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Preface

Computers play an increasingly important role in our society. A breakdown of all
computer systems would cause a breakdown of almost all activities of daily life.
Furthermore, personal computers are available in almost every home in the industri-
alized world. But there is one sector where computers have a more strategic role, and
that is in science and technology. A large number of physical and engineering prob-
lems are solved by the use of advanced computers. The first aircraft were designed
by very clever individuals who understood the basic principles of aerodynamics,
but today this is not enough. No manufacturer would start building a new aeroplane
without extensive computer simulations of various models. Another example where
computer simulation is a necessary tool is weather prediction. We know that these
predictions are not completely accurate, but are still good enough to get a fairly
good idea about the weather for the next few days. The question then is: how is it
at all possible to predict the future of a physical system like the atmosphere around
the globe? Or in the first example: how is it possible to predict the flight properties
of an aircraft that has not yet been built, and where not even a model of the aircraft
is available to put in a wind tunnel? No matter how powerful the computers are, we
have to provide them with a program that tells them how to carry out the simulation.
How is this program constructed?

The fundamental basis for these algorithms is a mathematical model of some kind
that provides certain relations between the state variables. These relations lead to a
set of equations, and in most cases these equations are differential equations. The
problem is that these differential equations must be solved, and in most cases they
are too difficult to be solved by any mathematician, no matter how sharp. Unfortu-
nately, this is true even for the most powerful computer. This difficulty is overcome
by constructing an approximation to the mathematical model, arriving at a numeri-
cal model that has a simpler structure based on simple operations like addition and
multiplication. The problem usually requires an enormous number of such opera-
tions, but nowadays we have access to very fast computers. The state variables, like
air pressure and velocity for the weather prediction, are computed by using the nu-
merical model and, if the computer is faster than the weather proceeds in real time,
a forecast can be presented for the general public.
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vi Preface

This book is about the principles of mathematical and numerical models. We
shall put most emphasis on the construction of numerical models, and how it leads
to computational mathematics and scientific computing, which is now an indispens-
able tool in science and engineering. For many applications, the mathematical mod-
els were developed one or two centuries ago. There were also numerical models
long ago, but the more powerful and robust methods didn’t arise until there were
electronic computers that could carry out the arithmetic fast enough. Mathemati-
cal modeling is usually called applied mathematics, and there are many new areas
where this type of mathematics comes into use and is further developed. Numerical
modeling is called numerical analysis, or numerical mathematics, and the develop-
ment is very fast. The success of computer simulation should in fact be credited in
equal parts to the development of fast computers and to the development of new
numerical methods.

The famous mathematician, physicist and astronomer (and musician) Galileo
Galilei (1564–1642) said that “the book of nature is written in the language of math-
ematics”. This is certainly true but, in order to make practical use of it, we also need
numerical analysis. By using simplified examples, it is our hope to catch the ba-
sics of mathematical/numerical modeling, and in that way explain how the more
complicated problems can be solved. In this book we will explain the underlying
mathematics in more detail than is usually done in textbooks. Anybody with senior
high school mathematics should be able to understand most of the material, but it
helps to have basic college mathematics. Scientists and engineers with no or little
knowledge about computational mathematics is another group that hopefully will
benefit from reading this book as an introduction to the topic. But they can skip the
part about basic calculus in Chaps. 2–5. These chapters have a more tutorial style,
and are written for those who have forgotten their calculus, or maybe never had
much of it.

Bertil GustafssonUppsala, Sweden
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Chapter 1
Introduction

How is it possible to use computer simulation to predict the behavior of some pro-
cess that has not yet happened? How can the aerodynamic properties of an aircraft
be computed before it has been built and even without wind tunnel experiments us-
ing a model. How can the computer predict the coming change in the weather when
it has access solely to the weather data at the current point in time? The weather
pattern for tomorrow has never occurred before.

The answer is that there are physical laws that are formulated as mathematical
formulas that always hold, even in the future. This is a mathematical model. How-
ever, this model is certainly not a formula or graph where, in the case of weather
prediction, we can plug in the coordinates of a certain place on earth to obtain the
weather parameters such as air pressure, wind velocity etc. at some future point in
time. It is rather a set of equations specifying certain relations between different
variables. These equations are the fundamental physical laws expressed in mathe-
matical terms. The problem is that these equations require a solution, and they are
very difficult to solve. By using two examples, we shall indicate the basic ingredi-
ents in the computational process, without going into any details in this introductory
chapter. In the last section we shall also give an overview of the content of the rest
of the book.

1.1 Computational Example 1

When the Wright brothers constructed the first flying aircraft at the beginning of the
20th century, they were using basic aerodynamic knowledge, but not much quan-
titative computation. They were using the basic principle for flying: the wings are
given a shape such that the air is flowing faster on the upper surface compared to
the lower one, resulting in thinner air with lower pressure on top of the wing. If
the difference between the pressure above and below is large enough, the resulting
lifting force overcomes the gravitational pull downwards, such that the aircraft can
lift off the ground and keep itself flying.

B. Gustafsson, Fundamentals of Scientific Computing,
Texts in Computational Science and Engineering 8,
DOI 10.1007/978-3-642-19495-5_1, © Springer-Verlag Berlin Heidelberg 2011
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4 1 Introduction

Fig. 1.1 Lift and drag forces
on an airfoil

The situation is illustrated schematically in Fig. 1.1 showing a section through
the wing called an airfoil. For practical reasons it is easier to consider the airfoil at
rest with the air blowing from the left at the same speed as the aircraft is flying. The
air is creating a force FR acting upon it. This force can be split into one component
FD directed against the flight direction and one component FL pointing upwards.
The latter has to be larger than the gravitational pull that is trying to get the aircraft
down. If the wing has the right geometry, and the engine is powerful enough, the
lifting force becomes sufficiently large.

The question is now how to design the airfoil such that FL becomes as large as
possible, while at the same time FD is kept as small as possible. Here is where the
mathematical model is needed. The most convenient situation would be if the forces
could be computed directly as explicit formulas, where the constant aircraft speed
v0 is a given parameter. This means that for a given geometry of the airfoil, the
formulas could be written as

FL = fL(v0),

FD = fD(v0),
(1.1)

where fL(v0) and fD(v0) are certain mathematical expressions that can be evalu-
ated for any given value of v0. Complicated expressions don’t create any problems,
since we have computers that can do the computations easily and quickly. But the
unfortunate fact is that no such formulas exist. No matter how complicated we allow
them to be, as long as they consist of a series of elementary algebraic expressions
and functions, they are not to be found.

It seems that we are stuck with an impossible situation. We have very large and
fast computers at our disposal, and still we have no formulas to feed them for eval-
uation. But there is a way out. We can derive a mathematical model that doesn’t
have the simple explicit form that we would like, but is still the basis for further op-
erations that finally lead to an approximate solution. In aerodynamics such models
were derived long ago. They are based on the very early fundamental work by Isaac
Newton (1643–1727) and Leonhard Euler (1707–1783). For an aircraft at a constant
speed, a simplified model is a system of equations

∂(ρu)

∂x
+ ∂(ρv)

∂y
= 0,
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∂(ρu2 + p)

∂x
+ ∂(ρuv)

∂y
= 0,

∂(ρuv)

∂x
+ ∂(ρv2 + p)

∂y
= 0,

∂(u(E + p))

∂x
+ ∂(v(E + p))

∂y
= 0.

These are the Euler equations, where it is assumed that the air has no viscosity.
Furthermore we have assumed that there is no variation in the z-direction. These
equations have a simple and, for a mathematician, nice-looking structure, but they
are difficult to solve. Actually, it is impossible to solve them exactly. Let us first see
what the various symbols stand for.

A standard Cartesian coordinate system has been introduced with x and y as the
coordinates in space. The state variables representing physical quantities are

ρ density,
u velocity component in x-direction,
v velocity component in y-direction,
E total energy per unit volume,
p pressure.

There are five state variables but only four equations. Therefore we need one more
equation

p = p(ρ,u, v,E).

This is the equation of state, which is such that, for any given value of the variables
within the parenthesis, the pressure p can be easily evaluated. The symbol ∂ rep-
resents the differential operator, and it stands for the rate of change of a variable.
The expression ∂(ρu)/∂x is called the derivative of ρu with respect to x, and it tells
how the quantity ρu changes in the x-direction. Each equation states the connection
between changes of certain variables in different directions. The first equation tells
us that the changes of ρu in the x-direction and ρv in the y-direction cancel each
other. This is called the continuity equation, and it is a way of expressing the basic
physical fact that no material is created or destroyed.

This mathematical model is a system of differential equations, and this is proba-
bly the most common type of model in science and technology. Nature seems to be
such that it is easier to find connections and relations between different variables and
parameters if derivatives are involved. However, we have to pay a price for obtain-
ing a simple looking model. In order to be of any use, we need to find a solution to
the differential equation. The differential equations specify how different state vari-
ables are connected to each other, but their actual values are not known. We need
the pressure p = p(x, y) as a known function of the coordinates x and y. And here
is where the difficulties show up. There is plenty of mathematical theory for differ-
ential equations, but there is certainly no theory available that makes it possible to
write down the solution for our problem.
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Fig. 1.2 Approximation of
derivative

An analogy can be drawn with simpler algebraic equations. The equation

x2 − 4 = 0 (1.2)

has the solutions

x1 = 2, x2 = −2. (1.3)

However, already for a slightly more complicated equation

x5 − 3x + 1 = 0

we have a situation where no explicit formulas for the solutions exist. Mathematical
theory tells us that there are 5 different solutions, but there are no explicit expres-
sions for evaluation of them.

We have in principle the same situation for the differential equations above.
We would like to find explicit computable expressions for the unknown variables
ρ,u, v,E,p. However, if this is an impossible task already for such a simple alge-
braic equation as the one above, it is no surprise that there is no chance to solve the
system of differential equations. So what do we do?

Apparently some approximation is required. The model must be given a form that
leads to an algorithm consisting of elementary algebraic operations that the com-
puter can carry out. Hopefully this approximation, also called a numerical model,
is accurate enough for design purpose. One way of modifying the model is to sub-
stitute the derivatives with simpler expressions. In the next chapter we shall define
the derivative of a function in more detail. Here we just note that the derivative of
a function at a certain point is the slope of the curve at that point in the graph. The
slope of the curve should be interpreted as the slope of the tangent to the curve as
shown in Fig. 1.2 for a certain function f (x). If the two points x0 and x1 are close
together, the ratio

f (x1) − f (x0)

x1 − x0
(1.4)

is a good approximation of the slope. By introducing such approximations all over
the computational domain, we suddenly have a completely different situation. The
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Fig. 1.3 Part of the
computational grid

very difficult differential equations are transformed to a set of algebraic equations.
But this requires that a computational grid is constructed with each state variable
represented at the grid points. Figure 1.3 shows an example of such a grid in part
of the computational domain. (This triangular pattern requires a special type of ap-
proximation, and we shall come back to this later in the book.)

The state variables are now numbered according to some rule such that we have
the unknowns

ρ1, ρ2, ρ3, . . . , ρN ,

u1, u2, u3, . . . , uN ,

v1, v2, v3, . . . , vN,

E1, E2, E3, . . . , EN,

p1, p2, p3, . . . , pN .

The approximation means that the variables are coupled to each other at neighbor-
ing grid points. Each differential equation is written down in its discretized form
at each grid point, which results in a system of algebraic equations. This is called
a discretization of the problem, since the variables are stored only at a finite set of
discrete points. The grid shown in the figure is quite realistic for real cases, which
means that N is a large number, typically of the order one million. The system of
equations becomes huge, even in this simplified case where the third space dimen-
sion in the z-direction has been eliminated. Each equation couples only a few un-
knowns, but there are 4N equations. If each equation occupies one line, the system
would require a book containing 80,000 pages!

Accordingly we have a new problem. How can one solve large systems of equa-
tions? Actually, the huge size of the system is not the real problem. As usual we can
rely upon the high speed of the computer to overcome this difficulty. The problem
is that the system is nonlinear. The equations

x + y = 2,

2x − y = −5

is an example of a linear system, since each unknown is multiplied by a given con-
stant. It is very easy to solve. This is not the case for the nonlinear system
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x2y + y = 2,

2x − y2 = −5,

where different variables are multiplying each other or multiplied by itself. We saw
earlier that even in the scalar case with only one unknown we quickly run into
situations where there is no method for finding the exact solution if the equation is
nonlinear. So here we go again: the tools of pure mathematics are not enough to find
the solution, and we need to find a numerical method to compute an approximative,
but sufficiently accurate, solution.

Later chapters in this book describe solution methods for this type of problem.
Here we just mention the underlying basic technique, which is iteration. As an ex-
ample we take the simple equation above:

x5 − 3x + 1 = 0, (1.5)

which can be rewritten in the form

x = x5

3
+ 1

3
. (1.6)

The idea with iteration is to start with an initial guess x0, and then modifying it step
by step according to a formula that takes the results x1, x2, x3, . . . closer and closer
to the true solution. These formulas can be chosen in many different ways, but it
is not at all certain that they provide a sequence that approaches the true solution.
And among those which do, we must make sure that they approach the solution
sufficiently fast. For the rewritten version of our equation, it is natural to choose the
iteration formula

xj+1 = x5
j

3
+ 1

3
, j = 0,1,2, . . . . (1.7)

If the sequence {xj } provides numbers that become almost equal for increasing j ,
i.e., xj+1 ≈ xj , then the equation is satisfied almost exactly. This iteration produces
the numbers

x0 = 1.00000

x1 = 0.37723

x2 = 0.33588

x3 = 0.33476

x4 = 0.33473

x5 = 0.33473

It seems like we have obtained one of the solutions to the equation, and it is x =
0.33473. In fact one can prove that it is exact to five digits.

The full nonlinear system arising from the airfoil computation is huge, and it
is important that the iterations converge fast, i.e., the error in the approximative
solutions becomes small in a few iterations. This is a very active area of research in
computational mathematics.
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Fig. 1.4 Two different airfoil
shapes

Fig. 1.5 Pressure distribution
for the two airfoil shapes

We shall come back with further details concerning the airfoil problem in
Chap. 17. Here we shall present the result from a computation done by Olivier
Amoignon at the Swedish Defense Research Institute, see [1]. Figure 1.4 shows
two different airfoil geometries. Here the scale in the x-direction is modified by a
factor 5 in order to better emphasize the difference in the shape.

The corresponding pressure distributions are shown in Fig. 1.5. The pressure is
normalized around zero and, by tradition, −p is presented in the graphs, i.e., moving
upwards in the graph means decreasing pressure. The area between the upper and
lower parts of the pressure curve represents the lifting force on the airfoil.

In the aircraft design problem described above we are interested in the pressure
distribution at constant speed. This means that there are no changes in time of the
state variables. We call this a steady state problem. In many other problems time
variation is involved. Weather prediction is such an example. In this case we have
a given state of the atmosphere which is known by measurements at a certain point
in time. The problem is then to figure out how this state will change a few days
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forward in time. The differential equations are actually quite similar to the ones
presented above for the aircraft design problem. After all, we are again dealing
with aerodynamics, and the same laws apply. In addition we must keep track of the
temperature, humidity and the presence of clouds. The continuity equation is the
same, but now with the time derivatives involved. In three space dimensions it reads

∂ρ

∂t
+ ∂(ρu)

∂x
+ ∂(ρv)

∂y
+ ∂(ρw)

∂z
= 0,

where w is the velocity component in the z-direction. The other equations contain
time derivatives ∂/∂t as well. And the presence of time derivatives is the key to the
process of advancing the variables forward in time. By discretizing the equations
also in time, we get a connection between the variables at t0 and t0 + �t , where �t

is a small time step, typically of the order a few minutes. If the state is completely
known at t = t0, for example 6 o’clock in the morning, the unknown variables at
t = t1 = t0 + �t can be computed at all grid points in space, which represents a
prediction of the new state. This operation is now repeated for a second time step,
and so on. If the computer is fast enough, it produces the computed solution faster
then the weather situation proceeds in real time, and we have a prediction that is
useful.

The example in this introductory section serves as an illustration of the general
situation. Mathematical models for many physical or other types of processes have
long existed. But new models are being developed for new types of application
all the time, for example in biology. The dominating type of model is a system of
differential equations. It is a set of relations between derivatives of the variables,
i.e., the rate of change in various directions in space and in time. The system has
a solution, but there is no way of expressing it in a finite number of elementary
algebraic expressions and functions, except in very simplified cases of little interest.
In simple words: the differential equations cannot be solved by any human being or
by any computer.

The way out of this situation is to introduce a numerical model that in some
way is close to the mathematical model. There are essentially two different ways of
representing the approximate solution u.

One way is to give up the principle of defining the solution everywhere, and let
it be defined at a finite number of grid points xj , either by its point values u(xj )

or by some kind of average across a small neighborhood of the grid points. (For
simplicity we let x denote all the independent variables.) A common technique for
computing the discrete solution is to substitute the derivatives by finite difference
approximations, as demonstrated in the example above.

The second approximation principle is to let the solution be represented by a
finite sum

u(x) =
N∑

j=1

ajφj (x).

Here φj (x) are known functions that are simple to evaluate and at the same time
have good approximation properties. The coefficients aj are constants that are de-
termined from some criterion that is closely connected to the differential equation.
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Since we cannot expect a finite sum to satisfy the differential equation exactly, some
discretization principle is involved here as well, and a computational grid has to be
constructed.

Whatever principle we are choosing, the resulting numerical model leads to an
algorithm where standard algebraic operations are used to compute the quantities
that we need. But even if the operations are simple like additions and multiplica-
tions, there is such an enormous number of them that humans don’t have a chance
to carry them out within a lifetime. But computers can. This is where they have their
strength. They don’t have much of a brain, but they are extremely fast when it comes
to carrying out simple algebraic operations.

Computers require programming before we get any results out of them. The fol-
lowing scheme describes the whole procedure.

Physical process

⇓
Mathematical model

⇓
Numerical model

⇓
Computer program

⇓
Computational results

It should be emphasized that this sketch represents the ideal situation. In prac-
tice, the process hardly ever follows such a straightforward pattern. At each stage
there is a feedback to the previous stage resulting in modifications. For example,
the results of the first version of the computer program may show that certain parts
of the chosen numerical model must be modified. The procedure as a whole can be
seen as a trial and error procedure, but based on solid theoretical analysis. Some-
times experimental results are available for a model problem, such as a wind tunnel
experiment for a specific wing geometry in the example above. In such a case the
mathematical/numerical model is considered to be satisfactory if the computational
and experimental results agree within an acceptable error level. However, in most
cases no measurements are available for comparison. A computation of the detailed
bahaviour in the center of a black hole somewhere in the universe has to be judged
by other criteria.

The programming of the computer is a major undertaking by itself. On the other
hand, if the program can be made flexible enough, it can be used for many different
applications with similar mathematical models. Many such systems are available
either as commercial products, or as free software at universities and other research
institutes. It is a smaller market than for example the computer game market, but
supposedly it has a greater strategic significance.



12 1 Introduction

Fig. 1.6 X-ray image of
human lungs

1.2 Computational Example 2

The problem of finding out what is hiding inside a living person is as old as the
existence of man. The breakthrough came with the invention of the X-ray machine.
Figure1.6 shows an X-ray image of human lungs.

However, the image shows only a projection of the torso and the lungs. We know
the location and geometry of the lungs quite well, but the image by itself doesn’t
show anything about the variation in the direction perpendicular to the image sur-
face. The light parts represent variations in the tissue, but in principle these varia-
tions could be located anywhere between the front and back part of the torso.

More images taken from different angles give of course more information. By
putting a series of X-ray projections together in some systematic way, it should be
possible to get a more detailed apprehension of the inner structure. This is what
tomography is about.

But how do we construct each such image? The technique is based on a mathe-
matical/computational model that was developed by G.N. Hounsfield (1919–2004)
and A.M. Cormack (1924–1998) independent of each other. The first computerized
tomography system was patented in 1972, and they both received the Nobel Prize
in medicine 1979. Today computer tomography is a standard tool with machines
available at any fully equipped hospital. A typical machine is shown in Fig. 1.7

For each position along the “pipe”, the machine revolves around the object re-
sulting in a large number of projections, which in turn leads to a two-dimensional
image of the layer corresponding to this position. The machine then moves to a
slightly different position along the pipe, providing a new image, and so on. By
putting all these images together, a full three-dimensional image of a certain part of
the body is finally obtained.

The basis for X-ray diagnosis is that the energy of an X-ray beam is attenuated
when it passes through matter, and the attenuation is stronger for higher density.
The tissue has varying density, and a black and white X-ray image of the old type
shows this variation on a grey scale. A tumor shows up as a lighter object in a
darker neighborhood. But we don’t know where it is located along the direction of
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Fig. 1.7 Computer
tomography machine

Fig. 1.8 An X-ray crossing
an object

the X-ray beams. Let us now see what kind of mathematics is required for computer
tomography leading to a complete image.

If we can find the density u(x, y) at each point (x, y) within the object, the image
is easily obtained by letting each grey level correspond to a certain value of u. An
X-ray source emits the X-rays as shown in Fig. 1.8 and a detector on the other side
of the object measures the energy. By arranging the sources and detectors as arrays
and then turning them around, a complete set of data is obtained. By introducing a
polar coordinate system as shown in Fig. 1.9, each beam is uniquely characterized
by a pair of coordinates (r, θ).

The measurements of the X-ray energy (related to some reference energy) is
obtained as a function p(r, θ). The formal mathematical equation is

p(r, θ) =
∫ ∞

−∞

∫ ∞

−∞
u(x, y) δ(x cos θ + y sin θ − r) dx dy. (1.8)

Here we have a so called integral equation instead of a differential equation as
in the previous example (integrals are discussed in Sect. 2.2.3). Some calculus is
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Fig. 1.9 Coordinate system
for parallel X-rays

required to understand this formula, but at this point we omit this mathematical
discussion. The basic observation is that the unknown function u(x, y) is part of the
right hand side, and we would like to have it as an explicit expression such that it
can be evaluated for each point (x, y). But we have the measured values for the left
hand side p(r, θ) at our disposal, not u(x, y). The challenge is to solve the integral
equation for the unknown density u.

The right hand side of the equation is called the Radon transform of u after
the Austrian mathematician Johann Radon (1887–1956). He was able to find the
solution in a compact form:

u(x, y) = 1

2π2

∫ π

0

∫ ∞

−∞
∂p/∂r

x cos θ + y sin θ − r
dr dθ. (1.9)

This is a beautiful compact formula but, for practical purposes, it has limited value.
Evaluation of it requires first of all that p is known everywhere in the domain cov-
ering the object, but there are only a finite number of X-ray detectors and a finite
number of angles θ . Some sort of discretization is required.

These days when almost everybody owns a digital camera and is watching digital
TV, the concept of pixel is well known. The image is composed of small squares,
where each one represents a constant color. For a black and white image with a
normalization such that u = 0 corresponds to white, and u = 1 corresponds to black,
each pixel has a value in the interval 0 ≤ u ≤ 1. Mathematically, the image can then
be written as a finite sum

u(x, y) =
N∑

j=1

cjφj , (1.10)

where φj is a basis function which is zero everywhere except in pixel j , where
it is one. A value of cj near one means that pixel j is dark, while a small value
corresponds to a light pixel. The problem is to compute the coefficients cj .

As we shall see in Sect. 2.2.3, integrals are closely connected to sums. Instead of
discretizing the Radon solution formula (1.9), we go back to the integral equation
(1.8) and approximate the double integral by a double sum with u substituted by the
representation (1.10). This results in a system of equations for the coefficients cj .
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Fig. 1.10 The Shepp–Logan
phantom image

So here we go again: we need a fast solver of systems of equations. And this sys-
tem is large for sure. Computer tomographs typically work with 1064×1064 pixels
for each two-dimensional image, which means that we have a good million un-
knowns cj . On the other hand, since each beam passes through only a small number
of pixels compared to the total number, there is only a small number of unknowns
in each equation. Just as in the aircraft design example, and in many other types of
algorithm, we have a sparse system of equations.

In the original tomograph design, an iterative method was used for solving the
systems. Later, many different solution methods have been developed, most of them
using the fast Fourier transform (see Chap. 6). The latest tomographs have very ef-
fective algorithms that can keep up with the speed of the X-ray machine. The image
is fully reconstructed and ready as soon as all the X-ray projections are finished,
also in the full three-dimensional case.

Figure 1.10 shows the quality of a computed artificial image (the Shepp–Logan
phantom image) that is often used as a test example.

1.3 Outline of the Book

In this book we shall introduce the basic principles for mathematical models and nu-
merical solution methods with particular emphasis on differential equations, which
is the dominating type of mathematical model. The book is divided into five parts,
where Part III is the central one containing a presentation of the most common meth-
ods for the numerical solution of differential equations. The two parts preceding it
contain material that is necessary in order to understand the derivation and character
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of the numerical methods. Part IV presents solution methods of certain subproblems
that arise as a consequence of the methods in Part III, and the final part is about ap-
plications.

The book has the following structure in some more detail.

Part I: Models and Elementary Mathematics (Chaps. 1, 2, 3, 4, 5)
Scientific computing is based on mathematical models, and Chap. 2 is a basic in-

troduction to such models, particularly differential equations. This in turn requires
elementary differential and integral calculus, which is also included. When dis-
cussing methods for the numerical solution of differential equations, we also need
some other mathematical concepts like linear algebra, infinite series and elementary
functions. These concepts are discussed in Chaps. 3, 4 and 5.

Part I has a different character compared to the other parts of this book. Calculus
and basic linear algebra are necessary tools for the development and understand-
ing of the main material. To make it a little more convenient for those who have
forgotten or had very little of this basic mathematics, Part I is included as a tuto-
rial. It is quite elementary, and most of it can be ignored by those who have basic
college mathematics in fresh memory. Each section in Part I is marked, either by ∗
or ∗∗. One star means that the content is fairly elementary and should have been in-
cluded either as advanced courses in senior high school or as basic college courses.
Two stars mean that the content is a little tougher, and normally taught at university
level, some of it even as advanced courses. (The exponential function has got the
two star marking since it contains a subsection on complex arguments.)

Part II: Fundamentals in Numerical Analysis (Chaps. 6, 7, 8)
This part is about numerical fundamentals that must be understood before we go

into methods for differential equations. Even if it is relatively easy to understand, it
may not be very familiar to many with a more pure mathematical orientation. The
Fourier transform in Chap. 6 is not only a very central tool for analysis of differential
equations, but also an essential part of certain numerical algorithms.

Part III: Numerical Methods for Differential Equations (Chaps. 9, 10, 11, 12)
This is the central part of the book, and it is about the three fundamental classes

of numerical methods for differential equations: finite difference methods, finite
element methods and spectral methods.

Part IV: Numerical Methods for Systems of Equations (Chaps. 13, 14)
The numerical methods for differential equations lead to many subproblems, that

in turn require numerical solution. For example, we must be able to solve huge
systems of algebraic equations. In the linear case there are methods for finding the
exact solution but, for most problems in applications, these are too expensive even
with the fastest computers. Therefore we must construct numerical methods also for
this purpose, and it is done in this part.
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Part V: Applications (Chaps. 15, 16, 17, 18)
Throughout the book we are using simple examples in order to illustrate the basic

principles for various models and methods. In particular, these examples are in most
cases one-dimensional in space. In the later chapters we shall present some examples
from various applications, where the models are more complicated, and have more
space dimensions. Wave propagation, heat conduction and fluid dynamics have been
chosen since they are all well established in computational mathematics, but also
because they include all three classes of hyperbolic, parabolic and elliptic PDE.

We end the application part by a chapter about programming. The first part is
about basic principles, and it can be ignored by those who have tried programming
before. MATLAB is the ideal programming language when developing and analyz-
ing numerical methods, and the second section is a brief introduction to its basic
structure. In the final section we shall indicate some of the key programming prob-
lems that are caused by modern computer architectures containing many parallel
processors.

At the end of the book there is an appendix containing some elementary formulas
from mathematical calculus.

Many sections are ended with exercises, some of which can be solved by paper
and pencil. However, some of them require a computer, and here we leave the choice
of computer and programming language to the reader. The exercises in Part I are
easy, and can be solved by a modern hand calculator. In the later parts, more general
programming languages may be required, and MATLAB mentioned above is the
recommended system.

Finally, a few comments on various concepts and labels related to computation
and computer simulation. Unfortunately, there are no unique definitions of any cen-
tral concept, and there is some confusion concerning the interpretation. We think
of Scientific Computing, which is the topic of this book, as a wide field including
mathematical modeling, construction and analysis of numerical methods as well as
issues concerning programming systems and implementation on computers. How-
ever, others may think that mathematical modeling should not be included, but rather
be considered solely as part of Applied Mathematics. Computational Mathematics
is similar to Scientific Computing, but with less or no emphasis on programming
issues.

There are a number of parallel fields related to specific application areas, for ex-
ample: Computational Physics, Computational Chemistry, Computational Biology
and Computational Economics. Here the emphasis is on the application of numerical
methods to certain classes of problems within the field, and less on the development
and theoretical analysis of these methods. Each field has many subfields, such as
Computational Fluid Dynamics (CFD) within Computational Physics. Engineering
can be thought of as another application area leading to Computational Engineer-
ing. All these areas form the field of Computational Science, which should not be
confused with Computer Science. The latter area is the theory of computer systems
including programming languages.





Chapter 2
Mathematical Models

In the previous chapter it was indicated how mathematical models can be used to
compute the behavior of certain physical quantities of significance for the problem.
Weather prediction is a typical example where the model can be used to simulate a
process for future time. We can register all weather data at a certain time today, and
then the mathematical model is the basis for computation of the weather tomorrow.
In this chapter we shall give a very elementary description of mathematical models
in general with the basic concepts illustrated by simple examples. The fundamental
type of model is the differential equation, which specifies relations between changes
in the variables and the variables themselves. An introduction to differential equa-
tions is the bulk of this chapter, but we begin with an introductory section containing
a simple example for illustration of the most basic concepts.

The whole chapter, except possibly the sections about partial differential equa-
tions and well posed problems, can be skipped by the readers who have senior
high school or basic college mathematics in fresh memory. These readers can skip
Chaps. 3, 4, 5 as well, and go directly to Chap. 6.

2.1 ∗Basic Concepts

Let us start with a very simple example. If somebody walks with a constant velocity
v meters per second, the distance u that he covers in t seconds is obtained by the
formula

u = vt. (2.1)

It can be used for evaluating the distance u when the velocity v and the time t are
known. We can consider u = u(t) as a function of time, and at any given time the
value is obtained by a simple multiplication of two numbers. No computer is needed.

