BEST OF THE PERL JOURNAL

Games,
Diversions &

Culture

OJRE"—LY_) : Edited by Jon Orwant

Games, Diversions, and
Perl Culture: Best of the
Perl Journal

Jon Orwant

Editor
Linda Mui
Copyright © 2010

Portions of this book originally appeared in The Perl Journal,
currently published by CMP, Inc. Printed in the United States
of America.

O’Reilly & Associates books may be purchased for
educational, business, or sales promotional use. Online
editions are also available for most titles (safari.oreilly.com).
For more information, contact our corporate/institutional sales
department: (800) 998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the
O’Reilly logo are registered trademarks of O’Reilly &
Associates, Inc. Many of the designations wused by
manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in
this book, and O’Reilly & Associates, Inc. was aware of a
trademark claim, the designations have been printed in caps
or initial caps. The association between the image of a flying

dragon and the topic of Perl games, diversions, and culture is
a trademark of O’Reilly & Associates, Inc.

While every precaution has been taken in the preparation of
this book, the publisher and the authors assume no
responsibility for errors or omissions, or for damages
resulting from the use of the information contained herein.

O’REILLY

O'Reilly Media

Preface

This is the third of three “Best of The Perl Journal” O’Reilly
books, containing the créme de la créme of the 247 articles
published during The Perl Journal ’s five-year existence as a
standalone magazine. This particular book contains 47 articles
about the leisure pursuits of Perl programmers. You won’t
find articles on web development or object-oriented
programming here. This book is for relaxing and reveling in
Perl culture—a mindset favoring programs that are weird,
wacky, and hubristic.

This book is divided into seven sections:
Part 1

This section contains six articles on the Perl culture,
including an article by Larry Wall comparing computer
languages to music, a “coffee-table” collection of the TPJ
covers, an article on Perl style, two articles on home
automation, and an analysis of the usefulness of the
Usenet newsgroup comp.lang.perl.misc.

Part 11

Many scientists gravitate toward Perl when they find that
they can analyze their data more easily with Perl than
other languages. In this section, you’ll find articles on
astronomy, genetic algorithms, bioinformatics, and
scientific computing.

Part 111

Perl was created by a linguist, and it shows; there is no
better language for manipulating text, whether it’s a
simple task involving punctuation or full-fledged natural
language processing. In this largest section of the book,
15 articles demonstrate a plethora of language-related
tasks, from speech synthesis to “bots” that answer English
queries to correcting typos and adapting your Perl
programs for other languages.

Part IV

Most of this book is about leisurely pursuits, especially if
your notion of leisure includes writing bots that converse
well enough to be hit on. If it doesn’t, this section has
more traditional games, from an overview of all the games
available on CPAN to a solitaire game. It has all of the
Perl quiz shows as well, to help you test and increase your
Perl knowledge.

PartV

Perl Poetry has been around since 1990, and has been
published in the Economist and the Guardian. In addition
to the Perl Poetry contest, this section includes an article
on reporting error messages in verse and how to search for
rhymes in Perl.

Part VI

This section has three articles on how Perl can help
maintain a stable democracy: two on voting methods, and
one on how to prevent nuclear accidents.

Part VII

Perl’s flexibility lets you make your code look like
readable computer programs, poetry, or modem line noise.
TPJ began the Obfuscated Perl Contest, and in this section
you’ll find the winning entries from all five contests as
well as a complete collection of the one-liners that I used
to fill up excess space in the magazine.

Be aware that this book has 31 different authors. Each
section, and the articles within them, are loosely ordered from
general to specific, and also from most accessible to least.
Since these spectra are not identical, it’s not a strict
progression. The book may be read straight through, or
sampled at random. (In deference to the Perl motto, There’s
More Than One Way To Read It.)

Normally, O’Reilly likes their books to be written by one
author, or just a few. Books that are collections of many
independently-written chapters may get to press more
quickly, but discordant tones, styles, and levels of exposition
are jarring to the reader; worse, authors writing in parallel and
under deadline rarely know what other contributors have
covered, and therefore can’t provide appropriate context.

That would indeed be a problem for this book had it been
written in two months by 31 authors writing simultaneously.
But in a sense, this book was written very carefully and
methodically over six years.

Here’s why. As editor of The Perl Journal, I had a difficult
decision to make with every issue. TPJ was a grass-roots
publication with no professional publishing experience behind
it; I couldn’t afford to take out full-color ads or launch huge
direct-mail campaigns. So word of the magazine spread

slowly, and instead of a steady circulation, it started tiny (400
subscribers for issue #1) and grew by several hundred each
issue until EarthWeb began producing the magazine with
issue #13.

For every issue there were new subscribers, many of whom
were new to Perl. Common sense dictated that I should
include beginner articles in every issue. But I didn’t like
where that line of reasoning led. If I catered to the novices in
every issue, far too many articles would be about beginner
topics, crowding out the advanced material. And I’d have to
find a way to cover the important material over and over,
imparting a fresh spin every time. Steve Lidie’s Perl/Tk
column was a good example: it started with the basics and
delved deeper with every article. Readers new to Perl/Tk who
began with TPJ #15 didn’t need to know about the intricacies
of Perl/Tk menus covered in that issue. They wanted to know
how to create a basic Perl/Tk application—covered way back
in TPJ #1. But if I periodically “reset” topics and ran material
already covered in past issues, I might alienate long-time
subscribers.

So I did something very unusual for a magazine: I made it
easy (and cheap) for subscribers to get every single back issue
when they subscribed, so they’d always have the introductory
material. This meant that I had to keep reprinting back issues
as | ran out. This is what business calls a Supply Chain
Management problem. The solution: my basement.

A side-effect of this approach was that the articles hold well
together: they tell a consistent “story” in a steady progression
from TPJ #1 through TPJ #20, with little redundancy between
them. TPJ was always a book—it just happened to be
published in 20 quarterly installments.

There is another advantage to having a book with programs
by 31 flavors of Perl expert: collectively, they constitute a
good sampling of Perl “in the wild.” Every author has his own
preferences—whether it’s use of the English pragma,
prototyping their subroutines, embracing or eschewing
object-oriented programming, or any of the other myriad
ways in which Perl’s expressivity is enjoyed. When you read
a book by one author, you experience a single coherent (and
hopefully good) style; when you read a book by dozens of
experienced authors, you benefit from the diversity. It’s an
Olympic-size meme pool.

Naturally, there’s some TPJ material that doesn’t hold up well
over time: modules become obsolete, features change, and
news becomes history. Those articles didn’t make the cut; the
rest are in this book and the two companion books, Computer
Science & Perl Programming: Best of The Perl Journal and
Web, Graphics, and Perl/Tk: Best of The Perl Journal.

Enjoy!

Finding Perl Resources

Beginning with TPJ #10, I placed boxes at the top of most
articles telling readers where they could find any resources
mentioned in the article. Often, it ended up looking like this,
because nearly everything in Perl is available on CPAN:

Perl 5.8 or later......iiiiiiineennnn CPAN
Class: it S A . i ittt ettt ettt e eeaneaneas CPAN
L 11 e I = CPAN
Class::Multimethods.................. CPAN

The CPAN (Comprehensive Perl Archive Network) is a
worldwide distributed repository of Perl modules, scripts,
documentation, and Perl itself. You can find the CPAN site
nearest you at http://cpan.org, and you can search CPAN at
http://search.cpan.org. To find, say, the Class::Multimethods
module, you can either search for “Multimethods” at
http://search.cpan.org, or you can visit http://cpan.org and
click on “Modules” and then “All Modules.” Either way,
you’ll find a link for a Class-Multimethods.tar.gz file (which
will include a version number in the filename). Download,
unpack, build, and install the module as I describe in
http://cpan.org/modules/INSTALL.html.

For information and code that isn’t available on CPAN, there
are “Reference” sections at the ends of some articles.

Conventions Used in This Book

The following conventions are used in this book:
Italic

Used for filenames, directory names, URLs, emphasis,
and for the first use of a technical term.

Constant width

Used for code, command output, program names,
functions, and email addresses.

Constant width bold

Used for user input and code emphasis.

Constant width italic

Used for code placeholders, e.g., open(ARGUMENTS).

10

Comments and Questions

Please address comments and questions concerning this book
to the publisher:

O’Reilly & Associates, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international/local)

(707) 829-0104 (fax)

There is a web page for this book, which lists errata,
examples, or any additional information. You can access this
page at:

http://www.oreilly.com/catalog/tp;3

To comment or ask technical questions about this book, send
email to:

bookquestions@oreilly.com

For information about books, conferences, Resource Centers,
and the O’Reilly Network, see the O’Reilly web site at:

http://www.oreilly.com

11

12

Acknowledgments

First, an obvious thanks to the 120 contributors for the three
books in this series, and a special shout-out to the most
prolific: Lincoln D. Stein, Mark Jason Dominus, Felix Gallo,
Steve Lidie, Chris Nandor, Nathan Torkington, Sean M.
Burke, and Jeffrey Friedl. Sean’s articles, in particular, are
well-represented in this book.

Next up are the people who helped with particular aspects of
TPJ production. TPJ was mostly a one-man show, but I
couldn’t have done it without the help of Nathan Torkington,
Alan Blount, David Blank-Edelman, Lisa Traffie, Ellen
Klempner-Beguin, Mike Stok, Sara Ontiveros, and Eri [zawa.

Sitting in the third row are people whose actions at particular
junctures in TPJ’s existence helped increase the quality of the
magazine and further its reach: Tim O’Reilly, Linda Walsh,
Mark Brokering, Tom Christiansen, Jeff Dearth, the staff of
Quantum Books in Cambridge, Lisa Sloan, Neil Bauman,
Monica Lee, Cammie Hufnagel, and Sandy Aronson. Best
wishes to the folks at CMP: Amber Ankerholz, Edwin
Rothrock, Jon Erickson, and Peter Westerman.

Next, the folks at O’Reilly who helped this book happen:
Hanna Dyer, Paula Ferguson, Sarmonica Jones, Linda Mui,
Erik Ray, Betsy Waliszewski, Jane Ellin, Judy Hoer, Ellie
Volckhausen, Sue Willing, and the late great Frank Willison.

People who helped out in small but crucial ways: David H.
Adler, Tim Allwine, Elaine Ashton, Sheryl Avruch, Walter
Bender, Pascal Chesnais, Damian Conway, Eamon Daly, Liza
Daly, Chris DiBona, Diego Garcia, Carolyn Grantham,

13

Jarkko Hietaniemi, Doug Koen, Uri Guttman, Dick Hardt,
Phil Hughes, Mark Jacobsen, Lorrie LeJeune, Kevin Lenzo,
LUCA, Tuomas J. Lukka, Paul Lussier, John Macdonald,
Kate McDonnell, Chris Metcalfe, Andy Oram, Curtis Pew,
Madeline Schnapp, Alex Shah, Adam Turoff, Sunil Vemuri,
and Larry Wall.

Finally, a very special thanks to my wife, Robin, and my
parents, Jack and Carol.

14

Chapter 1. Introduction

Programmers aren’t usually associated with culture, except
the sort that grows inside a fridge. But Perl is different; it’s
spawned an array of pastimes such as Obfuscated Perl and
Perl Poetry that perplex some outsiders but seem perfectly
natural to the renaissance hackers attracted to Perl. As Larry
says in Chapter 2, Perl is an intentionally postmodern
language, employing features of its ancestors with a
sang-froid that encourages Perl programmers not to take their
craft too seriously.

The seven sections of this book are a grab bag: 41 of the best
articles from The Perl Journal, plus 6 extra articles compiled
especially for this book. Together, they span the playful
aspects of Perl (with a rather broad interpretation of
“playful”).

Each of the seven sections—culture, science, language, games
and quizzes, poetry, politics, and obfuscated Perl—have their
own introductions, so let’s get on with it. First up is Part I,
where you’ll read about Perl’s postmodernism, how to
automate your household appliances, and other flavorful
topics.

Speaking for the Best of TPJ authors, we hope you enjoy this
collection, and that it inspires you not just to participate in
these pastimes, but to create your own new ones.

15

Part I. Culture

In this part:
Chapter 2
Chapter 3
Chapter 4
Chapter 5
Chapter 6
Chapter 7

In this section, six articles provide glimpses into the aesthetics
of Perl. The articles touch on music, art, style, conversation,
and the lifestyle of the lazy, impatient, and hubristic, in which
appliances do the programmer’s bidding.

We begin with the first article from the first issue of TPJ: an
essay by Perl creator Larry Wall that compares programming
languages to music. Two sentences from his article have
always resonated with me:

In trying to make programming predictable, computer
scientists have mostly succeeded in making it boring.

and:

LISP has all the visual appeal of oatmeal with fingernail
clippings mixed in.

16

Personally, I like LISP, and agree with those who think that
its Scheme dialect is ideal for teaching computer science. But
reading Larry’s sentiments made me realize why I defected
from LISP to Perl: programming languages shouldn’t make
everything look the same. When all code looks identical,
programming becomes a matter of rote instead of a creative
act of literary expression. It is that creativity that gave Perl its
culture, and is what gave rise to the topics covered throughout
this book, from the Obfuscated Perl contest to error messages
delivered in haiku.

