat does a
remarkably good job at what it was designed for: making
ASCII text reformatting as easy as (in)humanly possible.

So you no longer have any excuse for sending email that
slops over the margin.

308

Chapter 16. Perl and MIDI: Simple
Languages, Easy Music

Sean M. Burke
What Music is Perl?

—Larry Wall, Chapter 2

MIDI (Musical Instrument Digital Interface) is a standard for
representing music as a series of notes, rather than as raw
audio data. MIDI is to raw audio (e.g., .au, .wav, or .aiff files)
as vector graphics (PostScript) are to bitmaps (e.g., .png or
.gif files).

With MIDI, you can make music without actually having to
perform waveform synthesis, just like PostScript lets you
draw circles without having to worry about trigonometry. For
the purposes of this article, MIDI represents music as a series
of events—where each event is basically “turn a note on or
off.” These events happen at certain times, on a certain
channel (what others call a “voice” or “track”), with a certain
note number, at a certain volume. Most any computer with a
sound card can play MIDI files.

When I first started reading the MIDI internals, MIDI seemed
like an ideal format for composing music in Perl, so I set out
to make routines for encoding to and decoding from the MIDI
binary format. In August 1998, I uploaded to CPAN my first
release of the imaginatively named “MIDI-Perl,” a mostly
object-oriented interface to these encoding and decoding
routines.

309

However, as I stood back from the pile of code, I realized that
while I had created a fine object model for representing MIDI
files, the most basic data structure, the MIDI event, was no
more suited to musical composition than raw PostScript is for
composing architectural blueprints.

Hard Things Possible

Imagine that you need to examine a series of addresses and
save any located in the U.S. to a file. You might do that with
a program like this:

open US, ">us.txt" or die "Can't write to
us.txt!";

while (<DATA>) {
next if /^\s*\#/s;
chomp;
my ($address, $url, $country) = split(/

\s+/, $_, 3);
next unless $country =~ /^U\.?S\.?/i;
print US "$address: $url\n";

}

__END__
List of addresses, in the format:
Address URL
Country
foo@bar.org http://bar.org U.S.
staff@tpj.com http://tpj.com USA
We'll want to ignore this one:
pati@lebar.fr http://www.lebar.fr
France

This program basically implements a language; after its _
END _ are some “instructions” in that language. Now, the

310

language is simple: lines are ignored if they start with
optional whitespace and then a # sign. If a line can be split
into three non-null fields, it’s considered an instruction to
save the first two fields, but only if the last field begins with
US or U.S. or us. This language doesn’t have anything like
what we’d expect in a real programming language—it has no
flow-control structures, no variables, no ability to define
procedures. But it is a language in the sense that it has a
syntax (an order things have to be in to make sense) and
semantics (what the elements in the language mean).

Now, the semantics here are quite restricted, so it’s a
language only in the same sense that a simple markup
language like HTML is a language, or the way that the
notation for recording chess moves is a language, or the way
that common music notation is a language. None of these are
languages you could write a program to calculate 5 * 12
in, but each has its purpose.

None of these languages makes hard things possible. For
example, if you wanted to represent the behavior “save the
output of an address if today is Tuesday,” you’d be out of
luck. You could change the program so that it would work,
but then it would be a different language.

Now, there are two ways to make a language more flexible.
You can make a novel language, or an extensional language.

And so I found myself in the not-entirely-anticipated position
of designing and implementing a language that would provide
an interface for musical composition, a language that would
use
MIDI for output but be several levels higher in abstraction.

311

Now, it’s the job of language designers to construct their
languages so that they will—to quote Larry Wall—“make
easy things easy, and hard things possible.” What’s implied is
that there are two domains that a programming language
bridges: the way we think of a problem, and the way we code
up the program that solves the problem. Making “hard things
possible” is a matter of making the language open-ended
enough that one can do just about anything with it, while
making “easy things easy” is a matter of making sure that
simple ideas can be coded concisely.

In this article I’ll first explain my ideas about types of simple
languages, and then from that I’ll show how these ideas led
me to design the
MIDI::Simple language the way I did. My goal is not so much
to document
MIDI::Simple, but instead to illustrate how specific problems
in language design led me to make MIDI::Simple the way it
is. Readers whose interests do not include both language
theory and music can skip sections as they wish.

312

Approach 1: A Novel Language

A Novel Language is what we have already: a language
independent of whatever you implement it in. Here, we’ve
implemented our language in Perl, but none of Perl’s power is
available to it. Now, if you want the language to do more, you
could write it so that it has flow control, like Perl’s if
statements and while loops. If you’ve never done anything
like this before, it seems quite daunting—and it is! (Well, not
too daunting, or else there wouldn’t be so many programming
languages around. Think of all the early-80s BASICs written
in machine language and fitting in a few kilobytes of ROM.)

Now, this is not to say that implementing just any high-level
language in Perl is trivial—not by a long shot—but
implementing a language with simple syntax and simple
semantics, like a LOGO dialect, or even a simple Lisp dialect
(as in Abelson & Sussman 1996), is quite doable. Or, you
could create an
extensional language.

313

Approach 2: An Extensional
Language

An Extensional Language is what I call a language that is
really an extension of Perl, provided as subroutines in a Perl
library, module, or class. Now, it might strike you as arrogant
to say that Perl plus five subroutines from require
“my_great_lib.pl” constitutes a new language. First
off, I didn’t say it was an entirely new language. Second, it
does what you want, and that’s probably all you’re interested
in, right? The advantage to using an Extensional Language is
that you’re still in Perl, so you get to use all of its
features—variables, flow control, and so on. The
disadvantage is that you have to work within the confines of
Perl syntax. However, Perl syntax is so free-form that this is
not a problem.

There’s a parallel here in the creation of jargons: Chemists,
when they needed a language to talk about chemical
structures with precision, could have decided to make up a
whole new rich Novel Language, with verb tenses and noun
compounding and and all the goodies we expect in a natural
language. But that would mean figuring out the best way to
implement predicate argument structure and pronoun binding
and phonology and all the other cruft of natural
language—the same way that making a Java virtual machine
in Perl means having to implement exception handling.

Instead, chemists implemented chemical names as an
Extensional Language based on English. Now, “boron
trifluoride” isn’t exactly core English, but it’s more English

314

than it is Thai or Klingon; and, I admit, when the chemical
“extension” to English starts spawning forms like
“dichloro-1,2-ethane” and
“2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine,” it
begins to leave every natural
language behind. But when a chemist says “boron trifluoride
is an inorganic gas,” you understand that something is an
inorganic gas, even if you can’t picture what a boron
trifluoride molecule looks like. Similarly, if you’re reading
Perl code and you see &funk_it, or
$this->thingify, you probably can’t guess what
funk_it or thingify do, but at least you can tell they’re
subroutines.

315

Easy Things Easy

Consider these
MIDI events, expressed as they would be sent to the MIDI
encoder in MIDI::Event:

event, wait-time, channel, note number,

volume
['note_on', 0, 1, 25, 96],
['note_off', 96, 1, 25, 0],
['note_on', 0, 1, 29, 96],
['note_off', 96, 1, 29, 0],
['note_on', 0, 1, 27, 96],
['note_off', 96, 1, 27, 0],
['note_on', 0, 1, 20, 96],
['note_off', 192, 1, 20, 0],

…and so on, for a total of thirty-three such lines. I won’t
explain the exact details of this format, as it’s not relevant to
the rest of this article, but obviously requiring a composer to
write notes like this is not making easy things easy. A more
intuitive formulation of notes would involve these qualities:

▪ Duration: quarter note, half note, and so on

▪ Pitch: a note-letter and octave number, such as A5

▪ Volume: either a number or one of the common
abbreviations from sheet
music, such as mf for medium-loud

▪ Channel number; for MIDI, a number between 0 and 15

In my early attempt at a music language (implemented as a
Novel Language with an interpreter written in Perl), I ended

316

up with a language that looked like this. Each note occupies a
line of its own and specifies the channel, volume, duration,
and pitch in order:

note c1 f qn Cs2
Cs2 = C sharp, octave 2
qn = quarter note
note c1 f qn F2
note c1 f qn Ds2
note c1 f hn Gs1
yup, hn = half note
note c1 f qn Cs2
note c1 f qn Ds2
...and so on...

Incidentally, this tune I’m trying to represent is the
Westminster Chimes (Figure 16-1, graphic courtesy of
Matthew A. Siegler), better known as what fancy clocks play
when they chime the hour. See Sturdy 1998.

Figure 16-1. The Westminster Chimes

Now, what makes these lines of note-making code different
from typical lines of code in a high-level programming
language is redundancy. Duration, pitch, volume, and channel
often stay the same from one event to the next. So, in the
name of brevity, I decided that each note’s properties should
be inherited from the previous note. And so, in the new
language thus defined, the above code can be rephrased as:

note c1 f qn Cs2
note F2
note Ds2
note hn Gs1

317

note qn Cs2
note Ds2
...and so on...

I was on the way to a workable language. But then, when I
wanted to expand it, I arrived at the same question raised in
the first example of this article—do I continue with my Novel
Language, adding primitive flow control, functions, variables,
and data structures? Or do I implement an
Extensional Language? I had two considerations.

First, I wanted my language to allow algorithmic
composition—
composition where the notes are partially determined by the
output of algorithms developed by the composer. Composers
like Xenakis use algorithms that involve some fairly complex
algebra. If I wanted my simple Novel Language to do
anything like that, I’d need to implement algebraic
capabilities for that language. I’d also need to provide
mathematical functions like sines and logarithms, and data
structures plus the functions to manipulate them. That
sounded like a lot of work.

Second, both kinds of
music languages exist—very simple languages, notably the
abc language (Walshaw 1998); and composition
extensions to high-level languages, notably the
Forth-extension HMSL (Burk 1998). But, I asked myself,
which kind of language would be most useful to the world?
The abc language seemed well designed, implemented, and
supported by various ports and utilities. So implementing a
simple Novel Language would be reinventing the wheel. As
for Extensional Languages, HMSL seemed the richest—I was
even willing to learn Forth to deal with it! However, the

318

implementation of Forth that it’s based on works well only on
Macs and Amigas. That ruled it right out, as I don’t have
either. There are other compositional languages, but they’re
either based on languages I wouldn’t want anyone to have to
compose in (e.g., C++), or they focus on acoustics and digital
signal generation (e.g., Common Lisp
Music) more than I or
MIDI care to.

But if I implemented my
music language as an
Extensional Language based on Perl, composer-users could
write their programs and be able to run them on any Perl
interpreter, on all the platforms Perl runs on. People new to
programming would have at their disposal all the
documentation and support that all Perl novices have.
Algorithmic composers would have at their disposal all the
data structures and mathematical functions Perl provides.
And—no small consideration—it’d save me a ton of work
that would otherwise go into creating the Novel Language’s
rudimentary data structures and functions.

So the Extensional Language approach won. I scrapped the
Novel Language and reimplemented its semantics (and a lot
more) as the
MIDI::Simple module that comes in the MIDI-Perl suite,
Version 0.7 or later. The remainder of this article gives a
guided tour of its features, with insights into my thinking as I
designed the module.

319

Behold MIDI::Simple!

For all the tortured thought I put into its design,
MIDI::Simple ended up easy to implement. It was almost
anticlimactic. (Maybe I should have done it in C++ so that it
would given me a heroic sense of accomplishment!)
MIDI::Simple is only 600 lines of relatively unsurprising
code—much of it highly redundant. Its only quirk is that it
provides both a procedural and an object-oriented interface—I
wanted beginners to be able to use a purely procedural
interface, and advanced users to benefit from the power of
object-oriented design if they wished.

MIDI::Simple operates on a data structure I call a score,
which is basically a list of events and times, and some
state variables for storing defaults. Here’s a sample of the
state variables:

$Time

The time (measured in ticks, each 1/96th of a quarter note)
at which the next event will take place

$Duration

The number of ticks in the next note or rest

$Channel

The channel number of the next note

$Volume

The volume of the next note, from 0 to 127

320

@Notes

The pitches added to the score by the next call to the n
routine, discussed below

Now, I expect that only the most advanced users will have to
deal with the contents of a score directly, because everyone
else can use this interface:

▪ new_score, which initializes a score object—a score
plus the state variables

▪ n and r, to add notes and rests to the score

▪ functions to add arbitrary
MIDI events to the score, such as patch_change to
set the patch (a simulated instrument, like a piano or
banjo)

▪ write_score, to write the newly composed score as
a MIDI file

▪ read_score, to read a single-track MIDI file as a
score

▪ synch, to take the output of several user-provided
functions and place them in the score at the same
time—useful for blending different instruments

Using the language specified as above, the Westminster
Chimes could be notated like this:

use

MIDI::Simple;
new_score;
patch_change 1, 8; # Set

321

Channel 1 to Patch 8 = Celesta
n c1, f, qn, Cs2; n F2; n Ds2; n hn, Gs1;
n qn, Cs2; n Ds2; n F2; n hn, Cs2;
n qn, F2; n Cs2; n Ds2; n hn, Gs1;
n qn, Gs1; n Ds2; n F2; n hn, Cs2;
write_score 'chimes.mid';

Much more concise than the forty-odd lines of code you’d
need to express low-level MIDI events and calls!

322

“Relative” Notes

At this point I noticed that in most music, notes aren’t thought
of as belonging to a particular numbered octave so much as a
current octave, with notes being in it, below it, or above it. So
I added another way to specify pitches: instead of number
(n25) or note-and-octave (Cs2), one can specify them in
terms of just note-letter: Cs, meaning “C sharp in the current
octave.”
I call this a relative note specification, in distinction to Cs2
and n25, which I call absolute.

The current octave is a number stored in a state variable
called $Octave, which can either be set directly or by
calling n or r with a parameter in the form o6 (where the 6
can be replaced by any number from 0 to 10) or an absolute
note specification. All of these set $Octave to 2:

$Octave = 2;
$Octave = 3; --$Octave;
n o2 Cs;
n Cs2;
r n25;

I also added a way to denote “… an octave above the current
one” or “… an octave below the current one”:

Cs_u1 ("u" for "up")
Cs_d1 ("d" for "down")

where 1 can be replaced by any positive integer, just so long
as the resulting note is within the note range of MIDI devices:
C0 to G10.

323

The result is that these four notes:
n c1, f, qn, Cs2; n F2; n Ds2; n hn, Gs1;

can be expressed as:
$Octave = 2;
n c1, f, qn, Cs; n F; n Ds; n hn, Gs_d1;

or as:
n c1, f, qn, Cs2; n F; n Ds; n hn, Gs_d1;

In the last line, only the first note is specified absolutely,
setting the current octave to 2. This means that all you have
to do to move all these notes up two octaves is change Cs2 to
Cs4.

324

Percussion, Uniformity, and noop

MIDI has a special reserved channel,
channel 9, where numbers for pitches are interpreted as a
special percussive instrument. For example, n35 (that is, B2)
on channel 9 doesn’t mean a B2 on the current patch for
channel 9, but instead a (largely untuneable) note on an
acoustic bass drum. Lines of code to generate bunches of
percussion notes often look like this: n c9, ff, n41,
qn; r; n; r;. This specifies a quarter note, a quarter
rest, a quarter note, and a quarter rest, all played on the
acoustic bass drum.

However, this seemed like a violation of uniformity, a
principle I learned about from Weinberg’s
The Psychology of Computer Programming. Weinberg holds
that users expect things that look similar to do similar things,
and things that look different to do different things. But the
first call to n above looks very different from the second and
third calls to n even though all they do the same thing. What I
wanted was a way to set up all the state variables, and then be
able to just say n;r;n;r;, perhaps like this:

$Channel = 9; $Volume = 112; $Duration =
96; @Notes = (41);
n; r; n; r;

But that seemed inelegant. What I ended up doing was adding
another function, called noop (for “no operation”). noop
parses options just like n and r, and has all the same side
effects, but doesn’t actually affect the score. For example,
consider these three lines of code:

325

n qn, C3; # C3 = n36, by the way
r qn, C3;
noop qn, C3;

The first line adds a note to the score, and increments $Time
by the duration of a quarter note. The second line just
increments $Time because it’s a rest. The third line alters
neither the score nor $Time, but has all the same side effects
as the first two: it sets $Duration to the duration of a
quarter note, and it sets @Notes to (36). With noop, you
can write code like this:

noop c9, ff, n41, qn; # The
setup...
n; r; n; r; # ...and the
work.

This not to say that you have to do it this way, but allowing
the organization of code to reflect different ways of
organizing thought is the Perl way.

326

The Object-Oriented Interface

So far I’ve described functions (or procedures, really, seeing
as how they don’t have useful return values, and have more
side effects than radical chemotherapy) for manipulating a
score and for setting the state variables that ride along with
the score.

This is great if you just want to manipulate one score at a
time. For
manipulating several scores, I’ve provided the OOP interface
shown in Table 16-1.

Table 16-1. Procedural interface and OOP equivalents

Procedural OOP

new_score $score = MIDI::Simple->new_score

$Channel =
3

$score->Channel(3)

$Octave = 4 $score->Octave(4)

@Notes =
(30,34)

$score->Notes(30,34)

push
@Notes, 36

push @{ $score->Notes_r }, 36 or
$score->Notes($score->Notes, 36)

327

Procedural OOP

n qn, Cs3 $score->n(qn, Cs3)

noop o7, ff $score->noop(o7, ff)

write_score
‘X.mid’

$score->write_score(‘X.mid’)

328

Using synch, and Some Actual
Music

synch takes a list of code references (generally of the form
\&foo, where foo is a subroutine the user has defined for
adding notes to the score). For each coderef, synch calls the
user’s routine, and then notes the value of $Time. After
calling all the routines, synch advances $Time as
necessary. In other words, it makes multiple subroutines
synchronous—occurring (or at least starting) at the same
time.

Each user routine, incidentally, should expect its first
parameter to be the score object, and should add to that score
object via the object-oriented interface to
MIDI::Simple instead of the procedural interface. A simple
use for synch might look like this:

use MIDI::Simple 0.7;

new_score;
@subs = (\&tom_two, \&double_clap);
foreach (1 .. 10) { synch(@subs) }
write_score("rhythm1.

midi");
exit;

sub tom_two {
my $it = shift;
n41 on c9 = low floor tom
$it->n(c9, ff, n41, qn); $it->r;
qn = 1/4 note, ff = very loud

329

$it->n(f); $it->r;
f = loud

}

sub double_clap {
my $it = shift;
n39 on c9 = hand-clap
$it->n(c9, ff, n39, sn); # sn = a 16th

note
$it->n;
This only takes up 2 16th-notes of

time, but that's fine.
}

Now, this generates twenty monotonously identical measures.
My instrument subroutines vary their effect from measure to
measure because of a trick: The first subroutine is a call to a
measure counter, and the other subroutines pay attention to it.
Here’s the measure counter:

sub measure_counter {
my $it = shift; $it->r(wn); # a whole

rest
++$measure;

}

Using the measure counter, tom_two can now do two
different things, depending whether $measure is greater
than 4:

sub tom_two {
my $it = shift;
if ($measure > 4) { #

For the first four measures...
$it->n(c9, f, n41, qn);

} else { #
For measures after that...

$it->n(c9, ff, n41, qn); $it->r;

330

$it->n(f); $it->r;
}

}

Then we just change this line in the program:
@subs = (\&measure_counter, \&tom_two,
\&double_clap);

And voilà, simple
percussion. From there it’s not hard to get more ornate:

use

MIDI::Simple 0.7;

new_score;
@subs = (\&measure_counter, \&boom,
\&tboom, \&clap);
foreach (1 .. 24) { synch(@subs) }
write_score("rhythm2.midi");
exit;

sub measure_counter {
my $it = shift;
$it->r(wn); # a whole rest
++$measure;

}

sub boom {
my $it = shift;
return if $measure % 4 < 2;
$it->n(c9, ff, n41, qn); $it->r;
$it->n(f); r;

}

sub tboom {
my $it = shift;
return if $measure % 4 < 2;

331

42 = 'Closed Hi-Hat' ; 43 = 'High
Floor Tom'

In quick succession...
$it->n(c9, ff, n43, sn); $it->n(n42

); $it->r(dqn);
dqn = dotted quarter note/rest
$it->r(c9, ff, n43, sn); $it->n(n42

); $it->r(dqn);
}

sub clap {
my $it = shift;
return if $measure < 4;
$it->n(c9, ff, n39, sn); $it->n;
$it->r(dqn);
$it->r(hn);

}

Now, I promised that I’d show you a little Novel
Language
based on an
Extensional language. While I was tossing together the above
code, originally just to test synch’s functionality, I decided I
wanted a more complex instrument. For some reason, I had
the rhythm of the Talking Heads’ “Psycho Killer”
stuck in my mind, and decided to code it up. I tried it with
combinations of eighth notes and rests, but I couldn’t quite do
it. So I made a very simple Novel Language where
whitespace is ignored, ! means to hit the “side stick” (note 37
on that magic channel 9) for a sixteenth note, and anything
else makes a sixteenth rest:

sub psycho {
my $it = shift;
my $pattern = " !.!. !.!. !.!. !.!. " ;

just a start
$pattern =~ tr<\cm\cj\t ><>d; # kill

332

whitespace
warn "<$pattern> doesn't add up to a

whole measure\n"
unless length($pattern) == 16;

$it->noop(c9, mf, n37, sn);
setup: n37 on c9 = side stick
foreach (split('', $pattern)) {

if ($_ eq '!') { $it->n } else {
$it->r }

}
}

From here I just monkeyed around with the quoted string on
the line after my $pattern. I eventually arrived at:

" !.!.!. !!!!!! !.!. " ;

This was exactly the rhythm I was thinking of! To hear it,
paste the psycho subroutine into the program above, and
add it to the @subs line, like so:

@subs = (\&

measure_counter, \&psycho, \&boom,
\&tboom, \&clap);

333

Mod, Canons, and Rounds

Having your subroutines use $measure to decide what
notes to generate is the most straightforward way to produce
higher-level structures in
music. Earlier, you saw a subroutine use $measure % 4
< 2 to control what notes it adds to the score. The % operator
(“modulus,”
also known as “remainder”—X % Y means “the remainder
of dividing X by Y”) is one that a surprising number of
people are unfamiliar with, but it’s absolutely necessary for
algorithmic composition. Consider the
Westminster Chimes’ four measures:

my @phrases = (
[Cs, F, Ds, Gs_d1], [Cs, Ds, F, Cs],
[F, Cs, Ds, Gs_d1], [Gs_d1, Ds, F, Cs]

);

These four measures can be repeated ad infinitum (starting,
appropriately, with the first measure), with this code:

sub first {
my $it = shift;
$it->noop(c1, mf, o3, qn); # setup
my $phrase_number = ($measure + -1) %

4;
my @phrase =

@{$phrases[$phrase_number]};
foreach my $note (@phrase) {

$it->n($note) }
}

334

If you change ($measure + -1) % 4 to ($measure
+ 0) % 4, everything happens one measure later than
before. Change -1 to 1 and it’s two measures later. That way,
when the piece starts, with a $measure of 1, you get the
third element of @phrases. Since you probably want it to
keep quiet until measure 3, just add return if
$measure < 3; to the start of the subroutine.

Now you can have several subroutines like &first that play
all the same notes, but in different measures. This structure,
called a canon, may seem very abstract, but it’s common in
songs, where it’s called a round. If you remember singing
“Row, Row, Row Your Boat,”
you were singing exactly the same kind of musical structure
you get out of &first, copied and adjusted for different Ns
in ($measure + N) % 4. Compare &first,
&second, &third, and &fourth in the program
shown on the previous page, which plays a round based on
the Westminster Chimes.

#!/usr/bin/

perl
chimes.pl

use

MIDI::Simple .68;
my $measure = 0; # Changed by
&counter

my @phrases =([Cs, F, Ds, Gs_d1], [Cs,
Ds, F, Cs],

[F, Cs, Ds, Gs_d1],
[Gs_d1, Ds, F, Cs]);

335

@bass_line = (F, Cs, Ds, Gs_d1, Gs_d1,
Ds, F, Cs);

new_score;

Some

MIDI meta-information:
copyright_text_event "1998 Sean M. Burke";
text_event "Title:

Westminster Round";

Patch inits:
Patch 16 = Drawbar Organ. 8 = Celesta.
patch_change 0, 16;
patch_change 1, 8; patch_change 2, 8;
patch_change 3, 8; patch_change 4, 8;

for (1..8) { synch(\&count, \&bass,
\&first, \&second, \&third, \&fourth); }

r hn; #
Pause. take a bow!
write_score("round2c.mid");
dump_score;
exit;

sub count {
my $it = shift;
++$measure;
$it->r(wn); # whole rest

}

sub first {
my $it = shift;
$it->noop(c1,mf,o3,qn);
my $phrase_number = ($measure + -1) %

336

4;
my @phrase =

@{$phrases[$phrase_number]};
foreach my $note (@phrase) {

$it->n($note) }
}

sub second {
my $it = shift;
return if $measure < 2 or $measure > 5;
$it->noop(c2,mf,o4,qn);
my $phrase_number = ($measure + 0) % 4;

my @phrase =
@{$phrases[$phrase_number]};

foreach my $note (@phrase) {
$it->n($note) }
}

sub third {
my $it = shift;
return if $measure < 3 or $measure > 6;
$it->noop(c3,mf,o5,qn);
my $phrase_number = ($measure + 1) % 4;

my @phrase =
@{$phrases[$phrase_number]};

foreach my $note (@phrase) {
$it->n($note) }
}

sub fourth {
my $it = shift;
return if $measure < 4 or $measure > 7;
$it->noop(c4,mf,o6,qn);
my $phrase_number = ($measure + 2) % 4;

my @phrase =
@{$phrases[$phrase_number]};

foreach my $note (@phrase) {
$it->n($note) }

337

}

sub bass {
my $it = shift;
my $basis_note = $bass_line[($measure

- 1) % 4];
$it->noop(c0,fff,o3, wn); # fff = REAL

LOUD.
$it->n($basis_note);

}

338

Future Features

MIDI::Simple is by no means finished. There are three areas
where I hope to improve it:

1. The language has plenty of functions for dealing with
notes, but larger structures are either oddly implemented
(as with set_tempo and time_signature) or
missing (there are no functions for crescendo or
sostenuto, for example).

2. n, r, and noop accept abbreviations like qn, hn,
and den, for quarter note, half note, and dotted eighth
note. However, these are counterintuitive if you call a
quarter note a crotchet (as much of the English-speaking
world does), or, for that matter, a Viertelnote,
semiminima, negyed hangjegy, or a neljännesnuotti.
Future versions of
MIDI::Simple will provide an interface for adding or
changing abbreviations.

3. At present, MIDI-Perl generates files only, and can’t
send to other
MIDI devices, since interfacing with devices attached to
a MIDI port requires OS- and hardware-specific
programming well beyond what I can produce or
support. However, Alex
McLean has done some fine work getting this working
under Linux; see his MIDI::Realtime module in CPAN.
As examples of applications based on real-time MIDI
access, programs using MIDI::Simple can generate
real-time streams that portray any incoming numeric

339

data stream, such as stock market data or the status of a
computer network.

340

References

Abelson, Harold, and Gerald Jay
Sussman. Structure and Interpretation of Computer
Programs, 2nd ed. MIT Press, 1996. The full text is now
available online at http://mitpress.mit.edu/sicp/

Burk, Phil. HMSL, The Hierarchical Music Specification
Language. http://www.softsynth.com/hmsl/.

Langston, Peter S. “Little Music Languages.” In Handbook of
Programming Languages, vol. 3, Peter H. Salus, editor.
Macmillan Technical Press, pp. 587-656, 1998.

Sturdy, John C. G. The Cambridge Chimes, 1998.
http://www.ely.anglican.org/parishes/camgsm/bells/
chimes.html .

Walshaw, Chris. The abc Music Notation Language Home
Page. http://www.gre.ac.uk/~c.walshaw/abc/.

Weinberg, Gerald M. The Psychology of Computer
Programming. New York: Van Nostrand Reinhold, 1971.

Xenakis, Iannis. Formalized Music: Thought and
Mathematics in Composition. Stuyvesant, NY: Pendragon
Press, 1992.

341

Chapter 17. Braille Contractions
and Regular Expressions

Sean M. Burke

Sheri Wells-Jensen
This article is about how I used
regular expressions to turn common English text into Braille,
correctly using all the possible shorthand-like
contractions and abbreviations that Braille provides. This is
basically a case study in how a messy problem got solved
straightaway with Perl—but I’ll also mention some of the
new features to be found in Perl 5.005’s regular expressions,
which I used along the way; and in the end, I find a surprising
commonality between regexes and natural language
writing systems.

Braille and Contractions

When I was a little kid, I had a children’s book about Helen
Keller. I don’t remember reading it; I just remember the back
cover, which had the Braille alphabet printed on it—well,
embossed, actually. They had the Roman letter “a” in ink, and
then below that the embossed dot pattern for Braille “a”, and
so on up to “z”. So I got the idea that Braille printing is just
like a letter-for-letter substitution cipher for the Roman
alphabet.

342

Then I started noticing on men’s room doors that below
“MEN” in big Roman letters, there’d be the same word in
Braille—but sometimes the word would have three Braille
characters, and sometimes just two. And that I found
perplexing. I couldn’t imagine how the word “men” could end
up only two characters long.

So I asked my friend
Sheri, who’s been reading and writing Braille since she was a
kid, how “men” could be just two characters long. She
explained that Braille has contractions: the first character in
“men” is “m”, and the second character is a contraction for
“en”. (For the rest of this article, I’ll use wedges to denote
contractions, so “<en>” will mean the single Braille character
that is a contraction for the two Roman letters “en”.) Braille
readers typically use the term “sign” to mean a Braille
character.

Moreover, some contractions are context-specific—there’s a
contraction for “com”, but it can apply only at the start of
words, as in “computer.” These shorthand-like contractions
make reading
Braille faster, and they make books in Braille less expensive
and less bulky.

There are contractions for “en”, “st”, “ea”, “er”, “the” (the
letter sequence, not just the word “the”), and lots more. It
occurred to me that there were cases where I could imagine
more than one way to apply contractions. Consider the two
ways to encode the word “leather”:

l e a t h e r
. _/ _/ _/ (contract "ther" as
"<th><er>";)

343

or:
l e a t h e r
. _/ ___/ . (contract "ther" as
"<the>r")

In each case, you end up with a word four letters long, so
brevity can’t be a tie-breaker. I asked
Sheri whether both were acceptable spellings and she said no;
the second spelling, with “<the>r”, is the only correct way to
encode “leather”. This reminded me of English
hyphenation. For example, you could hyphenate “boggling”
as “bogg-ling” (sort of like “gos-ling”, maybe), but you could
also hyphenate it as “bog-gling”, and that seems the best way
to do it, so that gets to be the correct way.

344

Sample Text in Braille

For a more in-depth Braille sample, let’s look at the first
paragraph of Chapter 3 of Sincair Lewis’ Babbitt. The
English text is below, and the Braille version is shown in
Figure 17-1.

It was the best of nationally advertised and
quantitatively produced alarm-clocks, with all modern
attachments, including cathedral chime, intermittent
alarm, and a phosphorescent dial. Babbitt was proud of
being awakened by such a rich device. Socially it was
almost as creditable as buying expensive cord tires.

Under each Braille line in Figure 17-1 is the “Braille ASCII”
version—simply the Braille characters mapped onto 7-bit
ASCII codes. You’ll notice that the character mapped to “5”
is the contraction “<en>”; the character mapped to “/” is the
contraction “<st0>”; and the character mapped to “,” means
“the next word is capitalized” when it precedes a word, but on
the inside of words, it’s a prefix for particular abbreviations
(e.g., it plus “y” means “-ally”).

The e-text of all of Babbitt is 717K unencoded (ASCII), and
581K encoded (grade-2 Braille, in
Braille ASCII)—a size savings of 19%.

There are even
alphabet blocks for Braille, shown in Figure 17-2. (Thanks to
Tack-Tiles (http://tack-tiles.com) for donating the set for
Sheri’s continued research on Braille, and thanks to David
Ondrik for taking the picture of them.)

345

Figure 17-1. The first paragraph of chapter 3 of Sinclair
Lewis’ Babbitt, in Braille

346

Figure 17-2. Alphabet blocks for braille, spelling out “The
Perl 5 compiler reached line number 850 and died.”

Linguistic Rule Systems

I was curious how the rules for Braille could be implemented
as an encoding algorithm.
Sheri explained that programs do exist for taking
conventional English
text, and applying all the contractions possible, in the right
places—what I’ll just call “Braille encoding.”
Braille
encoding programs can be embedded in tactile displays for
computers, so that when I send
Sheri email (unencoded), it shows on her display in encoded
Braille. Or a Braille encoder can be a program that encodes a
whole file at a time, typically for preparing an unencoded
text file for sending to a Braille embosser, a kind of impact
printer.

One encoder program is from the National Federation of the
Blind, and is called
NFBTRANS. NFBTRANS is by no means the only such
program around. Another widely used program is
DBT,
Duxbury Braille Translator.
DBT, however, is a commercial product, with no source
available. NFBTRANS is free, and comes with source code.

I hunted down a copy of NFBTRANS, and looked at the
source code that came with it, and discovered that it was not
just a Braille encoder, but more a typesetting system like

347

troff. It was about seven thousand lines of C, and in the guts
of it, I did manage to find the encoding routines—and I
couldn’t make heads or tails of them. NFBTRANS reads the
list of contractions from an external data file that come with
the program, but I couldn’t figure out exactly how the rules
were applied—namely, in what order or priority.

In other words, the file had rules like:
"the" contracts in any context
"er" contracts in any context
"th" contracts in any context

but how or why would NFBTRANS manage to always
contract the end of the word “leather” to “<the>r” and not
“<th><er>”? Were there other “-ther-” words that could get
“<th><er>” instead of “<the>r”?

To fill in the blanks in my understanding of Braille, and to try
my hand at modeling a linguistic system in Perl, I decided to
try to develop an algorithm in Perl to correctly apply these
rules, and to check them against NFBTRANS’s output.

I’d had some experience with formal linguistic models of the
subsystems that make up natural languages. Every time I’d
seen a linguist create a formal model of a subsystem of a
language (whether English phonology, or Hindi syntax, or
something less abstract, like hyphenation), the rules that
model the system have been in one of the two kinds of
frameworks I’ll explain below—either the kind I call a
“generativity system,” or the kind I call an “optimality
system.” So I expected Braille encoding to be one of these
two sorts of rule
systems, and the first task was to figure out which it was.

348

Generativity Systems

In a generativity system, there’s a list
of rules, to be applied in a particular order. Linguists often
use this kind of rule system to model phonology, the study of
the way the sounds of language are represented in the brain.
Phonological models assume that words are stored in a
somewhat simplified, abstracted form, and that to work out
the details of how these are to be pronounced, we apply a
series
of rules.

For example, a phonological model of my dialect of
American English would assume that the “long i” sound is
always stored as simply that. But I, like most Americans,
pronounce it differently in “kite” than in “fly.” To account for
this difference, phonological models say that this sound starts
out as just itself (here written “/aj/”), but that rules may apply
to change it in some contexts. This isn’t just about
vowels—the two different-sounding t’s in “write” and in
“writing”
supposedly both start out as just /t/, but a rule happens to
change the latter one to sound like a /d/.

The rules describing these two phonological changes could
look like this:

▪ The diphthong /aj/ (as in “fly”) changes to /Uj/ (as in
“kite”) when it’s before /p/, /t/, or /k/.

▪ The consonant /t/ changes to /d/ when it’s between two
vowels.

These rules, when applied in that order, are supposed to take
words in a representation that doesn’t have these finer

349

distinctions (like the difference between /aj/ and /Uj/), and
change those representations to flesh them out with those
distinctions.

Now, translating rules like these into
regular
expressions used to be hard, but now, with Perl 5.005 regexes,
it’s a snap, with “lookbehind” and “lookahead”:

s/aj # Target: the vowel
/aj/

(?=[ptk]) # Following context:
/[ptk]/
/Uj/gx && print "R1 applies. Output:

$_\n";

s/(?<=[aeiouIUj]) # Preceding context:
any vowel

t # Target: /t/
(?=[aeiouIUj]) # Following context:

any vowel
/d/gx && print "Output of system: $_\n";

What this gets you over /aj[ptk]/ or
/[aeiouIUj]t[aeiouIUJ]/ is that with lookbehind
(as in (?<=[aeiouIUj])) or lookahead (as in
(?=[aeiouIUj])), the
text matching the lookahead and lookbehind parts of the
regex aren’t part of what gets matched by the regex as a
whole.

That is, text that matches the lookbehind expression is free to
precede the “cursor” (the part of the regex mechanism that
pos reports the position of), and text matching the lookahead
expression doesn’t move the cursor forward, as normal
matching does. (Also, the lookbehind text doesn’t end up in

350

$&, which you probably know as the “what matched?” regex
variable, but which you can better think of as, “Now that
we’ve matched something, what was between where the point
started and where it ended up?”)

Now, the above
phonetic rules are greatly simplified for the sake of
discussion, but you can see their application to “write + ing”,
starting from its simplified abstract form /rajt + IN/:

$_ = 'rajtIN';
print "Input to system: $_\n";

s/aj
(?=[ptk])
/Uj/gx && print "R1 applies. Output:

$_\n";

s/(?<=[aeiouIUj])
t
(?=[aeiouIUj])
/d/gx && print "R2 applies. Output:

$_\n";

print "Output of system: $_\n";

This prints:
Input to system: rajtIN
R1 applies. Output: rUjtIN
R2 applies. Output: rUjdIN
Output of system: rUjdIN

And this gives the correct pronunciation for “writing”
in my dialect, /rUjdIN/. Change the first line to “rajdIN”
(“riding”), and neither rule applies, and you get “rajdIN” out.
(So, yes, when I speak, “writing” and “riding” sound

351

different.) And, importantly, if you swap the rules so that R2
applies before R1, you get:

Input to system: rajtIN
R2 applies. Output: rajdIN
Output of system: rajdIN

(So, if your dialect has “writing” and “riding” sounding the
same, it might be that rule-ordering is the only difference
between your dialect and mine.)

The
ordering of the rules in
generativity systems is crucial; if you have the right rules in
the wrong order, you get the wrong answer. If
Braille encoding were a generativity system, I’d need to
figure out how to order the rules from the NFBTRANS data
table.

Optimality Systems

If a generativity system is one that gives rules that get you
from input to correct output, then an optimality system is one
that takes all kinds of even remotely conceivable possible
output, and ranks them in order of desirability (“optimality”).
The highest ranked one is the “correct form” and becomes the
output of the system. (And if it seems to you that generativity
is like imperative programming, and optimality is like logical
programming—à la Prolog—then you’re basically right.)

The algorithms I’ve seen that implement English hyphenation
are basically optimality systems. I encourage interested
readers to look at the hyphenation algorithm in TeX (which
you can see reiterated in Perl in CPAN’s TeX::Hyphen), but

352

for the sake of discussion, suppose you can model English
hyphenation with these
rules for ranking candidate forms:

▪ Hyphenating between consonant letters is good (as in
“gos-ling”).

▪ Hyphenating between a double consonant is good (as in
“bit-ter”).

▪ Hyphenating between a consonant and a vowel is bad (as
in “gosl-ing”).

▪ If hyphenating leaves a word fragment of just
consonants, that’s really bad (as in “g-osling” or
“gosli-ng”).

In Perl, you could implement this as:
use strict;
my $in = 'boggling';
my $best = $in;
my $best_score = 0;

my $Cons = 'bcdfghjklmnpqrstvwxz';
my $Vowel = 'aeiouy';

foreach my $i (1 .. (length($in) - 1)) {
$_ = $in;
my $score = 0;
substr($_, $i, 0) = '-';

++$score if /[$Cons]-[$Cons]/oi;
++$score if /([$Cons])-\1/oi;
--$score if /[$Cons]-[$Vowel]/oi;

$score -= 10 if /^[$Cons]+-/oi ||
/-[$Cons]+$/oi;

353

print " \"$_\" : score: $score\n";
if($score > $best_score) {

$best_score = $score;
$best = $_;

}
}
print "Best: \"$best\" with score of
$best_score\n";

The output of this is:
"b-oggling" : score: -11
"bo-ggling" : score: 0
"bog-gling" : score: 2
"bogg-ling" : score: 1
"boggl-ing" : score: -1
"boggli-ng" : score: -10
"bogglin-g" : score: -9
Best: "bog-gling" with score of 2

These
rules seem to work right—the highest-ranked form
(“bog-gling”) is the best; and incidentally, the second best
(“bogg-ling”) is not too bad, and from there on out it’s all
quite bad (“bo-ggling”, “boggli-ng”, etc.).

Note that it doesn’t matter here what order you apply the
rules in; it just matters what weight gets attached to each rule.
In the above example, I’ve kept it simple, but suppose we
now add a rule that means “the closer to the middle of the
word you hyphenate, the better,” such as:

$score += .5 * (length($in) - abs($i -
length($in) / 2));

If we leave that weighting constant at 0.5, you still get
“bog-gling” coming out on top. Change it to a 1, and we have
a tie between “bog-gling” and “bogg-ling”, since the point

354

that “bog-gling” gets for hyphenating between a double
consonant is offset by the point that it loses out on for the
hyphen not being at the exact middle of the word. And if we
change the constant to 1.5, we get “bogg-ling” coming out on
top.

If NFBTRANS’s
rules somehow interacted with an optimality system with
ranking-rules like “give K points for every letter this
contraction saves,” or possibly “give (or subtract?) L points if
this word ends up with contractions next to each other” or
“subtract a half-point if the word ends in a contraction,” then
I’d need to first puzzle out what these ranking-rules were, and
then figure out what their values for K and L were.

Regex Replacement as a First Hack

I intuitively felt that
Braille
encoding somehow had a lot in common with hyphenation
(except that it was about contracting letters instead of sticking
hyphens in between them), suggesting that optimality was at
least part of the system. On the other hand,
optimality systems often have some generative component to
them (since you need to generate some candidates to apply
the ranking rules), so I figured that whether the real answer
would eventually be in a generativity system or an optimality
system, I’d probably have to work up something
generativity-based.

So I decided to take the rules from NFBTRANS’s rules file,
cook them up into a

355

regular expression, and use that to perform all the
substitutions, in a one-pass regex like s/($re)/
&lookup($1)/eg, an
approach I borrowed from Chapter 14. I figured that this
approach would by no means behave correctly, but that the
cases where it didn’t behave correctly would give me some
kind of hint as to whether a generativity system or an
optimality system was called for, and from there I could start
worrying about the
ordering or weighting of rules.

Granted, next to either generativity
systems or
optimality systems, a big one-pass regular expression
replacement seems pretty strange, but Perl makes regexes so
easy that it seemed the path of least resistance for a first hack.

Contexts in Regular Expressions

Suppose the rule file consists of:
"the" contracts to "<the>" in any context
"er" contracts to "<er>" in any context
"th" contracts to "<th>" in any context
"ea" contracts to "<ea>" only in the
middle of words
"ar" contracts to "<ar>" in any context
"ear" contracts to "e<ar>" in any context

Now, a regex for “the’ in any context” would be a simple
<the>. But how should you express “<ea> only in the
middle of words”? You could do it with something like
/(?<=\w)ea(?=\w)/ to assert that there be a word
character before and after the “ea”, but Perl already provides a

356

metacharacter for matching a word boundary (\b), or the
absence of one (\B). In other words, what’s needed here is
the absence of
word boundaries before and after the “ea”, and you can do
that with simply /\Bea\B/.
Translating the above mini-list of
Braille contraction rules into a regex gives:

%contraction_for = (
'the' => '<the>',

Remember: I'm using "<the>" here
in place of the Braille ASCII, or

Unicode,
code for the single Braille character
for that contracts "the"

'er' => '<er>',
'th' => '<th>',
'ea' => '<ea>',
'ar' => '<ar>',
'ear' => 'e<ar>',

);
s/(the|ear|ar|\Bea|er|th)/
$contraction_for($1)/eg;

Now, notice that I moved the longer strings to the start of the
regex. This is a crucial point in understanding Perl’s
implementation of
regular expressions: given alternates, Perl will match the first
one it can match, regardless of whether there may be later
alternates that are longer. So if th came before the in that
regex, the th would always match, never letting “the” match.
Moreover, if there were a \Bea\B and an ea in the regex, if
the ea came first, it would block the \Bea\B from ever
matching. So, in producing this regular expression, I had to
make sure that the alternates started out with the longest

357

strings, in the most specific contexts (like \Bfoo\B), and
worked their way down to the shortest match strings, in the
most general contexts (like just plain foo). This was a simple
matter of a
Schwartzian transform, where the sorter function looked like:

sort { # Sort first by length of
the literal

length($b->[0]) <=> length($a->[0])
...then by context

"precedence," where "\B_" gets a higher
precedence score than "_".

or $b->[1] <=> $a->[1],"
},"

By this time, I had 180 lines of code for reading the
contraction rules file and transforming it into a regex. Only
about 20 lines were necessary to perform the contractions,
and they were basically a wrapper around this:

$word =~ s/($my_re)/$contraction_for{$1}/
oeg;

Embedding Code in Regular
Expressions

I’d forgotten about one thing—there could be rules that say
something like:

"foo" contracts to "<X>" at word-start
"foo" contracts to "<Y>" elsewhere

Now, you could model this pair of (fictitious!) rules with a
regex that contains (…|\b foo|foo|…), but then whether
\bfoo or foo matches, you end with simply $1 holding
foo. In other words, while you can use \b or real

358

lookbehind/lookahead to select for certain contexts, you don’t
end up knowing which alternative actually matched.

However, a new feature in Perl 5.005 is exactly what I needed
here: (?{ CODE }) in a
regular expression will cause the Perl snippet CODE to be
evaluated when the regular expression engine reaches that
point. So, to differentiate between \bfoo and foo
matching, I add to the regex a bit of code to be executed at the
end of each:

$word =~ s/(| \bfoo (?{ $x=1 })
| foo (?{ $x=2 })

)
/$contract[$x]{$1}/eg;

Here, if \bfoo is the bit of the regex that matches, the last
thing that the match does is to execute $x=1, so then the
string that got matched (say, the “foo” in “foolish”) gets
replaced with the value of $contract[1]{‘foo’}. If
it’s the second bit of the regex (“foo”) that matches (as in
the “foo” in “buffoon”), $x=2 will get executed, and so
“foo” will get replaced with the value of
$contract[2]{‘foo’}. This array-of-hashes
@contract (which is accessed like
$contract[context_flag]{string_to_be_replaced})
will have been filled by the same part of the program that read
the rules in and created the regular expression.

Rules as Exceptions

Most linguistic models deal with exceptional cases (like, say,
irregular verbs) by exempting certain forms from the rules.
However, NFBTRANS’s rules table knows only rules and

359

more rules, where more specific rules stop more general rules
from applying. For example, given:

"the" contracts to "<the>" in any context
"er" contracts to "<er>" in any context
"th" contracts to "<th>" in any context
"ea" contracts to "<ea>" in the middle of
words
"ar" contracts to "<ar>" in any context
"ear" contracts to "e<ar>" in any context

the rule that replaces “the” with the single character “<the>”
blocks the more general rule of replacing “th” with “<th>”
from applying. Likewise, the rule that targets “ear” blocks the
rule that targets “ea” from applying—which is why “heart”
contracts to “he<ar>t”, not “h<ea>rt”.

Now, for some reason, it’s incorrect to contract the “ear” in
“tearoom” at all. This could be modelled by saying that
“tearoom” is on a list of exception words that are exempt
from contractions, but then you have two kinds of data in the
system—the
rules table, and the list of exceptions. The way NFBTRANS
models this is to simply add another rule:

"tearoom" contracts to "tearoom" in any
context

A rule that replaces a word with itself seems entirely
pointless, but the point of it is to block the more general
rules.[3]

NFBTRANS consists of four
types of rules:

▪ A few dozen general rules that implement the
regular contractions, like “ea”

360

▪ A few dozen more rules that implement more specific
(yet still pretty general) contractions like “ear”

▪ About a hundred rules for whole-word abbreviations like
“qk” for “quick”

▪ About a thousand rules that are there simply to block the
more general rules

The above “tearoom” rule is an example that happens to block
all contractions for that word, but the average rule is meant to
stop only some of the contractions from applying. For
example, applying the normal contraction rules to “pineapple”
would contract it as “p<in><ea>pple”. However, this spelling
is considered incorrect, so there’s a rule specifically to fix this
with the correct spelling:

"pineapple" contracts to "p<in>eapple" in
any context

And so on for “phoenix” (to block the “en” from contracting),
“coworker” (to block the “ow” from contracting, lest they
become cow orkers), and all the way up to the longest rule,
which replaces “psychedelic” with “psy<ch>edelic” (blocking
the “<ed>”).

Incidentally, as with exceptions in
hyphenation, most of these exceptions to the normal
Braille contraction rules are motivated by wanting to not
contract (or wanting to hyphenate between) letters that belong
to different syllables or to different morphemes (roots,
prefixes, or suffixes, like “tea-room,” “co-worker,” etc.). But
the “ea” in “create” does contract to the single “<ea>”
character, even though it’s clearly across two syllables. Since
the conventions

361

for Braille contractions evolved naturally—just as general
English spelling did—it’s full of patterns, and messy
exceptions, and messy exceptions to the messy exceptions.

Testing It

When I wrote the code that generated the big
regular expression to match everything that could be
contracted, I initially fed it just a few rules, then a few dozen,
and when I did feed it the whole rule file, it ended up making
a single regular expression 14KB long. The longest regex I’d
ever heard of was the 6.5KB regex for matching
RFC822-valid email addresses (in Appendix B of the first
edition of Jeffrey
Friedl’s
Mastering Regular Expressions), and this was more than
twice as long—worrisomely long. I anticipated a screaming
“OUT OF MEMORY” error, or that the regex would take two
minutes of swapping to compile. But it compiled
imperceptibly fast, and without errors.

I took the “Unix wordlist” (a motley wordlist of 25,000
English words, one per line), and encoded it with a copy of
NFBTRANS, so that I could compare it to my algorithm’s
output. I wrote a small program to use my algorithm to
encode the wordlist, print all cases where my algorithm’s
output disagreed with the output of the inscrutable
NFBTRANS algorithm, and then report my algorithm’s
accuracy.

Guessing wildly, I expected no better than 50% similarity
between the output of my algorithm, and the output of
NFBTRANS.

362

It’s Alive!

My first-hack one-pass regex algorithm agreed with
NFBTRANS 99.59% of the time. I was boggled that it was
over 50%, much less over 99%.

Most of the cases of disagreement were words like “R&D” or
“O’Leary”—since this was a first hack, I had not bothered to
properly deal with words with internal punctuation or
complex capitalization, which require somewhat special
treatment in
Braille
encoding. The remaining dozen words where my algorithm
encoded differently than NFBTRANS were because I’d
misimplemented the regex context for one of the more
obscure rules. (And incidentally, I’ve only implemented my
encoder for words in isolation—in
encoding of actual sentences, there’s punctuation to deal with,
and a few Braille contractions in words are sensitive to the
context of the word, like whether there’s punctuation after the
word, which makes things a bit messier.)

This one-pass regex
approach was just a stab in the dark, and I expected to use the
list of its failures to refine the algorithm—say, developing a
generativity system that would make one pass to handle
word-initial contractions, then another to handle word-final
contractions, then a final pass for everything leftover in
between. Or maybe the answer would lie in an optimality
system to consider all possible ways to contract a word, and
select the one that had the fewest characters, or maybe the
fewest dots total, or maybe the most contractions closest to
the beginning or end of the word.

363

But it was nothing so complicated—this big regex, in one
pass, did the whole job. Not only did this seem much too easy
(although this is a not unfamiliar sensation in programming
Perl), but it was quite unprecedented—I’d never heard of a
phenomenon in natural language that could be treated with a
regular expression.

I’d always considered regular expressions to be essentially
abstract and mathematical. After all, the formalism of regular
expressions was devised just this century, coming out of the
work of mathematician Stephen
Kleene; and the workings of the regex engine (as in Mark
Jason Dominus’s article in Computer Science and Perl
Programming: Best of the Perl Journal are explained in terms
of automata. And whatever an automaton is (a big scary
robot?), it sure doesn’t sound like anything to do with
something that people do unconsciously when they write
Braille. (Incidentally, people have been writing English in
Braille this way for decades longer than regexes have been
around.)

But in spite of the formal origins of regular expressions, I
think that the basic mechanism underlying regex
replacement—scanning left to right, matching as much as you
can, context permitting—is not so unnatural and abstract.
That’s what we do when we use systems of contraction or
abbreviation, whether in Braille, Gregg shorthand, or our own
idiosyncratic abbreviations: we start at the beginning of the
word (as opposed to inking in the end, and working
backwards from there), and we abbreviate as much, and as
early, as possible.

Granted, Perl regexes have plenty of features that have no
parallel in this process of Braille contractions (like

364

backtracking, notably). But there’s the commonality in that
what’s called
“greedy matching” for regexes is effectively the same as what
we do when we abbreviate/contract, because of a mix of
economy (wanting to save space) and laziness (not having to
operate on the whole word at a time, or to consider lots of
alternatives, but just contracting in one pass, as you write,
starting at the beginning of the word). Perl programmers
know from experience that regexes are immensely useful, and
my experience with Braille encoding is just another case of
that. But the fact that regexes have a basic commonality with
a linguistic phenomenon like Braille encoding suggests that
not only are regexes a useful tool, but that they’re also
linguistically natural and, hopefully, more learnable and
valuable because of it.

The final Braille-encoding code is available, along with some
other Braille links, at http://www.speech.cs.cmu.edu/~sburke/
braille/.

[3] Actually, the rule says “replace ‘tearo’ with ‘tearo’ in any
context,” not specifying the whole word—but I think the
people who thought up that rule thought of “tearoom” as the
only word it could apply to, and were not aware of the rarer
“-tearo-” words: “Aotearoa” or “stearolactone.”

365

Chapter 18. Hypernyms,
Hyponyms, Pertainyms, and Other
Word Relationships

Dan Brian
Author’s Note: Since this article was published, development
on the Lingua::Wordnet modules has been superseded by the
Linguana project, an effort to create a dynamic, open source
lexicon based on Wordnet. The author won the Damian
Conway Award for Technical Excellence in 2001 for papers
concerned with the project. More information is available
from the Linguana web site at http://linguana.net.

My two-year-old son is just starting to grasp concepts like “A
‘car’ on the road is different from a ‘car’ on a railroad track.”
Computer programs can begin to exhibit this understanding as
well; this article discusses the use of the Perl module
Lingua::Wordnet to answer questions like, “What are some
different kinds of cars?” and “What articles of clothing are
made from leather?”

Wordnet is a lexical database of the English language
organized according to current psycholinguistic theories of
human lexical memory. Developed at Princeton’s Cognitive
Science department in the early 1990s, Wordnet was possibly
the first undertaking to produce a machine-interpretable
collection of English on a large scale. And like all really
helpful and important software projects, it’s open source and
just waiting to be used and extended.[4]

366

Concepts in Wordnet

The Wordnet package consists of several text database files,
text indexes for those files, binaries for searching the files,
and the source code for those binaries. A brief example can
illustrate the functionality of the system:

% wn canary -n1 -hypen
Synonyms/

Hypernyms (Ordered by Frequency) of noun
canary

Sense 1
fink, snitch, stoolpigeon, stoolie,

sneak, canary
=> informer, betrayer, rat, squealer
=> informant, source
=> communicator

=> person, individual, someone,
somebody, mortal, human, soul

=> life form, organism, being,
living thing

=> entity, something
=> causal agent, cause, causal

agency
=> entity, something

This example of the wn program searches for “sense #1”
(-n1) of the noun “canary,” and displays its
hypernyms (which I’ll talk about shortly). Entries in the
Wordnet databases are called synsets (sets of synonyms); in
the case of this entry, “fink,” “snitch,” “stoolpigeon,”
“stoolie,” “sneak,” and “canary” are all considered synonyms
for this particular word sense, and thus are displayed as

367

members of the same synset. A synset can then be understood
to be all words sharing the same essential meaning.
Consequently, the second sense (-n2) of “canary” in
Wordnet is that of a “singer,” the third refers to the color
“canary” or “canary yellow,” and the fourth is the bird. The
collection of synsets for a given word is equivalent to the
entries you might typically find in a dictionary entry, but
includes a plethora of other data. This isn’t your grandpa’s
dictionary; it’s your grandson’s.

A hypernym is the type to which something belongs: a boat is
a type of transport, and a fish is a kind of animal. The
hierarchy of hypernyms shown above proceeds from the most
specific synset to the most general synset: entity,
something. You can read this hierarchy as “a fink/canary
is a kind of informer, which is a kind of informant, which is a
communicator, which is a person, which is a life form; a
person is also a causal agent, and both life form and causal
agent are kinds of entities.”

This hierarchy is generated using word relation pointers
between synsets. First, let’s look at the index entry for
“canary”:

canary n 4 3 @ ~ #m 4 0 07263970 07137082
03881697 01055943

I won’t describe all the elements of this entry; the only things
to note are that it indicates that there are four senses of the
word, and the four big numbers are the four offsets of those
senses (or synsets) in the data file. Here is the first entry for
“canary” in the data file (offset 07263970):

07263970 18 n 06 fink 0 snitch 0
stoolpigeon 0 stoolie 0 sneak 0 canary 1

368

001 @ 07338772 n 0000 | someone acting as
an informer or decoy for the police

Look familiar? Besides conjuring memories of the kid who
told on me for urinating on the Holiday Inn sauna rocks when
I was twelve, it lists the words that belong to the synset, has a
pointer to a hypernym at synset 07338772 (preceded with the
@), and contains a short gloss (definition) for the word.
Consequently, the synset at 07338772 is the “informer” entry
we saw listed above directly below “fink…canary”. That
entry will have a hypernym pointer to the synset below it, and
so on. This basic pointer system forms a large network of
word relations in Wordnet. The database contains pointer
types for many linguistic relationships other than
hypernyms; they’re depicted in Figure 18-1. A complete list
of pointer and data types is included in the
Lingua::Wordnet distribution in docs/terms.txt, and is fully
documented in the Wordnet documentation.

369

Figure 18-1. Wordnet relationships

In addition to pointers, the database contains glosses for each
synset. The glosses consist of brief dictionary-like definitions,
“sentence frames” for verbs to illustrate their basic usage, and
other less significant information.
Lingua::Wordnet alters these databases to permit additional
data types, including “attribute” and “function” pointers for
nouns. We will discuss these later. First, let’s discuss
installation.

[4] I have to apologize in advance for any heartache that
“dynamicizing” the databases may have caused the Princeton
researchers. While they informed me that such a change had
been considered and deemed a possibility (given the funding),
I can’t help but feel like a hack invading their esteemed
lexicographer territory. The “5 Papers” documentation reads,
“WordNet’s source files are written by lexicographers. They
are the product of a detailed relational analysis of lexical
semantics.” That means no adding specialized definitions for
“mongers,” people.

370

Converting the Data

The Wordnet distribution stores all of the lexicon information
in static text data files, with accompanying index text files to
increase lookup speed. The Lingua::Wordnet installation
rewrites these files in the
Berkeley DB database format, allowing these files to be
dynamically edited.[5]

With this change, users can edit existing
synsets, add new synsets, and even create new pointer types.
The new files also increase the speed for data retrieval for the
indexes, since words are mapped to synsets with a hash,
eliminating the need for a manual binary search.

There are many programs on the Wordnet web site, but you’ll
need only the
Unix Database Package (wn16.unix.tar.gz).
Lingua::Wordnet does not use the Wordnet programs, so the
Unix package should work for any operating system
supporting Berkeley DB 1.x. If you install the Wordnet
distribution, the Wordnet database files will typically be in
/usr/local/wordnet-1.6/dict/. If you unpack (but do not install)
the distribution, these files will be in wordnet-1.6/dict. (You
can install Lingua::Wordnet without formally
installing the Wordnet distribution.)

[5] I get some complaints in this regard, because some people
object to Berkeley DB. The fact is that it’s the easiest to
implement, it scales remarkably well in this and other, larger
projects, and most of us already have it. Also, if you don’t

371

like the Lingua::Wordnet data delimiters (| and ||), change
them with the globals $DELIM and $SUBDELIM in
convertdb.pl and Wordnet.pm.

372

Installing Lingua::Wordnet

To install Lingua::Wordnet, grab the distribution from CPAN,
and unpack the files. Prior to installation, the script
scripts/convertdb must be run to convert the
databases to the new file format. This program will prompt
for the location of the dictionary files, as well as the location
for the new DB files. It then sorts through the Wordnet index
and data files and writes out the new files, requiring
approximately forty megabytes. Once the files are converted,
you can delete the old files or the entire Wordnet distribution.
The standard module installation can then be completed
(perl Makefile.PL, make, make test,
make install). The module also contains a framework
for an HTML web interface for browsing the lexicon under
mod_perl, shown in Figure 18-2. If you manage to extend this
to edit Wordnet information, please send me your changes!

373

Basic Usage

Throughout the
Lingua::Wordnet module, synsets are represented and
manipulated as objects of type
Lingua::Wordnet::Synset, with methods that typically return
arrays. The simplest use of Lingua::Wordnet is to look
up English definitions:

use Lingua::Wordnet;
my $synset;
my $wn = new Lingua::Wordnet;
my @synsets = $wn->

lookup_synset("travel", "v");
for $synset (@synsets) {

for ($synset->words) {
print "$_ ";

}
print " - ", $synset->gloss, "\n";

}

Note that the lookup_synset method actually returns an
array of Lingua::Wordnet::Synset objects, which can then be
used to call other functions for that individual synset. The
second parameter passed to lookup_synset is the
part-of-speech (POS), which in this case is v for “verb.” This
code will look
up all senses of the verb “travel,” and print the words of the
synset, along with their gloss.[6]

374

Figure 18-2. The HTML interface to Lingua::Wordnet

travel%0 go%0 move%3 locomote%0
- change location; move, travel, ...

travel%4 journey%0
- travel as for pleasure and

sightseeing; go on travels
travel%1 trip%2 jaunt%0

- make a trip for pleasure
travel%2 journey%1

- travel upon or across; "travel
the oceans"
travel%3

- undergo transportation, as in a
vehicle

375

To format this information as a dictionary entry, only the
glosses would be used:

my $i = 0;
my $synset;
my @

synsets = $wn->lookup_synset("travel",
"v");
print "travel, v.: ";
for $synset (@synsets) {

$i++;
print "$i. ", $synset->gloss;

}
print "\n";

This yields:
travel, v: 1. change location; move,
travel, or proceed; "How
fast does your new car go?" "We traveled
from Rome to Naples
by bus"; "The policemen went from door to
door

looking for
the suspect";"The soldiers moved towards
the city in an
attempt to take it before night fell" 2.
travel as for
pleasure and sightseeing; go on travels 3.
make a trip for
pleasure 4. travel upon or across; "travel
the oceans" 5.
undergo transportation, as in a vehicle

But if you only use Wordnet for dictionary lookups, you’re
missing the reason it was created. Besides, the glosses aren’t

376

all that great anyway. Let’s talk about some real world
applications instead.

Suppose that you were
writing a password checker to ensure that user passwords are
hard to guess. You could amaze your users by warning them
if their new password resembles the old:

old password: sneaker
new password: loafer
Why not pick something other than a shoe
this time?

To do this, we first generate two arrays of synsets, one
containing all the matching synsets for the first (old
password) term, and one containing the matching synsets for
the new password:

my @oldsynsets =
$wn->lookup_synset("$oldpass", "n");
my @newsynsets =
$wn->lookup_synset("$newpass", "n");

To determine the “type” of a given thing, we must know the
hypernyms of that term. Hypernym relationships in
Lingua::Wordnet are represented as object methods, and are
called with their name. To construct
a list of the hypernyms for the two passwords entered, we
loop through all of the hypernyms for all the synsets, pushing
their index keys (offsets) onto the @offsets array:

my ($hyper, @offsets);
foreach (@oldsynsets) {

foreach $hyper ($_->hypernyms) {
push (@offsets, $hyper->offset);

}
}

377

Lastly, we can do the same for the array of new password
synsets, and look for a match in their
hypernyms. The offset method returns the key for that
synset:

my $hyper;
foreach (@newsynsets) {

foreach $hyper ($_->

hypernyms) {
my $offset = $hyper->offset;
if (grep /$offset/, @offsets) {

my $word = ($hyper->words)[0];
$word =~ s/\%/w//;

print "Why not choose
something other than a $word this time?\n";

exit;
}

}
}

Of course, to use this with words other than nouns, it would
need to search all four Wordnet parts of speech: noun (n),
verb (v), adjective (a), and adverb (r). Also, while you might
expect the entries “robin” and “canary” to come back with a
clever objection, they won’t, because of the detail Wordnet
maintains for tiers of hypernyms. For example, a “robin” in
Wordnet is a kind of “thrush,” which is a kind of “oscine,” a
type of “passerine,” which is a type of “bird.” To generalize
the hypernyms for our purpose, we could collect an array of
all these hypernyms, stopping at a preset level. But There’s
More Than One Way To Do It.

[6] It is important to note that while

378

sense numbers are printed along with the
Lingua::Wordnet::Synset::words function,
these numbers are not consistent with the ordering of
synsets in the Wordnet indexes. If anyone knows why, please
tell me.

379

Movin’ It Up a Level

The
Lingua::Wordnet::Analysis
module allows
synset relationships to be analyzed from a slightly higher
level, with methods to traverse trees, compute intersections of
arrays of synsets, and scan arrays of synsets for matching
entries. We’ll see how these methods can enhance our
already-clever, highly-useful password checker. But first, a
tangent.

The concept of polysemy (or
familiarity) in Wordnet is determined by the number of times
a word occurs in the Wordnet synsets. The lexicographers at
Princeton determined that these occurrence frequencies
corresponded closely enough to the familiarity of the human
lexicon to equate them for their purposes. Retrieval of this
information (the “polysemy count”) in
Lingua::Wordnet is straightforward:

my $bird = $wn->familiarity("bird", "n");
my $passerine =
$wn->familiarity("passerine", "n");
print "The familiarity of 'bird' is
$bird.\n";
print "The familiarity of 'passerine' is
$passerine.\n";

The output is:
The familiarity of 'bird' is 5.
The familiarity of 'passerine' is 1.

380

The higher the count, the more likely that the word is the
most familiar. The next hypernym above “birds” happens to
be “vertebrate” with a polysemy count of 1. By traversing
hypernyms and stopping at the hypernym with the highest
familiarity, we can make a reliable guess that the hypernym
represents the most appropriate category for the clever
password checker. Given two
synsets and an array of their hypernyms up to the top level,
we could compute the
intersection of the arrays and choose the resulting synsets
with the highest familiarity. Then we could sleep soundly
knowing that our system, while completely insecure, is
clever. But There’s A Better Way To Do It.

To perform this traversal, rather than use a foreach loop or
recursive function to collect and compute the hypernym lists,
we can use the traverse, union, and
intersection methods of
Lingua::Wordnet::Analysis. One other method, distance,
will help in determining the best response to the question.

use

Lingua::Wordnet;
use

Lingua::Wordnet::Analysis;
$wn = new Lingua::Wordnet;
$analysis = new Lingua::Wordnet::Analysis;

print "old password: ";
chomp($oldpass = <STDIN>);
print "new password: ";
chomp($newpass = <STDIN>);

381

@oldsynsets = $wn->lookup_

synset("$oldpass", "n");

@newsynsets =
$wn->lookup_synset("$newpass", "n");

As before, we have an array of synset objects for both the old
password and the new password. Next, we traverse the
hypernyms of the @oldsynsets array, compute their
union with those synsets already traversed, and store the
results in a new array @oldhypersets. The same is done
for the array @newsynsets:

foreach (@oldsynsets) {
@oldhypersets =

$analysis->union(@oldhypersets,

$analysis->traverse("hypernyms", $_));
}

foreach (@newsynsets) {

@newhypersets =
$analysis->union(@newhypersets,

$analysis->traverse("hypernyms", $_));
}

By placing the traverse method within the arguments for
union, the need to duplicate arrays is eliminated. Now we
have two arrays (@oldhypersets and
@newhypersets) that contain the union (that is, it
contains no duplicate entries) of all possible hypernyms for
any sense of the nouns typed in as the old and new passwords.
Now to determine whether these two words’ hypernym trees

382

intercept (to see if they share any category in common), we
can compute the intersection of the two arrays using
references:

@intersection =
$analysis->intersection(\@oldhypersets,
\@newhypersets);

If we printed out the contents of @intersection now,
we would see that it contains
synset objects common to both @oldhypersets and
@newhypersets. However, since all Wordnet hypernym
trees have a top level, it is likely that the two entries intersect
no matter how different they seem. For example, “chicago”
and “book” will have an intersection of
synsets “object” and “entity.” To determine how applicable
the results are, we can use the familiarity method
discussed earlier, as well as the
Lingua::Wordnet::Analysis::distance
method. This takes an origin synset, a destination synset, and
the pointer type to use as a “path” for the search. For now, we
can use the first synset of @oldsynsets for the search,
and compute the distance to each synset in our intersected
array:

foreach $intersect (@intersection) {
print $intersect->words;

print " - distance: ",
$analysis->distance($oldsynsets[0],

$intersect,"

hypernyms"), "\n";
}

For old password “sandal” and new password “loafer,” this
yields:

383

artifact%0artefact%0 - distance: 4
covering%0 - distance: 3
object%0physical_object%0 - distance: 5
shoe%0 - distance: 1
entity%0something%0 - distance: 6
footwear%0footgear%0 - distance: 2

(Spaces between words in Wordnet are replaced with
underscores.) The synset with the shortest distance is “shoe,”
as we had hoped. We can finish the program by finding the
shortest distance, checking it for a maximum value, and then
outputting the message:

$shortest = 10;
for (@intersection) {

foreach $oldsynset (@oldsynsets) {
$thisdistance =

$analysis->distance($oldsynset, $_,
"hypernyms");

next if ($thisdistance < 1);
if ($thisdistance < $shortest) {

$shortest = $thisdistance;
$word = ($_->words)[0];
$word =~ s/\%\w//;

}
}

}

if ($shortest < 5) {
$word =~ s/_/ /g;
print "Why not choose something other

than a $word this time?\n";
}

The clever password checker will now prompt correctly for
the following examples:

old password: girl
new password: mother

384

Why not choose something other than a
woman this time?

old password: robin
new password: canary
Why not choose something other than an
oscine bird this time?

old password: germany
new password: france
Why not choose something other than a
European country this time?

If you’re wondering why we have a foreach loop to go
through all the @oldsynset entries, it’s because
$oldsynset[0] might not uncover any matches at all.
Recall that “canary the bird” was the fourth sense of “canary”
in the database, not the first.

385

Other Word Relationships

So far we have talked about only
hypernyms, which are just one of the many linguistic
relationships in Wordnet. Here’s a list of what
Lingua::Wordnet works with:

Meronyms

“An apple is a meronym of apple tree.” A constituent part,
substance, or a member of something. X is a meronym of
Y if X is a part of Y. The subtypes for
meronyms in
Lingua::Wordnet are:

component-object: X is part of Y
member-collection: X is a member of
group Y
stuff-object: Y is made of X
portion-mass: X is a segment or portion
of Y
feature-activity: X is part of the
activity Y
place-area: X is a place in Y
phase-process: X is part of the process Y

(The last four are provided by Lingua::Wordnet, but not
by Wordnet itself.)

Holonyms

“An apple tree is a holonym of apple.” The opposite of
meronym; the name of the whole of which the meronym
names a part. Y is a holonym of X if X is a part of Y. The
subdivision of types is the same as meronyms above.

386

Hypernyms

“Fruit is a hypernym of apple.” The generic term used to
designate a whole class of specific instances. Y is a
hypernym of X if X is a (kind of) Y.

Hyponyms

“Apple is a hyponym of fruit.” The opposite of hypernym;
the specific term used to designate a member of a class. X
is a hyponym of Y if X is a (kind of) Y.

Attributes

“Hardness is an attribute of the adjective soft.” A noun for
which adjectives express values. The noun “weight” is an
attribute, for which the adjectives “light” and “heavy”
express values.

Antonyms (direct)

“Heavy is an antonym of light.” A pair of words with
opposite meanings. In adjective clusters,
direct antonyms appear only in head
synsets.

Antonyms (indirect)

“Fatty is an antonym of light (via nonfat).” An antonym
not of the
word, but of the head synset.

Pertainyms

“Slow is a pertainym of slowly.” A relational adjective.
Adjectives that are

387

pertainyms are usually defined by such phrases as “of or
pertaining to” and do not have antonyms. A pertainym can
point to a noun or another pertainym.

Noun attributes

“Yellow is a color attribute of canary.” An adjective that
defines a quality of a noun. (This is provided by
Lingua::Wordnet, but not by Wordnet itself.)

Functions

“Sing is a function of canary.” A verb that defines an
action performed by a noun. (This is provided by
Lingua::Wordnet, but not by Wordnet itself.)

In addition to analyzing hyponymy relationships (hypernymy/
hyponymy, which engineers might prefer to call “subsets”
and “supersets,” or IS-A relationships), meronymy (the
HAS-A relationship) can be examined using the same
methods. In many ways, meronymy is significantly more
complicated than hyponymy. The Wordnet databases specify
three
types of meronym relationships:

▪ Part meronym: a “tire” is a part of a “car”

▪ Member meronym: a “car” is a member of a “traffic
jam”

▪ Substance (stuff) meronym: a “wheel” is made from
“rubber”

Lingua::Wordnet creates the databases with the following
four additional types, defined in the Wordnet documentation
(see 5papers.pdf at the Wordnet web site):▪

388

Activity meronym: “paying” is part of the activity
“shopping”

▪ Phase meronym: “solstice” is a phase of “summer”

▪ Portion meronym: “slice” is a portion of a “pie”

▪ Area meronym: “Bronx” is a place in the area “New
York”

The same objects are used to access these pointer types also.
Suppose that you needed a different kind of password utility,
but one no less clever. This utility would challenge potential
password hackers by offering a kind of twenty questions
game. Again, it’s not good security, but it is fun.

Now, if we used an advanced parser (like
Lingua::LinkParser) we could allow a wide variety of
questions to be asked. In this case, the game lends itself well
to simply pattern-matching the questions, which we will limit
to:

"Are you a(n) NOUN?"
"Are you ADJECTIVE?"
"Do you have NOUN?" or "Are you made from/
of NOUN?"
"Do/can you VERB?"

We again load
Lingua::Wordnet::Analysis and create the $wn and
$analysis objects. First, we initialize and build
arrays containing all the
hypernyms, attributes, meronyms, and functions that we’ll
need to answer these questions. Note that we need to add the
direct attributes, meronyms, and functions of $password to

389

the arrays, since traverse will start at the level after
$password:

my $password = $wn->lookup_

synset("oven", "n", 1);
my (

@hypernyms, @attributes, @meronyms,
@functions, $i);
@

hypernyms =
$analysis->traverse("hypernyms",
$password);
for (@hypernyms) {

push (@attributes, $_->attributes,
$password->attributes);

push (@meronyms, $_->all_meronyms,
$password->all_meronyms);

push (@functions, $_->functions,
$password->functions);
}

Next, we will loop ten times, input the questions, and match a
pattern against them. First, the “Are you a/an …” question:

for $i (1 .. 10) {
print "$i>";
chomp ($_ = <STDIN>);
if (/are\syou\san*\s(.+)\s*\?/i) {

my $noun = $1;
$noun =~ s/\s+$//; $noun =~ s/\s/

_/g;
my @

synsets = $wn->lookup_synset($noun, "n");
my $found = 0; my $synset;
foreach $synset (@synsets) {

390

if ($synset->offset eq
$password->offset) {

print "You guessed it!\n";
exit;

}
if

($analysis->match($synset,@hypernyms)) {
print "Yes.\n";
$found = 1;
last;

}
}
print "No.\n" unless ($found);

}
}

In this block of code, the noun provided by the user is looked
up and matched against the @hypernyms array. The
$analysis->match does this, telling us whether the
word is a hypernym of “oven.” The code for the other four
questions is identical, with the exception of the actual pattern
to match the question, the part-of-speech used to look up the
synset, and the array that is used for the match. See
Example 18-1 for the complete program. Here is how a
sample run looks:

1> Are you an animal?
No.

2> Are you a plant?
No.

3> Are you an object?
Yes.

4> Are you food?
No.

5> Are you electrical?
No.

391

...

10> Are you made from wood?
No.
Sorry, you blew it.

As we can see, the program misled the user at question #5,
since an oven is electrical; not all the information that a user
will ask is in the Wordnet databases. For this reason,
Lingua::Wordnet allows the database to be extended very
easily. Since we already will know what the password will be,
we can add that information ourselves. The information we
add will address questions that a user is likely to ask.

Before adding information to the databases, it is important to
determine the
proper location for that information. To define an “oven” as
“electric,” you might be tempted to create a pointer directly
from “oven” to the adjective “electric.” However, inheritance
of properties is one of the keys to Wordnet’s usability. An
attribute pointer should be created as high in the lexicon as
possible; if we trace the
hypernyms upwards from “oven” we get “kitchen appliance,”
then “home/household appliance,” then “appliance,” then
“consumer durables,” and so on.
Looking at the glosses for these
synsets as well as the hyponyms under each shows that the
“electric” pointer should be placed at the “appliances” synset,
since all synsets under it are electrical devices. By placing the
pointer at this synset, we eliminate the need to duplicate it in
the synsets below.

To write to the database, we must first unlock it and have
write permissions to it. The following code will add pointers

392

to their appropriate locations. (If you’re wondering which is
the easiest way to look up the correct
sense numbers for synsets, I recommend writing a text-based
browser and sending it to me. Or you can just use the
LWBrowser.pm mod_perl Apache
module.)

The '2' and '1' in the lookup_synset()
parameters specify the
sense number of the word.
my $appliance =
$wn->lookup_synset("appliance", "n", 2);
my $oven =
$wn->lookup_synset("oven", "n", 1);
my $electrical =
$wn->lookup_synset("electrical", "a", 2);
my $prepare =
$wn->lookup_synset("prepare", "v", 2);
my $kitchen_ap =
$wn->lookup_synset("kitchen_appliance",
"n", 1);
my $bake =
$wn->lookup_synset("bake", "v", 1);

Allow writing to the databases
$wn->unlock;

Create the pointers
$appliance->add_attributes($electrical);
$kitchen_ap->add_functions($prepare);
$oven->add_functions($bake);

Write the entries
$appliance->write;
$oven->write;
$kitchen_ap->write;

$wn->lock;

393

It is important to note that while a verb function like
“prepare” does not immediately seem to connote “food
preparation,” this synset in fact refers to exactly that; the
complete synset contains the words “cook, fix, ready, make,
prepare.” Remember that Wordnet already includes many
concepts that you might be inclined to add yourself.

We could continue
adding pointers like part meronyms to “oven” for “door,”
“window,” “dial,” and “rack,” since the “oven” synset doesn’t
already have them, and they are typical of ovens. For now,
let’s see how the game would turn out with the new lexicon
entries:

1> Are you an animal?
No.

2> Are you a plant?
No.

3> Are you an object?
Yes.

4> Are you food?
No.

5> Are you electrical?
Yes.

6> Are you an appliance?
Yes.

7> Can you cook?
Yes.

8> Do you bake?
Yes.

9> Are you an oven?
You guessed it!

Granted, we supplied all of that information to Wordnet
beforehand. But as this simple application shows, the
flexibility of

394

Lingua::Wordnet allows it to grow in usefulness and power
the more it is expanded. One more example of this program
will illustrate the point. Let’s finish our lexical feast by
adding synset pointers for “oreo.” This time we will add
meronyms to describe the ingredients of my favorite cookie,
and add a hypernym for “dessert.” (A synset can have
multiple
hypernyms. In fact, adding proper hypernyms to a synset can
dramatically increase the inherited properties of that synset.)

my $oreo =
$wn->lookup_synset("oreo", "n", 1);
my $cream =
$wn->lookup_synset("cream", "n", 2);
my $sugar =
$wn->lookup_synset("sugar", "n", 1);
my $cake =
$wn->lookup_synset("cake", "n", 2);
my $chocolate =
$wn->lookup_synset("chocolate", "a", 1);
my $cocoa =
$wn->lookup_synset("cocoa", "n", 2);
my $dessert = $wn->

lookup_synset("dessert", "n", 1);
my $filling =
$wn->lookup_synset("filling", "n", 3);
my $yummy =
$wn->lookup_synset("yummy", "a", 1);
my $nourish =
$wn->lookup_synset("nourish", "v", 2);

$oreo->add_attributes($yummy);
$oreo->add_part_meronyms($cream);
$oreo->add_part_meronyms($filling);
$oreo->add_stuff_meronyms($cocoa);
$orem->add_hypernym($dessert);

395

$oreo->add_attributes($chocolate);
$orem->add_attributes($yummy);
Not quite concise
$oreo->add_functions($nourish);
A big stretch

Since the 10questions.pl program performs meronym
lookups with the all_meronyms
method, both part and stuff meronyms will be included, and
generalize well enough to answer the “Do you have …” and
“Are you made from …” questions.

396

Other Useful Functions

In addition to the hierarchical organization of
synsets,
Lingua::Wordnet has other useful methods, including basic
morphology, antonym lookups, and verb entailments:

Prints "heavy"
$word = $wn->morph("heaviest", "a");
print "$word\n";

Prints "light%1"
$heavy = $wn->lookup_synset($word, "a", 1);
print (($heavy->antonyms)[0]->words);

Prints "buy%0purchase%0"
$shop = $wn->lookup_synset("shop", "v", 1);
print (($shop->entailment)[0]->words);

A makeshift thesaurus ... er,
"similar-thingies-aurus"
@coordinates =
$analysis->coordinates($thesaurus);

397

What’s Next?

The examples here demonstrate functionality, not philosophy.
If lexical processing interests you, I highly recommend
reading all the materials on the Wordnet web site, and
especially the “5 Papers” document. The researchers at
Princeton have given the Open Source community a
comprehensive tool that can greatly benefit AI, search
technology, and linguistic applications. It was my motivation
for
Lingua::Wordnet that any weaknesses resulting from static
data could be remedied to the user’s specification. Lastly, if
you significantly expand the Wordnet databases, please let me
know. I plan on setting up a repository of expanded files in
the near future.

Wordnet can be obtained from
http://www.cogsci.princeton.edu/~wn/, and the
Lingua::Wordnet module is on CPAN.

Example 18-1. 10_questions.pl
#!/usr/bin/perl -w

use

Lingua::Wordnet;
use Lingua::Wordnet::Analysis;
use strict;

my $wn = new Lingua::Wordnet;
my $analysis = new
Lingua::Wordnet::Analysis;

398

my $password =
$wn->lookup_synset("oven","n",1);
my (@

hypernyms,@attributes,@meronyms,@functions,$i);
@hypernyms =
$analysis->traverse("hypernyms",$password);
for (@hypernyms) {

push
(@attributes,$_->attributes,$password->attributes);

push
(@meronyms,$_->all_meronyms,$password->all_meronyms);

push
(@functions,$_->functions,$password->functions);
}

for my $i (1 .. 10) {
print "$i> ";
chomp ($_ = <STDIN>);

Are you a(n) NOUN?
if (/are\syou\san*\s(.+)\s*\?/i) {

my $noun = $1; $noun =~ s/\s+$//;
$noun =~ s/\s/_/g;

my @

synsets = $wn->lookup_synset($noun,"n");
my $found = 0; my $synset;
foreach $synset (@synsets) {

if ($synset->offset eq
$password->offset) {

print " You guessed it!\n";
exit;

}
if

($analysis->match($synset,@hypernyms)) {
print " Yes.\n";
$found = 1;

399

last;
}

}
print " No.\n" unless ($found);

Are you ADJECTIVE?
} elsif (/are\syou\s(.+)\s*\?/i) {

my $adj = $1; $adj =~ s/\s+$//;
$adj =~ s/\s/_/g;

my @synsets =
$wn->lookup_synset($adj,"a");

my $found = 0; my $synset;
foreach $synset (@synsets) {

if
($analysis->match($synset,@attributes)) {

print " Yes.\n";
$found = 1;
last;

}
}
print " No.\n" unless ($found);

Do you have (a(n)) NOUN? Are you
made of/from NOUN?

} elsif ((/
do\syou\shave\s(?:an*\s)(.+)\s*\?/i) ||

(/are\syou\smade\s(?:of|from)\s*(.+)\s*\?/
i)) {

my $noun = $1; $noun =~ s/\s+$//;
$noun =~ s/\s/_/g;

my @synsets =
$wn->lookup_synset($noun,"n");

my $found = 0; my $synset;
foreach $synset (@synsets) {

if
($analysis->match($synset,@meronyms)) {

print " Yes.\n";

400

$found = 1;
last;

}
}
print " No.\n" unless ($found);

} elsif (/(?:do|can)\syou\s(.+)\s*\?/
i) {

my $verb = $1; $verb =~ s/\s+$//;
$verb =~ s/\s/_/g;

my @synsets =
$wn->lookup_synset($verb,"v");

my $found = 0; my $synset;
foreach $synset (@synsets) {

if
($analysis->match($synset,@functions)) {

print " Yes.\n";
$found = 1;
last;

}
}
print " No.\n" unless ($found);

}
}

print " Sorry, you blew it.\n";

401

Chapter 19. Parsing Natural
Language

Dan Brian

I See a Pattern Developing

Regular expressions are one of the triumphs of computer
science. While often intimidating to beginning programmers,
the ability to capture complex patterns of text in succinct
representations gives developers one of the most powerful
tools at their disposal. Perl’s
pattern matching abilities are among the most advanced of
any language, and certainly rank among those features that
have served to make it one of the most popular languages
ever created.

However, regexes can’t do everything. When the patterns in
your data are complex, even Perl’s regular expressions fall
short.
Natural languages, like English, aren’t amenable to easy
pattern matching: if you want to find sentences that express a
particular sentiment, you need to first understand the
grammar of the sentence, and regular expressions aren’t
sufficient unless you throw a little intelligence into the mix.
In this article, I’ll show how to do that.

We’ll make it possible to write code like this:
create an array of everything cool
while ($sentence =~

402

/\G($something_that_rocks)/g) {
push (@stuff_that_rocks, $1);

}

Our notion of “what’s cool” can depend not just on simple
character patterns, but upon the words in a sentence, and in
particular their role in the sentence and relationships to one
another. In brief, this article explores the application of
regular expressions to grammar. Note that I am not suggesting
another syntax for regular expressions. From a Perl hacker’s
perspective, what I demonstrate here is an interesting
application of Perl’s overloading ability, and its usefulness
when applied to a domain that’s tough to parse:
natural language.

Before explaining the program, we’ll explore the intelligence
that we’ll use to parse natural language: the
Link Grammar.

403

Link Grammar

Many approaches to NLP (
Natural Language
Processing) have been pursued in the past few decades, but
few are as popular as the
Link Grammar parser, by Drs. Daniel Sleator, Davy
Temperley, and John Lafferty. Rather than examine the basic
context of a word within a sentence, the Link Parser is based
on a model that words within a text form “links” with one
another.

These links are used not only to identify parts of speech
(nouns, verbs, and so on), but also to describe in detail the
function of that word within the sentence. It’s one thing to
know that a phrase consists of two adjectives and two
nouns—but what you really want to know is which adjective
modifies which noun. The Link Grammar does that for you.

The Link Grammar is based on a characteristic that its
creators call planarity. Planarity describes a phenomenon
present in most natural languages, which is that if you draw
arcs between related words in a sentence (for instance,
between an adjective and the noun it modifies), your sentence
is ungrammatical if arcs cross one another, and grammatical if
they don’t. This is an oversimplification, but it’ll serve for our
purposes.

In Link Grammar vernacular, a linkage is a single successful
parse of a sentence: a set of links in which none of the
connecting arcs cross. A sample parse of the sentence A

404

camel is a horse designed by a
committee is depicted in Figure 19-1.

Figure 19-1. A sample parse, with links

In Link Parser output, the primary parts of speech are labeled
with .n and .v to indicate that these words are nouns and
verbs, respectively. The labels of the links between words
indicate the type of link. For example, the J connector in
Figure 19-1 indicates a connection between a preposition and
its object; in this case, the verb designed is connected to
by a committee, identifying a prepositional phrase. The
following list summarizes the links used above and elsewhere
in this article:

A

Connects pre-noun (“attributive”) adjectives to
subsequent nouns: “The BIG BLACK UGLY DOG
chased me.”

AN

Connects noun-modifiers to subsequent nouns: “The TAX
PROPOSAL was rejected.”

C

Connects conjunctions and some verbs to subjects of
clauses: “He SAID HE was sorry.”

405

D

Connects determiners to nouns: “THE DOG chased A
CAT and SOME BIRDS.”

G

Connects proper noun words together in series:
“GEORGE HERBERT WALKER BUSH is here.”

J

Connects prepositions with their objects: “The man WITH
the HAT is here.”

M

Connects nouns to various kinds of post-noun modifiers
(prepositional phrases, participle modifiers, and so on):
“The MAN WITH the hat.”

O

Connects transitive verbs to their direct or indirect
objects: “I GAVE HIM the BOOK.”

S

Connects subject nouns to finite verbs: “The DOG
CHASED the cat.”

W

Connects subjects of main clauses to the beginning of the
sentence, or the “wall.”

406

X

Connects punctuation symbols to words or each other.

The Link
Parser 4.0 provides 107 primary types of links (indicated by
the uppercase letters), with many additional subtypes further
detailing the relationship of words (indicated by the lowercase
characters). While the accuracy of the parser is remarkable, it
is tailored to newspaper-style grammar, and will fail with
more conversational statements.

The inner workings of the parser are fairly complex, but they
use principles that might be familiar. A
link grammar considers a sentence to be proper if it satisfies
three conditions:

1. Planarity: The link arcs above words do not cross.

2. Connectivity: The links connect all of the words
together.

3. Satisfaction: Individual linking requirements of each
word are satisfied.

The parser uses a dictionary that contains the linking
requirements of each word. For example, the words the,
chased, dog, and cat are shown in Figure 19-2 with
their linking requirements. The D within the box above the
indicates that another word must connect with a D to its right
in order for the link requirements to be satisfied for that word.

407

Figure 19-2. Some linking requirements

For these words to form a sentence, the
parser must find them in an order that satisfies the above three
requirements. When a word has more than one row of
connectors, only one side (left or right) of each row may be
connected (e.g., cat has a row D and a row O/S, so D must
be connected along with either O or S). When only one row
exists on a single level (e.g., cat has D), one connector must
be linked. The meaning of each
link used here is indicated above. Thus, the arrangement in
Figure 19-3 is correct: The cat chased the dog.

Figure 19-3. Linking requirements and inferred links

The unused connectors are grayed out in Figure 19-3. Since
our second the connects to dog as a determiner, chased
actually spans the length, connecting to dog. You can
mentally shuffle these words to see that cat and dog could
be swapped, and likely would be if our program had any
semantic knowledge. Moving other words around, however,
will break the
link criterion and deem the parse ungrammatical.

All of these requirements are stored in the Link Parser’s
dictionary files. The files use a “link dictionary language”
to list the requirements for each word, and are themselves an
interesting study in

408

pattern representation. A highly optimized custom algorithm
processes the data in these files, analyzing the possible links.
This algorithm is yet another fascinating study in and of itself.
(For those interested, the algorithm is similar to the dynamic
algorithm for triangulation of a convex polygon, and has a
running time of O(N3). The general theory, optimizations, and
formalisms are all detailed in the researchers’ papers. Frankly,
it’s remarkable that it runs as fast as it does given the
computation required.)

Because the researchers at CMU had the generosity and
intelligence to make their project research open to developers
like us, we can examine the ingenuity of their methods. We
can use and modify their well-conceived API. We can extend
and combine the functionality of their system with that of
other language
processing technologies. And, of course, Perl makes it all
possible, practical, and inevitable.

409

Lingua::LinkParser

The
Link Grammar parser itself is a complex piece of software
implementing a complex theory of language. The Perl module
Lingua::LinkParser (available on CPAN) directly embeds the
parser API, providing an object-oriented interface that you
can use from your Perl programs. Objects may be created to
represent sentences, linkages, links, individual words, and the
parser itself. As an example, consider the following code:

use Lingua::LinkParser;
use strict;

my $parser = new
Lingua::LinkParser; # Create
the parser
my $text = "Moses supposes his toses are
roses.";

my $sentence =
$parser->create_sentence($text); # Parse
the sentence
my $linkage =
$sentence->linkage(1); # Use the
first linkage

print
$parser->get_diagram($linkage);
Print it out

This code outputs:

+-------------------------Xp------------------------+
|

410

+------Ce------+ |
+---Wd--+---Ss---+

+--Dmc--+--Spx--+--Opt-+ |
| | | |

| | | |
LEFT-WALL Moses supposes.v his toses[!].n
are.v roses.n .

Without delving into all the details, this diagram reveals some
interesting things about the parser. First, supposes and
are have v labels, indicating that they’re verbs. The word
roses is labeled n for noun, as is toses. The [!] tag
next to toses indicates that the parser isn’t familiar with
this word, which usually means that it isn’t a word at all. So
even with a word it’s never seen before, the
Link Grammar can identify the part of speech.

The diagrams help us understand the link grammar, but to use
the information within a program requires access to the links
themselves. Continuing with the program above, we will
extract from the $linkage object an array of $word
objects. These will spring into existence, along with a links
method to return an array of $link objects. Well, just
watch:

my @words = $linkage->words;
foreach my $word (@words) {

print "\"", $word->text, "\"\n";
foreach my $link ($word->links) {

print " link type '",
$link->linklabel, "' to word '",
$link->linkword, "'\n";

}
}

An excerpt from the output:

411

"Moses"
link type 'Wd' to word '0:LEFT-WALL'
link type 'Ss' to word '2:supposes.v'

"supposes.v"

link type 'Ss' to word '1:Moses'

link type 'Ce' to word '4:toses[!]'
"his"

link type 'Dmc' to word '4:toses[!]'
"toses[!]"

link type 'Ce' to word '2:supposes.v'
link type 'Dmc' to word '3:his'
link type 'Spx' to word '5:are.v'

Knowing the part of speech and linkages of each word allows
us to use grammatical constructs in a program. Let’s write
one.

412

Irregular Regular Expressions,
Overloaded

Returning to our original problem, how can we expand our
pattern matches to handle grammatical constructs rather than
simple combinations of metacharacters? We have two tools:
the Link
Parser just described, and Perl’s overloading, which allows us
to redefine how Perl’s operators operate. In particular, we’re
going to redefine how Perl processes strings.

Normally, operator
overloading is used to extend the definition of common
operators, like +, so that you can say things like $madness
= $vanhalen_mp3 + $vivaldi_mp3 and overlay
two MP3s as a result.

For our purposes, we overload
double-quote processing in the
Lingua::LinkParser::Linkage package so that when you print
a linkage object, it displays a linkage diagram. Furthermore,
to pattern match the data, we need a format that is more easily
parsed, but still just a single string. Something like the
following would be nice, listing the words with their links on
each side in an ordered, linear format:

(Wd:0:LEFT-WALL "Moses"
Ss:2:supposes.v) \
(Ss:1:Moses "supposes.v"
Ce:4:toses[!]) \
("his"
Dmc:4:toses[!]) \

413

(Ce:2:supposes Dmc:3:his "toses[!]"
Spx:5:are.v) \

We can get this type of output with print $linkage by
modifying the file Linkage/Linkage.pm and changing the
overload behavior. Now, printing the object $linkage
from the previous examples will output the text shown above,
in one long string.

Finally, we can pattern match that text to find what we’re
looking for. In this case, we’re going to look for the Ss link
from Moses, indicating a connector to the verb for our
subject:

$Moses = '"Moses" ';
$does_something = 'Ss:\d+:(\w+)\.v';
$action_by_moses = "$Moses$does_something";

if ($linkage =~ /$action_by_moses/o) {
print "What does Moses do? He $1.\n";

}

This prints What does Moses do? He supposes.
We could take the idea further by overloading the right side
of our regular expressions and getting them to return word
objects, but we won’t.

Peeking under the hood, here’s how the overloading is
implemented.

use overload q("") => "new_as_string";

sub new_as_string {
my $linkage = shift;
my $return = '';
my $i = 0;
foreach my $word ($linkage->words) {

414

my ($before,$after) = '';
foreach my $

link ($word->links) {
my $position =

$link->linkposition;
my $text = $link->linkword;

my $type =
$link->linklabel;

if ($position < $i) {
$before .=

"$type:$position:$text ";
} elsif ($position > $i) {

$after .=
"$type:$position:$text ";

}
}
$return .= "(" . $before . " \"" .

$word->text . "\" " .
$after . ")" ;

$i++;
}

"(" . $return .")";
}

415

What Sucks? What Rocks?

The “Operating System Sucks-Rules-O-Meter” by Don
Marti (http://srom.zgp.org/) inspired Jon Orwant’s
“What Languages Suck” program, later adopted by Steve
Lidie (http://www.lehigh.edu/~sol0/rules.html). It blesses all
of our lives by counting the web sites that state visual
basic sucks, perl rules, and so on. The numbers
are then plotted on a graph, giving us a crude and comical
sampling of the Net’s public opinions about languages.

What if someone wanted to perform a search that would
produce lists of anything that people think sucks or stinks,
and rules or rocks? A quick web search for rocks reveals
plenty of geology links, and news headlines like Senate
confrontation rocks Capitol Hill. We just
want those phrases that state that something rocks, so we need
to analyze the grammar of the search results.

First, we need to determine the syntax for the data we want to
collect. We use the first script listed in this article to
experiment, or we could think through the grammar a bit: the
rock we are looking for is not only a verb, but a verb
without an object. This would serve to differentiate our
meaning from the two others mentioned above.

+------------Xp------------+
+--Wd--+--Ss-+---Op---+ |
| | | | |

LEFT-WALL he studies.v rocks.n .

Note that this diagram displays only one linkage, but there
might be many. In the above output from our script, He

416

studies rocks has been parsed and labeled. The subject
of the sentence (he) is shown with an Ss label, connecting a
singular noun to the singular verb form (studies). This
will be the connector we are looking for in our rocks
phrase, but here it occurs with the wrong verb. It has
identified rocks as a noun here, and linked rocks to
studies with an Op connector. The Link
Parser documentation tells us that O connects transitive verbs
to direct or indirect objects, and so the p subscript reflects the
plurality of the object, rocks.

+--------------------Xp-------------------+
+-------Wd------+

+-----Os----+ |
| +---Ds---+----Ss---+

+--Ds-+ |
| | | | |

| |
LEFT-WALL the earthquake.n rocks.v the
city.n .

This example recognizes the verb usage of rocks as an
action being performed by earthquake. Do earthquakes
rock? Perhaps, but not in the sense we are looking for, since
rocks has a connector to the city as a singular object
(indicated by Os). Objects suck, at least for our purposes.
Let’s try another.

+-----------------------Xp----------------------+

+----------------Wd---------------+
|

|
+------------D*u-----------+ |

417

| |
+----------AN---------+ |

| | |
+-----AN-----+---Ss---+ |

| | | |
| | |
LEFT-WALL the Perl programming.n
language.n rocks.v !

Again, rocks here is correctly recognized as a verb, and
again, it is connected via Ss to a subject. But this time
rocks is not a transitive verb, since it has no objects. The
grammar of this sentence would satisfy our requirements for
rocks. So now that we have the correct usage, how do we
extract the subject? We don’t want to use just language to
compile our statistics—we want Perl programming
language. To find a solution, take note of the AN
connectors that span these words. The
Link Grammar reference identifies this link type as
connecting modifiers to nouns. In the case above, both Perl
and programming are modifiers for language. We can
plan at the outset to always look for modifier links to our
subject, and include them in the data we extract from the
sentence. And there’s more that we’ll need, as you’ll see.

418

What Sucks, Regex Style

Once we have determined the general grammatical elements
for which to search, we can write a program that finds those
elements in a given text. Since we overloaded this object’s
string handling to return the linkage information in a linear
format, we can now formulate a
regular expression that represents the grammar we want to
match.

$what_rocks = 'S[s|p]' . #
Singular and plural subject

'(?:[\w*]{1,3})*' . # Any
optional subscripts

':(\d+):' . #
Number of the word

'(\w+(?:\.\w)*)'; # And
save the word itself

$other_stuff = '[^\)]+'; #
Junk, within the parentheses
$rocks = '"(rocks*)\.v"'; #
Singular and plural verbs

$

pattern = "$what_rocks $other_stuff
$rocks";
if ($linkage =~ /$pattern/mx) {

print "$2 rocks.\n";
}

Our $what_rocks portion of this pattern looks for an S
link from rocks, and stores the word itself in $2, with
optional tags like .n after the word. (We will use the stored

419

word number in a moment.) This regular expression works,
but it works for every verb sense of rocks that has a subject,
including the earthquake rocks the city. We
need to limit our pattern to match only those usages of
rocks that have no objects at all. Here, we add a pattern
after $rocks to be sure that no O connectors exist for rocks:

match anything BUT an 'O' link, to the
end parenthesis
$no_objects =
'[^(?:O.{1,3}:\d+:\w+(?:\.\w)*)]*\)';
$pattern = "$what_rocks $other_stuff
$rocks $no_objects";

With these changes, the pattern only matches the verb
rocks when it has no objects. But one problem remains:
when we use our regex with proper nouns like Pat
Metheny rocks or noun modifiers like the Perl
programming language rocks, we get only one
word as the thing that rocks. Our pattern is getting a bit
messy, so rather than add to it, we’ll add a statement within
the if block to scoop up the rest of the names. Proper nouns
are strung together with G connectors, and noun modifiers
with AN.

if ($linkage =~ /$pattern/mx) {
$wordobj = $linkage->word($1); # the

stored word number
$wordtxt = $2;
$verb = $3;
@wordlist = ();
foreach $link ($wordobj->links) { #

process array of links
if ($link->linklabel =~ /^G|AN/) {

$wordlist[$link->linkposition] =

420

$link->linkword;
}

}
print join (" ", @wordlist,

$wordtxt), " $verb\n";
}

Note how although we are looking for matches in
$linkage, we are
using a method, $linkage->word, in the next line.
(Seeing objects used in both scalar and dereferenced context
may look confusing at first.) Also, we store the words in the
@wordlist array to maintain the order of these words.
When run with sentences provided by the user, this block of
code prints the following:

Enter a sentence> He studies rocks.
Enter a sentence> The earthquake rocks the
city.
Enter a sentence> The Perl programming
language rocks.

-> Perl programming.n language.n rocks
Enter a sentence> Linux rocks!

-> Linux rocks
Enter a sentence> He was telling me why he
thinks that San Francisco rocks.

-> San Francisco rocks

The final listing for this program is at the end of this article,
and includes additional modifications to permit possessive
pronoun inclusions, grouping of possessive proper nouns,
conjunctions, past tense, and attributive adjectives. A
demonstration is shown below.

Enter a sentence> Roland Orzabal's music
rocks.

-> Roland Orzabal 's.p music.n rocks

421

Enter a sentence> Strangelove rolls,
rumbles, and rocks.

-> Strangelove rocks
Enter a sentence> The Perl conference rocked!

-> Perl Conference rocked
Enter a sentence> The shogimogu pyonuki
dancers rock!!!

-> shogimogu[?].a pyonuki[?].a
dancers.n rock

(Thanks to my wife for pointing out all of the
grammar that would not work with my first attempts.)

Although the parser has no clue what the shogimogu and
pyonuki mean (nothing at all, as it happens), it is still able
to identify these as attributive adjectives. Anyone who has
ever used another grammar-based parser will appreciate this
feat.

We could compile literally thousands of patterns to match
various grammatical phenomena, store them in constants
within a module, and end up with a direct regex interface for
analyzing grammar.

422

The What-Sucks-Ometer

Using this framework, the “What languages suck?”
application could be extended to retrieve web links to the
pages resulting from a search engine query for rocks,
rules, sucks, and so on. The text of each page could
then be split into sentences, parsed with the code shown here
to find specific word usages, and graphing the results. I won’t
outline how such a utility would be developed; the
documentation for the LWP and GD modules tells you all you
need to know. If anybody does write it, I suggest having
multiple exclamation points count progressively against the
rocks rating of the subject, rather than for it. We need to
discourage that. Thank you.

Certainly the possible applications of this type of “regex
grammar” extend far beyond the toy application I’ve shown
here. Smart search engines, document categorizers, and
automated response systems all can make use of similar
frontends to
natural language.

423

There’s Lots More Here

The
Link Grammar can hardly be fully described in this article,
and I encourage anyone interested to delve further into the
research in this field. There is lots of room here for continued
innovation, and the parser itself has much more to offer than
what’s been described here.

424

References

Link Grammar
web site: http://link.cs.cmu.edu/link

Daniel
Sleator and Davy
Temperley, Parsing English with a Link Grammar, Third
International Workshop on
Parsing Technologies, August 1993.

Daniel Sleator and Davy Temperley, Parsing English with a
Link Grammar, Carnegie Mellon University Computer
Science technical report CMU-CS-91-196, October 1991.

Dennis
Grinberg, John
Lafferty, and Daniel Sleator, A robust parsing algorithm for
link grammars, Carnegie Mellon University Computer
Science technical report CMU-CS-95-125.

425

A Full Lingua::LinkParser Example

The following
code uses Lingua::LinkParser to determine what really sucks:

#!/usr/bin/perl -w
For this to work, the overload parameter
in ::Linkage and
::Sublinkage must point to
"new_as_string".

use Lingua::LinkParser;
use strict;

my $parser = new Lingua::LinkParser;

$parser->opts('disjunct_cost' => 2);
$parser->opts('linkage_limit' => 101);

while (1) {
print "Enter a sentence> ";
my $input = <STDIN>;

my $sentence =
$parser->create_sentence($input);

my $linkage = $sentence->linkage(1);
Computing the union and then using the

last sublinkage permits conjunctions.
$linkage->compute_union;

my $sublinkage =
$linkage->sublinkage($linkage->num_sublinkages);

my $what_rocks = 'S[s|p]' .
Match the link label

'(?:[\w*]{1,2})*'.
Match any optional subscripts

':(\d+):' .

426

Match number of the word
'(\w+(?:\.\w)*)';

Match and save the word itself
my $other_stuff = '[^\)]+';

Match other stuff within parentheses
my $rocks = '\"(rock[s|ed]*).v\"';

match and store verb
my $no_objects = '[^(?:O.{1,2}:' .

don't match objects
'\d+:\w+(?:\.\w)*)]*\)';

my $pattern = "$what_rocks
$other_stuff $rocks $no_objects";

if ($sublinkage =~ /$pattern/mx) {
my $wordobj = $sublinkage->word($1);
my $wordtxt = $2;
my $verb = $3;
my @wordlist = ();

We could put all of the below
functionality in the regex above.

foreach my $link ($wordobj->links) {
Proper nouns, noun modifiers,

pre-noun adjectives
if ($link->linklabel =~ /^G|AN|A/) {

$wordlist[$link->linkposition] =
$link->linkword;

}
Possessive pronouns, via a noun

determiner
if ($link->linklabel =~ /^D[s|m]/) {

my $wword =
$sublinkage->word($link->linkposition);

foreach my $llink ($wword->links) {
if ($llink->linklabel =~ /^YS/) {

$wordlist[$llink->linkposition] =

427

$llink->linkword;

$wordlist[$link->linkposition] =
$link->linkword;

my $wwword =
$sublinkage->word($llink->linkposition);

foreach my $lllink
($wwword->links) {

if ($lllink->linklabel =~
/^G|AN/) {

$wordlist[$lllink->linkposition] =
$lllink->linkword;

}
}

}
}

}
}
print " -> ", join (" ", @wordlist,

$wordtxt);
}

}

428

Chapter 20. Word Morphology

Khurshid Ahmad

Duncan C. White
Natural Language Processing (NLP) is a branch of Artificial
Intelligence involving computer programs that understand or
generate documents written in “natural language”—that is,
any human language, like English, Hebrew, Swahili, or
Xhosa. Creating programs that exhibit full understanding of
natural language has long been a goal of AI. Some typical
NLP applications might be:

▪ Word assistance to users. For example, a human might
ask: “What is the adverb form of ‘accident’?,” and the
computer might reply: “‘accidentally’ is probably the
word you want, although 3% of users spell it
‘accidently’.”

▪ A smarter web search engine that lets you search for a
keyword such as compute to retrieve all documents
that contain that keyword, or conceptually related
keywords like computationally.