The function concept is fundamental in mathematics. With every value of the
variable t in a certain interval, it associates a unique number u(t). Almost all kinds
of problem in science and technology lead to models where the solution is some

B. Gustafsson, Fundamentals of Scientific Computing,
Texts in Computational Science and Engineering 8,
DOI 10.1007/978-3-642-19495-5_2, © Springer-Verlag Berlin Heidelberg 2011

19



20 2 Mathematical Models

Fig. 2.1 Distance u as a
function of time, v = 1 (—),
v = 1.5 (−−)

kind of function. This function is often defined in a domain containing several inde-
pendent variables. In the aircraft example in the introductory chapter, the pressure
p = p(x, y) is one of the functions we are looking for, and it has two independent
variables x and y. In the weather prediction example, there are four independent
variables x, y, z, t . A typical domain may be Europe with z varying between the
earth surface and the top of the atmosphere, and with t in a 24 hour span forward in
time.

Functions are often represented as graphs. In our simple example above, we can
make a graph of the distance u(t) as a function of time. Figure 2.1 shows the distance
for the two velocities 1 and 1.5 m/sec.

If the distance to the end point is known, and we have measured the time t it
takes to walk there, the situation is in principle different. We want to figure out
the velocity, but the relation (2.1) does not provide an explicit expression for v.
Therefore it is called an equation, and it must be solved for the unknown quantity v,
such that it appears by itself on one side of the equality sign. In this case it is easy,
since we divide both sides of the equation by t , and obtain

v = u

t
.

If the distance u and the time t are known, the number v can be computed. But for a
given distance u we can also consider v = v(t) as a function of time t for all values
of t , and draw another graph as in Fig. 2.2, where u = 300 m. The function v(t)

is the solution of the problem, and it is found by solving the equation that is the
mathematical model. The time t is the independent variable, and the velocity v is
the dependent variable.

As another example we consider a tunnel with a cross section in the form of a
semicircle as shown in Fig. 2.3, where the radius r is known. When moving x meters
from the wall, we want to compute the height h between the floor and the ceiling.
Pythagoras’ theorem for the triangle gives the equation

(r − x)2 + h2 = r2. (2.2)
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Fig. 2.2 Velocity v as a
function of measured time t

(u = 300 m)

Fig. 2.3 Cross section of the
tunnel

Again we have a mathematical model in the form of an equation which must be
solved for the unknown h. We get

h = ±
√

2rx − x2.

Here we have a case with two solutions, but obviously we are interested only in the
positive one. Is there something wrong with the mathematics that allows for another
solution? Not at all. The negative solution is the distance downwards from the floor
to an imaginative circular continuation of the tunnel wall. Equation (2.2) covers
both cases, but the given physical problem accepts only one of them. This is a very
common case in mathematical modeling, and we must be careful when analyzing a
computed solution, making sure that we are dealing with the right one. Figure 2.4
shows the solution h = h(x) as a function of x for r = 5 m.

In the two cases above, we were able to solve the equation without any computer.
This is an unusual situation in real life, where the models are much more compli-
cated. Let us first take a look at algebraic equations, which may be familiar from
high school mathematics.
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Fig. 2.4 The height h in the
tunnel as a function of x

A quadratic equation

x2 + ax + b = 0

has two solutions (also called roots)

x1 = −a

2
+

√
a2

4
− b,

x2 = −a

2
−

√
a2

4
− b.

These are exact explicit formulas, which can be used for computing the two solu-
tions, provided the constants a and b are known. We can also consider a and b as
independent variables, and the solutions x1(a, b) and x2(a, b) as functions of two
variables.

Such explicit (but more complicated) formulas for the solutions exist also for
higher degree equations

x3 + ax2 + bx + c = 0

and

x4 + ax3 + bx2 + cx + d = 0.

As usual in mathematics, one has to be careful before drawing any far-reaching
conclusions from this. It is tempting to think that such explicit formulas exist for all
equations of the form

xn + axn−1 + · · · = 0 (2.3)

for any integer n. But they don’t, which was proven by the Norwegian mathemati-
cian Niels Henrik Abel (1802–1829). On the other hand it is known that n roots
exist for any degree n, but there is no explicit form for them if n > 4. Here we have
a typical example illustrating the difference between pure and applied mathematics.
The pure mathematician proves the existence of solutions, but loses interest when
it comes to computing them. The applied mathematician comes in here, and tries
to construct methods for computing the solutions to any degree of accuracy by us-
ing a numerical algorithm. Usually this algorithm is a step-by-step procedure that
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uses simple algebraic operations like addition and multiplication, and from an initial
guess it takes us closer and closer to the solution. We shall discuss such methods in
Sect. 13.1.

Equation (2.3) is a mathematical model in the form of an algebraic equation, and
we know that there is a solution to it (actually n solutions in this case). A numerical
method is necessary for solving it and we need a computer. This one requires a
program, which is a set of instructions that can be understood by the computer.

The mathematical models for many physical processes are well known for cen-
turies. For example, Newton’s law F = ma in mechanics connecting force F , mass
m and acceleration a was published 1687, and it is central in computations for a
large number of different applications today. In fluid mechanics the basic models
were found more than 150 years ago, and they serve as the central ingredient in the
very challenging problems that researchers around the world are presently working
on. However, new mathematical models are developed for new applications all the
time. A typical area is biology, where there is now a very interesting and dynamic
development of new models for the processes in the human body.

The most common type of mathematical model is the differential equation as
described in the introductory chapter. If time is involved as an independent variable,
one can use such differential equations to predict how certain state variables will
behave at a later time given the initial state. This is the beauty of computational
mathematics. Without physical experiments, one can still find out how a certain
system behaves or is going to behave.

In this chapter we shall use a few very simple examples to give a brief introduc-
tion to differential equations and the numerical algorithms that are used for finding
the solutions. In this way we hope to provide an understanding of the more compli-
cated models discussed later in the book.

2.2 ∗Ordinary Differential Equations

In the above example relating velocity, time and distance, the velocity v is the rate
of change of the distance. For many problems, this concept often plays an important
role. The rate of change of a certain variable u is called the derivative of u. A math-
ematical model may be easily obtained by introducing derivatives and relating them
to the variable itself, arriving at a differential equation. We shall begin this section
by discussing derivatives.

2.2.1 Derivatives

In the above example connecting distance and velocity, the velocity v is a constant.
Let us now assume that it varies with time such that v = v(t) is a known func-
tion, for example v(t) = 0.002 t . It is tempting to write down the standard formula
“distance = velocity × time”

u = v(t)t = 0.002t · t,
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but of course this one is wrong. After t = 300 seconds, the formula gives the dis-
tance u = 0.002 · 3002 = 180 meters. But that is the distance we should have ob-
tained with the maximal velocity v = 0.002 · 300 all the time. Obviously we need
another mathematical model, but this requires the introduction of derivatives and
differential equations.

Assume that we are at a point u = u(t) at a certain time t , and we want to know
the position �t seconds later when v is a constant. We have

u(t + �t) = u(t) + v�t,

which we write as
u(t + �t) − u(t)

�t
= v.

This is a good starting point for generalization to more complicated problems. If
the velocity changes with time, we must know exactly what the time variation is in
the whole interval [t, t + �t]. However, if �t is small, the velocity doesn’t change
much, and we can write the approximate formula

u(t + �t) − u(t)

�t
≈ v(t), (2.4)

where the sign ≈ means that the formula is almost correct. Let us now make �t

smaller and actually approach zero. Figure 2.5 shows what happens near the point
t = t0. The vertical dashed lines represent the difference u(t0 + �t) − u(t0) for
decreasing �t , and the quotient on the left hand side of (2.4) is the ratio between
the vertical and the horizontal sides of the corresponding “triangles” with a curved
upper edge. This upper triangle edge looks more and more like a straight line, and
coincides almost exactly with the tangent to the curve when �t becomes very small.
It is tempting to let �t take the limit value zero, but we have a problem here, since
we get a quotient 0/0. As a constant, this value does not have any definition, but still
we can give it a well defined value by using the limit process. We write the formal
definition of the limit as

du

dt
= lim

�t→0

u(t + �t) − u(t)

�t
. (2.5)

(The notation t0 has been substituted by t here, indicating that the definition holds
for any point in time.) The “lim” notation means exactly the limit number as illus-
trated in the figure, and in geometrical terms it is the slope of the tangent to the
curve. Note that du and dt do not mean anything by themselves, they have to occur
together as a quotient. One often writes du/dt as u′, and it is called the derivative
of the function u(t) as mentioned above. We say that u is differentiated with respect
to t . This concept is one of the most fundamental parts of calculus.

The derivative of a function can of course be negative as well. A function is
increasing with time when the derivative is positive, and it is decreasing when the
derivative is negative.

It should be pointed out that limits of the type 0/0 do not always exist. As an
example we take a look at the function u = (10t − 1)/tp near the point t = 0. Fig-
ure 2.6 shows this function for very small values of t . The lower curve is for p = 1,
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Fig. 2.5 Difference in
function values for
decreasing �t

Fig. 2.6 u = (10t − 1)/t (—)
and u = (10t − 1)/t1.1 (−−)

for small t

and there is a limit value du/dt = 2.3026. The upper curve shows that for the case
p = 1.1, the function becomes larger and larger for decreasing t . The denominator
tends to zero faster than the numerator. There is no limit value as t → 0.

If the function itself does not exist at a certain point, we cannot expect the deriva-
tive to exist there either. But even if the function is well defined everywhere, it
may well happen that the derivative is not. As an example we take the function
u = sin(1/t) − cos(1/t)/t shown in Fig. 2.7(a). (See Sect. 5.2 for the definition
of the sine and cosine functions.) At the level of the plotter’s resolution it seems
like the function smoothes out when t approaches zero. But Fig. 2.7(b) shows the
derivative, which does not exist at the limit point t = 0. Even if the magnitude of the
function u tends to zero, it continues oscillating increasingly fast when t approaches
zero.
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Fig. 2.7 The function u = sin(1/t) − cos(1/t)/t and its derivative as functions of t

Now back to our original example. The approximate equation (2.4) becomes ex-
act in the limit �t → 0, and we get the differential equation

du

dt
= v(t). (2.6)

The important point here is that, by introducing the derivative, the mathematical
model becomes very simple to formulate, even if the velocity is a complicated func-
tion of time. (In this case the model is precisely the equation obtained from the
definition of velocity.) But it remains to find the solution u(t) of the equation, and
this is where the main difficulty arises.

The derivative defined in (2.5) uses the limit defined from the right, which is
also called a forward difference quotient. One can as well define it by a backward
difference quotient:

du

dt
= lim

�t→0

u(t) − u(t − �t)

�t
.

However, if at a certain point t = t0 the derivative has a jump such that the two limits
are different, the definition must be made more carefully.

Local maxima and minima of a function u(t) are found by solving the equation
du/dt = 0 for t , i.e., by finding those points where the tangent is horizontal. This
problem may have several solutions, and if we want to find the global maximum or
minimum, we should search among these points together with the end points of the
interval of interest for t . Figure 2.8 shows a case with two local minima at t = t1 and
t = t3, and one local maximum at t = t2. The global maximum is at the end point
t = t0, and the global minimum is at t = t3.

One can also define derivatives of higher order. The second derivative is defined
in terms of the first derivative as

d2u

dt2
= d

dt

(
du

dt

)
= lim

�t→0

u′(t + �t) − u′(t)
�t

.

If we use backward differences in the definition of u′, we obtain

d2u

dt2
= lim

�t→0

u(t + �t) − 2u(t) + u(t − �t)

�t2
. (2.7)
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Fig. 2.8 Local maxima and
minima

For all functions expressed in terms of explicit elementary functions, one can
always find the derivative as a combination of elementary functions as well by us-
ing well known differentiation rules. A list of some of these rules is found in Ap-
pendix A.1.

Exercise 2.1 Local max- and min-points of f (t) are characterized by df/dt = 0.
Show that d2f/dt2 < 0 at a max-point and d2f/dt2 > 0 at a min-point.

Exercise 2.2 A saddle point of f (t) is characterized by df/dt = d2f/dt2 = 0.
Draw a graph of a function with a saddle point.

2.2.2 Differential Equations and Initial Value Problems

A differential equation may be easy to derive but, in order for it to be of any practical
value, we need to know how to solve it. For simple equations the solution can be
found by methods taught in senior high school but, for more realistic ones, other
methods must be used.

Let us now make a slight generalization of the first example above, and assume
that the pedestrian walks the first 5 minutes with the speed 0.8 m/sec, and then
increases the speed to 1.2 m/sec. The velocity v = v(t) is defined by

v(t) =
{

0.8, 0 ≤ t ≤ 300,

1.2, 300 < t.

In order to solve the differential equation (2.6) we must define an initial condition
for u, i.e., we must know where the pedestrian starts. The complete initial value
problem is

du

dt
= v(t), t ≥ 0,

u(0) = u0,

(2.8)
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Fig. 2.9 The distance u as a
function of time with a speed
increase at t = 300

where in our case u0 = 0. This problem can be solved in two steps. First we compute
u(t) for 0 ≤ t ≤ 300, and with u(300) known we can then compute u(t) for t > 300.
There is a slight formal complication here since there is a jump in the velocity at
t = 300. Common sense tells us that the distance cannot take a sudden jump, but the
mathematical definitions must be precise when switching from v = 0.8 to v = 1.2.
We omit these details here. We have now solved the initial value problem (2.8), and
the result is shown in Fig. 2.9.

The solution technique may be seen as a two step procedure, where the velocity
is a constant during each step. We introduce the time step �t = 300, and compute

u(300) = 0 + 0.8�t = 240,

u(600) = 240 + 1.2�t = 600.

This is a type of discretization of the differential equation, which makes it possible
to solve the initial value problem by simple algebraic computations in a step-by-step
procedure.

In the example above, there are only two steps in the computation and, further-
more, the computed solution is exact. Let us next generalize the problem a little fur-
ther, and assume that the velocity is increased continuously such that v(t) = 0.002t

as in the beginning of Sect. 2.2.1. This is perhaps a somewhat unusual model for
a pedestrian, but we can think of a certain accelerating vehicle. A solution can
still be obtained by analytical means by introducing the first formula for differ-
entiation. If a function f (t) is defined by f (t) = ctp , where c and p are con-
stants, then df/dt = cptp−1. This rule may look like magic, but is not very com-
plicated to derive. Take the example p = 2. By going back to the definition of
derivatives, we consider a small time step �t and compute f at the new time
t + �t :

f (t + �t) = c(t + �t)2 = c(t2 + 2t�t + �t2) = f (t) + c�t(2t + �t).
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We get

f (t + �t) − f (t)

�t
= c2t + c�t

and, by letting �t approach zero, we get the final result

df

dt
= c2t,

which agrees with the formula above. This is of course no proof that the general
rule holds. If p is any other positive integer, the same type of technique can be
used to prove the result, but for noninteger and negative p the proof is a little more
complicated.

By using this rule for our differential equation (2.8), it follows that u(t) =
0.001t2 is a solution, and obviously it satisfies the initial condition u(0) = 0 as
well. Referring back to the introduction of this section, we note that the true solu-
tion is exactly one half of the one obtained by simply using the erroneous formula
u(t) = v(t)t .

In this case the analytical solution is easily found but, in a case where it is not,
could we compute the solution by a discretization procedure? A computer has elec-
tronic circuits that can do simple algebraic operations like addition and multiplica-
tion, but there are no circuits for differentiation of arbitrary functions. The velocity
is not constant anywhere, so the computation with piecewise constant velocity does
not give the true solution. However, if �t is sufficiently small, then v(t) does not
change much in an interval [t, t + �t], and therefore we approximate it by a con-
stant. We introduce grid points

tn = n�t, n = 0,1, . . . ,

and denote by un the approximation of the solution u(tn). The simplest approxima-
tion is to use the velocity vn = v(tn) in the whole interval [tn, tn+1]. The discrete
procedure becomes

un+1 = un + vn�t, n = 0,1, . . . ,

u0 = 0.
(2.9)

In this case we cannot expect the numerical solution to be exact, since the velocity
v is approximated by a constant in each interval. However, if the time step is small,
we expect the solution to be close to the correct one. For a computation over the
whole interval 0 ≤ t ≤ 600, the step size is defined as �t = 600/N , i.e., there are N

subintervals. Figure 2.10 shows the result for N = 10 and N = 40. As expected we
get a better result for smaller step size.

The solution procedure based on discretization is closely connected to the def-
inition of the derivative by means of the limit process �t → 0. We have simply
switched direction of the process by going back from the derivative to the finite
difference quotients that were used in the limit procedure.
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Fig. 2.10 Exact solution of (2.8) (—), approximate solution (2.9) (−−)

2.2.3 Integrals

Let us next assume that T is a fixed point in time, and that N steps are required to
get there, i.e., T = N�t . When summing up the formula (2.9), the approximation
uN is defined by

uN = u0 + v0�t + v1�t + · · · + vN−1�t = u0 +
N−1∑

n=0

vn�t.

The experiment above (where u0 = 0) indicates that the sum becomes closer and
closer to the correct value u(t) for any t in the interval 0 ≤ t ≤ T as �t becomes
smaller, i.e., N becomes larger. For the purpose of analysis, it is convenient to in-
troduce the infinity concept ∞. This is not a number, and it does not make sense to
write N = ∞ for a certain variable N . Instead we write N → ∞, i.e., N takes on
values that become larger and larger without any bound.

In the limit, the number of terms in the sum becomes infinite and, just as for
derivatives, we must be careful when considering the limit process. (We shall com-
ment more upon this in Chap. 4.) In our case it seems like the sum converges to a
certain value, and we call this process convergence as N tends to infinity. Actually,
the sum is a so-called Riemann sum. The different terms can be interpreted as the
area of the rectangles with sides �t and vj as illustrated in Fig. 2.11 for a general
function v(t).

The Riemann sum can be used to define an integral as the limit
∫ T

0
v(t) dt = lim

N→∞

N−1∑

n=0

vn�t.

The procedure above shows that the numerical solution approaches the true solution
when N becomes larger and, by taking the limit, the solution of (2.8) is defined as

u(T ) = u(0) +
∫ T

0
v(t) dt. (2.10)
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Fig. 2.11 The Riemann sum

Note that dt is not a variable carrying any value, it is just a symbol to indicate that
the integration is carried out along the t-axis. Apparently, the integral of a function
v(t) is the area under the curve y = v(t). If v(t) is negative in part of the domain,
the corresponding contribution to the integral is negative.

We have now introduced the two basic concepts in calculus, namely derivatives
and integrals. The formula above is actually an application of the fundamental the-
orem of integral calculus relating derivatives and integrals to each other

∫ t1

t0

du

dt
dt = u(t1) − u(t0), (2.11)

for the special values t0 = 0 and t1 = T . The integral here with given end points t0
and t1 is called a definite integral. There is also the indefinite integral

∫
u(t) dt

for a general function u(t). This one is defined as any function U(t) such that
dU/dt = u. We call U(t) a primitive function of u(t). For example, if u = t , then
we can take U = t2/2, but also for example U = t2/2 + 1 (the derivative of any
constant is zero). In both cases we have

∫ t1

t0

udt =
∫ t1

t0

d(t2/2)

dt
dt = t2

1

2
− t2

0

2
,

∫ t1

t0

udt =
∫ t1

t0

d(t2/2 + 1)

dt
dt =

∫ t1

t0

d(t2/2)

dt
dt = t2

1

2
− t2

0

2
.

The general rule is that, if U(t) is any primitive function of u(t), then
∫ t1

t0

udt = U(t1) − U(t0), (2.12)
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The key question is therefore how to find a primitive function U(t) when it comes to
computation of an integral. For certain classes of functions u(t) there are a number
of rules and tricks for finding U(t), but in general integration is a difficult problem.
And here we have another case where computers have difficulties as well, since there
are no electronic circuits that can do general integration. There are program systems
that can do differentiation as well as integration for certain classes of functions, but
for general problems we have to find the answer by constructing numerical methods
based on the principle of discretization. We saw how integrals can be approximated
by finite sums corresponding to a sum of rectangle areas, but we can of course use
more accurate approximations of the area corresponding to the integral.

Another rule that will be used quite frequently later in this book is integration by
parts. Assume that U(t) is a primitive function of u(t). Then for any function v(t)

∫ t1

t0

u(t)v(t) dt = U(t1)v(t1) − U(t0)v(t0) −
∫ t1

t0

U(t)
dv

dt
(t) dt. (2.13)

A special application is the relation
∫ t1

t0

du

dt
(t)v(t) dt = u(t1)v(t1) − u(t0)v(t0) −

∫ t1

t0

u(t)
dv

dt
(t) dt. (2.14)

This is a very useful formula, since it allows for shifting the derivative from one
function to the other one in the product.

Exercise 2.3 The graph of the function f (t) is a straight line cutting through the
t-axis at t = t0. Show that

∫ t0+a

t0−a
f (t) dt = 0 for all a > 0.

2.2.4 More on Differential Equations and Discretization

Going back to differential equations, we note that the accuracy of the numerical
method (2.9) can be improved significantly by choosing a more accurate method
for approximating v(t) in each interval. In this way we can get away with fewer
points tn, i.e., larger �t . This is an important consideration when it comes to real
and more demanding problems, and we shall discuss it further in the next chapter.

The differential equation in our example is trivial in the sense that it can be solved
by analytical means, and there is no need for discrete or numerical methods. More
general differential equations have the form

du

dt
= g(u), (2.15)

where g(u) is a general function that depends on the solution u that we are looking
for. The form of the equation may not be very different from the one we treated
above, but the level of complexity when it comes to solving it has suddenly gone up
dramatically. Actually, there may be cases when a solution does not even exist. Or
it may exist for certain values of t , but not for others. For example, the equation

du

dt
= u2,
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Fig. 2.12 Solution to a linear
(—) and a nonlinear (−−)
differential equation

has the solution u(t) = 1/(1 − t) (Exercise 2.4) if the initial value is u(0) = 1. But
at t = 1 the solution does not exist, and we cannot continue further in time.

Outside the mathematical world one sometimes hears the expression “nonlinear
growth” used for something that grows without any control. The equation above
may be an example representing the basis for this expression.

When it comes to analytical solution techniques, the real distinction between
easy and difficult differential equations is linear and nonlinear equations. A linear
function has the form g(u) = au+b, where a = a(t) and b(t) are functions that may
depend on t but not on u. Even if these functions are very large, there is always a
solution to the differential equation for all t . Let us take a closer look at the example
above. The differential equation is written as du/dt = uu, and we substitute the first
factor on the right hand side by the midpoint value u(t) = 1/(1 − 1/2) = 2 of the
solution in the interval 0 ≤ t ≤ 1. It seems like a reasonable approximation, and it
results in the new initial value problem

dv

dt
= 2v,

v(0) = 1,

which has a well defined solution for all t . Figure 2.12 shows the two solutions. In
the nonlinear case, the growth of the derivative is so strong that the solution tends to
infinity very quickly.

On the other hand, many nonlinear differential equations have unique solutions
(for a given initial value), at least for some finite time (as the one above). In fact,
most physical phenomena are nonlinear, and we have to deal with them. But it is
important to do the analysis correctly, and to draw the right conclusions about the
mathematical properties. From now on we assume that g(u) is such that a solution to
the differential equation (2.15) exists, but we don’t expect that there is any analytical
solution in explicit form.

Differential equations may contain higher-order derivatives. Going back to the
example with u representing distance, we note that the concept of acceleration a is
related to velocity by the differential equation dv/dt = a, and therefore we have

d2u

dt2 = a.

We know that if a is a constant, then v = at is the velocity for an object that
is at rest at t = 0. When using the rule for differentiation, we find the solution
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u = 0.5at2 after one more integration. As an example we consider the acceleration
a = 9.81 m/sec2 caused by the Earth’s gravitation. If we disregard the air resistance
we can use this formula to figure out the speed when a falling body hits the ground.
For example, if an apple is hanging two meters above the ground and comes loose,
we get the equation 2 = 0.5 · 9.81t2, which has the solution t = 0.639 seconds. The
apple has the speed v = 9.81 · 0.639 = 6.27 m/sec when it hits the ground.

This is a special case of the initial value problem

d2u

dt2
= a(t), t ≥ 0,

u(0) = u0,

u′(0) = v0,

where a(t) depends on time and u0 and v0 are the initial position and initial velocity
respectively. A numerical difference scheme is obtained by taking a finite �t in the
formal definition (2.7) of the second derivative:

un+1 = 2un − un−1 + �t2a(tn).

Since three levels in time are involved, we need not only the given value u0 but
also u1 in order to get it started. It is of course no coincidence that we have another
initial condition available that can be used to provide this value: it simply reflects
the connection between the differential equation and its discretization. The simplest
way to obtain u1 is to use the difference approximation u1 − u0 = �tv0 of the
second initial condition.

If we observe the falling body and measure the position at two different points
T1 and T2 in time, we get the boundary value problem

d2u

dt2 = a(t), T1 ≤ t ≤ T2,

u(T1) = p1,

u(T2) = p2.

With N + 1 grid points including the end points of the interval [T1, T2], the corre-
sponding difference scheme is

un+1 − 2un + un−1 = �t2a(tn), n = 1,2, . . . ,N − 1,

u0 = p1,

uN = p2.

Here we encounter a new problem. The values un cannot be computed explicitly
starting with u2, since u1 is not known. We have a system of equations for the
unknowns u1, u2, . . . , uN−1 and, for small time steps �t , the system is a large one.
Efficient techniques are known for such systems, and we come back to this topic
later in this book.

So far we have been discussing scalar ODE, i.e., there is only one unknown
dependent function u. In applications there are usually more than one function, and
we have more than one differential equation. The system
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du1

dt
= u1 + cu2,

du2

dt
= cu1 + u2,

couples the two dependent variables u1 and u2 to each other through the two dif-
ferential equations. (The subscript notation here should not be mixed up with the
discretization subscript above.) In order to define a unique solution, we must spec-
ify both variables in an initial condition. A more compact form is obtained if we
use vector notation (see Chap. 3). In the general case we define a vector u = u(t)

containing the m elements uj = uj (t). The derivative of a vector is defined as the
vector of derivatives, i.e.,

u =

⎡

⎢⎢⎢⎣

u1
u2
...

um

⎤

⎥⎥⎥⎦ ,
du
dt

=

⎡

⎢⎢⎢⎣

du1/dt

du2/dt
...

dum/dt

⎤

⎥⎥⎥⎦ .

A general initial value problem for a system of ODE can now be written in the form

du
dt

= g(t,u), t ≥ 0,

u(0) = f,

(2.16)

where g and f are vectors defined by

g(t,u) =

⎡

⎢⎢⎢⎣

g1(t, u1, u2, . . . , um)

g2(t, u1, u2, . . . , um)
...

gm(t, u1, u2, . . . , um)

⎤

⎥⎥⎥⎦ , f =

⎡

⎢⎢⎢⎣

f1
f2
...

fm

⎤

⎥⎥⎥⎦ .

For numerical methods the same compact notation can be used. If un denotes an
approximation of u(tn), the simple difference scheme (2.9) can be written in the
form

un+1 = un + �tg(tn,un), n = 0,1, . . . ,

u0 = f.

Exercise 2.4 In Appendix A.1 we find that ata−1 is the derivative of ta for any
constant a. Use the chain rule to show that u(t) = 1/(c − t) satisfies the differential
equation du/dt = u2.

Exercise 2.5 Show that u(t) is a decreasing function of t for increasing t > 0 if

du

dt
= − 1

1 − u3
,

u(0) = −1.2.
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Exercise 2.6 Define the vectors u and g(u) such that the system

du

dt
= au + bv,

dv

dt
= cu2

takes the form (2.16).

2.3 ∗∗Partial Differential Equations

So far we have discussed ordinary differential equations, where there is only one
independent variable t . In most applications there are two or more independent vari-
ables, and then we must deal with partial derivatives.

2.3.1 Partial Derivatives

For a function u(x, t) we define partial derivatives as limits of finite difference
quotients as

∂u

∂x
= lim

�x→0

u(x + �x, t) − u(x, t)

�x
,

∂u

∂t
= lim

�t→0

u(x, t + �t) − u(x, t)

�t
.

For a constant value of t , we can consider u as a function of the single variable
x, and the derivative ∂u/∂x corresponds to the slope of the tangent of the function
curve, just as for the one-dimensional case. In Fig. 2.13 the directions for measuring
the slope are indicated by the short arrows marked �x and �t .

Partial differentiation of a function u(x1, x2, . . . , xd) is in principle no more
complicated than differentiation of a function of one variable. Differentiation with
respect to x1 is simply done by considering all the other variables x2, x3, . . . , xd

as constants, and then applying the ordinary differentiation rules to u as a function
of x1. As an example, for the function

u(x, y, z) = x2y3 + 2yz2 + xyz (2.17)

we have

∂u

∂x
= 2xy3 + yz,

∂u

∂y
= 3x2y2 + 2z2 + xz,

∂u

∂z
= 4yz + xy.
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Fig. 2.13 Partial derivatives
in (x, t)-space

Higher order derivatives are defined in analogy with the 1D-case, for example

∂2u

∂x2
= ∂

∂x

(
∂u

∂x

)
= 2y3.

However, here we get the additional complication of getting mixed derivatives, for
example

∂2u

∂x∂y
= ∂

∂x

(
∂u

∂y

)
= ∂

∂y

(
∂u

∂x

)
= 6xy2 + z.

When looking for local minima or maxima of a function u(x1, x2, . . . , xd), we try
to find the points where all partial derivatives are zero:

∂u

∂x1
= ∂u

∂x2
= · · · = ∂u

∂xd

= 0.

The tangent plane is horizontal at the minimum point for a function of two variables
as shown in Fig. 2.13.

Figure 2.14 shows the function u(x, y) = x2y3 and its partial derivative ∂u/∂x =
2xy3. For each constant y = y0, the derivative ∂u/∂x is a straight line as shown in
Fig. 2.14(c).

The partial derivatives of a function can be ordered as a vector, and we call it the
gradient. It is denoted by gradu or ∇ u, and is defined by

∇ u =

⎡

⎢⎢⎢⎣

∂u/∂x1
∂u/∂x2

...

∂u/∂xd

⎤

⎥⎥⎥⎦ .

We are also going to use the notation

� = ∇ · ∇ = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2

for the Laplacian operator named after the French mathematician Pierre Simon de
Laplace (1749–1827). (Here we have used the dot-notation for the scalar product
between vectors which will be discussed in Chap. 3.)
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Fig. 2.14 u = x2y3 and ∂u/∂x

Fig. 2.15 A moving pulse

It can be shown that the vector ∇ u points in the direction where the function u

has the steepest slope (positive or negative). The condition for a local maximum or
minimum can be written as ∇ u = 0.

A partial differential equation contains relations between different partial deriva-
tives. For illustration, we consider also here a very simple example, and we choose
wave propagation. Consider the left part of Fig. 2.15 which could be a pressure
pulse. A certain feature in the pressure distribution is moving to the right with speed
c m/sec, and the figure shows the pulse at two different but close points in time. Part
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of the graph is magnified giving the right part of the figure, where a sufficiently small
part of the curve can be considered as an almost straight line. The function u at a cer-
tain fixed point x has changed from u(t) to the smaller value u(t +�t). Any feature
has traveled a distance c�t , and the figure shows that (u(t) − u(t + �t))/(c�t) is
the slope of the line. But this slope is by definition the derivative in the x-direction,
i.e., ∂u/∂x. For the true function u(x, t) we must take the limit, and we have

lim
�t→0

u(t + �t) − u(t)

c�t
= −∂u

∂x
.