Next, photographer Alan Blount chronicles the 20 TPJ covers.
Alan’s artwork sometimes sparked more reader mail than the
magazine content. The lack of visuals inside the magazine
made the external appearance of the magazine all the more
important, and I’'m indebted to Alan for all his work. As a
software developer, Alan understands what catches the eye of
hardcore coders like us, and as an artist he has the ability to
render that visually. A rare combination.

Kurt Starsinic follows with his article on calculating the
readability of Perl programs. As Kurt mentions, Microsoft
Word uses a relatively simple algorithm to determine the
readability of a document, but programs are tougher to
analyze. Kurt’s Fathom module makes clever use of the Perl
compiler to perform the analysis.

The next two articles are on home automation: controlling
appliances such as lights and fans from your Perl programs.
Bruce Winter begins with a demonstration of his popular
Perl-based MisterHouse system, and Bill Birthisel follows up
with a look under the hood at the X10 protocol that makes it
all happen.

17

Clinton Pierce concludes the section with an analysis of the
heavily trafficked comp. lang.perl.misc Usenet newsgroup,
dispelling the myth that it’s all heat and no light.

18

Chapter 2. Wherefore Art, Thou?

Larry Wall

I don’t know whether a picture is really worth a thousand
words (most pictures seem to be considerably larger these
days), but when I give talks about Perl, I often put up a
picture (Figure 2-1) showing where some of the ideas in Perl
come from.

Cormpurter Science

Perl Commaon

Linguistics Seiie

Art

Figure 2-1. The origin of Perl

I usually make a joke about Linguistics not really being the
opposite of Common Sense, and then proceed to talk a lot
about both of them, with some Computer Science thrown in
for good measure. But last December as I was giving a talk in
Stockholm, someone asked me how Perl got its inspiration
from

Art. I was stumped. I mumbled something semi-irrational
(always appropriate when discussing Art) and went on to the
rest of my talk.

19

But the question continued to bother me; or more specifically,
it continued to bother my left brain. My right brain continued
to be perfectly content with the purported connection.
Unfortunately, it’s also not at all forthcoming with the
verbiage necessary to explain itself. Right brains tend to be
like that. So let me see if my left brain can make something of
it all.

Art is first of all based on the notion that there exist amoral
decisions; that is, choices you can make either way, without
feeling like you’re being naughty or nice. So let’s presume
that the Artist has free will of some sort or another, and can
therefore behave as your ordinary, everyday Creator.

Now, it’s more or less immaterial whether your Artist creates
because of a liking for Deluxe Designer Universes or merely
because of a liking for caffeine. The simple fact is, we have
Artists, and they do

Art. We just have to deal with it. We really do. You can make
life miserable for the Artist, but the Artist has ways of getting
revenge. (Of course, if you don’t make an Artist miserable,
they’ll make themselves miserable, but that’s a different

story.)

We can further subdivide the Artists into those who enjoy
getting their revenge by being more than properly miserable,
and those who prefer to get their revenge by being /ess than
properly miserable. Artists of the first sort will prefer to work
in a more formal medium, one that inflicts extra pain on the
Artist, such as composing sonnets, dancing ballet, or
programming C++. Artists of the second sort tend to be much
more fun-loving, free-wheeling, and undisciplined, whether
the verb in question is composing, dancing, programming, or

20

slinging. (Especially slinging. There’s nobody quite so joyful
as a B.S. artist. [should know...)

There is, of course, a third category of Artist, the one who
oscillates between the two extremes.

Perl was written first of all to let the Artist make amoral
decisions. That’s why the Perl slogan is “There’s More Than
One Way To Do It!” Perl doesn’t really care whether you use
cobalt blue or burnt umber in a particular spot in your
painting. It’s your choice—you’re the Artist. You're
responsible for the overall effect. Indeed, your boss will hold
you responsible for the overall effect, so why should Perl?

But more than that, Perl is intended to be a medium for those
who are tired of composing in a formal computer language,
and want to write some “free verse” without arbitrary
restrictions. Sure, from a motivational point of view, arbitrary
restrictions are challenging to work with, but when’s the last
time you saw a gleeful COBOL programmer?

On the other hand, with Perl 5, we’ve made strides in making
life wonderful for those Artists who oscillate. You can have
your cake and eat it too. When you’re in a manic mood, you
can pour forth unstructured, unreadable (but expressive) code
to your heart’s content. Later on, when you are in a dour
mood, you can put a -w and a use strict at the top of
your script and greatly increase your level of discipline (read
“pain”). Next, you can prototype your function definitions.
While still in your somber state, you can go back and put
whitespace in all your regular expressions and comment every
last little bit as penance for your past indiscretions. You can
restructure all your code into modules and unit test it in a jiffy
because the Perl interpreter is so handy to invoke. Then as

21

you swing back into a more carefree frame of mind, you can
cheat by tweaking all those carefully encapsulated variables
in all those painstakingly restructured modules. Ain’t it the
life.

Now, Linguistics may not be the opposite of Common Sense,
but it’s certainly the case that over the last twenty years or so,
many Computer Scientists have come out in opposition to the
Art of Programming. In trying to make programming
predictable, they’ve mostly succeeded in making it boring.
And in so doing, they’ve lost sight of the idea that
programming is a human pursuit. They’ve designed languages
intended more to keep the computer happy than to keep the
programmer happy. Was any SQL programmer ever happy
about having to declare a value to be varchar (255) ?
Oops, now it’s a key, and can’t be longer than 60. Who comes
up with these numbers?

Computer Scientists have also lost sight of the idea known to
any Artist, that form and meaning are deeply interdependent.
One of the ideas I keep stressing in the design of Perl is that
things that are different should look different. The reason
many people hate programming in Lisp is because everything
looks the same. I’ve said it before, and I’ll say it again: Lisp
has all the visual appeal of oatmeal with fingernail clippings
mixed in. (Other than that, it’s quite a nice language.)

A large part of the design of Perl is driven by the dictates of
visual psychology. That’s why Perl lets you structure your
code with the condition on the left or on the right, depending
on which part you want to look important. That’s why the
large nested structures like while loops require an explicit
beginning and end, while the small ones like list operators
don’t. That’s why scalars start with $, arrays with @, and

22

hashes with %. That’s why file test operators look like —-M,
while numeric tests look like ==, and string tests look like
eq. Perl is very much a What-You-See-Is-What-It-Does
language. You can talk about readability all you like, but
readability depends first and foremost on recognizability.

Music to My Ears

Like many computer geeks, much of my artistic training has
been in music. Of all the arts, it most clearly makes a
programmer/interpreter distinction, so perhaps it’s natural for
a musician to think about how interpreters work. But the
interpreters for a computer language are located both in the
computer and in the human brain. I don’t always know what
makes a computer sad (or happy), but I do have a pretty good
idea what makes a person mad (or sappy). Er, sorry.

Anyway, when I was young, I was taught that music has
progressed through four major periods:

Baroque,

Classical,

Romantic, and Modern. (The other so-called fine arts have
also gone through these periods, though not necessarily at the
same rate.) | always thought it rather curious that we called
the current period Modern, since definitionally the idea of
modernity seems to be a permanently latched-on state, bound
to the cursor of time, so to speak. But that was because the
word “modern” still meant something back then. This was,
after all, the 1960s. Who could have guessed that

Modern period would be followed by the Postmodern?

If you’re willing to concede by now that the design of
computer languages is an artistic medium of sorts (and

23

searches), then it’s reasonable for us to ask ourselves whether
programming languages have been progressing through the
same sequence of artistic development. Certainly, people
have occasionally claimed that Perl is “Baroque,” to which
my usual retort is, “Thanks, I like Bach too.” But this is
merest rhetoric (on both sides).

So what do we really mean when we talk about these periods?
Let’s start at the beginning, which is the Baroque period. Of
course, it’s not really the beginning. People were producing
music long before they ever invented the bucket in which to
carry the tune. But before and during the Baroque period,
there was tremendous technological progress in both the
production and publication of music. Composers and
performers could make a name for themselves. Innovators
were rewarded, but the forms of expression were heavily
influenced both by cultural expectations and by available
hardware. People were expected to improvise. What we got
was more or less the Cambrian explosion of music.

Similarly, at the dawn of the computer era, there were new
opportunities to innovate. The geniuses of that period
improvised many forms of assembly language. To them, these
languages all looked very different. But nowadays we tend to
see all assembly language as the same, just as a lot of
Baroque music seems the same to us, because the music tends
to follow particular forms and sequences. Baroque music is
structured like a weaving on a loom, and it’s no accident that
punch cards were invented to run looms before they were
used to run computers.

It’s easy to take a superior attitude toward these innovators,
but this is unfair. We owe a great debt to these people. They

24

invented the algorithms we use, even if the music does seem a
bit limited at times. (Except for Bach, and Backus, of course.)

The Classical period was a time of standardization. Most of
our modern instruments took their current form during this
period, and this continued the trend of turning virtuosity into
a marketable and portable commodity. Being able to program
in FORTRAN was like being able to play the pianoforte. It
was a skill you could use on someone else’s machinery.
Mozart could now go on tour.

The Romantic era was a time of seeing how far the classical
forms could be stretched. And considerably stretched they
were, in Beethoven and Mabhler, as well as PL/1 and COBOL.
The word “excessive” has been applied to all of them, as it
will always be applied to anyone or anything that attempts to
sling the entire universe around by any of its handles. But this
is difficult at the best of times.

Finally, the typical overreaction took place, and we arrived in
the Modern era, in which subtlety and minimalism were
mandated, and antiquated cultural expectations were thrown
over and thrown out. Reductionism and deconstructionism
were the order of the day, from Bartok to Cage, and from
Pascal to C. Music wasn’t allowed to be tonal, and computer
languages weren’t allowed to do fancy I/O. All the gadgetry
had to be visible and exposed. Everything had to look
difficult, so we got stuck in the Turing Tarpit.

Of course, this is all oversimplified, and every language has
aspects of each of these periods in it. And languages
specialize in other ways: BASIC is like pop music. Tune into
REXX for your easy listening classics. Tcl is fuzzy like
jazz—you get to improvise a lot, and you’re never quite sure

25

who is interpreting what. Python is like MTV—it rocks, but it
gets to be much of a sameness after half an hour or so.

Lisp is like church music down through the ages, adapting to
whatever the popular culture is, from organ to electric guitar
to synthesizer. That would make Scheme a kind of cult music,
sung simply but with great fervor to an acoustic guitar.

C++ is like movie music, of titanic proportions, yet still
culturally derivative by and large. Especially large.
Sometimes it’s hard to sit through the whole movie. And yet,
as an intentionally Postmodern language, it’s kinda fun, and
gets the job done.

As for Java, using a subset of movie music, it’s attempting to
be the basis for every good feeling everywhere, the ground of
all emotional being. Muzak. It’s everywhere you want to be.

Shell programming is a 1950’s jukebox—great if it has your
song already.

And, of course, any language touched by ANSI starts to
sound distinctly operatic.

So where does Perl fit in to this glorious mess? Like C++,
Perl is a Postmodern language by design, unashamedly
reconstructionist and derivative. Perl is neo-Baroque,
neo-Classical, neo-Romantic, and even, in spots, neo-Modern.

What musical genre encompasses so much? Where can you
find everything from Wagner to “Shave and a Haircut, Two
Bits?” Where can you find multiple levels of abstraction,
accessible to newbies and oldsters alike? What kind of music
admits everything from harmonica to accordion to pipe
organ? What music is object-oriented, in good one-to-one
correspondence with the main action? What music is good for

26

programming in the small, but can be expanded to feature
length as necessary? What music parodies everything in the
world, yet leaves you feeling good about the world? What
music is Perl?

Why,
cartoon music, of course.

That’s all folks!

27

Chapter 3. TPJ Cover Art: From
Camels to Spam

Alan Blount
TPJ #1: The Camel

28

The Perl Journal

A QUARTERLY NEWSLETTER DEVOTED T THE PERL PROGEAMMING LANGUAGE
VOLITME 1, 8508 1 $5.00

Figure 3-1. The Fiesta 12" stuffed camel

Date: Fri, 1 Dec 1995 23:28:16 -0500
From: Jon Orwant
<orwant@fahrenheit-451.media.mit.edu>
To:

29

blount@media.mit.edu
Subject: resume' stuffer

Wanna be Photo Editor for The Perl
Journal? You'll get your name

listed in the masthead, plus $50/issue,
plus expenses paid, plus

a free subscription.

I'd use your fun fotos for all

cover pictures, and maybe for some

inside stuff too. F'rinstance, here's what
I was thinking for the

premiere issue: a dorky looking camel (buy
a stuffed camel and treat

it like a product shot), shot
portrait-style, like Time's "Man of the
Year." (Sunglasses, cigarettes optional.)

Think "WIRED".

I want striking, cool covers. You up for a
little creativity? WHAT
SAY YOU? Lemme put you on the payroll. You
won't regret it. No sir.

As The Perl Journal ‘s Photo Editor, I photographed covers
for 18 of the 20 standalone

TPJ magazines. I’'m not a professional photographer. I’ve
done occasional portrait and catalog work—beginning when
Jon and I worked together at the MIT Media Lab—but I’ve
never tried to make a living at it. (I’'m a software developer by
day, and my language tastes tend toward Python.)
Nevertheless, when Jon told me he was thinking of starting up
a Perl magazine and asked me to take care of the covers, I
figured, “Why not?” The collaborations Jon and I had

30

previously attempted, through classwork and extracurricular
projects, had always proven entertaining.