▪ A smart document categorizer that reads a series of
documents and sorts them into different categories based
upon disproportionate use of particular keywords (“This
document appears to be about nuclear physics, because it
mentions keywords like atom and nucleus far more
than an average document would”).

429

▪ A smart document summarizer that summarizes one or
more documents into a more compact form and presents
a digest (see “Summarizing Web Pages with
HTML::Summary” in Web, Graphics, and Perl/Tk: Best
of the Perl Journal).

All of these programs require some understanding of natural
language. For perfect summarization or perfect translation,
we’d need total understanding, and that’s far too difficult
because of the intricacies of human communication.

Fortunately, we don’t need complete language understanding
to obtain some utility. Even a little knowledge of language is
useful for some applications, and in this spirit, let’s start at the
lower levels and pick one small part of natural language that
we can process relatively easily: the structure of single words.

Morphology: Word Form and
Structure

Natural languages like English often express shades of
meaning by changing the form of a single word, such as by
adding a prefix or a suffix to an existing word. Adding s to
computer changes the meaning from “a single computer”
to “multiple computers”: a noun-to-noun change. We can also
move between
nouns, verbs, and adjectives with similarly simple changes
(move becomes movement). The study of the form of
words is called morphology.

This article shows how to implement a program that uses
morphological rules to generate many related words from one
given word. This will be useful in search tools, because when

430

the user searches for computer, the search engine can also
find documents with related words like compute,
computing, and computationally.

So let’s look at four common morphological processes and
how we might model them in Perl. The first is called
inflection, in which a word is transformed to indicate the
tense (for example, look becomes looks, looking,
and looked) or the number (for example, husky becomes
huskies).

As soon as we start thinking about such transformations from
a Perl perspective, we can’t help but think of regular
expressions. If you have the verb look and you want to
generate the present participle (looking), this regular
expression springs to mind:

s/$/ing/ # add "ing" to $_

In this spirit, Table 20-1 shows some typical
inflections that pluralize nouns, and Table 20-2 shows some
tense inflections on verbs.

Table 20-1. Some rules for pluralizing English nouns

Rule Singular Plural Perl
implementation

Regular dog, cat,
computer

dogs, cats,
computers s/$/s/

Ending in s, x, z,
sh, ch gas, tax, wish gases, taxes,

wishes s/$/es/

431

Rule Singular Plural Perl
implementation

Ending in f calf, elf, dwarf calves, elves,
dwarves s/f$/ves/

Ending in o
bamboo, folio

domino,
torpedo

bamboos, folios

dominoes,
torpedos

s/o$/os/

s/o$/oes/

Ending in y
sky, husky

decoy, donkey

skies, huskies

decoys, donkeys

s/y$/ies/

s/y$/ys/

Ending in sis crisis, analysis crises, analyses s/sis$/ses/

Ending in us
radius, genius

omnibus,
genius

radii, genii

omnibuses,
geniuses

s/us$/i/

s/us$/uses

Irregular man men s/an$/en/

Table 20-2. Some rules for inflecting English verbs

432

Verb Present
tense

Present
participle

Past
tense

Perl
implementations

look looks looking looked s/$/
s/

s/$/
ing/

s/$/ed/

walk walks walking walked s/$/
s/

s/$/
ing/

s/$/ed/

decide decides deciding decided s/$/
s/

s/e$/
ing/

s/e$/ed/

Regular
verbs

watch watches watching walked s/$/
es/

s/$/
ing/

s/$/ed/

see sees seeing saw s/$/
s/

s/$/
ing/

s/ee$/
aw/

flee flees fleeing fled s/$/
s/

s/$/
ing/

s/ee$/
ed/

come comes coming came s/$/
s/

s/$/
ing/

s/ome$/
ame/

go goes going went s/$/
es/

s/$/
ing/

s/go$/
went/

Irregular
verbs

take takes taking took s/$/
s/

s/e$/
ing/

s/take$/
took/

433

Unfortunately, English has many irregularities, ranging from
whether or not to suppress a trailing e, up to the impressive
past tense of go: went, with no letters in common!

Sometimes two different rules can apply to a
word, but only one of the inflections is actually correct. Is the
plural form of omnibus really omnibi according to the
s/us$/i/ rule? Or is it actually omnibuses because of
s/us$/uses/? In some cases (geniuses and genii,
syllabuses and syllabi) both inflections are
permitted. How can a program know what to do?

We’ll downgrade our rules to “rules of thumb”—or, as AI
researchers call them, heuristics. We’ll accept that they will
sometimes be wrong, and later we’ll develop a way to filter
out incorrect applications.

The second morphological process is called derivation, and
involves taking a base
word (the stem) and transforming it from one part of speech
into another (for instance, from the verb ignite to the noun
ignition). Table 20-3 shows some typical derivations.

Table 20-3. Examples of derivational morphology

Noun Derivation Class

nation national adjective

nation nationalize verb

Verb Derivation Class

434

Noun Derivation Class

slow slowly adverb

observe observation noun

observe observable adjective

nationalize nationalization noun

develop development noun

Adjective Derivation Class

national nationally adverb

thick thickness noun

Nominalization is an especially important type of
derivation—deriving a noun from a verb or adjective. Let’s
look at one example of derivation in detail—the verb
“observe.” As well as the usual inflectional tenses
(“observing,” etc.), we derive the adjective “observable” and,
by nominalization, the noun “observation,” the plural
inflection “observations,” another adjective, “observational,”
and an adverb, “observationally.”

There are two other major morphological processes in which
words are formed in English: compounding (ear + ache =
earache, work + load = workload) and

435

affixation (dis + arrange = disarrange).
Compounding combines two words; affixation combines a
word with a prefix or suffix. These actions can also be
expressed in regular expressions (s/^/ear/), but for the
purposes of this article we’ll ignore compounding and
affixation.

To summarize, we can transform words by adding certain
prefixes or suffixes to a stem, or by joining two stems
together. Salton (1989) estimated that there are about 75
prefixes and around 250 suffixes in English. Most importantly
for us, Perl regular expressions are perfectly suited to
performing all these transformations.

Now let’s build a set of derivation and inflection rules and
then use these rules to analyze a corpus, a collection of
carefully selected documents. Several large
corpuses, representative of different types of documents, have
been built. A typical representative corpus of everyday
written language is the
British National Corpus. Details about the
BNC research project can be found on the Web at
http://info.ox.ac.uk/bnc/. It is a collection of over 4,000
different documents with around 100 million words in over 6
million sentences. The number of distinct words—the
vocabulary—is a little under 400,000. We’ll use it for the
examples below.

436

Morphological Analysis and Perl

We now present a series of Perl programs performing simple
morphological inflections and derivations on single words.
Our starting point is a series of documents, forming our
corpus. Since we’re working only with single words, we don’t
need to retain the original
word order in the documents. All we need is a list of the
words that appear in the documents, and how many times
each word appears.

Our first step, therefore, is to transform the documents into a
word frequency list that tells us how many distinct word
forms there are, and how many times each form occurs. The
rest of the programs can then operate on the word
frequency lists, which are much smaller and more easily
managed than the documents themselves.

437

Constructing a Word Frequency
List

Our first program, mkfreq, creates a word frequency list
from a set of documents. The only hard part is defining what
constitutes a word. One definition might be a series of
alphanumeric characters; that is, anything not matching
/[\W_]+/.

This regular expression isn’t perfect: it splits abbreviations
like don’t into two words. Let’s live with that, and instead
of calling the things identified by our regular expression
words, we’ll call them tokens. We’ll routinely lowercase all
tokens, since “work” and “Work” shouldn’t be treated as
different words. Here’s mkfreq:

#!/usr/bin/perl
#
mkfreq: take a series of documents and
produce a token

frequency file.

%freq = ();
$tokens = $maxw = 0;
while (<>) {

chomp;
foreach $token (split(/[\W_]+/)) {

next unless $token;
$freq{lc($token)}++;
$tokens++;
$width = length($token);
$maxw = $width if $width > $maxw;

}

438

}
$vocab = keys(%freq);
$format = "%-${maxw}s %s\n";
print "======= Vocabulary: $vocab\n=======
Total tokens: $tokens\n";
printf $format, "Token", "Freq";
foreach $token (sort {$freq{$b} <=>
$freq{$a}} keys(%freq)) {

printf $format, $token, $freq{$token};
}

mkfreq uses a hash to store the
word frequencies, and displays two simple but useful
measures of the linguistic diversity in the documents—the
total number of tokens and the vocabulary. The
frequency list is displayed in descending order of frequency
using a custom sort order. For cryptographic applications, a
knowledge of the most frequent words in the English
language is useful. A tabulation of the most frequent ten
words in the
British National Corpus is shown in Table 20-4.

Table 20-4. The ten most frequent words in the British
National Corpus

Word Frequency

the 6,198,660

of 3,112,676

and 2,695,784

439

Word Frequency

to 2,672,790

a 2,241,128

in 1,996,243

that 1,150,942

it 1,091,584

is 1,004,574

was 924,132

Total 23,088,513

Some observations: Repetitions of these ten words are
responsible for 22.5% of the words in the entire corpus.
They’re all common determiners, conjunctions, pronouns, and
prepositions, carrying no information about the subject of a
document. Most search engines exclude these uninformative
words from their indexes. Excluded words are called
stopwords.

The
frequency list can also help us out by identifying misspelled
words; we’d expect to find uncommon spelling mistakes at
the bottom of our frequency list. Pragmatically, we might
decide to exclude all tokens with a frequency below some

440

threshold (say, one or two occurrences) in order to exclude
many spelling mistakes (and, inevitably, some legitimate
words) from our processing. In the
British National Corpus discussed above, 154,883 tokens
occur exactly once and 49,465 tokens occur exactly twice.
Together, these comprise 204,348 tokens out of the total
vocabulary of 381,807 tokens—53% percent of the
vocabulary occurs less than three times!

Excluding
low-frequency tokens is a simple addition to mkfreq. We
omit that here, but it’s in the version of mkfreq on the web
page for this book (http://www.oreilly.com/catalog/tpj3). We
also omit tokens containing digits.

441

Morphological Inflections and
Derivations

Some
derivation rules apply only to particular
word categories—you wouldn’t try to find the plural of a
verb. However, there’s no algorithmic way of identifying
whether an English
word is a verb or noun. No rules or even heuristics are
possible.

Ideally, we’d have some way to take a
word and find out which category it belonged to. However,
this would require a knowledge base containing every base
word from the corpus. Constructing and maintaining such a
knowledge base would be a major undertaking.

So, let’s turn the problem on its head: how far can we get with
no knowledge base whatever? Could we, in fact, make
reasonably accurate derivations based only upon our corpus?
If we have no knowledge of
word categories, then we must start by
applying all derivation rules to all tokens in the corpus, and
then see if there’s any way of eliminating the duds.

442

Representing a Single Rule

A rule is basically an s/// regular expression. However, we
need to store a collection of rules in an array and apply them
all to a token. Having decided to ignore affixation and
compounding, if we look back to Tables Table 20-1 and
Table 20-2, we notice that all our
rules for inflection and
derivation are of the form s/ending$/suffix/.

This suggests that we can represent each rule as an
ending-suffix pair with the meaning:

If token ends with ending, replace the ending part of
token with suffix.

Given this, we could write a function that attempts to apply a
rule pair (ending, suffix) to a given token, returning either the
derived token or the empty string (if the token does not end in
ending). This subroutine, derive, is shown below.

sub derive { # Make a
single derivation

my ($t, $r, $a) = @_;
if ($r) {

return "" unless $t =~ /.$r$/;
$t =~ s/$r$//;

}
return "ta";

}

We embedded this into a test harness that we named
applyruletotoken, which, at its core, is simply this:

443

my $d = derive(@ARGV);
print "Derivation is '$d'\n" if $d;
print "No derivation\n" unless $d;

We can now perform a few simple tests, shown in Table 20-5.

Table 20-5. Commands and associated responses

Command Response

applyruletotoken look ′ ′ ing Derivation is looking

applyruletotoken look ′s′ sing No derivation

applyruletotoken take ‘e’ ing Derivation is taking

444

Representing Many Rules

The next step is to figure out how to represent all the
derivation rules so that we can apply all of them to each token
and determine which succeed. For convenience we’ll collapse
our rule pair (ending, suffix) into a single string:
-ending+suffix, or just +suffix if ending was empty. Below,
we see the function setuprules, which creates an array of
rules @rule and then processes it into an array of
removal-strings @remove and an array of addition-strings
@add. Only a few rules are shown, although we routinely use
many more.

Set up the derivation rules and
processed forms.
sub setupRules {

my ($r, $a);
@rule = (# A rule is a disguised

pair of the form -R+A or +A
"+s", "+es", "-us+i",

"-is+es", # singular -> plural
noun

"+ion", "+tion", "+sion",
"-te+tion", # verb -> noun

"-ify+ification", "+ment",
"+ness", "+fulness", "+ful", "+ic",

"+al", # noun -> adjective
"-e+ing", "-s+ssing", "+ing",

"+ed", # verb -> tense forms
"+ly"

); #
adjective -> adverb

@add = @remove = ();
foreach (@rule) {

445

($r, $a) = ($1, $2) if
/^-(\w+)\+(\w+)$/;

($r, $a) = ("", $1) if
/^\+(\w+)$/;

push(@remove, $r);
push(@add, $a);

}
}

We had to make a few small changes to derive, and our
new version is shown below. Whenever it finds a valid
derivation, it calls handlederivation, providing the
token, the rule, and the derived token.

Our updated derive(), which now calls
handlederivation()
sub derive {

my ($t) = @_;
my ($i, $a, $r, $d);

for ($i = 0; $i < @add; $i++) {
$a = $add[$i];
$r = $remove[$i];
$d = $t;
if ($r) {

next unless $t =~ /.$r$/;
$d =~ s/$r$//;

}
$d = "$d$a";

handlederivation($t, $rule[$i],
$d);

}
}

sub handlederivation {
my ($token, $rule, $derivation) = @_;
print "$token\t$rule\t$derivation\n";

}

446

We embedded these subroutines into a test harness called
applyallrules, whose heart is simply this:

setuprules();
derive(@ARGV);

A test such as applyallrules look generates the
following output:

look +s looks
look +es lookes
look +ion lookion
look +tion looktion
look +sion looksion
look +ment lookment
look +ness lookness
look +fulness lookfulness
look +ful lookful
look +ic lookic
look +al lookal
look +ing looking
look +ed looked
look +ly lookly

As we would expect, this generates some good derivations
(looks, looking, looked) but the majority of the derivations are
not real English words.

447

Telling Good from Bad

We need some way to distinguish the real English words from
the bogus, and this is the point at which an English
word knowledge base could be used. We could use an
external wordlist such as the Unix dictionary /usr/dict/words,
rejecting any
derivation that doesn’t appear, but
many uncommon words (and even some common ones) aren’t
included. Augmenting a wordlist with a large collection of
specialized words is another major endeavor.

448

The Key Insight!

Fortunately, we have another wordlist available that is a
source of exactly the specialized words that we need—the
frequency list derived from the corpus! Using this insight, we
propose the following method:

▪ Take an existing token in the frequency list.

▪ Apply all derivation
rules to that token as above.

▪ Reject any derivation that is not itself present in the
frequency list.

449

Implementing It

Our new system, filterallrules, is just
applyallrules with two changes: the
readfreqfile subroutine shown below reads a frequency
list into %freq, and derive calls handlederivation
only if the
word is in the frequency list: handlederivation($t,
$rule[$i], $d) if $freq{$d}.

sub readfreqfile { # Read the
frequency list

my ($filename) = @_;
my ($line, $

word, $count);

open (IN, $filename) || die "can't
open $filename\n";

%freq = ();
while ($line = <IN>) {

last unless $line =~ m/^=======/;
chomp $line;
$totaltokens = $1 if $line =~ m/=

Total tokens:\s+(\d+)/;
$vocab = $1 if $line =~ m/=

Vocabulary:\s+(\d+)/;
}
while ($line = <IN>) {

chomp $line;
next if $line =~ /^\d/;
($

word, $count) = split(/\s+/, $line);
$freq{$

450

word} = $count;
}
close IN;

}

Applying this to look with a
frequency file derived from the
British National Corpus now correctly sifts out the true
English words from the duds:

look +s looks
look +ing looking
look +ed looked

These inflections are rather straightforward and obvious.
Consider a more complex example—the derivations of
approximate:

approximate +s
approximates
approximate -te+tion
approximation
approximate -e+ing
approximating
approximate +ly
approximately

This technique is not perfect. There are two main types of
false derivations produced: first, when two completely
unrelated English words happen to match a derivation rule
(for example, if the +s rule is applied to asses, we get
assess). There are surprisingly few cases of this type,
however, because English has strong morphological
constraints.

The second and more common type of false derivation arises
from specialized terms, proper names, foreign words, and

451

spelling mistakes in our corpus. For example, the electrical
term AC is lowercased to ac and then is used to generate
seemingly related words such as aced and action. This is
inevitable without deeper knowledge about the words we’re
processing.

452

Applying the Derivation Process to
All Tokens

The final step is to apply this derivation process not just to
one token, but to all tokens within the corpus, and to display
the results in a pleasing format. To apply the derivation rules
to all tokens, we define a new subroutine called
deriveall that iterates over all tokens:

Call derive() for every token in the
frequency table
sub deriveAll {

my ($t);
%b2d = ();
foreach $t (sort(keys(%freq))) {

derive($t);
}

}

To tabulate the results, we redefine handlederivation
as shown below. The successive calls to
handlederivation now build a hash called %b2d
(base-to-derivations) that maps each base token to an array of
all of its derivations. We use references so that our hash can
have many values for each key:

sub handlederivation {
my ($token, $rule, $

derivation) = @_;
my ($ref);
$ref = $b2d{$token};

$ref = $b2d{$token} = [] unless
defined $ref;

453

push(@$ref, $derivation);
}

Once deriveall completes, the entire %b2d hash has
been constructed. To display all the derivations, we define a
subroutine named tabulate, which displays each
word and its
frequency:

Tabulate the results in the %b2d array.
sub tabulate {

my (@b, $base, $list, $t);
@b contains all the base tokens (the

keys of %b2d)
@b = sort(keys(%b2d));

foreach $base (@b) {
$list is a reference to an array

of derivations
$list = $b2d{$base};

$f = $freq{$base};
print "$base/$f\t";

foreach $t (@$list) {
$f = $freq{$t};
print "$t/$f\t";

}
print "\n";

}
}

We assembled a final test harness called tabulate which
did little more than this:

readfreqfile($ARGV[0]);
setuprules();

454

deriveall();
tabulate();

Now the user can receive a summary of the derivations
obtained, where each token is displayed followed by its
frequency. Here is an excerpt of the output:

approximate/39 approximation/258
approximating/2 approximately/35
argument/3 arguments/3
arise/34 arises/19
arising/41
arrange/4 arrangement/17
arranging/1
artificial/10 artificially/1
aspect/2 aspects/4
assess/23 assessment/10
assessing/10 assessed/7
assistant/3 assistants/1
assume/68 assumes/10
assuming/69
assumption/49 assumptions/19
asymptotic/17 asymptotics/8

455

Summary

We have managed to obtain remarkably accurate heuristic
derivations by taking a set of real texts, turning them into a
frequency distribution, applying a series of very simple
addition and substitution rules to every token, and rejecting
derivations that do not appear in the frequency distribution.
Some derivations are wrong, but a high percentage are
accurate. The results are certainly good enough to enable Web
searches for morphologically related words—a significant
improvement over a dumb keyword search.

456

Future Work

To enhance our system, more rules could be added (we
routinely use a much bigger set). More categories of
replacement rules (such as affixation and compounding)
could be added relatively easily.

We could make mkfreq retrieve an arbitrary web page,
discard its HTML tags, and generate its frequency list using
the LWP::Simple module, exactly as shown by Jon Orwant
and Dan
Gruhl in Web, Graphics, and Perl/Tk: Best of the Perl
Journal. A version that does this (webmkfreq) is available
from the web page for this book.

Reading in the entire token frequency file cost a lot of time
and memory, so we implemented it as a DBM file instead.
This significantly speeds up programs that access only a few
frequency elements (such as plural and adverb), but slows
down programs like tabulate that access a very large
number of frequency elements many times. We concluded
that in our era of large high-speed computers and bountiful
memory, reading a token frequency file into memory is
realistic.

We could easily add the ability to include known word lists
such as Unix’s /usr/dict/words, so that we could include
entries for derivations of a base token that happens not to be
present in the corpus.

We have also implemented two small applications called
plural and adverb, which use expanded single-purpose

457

sets of rules to report on the probable plural and adverb forms
(if any) of a given word. It answers the very first question we
posed in this paper:

Adverb form of accident: accidently (3.5%)
accidentally (96.5%)

458

Chapter 21. Smart Matching for
Human Names

Brian Lalonde
A few months ago, I needed to synchronize our groupware’s
address book with our employee database. Since the address
book provided only minimal data about employees, and the
employee database didn’t contain any of the exact fields in
the address book, I had to synchronize them using nothing
more than first and last
names.

This was not as easy as it sounds. It quickly became apparent
that only a small portion of the >3500 records would match
directly. A simple SQL join between imported tables would
not work; the data was too inconsistent. After matching a few
names manually, I became increasingly obsessed with the
problem of matching names, e.g., identifying that “Bill Gates”
was the same person as “William Gates III.”

The problem was tenacious; I would add
processing to catch misspellings or hyphenations, and new
issues would come up. The script quickly grew into a module,
Lingua::EN::MatchNames, and then a second,
Lingua::EN::Nickname, in response to the bizarre and
arbitrary conventions for shortening first names. Many first
name forms have little or no similarity whatsoever: Peggy =
Margaret = Midge, and several can follow an almost endless
mutation path: Peggy > Margaret > Martha > Mary >

459

Maryanne > Anna > Roseanne > Rosalyn > Linda > Melinda
> …).

When the initial versions were complete, my script was able
to match the vast majority of the records on its own (with
greater than 85% certainty per match), and most of the rest
either had no real-world match, or were suggested by the
highest confidence ranking of the script. While this is by no
means a statistically significant sampling, it is extremely
encouraging.

Once the
databases had been matched, I had convenient test data for the
modules, since they could now check their work. This
allowed me to emphasize successful test methods, and
de-emphasize ones that provided too many false positives.

This article will show you how to use these modules, and
explains a little about how they work.

Installing the Modules

Lingua::EN::MatchNames has several dependencies:
Lingua::EN::NameParse,
Lingua::EN::Nickname,
String::Approx,
Text::Metaphone, and
Text::Soundex. Kim
Ryan’s Lingua::EN::NameParse, in turn, requires
Parse::RecDescent. Lingua::EN::Nickname has no
dependencies. All modules mentioned in this article are on
CPAN.

460

Although they aren’t bundled, your CPAN module should be
able to follow the dependencies:

% perl -MCPAN -e
"install('Lingua::EN::MatchNames')"

Windows users without a compiler will likely need to first use
PPM to retrieve binaries of two of the requisites:

% ppm install String-Approx Text-Metaphone

461

462

Module Contents

The main module, Lingua::EN::MatchNames, exports one
function by default: name_eq. You can either feed it four
parameters:

name_eq($firstname0, $lastname0,
$firstname1, $lastname1)

or two (thanks to Lingua::EN::NameParse, which breaks full
names into their constituent components):

name_eq($name0, $name1)

and it will return a certainty score between 0 and 100, or
undef if the names cannot be matched via any method
known to the module.

If you ask for them, Lingua::EN::MatchNames will also
export fname_eq or lname_eq, for
matching first and last names. Both take two parameters, and
each returns a certainty score between 0 and 100.

Lingua::EN::Nickname exports nickname_eq for
matching first names solely on the basis of
nicknames, and nickroot, which attempts to look up the
full (formal) first name(s), given a nickname. If asked, it will
also export nickmatch, which returns a regex for matching
all known full names given a nickname; or nickfollow,
which recursively searches for a path of related names joining
the two names passed to it, and returns the number of “hops”
between the two. In practice, unless you have a specific need,
you will probably use Lingua::EN::Nickname only indirectly,
through Lingua::EN::MatchNames.

463

Using the Modules

These modules were designed for completeness over speed or
size. You can expect that matching thousands of records will
take hours when testing every possible match.

Typically, your script will build an array of [uniqueid,
firstname, lastname] elements from the first
database, then iterate over the records in the second database,
collecting matches as shown below:

use

Lingua::EN::MatchNames;

my $certainty_threshold = 85; # 85%
certain is reasonable

Set up the pool of potential matches
open

NAMES, '<listA.tsv' or die $!;

Assume a tab-delimited file of idnum,
firstname, lastname
@pool = map { chomp; [split /\t/] } <

NAMES>;

Again, assume a tab-delimited file of
idnum, firstname, lastname
open NAMES, '<listB.tsv' or die $!;

Iterate over list B, finding matches
while(<NAMES>) {

464

chomp;
my ($idnum, $fname, $lname) = split

/\t/;
my @matches = sort { $b->[0] <=>

$a->[0] } # most certain first
map {

my $score=

name_eq($fname, $lname, $_->[1], $_->[2]
);

$score ? [$score, @$_] : ()
} @pool;

unless (@matches) {
no matches found
print "$idnum ($fname $lname): no

matches\n";
}

elsif (@matches == 1 and
$matches[0]->[0] > $certainty_threshold) {

one solid match
my ($score, $m_idnum, $m_fname,

$m_lname) = @{$matches[0]};
print "$idnum ($fname $lname) =

$m_idnum ($m_fname $m_lname) $score%\n";
} else {

several potential matches, or an
uncertain one

print "$idnum ($fname $lname)
matches:\n";

foreach (@matches) {
my ($score, $m_idnum,

$m_fname, $m_lname) = @$_;
print " $m_idnum ($m_fname

$m_lname) $score\n";
}

}
}

465

The above code assumes that your names are in a file with
some ID number, a first name, and then a last name, all
separated with tabs. Obviously, since the functions exported
by a
module accept simple strings, you can extract your names
from anything you like, or even the command line.

466

What They Do

name_eq simply requires that some certainty exist for both
first and last
names, and returns a score that combines the two, weighting
the last name more heavily (70%).

fname_eq matches first
names like so:

1. Simple equality is tested.

Trivial matches return a certainty of 100.

2. Informal names, delimited by parentheses or quotes, are
recursed.

Portions of the name wrapped in parentheses or quotes
are recursively checked against the potentially matching
name with fname_eq. “William (Chip)” would
therefore match “Chip,” with full certainty of the best
submatch.

3. Extraneous initials are removed.

“H. Ross” matches “Ross” with a high certainty level;
“Ross H.” would also match at this stage. This step must
be performed before the next step to avoid trivially poor
chunk matches.

4. Name chunks, separated by symbols or mixed case, are
recursed.

Names are broken into pieces at nonword characters, or
capitalization changes. These parts are each recursively

467

checked against the potentially matching name with
fname_eq. “Mary” would therefore match
“MaryAnn,” “Mary-Ann,” or “Mary Ann,” again with
full certainty of the best submatch.

5. Inconsistent case is flattened to all uppercase, and spaces
and symbols are removed.

Legacy
databases, particularly mainframes, tend to favor ALL
UPPERCASE DATA. At this stage, “Arthur” matches
“ARTHUR.”

6. Nicknames are followed, matched, and ranked based on
proximity, using
Lingua::EN::Nickname.

This is an alarmingly difficult problem that eventually
grew into its own
module.

468

Matching Nicknames

Lingua::EN::Nickname is a much more terrifying animal than
Lingua::EN::Match-Names, due to the capricious nature of
nicknames. Basically, it builds four giant hashes: one for
looking up nicknames that have a single known root name
(that is, full/formal form), one for looking up ambiguous
nicknames, one for finding a regular expression matching all
known forms of a root name, and one for mapping related
root names. The functions in this module are fairly
straightforward users of these hashes.

This vast hash data should not be edited by hand. Although I
would prefer to receive mail regarding omissions, a utility for
generating the Perl code for these hashes (nickhash.pl)
is provided, and is a good starting point for other languages
(Lingua::XX::Nickname). The original datafile used by my
utility, nicknames.txt, is also included; each line consists of
three tab-separated fields: root name, nicknames (a space/
nonword-separated list), and related root
names.

Any certainty returned by nickname_eq is scaled back a
little, and returned.

Continuing where we left off, the remaining four steps for
matching first
names are:

1. Misspellings are detected, within a threshold, using
String::Approx.

469

Data-entry errors are tolerated by determining how many
character insertions, transpositions, and deletions would
be required to change one of the names into the other,
and ensuring that this number is below the default
threshold for String::Approx (10% of the characters,
rounded up) for matches. “Bart” and “Bort” would now
match one another, and “Brian”
and “Brain” would now match.

2. Phonetic matching catches similar pronunciation, using
Text::Metaphone.

Homonymous names are now matched using the
surprisingly accurate Text::Metaphone
module, which allows us to find “Sandy” = “SanDee,”
and “Cindy” = “Sindy,” but with relatively low certainty.

3. Somewhat similar last names are caught with
Text::Soundex.

Out of completeness, I’ve included soundex matching,
which is very tenuous (especially for first names).
Soundex matches return a very low certainty.

4. Regular expressions are checked for simple truncation
and relevant initials.

Initials are re-checked to see if they may not have been
pure noise (“H. Ross” = “Herman”), and simple
truncation is checked (“Bri” = “Brian”). Because of the
tiny amount of matching data, this is the least certain
match.

Matching last names with lname_eq is a slightly different
process:

470

1. Simple equality is tested.

2. Extraneous suffixes are removed.

Persons usually include unused names as initials
formally; frequently, this means initials are simply noise.
“Smith, Jr.” matches “Smith” with a high certainty level;
“Smith II” would also match at this stage.

3. Hyphenated surnames are recursed.

Names are broken into pieces at hyphens;
“Bouvier-Simpson” would be recursively checked to
match the other name against “Bouvier” and “Simpson,”
and if any matches are found, the score of the best
submatch is returned.

4. Inconsistent case is flattened to all uppercase, and spaces
and symbols are removed.

Legacy databases, particularly mainframes, tend to favor
ALL UPPERCASE DATA. Also, handling of names that
contain apostrophes or spaces is terribly inconsistent. At
this stage, “O’Neil” matches “O NEIL” and “ONEIL.”

5. Misspellings are detected, within a threshold, using
String::Approx.

“Hanson” and “Hansen” would now match, as well as
“Simpson” and “Smipson.”

6. Phonetic matching catches similarly pronounced last
names, using Text::Metaphone.

7. Somewhat similar last names are matched with
Text::Soundex.

471

8. Regular expressions are checked for nonstandard
hyphenation or simple truncation.

Nonstandard hyphenation (like lower-to-upper case
changes) are caught and recursed.

The certainty scores returned by fname_eq and
lname_eq are generated from weights I assigned after
ranking each of these steps, based on frequency of use,
reliability, some final tweaking after checking against my test
data, and on my fondness for round numbers. These scores
seem to be pretty reliable relative to each other, but ultimately
have an inadequate scientific basis. Anyone willing to do
research that would result in more accurate scores for these
weights is encouraged to do so, and will receive credit in
future versions of this module, plus my thanks.

472

Conclusion

So there you have it: how to match names with
Lingua::EN::MatchNames and Lingua::EN::Nickname, and a
peek under the hood to see how they work. If you are looking
for a project, and have access to a vast database of names, the
most critical work is precisely refining the weight of each
step, and filling in any gaps in the list of nicknames.

473

Chapter 22. Localizing Your Perl
Programs

Sean M. Burke

Jordan Lachler
Once upon a time, when the Internet was merely an
experiment in getting a few dozen machines to talk to each
other without actually melting, and when computer science
was about getting your accounting program to run in 5K of
core, it didn’t matter that program output was in English, only
in English, and MAYBE EVEN ALWAYS IN CAPITALS.
After all, computers were basically designed by and for a few
American engineers, and as long as packets were swapped
and numbers were crunched, everyone was happy.

But nowadays, computers are becoming part of daily life for
much of the planet, and that means that the average user is
less and less likely to be a native speaker of English. And
software that doesn’t work in your native language is very
annoying, even if it does work in some other language you
understand fluently.

The first step to making software “work,” in your language of
choice, is called internationalization (often abbreviated
“I18N”
). Internationalizing a piece of software, or a file format, or a
protocol, basically means making sure it can convey text in
any language. Mercifully, this has been mostly taken care of;

474

modern protocols and data formats, like MIME-encoded
email, HTTP, HTML, and XML, do a fine job of identifying
the character set of your text, so that whatever program
receives your text will know how to display it. And unlike in
the old days, we now have standard character sets capable of
representing text in almost any language: notably, there’s
Latin-1, which does fine for English and most other Western
European languages, there’s
Unicode, which works for all languages, and there’s also a
slew of other language-specific character sets like
KOI8 (among others) for Russian,
JIS (among others) for Japanese,
VISCII for Vietnamese, and so on. (That’s the great thing
about standards—there are so many to choose from.)

You can use an email program to write email in whatever
language you want, but chances are the interface is still only
in English. That software doesn’t really “work” in your
language of choice.

Making the interface to a program work in the user’s
language of choice is called localization (often abbreviated
“L10N”
), and that’s what this article is about. For the programmer,
localization means an extra bit of bookkeeping; instead of
having bits of text hard-coded in your program’s interface,
they get looked up in a little lexicon module—so that if the
user is using the program’s French interface (assuming one
has been provided), your program won’t say “File not found,”
but instead will look up the French phrase for that and say
“Fichier non trouvé.” And where a GUI button used to say
“Search,” it now says “Cherchez.”

475

The most widely used localization system is GNU gettext, and
while it’s a definite advance over previous systems, it and
similar systems suffer from some basic deficiencies. Simply
put, they don’t deal well with the different ways that different
languages phrase things. Before I propose solutions to these
problems, I have devised a tale of woe to illustrate how
frustrating these problems can be.

A Localization Horror Story: It
Could Happen to You

Imagine that your task for the day is to localize a piece of
software someone else in your company wrote. Suppose it’s a
simple search tool of some sort, the exact details of which
aren’t important. Luckily for you, the only output the program
emits is two messages, like this:

I scanned 12 directories.
Your query matched 10 files in 4
directories.

How hard could that be? You look at the code that produces
the first item, and it reads:

printf("I scanned %g directories.",
$directory_count);

First you have to look up what %g does—it performs number
interpolation with nice formatting. But then you think about
the above code, and you realize that it doesn’t even work right
for English, as it can produce this output:

I scanned 1 directories.

So you rewrite it to read:

476

printf("I scanned %g %s.",
$directory_count,

$directory_count == 1 ? "directory"
: "directories");

which does the Right Thing. (While looking up %g in the Perl
docs for sprintf, you learned that %s is for interpolating
strings.)

But you still have to localize it for all the languages spoken
by your users, and after a little poking around in CPAN, you
find the Locale::gettext module, which is an interface to
gettext, a set of C routines that seem well suited to this task.
After some Googling, you find the gettext manual. You
browse through the tutorial, and, following its examples, you
start to write:

printf(gettext("I scanned %g %s."),
$dir_scan_count,

$dir_scan_count == 1 ?
gettext("directory") :
gettext("directories"));

But you see later in the gettext manual that this is not a good
idea, since how a single word like “directories” is translated
depends on context. In languages like German or Russian, the
“directories” of “I scanned 12 directories” demands a
different case than the “directories” of “Your query matched
10 files in 4 directories.” The first is the object of a verb, and
the second is the object of a preposition.

So, on the advice of the gettext manual, you rewrite:
printf($dir_scan_count == 1 ?

gettext("I scanned %g directory.") :
gettext("I scanned %g

directories."), $dir_scan_count);

477

The boss decides that the languages du jour are
Chinese, Arabic, Russian, and Italian, so you hire one
translator for each and ask for translations of “I scanned %g
directory” and “I scanned %g directories.” When they reply,
you’ll put that in the lexicons for gettext to use when it
localizes your software, so that when the user is running
under the zh (
Chinese) locale, gettext(“I scanned %g
directory.”) returns the appropriate Chinese text, with
a %g in there where printf can then interpolate the number
of directories scanned. (Locale primarily means a choice of
language, and accompaniments like character sets,
preferences for expressing numbers—for example, whether
one and a half is 1.5 or 1,5—and preferences for sort order,
since not all languages have the same alphabetical order.
Since we don’t talk about those other preferences in this
article, just think “language” whenever you see “locale”.)

Your Chinese translator mails right back—he says both of
these phrases translate to the same thing in Chinese, because,
to use linguistic terminology, Chinese “doesn’t have number
as a grammatical category” like
English does. That is, English has grammatical rules that
depend on whether something is singular or plural; one of
these rules is the one that forces nouns to take a suffix
(usually “s”) when there’s more than one (“one dog, two
dogs”). Chinese has no such rules, and so has just one phrase
where English needs two. No problem; you can have this one
Chinese phrase appear as the translation for the two English
phrases in the zh gettext lexicon for your program.

Emboldened by this, you dive into the second phrase that
your software needs to output: “Your query matched 10 files

478

in 4 directories.” You notice that if you want to treat phrases
as indivisible, as the gettext manual wisely advises, you need
four cases to cover the permutations of singular and plural on
each of $dir_count and $file_count. So you try
this:

printf($file_count == 1 ?
($directory_count == 1 ?

gettext("Your query matched %g
file in %g directory.") :

gettext("Your query matched %g
file in %g directories.")) :

($directory_count == 1 ?
gettext("Your query matched %g

files in %g directory.") :
gettext("Your query matched %g

files in %g directories.")),
$file_count, $directory_count);

(The case of “1 file in 2 [or more] directories” could, I
suppose, occur with symbolic links in the filesystem.)

This isn’t the prettiest code you’ve ever written, but this
seems the way to go. You mail the translators asking for
translations for these four cases. The
Chinese guy replies with the one phrase that these all translate
to in Chinese, and that phrase has two %gs in it, as it
should—but there’s a problem. He translates it
word-for-word: “To your question, in %g directories you
would find %g answers.” The %g slots are reversed. You
wonder how you’ll get gettext to handle that.

But you put it aside for the moment, and optimistically hope
that the other translators won’t have this problem, and that
their languages will be better behaved—that they’ll be just
like English.

479

The
Arabic translator is the next to write back. First, your code for
“I scanned %g directory” or “I scanned %g directories”
assumes there’s only singular or plural. But, to use linguistic
jargon again,
Arabic has grammatical number, like English and unlike
Chinese. However, it’s a three-term category: singular, dual,
and plural. In other words, the way you say “directory”
depends on whether there’s one directory, two of them, or
more than two of them. Your test of ($directory ==
1) no longer does the job. And it means that where English’s
grammatical category of number necessitates only two
permutations of the first sentence, Arabic has three—and,
worse, in the second sentence (“Your query matched %g file
in %g directory”), Arabic has nine possibilities where English
had only four. You sense an unwelcome, exponential trend
taking shape.

Your Italian translator emails you back and says that “I
searched 0 directories” (a possible output of your program) is
stilted, and if you think that’s fine English, that’s your
problem, but that just will not do in the language of Dante. He
insists that where $directory_count is 0, your
program should produce the Italian equivalent of “I didn’t
scan any directories.” And ditto for “I didn’t match any files
in any directories,” although he adds that the last part about
“in any directories” should probably be omitted altogether.

You wonder how you’ll get gettext to handle this; to
accommodate the ways Arabic, Chinese, and Italian deal with
numbers in just these few very simple phrases, you need to
write code that asks gettext for different queries depending on
whether the numerical values in question are 1, 2, more than

480

2, or in some cases 0, and you still haven’t figured out the
problem with the different word order in Chinese.

Then your
Russian translator calls, to personally deliver the bad news.

Russian, like German or Latin, is an inflectional language;
that is, nouns and adjectives take endings that depend on their
case (nominative, accusative, genitive, and so on; what role
they play in the syntax of the sentence)—as well as on the
gender (masculine, feminine, neuter) and number (singular or
plural), as well as on the declension class of the noun. But
unlike other inflected languages, putting a number-phrase
(like “ten” or “forty-three”) in front of a Russian noun can
change the case and number of the noun, and therefore its
ending as well.

He elaborates: In “I scanned %g directories,” you’d expect
“directories” to be in the accusative case (since it is the direct
object) and a plural, except where $directory_count is
1—then you’d expect the singular, of course. Just like Latin
or German. But! Where $directory_count % 10 is 1
(assuming $directory_count is an integer, and except
where $directory_count % 100 is 11), “directories”
is forced to become grammatically singular, which means it
gets the ending for the accusative singular.

You begin to visualize the code it’d take to test for the
problem so far, and still work for
Chinese and Arabic and Italian, and how many gettext items
that’d take. But he keeps going. Where
$directory_count % 10 is 2, 3, or 4 (except where
$directory_count % 100 is 12, 13, or 14), the word
for “directories” is forced to be genitive singular—which

481

means another ending. The room begins to spin around you,
slowly at first… And with all other integer values, since
“directory” is an inanimate noun, when preceded by a number
and in the nominative or accusative cases (as it is here, just
your luck!), it does stay plural, but it is forced into the
genitive case—yet another ending. And because the floor
comes up to meet you as you fade into unconsciousness, you
never get to hear him talk about the similar but subtly
different problems with other Slavic languages like Polish.

The above cautionary tale relates how an attempt at
localization can lead from programmer consternation to
program obfuscation to a need for sedation. But careful
evaluation shows that your choice of tools merely needed
further consideration.

482

The Linguistic View

The field of
linguistics has expended a great deal of effort over the past
century trying to find grammatical patterns that hold across
languages; it’s been a constant process of people making
generalizations that should apply to all languages, only to find
out that, all too often, these generalizations fail—sometimes
failing for just a few languages, sometimes whole classes of
languages, and sometimes nearly every language in the world
except English. Linguists can make broad statements about
the “average language,” but the “average language” is as
unreal a concept as the “average person”—no language (or
person) is entirely average. The wisdom of past experience
suggests that any given language can do just about whatever it
wants, in any order, with any kind of grammatical
categories—case, number, tense, real or metaphoric
characteristics of the concepts that the words refer to,
arbitrary classifications of words based on what endings or
prefixes they accept, degree of certainty about the truth of
statements expressed, and so on.

Mercifully, most
localization tasks are a matter of finding ways to translate
fixed phrases in their entirety, and where the only variation in
content is in a number being expressed, as in the example
sentences above. Translating specific, fully-formed sentences
is, in practice, fairly foolproof—which is good, because that’s
what’s in the phrasebooks that so many tourists rely on.

483

Breaking gettext

Most sentences in a tourist phrasebook are of two types: ones
like “How much do these ___ cost?” where there’s a blank to
fill in, and “How do I get to the marketplace?” where there
isn’t. The ones with no blanks are no problem, but the
fill-in-the-blank phrases may not be straightforward. If it’s a
Swahili phrasebook, for example, the authors probably didn’t
bother to tell you the complicated ways that the verb “cost”
changes its inflectional prefix depending on the noun. The
trader in the marketplace will still understand what you’re
saying if you say “How much do these potatoes cost?” with
the wrong inflectional prefix. After all, you can’t speak
proper Swahili, you’re just a tourist. Tourists are supposed to
be stupid. Computers are supposed to be smart. The computer
should be able to fill in the blank, and have the result be
grammatical.

In other words, a phrasebook entry accepts a parameter (the
word that goes in the blank), and returns a value based on that
parameter. In the case of Chinese, this operation is simple; in
the case of Russian, it’s quite complex.

This talk of parameters and complexity is just another way to
say that an entry in a phrasebook is what we programmers
call a “function.” Just so you don’t miss it, this is the crux of
the article: A phrase is a function; a phrasebook is a bunch of
functions.

The reason that gettext runs into walls is that it tries to use
strings to do something that requires a function, which is
futile. Performing printf interpolation on the strings you

484

get back from gettext allows you to do some common things
passably well, sometimes, sort of. But to paraphrase what
some people say about csh script programming, “It fools you
into thinking you can use it for real things, but you can’t, and
you don’t discover this until you’ve already spent too much
time trying, and by then it’s too late.”

485

Replacing gettext

So, what we need to replace gettext is a system that supports
lexicons of functions instead of lexicons of strings. An entry
in a lexicon from such a system should not look like this:

J’ai trouvé %g fichiers dans %g répertoires

but instead like this, although this is just a first stab:
sub I_found_X1_files_in_X2_directories {

my ($files, $dirs) = @_[0,1];
$files = sprintf("%g %s", $files, $files

== 1 ? 'fichier' : 'fichiers');
$dirs = sprintf("%g %s", $dirs, $dirs ==

1 ? "répertoire" : "répertoires");
return "J'ai trouvé $files dans $dirs.";

}

Now, there’s no particularly obvious way to store anything
but strings in a gettext lexicon, so it looks like we just have to
start over and make something better, from scratch. I call my
shot at a gettext-replacement system “Maketext,” or, in CPAN
terms,
Locale::Maketext.

When designing Maketext, I planned its main features in
terms of “buzzword compliance.”

486

Buzzwords: Abstraction and
Encapsulation

The complexity of a language is abstracted inside (and
encapsulated within) the
Maketext module for that interface. When you call:

print $lang->maketext("You have
[quant,_1,piece] of new mail.",
scalar(@messages));

you don’t know (and in fact can’t easily find out) whether this
will involve lots of figuring, as in Russian, or relatively little,
as in Chinese. That kind of abstraction and encapsulation may
encourage other pleasant buzzwords like modularization and
stratification, depending on what design decisions you make.

487

Buzzword: Isomorphism

“Isomorphism” means “having the same structure or form”; in
discussions of program design, the word takes on the special,
specific meaning that your implementation of a solution to a
problem has the same structure as, say, an informal verbal
description of the solution, or maybe of the problem itself.

What’s wrong with gettext code like this?
printf($file_count == 1 ?

($directory_count == 1 ?
"Your query matched %g file in

%g directory." :
"Your query matched %g file in

%g directories.") :
($directory_count == 1 ?

"Your query matched %g files in
%g directory." :

"Your query matched %g files in
%g directories."),

$file_count, $directory_count);

First, it’s not well abstracted. These
ways of
testing for grammatical number should be abstracted to each
language module, since how you get grammatical number is
language-specific.

Second, it’s not isomorphic. The verbal “solution” to our
problem is “The way to say what you want in Chinese is with
the one phrase ‘For your question, in y directories you would
find x files’”—and so the implementation should be a
straightforward way to spit out that one phrase with the

488

numerals properly interpolated. The complexity of one
language shouldn’t impede the simplicity of others.

489

Buzzword: Inheritance

There’s a great deal of reuse possible for sharing phrases
between modules for related dialects, or for sharing
auxiliary functions between related languages. (By auxiliary
functions, I mean functions that don’t produce phrase-text, but
answer questions like “Does this number require a plural
noun after it?” Such auxiliary functions would be used
internally by functions that actually do produce phrase-text.)

Let’s assume that you have an interface already localized for
American English.
Localizing it for UK English should be just a matter of
running it past a British person with the instructions to
indicate which phrases need rewordings or minor spelling
tweaks. The UK English
localization
module should have only those phrases that are UK-specific;
all the rest should inherit from the American English
module. The same situation should apply with Brazilian and
Continental Portuguese, possibly with some closely related
languages like Czech and Slovak, and possibly with the
slightly different versions of written Mandarin Chinese, as I
hear exist in Taiwan and mainland China.

For auxiliary functions, consider the problems with
Russian numbers. Obviously, you’d want to write only once
the hairy code that, given a numeric value, returns which case
and number a noun should use. But suppose you discover,
while
localizing an interface for, say, Ukrainian (a Slavic language
related to

490

Russian, spoken by several million people), that the rules are
the same as in Russian for quantification, and many other
grammatical functions. While there may well be no phrases in
common between Russian and Ukrainian, you could still
choose to have the Ukrainian module inherit from the Russian
module, just for the sake of inheriting all the various
grammatical methods. Or, better, you could move those
functions to a module called East_Slavic, from which Russian
and Ukrainian could inherit, but which itself has no lexicon.

491

Buzzword: Concision

Okay,
“concision” isn’t a real buzzword. But it should be, so I
decree that as a new buzzword, concision means that simple
common things should be expressible in very few lines (or
maybe even just a few characters) of code—call it a special
case of “making simple things easy and hard things possible.”
It played a role in the MIDI::Simple language, discussed
earlier in Chapter 16. Or just think of it this way: usefulness
plus brevity equals concision.

Consider our first stab at an entry in our phrasebook of
functions:

sub I_found_X1_files_in_X2_directories {
my ($files, $dirs) = @_[0,1];

$files = sprintf("%g %s", $files,
$files == 1 ? 'fichier' : 'fichiers');

$dirs = sprintf("%g %s", $dirs, $dirs
== 1 ? "répertoire" : "répertoires");

return "J'ai trouvé $files dans
$dirs.";
}

You may sense that a lexicon consisting of functions like
these would quickly get repetitive. And you may also sense
that you don’t want to bother your translators with having to
write
Perl code—you’d much rather that they spend their very
costly time on actual translation.

In a first-hack implementation of
Maketext, each language-module’s lexicon looked like this:

492

%Lexicon = ("I found %g files in %g
directories"

=> sub {
my($files, $dirs)

= @_[0,1];
$files =

quant($files, "fichier");
$dirs = quant($dirs,

"répertoire");
return "J'ai trouvé

$files dans $dirs.";
},

... and so on with other
phrase = sub mappings ...>

);

but I immediately went looking for a more concise way to
denote the same phrase-function—a way that would also
serve to denote most phrase-functions in the lexicon for most
languages. After much time and thought, I decided on this
system:

▪ Where a value in %Lexicon is a string instead of a
subroutine, it is interpreted as a sort of shorthand
expression of what the subroutine does. When accessed
for the first time in a session, it is parsed, turned into Perl
code, and then eval ’d into an anonymous subroutine;
then that subroutine replaces the original string in that
lexicon. (That way, the work of parsing and evaluating
the shorthand form for a given phrase is performed no
more than once per session.)

▪ Calls to maketext happen through a “language
session handle” very much like an IO:: handle, in that
you open one at the start of the session, and use it for
sending signals to an object to have it return the text you

493

want. So this code means: look in the lexicon for
$lang (which may inherit from any number of other
lexicons), and find the function that we happen to
associate with the string “You have
[quant,_1,piece] of new mail.”

$lang->maketext("You have
[quant,_1,piece] of new mail.",
scalar(@messages));

If we find such a function, we call it with $lang as its
first parameter, and a copy of scalar(@messages)
as its second. If that function was found in string
shorthand instead of as a real subroutine, parse it and
make it into a function before calling it.

▪ The shorthand uses brackets to indicate method calls that
should be performed. For instance, this string will trigger
the quant method:

"You have [quant,_1,piece] of new mail."

That string is shorthand for this anonymous subroutine:
sub {

my ($handle, @params) = @_;
return join '', "You have

",$handle->quant($params[0],'piece'),"of
new mail.";
}

where quant is a method you’ve written to quantify the
noun (piece) given a number ($params[0]).

A string with no brackety calls, like this:
"Your search expression was malformed."

is a degenerate case, and just gets turned into:

494

sub { return "Your search expression
was malformed." }

▪ Starting with perl-5.7.3,
Locale::Maketext is in the
Perl core distribution, along with
I18N::LangTags (a module for dealing with RFC 3066
language tags) and I18N::LangTags::List (a module that
maps language tags to their English names, like “uk” to
“Ukrainian”).

▪ As this book goes to press, Lincoln D. Stein’s popular
Apache::MP3 module-distribution is being modified to
use Locale::
Maketext to make its interface available in dozens of
different languages. It too is available in CPAN.

However, not everything you can write in Perl can be
expressed in this shorthand—not by a long shot. For example,
consider our Italian translator, who wanted the Italian for “I
didn’t find any files” as a special case, instead of “I found 0
files.” That couldn’t be specified (at least not easily or
simply) in our shorthand system, and it would have to be
written out in full, like this:

sub { # pretend the English strings are in
Italian

my ($handle, $files, $dirs) = @_[0,1,2];
return "I didn't find any files" unless

$files;
return join ", "I found ",

$handle->quant($files, 'file'), " in ",
$handle->quant($dirs,

'directory'), ".";
}

495

Next to a lexicon full of shorthand code, this sticks out like a
sore thumb—but it is a special case, after all, and at least it’s
possible, if not concise.

As to how you’d implement the
Russian example from the beginning of the article, well,
There’s More Than One Way To Do It. It could be something
like this (using English words for
Russian, just so you know what’s going on):

"I [quant,_1,directory,accusative]
scanned."

This shifts the burden of complexity to the quant method.
That method’s parameters are: the number, the Russian word
it’s going to quantify, and the parameter accusative,
which means that this sentence’s syntax wants a noun in the
accusative case.

Now, the Russian quant method here is responsible not
only for implementing the strange logic necessary for figuring
out Russian number-phrases, but also for inflecting the
Russian word for “directory.” How that inflection is to be
carried out is no small issue, and among the solutions I’ve
seen, some are straightforward but not very scalable, and
others involve more complexity than is justifiable for all but
the largest lexicons.

Mercifully, this design decision becomes crucial only in the
hairiest of inflected languages, of which Russian is by no
means the worst. Most languages have simpler inflection
systems; for example, in English or Swahili, there are
generally no more than two possible inflected forms for a
given noun (“error/errors”; “kosa/makosa”), and the rules for
producing these forms are fairly simple. A simpler inflection

496

system means that design decisions are less crucial to
maintaining sanity, whereas the same decisions might incur
overhead-versus-scalability problems in languages like
Russian. It may also be likely that code has already been
written for the language in question, as with
Lingua::EN::Inflect for English nouns.

Moreover, there is a third possibility simpler than anything
discussed above: Just require that all possible forms be
provided in the call to the given language’s quant method,
as in “I found [quant,_1,file,files].” That
way, quant just has to chose which form it needs, without
having to look up or generate anything. While possibly
suboptimal for Russian, this should work well for most other
languages, where quantification is not as complicated.

497

The Devil in the Details

There’s plenty more to Maketext than described above—for
example, the details of how language tags interact with
module naming. Module tags are the things you see in an
HTTP Accept-Language header (en-US, x-cree,
fi, and so on) or locale IDs like you’d see in
$ENV{‘LANG’} (they have underscores instead of
hyphens: en_US for US English, po_BR for Brazilian
Portuguese). There are the details of how to stipulate what
character encodings Maketext will return text in (UTF8?
Latin-1? KOI8?). There’s the interesting fact that Maketext is
for
localization, but nowhere actually has a use locale in it.
For the curious, there are the somewhat frightening details of
how I implement something like data inheritance so that
searches across %Lexicon hashes of modules parallel how
Perl implements method inheritance.

And, most importantly, there are all the practical details of
how to go about using Maketext for your interfaces, and the
various tools and conventions for starting out and maintaining
individual language modules.

That is all covered in the documentation for
Locale::Maketext and the modules that come with it,
available in CPAN. After having read this article, which
covers the “why” of Maketext, the documentation, which
covers the “how” of it, should be quite straightforward.

498

But to give just a taste of it, here is the outline of code for
English and French in a mythical application called
BogoQuery. Here’s the BogoQuery/
L10N.pm file:

use Locale::Maketext;

package BogoQuery::L10N;
@ISA = qw(Locale::Maketext);

If you wanted any new methods accessible
to all
of your lexicons, they'd go here.
Otherwise, just inherit from
Locale::Maketext, which provides some sane
defaults.

1;

The file BogoQuery/
L10N/en.pm:

package BogoQuery::L10N::en; # English
@ISA = qw(BogoQuery::L10N);

...methods specific to English go here.
For example, use Lingua::EN::Inflect, and
call it in a new
'quant' method that could automatically
figure out that the
plural of 'directory' is 'directories'.
But in lieu of that...

%Lexicon = ("I scanned
[quant,_1,directory,directories]."

=> "I scanned
[quant,_1,directory,directories].",

499

"Your query matched
[quant,_1,file,files]

in
[quant,_1,directory,directories]."

=> "Your query matched
[quant,_1,file,files]

in
[quant,_1,directory,directories].");
1;

The file BogoQuery/L10N/fr.pm:
package BogoQuery::L10N::fr; # French
@ISA = qw(BogoQuery::L10N);

...methods specific to French go here...

%Lexicon = ("I scanned
[quant,_1,directory,directories]."

=> "[quant,_1,répertoire
lu,répertoires lus].",

"Your query matched
[quant,_1,file,files]

in
[quant,_1,directory,directories]."

=> "J'ai trouvé
[quant,_1,fichier,fichiers]

dans
[quant,_2,répertoire,répertoires].");
1;

And finally, the main module, named BogoQuery.pm:
package BogoQuery;
use BogoQuery::L10N;
my $language =
BogoQuery::L10N->get_handle()

|| die "Can't find an acceptable
language module!?!";

500

When called with no parameters like
this, get_handle()
returns a handle to an appropriate
language lexicon,
based on things like $ENV{'LANG'}, or if
running as a
CGI program, $ENV{'HTTP_ACCEPT_LANGUAGE'}
...code that runs a BogoQuery...

print $language->maketext("I scanned
[quant,_1, directory,directories].",

$directory_count);

...then code that counts up the matches...

print $language->

maketext("Your query matched
[quant,_1,file,files]

in
[quant,_1,directory,directories].",

$matched_file_count,
$matched_directory_count);

Adding support for new languages is now just a matter of
having a translator provide the text for a new BogoQuery/
L10N/zh.pm (zh for
Chinese), it.pm (it for Italian), and so on.

Because of Russian’s complicated handling of numbers,
BogoQuery/L10N/ru.pm would have to provide a quant
method of its own, but that wouldn’t require any change to
the other modules. The same is true for
Arabic, since its quant method would deal with the
singular/dual/plural distinction in the language.

501

Chinese, which was so problematic for gettext, is easy with
Maketext, with a %Lexicon entry like this:

"Your query matched [quant,_1,file,files]
in [quant,_1,directory,directories]."
=> "To your question, in
[quant,_2,directory] you would find
[quant,_1,answer]."

(I’m using English words in place of the actual Chinese text,
just for the sake of this article.) Incidentally, the quant
method in Chinese wouldn’t need to do anything more than
put a number in front of the noun, since there’s no
grammatical pluralization in Chinese.

The case of Italian requiring “I didn’t scan any directories”
instead of “I scanned 0 directories”—well, that’s the one case
so far that can’t be treated via our shorthand notation. It
requires actual Perl code:

"I scanned
[quant,_1,directory,directories]."
=> sub {

my ($lg, $dir_count) = @_[0,1];
return "I didn't scan any

directories." if $dir_count == 0;
return "I scanned 1 directory." if

$dir_count == 1;
return "I scanned $dir_count

directories.";
}

However, such cases are relatively rare. Most phrases can be
translated either as fixed strings, or fixed strings with a few
bracket shorthand bits, meaning that the translators can focus
on the translating.

502

Proof in the Pudding: Localizing
Web Sites

Maketext and gettext have a notable difference aside from
their approaches to languages: gettext is in C, accessible
through C library calls, whereas Maketext is in Perl, and can’t
work without a Perl interpreter. Unlucky accidents of history
have made C++ the most common language for the
implementation of applications like word processors, web
browsers, and even many in-house applications like custom
query systems. Current conditions make it somewhat unlikely
that the next one of any of these kinds of applications will be
written in Perl, albeit more for reasons of inertia than what
tool is best for the job.

However, other accidents of history have made Perl a
well-accepted language for design of server-side programs
(often CGI programs) for web site interfaces. Localization of
static pages in web sites is trivial, either with simple
language-negotiation features in servers like Apache, or with
some kind of server-side inclusions of language-appropriate
text into layout templates. However, the localization of
Perl-based search systems (or other kinds of dynamic content)
in web sites, be they public or access-restricted, is where
Maketext will see the greatest use.

The ever-increasing internationalization of the Web makes it
increasingly likely that the interface to the average dynamic
content service will be localized for two or maybe three
languages. It is my hope that Maketext will make that task as

503

simple as possible, and will remove previous barriers to
localization for languages dissimilar to English.

504

References

Alvestrand, Harald Tveit. RFC 3066: Tags for the
Identification of Languages. ftp://ftp.isi.edu/in-notes/
rfc3066.txt.

Callon, Ross, editor. RFC 1925: The Twelve Networking
Truths. ftp://ftp.isi.edu/in-notes/rfc1925.txt.

Drepper, Ulrich and Peter
Miller. GNU gettext. Available at ftp://prep.ai.mit.edu/pub/
gnu/. The manual is accessible at http://www.gnu.org/
software/gettext/gettext.html. There’s a handy Perl module
for interfacing with gettext called Locale::gettext, available at
http://www.cpan.org/modules/by-module/Locale.

Forbes, Nevill. Russian Grammar. Third Edition, revised by
J. C. Dumbreck. Oxford University Press, 1964.

Locale::Maketext is on CPAN.

505

Chapter 23. Internationalized
Sorting

Sean M. Burke
In my first semester of Spanish class in high school, I went to
look up an unfamiliar word, “chaleco,” in a Spanish-English
dictionary. I looked under “C”, and found that the dictionary
went right from “cetro” to “cía”. Someone had expurgated all
the “ch” words! I had a brief nightmarish vision of a world
without chorizo, chimichangas, chicharrones, or churros.
After some frantic page-turning, I discovered that the “ch”
words were in a separate section, “Ch”, between “C” and “D”.
I asked the teacher about this, and he explained that it was
normal practice for Spanish
alphabetical order to consider “Ch” a letter after “C”. But it
seemed ludicrous to me—two letters that counted as one.
“How pointlessly complicated!” I thought. “Why not just
keep it simple, A to Z, like normal? Like English.”

I later learned that every language has its own particular idea
of what “alphabetical order” means; the fact that English’s
conception of it seems so “normal” is partly because English
doesn’t use any accents and partly because of accidents of
history.

But many other languages use
accented characters that have to be sorted with the 26 letters
of the “normal” A-through-Z alphabet. And with other
languages, some combinations of characters, like the “ch” in
Spanish, count as letters on their own. But in almost every

506

case, if you want to sort according to the conventions of a
particular language, the default behavior of Perl’s sort
won’t sort that way. This article is about how to get Perl to
sort according to the conventions of whatever language you
have in mind—even if it’s English!

Default sort Versus “Normal”
English Sorting

Let’s say you want to sort a list of words (or phrases) in what
you think of as normal English alphabetical order. So you try
using normal sort:

@stuff = ("canine", "cantaloupe",
"cant", # As

in an underworld jargon
"Canberra", "can't",
"Cantonese", "cannery",
"Cannery Row", "canonicity",
"Cañon de Chelly" # In

north-eastern Arizona, also
#

spelled "Canyon de Chelly" and
#

"Cañon de Chelle"
);

@sorted = sort @stuff; # The

sorting happens here

print map "[$_] ", @sorted;

That prints:

507

[Canberra] [Cannery Row] [Cantonese]
[Cañon de Chelly]
[can't] [canine] [cannery] [canonicity]
[cant] [cantaloupe]

Whoa. All the capitals are
sorting first. That’s because sort’s default behavior (what
you get without a “sort criterion”
or without use locale, both of which we’ll discuss later)
is
ASCIIbetical sorting—where the
sorting is based on ASCII order. Since “C” comes before “c”
in ASCII, all the “C” items in @stuff (like “Cantonese”)
get sorted before all the “c” items (like “cantaloupe”).

So you happen to remember an idiom for
case-insensitive sorting, and you change the line that sets
@sorted to:

@sorted = sort { lc($a) cmp lc($b) }
@stuff;

and then you rerun the code. It prints:
[can't] [Canberra] [canine] [cannery]
[Cannery Row]
[canonicity] [cant] [cantaloupe]
[Cantonese] [Cañon de Chelly]

Closer. Here’s what we want:
[Canberra] [canine] [cannery] [Cannery
Row] [Cañon de Chelly]
[canonicity] [cant] [can't] [cantaloupe]
[Cantonese]

The phrases “can’t” and “Cañon de Chelly” are out of place.
“can’t” is out of place because { lc($a) cmp lc($b)

508

} treats “can’t” as a five character string that sorts before
anything else in @stuff. Consider this code:

print ("can't" cmp "canal");

That prints -1, meaning that “can’t” comes before “canal”.
This is because cmp is doing simple
ASCIIbetical comparison, and when it compares “can’t” to
“canal” it gets as far as comparing “can’” to “cana”. At that
point it sees that the apostrophe character comes before a,
because the apostrophe is ASCII 39, and “a” is ASCII 97.

Now, this is also why “Cañon de Chelly” is coming last:
because “ñ” is a character after “n”. For sake of argument, I’ll
assume that you are, like me, using Latin-1 as opposed to
UTF8, so I can say that “ñ” is a single byte: byte 241, in
particular. (If you’re using MacPerl and therefore probably
using MacASCII, it’s a different code, but it’s still one byte
with a value over 127, so my point stands. If you don’t know
what encoding you’re using, you’re probably using Latin-1.)

So what you want is to sort this list according to your idea of
English
alphabetical order—ignoring apostrophes, treating “ñ” and
“n” as the same letter, and of course ignoring case.

What you need is a subroutine we can call like this:
@sorted = sort {

normalize($a) cmp normalize($b) } @stuff;

where your normalize subroutine lc’s things, turns “ñ”s
to “n”s, and removes apostrophes (in no particular order).
That function could consist of:

509

sub normalize {
my $in = $_[0];
$in =~ tr/Ññ/Nn/;
$in =~ tr/'//d; # d for delete
return lc($in);

}

Paste that into our original code, run
it, and it’ll display this (lined up vertically just for better
perusal):

[Canberra]
[canine]
[cannery]
[Cannery Row]
[Cañon de Chelly]
[canonicity]
[can't]
[cant]
[cantaloupe]
[Cantonese]

And that’s basically right. Now, the only peculiarity there is
“cant” versus “can’t”. It so happens that when you feed both
into your normalize subroutine, you get “cant”. So when
your sort criterion compares them using {
normalize($a) cmp normalize($b) }, it’s
performing “cant” cmp “ant”, which returns 0,
meaning that these two sort identically. But since your use of
sort produces a list where “can’t” either comes before or
after “cant”, having your sort criterion return a 0 means that
you don’t care which of the two items comes first in the
output, which effectively means that you can’t predict which
will end up first. Personally, I don’t want my sort criterion to
ever be unpredictable, so I add something that kicks in to
avoid returning 0 when comparing different strings:

510

@sorted = sort { normalize($a) cmp
normalize($b)

or $a cmp $b
} @stuff;

In other words, when normalize($a) cmp
normalize($b) evaluates to 0, the routine falls through
to returning the value of $a cmp $b. That makes this a
completely predictable sort criterion, since $a cmp $b
never returns 0 for different strings.

However, if you wanted something smarter than just $a
cmp $b, you could use some second subroutine,
normalize2, that could be a bit more fine-grained than
normalize. Maybe it would implement the idea that, in
case of a tie in normalize, words with apostrophes (like
“can’t”) should always come after words without them (like
“cant”), or that “Chile” (the country) should always be after
“chile” (the hot sauce), and so on. You’d call that second part
of your
sort criterion as:

@sorted = sort { normalize($a) cmp
normalize($b)

or normalize2($a) cmp
normalize2($b)

} @stuff;

To be really thorough, you could add in a cmp at the end:

@sorted = sort { normalize($a) cmp
normalize($b)

or normalize2($a) cmp
normalize2($b)

or $a cmp $b
} @stuff;

511

Incidentally, falling back on a second comparison as a sort of
“tie-breaker” in a sort criterion is basically what people mean
when they refer to “bi-level sorting.”
We’ll return to this idea later.

512

Locale-Based Sorting

The idea of being able to sort things according to the
conventions of other languages is not a new one. The
perllocale documentation bundled with Perl describes how to
take advantage of locales built into many OSes. Ideally, you’d
set the locale to the language that sorts the way you want to
sort, and then your calls to sort or cmp do the right thing.
So if I set my locale to fr_CA.ISO8859-1 (meaning
“French Canadian, using Latin-1”), “étude” will sort
(correctly) with the “e”’s, instead of after the “z”’s, which is
how it’d be sorted ASCIIbetically.

But locales might not be available on all computers. As
perllocale points out: “The available locales, the location in
which they are kept, and the manner in which they are
installed, vary from system to system. Some systems provide
only a few, hard-wired locales, and do not allow more to be
added; others allow you to add ‘canned’ locales provided by
the system supplier; still others allow you or the system
administrator to define and add arbitrary locales.”

In other words, if you want to sort a list of French words
according to French
sorting conventions, even if you can get a French locale to
work on one system, and even if that locale’s idea of French
sort order is the same as your idea of French sort order,
there’s still no guarantee that your
locale-based sorting will be able to use the same locale on
someone else’s system.

513

Because of these basic problems with locales, I consider
locale-based
sorting (even where available) to be fine for one-shot
programs, but these portability problems make it unacceptable
for use in code that I’d actually want to distribute.

So, in short, much of the code in this article basically
duplicates the functionality of some of the
sorting you might be able to get from locales, but in a more
portable and flexible way.

514

Spanish: Cana y Caña

Earlier, we saw how to treat “ñ”
as just an alternate form for “n”, which is appropriate for
English. But suppose you actually wanted to
sort a list of Spanish words
according to Spanish
sorting conventions. In that case, you want to treat “ñ” not as
an alternate form for “n”, but instead as a letter between “n”
and “o”. In that case, you’d develop a sort criterion, as above,
based on a normalize subroutine, wherein you’d have to
move the letters of the alphabet around like so:

tr<abcdefghijklmnñopqrstuvwxyz> # Map
from this ...

<abcdefghijklmnopqrstuvwxyz[>; #
...to this

In other words, you want to keep “a” thru “n” as they are, and
then have “ñ”—and this means bumping “o” thru “z” down
by one character code to make way for the “ñ”. That “[” is
there just because it’s the character after “z” in ASCII.

That’s one way to do it. However, I find it a bit confusing,
since that way makes the Spanish alphabet look like a strange
decoder-ring substitution cypher. What I prefer is this:

tr<abcdefghijklmnñopqrstuvwxyz>
<\x01-\x1B>; # 1B is hex

for decimal 27, for the 27 letters

If I add or remove characters from the alphabet on that first
line, all I have to remember to do is change the 1B there to
reflect however many characters are in the alphabet of

515

characters that I’m starting with. (Since I’m just going to end
up feeding the output of this normalize subroutine to
cmp, it doesn’t matter whether I’m mapping the alphabet to
the range a-[or to the range \x01-\x1B.)

Here’s how you’d work this into your normalize
subroutine:

sub normalize {
my $in = $_[0];
$in = lc($in);
$in =~ tr/Ñ/ñ/; # lc probably didn't

catch this
$in =~

tr<abcdefghijklmnñopqrstuvwxyz><\x01-\x1B>;
1B = 27

return $in;
}

Then you can test it with this:
@stuff = ("cana", "Cantata", "caña",
"cantina",

"canoso", "cañonero", "capa");

@sorted = sort { normalize($a) cmp
normalize($b) or $a cmp $b } @stuff;

print map "[$_] ", @sorted;

When run, this program returns:
[cana] [canoso] [Cantata] [cantina] [caña]
[cañonero] [capa]

which is right! But change @stuff to these:

516

@stuff = ("cana", "caña", "cánula",
"cantina",

"cantó", "canto", "cantor");

and you (re)discover a problem:
[cana] [cantina] [canto] [cantor] [cantó]
[caña] [cánula]

And that’s quite wrong. Spanish, you see, uses
acute accents (like over the “o” in “cantó”)—but “ó” isn’t
considered a separate letter from “o”. This is the same
problem you faced in the English data set from the start of the
article, except that here it’s not “n” and “ñ”
we want to treat as alternates, but “o” and “ó”—and, while
we’re at it, “á/a”, “é/e”, “í/i”, “ú/u”, and the somewhat rare
“ü”. So you change the normalize subroutine:

sub normalize {
my $in = $_[0];

$in = lc($in);
$in =~ tr/Ñ/ñ/; # lc probably

didn't catch this

lc probably failed to turn É to é, etc.
$in =~ tr<áéíóúüÁÉÍÓÚÜ>

<aeiouuaeiouu>;
$in =~

tr<abcdefghijklmnñopqrstuvwxyz><\x01-\x1B>;
1B = 27

return $in;
}

Run this code, and you get:
[cana] [cantina] [canto] [cantó] [cantor]
[cánula] [caña]

517

Which (ta-daa!) is The Right Thing.

518

Spanish: Chorizo, Chimichangas,
Chicharrones, y Churros

We now have a sort criterion and an associated subroutine
(normalize) that together implement Spanish
sorting conventions as far as treatment of ñ, Ñ, and the
accented vowels. But recall from the start of this article that
Spanish has a letter “ch” between “c” and “d”.

So far we’ve been massaging all the data using
character-to-character substitution (using the tr operator), so
that cmp’s
ASCIIbetical character-by-character comparison would do
what we want. However, that all assumes that
sorting is about single characters. But since “ch” consists of
two ASCII characters, it won’t fit well into our plan of using
normal cmp. And “ch” is not alone: Spanish has one other
two-character letter, the double-ell “ll”, as in “llama”,
“quesadilla”, and so on. Now, you could break down and
write a subroutine that basically does the same work as Perl’s
built-in cmp but considers character-clusters like “ch” that
you want to treat as single elements. However, that would be
very inefficient compared to the speed of Perl’s builtin cmp.
A more efficient way of doing it consists of simply turning
the clusters into single characters, so that cmp can be made to
work right on them. So if you simply turn all occurrences of
“ch” to, say, “¢” (which is presumably not to be found in any
of the items we’re

519

sorting), you can pretend that “chimichanga” is really
“¢imi¢anga” and then you can treat ”¢“ as just another
strange letter, like “ñ”
is. Similarly, you could turn “ll” to “£”, say. This would look
like:

sub normalize {
my $in = $_[0];
$in = lc($in);
$in =~ s/ch/¢/g; # chimichanga =>

¢imi¢anga
$in =~ s/ll/£/g; # llama => £ama
$in =~ tr/Ñ/ñ/;
$in =~ tr<áéíóúüÁÉÍÓÚÜ>

<aeiouuaeiouu>;

1D = 29, for the 29 letters we now have
$in =~

tr<abc¢defghijkl£mnñopqrstuvwxyz><\x01-\x1D>;
return $in;

}

And then you can test it with:
@stuff = ("enchufe", "Enciclopedia de
México", "endibia",

"enchilada", "encogido",
"encanto");
@sorted = sort { normalize($a) cmp
normalize($b) or $a cmp $b } @stuff;
print map "[$_] ", @sorted;

The output, which is correct is:
[encanto] [Enciclopedia de México]
[encogido] [enchilada] [enchufe] [endibia]

Your normalize subroutine now correctly implements
Spanish-style

520

sorting.

521

Bi-Level Sorting to the Rescue

There is a problem with our approach so far—and it might not
even be a real problem for you, depending on why you’re
sorting your data.

Earlier, I talked about what happens when a sorting
subroutine returns the same value for a pair of items, like
“cant” and “can’t” for an English normalize, or “canto”
and “cantó” for a Spanish normalize, or “Chile” and
“chile” with either. So far we’ve been sort of cheating, with
criteria like these:

@sorted = sort { normalize($a) cmp
normalize($b) or $a cmp $b } @stuff;

This worked because the last expression, $a cmp $b, just
happens to have correctly resolved ties that arise with
normalize($a) cmp normalize($b). That was
just dumb luck. And if, like many dictionaries, you want
“Chile” to come after “chile,” then plain old cmp as a
tiebreaker does the wrong thing. So we need
bi-level sorting with a normalize2 function as a better
tiebreaker:

@sorted =

sort { normalize($a) cmp normalize($b)
or normalize2($a) cmp

normalize2($b)
or $a cmp $b

} @stuff;

522

Let’s implement a normalize2 subroutine that correctly
breaks normalize ties. Let’s continue with Spanish, and
let’s suppose that given a tie between variants of the letter
“e”, the order they should come out in is:

e E é É

Now, you could use the same sort of code as in
normalize, this time implementing an alphabet consisting
of:

a A á Á b B c C ch Ch CH d D e E é É ...

However, consider that normalize2 is just a
tie-breaker—it doesn’t need to distinguish “a” from “b”. It
would never be called in a case where an “a” in one position
would need to be compared to a “b” in another, since that
would not have resulted in a tie between normalized strings.
In other words, all normalize2 needs to do is distinguish
letters that normalize obliterated the difference
between—letters in the same “family”. In other words
(grouping these letters into families), you need only map from
these:

a A á Á b B c C ch Ch CH d
D e E é É ...

onto these:
1 2 3 4 1 2 1 2 1 2 3 1
2 1 2 3 4 ...

And you can implement that this way:
sub normalize2 {

my $in = $_[0];

Digraph things...

523

$in =~ s/ch/¢/g; # chimichanga
=> ¢imi¢anga

$in =~ s/Ch/*/g; # Chimichanga
=> *imi¢anga

$in =~ s/CH/*/g; # CHIMICHANGA
=> *IMI*ANGA

$in =~ s/ll/£/g; # llama => £ama
$in =~ s/Ll/§/g; # Llama => §ama
$in =~ s/LL/¶/g; # LLAMA => ¶AMA

Now the big whammy...
$in

=~tr<aAbBcC¢**dDeEéÉfFgGhHiIíÍjJkKlL£§¶mMnNoOóÓpPqQrRsStTuUúÚüÜvVwWxXyYzZ>

<12121212312123412121212341212121231212123412121212121234561212121212>;
return $in;

}

To get a better feeling for the output of this function,
consider:

normalize2("chile") is "1111"
normalize2("Chile") is "2111"

normalize2("CHILES RELLENOS!") is "32222
2232222!"

normalize2("cantó") is "11113"
normalize2("Canto") is "21111"
normalize2("CANTÓ") is "22224"

Consider what happens when
sorting “chile” and “Chile”; the sort criterion considers the
expression:

normalize("chile") cmp normalize("Chile")
or normalize2("chile") cmp

normalize2("Chile")
or "chile" cmp "Chile"

524

This simplifies to:
"chile" cmp "chile" # First
subexpression

or "1111" cmp "2111" # Second
subexpression

or "chile" cmp "Chile" # Last
subexpression

The first cmp subexpression evaluates to 0, falling through to
the expression consisting of the two values from
normalize2. Between them, “1111” (from “chile”) comes
first ASCIIbetically, so “1111” cmp “2111” returns -1,
to signal that “chile” should come before “Chile”. (Perl never
gets as far as evaluating the last subexpression, “chile”
cmp “Chile”.)

525

English: Résumé and Resume

Now, this whole business of
bi-level sorting may all seem very abstract and, well, foreign,
if the only thing you’ve ever sorted is English. But consider if
you’re
sorting this list of English words:

rot résumé resume rabble return

and you want it to sort correctly:
rabble resume résumé return rot

In other words, you want “resume” to always sort before
“résumé”. If you use a one-level sort like this:

@sorted = sort { normalize($a) cmp
normalize($b) } @stuff;

then you have a choice. Either treat “e” and “é” as the same
letter (as with “ñ” and “n” in our Canberra/canine/cannery
example), or treat “é” as a letter after “e”. If you treat “e” and
“é” as the same letter, then the ordering of “resume” and
“résumé” would be unpredictable, since your normalize
will return the same value for both.

But if you treat “é” as a letter after “e” (and that seems to be
many people’s first guess at a solution, I’ve found), that
means that “é” will be a letter between “e” and “f”, and all the
“ré-” words will come after all the “re-” words—so that your
list will sort as:

rabble resume return résumé rot

526

That’s wrong. So if you want this to sort right, you need at
least two levels in your
sorting. And since I’ve yet to see a case where more than two
levels of
sorting were needed, that pretty much leaves you with bi-level
sorting.

Like it or not, the only way to get really correct sorting in
English is to use bi-level sorting. And this is not just a
problem with English having
foreign words like “résumé”—the same problem arises with
wanting to sort “Bath” and “bath”, say.

527

Optimizing with Memoization

As Perl evaluates a sort criterion while sorting a list, it will
ask that criterion to compare several of the items against each
other. To see it at work, you can run:

@stuff = sort { print "$a & $b ; "; $a cmp
$b } qw(A B C D E F);

and you’ll see something along the lines of:
A & D ; B & D ; C & D ; D & F ; D & E ; E
& F ; A & B ; B & C ;

If your criterion, like most of the ones in this article, will have
to call normalize (and maybe normalize2) for
whatever items they’re asked to compare, then you can see
that you’re going to be calling normalize(“D”) several
times. There’s no point in re-computing it, since
normalize(“D”) always gives the same answer, so all
the calls after the first are just wasted effort. To make your
sort criterion more efficient, you can cache the results of the
function calls. Caching the results of a function like this is
commonly called memoization.

In other words, instead of evaluating the expression
normalize($a), you look to see if you computed it
earlier and saved the result. otherwise, you compute the value
and stow it in the cache for next time. So wherever you have:

function($INPUT)

you would use:

528

exists($cache{$INPUT}) ? $cache{$INPUT} :
($cache{$INPUT} = function($INPUT))

Worked into our bi-level sort criterion, this would look like:
{

my(%cache, %cache2);
@sorted = sort {

(exists($cache{$a}) ? $cache{$a}
: ($cache{$a} = normalize($a)))

cmp
(exists($cache{$b}) ? $cache{$b}

: ($cache{$b} = normalize($b)))
or

(exists($cache2{$a}) ? $cache2{$a}
: ($cache2{$a} = normalize2($a)))

cmp
(exists($cache2{$b}) ? $cache2{$b}

: ($cache2{$b} = normalize2($b)))
or
$a cmp $b

} @stuff;
}

It’s not pretty, but it does avoid having to needlessly
recompute normalize(ITEM) several times for each
item being sorted. And the only thing better than correct
sorting is faster correct
sorting.

(Note: I’ve presented
memoization only in the context of
sorting. For more general applications, see Mark Jason
Dominus’s article on the topic in Computer Science and Perl
Programming: Best of the Perl Journal, or the Memoize
module in CPAN.)

529

Sorting it All Out

Now, I’ve heard that in the years since I took my last Spanish
class, the Spanish Academy has decided to stop giving “ch”
special treatment, so that “churro” will be, they decree, under
“C”, somewhere between “cesto” and “cicatriz”. However, I
don’t know to what degree this has been accepted by the
average Spanish speaker, much less the people who make the
phone books and dictionaries in all the Spanish-speaking
countries.

But even if everyone’s idea of Spanish sorting conventions
suddenly gets simpler (by doing away with those “ch” and
“ll” digraphs), it’ll still need bi-level sorting, just like English.

In fact, because implementing the bi-level sorting presented
in this article is so common, I’ve written a module called
Sort::ArbBiLex that does it for you. The module allows you
to specify a
sort order (possibly including multi-character letters like
Spanish “ch”) for which it builds a subroutine that sorts that
way. The internals of Sort::ArbBiLex are frightening, but
they’re just an elaborate version of the techniques discussed
in this article, adapted to the kinds of sorting found in most
languages.

Here’s some example code that defines then uses a
sort order for Spanish:

use strict;
use Sort::ArbBiLex;
*sort_es = Sort::ArbBiLex::maker(#
defines &sort_es

530

"a A á Á \n b B \n c C
\n ch Ch CH

d D \n e E é É \n f F
\n g G

h H \n i I í Í \n j J
\n k K

l L \n ll Ll LL \n m M
\n n N

ñ Ñ \n o O ó Ó \n p P
\n q Q

r R \n s S \n t T
\n u U ú Ú ü Ü

v V \n w W \n x X
\n y Y

z Z
"

);

my @stuff = ("cana", "caña", "cánula",
"cantina",

"Canal", "cantó", "canto", "cantor");

print map "[$_] ", sort_es(@stuff);

This code prints:
[cana] [Canal] [cantina] [canto] [cantó]
[cantor] [cánula] [caña]

And there we have it: a simple sort that sorts Spanish text
correctly.

531

Chapter 24. Simulating Typos with
Perl

Sean M. Burke

Quoth the raven, “Nwvermpre!”

About two years ago, I switched to typing on the
Dvorak keymap. That meant going from the
Sholes “QWERTY”
keymap:

` 1 2 3 4 5 6 7 8 9 0 - = \
q w e r t y u i o p []
a s d f g h j k l ; '
z x c v b n m , . /

to August
Dvorak’s more efficiency-minded keymap:

` 1 2 3 4 5 6 7 8 9 0 [] \
' , . p y f g c r l / =
a o e u i d h t n s -
; q j k x b m w v z

It was just a matter of switching the keymap preferences on
whatever computers I had to type on, and then a few days of
acclimating to all the keys having moved. This had the two
desired effects: my hands would no longer ache after
marathon coding sessions, and no one ever touched my
computer again.

532

But there was one side effect I hadn’t anticipated: a different
keymap means different kinds of
typos. This became evident to me first on IRC. Since IRC is a
medium characterized by people typing faster than they can
think,
typos abound:

<Wuglife> I hear it's out on video now
me> I know, I sow it a wook age.
<Wuglife> sow?
<Koolmodey> wook age?
<Mugsy> GWAWRR! BEWARE THE AGE OF THE WOOK!
me> I mean I sAw it a wEEk agO.
<Koolmodey> guh, how do you manage to aim for

'e' and hit 'o' instead? they're
on

different sides of the keyboard
me> They're right next to eachother on mine.

I use a Dvorak keyboard. The middle row
goes: "aoeuidhtns".

<Koolmodey> that's because you're a communist
me> columnist
<Koolmodey> yea like dvorak

me> different Dvorak. August, not John.
<Mugsy> whatEVERRRR
<Wuglife> i like pie

Over time I did get the feeling that
typos on a Dvorak keyboard were really consistently
different. At least for me, the typos I’d made on QWERTY
keyboards were either transposition (“hte” for “the”) or
hitting a key adjacent to the intended one. On a Dvorak,
transposition errors are more or less the same, but
adjacent-key errors are, naturally, rather different—if you
miss to the left or right of a QWERTY “e”, you hit “w” or

533

“r”, but to the left or right of a Dvorak “e” is “o” and “u”. So
the equivalents of “fwlt” or “frlt” on a QWERTY become
“folt” or “fult” on a Dvorak.

I had the feeling that Dvorak typos were, on the whole, much
less likely to look like typos, compared to QWERTY typos.
Whereas “fwlt” and “frlt” couldn’t possibly be words, “folt”
and “fult” look like plausible words that happen not to exist.
And sometimes the typo does make for an existing
word—one off from “seen” is “soon”, one off from “be” is
“me”, and so on. This isn’t something completely exclusive to
a Dvorak—on a QWERTY, “fear” and “dear” are just one key
off—but I had a feeling it was happening much more
frequently with the Dvorak.

Now, looking at the keymap, it stands to reason—but then,
lots of things stand to reason that don’t actually happen (like,
say, everyone abandoning the
QWERTY keymap, or having done so decades ago). So I
decided that the best way to test this would be to write some
sort of program to simulate typos on a Dvorak and on a
QWERTY, have it generate lots and lots of typos, and see
what the results would be.

First off, this might tell me whether I was just imagining
things, or whether this was a measurable (and simulatable)
property of typing on a Dvorak versus typing on a QWERTY.
Moreover, the code developed could be of use in catching
common typos—a capability important in spelling-correction
algorithms, whether in actual spellcheckers or programs that,
given a failed URL or email address, can suggest to the user
an alternative. More perversely, one could use
typo-simulating code to lend a hint of authenticity to a chatbot
(see Chapters Chapter 12 and Chapter 13).

534

Simulating the Typos

For sake of simplicity, I figure I’d model the kind of typo I
make most: trying to hit one key, but hitting a key either to
the left or to the right. And since most of the keys I hit are
letters, I decided to ignore typos on other keys, like hitting
“%” instead of “$”, or even shift typos (for example, “THe”
for “The”).

The first thing any typo-simulating program needs to know is
what keys are next to what. So I the first thing I wrote was a
data table for the keys, @rows, and then a bit of code to
expand that into two hashes, %Left and %Right:

use strict;
my @rows;
if (1) { # Change to 0 to get

QWERTY.
@rows = (# Yes, I use a split

keyboard...
" py fgcrl ",
" aoeui dhtns ",
" qjkx bmwvz ");

} else {
@rows = (" qwert yuiop ",

" asdfg hjkl ",
" zxcvb nm ");

}

To simulate an un-split keyboard:
for (@rows) { substr($_, 6, 2) = '' }

my (%Left, %Right);
So $Left{$x} is what letter, if any,
to the left of the letter $x.

535

foreach my $r (@rows) {
for (my $i = 1; $i < length $r; ++$i) {

my $x = substr($r,$i,1);
next unless $x =~ m/[a-z]/;
$Left{$x} = substr($r,$i - 1,1)

unless substr($r,$i - 1,1) eq ' ';
$Right{$x} = substr($r,$i + 1,1)

unless substr($r,$i + 1,1) eq ' ';
}

}
And add the uppercase letters:
%Left = (%Left, map uc($_), %Left);
%Right = (%Right, map uc($_), %Right);

Then, after some tinkering, I came up with a function that,
given a word, would try to think of some way to make a typo
in it:

sub

typo_on_word {
my $word = $_[0];
my $typo_word;
my $tries = 0;

Make_typo:
{

if (++$tries > 4) {
after too many do-overs, give up
$typo_word = $word;
last Make_typo;

}
my @strokes = stroke_groups($word);
my $where = int rand @strokes;
my $char = substr($strokes[$where],0,1);
my $instead = (rand(1) < .5)

? ($Left{$char} || $Right{$char} ||
redo)

536

: ($Right{$char} || $Left{$char} ||
redo);

$strokes[$where] = $instead
x length

$strokes[$where];
So 'e' => 'r' or 'w', 'ee' => 'rr'

or 'ww'
$typo_word = join '', @strokes;

redo Make_typo unless

rep_pattern($word)
eq rep_pattern($typo_word);

That's so that we don't create any
stroke

groups that weren't there before, as
in

turning "soar" into "soor", which is
a

kind of mistake that I rarely if
ever make.

}
return $typo_word;

}

sub

stroke_groups {
'eat' => qw(e a t)
'eel' => qw(ee l)
'fool' => qw(f oo l)

my @out;
while ($_[0] =~ m<(.)(\1*)>g) {

push @out, $1 . $2;
}
return @out;

537

}

sub rep_pattern {
'eat' => '1_1_1'
'eel' => '2_1'
'fool' => '1_2_1'

join '_', map length($_),
stroke_groups($_[0]);
}

Now, there’s a lot going on here, so I’ll break it down: every
word is seen as an array of stroke groups—where each stroke
group is a character plus any immediately following
repetitions of itself. So “cat” is three stroke groups, “c”, “a”,
and “t”; and “food” is three: “f”, “oo”, and “d”.

Modeling things based on stroke groups captures the fact that
if I miss the first “o” in “food”, I’m also going to miss the
following “o” the same way. And it also captures the fact that
I wouldn’t make a typo that would create a new stroke
group—while I could mistype “pen” as “pes”, I would not
mistype “pens” as “pess” or “penn”. So if the typo-generating
code tried doing exactly that, turning “pens” into “pess”, then
rep_pattern($word) eq
rep_pattern($typo_word) would be false
(rep_pattern of “pens” is “1.1.1.1” but rep_pattern
of “pess” is “1.1.2”), and the redo would start the block over.
(Yes, you can have redo s and last s in non-loop blocks!)

So if we use the above subroutines and then try:
for (1..15) {

print

typo_on_word("nevermore"), " ";
}

538

you’ll get output like this with the
Dvorak keymap:

nevecmore nevelmore nuvermore nevermoro
severmore
neverbore nevermole nevurmore nevurmore
novermore
nevecmore nevermare nevermoru nevormore
nevermare

With a
QWERTY keymap you’ll get this:

mevermore nevermote nwvermore nevermorw
nevernore
nevermpre nevermorw nebermore nevwrmore
nevwrmore
nrvermore nwvermore mevermore nevermorw
nevermire

Now, these look to me like plausible
typos of the sort I’ve made on Dvoraks and QWERTYs. This
is not to say that every possible typo I’d make would be
generated by the above typo_on_word function. For
example, typo_on_word doesn’t attempt to simulate
transposition, as in “hten” for “then”. Moreover, it fails to
account for the fact that I now and then make
typos like “moro” for “mere”—where, in effect, “e-e”
functions as a sort of stroke group, because the left hand
never leaves its key, regardless of the fact that the right hand
is meanwhile off hitting the “r”.

But there are diminishing returns to this. I think that if I wrote
a function that modeled every kind of typo I make, with the
appropriate frequency, it alone would be longer than this
article, but wouldn’t be vastly more realistic than what I

539

hacked together. The exhaustive and exhausting detail of
Dvorak’s book
Typewriting Behavior certainly convinced me of the fact that
errors are not simple things. However, typo_on_word
does simulate most of the sorts of typos I do make, on each
kind of keyboard.

And notice that most of the simulated Dvorak typos for
“nevermore” look more or less like plausible (if not actually
existing) English words to me, whereas most of the
QWERTY typos contain character sequences that no English
word could contain, like “nwv”, “vwrm”, and so on.

540

How to Identify Words

Being able to say that the string “tevermore” could be an
existing word but “nevwrmore” couldn’t be (and maybe that
“nevecmore” and “nevermoru” might be) is something we can
do intuitively based on some pretty complex implicit
knowledge about how letters (and, at another level, sounds)
can co-occur in English. Expressing that knowledge and then
teaching it to a computer would be pretty difficult.

However, it’s possible to teach the computer to acquire, on its
own, a simple model of
letter
co-occurrence.

Consider the word “nevermore” as a sequence of overlapping
three-character sequences, including, for good measure,
enclosing brackets, to stand for the word boundaries:

[nevermore]
[ne
nev
eve
ver
erm
rmo
mor
ore
re]

If we scan a large amount of existing and presumably
typo-free text (a corpus), and look at all such three-character
clusters (

541

trigraphs), then we’ll be able to scrutinize the simulated typo
“nevwrmore”, and we’ll see that it consists of
never-before-seen clusters like “evw”, “vwr”, and “wrm”.
Then we can note that it’s got three things wrong with it,
which makes it rather implausible as a word.

First, to build the frequency table:
my $text = '

babbitt.txt';
open(TEXT, "<$text") or die "Can't
read-open $text: $!";
my

%Known_clusters;
while (<TEXT>) {

my @words = words_in($_);
foreach my $w (@words) {

$w = lc "[$w]";
for (my $i = 0; $i < length($w) -

2; ++$i) {
++$Known_clusters{substr $w,

$i, 3};
}

}
}
close(TEXT);

sub words_in {
return " $_[0]" =~

m/\s([a-zA-Z]+[a-zA-Z']*)(?=[\s,.`?!;])/g;
return $_[0] =~

m/\s([a-zA-Z]+[a-zA-Z']*)(?=[\s,.])/g ;
See perlfaq6 for more on matching

words
}

542

This builds a hash, %Known_clusters, where the keys
are all the three-letter clusters in all the words in a file. The
file I happen to be using is a 700K text file comprising
Sinclair
Lewis’s novel Babbitt, available from
Project Gutenberg (http://gutenberg.net).

We can test whether a cluster occurred in the text by just
testing exists
$Known_clusters{$cluster}—and that’s the basis
of this routine that gives a measure of the “plausibility”
of a word, by simply figuring what proportion of the word’s
clusters occur in %Known_clusters:

my $Debug = 1; # set to 0 to make plaus
silent
sub plaus {

die "don't feed plaus a null string!"
unless length $_[0]; # sanity checking

my $w = lc "[$_[0]]";
my $plaus_count = 0;
my $cluster_count = 0;
print "$w: " if $Debug;
for (my $i = 0; $i < length($w) - 2;

++$i) {
Loop over three-character

clusters
++$cluster_count;
if (exists $Known_clusters{substr

$w, $i, 3}) {
++$plaus_count;

} else {
print ' <',substr($w, $i,

3),'>?' if $Debug;
}

}

543

my $p = $plaus_count / $cluster_count;
printf " = %0.2f\n", $p if $Debug;
return $p;

}

We can test this by giving it two variations on “nevermore”,
and a few (typo-free) phrases chosen at random from my mail
file, and then some random odd-looking words and names
from a dictionary:

foreach my $w (qw(
nevermore neverbore nwvwrmore

potatoes cheese power and solidarity
as metrics in language survey data

analysis
assessing ethnolinguistic vitality it

seems to
me that this homogenization of language

parallels
what took place a couple hundred years

ago and
is still going on

Tokyo Xhosa Zanzibar yoghurt amphioxis
Kleenex Yaqui quetzal

)) {
plaus($w);

Since we're in debug mode, just
figuring

out plaus will print things.
}
exit;

This processes all the above words, noting three-letter clusters
not found in the most frequent half of the clusters in

544

Babbitt, and figuring the score (which is just the proportion of
clusters that were known). All of the words get straight 1.0’s
(i.e., all clusters known), except for these:

[nwvwrmore]: <[nw>? <nwv>? <wvw>? <vwr>?
<wrm>? = 0.44
[tokyo]: <yo]>? = 0.80
[xhosa]: <[xh>? <xho>? = 0.60
[zanzibar]: <[za>? <anz>? <nzi>? <zib>? =
0.50
[yoghurt]: <ghu>? = 0.86
[amphioxis]: <iox>? = 0.89
[kleenex]: <[kl>? = 0.86
[yaqui]: <yaq>? <ui]>? = 0.60
[quetzal]: <etz>? <tza>? <zal>? = 0.57

So, for example, “neverbore” consists entirely of clusters seen
in Babbitt. (The near-rarest cluster, incidentally, is “rbo”, but
that appears in “carbon”, “Arbor”, “Bourbon”, and a few
other words in the
Babbitt corpus.) But “nwvwrmore” gets a very low rating
from plaus because it contains all sorts of
clusters that don’t appear anywhere in Babbitt: “word-start n
w”, “n w v”, and so on.

The words from “Tokyo” on are all marked as somewhat
implausible; while they are all either English words or
existing names usable in English sentences, plaus has no
way to know that. But note that “nwvwrmore”, with a
plausibility of 0.44, scores much lower than any of these. So
plaus does a pretty good job of being able to tell gibberish
from the “background radiation” of merely odd words and
names.

Now, to test it on the “nevermore”
typos we simulated in the previous section:

545

sub avg_plaus {
my @words = @_;
return undef unless @words;
my $plaus_sum = 0;
foreach my $w (@words) {

$plaus_sum += plaus($w);
}
return($plaus_sum / @words);

}

print "

Dvorak 'nevermore' typo plaus: ",
avg_plaus(qw{ nevecmore nevelmore

nuvermore nevermoro severmore
neverbore nevermole

nevurmore nevurmore novermore
nevecmore nevermare

nevermoru nevormore nevermare }), "\n";
print "

QWERTY 'nevermore' typo plaus: ",
avg_plaus(qw{ mevermore nevermote

nwvermore nevermorw nevernore
nevermpre nevermorw

nebermore nevwrmore nevwrmore
nrvermore nwvermore

mevermore nevermorw nevermire }), "\n";

This returns:
Dvorak 'nevermore' typo plaus:
0.955555555555556
QWERTY 'nevermore' typo plaus:
0.851851851851852

So plaus ’s simple algorithm captures our observation that
the simulated QWERTY typos on “nevermore” are more
gibberish-like than the simulated Dvorak typos.[7]

546

But that’s just one word—a real test of this would be to
simulate
typos in a real text. We can deal with any amount of text
(either in files named on the command line, or piped via
STDIN), try to make a typo in every word, and then report
the average plausibility (via plaus) of the typo-ridden
words in the text:

my (@typo_words);
while (<>) {

foreach my $w (words_in($_)) {
push @typo_words, typo_on_word($w);

}
}
print "Typo plaus: ",
avg_plaus(@typo_words), "\n";
print "Input words: ",
scalar(@typo_words), "\n";
print "Typo plaus: ",
avg_plaus(@typo_words), "\n";
print "Input words: ",
scalar(@typo_words), "\n";
print "Start of typo text: ",

join(' ', (@typo_words > 100) ?
@typo_words[0 .. 100] : @typo_words), "\n";

When we feed text through this program, we get (after some
minutes of frenzied calculation) a report of the average
plaus rating for the simulated
typos in the text. We also get to see the beginning of the
typo-filled text.

Typo-free
Babbitt starts out:

547

The towers of Zenith aspired above the morning mist;
austere towers of steel and cement and limestone,
sturdy as cliffs and delicate as silver rods.

But the above program,
simulating typos on a split
Dvorak keymap, gives us:

Thu nowers af Venith aspured abowe tho mornisg bist;
austece tomers og sheel anh cument ond liwestone,
sturhy an criffs anh dericate an nilver rodn.

And for a split
QWERTY, we get:

Rhe rowers pf Zenirh asoired sbove tje mirning nist;
ausrere rowers pf steek amd cemenr amd limestonw,
srurdy ad clidds anf delicare as dilver rids.

The average plaus of the whole of Babbitt, all 115,826
words of it, is about 0.87 for simulated Dvorak typos, but
only 0.75 for simulated QWERTY typos.

There may be something a bit odd about using the same text
to simulate typos as the %Known_clusters was built
from, but it turns out that if we use the
%Known_clusters from Babbitt but simulate typos on
other texts (here, a 48,000-word
Project Gutenberg e-text of Charles Babbage’s Reflections on
the Decline of Science in England, and on Some of its Causes;
and the first few paragraphs of William Gibson’s
Neuromancer), we find that the average plaus ratings are
basically the same as for Babbitt! Table 24-1 at the end of this
article shows the results.

548

Errors typed on a Dvorak, at least as modeled by my
simulator, seem to be consistently more plausible (looking
less like errors and more like real words) than errors on a
QWERTY—at least for English text.

[7] The only unknown clusters in the Dvorak nevermores
were: nevecmore, nuvermore, and nevermoru. However, in
the QWERTY nevermores, there were mevermore,
nwvermore, nevermorw, nevermpre, nevwrmore, and
nrvermore.

549

Typos in Other Languages

I was wondering, however, to what degree this might be
specific to typing just in English. After all, both the Dvorak
and QWERTY keymaps were designed with only English in
mind, although both (with some degree of modification) are
used for typing in any language that uses the Roman alphabet.

Now,
simulating typos in typing another language begs the question
of exactly what keymap is used—languages with lots of
accents have to add or alter the Dvorak or QWERTY
keymaps to accommodate typing those accents. To keep
things simple, I decided to try text in
Dutch, a language with few accents. (I do wonder how Polish
typos would come out on a
QWERTY and a
Dvorak, but I know of no Dvorak keymaps that support
Polish accents.)

A quick trip over to the
European Parliament’s web site (www.europarl.eu.int) got me
about 22,000 Dutch words: the text of four days’ worth of the
Dagelijks Presbericht, the EP Daily Notebook. An example
phrase, with Dvorak and QWERTY typos:

Dutch: Maar met twee amendementen wordt
er bij de Raad nogmaals op
Dvorak: Moor mot hwee amendomenten mordt
el mij du raah sogmaals ap
QWERTY: Naar net rwee amensementen wirdt
wr bih dr rssd nognaals ip

550

The results over the mini-corpus of Dutch were comparable to
the English results: the average plaus on Dvorak was about
0.82, and on QWERTY it was about 0.72. So the average
typo on each for Dutch was a bit less plausible than for
English, although interestingly enough, the difference (about
0.10) remains the same.

But then, Dutch is a Germanic language like English, with
similar restrictions on how many consonants you can pack
into each syllable (relatively many when compared to most
other languages). A typical Italian syllable, however, is just a
consonant and a vowel, and possibly a consonant at the end.
So, to see how Italian would work with Dvorak and
QWERTY typos, I rebuilt %Known_clusters from the
clusters in Dante’s Inferno, and then simulated typos on the
text. The text, with typos, starts out:

Italian: Nel mezzo del cammin di nostra
vita
Dvorak: Ner mevvo dol commin hi sostra
zita
QWERTY: Nwl nezzo dek cammim si nostrs
bita

Italian: mi ritrovai per una selva oscura
Dvorak: wi ritrozai pel uno sulva oscira
QWERTY: ni rotrovai oer yna sekva oscurs

Italian: che' la diritta via era smarrita.
Dvorak: cho' lo duritta vio ora nmarrita.
QWERTY: cje' ka dititta vua eta amarrita.

Italian: Ahi quanto a dir qual era e` cosa
dura
Dvorak: Ahu quanta o hir jual eca o` casa
hura

551

QWERTY: Shi quamto s fir wual wra w` cisa
dira

Italian: esta selva selvaggia e aspra e
forte
Dvorak: esto selvo selvoggia u asyra o
ferte
QWERTY: eata swlva sekvaggia w asprs w
fprte

Italian: che nel pensier rinova la paura!
Dvorak: ghe ner pensuer rinovo ra paira!
QWERTY: xhe nek prnsier riniva ls psura!

Midway upon the road of our life I found myself within
a dark wood, for the right way had been missed. Ah!
how hard a thing it is to tell what this wild and rough
and dense wood was, which in thought renews the fear!

—from the Norton translation, also available from
Project Gutenberg.

Simulating Dvorak typos on Inferno (about 30,000 words)
gives an average plaus of about 0.81, like
Dutch, and not far off from English’s 0.88. But
QWERTY typos have a much lower plaus: 0.61. The
plaus figures are the same with Paradiso (also about
30,000 words).

Just to see if I could throw a wrench into the works, I decided
to try feeding through some texts in written
Tibetan (in Romanization). While spoken Tibetan is pretty
normal as languages go, written Tibetan has (silent)
consonants in patterns and quantities I’d never have thought
possible. (See Beyer 1992 for a fascinating discussion of how

552

the writing system got to be that way.) Luckily for my
purposes, the
Asian Text Input Project (http://asianclassics.org) has megs
and megs of ASCII text in Tibetan. I decided at random on an
833KB file called ’Phags Pa Rgya Cher Rol Pa Zhes Bya Ba
Theg Pa Chen Po’i Mdox (The Exalted Sutra of the Greater
Way entitled The Sutra of Cosmic Play, or Arya Lalitavistara
Nama Mahayanasutra).

Figure 24-1. A line of Tibetan text

Here is a sample line from the Tibetan text (with the actual
phrase shown in Figure 24-1), with simulated Dvorak-typo
and QWERTY-typo versions:

Tibetan: gcig na, bcom ldan 'das mnyan yod
na rgyal bu rgyal
Dvorak: gcug no, bcow ldon 'dan bnyan yad
no rgyar bi cgyal
QWERTY: fcig ns, bcon lsan 'fas mnyam uod
ns rfyal bi rfyal

You’d think that a language that admits “rgyal” as a syllable
isn’t too terribly choosy about syllable structure—since
“gcig” is a word, you’d bet “gcug” and “fcig” are just as
plausible as words.

But you’d be wrong.
Simulating typos on Tibetan text gives results not far from
typos on the other languages’ texts: the Tibetan text’s average
plaus for a split

553

Dvorak keymap is 0.80, a few points below the 0.82 for
Italian, but well above the average plaus score of just 0.59
for QWERTY-typo’d Tibetan.

The principle at work seems to be that on a Dvorak, if you
miss a vowel, you’ll probably get another vowel, and
similarly for consonants. Moreover, there’s a decent
likelihood you’ll get a consonant of the same articulatory
class: most of bottom-right on a Dvorak is letters whose
typical values are sounds articulated with the lip
(“bmwvz”—“z” being the odd man out), and most of the
middle-right row are sounds articulated with the tongue-tip
right behind the top front teeth (“dhtns”—“h” being the
exception this time). Substituting one of these for another of
the same class typically will give you a plausible word.

On a QWERTY keyboard, however, there is relatively little
such phonetic patterning of the keys, and so being one key off
will get you a letter with basically no relationship to the letter
you were aiming for.

While I find typing on a Dvorak to make for less work
(muscularly) than typing on a QWERTY, the typos will stick
out less, apparently regardless of language. So using a Dvorak
means that careful proofreading has to be even more
careful—at least until someone writes a use strict
pragma for Tibetan, Italian, Dutch, and maybe even English.

554

Results

The average plausibility of simulated typos, on different
keymaps, for texts in various languages is shown in
Table 24-1.