The partial differential equation becomes

∂u

∂t
+ c

∂u

∂x
= 0. (2.18)

It shows how changes of the function in the x-direction are related to changes in the
t -direction. We note that any function f (x − ct) is a solution since by the chain rule

∂u

∂x
= f ′(x − ct),

∂u

∂t
= −cf ′(x − ct),

and this is what we expect. The assumption was that any feature in the solution is
moving with the velocity c, i.e., the solution is constant along any line x = ct in the
(x, t)-plane. These lines are called characteristics of the PDE.

For our example, there is no need to use the differential equation for describing
the process, since we assumed from the beginning that the pulse is moving with the
velocity c. In other words, we derived the differential equation from the knowledge
of the true solution. But the nice thing is that (2.18) can easily be generalized to a
more complicated situation. The differential equation holds locally at every point
(x, t) for any c that may change with x and t . We simply change the equation to

∂u

∂t
+ c(x, t)

∂u

∂x
= 0,

where c = c(x, t) is a given function. The generalized model is easy to understand,
but the solution is much more difficult to obtain. Just as for ordinary differential
equations, one numerical method presents itself by going back to the finite differ-
ence formulation that was the basis for the definition of the derivatives. We shall
discuss such methods in Chap. 10.

Integrals can be defined for functions of several variables. If u(x, y) is defined in
a rectangle a ≤ x ≤ b, c ≤ y ≤ d , the double integral over this rectangle is

I =
∫ d

c

∫ b

a

u(x, y) dx dy.

It is not necessary to define it via a discrete sum, since it can as well be defined by
single integrals. The function

v(y) =
∫ b

a

u(x, y) dx
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is well defined as a function of y, and we have

I =
∫ d

c

v(y) dy,

i.e.,

I =
∫ d

c

(∫ b

a

u(x, y) dx

)
dy.

The integration can be expressed in the opposite order as well:

I =
∫ b

a

(∫ d

c

u(x, y) dy

)
dx.

The definition of multidimensional integrals for any number of variables should be
clear from this.

If the domain is no longer a rectangle (or hyper-rectangle in higher dimensions),
it is not that easy to define the integrals as a sequence of one-dimensional integrals.
However, integrals can be defined along curves as well as along straight lines. As-
sume that a certain curve � in the x/y-plane is defined by

� = {(x, y) : x = x(s), y = y(s), 0 ≤ s ≤ S},
where s is the arc length. This means that the coordinates of the curve � are well
defined for all s in the interval [0, S], and for each point s = s∗ the length of the
curve from the starting point is s∗.The total length of the curve is S. If a function
u(x(s), y(s)) is defined on �, the line integral (or curve integral) along � is

∫

�

u
(
x(s), y(s)

)
ds =

∫ S

0
u
(
x(s), y(s)

)
ds,

which is well defined as a one-dimensional integral. Likewise, we can define inte-
grals on a surface in the three-dimensional space, and so on.

For 1D-integrals we had the fundamental theorem (2.11) relating derivatives to
integrals. In several dimensions there is no such simple formula, but there are many
relations that are similar, one of them being the divergence theorem. It says that, for
any two functions u(x, y) and v(x, y) defined in the domain � with boundary �,
we have

∫ ∫

�

(
∂u

∂x
+ ∂v

∂y

)
dx dy =

∫

�

(unx + vny) ds. (2.19)

Here nx and ny are the components of the outward pointing normal n to the curve �

(with n2
x + n2

y = 1), see Fig. 2.16.
The theorem brings down the dimension of the double integral one step ending

up with a line integral. This is analogous to the 1D-integral which was brought down
to two boundary points. The divergence theorem can be generalized to any number
of dimensions d , such that the result is an integral in d − 1 dimensions.

In Chap. 11 we shall use the divergence theorem when discussing finite element
methods.
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Fig. 2.16 The outward
normal

Exercise 2.7 Calculate the six different second derivatives for u defined in (2.17).

Exercise 2.8 Find the local minimum of the function (x −a)4 + (y −b)4, and prove
that it is also the global minimum.

2.3.2 Boundary and Initial-Boundary Value Problems

In order to illustrate initial-boundary value problems, we shall use the heat conduc-
tion problem as an example (it will be discussed in more detail in Chap. 16). It leads
to a partial differential equation of higher order. Figure 2.17 shows a wall, where
the red layers on the sides symbolize some device that keeps the temperature u(x, t)

constant. If the wall is very long and high, we can consider the temperature as a con-
stant in the y- and z-directions, and the problem becomes one-dimensional. This is a
very common simplification in mathematical modeling. The computation becomes
so much simpler, and the results may still be accurate enough. And even if the 1D-
simplification is not very accurate, it serves as a suitable problem for analysis and
understanding of basic properties.

The partial differential equation

∂u

∂t
= a

∂2u

∂x2

is a simple version of heat conduction corresponding to the case where the heat con-
duction coefficient a is constant. The material in the wall is identical everywhere so
that the heat conduction properties are the same everywhere. Since the temperature
at the surface on both sides is kept constant, we have the boundary conditions

u(0, t) = u0,

u(1, t) = u1,

where it is assumed that the boundaries are located at x = 0 and x = 1. If we also
include the known heat distribution as an initial condition u(x,0) = f (x), we have
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Fig. 2.17 Heat conduction in
a wall

a complete initial-boundary value problem. If the temperature is known on three
sides, the solution can be computed in the whole (x, t)-domain for any time t ≥ 0.
We shall discuss numerical methods for this and other PDE problems in Chap. 9.

It is reasonable to assume that after some time the temperature distribution no
longer changes, and we reach a steady state. This means that the time derivative is
zero, and there is no initial condition. The boundary value problem is

d2u

dx2
= 0, 0 ≤ x ≤ 1,

u(0) = u0,

u(1) = u1.

Note that there are no partial derivatives here, and therefore we use the standard
notation d2/dx2 for the second derivative.

Indeed this boundary value problem, is very easy to solve. If the second derivative
is zero, the solution must be a straight line u(x) = b+ cx, where the constants b and
c are determined by the boundary conditions. By letting x = 0 we get b = u0, and
then it follows that c = u1 − u0 by letting x = 1.

The simple form of the problem is a result of the assumption that the heat con-
duction coefficient is constant, and that the variation of the solution u is limited to
the x-direction. By considering a wall that is finite in the y-direction with given
temperature at y = y0 and y = y1, the steady state problem for u(x, y) is

∂2u

∂x2
+ ∂2u

∂y2
= 0, x0 ≤ x ≤ x1, y0 ≤ y ≤ y1,

u(x, y0) = g0(x), x0 ≤ x ≤ x1,

u(x0, y) = h0(y), y0 ≤ y ≤ y1,

u(x, y1) = g1(x), x0 ≤ x ≤ x1,

u(x1, y) = h1(y), y0 ≤ y ≤ y1,

see Fig. 2.18.
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Fig. 2.18 Heat equation in
a pillar

By measuring the temperature at all the edges, it is possible to figure out the
temperature in the whole wall. The differential equation is the well known Laplace
equation in 2D. It occurs in many other applications, and is one of the most studied
partial differential equations ever. Even if there are many ways of deriving analytical
solutions for special cases, numerical methods are almost exclusively used for its
solution. Such algorithms are called Laplace solvers.

2.4 ∗∗Well Posed Mathematical Models

In most computations we have to deal with perturbations of various kinds. For ex-
ample, an initial value problem that is used for predicting a certain quantity requires
initial data. These are seldom exact, and therefore it is important that a small error,
or perturbation, does not cause large errors in the solution at later time. We call
such a problem well posed, and we shall now discuss this concept with the heat
conduction problem as an illustration:

∂u

∂t
= ∂2u

∂x2 , 0 ≤ x ≤ 1, t1 ≤ t,

u(0, t) = 1,

u(1, t) = 1,

u(x, t1) = f1(x).

(2.20)

We can also formulate the inverse problem. If the temperature is known at t = t2, we
can ask ourselves what the heat distribution was at the earlier point in time t = t1.
In other words, we want to solve the heat equation backwards

∂u

∂t
= ∂2u

∂x2 , 0 ≤ x ≤ 1, t1 ≤ t ≤ t2,

u(0, t) = 1,

u(1, t) = 1,

u(x, t2) = f2(x).
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Fig. 2.19 The heat equation

Numerical methods for PDE will be discussed later in this book. Here we use a
simple difference scheme for both problems. For the forward problem (2.20) we use
the initial function

f1(x) = |1 − 2x|
at t1 = 0 and solve for 0 ≤ t ≤ 0.1. The result in Fig. 2.19(a) shows the correct
solution at t = 0.1 as the upper dashed curve. Next we use this solution as the
function f2(x) for the backward problem, hoping to get the initial function f1(x)

back as the solution at t1 = 0. However, already after a few small steps, the solution
is the oscillating one shown in Fig. 2.19(b). It is not even near the correct solution
(which is smooth for all t > 0), and obviously something has gone wrong here.
This will happen with any other numerical method applied directly to the backward
problem. The solution may have a different form, which will be completely wrong
after a short time. We are seeing an example of an ill posed problem in contrast to
the forward heat equation, which is a well posed problem. The meaning of the latter
concept is that if we perturb the initial data slightly, the solution at later time is also
perturbed slightly. More precisely, if the initial perturbation is ε(x) with |ε(x)| ≤ ε0,
where ε0 is a small number, then the deviation v(x, t) from the original solution
u(x, t) at later time satisfies an inequality |v(x, t)| ≤ Kε0 where K is a constant of
reasonable size. For an ill posed problem such a constant does not exist.

An ill posed problem is an almost hopeless case for a numerical approximation.
Since the approximation by definition introduces perturbations of the solution, the
result will be bad after a short time. However, by introducing certain filters that
keep the solution within strict bounds, it is sometimes still possible to get reasonable
solutions.

The concept of well-posedness is very important in applications. Many politi-
cal decisions are based on mathematical modeling and computer simulations. As a
drastic and simplified example, think of a country that is on the verge of introduc-
ing nuclear power as a new energy source, and that a new type of reactor is to be
used. One political party is against the introduction of nuclear power, and they refer
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to the results from a mathematical model that is used for simulation of the cooling
procedure. This model shows that the temperature goes well above the security limit
if a certain pipe is broken, and this shows that the reactor is not safe. The govern-
ment asks the national energy agency for another simulation with slightly perturbed
data. This shows that the temperature stays well below the security limit, and the
opposition party is accused of presenting false information. Who is right?

After intense analysis, it is found that the model is ill posed, and consequently
neither party is right. There is simply not enough information for a reliable conclu-
sion. It may be difficult to explain to the general public what an ill posed problem
is, but clearly the decision about going ahead with the project has to be postponed.

An ill posed problem should not be confused with a model with poor accuracy.
The backwards heat equation is a correct model when it comes to stating the true
relation between the rate of change in time and in space. The difficulty arises when
we want to solve it for computing the temperature at an earlier time starting from
measurements at a later time. Then the model overreacts to small perturbations, and
has no practical use. We need accurate and well posed models.





Chapter 3
Basic Linear Algebra

Linear algebra deals with vector spaces and linear transformations represented by
matrices. It may seem to be a field of little interest when it comes to the solution of
differential equations. However, the fact is that it is a central and indispensable field
that is necessary for the analysis and understanding of the problems and algorithms.
One reason is that most numerical methods lead to the solution of linear systems of
algebraic equations, which is an immediate application of linear algebra. Another
reason is that systems of differential equations require linear algebra for analysis
even before discretization.

In this chapter we shall give a brief survey of linear algebra. It turns out that it is
difficult to deal with matrices when limited to the use of real numbers as we know
them from daily life. Therefore we shall introduce so-called complex numbers in
the section preceding the matrix section.

3.1 ∗Vector Spaces

The Euclidean three-dimensional space is used to describe the three-dimensional
world we are living in. A coordinate system with 3 parameters is used to describe
any point in space. With the position of the origin (0,0,0) known, the triplet (x, y, z)

describes how far away in the three perpendicular directions the point is located.
The numbers x, y, z are called (Cartesian) coordinates in the three-dimensional Eu-
clidean space. In mathematics it is convenient to generalize this concept to more
than three dimensions. In modern physics one actually talks about a universe that
has more than three dimensions, but this is not what we should have in mind here.
We just think of any phenomenon that can be characterized by a set of parameters
that we order in a vector

x =

⎡

⎢⎢⎢⎣

x1
x2
...

xN

⎤

⎥⎥⎥⎦ .

B. Gustafsson, Fundamentals of Scientific Computing,
Texts in Computational Science and Engineering 8,
DOI 10.1007/978-3-642-19495-5_3, © Springer-Verlag Berlin Heidelberg 2011

47



48 3 Basic Linear Algebra

An example could be a certain sound source consisting of N different tones with fre-
quencies f1, f2, . . . , fN that are known. The vector x could then be used to describe
the strength xj of each frequency.

The normal form of a vector is a column vector, i.e., the elements are ordered in
a vertical pattern. Sometimes we shall work with row vectors, where the elements
are ordered in a horizontal pattern. For the relation between the two, we use the
transpose label T , such that

[
x1 x2 · · · xN

]T =

⎡

⎢⎢⎢⎣

x1
x2
...

xN

⎤

⎥⎥⎥⎦ .

Two vectors with the same number of elements can be added to each other:

x + y =

⎡

⎢⎢⎢⎣

x1 + y1
x2 + y2

...

xN + yN

⎤

⎥⎥⎥⎦ .

Two vectors cannot be multiplied with each other. However, if c is a scalar, we have

cx =

⎡

⎢⎢⎢⎣

cx1
cx2
...

cxN

⎤

⎥⎥⎥⎦ .

A general set of M vectors xj are called linearly dependent if there are coefficients
cj such that

c1x1 + c2x2 + · · · + cMxM = 0,

where the cj are not all zero. The vectors are linearly independent if such a relation
is possible only if all coefficients are zero. Figure 3.1 shows two linearly depen-
dent vectors x1 and x2. The two pairs of vectors x1,x3 and x2,x3 are both linearly
independent.

Linear independence plays a fundamental role in mathematical and numerical
analysis as we shall see. The analysis often leads to equalities of the type

M∑

j=1

ajxj =
M∑

j=1

bj xj ,

where the vectors xj are linearly independent. This leads to the very simple set of
relations

aj = bj , j = 1,2, . . . ,M.

The set of all vectors with N elements is a called a vector space of dimension N .
There can never be more than N linearly independent vectors in an N -dimensional
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Fig. 3.1 Linearly dependent
and linearly independent
vectors

space. Any set of vectors {vj }Nj=1 can be used as basis vectors provided that they are
linearly independent. Any vector can be expressed in terms of a set of basis vectors
as

x = c1v1 + c2v2 + · · · + cNvN,

where the coefficients cj are the coordinates associated with the given basis. The
most convenient basis is given by the unit vectors

e1 =

⎡

⎢⎢⎢⎢⎢⎣

1
0
0
...

0

⎤

⎥⎥⎥⎥⎥⎦
, e2 =

⎡

⎢⎢⎢⎢⎢⎣

0
1
0
...

0

⎤

⎥⎥⎥⎥⎥⎦
, e3 =

⎡

⎢⎢⎢⎢⎢⎣

0
0
1
...

0

⎤

⎥⎥⎥⎥⎥⎦
, . . . , eN =

⎡

⎢⎢⎢⎢⎢⎣

0
0
0
...

1

⎤

⎥⎥⎥⎥⎥⎦
,

leading to the representation of x

x = x1e1 + x2e2 + · · · + xN eN.

The scalar product of two vectors x and y is defined as

(x,y) = x1y1 + x2y2 + · · · + xNyN.

The notation x · y is also used. The scalar product is bilinear, i.e., for any vectors
x,y, z and any constant c

(x,y + cz) = (x,y) + c(x, z),
(x + cy, z) = (x, z) + c(y, z).

Two vectors are orthogonal if (x,y) = 0. We note that the unit vectors ej defined
above are mutually orthogonal, i.e.,

(ej , ek) = 0 if j �= k.

The length (or norm) of a vector is

‖x‖ = √
(x,x) =

√
x2

1 + x2
2 + · · · + x2

N,
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and we note that ‖ej‖ = 1 for all j . When a set of vectors are not only orthogonal,
but also has length one like the unit vectors, the vectors are called orthonormal.
The set of unit vectors ej is a special case of mutually orthonormal vectors. By
introducing the Kronecker δ defined by

δjk =
{

0 if j �= k,

1 if j = k,

we have

(ej , ek) = δjk.

Since the norm is a generalization of the vector length in the Euclidean 3D-space,
we call it the Euclidean norm sometimes denoted by ‖x‖2.

For a sum of real vectors we have

‖x + y‖2 = (x + y,x + y)

= ‖x‖2 + (x,y) + (y,x) + ‖y‖2 = ‖x‖2 + 2(x,y) + ‖y‖2.

(For complex vectors this relation takes a different form, see below.)
One can define other type of norms, for example maxj |xj |, but in this book we

mainly stick to the Euclidean norm. All norms must be such that ‖x‖ = 0 if and only
if x = 0. Whatever norm we are using, the triangle inequality

‖x + y‖ ≤ ‖x‖ + ‖y‖ (3.1)

always holds for any vectors x and y.
The basis vectors must be linearly independent, but from a numerical point of

view this condition is not sufficient. We take an example in the 2D-space. The nat-
ural choice of basis vectors are the usual orthogonal unit vectors along the x- and
y-axes

e1 =
[

1
0

]
, e2 =

[
0
1

]
.

This choice guarantees that if a certain vector is perturbed slightly, the perturbation
of the coefficients for the basis vectors is small. The vector [a b]T has the represen-
tation [

a

b

]
= a

[
1
0

]
+ b

[
0
1

]
,

while the perturbed vector [a b + δ]T has the representation
[

a

b + δ

]
= a

[
1
0

]
+ (b + δ)

[
0
1

]
.

The difference is in the second coefficient, and it has the same size δ as the perturba-
tion in the given vector. This is the perfect situation from a numerical point of view,
and we say that the problem of finding the coefficients is well conditioned.

Let us now change the basis to the new vectors

v1 =
[

1
0

]
, v2 = 1√

1 + ε2

[
1
ε

]
,
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where |ε| is small. Here it is obvious that the two vectors are almost linearly de-
pendent, but in the general high dimensional case we must use some mathematical
criterion. We know that orthogonal vectors u,v satisfy (u,v) = 0, while the scalar
product of two identical vectors of unit length is (u,u) = 1. Therefore the magni-
tude of the scalar product between two vectors is a measure of the degree of linear
independence, with decreasing value when two vectors tend towards the strongest
degree of linear independence, which is orthogonality. In our case

(v1,v2) = 1√
1 + ε2

,

which is very close to one. (Actually the scalar product is cos θ , where θ is the angle
between the vectors, see Sect. 5.2.) The vector [a b]T has the representation

[
a

b

]
= c1v1 + c2v2,

where

c1 = a − b

ε
, c2 = b

√
1 + ε2

ε
.

With the same perturbation of the vector as above we get the new coefficients

c̃1 = a − b + δ

ε
, c̃2 = (b + δ)

√
1 + ε2

ε
,

i.e., the perturbation is

c̃1 − c1 = −δ

ε
, c̃2 − c2 = δ

√
1 + ε2

ε
,

which is large if ε is small. The problem of solving for the coefficients for the
basis vectors is ill conditioned. And it is so even before we have decided upon any
particular numerical method for computing the coefficients.

It is not a coincidence that the orthogonal unit vectors are the basis vectors in
the Cartesian coordinate system. We are used to see this system as natural from
a graphical point of view. But we should also keep in mind that the orthogonality
guarantees that this system is the best one from a numerical/computational point of
view as shown by our example.

Later we shall generalize the concept of vector basis to function basis, with a
given function represented as a linear combination of certain basis functions. We
shall demonstrate that the choice of bases is a central issue for computational math-
ematics. One such choice is orthogonal functions.

Exercise 3.1 The vectors

x =
[

1
1

]
, y =

[
2
a

]

are given, where a is a constant.

(a) For what values of a are the vectors linearly independent?
(b) For what values of a are the vectors orthogonal?
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(c) What is the norm of the vectors?
(d) Scale the orthogonal vectors in (b) such that they become orthonormal.

Exercise 3.2 Prove the triangle inequality (3.1) for the Euclidean vector norm.

3.2 ∗Complex Numbers

Sometimes it is not enough to use real numbers, and we shall briefly introduce com-
plex numbers. Consider the equation x2 + 1 = 0. Formally we can write one solu-
tion as x = √−1, but what does the square-root of a negative number mean? We
are looking for a number whose square is −1. If we take any number, either positive
or negative, the square of it is positive. The way out of this difficulty is to simply
define a new type of number whose square is −1. When first invented, this number
was thought of as an imaginary number that actually didn’t exist, and therefore the
notation i was introduced. It is a special case of a complex number, which has the
general form z = x + iy, where x and y are real numbers as we know them. The
numbers x and y are the real and imaginary parts denoted by

Re z = x,

Im z = y.

Algebraic rules apply as before:

z1 + z2 = x1 + iy1 + x2 + iy2 = (x1 + x2) + i(y1 + y2),

z1z2 = (x1 + iy1)(x2 + iy2) = (x1x2 − y1y2) + i(x1y2 + x2y1),

z1

z2
= x1 + iy1

x2 + iy2
= (x1 + iy1)(x2 − iy2)

x2
2 + y2

2

= x1x2 + y1y2

x2
2 + y2

2

+ i
x2y1 − x1y2

x2
2 + y2

2

.

When changing the sign of the imaginary part, we call it the complex conjugate of z:

z = x + iy = x − iy.

We also have

|z|2 = zz = (x + iy)(x − iy) = x2 + y2,

|z| =
√

x2 + y2,

|z1z2| = |z1| |z2|,
z1z2 = z1 z2.

Complex numbers have a geometric interpretation. Any number z corresponds to
a point (or a vector) in the x, y plane, where x and y are the real and imaginary
parts respectively. The absolute value of |z| = √

x2 + y2 is the distance to the origin
x = y = 0. A circle with radius r and centered at the origin is characterized by
the equation x2 + y2 = r2. This can be written in the simple form |z| = r . The
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Fig. 3.2 Complex numbers

special case |z| = 1 is the unit circle. Figure 3.2 shows the geometric interpretation
of complex numbers.

When it comes to complex vectors, the basic concepts described above for real
vectors do not change, except for the definition of the scalar product and norm. For
two complex vectors u and v we have

(u,v) = u1v1 + u2v2 + · · · + uNvN,

‖u‖2 = (u,u),

with the rules

(u,v) = (v,u),

‖u + v‖2 = ‖u‖2 + 2 Re(u,v) + ‖v‖2.

(The definition (u,v) = u1v1 + u2v2 + · · · + uNvN is used in some literature.)
We note that ‖u‖ is always real, since

‖u‖2 =
N∑

j=1

ujuj =
N∑

j=1

|uj |2.

Complex numbers are very useful in just about every application area, when it
comes to analysis. We shall come back to them in Sect. 5.3 when discussing the
exponential function.

Exercise 3.3 Let z1, z2 be two complex numbers.

(a) Use geometrical arguments to prove that |z1| is the length of the vector z1 in
Fig. 3.2.

(b) Use the definition of |z| to prove |z1z2| = |z1| |z2|.
(c) Use the definition of z to prove z1z2 = z1 z2.
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Exercise 3.4 If x1 and x2 are two positive real numbers with |x1| > |x2|, then |x1 −
x2| = |x1| − |x2|. If z1 and z2 are two complex numbers with positive real parts and
|z1| > |z2|, is it true that |z1 − z2| = |z1| − |z2|?

3.3 ∗Matrix Algebra

In linear algebra we are dealing with linear transformations between vectors.
A given vector x is transformed to another one by an operator A such that y = Ax.
Each element in the new vector y is specified as a combination of all the elements
in x. The operator A is called a matrix, and is represented by a set of numbers that
uniquely determine the new vector. We shall concentrate on square matrices, which
is by far the most important class in the type of application that we have in mind. In
this case the vectors x and y have the same number of elements.

For illustration we first assume a 4-dimensional vector space with vectors

x =

⎡

⎢⎢⎣

x1
x2
x3
x4

⎤

⎥⎥⎦ .

The numbers ajk,1 ≤ j ≤ 4, 1 ≤ k ≤ 4 form a matrix A in a square pattern

A =

⎡

⎢⎢⎣

a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

⎤

⎥⎥⎦ ,

often denoted by (ajk). The transformation represented by A is now defined by the
new vector

Ax =

⎡

⎢⎢⎣

a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

⎤

⎥⎥⎦

⎡

⎢⎢⎣

x1
x2
x3
x4

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

a11x1 + a12x2 + a13x3 + a14x4
a21x1 + a22x2 + a23x3 + a24x4
a31x1 + a32x2 + a33x3 + a34x4
a41x1 + a42x2 + a43x3 + a44x4

⎤

⎥⎥⎦ .

There are several rules for calculations with the matrices involved. Two matrices
can be added by adding the corresponding elements:

A + B =

⎡

⎢⎢⎣

a11 + b11 a12 + b12 a13 + b13 a14 + b14
a21 + b21 a22 + b22 a23 + b23 a24 + b24
a31 + b31 a32 + b32 a33 + b33 a34 + b34
a41 + b41 a42 + b42 a43 + b43 a44 + b44

⎤

⎥⎥⎦ .

In order to define multiplication, we first define the row vectors of A as

aj = [
aj1 aj2 aj3 aj4

]
, j = 1,2,3,4,
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and the column vectors of B as

bk =

⎡

⎢⎢⎣

b1k

b2k

b3k

b4k

⎤

⎥⎥⎦ , k = 1,2,3,4.

With this notation we have

A =

⎡

⎢⎢⎣

a1
a2
a3
a4

⎤

⎥⎥⎦ , B = [
b1 b2 b3 b4

]
.

Multiplication of two matrices can now be defined by using scalar products of vec-
tors as

AB =

⎡

⎢⎢⎣

(a1,b1) (a1,b2) (a1,b3) (a1,b4)

(a2,b1) (a2,b2) (a2,b3) (a2,b4)

(a3,b1) (a3,b2) (a3,b3) (a3,b4)

(a4,b1) (a4,b2) (a4,b3) (a4,b4)

⎤

⎥⎥⎦ .

(Here we have used row vectors as the left member in the scalar product.) For the
2 × 2 case we have

AB =
[
a11 a12
a21 a22

] [
b11 b12
b21 b22

]
=

[
a11b11 + a12b21 a11b12 + a12b22
a21b11 + a22b21 a21b12 + a22b22

]
.

For addition the commutative rule A + B = B + A applies, but for multiplication it
does not. For general matrices we have AB �= BA. However, for some very special
matrices we may have equality, in which case we say that the matrices commute.

Addition and multiplication can be defined for rectangular matrices as well. As-
sume that A has m rows and n columns, and that B has r rows and s columns. (A is
an m×n matrix and B is an r × s matrix.) Then A+B is well defined if m = r and
n = s. Multiplication AB is well defined if n = r , and the result is an m × s matrix,
see Fig. 3.3.

A vector x is a special case of rectangular matrix with only one column. A ma-
trix/vector multiplication as defined above is therefore consistent with the general
multiplication rule. Note that the multiplication is defined only when the matrix is
on the left hand side of the vector. The expression xA has no meaning.

There is one case where multiplication is well defined even when the number of
columns in the left matrix does not equal to the number of rows in the right matrix.
That is multiplication of a matrix by a scalar c, which is defined by

cA = Ac = (cajk),

i.e., each element is multiplied by the scalar. With this rule added to the rules above,
it follows that A is a linear operator:

A(cx + y) = cAx + Ay

for all vectors x and y.
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Fig. 3.3 Matrix
multiplication

In Sect. 3.1 we defined the scalar product (x,y) of two vectors. Obviously it is a
special case of the matrix product:

(x,y) = xT y = yT x,

‖x‖2 = xT x.

For vectors the definition of the norm is quite natural as a generalization of the
length in a 3D-Euclidean space. For matrices it is difficult to find any natural concept
corresponding to length. Instead we think of a matrix as a transformation of a vector
x to another vector y = Ax. One question is then: what is the length of y compared
to x? Furthermore, what is the maximal ratio ‖y‖/‖x‖ when allowing all possible
vectors x? This maximal ratio is called the norm of the matrix, and is formally
defined by

‖A‖ = max
x�=0

‖Ax‖
‖x‖ .

Since ‖cx‖ = c‖x‖ and ‖Acx‖ = c‖Ax‖ for any positive constant c, we get

‖A‖ = max
x�=0

‖Acx‖
‖cx‖ .

By choosing c = 1/‖x‖ and y = cx we have ‖y‖ = 1, and the norm can be defined
as

‖A‖ = max
‖y‖=1

‖Ay‖
‖y‖ .

Obviously, the inequality

‖Ax‖ ≤ ‖A‖ ‖x‖
holds for all matrices and vectors. One can also prove the relations

‖cA‖ = |c| ‖A‖, c scalar constant,

‖A + B‖ ≤ ‖A‖ + ‖B‖,
‖AB‖ ≤ ‖A‖‖B‖.

For other vector norms, the corresponding related matrix norm can be defined in
exactly the same way. Once the vector norm is chosen, the matrix norm is called the
subordinate norm.
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There are several special types of matrices. The matrix

A =

⎡

⎢⎢⎣

a11 a12 a13 a14
0 a22 a23 a24
0 0 a33 a34
0 0 0 a44

⎤

⎥⎥⎦

is upper triangular, and

A =

⎡

⎢⎢⎣

a11 0 0 0
a21 a22 0 0
a31 a32 a33 0
a41 a42 a43 a44

⎤

⎥⎥⎦

is lower triangular. The matrix

A =

⎡

⎢⎢⎣

a11 0 0 0
0 a22 0 0
0 0 a33 0
0 0 0 a44

⎤

⎥⎥⎦ ≡ diag(a11, a22, a33, a44)

is diagonal. The identity matrix

I =

⎡

⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥⎥⎦

is a special diagonal matrix. A tridiagonal matrix has the form

A =

⎡

⎢⎢⎣

a11 a12 0 0
a21 a22 a23 0
0 a32 a33 a34
0 0 a43 a44

⎤

⎥⎥⎦ .

This is a special case of a sparse matrix, which is an important class of matrices,
when the order N of the matrix is large. A sparse matrix has few nonzero elements
compared to the total number of elements. For example, a tridiagonal matrix with
N2 elements has at most 3N − 2 nonzero elements. The tridiagonal matrix is a
special case of a band matrix, where all the elements outside a band around the
diagonal are zero:

ajk = 0 for k < j − k1 and k > j + k2.