The concept for the premiere issue wasn’t much of a stretch.
“Uhhhh, what visually represents Perl? My God! O’Reilly’s
camel! But ours will be stuffed...and fuzzy! And...” You get
the idea.

The photo was shot on 35mm in a snowbank behind my
Somerville, MA apartment on a cold January afternoon. I was
hoping the snow would come out looking like the shifting
desert sands, but due to production troubles and my
poorly-conceived high-key shot, the final result came out
pretty illegible, branding us as the bunch of amateurs we
were. A second printing improved the contrast a bit, but the
concept remained: a fuzzball camel standing out in the cold. I
failed to do Jon’s idea justice, but he kept me on nonetheless.

31

TPJ #2: The Pearl

Date: Sat, 6 Apr 1996 17:23:03 -0500
From: Jon Orwant
<orwant@fahrenheit-451.media.mit.edu>
To: blount@media.mit.edu

Subject: Quantum

On my way back last night, pressed my nose
up against the Quantum

Books window to see if they put TPJ on the
front rack, or the back

rack (old issues and NeXTSTEP handbooks).
Front rack: above Forbes, to

the right of Byte, and diagonal from
WiReD. At eye level. Rock on.

32

The Perl Journal

A QUARTERLY NEWSLHTTER DEVOTED TO THE PERL PROGRAMMING LANGUAGE
VOLUIME |, I55UT 2 $5.00
Susmer 1956

Per] 5 | el The Human Genome Project

Figure 3-2. The Swarovski little clam

TPJ #2 provided strong competition with TPJ #1 for “most
literal interpretation of Perl.” Orwant had found a lovely
crystal oyster somewhere, and I had just the macro lens for it.

33

I shot it on 35mm in full sunlight against black velvet on the
roof deck at NetCentric Corporation (now deceased), my day
job. I went for extreme contrast—we’d have no more
indecipherable camels, thank you. While we didn’t have a lot
of concept going, I liked the resulting image, with the
specular (the glint of light) placed just-so on the crystal pearl.
I’ve read that pro glassware photographers will spend hours
or days tweaking tabletop shots with tiny pieces of paper and
tinfoil positioned off-camera to create reflections where they
want them.

34

TPJ #3: RSA on Greenbar

Orwant had an article on

steganography in this issue, about how to hide

secret messages in plaintext. It was fitting, then, to hide a
secret message on the

cover: if you read alternating characters on the third line from
the bottom, you can see my hidden message. (Remember, I'm
a Python fan.) I only told Orwant after the issue went to press,
but he seemed to take it OK.

35

B IVELY M ik

T'he Perl Journal

Figure 3-3. RSA-in-3-lines-Perl, and the artist’s conception
of same. Dot matrix on greenbar, 1996

The image is a composite. I pinched a couple sheets of old
greenbar paper from my weekend job teaching LEGO/Logo at
the Boston Museum of Science, and used their antiquated
dot-matrix printer to render the copy on plain white paper. I
then photographed both on 35mm black-and-white negative,
and passed the negs to our production people, who

36

composited the images, adding the green back in to the
monochrome photo.

For the detail-obsessed, the line noise was generated by firing
up Emacs on “RSA-in-three-lines-of-Perl”
and scattering a bunch of Ctrl-t’s around.

37

TPJ #4: Etch-a-Sketch.

Tbe Perl | oumal

e EvoTEn 70 TeE e peog

Raegulsr Expresgiont « Object Oriented Programming » Pard{Th + CGI Soripting
Aamdemneass - Embsedding Peel im C - Using Uaanat lram Parl « Maw Modules

‘Iumlml r[readable.com

Figure 3-4. The Perl interface to the GNU “Hello World”
program enables the Radio Shack Armatron to render text
on an Ohio Art Etch-a-Sketch

The first full-color

38

cover! With profits from his burgeoning Ph.D. stipend,
Orwant came up with the big dollars needed to front for color
covers, enabling the publication to look a bit less like
“Maximum Rock-and-Roll” or “R2D2 Is An Indie Rocker”
and more like a professional publication.

Orwant said that this was when people started taking the
magazine seriously. The content was the same as previous
issues, but only when the cover went glossy and full-color did
people stop calling TPJ a newsletter and start calling it a
magazine.

The photo was shot with a Burke and James 5 x 7" monorail
with the 4 x 5" reducing back and a Komura lens in a Copal
#1 shutter, on a NetCentric conference table. And yes, the
sketch was faked. That’s what photographers do. We fake
everything.

39

TPJ #5: Commodities

The Perl Joutnal

. -l'\- caf At P gAzE s pEveTED To THEPELL FaoGE ATl A HO A
y .

Parl in the Futures Market
plus

Regular Exprossions « GG

Database Engines « Perd/Th

Perd News « Hocket Science

Sciantific Progeemming - X

Figure 3-5. LEGO guys speculate on commodities. Some
lose shirt, some make millions. Perl makes the difference

Orwant had an article on “Futures Trading with Perl,” so we
decided to create our own futures pit in my apartment with

40

coffee beans,
red beans, and rice.

A lot of readers liked this one, but I was never too big on it. I
like “high concept” shots—this one seemed sort of muddled
to me. It was shot in early spring 1997, on 4 x 5" Fuji Velvia.

And what to do with the leftovers? The coffee went quick, but
in 2002 I still haven’t eaten all the small red beans (Goya) or
rice (“Bombay Basmati”’). I made some ham and beans the
other night with some of the Goyas. It came out pretty good,
for five-year-old beans.

41

TPJ #6: Scrabble

The Perl Journal

A CUARTRELY MAZAZING DEVOTID T0 TH8 PIND PEOCRAMMING LuNGUAGE

;:Hli-:x?:.nu 1) B 5 (b)

{=[r[=[s[>[=]]~]
;Eln-hllrm" =

Surwdials « Autolosding « I Graphics « Information Retrisvsl « Randomness - CGI
PesliTh + Just the FAQs - Perl News « The First Annusl Obiuscated Perl Contest

IMIJ 1 tpj.com
o Eruga i ¢ Pumesmen oy Rreapasie Pusicanioss

Figure 3-6. Why Perl programmers make lousy Scrabble
players

Orwant may have wanted this
cover to allude to the Obfuscated Perl Contest in the issue. Or
perhaps to the articles on randomness or information retrieval.

42

Either way, this was visually where I wanted to take TPJ. The
shot was clean, used whitespace well, and the high resolution
of the 4 x 5" transparency enlarged to a grainless image. More
importantly, it had the comic tone that we were looking for.
Readers liked it, and subscriptions were going up (perhaps not
entirely due to the covers).

“Scrabble” was shot on 4 x 5” on the floor of my apartment in
Somerville. Orwant supplied the “nonstandard” tiles. He tells
me that, fed into a Perl interpreter, this board actually
executes. And he wonders why I like Python.

43

TPJ #7: Spiderball

Figure 3-7. Here it comes

The centerpiece is a Microsoft creepyball that one of
Orwant’s friends scored at a tradeshow. It’s menacing the
“pearl,” a Brian

44

Dubé silicone juggling ball. Orwant adds, “This was around
the time that many people in the Perl community were
worried about Microsoft embracing and extending Perl
through ActiveState.”

This was the first shot made in my new loft. Tech details: 4 x
5" Fuji Velvia, Speedotron strobe through a softbox, shot
against white seamless.

We were trying to elicit a sense of foreboding. Did it work?
Note that this was the first and only image that “violates the
title,” just like Springsteen’s head in front of “Rolling Stone,”
and most O’Reilly animal covers.

45

TPJ #8: The Coffee Cup Fiasco

Figure 3-8. Good to the last drop

Around this time, every computer magazine had an issue on
Java, and each had the same boring

cover: a coffee cup. For the TPJ issue on Java, I wanted an
alternative interpretation. This one generated some fan mail.

46

Date: Thu, 18 Dec 1997 22:06:46 -0600
Subject: cover "art"
From: [a subscriber]
To: letters@tpj.com

Hi TPJ,

I love TPJ, but I want to be one of the
first to tell you that the cover

of Issue #8 1is pretty revolting. Inside
good; outside revolting. Please

try harder!

Thank you.

Date: Mon, 22 Dec 1997 08:09:22 -0700
From: [another subscriber]
To: staff@

tpj.com
Subject: Issue #38

Cover

I don't know what point, if any, you were
trying to make with the

cover of the Winter 1997 (Issue #38)
edition, but I found it to be

absolutely disgusting. I would hope you
would have better taste

than that.

From: [yet another]
To: letters@tpj.com

Subject: Comments on Winter 97 issue TPJ

I think your magazine 1is good. But the
Cover was in bad taste. A

47

cigarette Dbutt floating in coffee is
sickening. I covered it with my
own art.

More comments:

Even though I might not read all the
articles, I appreciate the

variety offered. My main reason for

providing this feedback is to

express my intense dislike of the coffee
cup cover photo. I am usual

quite careful with how I treat my

periodicals since I use them for

reference after having read them. But the
coffee cup grossed me so

much that I ripped the cover off before I
stared reading the

magazine.

Thanks for an otherwise informative and
enjoyable magazine.

Also:

I began to pick up the magazine from the
top back rack where the Barnes

and Noble I go to keeps it. As my fingers
closed around it I thought,

"Good! It seems thicker this issue!". As I
began to 1lift it I saw the
reference to Java and I thought "This

looks good!".

Then I saw the cover. Retching violently I
dropped the disgusting image

as quickly as I could. I cannot believe
that the person who allowed that

cover to go out has anything to do with
computers. Isn't the hacker

48

aversion to the insanely stupid and
disgusting form of self-abuse called
smoking known over there?

I will not buy this issue of the Journal
which is sad as the contents

based on this questionaire look
fascinating but I will not suffer to gaze
upon that cover ever again.

Thank God I have not vyet subscribed!
Stupid! Stupid!

I went all the way out to E.P. Levine’s (a pro photo shop) on
Boston’s waterfront to pick up the Formica-looking cardboard
tabletop. So sorry.

49

TPJ #9: Drummer/Coder Wanted

The

A GUARTERLY
T (V0L 3, Mo 1)

Figure 3-9. Funktion (opening for § , The Scalar Formerly
Known As ARG)

Back in college, I made a lot of posters for dorm parties,
student-produced cable shows, and the like. Orwant and I
thought it’d be entertaining to cross the DIY punk stolen

50

photocopies poster aesthetic with corporate HR. The Rapture
background added that religious element so pervasive in
programming.

This was shot on 35mm, on McGrath Highway at Twin City
Plaza in Somerville. The Band:

Sigue Sigue Sputnik. The computer: TRS-80 Model 100. The
“Rapture” poster below has since been painted over, although
you can still see them plastered throughout Boston.

51

TPJ #10: The Underwood
Typewriter

Tbe Perl]orumal__l

INE DV T

i dp i e W A B
iR S
ah D ol e b e e e

F"‘bifﬂf,‘llml*“““m

Y e
I

I tpj.com

Figure 3-10. The only machine that Perl doesn’t run on

This was our finest hour. I picked up the typewriter at an
antiques store in Colorado, and shot on 4 x 5” on white

52

seamless. Orwant supplied the copy, except for the “using 1
for 1” gag—that was mine.

Once I installed gcc, the rest of the configuration went fine.

TPJ got a lot of requests for making this
cover into a poster or screensaver, but Orwant’s taste for Perl
novelties began and ended with his Magnetic Perl Poetry Kits.

53

TPJ #11: The Conspiracy

This is the first of several that I produced entirely, including
the heading and all the overlaid text, which explains why it
looks so crappy. Rather than buying barcode software,
Orwant wrote a barcode generator in Perl and generated a tiff.
I cut the entire thing together in Photoshop, The Gimp, and
PowerPoint. Yes, PowerPoint. Several

TPJ covers were laid out in PowerPoint. What, pay for
[lustrator?

54

AL UARTERLY MAGAZING DEVOTED T
Issue min (Wil 5, N

. ||
11 =T
'M” B 1p).com

Purad gt Riansni s PUBLICATIONS, [

Figure 3-11. -X File: The true value is out there

I didn’t have much of a concrete idea for this issue. I was
trying to put an X-Files spin on the Cult of Larry, or
something. The film reel in the shot is 1970s 8mm prOn.

That’s Larry at the lower left, and a Luxo lamp to his right.
The printouts are a collection of Larry’s quotes.

55

We were back to shooting on 35mm. Jon bought me a Nikon
Coolscan, which cut several days off of production time for
each

cover.

56

TPJ #12: The Atari Perl Cartridge

Do you think we fooled anyone with the Perl

game nestled in the stack of

cartridges on the left? It took several hours of tweaking the
image with The Gimp to get the look right. Yes, that’s an
original Wico Bat Handle stick in the background. And my
old Sears cartridges from circa 1980. “Target Fun” rocks.

WARLORADS™

U i

TP).COnl

57

Figure 3-12. Game over

Shot on 35mm with a Nikon FM2.

58

TPJ #13: Dance Remixes

Another Gimp extravaganza. Boy do I suck at layout. We
started with an ActiveState Perl CD-ROM, and my antiquated
Sony

Discman.

Orwant and I were pretty conscious of falling into the trap of
doing too many “Look—Perl in an unexpected place!”
covers. After the Armatron, Scrabble, typewriter, Atari
cartridge, and finally the CD, the concept had pretty much run
out of steam. It was time to move on. Ripping on Microsoft is
always good for a few laughs....