Table 24-1. Plausibility of simulated typos

Dvorak QWERTY

Split Unsplit Split Unsplit

Sinclair Lewis’s
Babbitt .874 .864 .756 .749

Charles Babbage’s Reflections on the
Decline of Science in England, and on
Some of its Causes (plaus based on
Babbitt)

.874 .865 .773 .757

First few paragraphs of William
Gibson’s Neuromancer (plaus based on
Babbitt)

.885 .863 .770 .766

Dutch: Dagelijks Presbericht
2000-10-24 .836 .828 .724 .692

Dagelijks Presbericht 2000-10-23,
2000-10-25, and 2000-10-26 (plaus
based on 2000-10-24)

.831 .821 .715 .686

555

Dvorak QWERTY

Split Unsplit Split Unsplit

Italian: Dante’s Inferno .821 .806 .616 .600

Dante’s Paradiso (plaus based on
Inferno) .821 .804 .612 .604

Tibetan: ’Phags Pa Rgya Cher Rol Pa
Zhes Bya Ba Theg Pa Chen Po’i Mdo
[Sutra of Cosmic Play]

.804 .754 .585 .607

556

References

Beyer, Stephan V. The Classical Tibetan Language. State
University of New York Press, Albany, 1992.

Dvorak, August, Nellie L.
Merrick, William L.
Dealey, and Gertrude Catherine
Ford. 1936. Typewriting Behavior. American Book Company,
New York City. [Out of print and rather hard to find.—SB]

557

Chapter 25. Correcting Typos with
Perl

Dave Cross
Symbol::Approx::Sub is a
Perl module that allows us to call
subroutines even if we spell their names wrong. Using it can
be as simple as adding this to your programs:

use Symbol::Approx::Sub;

Once we’ve done this, we never have to worry about spelling
our
subroutine names correctly again. For example, this program
prints This is the foo subroutine!, even
though &foo was misspelled as &few.

use Symbol::Approx::Sub;

sub foo {
print "This is the foo subroutine!\n";

}

&few;

Why Was It Written?

This is obviously a very dangerous thing to want, so what
made me decide to write Symbol::Approx::Sub?

558

In July 2000 I attended the O’Reilly Perl Conference and took
Mark Jason Dominus’s “Tricks of the Wizards” tutorial. He
explained a number of concepts that can take your Perl
programs to a new level of complexity and elegance. The
most important of these concepts are
typeglobs and the AUTOLOAD function. It was the first time
that I’d really tried to understand either of these concepts and,
thanks to Dominus’s clear explanations, I began to understand
their power.

One example that Dominus used in this class was a
demonstration of how we can use AUTOLOAD to catch
misspelled subroutine names and perhaps do something about
it. He showed a slide containing code like this:

sub AUTOLOAD {
my ($sub) = s/.*::(.*)/;
Work out what sub the user really

meant
$sub = get_real_name_of_sub($sub);

goto &$sub;
}

On the following slide, he went into some detail about what a
really bad idea this would be and how it would make your
code completely unmaintainable. But it was too late; I was
already thinking about how I could write a “get the real name
of the subroutine” function and put it into a module that could
be used in any
Perl program.

559

How Does It Work?

During the twelve-hour flight home from California to
England I thrashed out the implementation details. Here are
the four required stages:

▪ When the module is loaded, it needs to install an
AUTOLOAD function in the package that called it.

▪ When AUTOLOAD is called (as the result of invoking a
non-existent subroutine) it needs to get a list of all the
subroutines in our calling package.

▪ The AUTOLOAD function needs to compare each of
those
subroutine names with what the user actually called, and
choose the most likely candidate.

▪ It then invokes the chosen subroutine.

The key to the first two stages was the other main topic of
Dominus’s talk—typeglobs.

In every Perl package, there is something called a stash
(“symbol table hash”
) that contains the package’s variables and subroutines. The
stash is like a normal hash, with the keys being the names of
the variables, and the values being references to the
typeglobs. A typeglob is a data structure containing references
to all of the objects with the same name. We know that in a
Perl program you can have $a, @a, %a, and &a, and they
are all completely separate—but they all live in the same
typeglob.

560

The first stage is achieved with a useful typeglob trick. We
can assign values (which should be references) to the various
slots of a typeglob. This has the effect of aliasing the
typeglob’s name to the referenced value. For example, if we
execute the following line of code:

*a = \@array_with_a_really_long_name;

@a will become an alias to
@array_with_a_really_long_name and any
changes we make to to @a will actually happen to the other
array.

Furthermore, we can do this with any typeglob object, not just
arrays. In particular, we can do it with subroutines, which is
what I needed for
Symbol::Approx::Sub. The two objects don’t even have to be
in the same package, as we can see from the following code:

package other;

sub foo { print "This is &other::foo\n" }

*main::bar = \&foo;

package main;

&bar;

In this example we create a
subroutine called foo in the package other. We then alias
that subroutine to &main::bar. This means that within the
main package, if we call bar we actually call
&other::foo. (This is how the Exporter module works.)

When

561

Symbol::Approx::Sub is loaded, we alias our caller’s
AUTOLOAD function to the one in our module. We know
what our AUTOLOAD needs to do, but how do we get a list of
subroutines in the calling package?

Let’s look at a simple typeglob example. The next piece of
code declares three package variables and a subroutine. We
then write a simple foreach loop to print out the contents
of %main::stash. If we run this program we’ll see the
names of our package objects a, b, c, and d. (We’ll also
see the standard filehandles STDIN and STDOUT and other
built-in
Perl variables like @INC and %ENV.)

use vars qw($a @b %c);

sub d { print "Hello, world!\n" };

foreach (keys %main::) {
print "$_\n";

}

Having listed the
typeglobs, our next task is to work out which of them contain
subroutines. For this, we can use the *FOO{ THING}
syntax. In the same way that scalar names always start with a
$ and array names always start with a @, typeglob names
always start with a *. *FOO therefore refers to the typeglob
called FOO (which will contain $FOO, @FOO, %FOO, and
&FOO). With the *FOO{ THING} syntax, we can find out
whether the typeglob FOO contains an object of type THING,
where THING can be SCALAR, ARRAY, HASH, IO,
FORMAT, CODE, or GLOB. The next piece of code uses

562

this syntax to show which of the typeglobs in our current
package contain a subroutine:

#!/usr/bin/perl -w

use strict;
use vars qw($a @b %c);

sub d { print "sub d" };

while (my ($name, $glob) = each %main::) {
print "$name contains a sub\n" if

defined *$glob{CODE};
}

We now know enough to create an AUTOLOAD function that
generates a list of the
subroutines that exist in the package.

Inside the AUTOLOAD function, the name of the subroutine
that the program attempted to invoke will be available in the
$AUTOLOAD variable. All we need to do is carry out some
sort of fuzzy matching on the set of
subroutine names and the
misspelled subroutine name to find the best match.

Unfortunately, this isn’t as simple as it sounds. I didn’t want
to write my own fuzzy matching algorithm, so I decided to
borrow someone else’s.
Perl comes with a
Text::Soundex
module that converts any word to a single letter and three
digits that collectively correspond to the pronunciation of the
string. This is what I initially used for my fuzzy matching.

The module computes the Soundex value for the

563

misspelled subroutine, and then computes the Soundex values
for each of the subroutines in the caller’s package. If none
match, it mimics Perl’s standard “undefined subroutine
called” error message. If one matches, it’s assumed to be the
right subroutine. But what if there are multiple matches? This
can happen, since Soundex compression can map two
similar-sounding subroutine names to the same Soundex
value. I thought about this for a while before deciding that the
only option would be to pick one at random. I really couldn’t
see any other reasonable approach.

564

The Sub::Approx Module

That’s pretty much how the original version of the module
worked. I called it Sub::Approx and released it to CPAN.
People started to talk to me about the module, and one of the
most common things they said was, “Really interesting idea,
but you should do the fuzzy matching using
Some::Other::Module.”

So Version 0.05 of Sub::Approx included what I called
“fuzzy configurability” (or “configurable fuzziness”) and with
the help of Leon
Brocard, we made the process of matching a subroutine more
modular. We introduced the concept of a matcher, which is a
subroutine called with two things: the name of a subroutine
that we’re trying to match, and the list of subroutines in the
package. The matcher returns an array of the subroutine
names that match the required name. We supplied a matcher
for each of Text::Soundex,
Text::Metaphone, and
String::Approx. You can therefore now use Sub::Approx like
this:

use Sub::Approx (matcher =>
'text_metaphone');

This makes matching be carried out with Text::Metaphone
instead of Text::Soundex.

To make it even more flexible, we allowed programmers to
define their own matching subroutines; the subroutines are
passed by reference into Sub::Approx. Here, we provide our
own subroutine, named reverse:

565

use Sub::Approx (matcher => \&reverse);

sub reverse {
my $sub = reverse shift;
return grep { $_ eq $sub } @_;

}
sub abc {

print "In sub abc!\n";
}

&cba;

If our subroutine doesn’t exist, this matcher searches for a
subroutine whose name is the reverse of the subroutine we
tried to call.

One last feature was the ability to define a chooser
function, which decides what to do if more than one
subroutine matches. This function, when passed a list of
matching
subroutine names, should return the name of the one it
chooses. The default chooser still picks one at random, but
you can define your own like this:

use Sub::Approx (chooser => \&first);

sub first {
return shift;

}

This example isn’t very bright—it’ll always choose the first
item in the list of matching
subroutines.

566

The Symbol::Approx::Sub Module

This was how things remained until I gave a lightning talk on
Sub::Approx at YAPC::Europe 2000. Afterward, a number of
discussions took place that changed the shape of
Sub::Approx, resulting in four changes:

▪ Perl RFC 324 was drafted, which suggested that in Perl
6, the AUTOLOAD function should be renamed to
AUTOGLOB and invoked when any typeglob object that
doesn’t exist is called. This would allow us to create
Scalar::Approx, Array::Approx, and so on.

▪ A mailing list was set up to discuss Sub::Approx and
related matters. You can subscribe to the list at
http://www.astray.com/mailman/listinfo/subapprox/.

▪ The typeglob walking code from Sub::Approx was
abstracted out into a new module called
GlobWalker so that it could be reused in Scalar::Approx
and friends. (Later, I discovered that the
Devel::Symdump module on CPAN did much the same
thing and switched to that.)

▪ We realized that to produce Scalar::Approx and friends,
we would be polluting a number of module namespaces.
After some discussion on the modules and subapprox
mailing lists, we decided on the name
Symbol::Approx::Sub.

Symbol::Approx::Sub Version 1.60 is currently on CPAN.

Robin
Houston has started work on a

567

Symbol::Approx::Scalar module. Variables are trickier than
subroutines for two reasons. First, there is currently no
AUTOLOAD facility for variables the way there is for
subroutines; Robin gets around this by tying the scalar
variables. Second, most variables (at least in good programs)
are lexical variables, rather than package variables, and
therefore don’t live in typeglobs. Robin (who knows more
about Perl internals that I do) has written a
PadWalker module that does the same for lexical variables as
GlobWalker (or Devel::Symdump) does for typeglobs.

568

Future Plans

On the mailing list, we are already planning
Symbol::Approx::Sub Version 2.0. Planned features include:

▪ Separating the matcher component out into two separate
stages:
canonization and matching. Canonization takes a
subroutine name and returns some kind of canonical
version, which might include removing underscores or
converting all characters to lower case. This suggests
having chained canonizers, each of which carries out one
transformation in sequence.

▪ Developing a plugin architecture for canonizers,
matchers, and choosers. This would make it easy for
other people to produce their own modules that work
with Symbol::Approx::Sub.

▪ Trying to accommodate calling packages that already
define an AUTOLOAD function.

Even with all of this development, I have yet to find a real use
for the module. As far as I can see, it’s simply a very good
demonstration of just how easy it is to do things in Perl that
would be impossible in other languages. If you think you
have an interesting use for Symbol::Approx::Sub, please let
the mailing list know.

569

Afterword

Development of Symbol::Approx::Sub continues. Version
2.00 of the module was released during the Open Source
Convention in July 2001. This version implements the plug-in
architecture discussed in the article. When
Google released the API to their search engine in April 2002,
Tatsuhiko
Miyagawa combined it with the Symbol::Approx::Sub plug-in
architecture to create
Symbol::Approx::Sub::Google, which uses Google’s
spellcheck
feature to do the fuzzy matching.

In the summer of 2001 I gave a talk called “Perl for the
People” at both the Open Source Convention and
YAPC::Europe. In it I looked at some of the more extreme
things that will be possible with Symbol::Approx::Sub. The
slides for this talk are online at http://www.mag-sol.com/
talks/ppl/.

And we’re eagerly awaiting Larry Wall’s Apocalypse 10,
which will tell us whether or not RFD 324 has been accepted
for implementation in Perl 6.

570

Chapter 26. Learning Japanese
with an HTML Filter

Tuomas J. Lukka
I like to learn new languages by plunging into a good book.
For Italian it was Pinocchio, for English The Moon is a Harsh
Mistress. I keep a dictionary handy, and I spend many hours
rechecking words until I remember them. It’s tedious, but in
the end it’s still a more interesting way to learn than the usual
route of beginning with very simple phrases and vocabulary
and building up slowly, reading childish stories about
uninteresting subjects.

I tried this with a book on Go strategy written in
Japanese, and quickly hit a wall. With many languages you
can infer the meaning of words by what they look like and
remember them by how they sound. But in everyday
Japanese text, there is no way for a beginner to know how a
given phrase is pronounced until he learns the two thousand
characters in common use. Furthermore, each character can
usually be pronounced in two or more ways depending on the
context (see the sidebar on Japanese Characters).

It might still be possible to learn Japanese with this method,
but the task is complicated further still by the fact that the
character dictionaries are tough to use—Japanese has 2,000
characters, so you have to find the words graphically, which
is much more time-consuming. You can’t leaf through the
dictionary as you can with Western writing systems.

571

So I ended up auditing the Japanese course at the university
where I work. Even though the teacher made the course as
much fun as a language course can be,
learning
kanji was difficult because of the feeling of not seeing them
in real, interesting contexts.

The Web

Eventually I found an invaluable resource
for learning and using Japanese on the Web:
ftp://ftp.monash.edu.au/pub/nihongo. This site has two freely
available dictionaries that convert Japanese to English: edict
and kanjidic. There are also instructions on how to view and
edit Japanese on various operating systems.

Japanese Characters

There are four different
character sets used for
Japanese:
hiragana,
katakana,
romaji, and
kanji. Hiragana and katakana both contain less than fifty
characters and are purely phonetic writing systems. They
can be used interchangeably, but usually hiragana is used
for text and katakana is used for loanwords or special
emphasis, like italics in English text. Romaji are simply
the familiar letters you’re reading right now. It is the last
character set, kanji, that motivated this article.

572

These characters, mostly borrowed from Chinese, relate to
meanings, not sounds. There are over 6,000 kanji in all, but
in 1946 the Japanese Ministry of Education settled on a list
of 1945 characters for common use and 166 for names.
Most kanji have at least two readings: on and kun. Which
reading is used depends on the context, but usually the
Japanese (kun) reading is used for single kanji and the
Chinese (on) reading is used for compounds.

Japanese verbs and adjectives are usually written with
kanji for the stem and hiragana for the ending. The format
of kanji dictionary entries usually includes the readings in
hiragana or katakana.

There were a few Japanese web pages about Go, and I’d
visited them several times, each time hoping that my
proficiency had improved enough to let me read them. Each
time I found that I didn’t know enough, and so I came up with
an idea: Why not simply look up the characters
automatically?

The simplest design I could think of was a CGI script that
fetches the page and inserts the definitions of the kanji. Now I
can browse any web page I like, and the kanji are
automatically translated to English. Perl and CPAN made this
nearly as simple as it sounds. I called the result
wwwkan.pl, and it’s shown at the end of this article. It
automatically translates web pages in Japanese like
Figure 26-1 into web pages like Figure 26-2.

573

Dictionary Database

The
dictionaries are fairly large and it would take too long to load
and parse them again whenever the script is called. There are
several solutions. You could have a dictionary server that sits
in memory all the time, responding to queries as they arrive,
or you could store the dictionary in a
hashed database. For simplicity I chose the latter. The script
that converts the dictionary files into hash entries is shown in
gendb.pl:

gendb.pl - generate a database file from
the
kanji dictionaries.
Copyright (C) 1997,1998 Tuomas J.

Lukka.
All rights reserved.
#
Get the files "

kanjidic" and "

edict" from
ftp://ftp.monash.edu.au/pub/nihongo

574

Figure 26-1. The subject listing of the Japanese Yahoo! web
site

use AnyDBM_File;
use Fcntl;

$dir = ".";
$dir = $ARGV[0] if defined $ARGV[0];

Interval to show that we're alive
$report = 4000;

tie %

kanji, AnyDBM_File, 'kanji.dbmx', O_CREAT
| O_RDWR | O_TRUNC, 0755;

open DIC, "$dir/

575

edict" or die "Can't open $dir/edict";
while (<DIC>) {

next if /^#/;
/^(\S+)\s/ or die("Invalid line '$_'");
$kanji{$1} .= $_;
print("E: $nent '$1'\n") if ++$nent %

$report == 0;
}
close DIC;

open DIC, "$dir/

kanjidic" or die "Can't open $dir/
kanjidic";
while (<DIC>) {

next if /^#/;
s/\s[UNBSMHQLKIOWYXEPCZ][\w-.]*//g; #

Leave G and F
/^(\S+)\s/ or die("Invalid line '$_'");
$kanji{$1} .= $_;
print("K: $nent '$1'\n") if ++$nent %

$report == 0;
}
close DIC;
untie %

kanji;

576

Figure 26-2. Figure 26-1 viewed through wwwkan.pl

The format of the edict dictionary is straightforward: first the
kanji, then a space, and finally the definition. The loop to
parse the file is:

open DIC, "$dir/edict" or die "Can't open
$dir/edict";
while (<DIC>) {

next if /^#/;
/^(\S+)\s/ or die("Invalid line '$_'");
$kanji{$1} .= $_;

}
close DIC;

The second dictionary file, kanjidic, is slightly more
complicated, as there are several fields on each line
explaining different aspects of the kanji in question:

577

3027 U6328 N1910 B64 S10 I3c7.14 L2248
P1-3-7 Wae Yai1 Yai2 Q5303.4 MN12082
MP5.0229

The various numbers represent different ways of indexing the
kanji, e.g., N1910 means that this kanji is number 1910 in
Nelson’s
Modern Reader’s Japanese-English Character Dictionary and
Wae means that the romanized Korean reading of this kanji is
“ae”. However interesting this information might be, it
clutters up our web page, so let’s remove most of it:

s/\s[UNBSMHQLKIOWYXEPCZ][\w-.]*//g;

In the parsing loop, %kanji isn’t just any hash. It’s a tied
hash:

tie

%kanji, AnyDBM_File, 'kanji.dbmx', O_CREAT
| O_RDWR | O_TRUNC, 0755;

This ties %kanji to the file kanji.dbmx using
AnyDBM_File, a handy module bundled with Perl that lets
hashes stored on disk appear to be in memory. (Editor’s note:
Chapter 13 uses the same technique.)

Adding entries to the database is then as simple as saying:
$kanji{$1} .= $_;

This stores the entry in the file. I use the .= operator instead
of = because there can be multiple entries for different
meanings of characters or character sequences. After we are
done with it, we untie %kanji to break the connection
between the hash and the disk file.

578

The CGI Script

wwwkan.pl uses two different libraries as its front and back
ends:
libwww-perl (LWP, available on CPAN) is used to fetch the
HTML document from the server and
CGI.pm (provided with the latest Perl distribution) to parse
the request from the HTTP daemon and create the HTML to
be returned.

The script begins with:
tie %kanji, AnyDBM_File, "$libdir/
kanji.dbmx", O_RDONLY, 0;

which opens the kanji database created by the other
script—the contents of %kanji are read back from the file
when requested. Next we print the CGI header and a form for
the new URL:

print $query->header, "CONVERTED By TJL's
kanji explainer on ", `date`,

'. Mail comments to

lukka@fas.harvard.edu.<P>',
$query->startform(), "Go

To: ",
$query->textfield(-name =>

'url',
-default =>

'http://www.yahoo.co.jp/',
-size => 50),

$query->submit('Action', 'Doit'),
$query->endform, "<HR>\n";

579

For more explanation of what is happening, see Lincoln
Stein’s documentation in CGI.pm or any of his columns in
Web, Graphics, and Perl/Tk: Best of the Perl Journal.

After printing the form, the script retrieves the web page:
$url = $query->param('url');
$doc = get $url;

Now we have the
HTML code of the page that was specified in the url field of
the form in $doc.

The next task is to replace all the links to other HTML files
with links through our engine:

$h = parse_html($doc);
$h->traverse(sub {

my ($e, $start) = @_;
return 1 unless $start;

my $attr = $links{lc
$e->tag} or return 1;

my $url =
$e->attr($attr->[0]) or return 1;

$e->attr($attr->[0],
($attr->[1] ?

getlink($url) :

abslink($url)));
},

1);

See the
HTML::Parse documentation for further details. The
anonymous subroutine (sub { … }) merely checks
whether this tag has a URL field, using the hash that we
initialized at the beginning of the program:

580

0 = absolute, 1 = relative
%links = (a => ['href', 1],

img => ['src', 0],
form => ['action', 1],
link => ['href', 1],
frame => ['src', 1]);

The anonymous subroutine in the call to $h->traverse
rewrites any URLs that appear on the page. URLs that are
believed to contain text are rewritten with getlink so that
my translation engine filters them. URLs that represent
images are replaced with absolute links (i.e., prefaced with
http://) by the abslink subroutine:

sub abslink {
return (new

URI::URL($_[0]))->abs($url)->as_string;
}

sub getlink {
my $url_to = (new

URI::URL($_[0]))->abs($url);
my $proxy_url = new URI::URL($my_url);

$proxy_url->query_form(url =>
$url_to->as_string);

return $proxy_url->as_string;
}

After modifying the tags in the parsed form, this line retrieves
the modified HTML:

$doc = $h->as_HTML;

Next, the climactic ending of the script:
for (split "\n", $doc) {

s/((?:[\x80-\xFF][\x40-\xFF])+)/
explainstr($1)/ge;

581

print;
}

This converts the text into explained
kanji one line at a time. The regular expression matches one
or more
Japanese characters: each is stored in two bytes with the
highest bit in the first byte set. The /e modifier is used to
replace them with the output of the explainstr
subroutine, which converts a string of kanji into an
English explanation:

sub explainstr {
my $str = @_;
my $res = "";
my ($pos, $mlen, $s);
for ($pos = 0; $pos < length($str);

$pos += $mlen) {
my $expl;
$mlen = 20;

while (!defined($expl =
$kanji{$s=(substr(($str),$pos,$mlen))})

and $mlen > 2) {
$mlen -= 2;

}
$res .= $s;
if (defined $expl) {

$res .= "
<small><[[[".($expl)."]]]></small> ";

}
}
return $res;

}

The inner loop is necessary because we wish to find the
longest match available in the dictionary. (We want to

582

translate “word processor,” not the shorter matches “word”
and “processor.”)

583

Taking It a Step Further

This design is good if you don’t know any
Japanese, but once you’ve learned the basic characters (e.g.,
“one,” “large,” and so on), it’s tedious to see their definitions
over and over again. We need a way to categorize the
difficulty of characters, and luckily, the Ministry of Education
has done most of our work for us. They have divided kanji
into grades for school. The kanjidic file contains the grade
number of each kanji, so we can include an option that
disables translation below a particular grade. This can be
achieved with the regex /G([0-9])/ in the
explainstr loop and checking $1 to see whether we
should explain this character.

Of course, different people have different interests. For
example, I have learned several terms relating to Go but far
fewer that relate to, say, art history. It would be nice to be
able to provide a detailed list of what kanji I know. It is easy
to envision CGI interfaces to a personalized database
containing the kanji that you know, but let’s KISS (Keep It
Simple, Stupid) for now. The easiest solution is to write the
numbers of the kanji I know into a file. As a bonus, I can use
the same file to generate a selection of words from kanjidic
and edict to use with the kdrill program to test myself on the
kanji I should know.

Also, some
Japanese pages use an alternate encoding called
Shift-JIS. To handle both encodings without degrading
performance, I adapted the code used by the xjdic program

584

(from the Monash archive) and made it into an XS module,
available from my author directory in the CPAN.

Even though all these changes would be useful, they are fairly
trivial so I won’t show the code here. It’s all on CPAN.

585

Conclusion

This tool has proven itself quite useful—I am able to keep up
my study of
Japanese by reading interesting material. The effort that went
into making these scripts was not large; only about 5 hours to
get the most complicated (messy) version, and a few more to
clean them up for TPJ.

There are several problems with this approach. The most
serious is that images of characters cannot be translated—you
have to resort to a traditional dictionary (I recommend xjdic
from the Monash archive). Another problem is the fact that
Japanese inflects verbs and has short particles all over the
sentence, which is why the displayed text wwwkan.pl is
sometimes odd-looking. A good rule of thumb is that all
entries with one or two hiragana characters should be viewed
with suspicion.

As a teaser, I might mention that my study of Japanese is
related to my work on a Go-playing program, which I’m
writing mostly in Perl (PDL for the speed-critical parts—see
Chapter 11) but that’s a story for another time.

586

wwwkan.pl

Here’s wwwkan.pl, a program to translate
kanji in Japanese
HTML:

#!/usr/bin/perl
#
wwwkan1.pl - translate kanji or
compounds in Japanese HTML.
Copyright (C) 1997, 1998 Tuomas J.

Lukka. All rights reserved.

Directory to the kanji dictionary
database
$libdir = "/my/home/dir/japanese_files/";

The url of this CGI-script, for mangling
the links on the page
$my_url = "http://komodo.media.mit.edu/
~tjl/cgi-bin/wwwkan1.cgi";

Link types to substitute. 0 = absolute,
1 = relative.
%links = (a => ['href', 1], img => ['src',
0],

form => ['action', 1], link =>
['href', 1],

frame => ['src', 1]);

use CGI;
use LWP::Simple;
use HTML::Parse;
use URI::URL;
use Fcntl;

587

use AnyDBM_File;

tie %

kanji, AnyDBM_File, "$libdir/kanji.dbmx",
O_RDONLY, 0;

$query = new CGI;

print $query->header, "CONVERTED By TJL's
kanji explainer on ",

'date', '. Mail comments to

lukka@fas.harvard.edu.<P>',
$query->startform(), "Go To:

",
$query->textfield(-name => 'url',

-default =>
'http://www.yahoo.co.jp/', -size => 50),

$query->submit('Action','Doit'),
$query->endform, "<HR>\n";

Get the original document from the net.
$url = $query->param('url');
$doc = get $url;

Substitute web addresses so that text
documents are fetched with
this

script and pictures are fetched directly.
$h = parse_

html($doc);
$h->traverse(

sub {
my($e, $start) = @_;
return 1 unless $start;

588

my $attr = $links{lc $e->tag} or
return 1;

my $url = $e->attr($attr->[0]) or
return 1;

$e->attr($attr->[0], ($attr->[1] ?
getlink($url) :

abslink($url)));
},
1);
$doc = $h->as_HTML;

Substitute kanji for English
for (split "\n", $doc) {

s/((?:[\x80-\xFF][\x40-\xFF])+)/
explainstr($1)/ge;

print;
}
exit;

SUBROUTINES

Make an absolute URL from a relative URL
in the original document
sub abslink {

return (new
URI::URL($_[0]))->abs($url)->as_string;
}

Make a new URL which gets a document
through our translation service.
sub getlink {

my $url_to = (new
URI::URL($_[0]))->abs($url);

my $proxy_url = new URI::URL($my_url);
$proxy_url->query_form(url =>

$url_to->as_string);
return $proxy_url->as_string;

}

589

Insert explanations into a string of
kanji
sub explainstr {

my $str = @_;
my $res = "";
my ($pos, $mlen, $s);
for ($pos = 0; $pos < length($str);

$pos += $mlen) {
my $expl;
$mlen = 20;

while (!defined($expl =
$kanji{$s=(substr(($str),$pos,$mlen))})

and $mlen > 2) {
$mlen -= 2;

}
$res .= $s;
if (defined $expl) {

$res .= "
<small><[[[".($expl)."]]]></small> ";

}
}
return $res;

}

590

Part IV. Games and Quizzes

In this part:

Chapter 27

Chapter 28

Chapter 29

Chapter 30

Chapter 31

Chapter 32

Chapter 34

Chapter 35

Chapter 36

In this section, ten articles explore games that you can play
and manipulate from Perl, and quizzes to test (and increase)
your Perl knowledge. The first article is my survey of the
world of Perl games, from ready-to-run programs to utilities
that help you build your own games. I follow up with an
article on the Prisoner’s Dilemma, one of the foundational
puzzles of game theory.

Next, Michael Edmonson introduces his Rezrov interpreter
for Infocom games, which allows you to control Infocom’s
text-based adventures from Perl.Greg Bacon then describes a
graphical solitaire game implemented in Perl/Tk.

591

The remainder of the section consists of six Perl quiz shows.
First, the four quiz shows I emceed at the O’Reilly Perl and
Open Source conferences, followed by one that I wrote for
the Perl Whirl conference/cruise. And in case those are too
easy for you, the section concludes with Tom Christiansen’s
Perl Wizard’s Quiz.

592

Chapter 27. Games in Perl

Jon Orwant
This is a brief survey of the free Perl games and game utilities
available on CPAN and elsewhere on the net. It’s hard to find
games in Perl, in part because the module-oriented
philosophy of Perl makes people more likely to distribute
utilities than the standalone applications that players want.
And people distributing standalone apps don’t typically
advertise the language they wrote their program in, nor do
they provide source code.

Most Perl games are simple affairs, either ASCII games or
graphical games developed with Perl/Tk.
(http://ptktools.sourceforge.net/ has a collection of Perl/Tk
tools, including some card games and Tetris variants not
listed here.)

If you’re a budding game designer and would like to
distribute your game as a standalone application on Windows
so that players don’t need to install Perl or Perl/Tk, I
recommend the Perl2Exe utility at
http://www.indigostar.com/perl2exe.htm.

Strategy Games

A list of Perl utilities for
strategy games follows:

593

Chess

There are several chess resources available for Perl
programmers. On CPAN, there’s the
Games::Chess module for representing chess positions
and games, and Games::Chess::Referee, which uses
Games::Chess to track piece movements—the start of a
system that could one day be used to create chess bots.

http://cgi.resourceindex.com/Programs_and_Scripts/Perl/
Games/Chess/ lists three
chess programs: BeholderBoard, which lets others play
chess on your server, KewlChess, a two-player real-time
chess game, and CGI Chess, a full-featured chess
application for non-real–time games.

There’s a mailing list for Perl developers to discuss chess
programs: perl-chess-subscribe@yahoogroups.com.

Go

Now that computers can play chess better than any
human, it’s time for them to tackle Go. Two unpolished
utilities on the CPAN might help:
Games::Go::GMP, which speaks the Go modem protocol,
and Games::Go::SGF, which manipulates
Smart Go Format files.

Concentration

A Perl CGI application for
Concentration-style memory games:
http://www.tiger-marmalade.com/~james/concentration/.

594

A.I. Wars

Games::AIBots is a Perl clone of the commercial game
A.I. Wars, in which players build AI insects that compete
with one another.

Kugel

A Perl/Tk game called Kugel, a strategy game in which
you arrange objects into lines, can be found at
http://www.vlptel.com/~vlatko/kugel/kugel.html.

Mathematical Smurfs Expedition

An educational game for ages 4–6: http://www.perltk.org/
ex/.

Alak

In Computer Science and Perl Programming: Best of the
Perl Journal, Sean Burke discussed tree data structures,
and showed how they were used to create computer
players for certain types of games. He demonstrated using
trees for a simple strategy game called Alak, and you can
see the result of his efforts in the Games::Alak CPAN
module.

NIM

Games::NIM is a basic CPAN module for playing NIM
(in which players alternate removing pegs, trying to be the
last to do so).

Life

You can find a Perl implementation of

595

Conway’s game of Life at http://archive.develooper.com/
perl-ai@perl.org/msg00646.html.

You can find a four-line PDL version in Chapter 48.

596

Cards

Greg
Bacon describes his Perl/Tk solitaire game in Chapter 30, but
if you’re interested in utilities to create your own
card games, I recommend the Games-Cards distribution on
CPAN. The sample code from the documentation shows what
the package lets you do:

use Games::Cards;
my $Rummy = new Games::Cards::Game;

Create the correct deck for a game of
Rummy.
my $Deck = new Games::Cards::Deck ($Rummy,
"Deck");

Shuffle the deck and create the discard
pile
$Deck->shuffle;
my $Discard = new

Games::Cards::Queue "Discard Pile";

Deal out the hands
foreach my $i (1 .. 3) {

my $hand = new Games::Cards::Hand
"Player $i" ;

$Deck->give_cards($hand, 7);
$hand->sort_by_value;
push @Hands, $hand;

}

Print hands (e.g. "Player 1: AS 2C 3C
3H 10D QS KH")

597

foreach (@Hands) { print
($_->print("short"), "\n") }

$Hands[1]->give_a_card ($Discard, "8D"); #
Discard 8 of diamonds

The distribution also includes the
Games::Cards::Tk module, which allows you to create Perl/
Tk versions of card games.

598

Dice

There are two
dice packages on CPAN: Games::Dice and Games::Die. To
be honest, I wouldn’t recommend either—not because I have
any opinions about the quality of the code, but because dice
rolling is simple enough that the overhead of subroutine calls
makes it preferable to just inline the code using rand. Just
remember to seed the random number generator using
srand, and remember that rand(6) returns a random
floating-point number in the range from 0 to 6. To simulate a
conventional die, you’d use this:

$die_roll = int(rand(6)) + 1;

In general, to generate a random integer between x and y, use
this:

$random = int(rand(y - x + 1)) + x;

599

Word Games

A list of Perl
utilities for
word games follows:

Cryptograms

There are two Perl-based cryptogram solvers: the
Games::Cryptoquote module on CPAN, and
cryptosolve.pl, available at http://thayer.dartmouth.edu/
~rjk/perlwords/.

MUDs

Various utilities for creating or accessing
MUDs (Multi-User Dungeons) are at
http://www.linux.org/apps/all/Entertainment/MUD.html.

Crossword puzzles

http://cgi.resourceindex.com/Programs_and_Scripts/Perl/
Games/Crossword_Puzzles/ contains two utilities for
building your own web-based crossword puzzles.

Dissociated text

The
Games::Dissociate
module implements a
Dissociated Press algorithm, which garbles text in
amusing ways.

600

Word finds

Games::WordFind generates
Word finds from a list of words. A sample from the
module’s documentation:

Words to Find:

CAMEL GREAT LINUX
LLAMA PERL

W Z J I Q X D L R M
O K Z C S T E A O I
C Z V Z A M P Y I M
D Y P E A M D N I C
W R R C T T V L F J
A G W E L L R E P O
F M A W L I N U X I
A S A H Q R Q D U O
S G R L F O U C G N
V B Y B L K U F W I

Googlewhacking

To googlewhack is to find a pair of words that has exactly
one hit when searched for on Google. Some
googlewhacks from http://www.googlewhack.com:

ambidextrous scallywags
illuminatus ombudsman
squirreling dervishes
assonant octosyllable
fetishized armadillo
panfish interrogation

Whether these also constitute good names for rock bands
is a matter of interpretation.

601

Mad Libs

WebLibs is a web-based version of the “Mad Libs” party
game, in which people provide adjectives, nouns, and
verbs for insertion into a canned story, with humorous
results (for some definition of “humor”). It’s available at
http://awsd.com/scripts/weblibs/index.shtml.

Hangman

http://cgi.resourceindex.com/Programs_and_Scripts/Perl/
Games/Hangman/ has two web-based
Hangman games, in which you try to guess the identity of
a word with as few letters revealed as possible. The
Games::GuessWord module, available on CPAN, also
provides a simple text-based Hangman game.

Jumble

The
Games::Jumble module creates and solves
Jumble word puzzles.

Quizzes

Games::QuizTaker is a CPAN module for creating and
taking online quizzes.

602

Twitch Games

http://www.frozen-bubble.org/ is a Perl-based version of the
arcade game sometimes named “Puzzle Bobble”
and sometimes named “Bust-a-Move.”
It’s pictured in Figure 27-1.

Figure 27-1. Frozen Bubble, a Perl/Tk game

http://sourceforge.net/projects/davidsperlgames/ has a few
ASCII-style
arcade games: PerlBlaster, PerlRacer, and PerlArena.

Games::Worms is a Perl/Tk implementation of the classic
Worms game, in which you’re a worm that races around
trying to eat food and avoid running into yourself. Not
zoologically accurate, but fun anyway.

Also on CPAN is the Games::Quake::Log module, which
allows you to access the information held in a
Quake logfile.

603

One of the original twitch computer games was
SpaceWar, which ran on a venerable computer called the
PDP-1. You can play it on a PDP1 assembler implemented in
Perl and running under a Java emulator at
http://lcs.www.media.mit.edu/groups/el/projects/spacewar/.

604

Chapter 28. The Prisoner’s
Dilemma

Jon Orwant
The police break down your door and hustle you downtown
for interrogation. Seems you’ve been using illicit
cryptography to exchange information about—well, they’re
not exactly sure, because you used cryptography, but they
know it must be sinister because you used cryptography. And
they know who you were talking to; their packet sniffers (and
subpoenaed router logs) revealed that you were
communicating with your friend a few miles away. They’ve
arrested him too.

You’re going to jail. The question is, for how long?

The police don’t have enough evidence to convict you of the
new crime, Encoding In The First Degree, carrying a penalty
of five years in jail. But they can convict you of Second
Degree Encoding, and that’s two long years in the
overcrowded Minimum Security Federal Penitentiary for
Computer Abusers.

They offer you a deal: if you agree to confess, and testify
against your friend, they’ll let you go free. They offer your
friend the same deal. But if you both decide to testify against
one another, you each get four years in jail. You must both
decide what to do in solitude, without communicating. (That’s
why they split you up.)

605

You can either Testify (T) or Hold Out (H), and your friend
can do the same. The outcomes are shown in the payoff
matrix depicted in Figure 28-1.

Figure 28-1. Payoff matrix for a Prisoner’s Dilemma

What should you do? You might think to yourself:

If I testify, I’ll get either four years or zero years. And if
I hold out, I’ll get either five years or two years. I have
no idea what my friend will do, and I can’t talk to him.
Maybe I should assume that he’ll choose at random, in
which case I’m better off testifying.

If your friend thinks the same way, you’ll both testify and get
four years each. That’s unfortunate, since the outcome with
the fewest number of man-years in jail occurs when you both
hold out.

This problem is called the
Prisoner’s Dilemma, and it’s the foundation for the
mathematical discipline of game theory. It’s been used to
represent scenarios in gambling, genetics, business, and
thermonuclear war, by using different payoffs: money,
offspring, more money, and death.

The Iterated Prisoner’s Dilemma

There’s not a whole lot to say about the one-shot

606

Prisoner’s Dilemma: either you should testify or you
shouldn’t, and you can construct compelling arguments for
both decisions.

Here’s when things get interesting: forget about the prison
terms and think of the payoff matrix as abstract “points.”
Now pit you and your friend against one another in a series of
matches, say 100. Your goal is to minimize the number of
points you accrue during the 100 matches. This is the Iterated
Prisoner’s Dilemma.

Now there’s a little bit of communication between you and
your friend: for any given match, you can consider all of the
previous matches before making your decision. If your friend
held out on all the previous matches, you might think that
he’ll remain consistent, and hold out again. But maybe that’s
just what he wants you to think, so that he can testify, adding
five points to your score and none to his. (Remember, he’s a
criminal too!)

Here’s a simple always-hold-out strategy:
sub nice_guy {

return "H";
}

Here’s a strategy that chooses at random:
sub random {

return "H" if rand() < 0.5;
return "T";

}

Here’s parting_shot, which holds out on the first 99
matches, and testifies on the last (100th) match. The history
of your choices is stored in the array reference
$my_choices_ref (which becomes the array

607

@my_choices). parting_shot uses that array only to
determine when the 100th match has been reached.

sub parting_shot {
my ($my_ref, $friend_ref) = @_;
my (@my_choices) = @$my_ref;

if (@my_choices == 99) {
return "T"

} else { return "H" }
}

Here’s a strategy called tit-for-tat, which holds out on
the first match, and then chooses whatever the friend chose on
the previous match:

sub tit_for_tat {
my ($my_ref, $friend_ref) = @_;
my (@friend_choices) = @$friend_ref;

return "H" unless @friend_choices;
return

$friend_choices[$#friend_choices];
}

Tit-for-tat variants usually perform well in
Prisoner’s Dilemma contests. Random strategies aren’t so bad
either. Of course, that all depends on which other strategies
participate. There’s no single best strategy—just the best
strategy for a given match.

608

The Three-Way Prisoner’s
Dilemma

Let’s add another level of complexity: a three-person
Prisoner’s Dilemma, in which three strategies compete
simultaneously. The payoff matrix (actually a payoff cube) is
shown in Figure 28-2.

Figure 28-2. Payoff cube for a three-person Prisoner’s
Dilemma

When one person testifies and the other two hold out, the fink
gets off scot-free, and the holdouts get five years each. When
two people testify, they get one year each, and the holdout
gets seven.

As before, the only communication between the prisoners is
through their actions on previous matches. Here’s a sample
strategy for a three-way contest:

Testify only if both friends testified
during the last match.

sub fool_me_twice {
my ($my_ref, $friend1_ref,

$friend2_ref) = @_;
my (@friend1_choices) = @$friend1_ref;

609

my (@friend2_choices) = @$friend2_ref;

if
($friend1_choices[$#friend1_choices] eq
"T" &&

$friend2_choices[$#friend2_choices]
eq "T") {

return "T";
} else { return "H" }

}

610

The Prisoner’s Dilemma
Programming Contest

We invite you to design your own three-way strategy, to be
pitted against the rest of the Perl community.

Every strategy should be a single subroutine. During a match,
the subroutine will be passed three array references (as with
fool_me_twice above): the first will contain an array of
your past decisions, and the second and third will contain the
decision arrays for friend1 and friend2 respectively.
Here are the rules:

▪ Your subroutine must always return either H or T.

▪ Your subroutine will play every other subroutine at least
once, in a series of exactly 100 matches.

▪ The winning strategy will be the one with the lowest
cumulative score over all matches.

▪ Your entry must have comments before the subroutine
with your name, email address, and a truthful
explanation of the strategy.

▪ The random number generator will be initialized before
every series of 100 matches, should you care to use it.

▪ One entry per person.

Good luck!

611

Results of the Contest

Each strategy, encoded as a single Perl subroutine, was pitted
against every other pair of strategies in a “duel” of exactly
100 matches. The distinction between a duel and a match is
important, since in a series of matches each strategy can
observe the others and decide how to act based on their past
behavior.

A total of 31 strategies were submitted, yielding:

duels, or about 450,000 matches, in which each strategy
returned a single letter: either an H to Hold out (or cooperate,
in
game theory parlance) or a T to Testify (or defect).

This particular
contest was inspired by Profs. Mitch
Resnick and Mike
Eisenberg, who in 1987 conducted a three-way
Prisoner’s Dilemma contest at MIT. I entered that contest (in
which the strategies were Scheme functions instead of Perl
subroutines), noticed that the four contest rules didn’t prohibit
functions that modified their inputs, and wrote a revisionist
function that changed its opponents’ histories, yielding the
highest possible score by tampering with the past. I was
disqualified, and a fifth rule excluding such strategies was
added the next year.

612

I’ve been seething over this for a decade, and wanted some
moral validation for what I thought was a clever insight.
That’s why I left the door wide open for similar strategies in
this contest: there was nothing prohibiting subroutines from
poking around the filesystem or the symbol table to locate,
dissect, or modify other strategies, or even the judging
program itself.

A few hackers, notably Felix Gallo and Randal Schwartz,
spotted these possibilities, but no one actually submitted such
an entry. (I don’t know whether this was because of a lack of
time or a surplus of scruples.) Felix also pointed out another
devious tactic: collude with other contestants so that their
strategies could recognize one another by their behavior.
Then a previously-elected “master” could defect while the
other “slaves” all cooperated, sacrificing themselves for the
good of the master.

That’s exactly what Ken
Albanowski, Earle
Ake, and Dan
Wisehart did: their three gestalt entries identify whenever
Ken’s strategy is playing one of the other two. If so, the slave
holds out while the master testifies, resulting in a bad score
for Earle or Dan but a good score for Ken. It worked: Ken’s
strategy finished first, and martyrs Earle and Dan finished
27th and 28th.

The top ten, along with the number of years their strategy
spent in jail, are shown in Table 28-1.

Table 28-1. Top ten finalists in the Prisoner’s Dilemma

613

Contestant Years spent
in jail

Kenneth Albanowski (with sacrifices by Earle Ake and
Dan Wisehart) 135,164

Peter Frodin 147,341

Eric Le Saux 147,624

Francisco Azevedo 147,678

Dave Pavlick and Beirne Konarski 148,527

Bill England 149,053

Peter Seibel 149,317

Steve Frost 149,328

Ravi Kolagotla 149,396

Giovanni Marzot 149,412

Peter
Frodin’s second-place strategy is a less tolerant version of the
fool_me_twice strategy explained earlier in this chapter:
his fool_me_once testifies if either of the opponents
testified during the previous match. (An honorable mention
goes to Brian

614

Gough, whose subroutine is identical to Peter’s, but didn’t
score in the top ten because of other strategies that behaved
nondeterministically.)
Eric Le Saux’s elephant placed third by noticing whether
opposing strategies retaliate against testifying. Francisco
Azevedo’s strategy was nice but unforgiving: it holds out
until someone testifies, and then testifies forever after. Dave
Pavlich and Beirne
Konarski collaborated on the most complex strategy
submitted: their subroutine contains five additional
subroutines, implementing a temporary “probation” state for
opponents. It testifies if both opponents are on probation and
either one violated his probation by testifying last round.

Then the backstabbing began: the bottom half of the top ten,
and ten out of the 31 strategies overall, simply testified each
and every time. (The differences in score were due to the
random behavior exhibited by other strategies.) Peter
Seibel used genetic programming to breed winning strategies,
and found nothing that performed better than a pure testifier.
Georg
Rehfeld’s be_a_good_boy_all_the_time was the
exact opposite: it cooperated regardless of the other
strategies’ actions. In his description, Georg said:

I think this is the only strategy to save the world: don’t
do any harm to anybody, be helpful and cooperative all
the time. This holds true in real life, I believe…

His strategy finished dead last.

615

Chapter 29. The Rezrov Infocom
Game Interpreter

Michael Edmonson
Interactive fiction, or
IF to its devotees, is a genre of text-based computer games. IF
games present a virtual environment to the player, and
respond to commands typed by the player. For example:

West of House
You are standing in an open field west of
a white house,
with a boarded front door.

There is a small mailbox here.

>open mailbox
Opening the small mailbox reveals a
leaflet.

IF traces its heritage to the early days of computer gaming.
The first game was known simply as
Adventure, or
Colossal Cave, in which the player explored a mammoth
underground cavern, collecting treasures and solving puzzles.
Adventure caused a sensation when it arrived on the scene in
the 1970’s, but the game had a very limited vocabulary and
could only accept simple commands. Inspired, a group of
friends at MIT set about developing a new game with a vastly
expanded vocabulary and the ability to understand complete
sentences. This game became known as

616

Zork, and its developers went on to form a company called
Infocom.

Zork was originally developed on a DEC PDP-10 mainframe,
a very expensive computer few people had access to. To bring
the game to a wider audience, Zork’s programmers wanted to
find a way to make it run on the fledgling home computers of
the time. Further complicating matters was the fact that home
computers were much rarer than they are today, and there was
a much wider variety of brands. To maximize the size of their
market, Zork needed to run on as many of these computers as
possible, and adapt to new machines as they emerged.

Infocom’s solution was ingenious: they invented a design for
something called the Z-machine, a
virtual computer. The idea was that the functions of this
machine could be emulated on different computers with a
program called a
ZIP, or Z-machine
Interpreter Program. The Z-machine’s programs—that is, the
games themselves—were written in a new, compact language
called the Zork Implementation Language (ZIL or
Z-code for short). Because the emulated Z-machine behaved
the same way on every platform, the games were 100%
portable from computer to computer. The design was pared
down to the point where it became possible to write ZIPs that
ran on TRS-80s and Apple IIs, quite an accomplishment when
you consider that the original version of Zork strained even
the august PDP-10.

When a new computer was released, the programmers didn’t
need to touch any of the game programs; all they had to do
was create a new ZIP for that platform, and it would be able
to run all the games. Likewise, new games could be

617

developed and released simultaneously for all platforms.
These efficiencies allowed Infocom to nimbly adapt to the
gyrations of the personal computer market in the 1980’s; they
released Z-machine interpreters for the TRS-80 series, Apple
II and Macintosh, Atari 800/XL/XE and ST, Commodore 64
and Amiga, and the IBM PC, to name a few. This strategy
also allowed all players to experience Infocom’s games in
exactly the same way, regardless of their computer. The
Z-machine concept was astonishingly ahead of its
time—consider that Java, whose “write once, run anywhere”
virtual machine has received so much attention, wasn’t
developed until more than a decade later.

Technical merits aside, what ultimately determined Infocom’s
success was the quality of their games, whose immersive,
sharply-written style and dry wit quickly earned them a loyal
following. Zork I described itself as “a game of adventure,
danger, and low cunning.” Infocom’s heyday was in the early
to mid-1980’s, when it released a string of solid titles, but the
company stumbled with a failed venture into business
software and was eventually subsumed by Activision.

Resurrecting the Z-Machine

The original Infocom is long gone, but the Z-machine is alive
and well. A team of dedicated hackers known as the
InfoTaskForce was largely responsible for
reverse-engineering the Z-machine’s inner workings. Various
open source Z-machine interpreters were developed and
circulated. Eventually the Z-machine was understood
completely enough that a formal specification for it was
drawn up by Graham

618

Nelson. Graham also developed
Inform, an
interactive fiction authoring system and compiler that allows
new games to be written for the Z-machine architecture.
Inform has a wide following, and the annual
IF contest brings in many new quality Z-code games every
year. Perhaps the ultimate affirmation of Inform’s success
came with Activision’s 1997 promotional release of
Zork: The Undiscovered Underground, a game co-authored
by two of Infocom’s original authors (Marc
Blank and
Michael
Berlyn), and compiled with Inform.

619

Enter the Camel

Z-code
interpreters exist for almost every platform imaginable. Two
of the most widely-used interpreters, zip and frotz, are written
in C and have been ported to everything from mainframes to
Palm Pilots. One thing I’ve always thought was rather a
shame about the available crop of interpreters is the way
they’ve tended to fragment around different platforms’
user-interface models. For example, xzip is a derivative of the
character-based zip
interpreter, adapted to the graphical X Window System.
Likewise, the character-based frotz interpreter begat a port to
Windows called winfrotz. Z-code interpreters have also been
written in Java; unfortunately, when it comes to
cross-platform compatibility, Java’s user-interface classes are
finicky and unstable—just ask anyone who’s tried to reason
with the AWT on different JVMs.

I decided to write a Z-code interpreter in pure Perl, so the
games could be played anywhere Perl could be used.
Moreover, I wanted the program to be able to adapt itself to
the variety of I/O models available on different systems, so
you could play the games on anything from a basic character
display to a fancy graphical window. I decided to name it
rezrov after a magic spell from Infocom’s classic game
Enchanter. In the game, the spell means “open even locked or
enchanted objects,” and I figured Z-code program files
qualified as both. I remember playing Enchanter and thinking
I was really clever for using the spell to circumvent a puzzle
involving a jeweled egg:

620

>take egg then examine it
Taken.

This ornamented egg is both beautiful and
complex. The
egg itself is mother-of-pearl, but
decorated with delicate
gold traceries inlaid with jewels and
other precious metals.
On the surface are a lapis handle, an
emerald knob, a silver
slide, a golden crank, and a
diamond-studded button carefully
and unobtrusively imbedded in the
decorations. These various
protuberances are likely to be connected
with some machinery
inside.

The beautiful, ornamented egg is closed.

>learn rezrov then rezrov egg

Using your best study habits, you learn
the rezrov spell.

The egg seems to come to life and each
piece slides
effortlessly in the correct pattern. The
egg opens,
revealing a shredded scroll inside,
nestled among a
profusion of shredders, knives, and other
sharp instruments,
cunningly connected to the knobs, buttons,
etc. on the
outside.

621

Oops.

622

What’s It Do?

rezrov is a Z-code
interpreter. An interpreter’s job is to fetch the instructions, or
opcodes, that form a program and execute them; that’s exactly
what Perl itself does under the hood. Interpreters spend most
of their time in a loop:

▪ Retrieve the next opcode

▪ Perform the task specified by the opcode

▪ Repeat

Each opcode performs a single, basic logical operation. The
Z-machine has
opcodes for reading from and writing to memory,
manipulating variables, performing mathematical operations,
reading input from the keyboard, displaying output on the
screen, and changing the control flow of the program.
Z-machine opcodes can be thought of as small subroutines or
functions, which may accept arguments (“operands”) and
return results. It is the execution of many combinations of
opcodes in series which form the programs, and thus the
games. This basic process is echoed at many levels inside
your computer, both in hardware and software, from your
CPU on up through your operating system and applications.

So, rezrov emulates the workings of a virtual computer,
and the Z-code games are programs that run in this computer.
But where and what are the programs? For every computer,
Infocom supplied an interpreter program and a data file: on
MS-DOS systems, you would usually find an executable file

623

for the interpreter (for example, zork1.com) and a large data
file (zork1.dat). This data file, called the story file, is the
actual Z-code program. It is completely portable between
systems—you can extract the story file from an Apple II
diskette and play it on a PC with a PC interpreter. Neat, huh?

On the home computers of yore, the games were usually too
large to fit into memory all at once; for example, the Zork I
story file is about 94K, while a typical PC had only 64K of
RAM. To cope, Z-code interpreters swapped small
chunks or “pages” of data from the diskette in and out of
memory as they were needed by the game. This may have
been the first use of virtual memory on a microcomputer—yet
another revolutionary feature of the Z-machine design.

624

The Joy of vec

Most Z-code interpreters still use these
paging schemes to minimize memory
consumption. My feeling is that life is too short, especially
since loading the entire game image into memory is such a
breeze with Perl:

open(GAME, $filename) || die "can't open
$filename: $!\n";
binmode GAME;
my $size = -s $filename;
read(GAME, $story_bytes, $size);

This loads the entire story file
into a variable called $story_bytes. The Z-machine’s
memory is basically a fixed-length array of 8-bit bytes; while
16-bit words are used for certain operations, virtually
everything in memory is indexed by a byte offset. So, my first
instinct was to simply convert the data into an array of bytes:

@story_bytes = unpack("C*", $story_bytes);

This was easy to do, but it came at a significant cost. Because
each byte is converted to an individual scalar variable, much
more memory is consumed. Consider the following program:

#!/usr/bin/perl -w

use strict;
use Benchmark;

my $filename = shift || die "specify
filename\n";
my $b1 = new Benchmark();

625

my $story_bytes;
open(GAME, $filename) || die "can't open
$filename: $!\n";
binmode GAME;
my $size = -s $filename || die "no file";
read(GAME, $story_bytes, $size);

if (@ARGV) {
print "Creating array with unpack\n";

my @story_bytes = unpack "C*",
$story_bytes;
} else {

print "Not converting data to array\n";
}

my $td = timediff(new Benchmark(), $b1);
printf "%s\n", timestr($td);
print "Sleeping...\n";
sleep 10000;

This program reads a file
into memory, and if a second argument is provided, it
converts that file into an array of bytes. Finally, it prints the
time elapsed as recorded by the Benchmark module, and
sleeps (to allow the user to check the size of the process in
memory).

I ran this program on the 94 kilobyte zork1.dat on my PC
running Linux. It completed almost instantaneously, and the
Perl process consumed 1.9 megabytes of memory. When it
converted the data into an array of bytes, the process
consumed 6.5 megs of memory, and took almost a
half-second to finish. This discrepancy became even more
pronounced with the 256K trinity.dat: the first version
consumed 2 megabytes of memory and still finished virtually

626

instantaneously, while the array of bytes consumed almost 14
megabytes of memory and took more than 1.3 seconds to
complete. While Perl’s typeless scalar variables are very
convenient to use, the overhead they impose becomes
apparent in large arrays like this.

Happily, there’s a way out: the undersung vec function. vec
lets you treat a variable as an array of unsigned integers
where you get to specify the number of bits of storage to
allocate for each entry. This is great for arrays of fixed-size
data: 8-bit bytes, 16-bit words, etc. There are some
restrictions: the elements of a vec array can only be unsigned
integers, and the number of bits of storage must be a power of
two from 1 to 32. But for my purposes, vec was perfect: I
could grab all the data with a single read command, my
program would start up quickly because I could avoid
converting the data into a huge array, and I would save a lot
of memory as well.

The vec function takes three arguments: the name of the
variable to hold the data, the index in the array you want to
reference, and the number of bits used for each entry in the
array. Here are two object methods from rezrov that use
vec to access single bytes in $story_bytes:

sub

get_byte_at {
get the 8-bit byte at the specified

storyfile offset.
return vec($story_bytes, $_[1], 8);

}

sub

627

set_byte_at {
set the 8-bit byte at the specified

storyfile
offset to the given value.
vec($story_bytes, $_[1], 8) = $_[2];

}

This initial excitement aside, much of the guts of rezrov ’s
interpreter aren’t particularly interesting. Most of the opcodes
are fairly straightforward subroutines; the trickiest part was
just making sure the bits came from and wound up in the right
place. The basic nuts and bolts of
Z-code interpreters are considered a solved problem these
days; Graham
Nelson wrote, “If your system isn’t supported, adapting the C
source code for one of the main interpreters is only a trial of
patience, not of strength.”

628

Tinkering with the Z-Machine
>read dusty book

The first page of the book was the table
of contents.
Only two chapter names can be read: The
Legend of the Unseen
Terror and The Legend of the Great
Implementers.

>read legend of the implementers

This legend, written in an ancient tongue,
speaks of the
creation of the world. A more absurd
account can hardly
be imagined. The universe, it seems, was
created by
"Implementers" who directed the running of
great engines.
These engines produced this world and
others, strange and
wondrous, as a test or puzzle for others
of their kind.
It goes on to state that these beings
stand ready to aid
those entrapped within their creation. The
great magician-
philosopher Helfax notes that a creation
of this kind is
morally and logically indefensible and
discards the theory
as "colossal claptrap and kludgery."

—--Enchanter, 1983

629

One of the most entertaining things about writing rezrov
was adding features that putter around under the hood of the
Z-machine while it’s running. I found fertile ground for these
experiments in the
Z-machine’s object table. The object table is a block of
memory containing information about every significant object
in the game—every room, every item that can be picked up or
otherwise interacted with, even the player: each is represented
by an entry in the object table. Entries contain, among other
things, a short description of the object, and pointers to a
parent, a sibling, and a child object. Thus the object table
describes a tree whose branches connect the items in the
game. For example, take Zork I’s
kitchen, which the game describes like so:

>look
Kitchen
You are in the kitchen of the white house.
A table seems
to have been used recently for the
preparation of food. A
passage leads to the west and a dark
staircase can be
seen leading upward. A dark chimney leads
down and to the
east is a small window which is open.
A bottle is sitting on the table.
The glass bottle contains:

A quantity of water There is a
brown sack here.
The brown sack contains:

A lunch
A clove of garlic

This scene is represented in the object table as shown in
Figure 29-1.

630

Figure 29-1. A tree of Zork objects

Here the Kitchen room object (object #203), has a child, the
kitchen table (#204). The table has a child, a brown sack
(#224). The sack has a child, the lunch (#225), which itself
has a sibling, the clove of garlic (#189). Likewise the sack has
a sibling, the glass bottle (#236), which has a child, the
quantity of water (#237).

The Z-machine has a set of opcodes that manipulate the
entries in this table; the games execute these opcodes to make
changes to their environment. I added a feature to rezrov,
activated by the -snoop-obj command-line switch, which
prints a message whenever an object is moved from one
location to another. It prints out the name of the object being
moved and the name of its new parent so you can watch
what’s happening. Using this feature you can see the name
Infocom assigned to the “player” object in a number of their
early games:

West of House
You are standing in an open field west of
a white house,
with a boarded front door.
There is a small mailbox here.

631

>north [Move "cretin" to "North of House"]
North of House
You are facing the north side of a white
house. There is
no door here, and all the windows are
boarded up. To the
north a narrow path winds through the
trees.

Later games changed this to the more diplomatic “yourself.”

Once I had implemented all the opcodes necessary to
manipulate the
object table, the temptation to make changes to it in
mid-game proved irresistible. This led to the creation of a few
new verbs, which rezrov intercepts without the game’s
knowledge, enabled by the -cheat command-line option:
teleport, bamf, and pilfer, among others. I’ll
discuss each in turn.

632

Teleport

This command moves the player to any room in the game.
Since the player and the locations in the game are all simply
entries in the object table, teleporting the player is simply a
matter of modifying the player’s object so that it becomes the
child of the room to be moved to. The code for the
teleport subroutine is shown below:

sub teleport { # Cheat command: move the
player to a new location

my ($self, $where) = @_;
my $story = $self->story();
unless ($where) {

$story->write_text("Please tell me
where you want to go.");

} else {
my $object_cache =

$self->get_object_cache();
my @hits =

$object_cache->find($where, "-room" => 1);
my @item_hits =

$object_cache->find($where);

if (@hits > 1) { #
Ambiguous destination

$story->write_text(sprintf 'Hmm,
where you mean: %s?',

nice_list(sort
map {$_->[1]} @hits));

} elsif (@hits == 1) { # Only one
possible destination: proceed

my $room_id = $hits[0]->[0];
my $zo =

633

$object_cache->get($room_id);

if ($zo->is_current_room()) {
Destination object is the

current room: be rude

$story->write_text($self->random_message(

TELEPORT_HERE_MESSAGES));
} else {

Teleport to the new room

$story->insert_obj($story->player_object(),
$room_id);

Make the player object a child
of the new room object

$story->write_text($self->random_message(TELEPORT_MESSAGES));
Print an appropriate message
$story->push_command("look");

Steal player's next turn to
describe new location

}
} elsif (@item_hits == 1) {

User has specified an item
instead of a room; try to teleport

to the room the item is in
my $in_a_room = 0;
my $item_id = $item_hits[0]->[0];

my $zo =
$object_cache->get($item_id);

my $levels = 0;
my $last;
while (1) {

$last = $zo;
$zo = $zo->get_parent();
$levels++;

634

last unless defined $zo;
if

($object_cache->is_room($zo->object_id()))
{

Aha: this parent looks like
a room; go there.

if ($levels == 1) {
Item is a top-level child

of the room

$story->write_text($self->random_message(TELEPORT_TO_ITEM_MESSAGES));
} else {

Item is probably inside
something else visible in the room

my $desc = $last->print();
$story->write_text(sprintf

"I think it's around here
somewhere; try the %s.", $$desc);

Print description of
item's toplevel container

}

$story->insert_obj($story->player_object(),
$zo->object_id);

$story->push_command("look");
Move the player to the room

and steal turn to look around
$in_a_room = 1;
last;

}
}

unless ($in_a_room) {
Can't determine parent (many

objects are in limbo until
something happens)

my $random =
$object_cache->get_random("-room" => 1);

635

$story->write_text(sprintf
"I don't where that is; how

about the %s?", $$random);
}

} elsif (@item_hits > 1) { #
Ambiguous item

$story->write_text(sprintf 'Hmm,
which do you mean: %s?',

nice_list(sort
map {$_->[1]} @item_hits));

} else { #
No clue at all

my $random =
$object_cache->get_random("-room" => 1);

$story->write_text(sprintf
"I don't where that is; how about

the %s?", $$random);
}

}
}

The teleport subroutine uses several objects to do its
dirty work:

▪ $story is a reference to
StoryFile.pm, a package that contains most of the
Z-machine’s data and opcodes, and manages
communication with the user interface.

▪ $zo is a reference to
ZObject.pm; ZObject instances represent individual
objects in the object table. ZObject’s methods provide
access to the object’s data and allow the caller to
navigate its parent/child relationships.

▪ $object_cache is a reference to ZObjectCache,
which manages a pool of ZObject references. It also tries

636

to guess which objects represent rooms and which
represent items, providing a find method to search this
information.

The subroutine takes as a parameter the name of the location
the player wants to move to. Using ZObjectCache, it then
looks to see
if the player has specified a unique location name. If this is
so, the insert_obj method of StoryFile is called.
insert_obj implements the opcode responsible for
making one object the child of another object. It’s called in
the ordinary course of games to move the player from room to
room: with each move, the player’s object is unlinked from its
old “parent” room object and made a “child” of the new room
object. By doing this ourselves, we can teleport from one
place to another.

But most of the code in this subroutine is for handling special
cases:

▪ If you specify the name of an item in the game rather
than a room, it tries to determine what room the object is
in by walking up the object’s parent/child hierarchy so it
can take you there.

▪ If you specify an ambiguous location or item name, it
will print a message listing the alternatives and ask
which you mean.

▪ If it can’t figure out where you mean to go, it will
assume you are a tourist and suggest visiting a randomly
chosen location in the game instead.

After teleport is called, rezrov temporarily disables
the output of the game until the next prompt. This prevents

637

the player from seeing the game’s confused complaint that it
didn’t understand the teleport command: remember,
even though rezrov understands what to do, the underlying
game program has no idea what that means. rezrov also
steals the player’s next turn to submit a look command on
the player’s behalf. The player sees only the final result,
which looks something like this:

>teleport kitchen

You are momentarily dizzy, and then...
Kitchen
You are in the kitchen of the white house.
A table seems
to have been used recently for the
preparation of food. A
passage leads to the west and a dark
staircase can be
seen leading upward. A dark chimney leads
down and to the
east is a small window which is slightly
ajar.
On the table is an elongated brown sack,
smelling of
hot peppers. A bottle is sitting on the
table.
The glass bottle contains:

A quantity of water

This effectively modifies the behavior of the game without
the player noticing that anything unusual has happened.

This technique is also used at the very beginning of the game
to try to guess its title. rezrov steals the user’s first turn to
submit a version command to the game. version is a
traditional command that prints out the name of the game and
its revision information. rezrov extracts the title from the

638

game’s redirected output and uses it to set the title of the
window. Usually version doesn’t even cost the player an
official turn, so no one’s the wiser.
If the user interface can’t support setting the window’s title or
the word version isn’t in the game’s dictionary, rezrov
skips the attempt entirely.

639

Bamf

bamf is sort of the inverse of teleport: it unlinks an
object from the object tree, effectively making it disappear
from the game. This is convenient for moving monsters or
other troublesome objects out of your way:

The Troll Room
This is a small room with passages to the
east and south
and a forbidding hole leading west.
Bloodstains and deep
scratches (perhaps made by an axe) mar the
walls.
A nasty-looking troll, brandishing a
bloody axe, blocks
all passages out of the room.
Your sword has begun to glow very brightly.

>wait
Time passes...
The axe sweeps past as you jump aside.

>bamf troll
The troll disappears with a pop.

>look
The Troll Room
This is a small room with passages to the
east and south
and a forbidding hole leading west.
Bloodstains and deep
scratches (perhaps made by an axe) mar the
walls.
Your sword is no longer glowing.

640

Pilfer

pilfer is a practical implementation of two of the cardinal
rules of adventure gaming:

▪ Anything that is not nailed down is mine.

▪ Anything that I can pry loose is not nailed down.

pilfer moves the object you specify to your current
location, by making the object a child of your current room’s
object (rezrov knows which object represents the current
room by tracking the player’s movements). It then steals a
turn from the player to submit a take command to move the
object into the player’s inventory. In this fashion any
“takeable” item can be moved from anywhere in the game
into your hot little hands; any object that can’t actually be
picked up will simply remain in the player’s current location.

Like teleport, pilfer uses the context information of
the object table to respond appropriately.
If you pilfer something from another location, you may hear a
distant rumble of thunder. Pilfering an item that’s already in
your inventory results in the sensation of invisible hands
rummaging through your possessions. Pilfering things that are
contained inside of other things produces special effects, and
attempting to pilfer yourself results in ridicule.

Besides its obvious nefarious uses, the pilfer command
raises the possibility of revealing
Easter eggs in old Infocom games. I remember a maddening
puzzle from the game

641

Planetfall, involving a room that you could enter, but not see
anything in. There was a lantern in the game, but it was
located in a lab full of deadly radiation. You could enter the
room and take the lamp, but would die of radiation poisoning
in a few moves, just out of reach of where you needed it. In
this way the player’s natural curiosity was denied even if they
sacrificed their life to get a peek. And as it turned out, you
didn’t need to see inside that room to finish the game. In fact,
as pilfering the lamp and entering the room reveals, you were
never meant to:

Transportation Supply
You have just located a serious bug.

Planetfall contains a number of these red herrings, and closes
with a truly sadistic flourish: Your robotic companion Floyd
rushes up, hands you several seemingly-critical items missing
from the game, and tells you “maybe we can use these in the
sequel.”

642

Universal Command Set

Infocom made a number of revisions to the Z-machine and its
interpreters, gradually adding new features that made the
games more enjoyable to play. A number of these were
quality-of-life concessions for weary typists, such as short
aliases for certain frequently-used words; for example, x
could be entered in place of examine. There was also the
oops command, which allowed you to correct the spelling of
a word you had mistyped on the previous line:

>give lmap to troll
I don't know the word "lmap".

>oops lamp
The troll, who is not overly proud,
graciously accepts the
gift and not having the most
discriminating tastes,
gleefully eats it.
You are left in the dark...

One of the most useful commands was undo, which rolled
back the effects of your previous turn. This came in extremely
handy, as it allowed you to recover from mistakes or foolish
experiments even
if you hadn’t saved your
game. Unfortunately, undo wasn’t available in early
Infocom games, so rezrov emulates the undo command
by saving the game after every turn, and, in the manner of the
cheating verbs described previously, intercepts the undo
command and rolls back the game state. It also saves the data
in an array of user-definable length, so you can undo multiple

643

turns. By emulating undo, oops, and other convenient
functions rezrov makes the Infocom command set even
more portable than it was before.

644

Interface Abstraction

When it comes to writing
user
interfaces for their programs, Perl programmers have a wide
range of options to choose from, from character-based
toolkits such as the Curses module to full-blown graphical
systems such as Perl/Tk. Unfortunately, most of these APIs
are tied to the style and history of the operating systems they
were developed for, and as a result tend to be not very
portable. For example, the text-based Curses API, ubiquitous
on Unix systems, is alien to most Windows machines.

Committing to one API meant handcuffing my program to
whatever platforms supported it. And I didn’t want to
sacrifice exotic GUIs just to accommodate the most portable
interface, which is ASCII text. My solution was to isolate the
Z-machine’s I/O operations from the main code. I created an
object-oriented module, named
ZIO, that defined a set of methods allowing the Z-machine to
function under multiple APIs. These methods define a set of
basic tasks such as moving the cursor around the screen,
drawing text, and reading
user input; many of them correspond directly to Z-machine
opcodes. The goal was to have each separate ZIO
implementation contain all of the user interface code, but
none of the Z-machine’s higher-level logic.

At this point I knew I had a flexible design that could work
with many different user-interface APIs. But this still left the
problem of figuring out which APIs were available on each
Perl installation, and getting the main program off the ground.

645

For example, if your code contains this statement, it won’t
compile unless your system has the Curses module installed:

use Curses;

Since I wanted to use modules that were sure to be missing on
many platforms, I needed a way to detect which were
available on the current system without stopping Perl in its
tracks. My solution was to use eval, which interprets its
argument as its own little program—but instead of quitting
outright when a fatal error occurs, it traps the error message in
the special variable $@. You can take advantage of this
feature to detect whether modules are installed. For example,
the following code detects whether the local Perl installation
has the Tk module available, and behaves differently
depending on the result:

eval 'use Tk;'
try to load the Tk module

if ($@)
{
There was an error

print "Your system does not have
Tk.\n";
} else
{
Loaded OK

$w = MainWindow->new;
print "Look, a Tk reference!: $w\n";

}

rezrov uses this technique to detect the best interface
module available on the user’s computer (the interface can
also be specified manually when desired). After we know
which API module we’ll be using, it’s safe to use require

646

to dynamically load the ZIO package that depends on that
module:

if ($zio_type eq "tk")
{ # GUI interface

require

Rezrov::ZIO_Tk;
$zio = new Rezrov::ZIO_Tk(%FLAGS);

} elsif ($zio_type eq "win32")
{ # Windows console

require Rezrov::ZIO_Win32;
$zio = new Rezrov::ZIO_Win32(%FLAGS);

}

If none of the optional I/O modules are available, rezrov
retreats to a minimalist interface that doesn’t require any
external code. In this fashion the program can optimally adapt
itself to a variety of systems without needing to be configured
by the user, while still retaining the ability to run on a
bare-bones installation. The Tk version is shown in
Figure 29-2.

647

Performance Considerations

Perl teaches the three programmer’s virtues of Laziness,
Impatience, and Hubris. Programmers are also occasionally
motivated by Beauty, the desire to write programs that, in
addition to merely doing their jobs, adhere to some higher
aesthetic standard. In this case, I felt compelled for Beauty’s
sake to try to use objects wherever I could. This was
motivated by the desire to keep the code as readable as
possible; I figured that anybody who, like me, had tried to
understand the source code of a C
interpreter would appreciate it. Using an object-oriented
approach with the abstraction of I/O operations made perfect
sense and turned out to be a big win. However, in the
utilitarian core of the main interpreter, this proved more
problematic than I had hoped. Ah, Hubris.

648

Figure 29-2. Tk one-upping Curses with a fixed-font-width
popup window superimposed over a variable-font-width
main window

649

Quantity Is Job One

As home computers grew more powerful, Infocom released
new revisions of the Z-machine and more complex games
designed to take advantage of this capacity. In a similar spirit,
the post-Infocom Inform compiler and library provided an
improved set of standard features for game authors to employ.
One side-effect of these developments was a marked increase
in the typical number of opcodes executed by games between
the user’s commands. For example, here are the number of
opcodes required to process a single look command in a
number of different games (you can use the
-count-opcodes command-line switch to see this for
yourself):

Zork I (1983, Z-machine revision 3) 652
opcodes

Trinity (1986, Z-machine revision 4) 1539
opcodes

Zork: The Undiscovered Underground (1997, Z-machine
revision 5, Inform)

2186
opcodes

Though the amount of work done by any one opcode is
typically small, the sheer volume of opcodes being executed
places a lot of stress on the implementation. Small
inefficiencies in frequently-performed operations can
compound to the point where they exact a significant toll.

650

Here are a few things I have learned in the course of writing
lots of tiny, frequently-called object methods in Perl:

▪ Object methods are significantly slower than regular
subroutine calls. When invoked as a method, each
subroutine call requires an additional parameter, the
instance variable. Inheritance can slow things down even
more. Under the best of circumstances I’ve found
method calls to be about 25% slower than ordinary
subroutine calls.

▪ Instance data can be expensive, because it must be
dereferenced before it can be used. Using blessed hashes,
I’ve found accessing instance data to be about 25%
slower than static data. This is a little faster with blessed
arrays, but then the notion of “keys” becomes much
more obtuse.

▪ Declaring lexically-scoped variables
in methods can cost you. Typical methods declare a
variable for the object instance (often $self) and
others for any parameters that may be passed to the
method. I’ve found that using the @_ array to directly
access the subroutine’s parameters is about 15–25%
faster than declaring variables that copy @_. It would be
nice
if there was a way to reference entries in @_ within the
scope of a subroutine as if they were variables without
the overhead of variable creation and destruction.
Pseudovariables, anyone?

The program below demonstrates the costs of method calls
and instance data:

651

#!/usr/bin/perl -w
#
#

Performance comparison for lots of calls
to a small subroutine:
OO of varying degrees, static
functions, and inlined calls.
#

use strict;
use Benchmark;

$Bogus::DATA = "";
my $COUNT = shift || 100000;

printf "timing %d iterations;
initializing...\n", $COUNT;
for (my $i=0; $i < $COUNT; $i++) {

vec($Bogus::DATA, $i, 8) = 42;
}

package Bogus;

sub new {
my $self = bless {}, shift;
$self->{"data_ref"} = \$Bogus::DATA;
return $self;

}

sub data_ref {
return $_[0]->{"data_ref"};

}

sub get_byte_superverbose_instance_data {
my ($self, $where) = @_;

return vec(${$self->data_ref()},
$where, 8);

652

}

sub get_byte_verbose_instance_data {
my ($self, $where) = @_;

return vec(${$self->{"data_ref"}},
$where, 8);
}

sub get_byte_terse_instance_data {
return vec(${$_[0]->{"data_ref"}},

$_[1], 8);
}

sub get_byte_terse_static {
return vec($Bogus::DATA, $_[1], 8);

}

sub get_byte_verbose_static {
my ($self, $where) = @_;
return vec($Bogus::DATA, $where, 8);

}

package main;

sub get_byte_main_terse_static {
return vec($Bogus::DATA, $_[0], 8);

}

sub get_byte_main_verbose_static {
my ($where) = @_;
return vec($Bogus::DATA, $where, 8);

}

$main::bogus = $main::bogus = new
Bogus(); # Shut up, -w

timethis($COUNT, '$x =
$main::bogus->get_byte_superverbose_instance_data(0)',

653

"superverbose instance OO");
timethis($COUNT, '$x =
$main::bogus->get_byte_verbose_instance_data(0)',

"verbose instance OO");
timethis($COUNT, '$x = $main::bogus->

get_byte_terse_instance_data(0)',
"terse instance OO");

timethis($COUNT, '$x =
$main::bogus->get_byte_verbose_static(0)',

"verbose static OO");
timethis($COUNT, '$x =
$main::bogus->get_byte_terse_static(0)',

"terse static OO");
timethis($COUNT, '$x =
main::get_byte_main_verbose_static(0)',

"verbose static call");
timethis($COUNT, '$x =
main::get_byte_main_terse_static(0)',

"terse static call");
timethis($COUNT, '$x = vec($Bogus::DATA,
0, 8)', "fully inlined");

On my computer, it generated the results shown in
Table 29-1.

Table 29-1. Performance comparison of function call
techniques

Technique Time (seconds)

Superverbose instance OO 9.47

Verbose instance OO 6.30

654

Technique Time (seconds)

Terse instance OO 5.41

Verbose static OO 5.27

Terse static OO 3.81

Verbose static call 3.65

Terse static call 2.72

Fully inlined 0.72

655

A Plea for Inlining

The results highlight an issue I am still wrestling with, the
notion of
inlining frequently-used code to maximize performance.
Inlining is an
optimization technique whereby calls to a subroutine are
replaced by the body of that subroutine. Since the Z-machine
accesses its memory in nearly every operation, it’s desirable
to have the most efficient implementation possible. It’s no
surprise that the
ZIP
interpreter’s C code used preprocessor macros to inline
memory access:

#define get_byte(offset) ((zbyte_t)
datap[offset])

This declares the macro get_byte, which can be used in
the source code as
if it were a function call, but will actually be replaced before
compilation with code that directly references the global array
datap. ZIP uses datap to store the Z-machine’s memory,
much like $story_bytes is used in rezrov. By inlining
this array code, ZIP is able to access the Z-machine’s memory
without the overhead of calling a subroutine to do so. This
provides a huge boost in performance. Even better,
get_byte can be used in the source code just like a
function, enhancing readability and maintainability, because
the programmer doesn’t have to manually duplicate the
references to datap all over the program.

656

Unfortunately, Perl has no built-in way to expand macros in
source code, which seems odd considering its fantastic
text-processing capabilities. The
Filter::cpp module (available from CPAN) does provide an
interface to the standard C preprocessor, but I am reluctant to
use it because it will limit the number of systems rezrov
can run on. I have attempted various workarounds, from
constant subroutines to manipulating source code in text
variables with regexps and then eval ’ing it, but none of
these approaches has been particularly satisfactory. I would
really like to find a good solution for this problem; the
desirability of inlining is obvious from the benchmark results
above, where the fully inlined version is nearly four times
faster than the fastest subroutine equivalent. Anyone?

657

Conclusion

The more I studied the Z-machine, the more I realized that
many of the things that drew me to it were the same things
that attracted me to Perl itself.

The story of the Z-machine is the story of an ongoing open
source project that has been around nearly as long as Perl. But
while the Z-machine architecture began to show cracks as it
struggled to integrate graphics and sound in late versions,
Perl’s modular design has allowed these features to be
introduced in the form of dynamically-loaded extension
modules that do not weigh down the core. And while the code
base of Z-code interpreters has fragmented somewhat
between systems, Perl has been able to dodge this bullet, most
recently with the reintegration of the Win32 port back into the
standard distribution.

The Z-machine was designed to provide universal and
consistent access to Z-code programs by making them run
exactly the same way on as many different platforms as
possible. One of Perl’s greatest strengths is its success at
doing exactly the same thing: Perl, like the Z-machine,
transcends the foibles of individual systems with its vision of
a common playground. And that’s a beautiful thing.

658

References

Rezrov

http://www.edmonson.paunix.org/rezrov/

Graham Nelson’s Z-machine specification

http://www.gnelson.demon.co.uk/zspec/

Mark Howell’s ZIP source code

ftp://ftp.gmd.de/if-archive/infocom/interpreters/zip

Paul David Doherty’s Infocom Fact Sheet

ftp://ftp.gmd.de/if-archive/infocom/info/fact-sheet.txt

Pete’s Infocom page (various historical documents and
articles.)

http://www.csd.uwo.ca/~pete/Infocom/

The rest of Graham Nelson’s site

http://www.gnelson.demon.co.uk

The IF archive

ftp://ftp.gmd.de/if-archive/

The annual IF competition

http://www.ifcompetition.org

659

IF newsgroups

news://rec.games.interactive-fiction,
news://rec.arts.interactive-fiction

660

Chapter 30. Tktk: A Perl/Tk
Solitaire Game

Greg Bacon
One evening, I saw my wife playing a
solitaire game that I’d never seen before, and whose name I
still don’t know. I asked her to explain the rules. The game
turns out to be a simpler variation of
Pyramid, which is described at http://www.semicolon.com/
solitaire/rules/pyramidrules.html.

The Rules

To play, you lay out the
cards in a seven row pyramid. The first row contains one
card, the second two, and so on. When laying subsequent
rows, you should cover each card in the previous row with
two cards (picture the running bond pattern from brick
masonry), as shown in Figure 30-1.

If you want to impress your solitaire aficionado buddies, call
these 28 cards the tableau. The rest of the cards are the stock.
To play, place the stock’s bottom card face up on top of the
stock. This top card is called the base. Your goal is to pick up
all the cards in the tableau. You may pick up any uncovered
card whose denomination or rank is adjacent to the
denomination of the base card, regardless of suit. For

661

instance, if your base card is a six, you can pick up a five or
seven. Aces are considered adjacent to both deuces and kings.

When you pick up a card from the tableau, it becomes the
new base card. When you decide that you want a new base
card (usually when you can’t pick up any more from the
tableau), you flip from the bottom of the stock. The game is
over when you empty the tableau (you win) or when you
exhaust the stock (you lose).

It turned out to be a fun game. A
solitaire game has to be tantalizing to hold the player’s
interest, and this one definitely is. My wife would laugh
cruelly when I bemoaned being so close to winning (she says
she’s only won about three times in all the years that she’s
played). I realized that she had infected me with an awful
meme, so now I’ll spread it to you.

662

Figure 30-1. The start of the game

663

A First Cut

The more I played, the more I became impatient with tedious
tasks such as shuffling the deck and laying out the
cards. I kept thinking, “I should implement this game in Perl,”
and eventually I did. I had a lot of fun in the process, and this
article will describe the steps involved.

The first decision was whether the interface should be
graphical or character-based. I chose graphical. (Sorry, I’m a
wuss—I even play the tiled X11 version of nethack.) The next
step was to find some card images (because I didn’t want to
wake up the Gimp), and a web search found
http://www.waste.org/~oxymoron/cards/. The images have
sensible names: qs.gif is the queen of spades, th.gif is the ten
of hearts, and so on.

664

Shuffling

Before we can play, we have to shuffle the deck. The
Fisher-Yates algorithm to the rescue:

Fisher-Yates shuffle
sub shuffle {

use integer;

my $array = shift;
my $i;

for ($i = @$array; -$i;) {
my $j = int rand ($i+1);
@$array[$i,$j] = @$array[$j,$i];

}
}

Of course, we need a deck to shuffle. I decided to build a hash
whose keys are the card denominations and suits (the
basenames of the card images) and whose values are
Tk::Photo objects created from the card images:

my %card;
sub init_

cards {
my $c = shift;
my @denom = (2 .. 9, qw/ t j q k a /

);
my @suits = qw/ h d c s /;

my @dim = (-width => CARDWIDTH,
-height => CARDHEIGHT);

foreach my $d (@denom) {

665

foreach my $s (@suits) {
my $im = $c->Photo(-file =>

"cards/ds.gif", @dim);
$card{"$d$s"} = $im;

}
}

}

666

Layout

Now that we have a shuffled deck, we need to lay
out the cards. I considered using Gtk, but I have more
experience with Tk and wanted to play my
game as soon as possible.

Using Tk, we create a
Tk::Canvas object and place Tk::Photo image items on it. The
layout is pretty simple. The tableau’s vertical axis of
symmetry coincides with the vertical center line of the
canvas. For each row, we compute half the width of the whole
row, move left half that distance, and place cards from left to
right. The code looks like this (note that I called the tableau
the “field”):

my %pos;
sub init_field {

my $c = shift;
my $deck = shift;

my $width = $c->cget('width');

my $y = 7;
my $x;

for (1 .. 7) {
The 3 + results in a better

looking layout
$x = 3 + $width/2 - int($_/2) *

(CARDWIDTH+CARDSPACE);

if ($_ & 1) { # Odd-numbered row?
$x -= CARDWIDTH/2;

}

667

Place $_

cards
my @row = splice @$deck, 0, $_;
for (@row) {

$c->create('image',
int $x, int $y,
-anchor => 'nw',

-image =>
$card{$_},

-tags => [
'field', "card=$_"]);

$x += CARDWIDTH + CARDSPACE;
}
$y += CARDHEIGHT/2;

}
}

Notice that we didn’t have to bother with clipping, the
process of deciding which pixels should be displayed. We
simply placed the rows from back to front (that is, from the
top of the pyramid to the bottom), letting new items cover
anything that might be under them. This is called the
painter’s algorithm and, conveniently, achieves the
arrangement we want.

668

Show the Tableau!

The heart of the program ties it all together:
my $mw = MainWindow->new;
my $c = $mw->Canvas(-width => 7 *
CARDWIDTH + 22,

-height => 5 *
CARDHEIGHT + 18);

init_cards $c;
my @deck = keys %card;
shuffle \@deck;
init_field $c, \@deck;

$c->pack;

MainLoop;

This program is enough to produce a layout similar to
Figure 30-1.

669

Would You Like to Play a Game?

I once had a math professor who obsessively moved radicals
out of the denominators of fractions because “our teachers
like it better this way.” You’d think he would have been able
to cast off those chains when he took his Ph.D. Programmers
(or at least pedants like me) feel the same sort of guilt about
rampant use of globals. I decided to aggregate all the game
state information into an anonymous hash and then pass the
state to the different subroutines. There’s a Rob
Pike quote that I like to repeat: “The O-O languages give you
more of course—prettier syntax, derived types and so
on—but conceptually they provide little extra.” I bring it up
here because too many programmers would have carried this
aggregation a step further, to define a class implementing the
entire game. That would be hunting rabbits with a tank,
because it’s not likely that we’ll have more than one game
running at once and because I don’t plan on inheriting and
overriding methods from the game.

670

Making the Moves

Our program is about to become at least a little interesting as
we make it recognize and respond to
events. The events that we’re interested in are when the user
clicks on a card in the tableau and when the user clicks on the
base card.

Tk operates under an event-driven model. This means that the
programmer says to Tk, “When a certain type of event
happens (like a mouse click or a key press), execute this
code.” The code that Tk executes in response to an event is
known as a callback. The way to register
callbacks (that is, how you ask Tk to execute callbacks when
certain events take place), is to use Tk’s bind method.
Here’s a simple example:

$parent->bind(qw/field <1>/ => sub { print
"Saw a click!\n" });

This tells Tk to print a message when the user clicks Button-1
(usually the left mouse button) on an item or widget with the
field tag. See the
Tk::bind documentation for details.

Tags are simple strings that we can associate with items and
widgets. When we laid the
cards in the field, we gave them two tags: the field tag, and
a tag indicating which card it is:

$c->create('image',
int $x, int $y,
-anchor => 'nw',
-image => $card{$_},

671

-tags => ['field',
"card=$_"]);

As you can see, tags allow the programmer to create a logical
association among different widgets.

672

Laying the Base

Now that we know how to deal with events, the code to cycle
through the stock is a SMOP (Simple Matter Of
Programming). If there’s a card on the bottom of the stock,
we display and remember it. Otherwise, we display the back
of a card and tell Tk to stop executing
callbacks when the user clicks the base card:

sub next_base {
my $

game = shift;

my $c = $game->{CANVAS};
my $deck = $game->{DECK};
my $ht = $c->cget('height');
my $wd = $c->cget('width');
my $x = 3 + $wd/2 - CARDWIDTH/2;
my $y = $ht - 3 - CARDHEIGHT;

Lose any base card that might be
there

$c->delete('base');

my $image;
my $

up;
if ($deck and @$deck) {

$up = pop @$deck;
$image = $card{$up};

} else {
$image = $card{b};
$c->bind(qw/base <1>/ => '');

673

$up = 0;
}

$up = substr $up, 0, 1;

$c->create('image',
int $x, int $y,
-anchor => 'nw',
-image => $image,
-tags => ['base']);

$game->{UP} = $up;
}

We register this callback with:
$c->bind(qw/base <1>/ => sub { next_base
$game });

674

Pickup Lines

To legally pick up a card, it must be completely uncovered.
The Tk::Canvas class provides a method for asking which
items overlap a certain rectangular area. Before we can do
that, we have to know where (in terms of canvas coordinates)
we laid each card. We add this line to init_field:

@{ $game->{POS}{$_} }{ qw/ X Y / } = ($x,
$y);

Tk associates the current tag with the item or widget
involved in triggering the current callback. We can ask Tk
what other
tags the “current” item has, which helps us to figure out what
card it is. The code looks like this:

my ($cur) = $c->find('withtag' =>
'current');
my ($card) = grep /^card=..$/,
$c->gettags($cur);

In the rules, I stated that it is legal to pick up a card if it is
uncovered and its denomination is adjacent to the base card’s
denomination. We can ask Tk whether any
cards are covering the selected card:

$card = substr $card, -2, 2;
my($x, $y) = @{ $game->{POS}{$card} }{qw/
X Y /};

my @over = grep $_ > $cur,
$c->find('overlapping',

$x, $y => $x+$CARDWIDTH, $y+$CARDHEIGHT);

675

Armed with the knowledge of the denominations of the base
card and the selected card, we need to be able to decide
whether those denominations are adjacent. I originally used a
big, overly verbose hash of hashes where the test for
denomination adjacency looked like this:

if ($rank{$base_denom}{NEXT} eq
$field_denom or

$rank{$base_denom}{PREV} eq
$field_denom) {

...
}

Stephen Lidie suggested the following data structure:
my %rank = (a => '2k',

2 => '3a',
...
q => 'kj',
k => 'aq');

The test for a legal move then becomes:
if (index($rank{$base_denom},
$field_denom) >= 0) {

$c->delete($cur); # Remove the card
from the tableau

push @$deck, $card;
next_base $

game; # ...and make it the new base
card
}

If we determine at some point that the insidious user is
attempting to make an illegal move, we ring the bell with
$c->bell and return.

676

Oops!

As I was testing the game, I would pick up a card and then
realize that I should have picked up another card. Because of
the bookkeeping in init_field that kept track of where
the cards were in the tableau, to undo we need only replace
the card in the tableau and the last base card on the stock. The
code is simple:

sub undo {
my $c = shift;
my $game = shift;
my $up = $game->{UPCARD};
return unless $up;

my($x, $y) = map int, @{
$game->{POS}{$up} }{ qw/ X Y / };

$c->create('image',
$x, $y,
-anchor => 'nw',
-image => $card{$up},

-tags => ['field',
"card=$up"]);

$game->{UPCARD} = 0;
push @{ $game->{DECK} },

$game->{OLDBASE};
next_base $

game;
}

Notice the $game->{UPCARD} check. This makes it so
that players can undo only a pickup. (If we also allowed
players to undo after flipping from the bottom of the stock,

677

they would enjoy the luxury of a one-card lookahead, and that
would make the game less excruciating.)

678

Finishing Touches

At this point, I had a playable game, but I wanted to add a
more polished feel. The first touch was to add a check to
make sure that the directory of
cards was where we expected:

my $CARDS;
BEGIN {

$CARDS = "/your/directory/of/card/
images"; # Where the card images live

unless (-d $CARDS) {
$0 =~ s!^.*/!!;

die "$0: cards directory `$CARDS'
does not exist!\n" .

"(Did you forget to set \$CARDS
to the proper value?)\n";

}
}

And what
GUI would be complete without menus and menu
accelerators?

my $restart = sub { $game = new_game $c };
my $undo = sub { undo $c, $game };

my $mod = 'Alt';
if ($^O eq 'MSWin32') { $mod =
'Control' }
elsif ($^O eq 'MacOS') { $mod =
'Command' }

my $menu = $mw->Menu;
$menu->cascade(-label => '~File',

679

-tearoff => 0,
-menuitems => [[

command => '~New game',

-command => $restart,

-accelerator => "$mod+N"],
[

command => '~Undo pickup',

-command => $undo,

-accelerator => "$mod+U"],
'',

[
command => '~Quit',

-command => [destroy => $mw],

-accelerator => "$mod+Q"]]);

$mw->configure(-menu => $menu);
$mw->resizable(0, 0);

$mw->bind("<$mod-n>" => $restart);
$mw->bind("<$mod-q>" => [destroy => $mw
]);
$mw->bind("<$mod-u>" => $undo);

Any artist will tell you that the work isn’t done until it’s
signed:

my $about = $mw->Dialog(-title => 'About',
-bitmap => 'info',

-default_button => 'OK',
-buttons => ['OK'

],
-font => $FONT,
-text => "

680

tktk (Tk timekiller)\n" .

"gbacon\@cs.uah.edu\n\n" .

"(updated $UPDATED)\n\n" .
"Tk

version $Tk::VERSION");

The result is shown in Figure 30-2.

Figure 30-2. A dialog box containing information about the
game

681

I wish it would do something neat when the player empties
the tableau, but I haven’t come up with anything cool enough.
If you have any ideas, please let me know.

As you’ve seen, Tk provides a flexible framework for
developing graphical user interfaces. This program was easy:
it only took a couple of days to develop. The result was a fun
alternative to sol.exe for killing time. Grab the code from
the web page for this book (http://www.oreilly.com/catalog/
tpj3) and give it a try.

682

Chapter 31. The First Perl/Internet
Quiz Show

Jon Orwant
At the Second Perl Conference in 1998, I wrote and
moderated the first-ever Perl Quiz Show. Four three-person
teams competed for a variety of delicious prizes: Perl
Resource Kits, TPJ subscriptions, TPJ Magnetic Perl kits,
Perl Mongers T-Shirts, and O’Reilly gift certificates.

There were two semifinal rounds and one final round; each
round pitted two teams against one another with fifteen
toss-up questions. Toss-ups are questions answered by
individuals; each correctly-answered toss-up earns ten points
and the right for the entire team to collaborate on a bonus
question worth up to thirty points.

What follows are all of the toss-up and bonus questions I
wrote, including several that weren’t asked. If the toss-ups
seem simple, bear in mind that merely knowing the answer
isn’t enough—you also have to answer before the other team
buzzes in. If the bonuses seem hard, bear in mind that the
entire team gets to confer on the answer.

Answers are at the end of the article. Since toss-up questions
were tests of how fast you could answer correctly, and bonus
questions were given to teams of people, neither translates
very well to the printed page. But if you simply must quantify
your score, count one point for each correct answer (rounding
partial credit on bonuses) and sum.

683

Toss-up Questions

Toss-up 1: In a regular expression, you can use
curly braces to specify how many times you want to match
something. For instance, x{5,10} matches at least five but
no more than ten x’s. What is the maximum number of
occurrences you can match with this technique?

Toss-up 2: Guess that switch: Every once in a while,
someone tells me they wish they could use #if and
#ifdef statements in Perl. They can; all they need to do is
use this flag.

Rate Your Knowledge

The five quiz shows each have around 90 questions, split
into toss-ups and bonuses. Count one point for each
correctly-answered toss-up, and one point for each bonus
question where you get the answer at least half correct.

0–10:
Perl
Novice. Hit head with board, read FAQ, retake test.

11–25:
Perl
Adept. Keep telling yourself that you would have scored a
lot higher if you’d used the online documentation, and
really isn’t that a better way to gauge programming
competence.

26–50:
Perl

684

Guru. Feel guilty for peeking at the answers, disagreeing
with them, and deciding that you’re really correct.

51–70:
Perl Wizard. Your future holds satori and
high consulting fees.

71+: Cheater. You already knew the answers because you
attended the quiz show in person. Shame on you for
pretending that you really did this well.

Toss-up 3: Guess that variable: What scalar contains the
name of the operating system you’re on?

Toss-up 4: A tangent function, a floor function, a function to
generate temporary filenames. These are all part of what
module bundled with
Perl, meant to provide a uniform way of calling functions
independent of what operating system you’re on?

Toss-up 5: Let’s say you have a
digital clock that displays twelve-hour time (that is, it displays
a.m. and p.m.). Ignoring the colon, what’s the smallest power
of two that will appear on the display?

Toss-up 6: Continuing with the previous question, what’s the
largest power of two?

Toss-up 7: Spin the Black Circle, Who You Are, Jeremy,
Evenflow. These are songs by a Seattle grunge rock band
with a two-word name of particular relevance to this
conference.

Toss-up 8: It’s the only Perl program I know of that has been

685

tattooed on a forearm. This cryptographic scheme was
invented in 1977 by three MIT graduate students: Ron
Rivest, Adi
Shamir, and Len
Adleman.

Toss-up 9: If you have multiple_____________in your Perl
program, they’ll be executed in reverse order: the last one will
be executed
first, and the
first one last. This behavior is the opposite of the BEGIN
block.

Toss-up 10: $_ has two characters, @ARGV has five. This
symbol is arguably the only
single-character variable in Perl. It’s a special filehandle used
to speed up calls to stat, lstat, or any of the file tests.

Toss-up 11: The
first day of the year is always a Monday, somewhere between
December 29th and January 4th. That’s according to the
standard year of this organization, which is responsible for
POSIX.

Toss-up 12: The hex function converts a hexadecimal
number to decimal. What function would you use to convert
back to hex?

Toss-up 13:
Back Orifice ‘98 allows you to remotely control the Windows
95 and 98 desktops. Name the group responsible.

Toss-up 14: A 233-MHz 750 PowerPC processor, a 4GB
hard disk drive, 32MB of memory, built-in networking, an

686

internal modem, a CD-ROM drive, and no floppy drive. What
is this
computer, released by Apple in August 1998?

Toss-up 15: A
Frankenstein language created with pieces of JavaScript,
cascading stylesheets, and HTML. That’s how WIRED News
describes this variant on HTML that lets you enhance HTML
with animation.

Toss-up 16: “The Lurking Horror,”
“Planetfall,”
“Leather Goddesses of Phobos,”
and the classic “Zork”
were all games produced by what company?

Toss-up 17: A pragma is like a module—you invoke it with
use—but it affects how Perl interprets your program. Which
pragma is most likely to speed up the typical Perl program?

Toss-up 18: Definitions of croak and confess are found
in which module?

Toss-up 19: Sarah Ophelia
Cannon’s hat resides at the National Museum of History. The
hat, with the price tag still attached, symbolizes Cannon’s
character at the
Grand Ole Opry, a homophone with the little program that
Perl uses to build itself.

Toss-up 20: If Perl 5 were designed from scratch, these two
functions (which currently exist in both Perl 4 and Perl 5)
probably wouldn’t be there, because everything you can do
with them you can now do with the tie function. They let
you store hashes on disk.

687

Toss-up 21: Give me the two common ways to access (but
not modify) the last element of the array @bar.

Toss-up 22: What does this display?
print print print print print

Toss-up 23: This selfish-sounding keyword didn’t exist
before Perl 5. It’s a faster and safer way to declare variables
than local.

Toss-up 24: This word is the name for what a pearl is before
it’s big enough to be called a pearl, but is better known in
biology as the protoplasmic center of a cell in control of
growth and metabolism.

Toss-up 25: Someone comes up to you and says that use
strict is broken, because they say $a = $[; use
strict; and no error occurs; they were expecting to see
Global symbol ‘a’ requires explicit
package name. What Perl function is responsible for this
crime of omission?

Toss-up 26: There’s no difference between the foreach
and for operators, but those aren’t the answers to this
question. Two Perl operators that manipulate strings are
100% synonymous. What are they?

Toss-up 27: When I write a
smiley face, it’s a colon followed by a hyphen followed by a
right parenthesis. Consider the three scalar variables $:, $-,
and $). Which one will vary from user to user on the same
system?

688

Toss-up 28: Gem, moo, six, miss. Which of these words
couldn’t you find immediately after the second slash of an
m// pattern match?

Toss-up 29: $x is set to fuzz. What is $x++?

Toss-up 30: tr/a-z//. What does that do?

Toss-up 31: In a Perl regular expression, how do you create a
grouping without
creating a backreference?

Toss-up 32: What’s the sum of the protocol numbers for
SMTP, FTP, and telnet?

Toss-up 33: The 1997
Ig Nobel Prize for Communications went to this man, the
president of
Cyber Promotions and widely-acknowledged
King of Spam.

Toss-up 34: “Join us now and share the software.” This is the
first line of a song by a MacArthur grant winner who hangs
out at MIT, wrote Emacs, and founded the Free Software
Foundation.

Toss-up 35: This built-in function constructs a linked list of
every character in a string, and is sometimes invoked before
expensive pattern matches. It’s what good little boys and girls
do after school.

Toss-up 36: What command-line switch checks the syntax of
Perl programs?

Toss-up 37: “When you say it to your computer, the terminal
may become slightly moist.” This was said by Donald

689

Knuth, describing what text formatting package of his own
design?

Toss-up 38: He’ll be twenty years old next year and
underwent a five-hour operation on a brain tumor in 1991.
The operation was successful, allowing him to enjoy his title
as recipient of the world’s most postcards—33 million in all,
thanks to a massive Internet campaign.

Toss-up 39: hash_PeRlHaSh = hash_PeRlHaSh *
__________ + *s_PeRlHaSh++;

This line of Perl code comes from the file hv.h in the Perl
distribution, and it’s what Perl uses to convert the keys of
your hash into its internal representation. The number that
goes in the blank is a power of two plus one. It’s two digits,
and both digits are the same. What is it?

Toss-up 40: To help the Perl development team debug Perl,
you decide you’re going to write a program that generates and
executes random Perl programs. You exclude functions like
system and unlink and syscall and open and kill
that directly affect your operating system or any other
processes running on your computer. You leave your program
on all night, and in the morning you discover that many of
your programs crashed. What four-letter function is the
culprit?

Toss-up 41: What’s the longest function name in Perl?

Toss-up 42: Initial etic inquiry typically yields particles
whose wave or field relationships (i.e., situatedness) to other
particles are undetected, indistinct, or ambiguous and which
must be identified before progress can be made toward emic
understanding. This description of something called “eticity”

690

is a core definition of what field of computational linguistics
that influenced Larry’s design of Perl?

Toss-up 43: “If there is a Perl 6, Perl 7 will be built out of
sticks and stones.” I made that up, but it’s an allusion to a
statement about World Wars III and IV by what famous
physicist known for his Theory of Relativity?

Toss-up 44: Perl is free software. If you redistribute it, you
can choose between two completely separate licenses: the
GNU General Public License, and what other license?

Toss-up 45: Assuming a default Perl configuration, which of
these four code snippets will beep?

print "\a" if $[;
print "\007" if $0;
print "\x7" if $$$;
alarm;

691

Bonus Questions

For this book, each bonus question is worth a maximum of
one point. As an example, if you get two or more correct in
the
first question below, score one. Otherwise, score zero.

Bonus 1: I’m going to make four statements about values that
a scalar can hold. After each, you tell me whether the
statement is true or false.

▪ Every string is true except for the null string.

▪ Every number is true except for the quantity 0.

▪ Every reference is true.

▪ Every undefined value is false.

Bonus 2: I’ll give you three lexically scoped variable
declarations. Which are valid? Answer yes or no.

my $_;
my $::dog;
my $big{dog};

Bonus 3: Pencil and paper ready: give me a regular
expression that matches these three misspellings of O’Reilly:

Oreilly O`Reilly O Riley

but does not match these two misspellings:
Or Reilly Oh really O'Rwant

Bonus 4: I’ll give you four partial Larry sayings. You
complete them.

692

“Down that path lies madness. On the other hand, the
road to hell is paved with __________.”

“It’s easy to solve the halting problem with
__________.”

“The three principal virtues of a programmer are
__________.”

Bonus 5: Write a Perl one-liner that can be executed from the
command line. The one-liner should take a file and replace
each tab with a space, but use no more than six letters to do
so. You don’t have to count Perl or the filename, but it does
have to count command-line switches.

Bonus 6: If you say 3 + 4 * 5 without any parentheses,
the answer is 23 and not 35 because of something called
precedence. * has a higher precedence than +, so it steals the
4 away from the 3. Rank the
precedence of these five Perl operators from lowest to
highest. ++ ** == .. ||

Bonus 7: I’ll give you four comments. After each one, you
tell me whether the comment appears in the Perl source code.

“And you’ll never guess what the dog had in its
mouth.”

“Here there be dragons.”

“I’m not insane, you’re insane, and you’re trying to
steal my magic bag.”

“It all comes from here, the stench and the peril.”

Bonus 8: Collecting

693

demographic information about Perl is difficult because
there’s no central distribution point, and there’s no
registration process. So we’ll treat the Perl Journal subscriber
list as representative of the Perl community as a whole. After
the United States and United Kingdom, which six countries
have the most Perl programmers? You don’t have to order
them.

Bonus 9: Caffeine is the drug of choice for programmers. I’ll
give you four drinks; you rank them in order from least
caffeinated to most caffeinated.
Mountain Dew,
Pepsi,
Jolt, and Coca Cola. Where does one tablet of
Excedrin fit into this list?

Bonus 10: People complain about Perl’s unreadability, but
there are many ways to write crystal-clear Perl code. One of
those ways is the
English.pm module, which lets you use
verbose alternatives to the sometimes cryptic scalars that Perl
predefines for you. For instance, instead of saying $_, you
can say $ARG. I’ll give you five English names; you give me
the Perl scalar each represents. MATCH,
INPUT_LINE_NUMBER, OUTPUT_AUTOFLUSH,
FORMAT_LINES_PER_PAGE.

Bonus 11: Usenet started as a 300-baud connection between
which two universities?

Bonus 12: Full credit if your answer is within a factor of 10:
How many

694

black market kidneys could Microsoft buy? I’m assuming the
August 14, 1998 market capitalization of Microsoft and the
price of one kidney quoted in the
famous piece of Internet folklore. Assume that Microsoft
wants to corner the kidney market and is willing to spend its
entire net worth to do so.

Bonus 13: Rank the following in order of occurrence:

▪ IRC is launched.

▪ Perl is introduced to the public.

▪ The acronym “FAQ”
first appears on Usenet.

▪ Intel introduces the 80386 CPU.

Bonus 14: Rank the following in order of occurrence:

▪ The Communications Decency Act is introduced.

▪ DOOM is released.

▪ Altavista is launched by Digital.

▪ 33.6 kilobit modems are introduced.

Bonus 15: You’ve heard of MP3s, the CD-quality audio
format that’s giving music producers the shivers about this
Internet thing. MP3 stands for MPEG-3; MPEG is a digital
video format. What do the four letters M, P, E, and G stand
for?

Bonus 16: After I finish reading this question, I’m going to
ask the crowd to choose whether they prefer vi to

695

Emacs. Will substantially more people choose vi,
substantially more people choose Emacs, or will the two be
roughly equal?

Bonus 17: Write a syntactically perfect program that prints
“yes” if a number is evenly divisible by 10. The number will
be provided as an argument to the program. I’ll give you a
little extra time.

Bonus 18: Rank these code snippets from slowest to fastest:
print "cd";
print $c, $d;
print $c . $d;

Bonus 19: Expand these four acronyms: CGI, FQDN, URL,
ISDN.

Bonus 20: Expand these four acronyms: TCP, SMTP, MIME,
XML.

Bonus 21: Expand these four acronyms: IANAL, CERT, API,
FTP.

Bonus 22: I’m going to name six cities. After each, you tell
me whether it had a
Perl Mongers chapter in 1998.