The bandwidth is k1 + k2 + 1.
The transpose of a matrix A = (ajk) is defined by AT = (akj ), i.e., the column

vectors have been turned 90 degrees to become row vectors in the same order. If
A = AT , the matrix is symmetric and, if A = −AT , it is skew-symmetric.

In applications positive definite matrices occur quite frequently. They are sym-
metric, and satisfy (x,Ax) > 0 for all vectors x �= 0. We shall discuss them further
in Chap. 14.
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Let us next consider systems of equations, where we first use the case N = 4 for
illustration. The system is

a11x1 + a12x2 + a13x3 + a14x4 = b1,

a21x1 + a22x2 + a23x3 + a24x4 = b2,

a31x1 + a32x2 + a33x3 + a34x4 = b3,

a41x1 + a42x2 + a43x3 + a44x4 = b4,

which is written in matrix/vector form as

Ax = b,

where the elements of b are known values. The solution is written as

x = A−1b.

The matrix A−1 is called the inverse of A, and is a generalization of division by
numbers. The inverse is defined by the requirement A−1A = I , and here the com-
muting property A−1A = AA−1 = I holds.

The existence of a unique solution x is equivalent to the existence of the in-
verse A−1. But not all systems of equations have a unique solution. For example,
consider the system

x + 2y = c,

2x + 4y = 6.

After dividing the second equation by 2 and subtracting it from the first one, we are
left with the equation 0 = c − 3. This means that if c �= 3, there is no solution at all.
On the other hand, if c = 3, then we can choose y arbitrarily, and get the solution
x = 3−2y. Consequently, the system has either no solution at all, or it has infinitely
many solutions. What is the problem here?

If the second equation is divided by 2, we get the equation x + 2y = 3. But the
first equation says that x + 2y = c, and we can see right away that c must equal 3.
Another point of view is obtained by ordering the coefficients on the left hand side
as two vectors

a1 =
[

1
2

]
, a2 =

[
2
4

]
.

Obviously the relation

a1 − 0.5a2 = 0

holds. The two vectors are linearly dependent. When that happens, the system is
called singular. Let now A be a general matrix with the vectors aj as columns

A = [a1 a2 . . . aN ],
and consider the system

Ax = b,
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Fig. 3.4 Vectors rotated by
an orthogonal matrix A

where x is the vector of unknowns

x =

⎡

⎢⎢⎢⎣

x1
x2
...

xN

⎤

⎥⎥⎥⎦ .

One can prove that the system has a unique solution if and only if the coefficient
matrix A is nonsingular, i.e., the vectors aj are linearly independent. One can also
prove the generalization of the 2 × 2 example above: if A is singular, then there is
either no solution at all, or there are infinitely many solutions.

One can also define the rows in the matrix A as row vectors, and define the
concept linear dependence in analogy with the definition above for column vectors.
A singular matrix can be characterized by linearly dependent row vectors as well.

The solution of linear systems of equations is a central problem, and it takes
up most of the time and storage consuming part in many algorithms arising from
applications. One way of obtaining the solution A−1b would be to compute the
inverse A−1 and then obtain x as a simple matrix/vector multiplication. However, in
Chap. 14 we shall present much more effective methods.

A special class of matrices is obtained when A−1 = AT , or equivalently,
AT A = I . According to the rules for multiplication, this means that (aj ,ak) = δjk ,
where aj are the column vectors of A. Clearly, these vectors are orthogonal (actually
orthonormal), and we call the matrix A orthogonal. When such a matrix is applied
to a vector, the norm of the vector doesn’t change, just the direction. In the 2 × 2
case, every orthogonal matrix can be written in the form

A =
[

cos θ − sin θ

sin θ cos θ

]
,

where θ is the rotation angle as shown in Fig. 3.4.
Many numerical methods are constructed such that orthogonal matrices arise,

leading to much simplified computations.
For complex matrices all the rules above still apply except the orthogonality con-

dition. We saw that the scalar product for complex vectors is generalized such that
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the elements of the first vector are entering in its complex conjugated form. For a
general matrix it is therefore convenient to introduce a generalization of the trans-
pose. If A = (ajk), then we define A∗ = (akj ). This means that, for the special case
of a vector u, we have

u∗ = [u1 u2 . . . uN ],
and we can write the scalar product as

(u,v) = u∗v.

Orthogonality is defined as before by (u,v) = 0. For a matrix with orthonormal
column vectors, we get A∗A = I , and such a matrix is often called orthogonal also
in the complex case. It also goes under the name unitary. The conjugate transpose
form is also called the adjoint matrix and, if A = A∗, then A is called selfadjoint.
Another name for the same property is Hermitian. If A = −A∗, then A is called
skew-Hermitian or anti-Hermitian. (In some literature one is using “symmetric”
and “skew-symmetric” as notation for Hermitian and skew-Hermitian matrices.)

A normal matrix commutes with its adjoint: AA∗ = A∗A. (In the real case
AAT = AT A.)

We shall now introduce the determinant of a matrix, and we consider first a 2 × 2
matrix A. If the column vectors a1 and a2 of the matrix are linearly dependent, we
have

[
a11
a21

]
+ c

[
a12
a22

]
=

[
0
0

]

for some nonzero constant c. We multiply the first element of the vector by a22, and
the second by a12 to obtain

a22a11 + ca12a22 = 0,

a12a21 + ca12a22 = 0.

When subtracting the second equation from the first one, we get

Det(A) ≡ a11a22 − a12a21 = 0.

Here Det(A) stands for the determinant of A, and in this case it is zero. Furthermore
we note that it is zero precisely when the two vectors are linearly dependent, i.e.,
when A is singular. The matrix is nonsingular if and only if Det(A) �= 0.

The determinant can be defined for any matrix A. For the 3 × 3 case we have

Det(A) = Det

⎛

⎝

⎡

⎣
a11 a12 a13
a21 a22 a23
a31 a32 a33

⎤

⎦

⎞

⎠

= a11a22a33 + a12a23a31 + a13a21a32

− a13a22a31 − a12a21a33 − a11a23a32.

The rule can be seen as follows.

• Move the lower left triangle (excluding the diagonal) to the right of the matrix.
Three full diagonals are obtained.
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Fig. 3.5 Computation of the
determinant

• Multiply together the three elements in each diagonal and add the three products
so obtained, giving the number S.

• Move the lower right triangle (excluding the “counter” diagonal) to the left of the
matrix. Three full diagonals are obtained.

• Do the same as before, giving the number T . The determinant is computed
as S − T .

The rule can be applied to any N × N matrix, just by substituting “three” in the
description above by “N”. In Fig. 3.5 the procedure is illustrated for the case N = 4.

It is harder to see the connection to the concept of linearly dependent column
vectors here, but it can be shown that the matrix is singular if and only if Det(A) = 0.

The determinant Det(A + B) of a sum is in general different from the sum
Det(A)+Det(B) of the determinants. On the other hand, perhaps somewhat surpris-
ingly, the determinant of a product is the product of the determinants: Det(AB) =
Det(A)Det(B).

The general rule defining the determinant is usually no good for computation.
There are many other and better ways of computing it, but here we leave those out.

Exercise 3.5 Compute AB , where

A =
[

1 2
−1 1

]
, B =

[−1 1
2 −1

]
.

Show that Det(AB) = Det(A)Det(B) by direct computation of the determinants.

Exercise 3.6 Let the vectors x and y defined in Exercise 3.1 be the column vectors
in the matrix A.
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(a) Find the value of a such that Det(A) = 0.
(b) Show that this is precisely the value of a that makes the two vectors linearly

dependent.
(c) Try to solve the linear system

Az =
[

0
1

]

for this value of a by first eliminating z2. Verify that there is no solution z1, and
consequently no solution z.

Exercise 3.7 Assume that x is a real vector and that A and B are real orthogonal
matrices. Prove the relations

(a) ‖Ax‖ = ‖x‖.
(b) AT is orthogonal.
(c) A−1 is orthogonal.
(d) AB is orthogonal. (Use the rules in Appendix A.4.)

Exercise 3.8 Assume that x is a real vector and that A is a normal matrix. Prove
that ‖Ax‖ = ‖AT x‖.

Exercise 3.9 Prove that an Hermitian matrix is normal.

3.4 ∗∗Eigenvalues

Eigenvalues of a matrix play an important role for the analysis of many numerical
methods. We ask ourselves: given a matrix A, are there certain non-zero vectors x
such that multiplication by A retains the vector x, multiplied by a constant? This is
an eigenvalue problem

Ax = λx,

where the constant λ is an eigenvalue, and the vector x is an eigenvector. If there
are such eigenvectors, they are perfect as basis vectors, since multiplication by A

becomes such a simple procedure. Figure 3.6 shows an example of eigenvectors
geometrically in 2D.

The equation is rewritten as

(A − λI)x = 0,

and we note that there is always one solution, namely x = 0. However, this one
is not of much use, and we are looking for nontrivial vectors x �= 0. But since we
already know one solution, the coefficient matrix clearly must be singular for other
solutions to exist, i.e., the determinant must be zero:

Det(A − λI) = 0.
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Fig. 3.6 Eigenvectors x1 and
x2 and a general vector y

This equation is called the characteristic equation. In the definition of the determi-
nant, each term contains N factors, and the highest power of λ that occurs is λN .
Accordingly, we have a polynomial of degree N , and we know that there are N

roots λj . We note that these may be complex even if the matrix A is real. This is
one of the reasons for introducing complex numbers above.

Assume now that λj is an eigenvalue. Then there is an eigenvector xj such that

(A − λjI)xj = 0.

However, any vector cx, where c �= 0 is a constant, is also an eigenvector. Since
all of these are linearly dependent, we keep only one, and normalize it such that
‖xj‖ = 1.

The next question is whether we can find N linearly independent eigenvectors,
which we can use as a basis for the N -dimensional space. The answer is that for
certain matrices we can, but for others we cannot. Consider the matrix

A =
[

1 2
0 1

]
.

The eigenvalues are obtained as the solutions to

Det(A − λI) = Det

[
1 − λ 2

0 1 − λ

]
= (1 − λ)2 − 0 = 0,

which has the double root λ1,2 = 1. The equation for the eigenvectors is

(A − I )x =
[

0 + 2x2
0 + 0

]
=

[
0
0

]
.

The first equation shows that x2 = 0, but then there is no further condition on x1.
Accordingly, there is only one linearly independent eigenvector x1, which we can
normalize such that x1 = [1 0]T .
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One can show that, if the characteristic equation has N distinct roots, then there
are N linearly independent eigenvectors. But this condition on the roots is not nec-
essary. A trivial counter-example is the identity matrix A = I . The characteristic
equation has the only root λ = 1, which has multiplicity N . Still, any vector x is an
eigenvector, since Ix = x.

If T is a nonsingular matrix, a similarity transformation of A is defined by
T −1AT = B . If Ax = λx, then

B(T −1x) = T −1AT T −1x = T −1Ax = λT −1x,

i.e., λ is an eigenvalue of the new matrix as well (but the eigenvector is different).
A special case is obtained if we choose the column vectors of T as the eigenvectors
xj of A such that

AT = A[x1 x2 . . . xN ] = [λ1x1 λ2x2 . . . λNxN ]. (3.2)

Referring back to the multiplication rule for matrices, we note that the last matrix
can be written as

T � = T

⎡

⎢⎢⎢⎣

λ1 0 . . . 0
0 λ2 . . . 0
...

. . .
...

0 . . . . . . λN

⎤

⎥⎥⎥⎦ ,

i.e., � is the diagonal matrix containing the eigenvalues in the diagonal. Accord-
ingly, when multiplying (3.2) from the left by T −1, we obtain

T −1AT = �.

We call this transformation a diagonalization of A.
We have seen that even if the matrix A is real, the eigenvalues may be complex.

It is therefore natural to introduce complex matrices when dealing with eigenvalue
problems. The whole discussion about eigenvalues above holds also for complex
matrices.

There are special cases where it is known a priori that the eigenvalues are real.
For example, it can be shown that a symmetric (or Hermitian) matrix has real eigen-
values. Furthermore, such matrices have orthogonal eigenvectors vj . If these are
normalized such that ‖vj‖ = 1, and ordered as column vectors in the matrix T , we
have ‖T ‖ = ‖T −1‖ = ‖T ∗‖ = 1. We also have

‖A‖ = max
j

|λj |,

‖A−1‖ = 1

minj |λj | .

There is a special notation for the largest eigenvalue magnitude. It is called the
spectral radius and is denoted by

ρ(A) = max
j

|λj |.
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Many fundamental concepts and problems can be described in terms of the eigen-
values. For example, it is quite easy to show that a matrix is singular if and only if
there is at least one zero eigenvalue.

Eigenvalue problems arise in many different applications, and there are many
efficient numerical methods for finding them. Here we shall not go into these meth-
ods, since we shall only use the theoretical aspects of eigenvalues in the analysis of
certain problems connected to differential equations.

Exercise 3.10 Find the eigenvalues of the matrices
⎡

⎣
1 0 0
0 2 0
0 0 3

⎤

⎦ ,

[
1 2
1 −1

]
,

⎡

⎣
1 2 0
1 −1 0
0 0 2

⎤

⎦ .

Exercise 3.11 Let A and B be defined by

A =
[

0 1
1 0

]
, B =

[
0 1

−1 0

]
.

(a) Find the eigenvalues and eigenvectors of A and B .
(b) Find the norm of A and B by using the definition of the norm.
(c) Verify that ρ(A) = ‖A‖ and ρ(B) = ‖B‖ for these matrices.

Exercise 3.12 Prove that a matrix is singular if and only if it has at least one zero
eigenvalue.

Exercise 3.13 Assume that A is an Hermitian matrix. Prove that

(a) A has real eigenvalues.
(b) The eigenvectors are orthogonal.
(c) ‖A‖ = ρ(A).
(d) ‖A−1‖ = 1/minj |λj |.





Chapter 4
Analysis Tools

The development of numerical methods is based on fundamental mathematical anal-
ysis, and this chapter includes some of the basic concepts that are essential for later
chapters. Even if numerical methods lead to a finite number of algebraic operations,
it turns out that the theoretical analysis benefits from the introduction of the infinity
concept, which will be discussed in the first section.

As we have seen in Chap. 2, we are dealing with small perturbations and small
steps �x when dealing with differential equations and their numerical solution. This
makes it natural to discuss Taylor expansions, which we do in the second section.

The content of this chapter corresponds roughly to part of a first college course in
mathematical analysis, and can be skipped by the reader who has this subject fresh
in memory.

4.1 ∗Infinite Processes

Many numerical methods for solving differential equations give rise to algebraic
equations or systems of equations that must be solved efficiently. These solution
methods are almost exclusively based on iteration, i.e., starting from an initial guess,
an iterative algorithm produces approximative solutions un that become closer to the
true solution for each step. In practice, the process has to be stopped somewhere, and
the question is how we can make sure that the error is small at that point. A necessary
condition is that the solution un converges to a limit solution

lim
n→∞ un = u∞,

that is a good approximation of the true solution u. Even if we cannot iterate for
ever, it is a significant help to understand the theoretical infinite process, and we
shall devote the next two subsections to discussing some simple processes and their
basic properties.
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Fig. 4.1 Converging number sequences

4.1.1 Infinite Number Sequences

We begin by considering a sequence of numbers

{an}Nn=0 = a0, a1, a2, . . . , aN .

Here it is assumed that an is an expression that is well defined for any given inte-
ger n. Let us look at an example.

We consider first the case an = (−0.8)n which is depicted in Fig. 4.1(a) with n

on the horizontal axis (the points are connected by straight lines). Obviously the
numbers approach zero for increasing n, and this is the true limit value. We write it
as

lim
n→∞an = lim

n→∞(−0.8)n = 0.

Strict mathematically, this condition means that no matter how small a deviation ε

we prescribe, there is alway a number N such that |an| < ε for all n with n ≥ N .
If we choose ε = 0.01 in our example, we can choose N = 21, while ε = 0.001
requires N = 31. We say that the number sequence in such a case is convergent.

Let us next choose an = (−0.9)n shown in Fig. 4.1(b). The numbers still ap-
proach zero, but now at a slower rate. Assuming that we compute the powers by
using the formula

an+1 = −0.9an, n = 0,1, . . . ,

a0 = 1,

we have to work harder to obtain a good approximation of the limit value a∞ = 0.
The first sequence converges faster than the second sequence.

For the case an = (−1.1)n there is no convergence at all. The numbers become
larger and larger for increasing n as shown in Fig. 4.2(a), and finally they will ex-
ceed the largest number that can be represented in the computer. The sequence is
diverging.

For the border case an = (−1)n shown in Fig. 4.2(b), there is no divergence, but
neither is there any convergence. The condition for convergence of a sequence {cn}
is |c| < 1. (The case c = 1 is special with convergence to one.)
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Fig. 4.2 Nonconverging number sequences

In general, the true limit value of the sequence is obtained from the iterative
formula. For our example we have

an+1 = can, n = 0,1, . . . .

We simply take the limit of both sides and obtain with the notation a∞ = limn→∞ an

a∞ = ca∞, (4.1)

or equivalently

(1 − c)a∞ = 0.

If |c| < 1, the correct solution of this equation is a∞ = 0. However, also for the
case |c| > 1 the solution is a∞ = 0. Is something wrong with the mathematics here,
since we have shown above that there is no limit value in this case? Certainly not.
When writing down the formula (4.1), we assume that there is a limit a∞. But for
the case |c| > 1 this assumption is wrong. The limit limn→∞ an doesn’t exist, and
a∞ doesn’t mean anything.

This example shows that mathematics, as usual, is very strict. In particular, one
has to be very careful when dealing with infinite sequences.

4.1.2 Infinite Series

The analysis of infinite number sequences is fairly simple. The situation becomes
more complicated when dealing with infinite series defined as a sum of infinitely
many terms. Given a number sequence {an}Nn=0 we define the sum

N∑

n=0

an = a0 + a1 + a2 + · · · + aN ,
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Fig. 4.3 Converging sums

and ask ourselves what happens if we keep adding more and more terms without
stopping. Is the sum approaching a certain finite value? If this is true, we write the
limit value as

lim
N→∞

N∑

n=0

an =
∞∑

n=0

an.

If all numbers an are positive, it seems that the sum will never settle down, since
the sum increases for every new term. If we just keep adding new terms, doesn’t the
sum exceed any given value, no matter how large?

Indeed it does not. Consider the sequence in the previous section, but with all
terms positive: an = cn. Figure 4.3(a) shows the sum

∑N
n=0 cn as a function of the

number of terms for c = 0.8. The dashed horizontal line represents the value 5, and
it seems that the sum approaches this value when N increases. Figure 4.3(b) shows
the same sum, but now for c = 0.9. Even in this case there seems to be a limit value,
and now it is 10. Indeed, one can easily figure out the theoretical limit value by
analytical means. It is a geometric series, and it occurs frequently in applications.
For the finite sum SN = ∑N

n=0 cn we have

cSN =
N+1∑

n=1

cn =
N∑

n=0

cn − 1 + cN+1 = SN − 1 + cN+1,

i.e.,

lim
N→∞SN = lim

N→∞
1 − cN+1

1 − c
= 1

1 − c
, (4.2)

which agrees with the graphs. The sum converges as N → ∞. It is no surprise that
the convergence is faster when c is smaller, since each added term an is smaller.

There is of course no need to try to compute the sum if c > 1, since a necessary
condition for convergence is that an approaches zero as n increases. However, this
is not a sufficient condition for convergence. The numbers in the sequence must de-
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crease sufficiently fast. For example, the sum converges for an = 1/n2, but diverges
for an = 1/n.

Another example of an infinite sum, is the well known paradox with a running
rabbit that never passes the much slower turtle. We assume that the rabbit is one
hundred times faster, but it starts 100 meters behind the turtle. When it reaches the
starting point for the turtle, it sees the turtle one meter ahead. It runs this meter, and
finds the turtle one centimeter ahead. When this centimeter is passed, the turtle is
still one tenth of a millimeter ahead, etc. Even if we quickly arrive at extremely small
distances, they are still positive, and the conclusion seems to be that the rabbit never
passes the turtle. Obviously this is not true, but what is wrong with the argument?
One way of explaining the paradox is to take time into account. Assume that the
rabbit speed is 10 m/sec, and the turtle speed 1 dm/sec. The distance covered by the
rabbit is 100 m for the first part of the race, 1 m for the second part, 1 cm for the
third etc. The corresponding time intervals for each part are 10 seconds, 0.1 seconds,
0.001 seconds, and so on. This number sequence tn is defined by

tn = 10(0.01)n, n = 0,1,2, . . . , (4.3)

and according to the formula (4.2) we have
∞∑

n=0

tn =
∞∑

n=0

10(0.01)n = 10
1

0.99
= 10.101010 . . . . (4.4)

Even if this number has an infinite number of digits, it never reaches 10.2, say. The
way we have chosen to describe the process cannot be used for the whole race,
since it doesn’t allow time to continue after the rabbit has reached the turtle. The
time computed above is simply the exact time for this passage (computed in a more
complicated way than would be necessary). This is another example showing that
one has to be very careful when dealing with the infinity concept.

Iterative algorithms that occur frequently in computational mathematics are of
course more complicated than the examples we have discussed here. The typical
situation is that each iteration produces a vector or a function that is characterized
by many numbers instead of a single value as in our examples. However, the concept
of convergence is fundamental also in this case. The vectors or functions must settle
down and change very little if the process is carried out sufficiently far. In the limit
they must reach a limit vector or a limit function.

The conclusion of this section is the following: In order to get an accurate solu-
tion when the infinite process is interrupted by the computer, we have to make sure
that we are dealing with a converging process.

When introducing integrals in Sect. 2.2.3, we used Riemann sums in the deriva-
tion. They can be generalized such that one or both of the interval ends of the integral
becomes infinite forming a generalized integral:

∫ ∞

a

f (x) dx = lim
b→∞

∫ b

a

f (x) dx.

Evidently, there are restrictions on the function f (x) such that it tends to zero suffi-
ciently fast when x → ∞.



72 4 Analysis Tools

We also note that an integral may exist even if the function becomes infinite at
one or more points. For example, it can be shown that the integral

∫ 1

0

1√
1 − x

dx

is well defined despite the fact that 1/
√

1 − x becomes infinite at x = 1. The func-
tion values are growing sufficiently slowly, such that the Riemann sum still exists in
the limit.

Exercise 4.1 Use a computer program to study the convergence properties of the
series

N∑

n=0

1

np

for p = 2,3,4. For each p, find the number of terms N + 1 such that the first five
digits don’t change if more terms are added. What happens for p = 1?

4.2 ∗Taylor Series

Taylor series (or Taylor expansions) are a very useful tool for the analysis of numer-
ical methods. The basic idea is to gain knowledge about functions that are known
together with their derivatives at a certain point x = a. By using the factorial nota-
tion

n! = 1 · 2 · 3 · . . . · n, 0! = 1,

the formal expansion is an infinite series

u(x) =
∞∑

n=0

(x − a)n

n!
dnu

dxn
(a).

Even if all the derivatives exist, the series does not necessarily converge to a finite
value for any x. There are actually several possibilities:

• The series converges everywhere and equals u(x). Then u(x) is called entire.
• The series converges and equals u(x) in a neighbourhood of x = a. Then u(x) is

called analytic in that neighbourhood.
• The series converges but is not equal to u(x) at x = a.
• The series does not converge for any x.

The special case a = 0 is called a Maclaurin series.
Difference methods are associated with a small step size �x, and we are inter-

ested in the approximation properties in the neighbourhood of �x = 0:

u(x + �x) = u(x) + �x
du

dx
(x) + �x2

2!
d2u

dx2
(x) + �x3

3!
d3u

dx3
(x) + · · · . (4.5)
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Before going further, we introduce the O(�x) concept. It is defined for positive �x

as a function f (�x) such that

|f (�x)|
�x

≤ c as �x → 0, (4.6)

where c is a positive constant. We say that a function f (�x) = O(�x) is of the
order �x. It follows that an error O(�xp) indicates a better approximation than an
error O(�xq) if p > q .

If the Taylor expansion is truncated after the term of order �xp−1, we are left
with the “tail” of the series, which is the error. With sufficiently strong regularity
assumptions on the function, the error is of the same order as the leading term,
which is of order �xp . If not stated otherwise we shall assume that this is the case,
and we write

u(x + �x) =
p−1∑

j=0

�xj

j !
dju

dxj
(x) + O(�xp).

Since we are interested in approximations of derivatives here, we note from the
above that

u(x + �x) − u(x)

�x
= du

dx
(x) + O(�x). (4.7)

The difference approximation on the left hand side has an error of order �x, and we
say that it is a first-order accurate approximation of the derivative. A better approx-
imation is obtained if we also include a point to the left of x, and we have

u(x + �x) = u(x) + �x
du

dx
(x) + �x2

2

d2u

dx2 + �x3

6

d3u

dx3 + O(�x4),

u(x − �x) = u(x) − �x
du

dx
(x) + �x2

2

d2u

dx2 − �x3

6

d3u

dx3 + O(�x4).

If the second equation is subtracted from the first one, we get the centered approxi-
mation

u(x + �x) − u(x − �x)

2�x
= du

dx
(x) + O(�x2). (4.8)

For the second derivative we derived an approximation in Sect. 2.2.4, and from the
Taylor expansions above we get

u(x + �x) − 2u(x) + u(x − �x)

�x2 = d2u

dx2 (x) + O(�x2). (4.9)

Higher-order approximations are obtained by introducing also the grid points
x ± 2�x, and we can continue further, making the computing stencil wider and
wider. Figure 4.4 shows the points involved for 2nd, 4th and 6nd order approxi-
mations. For d/dx the center point is not involved at all. Note however, that the
indicated order of accuracy holds only at the center point. It is an effect of the sym-
metric character of the stencil with proper centering.
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Fig. 4.4 Difference stencils
for d/dx and d2/dx2,
accuracy order 2, 4, 6

By “high order difference methods” one usually means a higher order of accuracy
than 2. Such methods have been used for a long time for the solution of ODE, and
in Sect. 10.1 we shall discuss them further. Nowadays, high order methods are used
quite frequently also for PDE.

We finally note that the “big O” concept can be used also for large numbers N ,
where N typically is the number of grid points. As we shall see, the neces-
sary number of arithmetic operations for a certain algorithm is often of the form
a0 + a1N + · · · + apNp and, if N is large enough, the last term will dominate.
Therefore we talk about an algorithm of order Np . For a large parameter N we
define the O(N) concept as a function f (N) such that

|f (N)|
N

≤ c as N → ∞, (4.10)

where c is a constant. An O(Np) algorithm is faster than an O(Nq) algorithm if
p < q .

The Taylor expansion can be generalized to functions u(x1, x2, . . . , xd) of several
variables. The first terms are

u(x1 + �x1, x2 + �x2, . . . , xd + �xd)

= u(x1, x2, . . . , xd) + �x1
∂u

∂x1
(x1, x2, . . . , xd)

+ �x2
∂u

∂x2
(x1, x2, . . . , xd) + · · · + �xd

∂u

∂xd

(x1, x2, . . . , xd) + O(�x2),

where it is assumed that all step sizes are of the same order:

�xj = O(�x), j = 1,2, . . . , d.

A more compact notation is

u(x + �x) = u(x) + (∇u(x)
)T

�x + O(�x2),

where

x =

⎡

⎢⎢⎢⎣

x1
x2
...

xd

⎤

⎥⎥⎥⎦ , �x =

⎡

⎢⎢⎢⎣

�x1
�x2

...

�xd

⎤

⎥⎥⎥⎦ , ∇u =

⎡

⎢⎢⎢⎣

∂u/∂x1
∂u/∂x2

...

∂u/∂xd

⎤

⎥⎥⎥⎦ .

Exercise 4.2 Prove that (u(x0 +�x)−u(x0))/�x is a second order approximation
of du/dx at x = x0 + �x/2.
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Exercise 4.3 Find the constants aj such that
∑2

j=−2 aju(xj )/�x is a fourth order
approximation of du/dx at x = x0.

Exercise 4.4 Find the constants bj such that
∑2

j=−2 bju(xj )/�x2 is a fourth order

approximation of d2u/dx2 at x = x0.

Exercise 4.5 The function u(x) = x8 has the derivative u′(x) = 8x7. Use a com-
puter program to compute the derivative by a first order approximation (4.7) and a
second order approximation (4.8) with �x = 0.1 for 0 ≤ x ≤ 1. Plot the two curves
together with u′(x) and compare the accuracy.





Chapter 5
Elementary Functions

There are many elementary functions that play important roles in mathematics, and
whose properties have long been well known. Some of these are important also in
the construction of numerical methods, and they occur in two different roles. One
role is as part of the numerical algorithms where certain solutions are represented in
terms of these functions for easy evaluation. The other role is as a tool for analysis
of the algorithms. In this case the functions are not used as part of the computational
algorithm, but they are used in order to understand the fundamental properties of it.

In this chapter we shall concentrate on the three most frequently used types of
functions, which are polynomials, trigonometric functions and the exponential func-
tion.

5.1 ∗Polynomials

Perhaps the most common type of function for use in almost every kind of appli-
cation is polynomials, the main reason being that they can be simply evaluated.
Polynomials can be formulated in different ways, and we begin by discussing the
standard form.

5.1.1 Standard Polynomials

A polynomial of degree n has the general form

P(x) = anx
n + an−1x

n−1 + · · · + a1x + a0, (5.1)

where n is a non-negative integer and an �= 0. Polynomials are easy to evaluate for
any given number x, and this is one of the reasons for their popularity. In Chap. 18
we shall discuss some basic principles for computers. Here we just note that all com-
puting must in the end be broken down to basic algebraic operations like addition,

B. Gustafsson, Fundamentals of Scientific Computing,
Texts in Computational Science and Engineering 8,
DOI 10.1007/978-3-642-19495-5_5, © Springer-Verlag Berlin Heidelberg 2011

77



78 5 Elementary Functions

Fig. 5.1 Two polynomials

multiplication and division. The straightforward way of evaluating a polynomial at
a certain point x is to compute the powers, multiply and add. For example,

a3x
3 + a2x

2 + a1x + a0 = a3 · x · x · x + a2 · x · x + a1 · x + a0,

which shows that 6 multiplications and 3 additions are required. However, there is a
better way of evaluation. We have

a3x
3 + a2x

2 + a1x + a0 = (
(a3 · x + a2) · x + a1

) · x + a0.

This formula is called Horner’s scheme, and it requires only 3 multiplications and 3
additions. It is easy to see that a general polynomial of degree n requires n multipli-
cations and n additions for evaluation at one point.

The roots of a polynomial P(x), i.e., those points x = xj where P(x) = 0, play
an important role in many respects. Consider the example x2 − 2 = 0, which has the
two solutions x = √

2 = 1.414 and x = −√
2 = −1.414. By looking at the graph of

P(x), we can see that there are no other roots. The curve cuts through the x-axis at
two places and no more, as shown in Fig. 5.1(a).