59

AML =+ The Perl Scripts Archive = Spoading Up F'an.l Fu'rnnu;mg

SPFEING s

Perl and MIDI;
l¢ Languages,
asy Music

-~

N

M:'II‘MI

Figure 3-13. D.J. Larry Dogg and the Porterz bring their
unique retro-millennial page-thrashing funktions to a stereo
near you. Shout-out to the Mixmasta Gimp 1.0

60

TPJ #14: Outlook Not So Good

Did anyone get this? Anyone? [Tap tap] Is this thing on?
Outlook could either be construed to mean the Microsoft
product of the same name, or the sale of TPJ to EarthWeb.
The best art allows the viewer to interpret the art in his or her
own way.

One improvement from the

EarthWeb buyout is that we got Real Designers to help with
the

cover. That’s why the title isn’t grainy and aliased.

It’s a real pain to make a

Magic 8 ball look good on film. Do you show the hand
shaking the ball? Do you want the black plastic to shine? And
if you’re not careful, every time you move the ball in the shot,
you have to re-shake it to make “Outlook not so good” appear
again. I guess that’s why professionals have photo assistants.
“Assistant, go shake the 8 ball.”

Shot on 35mm, with a Nikon FM2.

61

The Perl Journal

Sending Mail from Perl

oo T

Figure 3-14. The spirits care not for Microsoft’s mailer

62

TPJ #15: Braille blocks

I had nothing to do with this one. Didn’t even collect a check.

This issue contained an article on

Braille (Chapter 17), and author Sean M. Burke got his friend
David

Ondrik to take a photo of the Braille tiles (made by
Tack-Tiles, Inc. at http://www.tack-tiles.com/).

The text spelled out is “<capital>The <capital>Perl
<number>5 <com>pil<er> r<ea><ch><ed> I<in>e
<number>850 <and> di<ed><period>.”

63

Threndls SO0L Wisaai Debugging Perl oa NT

The Perl Journal

A QUARTERLY MACAFINE DEVOTED TO THE PERL PROGRAMMING LANMGUAGE
ERALE @05 (WO &, PR 5 FALL 1

Braille and Regular
EXPRESSIONS

QI“ITHWII

Efafcmim

Figure 3-15. Alphabet blocks in Braille

64

TPJ #16: e. e. cummings’
Gravestone

Oh, the irony. The famous poet, known for his penchant for
lowercase letters, memorialized in all caps. This was for a
special issue on poetry in Perl, containing Chapter 37,
Chapter 38, and Chapter 39.

Orwant and I spent a couple of hours searching Forest Hills
cemetery for the

headstone on a beautiful fall day. It’s too bad we didn’t bring
an industrial blow-dryer to clear the rainwater off the stone.
Note the precisely positioned leaf at the lower left—that’s
Orwant’s brilliant

art direction.

We visited the cemetery on October 14, 1999, which
(unknown to us) happened to be e.e.’s birthday. Eerie.

65

Apache and MP3s - Perl and Java © The Perl Pestry Conbest

The Perl]aurndl

A CUARTERLY MAGATINE DEVOTED T THE PERL FROCEAMMING LANGUALE

ESFLE o1 iV & Mk & WINTER 1%

o 5% .
. 1. 3 Gk e o
I“ OLnktnwan

73470 W0E i

Figure 3-16. e.e. cummings was one of the most innovative
contemporary poets, known for using distorted punctuation
and syntax to convey subtle shades of meaning. His name
was most often spelled in all lowercase, and the theme of
birth pervades his poems

You just don’t see a lot of lowercase on headstones these
days. I wonder if, with the current SMS/IM aesthetic, we’ll

start getting “hr 1i3x william denny, aka b1trOOtr, once 133t,
now ded. peece out beeatch.”

66

TPJ #17: Napster

This was back when Napster was just starting to take off, and
Lincoln Stein had an article inside on automating Napster
searches with Perl. I would have loved to have shot this

cover for some record industry magazine.

I’m indebted to Jon
Dakss for most of the
vinyl. That’s my own sad 1990s CD collection.

67

Is Usenet Dead? WTML: Mason The Perl Poelry Contest

The Perl Journal

A QUARTERLY MACATINE THWOTEL T THE FEXL PROGRAMMIRNG LANGUAGE
ISSLIE #17 (VDL 5. N0 | AN Doee

-t e b
Hifac i Has Mo i Hag e o

1970s 1990s 2000

Eh‘snate your home with Perl!
|I|i'“|':i‘:'|-m I

L] Object-oriented ?-m:?mmrning

B Pacsing HTML
Figure 3-17. One Boston college dorm saved money
recently by buying a cheap PC instead of a stereo and
downloading MP3s instead of buying CDs. Pictured: vinyl
LPs, CDs, and disk drives

68

TPJ #18: Spam

To: Jon Orwant <orwant@tpj.com>
From: Alan

Blount <blount@alum.mit.edu>
Subject: Re:

cover foto

It was a throwaway shot at the end of the
roll. Shutter speed was too

slow to handhold the focus well. Hence the
blur on the spam.

But that's not your story. It's Dblurry
because it's Art. We're

looking to set a mood here. A sort of
drunk mood, after a party,

coming back to the apartment, and there's
spam in your mail, which you

can't guite recognize at first because of
your blurred vision.

69

PerlTk + Wondnet - 30 Graphs - Design Patterns
— o

LAICy bl L] Sl

AQUANTERLY MALG |-'t|'|-"-'|-'ii|:' T THE PERL PROGRAMMING LANGUAGE

B

Figure 3-18. Spam visits Apartment 12B

Simon

Cozens had an article in this issue on filtering mail with his
Mail::Audit module, so we decided on an homage to SPAM
for the

cover. Hormel has this to say about use of their delicious meat
product to mean

Unsolicited Commercial Email:

70

We do not object to use of this slang term to describe
UCE, although we do object to the use of our product
image in association with that term. Also, if the term is
to be used, it should be used in all lowercase letters to
distinguish it from our trademark SPAM, which should
be used with all uppercase letters.

This slang term does not affect the strength of our
trademark SPAM. In a Federal District Court case
involving the famous trademark STAR WARS owned
by LucasFilms, the Court ruled that the slang term used
to refer to the Strategic Defense Initiative did not
weaken the trademark and the Court refused to stop its
use as a slang term. Other examples of famous
trademarks having a different slang meaning include
MICKEY MOUSE, to describe something as
unsophisticated; TEFLON, used to describe President
Reagan; and CADILLAC, used to denote something as
being high quality.

This was shot in a New York City co-op on 35mm, using
existing light.

71

TPJ #19: Monopoly Money

." A QUARTERL rm NE m\iﬁw n-mnﬂ, mx@im:h, .

S 19 0 ’.!un
.

: Lihu.i. -'..-M-«O

TR S0 N D

L
% L. i
3 = = - —
=z _:_ =
EARTHWEB
Moy
™y

& i q:-_j.muf

Figure 3-19. Monopoly money

There were two articles on Perl’s finance modules in this
issue, so I trotted out my old Monopoly game and scanned in
some money, whitewashing the resulting image a bit so you’d
still be able to read the text overlaid on top. No camera

72

involved—just my new flatbed scanner. I love the high-res
detail.

As much as I like this

cover, it’s unfortunate that we didn’t find some way to allude
to the “DeCSS in English” article, which shows the output of
a program that uses Perl to convert C to English, applied to
the DVD decryption software.

73

TPJ #20: WAP

A digital photo by Michael
Davis. The last Earthweb issue. The last
Blount issue. And the first human—Dan Brian—on TPJ!

------------- y Confest LDAP r Giade * Databases

T/Jﬁ Perl Journal

JARTERLY MLAC: D TONTHE PEEL RS R

Gnome =

Figure 3-20. Dan Brian demonstrates the promise of WAP

74

It’s not that I don’t like portraiture. We had never attempted it
before for two reasons. First, Perl geeks don’t photograph
well. It’s not that they’re only-a-mother-could-love-them
ugly, but we’re not exactly in the beauty industry here. The
second reason is that while there are certainly many Perl
luminaries who merited a cover photo, the logistics of getting
to the same physical location were more than we could
manage. Most of the covers were shot sometime between
midnight and 4 a.m. the night before (or a few days after)
deadline—not the best time to ask someone to pose for the
camera.

But I really dig Dan out in the snow. The fog on his glasses
makes the shot.

With TPJ #20 and the sale to CMP, my TPJ tenure ended. I
had a great time.

75

Chapter 4. Perl Style

Kurt Starsinic

What is good coding practice? What is readable
code?

For some programmers, these questions lead to heated
arguments. In the relatively young field of programming, it’s
natural that generally accepted rules of

style and usage haven’t yet emerged. Fortunately, our
colleagues in the more mature field of philology (the study of
language as used in literature) have set examples that we can
follow. In this article, I’1l describe

Fathom, a module that grades the

readability of Perl programs.

Background

You may have experience with the grammar check feature of
some word processors, which finds likely spelling, grammar,
and usage errors in your documents. These tools can be quite
useful, particularly for people who don’t do much writing, or
for people who haven’t had much writing instruction.

As a programmer who works mostly in teams, often training
new or junior programmers during time-critical projects, I
want automated ways to encourage compliance with team
coding standards. I know that such tools can (and do) work
for business writing, but I’ve been unable to find a tool that

76

would do the job for business coding. I did some investigation
to see if any of the available grammar checkers could be
adapted for use with program

code.

77

Existing Measures

There are many well-known measures of

readability in literature. You may have heard of
Flesch-Kincaid, FOG, SMOG, Bormuth, or other readability
or grade level tests; Microsoft Word uses three
Flesch-Kincaid tools to evaluate style. These tests generally
look at the average number of syllables per word and the
average number of words per sentence, then report a single
number which indicates either the grade level (1-12) or
readability (usually 1-100) of the document. As an example,
the Flesch-Kincaid formula for determining the grade level of
a document is:

((average sentence length in words) *

0.39)
+ ((average syllables per word) * 11.8)
- 15.59

Unfortunately, these measures don’t map well onto code; for
example, how many syllables are there in ++ or { or $ 2 Is
select easier to read than gethostbyname?

Once I realized that I wouldn’t be able to simply run one of
the prose-readability tests on my code and get meaningful
results, I began to study the design and function of those tests.
Then, I constructed a working model for

code readability.

78

The Basic Units

After thinking about tools like Flesch-Kincaid, and discussing
the idea of a readability tool with colleagues, I came up with a
basic model for a
code readability metric. I decided to measure the number of
tokens
per expression, the number of
expressions per statement, and the number of
statements per subroutine. Some sample tokens:

++

Sfoo::bar

’

{
& &
any keyword

Some sample expressions:

0.2
($Sa + 6)
wantarray ? @a : O

And some sample statements:

Sa = $foo::bar * 7;
Sx++;

79

The Tool

Given the basic model I’ve described, I wrote a module,
Fathom, that grades the

readability of a

Perl program. It rates on an open-ended scale, where 1
indicates a trivial program, 5 indicates “mature” code, 7
indicates very sophisticated code, and anything over 7 is Very
Hairy. I established the following norms for mature code:

3 tokens per expression
6 expressions per statement
20 statements per subroutine

From this, I came up with the following formula:

code complexity

((average expression length in tokens)
* 0.55)

+ ((average statement length in
expressions) * 0.28)
+ ((average subroutine length in

statements) * 0.08)

If you plug the norms (3, 6, 20) into this formula, you’ll see
that ideal mature

code actually gets a score of 4.93; that’s because I rounded all
the multipliers to two decimal digits, to keep things simple.

80

Usage

First, you’ll need to install
Fathom. You can find it on CPAN, under authors/id/K/KS/
KSTAR.

After installing Fathom, you can invoke it as follows:

perl -MO=Fathom filename

The output looks like this:

315 tokens

97 expressions
17 statements
1 subroutine

readability is 4.74 (easier than the norm)

81

Why This Should Be Hard To Do

Perl is an unusual programming language, in that it has
dynamic syntax; that is, any programmer can write code that
extends or changes the syntax

of Perl. Consider the following code:

use Mystery;
if (mystery /1/

You can’t parse this without knowing about Mystery . pm!
Let’s consider two different versions of Mystery.pm.
Version 1:

package Mystery;
sub main::mystery { return 5; }
1;

Version 2:

package Mystery;
sub main::mystery() { return 5; }
1;

These two packages are almost trivially different. They both
define one function, named mystery, which returns the
value 5. However, the second version uses a prototype. In the
first case, our program parses as:

if (mystery(the results of matching the
regular expression /1/ ...

In the second case, it parses as:

if (mystery () divided by 1 divided by ...

82

By the time you’ve written a program that can successfully
parse every possible case, you’ve rewritten
Perl!

83

The Perl Compiler to the Rescue

Fortunately, the

Perl compiler gives us access to the pertinent guts of Perl,
allowing us to calculate the tokens and expressions directly;
see the

Fathom source

code for details. Without the compiler, this project would
have been prohibitively difficult.