Toronto; London; Redmond, Washington; Paris; St.
Louis; Helsinki.

Bonus 23: The Perl source code is peppered with
Tolkein quotes. What are the three books in Tolkein’s Lord of
the Rings trilogy?

Bonus 24: Pencil and paper ready. Take the area code of this
hotel (Editor’s note: the

696

first Perl Conference was in San Jose) and subtract from it the
number of bones in the adult human body. You’ll end up with
the area code for a U.S. city commonly known by a two-letter
abbreviation, or four characters if you count punctuation.
Give me a pattern that precisely matches that four-character
abbreviation.

Bonus 25: I use the mSQL DBD to do CRUD. There are
three database-oriented acronyms here: mSQL, DBD, and
CRUD. What do they stand for?

Bonus 26: I’ll name six modules. After each, you tell me
whether it exists on the CPAN. Search::Patent,
Text::GenderFromName, Mortgage::Calculate, D’oh, Lint,
Business::UPS.

Bonus 27: I’ll give you an operating system or computer, you
tell me whether Perl runs on it, yes or no. BeOS, Cray,
Amiga, PalmPilot.

Bonus 28: I’ll give you three built-in Perl functions; you tell
me what prototypes they would have if you were writing
equivalent subroutines. join, keys, pipe.

Bonus 29: When you apply the built-in ref
function to an object, you get the name of the object. When
you apply it to a non-object reference, you get one of six
answers. What are they?

Bonus 30: Consider the scalar $X::Y::Z. X and Y are both
packages. What is the relationship between X and Y?

Bonus 31: I’m going to list five functions. For each, tell me
whether it’s built
into Perl 4, Perl 5, both, or neither. reverse, bless,
eval, tag, abs.

697

Bonus 32: Many of Perl’s operators can be made into
assignment operators by adding an
equals sign. For instance, $a + 4 adds $a and 4, but $a
+= 4 adds $a and 4 and sticks the result in $a. I’ll give you
four operators; you tell me which can be made assignable by
adding an equals sign. Answer yes or no after each. x, ^,
&, &&.

Bonus 33: Laptops in the movies! Name the movie in which
alien ships are infested with a virus uploaded from a
PowerBook. Next, name the Tom Cruise movie in which we
briefly see lists of Usenet groups scrolling by on a laptop.

Bonus 34: I’ll give you three code snippets. Tell me which
module bundled with the Perl distribution contains the
snippet.

print $query->textfield(-name =>
'field_name' ...
@type = qw/Author Bundle Distribution
Module/;
tr/AEHIOUWYBFPVCGJKQSXZDTLMNR/
00000000111122222222334556/;

Bonus 35: Many people don’t know that Perl comes with its
own built-in
symbolic debugger, perhaps because Perl programs
practically debug themselves. It’s invoked with the -d
switch. I’ll give you a debugger command, and you tell me
what it does. Lowercase b, lowercase x, lowercase h,
lowercase s.

Bonus 36: What does this print?
perl -e '$-=$=; print $--- - --$-'

698

Bonus 37: You have a hash, and you know it’s been tied to
some package. Which two functions should you use to find
out what package that is?

Bonus 38:
Entropy coding (and, more to the point, common sense)
dictates that you should use short terms to represent
commonly-occurring concepts. That’s why Morse code uses a
dot for E and a dash for T. You see this all over Perl, too.
Give me a three, four, five, six, and seven letter built-in Perl
function.

Bonus 39: There are five tokens beginning and ending with
double underscores that have special meaning to Perl. What
are they?

Bonus 40: Name that
file test. I’ll give you five operations. You give me the
single-letter file test that performs that operation. Don’t forget
to specify whether the letter is lower- or uppercase. Is the file
there? Is it a binary file? Is it empty? How long has it been
since the last access? How big is the file?

Bonus 41: Which
modules are bundled for the
first time with Perl 5.005? I’ll give you six modules that
might or might not exist; answer yes or no after each.
Test.pm, Bytecode.pm, Thread.pm, Java.pm, fields.pm,
Compiler.pm.

Bonus 42: There’s always more than one way to do it, but can
you tell me the two most concise ways to make Perl add a
newline after each print?

699

Bonus 43: The caller function returns information about
the environment in which it was invoked. If it’s invoked with
no arguments inside a subroutine, it tells you three things.
What are they?

Bonus 44: This little known technique lets you transform
your Perl program as it’s being interpreted. For instance, you
can use this to encrypt your source code and have Perl
decrypt it on the fly. What is this technique?

700

The Answers

I used an old College Bowl convention for the cards I used
when emceeing the show: capitalizing the part of the answer
that players needed to say. Even though I was both judge and
jury, it occasionally helped to be able to show the card to
players to avoid any perceptions of favoritism.

Toss-up Answers

T1: 65535

T2: -P
(-p is incorrect)

T3: $^O

T4:
POSIX

T5: 128

T6: 1024

T7:
PEARL JAM

T8: RSA

T9: END blocks (also accept END subroutines)

T10: _

T11:
ISO or

701

INTERNATIONAL STANDARDIZATION
ORGANIZATION or INTERNATIONAL ORGANIZATION
for STANDARDIZATION

T12:
SPRINTF

T13.
CULT OF THE DEAD COW (Sean
Mahoney, age 16, got this one.)

T14: The IMAC

T15:
DHTML or DYNAMIC HTML

T16:
INFOCOM. No one got this. Depressing.

T17:
INTEGER

T18:
CARP

T19:
MINNIE PEARL or
MINIPERL

T20:
DBMOPEN and
DBMCLOSE

T21: $bar[-1] and $bar[$#bar]

T22: 1111 (print returns 1 on success.)

T23:

702

MY

T24: NUCLEUS

T25:
SORT

T26: TR and Y

T27: $) (which contains a list of group IDs.)

T28: GEM

T29: FVAA (You can increment letters as well as numbers. a
plus one is b, y plus one is z, and z plus one is aa. So
fuzz plus one is fvaa. You can’t decrement them, though.)

T30: COUNTS the LOWERCASE LETTERS in $_. (The
player buzzed in and said “It’s a no-op.” I declared that
incorrect. Then some rube in the audience yelled out that if $_
were empty, the compiler would optimize away the statement,
so that it actually would be a no-op. I don’t think that’s what
he was thinking, but I awarded full points anyway.)

T31: (?:)

T32: 69 (FTP is 21, telnet is 23, and SMTP is 25. Someone
pointed out that FTP could have another port number, and so
the answer isn’t unique. However, the team answered 69,
getting full points, so it’s moot.)

T33: Sanford
WALLACE

T34: Richard
STALLMAN

703

Linked Bonus: For all twenty points, your entire team
has to sing the next line of the song in unison.

Answer: “You’ll be free, hacker, you’ll be free.” No
points awarded; the team didn’t know the next line.
After I read the answer, someone in the crowd yelled
out for me to sing it. Security detained him after the
show.

T35:
STUDY

T36: -c

T37:
TEX (According to Knuth, “Insiders pronounce the X of TeX
as a Greek chi, not as an ‘x’, so that TeX rhymes with the
word blecchhh.”)

T38: Craig
SHERGOLD

T39: 33

T40:
DUMP (Spoken from personal experience.)

T41:
GETPROTOBYNUMBER

T42:
TAGMEMICS

T43: Albert
EINSTEIN

T44:
ARTISTIC

704

Bonus Answers

B1: F (consider “0”), T, T, T.

B2: NO

B3: Answers can vary. /O.?Re?il/ (I shuffled this
question to the end because it’s too open-ended. It was never
asked.)

B4:
LAZINESS, IMPATIENCE, and HUBRIS

B5: perl -pi -e ‘s/\t/ /g’

B6: .. || == ** ++

B7: YES (mg.c), NO, NO, YES (Frodo said that in toke.c.)

B8: GERMANY, CANADA, AUSTRALIA, FRANCE,
JAPAN, SWITZERLAND. (The next six are Sweden,
Holland, Norway, Denmark, Finland, and Italy.)

B9: PEPSI (38 mg/12 ounces), COCA-COLA (45.6 mg),
MOUNTAIN DEW (54 mg), JOLT (72 mg). Excedrin is
between Mountain Dew and Jolt. (Tidbit: Canadian Mountain
Dew has no caffeine.)

B10: $& $. $| $=

B11: UNIVERSITY of NORTH CAROLINA and DUKE

B12: 25,690,000 kidneys. (Accept between 2,569,000 and
256,900,000 kidneys). (When the quiz show began, the
market cap of Microsoft was $256.9 billion. Kidneys are a
steal at 10 grand.)

705

B13: Intel introduces the 80386 CPU (June 86); Perl is
introduced to the public (Jan 88); IRC is launched (May 89);
The acronym “FAQ”
first appears on Usenet (Sept 89).

B14: DOOM is released (Dec 93); The Communications
Decency Act is introduced (Feb 95); Altavista is launched by
Digital (Dec 95); 33.6 kilobit modems are introduced (Jan 96)

B15:
MOTION PICTURE EXPERTS GROUP

B16: Depends on crowd response. (
vi got more applause, much to my chagrin.)

B17: print “yes” unless shift() % 10 is one
possible answer. (I didn’t ask this because it was too
open-ended.)

B18: A-C-B

B19:
COMMON GATEWAY INTERFACE;
FULLY QUALIFIED DOMAIN NAME;
UNIFORM RESOURCE LOCATOR;
INTEGRATED SERVICES DIGITAL NETWORK (The
team didn’t fall into my trap. I’d hoped that they’d answer
Universal Resource Locator.)

B20:
TRANSMISSION CONTROL PROTOCOL;
SIMPLE MAIL TRANSFER PROTOCOL;
MULTIPURPOSE INTERNET MAIL EXTENSIONS;
EXTENSIBLE MARKUP LANGUAGE

B21:

706

I AM NOT A LAWYER;
COMPUTER EMERGENCY RESPONSE TEAM;
APPLICATION PROGRAM INTERFACE;
FILE TRANSFER PROTOCOL (The team got hung up on
the
first one, trying desperately to complete “Internet Assigned
Numbers Authority __________ ”. Tom
Phoenix pointed out that
CERT had recently declared that their name was—poof!—no
longer an acronym.)

B22: Toronto NO, London YES, Redmond NO, Paris NO, St.
Louis YES, Helsinki NO (Mongers groups exist in some of
these places now, but not in 1998.)

B23: The
FELLOWSHIP OF THE RING, The
TWO TOWERS, The
RETURN OF THE KING

B24: /D\.C\./ (The team said \w+, but that won’t handle
the dots.)

B25:
MINI STRUCTURED QUERY LANGUAGE;
DATABASE DRIVER;
CREATE, READ, UPDATE, and DELETE.

B26: Search::Patent NO, Text::GenderFromName YES,
Mortgage::Calculate NO, D’oh YES, Lint NO, Business::UPS
YES

B27: BeOS YES, Cray YES, Amiga YES,
PalmPilot NO (Ken
Albanowski wrote a Perl

707

API to the PilotLink library, which lets you develop Pilot
applications in Perl.)

B28: join $@; keys \%; pipe **

B29: REF, SCALAR, ARRAY, HASH, CODE, GLOB (But
there are more: LVALUE and IO.)

B30: There is no relationship.

B31: reverse BOTH, bless PERL 5, eval BOTH,
tag NEITHER, abs PERL 5

B32: x YES, ^ YES, & YES, && YES

B33:
INDEPENDENCE DAY,
MISSION: IMPOSSIBLE

B34:
CGI.pm, CPAN.pm, SOUNDEX.pm

B35: b sets a BREAKPOINT; x evaluates, and
PRETTY-PRINTs (and prints nested data structures too); h
displays HELP; s single-STEPS through the code.

B36: 2 (The print statement is equivalent to saying x – (x – 2),
so it’ll be 2 in almost every circumstance. Chip
Salzenberg came up to the stage afterward and pointed out
that the order of evaluation of the arguments isn’t guaranteed
by Perl, so the answer wouldn’t necessarily be two on all
implementations. I stand by this answer, because I’ve yet to
see a Perl implementation that evaluates the second argument
of—before the first. Now Chip will patch Perl just to spite
me.)

B37:

708

REF and
TIED.

B38: One possible set of answers: pop, push, sleep,
scalar, reverse.

B39: _ _FILE_ _, _ _LINE_ _, _ _PACKAGE_
_, _ _DATA_ _, _ _END_ _

B40: -e tests whether the file is there; -B tests whether the
file is binary file; -z tests whether the file is empty; -A
returns how long it’s been since the last access; -s returns
how big the file is.

B41: Test.pm YES, Bytecode.pm NO, Thread.pm YES,
Java.pm NO, fields.pm YES, Compiler.pm NO

B42: -l and $\ = “\n”

B43: The PACKAGE, the FILENAME, and the current
LINE.

B44:
SOURCE FILTERing (The answer given was “filter.” I
declared it incorrect.)

709

Chapter 32. The Second Perl/
Internet Quiz Show

Jon Orwant
At O’Reilly’s 1999 Open Source conference, I emceed and
judged the
Second Perl/Internet Quiz show, which pitted teams of Perl
hackers against one another to win enduring fame and a
motley collection of prizes. Here are the questions, including
a few I didn’t ask.

Four teams played, with all participants winning one of the
following:

▪ VA Linux: A cube fridge and $40 to fill it with junk food

▪ perltoys.com: Magnetic Perl Poetry Kits

▪ Geek Cruises: 50% off a state room for the Perl Whirl
Alaska Tour

▪ O’Reilly $50 and $25 gift certificates

▪ TPJ: Free two-year subscriptions

If you want to tally your score, you can use the ratings at the
beginning of Chapter 31.

710

Sample Questions

The Perl Quiz Show isn’t like Jeopardy or Win Ben Stein’s
Money. It’s modeled after College Bowl, a family of
collegiate tournaments that I participated in at MIT. Here’s
the sample toss-up I used to warm up the teams, with
interspersed commentary.

Toss-up 0: This company started in a abarn in Newton,
Massachusetts,

This question illustrates how the ideal toss-up question
is written: with the most obscure information at the
beginning.

and originally specialized in technical writing and consulting.

At this point, a few people in the crowd already knew
the answer.

Their consulting business slowed down in 1985, so they tried
publishing some of their material as books, and thought they
might give them away to promote their consulting business.

Most people had a good guess after this question.

In 1988, they were mobbed by participants at the MIT X
Conference for their Xlib manuals, and soon after they
focused on publishing computer books.

Now just about everyone knew.

They now publish more than 120 books, many of which have
pictures of animals on the cover.

If you haven’t buzzed in by now, you shouldn’t be
playing.

711

They’ve recently branched out into the conference business.

And the kilowatt spotlight over the head:

For ten points, name this company that is hosting the
conference YOU’RE AT RIGHT NOW.

Answer: O’REILLY & Associates

Because many toss-ups are designed with a giveaway at the
end, the questions aren’t as challenging in print as they are
when spoken. Remember that when you read these questions:
the skill is not in answering the question correctly so much as
answering it before the other team.

The capitalization indicates the essential part of the answer
that players had to utter. Here, anyone who buzzed in only
had to say “O’Reilly”; they didn’t have to give the full name
of the company.

Here’s a sample bonus question:

Bonus 0: I’ll give you four book titles; you tell me whether
O’Reilly published the book or not.

Occasionally, a bonus question is linked to the previous
toss-up.

a. Using Samba

Answer: YES. That’s an easy one.

b. The Adventure of Food

Answer: YES. Surprisingly, the team got this one right.

c. Danger!

Answer: YES. Sounds like a dime-store detective novel.

712

d. Curious George Learns Assembler

Answer: NO.

713

Toss-up Questions

Toss-up 1: Movies have their Oscars, music has Grammys,
and TV has Emmys. This year, the Internet Movie Database
(imdb.com) won this award, which is given to web sites.

Toss-up 2: This
hybrid data structure is available in Perl 5.005, allowing you
to refer to array elements with names instead of numbers.

Toss-up 3: This newspaper has many more web visitors than
actual paper subscribers, and has run stories entitled “Bill
Gates Grants Self 18 Dexterity, 20 Charisma,” “Chess
Supercomputer Beaten Up By More Popular Computer,”
“Microsoft Patents Ones, Zeros,” “Apple Employee Fired For
Thinking Different,” and “New Smokable Nicotine Sticks.”
What is this newspaper named after a spherical vegetable?

Toss-up 4: Guess that special variable. What magic scalar can
you undefine to make Perl read an entire file directly into a
single string?

Toss-up 5: The
baud rate of regular
fax machines is a common modem speed, although slow by
today’s standards. Name this speed.

Toss-up 6: There are many
sorting algorithms; Perl uses this variety. What is it?

Toss-up 7: His relevance to Perl is somewhat obscure: the
Perl source code is full of Tolkein quotes, and he is the
director of the Lord of the Rings trilogy, shot on location in

714

New Zealand. Some of his other movies are Bad Taste, Meet
the Feebles, and Dead Alive.

Toss-up 8: You can use it with Active Server Pages and the
Windows Scripting Host. This package is an
ActiveX scripting engine that lets you incorporate Perl into
any ActiveX scripting host. Name it.

Toss-up 9: It had both modules and classes back in 1977.
Every official module had an identifier: one or two letters
followed by a single digit, and a name, such as
White Plume Mountain, the
Village of Hommlet, and
Glacial Rift of the Frost Giant Jarl. Some of the classes were
fighter, thief, cleric, and magic-user. Name this game.

Linked Bonus. The game came with five types of dice:
4-sided, 6-sided, 8-sided, 12-sided, and 20-sided. I’ll give you
a situation, you tell me which die is used in it.

1. Determining your character’s strength, intelligence,
wisdom, dexterity, constitution, and charisma.

2. How many hit points a first-level magic user has.

3. You’re hit by lightning and need to make a saving throw.

4. How many hit points a first-level cleric has.

Toss-up 10: What does this print?
#!/usr/bin/perl
use constant e => 2, pi => 3;
print e ** pi;

Toss-up 11: If Larry Wall is the
father of Perl, and Perl is the mother of the World Wide Web,
and the Internet is the father of the World Wide Web, the

715

Web is the sister of FTP, and Al Gore is the grandfather of the
National Organ Transplant Act, what relation is FTP to the
National Organ Transplant Act?

Toss-up 12: Perl doesn’t have any Year 2000 bugs, but if you
store the Unix time in a 32-bit integer, you’ll wraparound to 0
in what year?

Toss-up 13: What will this print? You can provide your
answer in exponential notation if you wish.

print (1 << (1 << 5))

Toss-up 14: A computer utilizing this medium was used to
solve the
Traveling Salesman Problem in 1995 by executing 100
trillion operations per
second, 100 times faster than the fastest supercomputer of the
day. This medium let the computer perform 20 quintillion
operations for every joule of energy, and was able to store one
bit per cubic nanometer, which is one trillion times the
storage density of videotape. What is this medium, best
known for its double helix?

Toss-up 15: Guess that scalar. Name the scalar that holds
the time when your program began running.

Toss-up 16: (Tiebreaker; not asked.) Guess that operator: if
you stick this operator in between $x and $y, it will set $x
to $y unless $x is already true.

Toss-up 17: This country has the highest number of Internet
hosts per capita, and the CPAN master site is located there.
On a clear day you can see Estonia from its tallest building,
which is a mere twelve stories high. Linux started there.

716

Toss-up 18: Guess that module. It has Purity, Terse,
and Deepcopy methods. It’s bundled with Perl, and written
by Gurusamy
Sarathy. It’s most commonly used to pretty print complex
data structures via its Dumper method.

Toss-up 19: The last meeting of this group was in Oslo, and
at some of their workshops, they use humming to vote on
proposals. Their motto is
“Rough consensus and running code,” and they’re charged
with maintaining the
RFC Internet standards.

Toss-up 20: This character can be used as a shorter
equivalent of the
double colon. What is this character, whose string quoting
behavior is emulated by the q function?

Toss-up 21: In 1995, Perl won the Nobel prize in this
discipline, in part for discovering the
tau lepton in the mid 1970’s. Name this discipline.

Toss-up 22: What will this print?
my $i; if ($i = 6) { print "success" }
else { print "failure" }

Toss-up 23: You’re Gordon
Freeman, a scientist in this popular computer game. After an
explosion nearly destroys the underground plant you work in,
you have to restart various machines and kill various aliens.
Your fellow scientists are eager to be rescued by Marines
until the Marines start massacring them in an attempt to cover
up the aliens’ existence. What is this game, which has the
same name as a term having to do with radioactive decay?

717

Toss-up 24: You want Perl to make use of an already existing
C library. What utility is commonly used to create a
stub interface?

Toss-up 25: The
Netcraft web server survey has been compiled every August
since 1995. In this year’s survey, these two web servers place
first and
second in terms of popularity percentages. What are they, in
order?

Toss-up 26: In my opinion, the
scariest addition to
regular expressions in 5.005 is (?{ something }). Tell
me what this does.

Toss-up 27: Hit your buzzer now.

Toss-up 28: New in 5.004, this pragma accounts for the fact
that not every language uses a period as a decimal point, and
that not every language has the same letters as English. Its
name is related to
L10N, which stands for “localization.”

Toss-up 29: “It is dark in here.” “The door is closed.” “The
Diet Coke can is 41 degrees Fahrenheit.” So reads the web
page for this device hooked up to the Internet. The device
itself is at 48 degrees, and its freezer compartment is 12
degrees.

Toss-up 30: Where is the Internet top level domain .to
located?

Toss-up 31: travesty, server, client, who,
findtar, rmfrom, wrapsuid, uudecode,
rename. These are all programs in what directory of the

718

Perl distribution?

Toss-up 32: Two words, pronounced the same. One word is a
U.S. army rank, the other is the name for the core of an
operation system, and is also what you find plenty of on
corn on the cob.

Linked Bonus:
Microkernels versus
monolithic kernels. (Here, I spoke off the cuff about the
difference between the two.) I’ll give you four operating
systems, and you tell me whether it has a monolithic kernel or
a microkernel.

1. MS-DOS

2. GNU Hurd

3. Linux

4. NT

Toss-up 33: Guess that scalar. By default, out-of-memory
errors aren’t trappable. But they can be if your Perl was
compiled with PERL_EMERGENCY_SBRK and you create
an
emergency memory pool with this scalar, which has a caret
followed by the thirteenth letter of the alphabet.

Toss-up 34: According to searchwords.com, this is the most
popular
search term. Surprisingly, it’s not pornographic, but is instead
a popular audio format. Name this format, whose name is
derived from MPEG3.

Toss-up 35: If you turn on

719

warnings with -w, what error do you get if your Perl
statement is nothing more than a plain string?

Toss-up 36: Pencil and paper ready: According to Win
Treese’s
Internet Index, there are 7.6 billion commercial email
messages sent every day. If each message were a regular snail
mail letter paying U.S. first class rates, tell me how much that
would cost per year, within ten percent.

Toss-up 37: Guess that scalar. You could use it to cope with
division by zero errors, because this variable contains the
error message from the last eval command. Name this
variable.

Toss-up 38: U.S. Senator Jon
Kyl introduced a bill known as the Internet Prohibition Act in
1997. The act makes it a crime to perform this activity online,
even though you can do it on Indian reservations and in
Nevada. What is this activity?

Toss-up 39: Perl almost always ignores your comments.
Name something that you can put in your comments that Perl
will pay attention to.

Toss-up 40: According to the 9/12/97 issue of the Wall Street
Journal, this is the number of miles of
undersea cable. It’s a funny number, because light could
travel it in almost exactly one
second.

Toss-up 41: In Unix, Ctrl-Z suspends a process; Ctrl-C
interrupts a process. You can keep these from happening in
your Perl program with

720

signal handlers. Give me the signal handler that lets you trap
either Ctrl-Z or Ctrl-C.

Toss-up 42: Pick the most appropriate unit: days, weeks,
months, or years. If you have a cable modem that gives you a
constant 1.5 megabit downstream rate, how long would it take
you to download the Library of Congress, compressed?

Toss-up 43: Guess that scalar. This scalar is true if you’re
inside an eval and false otherwise. Name this
serpentine scalar.

Toss-up 44: Marvin
Minsky and Seymour
Papert wrote a disparaging book about these computational
entities and single-handedly quashed neural net
research for almost two decades. What is the name of this
single-layer neural network?

Toss-up 45: On August 16, 1999, they announced plans to
provide Virtual Private Network (or VPN) support for their
594 series of network controllers. They specialize in IP
connectivity with product lines that include remote access
servers and switches for Ethernet and token ring LAN’s,
terminal servers and serial connectivity products for Unix and
NT platforms, and network controllers for IBM AS/400s.
They trade on the Toronto Stock Exchange under the symbol
PL, and trade on the NASDAQ under the symbol PERL.

Toss-up 46: What does close do if you don’t provide a
filehandle to close?

721

Bonus Questions

Remember, bonus questions are typically tougher, because
the entire team gets to confer before giving an answer.

Bonus 1: This is the first bonus of the game, so let’s have a
question about beginnings. What regular expression
metacharacter matches the actual beginning of the string? It’s
not the caret, since that matches the beginning of each line,
and in a multiline string it’ll match multiple times. The
metacharacter I’m looking for matches only the very
beginning.

Bonus 2: You can specify the
background color of a web page with the BGCOLOR attribute
of the BODY tag. If you set BGCOLOR to a pound sign
followed by six hex digits, the first two indicate the amount of
red, the
second two indicate the amount of green, and the third two
indicate the amount of blue. For instance, 00FF00 is a
saturated green, and FFFFFF is white. Give me a good
yellow.

Bonus 3: This
special variable holds the name of your Perl program. On
some operating systems, you can set it, and make your
program seem like it’s named something else. Give me the
short name of the variable, and the long name provided by the
English module.

Bonus 4: A correctly functioning Perl program ends with the
following two lines.

722

}BEGIN{
@ARGV=<*M*>

These lines are not part of a string. “Here” documents don’t
come into play, and there are no sneaky eval tricks. There
are no funky characters after these two lines, nor is there a _
DATA _ or _ _END_ _ previously. The program has
no signal handlers, it does not launch another process, and it
doesn’t make strange use of symbol tables or otherwise play
with itself. The program does not use any module or pragma.

These two lines are executed just fine. If you put a print
before or after the @ARGV line, it’s executed too.

What’s the simplest explanation?

Bonus 5: There’s a
freeware porn detector that spiders through the web and flags
an image as pornographic if the amount of continuous skin
tone exceeds this threshold, expressed as a percent. As it turns
out, this is the exact same threshold that Perl uses to
determine whether a file is binary or text for the -B and -T
flags. If more than this percentage of the characters are “odd
characters” (like control characters or characters with the
eighth bit set), it’s deemed a binary file. Name this amount,
within ten percentage points.

Bonus 6: Give me the two reasons why laptop
CPU speeds are typically slower than desktop CPU speeds.

Bonus 7: Describe what this displays:
print scalar(localtime);

Bonus 8: According to the St. Petersburg Times, in what year
is the

723

U.S. expected to use the Internet to collect
Census data?

Bonus 9: Name that
command-line switch.

1. You’d use this switch to execute a Perl program in a
larger message, because it tells the interpreter to skip
down until it finds the first line beginning with #! and
containing the word perl.

2. You’d use this to append a newline automatically to
every print statement.

3. You’d use this switch to verify that your Perl program is
syntactically correct.

4. You’d use this switch to specify a directory where
modules are located.

Bonus 10:
Netcraft compiles an annual web server survey, and compiles
its results by polling every server it can find, worldwide.
Within a factor of two, how many sites was that, for the 1999
survey?

Bonus 11: This is a bonus in five parts; as soon as you get
one wrong, the question is over. If the derived class Rabbit
inherits from the base class Rodent and you invoke
Rabbit::Forage, what subroutine does Perl look for next?
(This question doesn’t work so well in print, since each
subquestion gives away the answer to the previous
subquestion.)

1. After failing to find it in the Rabbit class?

2. After failing to find it in the Rodent class?

724

3. After failing to find it in UNIVERSAL?

4. After failing to find a Rabbit::AUTOLOAD?

5. After failing to find a Rodent::AUTOLOAD?

Bonus 12: I’ll describe five pairs of
built-in Perl functions. The last letters of the first function are
the first letters of the
second function: you mash them together and give me the
combined name. For instance, if I say “the function that adds
something to the end of an array” and “the function that adds
something to the beginning of an array,” you’d say “pushift.”
The “sh” is shared.

1. The function that removes something form the end of an
array, and the function that readies a directory for
reading.

2. The function that converts a binary structure into regular
Perl variables, and the function that declares a global
namespace.

3. The function that displays a formatted record, and the
function that reports where a file pointer is.

4. The function that clears all variables beginning with a
specified letter, and the function that you’d use to keep
your server from hanging onto a port after it’s no longer
used.

5. Finally, what two single-letter built-in functions combine
to make a third built-in function?

Bonus 13: Tell me whether these statements about
DBI, the
Database Interface, are true or false.

725

1. Both ODBC and DBI provide a generic interface to
multiple database engines.

2. DBI supports multi-threading.

3. DBI runs on Windows 95.

4. You can manipulate Microsoft Access database from
DBI.

Bonus 14: Guess that module. I’ll name five modules that
might exist on
CPAN; you tell me whether they do.

1. Net::Video

2. WWW::Robot

3. Games::WordFind

4. Modem::Dial

5. Tie::BikePower

Bonus 15: What does this do?
goto (qw(alpha beta gamma))[rand 3];

The rest of the question requires audience participation. I
contend that goto is used far more often than people admit.
I’ll ask the crowd to applaud if they’ve used goto in the last
month, and then if they’ve used redo in the last month. Tell
me whether the amount of applause will be significantly
higher for goto, significantly higher for redo, or about the
same.

Bonus 16: What country has the largest number of
top-level domains ending in its two-letter country code? Hint:
it’s not the U.S., since there aren’t that many .us domains.

726

Bonus 17: There are four steps to building and installing a
CPAN module on a Unix system once you’ve downloaded
and unpacked it. What are the four steps? Each step is
something you type at the command line.

Bonus 18: What CGI
environment variable can you use to determine which browser
is visiting your pages?

Bonus 19: To the nearest ten percent, what proportion of
Internet users use English as their primary language,
according to a survey by Global Reach?

Bonus 20: I’ll give you four Perl constructs; you tell me
whether they’re executed at
run-time or
compile-time when they appear by themselves in Perl
programs.

1. require statements

2. BEGIN blocks

3. use statements

4. srand

Bonus 21: Here’s a
palindromic program; it reads the same backwards as
forwards. What will it display?

print $;,(1 => "able was i ere i saw elba"
<= 1),;$ tnirp

Bonus 22: Which of these
HTTP status constants exist? Tell me yes or no for each.

1. HTTP_NOT_FOUND

727

2. HTTP_GONE

3. HTTP_PAYMENT_REQUIRED

4. HTTP_TOO_MANY_USERS

5. HTTP_LANGUAGE

Finally, what is the numeric HTTP status code for
HTTP_NOT_FOUND?

Bonus 23: Name two ways to embed
comments in regular expressions.

Bonus 24: Tell me whether the following snippets are legal or
illegal.

1. sub _ { print 4 }

2. $$ = 17;

3. if (2 < 3 < 4) { print

4. open (M, “mail
president@whitehouse.gov”); print M,
“Release Mitnick || die!”;

Bonus 25: You have a function that accepts either one or two
arrays, and you want those arrays to be implicitly passed by
reference. That is, if you’re passing in @red and @blue,
you want the advantages of
passing by reference but you don’t want to have to include the
backslashes. What prototype should you use?

Bonus 26: Four languages: ADA, Basic Plus, C, and Fortran.
I’ll give you four Perl features; you tell me which of the four
languages it also appears in.

728

1. ++ and --

2. **

3. ::

4. … if

Bonus 27: What are the three types of
System V IPC structures?

Bonus 28: What meaningful difference, if any, is there
between how these two function invocations pass arguments
to the blork subroutine?

blork();
&blork;

Bonus 29: I’ll give you five built-in Perl functions; you tell
me the maximum number of arguments it accepts. I’m
counting lists and expressions as single arguments, so for
instance push takes two arguments: an array and a list.

1. open

2. tie

3. substr

4. splice

5. split

Bonus 30: Perl programmers love their weird symbols. I’ll
give you four esoteric symbol names; you tell me a more
common name for that character. For instance, if I say
“ampersand,” you’d say “and.”

1. Octothorpe2.

729

Solidus

3. Quadrathorpe

4. Pilcrow

5. Lemniscate

Bonus 31: Perl has a somewhat unearned reputation for being
hard to read. We can all
show how clear it can be by writing lucid programs. But we
could also show how murky it isn’t by comparing it to
something worse. There’s a language called
Befunge that is two-dimensional, with a stack and an
instruction pointer that moves character by character through
the program. Here’s a program that prints “Hello, world.”

0".dlrow , olleH">v
,:
^_@

At this point, I explained how Befunge worked. Full details
are at http://directory.google.com/Top/Computers/
Programming/Languages/Befunge/, but you can get the gist of
it from the vcharacter. In the program above, the characters
are processed from left to right (pushed down on an
instruction stack) until that vis encountered. Then the
characters are processed from top to bottom, until _is
encountered. _is a “horizontal if,” which sends control to the
right or the left depending on the contents of the stack.

What will this print?
v,<

0"lreP">^
+
+

730

>v"
^,_@

@

Bonus 32: Answer the question posed by this visual code
snippet:

#!perl
What does this print?

seek(DATA, 7, 0);
print scalar <DATA>;

__END__
This is
some test
data for
your program's
end.

Bonus 33: This
HTTP header field is used by a browser to avoid downloading
a web page that is already in its cache. The web server
compares the value of this field to the last time the web page
changed, and returns it only if the web page is more recent.
Name the field.

Bonus 34: What does this print? I’ll give you some extra
time.

perl -e "print substr(**.**, 7, 2)"

Bonus 35: XML documents often have associated
DTDs, or
document type definitions. I’ll give you four DTDs, you tell
me if they exist in any of the big DTD repositories on the Net.

1. Music Markup Language

731

2. HTML

3. News stories

4. Real estate listings

Bonus 36: What does the following print?
perl -wle 'print +(8/2).".".0.0.0'

1. 4

2. 4.

3. 4.0

4. 4.00

5. 4.000

6. 4.0.0.0

Bonus 37: I’m going to give you some Perl features. Tell me
which version of Perl added it: 1, 2, 3, 4, or 5.

1. The ability to handle binary data in strings

2. Henry
Spencer’s regular expression package

3. Support for object-oriented programming

4. The ampersand before function names became optional

732

The Answers

As with the previous quiz, the mandatory part of the answer is
given in capital letters.

Toss-up Answers

T1.
WEBBY. Not one, but two recipients held their trophy aloft
and declared, in an embarrassing imitation of Titanic director
Jim
Cameron, “I’m the king of the World…Wide Web!”

T2.
PSEUDOHASH

T3.
The ONION

T4. $/ or $INPUT_RECORD_SEPARATOR. (It’s a single
newline by default. If you set it to the empty string, Perl will
read your file in as paragraphs.)

T5. 9600 baud

T6.
QUICKSORT

T7. Peter
JACKSON

T8.
PERLSCRIPT

733

T9.
DUNGEONS AND DRAGONS.

T10. 1. (pi is undefined because use constant only
accepts a single assignment. For extra credit, try to prove
which is greater, e to the pi’th power, or pi to the e’th power,
without resorting to a computer or calculator.)

T11. FIRST COUSINS (This assumes that Gore is father of
the Internet. In his defense, he never actually claimed to be.)

T12. 2038

T13. 0.1 << 5 is 32, so the whole expression is 2 to the
32. Even though you can print 2 ** 32 just fine,
Perl uses 32-bit integers when you’re bit shifting, so the ones
get shifted off the left end into oblivion.

T14.
DNA. (The work was done by Len Adleman, who’s the A of
RSA.)

T15. $^T or $BASETIME

T16. ||=

T17.
FINLAND or
SUOMI. (Source: Win
Treese’s
Internet Index.)

T18.
DATA::DUMPER

T19.
IETF or

734

INTERNET ENGINEERING TASK FORCE

T20.
APOSTROPHE
(’). (You can even say use LWP’Simple, but that looks
screwy because when Perl 5 introduced use it also
introduced the double colon syntax.)

T21.
PHYSICS, won by Martin Perl. (The
tau lepton is identical to the electron, but weighs 3,500 times
as much and survives less than a trillionth of a
second. According to the Standard Model of particle physics,
the elementary building blocks of matter appear in families,
with two leptons and two quarks in each. The tau lepton is the
first-known member of a third family. The other members are
the bottom and top quarks.)

T22. SUCCESS. (That = should be ==.)

T23.
HALF-LIFE. (Someone about five or six rows back must
have been a huge Half-Life fan, because he went absolutely
spastic as I read the question.)

T24.
H2XS. (See the perlxstut documentation for more
information.)

T25. APACHE and MICROSOFT. (Apache had 55% and
Microsoft had 22%. Netscape was third with 7%.)

T26. It executes CODE or EVALuates code.

T27. (Who says Perl programmers don’t care about speed?)

T28. The

735

LOCALE pragma. (See the perllocale documentation bundled
with Perl for more information.)

T29.
REFRIGERATOR. (From the FAQ at
http://www.hamjudo.com/cgi-bin/refrigerator: The Coke can
is colder than the fridge itself because it’s on the top shelf
near the coils. People always assume that fridge temperatures
are uniform, but that’s never the case.)

T30.
TONGA

T31.
EG or EXEMPLI GRATIA. (This directory is no longer part
of the Perl distribution.)

T32.
KERNEL

T32-Bonus. MONO, MICRO, MONO, MICRO

T33. $^M

T34.
MP3. (“pokemon” was number 6.)

T35. USELESS
USE OF A CONSTANT in void context. (Mark Jason
Dominus said: “The numbers 0 and 1 are exempt from this
warning. I looked in the source code, and discovered three
other exemptions: Strings beginning with ‘di’,‘ds’, or ‘ig’ do
not trigger this warning.”
These exceptions were for the benefit of the wrapman
program. They allowed you to include documentation in Perl
programs—the pod format hadn’t been invented yet—and

736

feed the programs to either Perl for execution or nroff for
documentation.)

T36. $915.42 BILLION. (Accept between $823.878
BILLION and $1.006962 TRILLION)

T37. $@ or $EVAL_ERROR

T38.
GAMBLING. (The Kyl bill also makes it a crime to provide
information about how to use the
Internet for gambling. The Senate passed it 90–10, and it’s
now languishing in a House committee. By the way, several
members of the U.S. Supreme Court have a regular poker
game.)

T39. The
LINE directive.

line 300 "camel"
die;

Died at camel line 300.

T40. 186,000 (Only three significant digits required.)

T41. $SIG{TSTP} or $SIG{INT}.

T42. YEARS. (About four of them). The Library of Congress
has about 20 terabytes (160 terabits) today.

T43. $^S

T44.
PERCEPTRON

T45.

737

PERLE systems, named after CEO Joseph Perle. (Correct
spelling not necessary.)

T46. It closes the CURRENTly selected FILEHANDLE.
(That’s usually STDOUT.)

B1. \A

B2. FFFF00 (Or something close to it; FFFF66 looks
pretty good too. The red and green values need to be close to
each other and nearly maxed out; blue should be anywhere
from 00 to 88. During the quiz
show, I showed pictures of the resulting colors.)

B3. $0 and $PROGRAM_NAME

B4. The Perl program used the -n or -p flags. When the
documentation says that they wrap a loop around your code, it
means that literally: Perl provides the opening and closing
braces that make this program syntactically correct. (This
trick is used in Chapter 46.)

B5. 30% (accept from 20% to 40%)

B6.
HEAT dissipation and
POWER consumption. (The Boston.pm team got both
answers correct; impressive for such a poorly-worded
question.)

B7. The current
date and time in English.

B8. 2010. (Lisa
Nyman is a frequent Perl conference attendee who hacks Perl
for the U.S.

738

Census. As I’d hoped, she was in the audience; I could tell,
because she yelled out “WRONG!” as soon as I read the
answer. Turns out that the Census will be accepting some
online forms for the 2000 Census as a test. The team
answered 2010, so I awarded full credit. If memory serves,
the team was all Norwegian, so after posing the question I
added that the
U.S. census happens every decade on the decade.)

B9. -x, -l, -c, -I

B10. 7,078,194. Accept between 3,539,097 and 14,156,388.

B11. Perl looks in: a) RODENT::Forage, b)
UNIVERSAL::Forage, c) RABBIT::AUTOLOAD, d)
RODENT::AUTOLOAD, e) UNIVERSAL::AUTOLOAD.
After that, you could say it looks in $SIG{_ _DIE_ _}.

B12. POPENDIR, UNPACKAGE, WRITELL,
RESETSOCKOPT, M, and Y

B13. TRUE, FALSE, TRUE (there’s also a Win32::ODBC
module), TRUE (you use the DBD::ODBC module)

B14. NO, YES, YES, NO—although there is a Win32::Serial
module, YES (Tie::BikePower calculates power output and
power consumption for bicycling. You give it things like
riding speed, body weight, hill grade, and wind speed, and it
shows you your power output and consumption.)

B15. Jumps to one of the three labels alpha, beta, and
gamma at random. (FORTRAN also lets you compute gotos.
For the audience participation question, the applause levels
were about the same.)

739

B16. GERMANY. (The top four are shown below. There are
9.2 million registered domains, depending on who’s paid their
Internic fees this week. 5.5 million are .com sites.)

.de (Germany)
391,113
.uk (United Kingdom)
360,821
.au (Australia)
122,201
.dk (Denmark)
93,181

B17. perl Makefile.PL, make, make test,
make install

B18. HTTP_USER_AGENT

B19. SIXTY percent. (Accept between FIFTY and
SEVENTY.) European non-English, 25.5%; Asian languages,
15.5%.

B20. RUN, COMPILE, COMPILE, RUN.

B21. 11. ($; is chr(28), => is a comma, a string
evaluates to zero in a numeric context, and the next comma is
followed by a null argument to print. $ is a no-op, and
tnirp is a bareword.)

B22. YES, YES (it means that the document has been
permanently removed), YES, NO, NO, 404.

B23. The /x modifier and (?#comment)

B24. LEGAL, LEGAL but ineffective, ILLEGAL,
ILLEGAL. (It’s illegal to threaten the president, and there’s a
comma after the filehandle in the print statement. There’s

740

also no pipe symbol before mail, and the @ isn’t
backslashed. Whoever wrote this should be in prison.)

B25. \@;\@ (Tom
Christiansen pointed out that prototypes should really be
called “input context templates,”
because they’re really not like prototypes in other languages.)

B26. C, FORTRAN, ADA, BASIC Plus

B27. SEMAPHORES, MESSAGE QUEUES, and SHARED
MEMORY.

B28. blork() has no input arguments; &blork ends up
with the input arguments from its caller.

B29. 2 (filehandle, expression. You can omit the expression!),
3 (variable, classname, list), 4 (expression, offset, length,
replacement), 4 (array, offset, length, list), 3 (pattern,
expression, limit).

B30. POUND or HASH or TICTACTOE, SLASH (it’s also
called a “virgule”), EQUAL sign (two quadrathorpes form an
octothorpe), PARAGRAPH symbol, INFINITY symbol.

B31. P+e (This was inspired by Chris
Howe’s entry for the Obfuscated Perl Contest in Chapter 46,
which printed out “The Perl Journal” by creating a
Befunge interpreter and running a Befunge program that
printed “The Perl Journal” through it. He did this in exactly
1,000 characters.)

B32. # WHAT DOES THIS PRINT? (Seeking the DATA
filehandle can take you anywhere in the program. Nathan
Torkington pointed out that you can even stat(DATA) to
find out when the program was last modified.)

741

B33. IF-MODIFIED-SINCE

B34. **. (**.** looks like a shell glob, but it’s actually a
**
typeglob. ** is *main::*, so **.** is
*main::**main::*, and the eighth and ninth characters
of that are **.)

B35. YES, YES (HTML 4.0), YES, YES

B36. 4.00 (The subexpression 0.0.0 is actually the float 0.0
concatenated with 0. But 0.0 is the same as 0, hence we only
get 2 0’s.)

B37. 3, 2, 5, 5.

Thanks to Tom Christiansen, Chris Nandor, Abigail, Mark
Jason Dominus, Nathan Torkington, and Jarkko Hietaniemi,
all of whom provided a few question ideas (sometimes
inadvertently).

742

Chapter 33. The Third Perl/Internet
Quiz Show

Jon Orwant
Here are the toss-ups and bonus questions from the
Third Internet Quiz Show, held in the summer of 2000 at the
O’Reilly Open Source Convention. Answers are at the end of
the article.

Three questions in the contest refer to “Kyle,” the captain of
my College Bowl team whom I described briefly when the
quiz show began. I told a story about Kyle to make a point
about why, during the 1999 quiz show, I discarded a question
because I knew that one player had prior knowledge of the
answer.

The abridged story was this: When Kyle walked into the
classroom where our College Bowl match was being held, he
noticed “.367” written on the chalkboard. He said, to no one
in particular, “Hey, what’s Ty Cobb’s lifetime batting average
doing on the board?” Later, in the middle of the round, the
emcee discarded a question because it relied on that statistic,
causing us to lose the round.

As with previous quizzes, you can keep score by giving
yourself one point per question and using the ranks at the
beginning of Chapter 31.

743

Toss-up Questions

Toss-up 1: This company hired David
Boies to defend it against a lawsuit by the RIAA. What is this
company, which made Metallica even angrier than they
normally are?

Toss-up 2: This computer pundit used the phrase “open
sores” in his InfoWorld column. He was one of the architects
of Ethernet and founded 3Com. Who is this
bitter, bitter man?

Toss-up 3: It’s the look or overall style of an
XUL file, and they’re created with cascading stylesheets and
images. What is this four-letter word used by the Mozilla
project to separate appearance from content?

Toss-up 4: This well-known piece of software got its name
from the combination of two English words that, when
spoken aloud, sound the same as a non-English word. One of
the words derives from the word that’s used to apply a diff to
source code. Name this web server.

Toss-up 5: VA Linux invested in this
free database system, which now supports transactions and is
used by Slashdot. The system wasn’t released recently, but it
was recently changed to be under the
GNU General Public License. What is this database system,
which has one letter more than mSQL?

Toss-up 6: It takes a lot of input: audio, S-video, cable,
antenna, and a phone line. It uses embedded Linux and
MPEG II to store video for up to 30 hours. What is this
four-letter

744

consumer electronics device that lets you pause live TV?

Toss-up 7: It is “just too complex to ever be secure,” wrote
Bruce
Schneier, author of the
CRYPTO-GRAM newsletter. “What happens when
somebody uses modifier characters in an unexpected way, or
someone uses UTF-8 or UTF-16 to encode a conventional
character in a novel way to bypass validation checks, or we
start attaching semantics to characters like delimiters and
whitespace?” Name the international character set he’s
describing.

Toss-up 8: In The Hitchhiker’s Guide to the Galaxy, it was an
animal you inserted into your ear to understand alien
languages. It’s also the name of an AltaVista service that
translates between human languages, often with unintended
humor. Name this fish.

Toss-up 9: This device is capable of transmitting speech over
wires with low bandwidth, equivalent to about eight kilohertz,
and with only one channel. Name this device, which in the
U.S. used to be all black.

Toss-up 10: They own more trucks than any other entity in
the United States, and they plan to provide an email address
for every American, so we can have even more
disgruntled postmasters. What is this quasi-private U.S.
agency known for its eagle logo?

Toss-up 11: A procedural fraud, a technical failure, a basic
misconception. Those are the subtitles of sections 2, 3, and 4
of a recently created document aimed at convincing people to
reject a protocol. Name this protocol for the transmission of
wireless data.

745

Toss-up 12:
ICMP is the protocol used by this command to find out if a
networked computer is alive. What is this command, which
derives its name from sonar?

Toss-up 13: On “The Simpsons,” what recurring character
has a PhD in computer science from MIT? Name this
employee of the Kwik-E-Mart.

Toss-up 14: It piggybacks a
DOM, or Document Object Model, onto HTTP so that it can
penetrate
firewalls. What is the name of this technology, which shares
its name with something you can find in bars?

Toss-up 15: The
Apache/Java Integration Project is named after what capital of
Java?

Toss-up 16: There are two
nybbles in each. What is this common computer word, most
of which have eight bits?

Toss-up 17: This is a new programming language developed
by Microsoft, and is included with Visual Studio.NET. What
is this language, which shares its name with a musical note?

Toss-up 18: The name of his temple at Delphi is
Pytho, which derives from the word Python. Who is this
Greek sun god?

Toss-up 19: Give me the name of the potbellied penguin who
is the
mascot of
Linux.

746

Toss-up 20: Bloomberg News said that they’re getting close
to an IPO, which should make Linus Torvalds happy, since he
works for this Bay Area company that makes power-saving
CPUs. Name that company.

Toss-up 21: You hear about a bauble called the
Amulet of Yendor rumored to be in the
Valley of Gehennom deep within the
Mazes of Menace. What is this descendant of Rogue and
Hack, which saw a Version 3.2 release in April of 1996?

Toss-up 22: It has over six thousand projects and forty
thousand registered users. What is this VA Linux–sponsored
central resource and repository for
open source development?

Toss-up 23: This may be the most popular
Tcl program. What is this utility that enables preprogrammed
interchanges with a network service?

Toss-up 24: This system is best known for its ci and co
commands, which check files in and check files out of a
repository. Name this three letter utility for controlling
revisions.

Toss-up 25: This protocol is ideal for storing information that
is read frequently and updated less frequently, for instance,
company directories. Your web browser might use this
protocol to make use of a de facto company address book.
Name this four-letter protocol.

Toss-up 26: One of the great things about editing the Perl
Conference Proceedings is that I finally got to learn what
absolutely everything on a
copyright page means. O’Reilly now uses

747

Cataloguing in Publication data for its books, so that copies
are shelved in the U.S. Library of Congress with a Library of
Congress
shelving number. What two letters will you find at the
beginning of the Library of Congress numbers for nearly all
computer books? The two letters also identify a group you’ll
find in software companies, which audits programs and
ensures that they’re bug free.

Toss-up 27: This field involves the application of
computational techniques to biology. Name this discipline
known primarily for its contributions to the
Human Genome Project.

Toss-up 28: The half brother of Thor and scion of Odin, this
god shares his name with a company that ported games to
Linux, notably
Railroad Tycoon and
Civilization 3. Name this
Norse god of mischief.

Toss-up 29: This
API for XML is simpler than DOM. What is this three-letter
acronym that is also an abbreviation for a musical instrument?

Toss-up 30: This
network protocol is now specified in the IEEE standard 802.3,
even though it’s been around longer than some programmers
have been alive. It was originally developed at Xerox, and a
typical LAN using this protocol uses coaxial cable or twisted
pair. What is this technology, which often goes hand in hand
with 10BASE-T?

Toss-up 31: In 1980, he took home the
Olympic silver medal in

748

archery. In a recent rant called “Systems Software Research is
Irrelevant,” this system architect and writer lamented the
dearth of innovation in operating system design, taking even
Linux to task as not being interesting enough. He co-authored
the software engineering treatise “The Practice of
Programming” with Brian
Kernighan, and is one of the creators of the Plan 9 operating
system. Name this Bell Labs researcher.

Toss-up 32: This company hired private investigators to root
through trash bins for dirt on
Microsoft. What is this company known for its 8i database?

Toss-up 33: It’s the
web crawler that
AltaVista uses to collect the content of 3 million web pages
per day, and shares its name with a vehicle that looks like a
skateboard with a steering handle attached.

Toss-up 34:
XSL lets you choose the style of
numbering for things like ordered lists. For instance, you can
use Roman numbering, Arabic numbering, Katakana
numbering, and, if you use the attribute value
𐴐, what style, which is also a style of calendar and a
style of chant?

Toss-up 35: These programs work by spoofing an IP address
with packets that contain an
ICMP ping message addressed to an IP broadcast address.
The echo responses to the ping message are sent back to the
“victim” address. Enough pings and resultant echoes can
flood the network, making it unusable for real traffic. What is
the name of this

749

denial of service attack, which shares its name with a village
of stunted blue characters on a once-popular Saturday
morning cartoon?

Toss-up 36: You can think of it as being HTML 5.0, although
it’s not officially called that. What is the name of the
reformulation of
HTML 4 in XML?

Toss-up 37: “Hello” is “danzhon,” “duck” is “nachlele,” and
“bear” is “shash.” I just gave you three words in this family of
Indian languages. What is this language family, which shares
its name with a web server we’re all familiar with?

Toss-up 38: The basic routing philosophy on the Internet is
“best-effort,” which serves most users well enough but isn’t
adequate for the continuous stream transmission required for
video and audio programs over the Internet. With the
__________ protocol, people who want to receive a stream of
video or other high-bandwidth messages can reserve
bandwidth in advance of the program and be able to receive it
at a higher data rate than they’d normally be able to. It’s part
of the
Internet Integrated Service (IIS) model, which ensures both
best-effort service and
real-time service. Tell me the name of this protocol, which is
four letters you might see on a party invitation.

Toss-up 39: Invented in 1960, the
RS232 serial port comes in two common flavors: the DB-9
and DB-25
type connectors. On both, pin 2 is send, or transmit. What’s
pin 3?

Toss-up 40: Andrew

750

Tridgell is known for work developing
Samba, the tool that allows Unix to mount and read various
Microsoft filesystems and exports Unix filesystems to
Windows clients. But before this bit of file transfer magic, he
was better known for creating an open source utility that
helped synchronize copies of files on various remote
machines. What is the name of the utility?

Toss-up 41: It’s a set of
programming interfaces you can use to build Mac OS X
applications that also run on Mac OS 8 and 9. What is this
technology, which shares its name with the sixth element of
the periodic table?

Toss-up 42: This standard derives from
PICS, the Platform for Internet Content Selectivity, and the
mysteriously named
Dublin Core. It uses XML to describe a resource in terms of
properties. What is this three-letter abbreviation of the
Resource Description Framework?

Toss-up 43: According to the Los Angeles Times, a dotcom
called
Scour scans the Internet for unprotected _________________
access ports, opens a file connection, and indexes your hard
drive for public access. Fill in the blank. It’s a three-letter
word, and Samba got its name from it.

Toss-up 44: It’s versatile; you can tell by its middle initial.
This medium can hold up to 17 gigabytes of information, and
uses
MPEG-2 to encode video. Consumers assume the V in its
name stands for video, but it actually stands for versatile.
What is the three-letter name of this popular movie medium?

751

Toss-up 45: XML, UML, XSL, DTD. Which of these has
nothing to do with document markup?

Toss-up 46: I find Perl perfectly charming, but when you
charm a python with music, it’s important to wave your hands
back and forth. Which of the six senses do pythons lack?

Toss-up 47: His web site bears the likenesses of such
innovative geniuses as Thomas
Edison, Nikola
Tesla, and Albert
Einstein. He has posted a one million dollar reward for
anyone who can “come up with a better health device” than
his patented
Immortality Rings. Even under fear of an FDA raid, he claims
that he is not “one of those stupid moron [sic] who don’t
know what I am doing.” He also explains black holes in his
penetrating article “Black hole is no magic.” While
explaining how to build a UFO, this inventor notes that a
“UFO’s saucer-shaped body is actually a big gyroscope which
rotates endlessly to keep the UFO balanced in the air.”
Finally, his work became known to citizens of the U.S. in his
seminal interview with Mo
Rocca for Comedy Central’s “The Daily Show.”
Name this Chinese inventor, whose last name is half of the
sound a train makes.

Toss-up 48: This common Unix utility doesn’t generate art,
but it’s an easy way to produce large signs composed out of
ASCII letters. Name this utility.

752

Bonus Questions

Bonus 1: Rank the following protocols having to do with
email, from oldest to newest: IMAP, SMTP, and POP.

Bonus 2: In his InfoWorld column, Bob Metcalfe referred to
open source software as
“open sores” software, S-O-R-E-S. So now we’ll test your
knowledge about open sores. I’ll give you
four definitions all at once, and you match them up with boil,
lesion, cyst, and wart.

1. A horny projection on the skin, usually of the
extremities, that is caused by a virus.

2. A closed sac having a distinct membrane and developing
abnormally in a cavity or structure of the body.

3. A localized swelling and inflammation of the skin
resulting from the infection in a skin gland, having a
hard central core and forming pus.

4. An abnormal change in structure of an organ or part due
to injury or disease, especially one that is circumscribed
and well defined.

Now match them up: boil, lesion, cyst, and wart.

Bonus 3: I’ll give you three slogans; you tell me the company
it’s associated with.

1. Where do you want to go today?

2. The Right Choice.

3. Supermarket to the world.

753

Bonus 4: Here it comes: the
obligatory product placement for our sponsor, ActiveState.
Yes, ActiveState, friend to you and me. ActiveState, helping
to make the world a better place to live in, and bringing you
tomorrow’s technology today. ActiveState, the dynamo
powering the longest period of growth in the history of the
U.S. economy. Even though they’re Canadian. Because the
ActiveState revolution transcends national boundaries, ladies
and gentlemen. Oh, ActiveState, hallowed be thy name. We
thank you for your clothing <<<hold up ActiveState boxer
shorts>>>, your eternal fountain of knowledge <<<hold up
User Friendly book>>>, and your holy chalice <<<hold up
ActiveState mug>>>.

Anyway, ActiveState’s motto is “Programming for the
People.” Answer the following questions about these related
phrases.

1. Name the rock group that released the album “Automatic
for the People” in 1992.

2. There was a 1965 TV series called “For the People”
starring this man as an obsessive New York City
assistant district attorney. He later went on to record a
cover of “Lucy in the Sky with Diamonds” and authored
a science fiction novel called Tekwar.

3. The Discovery biography of this man was also called
“For The People,” even though he had little in common
with William Shatner, being the dignified and scrupulous
sixteenth president of the United States.

Thanks to Dick
Hardt and Lori

754

Pike for having a sense of humor about this, as well as the
other ActiveState question later.

Bonus 5: There’s a new
game console coming, and it will compete with Sony,
Nintendo, and Microsoft’s X-Box. It uses embedded Linux
and a network connection to allow anyone to be a game
designer and release games for free. Name this consumer
console. [Editor’s Note: the console was never
manufactured.]

Bonus 6: Kyle had to install a lot of memory in computers.
I’ll give you three memory chips, and you tell me the
number of pins each has.

1. A
non-parity SIMM; the number of pins it has is a multiple
of 24.

2. A
non-parity DIMM; the number of pins it has is a multiple
of 24.

3. The Apple ASIC, commonly called an ASIMM, used in
the Mac 2ci; Kyle pointed out that they worked in old
PC XTs. The number of pins it has is a multiple of 30.

Bonus 7: Every Perl programmer worth his salt knows that
the world’s compendium of Perl programs is
CPAN, the Comprehensive Perl Archive Network. Obviously
the Python folks couldn’t call theirs the Comprehensive
Python Archive Network. What did they call it?

Bonus 8: I’ll give you four descriptions. You give me the

755

evil name of the thing I’m describing. For instance, if I said
“A version of the Ultima game,” you’d say UNDERWORLD,
because UNDERWORLD has to do with evil.

1. A process that is invoked when some event occurs.

2. A sysadmin tool for finding security bugs in networks.

3. In Unix, an unwanted process left after a program
terminates.

4. A security system that uses tickets and realms.

Bonus 9: In XML, you can define special marked sections of
character data that XML processors won’t attempt to interpret
as markup. You do it with this five-letter tag. What is it?

Bonus 10: I’ll give you four descriptions of types of
DSL; you tell me their acronyms.

1. Home users tend to receive more data than they send, so
this style of DSL has a slower upstream speed than
downstream speed.

2. This style of DSL has a maximum of 144 kilobits per
second.

3. This style of DSL is guaranteed to only need a single
twisted pair line, and has equal upstream and
downstream speeds.

4. This name for this style of DSL was officially adopted in
June of 1995, and it offers a higher speed than traditional
ADSL: up to 50 megabits per second.

Bonus 11: Red Hat, Slackware, or Caldera. Which Linux
distribution appeared first?

756

Bonus 12: The common phone jack you find on most phones
is called an RJ11 jack. There are other
RJ jacks. Which is the one commonly used for Ethernet
connections?

Bonus 13: I’ll give you two acronyms related to computer
sales, and you expand it.

1. OEM

2. VAR

Bonus 14: Closed-caption information is sent during this
period between frames of a TV broadcast. In Europe, there
are some channels that carry IP packets and others that carry
MP3s. What is this three-word name for this interval, which
you can actually see when your TV loses its
vertical hold?

Bonus 15: What does
BSD stand for? What was the first BSD project aimed at
providing Unix on the Intel x86 architecture: FreeBSD,
NetBSD, or 386BSD?

Bonus 16: Here’s another open sores question. A 17th
century theory of physiology held that the state of health and
mind depended among a balance of four elemental fluids,
called the
humors. I’ll describe each of
the four humors, and you name it from the description.

1. This
fluid is associated with being cold and moist, and an
excess makes you dull, pale, and cowardly, like Bill
Gates. It’s the
phlegmatic fluid.

757

2. This fluid is associated with being hot and moist, and an
excess makes you happy and generous, like Larry Wall.
It’s the
sanguine fluid.

3. This fluid is associated with being cold and dry, and an
excess makes you gluttonous, lazy, and sentimental, like
Marlon Brando. It’s the
melancholic fluid.

4. This fluid is associated with being hot and dry, and an
excess makes you violent and vengeful, like Mike
Tyson. It’s the
choleric fluid.

Bonus 17: I’ll give you three catchphrases; you tell me the
company it’s associated with.

1. We’re the dot in dot com.

2. Think different.

3. Inspiration becomes reality.

Bonus 18: Penguins are the most diverse group of flightless
birds in the world. There are currently 17 species of penguin.
Tell me how many of those species live above the Arctic
circle.

Bonus 19: Pencil and paper ready for a product placement
bonus. I’m going to name six projects. ActiveState is doing
three of them. You tell me which three.

1. PerlMX, an add-on product for Sendmail that lets a site
archive and filter mail, rewrite content, and control
spam.2.

758

Visual Python, a plug-in for Microsoft’s next-generation
development environment, Visual Studio 7.

3. VerticalBribe, a B2B web site where software agents
broker deals between quiz
show hosts and Vancouver-based software companies
who think that just because they bought a platinum
sponsorship of the quiz show, they can bribe the quiz
show host with free T-shirts and beer in exchange for
being able to submit quiz show questions, but instead get
a quiz show host who uses his bully pulpit to draw
attention to the bribe with oblique and self-referential
questions.

4. Komodo, a cross-platform development environment for
scripting languages based on the Mozilla framework.

5. Gecko, an open source eugenics project to breed Perl
programmers for toil in Canadian coding mines.

6. RPCom, a peer-to-peer framework for sharing
executable bits of Perl code across the network
anonymously.

Bonus 20: I’ll name three projects, you tell me the
GUI toolkit most closely associated with it.

1. GNOME

2. KDE

3. Mozilla

Bonus 21: Kyle worked in computer repair, and had to lift a
lot of printers. I’ll give you three

759

HP printers, and you rank them from lightest to heaviest. The
three printers are the HP Color Laserjet 2100, the HP 4050,
and the HP Laserjet 5si.

Bonus 22: In the “WAP Trap,” the author includes the
following quote: “Sometimes when you fill a vacuum, it still
sucks.” This was first uttered by what founder of Sun
Microsystems?

Bonus 23: In Mozilla, this word refers to the skin, content,
and whatever localization and platform-specific files are
necessary for a particular
part of the application or window. Name this five-letter
metallic word.

Bonus 24: The O’Reilly Smileys book lists 650 smiley faces,
ranging from barbershop quartet singer to Charlie Chaplin to
Bugs Bunny with a carrot to a drunk, devilish chef with a
toupee in an updraft, a mustache, and a double chin. The
traditional ASCII smiley face has a colon, a hyphen, and a
right parenthesis. I’ll give you three descriptions of smileys,
and you name another character it has. For instance, if I said
‘A sad smiley,’ you’d say ‘left parenthesis.’

1. A winking smiley

2. Smiley with glasses

3. The apathetic smiley

4. Man wearing a dunce cap

5. Dolly Parton

Bonus 25: For the first time, the
U.S.
Census collected forms over the Internet. There are

760

about 270 million people in the U.S. To the nearest power of
ten, how many forms were received online, excluding
duplicate submissions and I’m looking at you, Chris Nandor.

Bonus 26: In olden days, there were seven liberal arts
recognized as being part of a classical liberal education. They
were divided into a group of three and a group of four. The
group of three are called the
Trivium, and you can think of them as fields that prepare you
for a job as a liberal arts professor. The group of four are
called the
Quadrivium, and you can think of them as fields that prepare
you for a job at Starbucks. I’ll give you all but one of each
grouping, and you give me the missing field.

1. The Trivium consists of Grammar, Rhetoric, and what
third component?

2. The Quadrivium consists of Geometry, Arithmetic,
Music, and what fourth component?

Bonus 27: Slashcode, the code behind Slashdot, is used to run
this site, which has as its slogan “All the Perl that’s Practical
to Extract and Report.”

Bonus 28: Which HTTP header contains a misspelling?

Bonus 29:
O’Reilly product placement time. I’ll give you seven books,
you tell me what animal is on the cover. Programming Perl,
Programming Python, Y2K in a Nutshell, ASP in a Nutshell,
Sendmail, MP3: The Definitive Guide, Apache: The Definitive
Guide.

Bonus 30: Answer these question about Plan 9.

761

1. The Plan 9 file server uses a
WORM (write once read many) device for file storage.
At a particular time every morning, Plan 9 backs up the
filesystem to the WORM device. At what hour of the
morning does this occur?

2. The Plan 9 windowing system creates each window in a
separate namespace, so each window is similar to a shell
environment. The windowing system has a number as a
name, but the number isn’t 9; it’s a fraction that rounds
up to 9. What’s the number?

3. Plan 9 comes with embedded support for parallel
programming, including a language for concurrent
programming. The name of this language sounds the
same as the first Hebrew letter.

Bonus 31: This was the year the computers came together, as
we learned in the Terminator. It was also the year that HAL,
from the movie 2001, was created, on January 12. What was
this recent year?

Bonus 32: Every
Apache web site includes three directories below the Apache
root directory. Name them.

Bonus 33: JavaScript, Perl, PHP, and Python. Two of these
languages support C and C++ style comments. Which two?

Bonus 34: Kyle had to study for the
MCSE Exam, or Microsoft Certified Systems Engineer. Poor
Kyle. I looked at the O’Reilly MCSE books for the first time
last week, and was actually surprised at how much good trivia
it had. That makes sense, since standardized exams about

762

computers really have to be about trivia. Here’s a question
that you’re told to memorize the answer to for the TCP/
IP test. You can tell the class of an IP address by looking at
its first byte. Tell me what number between 0 and 255
separates addresses into class A and other addresses. You
have to be within two.

Also, tell me what number between 127 and 255 separates
class C addresses from Class A and B addresses. You have to
be within one.

Bonus 35: The ISO 3764 standard for “timekeeping
instruments—movements—types, dimensions and
nomenclature” costs $35, and I find it pretty offensive that
standards aren’t freely available. The standards for C, C++,
Cobol, Common Lisp, and SQL all cost the same amount, and
they’re all cheaper than $35. Tell me the price of these
standards, which is the same as the price of two hours of
Internet access at the Internet cafe near the conference in
Monterrey, and is the price of one year of The Perl Journal
for U.S. subscribers.

Bonus 36: President
Clinton signed a bill that allows electronic signatures to be as
valid as conventional paper signatures. To sign the bill, he
used a magnetic card and his personal password. The
commander in chief of the armed forces of the United States
of America and leader of the free world used a plain
five-letter word, all in lowercase, and it was the name of his
dog. Guess the President’s password.

Bonus 37: It’s a penalty in American professional football,
and it’s also the name of a process in graphics where parts of
an image are occluded from view. Name this action.

763

Bonus 38: The country of Java has lots of volcanoes. When a
volcano dies, a lake will sometimes form just below the
mouth. What are such lakes called? They share their name
with a distribution of Linux.

Bonus 39: I’m about to put one of these stickers on my car.
Made by ThinkGeek, it makes it seem as though you come
from the country of Perl. What three letters does the sticker
have?

Bonus 40: I’ll give you five countries, you tell me the
two-letter country code for it. For instance, if I said Canada,
you’d say “ca.” Ireland, China, Switzerland, South Africa,
Tuvalu.

Bonus 41: Most programming languages have an “elsif”
construct. If “this,” do that, elsif “this other thing,” do
something different. I’ll give you three languages, you tell me
precisely how “elsif” is spelled in that language, including
spaces if any. Perl, Tcl, Python, PHP, JavaScript.

Bonus 42: Let’s play guess that bogus patent! I’ll give you
five
patents, and you tell me whether the
United States Patent and Trademark Office granted it.

1. One-click ordering

2. Hyperlinking

3. Hyper-light-speed antennas

4. Web page downloading

5. The compression underlying GIF

764

Bonus 43: We all know that “bit” stands for “binary digit”: a
value that can be either 0 or 1. There’s no reason you couldn’t
build a computer system out of trinary digits, or “trits.” To
represent seven-bit ASCII with bits, you obviously need
seven bits. How many trits would you need? I’ll give you a
little extra time.

Bonus 44: This company, bankrolled by Paul
Allen, folded its doors in 2000, abandoning its goal of making
computer games for girls. Name this company, founded by
Brenda
Laurel of Interval Research.

Toss-up Answers

T1.
NAPSTER

T2. Bob
METCALFE

T3. SKIN

T4.
APACHE (“It’s a patchy server.”)

T5.
MySQL

T6.
TiVo

T7.
UNICODE

T8.

765

BABELFISH

T9. TelePHONE

T10. The United States POSTAL SERVICE or POST
OFFICE

T11. WAP (The document was called The WAP Trap) See
freeprotocols.org

T12. PING

T13.
APU

T14. SOAP

T15.
JAKARTA

T16. BYTE

T17. C# (C SHARP)

T18. APOLLO

T19.
TUX

T20. TRANSMETA

T21. NETHACK

T22.
SOURCEFORGE

T23. EXPECT (There’s a Perl module called
Expect.pm that gives you the same functionality.)

T24. REVISION CONTROL SYSTEM

766

T25.
LDAP or LIGHTWEIGHT DIRECTORY ACCESS
PROTOCOL

T26. QA (And the Dewey decimal number is the three-digit
number before the apostrophe.)

T27.
BIOINFORMATICS

T28.
LOKI

T29.
SAX

T30.
ETHERNET

T31. Rob
PIKE

T32.
ORACLE

T33.
SCOOTER

T34.
GREGORIAN

T35. SMURF (One way to defeat
smurfing is to disable IP broadcast addressing at each
network router since it is seldom used.)

T36.
XHTML

767

T37. APACHE

T38.
RSVP

T39. RECEIVE

T40.
RSYNC

T41.
CARBON

T42. RDF

T43. SMB

T44.
DVD or DIGITAL VERSATILE DISK

T45. UML

T46. HEARING

T47. Alex
CHIU

T48.
BANNER

Bonus Answers

B1. SMTP, POP, IMAP.

B2. WART, CYST, BOIL, LESION

B3. MICROSOFT, AT&T,
ARCHER DANIELS MIDLAND

768

B4. R.E.M., William
SHATNER, Abraham
LINCOLN

B5. INDREMA

B6. 72, 168, 30

B7.
The VAULTS of PARNASSUS

B8.
DAEMON, SATAN,
ZOMBIE,
KERBEROS

B9.
CDATA

B10. ADSL, IDSL, SDSL, VDSL (also accept VASDL or
BSDL)

B11. SLACKWARE (1993)

B12. RJ45

B13. ORIGINAL EQUIPMENT MANUFACTURER,
VALUE-ADDED RESELLER

B14. VERTICAL BLANKING INTERVAL

B15. BERKELEY SOFTWARE DISTRIBUTION, 386BSD

B16. PHLEGM, BLOOD, BLACK BILE, YELLOW BILE

B17. SUN, APPLE, ADOBE

B18. ZERO

B19. 1, 2, 4

769

B20. GTK, QT, MOTIF or LESSTIF

B21. COLOR Laserjet 2100, HP 4050, HP Laserjet 5SI. (The
Color Laserjet 2100 is a personal printer weighing about 18
pounds, the 4050 is a reasonably-sized office printer weighing
about 45 pounds, and the 5si weighs about 130 pounds.)

B22. Bill
JOY

B23. CHROME

B24. SEMICOLON, EIGHT, VERTICAL BAR or PIPE,
LESS THAN SIGN, B

B25. 100,000 (The actual number was 66,368.)

B26. LOGIC, ASTRONOMY

B27. USE.PERL.ORG

B28. REFERER

B29. CAMEL, PYTHON, CHICKEN, ASP, BAT, Hermit
CRAB, HORSE

B30. 5 in the morning, 8 1/2, ALEF

B31. 1997 (Judgment Day in Terminator was August 29th,
1997, and all that happened was that Michael Jackson turned
40.)

B32. CONF, HTDOCS, LOGS

B33. PHP and JAVASCRIPT

B34. 127 (also accept 125 through 129), 192 (also accept 191
or 193)

B35. $18

770

B36. BUDDY

B37. CLIPPING

B38. CALDERA

B39. PRL

B40. IE, CN, CH, ZA, TV

B41. ELSIF, ELSEIF, ELIF, ELSEIF, ELSE IF

B42. YES (Amazon), YES (BT), YES (an individual; patent
#6025810), YES (Sony), YES (Unisys)

An excerpt from the hyper-light-speed antenna patent filing:

A method to transmit and receive electromagnetic
waves which comprises generating opposing magnetic
fields having a plane of maximum force running
perpendicular to a longitudinal axis of the magnetic
field; generating a heat source along an axis parallel to
the longitudinal axis of the magnetic field; generating
an accelerator parallel to and in close proximity to the
heat source, thereby creating an input and output port;
and generating a communications signal into the input
and output port, thereby sending the signal at a speed
faster than light.

It has been observed by the inventor and witnesses that
accelerated plant growth can occur using the present
invention.

For accelerated plant growth, first, you need to create a
hot surface that is more than 1000 degrees Fahrenheit.
Next, you need a strong magnetic field. Only one

771

device is needed for this function. This allows energy
from another dimension to influence plant growth.

B43. 5 (The log base 3 of 128 is about 4.4, so you’d need 5.)

B44.
PURPLE MOON

Thanks to Joe Johnston, Mark Jason Dominus, Jarkko
Hietaniemi, Chris DiBona, Tom Christiansen, and Sean
Burke for contributing some question ideas.

772

Chapter 34. The Fourth Perl/
Internet Quiz Show

Jon Orwant
Here are the toss-ups and bonus questions from the
Fourth
Internet Quiz Show, held in the summer of 2001 at the
O’Reilly Open Source Convention. Answers are at the end of
the article.

Five questions in the quiz show were “British restitution”
questions. At the previous year’s quiz show, the
championship came down to the very last question. The
London team had to answer Bonus 36 from Chapter 33
correctly—a question requiring knowledge of the name of
then-President Clinton’s dog. Most Americans probably
wouldn’t have known the answer; it was doubly unfair for a
team full of Brits. So I peppered the 2001 quiz show with a
few questions that would give British players an edge.

As usual, you can keep score using the ranks at the beginning
of Chapter 31: count one point per question. For bonus
questions, a half-correct answer merits the entire point.

Toss-up Questions

Toss-up 1: Russian law requires that software permit the
purchaser to make at least one legal copy. According to
Alexander

773

Katalov, the president of Elcomsoft, this makes it illegal to
distribute Adobe’s eBook software in Russia. That provides
little comfort for this man, jailed in Las Vegas for distributing
software designed to circumvent Adobe copyright protection
measures. Who is this unfortunate hacker?

Toss-up 2: According to Nielsen/Netratings study, workers
spend more time online on this weekday than any other.
Name that day.

Toss-up 3: “It reflects the lifestyle of youngsters in Israel and
in the world—to eat fast food and use the Internet at the same
time.” So said the CEO of the Israeli subsidiary of this
well-known fast food chain. He said that as he introduced the
newest branch of the restaurant, which lets patrons surf the
Web and purchase Microsoft software, and lets kids play
computer games for free. What is the Hamburgler’s newest
ISP?

Toss-up 4: In its first two years of life, this non-profit
organization pushed Network Solutions to allow more
competition among domain name registrars. They also
instituted mandatory arbitration of trademark claims via their
Uniform Dispute Resolution Policy. However, they reneged
on their promise to elect half their board members from an
at-large membership. What is this organization chaired by
Vinton
Cerf?

Toss-up 4 linked bonus: ICANN approved seven new
top-level domains. Name them.

Toss-up 5: It came into such common use in the 19th century
that a German chemist declared that the amount of it
consumed by a nation was an accurate measure of its wealth

774

and civilization. It’s been used for at least 2,300 years, and
according to
Pliny the Elder, the Phoenicians prepared it from goat’s
tallow and wood ashes in 600 BC. Its importance for cleaning
the body wasn’t recognized until the second century AD.
Today, it’s used as a cleaning agent, but it also shares its
name with a protocol for executing remote procedure calls
over a network. What is this simple object access protocol?

Toss-up 5 linked bonus: I’ll give you three guesses.
Soap can be made from caustic soda instead of animal fat, but
when it comes from an animal, what animal does it most often
come from?

Toss-up 6: British restitution toss-up. Richard
Garriott is better known by this moniker, which he adopted as
his pseudonym in the series of Ultima games that he created.
Name it.

Toss-up 7: As of May 2001, what similar game has a hundred
thousand more players than
Ultima Online?

Toss-up 8: On April 12, 2001, Harvey R.
Ball passed away. In 1963, he was paid $45 for this picture by
State Mutual Life Assurance. He never applied for a
trademark or copyright; his son said, “He’d get letters from
all over the world thanking him for_____________________.
How do you put a price on that? He died with no apologies
and no regrets.” This drawing became a
cultural icon and has a yellow background. What was this
famous happy drawing?

Toss-up 8 linked bonus: I’ll
show you four smileys; you match them up.1.

775

Punk rocker

2. Mr. Bill

3. Department store Santa

4. Charlie Chaplin
C|:-=

*<|:-{))

(8-o

=:-)

Toss-up 9: The
GNOME shell and file manager, developed by the sadly
defunct
Eazel corporation, shares its name with a cephalopod mollusk
with a spiral chambered shell and a brand name for gym
equipment. What is this marine word?

Toss-up 10: By naming every concept simply by a URI, this
project will let anyone express new concepts that they invent
with minimal effort. Its unifying logical language will enable
these concepts to be progressively linked into a universal
Web. Its structure will open up the knowledge and workings
of humankind to meaningful analysis by software agents,
providing a new class of tools by which we can live, work,
and learn together. That’s what Scientific American says
about this W3C effort to extend the World Wide Web into
what new kind of web?

Toss-up 10 linked bonus: In philosophy, it’s a theory about
the nature of existence, or of what types of things exist. In

776

practical computer science, it’s often a collection of formal
relationships between terms. What is this four-syllable word?

Toss-up 11: I EAT VET CATS, EVICTS AT TEA, IT SET
CAVEAT, EASE ATTIC TV, ATTEST A VICE. These five
phrases are all
anagrams of a company devoted to open source technologies,
and in a complete coincidence also happen to be the sponsor
of this quiz
show. Who is it?

Toss-up 11 linked bonus: ActiveState makes a
cross-platform, multi-language interactive development
environment called
Komodo. How bloated is it? I’m referring not to the memory
footprint of the software, but the weight of the Komodo
dragon. Since bloat is proportional to features, let’s consider
the features of the Komodo dragon.

1. Small ones can climb trees.

2. They can swim.

3. They run faster than humans.

4. They are cannibals.

5. They are the only animals other than humans that
willingly control their population, which they do by
eating their own eggs.

6. Their saliva contains four types of bacteria that are
resistant to antibiotics.

7. Their teeth are arranged so that the maximum amount of
flesh can be bitten off and swallowed whole. They eat
their prey like snakes, bones and all.

777

8. They have a very good sense of smell.

9. They eat people. A Swiss traveler in Indonesia injured
his leg, and his guide left him to get help. A Komodo
dragon found the traveler, and by the time the guide
returned all that was left of the traveler was a backpack
and a puddle of blood.

10. So: nice naming job, ActiveState. At O’Reilly, we’re
pretty fond of animals too, but we try to pick cute ones.

How much do these disgusting animals weigh? I’m looking
for the weight of the adult male, within 20%. It would
probably be around 6 feet long.

Toss-up 12: Guess that protocol. The client program, called
the network manager, makes virtual connections to a server
program that executes on a remote network device, and serves
information to the manager regarding the device’s status.
Name this protocol, which even its FAQ admits is not as
simple as its name suggests.

Toss-up 13: It’s an open source full-featured
web proxy cache designed for Unix. It supports SSL
proxying,
SNMP, and caching of DNS lookups, as well as the obvious:
storing HTTP content so that you don’t have to retrieve data
from a
web site more than once even if you visit the site repeatedly.
It shares its name with a ten-armed cephalopod. What is it?

Toss-up 14:
TK-707 and
Ultramaster RS101 are two free Linux programs. They’re
both examples of this kind of

778

software, letting you create a looping pattern of beats.
Ultramaster is a bit more fully featured, since it plays bass
too. Another example of this type of software is
Rhythm Lab, which its author created so that he could play
polyrhythyms. What is this kind of software?

Toss-up 15: It’s a set of extensions to the HTTP protocol that
allows users to collaboratively edit and manage files on
remote web servers. What is this network protocol for
creating interoperable, collaborative applications?

Toss-up 16: The acronym’s the same: a type of digital circuit
in which the output is derived from two transistors, and a field
in the IP Internet protocol specifying how many hops a packet
can travel before failure. What is this three-letter acronym?

Toss-up 17: You can buy both direct-sequence and
frequency-hopping cards for this
spread spectrum wireless protocol. What is this competitor to
Bluetooth for 2.4 GHz bandwidth? The direct sequence
version has a lowercase “b” at the end of its name.

Toss-up 18: A Supercomputer Center in this California city
announced a prototype terabyte file server for $5,000. What is
this city, home to Legoland California and the 2001 Open
Source Convention?

Toss-up 19: You might have heard that if you take HAL, the
name of the computer in Arthur C. Clarke’s 2001, and shift
each letter forward by one, you get IBM. If you take the word
“cook” and shift it forward five letters, you get the name of
what web protocol?

779

Toss-up 20: Up to 200,000 of these devices were made. It
was patented in 1918, and instead of a QWERTY keyboard, it
had a
QWERTZ keyboard in the pattern of German typewriters. It
weighed about 26 pounds and measured 13.5 by 11 by 6
inches. It had three rotors. What is this
cryptographic device?

Toss-up 21:
Cyrano Sciences sells a device that emulates a human organ.
Name the organ.

Toss-up 22: Spokesperson Scott
McNeil offered to eat his tennis shoe if Version 1.0 of this
wasn’t released by the end of 2001. What are these three
letters, which stand for the set of standard components of a
Linux system, and also for the least important eight bits of a
bitstring?

Toss-up 23: According to its FAQ, this
protocol equals AH + ESP + IPcomp + IKE. AH is the
authentication header, ESP stands for Encapsulating Security
Payload, IPcomp is IP payload compression, and IKE is
Internet Key Exchange. What is this protocol that provides
per-packet authenticity and confidentiality guarantees
between peers using it?

Toss-up 24: Brittney
Cleary a is twelve-year-old singer who recently sang a song
about this online pastime which is popular among teenagers,
who might use AIM or, less likely, IRC or Jabber to do it.
Name this phenomenon.

Toss-up 24 linked bonus: Brittney’s song is called “I.M.
me.”

780

At this point, I played the song.

There were four I.M. acronyms in that catchy chorus:
LOL,
G2G,
BRB, and
BBFN. Tell me what each stands for.

Toss-up 25: Unlike RCS and SCCS, this open source
versioning system uses a merging model that allows everyone
to have access to files at all times, supporting
concurrent development. What is this three-letter versioning
system?

Toss-up 26: The name’s the same: it’s a SourceForge
project for downloading files from remotely and locally
connected GPS receivers by connecting to them via modems.
It’s also the name of a type of microprocessor. When you
change the last letter from a C to a K, it’s also the name of a
type of fish, whose fins are sometimes used to make soup.
What’s the name?

Toss-up 27: On November 3, 1988, one of these programs
spread across VAX and Sun workstations. It was written by
Robert Tappan
Morris, then a doctoral student at Cornell and now a professor
at MIT. This
program was not a virus; viruses cannot be run independently,
but instead attach themselves to other programs. What was
this type of program, which shares its name with a type of
annelid?

Toss-up 27 linked bonus: (Readers: if you’re keeping score,
give yourself a free point for this question.) Now it’s time for
the Internet Quiz

781

Show to jump the shark. This is a three-part question. First,
pick someone on your team.

Second, guess what I’m going to ask this person to do. Bear
in mind that bonus questions often relate to the previous
toss-up, and that the answer to the toss-up was worms, and
that this is the exact point at which people will say that my
quiz show lost all its integrity.

Finally, you now have to eat precisely 1.4 grams of worms.
You can choose from cheese, barbecue, or mexican spice.
This is an actual foodstuff and should, in theory, be nontoxic.

This would be a good time to remind you that this quiz
show is brought to you by ActiveState, making programming
easier through multi-language, cross-platform software and
services. O’Reilly & Associates hereby disclaims all liability
for gastrointestinal ailments occurring as a result of any
foodstuffs consumed incidental to the 2001 Open Source
Convention. O’Reilly & Associates would also like to remind
you that ActiveState, being headquartered in Vancouver, is a
Canadian company, and therefore is
potentially liable for tortious personal injury and wrongful
death in both American and Canadian jurisdictions, thus
doubling any potential judgment you might receive in court.

Toss-up 28: A “User Friendly” cartoon depicts a gravestone
with a birthdate of 1997 and a death date of 2001, when
Microsoft decided to remove everyone’s least favorite
animated metallic helper from Windows. Who was it?

Toss-up 29: “DCS1000”
is the new name of this
surveillance system. The name was changed last February by
the FBI because of the negative associations of its original

782

hungry-sounding name. What is this system, which is named
after meat-eating animals?

Toss-up 30: Guess that
audio format. The Washington Post had two members of the
National Symphony Orchestra, a high-end stereo salesman, a
record producer, a composer, and two guitarists listen to
digitally encoded versions of Stravinsky’s “The Rite of
Spring” and the Who’s “Love Ain’t for Keeping” in various
digital audio formats. Most of them thought that the beta
version of this format was the least realistic. The high notes
sounded harsher, and the low notes were harder to hear.
Regular MP3s treated the human voice a bit better, but this
format handled quick changes in volume better. What is this
two-word audio format, whose first word is a tactical
maneuver from the multiplayer network game Netrek, and
whose second word is named after a character in a Terry
Pratchett novel.

Toss-up 31: I’m going to read the beginning of a book. Your
job is to figure out what device the book is about.

In the nineteenth century there were no televisions, airplanes,
computers or spacecraft; nor were there antibiotics, credit
cards, microwave ovens, compact discs, or mobile phones.

There was, however, an Internet.

During Queen Victoria’s reign, a new communications
technology was developed that allowed people to
communicate almost instantly across great distances, in effect
shrinking the world faster and further than ever before. A
worldwide communications network whose cable spanned
continents and oceans, it revolutionized business practice,
gave rise to new forms of crime, and inundated its users with

783

a deluge on information. Romances blossomed over the wires.
Secret codes were devised by some users and cracked by
others. The benefits of the network were relentlessly hyped by
its advocates and dismissed by its skeptics. Governments and
regulators tried and failed to control the new medium.
Attitudes toward everything from news gathering to
diplomacy had to be completely rethought. Meanwhile, out on
the wires, a technological subculture with its own customers
and vocabulary was establishing itself.

Does all this sound familiar?

Today the Internet is often described as an information
superhighway; its nineteenth-century precursor was dubbed
the “highway of thought.”

What is this device, described in the book
The Victorian Internet?

Toss-up 31 linked bonus: Arguably, the first prototype
telegraph was created as early as 1746, when a French
scientist lined up 200 monks, each holding one end of an iron
wire connecting them to the next monk 25 feet away in a
giant serial circuit. The scientist wanted to see how far
electricity traveled, and how quickly it traveled. Assume each
monk is a point mass. Tell me how far the signal traveled.

Toss-up 32: There are two popular types of this device:
standby and continuous. It can protect your computer from
voltage surges, spikes, and sags; from frequency differences;
and from temporary power failure. What is this piece of
hardware, which shares its acronym with a shipping
company?

784

Toss-up 33: Guess that Unix command. After you compile
and debug a program, there’s part of the binary you can delete
to save space. What command can you use to delete that part
of the binary?

Toss-up 34: Guess that activity. Last Wednesday, the
Washington Post reported that a study by Cal Tech and MIT
said that this activity is
not ready for implementation on the Internet. They said that at
least a decade of further research on the security of home
computers is needed before it will be feasible. What is this
activity, which according to the study failed even using
traditional methods for between 4 million and 6 million
people?

Toss-up 35: Its defacement message implies that it is of
Chinese origin, and it is only programmed to attack
English-language versions of Windows NT or 2000. This
worm was programmed to flood www.whitehouse.com in a
massively coordinated
denial of service attack. Name this worm.

Toss-up 36: This product has a unified memory architecture,
where the CPU and the GPU (the graphics processing unit)
share a single memory space. It has an Intel Pentium 3
running at 733 megahertz with a 128 kilobyte cache, 64
megabytes of RAM, a DVD, a hard disk, 64 3D audio
channels and an NVIDIA GPU. Quake on a Pentium Pro
produced around 100 thousand triangles per second, but this
console will be able to produce up to 125 million triangles per
second. What is this
Microsoft game console?

Toss-up 37:

785

Kontour, spelled with a K, is the new name of this drawing
program designed as part of K Office, an Office-like suite of
programs for the KDE user interface. What was the original
name of this clone of Adobe Illustrator?

Toss-up 38: Justin
Frankel and Tom
Pepper created Winamp under the aegis of a company named
Nullsoft. America Online quashed Nullsoft’s next popular
product, an alternative to Napster that allows users to
exchange music, movies, text, and software via a peer-to-peer
protocol. Tell me the name of this system, whose name
combines “GNU” with a
chocolate hazelnut spread.

Toss-up 39: This set of metadata elements was formed in
1996 to specify a foundation of property values and types for
information resources. Its name suggests that it originated in
Ireland, but it’s actually named for a town in Ohio that
happens to share its name with the Irish capital. Name this
XML initiative.

Toss-up 39 linked bonus: There are 15 elements in the
original 1996
Dublin Core. Name six.

Toss-up 40: Often, when you invoke a Unix command, you
provide a bunch of options and then a pathname. This Unix
command swaps that ordering, so that you provide the
pathname and then the options. What is this common
four-letter Unix command that lets you search recursively
through a directory?

Toss-up 41: It’s like SOAP, but lighter weight. What is this
XML protocol for executing remote procedure calls?

786

Toss-up 41 linked bonus: Just before this conference, I
counted the number of implementations of XML-RPC on
xmlrpc.com. Then I counted the number of XML-RPC
services on xmlrpc.com. What is the ratio of implementations
to services? Full credit if you’re within a factor of two.

Toss-up 42: On Unix, this is the program that displays the
login: prompt. It then execs the login command,
which prompts for your password. What is this program,
which I think stands for “generate teletype”?

Toss-up 43: You’ve probably heard of 10-base-T and
100-base-T
connections. What do the 10 and 100 mean?

Toss-up 44: According to their official web page, it’s a
consortium led by 180 universities to develop and deploy
advanced network applications and technologies, accelerating
the creation of tomorrow’s Internet. Their primary goals are
to: 1) Create a leading edge network capability for the
national research community; 2) Enable revolutionary
Internet applications; and 3) Ensure the rapid transfer of new
network services and applications to the broader Internet
community. What is the name of this next generation Internet
initiative?

Toss-up 45: This federal judge apparently has a habit of
voicing his personal opinions about cases; after he ordered
Washington, D.C. mayor Marion Barry to jail on cocaine
charges, he attended a symposium at Harvard and expressed
displeasure that Barry was not convicted on more counts and
accused four jurors of lying. The appellate court criticized
him for breaching judicial ethics. The San Jose Mercury News
wrote the following: “All that could come into play if

787

Microsoft—as some legal observers speculate—seeks to
make the judge so angry that he commits a reversible error,
delaying judgment long enough that Microsoft further
consolidates its share of the market for browsers.” That was
said in 1999 about what federal judge?

Toss-up 46: This database system is at the center of an
unfortunate legal battle over domain names. On the .com side
are the developers of the database, and on the .org side is
NuSphere. Name this popular open source database.

Toss-up 47: It consists of three segments: the space segment,
the control segment, and the user segment. The control
segment is five ground-based monitoring stations. The space
segment consists of 24 satellites in almost perfectly circular
12 hour orbits. What is this global location system?

Toss-up 48: Most of the
Internet runs on electromagnetic radiation. I considered
writing a toss-up about Maxwell’s Equations, but, after all,
we’re computer folks, and we invented abstraction barriers so
that we wouldn’t have to know any physics. But everyone
should have learned this simple law in high school. What is
Ohm’s law, which relates voltage, current, and resistance?

Toss-up 49: Copying, reference counting, and
mark-and-sweep are three methods of this task. What is this
task of
recycling memory that your program no longer needs?

Toss-up 50: Meteor, Orion, Genesis, Corona, Inspector, and
Marvel are all product names for this company, which is
probably best known for its Millennium graphics card. Name
this company, whose name is just one letter away from a
popular recent science fiction movie.

788

Toss-up 51: I’ve seen three variations of the law named after
this Internet pioneer. The weakest version is “A network’s
value grows proportionately with its number of users” and the
strongest is “The power of the network increases
exponentially by the number of computers connected to it.”
He predicted the collapse of the Internet in 1996, saying it
would become no more than FedEx shipping CD-ROMs back
and forth. Who is this co-inventor of Ethernet?

Bonus Questions

Bonus 1: These three events happened in which year?

1. Kazakhstan sets up its first Internet connection.

2. Sun launches Java.

3. Amazon.com and eBay are founded.

Bonus 2: In the C shell, this character is used to repeat the
last command line, but with a substitution. For instance, if
you had a long command line and you mistyped the name of a
file in the middle of it, you could use this character to fix the
typo and execute the line again all at once. Name this
character.

Bonus 3: Let’s play Name That Nerd. He was arguably one of
the earliest nerds. I’ll give you four clues in decreasing order
of difficulty.

1. Born in 1791, this Englishman had a fondness for
ciphers, lock-picking, stamped buttons, tunnels, and
stomach pumps. But he hated street musicians with a
passion, and wrote a book called Observations of Street
Nuisances in 1864, in which he calculated that 25% of

789

his working power had been destroyed by street
nuisances. According to one biography, the public
retaliated by tormenting him with an unending parade of
fiddlers, Punch-and-Judys, and stilt-walkers. Neighbors
hired street musicians to play outside his window,
especially with worn-out or damaged wind instruments,
for as long as five hours at a time. One blew a penny
whistle outside his window for half an hour every day
for many months. According to one biography, “Even
when he was on his deathbed, the organ-grinders ground
implacably away.” In 1861 he said he had never spent a
happy day in his life, and would gladly give up the rest
of it if he could live three days 500 years hence.

2. He is called by some the Father of Computing, and after
his death his brain was preserved in alcohol for 37 years.
He investigated biblical miracles, and made the
assumption that the chance of a man rising from the dead
is one in a trillion. He tried to mathematically handicap
horse races, and as a result put Lady Lovelace deep into
debt. He measured the heartbeat of a pig for his “Table
of Constants of the Class Mammalia.” In 1857 he
published a “Table of Relative Frequency of the Causes
of Breaking of Plate Glass Windows.” A friend said of
him, “He hated mankind rather than man, and his
aversion was lost in its own generality.” He corrected
Tennyson’s poem for the difference between birth and
death rates, by changing “Ev’ry moment a man dies /
Ev’ry moment one is born” to “Ev’ry moment a man
dies / Ev’ry moment one and one-sixteenth is born.” He
also invented the cowcatcher.

790

3. The father of computing enjoyed fire. He had himself
baked in an oven at 265 degrees Fahrenheit for “five or
six minutes without any great discomfort” and had
himself lowered into Mt. Vesuvius. He began
construction of a calculating machine called the
Difference Engine, but had trouble raising the funds to
complete it—or to begin the sequel, the Analytical
Engine. British Prime Minster Robert Peel recommended
that the father of computing use his Analytical Machine
to calculate the time when it would be useful. “I would
like a little previous consideration,” the prime minister
wrote, “before I move in a thin house of country
gentlemen a large vote for the creation of a wooden man
to calculate tables from the formula x2 + x + 41.”

4. His name rhymes with “cabbage.”

Bonus 4: Bruce
Mah’s paper “An Empirical Model of HTTP Network
Traffic” in the April 1997 Proceedings of IEEE Infocom
calculates the average number of clicks in a web session. For
instance, if you visit www.oreilly.com, how many times are
you likely to click anywhere in www.oreilly.com before
moving to another site? Tell me the average number of clicks,
within 20%.

Bonus 5: There’s an Internet draft standard that defines the
architecture to provide Internet-like services between two
types of objects very far apart. It describes an approach called
“bundling,” creating a store-and-forward overlay network
above the transport layers of underlying networks. Bundling
uses many of the techniques of email, but is directed toward
interprocess communication and is designed to operate in

791

environments that have very long speed-of-light delays. Tell
me what objects this protocol was designed for.

Bonus 6: Systems like the peer-to-peer Swarmcast enable you
to download large files from multiple computers
simultaneously, making for a more robust and quicker
download. Let’s assume we have a perfectly efficient and
error-free transmission channel, and let’s further assume that
there’s a one-gigabyte file that you want to download, and
there are three servers that can serve it to you starting at any
point in the file. One of the servers delivers one megabyte per
second, and the other two deliver half a megabyte per second.
What is the minimum time in which the entire file can be
transmitted to you?

Bonus 7: According to NetFactual, given all of the IP
addresses in use for web sites, what is the average number of
domain names per IP address? Full credit if you’re within
30%.

Bonus 8: According to Pitkow’s “Summary Of World Wide
Web Characterizations” in the 1999 WWW Journal, the mean
size of HTML pages on the Web is between four and eight
kilobytes. Give me the median size, in kilobytes, of HTML
pages, within a factor of two. Remember that the mean is the
conventional average, and the median is the level where half
your data points are above and half below.

Next, tell me the mean image size in kilobytes, within a factor
of two.

Bonus 9: Within five, what is the approximate percentage of
words in Webster’s English Dictionary that were registered as
domain names as of July 2000?

792

Bonus 10: Name That Nerd bonus. Guess the subject of the
following clues.

1. He was born in 1847, and according to some biographies
had attention deficit disorder at an early age. He wanted
to become an actor, but his high-pitched voice and
extreme shyness dissuaded him. Later, he became almost
completely deaf, but when he was offered an operation
that would almost surely restore his hearing, he refused,
claiming that his power of concentration had been
enhanced by his hearing loss.

2. He developed a lifelong disrespect for higher
mathematics when he realized that Issac Newton was a
lousy technical writer who used flowery language
instead of clear concise writing. He decided at an early
age to prove everything to himself through practical
experimentation. He went into the publishing business at
age twelve, and was able to scoop large newspapers by
publishing faster than they could—because he had
typesetting, printing, and distribution take place entirely
on a train. He had to move his operation off the train
when he set a baggage car on fire from a chemistry
experiment.

3. In Boston he attended lectures at MIT and got his first
patent, for an electric vote-recording machine. But
members of the Massachusetts legislature denigrated it,
saying that “its speed in tallying votes would disrupt the
status quo.”

4. The problem was that—during times of stress—political
bodies of that period often relied upon the brief delays
that were provided by the process of manually counting

793

votes to influence and change the opinions of their
colleagues. “This is exactly what we do not want,” a
seasoned politician told him, adding that “Your
invention would destroy the only hope the minority
would have of influencing legislation…. It would deliver
them over bound hand and foot to the majority.”

5. He invented the first dictaphone, mimeograph, and
practical storage battery, and received 1,093 patents in
all. He proposed to his wife by tapping Morse code on
her hand.

6. He was called the wizard of Menlo Park and he invented
the electric lightbulb. When he died in 1931, individuals
and corporations throughout the world dimmed their
lights in his memory.

Bonus 11: The current version of the IP protocol, IPv4, has a
32-bit address space. Draft RFC 2460 for Version 6.5 of IPv6
calls for an address space with how many bits?

Bonus 12: I’ll give you five descriptions of OS X
technologies, and you name them.

1. The open source core of OS X, including the Mach 3.0
kernel.

2. A high-performance, lightweight window server and
graphics rendering library for two-dimensional shapes.

3. A native OS X runtime environment allowing
applications to make use of new OS X features while
retaining compatibility with older Mac operating
systems.

794

4. An application environment that runs native under OS X
and is tailored for developing applications that run only
on OS X.

5. The user interface of OS X.

Bonus 13: I’ll
show you five fonts, and you tell me the name of the typeface.
(See Figure 34-1.)

Figure 34-1. Five fonts for bonus question 13

Bonus 14: Guess that year in as few clues as possible.

795

1. South Korea sets up its first Internet connection.

2. ARIN, the American Registry for Internet Numbers,
begins operation, and 56K modems are first introduced
to the public.

3. The U.S. Supreme Court unanimously declares the
Communications Decency Act unconstitutional.

Bonus 15: I’ll give you five terms. You rank them in order of
how many Google hits they had as of last Saturday, from
most to least. Kernel, distro, bytecode, CORBA, router.

Bonus 16: I’ll give you a Nielsen/Netratings statistic about
web usage in the United Kingdom, and you tell me the
corresponding statistic for the United States within 20%.

Now note that Nielsen samples only households who a) have
either Windows 95/98/NT, and MacOS 8 or higher, and b)
have enough free time to participate in polls about the
Internet.

1. For the U.K., the average number of web sessions per
month is 13. How many for the U.S.?

2. For the U.K., the average time spent per month of the
Web is 5 hours, 58 minutes, and 53 seconds—so just
under 6 hours. How many hours per month, on average,
does someone in U.S. spend on the Web?

3. For the U.K. the average number of unique sites visited
per month is 18. How many for the U.S.?

4. Nielsen estimates that in the U.K., the number of people
using the Internet is 23,375,121. What is their estimate
for the U.S.?

796

Bonus 17: In addition to Komodo, ActiveState also makes
PerlMX, which provides mail filtering for the enterprise—and
they didn’t ask me to say this, but we use it at O’Reilly and
are very happy with it. However, like the Komodo dragon, the
name has a hint of destructiveness to it. The MX missile cost
$100 billion to develop and each MX warhead has one
megaton of destructive force. Assuming PerlMX is equally
deadly, let’s assume that a copy of it is dropped on an
unsuspecting city. It would create a crater 1/4 of a mile
across, and generate a fireball with a width of 7/10 of a mile.
At a radius of 1.7 miles, 50% of the people would die, 40%
would be injured, and 10% would be unaffected. At a
particular greater distance, the stats would be 0 deaths, 25%
injuries, and 75% unaffected. Guess this distance within
20%—in other words, how many miles from ground zero
should you be to avoid obliteration by this horrible PerlMX
weapon, brought to you by ActiveState?

Bonus 18: First, what is the name of the open standards
version of JavaScript?

Next, Microsoft has submitted the core .NET specs to ECMA.
What do the four letters ECMA stand for?

Bonus 19: First, within 50%, tell me how many users
Napster creator Shawn
Fanning said the service had in February 2001 just after the
federal appeals court ruling.

Next, at that time and within 50%, how many files were listed
on Napster, according to the Webnoize study?

Bonus 20: I’m going to read you four frequently asked
questions from a FAQ about how to hack a particular

797

consumer electronics device. Tell me the name of the device
using as few clues as possible.

1. Will a factory reset zero out the drive for better
compression?

2. Getting a BASH prompt with Dylan’s bootdisk.

3. Can I back up my 15GB A drive onto a 30GB drive and
get a 30 hour single drive unit?

4. Will an upgrade kill my Now Showing or Season
Passes?

Bonus 21: Last February, we at O’Reilly were trying to
decide what books to write about
message transfer agents. We’ve had a bestseller about
sendmail for a long time, but what about exim, Microsoft
Exchange, postfix, qmail, or zmail ? I wrote a
program that identified the MTAs of all three-letter dot coms
to help us decide. Rank them from most common to least.

Bonus 22: Name that
failed dot com. I’ll describe two dot coms, and you name
them.

1. When they sold off their assets, they included the rights
to their sock puppet spokesdog.

2. One employee of this company said, “I always liked our
core customers, those grungy dysfunctional freelancers
and geeks who didn’t want to leave the house to pick up
their own Fritos and beer.”

Bonus 23: This describes a type of
neural net in which the connection weights are one-way,
typically with input units fully connected to hidden units, and

798

hidden units fully connected to output units. During the
training phase, the weights change by comparing what you
wanted on the output units to what you got, and adjusting the
weights in proportion to the difference. What is this common
type of neural net?

Bonus 24: In the summer of 1939, a small team of
scholars-turned-codebreakers arrived at this place; their
mission was to crack the Enigma cipher. According to their
web page, the odds against them were, and I quote, “a
staggering 150 quintillion to one.” Over 10,000 people
worked here at its peak, but by March 1946 they were all
gone. The efforts at this place led Winston
Churchill to coin the phrase, “The geese that laid the golden
eggs and never cackled.” Today, you can visit for an
admission fee of just five pounds. Name this place.

Bonus 25: There are three primary levels of requirements in
Internet protocol specifications. For instance, one of them is
MUST. A MUST-level requirement implies that compliance
is absolutely essential, as in “Every HTTP implementation
MUST accept GET requests.” What are the other two primary
requirement levels?

Bonus 26: I’ll give you four telecommunications acronyms,
and you expand them.

1. CLEC

2. ILEC

3. RBOC

4. POTS

Bonus 27: This is one of the oldest and most time-tested

799

caching algorithms, used for decades before the Web came
around. It’s probably the first caching algorithm ever. The
idea is straightforward: objects that have been accessed more
recently are likely to be accessed again, and so less-accessed
objects should be evicted from the cache before removing any
of the newer objects. What is it?

Bonus 28: Guess that year in as few clues as possible.

1. ARPANET shifts to TCP/IP and the Japan Unix
Network is established.

2. Fido becomes operational.

3. MGM produces the movie War Games.

Bonus 29:
Quantum computing can be somewhat coarsely divided into
two parts. There’s light-wave computing, in which you might
use an acousto-optic modulator and the wave-particle duality
of light to do things like search through a database in constant
time. Then there’s a class of algorithms that can’t be
parallelized so easily, and require full-fledged quantum
computing, which evaluates the states of many particles
simultaneously. This is distinct from superpositions, which
are the multiple states of a single particle. First, what
adjective do physicists (and Damian Conway) use to describe
these states of a system of particles?

Next, entangled states are needed by this algorithm, which
can factor numbers in polynomial time. Name this algorithm
developed in 1994 and named after its discoverer.

Bonus 30: Name that nerd in as few clues as possible.

800

1. He is a Canadian citizen and, according to his biography,
has never written a program that uses cursor addressing.

2. He’s probably the only member of the technical staff at
Bell Labs to appear multiple times on “Late Night with
David Letterman.” He also has given a talk entitled
“Systems Software Research Is Irrelevant.”

3. He won the Olympic silver medal in archery in 1980,
and the next year wrote the first bitmap window for Unix
systems at Bell Labs. One of his more famous papers is
“Why Pascal Is Not My Favorite Programming
Language.”

4. He was a principal designer and implementor of the Plan
9 and Inferno operating systems, and his last name is
both a fish and a piece of medieval weaponry.

Bonus 31: Measures and countermeasures. As I write this,
I’m having a little coding duel with Joe
Johnston, an O’Reilly hacker who’s here at the conference.
On an O’Reilly mailing list, he argued that the notion of an
XML router is an inherently stupid idea, and I think it’s a
good idea. To settle the debate, he created a poll on the
O’Reilly Intranet where company employees could vote on
whether the notion of an XML router was stupid or not. So I
wrote a program that voted automatically on my behalf over
and over again.

I used a well-known suite of Perl programs for automating
web browsing, and fed it the URL of Joe’s voting page so that
it could vote in favor of XML routers. Name this three-letter
suite of programs by Gisle Aas.

801

Joe responded by preventing votes from the IP address of the
local machine. Give me an IP address that always refers to the
local machine.