Next we consider the equation x2 + 2 = 0. The graph in Fig. 5.1(b) shows why
there are no real solutions. The curve never cuts through the x-axis. However, by
introducing complex numbers (see Sect. 3.2), there are roots of the polynomial also
in this case. We write the equation as z2 +2 = 0, where z = x + iy is now a complex
number. We can solve the equation by expanding the square:

x2 + 2ixy + i2y2 + 2 = x2 + 2ixy − y2 + 2 = 0.

The real part and the imaginary part of the left hand side must be zero, which gives
the system

x2 − y2 + 2 = 0,

2xy = 0.

From the second equation we see that either x or y must be zero, and we choose
x = 0. Then it follows from the first equation that y2 = 2, i.e., y = √

2 or y = −√
2.
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The case y = 0 doesn’t work, since it implies that x2 = −2, which is impossible for
a real number x. So, we have found the two solutions z = i

√
2 and z = −i

√
2.

The roots of a quadratic polynomial z2 + az + b = 0 can be found from the
general formula also in the complex case:

z1,2 = −a

2
±

√
a2

4
− b. (5.2)

We have discussed how to treat the square-root of a negative real number, but it
remains to define what the square root of a general complex number is. We shall
come back to this in Sect. 5.3.

It can be shown that a polynomial of degree n always has precisely n roots.
However, it must be made clear how the roots should be counted. The standard
formula for the solutions of the equation

x2 − 2x + 1 = 0

gives

x1 = 1 + √
1 − 1 = 1,

x2 = 1 − √
1 − 1 = 1,

i.e., the polynomial has a double root x = 1. The polynomial (x − 1)n has the root
x = 1 of multiplicity n. Therefore, the counting of the roots takes the multiplicity
into account.

In general the roots are complex, even if the coefficients of the polynomial are
real. The graph of the polynomial can be used only for determining the number of
real roots (which may be useful enough). However, for real coefficients, it is easy to
show that the complex roots come in pairs. If z is a complex root, then z is a root as
well.

If the roots xj are known, the polynomial can be written in the form

P(x) = c
(
(x − xn)(x − xn−1) · · · (x − x1)

)
,

where c = an is a nonzero constant. If only one root x = x1 is known, this form
can be used to make the computation of the other roots easier. By dividing by the
factor (x − x1) the degree of the polynomial is reduced one step. For example, by
inspection we see that

P(x) = x3 − 6x2 + 11x − 6

has the root x1 = 1, i.e.,

P(x) = (x2 − 5x + 6)(x − 1).

(In general, the reduced degree polynomial is obtained by formal symbolic division.)
Accordingly, the other two roots are obtained from the standard formula

x = 5

2
±

√
25

4
− 6,

i.e., x2 = 3, x3 = 2.
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Fig. 5.2 Interpolation by a polynomial of degree n

Perhaps the most common use of polynomials is interpolation. Given n+1 points
xj with corresponding function values fj , there is a unique polynomial P(x), i.e.,
a unique set of coefficients {ak}nk=0, such that P(xj ) = fj at all points xj . The
most common type of interpolation is linear interpolation, where the function values
between two points x0 and x1 are approximated by a straight line. When increasing
the number of given points, the degree of the polynomial goes up, and it seems
like we would get a better approximation. This is true up to a certain point but, for
sufficiently large degree n, the result may be an interpolating polynomial that has
little to do with the true function f (x). The reason is that the computation of the
coefficients is very sensitive to perturbations.

For illustration, we consider the linear function f (x) = x for 0 ≤ x ≤ 10. An
interpolation polynomial of degree n requires n + 1 interpolation points, and we
choose the equidistant points xj = 10j/n, j = 0,1, . . . , n. The coefficients ak are
determined by requiring that the polynomial is exact at the interpolation points xj ,
which gives the system

a0 + x0a1 + x2
0a2 + · · · + xn

0 an = x0,

a0 + x1a1 + x2
1a2 + · · · + xn

1 an = x1,

...

a0 + xna1 + x2
na2 + · · · + xn

nan = xn.

The solution to this one is obvious. When a polynomial is interpolated by another
one of the same or higher degree, we should get the given polynomial back, since
the interpolation problem has a unique solution. In our case this means that the
solution is zero coefficients ak for all k except k = 1, where a1 = 1. However, when
solving the system by a MATLAB program, and plotting the result, we are in for a
surprise when increasing n. Figure 5.2 shows the result for n = 20 and n = 21. The
polynomial is completely wrong in the right part of the interval in both cases.

Let us now explain what the reason for the trouble is. We begin by introducing the
concept of a basis for functions in analogy with vector basis discussed in Sect. 3.1.
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For polynomials it is natural to define the powers xj as basis functions. However,
before doing so, we introduce a scalar product and a norm also for functions. For
vectors we used sums of the products of the vector elements. When dealing with
functions it is natural to go from sums to integrals, and we define the scalar product
of two functions f (x) and g(x) defined in the interval [0,1] by

(f, g) =
∫ 1

0
f (x)g(x) dx.

Corresponding to the length of a vector we define the norm of a function as

‖f ‖ = √
(f,f ).

It is convenient to normalize the basis functions such that the norm is one. We have
∫ 1

0
(xj )2 dx =

∫ 1

0
x2j dx = 1

2j + 1
,

and we define the basis functions as

φj (x) = √
2j + 1xj , j = 0,1, . . . , n.

Any polynomial of degree n can now be written as

Pn(x) =
n∑

j=0

bjφj (x), (5.3)

where the new coefficients are bj = aj /
√

2j + 1.
In Sect. 3.1 we demonstrated that the scalar product is a good measure of the

degree of linear independence between two vectors. As is often the case in mathe-
matics, we can apply the same machinery to a completely different area by making
the proper definitions. In this case we go from vectors to polynomials. A scalar
product value close to one for a pair of basis polynomials indicates almost linear
dependence leading to a poor choice of basis. We pick two adjacent basis functions,
which gives

(φj−1, φj ) =
∫ 1

0

√
2j − 1xj−1

√
2j + 1xj dx

=
√

2j − 1
√

2j + 1

2j
=

√
1 − 1/(4j2).

Apparently, this number approaches one when j increases, and we can see that the
two functions are becoming nearly linearly dependent already for quite moderate
degree j . This is the reason for the ill conditioning of the interpolation problem. As
a consequence, the system of equations for determining bj (or aj above) from the
interpolation conditions becomes ill conditioned, which gives the computer trouble
when solving it.

The lesson to be learned from this example is that, when working with polyno-
mials in standard form, we should keep the degree low. However, if we really need
higher degree, there is a way of getting around the difficulty demonstrated above.
That is to use orthogonal polynomials, which will be introduced in Sect. 5.1.3.
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Polynomials are well defined also in several dimensions. In 2D a second degree
(quadratic) polynomial has the general form

a20x
2 + a11xy + a02y

2 + a10x + a01y + a00, (5.4)

and a cubic polynomial has the form

a30x
3 + a21x

2y + a12xy2 + a03y
3 + a20x

2 + a11xy + a02y
2 + a10x + a01y + a00.

(5.5)

The general form is

apqxpyq + ap,q−1x
pyq−1 + · · · + ap0x

p

+ ap−1,qxp−1yq + ap−1,q−1x
p−1yq−1 + · · · + ap−1,0x

p−1

...

+ a0qyq + a0,q−1y
q−1 + · · · + a00,

and the generalization to higher dimensions should be clear from this. The coeffi-
cients are to be determined from given data, for example the function values at given
interpolation points. The more coefficients there are, the more flexibility there is to
adapt the polynomial to the data. The number of coefficients, i.e., the number of
terms, is called the number of degrees of freedom.

There are also polynomials that are bilinear, biquadratic etc. A bilinear polyno-
mial P1(x, y) is a first degree polynomial in each of the variables when the other
variable is held constant, and similarly for the other types:

Bilinear: P1(x, y) = a11xy + a10x + a01y + a00,

Biquadratic: P2(x, y) = a22x
2y2 + a21x

2y + a12xy2 + a20x
2 + a11xy + a02y

2

+ a10x + a01y + a00.

These types of polynomials are frequently used in the piecewise polynomial ver-
sion to be discussed in the next section, and in the finite element method in Chap. 11.

Exercise 5.1 The equation

x3 − x2 + x − 1 = 0

has the root x1 = 1.

(a) Reduce the degree by taking out the factor (x − 1) and compute the other two
roots.

(b) Verify that there are two complex conjugate roots.
(c) Prove the general theorem: If the polynomial has real coefficients and a complex

root z0, then z0 is also a root.

Exercise 5.2 Write down the most general form of a cubic and a bicubic polynomial
in two variables x and y. Which one has the highest number of degrees of freedom?
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Exercise 5.3 A trilinear function of three variables x, y, z is linear in each vari-
able when the other two are held constant. Write down the most general trilinear
polynomial. What is the number of degrees of freedom?

Exercise 5.4 Write a program for evaluation of a polynomial by Horner’s scheme,
and verify that the same results are obtained by adding the terms according to the
standard formulation.

5.1.2 Piecewise Polynomials

The difficulty encountered with the standard high degree polynomials and their al-
most linearly dependence has to do with their global character. The only way to
increase the number of coefficients is to raise the degree, and it changes the func-
tion everywhere. One way to overcome the resulting ill-conditioning is to localize
the polynomials and make them piecewise polynomials. Linear interpolation is the
most common application of such functions. With given function values uj at the
points xj , we get the interpolation function v(x) as straight lines between each pair
of neighboring points. The function u(x) is approximated by a piecewise linear
function.

The use of piecewise polynomials got an enormous boost with the introduction
of finite element methods, see Chap. 11. Approximations of solutions to differen-
tial equations based on such functions are not only accurate, but they can also be
computed in a very effective way.

Piecewise polynomials v(x) can be written as a combination of basis func-
tions φj (x)

v(x) =
N∑

j=1

cjφj (x), (5.6)

where φj (x) are now different from the standard polynomial case. But how should
they be chosen? As an example we choose the interval [0 1], and allow for a nonuni-
form distribution of the grid points xj (also called nodes) such that xj+1 − xj =
�xj , j = 0,1, . . . ,N − 1 and x0 = 0, xN = 1. For convenience we assume that the
function we want to interpolate vanishes at x = 0. With each node xj we associate
a function φj (x) that is defined by

φj (x) =

⎧
⎪⎨

⎪⎩

(x − xj−1)/�xj−1, xj−1 ≤ x < xj ,

(xj+1 − x)/�xj , xj ≤ x < xj+1,

0 otherwise.

(Here we have introduced an extra node xN+1 = 1 + �xN−1.) These N basis func-
tions are often called the roof functions or hat functions, and they are shown in
Fig. 5.3. At each node xj there is only one nonzero basis function φj (x). Therefore,
the coefficients in the expansion (5.6) are easily obtained as cj = uj .
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Fig. 5.3 Piecewise linear
basis functions

The basis functions and the form (5.6) may seem like an unnecessarily compli-
cated way of describing the very simple procedure of drawing a straight line between
given points (xj , uj ). In each subinterval [xj xj+1] the function value is simply ob-
tained as

v(x) = uj + x − xj

xj+1 − xj

(uj+1 − uj ). (5.7)

However, the introduction of the form (5.6) is for theoretical purposes. It allows us
to generalize the analysis to higher degree polynomials as well as other types of
interpolating functions.

Next we turn to piecewise quadratic polynomials, i.e., to functions that are second
degree polynomials in each interval Ij = [xj−1, xj ], and continuous across nodes.
Three values are required to determine the parabola in each subinterval, and we
choose the midpoint as an extra node xj−1/2. Since there is now an extra parameter,
we need two basis functions φj−1/2 and φj in each subinterval. The requirements
are specified as follows:

φj (x) =
⎧
⎨

⎩

1 at x = xj

0 at all other nodes
quadratic polynomial in every Ij

⎫
⎬

⎭ ,

φj−1/2(x) =
⎧
⎨

⎩

1 at x = xj−1/2
0 at all other nodes
quadratic polynomial in every Ij .

These functions are shown in Fig. 5.4.
There is a difference between the original nodes xj and the extra nodes xj−1/2.

Any function

v =
∑

j

(cj−1/2φj−1/2 + cjφj )

has continuous derivatives of any order across x = xj−1/2, but in general the deriva-
tive is discontinuous across x = xj . Note that the basis function φj−1/2 in the figure
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Fig. 5.4 Piecewise quadratic
basis functions

cannot be substituted by φj shifted a half-step leftwards. That would introduce a dis-
continuity in the derivative at x = xj−1/2, and the function is no longer a quadratic
polynomial in the whole interval Ij−1 as required.

As an example, let us try interpolation for the function e−50(x−0.5)2
on the in-

terval 0 ≤ x ≤ 1 with n uniformly distributed given points. We know already that
standard high order polynomials don’t work well. Figure 5.5 shows the result for
n = 8 and n = 15. Obviously, the result is bad, already for n = 8. With more points
and higher degree polynomials, things become even worse in the sense that the max-
imal deviation increases.

When going to piecewise polynomials, the situation improves dramatically. Fig-
ure 5.6 shows the result for piecewise linear and piecewise quadratic functions and
n = 15. The result is quite good considering the low degree polynomials.

When going to piecewise quadratic polynomials, the result can hardly be distin-
guished from the true solution, as shown in the right figure. Note that there are only
a total of 15 points (xj , uj ) given here as well. This means that the basis functions
as shown in Fig. 5.4 are made broader such that the extra node with half-index is
located at points xj with integer index. The break points of the polynomials are lo-
cated at x2, x4, . . . , x12, and there are only 7 different quadratic polynomials in total,
each one being nonzero over two subintervals.

So far, the interpolation has been done to match the given function values uj ,
which guarantees continuity. But the derivatives are usually discontinuous at the
nodes. If the derivatives u′

j are available as given data as well, these can also be used
when defining the interpolation polynomials. One of the most well known types
is the Hermite polynomials. They have third degree in each interval with the four
coefficients determined by uj−1 and u′

j−1 at the left end point and uj and u′
j at the

right end point. As a consequence, not only is the interpolating function continuous
everywhere, but also its derivatives. The effect of this is that the resulting function
is smoother everywhere.

In the previous section we discussed polynomials in several dimensions and,
as shown there, the generalization from 1D is quite straightforward. For piecewise
polynomials an additional problem arises: how should we generalize the subinter-
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Fig. 5.5 Interpolation by standard polynomials (– –), true solution (—)

Fig. 5.6 Interpolation by piecewise polynomials, n = 15 (– –), true solution (—)

vals [xj , xj+1]? At a first glance, it seems that rectangles is the natural choice in 2D,
with nodes at the corners. However, a first degree polynomial

a10x + a01y + a00

has only 3 coefficients, i.e., we need 3 points to determine the interpolating poly-
nomial. Consequently, there is an extra node in the rectangle that is not needed.
This difficulty is avoided if we choose triangles instead with the three nodes at the
corners. Geometrically we can think of the polynomial as a plane in 3D which is
always uniquely determined by three points. Or think of table with three legs. It
always stays steady, even on an uneven floor, while a four leg table does not.

But we shouldn’t discount the rectangles as subdomains. If we add a fourth term
to the linear polynomial we get a bilinear polynomial

a11xy + a10x + a01y + a00,

which has 4 coefficients, and it can be used very naturally with rectangles. Figure 5.7
shows the two cases.
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Fig. 5.7 Linear and bilinear
functions

Fig. 5.8 Nodes for quadratic
and cubic polynomials

Fig. 5.9 Two triangles with
different polynomials

When going to second degree polynomials (5.4), triangles are again the natural
choice. There are now 6 coefficients to be determined and so, if a node is added in the
middle of each edge, we have the right number. For cubic polynomials (5.5), there
are 10 coefficients. By adding two nodes at each edge, we get 9 nodes altogether,
and we need one more. This one is chosen as the center of gravity of the triangle,
see Fig. 5.8.

In 1D the interpolating polynomials are continuous across the nodes, since we
are requiring that the polynomials on each side equal the given value. In 2D the
continuity doesn’t follow immediately. Two polynomials have the same value at a
common node, but do they agree along the whole edge? Indeed they do.

Consider the two triangles in Fig. 5.9 with polynomials P1(x, y) and P2(x, y)

respectively.
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Fig. 5.10 Nodes for Hermite
polynomials

We assume first that the polynomials are linear:

P1(x, y) = a1x + a2y + a3,

P2(x, y) = b1x + b2y + b3.

The common edge AB is described by a linear function y = αx + β , and therefore
we can write the two polynomials at the edge as

P1(x, y) = a1x + a2(αx + β) + a3 = c1x + c2,

c1 = a1 + αa2, c2 = βa2 + a3,

P2(x, y) = b1x + b2(αx + β) + b3 = d1x + d2,

d1 = b1 + αb2, d2 = βb2 + b3.

Since they are both linear functions of the variable x, they are uniquely determined
by their common values at the end points A and B. Hence, they are identical on the
whole edge AB.

Turning to quadratic polynomials, we use the same argument. The linear form of
the common edge is substituted into the two second degree polynomials resulting in
two quadratic polynomials in the single variable x. They are uniquely determined
by the three common nodes A, B, C, and we can draw the same conclusion as for
the linear case: they are identical along the whole edge AB. The same property can
be shown for cubic polynomials with 4 nodes along each triangle edge.

The cubic Hermite polynomials introduced above in 1D can be generalized to
several dimensions as well. In 2D, there are 10 coefficients to be determined. By
prescribing also the two partial derivatives at the corners, we have 9 values alto-
gether, and we need one more. This one is chosen as the function value at the cen-
ter of gravity, see Fig. 5.10. (The derivatives ∂u/∂x and ∂u/∂y are denoted by ux

and uy .)
In 3D there are even more coefficients for each type of polynomial. Here we just

note that a linear function ax + by + cz + d has four coefficients, and a tetrahedron
with the nodes in the corners is the right type of subdomain.

Exercise 5.5 Derive the analytical form of the piecewise quadratic basis functions
in Fig. 5.4.
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Exercise 5.6 Let u1/2, u1, u3/2, . . . , uN ,uN+1/2 be 2N + 1 function values given
at the points x1/2, x1, x3/2, . . . , xN, xN+1/2. What are the coefficients cj and cj+1/2
in the interpolating function

v(x) =
N∑

j=1

cjφj (x) +
N∑

j=0

cj+1/2φj+1/2(x)?

Exercise 5.7 Write a program for piecewise linear interpolation by using (5.7)
and for piecewise quadratic interpolation by using the coefficients derived in Ex-
ercise 5.6. Compare the results for the same number of given data points.

Exercise 5.8 Assume that two cubic polynomials are identical at four points on a
common triangle edge. Prove that they are identical along the whole side.

5.1.3 Orthogonal Polynomials

We have seen in the previous section that higher degree polynomials become more
and more linearly dependent in the sense that the scalar product becomes closer to
one (after normalization such that ‖Pj‖ = 1).

Let us now see how we can construct an orthogonal polynomial basis. Consider
the linear polynomial x + 1 on the interval [0,1]. With the basis functions 1 and x,
we get the scalar product

(1, x) =
∫ 1

0
1 · x dx = 1

2
, (5.8)

showing that they are not orthogonal. Let us now write the polynomial in the differ-
ent form

3

2
+ 1

2
(2x − 1) ≡ 3

2
P0(x) + 1

2
P1(x),

where

P0(x) = 1, P1(x) = 2x − 1.

We can see this as a switch from the basis functions 1 and x to the new ones 1 and
2x − 1. The orthogonality condition is now fulfilled:

(P0,P1) =
∫ 1

0
(2x − 1) dx = 0.

We have orthogonalized the polynomial basis. This procedure can be continued
to any degree of the polynomials. The general class of orthogonal polynomials is
obtained by requiring that each polynomial is orthogonal to all others except itself:

∫ 1

0
Pm(x)Pn(x) dx = 0 if m �= n.
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By using the Kronecker δ-function (see Sect. 3.1), the orthogonality condition can
be written in the form

∫ 1

0
Pm(x)Pn(x) dx = cnδmn,

where cn is a nonzero parameter that depends on n. This leads to a variant of the
Legendre polynomials that will be treated below.

By introducing a weight function in the integrals, and also changing the
x-interval, the orthogonality property can be defined in a more general way:

(f, g) ≡
∫ b

a

f (x)g(x)w(x)dx = 0.

Here w(x) is a positive function that is chosen to put more weight in certain parts of
the integration interval. The left end point a can be −∞ as well, and b can be ∞.

There are two types of orthogonal polynomials that are of particular interest when
solving partial differential equations. These are the Chebyshev and the Legendre
polynomials, and we shall describe these in Chap. 7.

5.2 ∗Trigonometric Functions

In most areas of science, engineering and daily life, one is using degrees for measur-
ing angles, with 360 degrees corresponding to a full circle. However, in mathematics
it is convenient to use another unit for measuring angles, and we shall begin this sec-
tion by discussing that. Figure 5.11 shows a circle with radius one. Corresponding
to the angle θ degrees, there is a piece x of the circle, and the length of x is easy
to compute. We know that the circle has a full circumference 2π , and obviously we
have x = 2πθ/360. This unit of measuring angles is called radian, and for the full
circle we have 0 ≤ x < 2π . Actually, we can extend the definition such that x can
take any value. The second rotation around the circle corresponds to 2π ≤ x ≤ 4π ,
and so on. Negative values of x correspond to rotation in the other direction, i.e.,
clockwise. Consider now the triangle shown in the right part of Fig. 5.11 that corre-
sponds to the angle x in the circle. The longest side in this triangle has length one,
and the lower right corner has the angle 90 degrees, i.e., π/2 radians. If x is the angle
of the lower left corner, the length of the vertical and horizontal sides are denoted by
sinx and cosx respectively. These are the basic trigonometric functions, and they
are periodic. This means that if we add any multiple 2nπ to a certain angle x, where
n is an integer, we get the same value back such that sin(x +2nπ) = sinx, and simi-
larly for cos. Furthermore, the trigonometric functions are well defined for negative
angles. For example, the radial line corresponding to the angle x in the circle can as
well be defined by the angle −(2π − x) = x − 2π . This agrees with the periodicity
property, which tells us that sin(x − 2π) = sinx.

There are many formulas that are convenient to use when dealing with trigono-
metric functions. Here we just note that by the famous Pythagoras’ Theorem, we
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Fig. 5.11 sin and cos

defined by triangles, x

measured in radians

have (sinx)2 +(cosx)2 = 1 for all angles x, showing that |sinx| ≤ 1 and |cosx| ≤ 1.
Furthermore, we have the remarkably simple differentiation rules

d

dx
sin(ax) = a cos(ax),

d

dx
cos(ax) = −a sin(ax).

It follows from this that the functions sin(ax) and cos(ax) both satisfy the differen-
tial equation

d2u

dx2 + a2u = 0.

One can define the trigonometric functions in other ways, one of them being by
infinite series

sinx = x − x3

3! + x5

5! − · · · ,

cosx = 1 − x2

2! + x4

4! − · · ·
(5.9)

that follows by Taylor series expansion. We saw in Sect. 4.1.2 that one has to be care-
ful when dealing with infinite sums, but here one can show that they both converge
for all values of x. At a first glance it may be surprising that convergence doesn’t
require a bound on |x|, since the powers xj are enormous for large |x| and j . How-
ever, the factorials j ! in the denominators grow even faster for increasing j , and
convergence is a fact.

Trigonometric functions show up in many different situations that are not con-
nected to geometric problems and triangles. If we think of x as time instead of an
angle and change notation x → t , the functions sin(at) and cos(at) are well defined
for all times t . They are oscillating functions, i.e., they oscillate between 1 and −1
for increasing time. If the constant a is large, the oscillations are fast, and we have
a high frequency function. In acoustics, the functions describe small pressure varia-
tions, and large values of a correspond to high tones. Figure 5.12 shows the function
sin t + 0.2 sin(20t), i.e., there is a high frequency tone on top of a base tone, where
the high frequency component has a small amplitude.
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Fig. 5.12 The function
sin t + 0.2 sin(20t)

The third basic trigonometric function is

tanx = sinx

cosx
, x �= ±

(
π

2
+ 2πn

)
, n = 0,1, . . . .

The geometric interpretation is the quotient between the vertical and horizontal tri-
angle sides in Fig. 5.11.

The trigonometric functions have their corresponding inverse functions. For the
sine function one may ask the question: For a given value x between −1 and 1, what
is the angle θ in radians such that sin θ = x? There is not a unique answer to this
question, since we can add any multiple of 2π to θ and get the same value x back.
Furthermore, sin θ takes on each value twice during a full 2π rotation. To obtain
uniqueness, we make the choice −π/2 ≤ θ ≤ π/2, and call the function arcsinx.
It is natural to call it the inverse of the sine function, and therefore one sometimes
uses the notation sin−1 x. In words, the definition can be expressed as: “arcsinx is
the angle θ in radians between −π/2 and π/2 such that sin θ = x”.

The other trigonometric functions have their inverses as well, and we have

θ = arcsinx = sin−1 x, −1 ≤ x ≤ 1, −π

2
≤ θ ≤ π

2
,

θ = arccosx = cos−1 x, −1 ≤ x ≤ 1, 0 ≤ θ ≤ π,

θ = arctanx = tan−1 x, −∞ < x < ∞, −π

2
< θ <

π

2
.

The first two are shown in Fig. 5.13.
There are many trigonometric formulas that are handy to use in calculus. A few

of them are listed in Appendix A.3.

Exercise 5.9 Use the Pythagoras’ Theorem to prove sin2 x + cos2 x = 1.

Exercise 5.10 Use the geometric definition in Fig. 5.11 of the trigonometric func-
tions to prove
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Fig. 5.13 The arcsin- and arccos-functions

(a) sin(−x) = − sinx

(b) cos(−x) = cosx

(c) sin(π − x) = sinx

(d) cos(π − x) = − cosx

Exercise 5.11 The series expansions of sinx and cosx can be used to derive the
identity sin 2x = 2 sinx cosx. Check that the two expansions agree up to order x3.

5.3 ∗∗The Exponential Function

A very special function is obtained if we require that the rate of change is propor-
tional to the function itself. If the proportionality constant is one, this leads to the
differential equation

du

dx
= u.

One way of finding the solution is to use the Taylor expansion discussed in Sect. 4.2.
We expand around the point x = 0, and by using the differential equation we get

du

dx
= u,

d2u

dx2
= du

dx
= u,

du3

dx3
= d2u

dx2
= u, . . . ,

i.e., all derivatives equal the function itself. With u(0) = 1, the Taylor series be-
comes

u(x) = 1 + x + x2

2
+ x3

2 · 3
+ · · · ,

One can show that the series converges for all x, and it is an entire function. We call
it the exponential function defined by

ex =
∞∑

n=0

xn

n! . (5.10)
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(By definition we have x0 = 1 and 0! = 1.) The infinite series converges rapidly in
the sense that, for reasonable values of x, a few terms give an almost correct result.
This may seem even more surprising than in the case of trigonometric functions,
since all terms have the same sign for x > 0. The explanation is again the enormous
growth of the denominators n! for increasing n.

The constant e is a number with remarkable properties. It is a so called irra-
tional number e = 2.71828 . . . with infinitely many decimals, and it emerges just
about everywhere in mathematics. By using the chain rule for differentiation (see
Appendix A.1), we get

d

dx
ecx = cecx

for any constant c.
The exponential function grows very quickly. For example, e5 ≈ 148, and

e10 ≈ 22026. The concept exponentially growing is often used in many different
connections, even outside science. It is understood as a function bx for any positive
number b > 1. Since we can always find a number c such that ec = b, we get back
to the exponential function by bx = (ec)x = ecx , where c is the growth coefficient.
If c is positive, the exponential function grows for increasing x; if c is negative, it
decreases.

As another example of the rapid exponential growth, we take the population
growth in the World. In rough numbers, the World population has grown from 6.7
bill. in 2008 to 6.8 bill. in 2009, which is a 1.5% increase. This yearly growth may
not look very strong. However, let us make the somewhat unlikely assumption that
the population p will grow at the same rate during the coming century. In 2010
there will be 6.8 · 1.015 bill. people, in 2011 6.8 · 1.015 · 1.015 bill. etc. The general
evolution is described by the formula

p(t) = 6.8 · 1.015t ,

where t is the elapsed time after 2009. At the end of this century there will be
p(90) = 26.0 bill. people! In many countries there are politicians who argue that we
need a stronger population growth in order to take care of the increasing number of
elderly people. If we assume that this idea will take hold in the whole world such
that the yearly growth is doubled to 3%, then the population at the end of the century
will be p(90) = 6.8 · 1.0390 = 97.2 bill.

If x = ea , the exponent a is called the natural logarithm of x, and is denoted
by lnx for any positive number x. (Negative numbers ea cannot be achieved for
any real number a.) It is the number that should be put in the exponent in order to
recover the original number x. Obviously it satisfies

x = elnx .

The natural algorithm is a special case of the general logarithm which is defined for
any positive base b, and we write it as logb x. It satisfies the relation

x = blogb x.
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The choice b = 10 is the base used in daily life giving rise to the decimal system,
and we have for example log10 1000000 = 6. When it comes to digital computers,
the base is chosen as b = 2, and we have for example log2 64 = 6.

Sometimes one talks about logarithmic growth, which means a function f (x) =
c logb x, where b is a constant. In contrast to exponential growth, it grows much
more slowly than x. With the base b = 10 and c = 1, a million-fold increase in x

from 10 to 10 million corresponds to a 6-fold increase on the logarithmic scale. An
example is the Richter scale used for classifying earthquakes. It is the 10-logarithm
of the local magnitude of the displacement at the center, which means that the seem-
ingly modest increase from 7 to 8 on the Richter scale corresponds to a ten-fold
increase in magnitude. Actually, the increase is even worse. The more relevant mea-
sure of an earthquake is the released energy, and it is proportional to the power 1.5
of the magnitude. Consequently, we should compare (107)1.5 to (108)1.5, which is
a factor 32.

The exponential function can be generalized to complex arguments x. This
sounds like an unnecessary generalization if we have numerical solution of differ-
ential equations with real solutions in mind. But we shall see that on the contrary, it
becomes a central part of Fourier analysis, which is a powerful tool for analysis of
numerical methods.

We consider first the function eiθ , where θ is a real number. By formally substi-
tuting iθ for θ in the Taylor expansion, we get

eiθ = 1 − θ2

2! + θ4

4! − · · · + i

(
θ − θ3

3! + θ5

5! + · · ·
)

.

What a surprise! By comparing to (5.9) with θ substituted by x, the two series are
identified as the trigonometric functions cos θ and sin θ , and we know that they exist
for all θ . The relation is

eiθ = cos θ + i sin θ

with the angle θ measured in radians. By using basic trigonometric formulas, we
also have

e−iθ = cos(−θ) + i sin(−θ) = cos θ − i sin θ.

By combining the two equations, we get explicit formulas for the trigonometric
functions in terms of the exponential function:

cos θ = eiθ + e−iθ

2
, sin θ = eiθ − e−iθ

2i
.