Here are some examples of Fathom evaluations:

Benchmark.pm
27 tokens

7 expressions
5 statements
1 subroutine

readability is 2.91 (very readable)

Apache::AdBlocker
47 tokens

13 expressions

6 statements

1 subroutine

readability is 3.08 (readable)

CGI/Carp.pm

66 tokens

22 expressions

11 statements

1 subroutine

readability is 3.09 (readable)

84

perl5.005/eg/travesty

259 tokens

96 expressions

33 statements

1 subroutine

readability is 4.94 (easier than the norm)

s2p

2588 tokens

826 expressions

384 statements

11 subroutines

readability is 5.12 (mature)

CGI.pm

521 tokens

180 expressions
54 statements

1 subroutine

readability is 6.85 (complex)

DBI.pm

835 tokens

252 expressions
58 statements

1 subroutine

readability is 7.68 (very difficult)

diagnostics.pm

767 tokens

272 expressions

96 statements

1 subroutine

readability is 10.02 (obfuscated)

85

Future Directions

I intend to continue to refine

Fathom in several ways: by tweaking its basic formula to
produce more accurate grades, by considering the placement
and length of comments and pods, by having it identify
problematic

code sections, and by having it make specific suggestions for
improvement.

There are also some problems I hope to address in the near
future: Fathom doesn’t see

code that executes at compile time, such as code in BEGIN
blocks or use statements, and sometimes it counts implicit
tokens, such as $ in a foreach statement. These
limitations probably won’t make much statistical difference in
a medium-to-large program, but they could give wildly
strange grades to one-liners and other short hacks.

Fathom also opens the door to a whole suite of companion
tools: a program that checks variable names against a
site-wide naming policy; a tool, much like C’s indent, to
normalize the indentation of

Perl code; and likely several more tools, based on experience
and feedback. Some of these are already being developed by
others.

Perl’s extraordinary architecture makes it possible to produce
very powerful companion tools without having to re-invent
the wheel. Fathom was developed with a relatively small
amount of original code—it simply hooks into the
pre-existing

86

Perl internal data structures to do its job. Similarly, the Perl
debugger uses built-in features of Perl, plus a minimal amount
of black magic, to provide a full-featured debugging
environment for your Perl programs.

In most other languages, writing a tool like Fathom would
force you to start from scratch, since some of the best tools
for other languages (e.g., gdb, indent, and cxref for
C) are based on code that is completely independent from the
compilers or interpreters that they complement. In the case of
languages that are still undergoing refinement (such as C++),
maintenance of these tools can be a nightmare. However,
Fathom will continue to work even if Perl’s syntax changes,
because it’s hooked into the Perl compiler itself!

I hope that you’re so intrigued by Fathom that you’ll want to
refine it, rewrite it, or develop new tools in a similar vein. Try
this at home, kids!

87

88

Acknowledgments

Fathom would not have been possible without Malcolm
Beattie’s outstanding work on the Perl compiler. Stephen
McCamant’s

B::Deparse module was tremendously helpful in
demonstrating how to write a compiler backend. And, of
course, I couldn’t have done any of this without such a rich
language as Perl.

&9

Chapter 5. Home Automation with
MisterHouse

Bruce Winter

When most people think of Home Automation (HA), they
think of “The Jetsons,” where every appliance in the house
has a mind of its own and occasionally does something you
want it to do. The classic image of a HA geek is a man who
lives in his easy chair, controlling every aspect of his life with
voice commands and buttons like you see in Figures
Figure 5-1 and Figure 5-2.

D Mo boire - Biciossdl et Esplior
Pl G Wew Pgerbe Dok e ar

| MisterHouse] zusmme (8])£.).8.)
@ -z iz
T i I B e

Evenis
Comics Laifeaiat - Siaterica
ﬁi Frctuies &L [ﬁ Loggredd Data
s wr thia sns andgo bama * - Ghongs A Custer
Elptions Program 1 dape03 113 Dplene Congester I dupe 131850
WE 2136 AIR3I0 <000 oo | TEAENET 41% TA% = 47 fom the posth west LIS PRI Wl May 15
Ko kR EaRs i e Ty

90

Figure 5-1. MisterHouse has several Web interfaces. This
one is designed for easy use with the touch screen of small
Internet appliances

N Merbsase - icresoll lsemei Bl r .._- Elﬁ-

Bl [# e Fpaie ok Heb il

[fffufwﬂnuse] S [Eﬁ I[sf-ml [L,E_]
Contrel Ttems -

Wk 22:36 318:1 0 S000 ,.1...... | TR AMRET 43% T Fqun-mﬂnmi.m 1L—1'rmw-a.mu1s

{]I:men = = : ik t_!l.ouc,ll-r\uﬂ-e:l

Figure 5-2. This part of the web interface allows you to
toggle, brighten, or dim X10 modules

While this may actually be the ultimate dream of a few couch
potatoes, this is not what most people want. To many people,

a night alone in a
[slma[lric house would be worse than a night at the Bates Motel.

[a—

This article shows you my take on HA, used for practical,
everyday chores that even your technophobe spouse or
relative might appreciate. You can do it with the computer
you have today. You don’t have to be Bill Gates to afford it.

91

And you can do it all with your favorite programing
language!

HA! Perl?

So why does Perl make an excellent choice for an HA
programming language? Let me count the ways:

Concise and object-oriented

HA is object-oriented programming in its most literal
sense, allowing Perl’s concise object syntax to shine.
What could be simpler and more intuitive than a event
like this:

set S$christmas lights ONj;

Behind the scenes, we build a generic serial port object,
and then easily build objects for more specialized
serially-controlled devices that inherit the generic serial
port’s methods.

Good with strings

Every good
smart house should be able to read and write. And boy,
can Perl read and write!

As an example, consider the David Letterman Top 10 list.
Sometimes very funny, but always past my bedtime. With
a few lines of Perl, we can retrieve the previous night’s
list from the Web and convert it into a speakable string
that can then be served with the morning breakfast:

Get the HTML and translate to text
my Shtml = get 'http://www.cbs.com/

92

latenight/lateshow/top ten/';
my Stext = HTML::FormatText->new(lm =>
0, rm => 150)->

format (HTML: : TreeBuilder->new () ->parse (Shtml)) ;

Stext =~ s/".+?the Top Ten/The Top Ten/s;
Delete text before the list
Stext =~ s/ (.+\n *1\..+2)\n.+/S1\n/s;

Delete text after the list
Stext =~ s/ (["\.\?\!]1)\n/$1\.\n/g;
Add a period at end of lines.

speak Stext;

The mighty eval

Rather than stopping and restarting the entire program
from scratch each time we want to change something, we
can use eval to quickly load in just the code that has
changed.

This is especially useful with a complex HA program,
where small changes to event programming can be
frequent and you don’t want your house offline for very
long.

Free and ubiquitous

Not only is Perl free, but it also runs everywhere. The HA
community is currently split between Windows (lots of
fun software/peripherals) and Unix (reliable, which is
kind of important for HA). Using Perl, we can easily
switch between platforms when it makes sense.

93

[1] [Include possibly apocryphal story about Bill Gates’ first
night in his new NT-controlled mansion, where he couldn’t
turn off the TV?—Editor 1]

[2] [We can’t verify that, so we’ll just mention it in a footnote
and say that we were unable to confirm the story. Hey, it
works for political candidates...—Editor 2]

94

MisterHouse

Now that you’re convinced that Perl is good (admittedly not a
tough sell for TPJ readers), how can you use it to control your
house? With MisterHouse! Cue the infomercial music....

In 1999 I began a Perl program called MisterHouse. We now
have an active group of over 500 users and 100 contributors
who have helped shape it into a powerful HA program with
the following features:

It executes actions based on voice input, time of day, file
data, serial port data, and socket data.

It has an optional
Tk interface, pictured in Figure 5-3, with menus for all
objects and voice commands.

Ithas a

web interface that mirrors the Tk interface to allow
control and feedback from any browser, either on a local
intranet or on the Internet. Check ours out at
http://misterhouse.net:8080.

On Windows systems, it uses OLE calls to Microsoft VR
(Voice Recognition)

TTS (

Text To Speech) engines.

On Unix systems, it can use the
Festival TTS engine.

On Linux systems, it can use the
IBM ViaVoice VR and TTS engines.

95

Using the SerialPort module, it can read and write to any
serial device, on either Windows or Unix.

It has modules for reading and writing to the

X10

ActiveHome (CM11) and Firecracker (CM17) interfaces.
See Chapter 6 for more details.

It also has modules for reading and writing digital,
analog, and X10 signals using other HA interfaces from
JDS, HomeVision, and Weeder Technologies.

Other hardware interfaces we have code for include
IRMan (for receiving IR signals),

LCDproc (for writing to various LCDs and reading
keypad input),

ham radio modems (for tracking vehicles with GPS
units), and modem code for caller ID and paging.

96

Figure 5-3. This Perl/Tk interface to MisterHouse has the
same functions as the web interface. Commands are on the
left, Tk widgets in the middle, and the speech and print logs
are on the right

It has Internet hooks for reading and writing email, HTTP, or
FTP files.

MisterHouse consists of one main Perl program called mh (no
relation to the mail reading program) and a bunch of library,
data, and user code files. The basic flow of mh is:

Setup

Load modules, read configuration files, open serial and
socket ports. This step takes about 15 seconds on a
100-MHz Pentium and consumes about 15 MB of

memory.

Read and eval user code

The user code is parsed so that all code except global
variables and object declarations are put into a loop
subroutine. This is then passed to eval.

Run the Loop

Each pass through the loop checks for voice commands,
keyboard input, and socket/serial/file data. Then the user
code loop is evaluated and global variables and objects
are set for the next pass of the loop.

Using a s 1eep parameter, you can control how often the
loop is executed. With a 100 millisecond sleep period, mh

97

runs about nine passes per second on a 100- MHz
Pentium, using about 15% of the CPU.

The perl2exe program from http://demobuilder.com is
used to create optional mh binaries for Windows and Linux,
so that you can run mh even if you don’t have a recent version
of Perl installed, or are missing some required modules.

98

Objects in the Home

The best way to explain how mh uses objects and methods is
with an example. This code allows for voice control of a light
that is plugged into an X10 lamp module:

Shall light = new X10 Item 'Al';
$v_hall light = new

Voice_Cmd 'hall 1light [on,0ff]"';

set $Shall light S$Sstate 1if Sstate = said

S$v_hall light;
The A1 string is the X10 identifier we chose for the lamp
module. Each state in the Voice Cmd enumeration creates a
separate voice command. When one of those commands is
recognized, the Voice Cmd said method returns the
relevant state.

The set..if..said line is put in the loop subroutine, so it
is evaluated on every mh loop. If someone says “hall light

2

on,” then said will return on, and the X10 Item set
method is called to turn the light on. (See Chapter 6 for more
details on how the X10 protocol is implemented.)

Voice Cmd is just one of the mh objects. Here is a list of
some of the others:

File Item

Reads, writes, and monitors data from files.

Process _Item

Creates, kills, and monitors background processes.

99

Serial_Item

Reads, writes, and monitors serial port devices.

Socket_Item

Creates client and server sockets.

Group

Allows for groups of objects, for easier control.

Timer

Starts, stops, and monitors timers.

100

Talking and Listening

The holy grail for the would-be

smart house is reliable voice input (Voice Recognition or VR)
and understandable voice output (

Text To Speech or

TTS). Although this has progressed a long way in the last few
years, it is not quite to the point where you can tap your Star
Trek communicator badge and have a meaningful
conversation about where to point your house’s phasers to
quiet your neighbor’s dog.

You can, however, put on a microphone headset, or stand in
front of a desktop microphone in a fairly quiet room, and have
your house recognize specific, pre-programmed phrases. This
mode of VR, called Command and Control, is much more
reliable than dictation, in which any arbitrary text can be
spoken. Dictation requires you to train your VR engines to
recognize your voice; Command and Control does not.

The mh Voice Cmd object has two types of phrase
enumeration. As shown earlier, text enclosed in [] characters
is used to control what is returned with the said method. To
allow for variations on phrasing, you can also enclose text
within { } characters. For example, this statement:

$v_lights = new Voice Cmd '{turn the,}
{living,dining} room fan [on,o0ff]"';

would create these recognizable phrases:

turn the living room fan on/off
turn the dining room fan on/off

101

living room fan on/off
dining room fan on/off

There are currently two VR engines that mh can use. On
Windows, Microsoft has an OLE-controllable engine, and on
Linux,

IBM has made ViaVoice binaries available. There are three
TTS engines that mh can use: IBM’s Outloud on Linux,
Microsoft’s TTS engine for Windows, and the

Festival TTS engine, available on a variety of platforms.

All of these engines are freely downloadable (locations are
available in the mh install instructions), and you can mix and
match the engine of the day. mh interacts with the ViaVoice
and Festival engines through socket-based servers, so we can
run mh on a different machine and a different OS. For
example, I run mh on Windows because I prefer the TTS
engine (it uses pre-digitized voices to give an amazingly
human-like voice), but I run the VR engine on a Linux box
because of the improved accuracy of the IBM ViaVoice
engine.

102

A Smart TV Guide

I promised you some practical, don’t-scare-the-spouse-away
type of examples. Here is an example of how you can have
your house announce when a favorite TV show is starting:

my Sfavorite tv_shows =
"voyager,dilbert, family guy";

Sf tv file = new File Item
"Sconfig parms{data dir}/tv_infol.txt";

if |

time cron '0,30 18-22 * * *')
run qql

get tv_info -times SHour:$Minute -keys
"S$favorite tv_shows"];

set watch $f tv file 'favorites now';
}
if (
changed $Sf tv file) ({
my (@data =

read all $f tv file;

speak "Notice, a favorite show is Jjust
starting. @data";
}

The File Item object has set watch, changed, and
read_all methods, used to monitor and read file data. The

103

time cron function is wused to test against a
cron-formatted time string (in this case, every half hour
between six and ten in the evening).