That stopped my Perl program, at which time the votes in
favor of XML routing were now 40,000 to 17.

But. Joe had foolishly given me sudo powers on the
machine. I found the program that was generating the web
page, and I modified it so that after it checked its online
database, it rewrote the result with a huge number that was 0
on January 1, 1970. What did I derive this number from?

Then I did a ps on the Linux box to figure out what Joe was
thinking, and I saw lots of recent backup copies of his
database. So Joe thought—and probably still thinks right
now—that I was directly modifying the database. But I
wasn’t, because I modified the logic of the program after it
read the database.

So I created some red herring databases with similar names to
throw him off the track. I read the database into a binary
string and used a built-in Perl function to extract the fields
from it. What function did I use?

Meanwhile, I decided to hide what I was doing inside his
voting program. I had been setting the appropriate variable to
the value of the Unix time, but since the Perl function for time
is time, I figured that might be a giveaway. So I replaced it
with a little-known magical Perl variable that contains the
Unix time at which your program began execution. What is
this variable?

Bonus 32: In the C shell, this two-character sequence
evaluates to the last argument on the previous command line.

802

For instance, if you said ls *.pl *.ini and then you
wanted to remove all the ini files, you could say rm ______
______. What are these two characters?

Bonus 33: I’ll name six web sites. You rank them from most
popular to least popular as indicated by their unique daily
visitors, tabulated by Jupiter Media Metrix during the week
ending April 15, 2001. eBay, iWon, MSN, Netscape,
Passport, and Yahoo!.

803

Toss-up Answers

T1. Dmitry
SKLYAROV

T2. MONDAY

T3. MCDONALD’s

T4.
ICANN (INTERNET CORPORATION FOR ASSIGNED
NAMES AND NUMBERS)

T4-bonus. AERO, BIZ, COOP, INFO, MUSEUM, NAME,
and PRO

T5. SOAP

T5-bonus. COW (also accept BULL, STEER, CALF, and
variants)

T6.
LORD BRITISH

T7.
EVERQUEST

T8. SMILEY face. (If HAPPY, ask player to rephrase.)

T8-bonus. 1. D, 2. C, 3. B, 4. A

T9. NAUTILUS

T10.
The SEMANTIC web

T10-bonus. ONTOLOGY

804

T11. ACTIVESTATE

T11-bonus. 200 pounds (accept between 160 and 240
pounds) or 90 kilograms (accept between 72 and 108
kilograms)

T12. SNMP or SIMPLE NETWORK MANAGEMENT
PROTOCOL

T13. SQUID

T14. DRUM machine (also accept PERCUSSION)

T15.
webDAV or Web DISTRIBUTED AUTHORING and
VERSIONING

T16. TTL (which can stand for either “transistor-transistor
logic” or “time to live”)

T17. 802.11

T18. SAN DIEGO

T19. HTTP

T20. ENIGMA

T21. NOSE. (It costs $10,000, and it calibrates by sniffing the
ambient smell around it.)

T22. LSB

T23. IPSEC

T24. INSTANT MESSAGING

T24-bonus. LAUGH OUT LOUD, GOT TO GO, BE RIGHT
BACK, and BYE BYE FOR NOW.

805

T25. CVS

T26. SHARC

Speaking of sharks, the phrase “jumping the shark”
has recently come into vogue. It means a sudden point at
which everything goes downhill. The phrase originates from
“Happy Days,” where in the season finale Fonzie jumped
over a
shark in his motorcycle, with the frame freezing in mid-air so
that you had to tune in next season to see if he landed safely.
Anyway, “jumping the shark” has come to mean the exact
moment at which a
show sells out. I’m telling you this because the bonus
question for the next toss-up will be the “jumping the shark”
moment for the Internet quiz show.

T27. WORMs

T27-bonus. EATing WORMs (They were edible dried worms
sold as a novelty.)

T28. CLIPPY

T29. CARNIVORE

T30. OGG VORBIS (Vorbis is the digital music format, and
Ogg is the blanket project for creating a fully open
multimedia system.)

T31. The TELEGRAPH

T31-bonus. 4975 feet. (199 x 25 feet) No credit for fencepost
errors—5,000 feet is not correct.

T32. UPS. (The difference between a voltage surge and a
voltage spike is 3 nanoseconds.)

806

T33. STRIP

T34. VOTING

T35.
CODE RED (From
Schneier’s
CRYPTO-GRAM newsletter: “The attack failed because of
some programming errors in the worm. One, the attack was
against a specific IP address, and not a URL. So
whitehouse.gov moved from one URL to another to avoid the
attack. And two, the worm was programmed to check for a
valid connection before flooding its target. With
whitehouse.gov at a different IP address, there was no valid
connection. No connection, no flooding.”)

T36.
XBOX

T37. KILLUSTRATOR

T38. GNUTELLA

T39.
DUBLIN CORE or DCMI

T39-bonus. TITLE, AUTHOR or CREATOR, SUBJECT and
KEYWORDS, DESCRIPTION, PUBLISHER, other
CONTRIBUTORs, DATE, RESOURCE TYPE, FORMAT,
resource IDENTIFIER, SOURCE, LANGUAGE,
RELATION, COVERAGE, RIGHTS management.

T40. FIND

T41. XML-RPC

807

T41-bonus. 38/11 = 3.4545. Full credit for an answer
between 1.72 and 6.91.

T42. GETTY

T43. MEGABITS per SECOND. (The “T” stands for
twisted-pair.)

T44. INTERNET2

T45. Justice Thomas
PENFIELD JACKSON

T46. MYSQL

T47. The GPS system

T48. I(current) = Voltage / Resistance or the AC version:
I(current) = Voltage / Z(impedance)

T49. GARBAGE COLLECTION

T50. MATROX

T51. Bob METCALFE

808

Bonus Answers

B1. 1995

B2. ^ (CARET or UP ARROW)

B3. Charles BABBAGE. (Babbage also wrote a ballet that
was never performed due to the theater manager’s fear that
the auditorium would catch fire. It involves 60 dancers, a lot
of colored lights, and a vat of eels.)

B4. 7 (accept between 5.6 and 8.4)

B5. PLANETS (
Interplanetary Internet). An excerpt from the draft follows:

Desiderata of Interplanetary
Internetworking

Go thoughtfully in the knowledge that
all interplanetary

communication derives from the
modulation of radiated energy, and

sometimes a planet will be between the
source and the destination.

Therefore rely not on end-to-end
connectivity at any time, for the

universe does not work that way.

Neither rely on ample bandwidth, for
power is scarce out there and

the bit error rates are high. Know too
that signal strength drops

off by the square of the distance, and
there is a lot of distance.

809

Consider the preciousness of
interplanetary communication links, and

restrict access to them with all your
heart. Protect also the

confidentiality of application data or
risk losing your customers.

Remember always that launch mass costs
money. Think not, then, that

you may require all the universe to
adopt at once the newest

technologies. Be backward compatible.

Never confuse patience with inaction.
By waiting for acknowledgement

to one message before sending the next,
you squander

time that will never come to you again
in this life. Send as much as

you can, as early as you can, and
meanwhile confidently await

responses for as long as they may take
to find their way to you.

Therefore be at peace with physics, and
expect not to manage the

network in closed control loops-neither
in the limiting of

congestion nor in the negotiation of
connection parameters nor even

in on-demand access to transmission
bands. Each node must make its

own operating choices in its own
understanding, for all the others

are too far away to ask. Truly the
solar system is a large place and

each one of us is on his or her own.

810

Deal with it.

S. Burleigh

B6. 500 seconds. (The three sources combine to deliver 2 meg
per second.)

B7. 3.2 (accept between 2.24 and 4.16)

B8. 2 (accept between 1 and 4; the mean is substantially
higher than the median, which tells us that there are a small
number of large HTML pages); the mean image size is 14
kilobytes (accept between 7 and 28)

B9. 98 (from the July 2000 edition of Win Treese’s Internet
Index)

B10. Thomas Alva EDISON

B11. 128

B12. DARWIN, QUARTZ, CARBON, COCOA, AQUA

B13. COURIER, TIMES, COMIC sans ms, GARAMOND,
IMPACT

B14. 1997

B15. KERNEL (6,560,000), ROUTER (2,570,000), CORBA
(1,030,000), DISTRO (186,000), BYTECODE (108,000).

B16. 19 (accept between 15.2 and 22.8); 9:44:52 (accept
between 7:48 and 11:42); 10 (accept between 8 and 12—so
the U.S. uses the Web more, but is less diverse in the sites
they visit); 167,138,270 (accept between 133,710,616 and
200,565,924)

B17. 7 miles (accept between 5.6 and 8.4 miles)

811

B18. ECMAScript; EUROPEAN COMPUTER
MANUFACTURERS ASSOCIATION

B19. Number of Napster users: 50 million (AOL had 150
million). Full credit for an answer between 25 million and
100 million.

Number of files: 2.79 billion. Full credit for an answer
between 1.39 billion and 4.19 billion.

B20. TIVO

B21. QMAIL (14%), Microsoft EXCHANGE (13%), EXIM
(4%), POSTFIX (3%), ZMAIL (0%). (sendmail had a
65% share.)

The programs that I wrote did a DNS lookup to find the mail
exchanger, connected to port 25, and if my program couldn’t
deduce the MTA, it attempted a HELP command to see if it
could deduce the MTA from the response. As a result, my
program triggered a lot of complaining from mail servers.
Two notable ones were:

214 Klingons do not require assistance!

500 Bloody Amateur! Proper forging of
mail requires recognizable

SMTP commands!

B22. PETS.com, KOZMO.com

B23. BACKPROPAGATION

B24.
BLETCHLEY PARK

B25. SHOULD and MAY. (There’s also MUST NOT and
SHOULD NOT.)

812

B26. COMPETITIVE LOCAL EXCHANGE CARRIER,
INCUMBENT LOCAL EXCHANGE CARRIER,
REGIONAL BELL OPERATING COMPANY, PLAIN OLD
TELEPHONE SERVICE

B27. LEAST RECENTLY USED or LRU

B28. 1983

B29. ENTANGLED; SHOR’s algorithm (The best-known
classical algorithm for factoring numbers is the quadratic
sieve.)

B30. Rob PIKE

B31. LWP; 127.0.0.1; UNIX TIME or EPOCH; UNPACK;
$^T (The final score was “An XML router is an insane
idea”—81 votes, and “An XML router is a great
idea”—995,659,743 votes.)

B32. !$

B33. YAHOO MSN PASSPORT NETSCAPE IWON EBAY
(Number of visitors in millions: Yahoo 12.5, MSN 11.8,
Passport 6.3, Hotmail 6.2, AOL 5.1, Netscape 3.0, iWon 2.9,
Excite 2.6, eBay 2.6, Lycos 2.4.)

813

Chapter 35. The Perl Whirl Quiz
Show

Jon Orwant
This is the quiz show that I wrote in 2000 for Neil Bauman’s
inaugural
Perl Whirl, an Alaskan cruise that was also a Perl conference.
The rules were the same as for my O’Reilly quiz shows, but
since I couldn’t attend the cruise, Larry Wall stepped in as
emcee. (For more information about Perl Whirls and other
geek cruises, see http://geekcruises.com.)

You know the drill by now: one point per question, and
calculate your score with the chart at the beginning of
Chapter 31.

Toss-up Questions

Toss-up 1: Slashdot publicized a web server powered by an
unlikely source. What is this starchy vegetable?

Toss-up 2: Fill in the blank: John
Gilmore said, “The Net interprets _________________ as
damage and routes around it. What is this term, synonymous
with “restraint of expression”?

Toss-up 3: What is the name of the default package in Perl?

814

Toss-up 4: “I rescue kegs,” “creek guises,” and “Gee! Sick
user!” are all anagrams of what phrase that should
presumably be familiar to us all?

Toss-up 5: What special scalar variable contains the time at
which your program began running?

Toss-up 6: The GD module used to use GIF as its primary
image format, but thanks to Unisys enforcing its patent on
LZW compression, GIF is no longer feasible. What image
format does GD use now?

Toss-up 7: Which character is the
modulus operator in Perl?

Toss-up 8: This proponent of literate programming uses an
assembly language called MIX in his well-known computer
science books. Who is this Stanford professor and
inventor of TeX and Metafont?

Toss-up 9: What special array inside a class contains the list
of classes to inherit from?

Toss-up 10: It lets you search CPAN for simple patterns in
module names, distribution names, author names, or
documentation. What is the URL of this relatively new and
incredibly useful web site?

Toss-up 11: Its pits are half as long; it has two layers instead
of just one; its tracks are half as thick. You can read data from
it about nine times as fast as from an audio CD. What is this
medium?

Toss-up 12: What four-letter HTML tag encodes information
about the content of a web page, often used for inform (or
fool) search engines?

815

Toss-up 13: Guess that
file test. With this file test, your program can determine
whether it was called interactively. More precisely, you can
use this file test to see whether a filehandle is a tty, and if
both STDIN and STDOUT are ttys, your program can be
pretty sure it was called from a shell. What is this single
letter?

Toss-up 14: It’s a Brazilian dance of African origin
characterized by a dip and spring upward at each beat of the
music. What is this two-syllable word, which also names a
product enabling Unix and Windows machines to share
directories and files?

Toss-up 15: What
Perl built-in terminates your program and launches another
one in its place?

Toss-up 16: Support for this standard is being introduced into
Perl. The standard provides a unique number for every
character, no matter what the platform, no matter what the
program, no matter what the language. What is this character
encoding standard?

Toss-up 17: If you were looking for modules that let you
FTP, send mail, and Telnet, you could find them all in this
three-letter namespace on CPAN. In other words, I’m looking
for the BLANK in BLANK::FTP, BLANK::TELNET, and
BLANK::SMTP. Fill in the blank.

Toss-up 18: This unlikely investor in an Internet startup
spends her spare time knighting people and tugging around
those darn Corgis. Who is this ruler of the British empire?

816

Toss-up 19: The fork function clones your program as it’s
running; it’s like coming to a fork in the road, and choosing
both. How can you tell which road you’re on?

Toss-up 20: What
virus has functions named spreadtoemail and
infectfiles?

Toss-up 21: This module bundled with Perl does little more
than provide a hash. But what a hash: it contains entries that
tell you how your Perl was compiled, what operating system
you’re on, what signals your system understands, and whether
your Perl was compiled with thread support. What is this
module?

Toss-up 22: The first of these systems was a cluster of 16
DX4 processors connected by 10-megabit Ethernet. The
processors were too fast for a single Ethernet, so new
Ethernet drivers for Linux were created that striped the traffic
across multiple Ethernets. What is the name for these
supercomputing clusters of Linux systems, named after the
slayer of Grendel?

Toss-up 23:
Perl’s delete built-in doesn’t delete files. What six-letter
built-in does?

Toss-up 24: A Perl cryptosystem code-named “Pontifex”
appears in this novel. What is this large book by Neil
Stephenson?

Toss-up 25: What three-letter pragma would you use to have
your Perl program search for modules in particular
directories? For instance, you’d say use __________

817

“temp” at the top of your program to have Perl look for
modules in the temp directory. Fill in the blank.

Toss-up 26: When an XML document is validated, one says
that it is validated against a __________. Fill in the blank.

Toss-up 27: Guess that
function. Which built-in Perl
function, given a file, tells you the inode of that file? This
four-letter
function also tells you the size of the file and when it was
created. Name this function.

Toss-up 28: What is the four-letter name of the database
manager bundled with Perl?

Toss-up 29: What special scalar variable defaults to 60, and
contains the page length of the currently selected output
handle? Name this punctuation variable.

Toss-up 30: It increases IP addresses from 32 bits to 128 bits,
anticipating future growth of the Internet and providing relief
for an impending shortage of network addresses. It provides
for unicast (one host to one other host), anycast (one host to
the nearest of multiple hosts), and multicast (one host to
multiple hosts). What is the name of this new version of the
Internet Protocol?

Toss-up 31: This little-known document lists all of the
modules that have been installed into your Perl distribution.
Its nine-letter name contains the name of the Perl function
that provides dynamic scoping. Name this document.

Toss-up 32: When programmers tie a variable to a class, they
often ignore the object returned by the built-in tie function.

818

What is the built-in Perl function that lets you retrieve the
object after the tie has taken place?

Toss-up 33: The
Astro::SunTime module, available on the CPAN, calculates
sunrises and sunsets. In what month is the latest sunrise in
Alaska?

Toss-up 34: The -T command-line switch makes your
program pay special attention to data arriving inside your
program from the outside world. Such data is said to be until
you convince Perl it’s now safe, often with a regular
expression. Fill in the blank.

Toss-up 35: In new versions of Perl, you can declare a
subroutine’s return value to be modifiable. For instance, if the
subroutine is named foo, you’d be able to say foo(6) =
720, or foo(“color”) = “blue”. This is
accomplished by placing a particular word after the
subroutine name in its declaration. What is that word?

Toss-up 36: It’s a kernel written in
Perl that lets you schedule events, and it’s also the last name
of the poet who wrote “The Raven.” Name this three-letter
word.

Toss-up 37: On a system using the U.S. English locale and a
plain ASCII character set—in other words, what most of us
use right now—how many different characters can \w match
inside a pattern? Identify this integer, one less than a perfect
square.

Toss-up 38: Once you’ve opened a file, this Perl
function lets you move to an arbitrary position inside it. What
is this

819

function, which takes three arguments: the filehandle, a
position, and an offset?

Toss-up 39: The
Astro::MoonPhase module, available on CPAN, calculates
phases of the moon. What word describes our moon when it
appears more than half full, but not completely full?

Toss-up 40: This built-in function should probably have been
called wantlist. What is the name of this Perl function,
which can be used to determine whether your subroutine was
called in a scalar context or a list context?

Toss-up 41: “Generate Regular Expression and Print” is
widely claimed to be the expansion of this odd word, which is
both a Unix utility and a Perl function that selects particular
elements from a list. Name it.

820

Bonus Questions

Bonus 1: Suppose you’re using the DBI
module to manipulate an Oracle database from Perl. What
module containing Oracle-specific information would you
also need?

Bonus 2: Fill in the blank to complete a well-known saying
about the Internet.

On the Internet, no one knows you’re a BLANK.

Bonus 3: Take the current four-digit year and assign it to a
scalar. Chop it, chomp it, and chop it again. What does that
scalar now hold?

Bonus 4: I’ll give you six anagrams of Perl keywords; you
give me the keyword.

1. Unlit

2. Eval Us

3. Mites

4. Mopes

5. Cute Rant

6. O Torch

Bonus 5: Itanium is one of a new family of 64-bit
microprocessors from Intel that has begun to appear in new
computers. Name the processor family.

Bonus 6: Within ten percentage points, what percentage of
new domains ended in .com in 1998?

821

Bonus 7: I’ll give you four operators that might or might not
be in
Perl. After each, you tell me whether it’s in Perl 5.6, yes or
no.

1. …

2. ~

3. ^^

4. |||

Bonus 8: To access the last element of an array called @foo,
you could use the index $#foo. But you could also use what
integer?

Bonus 9: This mod_perl
module lets your web server send different content depending
on the speed of the connection. The module name has two
words separated by a double colon. The first word should be
easy to guess, and the second word names an object you’d
find in an airplane cockpit. Name the two words.

Bonus 10: What two characters do you put in front of a string
to make Perl interpret the string as a hexademical number?

Bonus 11: Name that Palm Pilot. I’ll give you three types of
Pilot, and you identify the model.

1. This Pilot provides wireless Internet access.

2. This Pilot is thinner than the rest.

3. This Pilot is full color.

Bonus 12:

822

RSA and Diffie-Hellman are examples of what kind of
cryptography in which certain keys are made available for
everyone to see?

Bonus 13: Eric
Raymond coined this phrase, which divides software projects
into two categories: those carefully crafted by a small number
of people in isolation, and those opened up as early as
possible to as many people as possible. Name this phrase.

Bonus 14: Name either of the two
modules bundled with Perl that open a process for both
reading and writing, letting you both provide it with input and
see the output it displays.

Bonus 15: I’ll give you six animals and six O’Reilly Perl
titles. You match them up. The animals are the camel, emu,
llama, leopard, sheep, and wolf. The books are Advanced Perl
Programming, Learning Perl, Learning Perl/Tk, Mastering
Algorithms with Perl, Perl Cookbook, and Programming Perl.

Bonus 16: I’ll give you four operators, and you tell me about
their precedence: whether they associate to the right or the
left.

1. and

2. not

3. *

4. **

Bonus 17: I asked Jeeves the following question: “What are
the arguments to split?” I’ll give you five topics; you tell me
whether that topic appeared in the resulting list of answers.
Just say yes or no.1.

823

Perl’s split
function

2. The Microsoft breakup

3. Divorce

4. Banana splits

5. Stock splits

Bonus 18: What is the three-letter abbreviation for the
encryption used on DVDs?

What does CSS stand for?

Bonus 19: When you tie a scalar to a class, there are three
functions the class must provide. The functions are all in
uppercase. What are they?

Bonus 20: Since you’re on a cruise, we’ll play Guess That
Maritime Disaster. What ship sank three years after the
Titanic, resulting in the loss of 1,198 lives from a German
torpedo?

Bonus 21: This Perl extension was begun by astronomer Karl
Glazebrook, who wanted the speed of mathematical packages
like MATLAB and IDL with the convenience of Perl. What is
this package, optimized for large multidimensional arrays of
data?

Bonus 22: I’ll ask you three questions about an interactive
online discussion group named “pound perl.”
What text-based collection of channels is “pound perl” part
of?

What network of IRC channels is the heavily-populated
#perl part of?

824

Finally, spell the name of the chatbot, written in Perl of
course, that answers newbie questions without human
intervention.

Bonus 23: Suppose $x is a reference to an array. If you say
$y = $x, you copy the reference, but not the underlying
data. Copying the underlying data is called a deep copy. One
module, bundled with Perl, contains a
function called Deepcopy that helps you make deep copies.
But the module is named after another useful
function, one which stringifies data structures suitable for
printing or saving to disk. Name that module.

Bonus 24: I’ll name three symbols; you give me the
ISO 8859-1 entity name. For instance, if I said “less-than
sign”, you’d say <. If I said “non-breaking space,” you’d
say .

1. Copyright symbol

2. An O with two dots over it

3. An E with a backtick over it

Bonus 25: Take a hash, any hash. Call it %X. It has some
number of key/value pairs. Now create a new hash, %Y, in
which the key/value pairs of %X become value/key pairs in
%Y. That is, the keys of %X become the values of %Y, and the
values of %Y become the keys of %X. Which of the following
statements is true?

1. %Y is guaranteed to have the same number of key/value
pairs as %X.

2. %Y is guaranteed to have no more key/value pairs than
%X.

825

3. %X is guaranteed to have no more key/value pairs than
%Y.

4. None of the above.

Bonus 26: You can use the
MIME::Lite
module to send email with MIME attachments. I’ll give you
three types of attachments you might send; you give me the
MIME media type and subtype. For instance, if I said “An
HTML document,” you’d reply “text” and “html.” “Text” is
the media type, and “html” is the media subtype.

1. Plain text

2. A normal mail message, with headers

3. Generic binary data

Bonus 27: What system generates XS code from C and C++
programs, and in fact performs equivalent feats for Java, Tcl,
and Python?

Bonus 28: Name that module. This module, which is bundled
with
Perl, is a compiler backend that turns compiled Perl programs
back into source code. It’s sometimes helpful for seeing how
Perl has parsed your program.

Bonus 29: True or false: with the latest release of Perl, you
can now overload dereferencing, so that you can specify new
behavior for what happens when you access, say, the scalar
value behind a scalar reference, or a hash value behind a hash
reference.

Bonus 30: When you create a Perl/Tk program, you choose a
geometry manager to lay out your widgets. What are the three

826

geometry managers?

Bonus 31:
Slashdot runs on Perl code. Answer these three questions
about the software underlying Slashdot.

1. What is the software underlying Slashdot called?

2. What web server does Slashdot use?

3. What database does Slashdot use?

Bonus 32: A bonus on cruises to other cold places.

Cruises to Antarctica typically originate on which two
continents?

What is the name of the largest Antarctic base?

Bonus 33: What pod directive is used to explicitly indent text,
as in an itemized list?

Bonus 34: The act of translating hostnames to Internet
addresses is called name resolution, and the infrastructure
supporting it is called DNS. Microsoft might want to call that
the Digital Nervous System, but most of us know that it really
stands for what?

Bonus 35: Rhyme that keyword: I’ll give you four English
words, you give me a
Perl built-in that rhymes with it.

1. Peach

2. Sneeze

3. Slipped

4. Power

827

Bonus 36: If the actual temperature outside is forty degrees
Fahrenheit, and the wind speed is forty miles per hour, what
is the wind chill? That is, how cold does it feel? Your answer
must be within three degrees Fahrenheit.

Bonus 37: This
module provides a function called ReadMode that lets the
users of your program type characters without them echoing
on the screen.

Bonus 38: What is a thousand terabytes called?

Bonus 39: This is Apple Computer’s version of a new
standard for connecting multimedia devices to your personal
computer. It uses a plug-in serial connector and a data transfer
rate in the hundreds of megabits, and lets you chain devices
together without terminators.

Bonus 40: The person writing these questions is sick of
hearing about ASPs. There are two completely different
common expansions of this acronym, and he hates them both.
What are the two expansions?

Bonus 41: A BEGIN
block is executed during compilation; an END
block is executed when the interpreter exits. Perl now has two
new kinds of blocks. One is executed at the end of
compilation, and the other is executed at the beginning of
execution. What are the names of these two blocks?

Bonus 42: I’m looking for two mathematical functions that
Perl provides. If you apply both functions to the same number
and sum the squares of the results, the answer will always be
1. What are the two functions?

828

Bonus 43: The $] variable contains the version number of
your Perl, which is probably 5, plus the patchlevel divided by
some number. What is that number?

Bonus 44: What does this print?
$x = "1d4"; substr($x, 1, 1)++; print $x-1;

Bonus 45: What array holds the command-line arguments for
a Perl program?

Bonus 46: What regular expression
metacharacter represents a word boundary?

Bonus 47: This company patented its affiliate program, which
enables web sites to exchange customers for a small
commission. They patented one-click ordering, and took their
rival Barnes & Noble to court for infringement. What is this
online bookseller founded by Jeff
Bezos?

Bonus 48: A device is 80% likely to last ten years and 20%
likely to last five years. What is the mean time between
failures?

Bonus 49: With this
flag,
Perl pretends that every block in your program has a use
warnings all declaration. Name this single letter.

Bonus 50: What regular expression extension keeps Perl from
backtracking?

Bonus 51: This
function turns a list of values into a string, but it’s not join.
You can specify whether particular values should be
interpreted as big-endian numbers, or hexademical numbers,

829

or uuencoded strings, or regular characters. What is this
four-letter function?

830

Toss-up Answers

T1. POTATOs.

T2. CENSORSHIP

T3. MAIN

T4. GEEK CRUISES

T5. $^T or $BASETIME

T6. PNG (can be pronounced “ping”)

T7. PERCENT

T8. Donald
KNUTH

T9. @ISA

T10. SEARCH.CPAN.ORG

T11. DVD

T12. META

T13. LOWERCASE T

T14. SAMBA

T15. EXEC

T16. UNICODE

T17. NET::

T18.

831

QUEEN ELIZABETH II (also accept ELIZABETH
Alexandra Mary WINDSOR) (Tidbit: The web site for the
royal family uses Linux.)

T19. PROCESS ID or RETURN VALUE of fork

T20. The
ILOVEYOU virus

T21. CONFIG

T22. BEOWULF

T23. UNLINK

T24.
CRYPTONOMICON

T25. LIB

T26. DTD or DOCUMENT TYPE DEFINITION

T27. STAT

T28. SDBM

T29. $= or $FORMAT_LINES_PER_PAGE

T30. IPV6 or IPNG

T31.
PERLLOCAL.pod (You can type perldoc perllocal
to see what modules have been installed on your system.)

T32. TIED

T33. JANUARY. (Yes, the winter solstice is in December,
and that’s the longest day. But the longest day has neither the
latest sunrise nor the earliest sunset.)

832

T34. TAINTed

T35. LVALUE

T36. POE

T37. 63

T38. SEEK

T39. GIBBOUS

T40. WANTARRAY

T41. GREP

833

Bonus Answers

B1. DBD::ORACLE

B2. DOG

B3. TWENTY

B4. UNTIL, VALUES, TIMES, SEMOP, TRUNCATE,
CHROOT

B5. MERCED

B6. 84 (Full credit for an answer between 74 and 94.)

B7. YES, YES, NO, NO

B8. -1

B9. APACHE::THROTTLE

B10. 0X (“ZERO” and “EX”)

B11. 7, 5, 3C

B12. PUBLIC KEY cryptography

B13.
The CATHEDRAL and the BAZAAR

B14. IPC::OPEN2 or IPC::OPEN3

B15. CAMEL => PROGRAMMING
PERL, EMU => Learning PERL/TK, LLAMA =>
LEARNING PERL, LEOPARD => ADVANCED PERL
Programming, SHEEP => The Perl COOKBOOK, WOLF =>
Mastering ALGORITHMS with Perl

834

B16. LEFT, RIGHT, LEFT, RIGHT

B17. YES, NO, YES, NO, YES

B18. CSS (DeCSS is the program that decrypts CSS),
CONTENT SCRAMBLING SYSTEM

B19. TIESCALAR, FETCH, STORE

B20. LUSITANIA

B21. PDL

B22. IRC or INTERNET RELAY CHAT, EFNET, P U R L

B23. DATA::DUMPER

B24. ©, ö, è

B25. 2

B26. TEXT/PLAIN, MESSAGE/RFC822, APPLICATION/
OCTET-stream

B27. SWIG

B28. B::DEPARSE

B29. TRUE

B30. PACKer, GRIDder, PLACEr.

B31. SLASHcode, APACHE, MySQL

B32. AUSTRALIA and SOUTH AMERICA, MCMURDO

B33. OVER

B34. DOMAIN NAME SYSTEM

B35. EACH, KEYS, CRYPT, OUR

835

B36. TEN (accept between SEVEN and THIRTEEN)

B37. TERM::READKEY

B38. PETABYTE

B39. FIREWIRE

B40. APPLICATION SERVICE PROVIDER and ACTIVE
SERVER PAGEs

B41. CHECK and INIT

B42. SINe and COSine

B43. 1000

B44. 9999

B45. ARGV

B46. \B (no need to specify case)

B47. AMAZON

B48. NINE years

B49. -W (if the player doesn’t say “Capital W,” say “be more
specific”)

B50. ?>

B51. PACK

836

Chapter 36. The Perl Wizard’s Quiz

Tom Christiansen
Answers are at the end of the article.

1. What value is returned by a lone return statement?

a. The empty list value ().

b. The undefined value in scalar context, and the
empty list value () in list context.

c. The result of the last evaluated expression in that
subroutine’s block.

d. The undefined value.

2. What’s the difference between /^Foo/s and
/^Foo/?

a. The first would allow the match to cross newline
boundaries.

b. The first would match Foo other than at the start of
the record if the previous match were /^Foo/
gcm, new in the 5.004 release.

c. The second would match Foo other than at the start
of the record if $* were set.

d. There is no difference because /s only affects
whether dot can match newline.

837

3. What does length(%HASH) produce if you have 37
random keys in a newly created hash?

a. 5

b. 37

c. 74

d. 2

4. What does read return at end of file?

a. 0

b. “0 but true”

c. “\0”

d. undef

5. How do you produce a reference to a list?

a. [@array]

b. \($s, @a, %h, &c)

c. You can’t produce a reference to a list.

d. \@array

6. Why aren’t
Perl’s patterns regular expressions?

a. Because Perl allows both minimal matching and
maximal matching in the same pattern.

b. Because Perl uses a non-deterministic finite
automaton rather than a deterministic finite
automaton.

838

c. Because Perl patterns can have look-ahead
assertions and negations.

d. Because Perl patterns have backreferences.

7. Why doesn’t Perl have overloaded functions?

a. Because you can inspect the argument count, return
context, and object types all by yourself.

b. It does, along with overloaded operators as well as
overridden functions and methods.

c. Because Perl doesn’t have function prototypes.

d. Because it’s too hard.

8. Why is it hard to call this function: sub y {
“because” }?

a. It’s not.

b. Because y is a predefined function.

c. Because it has no prototype.

d. Because y is a kind of quoting operator.

9. How do you print out the next line from a filehandle
with all its bytes reversed?

a. print reverse scalar <FH>

b. print scalar reverse scalar <FH>

c. print scalar reverse <FH>

d. print reverse <FH>

10. When would local $_ in a function ruin your day?

839

a. When your caller was in the middle of a
while(<>) loop.

b. When your caller was in the middle of a
while(m//g) loop.

c. When $_ was imported from another module.

d. When your caller was in the middle of a
foreach(@a) loop.

11. Which of these is a difference between C++ and
Perl?

a. C++ can have objects whose data cannot be
accessed outside its class, but Perl cannot.

b. C++ supports multiple inheritance, but Perl does
not.

c. C++ will not call destructors on objects that go out
of scope if a reference to that object still exists, but
Perl will.

d. Perl can have objects whose data cannot be
accessed outside its class, but C++ cannot.

12. Assuming both a local($var) and a my($var)
exist, what’s the difference between ${var} and
${“var”}?

a. ${var} is the package variable $var, and
${“var”} is the scoped variable $var.

b. There is no difference.

c. ${var} is a package variable $var, and
${“var”} a global variable $var.

840

d. ${var} is the lexical variable $var, and
${“var”} is the dynamic variable $var.

13. If EXPR is an arbitrary expression, what is the difference
between $Foo::{EXPR} and *{“Foo::”.EXPR}?

a. The second is disallowed under use strict
“refs”.

b. The first happens at runtime, the second at compile
time.

c. One is just a regular hash, the other a typeglob
access for a strangely named variable.

d. The first can create new globs dynamically, but the
second cannot.

14. Assuming $_ contains HTML, which of the following
substitutions will remove all tags in it?

a. s/<.*>//g;

b. s/<.*?>//gs;

c. s/<\/
?[A-Z]\w*(?:\s+[A-Z]\w*(?:\s*=\s*(?:([″′]).*?\1|[\w-
.]+))?)*\s*>//gsix;

d. You can’t do that.

15. What does new $cur->{LINK} do? (Assume the
current package has no new function of its own.)

a. $cur->new()->{LINK}

b. new($cur->{LINK})

841

c. $cur ? ($cur->{LINK}->new()) :
(new()->{LINK})

d. $cur->{LINK}->new()

16. What does $result = f() .. g() really return?

a. It produces a syntax error.

b. True if and only if both f() and g() are true, or if
f() and g() are both false, but returns false
otherwise.

c. False so long as f() returns false, after which it
returns true until g() returns true, and then starts
the cycle again.

d. The last number from the list of numbers returned
in the range between f()’s return value and
g()’s.

17. What happens when you return a reference to a private
variable?

a. The underlying object is silently copied.

b. Nothing bad—it just works.

c. The compiler doesn’t let you.

d. You get a core dump later when you use it.

18. How do you give functions private variables that retain
their values between calls?

a. Include them as extra parameters in the prototype
list, but don’t pass anything in at that slot.

b. Use localized globals.

842

c. Create a scope surrounding that sub that contains
lexicals.

d. Perl doesn’t support that.

19. What happens to objects lost in “unreachable”
memory, such as the object returned by $Ob->new()
in this block?

{ my $ap; $ap = [$Ob->new(), \$ap]; }

a. Their destructors are called when the memory
becomes unreachable.

b. Their destructors are never called.

c. Perl doesn’t support destructors.

d. Their destructors are called when that interpreter
thread shuts down.

20. What does Perl do if you try to exploit the execve(2)
race condition involving setuid scripts?

a. Sends mail to root and exits.

b. Runs the fake script with setuid permissions.

c. Runs the fake script, but without setuid
permissions.

d. Reboots your machine.

Answers

1. b. This way functions that wish to return failure can just
use a simple return without worrying about the context
in which they were called.

843

If you answered a: That would only be true in list
context.

If you answered c: That’s what happens when the
function ends without return being used at all.

If you answered d: That would only be true in scalar
context.

2. c. The deprecated $* flag does double duty, filling the
roles of both /s and /m. By using /s, you suppress any
settings of that spooky variable, and force your carets
and dollars to match only at the ends of the string and
not at the ends of the line as well—just as they would if
$* weren’t set at all.

If you answered a: /s only makes a dot able to match a
newline, and then only if the string actually has a
newline in it.

If you answered b: Although the /c modifier is indeed
new as of 5.004 (and is used with /g), this has no
particular interaction with /s.

If you answered d: /s does more than that.

3. a. length is a built-in function prototyped as sub
length($), and that scalar prototype silently changes
aggregates into radically different forms. The scalar
sense of a hash is false (0) if it’s empty, otherwise it’s a
string representing the fullness of the hash buckets, like
18/32 or 39/64. The length of that string is likely to
be 5. Likewise, length(@a) would be 2 if there were
37 elements in @a.

844

If you answered b: length %HASH is nothing at all
like scalar keys %HASH, which is a good bit more
useful.

If you answered c: length %HASH is nothing at all
like the size of the list of all the keys and values in
%HASH.

If you answered d: You probably think it decided there
were 37 keys, and that length(37) is 2. Close, but not
quite.

4. a. A defined (but false) 0 value is the proper indication
of the end of file for read and sysread.

If you answered b: You’re thinking of the ioctl and
fcntl functions, which return this when the C version
returned 0, reserving undef for when the C version
returns -1. For example,
fcntl(STDIN,F_GETFL,1) returns “0 but true”
depending on whether and how standard input has been
redirected. (The F_GETFL flag can be loaded from the
Fcntl.pm module.)

If you answered c: That’s a string of length 1 consisting
of the NULL character, whose ord is 0, which is false.
The string, however, is true. read doesn’t return
strings, but rather byte-counts.

If you answered d: That would signal an I/O error, not
normal end of file. The circumfix operator <> returns
undef when it reaches end of file, but a normal read
does not.

845

5. c. A list is not an array, although in many places one
may be used for the other. An array has an AV allocated,
whereas a list is just some values on a stack somewhere.
You cannot alter the length of a list, for example, any
more than you could alter a number by saying something
like 23++. While an array contains a list, it is not a list
itself.

If you answered a: That makes a reference to a newly
allocated anonymous array, and populates it with a copy
of the contents of @array.

If you answered b: The backslash operator is distributive
across a list, and produces a list in return, this being
(\$s, \@a, \%h, \&c) in list context. In scalar
context, it’s a strange way to get a reference to the
function &c.

If you answered d: @array is not a list, but an array.

6. d. A regular expression (by definition) must be able to
determine the next state in the finite automaton without
requiring any extra memory to keep around previous
state. A pattern /([ab]+)c\1/ requires the state
machine to remember old states, and thus disqualifies
such patterns from being regular expressions in the
classic sense of the term.

If you answered a: The mere presence of minimal and
maximal repetitions does not disqualify a language from
being regular.

If you answered b: Both NFAs and DFAs can be used to
solve regular expressions. Given an NFA, a DFA for it
can be constructed, and vice versa. For example,

846

classical grep uses an NFA, while classical egrep a
DFA. Whether a pattern matches a particular string
doesn’t change, but where the match occurs may. In any
case, they’re both regular. However, an NFA can also be
modified to handle backtracking, while a DFA cannot.

If you answered c: The (?=foo) and (?!foo)
constructs no more violate the language’s regularity than
^ and $, which are also zero-width statements.

7. a. In
Perl, the number of arguments is available to a function
via the scalar sense of @_, the return context is available
via wantarray, and the types of the arguments via
ref (if they’re references) and simple pattern matching
like /^\d+$/ (otherwise). In low-level languages like
C++, where you can’t do this, you must resort to
overloading of functions.

If you answered b: Actually, Perl does support
overloaded operators via use overload, overridden
functions as in use Cwd qw!chdir!, and
overridden methods via inheritance and polymorphism.
It just doesn’t support functions automatically
overloaded on parameter signature or return type. Not
that such isn’t longed for.

If you answered c: Perl actually does have function
prototypes; however, this isn’t used for the traditional
sort of prototype checking, but rather for creating
functions that exactly emulate Perl’s built-ins, which can
implicitly force context conversion or pass-by-reference
without the caller being aware.

847

If you answered d: Just because it’s hard isn’t likely to
rule out something from being implemented—someday.

8. d. The y/// operator is the sed-savvy synonym for tr.
That means y(3) would be like tr(3), which would
be looking for a second string, as in tr/a-z/A-Z/,
tr(a-z)(A-Z), or tr[a-z][A-Z].

If you answered a: Most people don’t call functions with
ampersands anymore. If they did, as in &y(), it
wouldn’t be so hard.

If you answered b: y isn’t really a function, per se. If it
were, you would never see y!abc!xyz!, since proper
functions do not like getting banged on that way.

If you answered c: Functions don’t require prototypes in
Perl.

9. b. Surprisingly enough, you have to put both the
reverse and the <FH> into scalar context separately
for this to work.

If you answered a: Although scalar <FH> did
retrieve just the next line, the reverse is still in the
list context imposed on it by print, so it takes its list of
one element and reverses the order of the list, producing
exactly the next line. An expensive way of writing
print scalar <FH>.

If you answered c: Although the first use of scalar
inhibits the list context being imposed on reverse by
print, it doesn’t carry through to change the list
context that reverse is imposing on <FH>. So

848

reverse catenates all its arguments and does a
byte-for-byte flip on the resulting string.

If you answered d: That reads all lines in FH, then
reverses that list of lines and passes the resulting
reversed list off to print. This is actually a very useful
thing, and simulates tail -r behavior but without the
annoying buffer limitations of that utility. Nonetheless,
it’s not what we want.

10. b. The /g state on a global variable is not protected with
local. That’ll teach you to stop using locals. Too bad $_
can’t be the target of a my—yet.

If you answered a: However, if you do a while(<>)
and forget to first localize $_, you’ll hurt someone
above you. That’s because even though foreach
implicitly localizes $_, the while (<>) construct
does not.

If you answered c: Doing a local on an imported
variable is not harmful. Of course, in the case of $_, it’s
virtually unnecessary, since $_ is always forced to mean
the version in the main package, that is, $main::_.

If you answered d: This looks close to the bizarre
phenomenon known as variable suicide, but that only
occurs in ancient Perl versions.

11. d. Perl can use closures with unreachable private data as
objects, and C++ doesn’t support closures. Furthermore,
C++ does support pointer arithmetic via int *ip =
(int*)&object, allowing you to look all over the
object. Perl doesn’t have pointer arithmetic. It also

849

doesn’t allow #define private public to
change access rights to foreign objects. On the other
hand, once you start poking around in /dev/mem, no
one is safe.

If you answered b: Both support multiple inheritance.

If you answered c: Exchange “Perl”
and “C++” in that answer, and you would be telling the
truth. C++ is too primitive to know when an object is no
longer in use, because it has no garbage collection
system. Perl does.

12. d. Odd though it appears, this is how it works. Note that
because the second is a symbol table lookup, it is
disallowed under use strict “refs”. The words
global, local, package, symbol table, and dynamic all
refer to the kind of variables that local affects,
whereas the other sort, those governed by my, are
variously known as private, lexical, or scoped variables.

If you answered a: Try again. You’re close.

If you answered b: One is the scoped variable, the other
the package variable. Which is which, though?

If you answered c: There is no difference between a
package variable and a global variable. All package
variables are globals, and vice versa.

13. a. Dereferencing a string with *{“STR”} is forbidden
under the refs stricture, although *{STR} is allowed.
This is similar in spirit to the way ${“STR”} is always
the symbol table variable, while ${STR} may be the

850

lexical variable. If it’s not a bareword, you’re playing
with the symbol table in a particularly dynamic fashion.

If you answered b: Assuming that the expressions don’t
get resolved at compile time, this all has to wait until run
time. Something like *Foo::varname, however,
would be looked up at compile time.

If you answered c: The %Foo:: hash is always the
symbol table associated with package Foo; such a hash
can hardly be called regular. Both versions actually refer
to the same typeglob, although somewhat differently.

If you answered d: Although you can get the symbol
table of the Foo package via the %Foo:: hash, you
cannot usefully generate new typeglobs (symbols) this
way. You could copy old ones into that slot, though,
effectively doing the Exporter’s job by hand.

14. d. If it weren’t for HTML comments, improperly
formatted HTML, and tags with interesting data like
<SCRIPT>, you could do this. Alas, you cannot. It
takes a lot more smarts, and quite frankly, a real parser.

If you answered a: As written, the dot will not cross
newline boundaries, and the star is being too greedy. If
you add a /s, then yes, it will remove all tags—and a
great deal else besides.

If you answered b: It is easy to construct a tag that will
cause this to fail, such as <IMG SRC=‘foo.gif’
ALT=“> ”>.

If you answered c: For a good deal of HTML, this will
actually work, but it will fail on cases with annoying

851

comments, poorly formatted HTML, and tags like
<SCRIPT> and <STYLE>, which can contain things
like while (<FH>) {} without those being counted
as tags. Comments that will annoy you include <!--
<foo bar = “-->”> which will remove characters
when it shouldn’t; it’s just a comment followed by “>.
And even something like <!-- <foo bar = ”-->
most browsers will get right, but the substitution will
not. And if you have improper HTML, you get into even
more trouble, like this: <foo bar = “bleh” @>
text text text <foo bar = “bleh”>.
Here, the .*? will gobble up much more than you
thought it would.

15. a. The indirect object syntax only has a single token
lookahead. That means if new is a method, it only grabs
the very next token, not the entire following expression.
This is why new $obj[23] arg doesn’t work, as
well as why print $fh[23] “stuff\n” doesn’t
work. Mixing notations between the OO and IO
notations is perilous. If you always use arrow syntax for
method calls, and nothing else, you’ll never be surprised.

If you answered b: If the current package did in fact have
its own new function, then this would be the right
answer, but for the wrong reasons. Within a class, it
might appear to make no difference since the new
subroutine would get its argument in $_[0] whether
it’s called as a function or a method. However, a method
call can use inheritance, while a function call never does.
That means esoteric overridden new methods would be
duped out of calling their derived class’ constructor first,
and we wouldn’t want that to happen, would we?

852

If you answered c:
Perl may be crazy, but it’s not quite that crazy. Yet.

If you answered d: Just because it looks like a unary
function doesn’t mean a method call parses like one.
You just want it to work this way. If you want that, write
that.

16. c. This is scalar context, not list context, so we have the
bistable flip-flop range operator famous in parsing of
mail messages, as in $in_body = /^$/ ..
eof(). Except for the first time f() returns true, g()
is entirely ignored, and f() will be ignored later when
g() is evaluated. Double dot is the inclusive range
operator; f() and g() will both be evaluated on the
same record. If you don’t want that to happen, the
exclusive range operator, triple dots, can be used instead.
For extra credit, describe this: $bingo = (a()
.. b()) … (c() .. d());

If you answered a: You’d be amazed at how many things
in Perl don’t cause syntax errors.

If you answered b: That sounds more like a negated
logical xor. A logical xor is !$a != !$b, so you’ve
just described !$a == !$b. Interesting, and perhaps
even useful, but unrelated to .., our scalar range
operator.

If you answered d: That might work in list context, but
never in scalar. The list operator .. is a completely
different creature than the scalar one. They’re just
spelled the same way, kind of like when you can the

853

rusty old can down by the guys’ can just because you
can. Context, as always, is critical.

17. b. Perl keeps track of your variables, whether dynamic or
otherwise, and doesn’t free things before you’re done
using them.

If you answered a: Even though the reference returned is
for all intents and purposes a copy of the original (Perl
uses return by reference), the underlying referent has not
changed.

If you answered c: Perl seldom stops you from doing
what you want to do, and tries very hard to do what you
mean to do. This is one of those cases.

If you answered d: Perl is not C or C++.

18. c. Only lexical variables are truly private, and they will
persist even when their block exits if something still
cares about them. Thus { my $i = 0; sub
next_i { $i++ } sub last_i { --$i }
} creates two functions that share a private variable. The
$i variable will not be deallocated when its block goes
away because the next_i and last_i subroutines
need to be able to access it.

If you answered a: Perl is not the Korn shell, nor
anything like it. If you tried this, your program probably
wouldn’t even compile.

If you answered b: The local operator merely saves
the old value of a global variable, restoring that value
when the block in which the local occurred exits. Once
the subroutine exits, the temporary value is lost. Before

854

then, other functions can access the temporary value of
that global variable.

If you answered d: It would be difficult to keep private
state in a function otherwise.

19. d. When the interpreter exits, it first does an exhaustive
search looking for anything that it allocated. This allows
Perl to be used in embedded and multithreaded
applications safely, and furthermore guarantees
correctness of object code.

20. If you answered a: Under the current implementation,
the reference-counted garbage collection system won’t
notice that the object in $ap’s array cannot be reached,
because the array reference itself never has its reference
count go to zero.

If you answered b: That would be very bad, because then
you could have objects whose class-specific cleanup
code didn’t get called ever.

If you answered c: A class’s DESTROY function, or that
of its base classes, is called for any cleanup. It is not
expected to deallocate memory, however.

21. a. It has been said that all programs advance to the point
of being able to automatically read mail. While not quite
there yet (well, without loading a module), Perl will at
least automatically send it.

If you answered b: That would be bad. Very Bad. What
do you think we are? A shell or something?

If you answered c: It would be improper to run anything
at all in the face of such naughtiness.

855

If you answered d: An appealing idea, though, isn’t it?
After all, Perl does possess super(user)powers at this
point. You just never know what it might do. In the
interests of courtesy, though, Perl stays out of your
power supply just as it stays out of your living room.

856

Part V. Poetry

In this part:

Chapter 37

Chapter 38

Chapter 39

I received the following note from a poetry teacher as this
book was zooming toward publication:

What the heck is a Perl poem? I’ve been writing and
teaching poetry since 1961, and I never heard of the
term. I’d like to know so as to see if my students and I
can write perl(s).

My response:

Conventional poems are passive: they can’t do anything
other than sit on a page and wait for people to read
them. Perl poems, on the other hand, are functional:
they are active programs that a computer can execute.
What the poem/program does is limited only by the
poet’s imagination.

The most flexible computer language naturally lends itself to
this most flexible linguistic endeavor. Perl poetry has been
around since 1990; the original Perl poet, Sharon Hopkins,
has had her work published in the Economist and Guardian.

In this section, Damian Conway discusses his Coy module,
which renders error messages as haiku. Sean Burke then

857

shows you how to use Perl to find rhymes with the proper
stress and meter, and Kevin Meltzer and I conclude the
section with the results of the first ever Perl Poetry Contest.

858

Chapter 37. Just Another Perl
Haiku

Damian Conway

I often think of
Perl programs as the
haiku
of the software world.

Both are compact, dense,
powerful, and frequently
a little obscure.

So it’s no surprise
that
haiku are popular
with Perl programmers.

Even so, I had
no idea how popular,
until I wrote Coy.

What is Coy? Let me
quote from the docs you’ll find with
this CPAN module.

Error messages

859

strewn across my terminal.
A vein starts to throb.

Their reproof adds the
injury of insult to
the shame of failure.

When a program dies
what you need is a moment
of serenity.

The Coy.pm
module brings tranquility
to your debugging.

The module alters
the behavior of die and
warn (and croak and carp).

Like Carp.pm,
Coy reports errors from the
caller’s point of view.

But it prefaces
the bad news of failure with
a soothing poem.

860

The Tao of Haiku

A
haiku is a
short poem that’s 17
syllables in length.

Traditionally,
its topic is an image
taken from nature

(though the Japanese
understanding of “nature”
is subtle and broad).

True haiku don’t try
to make a point; they merely
convey an image.

Of course, the image
itself may make a point, but
that’s not the same thing!

The form developed
in the 1600’s from
the longer tanka.

In fact, a haiku
is the hokku(the “starting
verse”) of a tanka.

861

The first adept of
the haiku format was the
Zen poet Basho.

His best known poem
captures the wonder of an
everyday event.

It’s: furike ya
kawazu tabikomu
mizu no oto.

Which is normally
translated as: An old pond.
A frog jumps in. Plop!

As you see, there’s no
message. The
haiku is a
pure evocation.

862

Haiku Online

The 5-7-5
art form is widely practiced
on the Internet.

There are many sites
devoted to haiku and
to related styles

(most notably, the
satirical variants
known as senryu).

The easiest place
to start is with a search of
the Yahoo! index.[8]

Jane Reichhold also
gives a superb summary[9]

of the haiku form.

And for a deeper
view, Keiko Imaoka’s
page is unsurpassed.[10]

There is even a
strictly SF variant
known as “SciFaiku.”[11]

863

[8] http://search.yahoo.com/bin/search?p=haiku
[9] http://www.faximum.com/aha.d/haidefjr.htm
[10] http://www.faximum.com/aha.d/keirule.htm
[11] http://www.scifaiku.com/

864

Artificial Haiku

Many web sites now
also feature haiku that
are not carbon-based.

In fact, the Web is
awash with generators
of Japanese verse.

A simple search[12] finds
over 5,000 links for:
+generate +haiku.

Silicon Graphics
even rigged a lava-lamp
to build (bad) haiku:

i think i’m wasted
i’ll wax the cats. cool clear earth
pigs are smarter. crash

(That is one of its
clearer efforts. Mostly it

just spouts gibberish.)

In contrast,
Garret

865

Kaminaga makes use of
a “haiku grammar.”[13]

Its simple rules (see
Haiku-Generating Grammar (by G. Kaminaga)) expand to give
correct syllables.

Haiku-Generating Grammar (by G. Kaminaga)

haiku: five_line seven_line five_line

five_line: one four | one three one | one one three | one two
two |

one two one one | one one two one | four
one | five

seven_line: one one five_line | two five_line | five_line one
one | five_line two

one: red | white | black | sky | dawns | breaks |
falls |

cranes | rain | pool | my | your | sun |
clouds | tree | Zen

two: drifting | purple | mountains | faces |
empty | temple |

ocean | thinking | zooming | rushing |
over | ricefields

three: peasant farms | computer | sashimi |
fishing boats | ethernet

four: CD Player | aluminum | yakitori |
chrysanthemums

866

five: resolutional | rolling foothills
rise

But they don’t encode
any English grammar, so
the results are poor:

empty computer
yakitori to empty.
your chrysanthemums

Richard
Decker and
Stuart
Hirshfield also use
grammars for
haiku.

But theirs are based on
real English sentence structures
(as in Haiku-Generating Grammar (by Decker and Hirshfield)).

Haiku-Generating Grammar (by Decker and Hirshfield)

haiku: form1 | form2 | form3

form1: article adjective noun
article noun verb preposition article
noun
adjective adjective noun

867

form2: noun preposition article noun
article adjective noun preposition
article noun
adjective noun

form3: article adjective adjective noun
preposition article adjective noun
article noun verb

noun: waterfall | river | breeze | moon
| rain | wind | sea | sky | storm

verb: shakes | drifts | has stopped |
struggles | whispers | grows | flys

adjective: liquid | gusty | flowing |
autumn | hidden | bitter | misty |
summer

As a result, they
generate quite plausible
(and lovely) haiku:

A liquid summer
wind. Under the gusty sky
a storm whispers. [sic]

Unfortunately,
their English grammar doesn’t
encode syllables.

868

Consequently, most
of the
haiku they produce
don’t scan correctly.

As these samples show,
a haiku generator
must balance two things:

It must use correct
English syntax and it has
to track syllables.

As we’ll see, Coy is
built around those two constraints:
grammar and meter.

[12] http://www.google.com/
search?hl=en&q=generate+haiku&btnG=Google+Search
[13] http://www.cs.stanford.edu/~zelenski/rsg/grammars/
Haiku.g

869

The Coy Module

Coy is simple to
use:
just add use Coy; to your
existing program.

Hereafter, any
calls to die, warn, croak, or carp
produce a haiku.

This magic is wrought
by assigning a handler
to $SIG{_ _DIE_ _}.

That handler passes
the string it receives to Coy’s
verse generator.

It then re-calls die
with the resulting haiku
as its argument.

The same approach is
applied to $SIG{_ _WARN_ _},
to catch warnings too.

Apart from handlers,

870

use Coy also exports two
extra subroutines.

These subs, transcend and
enlighten, can lend your code
a Zen overtone.

(But internally,
they are each
just a wrapper
around croak or carp.)

871

A Note About the Name

Just in case there’s still
anyone in the U.S.
who hasn’t sent mail…

Yes, I know you folks
spell the fish the same way as
the Japanese: koi.

We Aussies, like our
British forebears, prefer to
anglicize it: coy.

And the triple pun
(“coy: (a) fish; (b) calm; (c) trap”)
needs the English form.

But if you insist,
you can always dash this off
from your command line:

perl -> Koi.pm
print STDOUT "use Coy; 1;"
^D (or Z)

872

Inside the Coy Module

Coy’s generator
is data-driven and has
five
main components:

• A cross-linked list of
words that provides its basic
vocabulary.

• A mechanism
for selecting relevant
words for each

haiku.

• A set of sentence
templates that ensure the text
is grammatical.

• A set of routines
that correctly inflect words
within each sentence.

• An algorithmic
syllable counter, which checks
that each

haiku scans.

873

We’ll briefly look at
how each of these components
goes about its task.

874

Mere Words

Ultimately, a
haiku is
just a sequence
of well-chosen words.

Coy’s words are stored in
a hierarchical, cross-linked

vocabulary.

Structure of the Coy Hierarchical Vocabulary shows an
abbreviated sample
of that database.

The top level of
word categorization
is by subject nouns.

For each such noun, a
set of global constraints and
sounds is then given.

The sounds are used as
verbs to generate clauses
describing noises.

In addition, a
list of more general verb forms

875

(act) is specified.

Each such verb, listed
in third-person singular,
may take attributes.

These attributes list
constraints on the verb’s usage
(such as location).

The entry for duck =>
swims, for instance, locates it
as suraquatic.

Structure of the Coy Hierarchical Vocabulary
$database = {

duck => {
category => ["bird"],
sound => ["quacks"],

act => { swims => {
location => "suraquatic",

direction => "horizontal",

synonyms => ["paddles"],

associations => "sink wet" } },
},
fox => {

category => ["animal",
"hunter"],

sound => ["barks"],
act => { trots => {

location => "terrestrial",

876

associations => "smart problem" } },
},
lover => {

category => ["human"],
sound => ["sighs", "laughs"

],
minimum => 2,
maximum => 2,
act => { kisses => {

location => "terrestrial",

associations => "connection", },
quarrels => {

location => "terrestrial",

associations => "argument" } },
},

};

Other attributes
limit the subject count for
particular verbs.

lover => kisses, for
example, is limited
to exactly 2.

877

Random Harvesting

Coy’s next component
is an association
selection system.

This system ensures
that the
haiku relates to
the
error message.

The message is first
scanned to find significant
words (principally nouns).

These words are found by
deleting “stop words” from the
original text.

“Stops” are words such as
the, to, it, and the like, that
don’t convey content.

The remaining words
become a “filter” for the
vocabulary.

Each word selected
for the

878

haiku is compared
against this filter.

If the selected
word’s associations don’t
match, it’s rejected.

This leads to problems
though, if the filter words are
too unusual.

In extreme cases,
they may filter out the whole
vocabulary.

To prevent this, Coy
can turn the word filter off
temporarily.

879

Filling in the Blanks

The third component
generates the
haiku, by
filling in templates.

Those templates encode
various grammatical
structures for
haiku.

The generator
selects one and fills it in
with relevant words.

Sample English Grammar Templates Used by Coy.pm shows a
few of the grammatical
templates Coy uses.

Sample English Grammar Templates Used by Coy.pm

haiku_fragment: sentence | description | exclamation

sentence: noun verb | noun verb direction | noun verb
location

description: noun location | pres_participle noun

exclamation: noun

880

verb: simple_present | pres_participle

Note that the grammar
has no terminals: they’re drawn
from the database.

Templates are chosen
at random, as often as
needed (Sample English Grammar Templates Used by Coy.pm).

The chosen template
is then filled in with “filtered”
semi-random words.

The noun to be used
is randomly selected,
and constrains the verb.

Any later parts
of the grammar are likewise
constrained by that verb.

These are typically
adverbial phrases of
place or direction.

For instance, suppose
the filtered noun chosen is
the word hummingbird.

Immediately

881

this constrains the verb to words
like flies, darts, or nests.

If flies were chosen,
that would then constrain the place
to be aerial.

Whereas, if nests were
chosen, the place would have to
be arboreal.

Note that Coy needs no
AI techniques to enforce
these sequenced constraints.

The hierarchical
vocabulary structure
itself ensures them.

882

The Other Type of Grammar

But selecting the
right parts of speech—and words to
match—is not enough.

The
module must then
adjust the selected words’
grammatical
form.

Specifically, the
words used must be inflected
for number and tense.

Lingua::EN::Inflect
is used to supply correct
noun/verb agreement.

Each time a grammar
template is filled, Coy selects
a random number.

That number becomes
the number of subjects for
the current sentence.

If 1 is chosen,
the subject noun and its verb

883

are left as they are.

Otherwise, Inflect’s
PL sub is used to change
them both to plurals.

Lingua::EN::Inflect
can also inflect present
to continuous.

The PART subroutine
takes singular verbs and forms
their participles.

This is useful to
increase the variety
of sentences used.

Thus, sometimes birds fly,
some birds are flying, and the
rest are flying birds.

Inflecting present
participles is harder
than it might first seem.

Consider the verbs:
bat, combat, eat, bite, fulfil(l),
lie, sortie, and ski.

Each adds -ing after
it (all verbs do), but each root

884

inflects differently.

The rules are complex,
but the PART sub knows them all,
and can apply them.

885

Counting the Beat

The four components
above ensure the
haiku
parses and makes sense.

However, there’s no
guarantee that the result
scans 5–7–5.

To ensure
perfect
meter, each selected word’s
syllables are checked.

This occurs while the
grammar templates are filled in
(as words are filtered).

The selector tracks
the progressive syllable
count of the words used.

If the count exceeds
17, the selector
can reject a word.

The selection can
also backtrack further, if

886

that’s necessary.

In some cases this
might cause the template itself
to be rejected.

The template-filling
process then repeats until
the full
haiku scans.

887

But Does the Bear Dance?

By now you’re thinking
“Who cares how the magic works:
Show me the MONEY!”

So here are a few
of Coy’s more interesting
creative efforts…

Given the fatal
error: die “Bad argument”,
Coy replied with this:

A pair of lovers
quarrel beside a stream. Four
thrushes fly away.

Note the allusion
to the Bad argument in
the error message.

Haiku are never
repeated. A second die
“Bad argument” gave:

Two old men fighting
under a sycamore tree.
Homer Simpson sighs.

888

In contrast, for a
croak “Missing file”, Coy captured
the sense of loss with:

Bankei weeping by
a lake. Ryonen dying.
Seven howling bears.

Coy can’t always reach
this exalted level of
(oblique) relevance.

For example, it
also produced this response
to croak “Missing file”:

A swallow nesting
in the branches of an elm
tree. A waiting fox.

Sometimes Coy’s output
suggests a macabre sense
of humor, as in:

A wolf leaps under
a willow. Two old men sit
under the willow.

In other cases,
its inscrutability
is most authentic:

889

Two young women near
Bill Clinton’s office. A cat
waiting by a pond.

890

Extending the Module

Eventually
even Coy’s built-on-the-fly
haiku get boring.

The module only
has a small set of words from
which to build poems.

After a while the
same topics start recurring—
Coy’s “theme” emerges.

True to its roots, Coy
always writes about fish, birds,
animals, and trees.

That fixation on
certain flora and fauna
soon begins to grate.

So Coy provides a
way to configure its own
vocabulary.

Any code placed in
~/.coyrc
runs at compile-time.

891

You can use that file
to extend
Coy.pm’s
mental horizons.

Adding a Star Wars Flavor to the .coyrc File shows how
to add, for example, a
Jedi leitmotif.

Adding a Star Wars Flavor to the .coyrc File
> cat ~/.coyrc
noun { wookie => {

category => [Sentient],
sound => ["roars", "grunts",

"bellows"],
act => { sits => { location

=> Arboreal },
fights => { minimum

=> 2, association => "argument" }}}};
personage "R2D2", "Darth Vader",
"Obi-wan", "George Lucas";
place "Mos Eisley", "the Death
Star", "Skywalker Ranch";
tree "Kashyyyk oak", "Alderaan
mangrove";
fruit_tree "Ewok-fruit", "Yavin mango",
"Hothberry";

892

Is There a Poet in the House?

At TPC in
1999 I ran
a
haiku contest.

At my talk on Coy
I asked the audience to
write me some poems.

The two cleverest
(IMHO)
would each get a book.

David
Adler won
the first, by demonstrating
that blackmail’s an art:

On-the-spot haiku
written on a lady’s back.
Know we have pictures![14]

Dean
Hudson won by
coercion too, though his was
metaphysical:

893

Your book entices,
fork it over, friend Aussie.
Jedi mind tricks work.

[14] http://www.stonehenge.com/merlyn/Pictures/
99-08-TPC3/Day-2-Sun/?start=62&end=64

894

It Seemed Like a Good Idea at the
Time

Picking those two gems
from the hoard of glittering
entries was great fun.

So I decided
to expand the contest to
the whole conference.

I knew I needed
help: Mark Jason
Dominus
and Elaine
Ashton.

They kindly agreed
to lend their artistic good
taste as co-judges.

Then Tim
O’Reilly
generously donated
prizes: book vouchers.

Next we collected
haiku from the 800
or more delegates.

895

From over fifty
entries we selected two
as the joint winners.

Michael
Schwern triumphed
with a meta-haiku that’s
true Perl poetry:

Life ends with a crash
require '

Coy.pm';
&laughter while $I, die;

Kevin
Hackman won
too, for this chill augury
against the Dark Side:

fall leaves blanket ground
redmond dreams darkly—beware!
winter brings penguins

896

Chapter 38. Searching for Rhymes
with Perl

Sean M. Burke

La poésie doit être faite par tous.

Poetry is for everyone to make.

——Lautréamont (Isidore Ducasse, 1846–1870)

Wherever I go, people always come up to me and say “Sean,
you gotta help me—I need to find a three-syllable word that
rhymes with toad.”
And my answer is always the same; I always say “Well, we’re
going to have to pull out the Perl for this one!”

Because, while TPJ articles constantly demonstrate that Perl
is good at everything from designing sundials to peppering
IRC with Eliza bots, one thing that it’s really good at is
making short little programs for
searching
text. And that’s what this article is about—how to search text
(specifically wordlists or pronunciation databases) for rhymes
of various kinds.

Where to Look

If this article were about rhyming in Spanish, Italian, or
Finnish, it’d be a whole lot shorter! Because for the most part,

897

the way something is spelled in these languages tells you
pretty well how to pronounce it; ending with the same letters
may not be exactly the same thing as rhyming, but often you
can start with the spelling and apply some trivial string
replacement operations to get a phonetic form that can be
searched for the presence of a rhyme. This can work even
with French, where (for the most part) spelling tells you
pronunciation, even though the pronunciation won’t tell you
the spelling.

However, English isn’t that kind of language—not only does
the English pronunciation of a word not tell you how to spell
it, its spelling doesn’t tell you how to pronounce it. But
luckily, lexicons exist that are basically simple databases,
associating the normal written form of a word with some
representation of its pronunciation. One of my favorite
lexicons (partly because it’s free!) is
Moby Pronunciator, available at http://www.dcs.shef.ac.uk/
research/ilash/Moby/ for the downloading. It consists of about
177,000 entries, one word to a line, that look like this:

...
accipitrine /&/k's/I/p/I/tr/I/n
Accius '/&/k/S//i//@/s
acclaim /@/'kl/eI/m
acclamation ,/&/kl/@/'m/eI//S//@/n
acclamation_medal ,/&/kl/@/'m/eI//S//@/
n_'m/E/d/-/l
acclamatory /@/'kl/&/m/@/,t/oU/r/i/
acclimate /@/'kl/aI/m/I/t
acclimation ,/&/kl/@/'m/eI//S//@/n
acclimation_fever ,/&/kl/@/'m/eI//S//@/
n_'f/i/v/@/r
acclimatise /@/'kl/aI/m/@/,t/aI/z
acclimatize /@/'kl/aI/m/@/,t/aI/z

898

acclivity /@/'kl/I/v/I/t/i/
...

Ignoring the meanings of these symbols, you can see that (as
the README will tell you), the format of each line is the
word (or underscore-separated multiword phrase, like
“acclamation_medal”), then a space, then the phonetic
notation. What the slashes mean (and why there isn’t one
between the /k/ and /l/) is something I’m unsure of. But I
am sure that these slashes are annoying, since they get in the
way of me trying to search. I have to remember to stick them
in my search patterns, and I always worry that I stuck in one
too many. The same goes for the commas and apostrophes,
which indicate stress—and when I’m looking for a rhyme, I
may not care about stress.

899

Preparing the Data

So the first thing to do, whether it’s for the Moby
Pronunciator wordlist or for any other wordlist you choose, is
to strip out the parts you don’t want, take what’s left, and
format it the way you like. Here, we can do that by deleting
certain tokens in the pronunciation part:

▪ Slashes (used to separate phonemes?)

▪ Spaces and underscores (used to separate words)

▪ Apostrophes (used to precede syllables with primary
stress)

▪ Commas (used to precede syllables with secondary
stress)

Since these tokens are all single characters, we can delete
them by just applying a tr operator to slashes, spaces,
underscores, commas, and apostrophes. We use the d switch
(“d” for delete):

tr/\/ _,'//d;

Personally, I find it disconcerting to have the
backslash-escaped slash in there, so I tend to use different
delimiters, like matching angle brackets:

tr</_,'><>d;

Either way, you can build this into a program that reads the
Moby Pronunciator database:

#!/usr/bin/perl
mpron_convert -- Turn the mobypron.unc

900

program into the mpron.dat
format that we'll use.

use strict;
@ARGV = 'mobypron.unc' unless @ARGV;
my ($word, $pron, $meter,
$next_stress_flag);
my $Debug = 0;
$/ = "\cm"; # May be necessary

open(OUT, ">mpron.dat");

while (<>) {
chomp;
($word, $pron) = split(' ', $_, 2);
next unless $pron;

$meter = '';
$next_stress_flag = '0';

foreach my $x ($pron =~
m<[',]|[-\&yYaeiouAEIOU\@]+>g) {

if ($x eq ',') {
$next_stress_flag = '2'; # secondary

stress
next;

} elsif($x eq "'") {
$next_stress_flag = '1'; # primary

stress
next;

}
$meter .= $next_stress_flag;
$next_stress_flag = '0';

}

So "stressless" one-syllable words all
get stress. Also needed

for multiword phrases mode of
monosyllabic words, like "base_load".

901

$meter =~ tr/0/2/ if $meter =~ m/^0+$/s;

Remove stress marks, word separators,
and the mystery slashes

$pron =~ tr<', /_><>d;

sleep(0), printf "%10s %-20s %s\n",
$meter, $word, $pron if $Debug;

print OUT join("\t", $word, $meter,
$pron), "\n";

last if $Debug and $. > 1000;
}
close(OUT);
exit;

Now, to search this database for
rhymes (or any other phonetic information), there are two
ways to go about it: use the code above, and once you’ve
modified $pron, search it for a pattern; or write $word and
the modified $pron to a file, and then grep that file.

The benefit of the former is simplicity, but the benefit of the
latter is efficiency—no need to constantly chomp, split,
and tr for each line. Now, normally I say that program (as
opposed to programmer) efficiency is overvalued in
programming. But in this case, the Moby wordlist is so very
large that the waste of the first approach is significant. So I
say the second approach the one to take. We can save each
line’s $word and $pron values to a file called mpron.dat,
like so:

open(IN, '<mobypron.unc') or die $!;
open(OUT, '>mpron.dat') or die $!;
while (<IN>) {

chomp;
($word, $pron) = split(' ', $_);
$pron =~ tr</ _,'><>d;

902

print OUT $word, "\t", $pron,
"\n"; # Tab makes a nice delimiter
}

The resulting file, mpron.dat, begins like this:
...
accipitrine &ksIpItrIn
Accius &kSi@s
acclaim @kleIm
acclamation &kl@meIS@n
acclamation_medal &kl@meIS@nmEd-l
acclamatory @kl&m@toUri
acclimate @klaImIt
acclimation &kl@meIS@n
acclimation_fever &kl@meIS@nfiv@r
acclimatise @klaIm@taIz
acclimatize @klaIm@taIz
acclivity @klIvIti
...

903

Searching the Prepared Data

With mpron.dat prepared, we can grep it for whatever
pattern we want in the
pronunciation. Suppose we’re still after a three-syllable word
that
rhymes with “toad.” The idea of rhyme in English is a pretty
straightforward matter: if two words rhyme, they end in the
same sounds (generally the last vowel and any consonants
following it). If I were quite familiar with the phonetic
notation for Moby Pronunciator (or whatever alternate
pronunciation database you might use), I could, off the top of
my head, say how to represent the sound “-oad” from “toad.”
However, I’ve never bothered, since it’s so easy to just look
up the word you want to rhyme with, and see how it’s
represented:

% grep '^toad' mpron.dat
toad toUd
toad's-mouth toUdzmouT
toadeater toUdit@r
toadfish toUdfIS
toadflax toUdfl&ks
toadstone toUdstoUn
toadstool toUdstul
toadstool_disease toUdstuldIziz
toady toUdi

oUd it is!

% grep 'oUd$' mpron.dat
abode @boUd
access_road &ksEsroUd
acnode &knoUd

904

Aeolian_mode ioUli@nmoUd
alamode &l@moUd
Alexis_Claude AlEksikloUd
all-hallowed Olh&loUd
anchor_rode &Nk@rroUd

and 281 other matches, ending with zip_code (zIpkoUd).
There are so many because we haven’t limited our search to
three-syllable words. So how do we do that?

905

Counting Syllables

As with most models of syllables in most languages, an
English syllable is basically a vowel sound with some number
of consonants before and after it. Now, actually settling on
what consonants go with what vowels is a sticky subject (is
rostrum rAs-tr@m or rA-str@m?), but since all we want
to do now is count the syllables, we merely need to count the
number of vowel sounds.

You’ve seen that some vowel sounds, like the long “o” sound
in “toad,” are represented by a pair of ASCII characters, oU.
That means that we can’t simply count the number of vowel
characters in the pronunciation string, because then oU would
count as two. We could count the number of times we find a
sequence of some number of vowel characters, but that would
match only once in each of these two-syllable words:

eon i@n (one sequence: "i@")
Noah noU@ (one sequence: "oU@")

(The @ character here represents the “uh” sound in unstressed
syllables.) However, if we go back to the format of the
original Moby Pronunciator file (as opposed to our cooked
mpron.dat file), we see that those slashes can do us some
good:

eon '/i//@/n
Noah 'n/oU//@/

One consistency is that there’s at least one slash between
vowels in different syllables. So where the vowels in the two
syllables in “Noah” in our prepared file run together, they are
still separate in the original file. This means that if we start

906

with the original form of the pronunciation entry, and count
the number of occurrences of sequences of vowel characters:

eon '/i//@/n (two sequences: "i", "@")
Noah 'n/oU//@/ (two sequences: "oU", "@")

then we get a correct syllable count. All we need to know
now is what “vowel characters” means. The Moby
Pronunciator documentation says that it uses all of the
following characters (or sequences of them):

a e i u o A E I O U y Y & @ -

We can count syllables by seeing how often this matches:
m/[-\&yYaeiouAEIOU\@]+/g

We can simply write that into our program that produces
mpron.dat, by matching it against $pron before we delete
the slashes.

907

Coping with (Syllabic) Stress

Let’s say this three-syllable word to rhyme with “toad” is
needed not merely for its austere artistic potency, but because
we need it to complete our Baudelairean opus magnum,
which ends:

I chanced upon a lovely toad,
It gleamed and danced like ____!

DUM-duh-DUM. In technical terms, you’ve got eight-syllable
lines, with this
metrical pattern (where slash means
stressed, and underscore means
unstressed):

I chanced upon a lovely toad,
_ / _ / _ / _ /

It gleamed and danced like ____!
_ / _ / _ / _ /

So not only do you want the word you’re after to have three
syllables, but you want it to have a particular stress pattern. A
word like:

electrode
_ / _

has the exactly the wrong stress pattern, even though it is
three syllables long, and
rhymes with “toad.” (That’s aside from “danced like
electrode” being a bit ungrammatical—hey, this is poetry!)
Since we’re about to rebuild mpron.dat to contain each
entry’s syllable count, we might as well note syllable

908

stress patterns too.

Stress is noted in the original data file with commas and
apostrophes:

acclamatory /@/'kl/&/m/@/,t/oU/r/i/
acclimate /@/'kl/aI/m/I/t
acclimation ,/&/kl/@/'m/eI//S//@/n

Unfortunately, the apostrophe (primary stress) or comma
(secondary stress) that marks the following syllable as
stressed isn’t right before the vowel that we’d match in order
to count that syllable. If it were, we could come up with a
single regex that would match any vowel cluster as well as its
stress
notation:

m/([,']?)[-\&yYaeiouAEIOU\@]+/g

Each time this matched, we could just look in $1 to see what
kind of
stress the syllable had. However, that’s not the way the data
is. As it is, we have to match the stress marks wherever they
are, and then set a flag so that the following syllable will be
marked as
stressed (and in the absence of the flag, marked
unstressed). We can combine this with the syllable counter
that works its way through the word, based on this regex:

m/[',]|[-\&yYaeiouAEIOU\@]+/g

We can work this into part of the main loop for our converter
program, so that it can cook up a field representing the meter
of each word for each line in mpron.dat.

(Usually “meter” is used for talking about the consistent
stress pattern of whole lines of poetry—but I’m using it here

909

to refer to just the stress pattern of particular words, mostly
because $meter is easier to type than
$metrical_structure or $stress_pattern !)

while (<IN>) {
chomp;
($word, $pron) = split(' ', $_);

This is where we'll stack up a '0',
'1', or '2', one for each

vowel-character-group in this word,
as seen in $pron

$meter = '';
$next_stress_flag = '0'; # Initial

value

Loop over the vowels and accent
marks in $pron before we change it

foreach my $x ($pron =~
m/[',]|[-\&yYaeiouAEIOU\@]+/g) {

if ($x eq ',')
{ # Secondary stress

$next_stress_flag = '2';
} elsif ($x eq "'")

{ # Primary stress
$next_stress_flag = '1';

} else
{ # It's a
vowel

$meter .=
$next_stress_flag; # Note it as
another syllable

$next_stress_flag =
'0'; # Clear flag for next time

}
}

$pron =~ tr</

910

_,'><>d; # Okay, NOW we
can change it

print OUT join("\t", $word, $pron,
$meter), "\n";
}

The whole business of $next_stress_flag being set in
one iteration for use in the next may not make much sense.
Here’s a rough English summary of how $meter is devised
for each word:

Each time a vowel-character cluster is found in this
word’s $pron, add a character to $meter
representing the stress level of this syllable. If this
syllable was preceded by an apostrophe, note this
syllable as “1”. If it was preceded by a comma, note this
syllable as a “2”. Otherwise, note it as a “0”.

What this gives us is a mpron.dat file like this:
accipitrine 0100 &ksIpItrIn
Accius 100 &kSi@s
acclaim 01 @kleIm
acclamation 2010 &kl@meIS@n
acclamation_medal 201010 &kl@meIS@nmEd-l
acclamatory 01020 @kl&m@toUri
acclimate 010 @klaImIt
acclimation 2010 &kl@meIS@n
acclimation_fever 201010 &kl@meIS@nfiv@r
acclimatise 0102 @klaIm@taIz
acclimatize 0102 @klaIm@taIz
acclivity 0100 @klIvIti

There are three tab-separated fields to each line. If we merely
want to know the number of syllables in a word, we just count

911

the number of characters in the second field. But if we want
to know more (say, to stipulate the
stress pattern of those syllables), we have the data to do that,
too.

Now recall that we’re looking for a word that meets these
criteria:

▪ Rhymes with “toad”

▪ Has three syllables

▪ Has the stress pattern /_/ (
stressed,
unstressed, stressed)

We figured out that we could formalize “rhymes with toad” as
a matter of matching the regex m/oUd$/. But when it comes
to matching the stress pattern of the word, we’re thinking in
terms of stressed and unstressed—a two-term distinction—but
the data we’ve got (from the Moby Pronunciator, but most
pronunciation databases do it this way) represents stress in
terms of primary stress, secondary stress, and unstressed—a
three-term distinction.

After some experimentation, I settled on this as the best way
to reconcile these two systems: When I say “stressed,” I mean
having primary (“1”) or secondary (“2”) stress. When I say
“unstressed,” I mean having secondary (“2”) stress, or no
stress (“0”).

So we can now formulate “I want the word to go
DUM-duh-DUM” as a matter of its meter string matching the
regex /[12][02][12]/.

912

Now, to pull off a search with these criteria, we could go back
to our command-line grep pattern:

% grep 'oUd$' mpron.dat

and amend it with:
% grep 'oUd$' mpron.dat | grep '[12][02][12]'
| more

But all this
grepping is getting rather cumbersome, and won’t work
terribly nicely with increasingly complex search
patterns. In the end, it’d be so much simpler if we just wrote a
custom (and therefore customizable!) search tool in Perl.

913

A Simple mpron Searcher

Since there are three fields in our database, it makes sense to
be able to provide search criteria for any of those three fields.
And regular expressions are the most powerful way to express
search patterns. Each of our searches could be thought of as
specified by three regular expressions: the first to match the
spelling form of the word (probably not your primary interest,
but it could be useful), the second to match the meter of the
word, and the third to match the pronunciation of the word.

I figure this search tool (which we might as well call mpron)
could have this command-line syntax:

% mpron spelling_re stress_re pron_re

with the assumption that if we stipulate nothing for one or any
of these regexes, then we’re not imposing any limitation on
that field. So “rhymes with toad”
would be just a matter of:

% mpron '' '' 'ouD$'

We can implement this simply with a program like this:
($word_re, $meter_re, $pron_re) =
@ARGV[0,1,2];
open(IN, '<mpron.dat') or die "Can't
read-open mpron.dat: $!";

print "# Word RE: <$word_re> Meter RE:
<$meter_re> Pron RE: <$pron_re>\n";

Loop over every line
while (<IN>) {

914

chomp;
print $_, "\n" # the matching line
if (...it meets all our criteria...)
...then do something...

}

Now, how do we formalize “it meets all our criteria”? We
could just say:

if ($bits[0] =~ m/$word_re/oi # /i
means case insensitivity

&& $bits[1] =~ m/$meter_re/o # and
/o means "compile only once"

&& $bits[2] = m/$pron_re/o)

However, that makes sense only if we’ve provided all three
criteria. We don’t want to bother trying to match an element
of @bits against the contents of a variable like
$meter_re if there’s nothing in that variable (that is, if the
search criterion it corresponds to is no criterion at all).

For each kind of test, we want the comparison to succeed if
there was a criterion and it matches, or if there was no search
criterion at all. In terms of logical operators, this is an “or”
relationship. Specifically,

pass this test if:
there was no criterion specified OR I

pass the criterion

Passing each of the three criteria is a matter of matching the
appropriate regex, as with:

$bits[1] =~ m/$meter_re/o

915

As for how to express “there was no criterion specified,” we
can simply test the string length of the variable containing the
regex:

!length($meter_re)

This is true when $meter_re is empty. Put it all together
and you get:

!length($meter_re) || $bits[1] =~
m/$meter_re/o

For all the tests put together:
print $_, "\n" if (!length($word_re) ||
$bits[0] =~ m/$word_re/oi)

&& (!length($meter_re) ||
$bits[1] =~ m/$meter_re/o)

&& (!length($pron_re) ||
$bits[2] =~ m/$pron_re/o);

Incidentally, you can use the and operator (the
low-precedence variant of &&) to minimize the number of
parentheses:

print $_, "\n" if !length($word_re) ||
$bits[0] =~ m/$word_re/oi

and !length($meter_re) ||
$bits[1] =~ m/$meter_re/o

and !length($pron_re) ||
$bits[2] =~ m/$pron_re/o;

And that’s all we’ve got to do for a fully featured program
that searches any of the fields in mpron.dat.

Let’s put it to work. Our command line for “find three
syllable word, rhyming with toad, and having a
DUM-duh-DUM stress pattern” is:

% mpron '' '^[12][02][12]$' 'ouD$'

916

The ^ and $ in ^[12][02][12]$ ensure that the stress
pattern string consists entirely of that stress pattern, instead of
merely having that stress pattern in the word somewhere.
Here we go!

% mpron '' '^[12][02][12]$' 'ouD$'
alamode 102 &l@moUd
antinode 102 &ntInoUd
antipode 102 &ntIpoUd
arillode 102 &r@loUd
autocode 102 At@koUd
a_la_mode 201 &l@moUd
calicoed 102 k&l@koUd
discommode 201 dIsk@moUd
episode 102 EpIsoUd
hemipode 102 hEmIpoUd
incommode 201 Ink@moUd
internode 102 Int@rnoUd
keratode 102 kEr@toUd
Kozhikode 101 koUZIkoUd
manucode 102 m&nj@koUd
megapode 102 mEg@poUd
microcode 102 maIkroUkoUd
nematode 102 nEm@toUd
Nesselrode 102 nEs@lroUd
overstowed 201 oUv@rstoUd
palinode 102 p&lInoUd
pigeon-toed 102 pIdZ@ntoUd
porticoed 102 poUrt@koUd
staminode 102 st&m@noUd
superload 102 sup@rloUd
trematode 102 trEm@toUd
waggonload 102 w&g@nloUd

Poetry in motion—or rather, in automation! The complete
code is shown below.

#!/usr/bin/

917

perl
mpron -- search for words matching a
given phonetic pattern

use strict;
my $Debug = 0;
my($word_re, $meter_re, $pron_re) =
@ARGV[0,1,2];

if ($meter_re =~ m<^[/_]+$>) {
$meter_re =~ s</><[12]>g;
$meter_re =~ s<_><[20]>g;
$meter_re = '^' . $meter_re . '$';

}

print "# Word RE: <$word_re> Meter RE:
<$meter_re> Pron RE: <$pron_re>\n";

die "You need at least one stipulation for
word, meter, or pronunciation!"

unless length $word_re or length
$meter_re or length $pron_re;

my $search_file = 'mpron.dat';
open(IN, $search_file) or die "Can't open
$search_file: $!";

my @bits;
my $matches = 0;
my $lines = 0;
while (<IN>) {

chomp;
@bits = split "\t", $_;
next unless @bits == 3;
++$lines;
++$matches, print $_, "\n"

if (!length($word_re) || $bits[0] =~

918

m/$word_re/oi) and
(!length($meter_re) || $bits[1] =~

m/$meter_re/o) and
(!length($pron_re) || $bits[2] =~

m/$pron_re/o);
if ($Debug) { last if $. > 2000 }

}
print "# $matches matches across $lines
lines in ", time - $^T, " seconds.\n";
exit;

919

Accommodating Another Notation

One minor quibble, though: it’s a bit cumbersome converting
our /_/ (DUM-duh-DUM) notation into the regex
^[12][02][12]$. We should have our program accept
the slash and underscore notation. We can do that by just
adding, very early in our program, some code to convert from
that notation (if that’s what it sees) into regex notation.
Namely:

If the string consists entirely of
slashes and underscores...
if ($meter_re =~ m<^[/_]+$>) {

$meter_re =~ s</><[12]>g;
$meter_re =~ s<_><[20]>g;
$meter_re = '^' . $meter_re . '$';

}

This translates /_/ to ^[12][02][12]$ as the second
argument:

% mpron '' '/_/' 'oUd$' | less
Word RE: <> Meter RE: <^[12][20][12]$>
Pron RE: <oUd$>
alamode 102 &l@moUd
...and so on...

By the way, if you want /_/ to mean “ends in
DUM-duh-DUM” instead of specifically “consists entirely of
DUM-duh-DUM,” then you could change that last line to this
instead:

$meter_re = $meter_re . '$'; #
No '^' at the beginning

920

The only question left to answer is: what exactly did our
poetic toad gleam and dance like? No program can tell you
which of the twenty-six matching words (three-syllable, /_/,
rhyming with toad) that we found is le mot juste, but given
the circumstances, the choice is clear:

I chanced upon a lovely toad,
It gleamed and danced like

microcode!

921

Chapter 39. The Perl Poetry
Contest

Jon Orwant

Kevin Meltzer
Editor’s note: Jon wrote the contest announcement, and
Kevin wrote the contest results.

Many Perl programmers are linguistically adept; the
expressivity and flow of our language attracts people who
enjoy the written word. Perl programmers also tend to have a
lot of free time
from getting their jobs done so quickly, and so it’s natural that
they sometimes blend Perl and wordplay. One common
manifestation of this whimsy is Perl poetry: a poem that also
happens to be a functioning program.

Our Obfuscated Perl Contest is ugly and evil. We know this,
and revel in it. To compensate for encouraging these most
unpoetic programs, we hereby present our first
Perl Poetry Contest, to be judged by Perl poet Kevin
Meltzer. This is a chance to show the world just how beautiful
Perl can be.

Perl Poetry has been around for a decade; on April Fool’s
Day 1990, someone forged a Usenet posting in Larry Wall’s
name with four Perl poems. Sharon
Hopkins, a longtime friend of Larry Wall and the

922

Official Perl Poet, presented “Camels and Needles: Computer
Poetry Meets the Perl Programming Language” at the Usenix
Winter 1992 Technical Conference. One of Sharon’s poems,
listen, has even been published in the Economist and the
Guardian.

More recently, this arrived in my inbox:
#!/usr/bin/perl
#
asylum.pl
by Harl

close (youreyes);
bind (yourself, fast);

while ($narcosis) {
exists $to($calm);
not calm;

}

accept the, anesthesia;
seek the, $granted, $asylum
and wait;

stat ically;

unlink and listen (in, $complicity);

for (a, little) {
system ("sync hronicity");

}

Note the rhyme at the end, and Harl’s use of poignant
imagery, wordplay, and the quadruple theme of sleep,
insanity, connectivity, and socket programming. True, Harl’s
program doesn’t do much, but it’s inspirational, and we

923

expect to see Harl performing at a Silicon Valley poetry slam
soon.

The Categories

True poets bridle at constraints, so we won’t restrict entries to
any particular style or genre of poem; mail us anything you
like. However, please use discretion. We don’t find large
binary files poetic. Here are some ideas to get you started:

▪ Pick a famous poem and “port” it to
Perl.

▪ Write a Perl poem that performs a useful task.

▪ A haiku, tanka, or limerick about Perl. Haikus (syllable
pattern 5-7-5) and tankas (5-7-5-7-7) don’t rhyme;
limericks (9-9-6-6-9) do, in an AABBA pattern. (Also
see the separate haiku contest mentioned in Chapter 37.)

▪ Write a program that generates poetry.

924

The Results

The First Annual
Perl Poetry Contest results are in, and I was quite happy to
see so many entrants. We received haikus (although not
always true to haiku style), love poems, ports of real poems,
and poetry generators. The competition was fierce, the styles
were varied, and there were even some entries containing no
Perl at all.

Best Poem Port

Wayne
Myers ported this Yeats poem, “The Coming Of Wisdom
with Time,” to Perl. I enjoyed his use of Perl functions to
coincide with Yeats’ word use. For example, this Yeats line:

Though leaves are many

became
while ($leaves > 1) {

This was exactly what I was hoping to see
from the entries. I also thought his tongue-in-cheek use of
sway to ensure that the poem will die if not on a Sun was
slick. Here is the original poem:

Though leaves are many, the root is one;
Through all the lying days of my youth
I swayed my leaves and flowers in the sun;
Now I may wither into the truth

And here is Myers’

925

Perl version:
while ($leaves > 1) {

$root = 1;
}
foreach($lyingdays{'myyouth'}) {

sway($leaves, $flowers);
}
while ($i > $truth) {

$i--;
}
sub sway {

my ($leaves, $flowers) = @_;
die unless $^O =~ /sun/i;

}

Haiku

I was a bit surprised to read this haiku by Clinton
Pierce. All true haikus should pertain to the
seasons, and while poetry reading is a subjective art, this
poem would seem to have a more offensive message:

1, 2 or more('to'),
tie $her, $up and bind $her, $up;
sub for ({ each %2; do {} };)

I think that’s supposed to be a devilish smiley at the end.

A Perl Program That Generates Poetry

Ronald J.
Kimball went all out on this one. It was the only entry I
received with its own bibliography. His sonnet.pl
explains itself:

926

sonnet.pl 0.1 generates

sonnets, inasmuch as the poems are 14 lines
long, in iambic pentameter, and match the
rhyming scheme ABAB CDCD
EFEF GG. Any apparent meaning in the
generated poems is purely
coincidental.

To create the sonnets, Ronald’s entry uses a pronunciation list
(http://linguist.dartmouth.edu/~rjk/mywords.dat.gz) generated
by Sean Burke’s Moby-based Pronunciator, described in
Chapter 38. Ronald also received extra points because his
entry ran with warnings enabled.

I ran this many, many times, and was amused by every sonnet
it generated. The moment of endearment came when I read
Magmatic appendicular tort duck—which
actually rhymed with an alternate line, in true sonnet form.
Here is a sample of the output
from sonnet.pl:

Rani proponent lapis anus raft
Triacetate magniloquently brogue
Locution cannonball outbuild corf graft
Harmoniously raspingly pure vogue
Inclusion prayer waive endarch flowage
halves
Sensillum egg pilosity impart
Retaliate exclude filets moo calves
Fibrotic piling scrapie purpleheart
Troll ignominy build join rattlebrained
Azan prosector hydrothorax mog
Defoliate accomplice holt constrained
Back prostatectomy numb door incog

Epergne appropriate charivari
Cahoots misvalue jimp born abatis

927

This entry kept me amused for more time than I care to admit,
and I hope others find it as entertaining, artistic, and strangely
poetic as I have.

Obfuscated Poetry?

This entry from Damon
Harper would seem to be a better match for the Obfuscated
Perl Contest. I liked the extensive use of actual Perl. Damon
didn’t abuse whitespace, and almost makes this script look
like it was a real poem first. This entry runs with warnings on
and prints the poem itself when executed. Here is his entry,
which should be named waiting.

$_=open (and_, "waiting")==0?'': system
('clear');

@hoping=<a nd_>; $waiting
=$i{m}{'patiently' and ''}='breathlessly';
foreach (human ('contact')){

$just= "$waiting to "=~/^breathe?/

&&'forever' ?"waiting

".("but when w$e"=~/ do/, join(
'together',())): ($o='ur'. crypt('ic',
"words confuse"),
s/[^ta-y! \n$o:]//go,$_);

$i{m}=print($ed? 'indelibly': ($waiting=
$just)). "disappoints";}

sub human {$e="motionally now:
done with"; @hoping;}
$_="done with $waiting

928

the solution" eq'uals'? 'this': 'eyes'
.close($d =and_); $i{mmerse}="$d in";
bless\$ed; sleep;

The output of Damon’s poem:
waiting

open and waiting: system clear

hoping and waiting
impatiently and breathlessly
foreach human contact

just waiting to breath

forever waiting

but when we do join together: our cryptic
words confuse
stay! no: go

imprinted indelibly: waiting just
disappoints

sub human emotionally now:
done with hoping
done with waiting

the solution equals this: eyes closed and
immersed in blessed sleep

And then the program sleeps.

929

Best of Show

This short entry, by Angie
Winterbottom, was the most interesting. Her style was fresh
and unique, and her use of visual representations in the text
are clever. Consider the following excerpt:

($blaze_of_night{moon} == black_hole)

“The moon, a black hole in the blaze of night.” Marvelous!
Angie tells us that this entry is
from Jim Steinman’s song “The Invocation,” on the
Pandora’s Box album Original Sin. Here is her entry:

if ((light eq dark) && (dark eq light)
&& ($blaze_of_night{moon} == black_hole)

&& ($ravens_wing{bright} ==
$tin{bright})){
my $love = $you = $sin{darkness} + 1;

};

Here are the original lyrics:
If light were dark and dark were light
The moon a black hole in the blaze of night
A raven's wing as bright as tin
Then you, my love, would be darker than
sin.

Honorable mentions go to Robin Berfon for a sweet love
poem, and to Anoop Sarkar, Steve McNabb, and Sterling
Hughes.

930

Part VI. Politics

In this part:

Chapter 40

Chapter 41

Chapter 42

This section has three articles on how Perl can preserve
democracy. The first two are about voting: Rob Lanphier’s
article on the problems posed by our binary ballots (such as
when U.S. citizens vote for president) in which voters are
forced into an unnecessary dichotomy: either you vote for a
candidate or against him. A better technique is to rank
candidates in order of preference, as NCAA sports do. The
second article, by Lincoln Stein, shows how Perl can be used
to implement fair and secure Internet voting. The third and
final article is about an error in a Perl program embedded in
nuclear-tipped missiles, written by someone whose name is,
not coincidentally, an anagram of “April Fool’s Day.”

931

Chapter 40. Pairwise Voting

Rob Lanphier
Editor’s note: This article was originally written in 1996, but
still applies to current elections (unfortunately).

The U.S. Presidential election once again draws near, and
once again we see a contest between two men, each
representing one of the two major U.S. political parties. So it
goes with the
two-party system.

What is it that makes the two-party system a two-party
system? It’s a direct consequence of plurality
voting, the predominant form of balloting used in the United
States where the highest vote getter wins an election. This
relationship between the two-party
duopoly and
plurality voting is known as “Duverger’s Law,”
after the 20th century political scientist who had the guts to
call it a “law” (Riker, 1982).

Duverger’s Law has some disturbing consequences and
leaves many voters dissatisfied with the status quo. Politicians
will always claim to “feel our pain,” but at least in the U.S.,
two-party skeptics abound. Recent polls have shown that
nearly 60% of Americans would support the formation of a
new major party (Barrett, 1996).

The main reason Duverger’s Law rings so true is that we have
a binary ballot that groups people into two categories: a

932

winner and one or more losers. The resulting dilemmas that
voters are faced with in siding with a winner manifest
themselves several ways:

▪ Because you can’t please all of the people all of the time,
it is in politicians’ best interest to build divisions, and
then build consensus among slightly over 50% of the
electorate, allowing them to alienate the other 49%.

▪ Divisive issues encourage voters to ally with just enough
people to give themselves a majority. This gives
politicians a “path of least resistance” toward which they
target their campaigns.

▪ Ultimately, since voters are powerless to state more than
one preference, they are forced to take sides even when
they stand in the middle.

The bottom line is that the ballot doesn’t let people state what
they really feel. They can only make a crude approximation
of their preference, and then hope that, somehow, the
politicians will “get it.”

Voters are often forced into a choice between the lesser of
two evils. They might not like either candidate, but rather
than make a principled stand by
voting for none of the above, or a lesser known candidate
with no chance of winning, they vote for the major candidate
who displeases them least.

Have the strategy problems above ever demonstrably taken
the electorate where it didn’t want to go? Yes. While
Abraham Lincoln is widely considered to be the best U.S.
president in history, he owes his victory largely to the
strategic error of his foes. He won the gnarled four-way 1860

933

election with the smallest plurality of any president—39% of
the vote—and the result of that election led to the U.S. Civil
War. (Of course, if slaves had had the right to vote, the
numbers would have been substantially different.)

In our century, the most famous three-way strategy dilemma
was when Theodore Roosevelt, angry about losing the
Republican nomination, split the Republican Party vote for
their 1912 Nominee (and incumbent president) Howard Taft
by creating the Bull Moose Party. This allowed Woodrow
Wilson to win handily with a mere 42% of the vote (as
opposed to Roosevelt’s 27% and Taft’s 23%). This inspired
many states to create “sore loser” laws that keep candidates
who fail to win major party nominations from forming third
parties, and by making
third-party ballot access much more difficult.

Even recently, presidential politics were affected by the
three-way split. In 1966, Thomas Finan and Carlton Sickles,
two relatively liberal candidates from the left-of-center state
of Maryland, split the liberal vote within the state Democratic
party gubernatorial nominations. As a result, conservative
George P. Mahoney won the Democratic nomination, only to
be beaten by Spiro Agnew, who went on to become Richard
Nixon’s Vice President. When Agnew resigned in 1973, it
opened the door for Gerald Ford to be appointed Vice
President, and then later President. A tenuous connection to
the presidency, but a very real one nonetheless (Anderson,
1994).

And then there are the candidacies that might have been, if
only our system hadn’t discouraged third parties so much.
Rosenstone, Behr, and Lazarus (1984) state that few qualified
candidates would run under a third-party label because of the

934

disadvantages they face. They note the bias that third-party
candidacies face in the media by quoting James M. Perry of
the Wall Street Journal (Rosenstone et al., 1984):

We base [our decision] on the simple proposition that
readers don’t want to waste their time on someone who
won’t have a role in the campaign. We’re not going to
run a page-one spread on a fringe candidate. We don’t
have a multiparty system. Until we do, nobody’s going
to cover these candidates.

With such biases built into the system, it is little wonder that
third-party candidates can’t gain the critical mass of support
necessary to become credible contenders. A pragmatic,
intelligent potential candidate might look at the seemingly
insurmountable odds and simply not run. Thus, the dearth of
credible third-party candidates becomes a self-fulfilling
prophecy, and the two-party duopoly maintains control of the
system.

The Preference Ballot

The solution is simple: convince voters to vote for candidates
regardless of their perceived odds of winning. To do this, we
must expand the power of the ballot. This are many ways to
do this; the method that I will discuss here is the ranked
ballot, or “preference ballot,” as shown below:

2 Fred Flintstone
Wilma Flintstone

3 Barney Rubble
1 Betty Rubble

935

The great thing about preference votes is that they’re much
more expressive than a vote-for-one ballot, allowing them to
bargain for a compromise should their top choice be
unpopular. This allows people greater flexibility in casting
protest votes, while not throwing the election to the most evil
candidate (not that Wilma Flintstone is evil—this is just an
example).

Ranked ballots are great at limiting
voting “strategies” that encourage people to choose
candidates based on poll results. But they can’t eliminate
strategies completely, no matter how the ballots are tallied.
Political scientists have debated the relative merits of ranked
ballots for years, and many of the discussions have involved
Arrow’s Impossibility Theorem.

936

Impossibility Theorems

Political scientists have been debating for some time now
about whether or not it’s even
possible to come up with a way to tally preference votes.
Most of the debate started with Arrow’s
Impossibility Theorem, which claims that any system where
people are allowed to freely and exactly list their preferences
must have some major defect. Arrow proves this by showing
a series of conditions for fairness, not all of which can be
satisfied simultaneously.

Arrow’s criteria are a bit too complicated to summarize here,
but other mathematicians have tweaked and fiddled with the
conditions, and have come up their own sets of conditions.
Fishburn and
Brams (1983) came up with a particularly concise set, listed
below:

No-Show Paradox

A voter helps his favored candidate most by not
voting.

Thwarted-Majorities Paradox

A candidate who defeats all other candidates in
direct-comparison majority votes still loses the election.
Also known as the Condorcet criterion, named after the
18th century election theorist who popularized it.

937

Multiple-Districts Paradox

A candidate wins in every district, but loses the general
election.

More-Is-Less Paradox

If the winner had been ranked higher by some voters,
another candidate would have won.

Fishburn and Brams maintain in their 1983 paper that at least
one of these four paradoxes will be possible in any election
method with a ranked ballot. One may make the case that
since all
voting systems are vulnerable to at least one of these
paradoxes, that a perfect system doesn’t exist. Pragmatists
counter that it’s not necessary to eliminate all of them
(Anderson, 1994).

In preference
voting, as in anything else, you can’t please all of the people
all of the time. This means we are stuck with the task of
merely minimizing the sticking points rather than pursuing
the holy grail of a perfect system. There are many (myself
included) who believe that we can relegate the flaws to rare
circumstances.

938

The Borda Method

This is probably the best known method within the United
States for tallying ranked ballots. It is used by the Associated
Press and United Press International to determine the
champions in NCAA college sports. Sports writers or coaches
are asked to rank the 25 best teams, and then the top team on
each ballot gets 25 points, the second team gets 24, and so on.
The top vote getters are ranked by points received.

This relatively simple method is easy to understand; hence its
appeal. However, it discourages people from ranking
anything but their top preference, thus making it difficult to
derive compromise candidates from their vote. Consider a
three-way election between Joe Left, Sally Middle, and
Martha Right. I’ll use this example to describe an election
where a reasonable compromise (Sally Middle) exists
between two somewhat popular extremes. Given that the seat
in question must go to one person and only one, it seems
reasonable that the middle candidate be chosen. Suppose the
sincere wishes of these voters are as shown in Figure 40-1.

If Borda’s method is used, the first place candidate on the
ballot receives two points per ballot, and the second place
candidate receives one point per ballot. The result is shown in
Figure 40-2.

The good news here is that Borda’s method does indeed
choose the compromise when everyone votes sincerely. But
it’s not strategy-free: if Martha Right supporters pay attention
to the polls, they can (and should) drop Sally Middle off their
ballots. If all Martha Right supporters do this, they trigger a

939

40-point drop in Sally Middle’s Borda score, causing Ms.
Right to win.

Even if Martha Right supporters don’t do this, it’s likely that
many supporters of Joe Left will do the same thing if they
think that Joe has a shot at winning. Thus Borda picks a
compromise when voters naively list all of their preferences,
but fails when they learn how to beat the system.

Figure 40-1. Voter preferences in a three-way election

940

Figure 40-2. Borda points for Figure 40-1

Borda’s method fails to meet the Condorcet criterion, which
is arguably the most important for determining the victor in a
single-winner election.

941

The Hare Method

Dating from 1860, the
Hare method is perhaps the best known method for tabulating
preference ballots outside the United States. It’s used in
Australia and Ireland for single-office elections. Preference
ballots are tabulated counting only the first-place candidate on
each ballot. The candidate with the fewest number of first
place votes is eliminated, and every ballot listing that
candidate as its first choice has the vote transferred to its
second choice.

The Hare method is a popular way of eliminating primaries
and allowing people to vote for potentially unpopular
alternatives to the two major candidates without fear of
wasting one’s vote. It does a pretty good job of eliminating
strategy and in many ways is a substantial improvement over
the American vote-for-only-one system.

Using Hare to tally the results from our election, we tally the
first choices to find that Martha Right receives 40% of the
vote, Joe Left receives 35%, and Sally Middle is eliminated
with only 25% of the vote. The votes for Sally Middle are
redistributed based on the second choice of those voters. Joe
Left then wins with 51% of the vote.

Thus, Hare falls short when considering popular
compromises, such as Sally Middle; like Borda’s method, it
also fails the Condorcet criterion.

942

Pairwise Election Methods

Under a class of election methods known as pairwise
methods, the election above would result in a different
winner. The relative election results of every possible
combination of two candidates is tallied and the winner of key
pairwise matchups is declared winner of the overall election.

In the above example, the results of the
pairwise matchups would be as follows:

Joe Left (51%) vs Martha Right (49%)
Sally Middle (60%) vs Martha Right (40%)
Sally Middle (65%) vs Joe Left (35%)

Sally Middle beats both Joe Left and Martha Right, and
therefore wins the election overall.

What distinguishes the different pairwise election methods
from one another is how they deal with
circular preferences. A circular preference occurs when one
candidate defeats another who in turn defeats our original
winner: A beats B beats C beats A. This isn’t necessarily a
flaw in pairwise systems—one could say it’s merely a sign
that the electorate is ambivalent. Some theorists, such as
Charles Dodgson (a.k.a. Lewis Carroll, author of Alice in
Wonderland), claim that if a single winner can’t be found,
then the election should be called off (Levin and Nalebuff,
1995).

Nonetheless, many pairwise methods have been designed to
arbitrate this situation. Three in particular deserve mention:
Condorcet’s method, Smith’s method, and Copeland’s
method.

943

Condorcet’s Method

Condorcet’s method is probably the most well known. Each
voter’s list is used to simulate how that voter would have
voted in
pairwise matchups between each of the candidates on the
ballot. Separate tallies of every possible two-way election are
calculated, and the winner is the candidate who wins all
two-way matchups. Circular preferences are
resolved in Condorcet’s method by choosing the candidate
whose largest
pairwise defeat is the smallest, as measured by how many
voters explicitly voted for someone else over the candidate.

The reason why many election reformers prefer this method is
that, under most plausible circumstances, it solves the “lesser
of two evils” problem described above, which many consider
to be the litmus test for determining a good
pairwise method. However, as Anderson notes, it can produce
unexpected results in certain rare circumstances.