The absolute value is by definition

|eiθ | =
√

(cos θ)2 + (sin θ)2 = 1,

i.e., when θ goes from 0 to 2π , the unit circle is described.
If z = x + iθ is a general complex number, ez is well defined through its Taylor

expansion. A convenient representation is obtained by

ez = ex+iθ = exeiθ = r(cos θ + i sin θ),
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where r = ex . When θ goes from 0 to 2π , a circle with radius r and centered at the
origin is described.

A particularly beautiful example of mathematics is obtained for the special case
θ = π , for which

eπi = −1.

It seems like magic that the irrational numbers e and π and the imaginary number
i can be combined in such a simple formula. But once we have accepted the Taylor
series expansion and the identity eiθ = cos θ + i sin θ which follows from it, the
relation is immediately obtained.

We shall see later that numerical methods often use trigonometric functions for
approximation of certain functions. Also here, it seems that the introduction of com-
plex numbers is a complication, when actually dealing with real functions. However,
it turns out that it often leads to a simplification.

In Sect. 3.2 we introduced complex numbers, and here we have now also in-
troduced a complex function of a complex variable. This is by no means a simple
matter, and leads to the theory of analytic functions. This is not the place to go
deeper into this theory, but we shall still use the exponential function ez, where z is
a complex variable. The derivative of this function exists to any order, and just as
for real variables we have

dp(ez)

dzp
= ez, p = 0,1,2, . . . .

The differentiation rules for all elementary functions apply also for complex argu-
ments. When it comes to differential equations, the introduction of the exponential
function and the very simple rule for differentiation

d

dz
eiz = ieiz (5.11)

simplifies the analysis. Even if the solution of the differential equation is actually
real, the analysis is done in complex space, and the imaginary part is simply disre-
garded in the end.

The exponential function with complex arguments is indeed very useful when
representing complex numbers in general, and elementary functions of them. Let us
first discuss the square-root of a complex number z. A quadratic equation

z2 + 2az + b = 0

with complex coefficients a and b has the solutions

z1,2 = −a ±
√

a2 − b,

which is formally identical to the real case. But what do we mean by the square-
root? It is convenient to write a complex number as

z = reiθ

as demonstrated above. The angle θ is not uniquely defined. Clearly there is no
need to use more than one period of length 2π , since it covers the whole 360 degree
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Fig. 5.14 Multiplication and
division of complex numbers

circle. But still there is a choice. We could for example use 0 ≤ θ < 2π as well as
−π < θ ≤ π . We choose the latter one and define

√
z = √

r(eiθ )1/2 = √
reiθ/2,

where we know that −π/2 < θ/2 ≤ π/2. This defines the principle branch of the
square-root, which is consistent with

√
1 = 1 (not with

√
1 = −1). We say that there

is a cut along the negative real axis.
Multiplication and division can also be conveniently handled by the exponential

representation. With

z1 = r1e
iθ1 , −π < θ1 ≤ π,

z2 = r2e
iθ2 , −π < θ2 ≤ π,

we have

z1z2 = r1r2e
i(θ1+θ2),

z1

z2
= r1

r2
ei(θ1−θ2).

Figure 5.14 illustrates these rules in the complex plane, where the numbers are
represented by vectors in the complex plane.

Figure 5.15 shows the square and the square-root of two numbers z1 and z2,
where z2 = z1.

Finally we solve the equation

zN = 1,

where N is a positive integer. According to the general rule, there are N roots cor-
responding to N different representations in the form 11/N . Here we are not looking
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Fig. 5.15 The square and
square-root of complex
numbers

for a unique solution, but rather for all possible different solutions. By using the N

equivalent exponential representations

1 = ei2πn, n = 0,1, . . . ,N − 1,

we obtain the solutions

zn+1 = ei2πn/N , n = 0,1, . . . ,N − 1. (5.12)

These are called the roots of unity, and are evenly spread around the unit circle as
shown in Fig. 5.16. Note that any attempt to introduce another root by letting n = N

will fail (as it should do), since zN+1 = ei2πN/N = 1 coincides with z1.

Fig. 5.16 The unit roots
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Exercise 5.12 Use a computer program to demonstrate that for any fixed integer p

and constant a one can always find a number x0 such that ex > axp for x > x0.

Exercise 5.13 Use a computer program to demonstrate that for any fixed negative
integer p one can always find a number x0 such that e−x < xp for x > x0.

Exercise 5.14 Prove that
√

2 Re(eiπ/4) = 1 by using the geometric representation
of complex numbers.

Exercise 5.15 Find all roots of the equation zN − 1 = 0 for N = 2,4,8 by using
the geometric representation.
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Fundamentals in Numerical Analysis





Chapter 6
The Fourier Transform

One of the main tools in mathematical and numerical analysis is the use of various
types of transforms. A function f (x) is normally represented through its value at
any given point x. But there are other ways of representing it. It is often possible to
express the function in terms of certain basis functions φk(x), such that

f (x) =
∞∑

k=0

ckφk(x). (6.1)

With all basis functions φk(x) known, the coefficients ck characterize the function
completely. Sometimes it is more natural to represent the function as an integral

f (x) =
∫ b

a

c(ξ)φ(ξ, x) dξ, (6.2)

where a may be −∞ and b may be ∞. Here the function c(ξ) is the new representa-
tion, and it is a generalization of the sequence of numbers {ck} above. The operation
that changes the representation from the original one to the set of coefficients ck or
the function c(ξ) is called a transform of the function. For computation and approx-
imation of functions, infinite series of the type (6.1) are made finite. It turns out that
such finite series play a fundamental role in numerical analysis, and in particular for
the solution of partial differential equations.

The most well known transform is the Fourier transform invented by the French
mathematician Joseph Fourier (1768–1830). It exists in both versions above with
either a series or an integral representation. Here we shall concentrate on the series
version, since it is the most natural basis for numerical approximation. The basis
functions are eikx , which are closely connected to the trigonometric functions cos kx

and sinkx (see Sect. 5.3). The integer k is called the wave number. If x stands for
time, k is called the frequency, and a high frequency means that the function is
oscillating rapidly as a function of x.

The Fourier transform has an amazing potential when it comes to numerical so-
lution methods. There are two fundamental but different applications for it. The first
one is as a tool for the analysis of numerical methods. As we shall see, it makes
it possible to find out how a certain numerical method behaves when it comes to
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104 6 The Fourier Transform

such fundamental properties as stability, accuracy and convergence. The transform
works almost like magic in the sense that complicated relations between coupled
state variables are transferred to much simpler relations in the transformed space,
where they can be easily analyzed before putting the algorithm on the computer.

The second use of the Fourier transform is as a direct tool in the actual computa-
tion of the approximate solution. It acts as the central part of the solution algorithm
for pseudospectral methods, as we shall see in Chap. 12. The success here is partly
due to the invention of the fast Fourier transform that was made in the 1960s.

We begin by discussing the classic Fourier series in the first section, and then the
discrete Fourier transform in the next section.

6.1 Fourier Series

Here we shall discuss the case with periodic functions f (x), i.e., functions that
satisfy f (x +2π) = f (x) for all x. Under certain conditions on f (x) one can prove
that it can be represented as an infinite series

f (x) =
∞∑

k=−∞
f̂ (k)eikx. (6.3)

The coefficients f̂ (k) represent the amplitude for the wave number k, and they are
often called the spectrum of f (x). For certain purposes, the spectrum tells a lot more
than a graph of the function itself.

Next we define the scalar product of two functions f (x) and g(x) as

(f, g) = 1

2π

∫ 2π

0
f (x)g(x) dx. (6.4)

Sometimes we use the notation (f (·), g(·)) to indicate that the functions f and g

have an argument. (The scalar product is a number, not a function, and therefore the
variable x is substituted by a dot.) Since

1

2π

∫ 2π

0
e−ikxeiνx dx = 1

2π

∫ 2π

0
ei(ν−k)x dx =

{
1 for k = ν,

0 for k �= ν,

the basis functions eikx are orthonormal. This is the best of all situations both for
vectors and for functions, see Chaps. 3 and 5. Not only is the sensitivity of the
coefficients f̂ (k) to perturbations in data minimal, the coefficients are also easily
obtained for a given function f (x). After multiplying by eiνx and integrating the
Fourier series above, all terms except one vanish, and we get

f̂ (k) = (eik·, f (·)) = 1

2π

∫ 2π

0
e−ikxf (x) dx. (6.5)

It may look like a complication to introduce complex basis functions even in the
case where f (x) is real, but the computations are actually simpler in this way. To see
what happens when f (x) is real, we choose the example f (x) = sinx. By using well
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known trigonometric formulas for the cos- and sin-functions (see Appendix A.3),
we get

f̂ (k) = 1

2π

∫ 2π

0
e−ikx sinx dx = 1

2π

∫ 2π

0
(coskx − i sinkx) sinx dx

= 1

2π

∫ 2π

0

1

2

(
sin

(
(1 + k)x

) + sin
(
(1 − k)x

))
dx

+ i

2π

∫ 2π

0

1

2

(
cos

(
(1 + k)x

) − cos
(
(1 − k)x

))
dx.

If k �= −1 and k �= 1, then the integrals are zero. For the exceptional values we have

f̂ (−1) = i

2
, f̂ (1) = − i

2
,

which gives the series

f (x) = f̂ (−1)e−ix + f̂ (1)eix = i

2
(cosx − i sinx) − i

2
(cosx + i sinx) = sinx.

The coefficients are complex but such that the imaginary parts of the complex func-
tions cancel each other in the sum.

The general rule for real functions f (x) is obtained by observing that

f̂ (−k) = 1

2π

∫ 2π

0
eikxf (x) dx = f̂ (k).

Therefore, if we match each wave number with its negative counterpart, we get with
f̂ (k) = a + bi

f̂ (k)eikx + f̂ (−k)e−ikx

= (a + bi)(cos kx + i sin kx) + (a − bi)
(
cos(−kx) + i sin(−kx)

)

= 2a coskx − 2b sinkx.

Therefore we can write a real function in the form

f (x) =
∞∑

k=0

ck coskx +
∞∑

k=1

sk sin kx,

where

ck = 2 Re f̂ (k), k = 0,1, . . . ,

sk = −2 Im f̂ (k), k = 0,1, . . . .

Here f̂ (k) are the complex Fourier transform coefficients.
The conclusion is that by going to complex arithmetic even for real functions,

the algebra becomes simpler due to the nice properties of the exponential function,
and in the end all imaginary parts cancel.

Several variants of Fourier series can be used for some special cases where the
function is not periodic. The functions sinkx are 2π -periodic, but they can also be
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used as basis functions on the interval [0,π] for approximation of functions that are
zero at the boundaries. Such expansions are used for a few examples in Chap. 12,
where the solution of differential equations by spectral methods is discussed.

For practical computations there can be only a finite number of terms in the
series. For convenience we assume that N is an even number, and define the ap-
proximation

f (x) ≈ fN(x) =
N/2∑

k=−N/2

f̂ (k)eikx.

Higher wave numbers k correspond to faster oscillations, which allows for better
representation of functions with variation on a small scale. Therefore we expect
smaller errors with more terms in the approximating series, and the convergence
properties as N → ∞ become interesting. We would like to have a situation where
the coefficients f̂ (k) decrease rapidly for increasing |N |, such that fN(x) represents
f (x) very well for small N . The convergence theory for Fourier series is well devel-
oped, and as a general rule the series converges faster for smoother functions. This
is hardly a surprise. A smooth function f (x) has a small high frequency part, and
the error will be small if the higher terms are left out.

In applications one is often dealing with discontinuous functions, and they can
certainly not be classified as smooth. As an example we take the function

f (x) =
{

1 for 0 < x ≤ π,

0 for π < x ≤ 2π.

The integrals defining the Fourier coefficients are easy to compute, and we have

f̂ (k) =

⎧
⎪⎨

⎪⎩

1
2 for k = 0,

1
|k|π sin(|k|x) for k odd,

0 for k even.

Figure 6.1 shows fN(x) for N = 40 and N = 160.
More terms give a better approximation, but there are still evident oscillations

around the discontinuities. (Note that the periodicity assumption causes a discon-
tinuity at x = 0 and x = 2π as well.) It can be proven that no matter how many
terms are included in the Fourier series, there will always be an “overshoot” and an
“undershoot” very close to the discontinuity. On the other hand, the approximation
catches the location of the discontinuity very well, and for some analytical purposes
this might be sufficient.

The oscillating behavior shown here is known as the Gibbs phenomenon after
the American physicist Josiah Willard Gibbs (1839–1903). Actually, others discov-
ered and analyzed this phenomenon at greater depth, but it was still associated with
Gibbs’ work. Much work has been devoted lately to numerical techniques for elim-
inating this unwanted effect. It has been fairly successful for one-dimensional prob-
lems, but in several dimensions the Gibbs phenomenon still causes severe difficul-
ties.



6.1 Fourier Series 107

Fig. 6.1 Fourier series for a discontinuous function

In this presentation we have assumed that the functions are periodic. If instead
we are dealing with functions that are defined on the whole real axis −∞ < x < ∞,
the Fourier representation goes over from a series to an integral

f (x) =
∫ ∞

−∞
f̂ (ξ)eiξx dξ,

where it is assumed that f (x) is such that the integral exists. The function f̂ (ξ) is
obtained as a generalized integral as well:

f̂ (ξ) = 1

2π

∫ ∞

−∞
e−iξxf (x) dx.

In computational mathematics it is not very natural to deal with infinite intervals,
and therefore we shall mainly use the Fourier series representation in this book.

Fourier analysis is a powerful tool when it comes to differential equations, in par-
ticular for partial differential equations. The main reason for this is the remarkable
property of differential operators acting on the exponential function. With a function
f (x) given as a Fourier series (6.3), we have

df

dx
= d

dx

∞∑

k=−∞
f̂ (k)eikx =

∞∑

k=−∞
ĝ(k)eikx = g(x), ĝ(k) = ikf̂ (k).

(Here it is assumed that the differentiated sum converges, which is not always true.)
The coefficients in Fourier space for g are obtained by a simple multiplication by ik

of the original coefficients. This property becomes essential when analyzing PDE.
For the equation

∂u

∂t
= λ

∂u

∂x
(6.6)

we write the solution as a Fourier series in space

u(x, t) =
∞∑

k=−∞
û(k, t)eikx,
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and plug it into the differential equation
∞∑

k=−∞

∂û

∂t
(k, t)eikx = λ

∞∑

k=−∞
ikû(k, t)eikx .

Since the functions eikx are linearly independent, the coefficients in the two sums
must be the same:

∂û

∂t
(k, t) = λikû(k, t), k = 0,±1,±2, . . . .

The PDE has been reduced to a series of scalar ODE, and this new form is called
the Fourier transform of the partial differential equation (6.6). The ODE is trivially
solved, and we have

û(k, t) = eλikt û(k,0), k = 0,±1,±2, . . . .

The scalar λ determines the growth of the Fourier coefficients with time. We have

|û(k, t)| = |eλikt ||û(k,0)| = e− Im(λ)kt |û(k,0)|, k = 0,±1,±2, . . . .

If Im(λ) �= 0, there is a growth for those coefficients û(k, t) corresponding to the
wave numbers k with sign opposite to the one for Im(λ). Furthermore, since there is
no bound on the wave numbers, the exponential growth is unbounded as well. Even
if we are considering a fixed point in time, the relative growth |û(k, t)|/|û(k,0)|
becomes more and more severe for increasing |k|. This is typical for ill posed prob-
lems. For our simple equation we obviously need real numbers λ.

A more precise statement about the growth in physical space is obtained through
Parseval’s relation which connects the magnitude of the solutions in physical space
and Fourier space. A convenient measure of the solution is the norm based on the
scalar product defined in (6.4):

‖u(·, t)‖2 = 1

2π

∫ 2π

0
|u(x, t)|2 dx.

By using the orthogonality of the basis functions, it easy to show that

‖u(·, t)‖2 =
∞∑

k=−∞
|û(k, t)|2.

If the Fourier coefficients do not grow, then the norm of the solution doesn’t grow:

‖u(·, t)‖2 =
∞∑

k=−∞
|û(k, t)|2 ≤

∞∑

k=−∞
|û(k,0)|2 = ‖u(·,0)‖2.

The PDE treated here is very simple, but the Fourier technique is applicable to
much more general equations. Since it transforms complicated differential operators
to multiplication by scalars, it is a very powerful tool for analysis. We shall come
back to this type of analysis in later chapters when discussing various applications.

Exercise 6.1 A series
∑∞

k=0 1/kp converges if and only if p > 1. Give a sufficient
condition on the Fourier coefficients f̂ (k) of a periodic function f (x) such that
d2f/dx2 exists for all x.



6.2 The Discrete Fourier Transform 109

6.2 The Discrete Fourier Transform

The truncation of the Fourier series to a finite number of terms could be a basis
for numerical approximation. But the computation of the coefficients requires some
sort of numerical method for computing the integrals. This means that only a finite
number of function values f (xj ) are used, and we can think of the truncated Fourier
transform as an operation connecting a finite set of point values f (xj ) to a finite
set of Fourier coefficients. By choosing different integration formulas, we arrive at
different discrete transforms.

When dealing with discrete functions, the scalar product defined by an integral
should be substituted by another scalar product defined by a sum. It is essential to
retain the orthogonality of the basis functions also with the new scalar product.

We shall derive the discrete version of the Fourier transform by using the inter-
polation property as the fundamental concept.

We are assuming that f (x) is a 2π -periodic function and that its values fj =
f (xj ) are known at the grid points xj = j�x, j = 0,1, . . . ,N where N is an even
number and (N + 1)�x = 2π . (The assumption of even N is only for convenience,
see Exercise 6.5.) From the known values we want to construct an interpolation
function

g(x) =
N/2∑

k=−N/2

cke
ikx, (6.7)

which agrees with f (x) at the grid points. The interpolation conditions are

fj =
N/2∑

k=−N/2

cke
ikxj , j = 0,1, . . . ,N. (6.8)

For the discrete representation we are dealing with sums instead of integrals.
However, the beautiful generality of mathematics allows for the use of the same
machinery as for the continuous Fourier transform. The discrete function values fj

can be considered as the components in a vector f. We can then define a scalar
product and a norm for vectors f and g by

(f,g) = 1

2π

N∑

j=0

f jgj�x,

‖f‖2 = (f, f).

The N + 1 basis vectors are

ek =

⎡

⎢⎢⎢⎣

eikx0

eikx1

...

eikxN

⎤

⎥⎥⎥⎦ , k = −N/2,−N/2 + 1, . . . ,N/2,
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and we shall show that they are orthonormal. If m �= k, we have by using the sum-
mation formula for geometric series (see Sect. 4.1.2)

(em, ek) = 1

2π

N∑

j=0

e−imxj eikxj �x = �x

2π

N∑

j=0

ei(k−m)j�x

= �x

2π

1 − ei(k−m)(N+1)�x

1 − ei(k−m)�x
= �x

2π

1 − ei(k−m)2π

1 − ei(k−m)�x
= 0.

If m = k, we get

(em, ek) = 1

2π
(N + 1)�x = 1,

and the proof of orthonormality is complete.
The solution of the interpolation problem now follows easily. We simply multiply

(6.8) by e−imxj and sum it over j , i.e., we take the scalar product of (6.8) with em.
The result is

ck = (ek, f),

or equivalently

ck = 1

2π

N∑

j=0

fje
−ikxj �x, k = −N/2,−N/2 + 1, . . . ,N/2. (6.9)

This is called the Discrete Fourier Transform (DFT) and (6.8) is its inverse. Because
of the close relation to the trigonometric functions, the procedure (6.7), (6.9) is
called trigonometric interpolation.

Obviously, the DFT is closely related to the Fourier transform from the previ-
ous section. In fact, the sums occurring in (6.9) are special approximations of the
integrals in (6.5). We have simply picked the left function value in each interval
[xj , xj+1] and multiplied it by �x to get the area of the corresponding integral, just
as for the Riemann sum illustrated in Fig. 2.11.

The discrete version of the Fourier transform is used as a tool for analyzing dif-
ference methods for time dependent problems. Just as for the continuous transform
for differential equations we need a connection between the norm of the grid func-
tion and the norm of its Fourier coefficients. It is given by the discrete Parseval’s
relation:

The coefficients ck defined in (6.9) of the Fourier series (6.8) satisfy

N/2∑

k=−N/2

|ck|2 = 1

2π

N∑

j=0

|fj |2�x. (6.10)

This relation follows easily by the orthogonality of the basis grid functions, and we
shall demonstrate in Sect. 10.3 how to use it when estimating the solution of the
difference scheme.
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The condition that N should be an even number was introduced only for the
purpose of getting a nice symmetric formula for the Fourier series, and it can be
removed. In fact the Fourier series can be defined by any sum of the form

g(x) =
M+N∑

k=M

cke
ikx,

if N + 1 interpolation points are given, but the common choice is M = 0. However,
we cannot use more than N + 1 basis functions, since there are at most N + 1
linearly independent vectors ek containing the N + 1 elements eikxj .

There is another way of considering the basis functions eikxj for the DFT. Recall
the unit roots zj defined in (5.12). After a renumbering we have

eikxj = eikj�x = eik2πj/(N+1) = z
j
k , k = −N/2,−N/2 + 1, . . . ,N/2,

which shows that the elements of the basis vectors are the powers of the unit roots:
⎡

⎢⎢⎢⎢⎢⎣

1
z−N/2

z2−N/2
...

zN
−N/2

⎤

⎥⎥⎥⎥⎥⎦
,

⎡

⎢⎢⎢⎢⎢⎣

1
z−N/2+1

z2−N/2+1
...

zN
−N/2+1

⎤

⎥⎥⎥⎥⎥⎦
, . . . ,

⎡

⎢⎢⎢⎢⎢⎣

1
zN/2

z2
N/2
...

zN
N/2

⎤

⎥⎥⎥⎥⎥⎦
.

Here we have assumed that N + 1 is odd, which means that

zN/2 = ei N
2 �x = ei(π− �x

2 ),

z−N/2 = e−i N
2 �x = ei(π+ �x

2 ),

i.e., these two elements are located symmetrically on the unit circle on each side of
the point z = −1. If we try to add an extra wave number k = N/2 + 1, we get the
new element

zN/2+1 = ei( N
2 +1)�x = ei(π+ �x

2 ) = z−N/2,

i.e., we hit an already existing unit root. This shows what we have already con-
cluded: The maximal number of basis vectors is N + 1.

We can interpret the DFT and its inverse as operations by matrices on vectors.
With the vectors

f =

⎡

⎢⎢⎢⎣

f0
f1
...

fN

⎤

⎥⎥⎥⎦ , c =

⎡

⎢⎢⎢⎣

c−N/2
c−N/2+1

...

cN/2

⎤

⎥⎥⎥⎦

and the matrix

F = 1

2π

⎡

⎢⎢⎢⎣

e∗−N/2
e∗−N/2+1

...

e∗
N/2

⎤

⎥⎥⎥⎦ , (6.11)
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(with ∗ denoting the transposed complex conjugate form) it is easily checked that
the DFT can be expressed as

c = F f,
f = 2πF ∗c.

Apparently the inverse transform is F−1 = 2πF ∗, i.e., when disregarding the nor-
malization constant 2π , F is a unitary matrix. The inverse DFT is simply an expan-
sion of the vector f in terms of the basis vectors {ek}.

The algorithm for computation of the DFT has a special history. Each coefficient
ck requires approximately 2N arithmetic operations (on complex numbers) accord-
ing to the formula (6.9) and, since there are N + 1 coefficients, the total operation
count is approximately 2N2 (N -independent terms are not counted). In applications
N is often quite large and, if the transform is to be carried out again and again in
some central part of an algorithm, the computation may quickly get out of hand.
Therefore, when the Fast Fourier Transform (FFT) was invented by James Coo-
ley and John Tukey in 1965, it was an enormous step forward. The FFT produces
the same numbers as the DFT, but it does so by using a special fast algorithm.
Some people think that it is the most significant achievement ever for computational
mathematics. The FFT is a clever reorganization of the arithmetic, such that the total
number of operations goes down to something that is proportional to N logN . This
is true also for the inverse DFT (6.8). The original algorithm was developed for the
case that N = 2p , where p is an integer. But this restriction was later removed, and
present day FFT’s allow for any number N .

The FFT provides a spectral analysis of the function f (x) as does the Fourier
transform. Each coefficient ck represents the amplitude corresponding to the wave
number k. Consider for example the function in Fig. 5.12 which consists of two
sine-waves. The result of the FFT is zero values for all coefficients except four,
which are

c1 = −0.5i,

c−1 = 0.5i,

c20 = −0.1i,

c−20 = 0.1i.

Just as for the (continuous) Fourier transform in the previous section, we compute
the coefficients in the trigonometric polynomial and obtain sinx + 0.2 sin 20x.

The problem treated here is an example of a spectral analysis of a given function,
and the result is often presented by a graph that shows the amplitude for the different
wave numbers. Figure 6.2 shows the graph for our case. It is a very simple one, but
we present it because such figures are often shown in just about every application
area dealing with spectral analysis.

A more realistic situation is when the signal is polluted by noise. The left part
of Fig. 6.3 shows such a function, and it is not that easy to distinguish the typical
wave numbers just by looking at it. However, the FFT provides the sine-coefficients
shown in the right part of the same figure, and it clearly shows the peaks at k = 40
and k = 100.
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Fig. 6.2 The discrete Fourier
transform for
sinx + 0.2 sin 20x

In fact, the function is

f (x) = sin 40x + 0.2 sin 100x + 0.5r(x)

sampled at 501 points, where r(x) is a random function uniformly distributed in the
interval [0,1]. The lower wave number k = 40 could have been identified from the
graph of f (x), but hardly the higher wave number k = 100.

The discrete Fourier transform is well defined for any number sequence {fj }, but
the interpolation property holds of course only if fj represents the function value at
the point xj = j�x. The other assumption we have been using is periodicity. But
how does the transform know that the function is periodic when we don’t provide the
value fN+1 at the right end point xN+1 = 2π? Well, it does not. A natural condition
is that fN is close to f0, since the assumption is that fN+1 = f0. If this condition
doesn’t hold, we pay for it by a very poor representation of f (x) for x-values in
between the interpolation points. Figure 6.4 shows the interpolated function g(x)

obtained with the FFT acting on f (x) = x with N = 21.
It interpolates at the grid points, but is a very bad approximation in between.

In particular we note that it is aiming for what it thinks is a perfect interpolation
g(2π) = f (0) = 0 at x = 2π .

The FFT is one of the most frequently used tools in just about every applica-
tion area. The idea with a transform in general is to represent a certain function
with something other than its values at grid points. The identification of dominat-
ing frequencies k reveals more than by simply looking at the plot of the function
f (x). Figure 6.3 could be an application in acoustics, where the two frequencies are
identified by the discrete Fourier transform.

In the previous section we discussed how Fourier analysis can be applied to
partial differential equations in order to gain insight into the behavior of the so-
lutions. For approximations based on discretization, it is quite natural to perform
the analysis by using the discrete Fourier transform. Indeed it is a very powerful
and common analysis tool also in that case. In Sect. 10.3 we shall come back to this
issue.
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Fig. 6.3 The function sin 40x + sin 100x + r(x) and its discrete Fourier transform

Fig. 6.4 Interpolating
function g(x) for f (x) = x

Exercise 6.2 Find the coefficients in the expansion cos 2x + sin 2x = ∑
k cke

ikx .

Exercise 6.3 Prove Parseval’s relation (6.10) by using the orthonormality of the
basis grid functions.

Exercise 6.4 Prove that the function g̃(x) = ∑N/2+n

k=−N/2+n cke
ikx is identical to g(x)

in (6.7) for any integer n.

Exercise 6.5 Prove that there is a unique Fourier interpolating function g(x) =∑M
k=1 cke

ikx also when there is an odd number of given points. Use the same steps
in the proof as above when arriving at (6.9).

Exercise 6.6 Write a program that computes the interpolating function (6.7) by
using the formula (6.9). Use it for a real set of numbers {fj }N0 , and check that
Re(g(xj )) = fj . Is Im(g(x)) zero for all x?
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Exercise 6.7 Use the program in Exercise 6.6 for experimenting with various sets
of data. For example, find the monthly temperature data over a number of years for a
city of your choice, and use the FFT (6.9) for identifying the one year periodicity. As
an alternative, use the MATLAB function fft(x) for the discrete Fourier transform
of a vector x (see Sect. 18.2).





Chapter 7
Polynomial Expansions

Fourier series are not well suited to represent nonperiodic functions. Other basis
functions are needed, and polynomials are a possible choice since they are easy to
handle computationally. Resolution of functions with fast variation require poly-
nomials of high degree. However, it was demonstrated in Sect. 5.1 that standard
polynomials with xn as basis functions are no good for higher degrees, and that
orthogonal polynomials are a better alternative. Various types of such polynomials
were developed a long time ago, and they played a role in the development of classic
applied mathematics and approximation theory. Later they became more obscure as
a result of the introduction of piecewise polynomials that are more convenient for
finite element methods, as we shall see. However, during the last decades there has
been a remarkable renascence for orthogonal polynomials when it comes to numer-
ical solution of PDE by spectral methods, as we shall see in Chap. 12. This is why
we introduce them here.

7.1 Orthogonal Polynomial Expansions

In analogy with Fourier series, we can under certain conditions represent a given
function as an infinite orthogonal polynomial expansion

f (x) =
∞∑

n=0

anPn(x).

Here it is assumed that {Pn(x)} is a sequence of orthogonal polynomials with the
scalar product

(f, g) =
∫ b

a

f (x)g(x)w(x)dx. (7.1)
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It is also assumed that the sum converges for all x with a ≤ x ≤ b. After multipli-
cation of f (x) by each Pn(x) and integrating, the coefficients an are obtained from
the explicit formula

an = (Pn,f )

‖Pn‖2 , n = 0,1, . . . .

Only for very simple model cases can the integrals be evaluated by analytical means.
In general, we must use some sort of numerical integration. This means that a finite
number of discrete points xj are involved, and we have actually a transformation
between a finite number sequence {fj = f (xj )} and a finite number of coefficients
{aj }. This is a discrete transform, just as we saw for the Fourier case above. The
question is how the discrete points should be chosen for different kinds of orthogo-
nal polynomials. Again we shall see that we can use classical results associated with
well known mathematicians who were active long ago.

There are two types of orthogonal polynomials that are of particular interest when
solving partial differential equations. These are the Chebyshev and Legendre poly-
nomials, and we shall describe these in the next two sections.

7.2 Chebyshev Polynomials

The end points of the interval and the weight function determine the scalar product
(7.1) and the type of orthogonal polynomial. With a = −1, b = 1 and w(x) =
1/

√
1 − x2, we have the scalar product

(f, g) =
∫ 1

−1

f (x)g(x)√
1 − x2

dx,

which leads to the classic Chebyshev polynomials Tn(x) named after the Russian
mathematician Pafnuty Chebyshev (1821–1894). Obviously the weight function
puts more weight on both ends of the interval. At a first glance it looks like we
are in trouble here, since the weight function is not defined at the end points x = −1
and x = 1. Do we have to work solely with functions that tend to zero as x ap-
proaches the end points? Indeed not. Here we have a case where the integral ex-
ists for any bounded function f (x)g(x) despite the singularity. For the simple case
f (x)g(x) = 1 we can actually compute the integral analytically. In Appendix A.1
we find the differentiation rule

d

dx
arcsinx = 1√

1 − x2
,

where arcsinx is the inverse of the sine function, see Sect. 5.2. We get
∫ 1

−1

1√
1 − x2

dx = arcsin 1 − arcsin(−1) = π

2
+ π

2
= π.