The run function creates a separate process to run the
get tv info

program, so that the main mh loop does not pause while
get tv_info runs. On Windows, run

calls Win32::Process. On Unix, fork is used.

get tv info is a Perl program bundled with the mh
distribution. It queries data from a DB_File database created
by another mh event that parses TV programming info from
web pages. If you have an IR output device, you can also use
an mh event to automatically record shows.

104

Whole House CalleriD

Tired of being your children’s

phone secretary? With this code, you can monitor incoming
calls using your

caller ID modem:

Sphone modem = new Serial Item
'ATE1V1X4&C1&D2S0=0+VCID=1", 'init',
'serial3"';

set $Sphone modem 'init' if $Startup;

Look for modem caller ID data like this:
NMBR 507-123-4567
NAME

WINTER BRUCE
my Smodem data;
if (my $Sdata = said $phone modem) {
$modem data .= $data;
if ($data =~ /NAME =/) {
my (Scaller, S$Snumber, Sname) =
Caller ID::make speakable ($modem data);
speak (rooms => 'all', text =>
Scaller) ;

logit dbm("$config parms{data dir}/phone/
callerid.dbm",
$cid number, "$Time Now
SDate Now S$Year name=$cid name");
undef Smodem data;

}

105

The if $Startup check sends the modem an
initialization string to put it into caller ID mode. The
Serial Item said method returns a string each time a record
is received from the modem. Once we have the NAME record,
weusethe Caller ID::make speakable function to
convert the data to into a string like: “Phone call from Larry
Wall from California.” It can also use an optional rule to
return a phonetic version of the name (TTS engines don’t do
well with names like Bret Favre or Galileo Galilei), a
digitized audio file, so you can have the caller announce their
call using their own voice! A snapshot of the

MisterHouse phone log is shown in Figure 5-4.

Ficuid s culls (B3 Wiﬂ_l Betgaing cally (39 entried)
¥ fert by ssme " Tort by sumber 7 Sart by dabe T Gk by mass T Sart by nesber 7 lord By dafe
e Z/TFSBE BTN G BER BN Ter Pusgper Famdip - AT T A R S e meger Famdlp EI
W LA O L ||| I.‘I'-'f. 'n THINN N R N Rsger Fally
B e s FXTRY STACY 487010 e A0 Burad sad dnhey Wirluik
- P CSERY STACY .n n.fm- SRR B PP BLY CLARSCE B
b e s EAEET 11RET Hal WLATH B W INEAD VR s PR
e WS CALEN a1 BT WM
R e R e OER MW H1 LIRS W3 R R The Reger Famliy
L S LI5E SR L WA V1 UE N e e e The Bemger Fadly
waw Par sl M4l me Beih Winter MECTHOBE T1I30TA MR DY e TACIMILLT JUN
T at LT IS MER RS R Sara Harkia
s BATEY A TACY Pl ETNS N WA TR AR e e TR TRACY
W1IFS W e e ESTRY 11ACT Fl RIS Tk e
FFL BZ/5 B TS TRINT G e s EATEY LIRGY Pl OBLATH B T NRIFY S —
Fri G2/T5/E VRAR] RE N e TRCIMLLL JOEN ri AT T e
Fri B2/35/88 17 89:27 Lesd bets . T =] FrE RIS 123008 AN e e Coralee and Rey =
 Batstase o callees (38 eRFLES) LISt of lag Flles
deargn: imcomdreg Filen
Fofart by nane | et by mesbey 0 Lerm By 8 calls
TasbaBine Th callis % BB An0 Gew Y0 BIRG il eanary :‘"—“ 1ag
Liakese 51 RS callns G4 GES AR S VeRE [HE callevid, 1999 12,109
Lriteisn 31 TM0 Gl 1 RS N YILL FARL Jealloria. 149%_i1.1e
LEEE=M T VIVR CALASS 3 AT N RS VIR |Eallor dd_199F 1B, leg
DardEsiuy 70 URER callne T GER PN MRS WEIRH DIRITOL ¥ attam i AR 1
laitedan ¢ VBN cMllse 1 SE AP S WDKHH ASHT lcallerid. 1999 M. 1aq
Dankedul 0 VFFF callne 3 s sme e WINTER SCOTE b il oris 1448 87,1
dapi=dus 1 CREF callns § bR e BRea WINTDRE ELCALN e o irupls 2
lost-Frb $h OB calls=) SA0 dme sEl The winters liae 4 | e e e | et |

Figure 5-4. With a Caller ID unit, MisterHouse can log all
incoming and outgoing phone calls. They can then be
viewed or searched with a web interface or the Perl/Tk
interface shown here (home phone numbers blurred
intentionally)

If you really want to get fancy, you can wire up a
relay-controlled

106

PA system, and modify a pa stub subroutine so you can
use the rooms option of the speak function to direct the
speech to specific rooms.

Finally, the 1ogit dbm function logs the name and number
into a DBM file so we can query it to find names and
numbers of callers.

107

Squeaky Stairs

Is your house too new to have any of those endearing squeaky
stair steps that are the bane of teenage children trying to sneak
out at night? This code monitors a wireless X10

motion sensor to play back simulated digitized squeaks:

Stimer stair movement = new Timer();
Smovement sensor = new
Serial Item('XA2AJ', 'stair');

if (state now S$movement sensor eq 'stair'
and inactive $timer stair movement) {
set Stimer stair movement 60;
play(file => 'stairs creak*.wav');

}

The Timer object is used so that we have no more than one
squeak per minute, which prevents squeak-seeking kids from
doing jumping jacks in front of your sensors. The
state now Serial_Item method returns stair when the
motion sensor (set to code A2) is triggered and sends string
A2AJ. The play function will randomly play one of the
stairs_creak* wav files.

108

You Have Mail

This code periodically checks your
email account and summarizes incoming messages:

Sp_

get email = new Process Item 'get email';
start Sp get email if S$SNew Minute and
! ($Minute % 10) and

&

net connect check;
if |

done now $Sp get email) {
my Stext = file read
"Sconfig parms{data dir}/get email.txt";
speak Stext 1f Stext;

&scan_subjects ("S$config parms{data dir}/
get _email.scan");

}

The start method of the Process Item object runs the
get email program every 10 minutes so long as the
net connect check function verifies that you’re
online. The Perl get email program reads the headers of
new email (for accounts specified in a configuration file,
get email.scan) and creates a summary in the file
get_email.txt. The done now method returns true when the
get email process is finished.

109

get email also creates a get email.scan file that has the
first few lines of each email. The scan subjects
function then checks that file for remote, password-protected
commands, so you can control your house from your
email-enabled cell phone!

There are other MisterHouse programs:
Vehicle Tracking

Shows how you can use a
ham radio to track vehicle positions.

Event Reminders

Shows how you can program event reminders, directly
and using the Outlook interface.

Time and Temperature With an Attitude

Shows how to sync up with Internet clocks and weather
data.

110

Say What?

To give you a better feel for types of things our house says,
here is a list of things I copied out of a recent
speech log file:

Turning furnace heat on after 23 hours at 67.6 degrees.

Turning furnace heat off after 20 minutes at 69.1
degrees.

Notice, the sun is bright at 32 percent, and it is cold
outside at 24 degrees, so I am opening the curtains at
8:07 a.m.

The van is traveling north at 58 mph 0.8 miles west of
Wal-Mart.

The car is parked at Friedell School.

Email account laurel has 4 new email messages from
The S F gals.

Email account nick has 1 new email message from
accountmanager.

Notice, Nick has been on the computer for 2.1 hours
today.

The front door has been left open.

Phone call from Mal and Beth
Winter from Montana.

Notice, there is 1 favorite show starting now: “Dilbert”
on channel 8.

111

= 8:58 p.m. VCR recording will be started in 2 minutes for
“South Park™ on channel 47.

* Notice, there were 668 web hits from 74 clients in the
last day.

Here is an example of a VR

session. To keep it from accidentally responding to
human-to-human conversation, we use special phrases to
activate and deactivate it:

Human: Hey MisterHouse.

mh: What's up?
Human: Christmas lights on.

mh: I heard christmas lights on.
Human: What is the outside temperature.

mh: The outside temperature 1is 26
degrees.
Human: Go to sleep.
mh: Later.

If you have an HTTP-capable MP3 player, you can hear what
our house sounds like and optionally have a conversation with
a heavily-modified Eliza ChatBot at http://misterhouse.net:81/
mh/web/speak.

112

Give Your House a Brain

Not ready to take the plunge yet? Consider this: For $50 you
can order from

x10.com the send-only X10

FireCracker kit (described in Chapter 6) or the more flexible
send and receive

ActiveHome kit. In either case, all you need is an open serial
port and a lamp or appliance you want to control. There are
no wires to mess with, so you can even use it in a rented
apartment or dorm room.

If you don’t need or want the complexity and overhead of mh,
you can use the X10 Perl modules from CPAN and write your
own interface. Even if you don’t need X10 control, you might
still find the voice, time, and Internet functions of mh of some
use. For example, my twin sons each have a bare-bones
version of mh running on the computers in their rooms (they
call it MisterRoom), just so they can have remote and timed
control of their MP3 players (pictured in Figure 5-5).

113

B Mitien Hinaze Conliol Page - Moozolt Inleined Eaplocn
| o 8 Miw Fowes Jok beb |
Category ITtems Groups Widgets Other About Speech Leg TV Legn Search: |

o Appliancas Mlusie Sratus. Authorized =

b GES tracking MFI Search: MP3 Genre: Ilo-:h

I HAG I

s Infermatinasl Imomiot mum@m«km shouteast player R2ET00 13:00:16

b [ntarnak '-_'ﬁ;tl'ﬂ:h mp} plmrln :

o L_m_n flﬁ.ﬂmﬁ g = Set ticks mp3 player to

b Mizc I - - —1u Finy

b Histertieuie mp3_control I ?ﬂﬂ the house -_iwh a Etop

b Music | ey e e Pause

e Githar | vl houwse r to playl = Mekt Eong -

b Phone _ﬂpg—’ e !EIT‘;FI{IU ﬂ' * Provisus Song

[F Tt mpd_plagkst | f oo X the mp3 databage | Randem Song

b Timed_Events I Toggle Shotfie iE

e Timers Epa__ml f;uum-lnn -I = Toggl Repest

L T S : —

. Yoice pa_somtrol '*«E a’Fﬂhl‘ll :I wﬁ

o Weather | £ : namamn
Immr_shmucan‘;@ltmned ¥] the shouteast player ﬁJQ_L

Befresh Becestly Spoken Tex

& O2/27/00 13:07:10 novmal: Wieb stcass from na medisons net

L] u;';'z:rm 1302:32 normadi It is T3 degrees 37 percent inside, 47 degraes 3 dagree wandchill
outside.

& 0Z/27700 13:02:2F noomal! bruce has 1 naw msssage from don Orwant,

® OE/2700 13:02:02 normal: 33 mab hits from @ chents in the last hour

& 0Z/27/00 13:01:48 naemal: To a 307 hif owaer i Napoleon: hents their papulsnty. .gj

& e T 7

Imi=

Figure 5-5. All voice commands are listed by category. The
Music category allows you to remotely control various MP3
players and to build and search a database of MP3 songs

You can find the mh documentation and installation
instructions at the web site http://misterhouse.sf.net.

114

Chapter 6. Home Automation: The
X10 Nitty-Gritty

Bill Birthisel

Consider small computers. No, not notebooks, subnotebooks,
or even “embedded” single board controllers. Blackberry,
Psion, Palm—still way too big. Game consoles, microwave
oven keypads, clock radios? Getting closer. TV remotes,
computer keyboards, and talking toys are at the top end of this
class. The real foot soldier of home automation is the
microcontroller—a tiny computer optimized to do a few
things well. Tiny is the key word here—

microcontrollers need to be small, cheap, and able to run on
low power.

In this article, we will introduce some of the nitty-gritty
details of

working with home automation. We’ll talk about two
microcontroller-based boxes you can connect to your
computer: one simple (the

CM17) and one complex (the

CM11). Each sends messages to devices that plug into your
house power and control individual items (one lamp or
appliance per device). We’ll start with the CM17 and use it to
describe the commands, protocols, and timing issues common
to most home control installations. Then we’ll look at the
CM11 and the extra complications associated with receiving
commands. Finally, we’ll look at some of the issues a real
home automation application needs to consider.

115

Along the way, we’ll examine some the Perl modules you can
use to manipulate the CM17 and CM11. The examples will
run on your computer even if you don’t have any of the
hardware, although you won’t be able to “watch der blinkin’
lights.” In practice, the modules are commonly called from
within a user environment such as MisterHouse, which Bruce
Winter described in Chapter 5.

The Perl slogan, “There’s More Than One Way To Do It,”
also applies to home automation. There are lots of vendors,
lots of products, multiple protocols, and a variety of
command sets. You can build kits, purchase individual
components, or even buy complete packages. Some of the
products are even compatible. I’ve selected specific models
for this article because the CPAN modules supporting them
are the most mature, but don’t consider that a product
endorsement. Modules for other types and other vendor
protocols are in development and may be available by the
time you read this. Check the ControlX10:: namespace at
your favorite CPAN site.