944

Smith’s Method

Smith’s method isn’t so much a pairwise tie breaker as a
method of determining which candidates should qualify for a
tie-breaker. The “Smith Set” is the smallest non-zero set of
candidates who beat all the candidates outside the set in all
pairwise matchups. Not all pairwise methods will pick a
member of the Smith Set (most notably, Condorcet’s
method), yet intuitively one would hope that would be the
case. Smith’s method, therefore, makes a good precondition
to a tie-breaker such as Condorcet’s.

945

Copeland’s Method

Copeland’s method computes the winner of the election by
counting the number of pairwise wins, losses, and ties for
each candidate. The candidate with the best record wins the
election, much in the same way that a sports team with the
best record gets the top seed in that sport’s playoffs.

One problem with Copeland’s method is that, like Smith’s
method, it is prone to ties, and so is often paired with another
tie breaker. It’s also vulnerable when there are three parties
locked in a three-way tie. In all likelihood, winning
candidates will belong to the party that has the most
candidates on the ballot, because they’ll win the most
pairwise contests, even though many of those victories might
come from intraparty matchups. This would encourage parties
with sufficient funds to support multiple, similar candidates in
order to skew the election in their favor.

There are several other methods that exist for choosing a
winner in a preference-balloted election, many of which
provide a defensible set of criteria. For those of us trying to
educate people on alternative election methods, our goal has
been to choose the most important criteria and find the
election method which best meets those criteria.

So what’s all this got to do with Perl?

For many of us who aren’t mathematicians by trade, it
becomes difficult to debate the relative merits of the different
methods without a way of visualizing some examples. The
solution was to write a program that illustrates the data in a
comprehensible way.

946

Now it’s time to do a little preaching to the choir. I chose to
write this program in Perl for several reasons, many of which
are all too familiar to Perl aficionados. However, they bear
repeating in the context of programs for elections:

Perl is freely available, with source code

This is a particularly crucial feature for something
designed to serve the public. Though there are relatively
few voters with the knowledge or initiative to verify the
source code, there is a certain peace of mind knowing that
anyone can dig into the underbelly of the vote-counting
machine at any time.

Perl is widely available

Perl is available on many platforms, so election results
can be verified on a wide range of computers. Having the
source available also ensures that it will be possible to
port to new platforms as they become available.

Limitless arrays

Since array sizes don’t need to be predetermined, I was
able to design the system to handle as many candidates as
necessary.

CGI

CGI programming has become the standard in
cross-platform GUI development, and Perl is the standard
for writing CGI programs. HTML tables proved ideal for
displaying
voting results.

947

Speed of development

My initial prototype wasn’t that tough to write, and had
little source code. The current version is much larger, but
still quite manageable.

I relied heavily on Perl 5 for my program. This is because
Perl 5, unlike Perl 4, supports true two-dimensional arrays,
helpful for storing
pairwise election results.

948

The Algorithms

Before I talk about Perl specifically, I’ll explain the
algorithm involved in condorcet.pl.

Consider a sample field of six candidates:
A - John Anderson
B - Jerry Brown
C - Bill Clinton
D - Bob Dole
E - Dwight Eisenhower
F - Steve Forbes

condorcet.pl first creates a 6 x 6 matrix. The matrix
entry at location [x, y] contains the number of votes x
received over y. So [A, B] is the number of votes John
Anderson received over Jerry Brown, and [B, A] is the
number of votes Jerry Brown received over John Anderson.

Each ballot is tallied by determining the
pairwise results: who beats whom. So if someone ranks their
ballot

A, B, C, E, D, F

then my program increments [A,B], [A,C], [A,E], [A,D],
[A,F], [B,C], [B,E], [B,D], [B,F], [C,E], [C,D], [C,F], [E,D],
[E,F], and [D,F], since this is how the voter would have voted
in each
pairwise election. This assumes that the voter’s preferences
are transitive; e.g., if they prefer A over B and B over C, that
they will necessarily prefer A over C. This lets us simplify the

949

voting process, and ensure a certain consistency among the
ballots.

Next, condorcet.pl uses the matrix to determine the
pairwise winners. Each complementary matchup is evaluated,
and the winner receives one point in the “win” column, and
the loser receives one point in the “loss” column. If the
simulated pairwise election is a tie, both receive one point in
the “tie” column. A possible outcome is shown in Table 40-1.

Table 40-1. A possible outcome of a pairwise election

Candidate Wins Losses Ties Comments

E 5 0 0 E beats everyone in separate
pairwise elections

A 4 1 0 A loses to E, but beats everyone else

B 3 2 0 B loses to A and E

C 1 3 1 C loses to A, E, and B, and ties D

D 1 3 1 D loses to A, E, and B, and ties C

F 0 5 0 F loses in all elections

This is a clean pairwise victory for Eisenhower. If no
candidate emerges unscathed by a pairwise defeat or tie, an
alternative method of calculating the winner involves finding
the candidate whose worst pairwise defeat was the smallest.
For instance, let’s modify Table 40-1 into Table 40-2.

950

Table 40-2. Another election outcome

Candidate Wins Losses Ties Comments

E 3 3 0 E loses to C, D, and F

A 4 2 0 A loses to E and D

B 3 3 0 B loses to F, A, and E

C 3 3 0 C loses to A, E, and B

D 3 3 0 D loses to A, F, and B

F 2 4 0 F loses to A, B, C, and D

Table 40-2 shows how
pairwise methods can differ. Copeland’s method would select
A (John Anderson) as the winner, since he has the most wins.
In order to calculate the winner in a Condorcet election, we
need to look at the matchups where each candidate was
defeated. Let’s say the election has 1,000 votes. Table 40-3
shows how the losses for each candidate might tally.

Table 40-3. Another election outcome

Candidate Loss 1 Loss 2 Loss 3 Loss 4

E (495, 505) (492, 508) (474, 526)*

951

Candidate Loss 1 Loss 2 Loss 3 Loss 4

A (491, 509) (482, 518)*

B (482, 518) (476, 524)* (492, 508)

C (474, 526)* (488, 512) (490, 510)

D (497, 503) (491, 509)* (493, 507)

F (482, 518) (481, 519) (477, 523)* (498, 502)

The asterisks in Table 40-3 show the worst defeats for each
candidate. In this election, D (Bob Dole) has the smallest
“worst defeat” with 509 votes against him, so he’d be the
winner using Condorcet’s method. This is in spite of the fact
that A lost fewer matchups, and in fact beat D in a
pairwise matchup. The theory behind this is that Marquis de
Condorcet thought it appropriate to ask the question, “Given
that there is no candidate who a majority of the electorate
would pick over any other candidate, who is the candidate
that a plurality chooses over any other candidate?” No
solution to this quandary is going to be particularly satisfying,
but many would argue that Condorcet’s tie-breaker works
about as well as any.

On the
Election Methods mailing list, an ASCII notation evolved that
works pretty well as shorthand for expressing a bundle of
ballots. I’ve extended that shorthand to make it easily
implemented in Perl. We start off associating candidates with

952

an integer by creating a two-column, comma separated list of
candidate numbers and names:

1,Joe Left
2,Sally Middle
3,Martha Right
4,Bertha Up
5,George Down

Parsing that is trivial. What becomes a bit more interesting is
the next portion: a list of candidate numbers separated by >
when there is a preference, and = when there isn’t. The ballot
shown in Figure 40-3 is an example.

This ballot would be encoded as 3 > 4 = 5 > 2. That is, 3 is
preferred to 4 and 5 is preferred to 2, or Martha preferred to
Bertha and George preferred to Sally (and Joe Left an implied
last).

Figure 40-3. A ballot allowing voters to rank their
preferences

This value can optionally be prepended by a quantity of
voters who voted in that way. For example, coding the
example (Three-Way Election), we arrive at the following:

40: 3 > 2
9: 2 > 3

16: 2 > 1
35: 1 > 2

953

Now for some Perl. I’m sure I’ll hear of ways to condense
this down to one short line, but even the snippet below isn’t
too bad:

my (@votelist)=();
foreach $tier (split(/>/, $ballotstring)
) {

my (@foo) = split(/=/, $tier);
push(@votelist, \@foo);

}

This uses the Perl 5 ability to create lists of lists, and creates a
structure of an ordered list of tiers, with each tier consisting of
equally-ranked candidates. This structure is stored in an
object, along with the number of votes (if required by the
voting scheme).

954

The Pairwise Engine

The code in Example 40-1 at the end of this chapter calculates
the
pairwise tally; you can try it out at http://www.eskimo.com/
~robla/politics/condorcet.html. The results are stored in the
array $self->{tally} because I don’t have to
pre-declare its size; it can handle as many candidates as
necessary, without predeclaring a ridiculously large array or
creating a dynamically allocated structure. This keeps the
code relatively simple, although my quasi-object–oriented
approach makes it harder to read a chunk out of context.

The next stage involves figuring out the winners. For this I
create a makeshift voting database, with separate fields for the
number of wins, losses, and ties for each candidate, as well as
his worst defeat, as measured by the total number of votes
against that candidate. Sadly, I wasn’t feeling particularly
programmer-friendly the day I was writing this, and so I made
a goofy two-dimensional array rather than a hash or
one-dimensional array with better names. Fortunately, the
code isn’t too difficult to understand.

Here is the meaning of each of the fields, where $i is the
candidate number:

$edata->{results}[$i][0] # Defeats for $i
$edata->{results}[$i][1] # Ties for $i
$edata->{results}[$i][2] # Victories for $i
$edata->{results}[$i][3] # $i's worst
defeat

This structure contains all the

955

pairwise tallies, giving us the data we need to calculate the
Condorcet, Smith, and Copeland
winners. I’ll leave it to you to fetch the code if you want to
see how all of the methods are calculated, but to give you a
taste, here’s the code implementing the Copeland method:

sub rank_copeland {
my ($self, $edata) = @_;

A Copeland score is computed by
doubling the number of victories and

adding the number of ties a
candidate received.

my (@copeland_ranks) = sort {
-(($self->{results}[$a][2]*2

+
$self->{results}[$a][1]) <=>

($self->{results}[$b][2]*2
+

$self->{results}[$b][1]))
}

$edata->candnum_array;
$self->{copeland_ranks} =

\@copeland_ranks;
}

This passes an anonymous function to Perl’s sort routine,
which then returns the candidates’ Copeland scores.

956

Using CGI to Spit It All Out

The best thing about Perl is that, in combination with CGI,
it’s easy to generate nice-looking
output, even with copious amounts of complicated data.
Given the ballots from Total Points per Candidate
(Figure 40-2), I’m able to generate the HTML table shown in
Table 40-4.

Table 40-4. Pairwise election results: The percentage of
voters preferring the candidate on top over the candidate on
the left

Joe Left Sally Middle Martha Right

Joe Left 65 49

Sally Middle 35 40

Martha Right 51 60

Won-lost 1-1 2-0 0-2

The winner of the
pairwise election depicted in Table 40-4 is Sally Middle.
There’s still plenty of work to be done, however:

▪ A more user-friendly front end would be nice.

▪ A “voting booth” program to generate data for use with
condorcet.pl.

957

▪ Many common election methods could be implemented
with this program. It would be illuminating to compare
Hare and Borda methods with the Condorcet, Copeland,
and Smith methods.

▪ It would be nice to compute not just the winner, but a list
of ranked winners for each election method.

▪ A future version could allow one to combine methods.
For example, a method very popular on the Election
Methods list is Smith/Condorcet (compute the Smith
winner, and break ties using Condorcet).

958

Random Thoughts

Flexible and robust election systems have applications
beyond their traditional role in government. Local elections,
decision making, and shareholder elections are all obvious
applications. There’s a role for election methods in computer
science—one could build a genetic algorithm that generates a
pool of voters who submit preference ballots to make
decisions.

Sadly, many Americans have been indoctrinated into
believing that the American system is the finest in the world
and need not be questioned. The vote-for-only-one ballot
would be okay if there were only one issue and two points of
view, but society, alas, is a bit more complex.

Many pundits and armchair activists talk about how the
American system of politics is broken, and then only offer up
ways of restricting “the bad guys” as a solution, whether the
bad guys are big business, labor unions, or special-interest
coalitions. Yet few people are actually really putting the
system itself under scrutiny. This is a shame; we should
consider the consequences of such simplistic feedback
mechanisms in how we select our leaders.

959

References

Amy, Douglas. Real Choices, New Voices. Columbia
University Press, 1993.

Anderson, Lowell Bruce. Voting Theory. Handbooks in OR &
MS, Vol. 6, editors S.M. Pollock, et al. Elsevier Science B.V.,
1994.

Barrett, Laurence I. Give Me Your Tired Parties. AllPolitics,
March 1996. (http://allpolitics.com/news/email/9603/01/
index.shtml)

Fishburn, Peter C. and Steven Brams. Paradoxes of
Preferential Voting. Mathematics Magazine, Vol. 56, No. 4,
Sept. 1983, pp. 207-214.

Levin, Jonathan and Barry
Nalebuff. An Introduction to Vote-Counting Schemes. The
Journal of Economic Perspectives, Vol. 9, No. 1, pp. 3-26,
Winter 1995.

Niemi, Richard G. and William H.
Riker. The Choice of Voting Systems. Scientific American,
Vol. 234, No. 6, pp. 21-27.

Riker, W.H. The Two-party System and Duverger’s Law: An
Essay on the History of Political Science. The American
Political Science Review, Vol. 76, pp. 753-766, 1982.

960

Sites

Here are three resources that may be of interest:

The Condorcet’s Method Home Page

http://electorama.com/condorcet

I’ve put together this page from various pieces I’ve found
on the Net. It includes programs written by other people
in other computer languages.

The Election Methods Mailing List

http://electorama.com/em

This list discusses the technical details of election
methods. Much of my Condorcet work was facilitated by
the list members (in particular Mike
Ossipoff, Steve
Eppley, and Bruce
Anderson).

The Center for Voting and Democracy

http://fairvote.org

CVD works toward all forms of election reform. Though
their primary focus has been on advancing proportional
representation, they do advocate single-winner reform as
well.

Example 40-1. The pairwise_tally subroutine
sub

961

pairwise_tally {
my ($self, $votelist) = @_;

$self is an object containing all

pairwise election data.
@self->{tally} is a 2D array storing

the

pairwise tally results.
$self->{tally}[$candx][$candy] is

the number of votes that $candx
received over $candy.
$votelist is a string containing all

of the ballots.
for (split(/\n/, $votelist)) {

$loservec is a boolean vector
with a flag set for all losers,

reset with every new ballot.
All are losers until

they're listed on a ballot.
my ($loservec) = $self->{candvec};

Parse ballot. Skip if no ballot
is returned.

(!(my($ballot) = new
ballot_obj($self, $_))) && next;

@{$ballot->{rankings}} is an
array of integers representing the

candidates the voter(s) voted
for, in order of preference.

In addition, $ballot->{quantity}
is the number of

identical ballots we're
considering at this time.

962

my (@votelist) =
@{$ballot->{rankings}};

foreach $tier (@votelist) {
For each preference listed...

Remove the chosen
candidate(s) from the loser vector.

foreach $peer (@{$tier}) {
vec($loservec, $peer, 1) =

0;
}

For all candidates...
for ($i = 0; $i <=

$#{$self->{candidate}}; $i++) {
If said candidate hasn't

been listed yet...
if (vec($loservec, $i, 1))

{
...they've been

beaten by the chosen candidate.
Increment their

"votes for the other guy" counter
by the appropriate

number of ballots.
foreach $peer

(@{$tier}) {
if

(defined($self->{tally}[$peer][$i])) {

$self->{tally}[$peer][$i] +=
$ballot->{quantity};

} else {

$self->{tally}[$peer][$i] =
$ballot->{quantity};

}
}

963

}
}

}
$self->{total_vote} +=

$ballot->{quantity};
}

}

964

Chapter 41. Secure Internet Voting

Lincoln D. Stein
As I write this, canvassing boards in Palm Beach and
Broward Counties, Florida, are desperately trying to get
manual recounts done in time for a court-imposed deadline.
Countless lawsuits and countersuits launched by the
Republican and Democratic adversaries are in various stages
of adjudication, citizens are up in arms because they feel they
have been disenfranchised by poorly-designed “butterfly
ballots” and other election day mistakes, the Florida
legislature has threatened to take the election into its own
hands, and the U.S. Supreme Court has just agreed to add its
considerable weight to the fracas.

All this because many of Florida’s counties ballot using the
Hollerith punchcard, an antiquated balloting technology
whose main virtue is its low price tag. On the nightly news,
election officials discourse gravely on “chads,”
those little bits of paper that some voters have trouble
dislodging. We hear of
pregnant chads,
hanging chads, and
dimpled chads. One election board volunteer is even accused
of having eaten the chads that dropped out of the ballots he
was handling.

Is this any way to run an election? I don’t think so.
Fortunately, Perl can help rebuild

965

democracy, and in this article I’ll show a simple Perl-based
framework for a
secure Internet-based balloting system.

About Secure Elections

Much of the inspiration for this article comes from Bruce
Schneier’s magnum opus
Applied Cryptography and specifically from section 6.1,
“Secure Elections.” As explained there, the guiding principles
of a secure election are to maintain privacy and prevent
cheating. Schneier lays out six minimal requirements for a
good election protocol:

▪ Only authorized voters can vote.

▪ No one can vote more than once.

▪ No one can determine for whom anyone else voted.

▪ No one can duplicate anyone else’s vote.

▪ No one can change anyone else’s vote without being
discovered.

▪ Every voter can verify that his vote has been taken into
account in the final tabulation.

Conventional paper ballots satisfy requirement 1 by voter
registration, a process that ensures that only American
citizens of a certain age can vote. Requirements 2 and 4 are
satisfied by crossing the
registered voter’s name off a list when the voter enters the
polling location, and 3 is satisfied by using an anonymous
ballot. The last two requirements, however, are not

966

completely satisfied by paper ballots, and are the source of
much of the uncertainty and accusations in the current
election fiasco.

Schneier’s book describes several cryptographic protocols
that meet these six requirements for
secure elections. Some of them are quite elaborate and require
new software at the voter’s side of the connection. In this
article, we will use one of the simpler ones that happens to be
well suited for
web-based
voting.

This protocol requires two independent central facilities to
work, called the
CEA and the
CLA. The CEA is the Central Enumeration Agency (although
the Bush camp might call it “Chad Eaters Anonymous”). It is
responsible for collecting and tallying ballots, and for
publishing the results on election night. The CLA is the
Central Legitimization Agency (or “Controlling Legal
Authority” in Gore-speak). It is responsible for registering
and credentialing voters.

Here’s how it works:

1. Before the election, the CLA supervises voter
registration. Each registered voter is issued a Voter
Registration Number (VRN), which is simply a large
random number.
VRNs are issued electronically, for example, by email or
floppy (see Figure 41-1).

2. The CLA maintains a list of all VRNs, and a list of who
VRNs were issued to, in order to prevent someone from

967

registering twice. There is no record of who a particular
VRN was issued to.

3. Prior to election day, the CLA sends the CEA the list of
VRNs.

4. On election day, the voter sends in an electronic ballot
that contains his choices for elected office. The ballot
contains his VRN from step 1.

5. The CEA checks that the VRN is valid, and crosses it off
the list in order to prevent someone from voting twice.

6. The CEA generates a large random
confirmation number (CN) for the voter, and uses it to
enter the voter’s choices into the vote tally.

7. The CEA returns the CN to the voter.

8. After all votes have been received, the CEA publishes
the outcome, along with the lists of CNs and for whom
their owners voted.

Figure 41-1. The voter registration number

The privacy of the ballot is ensured by the separation of the
CLA and the CEA. One facility knows the identity of the

968

voters, but not who they voted for. The other has access to
their vote, but not their identity.

This protocol discourages
election fraud in a number of ways. If a registered voter tries
to vote twice, he will be caught in step 5. We can discourage
non-registered voters from trying to guess valid VRNs by
using large random numbers (in this example, we use
100-digit numbers).

If the CEA itself tries to cheat by stuffing the ballot box or
“losing” ballots, this can be detected in step 8. By publishing
a list of CNs and their votes, the protocol allows voters to
check the list to make sure that their votes were tallied
correctly.

There are still ways to defraud this protocol. For example, the
CEA and CLA can collude to figure out the identity of a
voter; if
voting is being done over the Web, the CEA can use the
voter’s IP address to figure out who he is. The first of these
problems can be addressed by
election auditors and statutory law. The second can be
addressed using proxy servers or by having the balloting take
place in central polling places equipped with ATM-like web
browsers.

It is also important to note that the protocol described here is
a slight departure from the one described by Schneier. The
original protocol is built along an email model, in which the
voter himself generates the CN, rather than letting the CEA
do it for him.

969

The Database Schema

Tallying votes is a task for a database, and this application
uses MySQL to do the heavy lifting. Example 41-1 shows the
schema used by the CEA’s database. In addition to managing
the vote tally itself, the information in the database is used to
generate the ballot on the fly. This avoids having to design a
new web page for each ballot, and discourages election
officials from coming up with butterfly ballots and other
innovative designs.

Example 41-1. The schema used by the CEA’s database
0 #!/bin/sh

1 /usr/local/bin/mysql -f CEA <<END

2 DROP TABLE party;
3 DROP TABLE office;
4 DROP TABLE candidate;
5 DROP TABLE registration;
6 DROP TABLE tally;
7 DROP TABLE writein;

8 CREATE TABLE party (
9 party_id INT(4)

UNSIGNED NOT NULL AUTO_INCREMENT,
10 party_name CHAR(100),
11 PRIMARY KEY(party_id),
12 UNIQUE(party_name)
13);

14 CREATE TABLE office (
15 office_id INT(4)
UNSIGNED NOT NULL AUTO_INCREMENT,

970

16 office_name CHAR(100),
17 PRIMARY KEY(office_id),
18 UNIQUE(office_name)
19);

20 CREATE TABLE registration (
21 registration_id CHAR(100)
NOT NULL,
22 registration_used TINYINT
DEFAULT 0 NOT NULL,
23 PRIMARY KEY(registration_id)
24);

25 CREATE TABLE candidate (
26 candidate_id INT(4)
UNSIGNED NOT NULL AUTO_INCREMENT,
27 first_name CHAR(50) NOT
NULL,
28 last_name CHAR(50) NOT
NULL,
29 party_id INT(4)
UNSIGNED NOT NULL,
30 office_id INT(4)
UNSIGNED NOT NULL,
31 UNIQUE
(party_id,office_id),
32 PRIMARY KEY(candidate_id)
33);

34 CREATE TABLE tally (
35 voter_id CHAR(100) NOT
NULL,
36 office_id INT(4)
UNSIGNED NOT NULL,
37 candidate_id INT(4)
UNSIGNED NOT NULL,
38 time_voted TIMESTAMP(10),
39 UNIQUE(voter_id,office_id),

971

40 KEY(voter_id)
41);

42 CREATE TABLE writein (
43 voter_id CHAR(100) NOT
NULL,
44

office_id INT(4) UNSIGNED NOT NULL,
45

writein CHAR(100) NOT NULL,
46 time_voted TIMESTAMP(10),
47 KEY(voter_id),
48 KEY(office_id)
49);

50 END

The
schema has six
tables:

party

This table lists political parties. Each party has a unique
ID, numbered from 1, and a short description, such as
“Republican Party.”

office

This table lists the offices that are up for grabs. Each
office has a unique ID and a short description like “Town
Dogcatcher.”

972

registration

This table lists valid VRNs. Each VRN has a small integer
associated with it that indicates whether the VRN has
been used in the current balloting.

candidate

This table lists information about the candidates in the
current election. Each candidate has a unique ID as well
as fields that describe who he is and what he’s running
for. The party_id and office_id fields describe
the candidate’s party affiliation and the office he is a
candidate for. The first_name and last_name
fields are self-evident. A UNIQUE constraint ensures that
there cannot be two candidates from the same party
running for the same office. The same candidate can,
however, run for two different offices, which should make
Senator and/or Vice President Lieberman happy.

tally

This table keeps track of the vote tally. The voter_id
field corresponds to the voter’s CN ballot confirmation
number (not the VRN). The candidate_id contains
the voter’s choice for candidate, and office_id
contains the office the voter wants to place him in. A
UNIQUE constraint ensures that a voter can only vote
once for a given office.

writein

This table keeps tabs on write-in candidates.

973

Example 41-2 gives a set of MySQL statements that insert
some test values into the CEA
database. There are three offices on this test ballot, including
President of the United States, State Senator, and Town
Dogcatcher. (No soft money was used for the selection of the
various celebrities listed in this example, and I was not
promised a night in the Lincoln bedroom.)

Example 41-2. MySQL statements to insert values into the
CEA database

0 #!/bin/sh
1 # first the parties
2 /usr/local/bin/mysql -f CEA <<END

3 INSERT INTO party VALUES
(NULL,'Republican Party')\p\g

4 INSERT INTO party VALUES
(NULL,'Democratic Party')\p\g
5 INSERT INTO party VALUES (NULL,'Green

Party')\p\g
6 INSERT INTO party VALUES (NULL,'Reform

Party')\p\g
7 INSERT INTO party VALUES

(NULL,"Socialist Worker's Party")\p\g

8 # now the offices
9 INSERT INTO office VALUES

(NULL,'President of the United States')\p\g
10 INSERT INTO office VALUES (NULL,'State
Senator')\p\g
11 INSERT INTO office VALUES (NULL,'Town
Dogcatcher')\p\g

12 # Now the candidates
13 # Presidential candidates
14 INSERT INTO candidate VALUES
(NULL,'e.e.','cummings',1,1)\p\g
15 INSERT INTO candidate VALUES

974

(NULL,'Ogden','Nash',2,1)\p\g
16 INSERT INTO candidate VALUES
(NULL,'Marilyn','Monroe',3,1)\p\g
17 INSERT INTO candidate VALUES
(NULL,'Tennessee','Williams',4,1)\p\g
18 INSERT INTO candidate VALUES
(NULL,'Chuck','Jones',5,1)\p\g

19 # State senator
20 INSERT INTO candidate VALUES
(NULL,'Timothy',"O'Leary",1,2)\p\g
21 INSERT INTO candidate VALUES
(NULL,'Abbie','Hoffman',2,2)\p\g
22 INSERT INTO candidate VALUES
(NULL,'Ivana','Trump',3,2)\p\g

23 # Dogcatcher
24 INSERT INTO candidate VALUES
(NULL,'John','Adams',1,3)\p\g
25 INSERT INTO candidate VALUES
(NULL,'Morticia','Addams',2,3)\p\g

26 END

975

Generating VRNs

We won’t develop the CLA very fully in this article. The
CLA should maintain a
database of voter registration information, such as birth dates,
addresses, and driver’s licenses. For testing purposes, we’ll
generate blocks of VRNs
using the program shown in Example 41-3, and load the
VRNs into the database using the program, shown in
Example 41-4.

Example 41-3. Generating VRNs with generate_vrns.pl
0 #!/usr/bin/perl
1 # file: generate_vrns.pl

2 use constant DIGITS => 100;
3 my $id_count = shift;

4 for (1..$id_count) {
5 my $digits = random_digits(DIGITS);
6 $digits =~ s/(.{25})/$1\n/g;
7 print <<EOB;
8 --REGISTRATION-START--
9 $digits--REGISTRATION-END--

10 EOB
11 }

12 sub random_digits {
13 my $digits_desired = shift;
14 open(RAND,'

/dev/urandom') or die "Can't open random
number device: $!";

976

15 my $data;
16 read(RAND,$data,$digits_desired)
or die "Can't read random bytes: $!";
17 my @digits = map {$_ % 10}
unpack('C*',$data);
18 return join '',
@digits[0..$digits_desired-1];
19 }

Example 41-4. Entering VRNs with enter_vrn.pl
0 #!/usr/bin/perl -w
1 # -*- perl -*-
2 # enter_vrn.pl

3 use strict;
4 use DBI;
5 my $db = DBI->connect('dbi:mysql:CEA')

or die "Can't connect: $DBI::errstr";
6 my $stl = $db->prepare(

'INSERT

INTO registration (registration_id) VALUES
(?)')
7 or die "Can't prepare: ",$db->errstr;
8 $/ = ""; # paragraph mode
9 while (<>) {

10 chomp;
11 my ($digits) =
/--REGISTRATION-START--(.+)--REGISTRATION-END--/
s;
12 $digits =~ s/\D//g;
13 $stl->execute($digits) or die
$db->errstr;
14 }

15 $stl->finish;
16 $db->disconnect;

977

The generate_vrns.pl script generates the number of
VRNs requested on the command line. The part that does all
the work is the subroutine random_digits between lines
12 and 19. It is critical to use a good random number
generator to generate VRNs; otherwise, valid VRNs would be
too easy to guess. The
Math::TrulyRandom module (available on CPAN) promises
to do this, but it hangs on my Linux system. Instead, I use the
/dev/urandom device, which uses a Linux kernel driver that
generates random data from non-deterministic system
information, such as interrupts. We read the requisite number
of random bytes from the device, and then transform them
into a set of base 10 digits.

The
enter_vrn.pl script shown in Example 41-4 takes a list of
VRNs generated by the previous script, and enters them into
the CEA database using the DBI module and its DBD::mysql
driver.

Line 5 connects to the CEA database or dies with an error
message. Line 6 prepares a SQL INSERT statement that
will add
VRNs to the registration table. The code between lines 8–14
loops through the list of VRNs one paragraph at a time,
extracts the VRN information, and calls the SQL statement’s
execute method to perform the insertion. After the last
VRN is processed, we call finish to close the SQL
statement, and disconnect to disconnect from the
database.

978

The E-Ballot

The fun part is the
electronic ballot generated by the CEA. Figure 41-2 shows
how it looks to the voter. There are three steps to
voting. In the first step, the voter makes his choices by
selecting radio buttons in the ballot. Each candidate is sorted
by his party and the office he is running for. There is also a
text field that allows for write-ins.

979

Figure 41-2. The electronic ballot

In step 2, the voter enters his VRN. He can do so by cutting
and pasting the VRN into a large text field, or by uploading a
file provided by the CLA that contains the VRN.

When satisifed, the voter presses the VOTE button. The CEA
checks that the ballot is filled out, that the voter hasn’t voted
twice for candidates for the same office, and that the VRN is
valid and has only been used once. If these checks are
satisfied, the CEA enters the voter’s choices into the database,
generates a CN, and displays the confirmation to the user
(Figure 41-3).

Figure 41-3. Vote confirmation

Later, when the
votes have been tallied and published, the user can go to the
published results and make sure that his vote was correctly
counted.

Of course, for the e-ballot to be at all

980

secure, all communication between the voter and the CEA’s
web site must use SSL, and the voter should be instructed to
check the web site’s SSL certificate to make sure that it is
valid.

981

The vote Program

The e-ballot is
implemented by a conventional CGI script shown in
Example 41-5. The listing is a bit long, but most of it is fancy
formatting in the ballot section. We’ll step through it a line at
a time.

Example 41-5. The vote program
0 #!/usr/bin/perl -Tw
1 # -*- perl -*-

2 use strict;
3 use CGI qw(:standard *table *Tr *dl);
4 use DBI;

5 use constant REGISTRATION_CODE_LENGTH
=> 100;
6 use vars qw(@CANDIDATES @PARTIES

@OFFICES @CANDIDATE_NAME);
7 $ENV{PATH} = '/bin';

8 # connect to database
9 my $DB = DBI->connect('dbi:mysql:CEA')

or die "Can't connect: $DBI::errstr";

10 ########################
11 # create the page
12 ########################
13 print header,
14 start_html(-title => 'Indecision

2000',
15 -bgcolor => 'white'
16),
17 h1({-align=>'CENTER'},

982

18 img({-src=>'/icons/star.gif'}) x
3,
19 'Indecision 2000',
20 img({-src=>'/icons/star.gif'}) x

3);

21 # load global variables
22 get_globals();

23 # If the VOTE button is pressed,
validate and enter the ballot

24 if (param('VOTE') && (my
$registration = validate())) {
25 enter_ballot($registration);
26 }

27 # Otherwise print the ballot
28 else {
29 generate_ballot();
30 }

31 # end of page
32 print end_html;
33 $DB->disconnect;

34 exit 0;

35
###

36 # get_globals() loads the
@CANDIDATES, @CANDIDATE_NAME,
37 # @PARTIES and @OFFICES globals from

information in the
38 # database.

39
###
40 sub get_globals {

983

41 # fetch the matrix of candidates,
parties and offices
42 my $query =<<END;

43 SELECT
candidate_id,first_name,last_name,party_name,

44
office_name,candidate.party_id,candidate.office_id
45 FROM candidate,party,office

46 WHERE
candidate.office_id=office.office_id

47 AND
candidate.party_id=party.party_id
48 END
49 ;

50 my $sth = $DB->prepare($query) or
die "Can't prepare: ",$DB->errstr;
51 $sth->execute;

52 while
(my($candidate_id,$first,$last,$party,$office,$party_id,$office_id)
53 = $sth->fetchrow_array) {

54
$CANDIDATES[$party_id-1][$office_id-1] =
$candidate_id;

55
$CANDIDATE_NAME[$candidate_id] = "$first
$last";
56 $PARTIES[$party_id-1] =

$party;
57 $OFFICES[$office_id-1] =

$office;
58 }
59 $sth->finish;
60 }

61

984

###
62 # generate_ballot(),

voting_matrix(), validation_number() and
vote()
63 # create various parts of the page

see by the voter
64

###
65 sub generate_ballot {
66 print start_multipart_form;
67

voting_matrix();
68 registration_number();
69 vote();
70 print end_form;
71 }

72 # This generates the table containing
the ballot.
73 sub voting_matrix {
74 print img({-src=>'/icons/

HandPointing.gif',-align=>'LEFT'}),
75 h2('Step 1: Fill in your

E-Ballot');

76 print
77

start_table({-cellspacing=>0,-border=>1}),
78 Tr(th(''),th(\@OFFICES));

79 for (my $party=0; $party <
@PARTIES; $party++) {

80 print
start_Tr,th($PARTIES[$party]);

81 for (my $office=0; $office <

985

@OFFICES; $office++) {

82 my $candidate =
$CANDIDATES[$party][$office];

83 print
td({-bgcolor=>$office %2 ? 'white' :
'#E0E0E0'},
84 $candidate ?

radio_group(-name => $office,
85 -value =>

$candidate,
86 -labels =>

{$candidate=>$CANDIDATE_NAME[$candidate]},
87 -default => '-',

88
)
89 :

' '
90);
91 }

92 print end_Tr;
93 }

94 # Handle write-ins.
95 print Tr(th(' '),
96 td([map

{radio_group(-name => $_, -value =>
'Write in:').
97

textfield(-name => "writein $_",
98

-value => '',
99

-override => defined param($_) &&
param($_)=~/^\d+$/
100)} (0..$#OFFICES)]

986

101)
102),
103 end_table;
104 }

105 # generate the field for entering
voter registration number
106 sub registration_number {
107 print hr,
108 img({-src => '/icons/
HandPointing.gif', -align => 'LEFT'}),
109 h2('Step 2: Enter your
Registered Voter Code'),
110 blockquote(
111 b('EITHER:'), 'Cut
and paste the code here:',
112 textarea(-name =>
'registration_id', -rows =>4 , -cols => 70,

-wrap =>
'physical'), br,
113 b('OR:'), 'Select
voter registration file for upload here:',
br,
114 filefield(-name =>
'registration_file')
115);
116 }

117 # generate the VOTE button
118 sub vote {
119 print hr,
120 img({-src => '/icons/
HandPointing.gif', -align => 'LEFT'}),
121 h2('Step 3:','Cast your Ballot'),
122 blockquote(b(submit('VOTE')));
123 }

987

124
###
125 # validate() validates the ballot to
discourage fraud
126
###
127 sub validate {
128 # first check that the voter
registration field is filled out
129 return error('The voter
registration ID field is missing.')
130 unless param('registration_id')
|| param('registration_file');

131 # check that the voter has voted
for at least one office
132 return error('The ballot has not
been filled out.')
133 unless grep {param($_) ne
'Write in:' || param("writein $_")}
0..@OFFICES-1;

134 # check that no office has more
than one vote
135 for (0..@OFFICES-1) {
136 my @votes = param($_);
137 return error("You have voted for
$OFFICES[$_] more than once.") if @votes >
1;
138 }

139 # recover the registration ID
140 my $registration_id;
141 if (my $fh =
param('registration_file')) {
142 while (<$fh>) {

988

143 chomp;
144 next unless
/--REGISTRATION-START--/../
--REGISTRATION-END--/;
145 next unless /^\d+$/;
146 $registration_id .= $_;
147 }
148 }
149 $registration_id ||=
param('registration_id');
150 $registration_id =~ s/\D//g; #
get rid of all non-digits
151 return error('Your registration
code is the incorrect length.')
152 unless length $registration_id
== REGISTRATION_CODE_LENGTH;

153 # check that this is a registered
voter
154 my $sth = $DB->prepare('SELECT
registration_used FROM registration

WHERE
registration_id=?')
155 or die "prepare registration:
",$DB->errstr;
156 my $rows =
$sth->execute($registration_id);
157 return error("The registration
code provided is not on the list of
eligible

voters.")
158 unless $rows > 0;

159 # check that registration ID has
not already been used
160 my ($used) = $sth->fetchrow_array;
161 return error("That voter
registration code has already been used.")

989

162 unless $used == 0;
163 $sth->finish;

164 return $registration_id;
165 }

166
###
167 # enter_ballot() updates the database
168
###
169 sub enter_ballot {
170 my $registration = shift;

171 # lock this registration number
so that it can't be used again
172 $DB->do("UPDATE registration SET
registration_used=1
173 WHERE
registration_id='$registration'
174 AND
registration_used=0")>0
175 or die "Can't update
registration: ",$DB->errstr;

176 # generate a ballot ID
177 my $id = random_digits(100);

178 # prepare the SQL for regular and
write-in votes
179 my $regular_vote =
$DB->prepare("INSERT INTO tally
VALUES('$id',?,?,NULL)")
180 or die "Can't prepare:
",$DB->errstr;

181 my $writein_vote =
$DB->prepare("INSERT into writein

990

VALUES('$id',?,?,NULL)")
182 or die "Can't prepare:
",$DB->errstr;

183 # begin user confirmation
184 print h2('Save this Information
for your Records');
185 print start_dl;
186 for my $office (0..$#OFFICES) {
187 my $selection =
param($office);
188 my $writein =
param("writein $office");
189 my $candidate_name = $writein
|| $CANDIDATE_NAME[$selection] || '-none-';

190 # update database with the
candidate's vote
191 if ($writein) {
192
$writein_vote->execute($office+1,$writein)

or die "can't update
tally: ", $DB->errstr;
193 } elsif ($selection) {
194
$regular_vote->execute($office+1,$selection)

or die "can't update
tally: ", $DB->errstr;
195 }

196 # update confirmation page
197 print
dt(b($OFFICES[$office])),dd($candidate_name);
198 }
199 print end_dl;
200 $writein_vote->finish;
201 $regular_vote->finish;

991

202 # show user his confirmation
number
203 $id =~ s/(.{50})/$1\n/;
204 print h3('Ballot Confirmation
Number'),pre($id);
205 }

206
###
207 # utilities
208
###

209 # generate some random digits for the
ID
210 sub random_digits {
211 my $digits_desired = shift;
212 open(RAND, '/dev/urandom') or die
"Can't open random number device: $!";
213 my $data;
214 read(RAND,$data,$digits_desired)
or die "Can't read random bytes: $!";
215 my @digits = map {$_ % 10}
unpack('C*',$data);
216 return join '',
@digits[0..$digits_desired-1];
217 }

218 # all-purpose error message
219 sub error {
220 print
p(font({-size=>'+2',-color=>'red'}, @_, br,
221 'Please correct and
try again.'));
222 return;
223 }

992

Lines 0–4: Load Modules

We turn on
taint checking and
Perl warnings. Taint checking ensures that we will be
prevented from doing anything stupid with user-supplied
input, such as passing it to shells, and
warnings alert us of uninitialized variables and the like. We
load the
CGI and DBI modules. One trick to notice is that the symbols
loaded from the CGI module include *table, *Tr, and
*dl. The asterisk means to automagically generate functions
to start and end the corresponding HTML tags, such as
start_table to generate a <TABLE> tag and
end_table to generate an </TABLE> tag.

Lines 5–7: Define Constants and
Globals

We define a constant for the
length of a valid VRN, and declare globals that will hold
various information about the ballot. @CANDIDATES is a
two-dimensional list of candidates, in which the first
dimension is the candidate’s party affiliate and the second
dimension is the office the candidate is running for. The
values of this array are candidate IDs. Each of @PARTIES,
@OFFICES, and @CANDIDATE_NAME map from database
IDs into human-readable labels. To adjust for the fact that 1 is
the lowest ID used in the CEA schema, we adjust each of the
indexes by 1. For example, the party_id for the

993

“Republican Party” is 1, so it can be found in @PARTIES at
$PARTIES[0].

We set the PATH environment variable to a safe known value
in order to satisfy Perl’s taint-check requirements.

Lines 8–9: Connect to the Database

We call the DBI->connect method to connect to the CEA
database running on the local machine. We don’t use any
password authorization here, but in a real application we
would want to.

994

995

Lines 10–20: Start the Page

We emit the standard HTTP header by calling the CGI
module’s header function, and start the top of the HTML
page by calling start_html and h1 to generate HTML
boilerplate and a level-one header.

Lines 21–22: Initialize Globals

We call get_globals to initialize the four global
variables that describe the current ballot. get_globals
will make the appropriate database calls to do this.

Lines 23–26: Handle a Submitted Ballot

We call the CGI module’s param method to look for a CGI
field named VOTE. If such a field exists, then it indicates that
the user has submitted his ballot by pressing the VOTE
button. We immediately call a subroutine named
validate, which checks that the ballot is filled out
correctly. If the ballot checks out, it returns the user’s VRN,
and we pass the VRN to a subroutine named
enter_ballot that adds the information to the growing
tally.

Lines 27–30: Generate a New Ballot

Otherwise, we call generate_ballot to create the ballot
that the user sees on the page. This subroutine will be called

996

the first time the user loads the page, as well as when the
validate subroutine detects an error in a
previously-submitted ballot.

Lines 31–34: Finish up

We call end_html to generate the boilerplate at the bottom
of the HTML page, and disconnect from the database. We
then exit.

Lines 40–60: get_globals Subroutine

This subroutine is responsible for
loading the global variables with information about the
current election. For efficiency’s sake, it fetches all the
information it needs in a single large SQL statement that
retrieves each of the candidates, their party and office IDs,
and the human-readable labels for candidates, offices, and
parties.

We do this by passing the appropriate SQL statement to the
database’s prepare method, and then executing the
resulting statement handle. We then loop over each row of the
returned table,
populating the @CANDIDATES, @CANDIDATE_NAME,
@PARTIES, and @OFFICES arrays as we go. Notice how
we offset each ID by one in order to use it as an array index.

997

Lines 61–71: The generate_ballot
Subroutine

This subroutine is responsible for
generating the HTML for the ballot. It calls the CGI module’s
start_multipart_form function in order to start a
fill-out form. We use this function rather than the more
common start_form because we will be accepting a file
containing the voter’s VRN for upload, and only the
multipart-style form can accept file uploads.

We then call three functions to generate the top, middle, and
bottom of the form, and call end_form to generate the
form’s closing tag.

Lines 72–104: The voting_matrix
Subroutine

This large subroutine generates the table that shows the ballot
information. Don’t be intimidated. The part of the subroutine
that does all the work is just two nested loops. The outer one
loops through parties, which become the rows of the ballot,
and the inner one loops through offices, which become the
columns. Within the inner loop, we check whether
@CANDIDATES contains a candidate for the current party
affiliation and office. If it does, we generate a radio button
whose name is the index into @OFFICES and whose value is
the candidate ID. For the label we use the human-readable
version of the candidate’s name, derived from
@CANDIDATE_NAME.

After

998

creating the radio buttons for standard candidates, we create a
series of write-ins, one for each office. These are text fields
with the name “writein X,” where X is the ID of the
corresponding office.

Lines 105–116: The registration_number
Subroutine

This subroutine generates the section of the ballot that
prompts the user for his VRN. There are two fields that can
be used. One is a large text area named
registration_id, where the user can cut and paste his
VRN. The other is a file field named
registration_file, which the user can use to upload
a text file containing the VRN.

Lines 117–123: The vote Subroutine

This subroutine generates a single HTML submission button
labeled “VOTE”. This concludes the portion of the script that
generates the e-ballot.

Lines 124–165: The validate Subroutine

This is responsible for
validating the voter’s submission. There are several checks on
the integrity of the ballot. First we check for the easy things:
whether the VRN has been filled in, and whether any of the
radio buttons in the ballot have been selected (we only require
a minimum of one office to be selected; it’s perfectly valid for

999

the user to vote for some offices and enter no selection for
others).

We now check for more subtle problems. Lines 134–138
verify that each office has exactly 0 or 1 votes. Although the
fill-out form only allows a single candidate from each office
to be selected, a malicious voter could roll his own fill-out
form and try to vote for multiple candidates from the same
office.

Having passed these checks, we recover the VRN. If the
registration_file field is present, then the user has
chosen to upload a file. We call the CGI module’s param
function to recover a filehandle for the uploaded file, and
parse out its contents. Otherwise, if the
registration_id field is present, we use its contents to
recover a cut-and-pasted VRN.

Having recovered the VRN, we ensure that it is valid. First,
we check that the VRN is the correct length. If so, we consult
the database to see whether the VRN is in the registration
table, and whether it is still unused. If both these tests pass,
then we declare that the submitted
ballot is valid and return the VRN to the caller.

When any of the tests fails, it calls a utility subroutine named
error. The error function displays a bold red error
message on the top of the page, and prompts the user to make
corrections and try again.

1000

Lines 166–205: The enter_ballot
Subroutine

The enter_ballot subroutine is where the information
from the ballot is collected and entered into the database,
registering the voter’s intent and keeping the sacred flame of
Democracy alight.

The first thing that we do is update the database in order to
mark the VRN as used. This prevents the VRN from being
used again. We do the update in a way that will cause it to fail
unless the VRN is currently marked as unused, and avoids an
attack based on race conditions while updating the database.

We now generate a confirmation number for the ballot by
calling random_digits. We use the newly-generated ID
to generate two SQL insert statements, one for regular
candidates, and the other for write-ins. Each statement uses
“?” as placeholders for the office and candidate fields.

We now enter the voter’s choices into the database,
simultaneously
generating a confirmation page as we do so. We loop over the
@OFFICES array, looking for CGI parameters corresponding
either to a regular candidate for the office or to a write-in. If
we find a write-in, we recover it and insert it into the
writein table using the appropriate insert statement. Otherwise
we insert the voter’s choice into the
tally table. Notice how we add 1 to the office index in order to
convert it back into the 1-based ID used in the MySQL tables.

Each time through the loop, we print out the office and the
selected candidate, using a definition list (<DL>) style HTML
list.

1001

At the end of the subroutine, we finish both SQL
statements, and then print out a nicely-formatted version of
the voter’s ballot confirmation number.

Lines 209–223: Utility Subroutines

We’ve already seen the random_digits subroutine. The
error subroutine takes its arguments and incorporates them
into an HTML paragraph, using a red font and a large font
size. The subroutine explicitly returns undef, which allows
this type of idiom in the caller:

return error('Please stop munching

chads and start punching ballots')
unless $is_valid;

1002

Tallying the Votes

On election night, tallying the vote is simply a matter of
issuing a SQL statement to add up each candidate’s counts
and grouping the results by office. Here’s one that will do the
trick:

SELECT office_name,last_name,count(*)
FROM office,tally,candidate

WHERE
candidate.candidate_id=tally.candidate_id

AND
candidate.office_id=office.office_id

GROUP BY tally.candidate_id;

+--------------------------------+-----------+----------+
| office_name |
last_name | count(*) |
+--------------------------------+-----------+----------+
| President of the United States |
cummings | 2 |
| President of the United States |
Nash | 4 |
| President of the United States |
Jones | 1 |
| State Senator |
O'Leary | 5 |
| State Senator |
Hoffman | 1 |
| Town Dogcatcher |
Adams | 3 |
| Town Dogcatcher |
Addams | 4 |
+--------------------------------+-----------+----------+

1003

By this count Ogden Nash deserves to be the next President,
Timothy O’Leary next State Senator, and Morticia Addams
the next Dogcatcher. A definite improvement over this year’s
choices!

Author’s Note: The algorithm presented in this article
contains an important bug which was pointed out by several
readers after its original publication in The Perl Journal. As it
stands, a corrupt CEA can cheat by reusing certificate
numbers. To see how this works, say that there are two
candidates in the election, who we shall call, say, Bushnell
and Lore. The CEA favors Bushnell. After it receives the first
vote for Lore, it records the CN and then reissues the same
CN a number of times. Each time a voter uses one of these
duplicate CNs to vote for Lore, the CN drops it, and
generates a bogus vote for Bushnell using a forged CN. At the
end of the election, any Lore voter who checks his CN will
find that his vote was correctly recorded for Lore. Voting
monitors will find that the correct number of votes were
recorded. But the statistics are slanted towards Bushnell,
because the duplicate Lore votes were dropped.

The solution to this problem is to have the voter pick all or
part of the CN, a detail that was in the original Schneier
description of the algorithm, but which I dropped because it
complicated the implementation (a lesson learned: in security
algorithms, the details matter). By putting the CN under the
voter’s control, the CEA is prevented from issuing duplicate
CNs. For example, you could ask the voter to pick a number
between 1,000,000 and 2,000,000. Better still you could
implement a client-side service to pick a large random
number at the time the fill-out form is generated. One simple

1004

implementation would use JavaScript for this purpose, but for
political reasons I will leave this as an exercise to the reader.

1005

Chapter 42. Perl and Nuclear
Weapons Don’t Mix

Ray F. Piodasoll
After graduating college and finishing a two-year stint in the
military, I joined a
software company that developed utilities for clients in the
defense industry. I was ROTC in college, but I still had an
occasional twinge of guilt about working for the
military-industrial complex. Only when I developed a
regression test suite for an early-warning comet detection
system did I realize that missiles aren’t always a bad thing.
When a comet six miles wide is poised to strike Earth, as one
did 65 million years ago, destroying the dinosaurs and most
everything else chewable, you’ll be glad we have nukes to
obliterate it before it turns Earth into space paste. After
finishing that project, I rejoined the military, and within
eighteen months I was assigned to
NORAD (the North American Aerospace Defense
Command).

Perl is used quite a bit at NORAD, which gave up ADA long
ago when it became evident that ADA programmers weren’t
the sort of people you want defending the homeland. At first,
my CO balked at Perl, but he softened to the idea when I told
him that it had been designed for exactly this purpose and that
PERL stands for “Precision Entry and Reentry Launchings,”
a lie that would later be repeated several times at my court
martial.

1006

I’m not supposed to talk about the work I did at NORAD,
which was software development for missile guidance
systems. But a few musings on coding style should be okay,
since I think they’ll tell you more about Perl than about
national security. I don’t mean to alarm anyone by what
follows, but you should know just how close we came to
nuclear armageddon because of my misunderstanding of basic
Perl concepts. Sorry!

In March 1996, I was told to write a program to calculate the
effect on thrust from a proposed modification to the alloy
composition of Nike missiles. The first step was parsing a file
full of rivet locations that looked like this:

RIVET294 3/8 004 14.25 14.375
DORS18-LEFT TH15/16

(TOLERANCE .0002)

RIVET295 3/8 004 14.625 14.75
DORS18-LEFT TH15/16

(TOLERANCE .0002)

Boring stuff. The first line tells us that rivet 294 is
three-eighths of an inch long and can be found 14.25 inches
above the lower left corner of plate 004. The second line has
more information identifying the location of the rivet, and the
third line contains the tolerance (.0002 inch) allowed in the
placement and rivet size. We machine all our own
rivets—even if Ace Hardware could supply rivets meeting our
specifications, their insurance company will rest easier
knowing that their products won’t be responsible for starting
World War III. Anyway, extracting these fields is
easy—simply split on spaces:

while (<>) {
@fields = split(/\s+/, $_) if /^RIVET/;

1007

Fortunately, Perl’s support for regular expressions makes the
tolerance easy to parse too:

$tolerance = /TOLERANCE\s+(\.\d+)/ if
/TOLERANCE/;

Rest of code will be declassified in
25 years
}

But there’s a problem with the $tolerance line above:
when a match is evaluated in a scalar context, it yields 1 for
success and undef for failure. My program set every
$tolerance to 1 because I forgot the parentheses:

($tolerance) = /TOLERANCE\s+(\.\d+)/ if
/TOLERANCE/;

On any
software project having to do with nukes, a team of quality
control engineers apply their canon of software verification
techniques to detect potential bugs. Luckily they discovered
the error before we installed rivets destined to float out into
the stratosphere.

A Little Rocket Science

I wasn’t so lucky with the missile targeting software. If you
remember your high school physics, you know that an object
thrown into the air follows a parabola. That’s basically how a
ballistic missile operates. (Guided missiles, on the other hand,
generate their own thrust; they’re essentially unmanned
planes with excess testosterone.)

The flight path of

1008

ICBMs (Intercontinental Ballistic Missiles) is high enough
that the gravitational pull of the Earth is measurably less, but
not enough to make a difference. Far worse are the battery of
climatic hazards, each of which causes a missile to deviate
from its preprogrammed violence vector. Wind, precipitation,
the contraction and expansion of metallic components due to
temperature, the accumulation of grit and particulate matter
from pollutants and debris—all pose little unintended threats
to our Big Intended Threat.

The unpredictability of each of these situations means that
missiles have to be reactive. They have to make continuous
and minute adjustments to their flight, and the calculations
have to be performed with speed and precision. An error of as
little as one-hundredth of a percent is the difference between
levelling a city and a nearby hospital; an error of one-tenth of
a percent is the difference between Baghdad and Haifa; an
error of ten percent is the difference between the North Pole
and Boston.

Further complicating the motion dynamics is the fact that the
missile loses mass as it flies. As liquid propellant undergoes
combustion and is expelled from the rear of the missile, the
rocket becomes lighter and easier to propel.

The thrust of a rocket is the initial speed, v0, multiplied by the
mass of gas flowing out of the rocket during a time dt.[15]

The mass of propellant flowing out, dM, is the propellant
density (ρ) times the cross-sectional area of the exhaust
orifice (A0) times the speed (v0) times the change in time dt.
The dt’s cancel, yielding our equation of thrust:

1009

which can be expressed in Perl as:
$thrust = $rho * $A0 * ($v0 ** 2);

When the orifice is very small, the speed at which the
propellant is ejected can be approximated as:

The Nike, however, needs to eject a lot of propellant very
quickly. Using a small orifice would increase the pressure
inside the fuel tank to unacceptable levels, so the orifice is
widened to the point where the above approximation doesn’t
quite hold. Instead of the square root (that is, raising to the
power of 0.5) we need to raise it to the power of 0.52 or 0.53.
Like any good programmer, I recognized that this number
might be changed as the approximation is refined, so I hid it
behind a constant. Most people don’t realize that Perl lets you
create constants like this:

*expo = \0.52;

This defines $expo to be 0.52, and prevents any later
statement from changing it. $expo++ results in a fatal error:

Modification of a read-only value
attempted at ./targetting line 1260.

(You can now create constants with the use constant
pragma, but that didn’t exist when I wrote my code.)
Anyway, here’s how I used $expo in my Perl program:

$thrust = $rho * $A0 * (2 * ($p-$p0) /
$rho) ** $expo ** 2);

1010

Do you see my mistake? If so, there’s a job for you in
avionics quality assurance, assuming we still have computers
after mistakes like mine precipitate the apocalypse, and that
computer keyboards have huge keys suitable for mashing
with our mutated fingers.

The problem is that the ** operator is right-associative:

$a ** $b ** $c

is not equivalent to:
($a ** $b) ** $c

as I had assumed, but to:
$a ** ($b ** $c)

That’s a big problem when $a, or 2 * ($p - $p0) /
$rho in my code, is about two million, $b is 0.52, and $c is
2. My result was wrong by a factor of more than four, and the
error went undetected as my Perl code was translated into C
using the Perl compiler, from C into microcode, and then
burned into missile
EPROMs. Six weeks later, the missiles were interred in their
silos with inertial guidance systems based on my code. If
launched, they would have missed their destination by
thousands of miles.

Neither -w nor use strict catches this error. I learned of
the mistake only after beginning a new project scanning large
databases of text for phrases pertaining to national security.
My CO said it was for organizing and categorizing the forty
terabytes of text data
NORAD wants put on its intranet, and I believed him until I
found out that he was making monthly trips to Cisco
headquarters in San Jose. Turns out that my scanning

1011

software has secretly been installed on a large percentage of
Cisco routers, so that the DoD could keep tabs on potential
espionage suspects.

Eventually, after making sure I wouldn’t tattle to those
“hippie civil libertarians,” my commander filled me in. I
don’t think it was because he trusted me, but because he’d
gotten flak from folks at the Pentagon sick of my program
alerting them to increasingly popular faux mail fields such as
the last line below:

From: liberal@bleeding-heart.org
To: commie@progressive.edu
Subject: The Man keeps putting us down
X-NSA: Ortega SDI genetic Khaddafi bullion
Cocaine munitions

A message to all you radicals who think you’re so rebellious
and antiestablishmentarian using those headers. I have three
words for you (well, two words and a regex):

next if /^X-NSA/;

It was during this project that I discovered my mistake with
the
exponentiation operator. In particular, I was developing
heuristics to handle misspellings a little more robustly; you’d
be amazed how many people misspell “nuclear,”
not to mention “ klystron.”
I was using the
String::Approx module, which returns a list of strings similar
to a given word. You can then feed the list into a large regex
that will find possible misspellings of the word. The longer
the word, the greater the number of possible near matches.
The relation between word length and the number of possible
misspellings is exponential, which was how I realized that my

1012

** goof was encoded in missiles buried hundreds of feet
underground. Sleep tight, citizens.

[15] If you don’t know
calculus, here’s how it works: dM doesn’t mean d times M,
but rather a teensy amount of M (mass). Likewise, dt is a
really short time. dM/dt is thus a description of how mass
changes as time passes. Now, if you graph mass versus time it
might be a funny curve, straight line, or zigzag, depending on
whether you’re talking about rockets, radium, or a bulimic.
dM/dt is a graph of that graph’s slopes. Computing dM/dt is
called taking a derivative and if you can do that you can say
you know
differential calculus. If you can do the opposite—calculate the
relationship between M and t given dM/dt—then you know
integral calculus and are entitled to use the ∫ symbol in casual
conversation.

1013

Red Alert!

Sometimes I think working for
NORAD is like being a systems administrator. As long as you
do your job well, everyone ignores you. It’s only when a
crisis occurs that people notice. When I discovered my error, I
couldn’t just say “Whoops, guess I b0rked that one. I’ll just
turn off all the nuclear missiles using this switch on the wall,
conveniently located next to the vault where they store UFO
carburetors.”
Unfortunately for me, deactivating our defense grid is a Big
Deal, since we don’t want errant orders paralyzing our
nuclear stockpile. At the same time, the logistical machinery
for resolving these crises needs to be fast. Our nuclear
missiles were effectively offline, and if a nuclear nation
suddenly decided to lob a few enriched uranium surprises our
way, we’d be impotent.

I told my CO, and he barked at a lieutenant who tapped
something into some computer that I’m not even allowed to
see, scheduling a
SPAM. SPAM stands for “ Standby Potential Armageddon
Meeting,” presided over by the NORAD shift commander.
With every SPAM comes whooping sirens, epilepsy-inducing
lights, and phone calls direct to the vacation cabins of
four-star generals. Every SPAM triggers an automatic
escalation to
DEFCON 3, which means that the Secretary of Defense has
to be notified. (I later emailed an apology to his
whitehouse.gov address, but he never replied.)

1014

The shift commander, bless his little purple heart, understood
that there was a problem with “EPROMs”
and began the discussion asking where we could procure new
EPROMs. My CO explained that it wasn’t that simple; you
don’t just stop by the NORAD general store to get fresh ones.
He explained that you need to create a program and burn it
into a new EPROM, adding that “burn” had nothing to do
with napalm.

He went on to explain that there might be other instances of
the bug, since it was due to my misunderstanding of Perl and
not a manufacturing defect. The question arose of how we
could detect and correct all of those bugs immediately. The
shift commander went around the table, asking each of us for
our recommendation. One officer suggested that we reuse old
EPROMs that weren’t tainted by Perl; my CO disagreed,
saying that the old targeting system was too inaccurate, that
we had no choice but to fix our current targeting software by
manually checking every one of the thirty-eight programs
comprising my system. I suggested that the task of finding
and fixing the bugs could be automated by a Perl script, and it
was then that they asked me to leave the room.

1015

Part VII. Obfuscated Perl

In this part:

Chapter 43

Chapter 44

Chapter 45

Chapter 46

Chapter 47

Chapter 48

When I began TPJ, I knew that hosting an Obfuscated Perl
contest was a must. Soon after launching the magazine, Felix
Gallo volunteered to author the announcements and results,
and his twisted eloquence hit the mark perfectly. The contests
challenged the Perl community to generate programs so
contorted that the judges (Felix and I) couldn’t deduce how
they worked. Some of the entries were surprisingly
educational and useful, most were grotesquely humorous, and
a few became the firstever publication of Perl’s most obscure
nooks and crannies.

The notion of squeezing a program into the smallest space
available isn’t as frivolous as it might seem. Computational
theorists sometimes measure the complexity of an algorithm
by how concisely it can be expressed; the briefer the program,
the simpler the algorithm. Brevity can have political
implications as well—consider the old furor over the legality

1016

of exporting the RSA cryptosystem, which has been
implemented in successively tinier Perl programs,
culminating in this two-line obfuscated masterpiece by Adam
Back and others:

print pack"C*",split/\D+/,'echo
"16iII*o\U@{$/=$z;[(pop,pop,unpack"H*",<>
)]}\EsMsKsN0[lN*1lK[d2%Sa2/
d0<X+d*lMLa^*lN%0]dsXx++lMlN/
dsM0<J]dsJxp"|dc'

Variants have appeared in signature files, and on T-shirts,
bumper stickers, and two forearms and a chest (as tattoos).

This section contains the announcements and results of all
five Obfuscated Perl contests. The entries are all available on
this book’s web site at www.oreilly.com/catalog/tpj3.

Back in 1996, I asked a certain computer book publisher if
they wanted to sponsor the contest. They refused, citing that
the contest sent the wrong message about Perl.

I can’t really blame them, since the contest unabashedly
contributes to the reputation Perl had many years ago as a
“write-once” language. But true hackers revel in such
perverse pleasures, whether the medium of expression is
LEGOs, wordplay, the diagram of a Rube Goldberg
contraption, or source code. Besides, if Perl didn’t allow you
to create monstrosities, it wouldn’t allow you to create
masterpieces either.

1017

Chapter 43. The Zeroth Annual
Obfuscated Perl Contest

Felix S. Gallo
Are you renowned for your excessive, belligerent tersity? Are
you a misunderstood genius who writes Perl code that looks
like it’s been run through MD5? Or are you just plain evil and
ornery enough to write code that’s so grotesque that others
pale in fear?

At last, you have a socially acceptable creative outlet: The
Zeroth Annual Obfuscated Perl Contest! You are invited to
participate in a contest to determine who can write the most
incomprehensible, unreadable, confusing, horrific, amusing,
and interesting Perl code.

There are four
categories. You can enter as many as you like, but may only
submit two pieces of code per category.

The Categories

Our inaugural contest has four categories:

Best Four-Line Signature

This award is for the best piece of Perl code that fits into 4
lines of 76 characters of ASCII code (not counting
end-of-line newlines).

1018

Most Powerful

This award goes to the piece of Perl code that does the
most with the least. The limit on bytecount is 1024
characters, not including whitespace.

Most Creative

This award goes to the most stunningly intriguing or
ridiculously hilarious combination of obfuscation and
functionality. The limit is 2048 bytes of Perl code, not
including whitespace.

Best “The Perl Journal”

In the fine “Just another Perl hacker” tradition, this award
is given to the best code that generates the words the
perl journal. Case and context are not important.
The limit is 2048 bytes of Perl code, not including
whitespace.

In addition to these four categories, the judges will award one
applicant the coveted Best of Show award, a certificate
suitable for framing or, imaginably, hiding.

1019

How It Works

The judging will work in three phases.

In the first phase, the judges will examine the code carefully
without running it in order to qualify its aesthetics. Any code
that’s completely understandable at this point will probably
not win.

In the second phase, the judges will run the code, examine the
output, and then look at the code again in light of its output.

In the third phase, the judges will dissect the code with filters,
debuggers, and whatever else they can think of, attempting to
determine how it works. Any code that’s still
incomprehensible at this point will probably win.

If the judges are stumped by the end of the third phase, they’ll
turn to the SOLUTIONS file you’ve helpfully included in
your distribution and attempt to use that to reverse-engineer
the code.

1020

Hints and Suggestions

Judging obfuscation and what’s “cool,” “neat,” or “best” is a
subjective process. However, here are some general
guidelines that might help you design your entry.

Overuse of one particular obfuscation method risks being
tedious. Entries that demonstrate breadth, range, and
knowledge are likely to beat entries that rely on repeated
parlor tricks.

Being clever and humorous is good. As an example, a past
winner in the
Obfuscated C contest (our pale, weaker cousin) formatted his
code in the shape of a maze; the program read its own source
code in and implemented an ASCII 3D maze walking
program.

Being surprising and deceitful is very good. Bonus points are
awarded for obfuscated code that is not only syntactically
obfuscated, but semantically obfuscated—code that appears
to do one thing but does another is deemed extremely
devilish.

Being poetic is also very good.

Entries needn’t contain a #!/usr/bin/perl (or
equivalent), unless they use nonobvious command-line
switches. Neither the #!/usr/bin/perl nor the
command-line switches will count toward the character limits.

Programs that purposefully crash machines or cause system
problems tend to be unamusing, so please consider saving
them for the Perl System Destroyers’ contest.

1021

Here’s a tiny example that would not win in any of the
categories, but which demonstrates a couple of now
well-known obfuscation techniques. It’s in the public domain,
for what that’s worth.

@^T = qw, 3(2 9 6) ;
21_PENGUINS, and print map
{(lc((split//=>\"\"=>")[$^T>1]).._
)[$]}@^T

Example analysis and judging thought process:

@^T is a small red herring; although it looks like some sort of
Perl special variable, it’s not (that would be $^T). Not
particularly clever, but at least standardly so.

qw uses comma as a quoting character, so the fake
parentheses, semicolon, newline, and trailing _PENGUINS
are an attempt to hide a numeric array composed of (3, 2,
9, 6, 21). The judges would instantly run pattern analysis
software on this sequence, so this is not well hidden enough.
Fairly clever, though.

The idea of starting a line with:
21_PENGUINS, and print map

is poetic, so that’s worth something.

split//=> is famous by now, having been used on the
comp.lang.perl.misc newsgroup, so this is mildly derivative
and obvious.

The use of a scalar reference as a string in \″\″=>>″ is
fairly well hidden behind a wall of semantic misdirection.
We’ll call this clever, especially once we find out that we’re

1022

using the letter c from that reference to prime an alphabet
generator.

The use of $^T is humorous and misdirectional considering
the use of @^T.

The semantics of .._ _ are interesting, neat, and somewhat
unexpected. Bonus points for the fact that _ _ appears
special and then unspecial but turns out to be special.

Disappointingly, the output is minimal, uninspiring, and
extremely obvious. The program doesn’t do anything
remarkable or surprising.

1023

So There You Have It

Please submit early and often, and encourage anyone you
know who might be interested to do the same.

Although Perl has taken some hard knocks as being a
write-only language (and this
contest could be construed as an unabashed celebration of that
fact), the intent of this contest is to demonstrate Perl’s tersity
and power, while at the same time giving the creative and
demented minds of the Internet’s legions a fun, intriguing
playground. So have fun!

We look forward with some trepidation to seeing your code!

1024

Results

First, I’d like to say that this contest was an amazing and
therefore highly regrettable success. Yes, some members of
the elite judging team are now trying to fit square pegs into
round holes in a mental rehabilitation ward, and one of the
judges was last seen washing his hands obsessively and
muttering something about never being able to get clean
again, but they gave themselves heroically in the line of duty.

The people to really worry about are the various entrants.
These seriously warped individuals went far beyond what we
thought we’d get with our pleasant little contest. No, they
each created code so vicious, so grotesque, that if the U.S.
State Department were to find out about
obfuscated Perl code of this caliber, they’d immediately
declare it an unexportable munition. Actually, some theorize
this has already happened. Onwards.

In the spirit of true obfuscation, upon receiving the complete
set of entries, we decided to modify the rules of the contest.
Every entry was considered for every category—and in fact,
some did well outside their chosen category.

Besides the best medicine for nausea, if there’s one thing the
judges learned from this contest, it’s that there is much to
learn from this contest. Each of the entries demonstrated from
one to ten hideously powerful and educational Perl constructs;
in terms of time spent, there can be few better methods of
learning how Perl works than examining these expert-crafted
hacks. We recommend that anyone who wants to advance
their Perl knowledge download these entries and try to

1025

decipher them. The especially masochistic and
adventuresome may wish to stop reading right here; some of
the below passages will contain giveaways.

Last chance to stop reading before the awards are presented
and the code is deconstructed…

Still with us? Great.

Best Four-Line Signature

3rd Place Tie: Krishna
Sethuraman, Sriranga
Veeraraghavan. Krishna did a good job of hiding the index
function which extracted Just another Perl
hacker from a string. Extra bonus points for using the
@bar{@array} feature. Sriranga’s code, studded with
dollar signs, won high aesthetic formatting marks.

2nd Place:
Poul Sørensen. Poul’s code was fairly straightforward; at least
one of the judges managed to understand what it would do
without running it. However, it’s a clever and cute hack
which runs a capital letter up and down the lowercase string
the perl journal.

1st Place: Robert
Klep. Robert’s code wasn’t highly obfuscated; most of the
difficulty of reading it came from the fact that it’s got a lot of
math in it. However, it won big in the amusement department
by calculating and printing out the Mandelbrot set in ASCII in
only 2.5 lines. Here’s Robert’s entry:

#!/usr/bin/perl
$Y=-1.2;for(0..24){$X=-2;for(0..79){($r,$i)=(0,0);for(0..15){$n=$_;$r=($x=$

1026

r)*$x-($y=$i)*$y+$X;$i=2*$x*$y+$Y;$x*$x+$y*$y>4&&last}print
unpack("\@$n a"
,".,:;=+itIYVXRBM ");$X+=3/80}$Y+=2.4/25}

Most Powerful

3rd Place: Robert
Klep, for his Mandelbrot set generator.

2nd Place: Gordon
Lack. Here’s Gordon’s entire program:

#!/usr/bin/perl -l -w015l12pi.bak

Which, as you can plainly see, converts Mac-format text files
into Unix-format text files.

1st Place: Russell
Caton, who managed to squeeze a clever program that
searches through your (optionally unordered) password file to
find the first unused UID into only 1.5 lines of Perl. It’s a
genuinely useful piece of code for sysadmins disguised as line
noise:

$-=100;while((($@)=(getpwent(
))[2])){push(@@,$@);}foreach(sort{$a<=>$b}@@){
(($_<=$-)||($_==($-+++1)))?next:die"$-\n";}

Most Creative

3rd Place: Stephen
McCamant. Stephen’s obfuscation is mostly in the math, but
he gets great style points for having the last statement be
goto a and for the execution of the program, which
calculates and prints out π.

1027

2nd Place: Steve
Lidie (see the “The Perl Journal” category, below).

1st Place: Bob
Sidebotham, whose submission was unbelievably hilarious.
We recommend you go check out the original version.
Needless to say, his program does not use π as it would have
you believe, nor does it compute anything having to do with
circles, nor are the comments true in the slightest. It’s a big,
majestic lie—its output is THE PERL JOURNAL spaced
across the screen in five-character-high letters. Bob wins this
category hands down, for apparently discovering that a higher
power, à la Carl Sagan’s Contact, has hidden the name of the
best programming journal ever in a fundamental
mathematical constant.

$maxerrors = 220; # needs tuning
$pi = reverse
"3.141592653589793238462643383279502884197169399375105820974944592
30781640628620899862803482534211706798214808651328230664709384460955058223172535
94081284811174502841027019385211055596446229489549303819644288109756659334461284
75648233786783165271201909145648566923460348610454326648213393607260249141273724
58700660631558817488152092096282925409171536436789259036001133053054882046652138
41469519415116094330572703657595919530921861173819326117931051185480744623799627
49567351885752724891227938183011949129833673362440656643086021394946395224737190
70217986094370277053921717629317675238467481846766940513200056812714526356082778
57713427577896091736371787214684409012249534301465495853710507922796892589235420
19956112129021960864034418159813629774771309960518707211349999998372978049951059
73173281609631859502445945534690830264252230825334468503526193118817101000313783
87528865875332083814206171776691473035982534904287554687311595628638823537820166
73231564231563231874231873231284231283236583236973236472239231011673231564231563
23287323187423128323128323158423158323197423197323147723923101167323656323187123
18722318742352832315842315832319742319732314772392310116732315642315632318722318
71231873231284231283231584231583231974231973231477239231011674234564231873232873
23628323158423158323697323147723923301723923101667323128423128323696823108823101
16742312832312882319682310882310116742352862339642350882310116732312842312882319
63231084231088231011673236283236963236088234016963231274231276231482231011963231

1028

27423127623148223101923396323627623148223101196323127423127623148223101696323127
423127423548101";

while ($offset < length($pi)) {
my($x) = substr($pi, $offset +++

0, 2);
my($y) = substr($pi, $offset +++

1, 1); # XXX should be 3?
my($z) = substr($pi, $offset +++

2, 1);
if ($x * cos($y) / cos($z)) {

$dbg .= chr ($x) x $y;
if (++$errors >=

$maxerrors) {
"cannot happen"
die("$dbg\n");

}
}

}

passes sig test
print("ok!\n");

Best “The Perl Journal”

This award goes to the best program that produces the words
The Perl Journal. There were some scintillating gems
in this category, which made picking winners very difficult.

(Dis-)Honorable Mentions:
Poul Sørensen for his neat streaming banner hack and Krishna
Sethuraman for an elegant little haiku (reminiscent of the bad
old days of Perl poetry) which compiles and runs.

3rd Place: Our own Steve

1029

Lidie, who threw the proverbial kitchen sink of obfuscation at
the problem, including _ _DATA_ _, random numbers,
cunningly commented code which has nothing to do with the
solution, and a trashed out string which gets transformed into
Perl code and evaluated. His effort was not only gorgeous, but
awe-inspiring.

2nd Place: Bill
Pollock, whose code contains a big The Perl Journal
mural formatted prettily in comments. The code quickly reads
itself in and uses characters from inside the comments to
generate The Perl Journal. While the code isn’t
highly
obfuscated, the idea of a program reading itself and then
using a mural to make a string is pretty nifty.

1st Place: Gisle
Aas. Gisle’s entry only serves to strengthen our deepening
suspicion that something is seriously amiss in Norway.
Gisle’s entry is so magnificently obfuscated that it’s in a class
by itself; in only 143 characters, Gisle manages to confuse
Perl’s namespace, Perl’s notion of numbers, use the tenth day
after the epoch began, and put together a tour-de-force
substitution which one of the judges still doesn’t understand.
A hearty congratulations to both Gisle and his future
therapist. With this entry, Gisle goes on to win the coveted
Best of Show award and a mandatory seat on next year’s
judging committee. His entry:

_=\$#;$/=q#(.)#;$#=10;$^X=~s|./
||;$=chr;$#=gmtime$#;substr($#,$^F#^F
*F**^F-1)=al;s$\$/()\$/\$/
$e\$2\u\$^X\$2\$3o\$1r$ && print time

1030

Congratulations also go out to all the winners, who each
richly deserve their titles and trophies, and also to all who
participated. We fully expect that next year, not only will all
of the judges return to a state of mental competency, but the
contest will be even fiercer!

—Felix Gallo and Jon Orwant

The Official Highly Trained Zeroth Obfuscated Perl Contest
Judges

1031

Chapter 44. The First Obfuscated
Perl Contest

Felix S. Gallo
Summer is in the air, and young hackers’ thoughts turn to
writing gloriously awful code. And yes, despite our editors’
protestations, despite the restraining order, despite even
explicit medical advice from our therapists, we’re once again
proud to bring you the infamous, world-renounced
Obfuscated Perl Contest.

The objective: To determine who can write the most devious,
inhuman, disgusting, amusing, amazing, and bizarre Perl
code.

The prizes: A lovingly manufactured trophy made of high
durability space age materials, suitable for brazen display or
shameful and secretive night burial. Also ord ‘d’ dollars.

But wait! Before you rush to your keyboard to craft your
outrè œuvre, here are the categories in which you may enter:

Most Powerful

This award is granted to the code that does the most with
the least. The limit on bytecount is 512 characters, not
including whitespace.

Most Creative

This award goes to the most stunningly intriguing or
ridiculously hilarious combination of obfuscation and

1032

functionality. The limit is 1024 bytes of Perl code, not
including whitespace.

Best “The Perl Journal”

In the fine “Just Another Perl Hacker” tradition, this
award is given to the best code that generates the text
The Perl Journal. Case and context are
unimportant. The limit is 1024 bytes of Perl code, not
including whitespace.

Best Year 2000 Error

(From the February 3, 1997 Information Week, via
EDUPAGE)

Marsh & McLennan, Inc. is offering businesses a
hedge against Year 2000 problems. The New York
insurance broker will sell up to $200 million worth
of insurance against business losses caused by the
policyholder’s own computer system, or by another
company’s neglect to become Year 2000–compliant,
or by data supplied by another company’s
computers. Before the policy is issued, however,
Marsh & McLennan will enlist experts to make sure
that the policy-buyer is taking all possible steps to
avoid Year 2000 problems.”

It’s hard to escape the conclusion that crafting obfuscated
code can be not just enjoyable but profitable as well. For
$200 million, can you hide a Year 2000 bug well enough
to fool some insurance salesmen?

In addition to these four categories, the judges will award one
applicant the coveted and yet feared Best of Show award.

1033

Results

Like full-on biological war, Obfuscated Perl contests do not
lend themselves to the concept of “winning.” The survivors
can only hope to redeem themselves with penance and a life
of anguished regret.

This year, the judging committee buckled under the onslaught
of over 30 accursed felons, deviants and ne’er-do-wells. Two
disturbing trends soon emerged:
first, the quantity of malevolence has risen sharply; and
second, the skill with which it is wielded has grown
exponentially. Judges were carried away howling to an
unknown moon. One developed an incurable allergy to
anonymous list references. Several attempted variable suicide.

But we persevered. Here are the top winners in each of the
four categories. All of the
first, second, and third-place entries can be found on the TPJ
web site, including descriptions of what the programs do, how
they work, and any other color commentary provided by the
authors.

Most Powerful

Actionable mentions: Joe
Futrelle’s 478-byte CGI-running web server, Bill
Wendling’s sound-alike word lister, and Stephen
McCamant’s phone number word locator.

Third place: Kalai
Kandasamy, for an
orbital

1034

fractal pixmap generator:
$k=100,$_=P,$n=200;print
while(($z++?($_="",$z):($_.="6\r$n $k $n
"))<
$n*$k?($a=34-$p,$b=$l+($p<=>0)*sin(log abs
$p-5),$#[int(($l=$a)-70)/-$k*$k+
int((($p=$b)+50)/
132*$n)*$k]=$;):($_=$#[$*++==$k*$n?exit:$*]?O0h:God))

Second place: Aaron
Sherman, for a slick Perl-enabled spreadsheet:

while(<>){
s%^\s+%%;$q=q=([a-z])(\d+)=
;s#^(\{.*)#$1#eieio&&next;
s|\s+$||;/^$q *= *(.*)/oi||
die;_();for$%(0..$#l){my@o;
for$|(0..$#{$l[$%]}){$_=$l[
$%][$|];s%\b$q:$q\b%($j,$s,
$t,$m)=(z(_($1),_($3)),z($4
-1,$2-1));($j==$s&&(@==map{
"\$_[$_][$j]"}$t..$m))||($t
==$m&&(@==map{"\$_[$t][$_]"
}$j..$s))||die;join',',@=
%eig;s@\b$q\b@\$_[$2-1][_(
$1)]@gi;push@o,$_[$%][$|]=
eval;warn"$|,$%: $@"if$@}sub
z{sort{$a-$b}@_}print$%+1,
": ",map({sub _{@_?ord(uc$_[
0])-65:($l[$2-1][_($1)]=$3)}
sprintf((/[^\d.-]/?"%10s":
"%10.2f"),$_)}@o),"\n"}

}

First place: Daniel
Rinehart, for writing a self-uncompressing square root finder
and custom bignum library:

1035

$s=2;
$d=500;
$w="A";$_='ZIsHPX=$s-Z*Z;$|C;J"sH=\nZ.";O!XNJ"0"x$d,"\n";exit}QZNpush(F,Z%
10PZIZD)}QXNpush(@W,X%10PXIXD)}subT{GMw>MW)OMw!=MWPZ=Mw;QE1NGZV>B)OZV!=BPZ
K}1}subY{my(FPZ=0;X=Mw+1;QX>ZNXV+=ZV*S;X[E1]IXVDPXV%C0;E+}MYKO!X[MY]PF}Q$d
KNLF;S=2;@T=Y;@W=(0,0,@WPSC;QSNAOTNF=(KS,FPlast}S++}AZ[0]K;Z=0;S=MW+1;QZ-S
NB+=9-ZV;OB>C0NB-C0;Z[E1]K}E+}Q!U[MW]NMWK};JX[0]}J"\n";';foreach$s(qw/
L(S
,@TPLY; UV =1*.1 Z+ @Y return(qrt($s) =R(
prR -- @w= $#){ if(); Te(int
Ul Wl Xi [Z] Yi Zh wh $w
/){s;$w;$s;g;$w++}eval;

Most Creative

Third Place: David
Powell, for a curses-based real-time skiing game:

undef $/;open(_,$0);/ \dx([\dA-F]*)/
while(<_>);@&=split(//,$1);@/=@&;
$".=chr(hex(join("",splice(@&,0,2))))while(@&);
eval$";

($C,$_,@\)=(($a=$/[1]*4)*5+1, q|
|x(0x20).q|\||.chr(32)x(0x10).q$*$.
chr(0x20)x(0x10).(pack("CC",124,10)),
sub{s/.\|(\s*?)(\S)./\|$1 $2/},
sub{s/\|(\s*?).(\S)/ \|$1$2 /},
sub{$2.$1.$3},sub{$tt=(3*$tt+7)%$C},
sub{$1.$3.$2});
while ($_) {

select $/, undef, $/, $C/1E3;
(sysread(STDIN, $k, 1), s/(.)(*)(.)/

(&{$\[(ord($k)-44&2)+2]})/e)
if (select($a=chr(1),$/,$/,0));

print

1036

0x75736520504F5349583B2024743D6E657720504F5349583A3A5465
726D96F733B24742D3E676574617474722828303D3E2A5F3D5C2423292F32
293B2024742D3E7365746C666C61672824742D3E676546C666C6167267E28
4543484F7C4543484F4B7C4943414E4F4E29293B202742D3E736574636328
5654494D452C31293B24742D3E736574617474722802C544353414E4F5729
3B24643D224352415348215C6E223B0A;

($p?(/.{70}\|$/):(/^\|/))||(&{$\[3]}<$/
[0])?($p=!$p):&{$\[$p]}||die("$d");

(&{$\[3]}<$/[1])&&(s/ \|$/\|/);
(/\|.**.*\|$/)||die("$d");

}

Second Place: Robert
Klep, for a curses-based graphics hack which rotates the word
Perl on your terminal. A must-see.

#!/usr/bin/perl
for(;print"\e[2J";$d--){for$i(0..31){for(0..7){$|=1;$c=cos$d/
($P=4*atan2(1,1));
$s=sin$d/
$P;(1,2,4,8,16,32,64,128)[$_]&(63,127,63,1,65,1,65,1,65,1,65,1,65,1,65
,1,63,31,63,1,1,1,65,1,1,1,65,1,1,127,65,127)[$i]&&print"\e[",25+int$c*($Y=-4+
int$i/
4)-$s*($X=($i%4-2)*9+$_),";",40+int$s*$Y+$c*$X,"H*"}}select('','','',.1)}

First Place: Stephen
McCamant, for his implementation of an 8-bit Apple][-like
virtual machine which runs opcodes that pretend to calculate
π. Why? We don’t know either, and perhaps that’s the point.

$|=$m=' 32 e5 y2F&C82yP(
g32g.2'!I_QÎt e'"Î0 eB!P;'!}_' !sa ePQ
0b2'cFUBARd'd4Wo4d'dWmBc¬
'; sub g($){unpack"C",substr$m,$_[0],1} sub
p($$){substr($m,$_[1],1)=pack"C",$_[0]}sub
R(){$a}sub
r(){g R} sub a(){g 0}sub t(){g 2}sub j{p
R,1}sub

1037

k{p$_[0],1} @a=split /@/,'p a+r,0@p
a&r,0@p~r,R@p a|r,0@p
a^r,0@p t-1,2;p g(1),t;k R@p r-1,R@p
r+1,R@p g a,0@j@j if
a&128@j if a@j if a&1@k r@a or j@p r,0@p
R,0@p
g(R+a,0)@p a%r,0@p a*r,0@@p g t,R;p
t+1,2@p t-1,2; p
r,t@k g t;p t+1,2@p a,R@p a- r,0@print
chr(a)@p a<<r,0@p
+(a>>(R&15))&((1<<((R>>4)+1))-1),0';
@c=map($_>0?(0)x$_:eval"sub{$a[-$_]}",unpack
"c*",'ÿpyüûúùø÷E<ouml>õôóòñ€ïîíìëêéèçæåE<auml>1');
l:$c=g g 1;$a=g(g(1)+1);p
g(1)+2,1;&{$c[$c]}();goto l

[Eight-bit characters interpreted as ISO-Latin1, just for kicks.
—Jon]

Best “The Perl Journal”

Intolerable mentions: Stephen McCamant, Aaron
Sherman, Hugh
Sanderson (nice camel!).

Third Place: Frank
Sheiness, with the most alarming obfuscation of the contest:

#!/usr/bin/perl5.004
<BLINK>
;open$^D^$D;seek(0,-51,2);$a=<0>;@a=map
unpack(c,$_),split'',substr$a,
$a,index$a,N;for($a--,7..9){splice(@a,$a+=11,0,"#")}$_=join'',@a;#$foo
=sub cut
{($u,$c,$f)=@_;$d=':';while(<$f>){split($d);push(@p,$_[$u],$_
[$c]);}return@p}$f=*F;open($f,"/etc/
passwd")||die"Error:$!\n";@passwd

1038

=cut(0,1,$f); system "echo \Q@passwd\E |
mail archon@unix.bigots.org";
@a=split/#/
;close0;$|=1;for(84,@a){for($foo=1<<1^1;$foo>=1>>1;$foo--){
$fOO=hex
ff,$fOo=oct($foo=~s,\d,$&*10,e,$foo),$foo/
=1/.1,$fO=$fOo,$
Foo.=chr(($_&$fOO)$fOo),$foO++}}while(-r$0&&-e$0){$o=$o?$?:$/;
print
reverse$o?$Foo:$"x$foO
if$;;print"\b"x$foO;for(0..31337){rand ord
PJ}}
</BLINK> # NO CARRIER

[Several eight-bit characters, including null characters, not
shown. —Jon]

Second Place: Jim
Lawless, who implements a self-decompressing
six-instruction virtual machine:

Jim Lawless jimbo@radiks.net
This program is an entry for the
obfuscated Perl contest.

$v='o=p0e;n
($ie,=$00;)$;f@=x"=]<]i]>];]$]y?=>j?o[i[n'
.

'[([">">,>@?x])];]c.l]o]s]e](]i])];]@]z<=<s<p<l?i>'
.

't?(>/?\>
?/[,[$[y[)[;[$[c[{."[]["[}[=[|<$<d<+?+";' .

'
|.;"$]c]{]"]>>">}>=>|?$]e]+]+];]|];]$]c<{?"[?["['
.

'}?=]|]p]r]i]n<t?
[s[u[b[s[t[r[([$[z[[[$[d[]<,?$>e' .

1039

'>,?1");;f|o;r$(c${i"=[0";}$=i|<$lde-n-g;t|h;($$cf'
.

'{)";<$"i}+=+|)$
e{-e-v;a|l;($$cc{{"s.u"b}s=t|rp(r' .

'ifn,t i", 1");}|);;$}d';

for($i=0;$i<368;$i+=2){$s=substr($v,$i,1);$q=$q
.

(($s eq '|') ? "'" :
$s);$s=substr($v,$i+1,1);$r=$r .

(($s eq '|') ? "'" : $s);}eval($q .
$r);print "\n";

First Place: Joe
Futrelle, for a gorgeously formatted entry which uses the
Unix chargen (character generation) service at www.w3.org:

package S2z8N3;{
$zyp=S2z8N3;use Socket;

(S2z8N3+w1HC$zyp)&
open SZzBN3,"<$0"

;while(<SZzBN3>){/\s\((.*p\))&/
&&(@S2zBN3=unpack$age,$1)}foreach

$zyp(@S2zBN3){
while($S2z8M3++!=$zyp-

30){$_=<SZz8N3>}/^(.)/|print $1
;$S2z8M3=0}s/.*//|print}sub

w1HC{$age=c17
;socket(SZz8N3,PF_INET,SOCK_STREAM,getprotobyname('tcp'))&&
connect(SZz8N3,sockaddr_in(023,"\022\x17\x\cv"))

;S2zBN3|pack$age}

Best Year 2000 Error

First Place: Stephen

1040

McCamant, whose entry was not only grotesque enough, but
also alone in the category enough to win outright. Perhaps
what they say about a lack of Year 2000 expertise is true!

$RCSfile: ch44,v $$Revision: 1.20
$$Date: 2003/05/05 16:37:36 $

Print out an interesting thing that
happened in a given year

This program is fault-tolerant and is
designed, manufactured and
intended for use and resale as on-line
control equipment in hazardous
environments requiring fail-safe
performance, such as in the operation
of nuclear facilities, aircraft
navigation and communication systems,
air traffic control, direct life support
machines, and weapons
systems, in which the failure of the
program could lead directly to
death, personal injury, or severe
physical or environmental damage
('High Risk Activities'). Despite the
suitability of the program for
such uses, the author's lawyers advise
him to disclaim that UNDER NO
CIRCUMSTANCES AND UNDER NO LEGAL THEORY,
TORT, CONTRACT, OR OTHERWISE,
SHALL THE AUTHOR OR HIS SUPPLIERS OR
RESELLERS BE LIABLE TO YOU OR ANY
OTHER PERSON FOR ANY INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES OF ANY CHARACTER INCLUDING,
WITHOUT LIMITATION, DAMAGES FOR
LOSS OF GOODWILL, WORK STOPPAGE,
COMPUTER FAILURE OR MALFUNCTION,

1041

DEATH, NUCLEAR FALLOUT OR HOLOCAUST,
AIRCRAFT MIS-ROUTING, AIRCRAFT
COLLISION, AIRCRAFT CRASHING OR FALLING
OUT OF THE SKY, RANDOM FAILURE
OF LIFE SUPPORT EQUIPMENT OR OTHER
MEDICAL DEVICES, UNINTENDED FIRING
OF OFFENSIVE WEAPONS SYSTEMS, UNINTENDED
FAILURE OF DEFENSIVE WEAPONS
SYSTEMS, PROVOCATION OF ARMED CONFLICT,
PROVOCATION OF UNARMED
CONFLICT (NOT RESTRICTED TO PROFESSIONAL
WRESTLING), OR ANY AND ALL
OTHER COMMERCIAL DAMAGES OR LOSSES. IN
NO EVENT WILL HE BE LIABLE FOR
ANY DAMAGES, EVEN IF HE SHALL HAVE BEEN
INFORMED OF THE POSSIBILITY OF
SUCH DAMAGES BY ANY MEDIUM, EVEN IF
REPEATEDLY, OR FOR ANY CLAIM BY
ANY OTHER PARTY. THIS LIMITATION OF
LIABILITY SHALL NOT APPLY TO
LIABILITY FOR DEATH OR PERSONAL INJURY
TO THE EXTENT APPLICABLE LAW
PROHIBITS SUCH LIMITATION. FURTHERMORE,
SOME JURISDICTIONS DO NOT
ALLOW THE EXCLUSION OR LIMITATION OF
INCIDENTAL OR CONSEQUENTIAL
DAMAGES, SO THIS LIMITATION AND
EXCLUSION MAY NOT APPLY TO YOU.

Changes:
0.0 SMCC Initial revision
0.1 SMCC Added `eval' for fault
tolerance, according to
spec MIL 4269.1828
0.2 SMCC Made POSIX compliant

At

1042

first I found perl difficult and unwieldy,
but now that I've
gotten into it more, I don't have any
trouble getting it to do what
I mean.

Failsafe definitions
$SUCC = 0;
$FAIL = 1;

eval { require POSIX;
POSIX->import;
$SUCC = EXIT_SUCCESS();
$FAIL = EXIT_FAILURE();

};

The following just a failsafe definition
-- it doesn't handle all
cases correctly.
sub roman {

my($x) = @_;
my($s) = "";
$s .= "M", $x -= 1000 while $x >= 1000;
$s .= "D", $x -= 500 while $x >= 500;
$s .= "C", $x -= 100 while $x >= 100;
$s .= "L", $x -= 50 while $x >= 50;
$s .= "X", $x -= 10 while $x >= 10;
$s .= "V", $x -= 5 while $x >= 5;
$s .= "I", $x -= 1 while $x >= 1;
return $s;

}

eval { require Numerals::Roman;
Numerals::Roman->import; #

Overrides definition above
};

@linesep = ("\r", "\r\n", "\045");

1043

#%linesep = ('macos' => 0, 'msdos' => 1,
'win32' => 1, 'win95' => 1,
'winnt' => 1, 'mvs' => 2, 'vm'
=> 2);

Actually, on MacPerl "\r" means "\n" and
"\n" means "\r", and on DOS
machines "\r\n" is translated into "\n"
on input (unless we use
binmode, which we won't), so we can get
away with "\n" everywhere.

%linesep = ();

if (exists $linesep{lc $^O}) {
$linesep = eval { $linesep[$linesep{lc

$^O}] };
} else {

$linesep = "\n";
}

Read in the data
eval {

local($/);
Because of the undefined value, this

operation is especially
risky -- thus, we use eval {} twice.
eval { eval { undef $/ } };
eval { $data = <DATA> };

};

if (@ARGV != 1) {
die "usage: $0 year\n";

}

$year = $ARGV[0];
$ryear = eval { roman($year) };

1044

#

First search -- reject any lines whose
date isn't made up of the same
numerals as the target date.

This

first pass is actually slower on a serial
machine, but using
the full database and ParallelPerl on
the Cray at the base, it
really flies.

Here, eval serves a dual purpose -- not
only does it protect us from
failure and errors, but it causes the
regex to be precompiled, a
speed win.

$searchsub = eval
"sub {\$_[0] !~ /(\$linesep[$ryear]+
[^\$linesep]+\$linesep)/}";

This method of stepping over the data
may seem weird and C-like, for
two reasons.

First, this started life as a C program.
Second, when
you have a database that includes
everything interesting that's
happened in the history of the world,
you don't want the overhead of
split(). Unfortunately, this code is
rather brittle -- it had quite
a few off-by-one errors before I

1045

twiddled it into its current state.

($i0, $i1) = (0, 1 + index($data,
$linesep));
while ($i1 < length $data) {

$text = substr($data, $i0, $i1-$i0);
$status = eval { &{$searchsub}($text)

};
The real check. Since this is part

of the `inner loop', I've
tried to write it using as few

operators as possible.
if ($status == $FAIL && $text =~

/$ryear (.*)$linesep/) {
print "$1 in $year\n";
exit $SUCC;

}
No match: move along down the data
($i0, $i1) = ($i1 - 1, 2 + $i1 +

index(substr($data, $i1 + 1), $linesep));
}
print "Nothing interesting happening in
$year\n";
exit $FAIL;
Data follows

The following is part of a much larger
database; this is only sample data.
Many of these are from _The Timetables
of History_, third revised edition.
Sorry about the format -- the database
is part of a legacy system.
__END__
DXXV Caleb of Abyssinia conquers the Yemen
DCCXXXX Earthquake in Asia Minor
DCCCCLXVIII Founding of Cordoba University
MCCXXXXIII Five-year truce between England
and France

1046

MDLXXXI Sedan chairs in general use in
England
MDCCLXVI

First paved sidewalk laid in Westminster,
London
MDCCCCXIIII Northern and Southern Nigeria
united
MDCCCCXXXVIIII Baseball game is first
televised in U.S.
MDCCCCLXVII National Library in Ottawa,
Ontario, opened
MDCCCCLXXXVI Live television coverage of
U.S. Senate debates begins
MDCCCCLXXXX Marion Barry, Jr., was
arrested for possession of crack
MDCCCCLXXXXVI Summer Olympics in Atlanta
MDCCCCLXXXXVII 1st Annual Obfuscated Perl
Contest
MDCCCCLXXXXVIII Release of Perl 5.005
MDCCCCLXXXXVIIII Cancellation of Star
Trek: Voyager
MM The end ... just kidding
MMI Release of Perl 6.000_000_000 ... just
kidding
MMII Release of Windows 2
MMIII Ronald Reagan dies

Best of Show

The 1997 Best of Show award goes to Stephen
McCamant, whose entry in the Most Creative category takes
special pains to cause special pain. We can only hope the
grim knowledge of what he has done haunts him to the end of
his days. Only the fact that his virtual machine was based on

1047

the Apple][squeaked him by Joe Futrelle’s TPJ-printing
entry at the wire for the victory.

Thanks to all who entered this year’s contest! Everyone was
skilled enough that judging was very difficult. As before, we
strongly recommend that aspiring Perl programmers read the
entries and try to decipher them; you can learn quite a bit in
the process, if you stay sane.

—From the depths of hell we stab at thee,

The Survivors of the Obfuscated Perl Judging Committee

1048

Chapter 45. The Third Obfuscated
Perl Contest

Felix S. Gallo
Editor’s note: There was no Second Annual Obfuscated Perl
Contest; we skipped it in order to shake off the zero-based
indexing when the Zeroth Contest began in 1996.

The categories were Most Powerful, Most Creative, and Best
“The Perl Journal”; we’ll skip directly to the results.

Oh, you shameless, malign bastards.

Coming so soon after Orwant’s cortex reconstruction therapy
and my own first hesitant touch of a keyboard in months, the
new brace of Obfuscated Perl Contest entries can only be
taken as an unprovoked attack by a band of malicious
sociopaths.

And it gets worse—most of the entries were submitted by
new entrants. While this meant that some of the new players
made first-timer mistakes, it also raises the spectre of an
unending flow of new Obfuscated Perl programmers. As a
result, we have gone into hiding from the U.N. War Crimes
Tribunal. Humanity, we pray forgiveness!

But! We must judge on; we are, after all, professionals.
Drawing on the lessons of the past, the judging team came up
with brand new software for this round. Combined with the
hard-won experience of the judges, this made this contest the
most difficult and incisively-analyzed match in its history.

1049

And also the most brutal; when a Russian software munition
formatted lovingly in the shape of a leaping dolphin doesn’t
place, it’s a sign that the competition is fierce.

Many entries fell immediately to critical study and our
gleaming machine. Here are the ones that survived and won;
all entries and solutions are available on the TPJ web site. We
strongly recommend that you check them out; many teach
valuable lessons useful even for production code!

Most Powerful

Third Place: Tomas
Rokicki and his implementation of a fast 20 x 80 version of
Conway’s Game of life.

Second Place: Kevin
Miller, whose program is a nicely
obfuscated graphing calculator that plots arbitrary
one-variable functions in ASCII.

First Place: Clifford
Adams, whose Pure Perl implementation of two software
munitions is jam packed, using some breathtaking
space-savers. Added bonus: his patented
Algorithmic Key Recovery System for RSA in the
SOLUTION file. Capital. Clifford’s entry:

#!/usr/bin/perl -s0777
$_=<<'',s'3'(q))(e))l]'g,s']'|a-mn-z($)&|n-za-m$(&)|;'g,s'`'/
g,s/'g,s/./$'/ee
#y]s/\n#/`#/d(&bmul(\$`%/
s-.|\\n-`\//-ge;`@(.)/;\$$1=`4/pack("`$"/
$'/ee
#(e)=1@_"0(x"@*0;$(x=ha4B*",4H*",z,$$..&*(&,&&&=~f-^0*-/

1050

qb 'ovtvag.cy'@"(a=~%
#@*)onq#*,16&,urk()&/
@:$(q*2-1+("&>>1@;7k$1-(q*2+(:&@_<>."\0"k$(:-1&;!3(q?%(t
#?(e=():0,""-r:cevag(e;f!$.|\a&{(:}!@_()@,1@"0;%@")onq#",256&,beq()&/
@_(x;%@,
#)ozb#,,(,&,(*&,()?(,=)ozb#,,("&,(*&:9,""/
@;~%$(,,("&=)oqvi$(,,256&@_4C",("&.
#(_,8/3cevag!tr

Dishonorable mention: Dave
Hartnoll’s entry generates a very nice calendar; Dean Inada’s
parenthesis balancer is cute; and Vipul Ved
Prakash’s
dolphin-shaped Russian cipher was barely squeaked out (you
see, the new minimum requirement is two ciphers). Vipul’s
program:

#!/usr/bin/perl -s

sub R{int$_[0]||
return

vec$_[1],$_[2]/4,32;int$_[0]*rand}($R)

=$^=~'([\]-\`])';sub
F{$u=0;grep$u|=$S->[$_][$_[0]>>

$_*4&15]<<$_*4,reverse
0..7;$u<<11|$u>>21}$t=$e

||$d?join'',<>:(($p,$d)=($R,1),unpack u

,"(3=MCV7%2W'<`");@b=@t=0..15;for(

;$i<length$p;$i+=4){srand($s^=R$R,$p

,$i)}while($c<8){grep{push@b ,splice

@b,R(9),5}@t;$R[$c]=R(2 **32);@{

1051

$S->[$c++]}=@b}@h=0..7;@o =reverse
@h;while($a<length

$t){$v=R$R,$t,$a;
$w=R$R,$t,($a+=8)-4;

grep$q++%2?$v
^=F$w+$R

[$$R]:(
$w^=F$v+$R[$$R]),$d?(@h,(@o)

x3):((
@h)x3,@o);$_.=pack N2,$w,$v}

print

1052

Most Creative

Halfway through the submission period, only two entries had
been submitted. But the celebratory champagne went flat and
the canapés congealed in our throats as these entries appeared
in the download directory. Clearly the contestants had been
timing their blows for maximum shock value.

Third Place: Mark
James claims
third place with the last entry that builds on the work of James
Conway that will ever be accepted—a factoring program
nicely (and obfuscatorily) formatted in the shape of π.

Second Place: Cayce
Ullman, whose entry not only decodes Morse Code, but is
partially written in Morse Code. Cayce, we want you to know
that there’s help available for people like you. Cayce’s code:

#!/usr/local/bin/perl -0777
open(X,"<$0");@y=(5,67,70,22,1,43,25,40,4,53,
23,49,8,7,26,52,77,16,13,2,14,41,17,68,71,76)
;$_=<X>;for($z=0;$z<@y;$z++){$i=$y[$z];$d=@y+
1;$o='';for($n=0;$n<4;$n++){if(($i/
$d)>=2){$o
.='-';}elsif(($i/
$d)>=1){$o.='\\.';}$i=$i%$d;
$d/=3;}$w{$o}=chr($z+97);$o=~s/
\\//g;$v{chr($
z+97)}=$o;}@x=split'_';pop@x;sub
c{my$x=@_[0]
;foreach$p(keys(%w)){$x=~s/
([^.-]|\G)$p[\s]/$
1$w{$p}/
sg;}return$x;}$_=pop@x;$_=c($_);eval;

1053

<<_
$. = <>;$. = " $. ";$- = -.-. ($.);$-
=~
... !^\... !!--. ;.--. .-. .. -. - "$- \-.
";
$. =~ ... %\... *(\.-- *)\... *%$1%; ..
..-.
($. . --.- ".... . .-.. .--. --- ..- - "
){
.--. .-. .. -. - ".. - ... -- --- .-.
... .
-.-. --- -.. . :";..-. --- .-. . .- -.-.
....
$- (... --- .-. - -.- . -.-- ... (%...-
))
{.--. .-. .. -. - "\-. $- =$...- {$- } ";
} }
_

First Place: Stephane
Payrard’s Polyominos-fitting problem solver is very
beautiful—eclipsed only by the entertaining reading available
in the SOLUTION file. Perhaps it’s fitting that such a
powerful obfuscatory statement comes from the land that bred
semiotics, deconstructionism, and Jean-Paul Sartre. Or maybe
Stephane is just demented.

Dishonorable mention: James
Shute, who had us stumped until we realized he was cleverly
bending the rules; and Stijn
van Dongen, whose entry was fun, but unfortunately over the
character limit.

1054

Best “The Perl Journal”

The awesome might of our AI was unleashed on these
contestants without mercy. And they fell; oh yes, they fell.
Only a few entries of the original 18 required extensive
human study. A great many tried to flaunt the whitespace rule
and were disqualified for being obvious. Here, then, are the
cockroaches of the category: the hardy, repulsive survivors.

Third Place Tie: Cameron
Kaiser, for an old-sk00l ASCII art entry with many layers of
chaff; and Jeff
Pinyan, whose exhaustive exploration of the asterisk was
particularly grotesque. Cameron’s entry:

$r="3131343130323131383033353131363131313131343131313132353034313132313132353132
32313130303436303437303438303439303530303531303532313239";
$|++;while($r=~s/([0-9]{6})/the perl
journal/&&($s=$1)){push(@q,chr(pack("H6",$s
)-$g++));}while(<DATA>){/[JUNK^FOOD]/
&&die"\n";print$q[$_=~s/[\$*]//g];}
__DATA__

$
$.

$ $. $
* $. * $

* .
$ $

. $
$.

* . * $
*

$$$ $$$$
$$$ $.

1055

$ $ $
$ $ $

. $$$ $$
$$$ $

$ $ $
$ $
______________________________ $ $$$$ $
$ $$$ ______________________________

. / /$$$$\
\ | \$$$ $

. . . / /
\ | \ . .

. /$$\
/$$$$$$$$ \$$\ \ .
$ $ $$$$$$$$$ /
// \ \ \ .
* $

. $ THE $
/$$//$$$$$$$$$$$$$$ \$$$\ \

$ PERL
$ $

. $JOURNAL$
. $. . *

$ 1998! $ *
. $.

$$$$$$$$$

Here is Jeff Pinyan’s entry:
=\2;$#{*}=$$*;%*=($*/
$*,($**$**@**@*)-($***($**$*)),$*,
($**$**@**@*)+$**$*,@*-$*,($**$**@**@*)+$*/
$*,$**$*,$***@*,
$**$*+$*/
$*,$***($**$*)*@*,$**(@*-$*),($**$**@**@*)+$*/
$*,
$*+@*,$**($**@**@*+@*+$*),$***(@*-$*),$**$**@**@*+($***(@*-$*)),
(@*-$*)**$*,$***@*,$**@*,$***($**(@*-$*))+$**@*,$**@*+$*/
$*,

1056

$**$**@**@*+@**$*+$*/
$*,$**@*+$*,$***($*+@*)-(@*-$*)**$*-$*,
$**@*+(@*-$*),$**($**@**@*+@*+$*),$**($*+@*),$**$**@**@*+$**@*,
@**(@*-$*),$**$**@**@*-(@*-$*),$***($**$*),($**$**@**@*)+$***(@*-$*));

$_=<<'go//s\/s';

;)*%(sy ek}b$>
=<a${tr

o s
} }

_
${*$rh c

{ p
a m

+ t
nirp

go//s\/s

$code=<<'Jeff Pinyan';

eval(sc alar(re
v e r
s e [

s / \s//og,
$ _]
- > [
1])) ;

Jeff Pinyan

eval [$code=~s/\s//og,$code]->[1];

Second Place Tie: Ken
Rich, man of many quality entries, whose first entry was
visually splendid; and Dan

1057

Rinehart, whose storytelling entry uses copious errors to
work:

@a=qw/13 2 0 4 8 5 0 2 0 14 1 10 0 18 2 0
3 3 0 9 25 10/;
$^W=open(A,$0);$a=($_)=(join('',<A>)=~/
\(\"(.*?)\);/s);
s;[\$\@].;;g;s;[^a-zA-Z.]; ;g;s;\s+; ;g;
${uc(pack'H6','736967')}{pack'H16','5f5f5741524e5f5f'}
=sub{$a=shift(@a)-1;print$_[0]=~/.{$a}(.)/
};
s; \.;.;gs;s;(.{1,60}\s);print"\n$1";ge;
@b=("Mr.","$TPJ","saw me trying to","chmod
777,'chmod.'",

"He knew it was odd. Like trying
to","print print$a",

". It must be

obfuscated I said. He said see
an","oct('08').",

"No but","accept MY,APOLOGIES",
"if you can not grok. Should anyone

ask","tell THEM",
"that the","getpeername IS","a decoy.