The orthogonality relations for the Chebyshev polynomials are

∫ 1

−1
Tm(x)Tn(x)

1√
1 − x2

dx =
⎧
⎨

⎩

0 if m �= n,

π if m = n = 0,

π/2 if m = n �= 0.



7.2 Chebyshev Polynomials 119

There is no need to find the explicit form of each basis function for evaluation
of the Chebyshev polynomials. Just like Horner’s scheme for standard polynomials,
there is a simple recursive formula well suited for the computer:

T0(x) = 1,

T1(x) = x,

Tn+1(x) = 2xTn(x) − Tn−1(x), n = 1,2, . . . .

(7.2)

There is more nice mathematics that applies to the Chebyshev polynomials. It can
be shown that they satisfy the differential equation

d

dx

(√
1 − x2 dTn(x)

dx

)
+ n2

√
1 − x2

Tn(x) = 0, n = 0,1,2, . . . (7.3)

for −1 ≤ x ≤ 1, and the boundary conditions are

Tn(−1) = (−1)n, Tn(1) = 1.

Since the function cos ξ has its range between −1 and 1, the variable transformation
x = cos ξ is natural. The new function

T̃n(ξ) = Tn(cos ξ)

is then defined in the interval 0 ≤ ξ ≤ π , and one can show that it satisfies the
differential equation

d2T̃n(ξ)

dξ2
+ n2T̃n(ξ) = 0, n = 0,1,2, . . . . (7.4)

But this equation is easy to solve. With the boundary conditions

T̃n(0) = 1, T̃n(π) = (−1)n,

the solution is

T̃n(ξ) = cos(nξ), n = 0,1, . . . .

This means that we have an explicit form of the original polynomial:

Tn(x) = cos(n arccosx), n = 0,1, . . . , −1 ≤ x ≤ 1.

This formula is not normally used for direct computation, but it has great signif-
icance for algorithms involving Chebyshev polynomials, as we shall see. Another
consequence of this identity is that the inequality |Tn(x)| ≤ 1 for all n is directly
verified.

As for the Fourier case, the formulas for interpolation are closely connected to
the choice of numerical integration also for the Chebyshev polynomials. We choose
the interpolation points as

xn = cos

(
nπ

N

)
, n = 0,1, . . . ,N.
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These points are called the Gauss–Lobatto points, and they were originally derived
for obtaining accurate numerical integration formulas. The interpolation problem is

g(x) =
N∑

n=0

anTn(x),

g(xn) = f (xn), n = 0,1, . . . ,N.

(Note that the xn-points are numbered backwards such that xn+1 < xn.) One can
prove that the coefficients are given by

an = 1

cn

N∑

j=0

1

cj

f (xj )Tn(xj )�x, n = 0,1, . . . ,N,

cn =
{

1, n = 1,2, . . . ,N − 1

2, n = 0,N,

(7.5)

where �x = 2/N . Looking back at the cosine expression for Tn, we note that

Tn(xj ) = cos(n arccosxj ) = cos

(
n arccos

(
cos

jπ

N

))
= cos

njπ

N
.

This gives the final transform

an = 1

cn

N∑

j=0

1

cj

f (xj ) cos
jnπ

N
�x, n = 0,1, . . . ,N. (7.6)

(Recall that the xj -points are numbered backwards!) This is a remarkable formula.
Starting out with a somewhat strange weight function and orthogonal polynomials,
we ended up with a cosine transform! This one can be computed by using the fast
Fourier transform.

We summarize the whole procedure.

1. Choose the Gauss–Lobatto points xj = cos(jπ/N), j = 0,1, . . . ,N , for a dis-
crete representation of a given function f (x).

2. Compute the coefficients an defined in (7.6) by using a fast discrete cosine trans-
form.

3. The function

g(x) =
N∑

n=0

anTn(x),

interpolates f (x) at the points xj , j = 0,1, . . . ,N , and is a good approximation
of f (x) for all x with −1 ≤ x ≤ 1.

The interpolation points have a denser distribution close to the boundaries, which
corresponds to the structure of the polynomials. Figure 7.1 shows the Chebyshev
polynomial of degree 40. It is oscillatory with a faster variation near the boundaries,
which means that it is able to catch features in a function on a smaller scale there.
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Fig. 7.1 Chebyshev
polynomial T40(x)

Fig. 7.2 Chebyshev
interpolation, N = 12 (−−).
Original function (—)

In general the clustering of the points is a disadvantage, since it does not take
into account the location of the small scale variations in the function that is to be
interpolated. However, for certain applications it may be an advantage. For exam-
ple, in fluid dynamics, there are often boundary layers, i.e., a strong variation of
the state variables near solid walls. In such cases, the Chebyshev distribution may
give an almost optimal representation. Figure 7.2 shows a constructed example with
boundary layers at both boundaries. The function is

f (x) = 0.5
(
1 − e−50(x+1)2 + 1 − e−50(x−1)2)

,

and the figure shows the Chebyshev interpolation polynomial of degree N = 12.
The dotted vertical lines are located at the Gauss–Lobatto points. The approximating
function is remarkably good with only 13 interpolation points.



122 7 Polynomial Expansions

Exercise 7.1 Write a program for evaluation of Tn(x) according to (7.2). Define a
sequence {f (xj )}, and compute the coefficients an first by using (7.5), and then by
(7.6). Check that the results are identical.

Exercise 7.2 Prove that T̃n(ξ) satisfies (7.4) if Tn(x) satisfies (7.3).

7.3 Legendre Polynomials

With the same x-interval as for the Chebyshev polynomials but weight function
w(x) = 1, the scalar product is

(f, g) =
∫ 1

−1
f (x)g(x) dx.

The corresponding orthogonal polynomials satisfy
∫ 1

−1
Pm(x)Pn(x) dx = 2

2n + 1
δmn,

and they are called the Legendre polynomials after the French mathematician Adrien
Marie Legendre (1752–1833). There is also a recursive formula:

P0(x) = 1,

P1(x) = x,

Pn+1(x) = 2n + 1

n + 1
xPn(x) − n

n + 1
Pn−1(x), n = 1,2, . . . .

The Gauss–Lobatto points for the Legendre polynomials are the N + 1 roots of the
polynomial

(1 − x2)
dPN(x)

dx
= 0.

The interpolation polynomial

g(x) =
N∑

n=0

anPn(x)

which equals f (x) at the Gauss–Lobatto points, is obtained with the coefficients

an = 1

cn

N∑

n=0

f (xj )Pn(xj )�x, n = 0,1, . . . ,N,

cn =
{

2/(2n + 1), n = 0,1, . . . ,N − 1,

2/N, n = N,

where �x = 2/N . This is the discrete Legendre transform.
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Any interval [a, b] on the x-axis can of course be transformed to the interval
[−1,1] that is used for the two classes of polynomials described here. We can also
go the other way around from [−1,1] to [a, b]. As an example we take the Legendre
polynomials and transform them to the interval [0,1]. This is done by the change of
variable x = 2ξ − 1. The new polynomial is denoted by P̃n(ξ) = Pn(2ξ − 1), and
the following relations hold:

P̃0(ξ) = 1,

P̃1(ξ) = 2ξ − 1,

P̃n+1(ξ) = 2n + 1

n + 1
(2ξ − 1)P̃n(ξ) − n

n + 1
P̃n−1(ξ), n = 1,2, . . . ,

∫ 1

0
P̃m(ξ)P̃n(ξ) dξ = 1

2n + 1
δmn.

These polynomials are called the shifted Legendre polynomials.





Chapter 8
Least Square Problems

Almost all kinds of approximation are based on the principle that a complicated
function is represented by a simpler function that is easy to evaluate. This simpler
function has a certain number of parameters that are determined such that the ap-
proximation error is small in some sense. The finite element method for differential
equations is based on this idea. In order to understand the principles, we discuss
in this chapter the simpler problem of approximating a given function without any
differential equations involved.

One question is how to measure the error. A very natural measure is the maximal
deviation from the true function, but it turns out that the theory becomes simpler if
the square of the error is integrated over the interval of interest. This leads to the
least square method.

8.1 Vector Approximations

We begin by considering a simple example. Assume that we want to approximate
the vector u = [x, y, z] in the 3-dimensional space by another vector v = [a, b,0] in
2-dimensional space. It seems reasonable to choose a = x and b = y, but we shall
derive the solution in a strict way, which can be generalized to more complicated
problems. We repeat first the basic concepts that are required. The scalar product
between two vectors u1 and u2 is

(u1,u2) = x1x2 + y1y2 + z1z2,

and the length of a vector u is

‖u‖ = √
(u,u) =

√
x2 + y2 + z2.

Two vectors u1 and u2 are orthogonal if (u1,u2) = 0.
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126 8 Least Square Problems

The approximation criterion is to minimize the length of the error vector. The
basis vectors are chosen as the unit vectors

w1 =
⎡

⎣
1
0
0

⎤

⎦ , w2 =
⎡

⎣
0
1
0

⎤

⎦ ,

such that v can be written in the form

v = aw1 + bw2. (8.1)

We try to find the parameters a and b such that

‖u − v‖2 = (x − a)2 + (y − b)2 + z2

is as small as possible (minimizing the square of the length gives the same result as
minimizing the length). Since all three terms are positive, the minimum is trivially
obtained as

x − a = 0,

y − b = 0,

which can also be written in the more complicated form
(
u − (aw1 + bw2),w1

) = 0,
(
u − (aw1 + bw2),w2

) = 0.

This form shows that the error vector is orthogonal to the two basis vectors in the
approximating subspace. Since every vector v in the two-dimensional (x, y)-space
can be written as v = a1w1 + a2w2, it follows that the error vector is orthogonal
to all vectors in the 2D x/y-space, i.e., it is orthogonal to the whole 2D space.
The solution a = x, b = y is called the projection of u on the 2D-space, and it is
illustrated in Fig. 8.1.

Let us next take a look at the general case. We want to approximate the
N -dimensional vector u by

v =
M∑

j=1

aj wj , (8.2)

where wj are basis vectors, and M < N . How should the coefficients aj be chosen
such that ‖u − v‖ is minimal? To find out, we assume that v is the optimal solution,
and perturb it by a vector εd, where |ε| is a small number. This means that

‖u − v‖2 ≤ ‖u − v − εd‖2 = ‖u − v‖2 − 2ε(u − v,d) + ε2‖d‖2.

The parameter ε is arbitrary and, by choosing it sufficiently small in magnitude, the
second term will dominate. Furthermore, by choosing the right sign of ε, this term
will be negative. This leads to the conclusion that the condition for a minimum is

(u − v,d) = 0 (8.3)

for all vectors d in the admissible vector space spanned by the basis vectors wj .
Therefore we can write the minimization condition as

(v,wk) = (u,wk), k = 1,2, . . . ,M,
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Fig. 8.1 Projection of a
3D-vector u on v in 2D-space

or equivalently

M∑

j=1

(wj ,wk)aj = (u,wk), k = 1,2, . . . ,M. (8.4)

This condition is fundamental and, as we shall see, it shows up again when dealing
with functions instead of vectors, and also when solving differential equations.

8.2 The Continuous Case

In this section we shall consider approximations of functions f (x) defined every-
where in the interval [0,1]. If f (x) is a complicated function to evaluate, it is an
advantage to approximate it with another simpler function g(x). We introduced or-
thogonal polynomials Pj (x) in Sect. 5.1.3 satisfying the condition

(Pj ,Pk) =
∫ 1

0
Pj (x)Pk(x) dx = 0, j �= k.

These are the shifted Legendre polynomials Pj (x) introduced in Sect. 7.3, and we
use them as basis functions for the approximation

g(x) =
n∑

j=0

ajPj (x).

The least square problem is formulated just as above by the requirement that the
norm of the error

‖f − g‖2 =
∫ 1

0

(
f (x) −

n∑

j=0

ajPj (x)

)2

dx
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Fig. 8.2 Approximation (−−) of x13 (—) with polynomials of degree 13

is as small as possible. This problem was treated in the previous section for vectors,
and the same arguments can be applied here as well. The scalar product and norm
can be handled in precisely the same way with the definition for either vectors or
continuous functions. This leads to the condition of orthogonality between the error
and the subspace, i.e.,

(f − g,Pk) = 0, k = 0,1, . . . , n. (8.5)

The linear system for determining the coefficients aj is

n∑

j=0

(Pj ,Pk)aj = (f,Pk), k = 0,1, . . . , n,

which corresponds precisely to (8.4) for the vector case. The scalar products on the
left hand side are known integrals, and for j �= k they are all zero. From the formulas
in Sect. 7.3 it follows that

aj = (2j + 1)(f,Pj ), j = 0,1, . . . , n.

Here, the integrals (f,Pj ) = ∫ 1
0 f (x)Pj (x) dx may have to be computed numeri-

cally.
With standard polynomials, the system for the coefficients aj would be dense

and, furthermore, ill conditioned. As a test we choose f (x) = xn, and go all the
way to degree n with the approximating polynomials. That means that we should
get exactly xn back as an approximation. But with standard polynomials, we get
into trouble already for quite low degree. Figure 8.2(a) shows the result for n = 13,
and it is way off the target. Actually, the MATLAB system gives a warning “Matrix
is close to singular”, and the computer cannot do any better. On the other hand, the
Legendre approximation shown in Fig. 8.2(b) is exact. Indeed, it will stay exact for
any reasonable degree n ≥ 13.
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The machinery for the least square method is well defined by simply specify-
ing the basis functions and the scalar product. With orthogonal polynomials the
x-interval and the weight function determine everything. For example,

(f, g) =
∫ 1

−1
f (x)g(x)

1√
1 − x2

dx

gives the Chebyshev polynomials discussed in Sect. 7.2.

8.3 The Discrete Case

The least square method is probably best known for the discrete case, i.e., the func-
tion values f (x) are known only at a number of discrete points x = xj . These values
are usually measured, and measuring errors are present. Even if the underlying ba-
sis functions are known from some theoretical considerations, the measuring errors
are reason enough to find a new and smoother function that approximates the reg-
istered values. Interpolation is not a good alternative, since it forces the constructed
function to pass exactly through the measured points.

We assume that there are N + 1 uniformly distributed points

xj = j�x, j = 0,1, . . . ,N,

with (N + 1)�x = 1. In this case the scalar product between two sets of function
values {fj } and {gj } is defined by the sum

(f, g) =
N∑

j=0

fjgj�x,

and the norm by

‖f ‖ = √
(f,f ).

With our choice of �x we get the proper normalization such that the norm of the
discretized function f (x) = 1 is ‖f ‖ = 1. This means that xN is not the end point
x = 1 but rather x = 1 − �x.

With basis functions Pj (x), the least square approximation

g(x) =
n∑

j=0

ajPj (x)

is obtained exactly as in the continuous case just by substituting the integrals by
sums. (Actually we are back to the vector case treated in Sect. 8.1.) The orthogonal-
ity condition

(f − g,Pk) = 0, k = 0,1, . . . , n,

for the error gives the system
n∑

j=0

(Pj ,Pk)aj = (f,Pk), k = 0,1, . . . , n. (8.6)
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Fig. 8.3 Least square approximation (−−), true discrete function (—)

for the coefficients aj . Standard polynomials can be used only for very low de-
grees. On the other hand, it is a very common choice for many applications. In fact,
considered as a statistical technique, the basis functions {1, x} lead to so-called lin-
ear regression analysis of a statistical sample. Figure 8.3(a) shows the straight line
which is obtained for the discrete function

fj = x2
j + 0.2 rand(xj ),

where rand(x) is a uniformly distributed random function in the interval −0.5 ≤
x ≤ 0.5. Figure 8.3(b) shows the least square second degree polynomial approxima-
tion for the same type of function. (The random numbers have the same statistical
distribution, but are individually different.)

Let us now take a look at a more realistic example from real life. The discussion
concerning the climate change is intense, the main question being if there really is a
correlation between the greenhouse gases in the atmosphere and the global temper-
ature. The underlying mathematical model is very complicated, and this is not the
place to provide any new proofs in either direction. However, we shall perform an
experiment that shows that one has to be very careful with any firm conclusions.

Since 1979, The National Space Science & Technology Center publishes
monthly measurements of the global average temperature at the Earth surface over
the years. Figure 8.4 shows these measurements including 2009, i.e., 372 readings
T (j) in all.

There are quite wild oscillations, and it is not easy to correlate these to any par-
ticular activities either from the Sun or from human and other activities on the Earth.
When talking about clear trends, we want to see smoother curves with the irregular
perturbations taken out. Both scientists and laymen have a preference for straight
lines or slowly varying functions like low degree polynomials, where conclusions
are easy to make. It has of course not been verified at all that there is any underlying
polynomial form of the temperature as a function of time but for lack of any better
knowledge of the type of functions, we can use them anyway. But the human eye
is not sufficient to uniquely define the approximation even if the basis functions are
given. Let us see what kind of approximation the least square method produces for
our example.
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Fig. 8.4 Global temperature at the Earth surface 1979–2009

The most basic question is whether or not there is any increase in the global
temperature at all. The common type of analysis is based on linear functions, and
the first subfigure of Fig. 8.5 shows a clear rise of the temperature as a function of
time. If we next go to second degree polynomials, we get the second figure, which
shows an even more pronounced positive trend during the last years (positive in a
mathematical sense, negative in view of the effects on human society). In princi-
ple, higher degree polynomials should be able to pick up the functional behavior
of the data more accurately. The next two subfigures show the result with 3rd and
4th degree polynomials. They both show decreasing temperature at the end of the
measured period. Somebody who is arguing that we should worry about tempera-
ture increase can use degree 1 or 2 of the polynomials, while the opponent saying
that there is nothing to worry about can use degree 3 or 4. Clearly these least square
approximations provide no solid base for either one to draw any certain conclu-
sions. Something to think about when taking part in the current climate change
debate!

For higher degree polynomials, the least square procedure will fail to give any
reasonable results also for the discrete case. However, just as for the continuous
case, polynomials can be constructed that are orthogonal with the discrete scalar
product, resulting in a well conditioned computational problem. We discussed the
basic principles for orthogonal polynomials in Sect. 5.1.3, and in Chap. 7.

We have discussed polynomial approximation here. Of course any other func-
tions can be used for least square approximations, as long as we have a good set of
basis functions φj (x). The coefficients aj in the approximation g(x) = ∑

ajφj (x)

are obtained by solving (8.6) with Pj ,Pk substituted by φj ,φk . For periodic func-
tions we have the Fourier expansions with trigonometric basis functions. Since these
functions are orthogonal in both the continuous and discrete cases with a uniform
point distribution, it is an ideal choice. Trigonometric functions as well as Cheby-
shev and Legendre polynomials for the solution of differential equations are further
discussed in Chap. 12.
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Fig. 8.5 Least square approximation with n degree polynomials (−−), true discrete function (—)

We end this chapter by mentioning the closely connected problem of finding a
solution of an overdetermined linear system of equations

Ax = b,

where A is a rectangular m × n matrix with m > n. In general there is of course
no solution to this problem, but it makes sense to define a least square solution x∗
defined by

‖Ax∗ − b‖2 = min
x

‖Ax − b‖2.

Assuming that x∗ is the minimizing vector, we perturb it by a vector εx, where |ε|
is a small scalar. We have

‖Ax∗ − b‖2 ≤ ‖A(x∗ + εx) − b‖2 = ‖Ax∗ − b‖2 + 2ε(Ax∗ − b,Ax) + O(ε2)

for all vectors x. Since |ε| is arbitrary small, the condition for a minimum is

(Ax∗ − b,Ax) = 0,

which is a slightly different form compared to the condition (8.3) for the pure ap-
proximation problem of a given vector. It can be modified further to the condition

(
AT (Ax∗ − b),x

) = 0.
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We have here an N -dimensional vector AT (Ax∗ −b) that is orthogonal to all vectors
in an N -dimensional space, and this is impossible only for a nonzero vector. Hence,
the final condition for a minimum is

AT Ax∗ = AT b.

This system is called the normal equations.
It can be shown that, if the column vectors of A are linearly independent, then

the matrix AT A is nonsingular, and the solution vector x∗ is uniquely determined.
We write it as

x∗ = A+b,

where the matrix A+ is called the pseudo-inverse of A. If A is a square matrix, the
pseudo-inverse is identical to the true inverse.

It can be shown that the normal equations are ill conditioned already for moderate
sized n, just as the systems arising for approximation with standard polynomials
discussed above. Accordingly, the numerical solution methods must be designed by
using some sort of orthogonalization procedure.

Exercise 8.1 MATLAB has a function polyfit(x, f,n) that returns the coefficients in
the least square polynomial of degree n for the point set (xj , fj ). Use this function
to plot the least square approximation for various n and data sets of your own choice
(for example the stock market index the last month).
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Chapter 9
Numerical Methods for Differential Equations

In this chapter we shall discuss some basic considerations when solving differential
equations numerically.

9.1 Basic Principles

In Chap. 2 we demonstrated different types of differential equations. It is convenient
to distinguish between the independent variables x = [x1, x2, . . . , xd ] for space vari-
ables and t for time. Here d can be any number, but often with 1 ≤ d ≤ 3 as in phys-
ical space. We introduce the abstract notation P(∂x, ∂t) for a differential operator.
By this we mean that Pu is an expression that contains the partial derivatives of
u with respect to the space and time coordinates. There are essentially three types
of problems for the unknown (vector) variable u depending on where and how the
known data are given:

• Initial value problems (IVP)
• Boundary value problems (BVP)
• Initial-boundary value problems (IBVP)

In abstract form they are characterized as follows.

• Initial value problem: −∞ < xj < ∞, t ≥ 0

P(∂x, ∂t)u = F(x, t),

u(x,0) = f(x).

• Boundary value problem: Domain �, boundary ∂�

P(∂x)u = F(x), x ∈ �,

u(x) = g(x), x ∈ ∂�.

B. Gustafsson, Fundamentals of Scientific Computing,
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• Initial-boundary value problem: x ∈ �, t ≥ 0

P(∂x, ∂t)u = F(x, t), x ∈ �,

u(x, t) = g(x, t), x ∈ ∂�,

u(x,0) = f(x), x ∈ �.

Here F represents a given (vector) function which is independent of u, and it is
often called a forcing function. We have introduced the compact notation ∂x when
several space variables xj are involved. For example, for the simplest form of the
heat equation in two space dimensions, the differential operator P is

P(∂x, ∂t) ≡ ∂

∂t
− ∂2

∂x2
1

− ∂2

∂x2
2

.

The independent variables x and t can of course stand for any type of variable other
than space and time. Furthermore, the initial condition for t = 0 may contain time
derivatives as well if the differential equation contains higher order time derivatives.
Likewise, the boundary conditions may contain space derivatives as well.

Figure 9.1 shows the three types of problems.
There may be derivatives of different order in the differential equation, and those

of highest order are the most significant ones when it comes to the fundamental
properties. We consider a second order scalar PDE in two space dimensions:

a
∂2u

∂x2 + 2b
∂2u

∂x∂y
+ c

∂2u

∂y2 = 0,

where a, b and c are given constants. It is classified as one of three different types:

• Hyperbolic
• Parabolic
• Elliptic

They are fundamentally different, and it is important to classify a certain PDE
correctly before trying to solve it. Hyperbolic and parabolic PDE can be solved as
IVP or IBVP, while elliptic PDE are solved as BVP.

The classification is based on the Fourier transform. We demonstrated in Sect. 6.1
how it is applied to a PDE. Here we use the notation ξ and η for the wave numbers,
i.e., the Fourier modes have the form ûei(ξx+ηy). The Fourier transform of the dif-
ferential equation is

−(
aξ 2 + 2bξη + cη2)û = 0.

The properties of the differential equation are closely connected to the properties
of the polynomial which is multiplying the Fourier coefficient, and we are back to
classification of polynomials, which is classic mathematics associated with the geo-
metrical intersection between planes and cones. A nontrivial solution û �= 0 requires

aξ2 + 2bξη + cη2 = 0. (9.1)

This equation describes an ellipse, a parabola or a hyperbola in the ξ, η plane de-
pending on the sign of the expression ac − b2. In accordance with this, the PDE is
called
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Fig. 9.1 The three types of problems for differential equations

• elliptic if ac − b2 > 0,
• parabolic if ac − b2 = 0,
• hyperbolic if ac − b2 < 0.

An elliptic equation must be solved as a boundary value problem, while parabolic
and hyperbolic equations are solved as initial or initial-boundary value problems.
Trying the elliptic Laplace equation ∂2u/∂x2 + ∂2u/∂y2 = 0 as an initial value
problem with the “time-like” variable y, (9.1) implies η = ±iξ . Accordingly, the
solution has the form

u(x, y) = αe−ξy+iξx + βeξy+iξx (9.2)

for some constants α and β . Even if the initial condition is such that the solution is
nongrowing in the beginning, the inherent “explosive” exponential growth for one
of the terms will be activated by the slightest perturbation. We have here another
example of an ill posed problem.

For the hyperbolic wave equation ∂2u/∂x2 − ∂2u/∂y2 = 0, we get in the same
way the solution

u(x, y) = αeiξ(y+x) + βeiξ(−y+x). (9.3)

Here we have two components that are both bounded for any time, showing that it
can be solved as an initial value problem. Hyperbolic PDE are also well defined with
only first order derivatives involved. In Chap. 15, we shall consider such systems
further.

In the parabolic case, the lower order derivatives play a more fundamental role.
The parabolic heat equation ∂2u/∂x2 − ∂u/∂y = 0 has already been treated with y

as a time-like variable, and we shall come back to it again in Chap. 16.
In order to simplify the presentation, we shall most of the time discuss problems

in one space dimension (or no space variable at all for ODE initial value problems),
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and scalar differential equations, i.e., the vector u has only one element u. Another
simplification is the case where P(∂x, ∂t) is linear, i.e., it satisfies

P(au + v) = aPu + Pv

for any constant a. Unfortunately real life is often nonlinear, and we have to deal
with nonlinear differential equations as well. The generalization and implementation
of numerical methods may not be much more complicated for such problems, but a
strict analysis of the properties certainly is.

A pure initial value problem has no boundaries at all, but a computation in prac-
tice must of course be limited to a finite domain. It is a special difficulty to handle
the artificial boundaries that are introduced in this way, and we shall touch upon this
issue in Chap. 15.

A special type of initial value problems is the case with periodic solutions in
space such that u(x, t) = u(x + p, t) for all x and t and some constant p. The
computation is then limited to one period and, for convenient use of trigonometric
functions in the analysis, it is natural to transform the period length to 2π . The
domain in space can be chosen arbitrarily, but 0 ≤ x ≤ 2π is a convenient choice.
There are no boundary conditions at the two boundaries x = 0 and x = 2π . For the
computation we just use the fact that the function and all its derivatives are identical
at the two boundaries.

The principle of discretization was introduced in Chap. 2. For difference methods
it means that the unknown state variables are represented by their values at the grid
points {xj }. The approximation of the derivatives is obtained by going back to the
definition of derivatives, but stopping short of carrying out the limit process to the
end. In this way we get relations between function values that are located closely
together. For initial value problems, where a certain state is known at a certain time
t0, this disretization procedure gives rise to a step-by-step algorithm which makes it
possible to obtain the solution at any later time t > t0. There is no condition at the
end of the interval that needs to be matched by the solution. For a boundary value
problem, where the state variables are known at the whole boundary of the domain,
there is a coupling between the variables across the whole domain. Consequently,
a large system of equations for the unknowns at the grid points must be solved.

The second principle for approximation is the representation of the solution as a
finite sum

v(x) =
N∑

j=0

ajφj (x),

where the functions φj (x) are known basis functions that are chosen in such a way
that the coefficients aj can be computed rapidly. This means that the solution is well
defined everywhere, but there is still a discretization procedure involved. The finite
sum cannot satisfy the differential equation everywhere and, consequently, some
relaxation has to be introduced.

One principle is the Galerkin method, named after the Russian mathematician
Boris Grigoryevich Galerkin (1871–1945). The differential equation Pu = F is
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transferred to a weaker form by multiplying with the basis functions and integrating.
For a boundary value problem we get

∫

�

(
P(∂x)v(x) − F(x)

)
φj (x) dx = 0, j = 0,1, . . . ,N.

The discretization is here realized by choosing N as a finite number. This method is
very similar to the condition (8.5) for the least square approximation problem in the
sense that the error in the differential equation is orthogonal to the subspace which is
spanned by the basis functions φj . For the finite element method, the approximating
functions are piecewise polynomials. These are defined by their values at certain
grid points or nodes, so also here the discretization introduces a computational grid.

Another principle is obtained by relaxing the conditions on the approximate so-
lution v, so that it satisfies the differential equation only at certain grid-points xj .
This type of discretization is called collocation. The basis functions in the sum can
then be any functions, but of course they must be chosen such that computations
become simple and fast. Also here we have a computational grid consisting of the
collocation points xj .

For a time dependent problem in one space dimension, the solution has the form

u(x, t) =
N∑

j=0

aj (t)φj (x).

The Galerkin method can still be applied, but now we are left with a system of time
dependent differential equations for the coefficients aj (t). This is what is called the
method of lines, and it requires a numerical method for solution in time, usually
chosen as a finite difference method. The finite element discretization in space gives
its name to the whole method.

The collocation method can be applied also here. For a given set of collocation
points xj , the approximation v(x, t) is differentiated with respect to x, and then rep-
resented at the grid points. Again we get a system of ordinary differential equations
for v(xj , t), that is usually solved by finite difference approximation. This is called
a pseudo-spectral method. The basis functions are usually taken as trigonometric
functions or orthogonal polynomials.

All three methods are associated with computational grids which represent the
discretization. We distinguish between the two main types: structured grids and un-
structured grids. There are precise definitions of these concepts, but here we simply
think of structured grids that can be mapped to rectangular grids in 2D or grids con-
sisting of parallelepipeds in 3D. Different grid points can be identified by a pair or
triple of indices in 2D and 3D respectively:

ujk, j = 0,1, . . . ,Nx, k = 0,1, . . . ,Ny,

ujkl, j = 0,1, . . . ,Nx, k = 0,1, . . . ,Ny, l = 0,1, . . . ,Nz.

(The numbering may of course be chosen differently.) In 1D, a grid is always struc-
tured in this sense, but we distinguish between uniform and nonuniform grids. In
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the first case the step size is constant, such that xj = j
x. In several dimensions,
the step size is constant in each coordinate direction. No such restriction applies for
nonuniform grids.