The term “X10”

is a bit ambiguous; in this article, it refers to a mechanism for
sending data messages via house wiring (

power line modulation). There is also a company named X10,
Inc., that manufactures and sells the

CM11 and

CM17 controllers.

The CM17 (Figure 6-1) is a little box about twice the size of
your thumb that sends on and off commands via radio to
household appliances. It’s sold under the trade name
“FireCracker,”

116

and it plugs into a serial port (the little 9-pin connector on
most PC hardware). It draws its power from the port—no
batteries required.

Figure 6-1. The FireCracker

Simple Output Commands: The
CM17

There are at least four separate communication transport
systems found in home automation: radio (used by the
CM17), power line (CMI11 and others using the XI10
protocol), infrared (TV remote controls and line of sight
devices), and direct-wire (CEBus, CAN, BACnet, and other
slimmed down industrial I/O protocols). The CM17 transmits
radio signals to another box that powers on or off an
appliance plugged into it and retransmits commands via

X10 power line modulation to other device controllers. Inside
each box, a microcontroller waits to decode and implement
any commands sent its way. A box that converts

wireless signals to X10 power line commands is shown in
Figure 6-2.

117

Microcontrollers are designed to manage a small amount of
rigidly defined I/O and to talk exclusively to other
microcontrollers and computers. “Spartan” is a polite
description for the user interface; it’s tough to implement a
shell, much less a modern GUI, in 256 bytes of RAM. You
program microcontrollers by toggling individual bits or
sending a handful of encoded bytes to a serial port. Each
microcontroller implementation is different; fortunately, the
gory details can be collected in Perl modules, so most users
will never have to know them.

118

The ControlX10::CM17 and
ControlX10::CM11 Modules

The ControlX10::CM17 and ControlX10::CM11 modules are
collections of functions that make it possible for you to
manipulate CM17 and CM11 boxes from your Perl program.
We’ll see a number of examples throughout this article. The
first is so simple it requires no special hardware at all—we’ll
simply pretend we have the necessary hardware and ask a
CM17 to toggle a lamp on and off twice. (To actually turn
something on and off, we’d need a serial port, a

CM17, and a radio receiver that talks the same RF protocol.)

Figure 6-2. An X10 wireless link module, which takes
wireless signals from a computer and converts them to X10
commands sent over household wiring

The program below, cm17 no hardware.pl, imports
SerialStub.pl (available on the web page for this book
at http://www.oreilly.com/catalog/tpj3), which creates an
object that behaves like a serial port with a CM17 box

119

plugged into it. We never talk to the actual box, but the CM17
module doesn’t care—it finds the methods it wants, so it’s

happy.
#!/usr/bin/perl -w

require 'SerialStub.pl'; # Emulate port
hardware

package main;
use

ControlX10::CM17;
use strict;

my $serial object = SerialStub->new (); #
Creates object

print "Turning address Al ON\n";
send cml7 (Sserial object, 'AlJ'");
print "Turning address Al OFF\n\n";
send cml7 ($Sserial object, 'AlK'");

print "Repeat same toggle with
debugging:\n";
SControlX10::CM17::DEBUG = 1;

print "Turning address Al ON\n";
send cml7 (Sserial object, 'AlJ'");
print "Turning address Al OFF\n";
send cml7 (Sserial object, 'AlK'");

The program’s output will be something like this:

| Turning address Al ON

| Turning address Al OFF

\

| Repeat same toggle with debugging:

120

| Turning address Al ON
\

CM17: SerialStub=HASH (0x804a9c4) house=A
code=1J
\

CM17: Sending:
1101010110101010011000000000000010101101
done

| Turning address Al OFF

| CM17: SerialStub=HASH (0x804a9c4) house=A
code=1K

| CM17: Sending:
1101010110101010011000000010000010101101
done

The main part of the example turns a device on and off twice.
It creates an object and passes it to the send cml7
function. We also turn on verbose output during the second
toggle sequence to see how the command is translated.

121

What’s in a Command?

The microcontroller in the CM17 uses only three of the wires
in the serial port: a ground and two signals called RTS and
DTR. At least one of the signals must be on at all times to
provide power to the microcontroller; both are on during idle
periods between commands. The command is a series of 40
pulses (a 0 bit is RTS pulsing off, and a 1 bit is a DTR
pulsing off). The CM17: Sending: lines above show
typical 40-bit output strings.

The send cml7 function takes a serial object and a
command string as arguments, and calls a strange selection of
serial object methods. It doesn’t use either the read or write
lines of the serial port—it just passes them through so
something else (a terminal, or device like a

CM11) can use the port simultaneously (as long as it doesn’t
use DTR or RTS, and as long as the operating system permits
port sharing—some devices, like a serial mouse, need
exclusive access).

The command string usually contains three parts: the
house code, the unit code, and the operation. There’s one
house code per house (out of sixteen possible: A. . P), one
unit code per appliance (1. .9, A..G), and seven possible
operations for the CM17, as shown in Table 6-1.

Table 6-1. CM17 operations

122

Operation |Function

xJ Unit On (requires unit code x)

xK Unit Off (requires unit code x)

L Brighten Last Light Programmed 14%
M Dim Last Light Programmed 14%

N All Lights Off

o All Lights On

P All Units Off

Not all receivers support operations L, M, N, and O.

This division into sixteen house (major) and sixteen unit
(minor) parts is a common feature of the protocols. I’'m not
worried about interference here in rural Wisconsin, but the
sixteen house settings mean that in a crowded apartment
building neighbors are less likely to be toggling your living
room lights.

Our second example, cm17 bit toggle.pl, will toggle
a real lamp or appliance on and off if you have a

CM17, a transceiver, and a device

controller set to address Al. An X10 lamp module is shown
in Figure 6-3.

123

Figure 6-3. An X10 lamp module

Torun cml7 bit toggle.pl, you'll need a serial port
module installed on your system: either

Win32::SerialPort (for Windows) or

Device::SerialPort (for Unix or Mac OS X). On some
operating systems, you will also need permission to open the
port and access the hardware. See the documentation bundled
with the

SerialPort modules for specific platform details.
cml7 bit toggle pl will run without a CM17, but the
results will be like those cm17 no hardware.pl. (The
module can’t determine itself whether a CM17 is present.)

#!/usr/bin/perl -w

cml7 bit toggle.pl

USAGE: perl cml7 bit toggle.pl [PORT]

PORT defaults to COMl1 on Win32 and /dev/
ttySO on linux

any command line parameter overrides the
default

you'll need to specify which port to use
on other 0OS

require 'start port.pl'; #
Initialization for real ports

124

use ControlX10::CM17;
use strict;

my $serial object = open port (@ARGV);

Returns newly created object

for example, PORT is just passed through
if specified

print "Turning address Al ON\n";
send cml7 ($serial object, 'AlJ');
print "Turning address Al OFF\n\n";
send cml7 ($serial object, 'AlK');

print "Repeat same toggle with
debugging:\n";
$SControlX10::

CM17::DEBUG = 1;

sleep 1;
print "Turning address Al ON\n";
send cml7 ($serial object, 'AlJ');
sleep 1;
print "Turning address Al OFF\n";
send cml7 ($serial object, 'AlK');

cml7 bit toggle.pl is almost exactly the same as
cml7 no hardware.pl, and the output on your screen
will be identical. The important differences are hidden in the
require. All the initialization and operating system details
are provided by start port.pl, shown below:

USAGE: require 'start port.pl';

Sport object = open port ($Sport);
#

Sport defaults to "COMLI" on Win32 and
"/dev/ttyS0" otherwise

You'll need to specify which port to use

125

on any OS other than linux
use vars gw(SOS_win);

We start with some cross-platform black
magic
BEGIN { # Decide which

module to use based on the operating system
S1=1;
$0S win = ($70 =~ /win/i) 2 1 : 0;
if ($0S win) { eval "use Win32::

SerialPort 0.19" }
else { eval

"use

Device::SerialPort 0.07" }
die "s@\n" 1if $@;

use strict;

open_port () takes a port name as
parameter, and provides

plausible defaults if none specified
(Win32 and linux)

sub open port {
my Sport = shift;
my $serial port;
if ($0S_win) {
Sport = "COM1" unless (S$Sport);
S$Sserial port =
Win32::SerialPort->new (S$port);
} else {
Sport = "/dev/ttySO0" wunless
(Sport) ;
S$Sserial port =

126

Device::SerialPort->new (Sport);
print "\n=== Bypassing ioctls
===\n\n" unless S$serial port->can ioctl;
}

die "Can't open serial port S$port:
S”E\n" unless ($serial port);
$serial_port—>handshake("none");

CM17 doesn't care about other
parameters unless the pass-through
port is used. The

CM11 doesn't need ioctls--but it does have
to
set the traditional serial

parameters like baud, parity, stop bits,
etc.

S$Sserial port->error msg(l); #
Use built-in error messages

$serial port->user msg(0);

$serial port->databits(8);

$Sserial port->baudrate (4800);

$serial port->parity("none");

$serial port->stopbits(l);

$serial port->dtr active(l);

$serial port->write settings || die

"Could not set up port\n";

return S$serial port;

1;

The BEGIN block at the start of start port.pl is
deceptively simple. Win32::

SerialPort translates the primitive elements of the Windows
serial driver interface into more useful methods for your Perl
program. Similarly,

127

Device::SerialPort provides portability across
POSIX-compliant operating systems.

start port.pl also checks that the OS-specific system
calls (ioctls) needed to run the

CM17 are available for your platform. If they aren’t, you
won’t be able to control real hardware, but the examples will
still run and print what they are doing. You’ll see a ===
Bypassing ioctls === message if the

module can’t issue the necessary hardware pulses.

Let’s see another example of the ControlX10::CM17 module.
Here’s slow speed.pl:

#!/usr/bin/perl -w
USAGE: perl slow speed.pl [PORT]
same PORT defaults as cml7 bit toggle.pl

require 'start port.pl'; #
Initialization for real ports

use ControlX10::CM17;
use strict;

my $serial object = open port (GARGV);

print "Turning address Al ON\n";
send cml7 ($serial object, 'AlJ');
print "Turning address A2 ON\n";
send cml7 ($serial object, 'A2J');
print "Turning address A3 ON\n";
send cml7 ($serial object, 'A3J');
print "Turning address A4 ON\n";
send cml7 ($serial object, 'A4J');
print "Turning address A5 ON\n";
send cml7 ($serial object, 'A5J');

128

print "Turning all house A OFF\n";
send cml7 ($serial object, 'AP');

S$Sserial object->close || die "\nclose
problem with port\n";

129

Timing Issues

If you run slow speed.pl, you’ll see output like this
after as long as ten seconds:

Turning address Al ON
Turning address A2 ON
Turning address A3 ON
Turning address A4 ON
Turning address A5 ON
Turning all house A OFF

\
\
\
\
\
\
Why is it so slow? The answer might seem glib: it doesn’t
need to be any faster. I mentioned earlier that the transceiver
echoes commands to other devices via power line modulation.
The X10 power line protocol transmits one bit per power line
cycle and requires 47 cycles for a typical message—around a
second. If you have the appropriate hardware, you can run the
following experiment: set a lamp module to the same address
as a transceiver with a built-in mechanical relay. When you
send an on or off command to that unit, you’ll hear the relay
make an audible click about a second before the lamp
responds. Since
microcontrollers have small command buffers, you don’t
want to have too many operations pending. Running the
CM17 module at about the same rate as the power line
transmission reduces the amount of queueing and buffering
needed.

all together.pl 1is like slow speed.pl, but
groups the units into related house addresses, letting a single
pair of commands simultaneously alter up to 16 appliances:

130

#!/usr/bin/perl -w

FILE: all together.pl

USAGE: perl all together.pl [PORT]

same PORT defaults as cml7 bit toggle.pl

require 'start port.pl'; # Initialization
for real ports

use ControlX10::CM17;
use strict;

my $serial object = open port (@ARGV);

print "address A All Lamps ON\n";
send cml7 ($serial object, 'AO');
print "address A All OFF\n";

send cml7 ($serial object, 'AP');

S$Sserial object->close || die "\nclose
problem with port\n";

all together.pl runs much faster than
slow speed.pl.

131

Bidirectional I/O with the CM11

Before we look at the issues involved in designing a home
automation application, let’s look at another type of hardware
controller. The CM11 talks to a computer via a serial port,
and communicates with unit modules only via household
power lines. It also monitors the power lines for commands it
didn’t send, such as from motion detectors or RF transceivers,
and reports those to the computer. It includes a built-in clock
and even permits cron-like macro programming (“turn A3
ON at 09:00”). The

CM11 interface is so unlike the

CM17 that both devices can share the same serial port. Like
cml7 no hardware.pl, this program
(cmll no hardware.pl) should run on all systems
regardless of hardware:

#!/usr/bin/perl -w
FILE:

cmll no hardware.pl
USAGE: perl cmll no hardware.pl;

require 'SerialStub.pl'; # Emulate port
hardware talking to CMI11

package main;

use ControlX10::CM11;
use strict;

my $Sserial object = SerialStub->new ();
creates and initializes object

132

my $no block = 1; # Return immediately
unless data waiting

read cmll ($serial object, $no block);

A bit toggle like that in the earlier
CM17 examples

print "------- \n\n";

print "Sending Al ON\n";

send cmll ($serial object, 'Al');

send cmll ($serial object, 'AJ');

print "Sending Al OFF\n";

send cmll ($serial object, 'Al');

send cmll ($serial object, 'AK');

Emulate a "data waiting to Dbe read"
message from the CM11

print "------- \n\n";

my $incoming = chr (0x5a);

Sserial object->fakeinput (Sincoming);

if (read cmll(Sserial object, $no block)) {
my Sdatain =
receive cmll ($serial object);
print "Received $datain\n" if (defined
Sdatain) ;
}

print "Sending A2 OFF\n";
send cmll ($serial object, 'A2');
send cmll ($serial object, 'AK');

A CMI11 command consists of two parts: one or more
addresses (a house/unit combination, like A2) and one or
more operations (a house/operation combination, like AK).
This is actually closer to the command signal format sent on
the power lines than the 40-bit string we saw in the

CM17.