He said","listen TO,0",
"$a=1_21","me. I know you well Mr.","j",
". I do not think you will continue

to","connect THE,$a",
"real and unreal if you keep this

up.","$a=1if($a=1)",
"you want","my $a,$a=@b","advice you

should","seek HELP,0,1.",
"Dr.","syswrite MIGHT,$a,1","help you.

If not he will",
"send YOU,'TO',2","Dr.","Perl","who

works for");
foreach$a(@b){$a[0]?eval$a:$#{@a=@a[$^W..$#a]}};

First Place: Jani

1058

Joki’s brain bending style, the implementation of brute
forcecracking of an 8-bit Feistel Network encryption
algorithm and multiple misdirections caused our brains,
organic and silicon, to dribble out our noses. We can’t believe
Jani didn’t post this from a mental ward:

use Socket;*DB::readline=sub
{gethostbyname($ub[2]);"q"};sub
sub6{my($Sub,$sUb
,$suB)=@_;@sub6=split(/\./
,$Sub);@sub0=split(/\./
,$sUb);$n=25;while($n-->0){
@sUb=@sub0;@sub0=@sub6;for($SUB=0;$SUB<4;$SUB++){$sub6[$SUB]=$sUb[$SUB]^(($suB
*$sub6[$SUB])%256);}}join('
',@sub6)."|".join(' ',@sub0);}sub
sub7{my($SUb,
$Sub1)=@_;while(!$suB){$sUB++;$suB1=sub6($SUb,$Sub1,$sUB);$sUb1=join('',map(
chr,split(/\||\s+/,$suB1)));if($sUb1=~/bT/
){$suB=$sUB;}}$suB;}

$ub[0]="213.194.130.2";$ub[1]="176.150.192.124";$ub[2]="210.108.130.194";
$ub[3]=

"54.58.4.129";$ub[4]="142.145.204.194";$ub[5]="38.117.253.134";
$sub4=\&sub2;$sub5=\&sub3;sub sub1{die(
&$sub4(&$sub5((shift)))."\n")}sub
sub2{$SUb=sub6($ub[2],$ub[3],$suB);$SUb.="
".sub6($ub[4],$ub[5],$suB);$SUb=~
s/98/32/g;(shift).join('',map(chr,split(/
\||\s+/,$SUb)));}sub sub3{$SUb=sub6(
$ub[0],$ub[1],&{(shift)});$SUb=~s/98/32/
g;join('',map(chr,split(/\||\s+/,$SUb
)));}sub1 sub{$suB=sub7($ub[0],$ub[1]);};

Dishonorable mention: Bill
Wendling, Kevin
Meltzer, and

1059

Poul Sørensen, all of whom had excellent flair but could not
hide from our automaton’s unblinking eye. Be sure to check
out Shawn
Wallace’s scintillating output—too bad he fell for the
overused whitespace trap.

1060

Best of Show

Jani
Joki wrests away the Obfuscated Perl Best of Show award,
won last time by the Americans, and returns it triumphantly to
Europe. Can it be? Can Europeans really be so much better at
writing disgusting Perl code than Americans? Is it something
in the water? If so, does the CDC know? Will the proud
citizens of the United States rally in the face of
Euro-domination? We’ll find out next year.

Our nurses are telling us computer time is over. So, for the
judges, see you next time!

1061

Chapter 46. The Fourth
Obfuscated Perl Contest

Felix S. Gallo
You were born into this. From the first day they swaddled you
in scarlet silk blankets, put one of their own into the crib, and
stole you crying away into the black stillness of the forest,
you have been in a school of previously unknown purpose.

Your eyes, once childish and full of wonder, have matured all
too quickly. They’ve roamed books not written to be read,
murals not drawn to be viewed; they’ve watched macabre
puppet theatres that portray the studied arts of deception.

Your fingers, thick and clumsy compared to theirs, have been
trained to work the skeins of falsehood and lies made fabric.
In the glow of the phosphorescent toadstool circle the needles
flicker and glitter like shooting stars.

Poison has become your tongue. As their emissary you walk
the daylight world, chatting and laughing in streetside cafes or
talking to colleagues in your office; but inside the guileweave
hides a venomous calculus. Every night you lay out the
candles and the breadcrumbs and wait.

Today the air is different. The sun still shines, but you feel the
chill of invisible clouds passing over its face. And the smell is
sharper, like the taste of the dark earth at the foot of a
graveyard. Today you know your decades of secret schooling
draw to a close, and as the power wells up inside you, you

1062

hope that you are ready. There are four circles of judgement
in which you may prove your worth as a master of deception.

The first circle is judged upon the ability to craft a lie that
commands an infernal computing engine to print the words
“The Perl Journal” in human-recognizable form. You may
only use up to one thousand glyphs, including the invisible
ones, in the completion of this screed.

The second circle is judged upon the ability to forge a
deviousness that commands an infernal computing engine to
perform some task of extreme might and puissance. Your
limit is six hundred glyphs, whether visible or no.

The third circle is judged upon the ability to create a
monstrosity that exhibits artistic cunning and creative guile in
its dread formulation. The limit is one thousand glyphs,
including those which cannot be discerned by the naked eye.

The
fourth circle is judged upon the ability to cause your fell
creation to appear as a chameleon or doppelgänger does: as a
deceptive imitation of another tongue. You must pick a
different language and endeavor to make your handiwork fool
the eye into believing that it was written in that language. For
this purpose you may select up to two thousand visible or
invisible sigils.

The laws of the circles are few but severe.

▪ All dweomers must be penned in the language of the
fifth camel.

▪ While you may use the hide, the hair, the nails, and the
teeth of the pure camel, your spell may not rely upon the
existence of any other animal, neither ibex, vampire bat,

1063

rhinoceros, nor warthog; nor the vile children of the
palaces of Berkeley, Redmond, Finland, or New Jersey.

▪ Your incantations will be pronounced within the
confines of a memory cage capable of holding four
million things; attempts to use more may succeed, or
may shatter the cage and release your bound spirits into
the air with the crashing of glass and the tinkling of tiny
bells.

▪ Your writings belong to you; but you provide the judges
and The Perl Journal with the right to duplicate, quote,
edit for style, and disseminate them freely upon an
unsuspecting world.

▪ Your works must be sent to the Stronghold by the first
day of the eighth month. You must use the anonymous
Fœtid Transference Petals to connect to ftp://ftp.tpj.com
and place your entry in /pub/orwant/obfuscated.

▪ The champions and their monstrosities will be
announced in comp.lang.perl.moderated, in the
magazine, and on tpj.com. By this iteration of the
nightbird’s cycle you may be familiar with the methods
of judgement. But as there are newborns amongst us
fresh from the amniotic dew, I relate them here.

First, the committee examines the work. If we can
determine its nature visually, then we disqualify it as
being too human.

Second, the committee hands the work to an infernal
computing engine and examines the results.

1064

If after this act we still can’t unravel the tortuous webs of
your thinking, we examine the SOLUTION text you
have helpfully provided.

Most victors attain that rarefied third strata.

In addition to the quality of being merely impossible to
understand, much of the judgement relies on aesthetics,
cleverness, newness, humor, and interest, especially
manifold and in combination. As an example, many
entries in the last circle relied on using a plethora of
invisible glyphs—which was mirthful, but too obvious.
Obvious means failure. The void faerie hungers for new
toys.

Remember, you were born into this. In the underworld the
leaves rustle as an unseen crowd gathers closer to the camel
stone. Make your masters proud.

—Felix Gallo, Lead Inquisitor

The Obfuscated Perl Contest

Results

Fifty-seven contest entries hemorrhaged forth into our FTP
directory. Previous contests have been perhaps more
synapse-curdlingly intense; the hallmark of this year was
sheer volume. Of course, we in the judging committee are all
very relieved that the collective obfuscatory powers of the
Perl community have plateaued and are now declining—some
of us are even slated to eat solid food again soon! Next year
promises to be trivial! This is getting so easy !

1065

The First Circle: Print “The Perl
Journal”

Third place: Tramm
Hudson’s steganography entry, cleverly done (albeit
misspelled)—but the very last abuse of whitespace ever to be
permitted in this category, ever ever ever.

Second place: John
Keating’s monolithically forbidding block of old-skool
obfuscated code. Extra points for assigning to $!.

First place: Keith
Winstein’s optical character recognition engine. Both judges
almost figured this one out after Keith blew his cover by
naming a subroutine ocr. Clever code, however!

#!/usr/bin/perl -l

print ocr(<<TPJ);
##

#
#
#
#

#
#

#
#

##
TPJ

sub
ocr{@{$-[$@++]}=split$,for(split'\n',shift);for$@(0..4){for(0..51){++$_{$_

}if($-[$@][$_]=~$")}}@&=(-1);for(sort{$a<=>$b}keys%_){push@&,$_

1066

if($_{$_}>4)

}push@&,52;for$@(0..13){@{$|[$@][$_]}=@{$-[$_]}[$&[$@]+1..$&[$@+1]-1]for(0..

4)}for(@|){**=$_;$w=@{$*[$^=$$=0]}-1;for$@(0..4){for(1..$w){^++if*[$@][$_

]ne$*[$@][$_-1]}}for(0..$w){for$@(1..4){$$++
if$*[$@][$_]ne$*[$@-1][$_]}}

for(0..20){push@},chr$_+65if(7*(8,4,2,9,2,3,7,8,1,$@,5,4,9,10,10,6,3,8,4,

8,8)[$_]+(5,8,3,3,4,2,1,2,8,2,7,1,5,4,6,$@,3,6,8,4,1)[$_]==7*$^+$$)}}@}}

Dishonorable mention: Sven
Neuhaus’.signature-sized entry, and Les
Peters’ nicely formatted periodic table of elements.

The Second Circle: Do Something
Powerful

Third place: Eugene’s sweetly concise self-printing program.
Not very powerful, but pound-for-pound a contender:

$_=q(s%(.*)%$_=qq(\$_=q($1),$1),print%e),s%(.*)%$_=qq(\$_=q($1),$1),print%e

Second place: Mike
Guidero’s string permuter, useful for making your screen look
like something from War Games:

#!/usr/bin/perl
G: *S=sub{goto shift};*T=sub{exit
shift};*U=sub{print shift};
H: my $A="";my $C=0;my $D=0;my $E=0;my
$F=0;my $G=0;my $H=0;my @I;
I:
if(!defined($A=$ARGV[0])){U(qw(ARGV[0]?));U("\n");T(1)}$C=length($A);

U("-$A-\n");$D=0;

1067

J:
$F=0;$I[$D]=0;if($D!=$C){S(K)}for($G=0;$G<$C;$G++){U(substr($A,$I[$G],1))

}$H++;U("\t");$H%8||U("\n");S(M);
K:
$F=$D;if($F!=0){S(N)}$E=$I[0];if($E==$C){U("\n---\n$H\n");T(0)}
L: $D++;S(J);
M: $D--;$I[$D]++;S(K);
N: $F=$I[$D];if($F==$C){S(M)}$E=$D-1;
O:
if($F==$I[$E]){S(P)}$E--;if($E!=-1){S(O)}S(L);
P: $I[$D]++;S(N);

First place: Claudio
Calvelli’s comp.lang.perl.announce newsreader, a monstrous
piece of code that delves into 8-bit characters and still has 28
bytes of headroom.

Dishonorable mention: Robert
Klep’s implementation of just one software munition, which
unfortunately didn’t run on one of the judges’ machines. Note
to future contestants: the new bar for crypto consideration is
three or more algorithms in one program, preferably all
illegal, preferably all military-grade.

The Third Circle: Be Creative

Third place: There weren’t enough quality entries to justify
giving a third prize in this category. Maybe next year we’ll
give two.

Second place: Art
Ramos’s implementation of Windows Minesweeper. Cute,
pretty clever, but…

First place: Andreas

1068

Hagelberg’s implementation of Windows Minesweeper. It’s
fairly ironic that a Perl
contest with a creativity category
results in two implementations of a Microsoft timewaster;
nevertheless, Andreas’s entry has some nifty features.

srand;for(0..5){$r[$_]=chr 65+rand 8}sub
d{print$/x6;for(0..335)
{print$_<27&$_>13?'-':$_%14>12?"\n":$_<6?$_[0]?$r[$_]:
'O': $_%14==6?'|':(split//,$b[int$_/
14])[$_%14]||$"}print"$/Enter
m/[A-Ha-h]{6}/\n"}sub c{return if/[^A-H]/
||length()-6;@c=split//,
${$f=\($b[24-++$w]=uc.$")};$w>21&&return
1;for(-6..35){($p[$h]=1)
&($q[$h]=1)&($$f.="*")&$n++if$_<0&&$c[$h=$_+6]eq$r[$h];
!$p[$b]&&!$q[$d]&&($p[$b]=1)&($q[$d]=1)&($$f.="+")
if$c[$d=$_%6]eq$r[$b=$_/
6]&&$_>-1}(d$])&die"Done$/"if$n>5;
$n=@p=@q=()}while(!c){d|chop($_=uc<>)}d$/
;print"$/Looser!$/"

The Fourth Circle: Make Believe You’re
Another Language

Third place: Claudio
Calvelli’s Intercal script. Intercal, Perl’s mad aunt, is just the
sort of beautiful language people accuse Perl of being.

Second place: Philippe
Bruhat’s wc (word count) script, which compiles both in C
and in Perl, caused one judge to leap from his chair and go
wash his hands obsessively.

#include <sys/types.h>
#include <sys/stat.h>

1069

#include <stdio.h>
#include <fcntl.h>
#define open(a,b) open(b,a)
#define $ARGV argv
#define $i i
#define x : /* aren't four #define way too
much?

unshift @ARGV, $_ =
$ARGV[0]; "*/
main(int argc, char *argv[]) { // "; {

int m=1, i[14]; char * pp; int p=-1;
int q, F=3; char * qq = "Hello\,

world!\n";
i[12]=537463307; i[13]=3085; //,; $_

= "" if(length!=2);

if(m+-p?(argc>1&&!strcmp(argv[1],"-p"))?p+i?
1 : 1 x 0 x 0) {

printf(qq/*\bThe Perl Journal\n/#*/
); exit(0); }

qq="=;#"; argv[0][0]='\0';
memset(i,0,48);

$i[10]=($i[11]=(q/*\b/
&&scalar@ARGV))-1;#*/=0) + argc)-1;

do{
if($i[11]<2) { $i[10]=1; q/*/

&&*F=*STDIN;#*/=F=0;
} else { open(O_RDONLY,

$ARGV[$i[11]-$i[10]]);//; *F=*O_RDONLY;
}
while(read(F, $i, 1)>0) {

++$i[4]^(q=/*.=,$_=$i);#*/0); pp=i;
$i[3]+=m=(*pp^0x0A)?/*\n=;#*/0:1;

for(qq=&i[12];*qq;*pp^*qq++||(q=1));
if(m=/*[\n\f\r\xB]=#*/q

) { if($i[1]){$i[$i[1]]++;
$i[1]=0; }} else { $i[1]=2;}

}

1070

if($i[1]){$i[$i[1]]++;};
printf("%7d %7d %7d

%s\n",$i[3],$i[2],$i[4],$ARGV[$i[11]-$i[10]]);
close(F);

if($i[11]>2){for($i[1]=2;$i[$i[1]+4]+=$i[$i[1]];$i[1]++){$i[$i[1]]=0;};$i[1]=0;}
} while(--$i[10]);
if($i[11]>2) { printf("%7d %7d %7d

total\n",$i[7],$i[6],$i[8]); }
}

First place: Chris
Howe’s mad, bizarre Befunge interpreter. Befunge is the sort
of language they might hold a “Comprehensible Befunge
Contest” for. Quite brilliant, really.

^
#,_:@
BEGIN{$l="ub";$_='KN($){$d=$_[0]}KL(){$B[$R][$C]}KM{$a=@{$B[$R]};
$d==0&&($C++,$C>=$a&&($C=0));$d==2&&($C||($C=$a),$C--);
$d==3&&($R++,$R>=@B&&($R=0));$d==1&&($R||($R=@B),$R--);}
KP($){push@S,shift}KJ(){pop@S||0}KX(){@S[-1,-2]=@S[-2,-1]}KR()
{push@S,$S[-1]}KW($$){"Z".$_[0]."Z,K{".$_[1]."},"}KG($){($_)=($a)=@_;
y/\`/>/;W$a," X;P(J$_
J)"}KD($){($a)=@_;W$a,ZP
Z.$a}KE($){($_)=($a)
=@_;y/0123/>^<v/;W $_,"N $a"}';y/Z/\'/;s/K/
s$l /g;my($R,$C,@S);
eval$_;}$_=$x=W '_','N(J?2:0)';y/_02/|31/
;$x.=$_
#r^>\"J eg"1+T,,,,l#
; $u=W
'"','@T[0,1]=@T[1,0]';$_=$x.$u.W('!','P!J').W('?','P
int
rand(4)').W(':','R').W('\\\\','X').W("\$",'J').W('
',"").W('#','M')
.W('.',"pIJ,chr(32)").W(',',"pIchr
J").W('@',"pI'\n';exit").W('g','X

1071

;P
ord$B[J][J]').W('p','X;$a=\\$B[J][J];$$a
=chr J;');s/I/rint /g;@T=eval
join"\n",'({',(map{D$_}(0..9)),(map{E$_}(0..3))
,(map{G$_}split//,'+-*%/
`'),$_,'},{',$u,'})';for(@B=<>){$_=
[split/\n*/]}while(1){$_=L;$_="
"if!defined$_;~y/\s/
/;exists$T[0]{$_}?$T[0]
{$_}->():P ord$_;M;}

Befunge is a two-dimensional language. The instruction
pointer, instead of moving from one line to the next in a
comforting logical sequence like every other language, moves
character by character—and not always from left to right.
When the instruction pointer hits a v, it moves down
whatever column it’s in. When it hits a ^, it moves up. < and
> move the pointer left and right. Befunge programs wend
their way around the page, and the one created by Chris’
program eventually prints The Perl Journal. You can
learn more about Befunge at http://www.loungelizard.com/
pascal/befunge/beffaq.html.

Dishonorable mention: Clifford
Adams’ use of NO CARRIER was a welcome blast from the
past. ?SYNTAX ERROR, anyone?

This year’s Grand Prize goes to Chris Howe for the most
creative, powerful, incomprehensible, and shapeshifty
submission: his Befunge interpreter. Such attention to detail!
Such painstaking mutilation! It is clear the authorities need to
be made aware of Mr. Chris Howe.

Reading these entries and trying to figure them out for
yourself is a great way to learn a lot about Perl very quickly
(as long as you don’t pick up all the bad habits!). We strongly

1072

recommend that anyone interested in getting really good at
Perl check them out.

For the relatively unscathed judging committee, thanks to
everyone for making this year so simple to judge!

—Felix Gallo

1073

Chapter 47. The Fifth Obfuscated
Perl Contest

Felix Gallo

Nathan Torkington
The Introduction was written by Nathan, and the Results were
written by Felix.

Twelve times the priest’s hand rises and falls, and twelve
times the knife takes life from the white-clad sacrifice.
Moonlight spills over the scene like the virgin’s blood over
the altar, and your heart races. For you are next.

The priest turns to you, as the robed assistants carry away the
last participant. Beneath the hood you can see only the
priest’s sinister mouth, curved into a bitter smile. The crowd’s
chanting increases in strength, and you take two paces
forward.

“Have you an offering for L’rep Evif T’niop Xis, most holy
giver of time and deliverer of all that is good?” The priest’s
gravelly voice, eerily magnified by the stone platform and
marble altar, makes your chest resonate and you feel the ball
of fear in the pit of your stomach.

“Yes,” you say.

“Then step forward and deliver your offering to our most
bloody god.”

1074

You take another two paces forward, until you are at the altar.
You can see the last supplicant’s blood still dripping, slowly,
from the sides. You clear your throat and recite:

($,, $ ")=("a".."z")[0,-1]; print "sh",
$ ","m";;";;"

The crowd gasps, breaking off their chant. The priest does not
say anything, silently moving his lips and frowning. The only
noise that can be heard is the sound of blood drip drip
dripping onto the stone platform. All are motionless, and
then…

The priest gives a signal and cries: “Too simple! You’re
indexing twice into the alphabet, and then printing three
strings separated by the now-meaningful $,”. You feel the
hands of the altar boys on your shoulders and know that all is
lost.

Is this your fate, or will you defeat the high priests? Do you
have what it takes to construct code most obfuscated? The
doors to the
Fifth Annual Obfuscated Perl Contest are open. The judges
are straining at their straitjackets, and their medication has
been boosted in anticipation of the finer degrees of psychosis
required to decipher truly obfuscated code.

The categories follow:

Create a Diversion

Write a game in 512 characters or less, or a video game in
2048 characters or less if you use Perl/Tk.

1075

World Wide Wasteland

Write a program that creates a web page most foul. You
may use the CGI module bundled with Perl. The size limit
is 512 characters.

Inner Beauty

The program with the highest utility * prettiness / size
wins. Maximum 512 characters.

The Old Standby

Print The Perl Journal in 256 characters or less.

Results

In 1347, the Black Death swept across Europe, sowing the
streets with the distorted bodies of the dead and driving
fear-mad men to flagellate themselves with scourges in the
desperate attempt to rid themselves of sin.

In 2000, The
Fifth Obfuscated Perl Contest results arrived in my mailbox,
with much the same effect.

72 entries, some spanning multiple categories, comprised this
year’s plague. Clearly, the popularity of Perl amongst insane
asylum inmates is on an exponential growth curve; debate the
direction of causality amongst yourselves. The results are all
available on the TPJ web site.

1076

Create a Diversion

Nobody took this opportunity to implement Quake, which
was too bad. Only two entrants went for Perl/Tk, probably
because Tk is both object-oriented and longwinded about it.
This category will exist in the next contest; the byte limit will
be 4096 bytes, and no console graphics will be permitted.

In third place: Adam
Spragg, whose nice, spare console graphics version of the
skiing game was at least not another thrice-damned version of
Mastermind.

In second place: Steve
Lidie’s Tk game, featuring the chance to destroy The Perl
Journal.

In first place, Garry
Taylor’s heroic reimplementation of
Frogger, which was obfuscated, obviously hellish to do, and
fun to boot (Figure 47-1).

1077

Figure 47-1. Frogger in 2048 bytes

Garry’s code follows:
eval eval
q.q>trd!Uj:%L<061:%C<csnvo:%f<fsddo0:%c<cmtd:%x<xdmmn
v:%I<011:%u<251:%bs<bsd`udSdbu`ofmd:%w<lnwd:%U<2:%t<L`hoVhoe
nv,?odv),idhfiu<?314-,vheui<?254(:%b<%t,?B`ow`r:%b,?bnoghftsd),vheui&
lt;?%u-,idhfiu<?311(:%b,?q`bj)(:s)3-3-%u-001-%c(:s)3-081-%u-311-%f(:s)3-001
-%u-031-%f(:s)3-1-%u-34-%f(:gns)%{<1:%{=%u:%{*<71(zs)%{-01-%{*51-54-%f-%
f(:|s)3-1-%u-04-cm`bj(:%b,?%bs)3-1-%u-311(:%G<,041:v)1-%L-31-C-%x(:v)%G-%L-
,021-C-%x(:%B<,91:v),31-041-,4-B-%c(:v),91-041-,74-B-%c(:%E<,%I:v)1-021-
31-E-%x(:v),%I-021-,91-E-%x(:%K<,231:v),71-81-,31-@-%C(:v),301-81-,%L-@-%C(
:v),%u-81-,211-@-%C(:%M<,%u:v),51-61-1-F-%C(:v),%L-61-,021-F-%C(:v),%u-61-,
211-F-%C(:%J<%u:v)751-41-791-[-%C(:v)401-41-441-[-%C(:v)%u-41-291-[-%C(:%b,
?bsd`udNw`m)063-080-091-088-,u`fr<?G-,ghmm<?fsddo5(:S)1(:%b,?sdqd`u)%I-]
't(:%t,?choe)&=Envo?&<?rtczS),0(:'V:%b,?%w)G-1-31(hg)%x=081(:|(:%t,?choe)&=
Tq?&<?rtczS)0(:%b,?%w)G-1-,31(:|(:%t,?choe)&=Mdgu?&<?rtcz'V:%b,?%w)G-,31
-1(hg)%y?31(:|(:%t,?choe)&=Shfiu?&<?rtcz'V:%b,?%w)G-31-1(hg)%Y=%u,31(:|(:L`
hoMnnq)(:dyhu:rtc!vz%b,?%bs)%^Z1\-%^Z0\-%^Z3\-%^Z0*8-,u`fr<?%^Z2\-,ghmm<
;?%^Z5\(:|rtc!tzhg)%G?%u(z%G*<%L:%d<,%G:%G<,%L:|dmrdz%G*<01:%d<
01:|%b,?%w)C-%d-1(:hg)%B?%u(z%B*<%I:%d<,%B:%B<,%I:|dmrdz%B*<01:%d&
lt;01:|%b,?%w)B-%d-1(:hg)%E?%u(z%E*<031:%d<,%E:%E<,031:|dmrdz%E*<0
1:%d<01:|%b,?%w)E-%d-1(:hg)%K?%u(z%K*<229:%d<,%K:%K<,251:|dmrdz%K*
<7:%d<7:|%b,?%w)@-%d-1(:hg)%M?%u(z%M*<271:%d<,%M:%M<,271:|dmrdz
%M*<9:%d<9:|%b,?%w)F-%d-1(:hg)%J=,%u(z%J,<%u:%d<,%J:%%u:|dmrd
z%J,<7:%d<,7:|%b,?%w)[-%d-1(:'V:hg)%x=081(zhg))%x?031(}})%x=001((zAn<
%b,?ghoe)nwdsm`qqhof-%y-%x-%Y-%X(:hg)%x?031(zhg)%"n(z'R:||dmrdzhg)%x?58(zhg)%"
n?0(z%n<7:%n*<3hg)%x=81(:%n<,7hg)%x=61(:%b,?%w)G-%n-1(:|dmrdz'R:||dmr
dzhg)%"n?0(z'R:|dmrdzS)00(:%U**:%O**:'R:v)%y-%x-%Y-Q-%f(:%b,?edmdud)&Q&(hg)
)%
O$4((:||||rmddq)4(''Uj;;dyhu)1(hg)%U=0(:||rtc!Rz%U,,:qshou#]`#:%b,?%w)G-063,%y
-081,%x(:|rtc!SzP)cm`bj(:%R*<%^Z1:P)sde(:|rtc!Pz%b,?bsd`udUdyu)%L-9-,udyu&
lt;?%R/
1-,ghmm<?%^Z1\(:|rtc!sz%b,?%bs)%^Z1\-%^Z0\-%^Z3\-%^Z2\-,ghmm<?%^Z
5\-,ntumhod<?%^Z4\(:|rtc!Vz)%y-%x-%Y-%X(<%b,?bnnser)G(:|^chr($$/
$$)x2016.

1078

World Wide Wasteland

As the old programming adage goes, “Perl is the best
language for managing a hardcore porn web site.” Oddly, an
entrant named Mark
Ryan took this to heart, submitting a porn ad generator…that
was, unfortunately, clearly written and well-commented. On
some level this is the most
obfuscated entry ever received.

But, back to actual prizes. In third place: the enigmatically
named ernimril and erkkah bring their combination
fractal color generator/web browser load tester to the party
(Figure 47-2). Don’t type 9 into the little box.

1079

Figure 47-2. Sierpinski fractals in 504 bytes

In second place: Jetro
Lauha’s very pretty (and similar) math-based page-colorer.
Most of the obfuscation is in the math, but the result is a cool
graphics hack, shown in Figure 47-3.

In first place:
Nemo, a redneck cracker from Georgia (with contestants like
these, we don’t need to make stuff up), and his or her elegant
sliding puzzle CGI script (Figure 47-4). Clever!

The code for the puzzle follows:

1080

$0=s#.*[/
\\]##g;push@ARGV,"-h--Te_-JPerourl";$_=shift;@4=@1=@3=@2=@[=split(//);/
_/g;$;=pos;$$=sub{eval"(\$$\\[$;\],\$$\\[$\"+$;\])=(\$$\\[$\"+$;\],\$$\\[$;\]);\
@\[\[$\"+$;\].=join\"\",\@$\
;\$\\++"};$\++;$;--;$"--;$;%4>0&&&$$;$"+=2;$;%4<
3&&&$$;$"-=5;$;>3&&&$$;$"+=8;$;<12&&&$$;$\--;for(@[){s}(.)(.+)}<TD>$1}g;s@^(.)$@<TD>$1@g;s]>_]>
]g}for(0..3){@[[$_<<
2]="<TR>".@[[$_<<2]};$$=localtime;print
"Content-Type: text/html\n\n
<html><body><table
border=2>",@[,"<TD>nal</table>$$<p></body>
</html>"

1081

Figure 47-3. A sine plasma color generator in 503 bytes

Inner Beauty

This category was for the most striking entry in the smallest
size. It was very difficult to judge, partly because of, as
always, perennial deranged foreigner Mssr.
Bruhat. His “main” entry doesn’t qualify—but his “helper”
entries are each fairly sweet.

Figure 47-4. An HTML sliding tile puzzle in 512 bytes

The judges were divided, but in the end the third place prize
was a tie between each of Bruhat’s four complying entries. Be
sure to check them out for why.

1082

The second place prize goes to Benjamin
Young, whose automatic obfuscating machine escaped
deobfuscation by the automatic deobfuscation machine
through the systematic abuse of punctuation. The output of
his program is even good enough to qualify!

#!/usr/bin/perl
$;="@{'`|;{'^'!.|-'}";$.++;$.++;$.++;$_="(.)?";/
((?{$_.=$_}).)+$/;@_='~!@#$%^&*(
)_+`-=[]\\{}|;\':",./<>? '=~/$_/;@_
=$;=~/$/;$_="(.)*?";/((?{$_.=$_}).)+$/
;$Z-=
$Z;"$.$."-$Z;/((?{$_
[$z]&&!("${[$x]}"^"${_[$y]}"^"${_
[$z]}"^"$Z")&&($a.=$[$x
],$b.=$_[$y],$z++);$x++;$y+=!($x%="$.$.");$y%="$.$.";}).)+/
;$_="^"^"^";$_ _=".>.\
@[$_>\\$_?)\@$_/^/";$_ _ _
="^[\\,{-[|\"[\@%
^/$_";$_='$_="^"^"^";`@{['."('$_ _$a'^
'$_ _ _$b')".".('!\@/\"'^'}.')".']}`';

print;

The most beauteous entry was formulated by Christopher
Gutteridge, whose ASCII timepiece sprung a few gears on
cygwin32 but was good enough under Linux to win through.
It’s shown in Figure 47-5.

The Old Standby

Although Mssr. Bruhat’s combination PostScript/Perl (yes,
really) entry was The Best Ever, it was also many, many more
bytes than permitted. Alas. In fact, many deeply skilled
entrants went over; we apologize, and next year, the byte limit
will be 1024 bytes.

1083

Third place: Matthew
Smith, whose evolving string was cleverly done.

Figure 47-5. An animated ASCII timepiece in 511 bytes

Second place: Mark Jason
Dominus, who sent characters spewing every which way
through multiple twisty little passages in the kernel, all alike.
As solid a first entry as one might expect from a
golden-age-of-talk.bizarre refugee:

@P=split//,".URRUUxR";@d=split//,"\nlanruoJ
lreP ehT";sub p{@p{"r$p","u$p"}=(P,P
);pipe"r$p","u$p";$p++;($q*=2)+=$f=!fork;map{$P=$P[$f|6&ord$p{$_}];$p{$_}=/
$P/i?
$P:close$_}%p}p;p;p;p;p;map$p{$_}=~/[P.]/
&&close$_,%p;wait
until$?;map/r/&&<$_>, %p;print$d[$q]

First place: there’s always someone who tries something
totally beyond any understanding. That someone was Les

1084

Peters, who used a rendition of rotated 90 degree Mayan
numerals to extract the required text. Yes, indeed. For this
effort above and beyond the tethers of sanity, Les wins the
hated and feared Best of Show award this year.
Commiserations and sorrow go out to Les, his coworkers, and
his family for the following code:

#:: ::-| ::-| .-. :||-:: 0-| .-| ::||-|
.:|-. :||
open(Q,$0);while(<Q>){if(/^#(.*)$/
){for(split('-',$1)){$q=0;for(split){s/\|
/:.:/xg;s/:/../
g;$Q=$_?length:$_;$q+=$q?$Q:$Q*20;}print
chr($q);}}}print"\n";
#.: ::||-| .||-| :|||-| ::||-| ||-::
:|||-| .:|

That’s all for this year! We go now to clean our hands
obsessively and rest up for next year’s onslaught….

—The Obfuscated Perl Contest Judges

1085

Chapter 48. One-Liners

Jon Orwant
I once subscribed to the newsprint version of The Onion, a
humor newspaper better known for their web site
(www.theonion.com). On the Web, of course, The Onion
doesn’t have to worry much about layout: their articles can be
as long or as short as necessary. But on paper, they need to
fill every square inch on every page with either content or
ads. When room is left over, they insert a dummy article
consisting of the phrase “Passers-by were amazed by the
unusually large amounts of blood” repeated over and over.
There were times when I wished I had done the same with
TPJ.

Up until TPJ #13, I did all The Perl Journal ’s layout myself,
and I almost always deferred it until a few days before
printing. Magazines and newspapers typically lay out
advertisements first, and flow the text around them. In
contrast, I was always tweaking the articles up until the last
minute, sometimes changing the length by enough that I
ended up with substantial empty space on the page. Starting
with TPJ #7, I began to amass a collection of “Perl
One-Liners”
for sprinkling around the magazine whenever I needed to fill
a column-inch or two. Very few of them were actually one
line, but the name stuck, and I present 65 of them here for
your use and amusement.

1086

They’re divided into two sections: Useful and Not So Useful.
All the one-liners are available on the book’s web site at
http://www.oreilly.com/catalog/tpj3.

Useful One-Liners

49 useful code snippets from TPJ follow. They’re organized
(very roughly) from most useful to least.

How to Use the Perl Debugger as a
Command-Line Interpreter

perl -de 0

Picking Random Elements from an
Array

srand;
$item = $array[rand @array];

Evaluating Expressions Inside Double
Quotes

This prints foo 42 bar:

perl -e 'print "foo @{[7 * 6]} bar\n"'

Little-Known Magic Scalar Variables

$^O contains the name of your operating system.

1087

$^T contains the time at which your program began.

$0 contains the name of your program.

A Demonstration of Perl/Tk Widgets

Run the widget program bundled with Perl/Tk for an
excellent run-through of all the important widgets, complete
with cut-and-pasteable source code.

Using Perl from Emacs

To apply a Perl expression EXPRto a region:

C-u M-| perl -pe 'EXPR'

To apply EXPRto the entire buffer:

C-x h C-u M-| perl -pe 'EXPR'

(Courtesy Mark Jason Dominus.)

Using Perl from vi

{!}perl -pe 's/[eE](?=macs)/silly/g'

Finding Substrings

Efficiently finding the position of the first and last
occurrences of a substring in a string:

$first = index($string, $substring);
$last = rindex($string, $substring);

This is faster than using regular expressions.

1088

Simple Numeric Tests

warn "has nondigits" if /\D/;
warn "not a natural number" unless
/^\d+$/; # rejects -3
warn "not an integer" unless
/^-?\d+$/; # rejects +3
warn "not an integer" unless
/^[+-]?\d+$/;
warn "not a decimal number" unless
/^-?\d+\.?\d*$/; # rejects .2
warn "not a decimal number" unless
/^-?(?:\d+(?:\.\d*)?|\.\d+)$/;
warn "not a C float"

unless
/^([+-]?)(?=\d|\.\d)\d*(\.\d*)?([Ee]([+-]?\d+))?$/;

(Courtesy The Perl Cookbook.)

Adding a Long List of Numbers on the
Command Line

perl -e 'print eval join("+", @ARGV)' 6 10
20 11 9 16 17 16 15 10 17 18 7

Printing Perl’s Include Path

This prints all elements of the @INC array, which is where
Perl searches for modules and library files.

perl -e "print qq($_\n) for @INC"

Extracting Unique Elements from a List

1089

sub unique (&@) {
my ($c,%hash) = shift;
grep { not $hash{&$c}++ } @_

}

Sample usages:
@list = unique { $_ } @list; #
Remove duplicate strings from @list.

@obj = unique { $_->name } @obj; # Only
include one object for each name.

(Courtesy Don Schwarz.)

Extracting, Sorting, and Printing Unique
Words from a File

Any of these snippets will work:
perl -pale '@F{@F}=()} for(sort keys%F){'

perl -la0ne 'print for sort
keys%{{map{$_,1}@F}}'

perl -la0ne '@a{@F}++;print for sort
keys%a'

perl -la0pe '}for (sort
keys%{{map{$_,1}@F}}){'

(Courtesy Peter J. Kernan.)

Counting the Number of Lines in a File

perl -e 'while (<>) {}; print $.' /usr/
dict/words

1090

Counting Pod and Code Lines

@a = (0,0);
while (<>) { ++$a[not m/^=\w+/s .. m/^=cut/
s] }
printf "%d pod lines, %d code lines\n", @a;

(Courtesy Sean M. Burke.)

Separating the Header and Body of a
Mail Message

while (<>) {
$in_header = 1 .. /^$/;
$in_body = /^$/ .. eof();

}

(Courtesy The Perl Cookbook.)

Sleeping for Less Than a Second

sleep can only sleep for an integral number of seconds. If
you wanted to sleep for 0.25 seconds, here’s how:

select(undef, undef, undef, 0.25);

Listing Installed Modules

To see which modules have been installed on your system,
type this:

perldoc perllocal

1091

Another Way to List Installed Modules

This script reports on available modules more cleanly:
#!/usr/bin/perl -w
use strict; #
all variables must be declared
use Getopt::Std; #
import the getopts method
use ExtUtils::Installed; #
import the package

use vars qw($opt_l $opt_s); #
declaring the two option switches
&getopts('ls'); #
$opt_l and $opt_s are set to 1 or 0
unless($opt_l or $opt_s) { #
unless one switch is true (1)

die "pmods: A utility to list all
installed (nonstandard) modules\n",

" Usage: pmods.pl -l # list each
module and all its directories\n",

" pmods.pl -s # list just
the module names\n";
}

my $inst = ExtUtils::Installed->new();
foreach my $mod ($inst->modules()) { #
foreach of the installed modules

my $ver = $inst->version($mod); #
version number of the module

$ver = ($ver) ? $ver : 'NONE'; #
for clean operation

print "MODULE: $mod version $ver\n"; #
print module names

map { print " $_\n" }
$inst->directories($mod) if($opt_l);
}

1092

(Courtesy William H. Asquith et al.)

Preserving Case in a Substitution

To replace substring $x with an equal length substring $y,
but preserving the case of $x:

$string =~ s/($x)/"\L$y"^"\L$1"^$1/ie;

(Courtesy Dean Inada.)

Finding the Longest Common Prefix
and Suffix

To find the longest common prefix of two strings $x and $y:

($x ^ $y) =~ /^(\0*)/;
print substr($x, 0, length($1));

If $x were foobar and $y were football, the above
snippet would print foo—handy for allowing users to
abbreviate commands with the minimum number of letters.

The longest common suffix:
((reverse $x) ^ (reverse $y)) =~ /^(\0*)/;
print substr($x, -length($1));

If $x were camel and $y were caramel, the above
snippet would print amel.

(Courtesy Jarkko Hietaniemi.)

DeMorgan’s Rule

1093

!$a || !$b || !$c ...

is equivalent to:
!($a && $b && $c ...)

Uuencoding Attachments

To euuencode a file:
perl -0777e 'printf "begin 444
$ARGV[0]\n%s`\nend\n",pack "u*",<>'
filename

To uudecode a uuencoded file:
perl -ne 'print unpack "u*",$_' file.uu

(Courtesy Gurusamy Sarathy.)

When to Split and When to m//g

Use m//g when you know what you want to keep, and
split when you know what you want to throw away.

(Courtesy Randal Schwartz.)

Transposing a Two-Dimensional Array

@matrix_t = map { my $x = $_;
[map { $matrix[$_][$x]}

0..$#matrix] } 0..$#{$matrix[0] };

(Courtesy Tuomas J. Lukka.)

1094

Suppressing Backquote Interpolation

Ever wish backquotes didn’t interpolate variables? qx() is a
synonym for backquotes, but if you use single quotes as a
delimiter, it won’t interpolate:

qx'echo $HOME'

passes the string echo $HOME to your shell without
interpreting $HOME as a Perl scalar.

(Courtesy Tom Christiansen.)

Stripping the Eighth Bits from a String

$s &= "\177" x length($s);

Given a string in $s, this one-liner turns all of the “funny”
characters (like Ã) into regular seven-bit ASCII characters. It
works by ANDing the bit representation of each character
with 127, which removes the eighth bit. That turns Ã into L,
for instance.

(Courtesy Tom Christiansen.)

Replacing Tabs with Spaces

perl -0011 -pi -e '/\011/&&($_="$` ")'

(Courtesy Abigail.)

A Cheap Alarm Clock

1095

perl -e 'sleep(120); while (1) { print
"\a" }'

This sleeps for 120 seconds and then beeps.

Primality Testing with a Regular
Expression

Replace 17 with whatever number you want to test. If the
number is prime, this snippet will print PRIME, and nothing
otherwise:

perl -le 'print "PRIME" if (1 x shift) !~
/^(11+)\1+$/' 17

(Courtesy Abigail.)

Factoring Numbers

sub
f{for(2..sqrt($_[0])){return($_,f($_[0]/
$_))if!($_[0]%$_)}return$_[0]}
print join",",f(720); print "\n";

(Courtesy Tuomas J. Lukka.)

Little-Known Facts About qr

qr-strings are actually objects:

$rob = qr/red/i;

if ($rob->match("Fred Flintstone")) {
print "Got obj fred!\n";

} else {

1096

print "No obj fred.\n";
}

sub Regexp::match {
my $self = shift;
my $arg = @_ ? shift : $_;
return $arg =~ /$arg/;

}

This prints Got obj fred!.

qr has a magic print value. For instance, if you print a regex
like so:

perl -le 'print qr/^watch/i'

you’ll see this, showing that the i modifier is active and the
x, s, and m modifiers are inactive, and that the regex is
non-capturing:

(?i-xsm:^watch)

(Courtesy Tom Christiansen.)

Halving an Array

This snippet lops off the latter half of an array:
$#array /= 2 if @array;

(Courtesy The Perl Cookbook.)

Daylight Savings Time

This snippet prints a message if a daylight savings time
change occurs within the next 5 days:

1097

print "\aTIME CHANGE COMING!\n"
if (localtime(time))[8] ne

(localtime(time+5*24*60*60))[8];

(Courtesy J.D. Laub.)

Tracking File Progress

To track the progress of a file as it downloads:
perl -e
'BEGIN{$|=1;$f=$ARGV[0];$s=(stat$f)[7];$t=time}

while(sleep 1){printf"\r$f %s
bytes at %.2f Kb/s ",

$_=(stat$f)[7],($_-$s)/1024/
(time-$t)}' your_downloading_file

(Courtesy Philippe Bruhat.)

Timing Your Program

You can put this snippet anywhere in your program; when it
finishes, the END block will be triggered and the total running
time of your program will be printed:

END {
no integer;

printf(STDERR "Running time: %5.2f
minutes\n",((time - $^T) / 60));
}

Stringifying Data Structures

The

1098

Data::Dumper module, bundled with Perl, can save data
structures to disk as strings that can be read in by another
program.

Indenting a Here Document

indent your here doc
($definition = <<'FINIS') =~ s/^\s+//gm;

The five varieties of camelids
are the familiar camel, his friends
the llama and the alpaca, and the
rather less well-known guanaco
and vicuña.

FINIS

(Courtesy The Perl Cookbook.)

Printing All Capitalized Words

perl -ne 'push@w,/(\b[A-Z]\S*?\b)/
g;END{print"@w"}' file

Generating Randomly-Colored xterms

Replace xterm with whatever command you use to launch a
terminal window:

perl -e '$fg = rand 2**24;
do { $bg = rand 2**24 } while

(unpack("%32b*", $bg^$fg) < 10);
($fg, $bg) = map { sprintf

"#%06x", $_ } $fg, $bg;
exec("xterm", "-fg", $fg, "-bg",

$bg);'

1099

(Courtesy Tkil.)

Extracting PostScript from
Windows-Generated PCL Files

If you’re trying to get Windows to generate a PostScript file,
but it wraps the file with PCL junk, you can remove it with
this:

perl -ni -e "!$g&&s/^.*(%!.*)/$1/ && $g or
print; last if /^%%EOF/"

Graphing a Bent Torus with PDL

This snippet of PDL code graphs the figure shown in
Figure 48-1:

use PDL;
use PDL::Graphics::TriD;
$s = 40;
$a = zeroes 2*$s, $s/2;
$t = $a->xlinvals(0,6.284);
$u = $a->ylinvals(0,6.284);
$o = 5;
$i = 1;
$v = $o - $o/2*sin(3*$t) + $i*sin$u;
imag3d([$v*sin$t, $v*cos$t, $i*cos($u) +
$o*sin(3*$t)]);

(Courtesy Tuomas J. Lukka.)

1100

Detecting Unbalanced Parentheses,
Brackets, and Braces

This subroutine returns true if and only if all parentheses,
brackets, and braces in the given string are balanced:

sub is_balanced {
my $it = $_[0];
$it =~ tr/()[]{}//cd;
1 while $it =~ s/\(\)|\[\]|\{\}//g;
return !length($it);

}

Figure 48-1. A Bent Torus, graphed with PDL

(Courtesy Sean M. Burke.)

1101

1102

Extracting Parenthetical Contents

use strict
;sub pars

{my($l,$r
)=map{ "\Q$_"
}split//

,shift;
my(@s,@r

,$i,$o,
$v);for(

split/([
lr])/,

shift){
/$l/and

$s[++$o]=
++$i;for

$v(1..$o)#
{$r[$v].= $_

if$s[$v]
>0}/$r/and

$s[(grep##
$s[$_]==

$i,0..$#s)
[0]]=-$i ,--$i<0&&

last;}($i=
shift)? wantarray

?@r[grep
-$s[$_]==$i,0..

$#s]:$r
[$i]: splice@r, 1;}$,

="\n" ;print pars
(@ ARGV)#

Basic usage of the pars subroutine that this onomatolexical
program provides:

1103

pars('()', "(123 (456) (789) 0)")

prints the three parenthetical expressions:
(123 (456) (789) 0),(456),(789)

You can request a particular depth. In list context, this
expression:

pars('()', "(123 (456) (789) 0)", 2)

prints the level-2 expressions:
(456),(789)

In scalar context, the 2 is interpreted to mean the second
parenthetical expression:

(456)

(Courtesy Paul Kulchenko.)

Converting a GIF Image to an HTML
Table

Each cell of the table corresponds to a pixel of the image:
use GD;
$f = '#ffffff';
$T = table;
sub p {print @_}
p "<body bgcolor=$f>";
for (@ARGV) {

open *G,$_ or (warn("$_: $!") && next);
$g = GD::Image->newFromGif(G) || (warn

$_ , ": GD error" and next);
@c = map { $_ != $g->transparent ?

sprintf '#' . ('%.2x'x3),
$g->rgb($_) :

1104

$f
} 0..$g->colorsTotal;

p "<$T border=0 cellpadding=0
cellspacing=0>";

($x, $y) = $g->getBounds;
for $j (0..$y) {

p "<tr>";
for ($i=0; $i<$x; $i++) {

$s=1;
$s++ && $i++ while ($i+1 < $x &&

$g->getPixel($i+1,$j) ==
$g->getPixel($i,$j));

p "<td bgcolor=",
$c[$g->getPixel($i,$j)],

" colspan=$s> "
}

}
p "</$T>"

}

(Courtesy Mike Fletcher.)

Identifying CVS Files That Aren’t Up To
Date

cvs status | perl -nle 'next unless
/Status:/o; print unless /Up-to-date/'

(Courtesy Geoff Simmons.)

Displaying All Perl’s Error Messages

perl -e 'for (0..127) { $!=$_; warn $!}'

1105

How to Patch Your Netscape Binary to
Enable Strong Encryption

This is out of date now, but still of historical interest:
#!/usr/bin/perl -0777pi
s/(BITS:.*?\0)/$_=$&;y,a-z, ,;s,
$,true,gm;s, 512,2048,;$_/es;

(Courtesy Ian Goldberg and Chris Nandor.)

A Little-Known Way to Create
References

You can create a reference to a scalar like so:
$ref = \$var;

An obscure way to do the same thing:
$ref = *var{SCALAR};

The same holds for other data types.

1106

Not So Useful One-Liners

16 not so useful code snippets from TPJ follow.

Regular Expression Epigram

“Regular expressions are to strings with math is to numbers.”

(From an Andrew Clinick column, discussing what Microsoft
thinks of Perl. Short answer: they like it, because it can be
used “anywhere” via Microsoft’s ActiveX scripting
mechanism.)

Avoiding Asteroids with Perl

Asteroid 2000 BF19 was thought to be on a potentially
dangerous approach path for us Terrans, with a possible
impact in 2022. However, a Perl program called
clomon.pl showed that the asteroid cannot come any
closer than 0.038 AU for the next fifty years. Sleep tight!

(Courtesy Andrea Milani and Scott Manley.)

Maze Generation

($x,$y)=(41,31);
$x&1&&$y&1&&$x>1&&$y>1||die;
@M=(1)x($x*$y);
sub K { $M[my$p=$_[0]]=0; while($d =

($p>$x*2)*$M[$p-2*$x] |
($p<$x*($y-2))*$M[$p+2*$x]*2

| ($p%$x!=$x-2)*$M[$p+2]*4 |

1107

($p%$x!=1)*$M[$p-2]*8) {
$d&1<<($i=3&int rand $d)||redo;

$M[$p+($j=$i==0?-$x:$i==1?$x:$i==2?1:-1)]=0;
K($p+2*$j) } }
K($x+1); $M[1]=$M[-2]=0;
while(@M){$_=join'',splice@M,0,$x;tr<01><
#>;print$_,"\n"}

The above snippet generates
mazes that look like this:

#######################################
#
#
#
#
#
#
#
#
#
#######
#
###
#
#
#
#
#
#
#
###
#
#
#
#
#
#######

1108

#
#
#
####################################### #

(Courtesy Sean M. Burke.)

The Pontifex Cryptosystem

Neal
Stephenson’s novel Cryptonomicon includes a Perl
cryptosystem code-named Pontifex. You can read about it at
http://www.well.com/user/neal/cypherFAQ.html#12 and
http://www.counterpane.com/solitaire.html. The source code
is at http://www.counterpane.com/sol.pl.

Perl in Sphere, the Movie

Harry used parts of the Perl FAQ to translate a message. In
the first shot, this not-quite-syntactically-correct snippet could
be seen:

$BSD = -f '/vmunix'; if ($BSD) { system
"BIN
cbreak </dev/tty >/dev/tty 2>&1

In the second shot:
set_cbreak(0)

local($on) = $_[0];
local($sgttyb,@ary);
require 'sys/ioctl.ph';

(Courtesy Brendan O’Dea.)

1109

An Absurd Way to Convert from
Decimal to Binary

#!/usr/bin/perl

($decimal, $binary) = (shift, '');
$SIG{USR1} = sub { $binary .= "0" };
$SIG{USR2} = sub { $binary .= "1" };

do { kill $decimal & 1 ? 'USR2' : 'USR1',
$$;

$decimal >>= 1;
} while ($decimal);

print scalar reverse $binary;

(Courtesy Nathan Torkington.)

Swatch Internet Time

Swatch’s Internet Time, heralded as a “revolutionary” way of
measuring time independent of geography:

perl -e 'print "Internet Time @",
int(((time + 3600) % 86400)/86.4)'

The Game of Life

This snippet of
PDL code implements Conway’s game of Life (pictured in
Figure 48-2).

use PDL;
use PDL::Image2D;
use PDL::Graphics::TriD;nokeeptwiddling3d;

1110

$d = byte(random(zeroes(40,40)) > 0.85);
$k = byte [[1,1,1],[1,0,1],[1,1,1]];
do { imagrgb [$d];

$s = conv2d($d,$k);
$d &= ($s<4);
$d &= ($s>1);
$d |= ($s==3);

} while (!twiddle3d);

(Courtesy Robin Williams and Tuomas J. Lukka.)

Figure 48-2. A PDL version of Conway’s game of Life

Ransom Notes

This snippet goes through each character of standard input
and uppercases it half the time:

1111

perl -ne
'foreach(split//){rand()<0.5?print:print
uc;}'

(Courtesy Kyle Burton.)

Triggering the F00F Pentium Bug

On certain older Pentium-based systems, this code will crash
the computer:

require DynaLoader;
DynaLoader::dl_install_xsub("main::hangme",

unpack("I",
pack("P4", "\xF0\x0F\xC7\xC8")));
hangme();

We provide it here for diagnostic purposes only.

(Courtesy Gisle Aas.)

Magic Cards

This prints 7 Magic Cards.
for $a(0..6){$b=1;for
$c(1..100){if($c&2**$a){printf
"%3d
",$c;print"\n"if!($b++%10)}}print"\n\n\n"}

Have a friend think of a number
from 1 to 100. Show them the cards one at a time and ask if
their number is on the card. Mentally sum the first digit of
each card for which the answer is yes. The final sum will be
their number. (This trick is known to win bar bets.)

(Courtesy Bill Huston.)

1112

Perl Poem: down.pl

sub merge {
my $enses;

do {
not $ave;
my $inking, @body;
push @me, @down;

};

foreach $econd (%brings) {
my $oluble, @existence;
closer_to_your;
drowning_beauty;

}
}

(Courtesy Harl.)

Perl Poem: 143

%secretly = (
confidence => 0xFADED,
under => 0xFED,
lost => 0xDEAD,

);

sub conscious {
setpriority $cushion, $the, $fall or
return $to_safer_ground;

}

print "I am ",conscious(143);
$i_am = $secretly{lost};

1113

Perl Poem: If Dr. Seuss Were a Perl
Programmer

#!/usr/bin/perl
#
Will give errors if run with -w, so
don't use -w :)
Tested on NT with AS (5.005), GS
(5.004_02), and Solaris 2.6 (5.004_04)

if ("a packet hits a pocket") {
On: a;

socket(ON, A ,PORT,"")

&& the bus is interrupted as a
very-last-resort

&& the address of the memory
makes your floppy disk, abort;

} else {

"The socket packet pocket has an";
error: to-report;

}

if ("your cursor finds a menu item") {
"followed by a dash"

&& "the double clicking icon";
puts: your-items-in-the-trash

&& your data is corrupted cause the
index("doesn't", "hash");

} else {
"Your situation is hopeless"

&& Your system's gonna crash;
}

1114

if ("the label on the cable") {
On-the-table, at-your-house;
Says_the;

sub network {"is connected to the
button on your mouse"};
BUT: Your-packets, want-to; {/tunnel to

another protocol/};
that's: repeatedly-rejected;

{/by the printer/}; "down the hall"
&& "YOUR SCREEN is all distorted";

{/by the side effects of Gauss/};
so: "your icons", in-the-window;

"are as wavy as a souse";

} else {

YOU: "may as well reboot" && "go out
with a !";
CAUSE: /Sure as Im a poet/;
THIS: suckers-gonna-hang;

}

print "Seuss as a tech writer - Kevin
Meltzer\n";

(Courtesy Kevin Meltzer.)

Perl Poem: Object-Oriented Perl

One function to bless them all,

One list to derive them,

One arrow to call them through,

Preorder search to bind them.

1115

(Courtesy Damian Conway.)

Happy Birthday!

Perl was born December 18, 1987.

Zodiac sign: Sagittarius.

Chinese zodiac: Rabbit, signifying docility, gentleness,
nonconformity, and longevity.

On December 18 in history, Keith Richards, Steven
Spielberg, Brad Pitt, Paul Klee, Mohammed Ali, and Ty Cobb
were born. The golf tee was patented, slavery was abolished
in the United States,
New Jersey became a state, and the UN unanimously
condemned hostage-taking
.

1116

Index

A note on the digital index ?

A link in an index entry is displayed as the section title in
which that entry appears. Because some sections have
multiple index markers, it is not unusual for an entry to
have several links to the same section. Clicking on any
link will take you directly to the place in the text in
which the marker appears.

1117

Symbols

1118

#avara channel, Are You Spongeworthy?
#chaos channel and chaosbot, Bots and Infobots
#distributed channel, Are You Spongeworthy?
#if and #ifdef statements in Perl, Toss-up Questions
#linuxos channel, Are You Spongeworthy?
#macdev channel, Are You Spongeworthy?
#macintosh channel (IRC), IRC
#perl (pound perl), Bonus Questions
#perl channel (IRC), IRC, You Can’t Do That in Public!,
IRC, You Can’t Do That in Public!
#riskybus channel and robbot, Bots and Infobots
#robogeeks channel, Are You Spongeworthy?
#unixhelp channel, So What?
$ typeglob, Toss-up Answers
$Duration state variable, Percussion, Uniformity, and
noop

noop function and, Percussion, Uniformity, and noop

% (modulus) operator, Using synch, and Some Actual
Music

measure counters and, Using synch, and Some Actual
Music

%kanji hash, Dictionary Database
%Known_clusters hash, How to Identify Words, How to
Identify Words
𐴐 attribute value, Toss-up Questions
(_) single-character Perl variable, Toss-up Answers
(’) apostrophe, equivalent to double colon syntax, Toss-up
Answers
10-base-T/100-base-T connections, Toss-up Questions
:-) (smiley face), Toss-up Questions

as cultural icon, Toss-up Questions

1119

@CANDIDATES array, Lines 5–7: Define Constants and
Globals, Lines 40–60: get_globals Subroutine

populating, Lines 40–60: get_globals Subroutine

@CANDIDATE_NAME array, Lines 5–7: Define
Constants and Globals, Lines 40–60: get_globals
Subroutine

populating, Lines 40–60: get_globals Subroutine

@hypernyms array, Other Word Relationships
@intersection array, Movin’ It Up a Level
@newhypersets array, Movin’ It Up a Level
@newsynsets array, Movin’ It Up a Level
@Notes state variable, Behold MIDI::Simple!
@OFFICES array, Lines 5–7: Define Constants and
Globals, Lines 40–60: get_globals Subroutine, Lines
124–165: The validate Subroutine

entering ballot data into database, Lines 124–165: The
validate Subroutine
populating, Lines 40–60: get_globals Subroutine

@offsets array, Basic Usage
@oldhypersets array, Movin’ It Up a Level
@oldsynsets array, Movin’ It Up a Level
@PARTIES array, Lines 5–7: Define Constants and
Globals, Lines 40–60: get_globals Subroutine

populating, Lines 40–60: get_globals Subroutine

\@;\@ prototype, Toss-up Answers
\B metacharacter, matching absence of word boundaries,
Contexts in Regular Expressions, Bonus Questions
\b metacharacter, matching word boundaries, Contexts in
Regular Expressions

1120

_ _DATA_ _ token, Bonus Answers
_ _END_ _ token, Bonus Answers
_ _FILE_ _ token, Bonus Answers
_ _LINE_ _ token, Bonus Answers
_ _PACKAGE_ _ token, Bonus Answers
_buildTree method, Assembling an Organism
_treeIndex method, Sex and Mutation
{ } (curly braces), matching occurrences in regular
expressions, Toss-up Questions
||= operator, Toss-up Answers
“concision” and Maketext module, Buzzword: Concision,
The Devil in the Details, The Devil in the Details
“greedy matching” and regular expressions, It’s Alive!
“leave-it-the-hell-alone” option of autoformat, Future
Features
“out-of-vocabulary” words, handling for speech synthesis,
The Out-of-Vocabulary Problem: Synthesis in One s///e
“Rapture” poster on TPJ cover, TPJ #9: Drummer/Coder
Wanted
“Rough consensus and running code” (group motto),
Toss-up Questions
“Useless use of a constant in void context.” error message,
Toss-up Answers

1121

A

1122

a bitter, bitter man, Toss-up Questions
A.I. Wars game, Perl clone of, Strategy Games
Aas, Gisle, Best “The Perl Journal”
abc music language, Easy Things Easy
Abelson, Harold, References
abslink subroutine, The CGI Script
absolute notes, specifying, “Relative” Notes
abstraction and Maketext module, Buzzwords:
Abstraction and Encapsulation
accented characters, sorting correctly, Internationalized
Sorting, Spanish: Chorizo, Chimichangas, Chicharrones,
y Churros
ACE database, Bioinformatics and Perl
ActiveHome (CM11) interface, MisterHouse, Give Your
House a Brain
ActiveState, Bonus Questions, Bonus Questions, Toss-up
Questions, Toss-up Questions

anagrams for, Toss-up Questions
obligatory product placement for, Bonus Questions,
Bonus Questions

part deux, Bonus Questions

potentially liable for tortious personal injury, Toss-up
Questions

ActiveX scripting engine for incorporating Perl into
scripting hosts, Toss-up Questions
activity meronyms, Other Word Relationships
acute accents in Spanish, Spanish: Cana y Caña
Adams, Clifford, Most Powerful, The Fourth Circle:
Make Believe You’re Another Language
Adept, Perl, Toss-up Questions
Adleman, Len, Toss-up Questions

1123

Adler, David, Is There a Poet in the House?
Adventure game, The Rezrov Infocom Game Interpreter
affixation (morphological process), Morphology: Word
Form and Structure
AI (Artificial Intelligence), IRC, References, Bots and
Infobots, So What?, What Are You Thinking?, A Sense of
Play, References, Hypernyms, Hyponyms, Pertainyms,
and Other Word Relationships, What’s Next?, Concepts
in Wordnet, Converting the Data, Basic Usage, Movin’ It
Up a Level, Movin’ It Up a Level, Other Word
Relationships, Other Word Relationships, Other Word
Relationships, What’s Next?, What’s Next?, What’s
Next?, Morphology: Word Form and Structure,
Morphology: Word Form and Structure, Morphological
Analysis and Perl, Morphological Inflections and
Derivations, Implementing It

infobots and, IRC, References, Bots and Infobots, So
What?, What Are You Thinking?, A Sense of Play,
References
Lingua::Wordnet module and, Hypernyms,
Hyponyms, Pertainyms, and Other Word
Relationships, What’s Next?, Concepts in Wordnet,
Converting the Data, Basic Usage, Movin’ It Up a
Level, Movin’ It Up a Level, Other Word
Relationships, Other Word Relationships, Other Word
Relationships, What’s Next?, What’s Next?, What’s
Next?
word morphology and, Morphology: Word Form and
Structure, Morphology: Word Form and Structure,
Morphological Analysis and Perl, Morphological
Inflections and Derivations, Implementing It

Ake, Earle, Results of the Contest

1124

Alak (strategy game), Strategy Games
Albanowski, Ken, Results of the Contest, Bonus Answers
algorithmic composition, Easy Things Easy, Mod, Canons,
and Rounds

modulus (%) operator and, Mod, Canons, and Rounds

Algorithmic Key Recovery System for RSA, Most
Powerful
algorithms, The Genetic Code, Resources, Resources,
Easy Things Easy

genetic, The Genetic Code, Resources, Resources
music compositions and, Easy Things Easy

alignments between letters and phonemes,
Text-to-Phoneme Conversion
Allen, Paul, Bonus Questions
all_meronyms method, Other Word Relationships
alphabet blocks for Braille, Sample Text in Braille
alphabetical order and internationalized sorting,
Internationalized Sorting, Default sort Versus “Normal”
English Sorting
alt.perl newsgroup, A Little History
AltaVista, web crawler used by, Toss-up Questions
Alvestrand, Harald Tveit, References
Amulet of Yendor, Toss-up Questions
Amy, Douglas, References
Anderson, Bruce, Sites
Anderson, Lowell Bruce, References
antonyms (direct/indirect), Other Word Relationships,
Other Word Relationships

lookup feature in Wordnet, Other Word Relationships

APACHE (“It’s a patchy server.”), Toss-up Answers

1125

Apache web sites, directories on, Bonus Questions
Apache/Java Integration Project, Toss-up Questions
Apache::Throttle module, Bonus Questions
aphelion, Building Your Own
API (Application Program Interface), Bonus Answers
API for XML, Toss-up Questions
apostrophe (’), equivalent to double colon syntax, Toss-up
Answers
Apple’s computer released in 1998, Toss-up Questions
Application Program Interface (API), Bonus Answers
Applied Cryptography, About Secure Elections
Apu, Kwik-E-Mart employee, Toss-up Answers
aqueducts and sundials, Perl-fect Sundials
Arabic, translating English into, A Localization Horror
Story: It Could Happen to You, The Devil in the Details
arcade games, Twitch Games
Archer Daniels Midland, Bonus Answers
archery, Olympic silver medal in, Toss-up Questions
area meronyms, Other Word Relationships
arrays, implicitly passing by reference, Bonus Questions
Arrow’s Impossibility Theorem, The Preference Ballot
Art as inspiration for Perl, Wherefore Art, Thou?, Music
to My Ears, Wherefore Art, Thou?, Wherefore Art,
Thou?, Music to My Ears
Artificial Intelligence Repository at CMU, References
artistic license, Toss-up Answers
ASCII letters, composing signs out of, Toss-up Questions
ASCII, Braille, Sample Text in Braille
ASCIIbetical sorting, Default sort Versus “Normal”
English Sorting, Spanish: Chorizo, Chimichangas,
Chicharrones, y Churros
Ashton, Elaine, It Seemed Like a Good Idea at the Time
Asian Text Input Project, Typos in Other Languages

1126

ASIMMs, number of pins in, Bonus Questions
assembly editors, Other Uses for Perl
assignment operators, turning operators into, Bonus
Questions
asteroids, avoiding, Avoiding Asteroids with Perl
Astro::MoonPhase module, Toss-up Questions
Astro::SunTime module, Toss-up Questions
astronomical data analysis, using PDL for, PDL: The Perl
Data Language, Where Are We Now?, The perldl Shell,
Listing of a Few PDL Functions, Listing of a Few PDL
Functions, Where Are We Now?
as_string method, Survival of the Fittest
Atari cartridges on TPJ cover, TPJ #12: The Atari Perl
Cartridge
attributes (word relationships), Other Word
Relationships, Other Word Relationships

choosing proper locations for, in lexicons, Other Word
Relationships

audio format, Ogg Vorbis, Toss-up Questions
audio waveforms, turning tokens into, Lexical Synthesis in
One s///
authentication requirements for home automation, A Few
More Considerations
autoformat, Text::Autoformat, Future Features,
Text::Autoformat, Text::Autoformat, Quoting, Future
Features, Future Features, Future Features, Future
Features, Future Features, Future Features, Future
Features, Future Features

future features of, Future Features, Future Features,
Future Features, Future Features
paragraphing heuristics, Quoting, Future Features,
Future Features

1127

AUTOLOAD function, Why Was It Written?, Afterword,
Afterword
automating the home, Objects in the Home
auxiliary functions, Buzzword: Inheritance
axis of symmetry, centering lines around, Justification
and Sentencing
Azevedo, Francisco, Results of the Contest

B

-B flag, Bonus Questions
B::Deparse module, Acknowledgments, Bonus Questions
Babbitt, How to Identify Words, How to Identify Words,
How to Identify Words, How to Identify Words, Results
Babelfish, Toss-up Answers
Back Orifice ’98, Toss-up Questions
background color of web page, specifying, Bonus
Questions
backquote interpolation, suppressing, Suppressing
Backquote Interpolation
backtracking, preventing with ?>, Bonus Questions
Bacon, Greg, The Regulars, Cards
Ball, Harvey R., Toss-up Questions
balloting, Impossibility Theorems, Impossibility
Theorems, Pairwise Election Methods, Condorcet’s
Method, The Algorithms, The Algorithms, The
Algorithms, Using CGI to Spit It All Out, References,
Sites, About Secure Elections, Tallying the Votes, Tallying
the Votes

pairwise voting and, Impossibility Theorems,
Impossibility Theorems, Pairwise Election Methods,
Condorcet’s Method, The Algorithms, The

1128

Algorithms, The Algorithms, Using CGI to Spit It All
Out, References, Sites
secure Internet voting and, About Secure Elections,
Tallying the Votes, Tallying the Votes

bamf command (rezrov), Bamf
bandwidth, reserving in advance, Toss-up Questions
banner utility, Toss-up Answers
Baroque period, Music to My Ears
Barrett, Laurence I., References
baud rate of fax machines, Toss-up Questions
BBFN (Bye Bye For Now), Toss-up Questions
Beattie, Malcolm, Acknowledgments
Befunge language, Bonus Questions, Toss-up Answers
BEGIN blocks in Perl programs, Toss-up Questions
BeholderBoard (chess program), Strategy Games
bent torus, graphing with PDL, Graphing a Bent Torus
with PDL
Berkeley DB database format and Lingua::Wordnet,
Converting the Data
Berlyn, Michael, Resurrecting the Z-Machine
Best Four-Line Signature category, The Categories,
Results

results, Results

Best Year 2000 Error category, The First Obfuscated Perl
Contest
Best “The Perl Journal” category, The Categories, The
First Obfuscated Perl Contest, Results

results, Results

best-effort service, Toss-up Questions
Beyer, Stephan V., References

1129

Bezos, Jeff, Bonus Questions
BGCOLOR attribute of BODY tag, Bonus Questions
bi-level sorting, Default sort Versus “Normal” English
Sorting, Bi-Level Sorting to the Rescue, Bi-Level Sorting
to the Rescue, English: Résumé and Resume, English:
Résumé and Resume

foreign words in English language, English: Résumé
and Resume

bidirectional I/O with CM11, Bidirectional I/O with the
CM11
bind method (Tk), Making the Moves
bioinformatics, Bioinformatics and Perl, Other Uses for
Perl, Bioinformatics and Perl, Bioinformatics and Perl,
Other Uses for Perl, Toss-up Answers

Perl and, Bioinformatics and Perl, Other Uses for Perl,
Bioinformatics and Perl, Bioinformatics and Perl,
Other Uses for Perl

BioPerl, How Perl Saved the Human Genome Project,
Other Uses for Perl
black market kidneys, number that Microsoft could buy,
Bonus Questions
Blank, Marc, Resurrecting the Z-Machine
Bletchley Park, Bonus Answers
Blount, Alan, TPJ #1: The Camel, TPJ #18: Spam, TPJ
#20: WAP
BNC (British National Corpus), Morphology: Word Form
and Structure
Boies, David, Toss-up Questions
Borda method for tallying preference ballots, The Borda
Method, The Borda Method, The Borda Method, The
Borda Method

1130

bots, Chatbot::Eliza, References, References, Bots and
Infobots, Are You Spongeworthy?, You Can’t Do That in
Public!, You Can’t Do That in Public!, You Can’t Do That
in Public!, You Can’t Do That in Public!

Chatbot::Eliza module, Chatbot::Eliza, References,
References
creating believable bots, Are You Spongeworthy?, You
Can’t Do That in Public!, You Can’t Do That in
Public!, You Can’t Do That in Public!, You Can’t Do
That in Public!
infobots, Bots and Infobots

BoulderIO system, How Perl Saved the Human Genome
Project, Bioinformatics and Perl
Braille, Braille Contractions and Regular Expressions, It’s
Alive!, Sample Text in Braille, It’s Alive!, Linguistic Rule
Systems, Linguistic Rule Systems, Linguistic Rule
Systems, Generativity Systems, Generativity Systems,
Regex Replacement as a First Hack, Regex Replacement
as a First Hack, Contexts in Regular Expressions,
Embedding Code in Regular Expressions, Rules as
Exceptions, Testing It, It’s Alive!, It’s Alive!, It’s Alive!

encoding programs, Linguistic Rule Systems, Regex
Replacement as a First Hack, It’s Alive!
regular expressions and, Braille Contractions and
Regular Expressions, It’s Alive!, Generativity Systems,
Regex Replacement as a First Hack, Contexts in
Regular Expressions, Embedding Code in Regular
Expressions, Rules as Exceptions, Testing It, It’s Alive!
sample text in, Sample Text in Braille, It’s Alive!,
Linguistic Rule Systems, Linguistic Rule Systems,
Generativity Systems, It’s Alive!

1131

Braille blocks on TPJ cover, TPJ #15: Braille blocks
Brams, Steven, Impossibility Theorems
BRB (Be Right Back), Toss-up Questions
British National Corpus (BNC), Morphology: Word Form
and Structure, Constructing a Word Frequency List,
Constructing a Word Frequency List, Implementing It
British Sundial Society, Building Your Own
Brocard, Leon, The Sub::Approx Module
Bruhat, Philippe, The Fourth Circle: Make Believe
You’re Another Language, Inner Beauty
BSD (Berkeley Software Distribution), Bonus Questions
built-in Perl functions, Bonus Questions
bullet lists and autoformat, Lists, Quotations, Lists, Lists,
Quotations
Burk, Phil, References
Burke, Sean M., TPJ #15: Braille blocks, Perl and MIDI:
Simple Languages, Easy Music, References, Hard Things
Possible, Hard Things Possible, Easy Things Easy, Easy
Things Easy, Behold MIDI::Simple!, Behold
MIDI::Simple!, The Object-Oriented Interface, Using
synch, and Some Actual Music, Mod, Canons, and
Rounds, Mod, Canons, and Rounds, Future Features,
References, Braille and Contractions, It’s Alive!, Braille
and Contractions, Linguistic Rule Systems, Linguistic
Rule Systems, Generativity Systems, Regex Replacement
as a First Hack, Contexts in Regular Expressions, Rules as
Exceptions, It’s Alive!, It’s Alive!, Default sort Versus
“Normal” English Sorting, Sorting it All Out, Default sort
Versus “Normal” English Sorting, Locale-Based Sorting,
Spanish: Cana y Caña, Spanish: Chorizo, Chimichangas,
Chicharrones, y Churros, Spanish: Chorizo,
Chimichangas, Chicharrones, y Churros, English:
Résumé and Resume, English: Résumé and Resume,

1132

Optimizing with Memoization, Sorting it All Out, Typos
in Other Languages, Bonus Answers

Braille and regular expressions, Braille and
Contractions, It’s Alive!, Braille and Contractions,
Linguistic Rule Systems, Linguistic Rule Systems,
Generativity Systems, Regex Replacement as a First
Hack, Contexts in Regular Expressions, Rules as
Exceptions, It’s Alive!, It’s Alive!
Braille blocks picture on TPJ cover, TPJ #15: Braille
blocks
MIDI and Perl, Perl and MIDI: Simple Languages,
Easy Music, References, Hard Things Possible, Hard
Things Possible, Easy Things Easy, Easy Things Easy,
Behold MIDI::Simple!, Behold MIDI::Simple!, The
Object-Oriented Interface, Using synch, and Some
Actual Music, Mod, Canons, and Rounds, Mod,
Canons, and Rounds, Future Features, References
simulating typos, Typos in Other Languages
sorting, internationalized, Default sort Versus
“Normal” English Sorting, Sorting it All Out, Default
sort Versus “Normal” English Sorting, Locale-Based
Sorting, Spanish: Cana y Caña, Spanish: Chorizo,
Chimichangas, Chicharrones, y Churros, Spanish:
Chorizo, Chimichangas, Chicharrones, y Churros,
English: Résumé and Resume, English: Résumé and
Resume, Optimizing with Memoization, Sorting it All
Out

Bust-a-Move game, Twitch Games
buzzword compliance and Maketext, Replacing gettext,
The Devil in the Details, Buzzword: Inheritance, The
Devil in the Details

1133

C

1134

-c command-line switch, Toss-up Answers
caching algorithms, Bonus Questions
caching techniques in genetic algorithms, Survival of the
Fittest, The Terrifying Results, The Terrifying Results
CAF (data interchange format), Other Uses for Perl
caffeinated drinks, Bonus Questions
calculus, differential/integral, A Little Rocket Science
callbacks in Tktk solitaire game, Making the Moves,
Oops!, Laying the Base, Oops!
caller function, Bonus Questions
caller ID, monitoring incoming calls with, Whole House
CallerID
Calvelli, Claudio, The Second Circle: Do Something
Powerful, The Fourth Circle: Make Believe You’re
Another Language
Cameron, Jim, Toss-up Answers
candidate table in database schema, The Database
Schema
candidates, Pairwise Voting, The Preference Ballot,
Impossibility Theorems, The Algorithms, The Pairwise
Engine, The Pairwise Engine

algorithms for choosing, The Algorithms, The Pairwise
Engine, The Pairwise Engine
impossibility theorems and, Impossibility Theorems
preference ballots and, The Preference Ballot
third-party, Pairwise Voting

Cannon, Sarah Ophelia, Toss-up Questions
canonicalizing information by infobots, What Are You
Thinking?, A Sense of Play, What Are You Thinking?, A
Sense of Play, A Sense of Play
canonization and subroutine names, Future Plans
canons and measure counters, Mod, Canons, and Rounds

1135

capitalizing words with autoformat, Justification and
Sentencing
Carbon technology, Toss-up Answers
card games, Cards
cards, deck of, Layout, Making the Moves, Laying the
Base, Laying the Base, Pickup Lines, Finishing Touches

adding menus/menu accelerators to GUI, Finishing
Touches
cycling through deck, Laying the Base
laying out shuffled cards, Layout
moving cards by clicking on them, Making the Moves
picking up legally, Laying the Base
undoing card pickups, Pickup Lines

Carnivore surveillance system, Toss-up Questions
Carp module, Toss-up Answers
cartoon music and Perl, Music to My Ears
cartridges for Atari games on TPJ cover, TPJ #12: The
Atari Perl Cartridge
case conversions, performing with autoformat,
Justification and Sentencing
case-insensitive sorting, Default sort Versus “Normal”
English Sorting
Cataloguing in Publication (CIP) data for books, Toss-up
Questions
categories for Obfuscated Perl contests, The Zeroth
Annual Obfuscated Perl Contest
Caton, Russell, Most Powerful
CDATA tag, Bonus Answers
CEA (Central Enumeration Agency), About Secure
Elections, Generating VRNs

entering VRNs into database, Generating VRNs

1136

Census accepting online forms, Bonus Questions, Toss-up
Answers, Bonus Questions
centering text with autoformat, Justification and
Sentencing
Central Legitimization Agency (CLA), About Secure
Elections
Cerf, Vinton, Toss-up Questions
CERT (Computer Emergency Response Team), Bonus
Answers
CGI (Common Gateway Interface), Bonus Answers,
Bonus Questions, Using CGI to Spit It All Out, Lines
61–71: The generate_ballot Subroutine, Lines 166–205:
The enter_ballot Subroutine

environment variable for determining visits by
browsers, Bonus Questions
generating election results with, Using CGI to Spit It
All Out, Lines 61–71: The generate_ballot Subroutine,
Lines 166–205: The enter_ballot Subroutine

CGI.pm library, The CGI Script
chads, making them obsolete, Secure Internet Voting,
Tallying the Votes, Lines 209–223: Utility Subroutines,
Tallying the Votes
changed method, A Smart TV Guide
channel 9, MIDI, Percussion, Uniformity, and noop
channel number (note property), Easy Things Easy
channels on IRC, IRC, References, IRC, Are You
Spongeworthy?, You Can’t Do That in Public!, What Are
You Thinking?, Idiot Savant, What? We Ordered No
Pizzas!, References
character data, not interpreted as markup, Bonus
Questions
character sets for Japanese, The Web

1137

Charlie Chaplin smiley, Toss-up Questions
Chatbot::Eliza module, Chatbot::Eliza, References,
Chatbot::Eliza, How It Works, How It Works, What
Now?, References

instantiating Eliza bots, How It Works

chatterbots, Chatbot::Eliza, References, References
-cheat command-line option, Tinkering with the
Z-Machine
CHECK block, Bonus Questions
chess programs, Strategy Games
Chinese, translating English into, A Localization Horror
Story: It Could Happen to You, A Localization Horror
Story: It Could Happen to You, A Localization Horror
Story: It Could Happen to You, The Devil in the Details
Chiu, Alex, Toss-up Answers
chocolate hazelnut spread, Toss-up Questions
choleric fluid, Bonus Questions
chooser function, The Sub::Approx Module
Christiansen, Tom, Toss-up Answers, Toss-up Answers,
Bonus Answers
Churchill, Winston, Bonus Questions
ci/co commands, Toss-up Questions
circular preferences, Pairwise Election Methods,
Condorcet’s Method

resolved in Condorcet’s method, Condorcet’s Method

Civilization 3 game, Toss-up Questions
CLA (Central Legitimization Agency), About Secure
Elections
clam shell on TPJ cover, TPJ #2: The Pearl
Classical period, Music to My Ears
Cleary, Brittney, Toss-up Questions

1138

clear_cache method, Sex and Mutation
Clinton, President Bill, Bonus Questions
clusters, three-letter, How to Identify Words, Typos in
Other Languages, How to Identify Words, How to
Identify Words, How to Identify Words, Typos in Other
Languages
CM11 controller, Home Automation: The X10
Nitty-Gritty, A Few More Considerations, Home
Automation: The X10 Nitty-Gritty, What’s in a
Command?, What’s in a Command?, What’s in a
Command?, Bidirectional I/O with the CM11,
Bidirectional I/O with the CM11, Bidirectional I/O with
the CM11, Bidirectional I/O with the CM11, A Few More
Considerations
CM17 controller, Home Automation: The X10
Nitty-Gritty, A Few More Considerations, The
ControlX10::CM17 and ControlX10::CM11 Modules,
The ControlX10::CM17 and ControlX10::CM11
Modules, What’s in a Command?, What’s in a
Command?, What’s in a Command?, What’s in a
Command?, Timing Issues, Bidirectional I/O with the
CM11, Bidirectional I/O with the CM11, A Few More
Considerations

operations for, What’s in a Command?

cm17_bit_toggle.pl program, What’s in a Command?
cm17_no_hardware.pl program, The ControlX10::CM17
and ControlX10::CM11 Modules
CMU Artificial Intelligence Repository, References
co-occurrence of letters, How to Identify Words
code readability, measuring, Perl Style,
Acknowledgments, Existing Measures, The Tool, The Perl

1139

Compiler to the Rescue, Future Directions,
Acknowledgments
Code Red worm, Toss-up Answers
coffee beans on TPJ cover, TPJ #5: Commodities
coffee cup and cigarette on TPJ cover, TPJ #8: The Coffee
Cup Fiasco
Cole, Patrick, Acknowledgments
Colossal Cave game, The Rezrov Infocom Game
Interpreter
columns, controlling layout and justification with
autoformat, Future Features
Command and Control mode of VR, Talking and
Listening
command set for Z-machines, Universal Command Set
command-line switches, Bonus Questions
comments, embedding in regular expressions, Bonus
Questions
commodities trading TPJ cover, TPJ #5: Commodities
Common Gateway Interface (CGI), Bonus Answers
comp.lang.perl.announce newsgroup, A Little History
comp.lang.perl.misc newsgroup, A Little History, How the
“Day in the Life” Was Done, The Raw Statistics, The
Future of comp.lang.perl.misc

day in the life of, How the “Day in the Life” Was Done
future of, The Future of comp.lang.perl.misc
history of, A Little History
statistics on postings, The Raw Statistics

comp.lang.perl.moderated newsgroup, A Little History
comp.lang.perl.modules newsgroup, A Little History
comp.lang.perl.tk newsgroup, A Little History
compile-time vs. run-time, Bonus Questions

1140

compiler, Perl, evaluating code using Fathom, The Perl
Compiler to the Rescue, Acknowledgments, Future
Directions, Acknowledgments
compounding (morphological process), Morphology:
Word Form and Structure
Computer Emergency Response Team (CERT), Bonus
Answers
Concentration-style memory games, Strategy Games
concurrent development, provided by CVS, Toss-up
Questions
Condorcet’s method for pairwise voting, Condorcet’s
Method, The Algorithms, The Pairwise Engine, The
Pairwise Engine, The Pairwise Engine

algorithm involved in, The Algorithms, The Pairwise
Engine, The Pairwise Engine
calculating winners, The Pairwise Engine

configuration files, customizing chatterbots with,
Chatbot::Eliza
confirmation number (CN), About Secure Elections
confirming votes electronically, The E-Ballot
connectivity and Link Grammar parser, Link Grammar
conspiracy theme on TPJ cover, TPJ #11: The Conspiracy
constants, Lines 5–7: Define Constants and Globals

defining length of valid VRNs, Lines 5–7: Define
Constants and Globals

consumer electronics device for pausing live TV, Toss-up
Questions
context-dependent language sounds, The
Out-of-Vocabulary Problem: Synthesis in One s///e, More
Context: Two Substitutions

1141

contexts in regular expressions, Contexts in Regular
Expressions
contractions in Braille, Braille Contractions and Regular
Expressions, Sample Text in Braille, Optimality Systems,
Contexts in Regular Expressions, Rules as Exceptions,
Rules as Exceptions, It’s Alive!

author’s regular-expression-replacement approach,
It’s Alive!
Braille ASCII, Sample Text in Braille
determining ranking-rules, Optimality Systems
hyphenation issues and, Rules as Exceptions
rules as exceptions, Rules as Exceptions
translating rules into regular expressions, Contexts in
Regular Expressions

ControlX10::CM11 module, The ControlX10::CM17 and
ControlX10::CM11 Modules
ControlX10::CM17 module, The ControlX10::CM17 and
ControlX10::CM11 Modules, The ControlX10::CM17
and ControlX10::CM11 Modules
converting case in text with autoformat, Justification and
Sentencing
convolving a Gaussian with an image, The perldl Shell
Conway, Damian, Future Features
Conway’s game of Life, Strategy Games, The Game of
Life

PDL version of, The Game of Life

Copeland’s method for pairwise voting, Copeland’s
Method
copyright page information, Toss-up Questions
corn on the cob, Toss-up Questions

1142

corpuses and word morphology, Morphology: Word
Form and Structure, Morphological Inflections and
Derivations, Morphological Inflections and Derivations,
Implementing It, Future Work, Applying the Derivation
Process to All Tokens, Future Work

applying derivation process to tokens, Implementing
It, Future Work, Applying the Derivation Process to
All Tokens, Future Work

counting syllables in words, Counting Syllables
cover art, TPJ, TPJ #1: The Camel, TPJ #3: RSA on
Greenbar, TPJ #4: Etch-a-Sketch., TPJ #6: Scrabble, TPJ
#8: The Coffee Cup Fiasco, TPJ #8: The Coffee Cup
Fiasco, TPJ #10: The Underwood Typewriter, TPJ #11:
The Conspiracy, TPJ #14: Outlook Not So Good, TPJ
#16: e. e. cummings’ Gravestone, TPJ #17: Napster, TPJ
#18: Spam, TPJ #18: Spam, TPJ #19: Monopoly Money
Coy.pm module, Just Another Perl Haiku, The Coy
Module, Inside the Coy Module, Inside the Coy Module,
Mere Words, Random Harvesting, Filling in the Blanks,
Filling in the Blanks, Filling in the Blanks, Filling in the
Blanks, Filling in the Blanks, The Other Type of
Grammar, The Other Type of Grammar, Counting the
Beat, But Does the Bear Dance?, Extending the Module,
Extending the Module, Extending the Module, It Seemed
Like a Good Idea at the Time

1143

correcting noun/verb agreement, The Other Type of
Grammar
ensuring perfect meter, Counting the Beat
examples of haiku, But Does the Bear Dance?
extending the module, Extending the Module
generating haiku, Filling in the Blanks, Filling in the
Blanks, Filling in the Blanks
grammar templates used by, Filling in the Blanks
main components of, Inside the Coy Module
selecting words, Random Harvesting
structure of hierarchical vocabulary, Mere Words

.coyrc file, Is There a Poet in the House?
Cozens, Simon, TPJ #18: Spam
CPAN (Comprehensive Perl Archive Network), Bonus
Questions
CPAN modules on Unix systems, building/installing,
Bonus Questions
CPU speeds, slower for laptops than desktops, Bonus
Questions
Create a Diversion category, results of, The Fifth
Obfuscated Perl Contest
Create, Read, Update, and Delete (CRUD), Bonus
Answers
CRYPTO-GRAM newsletter, Toss-up Questions, Toss-up
Answers
cryptogram-solver utilities, Word Games
cryptographic device (Enigma), Toss-up Questions
Cryptonomicon, Toss-up Answers, The Pontifex
Cryptosystem
crystal clam shell on TPJ cover, TPJ #2: The Pearl
culling bad organisms from list, Sex and Mutation
Cult of the Dead Cow, Toss-up Answers

1144

curly braces ({ }), matching occurrences in regular
expressions, Toss-up Questions
current octaves, “Relative” Notes
curve fitting, The Genetic Code
cxref tool (C), Future Directions
Cyber Promotions, president of, Toss-up Questions
Cyrano Sciences, Toss-up Questions

1145

D

1146

daemon process, Bonus Answers
Dakss, Jon, TPJ #17: Napster
dance remixes on TPJ cover, TPJ #13: Dance Remixes
data analysis and PDL (Perl Data Language), The perldl
Shell, Where Are We Now?, The perldl Shell, Listing of a
Few PDL Functions, Where Are We Now?
data exchange format (boulderio), Bioinformatics and
Perl
data interchange format (CAF), Other Uses for Perl
data interchange standards for genome software, Other
Uses for Perl
Data::Dumper module, Toss-up Answers, Bonus
Questions, Stringifying Data Structures
Database Driver (DBD), Bonus Answers
Database Interface (DBI), Bonus Questions
database schema for tallying votes, The Database Schema,
The Database Schema, The Database Schema, Generating
VRNs
databases, matching names between, Smart Matching for
Human Names, Conclusion, Module Contents, What They
Do, Matching Nicknames, Conclusion
date and time in English, displaying, Toss-up Answers
Davis, Michael, TPJ #20: WAP
daylight savings time, notification of, Daylight Savings
Time
DB-9/DB-25 type connectors, Toss-up Questions
DBD::Oracle module, Bonus Questions
DBI (Database Interface), Bonus Questions
DBI->connect method, Lines 8–9: Connect to the
Database
dbmclose function, Toss-up Answers
dbmopen function, Toss-up Answers

1147

DBT (Duxbury Braille Translator), Linguistic Rule
Systems
DCS1000 surveillance system, Toss-up Questions
Dealey, William L., References
decision trees for text-to-phoneme conversion,
Text-to-Phoneme Conversion, More Context: Two
Substitutions, Text-to-Phoneme Conversion,
Text-to-Phoneme Conversion, More Context: Two
Substitutions
Decker, Richard, Artificial Haiku
declination, Building Your Own
decomposition rules in chatterbot configuration files,
Chatbot::Eliza
Deepcopy method, Toss-up Questions, Bonus Questions
default width of reformatted text, Text::Autoformat
DEFCON 3, Red Alert!
delete function, Toss-up Questions
democracy, rebuilding with Perl, Secure Internet Voting,
Tallying the Votes, Lines 166–205: The enter_ballot
Subroutine, Tallying the Votes
demographic information about Perl, Bonus Questions
DeMorgan’s Rule, DeMorgan’s Rule
denial of service attacks, Toss-up Questions
department store Santa smiley, Toss-up Questions
derivational morphology, Morphology: Word Form and
Structure, Future Work, Constructing a Word Frequency
List, Morphological Inflections and Derivations,
Morphological Inflections and Derivations, Morphological
Inflections and Derivations, Representing a Single Rule,
Representing Many Rules, Implementing It, Telling Good
from Bad, Implementing It, Implementing It, Future
Work

1148

creating word frequency lists, Constructing a Word
Frequency List, Morphological Inflections and
Derivations, Morphological Inflections and
Derivations, Morphological Inflections and
Derivations
producing false derivations, Implementing It
representing many rules, Representing Many Rules,
Implementing It, Telling Good from Bad,
Implementing It
representing single rules, Representing a Single Rule

Desiderata of Interplanetary Internetworking, Bonus
Answers
/dev/urandom device, Generating VRNs
Devel::Symdump module, The Symbol::Approx::Sub
Module
Device::SerialPort module, What’s in a Command?,
What’s in a Command?, What’s in a Command?, What’s
in a Command?, What’s in a Command?
DHTML (Dynamic HTML), Toss-up Answers
DiBona, Chris, Bonus Answers
dice games, Dice
dictionaries (Japanese), storing in hashed databases,
Dictionary Database, The CGI Script, The CGI Script
dictionary files, Link Grammar

Link Grammar parser and, Link Grammar

differential calculus, A Little Rocket Science
digital clocks, power of two appearing on display, Toss-up
Questions
DIMMs, non-parity, number of pins in, Bonus Questions
dimpled chads, Secure Internet Voting
dims function (PDL), The perldl Shell

1149

direct antonyms, Other Word Relationships
Discman on TPJ cover, TPJ #13: Dance Remixes
disgruntled postmasters, Toss-up Questions
dissociated text, implementing, Word Games
distance method (Lingua::Wordnet:: Analysis), Movin’ It
Up a Level
division by zero errors, coping with, using scalar
variables, Toss-up Questions
DNA and the Traveling Salesman Problem, Toss-up
Answers
DNA sequencing, How Perl Saved the Human Genome
Project, Problems with Perl, How Perl Saved the Human
Genome Project, How Perl Saved the Human Genome
Project, Bioinformatics and Perl, Bioinformatics and Perl,
Bioinformatics and Perl, Other Uses for Perl, Other Uses
for Perl, Problems with Perl, Problems with Perl

steps involved in, Bioinformatics and Perl

document type definitions (DTDs), Bonus Questions
Doherty, Paul David, References
dolphin-shaped Russian cipher by Vipul Ved Prakash,
Most Powerful
DOM (Document Object Model), piggybacking onto
HTTP, Toss-up Questions
Dominus, Mark Jason, Optimizing with Memoization,
Toss-up Answers, Toss-up Answers, Bonus Answers, It
Seemed Like a Good Idea at the Time, The Old Standby

exemptions from warning message, Toss-up Answers
memoization article, Optimizing with Memoization

done_now method, You Have Mail
dotcoms, failed, Bonus Questions

1150

double colon syntax, shorter equivalent of, Toss-up
Questions
double-quote processing, overloading, Irregular Regular
Expressions, Overloaded
Drepper, Ulrich, References
DSL, types of, Bonus Questions
DTDs (document type definitions), Bonus Questions
Dubé silicone juggling ball on TPJ cover, TPJ #7:
Spiderball
Dublin Core, Toss-up Questions, Toss-up Questions,
Toss-up Answers
dump function, Toss-up Answers
Dumper method, Toss-up Questions
Dungeons and Dragons game, Toss-up Answers
duopoly, two-party, Pairwise Voting
duration (note property), Easy Things Easy
Dutch, simulating typos in, Typos in Other Languages,
References, Typos in Other Languages, References
Duverger’s Law, Pairwise Voting
Duxbury Braille Translator (DBT), Linguistic Rule
Systems
DVD (Digital Versatile Disk), Toss-up Answers
Dvorak keymap vs. QWERTY keymap, Simulating Typos
with Perl, References, Simulating Typos with Perl,
Simulating the Typos, How to Identify Words, How to
Identify Words, Typos in Other Languages, Typos in
Other Languages, References
Dvorak, August, Simulating Typos with Perl, References
dynamic syntax, Why This Should Be Hard To Do

1151

E

1152

e. e. cummings’ gravestone on TPJ cover, TPJ #16: e. e.
cummings’ Gravestone
EarthWeb buyout, TPJ #14: Outlook Not So Good
Easter eggs in Infocom games, Pilfer
Eazel corporation, now defunct, Toss-up Questions
eccentricity of earth orbit, Building Your Own, Building
Your Own
ecliptic angle, Building Your Own
edict dictionary, The Web, Dictionary Database,
Dictionary Database
Edison, Thomas, Toss-up Questions
Edmonson, Michael, Resurrecting the Z-Machine
EFNet (Eris-Free Net), IRC, You Can’t Do That in
Public!, IRC, So What?, Are You Spongeworthy?, You
Can’t Do That in Public!
EG (Exempli Gratia) directory of Perl distribution,
Toss-up Answers
Eggdrop bot, IRC
Einstein, Albert, Toss-up Answers, Toss-up Questions
Eisenberg, Mike, Results of the Contest
election fraud, discouraged by Internet voting, About
Secure Elections
Election Methods mailing list, The Algorithms, Sites
electronic ballots, The E-Ballot, The vote Program

implemented by CGI script, The vote Program

Eliza algorithm, Chatbot::Eliza, References,
Chatbot::Eliza, How It Works, How It Works, How It
Works, References
elsif constructs in several languages, Bonus Questions
Emacs vs. vi, Bonus Questions
Emacs, using Perl from, Using Perl from Emacs

1153

email accounts, checking with MisterHouse, You Have
Mail
embedding code in regular expressions, Embedding Code
in Regular Expressions
emergency memory pools, creating, Toss-up Questions
encapsulation and Maketext module, Buzzwords:
Abstraction and Encapsulation
Enchanter (game), Enter the Camel
encoding programs, Linguistic Rule Systems, Regex
Replacement as a First Hack, It’s Alive!, It’s Alive!

DBT, Linguistic Rule Systems
regular-expression-replacement approach, Regex
Replacement as a First Hack, It’s Alive!, It’s Alive!

END blocks in Perl programs, Toss-up Answers
English, The Web

automatically translating kanji to, The Web

English.pm module, Bonus Questions
enter_ballot subroutine (e-ballot), Lines 23–26: Handle a
Submitted Ballot, Lines 166–205: The enter_ballot
Subroutine
enter_vrn.pl script, Generating VRNs
entropy coding and Perl function names, Bonus Questions
Eppley, Steve, Sites
EPROMs, missile, A Little Rocket Science, Red Alert!,
Red Alert!, Red Alert!
equals sign, adding to operators, Bonus Questions
Eris-Free Net (EFNet), Bots and Infobots
error handling and home automation, A Few More
Considerations
error messages and haiku responses, Just Another Perl
Haiku, Random Harvesting, But Does the Bear Dance?

1154

error subroutine (e-ballot), Lines 124–165: The validate
Subroutine
Etch-a-Sketch on TPJ cover, TPJ #4: Etch-a-Sketch.
Ethernet technology, Toss-up Answers
eticity, Toss-up Questions
European Parliament, web site for, Typos in Other
Languages
eval program, Interface Abstraction

checking if interface modules are installed, Interface
Abstraction

evaluate method in genetic algorithms, Survival of the
Fittest
event queues for monitoring home appliances, A Few
More Considerations
events in Tktk solitaire game, Making the Moves
Everquest game, Toss-up Answers
evil names, Bonus Questions
evolution and genetic algorithms, Genetic Algorithms,
Survival of the Fittest
Excedrin, caffeine content of one tablet, Bonus Questions
Expect.pm module, Toss-up Answers
explainstr subroutine, The CGI Script
exponentiation operator ($) and Nike missiles, A Little
Rocket Science
expressions per statement, measuring, The Basic Units
Extensible Markup Language (XML), Bonus Answers
Extensional Language, Hard Things Possible, Approach
1: A Novel Language, Approach 2: An Extensional
Language, Easy Things Easy, Easy Things Easy, Easy
Things Easy, Using synch, and Some Actual Music

implementation considerations, Easy Things Easy

1155

F

1156

factoids and infobots, Are You Spongeworthy?
familiarity method (Lingua::Wordnet:: Analysis), Movin’
It Up a Level, Movin’ It Up a Level, Movin’ It Up a Level,
Movin’ It Up a Level, Movin’ It Up a Level
Fanning, Shawn, Bonus Questions
Fathom module, Perl Style, Acknowledgments, The Tool,
Usage, The Perl Compiler to the Rescue, Future
Directions, Acknowledgments
fax machines, baud rate of, Toss-up Questions
feature vectors, Text-to-Phoneme Conversion
Fellowship of the Ring, Bonus Answers
Festival (open-source synthesizer), Text-to-Phoneme
Conversion
Festival TTS engine, MisterHouse, Talking and Listening
FETCH function, Bonus Questions
Fifth Obfuscated Perl Contest, The Fifth Obfuscated Perl
Contest, The Old Standby, Results, World Wide
Wasteland, The Old Standby
file tests, operations for, Bonus Questions, Toss-up
Questions
File Transfer Protocol (FTP), Bonus Answers
File_Item (mh object), Objects in the Home
Filter::cpp module, A Plea for Inlining
finite state transducers, Text-to-Phoneme Conversion
Finland, land of most Internet sites per capita, Toss-up
Answers
Firecracker (CM17) interface, Give Your House a Brain,
Home Automation: The X10 Nitty-Gritty
firewalls, penetrating, Toss-up Questions
First Obfuscated Perl Contest, The First Obfuscated Perl
Contest, Best of Show, Results, Most Powerful, Most
Creative, Best “The Perl Journal”, Best Year 2000 Error,
Best Year 2000 Error, Best Year 2000 Error, Best of Show

1157

First Perl/Internet Quiz Show, Toss-up Questions,
Toss-up Questions, Toss-up Questions, Bonus Questions,
Bonus Questions, Bonus Questions, Bonus Answers,
Bonus Answers
Fishburn, Peter C., Impossibility Theorems
Fisher-Yates algorithm, shuffling deck of cards with,
Shuffling
fitness function, Survival of the Fittest
fitness of genetic algorithms, Genetic Algorithms, The
Terrifying Results

results of testing, The Terrifying Results

FITS (format for astronomical data), The perldl Shell
flames in comp.lang.perl.misc, How the “Day in the Life”
Was Done, The Day’s Weather Report
Flesch-Kincaid tools, Existing Measures
fname_eq function, Module Contents
follow_leader.pl program, Bidirectional I/O with the
CM11
food foraging behavior in ants, emulating, Other
Applications
Forbes, Nevill, References
Ford, Gertrude Catherine, References
fork function, Toss-up Questions
formatting text with autoformat, Text::Autoformat,
Paragraphs, Lists, Lists, Widows, Justification and
Sentencing, Future Features
Forth-extension HMSL music language, Easy Things Easy
Fourier Series for a given periodic function, finding,
Other Applications
Fourth Obfuscated Perl Contest, The Fourth Obfuscated
Perl Contest, The Fourth Obfuscated Perl Contest, The
Fourth Circle: Make Believe You’re Another Language

1158

Fourth Perl/Internet Quiz Show, The Fourth Perl/Internet
Quiz Show, Bonus Answers, Bonus Answers
fractal color generator/web browser load tester, World
Wide Wasteland
fractal pixmap generator, Most Powerful
Frankel, Justin, Toss-up Questions
Frankenstein language, Toss-up Questions
fraud, election, discouraged by Internet voting, About
Secure Elections
free database system, Toss-up Questions
Freeman, Gordon, Toss-up Questions
freeware porn detector, Bonus Questions
frequency lists for words, Morphological Analysis and
Perl, Constructing a Word Frequency List, Constructing
a Word Frequency List, The Key Insight!, Implementing
It, Applying the Derivation Process to All Tokens
Friedl, Jeffrey, References, Testing It
Frodin, Peter, Results of the Contest
Frogger in 2048 bytes, Create a Diversion
frotz interpreter, Enter the Camel
Frozen Bubble game, Twitch Games
Fully Qualified Domain Name (FQDN), Bonus Answers
functions (word relationships), Other Word Relationships
functions, mathematical (used in genetic algorithms), The
Genetic Code
Futrelle, Joe, Most Powerful, Best “The Perl Journal”

1159

G

1160

G2G (Got to Go), Toss-up Questions
galaxy, spiral, The perldl Shell
Gallo, Felix S., Results of the Contest, Hints and
Suggestions, So There You Have It, Results, Best “The
Perl Journal”, The Third Circle: Be Creative

Fourth Obfuscated Perl Contest, The Third Circle: Be
Creative
Prisoner’s Dilemma contest, Results of the Contest
Zeroth Obfuscated Perl Contest, Hints and
Suggestions, So There You Have It, Results, Best “The
Perl Journal”

gambling prohibition act for Internet, Toss-up Answers
game cartridges on TPJ cover, TPJ #12: The Atari Perl
Cartridge
game console, new, Bonus Questions
game theory and the Prisoner’s Dilemma, The Prisoner’s
Dilemma, Results of the Contest
games in Perl, Games in Perl, Twitch Games, Strategy
Games, Strategy Games, Cards, Cards, Dice, Word
Games, Twitch Games, Word Games, Twitch Games,
Twitch Games, The Rules, Finishing Touches, A First Cut,
Shuffling, Layout, Pickup Lines, Finishing Touches,
Finishing Touches

cards, Cards, The Rules, Finishing Touches, A First
Cut, Shuffling, Layout, Pickup Lines, Finishing
Touches, Finishing Touches
dice, Dice
strategy, Strategy Games
word games, Word Games, Twitch Games, Twitch
Games

Games::Cards::Tk module, Cards

1161

Games::Chess module, Strategy Games
Games::Dissociate module, Word Games
Games::Go::GMP module, Strategy Games
Games::Jumble module, Word Games
Garriott, Richard, Toss-up Questions
GAs (genetic algorithms), Genetic Algorithms, Resources,
Going Further, Resources
Gaussian blob, two-dimensional, The perldl Shell
geek cruises, The Perl Whirl Quiz Show
gendb.pl script, Dictionary Database
generate_ballot subroutine (e-ballot), Lines 61–71: The
generate_ballot Subroutine
generate_vrns.pl script, Generating VRNs
generativity systems and Braille, Generativity Systems,
Generativity Systems
genetic algorithms (GAs), Genetic Algorithms, Resources,
The Genetic Code, Assembling an Organism, Sex and
Mutation, Other Applications, Resources
genetic code for describing organisms, The Genetic Code,
Assembling an Organism, The Genetic Code, Assembling
an Organism
Genetic Programming, Going Further
genome project, saved by Perl, How Perl Saved the
Human Genome Project, Problems with Perl, How Perl
Saved the Human Genome Project, How Perl Saved the
Human Genome Project, Other Uses for Perl, Other Uses
for Perl, Other Uses for Perl, Other Uses for Perl,
Problems with Perl
geometry managers, Bonus Questions
getlink subroutine, The CGI Script
getprotobynumber function, Toss-up Answers
gettext module, A Localization Horror Story: It Could
Happen to You, The Linguistic View, The Linguistic

1162

View, The Linguistic View, Proof in the Pudding:
Localizing Web Sites

localization horror story, A Localization Horror
Story: It Could Happen to You, The Linguistic View,
The Linguistic View, The Linguistic View
localizing web sites, Proof in the Pudding: Localizing
Web Sites

get_byte macro (ZIP interpreter), Quantity Is Job One
get_byte_at method (rezrov), The Joy of vec
get_email program, You Have Mail
get_globals subroutine (e-ballot), Lines 40–60: get_globals
Subroutine
get_tv_info program, A Smart TV Guide
Gilmore, John, Toss-up Questions
Glacial Rift of the Frost Giant Jarl, Toss-up Questions
Glazebrook, Karl, Bonus Questions
globals for electronic voting program, Lines 40–60:
get_globals Subroutine

loading with information, Lines 40–60: get_globals
Subroutine

GlobWalker module, The Symbol::Approx::Sub Module
glosses (definitions) of words, Basic Usage

lookup_synset method and, Basic Usage

GNOME shell and file manager, Toss-up Questions
gnomons and sundials, Perl-fect Sundials, Perl-fect
Sundials
GNU General Public License, Toss-up Questions, Toss-up
Questions
Go, game of, The Web, wwwkan.pl, The Web, Taking It a
Step Further, Conclusion, wwwkan.pl, Strategy Games

1163

Games::Go::GMP and Games::Go::SGF utilities,
Strategy Games
incentive for learning Japanese, The Web, wwwkan.pl,
The Web, Taking It a Step Further, Conclusion,
wwwkan.pl

Google spell-check feature, Afterword
googlewhacking, Word Games
Gough, Brian, Results of the Contest
grading readability of Perl programs, Perl Style,
Acknowledgments, The Tool, Usage, The Perl Compiler to
the Rescue, The Perl Compiler to the Rescue,
Acknowledgments
grammar, Filling in the Blanks, The Other Type of
Grammar

adjusting form of selected words, The Other Type of
Grammar
sample templates used by Coy.pm, Filling in the
Blanks

grammatical number, A Localization Horror Story: It
Could Happen to You, A Localization Horror Story: It
Could Happen to You, Buzzword: Isomorphism

Arabic treatment of, A Localization Horror Story: It
Could Happen to You
English treatment of, A Localization Horror Story: It
Could Happen to You
ways of testing for, Buzzword: Isomorphism

Grand Ole Opry, Toss-up Questions
greenbar, RSA on, TPJ #3: RSA on Greenbar
Gregorian style of numbering, Toss-up Answers

1164

grepping pronunciation files for patterns, Searching the
Prepared Data, Coping with (Syllabic) Stress
Grinberg, Dennis, References
Group (mh object), Objects in the Home
Gruhl, Dan, Future Work
GUI toolkits, Bonus Questions
Guidero, Mike, The Second Circle: Do Something
Powerful
Guru, Perl, Toss-up Questions
Gutteridge, Christopher, Inner Beauty

1165

H

1166

H2XS utility, Toss-up Answers
Hackman, Kevin, It Seemed Like a Good Idea at the Time
Hagelberg, Andreas, The Third Circle: Be Creative
haiku, Perl, Just Another Perl Haiku, The Tao of Haiku,
The Tao of Haiku, Artificial Haiku, Artificial Haiku,
Artificial Haiku, Inside the Coy Module, Inside the Coy
Module, Random Harvesting, Random Harvesting, Filling
in the Blanks, Counting the Beat, Counting the Beat,
Extending the Module, Is There a Poet in the House?, Is
There a Poet in the House?
haiku-generating grammar, Artificial Haiku, Artificial
Haiku

by Decker and Hirshfield, Artificial Haiku
by Garret Kaminaga, Artificial Haiku

Half-Life game, Toss-up Answers
ham radio modems, MisterHouse
ham radios, tracking vehicle positions, You Have Mail
hanging chads, Secure Internet Voting
Hangman games, Word Games
Hardt, Dick, Bonus Questions
Hare method for tallying preference ballots, The Hare
Method
Harper, Damon, Obfuscated Poetry?
Hartnoll, Dave, Most Powerful
hashed databases, storing Japanese dictionaries in,
Dictionary Database, The CGI Script, The CGI Script
headstone (e. e. cummings) on TPJ cover, TPJ #16: e. e.
cummings’ Gravestone
heat dissipation of laptops, Toss-up Answers
heuristics and word morphology, Morphology: Word
Form and Structure
hex function, Toss-up Questions

1167

hiding secret messages in plaintext, TPJ #3: RSA on
Greenbar
hierarchical lists and autoformat, Lists, Quotations, Lists,
Lists, Quotations
hierarchy of hypernyms, Concepts in Wordnet
Hietaniemi, Jarkko, Toss-up Answers, Bonus Answers
highlight casing text with autoformat, Justification and
Sentencing
hiragana, The Web
Hirshfield, Stuart, Artificial Haiku
hocus (infobot), A Sense of Play
Hollerith punchcards, Secure Internet Voting
holonyms, Other Word Relationships
home automation, Timing Issues

timing issues with, Timing Issues

Home Automation (HA), Home Automation: The X10
Nitty-Gritty, A Few More Considerations, A Few More
Considerations

working with, Home Automation: The X10
Nitty-Gritty, A Few More Considerations, A Few
More Considerations

Hopkins, Sharon, The Perl Poetry Contest
Houston, Robin, The Symbol::Approx::Sub Module
Howe, Chris, Toss-up Answers, The Fourth Circle: Make
Believe You’re Another Language
HP printers, weights of, Bonus Questions
HTML 4, reformulated in XML, Toss-up Questions
HTML filter, learning Japanese with, The CGI Script,
The CGI Script, wwwkan.pl, wwwkan.pl
HTML::Parse module, The CGI Script
HTTP header field, Bonus Questions

1168

HTTP status constants, Bonus Questions
HTTP_USER_AGENT environment variable, Toss-up
Answers
Hudson, Dean, Is There a Poet in the House?
Hudson, Tramm, The First Circle: Print “The Perl
Journal”
human genome project, How Perl Saved the Human
Genome Project, Problems with Perl, How Perl Saved the
Human Genome Project, Bioinformatics and Perl,
Bioinformatics and Perl, Other Uses for Perl, Other Uses
for Perl, Other Uses for Perl, Other Uses for Perl,
Problems with Perl, Toss-up Questions

how Perl saved, How Perl Saved the Human Genome
Project, Problems with Perl, How Perl Saved the
Human Genome Project, Bioinformatics and Perl,
Bioinformatics and Perl, Other Uses for Perl, Other
Uses for Perl, Other Uses for Perl, Other Uses for Perl,
Problems with Perl

human names, smart matching for, Smart Matching for
Human Names, Conclusion, Module Contents, Using the
Modules, What They Do, Matching Nicknames,
Conclusion
humors, descriptions of, Bonus Questions
hyper-light-speed antenna patent filing, excerpt from,
Bonus Questions, Bonus Answers
hypernyms, Concepts in Wordnet, Basic Usage, Other
Word Relationships, Other Word Relationships

constructing a list of, Basic Usage
multiple, adding to synsets, Other Word Relationships

hyphenation and Braille contractions, Braille and
Contractions, Optimality Systems, Contexts in Regular

1169

Expressions, Optimality Systems, Optimality Systems,
Contexts in Regular Expressions

rules for ranking, Optimality Systems, Contexts in
Regular Expressions, Optimality Systems, Optimality
Systems, Contexts in Regular Expressions

hyponyms, Other Word Relationships

1170

I

1171

I Am Not A Lawyer (IANAL), Bonus Answers
-I command-line switch, Toss-up Answers
I18N (internationalizing Perl programs), Localizing Your
Perl Programs
I18N::LangTags module, Buzzword: Concision
IBM ViaVoice VR/TTS engines, MisterHouse, Talking
and Listening
ICANN (Internet Corporation for Assigned Names and
Numbers), Toss-up Answers
ICBMs (Intercontinental Ballistic Missiles), A Little
Rocket Science, Red Alert!, Red Alert!
ICMP ping messages, Toss-up Questions
ICMP protocol, Toss-up Questions
IETF (Internet Engineering Task Force), Toss-up
Answers
IF (interactive fiction) games, The Rezrov Infocom Game
Interpreter, References, Resurrecting the Z-Machine, The
Joy of vec, The Joy of vec, Teleport, Teleport, Teleport,
Teleport, Pilfer, Universal Command Set, Interface
Abstraction, Quantity Is Job One, A Plea for Inlining,
References
IF-MODIFIED-SINCE header field, Toss-up Answers
Ig Nobel Prize for Communications, Toss-up Questions
Immortality Rings, Toss-up Questions
impossibility theorems, Impossibility Theorems
indent tool (C), Future Directions
Independence Day, Bonus Answers
indirect antonyms, Other Word Relationships
infectfiles (virus function), Toss-up Questions
inflections and word morphology, Morphology: Word
Form and Structure, Representing Many Rules,
Implementing It, Implementing It

1172

representing many rules, Representing Many Rules,
Implementing It, Implementing It

infobots, Infobots and Purl, References, IRC, So What?,
You Can’t Do That in Public!, What Are You Thinking?,
What Are You Thinking?, What Are You Thinking?,
What Are You Thinking?, A Sense of Play, What Are You
Thinking?, What Are You Thinking?, Idiot Savant, Idiot
Savant, Idiot Savant, A Sense of Play, Future Directions,
References

future directions of, Future Directions
processing information, What Are You Thinking?, A
Sense of Play, Idiot Savant, A Sense of Play
rules for answering questions, What Are You
Thinking?, What Are You Thinking?, What Are You
Thinking?, What Are You Thinking?

Infocom games, Enter the Camel, What’s It Do?,
Interface Abstraction, Toss-up Answers

rezrov interpreter and, Enter the Camel, What’s It
Do?, Interface Abstraction

Inform (IF authoring system), Resurrecting the
Z-Machine
informatics and Perl, Bioinformatics and Perl
InfoTaskForce team, Resurrecting the Z-Machine
inheritance and Maketext module, Buzzword: Inheritance
INIT block, Bonus Questions
inlining frequently-used code for Z-machines, A Plea for
Inlining
input context templates, Toss-up Answers
instance data, accessing, Quantity Is Job One
integer pragma, Toss-up Answers

1173

integral calculus, A Little Rocket Science
Integrated Services Digital Network (ISDN), Bonus
Answers
interactive fiction (IF) games, The Rezrov Infocom Game
Interpreter, References, Resurrecting the Z-Machine,
References
interactive sessions with chatterbots, Chatbot::Eliza,
References, Chatbot::Eliza, How It Works, How It
Works, References

exposing Eliza’s weaknesses, How It Works

interchangeable software, need for in genome research,
Other Uses for Perl
interfaces, abstracting using Z-machine opcodes, Interface
Abstraction
International Standardization Organization (ISO),
Toss-up Answers
internationalization (synonymous with I18N), Localizing
Your Perl Programs
internationalized sorting, Default sort Versus “Normal”
English Sorting, Locale-Based Sorting, Locale-Based
Sorting, Spanish: Chorizo, Chimichangas, Chicharrones,
y Churros, Spanish: Chorizo, Chimichangas,
Chicharrones, y Churros, Bi-Level Sorting to the Rescue,
English: Résumé and Resume, Optimizing with
Memoization
Internet access at McDonald’s, The Fourth Perl/Internet
Quiz Show
Internet Engineering task Force (IETF), Toss-up Answers
Internet Gambling Prohibition Act, Toss-up Answers
Internet Index, Toss-up Questions, Toss-up Answers
Internet Integrated Service (IIS) model, Toss-up
Questions

1174

Internet protocol specifications, primary requirement
levels, Bonus Questions
Internet Relay Chat (IRC), IRC

resources for, IRC

Internet voting, secure, About Secure Elections, About
Secure Elections, The E-Ballot, The vote Program, Lines
72–104: The voting_matrix Subroutine
Interplanetary Internetworking, Desiderata of, Bonus
Answers
interpreter, rezrov, The Rezrov Infocom Game
Interpreter, References, Enter the Camel, What’s It Do?,
The Joy of vec, Tinkering with the Z-Machine,
Performance Considerations, A Plea for Inlining,
References
intersection method (Lingua::Wordnet:: Analysis),
Movin’ It Up a Level
IP addresses, determining classes of, Bonus Questions
IPC::Open2/IPC::Open3 modules, Bonus Questions
IPSEC protocol, Toss-up Questions
IRC (Internet Relay Chat), IRC

resources for, IRC

IRMan interface, MisterHouse
ISO (International Standardization Organization),
Toss-up Answers
ISO 8859-1 entity name for symbols, Bonus Questions
isomorphism and Maketext module, Buzzword:
Isomorphism
Iterated Prisoner’s Dilemma, The Iterated Prisoner’s
Dilemma

1175

J

Jackson, Peter, Toss-up Answers
Jakarta project, Toss-up Answers
James, Mark, Most Creative
Japanese, learning with HTML filter, Learning Japanese
with an HTML Filter, wwwkan.pl, The Web, Dictionary
Database, The CGI Script, Taking It a Step Further,
wwwkan.pl
Jedi leitmotif, adding to .coyrc file, Extending the Module
Jeopardy-style messages, submitting to newsgroups,
Netiquette Nits
JIS character set, Localizing Your Perl Programs
Johnston, Joe, Bonus Answers, Bonus Questions
join function, Bonus Questions
Joki, Jani, Best “The Perl Journal”, Best of Show
Jolt, caffeine content of, Bonus Questions
Joy, Bill, Bonus Answers
Jumble word puzzles, Word Games
jumping the shark, Toss-up Answers
justifying text with autoformat, Justification and
Sentencing

K

Kaiser, Cameron, Best “The Perl Journal”
Kaminaga, Garret, Artificial Haiku
Kandasamy, Kalai, Most Powerful
kanji, automatically translating to English, Learning
Japanese with an HTML Filter, wwwkan.pl, The Web,
Dictionary Database, Dictionary Database, Dictionary

1176

Database, The CGI Script, wwwkan.pl, wwwkan.pl,
wwwkan.pl
kanjidic dictionary, The Web, Dictionary Database,
Dictionary Database
katakana, The Web
Katalov, Alexander, Toss-up Questions
Keating, John, The First Circle: Print “The Perl Journal”
Keller, Helen, Braille and Contractions
kerberos system, Bonus Answers
kernel and colonel, Toss-up Answers
Kernighan, Brian, Toss-up Questions
KewlChess program, Strategy Games
keys function, Bonus Questions
keywords in chatterbot configuration files, Chatbot::Eliza
Kimball, Ronald J., A Perl Program That Generates
Poetry
King of Spam, Toss-up Questions
Kleene, Stephen, It’s Alive!
Klep, Robert, Best Four-Line Signature, Most Powerful,
Most Creative, The Second Circle: Do Something
Powerful
klystron, commonly misspelled, A Little Rocket Science
Knuth, Donald, Toss-up Questions, Toss-up Answers
KOI8 character set, Localizing Your Perl Programs
Komodo development environment, Bonus Questions
Komodo dragons, features of, Toss-up Questions
Konarski, Beirne, Results of the Contest
Kontour drawing program, Toss-up Questions
Koza, John, Other Applications
Kugel (strategy game), Strategy Games
Kyl, Senator Jon, Toss-up Questions

1177

L

1178

-l command-line switch, Toss-up Answers
L10N (localizing Perl programs), Localizing Your Perl
Programs, The Devil in the Details, The Devil in the
Details, The Devil in the Details, Toss-up Questions
laboratory management, using Perl in, Other Uses for
Perl, Problems with Perl, Problems with Perl
Lack, Gordon, Most Powerful
Lafferty, John, References
Lalonde, Brian, Matching Nicknames
Langston, Peter S., References
language, Easy Things Easy, Concepts in Wordnet,
Concepts in Wordnet, Basic Usage, Basic Usage, Movin’ It
Up a Level, Movin’ It Up a Level, Other Word
Relationships, Other Word Relationships, Other Word
Relationships, Other Word Relationships, What’s Next?, I
See a Pattern Developing, A Full Lingua::LinkParser
Example, Link Grammar, Link Grammar, The
What-Sucks-Ometer, A Full Lingua::LinkParser
Example, Morphology: Word Form and Structure, Smart
Matching for Human Names, Conclusion, Module
Contents, Using the Modules, What They Do, Matching
Nicknames, Conclusion, Simulating Typos with Perl,
Simulating Typos with Perl, Simulating the Typos, How to
Identify Words, How to Identify Words, Learning
Japanese with an HTML Filter, wwwkan.pl, wwwkan.pl

1179

extensions, Easy Things Easy
learning with HTML filters, Learning Japanese with
an HTML Filter, wwwkan.pl, wwwkan.pl
morphology of, Morphology: Word Form and
Structure
processing names, Smart Matching for Human Names,
Conclusion, Module Contents, Using the Modules,
What They Do, Matching Nicknames, Conclusion
processing natural, Concepts in Wordnet, Concepts in
Wordnet, Basic Usage, Basic Usage, Movin’ It Up a
Level, Movin’ It Up a Level, Other Word
Relationships, Other Word Relationships, Other Word
Relationships, Other Word Relationships, What’s
Next?, I See a Pattern Developing, A Full
Lingua::LinkParser Example, Link Grammar, Link
Grammar, The What-Sucks-Ometer, A Full
Lingua::LinkParser Example

hypernyms, hyponyms, pertainyms, et al, Concepts
in Wordnet, Concepts in Wordnet, Basic Usage,
Basic Usage, Movin’ It Up a Level, Movin’ It Up a
Level, Other Word Relationships, Other Word
Relationships, Other Word Relationships, Other
Word Relationships, What’s Next?

typos in, Simulating Typos with Perl, Simulating
Typos with Perl, Simulating the Typos, How to
Identify Words, How to Identify Words

Latin-1 character set, Localizing Your Perl Programs,
Default sort Versus “Normal” English Sorting

ASCIIbetical sorting and, Default sort Versus
“Normal” English Sorting

1180

latitudes and longitudes, Building Your Own
Lauha, Jetro, World Wide Wasteland
Laurel, Brenda, Bonus Questions
Lawless, Jim, Best “The Perl Journal”
layout of cards for Tktk solitaire game, Layout
laziness, impatience, and hubris, Bonus Answers
LCDproc interface, MisterHouse
LDAP (Lightweight Directory Access Protocol), Toss-up
Answers
Leather Goddesses of Phobos game, Toss-up Questions
lemniscate symbol, Bonus Questions
Lenzo, Kevin, Text-to-Phoneme Conversion
LeSaux, Eric, Results of the Contest
letter co-occurrence, How to Identify Words
Levin, Jonathan, References
Lewis, Sinclair, How to Identify Words
lexical synthesis with s//// expressions, Lexical Synthesis in
One s///
lexical variables, The Symbol::Approx::Sub Module
lexically scoped variables, Quantity Is Job One, Bonus
Questions

declarations for, Bonus Questions
in methods, effect on performance, Quantity Is Job
One

lexicons, Buzzword: Inheritance, Buzzword: Concision,
Buzzword: Concision, Buzzword: Concision, Buzzword:
Concision

Maketext module and, Buzzword: Inheritance,
Buzzword: Concision, Buzzword: Concision,
Buzzword: Concision, Buzzword: Concision

libwww-perl (LWP) library, The CGI Script

1181

Lidie, Steve, Most Creative, Best “The Perl Journal”,
Create a Diversion
Life (the game), Strategy Games
limericks, category in Perl Poetry Contest, The Categories
Lincoln, Abraham, Bonus Answers
Lindley, Adam T., Acknowledgments
line directive, Toss-up Answers
Lingua::EN::Inflect module, Buzzword: Concision, The
Other Type of Grammar
Lingua::EN::MatchNames module, Smart Matching for
Human Names, Conclusion, Installing the Modules, Using
the Modules, What They Do, Matching Nicknames,
Conclusion
Lingua::EN::NameParse module, Installing the Modules
Lingua::EN::Nickname module, Smart Matching for
Human Names, Conclusion, Installing the Modules, Using
the Modules, What They Do, Conclusion
Lingua::LinkParser module, Other Word Relationships,
Lingua::LinkParser, A Full Lingua::LinkParser Example

code example, A Full Lingua::LinkParser Example

Lingua::LinkParser::Linkage package, overloading
double-quote processing, Irregular Regular Expressions,
Overloaded
Lingua::Wordnet module, Concepts in Wordnet,
Converting the Data, Concepts in Wordnet, Converting
the Data, Converting the Data, Converting the Data, Basic
Usage, Basic Usage, Movin’ It Up a Level, Basic Usage,
Basic Usage, Basic Usage, Basic Usage, Movin’ It Up a
Level, Movin’ It Up a Level, Movin’ It Up a Level, Movin’
It Up a Level, Movin’ It Up a Level, Movin’ It Up a Level,
Movin’ It Up a Level, Movin’ It Up a Level, Other Word
Relationships, Other Word Relationships, Other Word

1182

Relationships, Other Word Relationships, Other Word
Relationships, Other Word Relationships, Other Useful
Functions, What’s Next?

analyzing synset relationships, Movin’ It Up a Level,
Movin’ It Up a Level, Movin’ It Up a Level, Other
Word Relationships
concepts in, Concepts in Wordnet, Converting the
Data, Converting the Data
converting the data, Converting the Data
installing, Converting the Data
looking up English definitions, Basic Usage, Movin’ It
Up a Level, Basic Usage, Basic Usage, Movin’ It Up a
Level, Movin’ It Up a Level

Lingua::Wordnet::Analysis module, Movin’ It Up a Level,
Movin’ It Up a Level
Lingua::Wordnet::Synset type, Basic Usage
Linguana project, Hypernyms, Hyponyms, Pertainyms,
and Other Word Relationships
linguistic rule systems and Braille, Linguistic Rule
Systems
linguistics and localization, The Linguistic View
link dictionary language, Link Grammar
Link Grammar parser, Link Grammar, Irregular
Regular Expressions, Overloaded, Link Grammar,
Lingua::LinkParser, Lingua::LinkParser,
Lingua::LinkParser, Irregular Regular Expressions,
Overloaded, References

Lingua::LinkParser module and, Lingua::LinkParser
web site for, References

Linux, penguin mascot of, Toss-up Questions
lname_eq function, Module Contents

1183

load_lab_database.pl script, Bioinformatics and Perl
locale pragma, Toss-up Answers
locale-based sorting, Locale-Based Sorting
Locale::gettext module, A Localization Horror Story: It
Could Happen to You, The Linguistic View, The
Linguistic View, Proof in the Pudding: Localizing Web
Sites

localization horror story, A Localization Horror
Story: It Could Happen to You, The Linguistic View,
The Linguistic View
localizing web sites, Proof in the Pudding: Localizing
Web Sites

Locale::Maketext module, Replacing gettext, Buzzword:
Inheritance, Buzzword: Concision, The Devil in the
Details, The Devil in the Details
localization (synonymous with L10N), Localizing Your
Perl Programs, A Localization Horror Story: It Could
Happen to You, Buzzword: Inheritance, The Devil in the
Details
localizing Perl programs, Buzzword: Inheritance,
Buzzword: Concision, Buzzword: Concision
logit_dbm function, Whole House CallerID
Loki, Norse god of mischief, Toss-up Answers
LOL (Laugh Out Loud), Toss-up Questions
longitudes and latitudes, Building Your Own
lookahead/lookbehind expressions, Generativity Systems
lookup_synset method, Basic Usage
Lord British (pseudonym), Toss-up Answers
low-frequency tokens, excluding, Constructing a Word
Frequency List
Lukka, Tuomas J., Dictionary Database, The CGI Script,
wwwkan.pl, wwwkan.pl

1184

M

1185

m// pattern match, Toss-up Questions
Mac OS X, Toss-up Questions, Bonus Questions

application programming interfaces, Toss-up
Questions
technologies of, Bonus Questions

Magic 8 Ball on TPJ cover, TPJ #14: Outlook Not So
Good
Magic Cards, printing, Magic Cards
Mah, Bruce, Bonus Questions
Mahoney, Sean, Toss-up Answers
mail headers and autoformat, Future Features
Mail::Audit module, TPJ #18: Spam
Maketext module, Buzzwords: Abstraction and
Encapsulation, Buzzword: Concision, The Devil in the
Details
mapping out DNA, How Perl Saved the Human Genome
Project
margins, adjusting with autoformat, Text::Autoformat,
Future Features, Lists, Widows, Future Features
marked-up text and autoformat, Future Features
Marti, Don, What Sucks? What Rocks?
Mastering Regular Expressions, Testing It
matching, Module Contents, Correcting Typos with Perl,
Afterword, How Does It Work?, Afterword

human names, Module Contents
subroutine names, Correcting Typos with Perl,
Afterword, How Does It Work?, Afterword

mate method, Sex and Mutation
Math::TrulyRandom module, Generating VRNs
Mathematical Smurfs Expedition (strategy game),
Strategy Games

1186

mating random organisms, Sex and Mutation
matrices, PDL, The perldl Shell, Listing of a Few PDL
Functions

functions for, Listing of a Few PDL Functions

Mazes of Menace, Toss-up Questions
mazes, generating with Perl, Maze Generation
McCamant, Stephen, Acknowledgments, Most Creative,
Most Powerful, Most Creative, Best Year 2000 Error, Best
of Show
McLean, Alex, Future Features
McNeil, Scott, Toss-up Questions
MCSE (Microsoft Certified Systems Engineer) exam,
Bonus Questions
measure counters, Using synch, and Some Actual Music,
Mod, Canons, and Rounds

% (modulus) operator and, Mod, Canons, and Rounds
adding percussion, Using synch, and Some Actual
Music

measuring code readability, Background,
Acknowledgments, The Basic Units, The Tool, Future
Directions, Acknowledgments
melancholic fluid, Bonus Questions
Meltzer, Kevin, The Perl Poetry Contest, Best “The Perl
Journal”
member meronyms, Other Word Relationships
memoization, optimizing with, Optimizing with
Memoization
memory, The Joy of vec, The Joy of vec, The Joy of vec,
The Joy of vec, Tinkering with the Z-Machine

1187

minimizing consumption using Z-code, The Joy of vec,
The Joy of vec, The Joy of vec, The Joy of vec
Z-machine’s object table, Tinkering with the
Z-Machine

mental masturbation, A Day in the Life of
comp.lang.perl.misc, The Future of comp.lang.perl.misc,
A Day in the Life of comp.lang.perl.misc, How the “Day in
the Life” Was Done, Netiquette Nits, The Regulars, The
Future of comp.lang.perl.misc, The Future of
comp.lang.perl.misc, Perl-fect Sundials, Building Your
Own, Perl-fect Sundials, Building Your Own, Building
Your Own, Just Another Perl Haiku, The Tao of Haiku,
Haiku Online, Artificial Haiku, Artificial Haiku, The Coy
Module, The Coy Module, Mere Words, Filling in the
Blanks, It Seemed Like a Good Idea at the Time, A Simple
mpron Searcher

1188

comp.lang.perl.misc, day in life of, A Day in the Life of
comp.lang.perl.misc, The Future of
comp.lang.perl.misc, A Day in the Life of
comp.lang.perl.misc, How the “Day in the Life” Was
Done, Netiquette Nits, The Regulars, The Future of
comp.lang.perl.misc, The Future of
comp.lang.perl.misc
Just Another Perl Haiku, Just Another Perl Haiku,
The Tao of Haiku, Haiku Online, Artificial Haiku,
Artificial Haiku, The Coy Module, The Coy Module,
Mere Words, Filling in the Blanks, It Seemed Like a
Good Idea at the Time
Perl-fect sundials, Perl-fect Sundials, Building Your
Own, Perl-fect Sundials, Building Your Own, Building
Your Own
rhymes, searching for with Perl, A Simple mpron
Searcher

meronyms, Other Word Relationships, Other Word
Relationships, Other Word Relationships, Other Word
Relationships, Other Word Relationships

all_meronyms method, performing lookups with,
Other Word Relationships
arrays, adding to, Other Word Relationships
synsets, adding to, Other Word Relationships
types of, in Wordnet databases, Other Word
Relationships

Merrick, Nellie L., References
message transfer agents (MTAs), Bonus Questions
Messier 51 spiral galaxy, images of, The perldl Shell
Metcalfe, Bob, Bonus Questions, Toss-up Answers,
Toss-up Questions

1189

Internet collapse prediction, Toss-up Questions
“open sores” software, Bonus Questions

method calls vs. subroutine calls, Quantity Is Job One
metrical patterns in words, Coping with (Syllabic) Stress,
A Simple mpron Searcher, Coping with (Syllabic) Stress,
Coping with (Syllabic) Stress, A Simple mpron Searcher
mh program (MisterHouse), MisterHouse
microcode and a lovely toad, Accommodating Another
Notation
microcontrollers and home automation, Home
Automation: The X10 Nitty-Gritty, A Few More
Considerations, Simple Output Commands: The CM17,
Timing Issues, A Few More Considerations
microkernels vs. monolithic kernels, Toss-up Questions
Microsoft game console, Toss-up Questions
Microsoft trash bins, rooting through, Toss-up Questions
MIDI channel 9 and percussion, Percussion, Uniformity,
and noop
MIDI::Simple language, Hard Things Possible, Easy
Things Easy, Behold MIDI::Simple!, Using synch, and
Some Actual Music, Using synch, and Some Actual Music,
Using synch, and Some Actual Music, Mod, Canons, and
Rounds, Future Features, Future Features

future features of, Future Features

Milankovitch cycles, Building Your Own
Miller, Kevin, Most Powerful
Miller, Peter, References
MIME::Lite module, Bonus Questions
mini Structured Query Language (mSQL), Bonus
Answers
Miniperl, Toss-up Answers

1190

Minnie Pearl, Toss-up Answers
Minsky, Marvin, Toss-up Questions
missile-targeting software, creating with Perl, Perl and
Nuclear Weapons Don’t Mix, Red Alert!, Perl and
Nuclear Weapons Don’t Mix, A Little Rocket Science, Red
Alert!
Mission: Impossible, Bonus Answers
misspelled subroutine names, calling with, Why Was It
Written?, Afterword, How Does It Work?, How Does It
Work?, How Does It Work?, The Sub::Approx Module,
Afterword
MisterHouse program, Home Automation with
MisterHouse, MisterHouse, MisterHouse, MisterHouse, A
Smart TV Guide, Whole House CallerID, Say What?
Miyagawa, Tatsuhiko, Afterword
mkfreq program, Constructing a Word Frequency List,
Morphological Inflections and Derivations, Morphological
Inflections and Derivations
Moby Pronunciator lexicon, Text-to-Phoneme
Conversion, References, Where to Look, Preparing the
Data, Searching the Prepared Data, Searching the
Prepared Data, Searching the Prepared Data, Searching
the Prepared Data

preparing data for searching, Preparing the Data,
Searching the Prepared Data, Searching the Prepared
Data, Searching the Prepared Data
searching prepared data for patterns, Searching the
Prepared Data

Modern period, Music to My Ears
Modern Reader’s Japanese-English Character Dictionary,
Dictionary Database

1191

modules, Lines 0–4: Load Modules, Listing Installed
Modules

listing installed modules, Listing Installed Modules
loading CGI and DBI, Lines 0–4: Load Modules

modulus (%) operator, Toss-up Questions
monolithic kernels vs. microkernels, Toss-up Questions
Monopoly money on TPJ cover, TPJ #19: Monopoly
Money
more-is-less paradox, Impossibility Theorems
morphology, word, Word Morphology, Future Work,
Morphology: Word Form and Structure, Morphology:
Word Form and Structure, Morphology: Word Form and
Structure, Constructing a Word Frequency List,
Morphological Inflections and Derivations, Telling Good
from Bad, Implementing It, Applying the Derivation
Process to All Tokens, Future Work
Morris, Robert Tappan, Toss-up Questions
Most Creative category, The Categories, The First
Obfuscated Perl Contest, The Third Circle: Be Creative

results, The Third Circle: Be Creative

Most Powerful category, The Categories, The First
Obfuscated Perl Contest, Results, The Third Obfuscated
Perl Contest, The Third Circle: Be Creative

results, Results, The Third Obfuscated Perl Contest,
The Third Circle: Be Creative

Motion Picture Experts Group (MPEG), Bonus Answers
motion sensor, using with MisterHouse, Squeaky Stairs
Mountain Dew, caffeine content of, Bonus Questions
MP3, most popular search term, Toss-up Answers
MPEG-2, encoding video with, Toss-up Questions

1192

Mr. Bill smiley, Toss-up Questions
MUDs (Multi-User Dungeons), utilities for accessing,
Word Games
Mullikin, Jim, How Perl Saved the Human Genome
Project
multiple-districts paradox, Impossibility Theorems
Multipurpose Internet Mail Extensions (MIME), Bonus
Answers
music and Perl, Music to My Ears, Music to My Ears,
Music to My Ears, Music to My Ears
music languages, implementing, Easy Things Easy, Behold
MIDI::Simple!, Easy Things Easy, Easy Things Easy,
Behold MIDI::Simple!
mutate method, Sex and Mutation
mutating random organisms, Sex and Mutation
mutation and sex, Sex and Mutation, The Terrifying
Results, Sex and Mutation, Sex and Mutation, The
Terrifying Results
my keyword, Toss-up Answers
Myers, Wayne, Best Poem Port
MySQL database system, Toss-up Answers

1193

N

1194

ñ and n, using Spanish sorting conventions, Spanish: Cana
y Caña
-n flag, Toss-up Answers
Nalebuff, Barry, References
name_eq function, Using the Modules
name_sequence.pl script, Bioinformatics and Perl
Nandor, Chris, Toss-up Answers, Bonus Questions

duplicate Census forms, Bonus Questions

Napster, Toss-up Answers, Bonus Questions
natural languages, Braille Contractions and Regular
Expressions, It’s Alive!, Linguistic Rule Systems,
Generativity Systems, Generativity Systems, Regex
Replacement as a First Hack, It’s Alive!, Link Grammar,
Link Grammar, Lingua::LinkParser, Irregular Regular
Expressions, Overloaded, What Sucks? What Rocks?,
What Sucks, Regex Style, The What-Sucks-Ometer,
References

parsing, using Link Grammar parser, Link Grammar,
Link Grammar, Lingua::LinkParser, Irregular
Regular Expressions, Overloaded, What Sucks? What
Rocks?, What Sucks, Regex Style, The
What-Sucks-Ometer, References
writing systems for, Braille Contractions and Regular
Expressions, It’s Alive!, Linguistic Rule Systems,
Generativity Systems, Generativity Systems, Regex
Replacement as a First Hack, It’s Alive!

Nelson, Graham, Resurrecting the Z-Machine, The Joy of
vec, References

Z-machine specification, References

Nemo from Georgia, World Wide Wasteland

1195

Netcraft web server survey, Toss-up Questions, Bonus
Questions
netiquette issues and comp.lang.perl.misc newsgroup,
Netiquette Nits
NetTalk neural network, Text-to-Phoneme Conversion
network protocol specified in IEEE standard 802.3,
Toss-up Questions
net_connect_check function, You Have Mail
Neuhaus, Sven, The First Circle: Print “The Perl Journal”
neural nets, Toss-up Questions, Bonus Questions

quashing research on, Toss-up Questions

New Jersey statehood anniversary, Happy Birthday!
newsgroups, Usenet, A Day in the Life of
comp.lang.perl.misc, The Future of comp.lang.perl.misc,
A Little History, The Day’s Weather Report, The Future
of comp.lang.perl.misc, The Future of comp.lang.perl.misc
new_score function (MIDI::Simple), Behold
MIDI::Simple!
NFBTRANS (National Federation of the Blind encoding
program), Linguistic Rule Systems, Regex Replacement as
a First Hack, Rules as Exceptions, Rules as Exceptions

optimality systems, Regex Replacement as a First
Hack
rules as exceptions, Rules as Exceptions
types of rules in, Rules as Exceptions

nickfollow function, Module Contents
nickhash.pl utility, Matching Nicknames
nickmatch function, Module Contents
nicknames, smart matching for, Module Contents, What
They Do, Matching Nicknames
nickname_eq function, Module Contents

1196

Niemi, Richard G., References
NIM (strategy game), Strategy Games
no-show paradox, Impossibility Theorems
nominalization (type of derivation), Morphology: Word
Form and Structure
non-parity SIMMs/DIMMs, number of pins in, Bonus
Questions
non-registered voters, preventing fraud from, About
Secure Elections
noop function (MIDI::Simple), Percussion, Uniformity,
and noop
NORAD (the North American Aerospace Defense
Command), Perl and Nuclear Weapons Don’t Mix, Red
Alert!, A Little Rocket Science, Red Alert!, Red Alert!
normalize subroutine, Default sort Versus “Normal”
English Sorting, Spanish: Cana y Caña, Spanish: Chorizo,
Chimichangas, Chicharrones, y Churros

ñ and n, using Spanish sorting conventions, Spanish:
Cana y Caña, Spanish: Chorizo, Chimichangas,
Chicharrones, y Churros

normalize2 subroutine as tiebreaker, Bi-Level Sorting to
the Rescue
Norse god of mischief, Toss-up Questions
North American Sundial Society (NASS), Building Your
Own
notes, Easy Things Easy, Behold MIDI::Simple!,
“Relative” Notes

algorithmic composition and, Easy Things Easy
MIDI::Simple state variables, Behold MIDI::Simple!
relative vs. absolute, “Relative” Notes

1197

noun attributes (word relationships), Other Word
Relationships
Novel Language, Approach 1: A Novel Language, Using
synch, and Some Actual Music

based on Extensional Language, Using synch, and
Some Actual Music

Novice, Perl, Toss-up Questions
nuclear weapons, avoid mixing with Perl, Perl and
Nuclear Weapons Don’t Mix, Red Alert!, A Little Rocket
Science, Red Alert!
number crunching and PDL (Perl Data Language), PDL:
The Perl Data Language, Where Are We Now?, Listing of
a Few PDL Functions, Where Are We Now?
numbered lists and autoformat, Lists, Quotations,
Quotations
numbering style, choosing with XSL, Toss-up Questions
numbers, A Localization Horror Story: It Could Happen
to You, A Localization Horror Story: It Could Happen to
You, Buzzword: Isomorphism, Buzzword: Inheritance,
Buzzword: Concision

Chinese treatment of, A Localization Horror Story: It
Could Happen to You
Russian treatment of, A Localization Horror Story: It
Could Happen to You, Buzzword: Inheritance,
Buzzword: Concision
testing for grammatical number, Buzzword:
Isomorphism

Nwvermpre, quoth the raven, Simulating Typos with Perl
nybbles, two in each, Toss-up Questions
Nyman, Lisa, Toss-up Answers

1198

O

Obfuscated Perl contests, Results, Best Year 2000 Error,
Best Year 2000 Error, Best Year 2000 Error, Most
Creative

First, Results, Best Year 2000 Error, Best Year 2000
Error, Best Year 2000 Error
Third, Most Creative

Obfuscated poetry, Obfuscated Poetry?
object tables (Z-machine), Tinkering with the Z-Machine
object-oriented interface of MIDI::Simple, The
Object-Oriented Interface
object-oriented programming, Perl Poem:
Object-Oriented Perl

Perl poem, Perl Poem: Object-Oriented Perl

octaves, current, “Relative” Notes
octothorpe symbol, Bonus Questions
OEM (original equipment manufacturer), Bonus
Questions
office table in database schema, The Database Schema
Official Perl Poet (Sharon Hopkins), The Perl Poetry
Contest
offset method, Basic Usage
Ohm’s law, Toss-up Questions
Olympic silver medal in archery, Toss-up Questions
Ondrik, David, TPJ #15: Braille blocks, Sample Text in
Braille
one-liners from TPJ, One-Liners, Happy Birthday!,
Evaluating Expressions Inside Double Quotes, Extracting
Unique Elements from a List, Stripping the Eighth Bits
from a String, Extracting PostScript from

1199

Windows-Generated PCL Files, Not So Useful
One-Liners, An Absurd Way to Convert from Decimal to
Binary, Magic Cards, Happy Birthday!
oops command, Universal Command Set
opcodes, Z-machine, What’s It Do?, Tinkering with the
Z-Machine, Interface Abstraction

abstracting user interfaces, Interface Abstraction
manipulating object table, Tinkering with the
Z-Machine

open function, Bonus Questions
open sores, Bonus Questions, Bonus Questions

four types of, Bonus Questions
the four humors and, Bonus Questions

open source development, central resource/repository for,
Toss-up Questions
operators, Bonus Questions

turning into assignment operators, Bonus Questions

optimality systems and Braille, Optimality Systems,
Contexts in Regular Expressions, Regex Replacement as a
First Hack, Contexts in Regular Expressions
optimality theory and speech synthesis, More Context:
Two Substitutions
optimization techniques for Z-machines, A Plea for
Inlining
optimizing with memoization, Optimizing with
Memoization
Oracle, sifting through Microsoft’s trash, Toss-up
Answers
orbital fractal pixmap generator, Most Powerful

1200

orbiting of the earth, Building Your Own, Building Your
Own
ordering of rules in generativity/optimality systems,
Generativity Systems, Contexts in Regular Expressions,
Generativity Systems, Generativity Systems, Regex
Replacement as a First Hack, Contexts in Regular
Expressions
Orwant, Jon, What Sucks? What Rocks?, The Iterated
Prisoner’s Dilemma, The Three-Way Prisoner’s Dilemma,
Toss-up Answers, Bonus Questions, Toss-up Answers,
Toss-up Questions, Bonus Questions, Toss-up Questions,
Toss-up Questions, Toss-up Questions, Toss-up Questions,
Bonus Questions, Toss-up Answers

First Perl/Internet Quiz Show, Toss-up Answers
Fourth Perl/Internet Quiz Show, Toss-up Questions,
Toss-up Questions, Toss-up Questions, Toss-up
Questions, Bonus Questions, Toss-up Answers
Prisoner’s Dilemma, The Iterated Prisoner’s Dilemma,
The Three-Way Prisoner’s Dilemma
Second Perl/Internet Quiz Show, Bonus Questions,
Toss-up Answers
Third Perl/Internet Quiz Show, Toss-up Questions,
Bonus Questions
“What Languages Suck” program, What Sucks? What
Rocks?

Ossipoff, Mike, Sites
output commands (CM17), Simple Output Commands:
The CM17
overloading regular expressions, Irregular Regular
Expressions, Overloaded
Oxford Advanced Learner’s Dictionary, Text-to-Phoneme
Conversion, References

1201

O’Reilly books and animals on covers, Bonus Questions
O’Reilly, Tim, It Seemed Like a Good Idea at the Time

1202

P

1203

-p flag, Toss-up Answers
PA system, relay-controlled, Whole House CallerID
pack function, Bonus Questions
PadWalker module, The Symbol::Approx::Sub Module
paging schemes for minimizing memory consumption,
The Joy of vec
painter’s algorithm, Layout
pairwise election methods, Pairwise Election Methods,
The Algorithms, Condorcet’s Method, Copeland’s
Method, The Algorithms, Using CGI to Spit It All Out

generating output with CGI, Using CGI to Spit It All
Out

pairwise tally, calculating, The Pairwise Engine, Sites
pairwise voting, Pairwise Voting, Sites, Pairwise Voting,
The Preference Ballot, Impossibility Theorems, Pairwise
Election Methods, Condorcet’s Method, Smith’s Method,
Copeland’s Method, Copeland’s Method, The Algorithms,
The Algorithms, The Pairwise Engine, The Pairwise
Engine, References, Sites, Sites, Sites

calculating pairwise tally, Sites
Condorcet’s method, Condorcet’s Method
Copeland’s method, Copeland’s Method
Smith’s method, Smith’s Method

palindromic Perl program, Bonus Questions
PalmPilot and Perl, Bonus Answers
Papert, Seymour, Toss-up Questions
paradoxes possible with preference ballots, Impossibility
Theorems
paragraph-at-a-time reformatting, Text::Autoformat
paragraphs and autoformat, Paragraphs, Future
Features, Justification and Sentencing, Future Features

1204

Parse::RecDescent module, Installing the Modules
parsers, Other Word Relationships, Link Grammar,
Irregular Regular Expressions, Overloaded,
Lingua::LinkParser, Irregular Regular Expressions,
Overloaded

Lingua::Wordnet and, Other Word Relationships
Link Grammar, Link Grammar, Irregular Regular
Expressions, Overloaded, Lingua::LinkParser,
Irregular Regular Expressions, Overloaded

parsing natural language, I See a Pattern Developing, A
Full Lingua::LinkParser Example, Link Grammar,
References, A Full Lingua::LinkParser Example
part meronyms, Other Word Relationships
party table in database schema, The Database Schema
passing by reference, arrays, Bonus Questions
passing DNA sequences through analytic steps,
Bioinformatics and Perl
patch_change function (MIDI::Simple), Behold
MIDI::Simple!
patents, bogus or not, Bonus Questions
pattern matching and Link Grammar parser, I See a
Pattern Developing, A Full Lingua::LinkParser Example,
Link Grammar, Irregular Regular Expressions,
Overloaded, What Sucks, Regex Style, A Full
Lingua::LinkParser Example
Pavlich, Dave, Results of the Contest
Payrard, Stephane, Most Creative
pa_stub subroutine, Whole House CallerID
PDL (Perl Data Language), The perldl Shell, The perldl
Shell, Listing of a Few PDL Functions, Listing of a Few
PDL Functions

1205

PDL::Core module, functions in, Listing of a Few PDL
Functions
PDL::Fit::Polynomial module, Listing of a Few PDL
Functions
PDL::Graphics::PGPLOT module, Listing of a Few PDL
Functions
PDL::Image2D module, Listing of a Few PDL Functions
PDL::Io::Misc module, Listing of a Few PDL Functions
PDL::Primitive module, Listing of a Few PDL Functions
Pearl Jam, Toss-up Answers
Penfield Jackson, Justice Thomas, Toss-up Answers
penguins, Toss-up Questions

mascot of Linux, Toss-up Questions

Pepper, Tom, Toss-up Questions
Pepsi, caffeine content of, Bonus Questions
Perceptron neural network, Toss-up Answers
percussion, Percussion, Uniformity, and noop, Using
synch, and Some Actual Music, Toss-up Questions

adding, using measure counters, Using synch, and
Some Actual Music
software programs for, Toss-up Questions

performance issues for Z-machines, Performance
Considerations, Quantity Is Job One, Quantity Is Job One
perihelion, Building Your Own
Perl, A Little History, Bonus Questions, Bonus Answers,
Happy Birthday!

birthday of, Happy Birthday!
newsgroups about, A Little History
PalmPilot applications and, Bonus Answers
precedence of operators, Bonus Questions

1206

PERL (Precision Entry and Reentry Launchings), Perl
and Nuclear Weapons Don’t Mix
Perl 5.005, Bonus Questions, Toss-up Questions, Toss-up
Questions

hybrid data structure available in, Toss-up Questions
modules bundled for first time with, Bonus Questions
regular expressions, scariest addition to, Toss-up
Questions

Perl Adept, Toss-up Questions
Perl compiler, evaluating code using Fathom, The Perl
Compiler to the Rescue, Acknowledgments, Future
Directions, Acknowledgments
Perl Data Language (PDL), PDL: The Perl Data
Language, Where Are We Now?, The perldl Shell, The
perldl Shell, Listing of a Few PDL Functions, Listing of a
Few PDL Functions, Where Are We Now?
Perl Guru, Toss-up Questions
Perl Mongers chapters, Bonus Questions
Perl Novice, Toss-up Questions
Perl poems from Perl One-Liners, Perl Poem: down.pl
Perl Poetry Contest, The Perl Poetry Contest, Best of
Show, The Results, Best Poem Port, Obfuscated Poetry?,
Best of Show
Perl programs, Perl-fect Sundials, Building Your Own,
Perl-fect Sundials, Building Your Own, How Perl Saved
the Human Genome Project, Problems with Perl, How
Perl Saved the Human Genome Project, How Perl Saved
the Human Genome Project, Bioinformatics and Perl,
Problems with Perl, Problems with Perl, Buzzword:
Inheritance, Proof in the Pudding: Localizing Web Sites,
Red Alert!

1207

creating sundials with, Perl-fect Sundials, Building
Your Own, Perl-fect Sundials, Building Your Own
localizing, Buzzword: Inheritance, Proof in the
Pudding: Localizing Web Sites
nuclear weapons and, Red Alert!
problems with, Problems with Perl
saving the human genome project, How Perl Saved the
Human Genome Project, Problems with Perl, How
Perl Saved the Human Genome Project, How Perl
Saved the Human Genome Project, Bioinformatics
and Perl, Problems with Perl

Perl warnings, turning on, Toss-up Questions, Lines 0–4:
Load Modules
Perl Whirl Quiz Show, The Perl Whirl Quiz Show, Bonus
Answers, Toss-up Questions, Toss-up Questions, Toss-up
Questions, Bonus Questions, Bonus Questions, Bonus
Questions, Bonus Questions, Bonus Questions, Bonus
Answers, Bonus Answers
Perl Wizard, Toss-up Questions
Perl Wizard’s Quiz, The Perl Wizard’s Quiz, The Perl
Wizard’s Quiz, The Perl Wizard’s Quiz, Answers,
Answers, Answers, Answers
Perl, Martin, Nobel prize in Physics winner, Toss-up
Answers
Perl/Internet Quiz Show, Toss-up Questions, Bonus
Questions

First, Toss-up Questions, Bonus Questions

Perl/Tk solitaire game, Tktk: A Perl/Tk Solitaire Game,
Finishing Touches, Finishing Touches
perl2exe program, MisterHouse
Perl2Exe utility, Games in Perl

1208

perldl shell, The perldl Shell, The perldl Shell, The perldl
Shell, The perldl Shell
Perle Systems, Toss-up Answers
perllocal.pod, Toss-up Answers
perllocale documentation, Locale-Based Sorting, Toss-up
Answers
PerlMX mail filtering, Bonus Questions, Bonus Questions
PerlScript package, Toss-up Answers
PERL_EMERGENCY_SBRK, Toss-up Questions
pertainyms, Other Word Relationships
Peters, Les, The First Circle: Print “The Perl Journal”,
The Old Standby
PGPLOT graphics module functions, Listing of a Few
PDL Functions
phase meronyms, Other Word Relationships
phlegmatic fluid, Bonus Questions
Phoenix grammars, What Are You Thinking?
Phoenix, Tom, The Regulars, Bonus Answers
phone calls, monitoring with caller ID, Whole House
CallerID
phonebox (synthesizer), Text-to-Phoneme Conversion
phonemes, The Out-of-Vocabulary Problem: Synthesis in
One s///e, Text-to-Phoneme Conversion, More Context:
Two Substitutions, More Context: Two Substitutions,
More Context: Two Substitutions

context-dependent sounds, More Context: Two
Substitutions
text-to-phoneme conversion, Text-to-Phoneme
Conversion, More Context: Two Substitutions, More
Context: Two Substitutions

phonetic rules for natural language writing systems,
Generativity Systems

1209

photographs, TPJ cover, TPJ #1: The Camel, TPJ #2: The
Pearl, TPJ #4: Etch-a-Sketch., TPJ #5: Commodities, TPJ
#6: Scrabble, TPJ #7: Spiderball, TPJ #8: The Coffee Cup
Fiasco, TPJ #8: The Coffee Cup Fiasco, TPJ #9:
Drummer/Coder Wanted, TPJ #10: The Underwood
Typewriter, TPJ #11: The Conspiracy, TPJ #13: Dance
Remixes, TPJ #14: Outlook Not So Good, TPJ #15: Braille
blocks, TPJ #16: e. e. cummings’ Gravestone, TPJ #17:
Napster, TPJ #18: Spam, TPJ #19: Monopoly Money
Phusion genome assembly software, How Perl Saved the
Human Genome Project
Physics Nobel prize winner, Martin Perl, Toss-up
Answers
PICS (Platform for Internet Content Selectivity), Toss-up
Questions
Pierce, Clinton, Haiku
Pike, Lori, Bonus Questions
Pike, Rob, Would You Like to Play a Game?, Toss-up
Answers
pilcrow symbol, Bonus Questions
pilfer command (rezrov), Pilfer
Pinyan, Jeff, Best “The Perl Journal”
pipe-based I/O streams and DNA sequencing,
Bioinformatics and Perl
pitch (note property), Easy Things Easy, Percussion,
Uniformity, and noop

percussion and MIDI channel 9, Percussion,
Uniformity, and noop

plaintext, reformatting with autoformat, Quoting, Lists,
Widows
Plan 9 operating system, Bonus Questions

questions about, Bonus Questions

1210

planarity and Link Grammar parser, Link Grammar
Planetfall game, Pilfer, Toss-up Questions
plausibility of simulated typos, How to Identify Words,
How to Identify Words
Pliny the Elder, Toss-up Questions
plurality voting, Pairwise Voting, The Algorithms
pluralizing nouns, rules for, Morphology: Word Form
and Structure
poems, The Perl Poetry Contest, Best of Show, The
Categories, Best Poem Port, A Perl Program That
Generates Poetry, Best of Show, Best of Show

from Perl Poetry Contest, The Perl Poetry Contest,
Best of Show, The Categories, Best Poem Port, A Perl
Program That Generates Poetry, Best of Show, Best of
Show

Pointer, Robey, Bots and Infobots
Pollock, Bill, Best “The Perl Journal”
polysemy, concept of, Movin’ It Up a Level
Pontifex cryptosystem, The Pontifex Cryptosystem
portion meronyms, Other Word Relationships
POSIX module, Toss-up Answers
pound perl (#perl), Bonus Questions
Powell, David, Most Creative
power consumption of laptops, Toss-up Answers
power line modulation (X10), Home Automation: The X10
Nitty-Gritty, Bidirectional I/O with the CM11

bidirectional I/O with CM11, Bidirectional I/O with
the CM11

Prakash, Vipul Ved, Most Powerful
Pratchett, Terry, Toss-up Questions
pre-recorded speech, Pre-Recorded Sentences

1211

precedence of Perl operators, Bonus Questions
Precision Entry and Reentry Launchings (PERL), Perl
and Nuclear Weapons Don’t Mix
preference ballots, The Hare Method

Hare method, The Hare Method

pregnant chads, Secure Internet Voting
Prisoner’s Dilemma, The Prisoner’s Dilemma, The
Prisoner’s Dilemma, The Iterated Prisoner’s Dilemma,
The Prisoner’s Dilemma Programming Contest, The
Prisoner’s Dilemma Programming Contest, Results of the
Contest, Results of the Contest, Results of the Contest,
Results of the Contest

programming contest, The Prisoner’s Dilemma
Programming Contest, Results of the Contest, Results
of the Contest, Results of the Contest

Process_Item (mh object), Objects in the Home
Project Gutenberg, How to Identify Words, How to
Identify Words
prototyping, using Perl for, Other Uses for Perl
pseudohash data structure, Toss-up Answers
Psycho Killer, qu’est que c’est, Using synch, and Some
Actual Music
punk rocker smiley, Toss-up Questions
Purity method, Toss-up Questions
purl (infobot), Are You Spongeworthy?, Are You
Spongeworthy?, You Can’t Do That in Public!, You Can’t
Do That in Public!, What Are You Thinking?, A Sense of
Play
Purple Moon, now-defunct company, Bonus Answers
Puzzle Bobble game, Twitch Games
Pyramid solitaire game, Tktk: A Perl/Tk Solitaire Game

1212

Pytho, temple at Delphi, Toss-up Questions

Q

quadrathorpe symbol, Bonus Questions
Quadrivium (group of four liberal arts), Bonus Questions
Quake logfile, accessing, Twitch Games
quantum computing, Bonus Questions
Queen Elizabeth II, Toss-up Answers
quicksort sorting algorithm, Toss-up Answers
quizzes, Toss-up Questions, Toss-up Questions, Sample
Questions

rating your knowledge, Toss-up Questions
sample questions, Sample Questions
unnaturally high scores point to cheating, Toss-up
Questions

quotations and autoformat, Quotations
quoted text and autoformat, Quoting
QWERTY keymap vs. Dvorak keymap, Simulating Typos
with Perl, References, Simulating Typos with Perl,
Simulating the Typos, Simulating the Typos, How to
Identify Words, How to Identify Words, Typos in Other
Languages, Typos in Other Languages, References
QWERTZ keyboards, Toss-up Questions

1213

R

1214

radio buttons, Lines 72–104: The voting_matrix
Subroutine, Lines 124–165: The validate Subroutine

creating for candidates, Lines 72–104: The
voting_matrix Subroutine
validating selection of, Lines 124–165: The validate
Subroutine

Radio Shack Armatron on TPJ cover, TPJ #4:
Etch-a-Sketch.
Railroad Tycoon game, Toss-up Questions
Ramos, Art, The Third Circle: Be Creative
random organisms, Genetic Algorithms, The Genetic
Code, Assembling an Organism, Assembling an
Organism, Assembling an Organism, Survival of the
Fittest, Sex and Mutation, Survival of the Fittest, Survival
of the Fittest, Sex and Mutation, Sex and Mutation

assembling, Assembling an Organism
creating genetic code for, The Genetic Code,
Assembling an Organism, Assembling an Organism
culling from list, Survival of the Fittest
ranking by fitness, Survival of the Fittest, Sex and
Mutation, Survival of the Fittest, Sex and Mutation,
Sex and Mutation

Raymond, Eric S., References, Bonus Questions
read assemblers, Other Uses for Perl
readability of Perl programs, grading, Existing Measures,
Acknowledgments, Existing Measures, Why This Should
Be Hard To Do, The Perl Compiler to the Rescue, The
Perl Compiler to the Rescue, Acknowledgments
ReadMode function, Bonus Questions
reads, sequencing DNA as, How Perl Saved the Human
Genome Project

1215

read_all method, A Smart TV Guide
read_score function (MIDI::Simple), Behold
MIDI::Simple!
real-time service, Toss-up Questions
reassemble rules in chatterbot configuration files,
Chatbot::Eliza
records, multiple sequence, Bioinformatics and Perl
recursively building organisms, Assembling an Organism,
Sex and Mutation, Survival of the Fittest, Sex and
Mutation
recycling memory, Toss-up Questions
red beans and rice on TPJ cover, TPJ #5: Commodities
Redford, John, Perl-fect Sundials
ref function, Bonus Questions, Bonus Answers
references, Future Features, References

MIDI and computer music, Future Features
voting systems/elections, References

reflowing text sent to autoformat, Text::Autoformat,
Lists, Paragraphs, Lists, Lists
reformatting text, Lazy Text Formatting, Future
Features, Text::Autoformat, Paragraphs, Justification
and Sentencing, Future Features, Future Features, Future
Features
refrigerator and Coke can temperature, Toss-up Answers
registered voters, About Secure Elections
registration table in database schema, The Database
Schema, Generating VRNs

adding VRNs to, Generating VRNs

registration_number subroutine (e-ballot), Lines 105–116:
The registration_number Subroutine

1216

regular expressions, Lexical Synthesis in One s///, Rules as
Exceptions, Rules as Exceptions, It’s Alive!, I See a
Pattern Developing, A Full Lingua::LinkParser Example,
Link Grammar, Link Grammar, Lingua::LinkParser,
Lingua::LinkParser, Irregular Regular Expressions,
Overloaded, Irregular Regular Expressions, Overloaded,
What Sucks? What Rocks?, What Sucks, Regex Style,
What Sucks, Regex Style, There’s Lots More Here, A Full
Lingua::LinkParser Example, Matching Nicknames, The
CGI Script, Toss-up Questions, Toss-up Questions, Bonus
Questions

converting English into kanji, The CGI Script
creating grouping without creating backreference,
Toss-up Questions
Link Grammar parser and, I See a Pattern
Developing, A Full Lingua::LinkParser Example, Link
Grammar, Link Grammar, Lingua::LinkParser,
Lingua::LinkParser, Irregular Regular Expressions,
Overloaded, What Sucks? What Rocks?, What Sucks,
Regex Style, What Sucks, Regex Style, There’s Lots
More Here, A Full Lingua::LinkParser Example
matching human names and, Matching Nicknames
metacharacter matching beginning of string, Bonus
Questions
overloading, Irregular Regular Expressions,
Overloaded
rules as exceptions, Rules as Exceptions
scariest addition to, Toss-up Questions
speech synthesis and, Lexical Synthesis in One s///
used for Braille encoding, Rules as Exceptions, It’s
Alive!

Rehfeld, Georg, Results of the Contest

1217

relative notes, specifying, “Relative” Notes
relay-controlled PA system, Whole House CallerID
renumbering paragraphs with autoformat, Lists
rep_pattern function, Simulating the Typos
Resnick, Mitch, Results of the Contest
Resource Description Framework (RDF), Toss-up
Questions
resume vs. résumé, using correct sort order for, English:
Résumé and Resume
Return of the King, Bonus Answers
rezrov interpreter, Enter the Camel, References
RFC Internet standards, Toss-up Questions
rfits function (PDL), The perldl Shell
rhymes, searching for with Perl, Searching for Rhymes
with Perl, Accommodating Another Notation, Preparing
the Data, Searching the Prepared Data, Coping with
(Syllabic) Stress, Coping with (Syllabic) Stress, A Simple
mpron Searcher, Accommodating Another Notation
Rhythm Lab program, Toss-up Questions
Rich, Ken, Best “The Perl Journal”
right ascension, Building Your Own
Riker, William H., References
Rinehart, Daniel, Most Powerful, Best “The Perl Journal”
Rivest, Ron, Toss-up Questions
RJ jacks used for Ethernet connections, Bonus Questions
robbot and #riskybus channel, Bots and Infobots
Rocca, Mo, Toss-up Questions
rocks, what, What Sucks? What Rocks?
Rokicki, Tomas, Most Powerful
romaji, The Web
Roman numerals, renumbering lists with, Lists
Romantic period, Music to My Ears
Rossler, Larry, The Regulars

1218

rotation of the earth, Building Your Own, Building Your
Own, Building Your Own, Building Your Own, Building
Your Own, Building Your Own, Building Your Own
rounds and measure counters, Mod, Canons, and Rounds
Row, Row, Row Your Boat, Mod, Canons, and Rounds
RS232 serial port, Toss-up Questions
RSA, Bonus Questions
RSA-in-three-lines-of-Perl, TPJ #3: RSA on Greenbar
RSVP protocol, Toss-up Answers
RSYNC utility, Toss-up Answers
run-time vs. compile-time, Bonus Questions
Russian, translating English into, A Localization Horror
Story: It Could Happen to You, Buzzword: Inheritance,
Buzzword: Concision
rvals function (PDL), The perldl Shell
Ryan, Kim, Installing the Modules
Ryan, Mark, World Wide Wasteland

1219

S

1220

s/// expressions, Morphology: Word Form and Structure,
Morphological Inflections and Derivations, Implementing
It, Representing a Single Rule, Representing Many Rules,
Telling Good from Bad, Implementing It

derivation and inflection rules, Morphological
Inflections and Derivations, Implementing It,
Representing a Single Rule, Representing Many Rules,
Telling Good from Bad, Implementing It
inflecting nouns/verbs, Morphology: Word Form and
Structure

Salzenberg, Chip, Bonus Answers
Samba, developer of, Toss-up Questions
Sanderson, Hugh, Best “The Perl Journal”
sanguine fluid, Bonus Questions
Sarathy, Gurusamy, Toss-up Questions
SAX (Simple API for XML), Toss-up Answers
scalar variables, The Joy of vec, Bonus Questions, Toss-up
Questions, Toss-up Questions

holding the time when program begins, Toss-up
Questions
memory consumption and, The Joy of vec
serpentine, Toss-up Questions
verbose alternatives to, Bonus Questions

schema, database, for tallying votes, The Database
Schema, The Database Schema, The Database Schema,
Generating VRNs
Schneier, Bruce, Toss-up Questions, Toss-up Answers,
About Secure Elections
Schwartz, Randal, The Regulars
Schwartzian transform, Contexts in Regular Expressions

1221

Schwern, Michael, It Seemed Like a Good Idea at the
Time
Scooter web crawler, Toss-up Answers
score objects, Behold MIDI::Simple!
scores, Behold MIDI::Simple!, Percussion, Uniformity,
and noop, The Object-Oriented Interface, Using synch,
and Some Actual Music, Mod, Canons, and Rounds, Mod,
Canons, and Rounds, Mod, Canons, and Rounds

creating music with synch function, Using synch, and
Some Actual Music, Mod, Canons, and Rounds, Mod,
Canons, and Rounds, Mod, Canons, and Rounds
manipulating several, using OOP interface, The
Object-Oriented Interface
noop function and, Percussion, Uniformity, and noop
state variables used in, Behold MIDI::Simple!

Scour, dotcom that indexes your hard drive for public
access, Toss-up Questions
Scrabble game on TPJ cover, TPJ #6: Scrabble
search term, most popular, Toss-up Questions
searching for rhymes with Perl, Searching for Rhymes
with Perl, Accommodating Another Notation, Searching
the Prepared Data, Accommodating Another Notation
seasons, haiku should pertain to, Haiku
Second Perl/Internet Quiz Show, The Second Perl/
Internet Quiz Show, Toss-up Answers, Toss-up Questions,
Toss-up Questions, Toss-up Questions, Bonus Questions,
Bonus Questions, Toss-up Answers, Toss-up Answers
secret messages in plaintext, hiding, TPJ #3: RSA on
Greenbar
secure Internet voting, Secure Internet Voting, Tallying
the Votes, About Secure Elections, The E-Ballot, Tallying
the Votes

1222

seek function, Toss-up Questions
Seibel, Peter, Results of the Contest
Sejnowski, T.J., References
semantic phrase parsers, What Are You Thinking?
send_cm11 method, Bidirectional I/O with the CM11
send_cm17 method, The ControlX10::CM17 and
ControlX10::CM11 Modules
Seneff, Stephanie, References
sense numbers for synsets, Concepts in Wordnet, Basic
Usage, Other Word Relationships

looking up correct numbers, Other Word
Relationships

sequencing technology, DNA, How Perl Saved the Human
Genome Project
serial ports, Home Automation: The X10 Nitty-Gritty,
What’s in a Command?, The ControlX10::CM17 and
ControlX10::CM11 Modules, The ControlX10::CM17
and ControlX10::CM11 Modules, What’s in a
Command?, What’s in a Command?, Bidirectional I/O
with the CM11

CM11 controller and, Bidirectional I/O with the CM11
CM17 controller and, Home Automation: The X10
Nitty-Gritty, What’s in a Command?, The
ControlX10::CM17 and ControlX10::CM11 Modules,
The ControlX10::CM17 and ControlX10::CM11
Modules, What’s in a Command?, What’s in a
Command?

SerialPort modules, What’s in a Command?, What’s in a
Command?, What’s in a Command?, What’s in a
Command?, What’s in a Command?

1223

SerialStub.pl program, The ControlX10::CM17 and
ControlX10::CM11 Modules
Serial_Item (mh object), Objects in the Home
Sethuraman, Krishna, Best Four-Line Signature
set_byte_at method (rezrov), The Joy of vec
set_watch method, A Smart TV Guide
sex, Genetic Algorithms

hot algorithmic, Genetic Algorithms

Shamir, Adi, Toss-up Questions
shark, jumping the, Toss-up Answers
Shatner, William, Bonus Answers
Sheiness, Frank, Best “The Perl Journal”
shell interface for PDL, The perldl Shell, Listing of a Few
PDL Functions, The perldl Shell, Listing of a Few PDL
Functions
shelving numbers, Library of Congress, Toss-up
Questions
Shergold, Craig, Toss-up Answers
Sherman, Aaron, Most Powerful, Best “The Perl Journal”
Shift-JIS encoding, Taking It a Step Further
Sholes “QWERTY” keymap vs. Dvorak keymap,
Simulating Typos with Perl, References, References
shuffling cards using Fisher-Yates algorithm, Shuffling
Shute, James, Most Creative
Sidebotham, Bob, Most Creative
Sierpinski fractals in 504 bytes, World Wide Wasteland
signal handlers for trapping Ctrl-Z or Ctrl-C, Toss-up
Questions
Sigue Sigue Sputnik, TPJ #9: Drummer/Coder Wanted
Simple Mail Transfer Protocol (SMTP), Bonus Answers
simulating typos with Perl, Simulating Typos with Perl,
References, Simulating the Typos, Simulating the Typos,

1224

How to Identify Words, How to Identify Words, Typos in
Other Languages, Typos in Other Languages, References
single-character Perl variable, Toss-up Questions
Sklyarov, Dmitry, Toss-up Answers
slash/underscore notation in metrical patterns, Coping
with (Syllabic) Stress, Accommodating Another Notation
Slashdot, software underlying, Bonus Questions
Sleator, Daniel, References
slow_speed.pl program, What’s in a Command?
Smart Go Format files, Strategy Games
smart houses, Home Automation with MisterHouse, HA!
Perl?, Talking and Listening, A Smart TV Guide
smiley face :-), Toss-up Questions
Smileys, Bonus Questions
Smith, Matthew, The Old Standby
Smith’s method for pairwise voting, Smith’s Method
smurfing, ways of defeating, Toss-up Answers
SNMP (Simple Network Management Protocol), Toss-up
Questions
-snoop-obj command-line switch, Tinkering with the
Z-Machine
SOAP (Simple Object Access Protocol), Toss-up
Questions
Socket_Item (mh object), Objects in the Home
solidus symbol, Bonus Questions
solitaire game (Tktk), The Rules, Finishing Touches, A
First Cut, Layout, Would You Like to Play a Game?,
Laying the Base, Pickup Lines, Oops!, Finishing Touches,
Finishing Touches
sonnets, generated by Perl program, A Perl Program That
Generates Poetry
Sony Discman on TPJ cover, TPJ #13: Dance Remixes

1225

Sørensen, Poul, Best Four-Line Signature, Best “The Perl
Journal”, Best “The Perl Journal”
sort criterion, Default sort Versus “Normal” English
Sorting, Default sort Versus “Normal” English Sorting,
Locale-Based Sorting

bi-level sorting and, Locale-Based Sorting
making it predictable, Default sort Versus “Normal”
English Sorting

sort function, performing crime of omission, Toss-up
Answers
sort order for Spanish, defining, Sorting it All Out
Sort::ArbBiLex module, Sorting it All Out
sorting, Locale-Based Sorting, Spanish: Cana y Caña

according to Spanish conventions, Spanish: Cana y
Caña
locale-based, Locale-Based Sorting

sorting algorithm used by Perl, Toss-up Questions
soundex matching, Matching Nicknames, How Does It
Work?

for misspelled words, How Does It Work?
for names, Matching Nicknames

source filtering technique, Bonus Answers
SourceForge, Toss-up Answers, Toss-up Questions

SHARC project, Toss-up Questions

SpaceWar game, Twitch Games
SPAM (Standby Potential Armageddon Meeting), Red
Alert!
SPAM, can of, on TPJ cover, TPJ #18: Spam

1226

Spanish, Default sort Versus “Normal” English Sorting,
Spanish: Cana y Caña, Bi-Level Sorting to the Rescue,
English: Résumé and Resume, Optimizing with
Memoization, Sorting it All Out

defining sort order for, Spanish: Cana y Caña, Sorting
it All Out
internationalized sorting and, Default sort Versus
“Normal” English Sorting, Bi-Level Sorting to the
Rescue, English: Résumé and Resume, Optimizing
with Memoization

special variable holding name of Perl program, Bonus
Questions
speech log file, example of, Say What?
speech synthesis, Speech Synthesis, References,
Pre-Recorded Sentences, Pre-Recorded Sentences, Lexical
Synthesis in One s///, The Out-of-Vocabulary Problem:
Synthesis in One s///e, Text-to-Phoneme Conversion,
Text-to-Phoneme Conversion, More Context: Two
Substitutions, Text-to-Phoneme Conversion, More
Context: Two Substitutions, More Context: Two
Substitutions, More Context: Two Substitutions, What
Else?, References

pre-recorded speech and, Pre-Recorded Sentences
regular expressions and, The Out-of-Vocabulary
Problem: Synthesis in One s///e, More Context: Two
Substitutions
text-to-phoneme conversion, Text-to-Phoneme
Conversion, More Context: Two Substitutions, More
Context: Two Substitutions
tokenizing input, Lexical Synthesis in One s///

spell-check feature of Google, Afterword

1227

Spencer, Henry, Bonus Questions
spiderball on TPJ cover, TPJ #7: Spiderball
spiral galaxy, Messier 51, The perldl Shell
splice function, Bonus Questions
split function, Bonus Questions
Spragg, Adam, Create a Diversion
spread spectrum wireless protocol, Toss-up Questions
spreadtoemail (virus function), Toss-up Questions
sprintf function, Toss-up Answers
Sproat, Richard, References
squeaky stairs, simulating with MisterHouse, Squeaky
Stairs
Squid web proxy cache, Toss-up Questions
Stallman, Richard, Toss-up Answers
standards, prices for, Bonus Questions
Star Wars leitmotif, adding to .coyrc file, Is There a Poet
in the House?
start_multipart_form function (CGI), Lines 61–71: The
generate_ballot Subroutine
start_port.pl program, What’s in a Command?
stat function, Toss-up Questions
statements per subroutine, measuring, The Basic Units
stats function (PDL), The perldl Shell
steganography, TPJ #3: RSA on Greenbar
Stein, Lincoln D., The CGI Script
Stephenson, Neal, Toss-up Questions, The Pontifex
Cryptosystem
storage problems for DNA sequences, How Perl Saved the
Human Genome Project
STORE function, Bonus Questions
story files for computer games, What’s It Do?, The Joy of
vec

loading into Z-machine’s memory, The Joy of vec

1228

StoryFile.pm package, Teleport
Stowe, Jonathan, The Regulars
strategy games, Strategy Games
stress patterns in words, Coping with (Syllabic) Stress, A
Simple mpron Searcher, Coping with (Syllabic) Stress,
Coping with (Syllabic) Stress, A Simple mpron Searcher,
A Simple mpron Searcher
String::Approx module, Installing the Modules, Matching
Nicknames, The Sub::Approx Module, A Little Rocket
Science
stroke_groups function, Simulating the Typos
stub interface, creating, Toss-up Questions
study function, Toss-up Answers
Sturdy, John C. G., References
style, Perl, Perl Style, Acknowledgments, The Tool, Usage,
Why This Should Be Hard To Do, Future Directions,
Acknowledgments
Sub::Approx module, The Sub::Approx Module
subroutines, calling with misspelled names, Correcting
Typos with Perl, Afterword, How Does It Work?, How
Does It Work?, How Does It Work?, The Sub::Approx
Module, Afterword
substance meronyms, Other Word Relationships
substr function, Bonus Questions
sucks, what, What Sucks? What Rocks?, What Sucks,
Regex Style, A Full Lingua::LinkParser Example

Lingua::LinkParser example, A Full
Lingua::LinkParser Example
using regular expressions, What Sucks, Regex Style

summer solstice, Perl-fect Sundials, Building Your Own,
Building Your Own

1229

expressing the sun vector, Building Your Own
tracking gnomon shadow on, Building Your Own

sun vector, Building Your Own, Building Your Own,
Building Your Own, Building Your Own, Building Your
Own, Building Your Own, Building Your Own
sundials, Perl-fect Sundials, Building Your Own, Building
Your Own, Building Your Own

background information on, Perl-fect Sundials
building your own, Building Your Own, Building Your
Own, Building Your Own

Suomi, land of most Internet sites per capita, Toss-up
Answers
supercomputing Linux clusters, Toss-up Questions
Sussman, Gerald Jay, References
swapping chunks of data to minimize memory
consumption, What’s It Do?
syllables, Coping with (Syllabic) Stress, A Simple mpron
Searcher, Coping with (Syllabic) Stress, Coping with
(Syllabic) Stress, A Simple mpron Searcher

stressed vs. unstressed, Coping with (Syllabic) Stress,
A Simple mpron Searcher, Coping with (Syllabic)
Stress, Coping with (Syllabic) Stress, A Simple mpron
Searcher

symbol table hashes (stashes), How Does It Work?
Symbol::Approx::Scalar module, The
Symbol::Approx::Sub Module
Symbol::Approx::Sub module, Correcting Typos with
Perl, Afterword, How Does It Work?, How Does It
Work?, How Does It Work?, The Symbol::Approx::Sub
Module, Afterword

1230

Symbol::Approx::Sub::Google module, Afterword
symbolic debugger in Perl, Bonus Questions
synch function (MIDI::Simple), Behold MIDI::Simple!
synsets (sets of synonyms), Concepts in Wordnet, What’s
Next?, Converting the Data, Basic Usage, Basic Usage,
Basic Usage, Basic Usage, Movin’ It Up a Level, Movin’ It
Up a Level, Other Word Relationships, Other Word
Relationships, Other Word Relationships, Other Word
Relationships, Other Word Relationships, Other Word
Relationships, Other Word Relationships, Other Word
Relationships, Other Word Relationships, Other Word
Relationships, Other Useful Functions, What’s Next?,
What’s Next?

adding meronyms to, Other Word Relationships
sense numbers for, Other Word Relationships
word relationships and, Other Word Relationships,
Other Word Relationships, Other Word Relationships,
Other Word Relationships, Other Word Relationships
writing a password checker, Basic Usage

syntax trees, The Genetic Code, Assembling an Organism,
Survival of the Fittest, Sex and Mutation, Sex and
Mutation, Sex and Mutation

assembling organisms, Assembling an Organism
calculating output of, Survival of the Fittest, Sex and
Mutation, Sex and Mutation
mutating organisms, Sex and Mutation

System V IPC structures, Bonus Questions
systems integration issues and Perl, Other Uses for Perl

1231

T

1232

-T command-line switch, Toss-up Questions
-T flag, Bonus Questions
tables in database schema, The Database Schema
tag/value pairs and BoulderIO, Bioinformatics and Perl
tagmemics, Toss-up Answers
tags used in Tktk solitaire game, Making the Moves,
Oops!, Pickup Lines, Oops!
taint checking, turning on, Lines 0–4: Load Modules
tally table in database schema, The Database Schema,
Lines 166–205: The enter_ballot Subroutine
tallying votes using database schema, The Database
Schema, Tallying the Votes
tanka, The Tao of Haiku

tao of haiku, The Tao of Haiku

tattooed on forearm, which Perl program was, Toss-up
Questions
tau lepton, discovery of, by Martin Perl, Toss-up
Questions, Toss-up Answers
Taylor, Dennis, Acknowledgments
Taylor, Garry, Create a Diversion
Tcl program, most popular, Toss-up Questions
telephone calls, monitoring with caller ID, A Smart TV
Guide
teleport command (rezrov), Tinkering with the
Z-Machine, Bamf, Teleport, Teleport, Teleport, Bamf
Temperley, Davy, References
Term::Readkey module, Bonus Questions
terminals used in genetic algorithms, The Genetic Code
Terse method, Toss-up Questions
Tesla, Nikola, Toss-up Questions
TeX text formatting package, Toss-up Answers, Toss-up
Questions

1233

inventor of, Toss-up Questions

text formatting and autoformat, Text::Autoformat,
Future Features, Text::Autoformat, Paragraphs, Widows,
Future Features, Future Features
Text To Speech (TTS) and home automation,
MisterHouse, Talking and Listening
text, searching for with Perl, Searching for Rhymes with
Perl, Accommodating Another Notation, Accommodating
Another Notation
text-to-phoneme conversion, Text-to-Phoneme
Conversion, More Context: Two Substitutions, More
Context: Two Substitutions
Text::Metaphone module, Installing the Modules,
Matching Nicknames, The Sub::Approx Module
Text::Soundex module, Installing the Modules, Matching
Nicknames, How Does It Work?
Text::StripHigh module, Future Features
The Cathedral and the Bazaar, Future Directions, Bonus
Answers
The Lurking Horror game, Toss-up Questions
The Onion, Toss-up Answers
The Psychology of Computer Programming, Percussion,
Uniformity, and noop
The Semantic web project, Toss-up Answers
The Vaults of Parnassus, Bonus Answers
The Victorian Internet, Toss-up Questions
Third Obfuscated Perl Contest, Most Powerful, Best of
Show, Most Powerful, Most Creative, Best “The Perl
Journal”, Best of Show
Third Perl/Internet Quiz Show, The Third Perl/Internet
Quiz Show, Bonus Answers, Bonus Questions, Bonus
Answers

1234

third-party candidates, difficulty in getting support for,
Pairwise Voting
Three-Way Prisoner’s Dilemma, The Three-Way
Prisoner’s Dilemma
thwarted-majorities paradox, Impossibility Theorems
Tibetan, simulating typos in, Typos in Other Languages
ticks (time measurement in music), Behold MIDI::Simple!
tie function, Toss-up Questions, Bonus Questions
Tie::BikePower module, Bonus Questions
tiebreakers, Default sort Versus “Normal” English
Sorting, Bi-Level Sorting to the Rescue

in sort criteria, Default sort Versus “Normal” English
Sorting, Bi-Level Sorting to the Rescue

tied function, Bonus Answers, Toss-up Questions
tied hashes, Dictionary Database
TIESCALAR function, Bonus Questions
Timer (mh object), Objects in the Home
time_cron function, A Smart TV Guide
tip vector, calculating, Building Your Own
title casing text with autoformat, Justification and
Sentencing
TiVo, Toss-up Answers
Tk interface for MisterHouse, MisterHouse
TK-707 program, Toss-up Questions
Tk::bind object, Making the Moves
Tk::Canvas object, Layout
Tktk (Tk timekiller) solitaire game, Finishing Touches
.to domain location, Toss-up Questions
tokenizing speech input, Pre-Recorded Sentences
tokens, The Basic Units, Constructing a Word Frequency
List, Constructing a Word Frequency List, Morphological
Inflections and Derivations, Implementing It,

1235

Representing a Single Rule, The Key Insight!,
Implementing It

applying single/multiple rules, Morphological
Inflections and Derivations, Implementing It,
Representing a Single Rule, The Key Insight!,
Implementing It
excluding low-frequency, Constructing a Word
Frequency List
frequency lists and, Constructing a Word Frequency
List
per expression, measuring, The Basic Units

Tolkein, J.R.R., Bonus Questions
Tonga, location of .to domain name, Toss-up Answers
top-level domains ending in two-letter country codes,
Bonus Questions
Torkington, Nathan, Toss-up Answers, The Fifth
Obfuscated Perl Contest
Tower of the Winds (Greek sundial), Perl-fect Sundials
trace editors, Other Uses for Perl
transducers, Text-to-Phoneme Conversion, More Context:
Two Substitutions, Text-to-Phoneme Conversion, More
Context: Two Substitutions

text-to-phoneme, Text-to-Phoneme Conversion, More
Context: Two Substitutions, Text-to-Phoneme
Conversion, More Context: Two Substitutions

transliteration and autoformat, Future Features
Transmission Control Protocol (TCP), Bonus Answers
Traveling Salesman Problem, solving, Toss-up Questions
traversing hypernyms, Basic Usage, Other Word
Relationships
Treese, Win, Toss-up Questions, Toss-up Answers

1236

Tridgell, Andrew, Toss-up Questions
trigraphs (three-letter clusters), How to Identify Words,
Typos in Other Languages, Typos in Other Languages
triphones and speech synthesis, More Context: Two
Substitutions
Trivium (group of three liberal arts), Bonus Questions
TTS (Text To Speech) and home automation,
MisterHouse, Talking and Listening
Tux the penguin, Toss-up Answers
TV shows, announcing via MisterHouse, A Smart TV
Guide
twitch games, Twitch Games
Two Towers, Bonus Answers
two-party duopoly, Pairwise Voting
type checking, lack of in Perl, Problems with Perl
typeglobs, Why Was It Written?, Afterword, How Does It
Work?, How Does It Work?, Afterword
typewriter on TPJ cover, TPJ #10: The Underwood
Typewriter
Typewriting Behavior, Simulating the Typos
typos (typographical errors), Typos in Other Languages,
Typos in Other Languages, Correcting Typos with Perl,
Afterword, Why Was It Written?, How Does It Work?,
How Does It Work?, The Symbol::Approx::Sub Module,
Afterword

correcting, with Perl, Correcting Typos with Perl,
Afterword, Why Was It Written?, How Does It
Work?, How Does It Work?, The
Symbol::Approx::Sub Module, Afterword
simulating, with Perl, Typos in Other Languages,
Typos in Other Languages

1237

typo_on_word function, Simulating the Typos, How to
Identify Words, Simulating the Typos, Simulating the
Typos, How to Identify Words

1238

U

1239

U.S. Census accepting online forms, Bonus Questions,
Toss-up Answers, Bonus Questions
Ullman, Cayce, Most Creative
Ultima Online game, Toss-up Questions
Ultramaster RS101 program, Toss-up Questions
undersea cable, miles of, Toss-up Questions
Underwood typewriter on TPJ cover, TPJ #10: The
Underwood Typewriter
undo command, Universal Command Set

rezrov game interpreter, Universal Command Set

Unicode character set, Localizing Your Perl Programs,
Toss-up Answers
Uniform Dispute Resolution Policy, Toss-up Questions
Uniform Resource Locator (URL), Bonus Answers
uniformity, violation of, Percussion, Uniformity, and noop
union method (Lingua::Wordnet:: Analysis), Movin’ It
Up a Level
United States Patent and Trademark Office, Bonus
Questions
universal command set for Z-machines, Universal
Command Set
Unix Database Package and Lingua::Wordnet,
Converting the Data
Unix pipes and DNA sequencing, Bioinformatics and Perl
unlink function, Toss-up Questions
Unsolicited Commercial Email (UCE), TPJ #18: Spam
unstressed vs. stressed syllables in words, Coping with
(Syllabic) Stress, A Simple mpron Searcher, Coping with
(Syllabic) Stress, Coping with (Syllabic) Stress, A Simple
mpron Searcher
url (infobot), What Are You Thinking?
use constant pragma, A Little Rocket Science

1240

Usenet newsgroups, A Day in the Life of
comp.lang.perl.misc, The Future of comp.lang.perl.misc,
A Little History, The Day’s Weather Report, The Future
of comp.lang.perl.misc, The Future of comp.lang.perl.misc
user interfaces, abstracting using Z-machine opcodes,
Interface Abstraction
/usr/dict/words file, Telling Good from Bad
uuencoding attachments, Uuencoding Attachments

1241

V

1242

validate subroutine (e-ballot), Lines 23–26: Handle a
Submitted Ballot, Lines 124–165: The validate Subroutine
Valley of Gehennom, Toss-up Questions
van Dongen, Stijn, Most Creative
vandalism issues for bots, What? We Ordered No Pizzas!
VAR (value-added reseller), Bonus Questions
vec function (rezrov), The Joy of vec, The Joy of vec, The
Joy of vec, The Joy of vec
vector checks and DNA sequencing, Bioinformatics and
Perl
vector for the sun, Building Your Own, Building Your
Own, Building Your Own, Building Your Own, Building
Your Own, Building Your Own
Veeraraghavan, Sriranga, Best Four-Line Signature
vernal equinox, Building Your Own, Building Your Own,
Building Your Own, Building Your Own, Building Your
Own
version command (rezrov), Teleport
versioning system, concurrent, Toss-up Questions
vertical blanking interval, Bonus Questions
vi vs. Emacs, Bonus Questions, Bonus Answers
Village of Hommlet, Toss-up Questions
vinyl records on TPJ cover, TPJ #17: Napster
virtual computer (Z-machine), The Rezrov Infocom Game
Interpreter
virus, computer, Toss-up Questions, Toss-up Answers

ILOVEYOU, Toss-up Answers

VISCII character set, Localizing Your Perl Programs
Visual Python plug-in, Bonus Questions
Voice_Cmd (mh object), Objects in the Home
voltage surges, protecting against, Toss-up Questions
volume (note property), Easy Things Easy

1243

vote subroutine (e-ballot), Lines 117–123: The vote
Subroutine
votes, About Secure Elections, Generating VRNs

tallying, using database schema, About Secure
Elections, Generating VRNs

voting, Toss-up Questions, Pairwise Election Methods,
Condorcet’s Method, The Algorithms, Using CGI to Spit
It All Out

not yet ready for Internet, Toss-up Questions
pairwise, Pairwise Election Methods, Condorcet’s
Method, The Algorithms, Using CGI to Spit It All Out

voting_matrix subroutine (e-ballot), Lines 72–104: The
voting_matrix Subroutine
VR (Voice Recognition), Say What?

sample session, Say What?

VRNs (Voter Registration Numbers), About Secure
Elections, Generating VRNs, The E-Ballot, Generating
VRNs, The E-Ballot

entering into CEA database, Generating VRNs
generating blocks of, Generating VRNs, The E-Ballot,
The E-Ballot

1244

W

1245

-w flag, Toss-up Questions
-W flag, Bonus Questions
Wall, Larry, Bonus Questions, Toss-up Questions, Bonus
Questions

famous sayings of, Bonus Questions
father of Perl, Toss-up Questions
sanguine fluid and, Bonus Questions

Wallace, Sanford, Toss-up Answers
Wallace, Shawn, Best “The Perl Journal”
Walshaw, Chris, References
wantarray function, Toss-up Questions
Ward, Wayne, What Are You Thinking?
warnings, Perl, turning on, Toss-up Questions, Lines 0–4:
Load Modules
web crawler used by AltaVista, Toss-up Questions
web interface for MisterHouse, MisterHouse
web proxy cache designed for Unix, Toss-up Questions
web sites, Proof in the Pudding: Localizing Web Sites,
Learning Japanese with an HTML Filter

learning/using Japanese, Learning Japanese with an
HTML Filter
localizing, Proof in the Pudding: Localizing Web Sites

web-based voting, About Secure Elections, The vote
Program
Webby awards, Toss-up Answers
webDAV (Web Distributed Authoring and Versioning),
Toss-up Answers
WebLibs game, Word Games
weighing rules in optimality systems, Optimality Systems
Weinberg, Gerald M., References
Weizenbaum, Joseph, Chatbot::Eliza

1246

Wellcome Trust Sanger Institute, How Perl Saved the
Human Genome Project
Wells-Jensen, Sheri, Braille and Contractions, Braille and
Contractions, Linguistic Rule Systems, Linguistic Rule
Systems
Wendling, Bill, Most Powerful, Best “The Perl Journal”
Westminster Chimes and measure counters, Mod,
Canons, and Rounds, References, Mod, Canons, and
Rounds, References
White Plume Mountain, Toss-up Questions
Whittier, John Greenleaf, Perl-fect Sundials
widows and autoformat, Widows
Win32::SerialPort module, What’s in a Command?,
What’s in a Command?, What’s in a Command?, What’s
in a Command?, What’s in a Command?
winfrotz interpreter, Enter the Camel
Winstein, Keith, The First Circle: Print “The Perl
Journal”
winter solstice, Perl-fect Sundials
Winter, Bruce, Whole House CallerID, Say What?
Winterbottom, Angie, Best of Show
wireless link module (X10), Simple Output Commands:
The CM17
Wisehart, Dan, Results of the Contest
Wizard, Perl, Toss-up Questions
word boundaries, matching, Contexts in Regular
Expressions
Word Finds, generating, Word Games
word frequency lists, Morphological Analysis and Perl,
Morphological Inflections and Derivations, Constructing a
Word Frequency List, Morphological Inflections and
Derivations, Morphological Inflections and Derivations

1247

word games, Word Games, Twitch Games, Word Games,
Twitch Games
word morphology, Word Morphology, Future Work,
Morphological Inflections and Derivations, Implementing
It, Implementing It, Future Work
word relationships, Other Word Relationships, Other
Word Relationships, Other Word Relationships

hypernyms, Other Word Relationships
meronyms, Other Word Relationships
pertainyms, Other Word Relationships

World Wide Wasteland category, results of, World Wide
Wasteland
WORM (write once read many) device, Bonus Questions
worms, Toss-up Questions, Toss-up Questions

denial of service attack against www.whitehouse.com,
Toss-up Questions
program created by R.T. Morris, Toss-up Questions

Worms game, Twitch Games
wrapman program, Toss-up Answers
wrapping text to fixed margins, Text::Autoformat, Future
Features, Text::Autoformat, Quoting, Future Features
write-in candidates, Lines 166–205: The enter_ballot
Subroutine

entering ballot information into database, Lines
166–205: The enter_ballot Subroutine

writein table in database schema, The Database Schema,
Lines 166–205: The enter_ballot Subroutine
write_score function (MIDI::Simple), Behold
MIDI::Simple!
wwwkan.pl script, The Web, wwwkan.pl

1248

X

-x command-line switch, Toss-up Answers
/x modifier, embedding comments in regular expressions,
Toss-up Answers
X10 ActiveHome (CM11) interface, MisterHouse, Give
Your House a Brain
X10 power line modulation, Simple Output Commands:
The CM17
X10 wireless link module, Home Automation: The X10
Nitty-Gritty
Xbox Microsoft game console, Toss-up Answers
Xenakis, Iannis, References
XHTML, Toss-up Answers
xjdic program, Taking It a Step Further
XSL, choosing numbering style with, Toss-up Questions
XUL files, Toss-up Questions
xzip interpreter, Enter the Camel

Y

Young, Benjamin, Inner Beauty

1249

Z

Z-code (Zork Implementation Language), The Rezrov
Infocom Game Interpreter, Enter the Camel, The Joy of
vec

multiplatform interpreters available, Enter the Camel
story files, The Joy of vec

loading into memory, The Joy of vec

Z-machines, Resurrecting the Z-Machine, What’s It Do?
opcodes, What’s It Do?
reverse-engineering, Resurrecting the Z-Machine

zeroes function (PDL), The perldl Shell
Zeroth Annual Obfuscated Perl Contest, The Zeroth
Annual Obfuscated Perl Contest, Best “The Perl
Journal”, Best “The Perl Journal”
ZIO module (rezrov), Interface Abstraction
ZIP (Z-machine Interpreter Program), The Rezrov
Infocom Game Interpreter, A Plea for Inlining
ZObject.pm package, Teleport
zombie process, Bonus Answers
Zork I, The Rezrov Infocom Game Interpreter, Tinkering
with the Z-Machine, Quantity Is Job One, Toss-up
Questions

Kitchen object description, Tinkering with the
Z-Machine
opcodes required, Quantity Is Job One

Zork: The Undiscovered Underground, Resurrecting the
Z-Machine

1250

Colophon

Our look is the result of reader comments, our own
experimentation, and feedback from distribution channels.
Distinctive covers complement our distinctive approach to
technical topics, breathing personality and life into potentially
dry subjects.

The animal on the cover of Games, Diversions, and Perl
Culture: Best of the Perl Journal is a flying dragon (genus
draco). Found in the tropical rain forests of the East Indies
and Southern Asia, this small lizard has five or six hind ribs
on each side that are prolonged and covered with weblike
skin, forming “wings.” While jumping, the lizard spreads its
wings and glides to the ground; it can generally glide almost
nine yards. Gliding is used only as a means of locomotion and
not for predator escape; to escape danger, the lizard always
climbs. The lizard also never glides when it’s raining or
windy.

A flying dragon feeds mostly on small ants and termites and
is described as a sit-and-wait feeder. It will sit next to a tree
trunk waiting for insects to come to it.

A female flying dragon builds a nest for her eggs by forcing
her head into the soil to create a small hole. She then lays five
eggs into the hole and covers them with dirt, packing the soil
on top with a patting motion of her head. The eggs take
approximately 32 days to incubate.

Humans don’t eat flying dragons, and they aren’t currently
listed as threatened.

1251

Jane Ellin was the production editor and proofreader for
Games, Diversions, and Perl Culture: Best of the Perl
Journal. Colleen Gorman, Sarah Sherman, and Claire
Cloutier provided quality control. Sue Willing, Linley Dolby,
Jamie Peppard, and Sada Preisch provided production
support. Judy Hoer wrote the index.

Hanna Dyer designed the cover of this book, based on a series
design by Edie Freedman. The cover image is a 19th-century
engraving from the Dover Archives. Emma Colby produced
the cover layout with QuarkXPress 4.1 using Adobe’s ITC
Garamond font.

Bret Kerr designed the interior layout, based on a series
design by David Futato. Erik Ray and Mike Sierra converted
the files from pod to FrameMaker 5.5.6. The text font is
Linotype Birka; the heading font is Adobe Myriad
Condensed; and the code font is LucasFont’s TheSans Mono
Condensed. The illustrations that appear in the book were
produced by Robert Romano and Jessamyn Read using
Macromedia FreeHand 9 and Adobe Photoshop 6. The tip and
warning icons were drawn by Christopher Bing. This
colophon was written by Mary Anne Weeks Mayo.

1252

	Games, Diversions, and Perl Culture: Best of the Perl Journal
	Preface
	Finding Perl Resources
	Conventions Used in This Book
	Comments and Questions
	Acknowledgments

	1. Introduction
	I. Culture
	2. Wherefore Art, Thou?
	Music to My Ears

	3. TPJ Cover Art: From Camels to Spam
	TPJ #1: The Camel
	TPJ #2: The Pearl
	TPJ #3: RSA on Greenbar
	TPJ #4: Etch-a-Sketch.
	TPJ #5: Commodities
	TPJ #6: Scrabble
	TPJ #7: Spiderball
	TPJ #8: The Coffee Cup Fiasco
	TPJ #9: Drummer/Coder Wanted
	TPJ #10: The Underwood Typewriter
	TPJ #11: The Conspiracy
	TPJ #12: The Atari Perl Cartridge
	TPJ #13: Dance Remixes
	TPJ #14: Outlook Not So Good
	TPJ #15: Braille blocks
	TPJ #16: e. e. cummings’ Gravestone
	TPJ #17: Napster
	TPJ #18: Spam
	TPJ #19: Monopoly Money
	TPJ #20: WAP

	4. Perl Style
	Background
	Existing Measures
	The Basic Units
	The Tool
	Usage
	Why This Should Be Hard To Do
	The Perl Compiler to the Rescue
	Future Directions
	Acknowledgments

	5. Home Automation with MisterHouse
	HA! Perl?
	MisterHouse
	Objects in the Home
	Talking and Listening
	A Smart TV Guide
	Whole House CallerID
	Squeaky Stairs
	You Have Mail
	Say What?
	Give Your House a Brain

	6. Home Automation: The X10 Nitty-Gritty
	Simple Output Commands: The CM17
	The ControlX10::CM17 and ControlX10::CM11 Modules
	What’s in a Command?
	Timing Issues
	Bidirectional I/O with the CM11
	A Few More Considerations

	7. A Day in the Life of comp.lang.perl.misc
	A Little History
	How the “Day in the Life” Was Done
	The Raw Statistics
	The Day’s Weather Report
	Netiquette Nits
	The Regulars
	The Future of comp.lang.perl.misc

	II. Science
	8. Perl-fect Sundials
	Building Your Own

	9. Genetic Algorithms
	The Genetic Code
	Assembling an Organism
	Survival of the Fittest
	Sex and Mutation
	The Terrifying Results
	Other Applications
	Going Further
	Other Fitness Functions
	Resources

	10. How Perl Saved the Human Genome Project
	Bioinformatics and Perl
	Other Uses for Perl
	Problems with Perl

	11. PDL: The Perl Data Language
	The perldl Shell
	Listing of a Few PDL Functions
	Where Are We Now?

	III. Language
	12. Chatbot::Eliza
	How It Works
	What Now?
	References

	13. Infobots and Purl
	IRC
	Bots and Infobots
	So What?
	Are You Spongeworthy?
	You Can’t Do That in Public!
	What Are You Thinking?
	Idiot Savant
	A Sense of Play
	What? We Ordered No Pizzas!
	Future Directions
	Where to Get It
	Acknowledgments
	References

	14. Speech Synthesis
	Pre-Recorded Sentences
	Lexical Synthesis in One s///
	The Out-of-Vocabulary Problem: Synthesis in One s///e
	Text-to-Phoneme Conversion
	More Context: Two Substitutions
	What Else?
	References

	15. Lazy Text Formatting
	Text::Autoformat
	Paragraphs
	Quoting
	Lists
	Quotations
	Widows
	Justification and Sentencing
	Future Features

	16. Perl and MIDI: Simple Languages, Easy Music
	Hard Things Possible
	Approach 1: A Novel Language
	Approach 2: An Extensional Language
	Easy Things Easy
	Behold MIDI::Simple!
	“Relative” Notes
	Percussion, Uniformity, and noop
	The Object-Oriented Interface
	Using synch, and Some Actual Music
	Mod, Canons, and Rounds
	Future Features
	References

	17. Braille Contractions and Regular Expressions
	Braille and Contractions
	Sample Text in Braille
	Linguistic Rule Systems
	Generativity Systems
	Optimality Systems
	Regex Replacement as a First Hack
	Contexts in Regular Expressions
	Embedding Code in Regular Expressions
	Rules as Exceptions
	Testing It
	It’s Alive!

	18. Hypernyms, Hyponyms, Pertainyms, and Other Word Relationships
	Concepts in Wordnet
	Converting the Data
	Installing Lingua::Wordnet
	Basic Usage
	Movin’ It Up a Level
	Other Word Relationships
	Other Useful Functions
	What’s Next?

	19. Parsing Natural Language
	I See a Pattern Developing
	Link Grammar
	Lingua::LinkParser
	Irregular Regular Expressions, Overloaded
	What Sucks? What Rocks?
	What Sucks, Regex Style
	The What-Sucks-Ometer
	There’s Lots More Here
	References
	A Full Lingua::LinkParser Example

	20. Word Morphology
	Morphology: Word Form and Structure
	Morphological Analysis and Perl
	Constructing a Word Frequency List
	Morphological Inflections and Derivations
	Representing a Single Rule
	Representing Many Rules
	Telling Good from Bad
	The Key Insight!
	Implementing It
	Applying the Derivation Process to All Tokens
	Summary
	Future Work

	21. Smart Matching for Human Names
	Installing the Modules
	Module Contents
	Using the Modules
	What They Do
	Matching Nicknames
	Conclusion

	22. Localizing Your Perl Programs
	A Localization Horror Story: It Could Happen to You
	The Linguistic View
	Breaking gettext
	Replacing gettext
	Buzzwords: Abstraction and Encapsulation
	Buzzword: Isomorphism
	Buzzword: Inheritance
	Buzzword: Concision
	The Devil in the Details
	Proof in the Pudding: Localizing Web Sites
	References

	23. Internationalized Sorting
	Default sort Versus “Normal” English Sorting
	Locale-Based Sorting
	Spanish: Cana y Caña
	Spanish: Chorizo, Chimichangas, Chicharrones, y Churros
	Bi-Level Sorting to the Rescue
	English: Résumé and Resume
	Optimizing with Memoization
	Sorting it All Out

	24. Simulating Typos with Perl
	Simulating the Typos
	How to Identify Words
	Typos in Other Languages
	Results
	References

	25. Correcting Typos with Perl
	Why Was It Written?
	How Does It Work?
	The Sub::Approx Module
	The Symbol::Approx::Sub Module
	Future Plans
	Afterword

	26. Learning Japanese with an HTML Filter
	The Web
	Dictionary Database
	The CGI Script
	Taking It a Step Further
	Conclusion
	wwwkan.pl

	IV. Games and Quizzes
	27. Games in Perl
	Strategy Games
	Cards
	Dice
	Word Games
	Twitch Games

	28. The Prisoner’s Dilemma
	The Iterated Prisoner’s Dilemma
	The Three-Way Prisoner’s Dilemma
	The Prisoner’s Dilemma Programming Contest
	Results of the Contest

	29. The Rezrov Infocom Game Interpreter
	Resurrecting the Z-Machine
	Enter the Camel
	What’s It Do?
	The Joy of vec
	Tinkering with the Z-Machine
	Teleport
	Bamf
	Pilfer
	Universal Command Set
	Interface Abstraction
	Performance Considerations
	Quantity Is Job One
	A Plea for Inlining
	Conclusion
	References

	30. Tktk: A Perl/Tk Solitaire Game
	The Rules
	A First Cut
	Shuffling
	Layout
	Show the Tableau!
	Would You Like to Play a Game?
	Making the Moves
	Laying the Base
	Pickup Lines
	Oops!
	Finishing Touches

	31. The First Perl/Internet Quiz Show
	Toss-up Questions
	Bonus Questions
	The Answers
	Toss-up Answers
	Bonus Answers

	32. The Second Perl/Internet Quiz Show
	Sample Questions
	Toss-up Questions
	Bonus Questions
	The Answers
	Toss-up Answers

	33. The Third Perl/Internet Quiz Show
	Toss-up Questions
	Bonus Questions
	Toss-up Answers
	Bonus Answers

	34. The Fourth Perl/Internet Quiz Show
	Toss-up Questions
	Bonus Questions

	Toss-up Answers
	Bonus Answers

	35. The Perl Whirl Quiz Show
	Toss-up Questions
	Bonus Questions
	Toss-up Answers
	Bonus Answers

	36. The Perl Wizard’s Quiz
	Answers

	V. Poetry
	37. Just Another Perl Haiku
	The Tao of Haiku
	Haiku Online
	Artificial Haiku
	The Coy Module
	A Note About the Name
	Inside the Coy Module
	Mere Words
	Random Harvesting
	Filling in the Blanks
	The Other Type of Grammar
	Counting the Beat
	But Does the Bear Dance?
	Extending the Module
	Is There a Poet in the House?
	It Seemed Like a Good Idea at the Time

	38. Searching for Rhymes with Perl
	Where to Look
	Preparing the Data
	Searching the Prepared Data
	Counting Syllables
	Coping with (Syllabic) Stress
	A Simple mpron Searcher
	Accommodating Another Notation

	39. The Perl Poetry Contest
	The Categories
	The Results
	Best Poem Port
	Haiku
	A Perl Program That Generates Poetry
	Obfuscated Poetry?
	Best of Show

	VI. Politics
	40. Pairwise Voting
	The Preference Ballot
	Impossibility Theorems
	The Borda Method
	The Hare Method
	Pairwise Election Methods
	Condorcet’s Method
	Smith’s Method
	Copeland’s Method
	The Algorithms
	The Pairwise Engine
	Using CGI to Spit It All Out
	Random Thoughts
	References
	Sites

	41. Secure Internet Voting
	About Secure Elections
	The Database Schema
	Generating VRNs
	The E-Ballot
	The vote Program
	Lines 0–4: Load Modules
	Lines 5–7: Define Constants and Globals
	Lines 8–9: Connect to the Database
	Lines 10–20: Start the Page
	Lines 21–22: Initialize Globals
	Lines 23–26: Handle a Submitted Ballot
	Lines 27–30: Generate a New Ballot
	Lines 31–34: Finish up
	Lines 40–60: get_globals Subroutine
	Lines 61–71: The generate_ballot Subroutine
	Lines 72–104: The voting_matrix Subroutine
	Lines 105–116: The registration_number Subroutine
	Lines 117–123: The vote Subroutine
	Lines 124–165: The validate Subroutine
	Lines 166–205: The enter_ballot Subroutine
	Lines 209–223: Utility Subroutines

	Tallying the Votes

	42. Perl and Nuclear Weapons Don’t Mix
	A Little Rocket Science
	Red Alert!

	VII. Obfuscated Perl
	43. The Zeroth Annual Obfuscated Perl Contest
	The Categories
	How It Works
	Hints and Suggestions
	So There You Have It
	Results
	Best Four-Line Signature
	Most Powerful
	Most Creative
	Best “The Perl Journal”

	44. The First Obfuscated Perl Contest
	Results
	Most Powerful
	Most Creative
	Best “The Perl Journal”
	Best Year 2000 Error
	Best of Show

	45. The Third Obfuscated Perl Contest
	Most Powerful
	Most Creative
	Best “The Perl Journal”
	Best of Show

	46. The Fourth Obfuscated Perl Contest
	Results
	The First Circle: Print “The Perl Journal”
	The Second Circle: Do Something Powerful
	The Third Circle: Be Creative
	The Fourth Circle: Make Believe You’re Another Language

	47. The Fifth Obfuscated Perl Contest
	Results
	Create a Diversion
	World Wide Wasteland
	Inner Beauty
	The Old Standby

	48. One-Liners
	Useful One-Liners
	How to Use the Perl Debugger as a Command-Line Interpreter
	Picking Random Elements from an Array
	Evaluating Expressions Inside Double Quotes
	Little-Known Magic Scalar Variables
	A Demonstration of Perl/Tk Widgets
	Using Perl from Emacs
	Using Perl from vi
	Finding Substrings
	Simple Numeric Tests
	Adding a Long List of Numbers on the Command Line
	Printing Perl’s Include Path
	Extracting Unique Elements from a List
	Extracting, Sorting, and Printing Unique Words from a File
	Counting the Number of Lines in a File
	Counting Pod and Code Lines
	Separating the Header and Body of a Mail Message
	Sleeping for Less Than a Second
	Listing Installed Modules
	Another Way to List Installed Modules
	Preserving Case in a Substitution
	Finding the Longest Common Prefix and Suffix
	DeMorgan’s Rule
	Uuencoding Attachments
	When to Split and When to m//g
	Transposing a Two-Dimensional Array
	Suppressing Backquote Interpolation
	Stripping the Eighth Bits from a String
	Replacing Tabs with Spaces
	A Cheap Alarm Clock
	Primality Testing with a Regular Expression
	Factoring Numbers
	Little-Known Facts About qr
	Halving an Array
	Daylight Savings Time
	Tracking File Progress
	Timing Your Program
	Stringifying Data Structures
	Indenting a Here Document
	Printing All Capitalized Words
	Generating Randomly-Colored xterms
	Extracting PostScript from Windows-Generated PCL Files
	Graphing a Bent Torus with PDL
	Detecting Unbalanced Parentheses, Brackets, and Braces
	Extracting Parenthetical Contents
	Converting a GIF Image to an HTML Table
	Identifying CVS Files That Aren’t Up To Date
	Displaying All Perl’s Error Messages
	How to Patch Your Netscape Binary to Enable Strong Encryption
	A Little-Known Way to Create References

	Not So Useful One-Liners
	Regular Expression Epigram
	Avoiding Asteroids with Perl
	Maze Generation
	The Pontifex Cryptosystem
	Perl in Sphere, the Movie
	An Absurd Way to Convert from Decimal to Binary
	Swatch Internet Time
	The Game of Life
	Ransom Notes
	Triggering the F00F Pentium Bug
	Magic Cards
	Perl Poem: down.pl
	Perl Poem: 143
	Perl Poem: If Dr. Seuss Were a Perl Programmer
	Perl Poem: Object-Oriented Perl
	Happy Birthday!

	Index
	Colophon