133

The send _cmll

method looks much like the send cml17 method used in
earlier examples, but it does a lot more work. It computes a
checksum, validates the transmission, handles retries, and
checks for incoming data. The CMI1 can also initiate
communication, sending a single character “read me” request
when it has data waiting to be processed.

Let’s look at one final example that assumes we have the
hardware we need to manipulate our appliances. The result is
follow leader.pl. After initializing, the program
loops, waiting for activity on unit Al. If it sees any, it sets A2
to the same state. This is a somewhat contrived example, but
it illustrates some important elements of an automation
control loop—in part because it spends most of its time
scanning for inputs of interest. (I used the $b1lock option to
get a loop timing of about a second instead of an explicit
sleep 1))

#!/usr/bin/perl -w

USAGE: perl follow leader.pl [PORT]

same PORT defaults as cml7 bit toggle.pl
output A2 changes when the CM11 reports
a change in Al

require 'start port.pl'; #
Initialization for real ports

use ControlX10::CM11;
use strict;

my S$Sserial object = open port (QARGV);

my S$DUMMY = O0; # Set this to true if
running without a CM11

134

my Sreps = 30;
my S$block = 0;

I~

my S$Sa2 state '"AK'; # OFF

my $a2 new = 'AK'; # OFF

while ($reps-- > 0) { # Loop
continuously for 30 seconds

print ".";
if (read cmll(Sserial object, S$block))

poll CM11 for "data waiting"
my Sdatain =
receive cmll ($serial object);
if (defined $datain) {
print "\nReceived S$datain\n";

$a2 new = 'AJ' if S$datain =~
/A1AJ/;
$a2 new = 'AK' if S$datain =~
/A1AK/;
}
}
$a2 new = 'AJ' if SDUMMY && Sreps ==
15;

A2 follows detected changes in Al
if ($a2 state ne $a2 new) {
if ($a2 _new eqg 'AK') {
print "\nSending A2 OFF\n";

$a2 new = $a2 state = 'AK';
} else {

print "\nSending A2 ON\n";

$a2 new = $a2 state = 'AJ';
}
send

cmll ($serial object, 'A2') unless $SDUMMY;
send cmll (Sserial object,

135

$a2 state) unless SDUMMY;
}
}
print "\n";
S$Sserial object->close || die "\nclose
problem with port\n";

undef $serial object;

If you run follow leader.pl without a CMI11, set
SDUMMY = 1; and you’ll see a result like this:

| Sending A2 ON

The example simulates receiving an A1 ON halfway through,
and prints a dot roughly every second to indicate cycles
through the loop. With a CM11 and an external RF command
unit, you’ll see output like the following:

| Received AlAJ
| Sending A2 ON
| Received AlAK
| Sending A2 OFF
| Received AlAJ
| Sending A2 ON

| Received AlAK

| Sending A2 OFF

136

A Few More Considerations

So what other issues are involved in creating a real home
automation program? In Chapter 5, Bruce Winter discusses
some of the user interface issues and one approach to
managing them. I’ll concentrate on the issues that arise in a
read/write hardware setup and those associated with multiple
users as well. Most of these comments apply to both the
CMI11 and CM17 (and to other computer interfaces as well):

1.

It takes a long time to talk to household appliances—so
long that if you’re going to be having some appliances
depend on what others are doing, or if you’re going to
have a spiffy user interface that monitors many
appliances, you need an

event queue. This lets your computer perform other tasks
between attempts at communication.

A real application needs to know what is turned on and
what is turned off. We can keep track of what we’ve
done to each wunit, or if CMll-style two-way
communication is available we can send an “are you on”
status query. However, this is slow, so we want to
maintain a local model of the appliances whenever
possible.

If we wish to allow commands from multiple sources
(say, from a web page, command line, and program
loop), or from multiple users, we need to resolve issues
such as who “owns” the port.

Some means of override needs to be provided in case the
state data becomes stale or invalid. When the computer

137

is rebooted (or the program stopped and restarted), we
won’t know if an appliance is on or off unless we saved
the previous state.

5. When many people have access to the same set of
appliances, you might want to restrict access for certain
user/appliance combinations. In this case,
authentication may be required.

6. We have touched only lightly on

error handling and event logging. The device controllers
can detect many kinds of errors, including collisions on
the power line and invalid commands. The CM11.pm
module uses checksums to validate communications with
the CM11 box, and the box itself can detect some errors
and retry unsuccessful transmissions. The CM17 is a
one-way device, so its error handling is more limited.

Bruce Winter has addressed most of these, and many more, in
his excellent MisterHouse program described in Chapter 5.
It’s well worth a bit of study before you reinvent the wheel.

138

Chapter 7. A Day in the Life of
comp.lang.perl.misc

Clinton Pierce

The fate of

Usenet has been bantered about quite a bit lately. Slashdot
posters have proclaimed the death of Usenet
(http://slashdot.org/article.pl?sid=00/02/04/2224201), and
even a Washington Post article claims that Usenet may have
outlived its wusefulness (http://search.washingtonpost.com/
wp-srv/WPlate/2000-02/04/0661-020400-idx.html). They both
seem to suggest that Usenet

newsgroups will be replaced by special-purpose web-based
discussion forums, like Slashdot. Furthermore, flamewars and
a barrage of CGI questions in

comp.lang.perl.misc have had many in the Perl community
wondering about the viability of comp.lang.perl.misc, and
how long it can last. Figure 7-1 shows a sample posting from
the newsgroup.

139

.I'_
o
td

B article
Subject: Re: Stripping multiple newdings from string

»» |'m pretty sure that there is a nice, simple reges which will let me
= FEMOVE myandwmmafmnasm.

>

= Well, you could just do this (guess what the g stands for... ;)

> LT

Global, Yup - it was as simple as thal. Thanks. Must read perfop more oflen
BTW: If anyone wanls 1o know how to strip the 6-bit characters from a
tring, you can do it ke this:

$hlah =~ s/T200-3¥7)0y,

Handy if you want to sanitize data for outputling to a web page.

Henry,

mal

J"‘_-j =

Figure 7-1. A question and answer on comp.lang.perl.misc

Myself, I'm a big fan of the newsgroup. I learned a lot of Perl
from it, and more importantly I learned how to answer
questions for new Perl programmers. I gained a lot of
experience by simply lurking, and then posting, to the group.
What follows is an in-depth analysis of the articles posted to
comp.lang.perl.misc, all nicely trimmed and
categorized—and a little speculation on what makes the group
tick.

A Little History

The

140

Usenet group comp.lang.perl.misc was created in May 1995,
deprecating the older newsgroup comp.lang.perl. The charter
describes it as a newsgroup for “discussion of issues of all
sorts relating to Perl,” which is apt: the topics in the group
range from discussion of Perl’s guts to CGI programming.

The group is high-traffic, often receiving over 200 posts a
day. The posters are new Perl programmers, experts, and the
occasional visits by people who were looking for other
groups. The “experts” can be people who are still learning
Perl and happen to know enough to answer the question at
hand, up to gurus who speak at conferences, write books, and
hack on Perl itself.

There are six Perl
newsgroups in all:

comp.lang.perl.misc

General discussion
about Perl.

comp.lang.perl.moderated

Like c.l.p.misc, but higher quality.

comp.lang.perl.tk
Discussion of the Perl/Tk graphical toolkit.

comp.lang.perl.modules

Discussion of particular Perl modules.

alt.perl

Perl discussion for those who don’t know about c.l.p.misc.

141

comp.lang.perl.announce

Certain messages selected by the newsgroup owners.

142

How the “Day in the Life” Was
Done

Before diving into the statistics, a brief description of how
they were gathered. I analyzed all the threads with messages
posted on Groundhog Day, 2000. Why February 2? Because I
decided to write this article on the 4th, and my local newsfeed
had several days of articles remaining in the spool. This
meant that I didn’t have to use Deja News (now absorbed into
Google) to retrieve articles. I wasn’t trying to find (or avoid)
flame wars; it was just a convenient day.

Any thread that was open on February 2 was considered for
the statistics. According to my newsfeed, exactly 250 articles
were posted on that day. Once messages posted on other days
that belonged to February 2 threads were included, there were
432 articles that needed to be read, sorted, graded, and
judged.

For reading the articles, I wrote a small Perl/Tk application to
pop up each article one at a time along with a clickable
scorecard (shown in Figure 7-2). The headers (except for the
Subject: line) and the signatures were removed while I
scored to help prevent bias. After years of reading c.l.p.misc,
I was sometimes able to determine a poster just by his writing
style, but I tried not to let that affect my grading.

143

=| options =]
T | ¢ o
- documentation ~- Offtopic
- explanation : quoting |
+- sarcasm - jeopardy
clarification | - jeopardy_notrim
TEmmm | ¢ e
e quEstion s hommal_notrim |
s QNSWEr
e SpAM + language
 troll e EXtErT
ar fame e CYi
~ Apology we 50
+ thanks w WiN3Z
e Conversation e BO0kS
e advert - Tutorals
~- 3W_begging e Wih
i m - < javascrpt
- Wrole_code e MR
~ N0_code (o N e
Done |
Figure 7-2. A Perl/Tk categorization tool for

comp.lang.perl.misc

Each article was judged on its own merits. The quality of the
questions (except for determining whether the poster’s subject
line was appropriate) was ignored. If a poster flamed a good
question, or counter-flamed, it was still considered a flame.
Sarcastic, flame-baited answers were considered both answers
and

144

flames—articles could fall under multiple headings—the
same message could be “off-topic,” “flame,” and an
“answer.”

145

The Raw Statistics

There were 109 questions posted to the group in that period,
of which 30 included some code. This means that the person
asking the question (and later on, the person answering)
included some attempt at writing the code and was seeking
correction, syntax help, advice, or debugging.

17 questions were simply off-topic, having no Perl content
whatsoever. The topic for c.l.p.misc is “issues of all sorts
relating to Perl,” so anything involving Perl is fair game.
Many people in c.l.p.misc feel that CGI questions are
off-topic for the group, and I do as well—except when it’s
about CGl.pm module usage, or Perl CGI programs that
aren’t working. To me, this is just the latest trend in
computing. It used to be client/server applications, and next it
might be distributed computing. Perl adapts to its
environment so well, it’s natural that c.l.p.misc’s posts would
drift toward current trends. And it’s not just CGI. Half the
off-topic posts were about SQL or databases of one kind or
another, having nothing to do with Perl (or its modules)
whatsoever.

How many of those 109 questions were answered? All but
four of them were eventually answered with code,
suggestions to move along to another group, documentation
pointers, or other helpful information. This is a response rate
of over 96%. Some of them took a few days to be answered,
and I stopped checking after four days to see if the remaining
four would be answered.

146

Of the 109 questions, only 60 had what I’d consider to be
good subject lines, where the body of the message was
adequately described. (I was being quite generous.) At this
point, I’d like to kick out a few soapboxes, and point out that
of those 49 bad subject lines, only one was changed by the
responder.

On the subject of subject lines, the articles broke down like
this for on-topic articles:

209 Perl language usage, bugs, questions, and answers

29 Windows-specific questions

20 Web questions

18 Module usage questions

14 Questions about programs Perl interacts with
(sendmail, shell questions, ...)

12 Books

And like this for off-topic articles:

18 Web articles (CGI, HTTP, or web server issues)

10 Database (SQL language, database server issues, ...)
9 Questions about running programs other than Perl

8 Windows, Unix, or OS conversations unrelated to Perl
4 JavaScript postings

There were 30 articles that were neither questions nor
answers, just casual on-topic conversation about Perl.

147

The Day’s Weather Report

Overall, things in the newsgroup were calm that day. 178
answers were posted to the group, and a surprising 70 of them
included code written by the responder.

Flames were moderate that day as well. Only 14 articles were
categorized as true flames: content-free, without any merit
whatsoever and existing only to say, “NO, THAT’S
WRONG!” Surprisingly (or not, depending on your view)
almost all eleven flames were from channel regulars.

Finishing on a good note, there were sixteen messages that
were Thank You’s. Not simply “TIA” (thanks in advance),
but honest thanks for information passed along. They
acknowledged the advice sent, seemed to benefit from it, and
were polite enough to respond accordingly. Who says civility
is dead?

The group c.l.p.misc has a blessing almost unique to

Usenet

newsgroups: there’s almost no spam. Only three articles out
of all 432 could be considered advertising, and two were
on-topic. The two on-topic posts were a Call for Papers for
the O’Reilly Perl Conference in Monterrey, and a job listing
for a Perl programmer (which should have been posted
elsewhere). The off-topic posting, way off the mark, was a
broadly-crossposted Call for Papers for a USENIX Windows
NT Symposium. Shame on USENI