Finite difference and spectral methods are both associated with structured grids,
and we shall discuss these further in Chaps. 10 and 12. They can be constructed also
for unstructured grids, but then it is much more complicated to keep up the accuracy.
Finite element methods on the other hand adapt to unstructured grids much more
easily. That is part of the reason for their success in applications. But one should
keep in mind that algorithms based on methods on structured grids are much faster,
the reason being that the complicated data structures for keeping track of the grid
points are not necessary.

In the following chapters we shall give a description of the three types of numer-
ical methods for differential equations.

Whatever method we are using, there is the question of how fine the computa-
tional grid should be. We talk about this in general terms as resolution. In the next
section we shall discuss this concept in the most fundamental sense, i.e., the neces-
sary number of points for representing a certain function.

9.2 Resolution

Solution procedures based on discretization lead to computational problems with
increasing size for decreasing step size. Obviously there is a lower limit on the step
size even by the largest available computers. On the other hand, the solution may
contain small-scale features that are significant for the understanding of a certain
physical process.

We consider a simple model example. The function

u(x) = e−800(x−0.2)2

represents a pulse with its peak at x = 0.2. Let us now perturb this function with an
oscillating sin-function

u(x) = e−800(x−0.2)2 + 0.05 sin 2πkx, (9.4)

where k is the wave number. If k is large, the function oscillates quickly as a function
of x, and a good representation of this function requires a small step size 
x. If the
computer is given u(x) only at the grid points, there is no way that it can know about
the oscillations between the grid points if the grid is too coarse. Figure 9.2 shows
how the graphic software treats the function for k = 50 and four different step sizes

x = 1/N .

The first curve is the correct one. The remaining three are the result of a resolution
with approximately 100 points, which is not good enough. By changing the step size
with just 1%, the results differ completely. For N = 100, the grid points fall exactly
on the zeros of the oscillating function, and we obtain erroneously the exact original
unperturbed function.
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Fig. 9.2 Representation of the function (9.4) for different step sizes

This is an illustration of the obvious fact that representation of the finest structure
of a certain state variable requires sufficiently many grid points. On the other hand,
in many applications it is good enough to know the main features of the solution.
For instance, in our example with the transport equation (2.18), where the initial
function simply travels with the speed c, the position of the main pulse at different
points in time may be the main interest. A good solver of the initial value problem
achieves this even if the grid is not fine enough to resolve the oscillating part, but
rather use the clean profile in Fig. 9.2(d).

There are other cases where a computation with poor resolution may still be
useful. For instance, in our example the integral of the solution is not affected by the
perturbation:

∫ 1

0
u(x)dx =

∫ 1

0
(e−800(x−0.2)2 + 0.05 sin 2πkx)dx

=
∫ 1

0
e−800(x−0.2)2

dx = √
π/800.

For the discrete case the integral is replaced by a finite sum, and one can show that
also this one is essentially unaffected by the sine function. Furthermore, the integral
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doesn’t change when the pulse is moving across the domain as long as it is not near
the boundaries:

∫ 1

0
u(x)dx =

∫ 1

0
u(x − ct) dx = √

π/800.

Hence, even if we start with the poorly resolved function, the approximated integral
of the solution will be kept almost constant. In many applications we have a simi-
lar situation. In such a case the problem is solved without the small scale features
resolved, but a certain quantity of interest is still obtained with sufficient accuracy.
We shall discuss this further in Sect. 17.4.

However, a word of warning is appropriate here. In real life problems, it is very
difficult to analyze the effects of small-scale variations on the results. It is certainly
much safer to make sure that the grid is fine enough for the smallest features of the
solution, even if it requires large computational resources.



Chapter 10
Finite Difference Methods

Finite difference methods were used centuries ago, long before computers were
available. As we have seen in Chap. 2, these methods arise quite naturally by going
back to the definition of derivatives, and just stopping short of taking the limit as
the step size tends to zero. We shall first discuss ordinary differential equations and
then partial differential equations.

10.1 Ordinary Differential Equations

Consider an initial value problems of the type

du

dt
= g(u),

u(0) = f,

(10.1)

where g(u) is a general function of the solution u itself, and f is a known value.
The simple method (2.9) discussed in Sect. 2.2.2 generalizes to

un+1 = un + g(un)�t, n = 0,1, . . . ,

u0 = f

for our equation. The method is called the Euler method after Leonhard Euler, and
it provides a very simple formula for implementation on a computer. When un is
known, the value g(un) and the right hand side can be computed. However, de-
pending on the properties of g(u), it may be necessary to use other forms of dis-
cretizations. For example, a better centering of g(u) in the interval [tn, tn+1] would
improve the result. By taking the average of the end points we get the so called
trapezoidal rule

un+1 = un + g(un) + g(un+1)

2
�t, n = 0,1, . . . ,

u0 = f.
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However, there is one complication here. In order to compute un+1 at each step, we
must solve a nonlinear equation

un+1 − g(un+1)

2
�t = un + g(un)

2
�t.

When the new time level is involved in this way, we have an implicit method in
contrast to explicit methods. Except for very simple functions g(u), we must use
numerical methods for solving the nonlinear equation at each step. This is a typical
situation in computational mathematics. In order to obtain more accurate numerical
solutions, we may have to design more complicated numerical methods. However,
we must make sure that the increased manual effort in construction and program-
ming, results in a faster solution procedure on the computer for obtaining a certain
accuracy.

Let us now study the linear problem

du

dt
= −u,

u(0) = 1.

(10.2)

It has the exponentially decreasing solution u(t) = e−t , and there is of course no
need to use a numerical method. But we do that anyway to illustrate some interesting
phenomena. The Euler method is

un+1 = un − un�t, n = 0,1, . . . ,

and we try the different time steps �t = 2.1 and �t = 1.9. The result is shown in
Fig. 10.1 together with the true solution. Clearly, the numerical solution is com-
pletely wrong. Furthermore, for the larger time step, the amplitude of the solution is
growing, and it will never approach zero which the true solution will do for large t .

It is easy to see why things are going wrong. The scheme can be written as

un+1 = (1 − �t)un, n = 0,1, . . . .

The number sequence {un} is nonincreasing for increasing n if |1 − �t | ≤ 1, i.e., if
�t ≤ 2. We call the method stable if this condition is satisfied. For 1 < �t ≤ 2 the
solution will be oscillating, but at least it will not take off without bounds.

Let us next modify the scheme such that the right hand side −u of the differential
equation is taken as −un+1 in the interval [tn, tn+1]. Then the method becomes

un+1 = un − un+1�t, n = 0,1, . . . ,

or equivalently

un+1 = 1

1 + �t
un, n = 0,1, . . . .

This is called the Euler backward method. We run the same cases as above, and
the result is shown Fig. 10.2. The oscillatory behavior is gone and, despite the very
large time steps, the solution looks reasonable for all t .

The behavior is again easy to explain. The number multiplying un satisfies the
stability condition |1/(1 +�t)| ≤ 1 for all �t , and we call the method uncondition-
ally stable.
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Fig. 10.1 Solution of (10.2)
by the Euler method,
�t = 2.1 (−−) �t = 1.9 (−·),
true solution (—)

Fig. 10.2 Solution of (10.2)
by the Euler backward
method,
�t = 2.1 (−−) �t = 1.9 (−·),
true solution (—)

It seems that it should not make much difference if we choose to approximate
the right hand side −u of (10.2) by the value −un at one end of the interval or by
−un+1 at the other end. But obviously it does.

For systems of ODE, the methods for scalar equations can be generalized by
simply switching to vector notation. For example, the Euler backward method for
the differential equation

du
dt

= g(t,u)

is

un+1 = un + g(tn+1,un+1)�t.
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This is simple enough to write down, but what does it take to solve it? The unknown
vector is un+1, and it is determined by the vector equation

un+1 − g(tn+1,un+1)�t = un. (10.3)

This is a nonlinear system of N equations for the N unknown elements in un+1. It
seems like a hopeless task to solve such a system for each time step, but it is not.
We shall discuss iterative solution methods for it in Chap. 13.

The analysis of a system of ODE is much harder compared to a scalar ODE, but
there are effective tools to simplify the analysis. We take a linear system

du
dt

= Au,

where A is an N × N matrix. Assuming that A has N linearly independent eigen-
vectors, we let T be the matrix that takes A to diagonal form (see Sect. 3.4):

T −1AT = � = diag(λ1, λ2, . . . , λN ).

We now multiply the differential equation from the left by T −1. Since T does not
depend on t , and T −1T = I , the differential equation can be written as

d(T −1u)

dt
= T −1AT T −1u,

or with v = T −1u.

dv
dt

= �v.

But this is a set of scalar ODE that are independent of each other, and the analysis
has become considerably simpler.

As an example we take a case where all the eigenvalues λj are real and negative.
This means that

|vj (t)| = |eλj t vj (0)| ≤ |vj (0)|, j = 1,2, . . . ,N,

and obviously we have

‖v(t)‖ ≤ ‖v(0)‖
for the vector norm. For the original ODE we get

‖u(t)‖ = ‖T v(t)‖ ≤ ‖T ‖‖v(t)‖ ≤ ‖T ‖‖v(0)‖ ≤ ‖T ‖‖T −1‖‖u(0)‖.
For the original system there may be an increase of the norm, but an a priori bound
is known, and it is independent of t . The bound

cond(T ) = ‖T ‖‖T −1‖
is called the condition number of the matrix T , and it is going to show up again when
discussing linear systems of algebraic equations in Chap. 14. Here we conclude that
a system of ODE becomes sensitive to perturbations, and therefore harder to solve,
when the eigenvectors of the coefficient matrix A are almost linearly dependent.
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Let us now analyze the Euler backward method for the same system

un+1 = un + Aun+1�t.

After the same type of transformation as we used for the differential equation, we
get

vn+1 = vn + �vn+1�t.

From the scalar analysis above we know that each component of v is a nonincreasing
sequence for increasing n. Obviously this leads to the inequality

‖vn‖ ≤ ‖v0‖
for the vector norm. For the original scheme we get in the same way as for the ODE
system

‖un‖ = ‖T vn‖ ≤ ‖T ‖‖vn‖ ≤ ‖T ‖‖v0‖ ≤ ‖T ‖‖T −1‖‖u0‖ = cond(T )‖u0‖.
The bound is identical to the one for the ODE system.

The conclusion from this exercise is that the eigenvalue analysis is very powerful.
It shows that when analyzing a certain difference method for a system of ODE, we
gain much knowledge by analyzing how it works for a scalar equation

du

dt
= λu,

which goes under the name the test equation. In Sect. 6.1 this equation was discussed
briefly as a result of a Fourier transformed PDE. The number λ is there the Fourier
transform of a differential operator in space, and its location in the complex plane is
essential for the properties of the original PDE. The solution is

u(t) = eλtu(0),

and we note that it is nonincreasing with time if and only if Reλ ≤ 0.
But λ may as well be the discrete Fourier transform of a difference operator in

space, and in that case the solution of the test equation tells something about the
semidiscrete approximation.

As another example of discretization in time, we apply the trapezoidal rule

un+1 = un + λ�t

2
(un + un+1),

or equivalently

un+1 = 1 + λ�t/2

1 − λ�t/2
un.

For negative λ, the sequence {un} is nonincreasing, and we have an unconditionally
stable scheme.

The parameters λ and �t will always occur as μ = λ�t in the right hand side for
any consistent one-step scheme for the test equation, and the general form is

un+1 = z(μ)un, (10.4)
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Fig. 10.3 Stability domains

where the amplification factor z(μ) is a scalar function of μ. From a stability point
of view the interesting question is for what values of μ do we have |z(μ)| ≤ 1. We
recall that the eigenvalues of a matrix may be complex even if the matrix is real, and
it is therefore necessary to consider complex μ. We make the formal definition:

The stability domain for a difference method (10.4) is the set S(μ) in the complex
plane which satisfies |z(μ)| ≤ 1.

The (shaded) stability domains for the Euler, Euler backward and trapezoidal
method are shown in Fig. 10.3.

Since Re(μ) = Re(λ�t) ≤ 0 if and only if Reλ ≤ 0, we note that the trapezoidal
rule is the only method that is stable for exactly those values of λ where the true
solution is nonincreasing. The Euler method has further stability restrictions, while
the Euler backward method is “overstable”, i.e., it is stable also for certain λ where
the true solution grows.

A few warnings concerning the test equation are appropriate. The assumption of
a full set of eigenvectors is not always fulfilled, and then a scalar ODE doesn’t tell
it all. Secondly, the matrix A may depend on t , and the diagonalization does not go
through that easily.

Even worse is of course a nonlinear ODE. In that case one can linearize the
equation, which we shall sketch for the ODE

du

dt
= g(u), (10.5)

where g(u) is a nonlinear function of u. We make a small perturbation u → u + v,
where |v| is small, and plug it into the differential equation. A Taylor expansion
gives

du

dt
+ dv

dt
= g(u + v) = g(u) + dg

du
(u)v + O(|v|2).

When using the differential equation (10.5) and neglecting the square terms, we get
the equation

dv

dt
= dg

du
(u)v.

If we now assume that the function u = u(t) is known, we have a linear differential
equation for v(t). In a real application we do not of course know u, since that is
the solution we want to compute. But we may know for example that the derivative
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dg/du is negative, which brings us back to the example above. By understanding
how the linear problem behaves, we know how a small perturbation of the solution
to the original problem develops with time. In the same way we gain knowledge
about the original difference scheme by studying the corresponding linear difference
scheme.

The procedure described here is known as linearization of the equation, and is a
very common analysis tool. If we know that there is a bound on small perturbations
when time increases, the computation can be done with more confidence.

A fundamental question is of course how accurate the numerical solution is. As
an example, we consider the Euler method. The first question is how well the dif-
ference scheme approximates the differential equation, and the answer is obtained
by substituting the true solution u(t) of the differential equation into the difference
scheme. Since it cannot be expected to satisfy this scheme exactly, we have

u(tn+1) = u(tn) + �tg
(
u(tn)

) + R,

and the question is how big is the remainder R? The Taylor expansion gives

u(tn+1) = u(tn) + �t
du

dt
(tn) + �t2

2

d2u

dt2 (tn) + O(�t3),

and by using the differential equation du/dt = g we get

u(tn+1) = u(tn) + �tg(tn) + �t2

2

d2u

dt2 (tn) + O(�t3).

Since we are dealing with differential equations, it is natural to normalize the equa-
tion by dividing by �t :

u(tn+1) − u(tn)

�t
= g(tn) + �t

2

d2u

dt2 (tn) + O(�t2).

By letting �t tend to zero, we recover the differential equation in the limit. The
error for finite but small �t

T (�t) = �t

2

d2u

dt2 (tn) + O(�t2) = O(�t)

is called the truncation error. (The error R = O(�t2) defined above is called the
local truncation error.)

It is important to distinguish between the truncation error on one hand, describing
the error in the approximation of the differential equation, and the error un − u(tn)

in the approximate solution on the other hand. It can be shown that they are of the
same order under the important condition that the difference scheme is stable in a
certain sense. We shall not go into those details here. For linear ODE the analysis is
not very difficult. For the Euler and Euler backward schemes one can show that the
error is of the order O(�t), while it is O(�t2) for the trapezoidal rule.

In general, if T (�t) = O(�tp) with p > 0, then the difference scheme is con-
sistent, and we say that the difference scheme has order of accuracy p. If we also
have |un − u(tn)| = O(�tp) with p > 0, then the numerical solution converges to
the true solution as �t → 0, i.e., for any fixed time t = T we have

lim
�t→0

|uT/�t − u(T )| = 0.
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We say that the difference scheme is convergent.
In practical computations one can of course never reach the limit �t = 0. How-

ever, the theoretical concept of convergence is still fundamental. If a certain compu-
tation gives a result that is not accurate enough, we would like to get a more accurate
result if the computation is repeated with a smaller time step. This can be expected
with a convergent difference scheme.

The examples we have discussed so far have order of accuracy one or two. The
difference methods used in practice are often of higher order. There are essentially
two ways of achieving this. One is to aim for one-step methods where only one time
level tn is used for computing un+1. This requires several stages in the computation,
and we arrive at the large class of Runge–Kutta methods, named after the German
mathematicians Carl Runge (1856–1927) and Martin Wilhelm Kutta (1867–1944).
The most common method is the fourth order version

k1 = g(un),

k2 = g

(
un + �t

2
k1

)
,

k3 = g

(
un + �t

2
k2

)
,

k4 = g(un + �tk3),

un+1 = un + �t

6
(k1 + 2k2 + 2k3 + k4).

It may seem like a strange formula, but the simple test equation du/dt = λu indi-
cates how it is derived. For this equation we have

du

dt
= λu,

d2u

dt2
= λ2u,

d3u

dt3
= λ3u,

d4u

dt4
= λ4u,

and by Taylor expansion

u(t + �t) = u(t) + �tλu(t) + �t2

2
λ2u(t)

+ �t3

6
λ3u(t) + �t4

24
λ4u(t) + O(�t5).

The Runge–Kutta method for our equation is

k1 = λun,

k2 =
(

λ + �t

2
λ2

)
un,

k3 =
(

λ + �t

2
λ2 + �t2

4
λ3

)
un,

k4 =
(

λ + �tλ2 + �t2

2
λ3 + �t3

4
λ4

)
un,

un+1 =
(

1 + �tλ + �t2

2
λ2 + �t3

6
λ3 + �t4

24
λ4

)
un,
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Fig. 10.4 Stability domains
for Runge–Kutta methods

i.e., exactly the Taylor expansion above. After dividing by �t , we find that the
truncation error is O(�t4) as it should be. After a little more work for the general
nonlinear differential equation, the result is the same. The Runge–Kutta method
presented here has fourth order accuracy.

Note that it is a one-step method in the sense that the solution un at only one
time level is required in order to compute un+1. But there are several stages in the
computational procedure.

The stability domain S(μ) is obtained by finding the values of μ for which

|z(μ)| =
∣∣∣∣1 + μ + μ2

2
+ μ3

6
+ μ4

24

∣∣∣∣ ≤ 1.

In Fig. 10.4 S(μ) is shown for both the third and fourth order Runge–Kutta methods.
In the third order case, z(μ) has the same expansion as in the fourth order case,
except for the last term, which is not present.

Runge–Kutta type methods of very high order have been derived over the years.
They all have the same structure as above, but the number of stages grows with
higher order of accuracy (more expressions kj to be stored).

The method above is explicit, but there are also implicit Runge–Kutta methods.
They have the same overall structure but, in the formula for kj , the same quantity kj

occurs also in the right hand side in the argument v of g(v). This requires the solu-
tion of a nonlinear equation at each stage for each step un → un+1. The advantage
is that the stability properties improve.

Another way of constructing high order methods is to involve more than two
time levels when advancing the solution one step. The simplest such method is the
second order accurate leap-frog method

un+1 = un−1 + 2�tg(un).

It is a special case of a linear multistep method, and it requires two initial values to
get started. If u0 is a given initial value for the differential equation, we need also u1.
That value must be computed by a one-step method.
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A general linear multistep method has the form

αmun+m + αm−1un+m−1 + · · · + α0un

= �tg(βmun+m + βm−1un+m−1 + · · · + β0u0).

The word “linear” in the name for this class refers to the fact that g(u) occurs in a
linear way in the formula (not as g2(u) for example), and has nothing to do with
the type of function g(u), which may very well be nonlinear. One can also use the
different form

αmun+m + αm−1un+m−1 + · · · + α0un

= �t
(
βmg(un+m) + βm−1g(un+m−1) + · · · + β0g(u0)

)
,

which has the same order of accuracy. There is a significant flexibility in the choice
of coefficients αj and βj . For a given order of accuracy, there are many ways of
choosing the coefficients. If βn+m is nonzero, the method is implicit but, if we want
to keep the simpler explicit structure obtained with βn+m = 0 while keeping the
order of accuracy, we have to add more time levels at the other end.

The leap-frog method above has a symmetric and simple structure, and it is
tempting to generalize it to higher order. By Taylor expansion it is easy to show
that

du

dt
(t) = 1

�t

(
− 1

12
u(t + 2�t) + 2

3
u(t + �t) − 2

3
u(t − �t) + 1

12
u(t − 2�t)

)

+ O(�t4), (10.6)

which leads to the simple fourth order method

− 1

12
un+4 + 2

3
un+3 − 2

3
un+1 + 1

12
un = �tg(un+2). (10.7)

In order to find out about the stability domain for the test equation, g(un+2) is re-
placed by λun+2. It is easy to determine when a given one-step method is stable as
we saw above, but here we encounter a new difficulty. When more time levels are
involved, how do we analyze stability? We write a general difference equation as

cmun+m + cm−1un+m−1 + · · · + c0un = 0.

The key to the analysis is the roots zj of the characteristic equation

cmzm + cm−1z
m−1 + · · · + c0 = 0,

which is formally obtained by substituting un = zn and then dividing by zn. If all
the roots are distinct, then the general solution has the form

un = a1z
n
1 + a2z

n
2 + · · · + amzn

m,

where the constants aj are determined by the m initial conditions. For stability we
require that the solution has no growing component, and obviously the condition is
|zj | ≤ 1 for all j . If there is a double root z1, the form of the solution is

un = (a1 + a2n)zn
1 + a3z

n
3 + · · · + amzn

m.
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If |z1| = 1, the solution will grow without bound when n increases. If on the other
hand |z1| < 1, then the component a2nzn

1 will grow initially as n increases, but then
it will decrease. This means that the solution stays bounded by a constant K which is
independent of n. If there is a root with multiplicity higher than two, the polynomial
multiplying it will be of higher degree, but the conclusion is again that the solution
stays bounded independent of n if |z1| < 1.

For the test equation, the roots will be functions of μ = λ�t . The definition of
the stability domain for linear multistep methods is:

S = {μ : all roots zj (μ) satisfy |zj (μ)| ≤ 1, multiple roots satisfy |zj (μ)| < 1}.
Let us now go back to the leap-frog method. The characteristic equation is

z2 − 2μz − 1 = 0

with the roots

z1,2 = μ ±
√

μ2 + 1.

It is easily shown that the stability domain is just the line segment

{μ : Reμ = 0, | Imμ| < 1}
on the imaginary axis. However, it is not as bad as it looks. Many problems are such
that the coefficient matrix of the linearized system of ODE has purely imaginary
eigenvalues. A simple example is

du

dt
= v,

dv

dt
= −u,

which can be written as

du
dt

= Au, u =
[
u

v

]
, A =

[
0 1

−1 0

]
(10.8)

The eigenvalues of A are given by

λ2 + 1 = 0,

i.e., λ1,2 = ±i. Accordingly, the leap-frog scheme

un+1 = un−1 + 2�tAun.

is stable for �t < 1.
Next we take a look at the fourth order method (10.7) derived above. A mini-

mal requirement is that it should be stable for μ = 0 corresponding to a constant
solution u independent of time. For the fourth order method above, it turns out that
one of the roots is z1 = 7.873 showing that the method is completely useless. The
same conclusion follows for any symmetric method of the same type with accuracy
6,8, . . . . Here we have a case where increasing the formal order of accuracy has a
negative effect. The stability is a key concept that always must be kept in mind.
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Fig. 10.5 Solution of (10.9)
by the Euler method,
�t = 0.001 (−−),
�t = 0.01025 (—)

Finally we shall discuss an important class of ODE that is quite common in
applications. Consider the initial value problem

d

dt

[
u

v

]
=

[−100 99.9

99.9 −100

][
u

v

]
,

u(0) = 1,

v(0) = 0.99.

(10.9)

We apply the Euler method with the two different time-steps �t = 0.001 and �t =
0.01025, and the result is shown in Fig. 10.5 for u(t). The dashed curve with the
shorter time step is smooth, and as we will see below, it is close to the true solution.
The solution with the larger time step goes completely wrong. Obviously we have
again a case with an instability, but there is actually a new observation to be made
here.

We go back to the scalar problem (10.2) with the true solution shown in Fig. 10.2.
In this case the stability limit is not a severe restriction, since the time steps have to
be relatively small anyway in order to resolve the solution properly at the beginning
of the time interval. Actually, a time step of the order �t = 0.1 seems quite rea-
sonable when looking at the graph, and this is far below the stability limit �t = 2.
The solution of (10.9) is very smooth, and a time step of the order �t = 0.1 is
certainly enough to get a good resolution. What is the reason for the severe time
restriction?

The coefficient matrix has the two eigenvalues λ1 = −0.1 and λ2 = −199.9, i.e.,
they are far apart. Such a system of ODE is called stiff , and it is very common in
many different types of applications. One of them occurs in chemistry when dealing
with a number of components where the chemical reactions take place on different
time scales. Another application is obtained when discretizing partial differential
equations as we shall see later on.
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With the new variables φ = (u + v)/2 and ψ = (u − v)/2 in (10.9) we get

dφ

dt
= −0.1φ,

dψ

dt
= −199.9ψ,

φ(0) = 0.995, ψ(0) = 0.005,

which is a direct way of diagonalizing the system. The function ψ(t) = 0.005e−199.9t

is almost zero all the time, and the other function φ(t) = 0.995e−0.1t is very smooth.
By going back to the original variables u = φ + ψ and v = φ − ψ , we see that
they are very smooth as well. However, the crucial point is that the eigenvalue
λ2 ≈ −200, entering in the form of e−200t , is present all the time, even if it is an-
nihilated for the true solution by the choice of initial values. The discrete solution
introduces perturbations triggering the “parasitic” solution, which cannot be han-
dled by the Euler scheme if the time steps are not extremely small.

In the example above, a good approximation would be to assume from the be-
ginning that u − v = 0 all the time. For the general case, such a type of assumption
leads to a new type of system. Let u(t) and v(t) be two vector functions with m and
n components respectively. A general differential-algebraic system has the form

du
dt

= f(u,v),

g(u,v) = 0.

Here the vector f has m components, and g has n components.
Differential-algebraic systems are limits of stiff systems and can be handled as

such when solving them numerically, but in general special methods are used.
Stiff systems and differential-algebraic systems have been studied extensively,

and very effective numerical methods are available today.
Modern variants of finite difference methods work with variable step size and

even variable order of accuracy. The algorithm contains various types of sensors
that are estimating the error. If a local fast change of the solution occurs, the solver
works hard to reduce the time step in order to produce a well resolved solution.

There are many ODE-solvers on the market today. The MATLAB system has
at least seven solvers, mainly divided into stiff and nonstiff classes. The ode45-
function is the standard solver, using a Runge–Kutta method.

Exercise 10.1 When analyzing the linear ODE du/dt = λ(t)u, it is of interest to
know the limit maxt |λ(t)|. Derive the linearized form of the nonlinear ODE

du

dt
= 1

u2 + 1
, (10.10)

and determine the limit of the coefficient that corresponds to λ(t).

Exercise 10.2 Consider the initial value problem (10.2) with the solution u(t) = e−t .
Prove that the difference scheme

un+1 = un−1 − 2�tun
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is unstable for any �t , while

un+1 = un−1 − �t(un+1 + un−1)

is stable for all �t .

Exercise 10.3 Use the MATLAB ODE-solvers ode45 and ode23 (see Sect. 18.2)
for solving (10.10) with the initial value u(0) = 0. Compare the choice of time steps
for the two methods.

10.2 Partial Differential Equations

Let us now turn to partial differential equations and the so-called transport equation
(2.18) with c = 1. We introduce the two-dimensional grid (xj , tn) = (j�x,n�t)

and the grid function un
j as an approximation of u(j�x,n�t), see Fig. 10.6.

Note that we have switched notation from the previous section by changing the
subscript n indicating time level tn, to a superscript. In this way it is easier to distin-
guished from the subscript j indicating the grid point in space. One has to be careful
though, not to confuse the superscript n with the power notation.

At a certain point (xj , tn) we substitute

∂u

∂x
→ un

j+1 − un
j

�x
,

∂u

∂t
→ un+1

j − un
j

�t

in the differential equation and obtain

un+1
j = un

j − �t

�x
(un

j+1 − un
j ). (10.11)

If the initial function u0
j = u(xj ,0) is known, we can compute u1

j for all j , then u2
j

and so on.
Let us now try an experiment. An initial pulse is defined as in Sect. 9.2 with its

center at x = 0.2 as

u(x,0) = e−800(x−0.2)2
.

The solution at time t is

u(x, t) = e−800(x−t−0.2)2
,

i.e., the pulse has moved a distance t to the right. We do the computation in the x-
interval [0,1] with N = 1/�x grid points, and choose �t = 0.8�x. Figure 10.7(a)
shows the result at t = 0.038 for N = 400. It is centered properly at x = 0.238, but
the peak is too high. It is reasonable to assume that a finer grid should give better
results, since the difference scheme approximates the differential equation more
closely. However, we are in for a surprise. With half the step size in both directions,
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Fig. 10.6 Computational
grid

we get the result shown in Fig. 10.7(b). The solution goes completely wrong and
shows strange oscillations. What has happened?

We have defined the derivative as a limit of a forward difference (u(x +�x, t)−
u(x, t))/�x. As noted earlier it is of course also possible to define it as a limit of a
backward difference (u(x, t) − u(x − �x, t))/�x. When using this as the basis for
our difference approximation, we get

un+1
j = un

j − �t

�x
(un

j − un
j−1). (10.12)

It turns out that the numerical solution now behaves well, and we can compute it
over long time. Figure 10.8 shows the result at t = 0.4 with the same data as above.
For N = 400 the pulse is centered at the right position x = 0.6, but the top is too
low. With half the step size we get a better result as shown in Fig. 10.8(b).

The first computation with forward differences in the approximation is an exam-
ple of an unstable computation, while the second one with backward differences is
a stable computation. Actually, there is a simple explanation for the bad behavior of
the first one. At any given grid point (xj , tn+1) the approximation doesn’t use any
point to the left at the previous time level. Since the pulse is moving to the right,
we must know what is coming in from the left. The second approximation takes this
into account.

Actually, there is not plain sailing with the second approximation either. We do
the same computation with �t = 1.2�x, and the result is shown in Fig. 10.9 at
t = 0.32. Severe oscillations have occurred, even quite far from the pulse, and ob-
viously the numerical solution is useless. Apparently, the time step must be chosen
small enough in order to retain the stability. This is in accordance with the discus-
sion about stability domains for ODE. For PDE the theoretical analysis is harder
but, by using Fourier analysis to be presented in the next section, one can show that
stability requires the condition �t ≤ �x.

Let us next compute the solution to the heat conduction problem (2.20). We con-
struct a difference scheme by using the three point expression used in the definition
of the second derivative ∂2u/∂x2 and a forward finite difference for ∂u/∂t . With
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Fig. 10.7 Solution of (10.11), t = 0 (—) and t = 0.038 (−−)

Fig. 10.8 Solution of (10.12) with �t = 0.8�x, t = 0 (—) and t = 0.4 (−−)

Fig. 10.9 Solution of (10.12)
with �t = 1.2�x, t = 0 (—)
and t = 0.32 (−−)
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Fig. 10.10 Computational stencils for the heat equation

N + 1 grid points in the x-direction including the boundary points, the resulting
scheme is

un+1
j = un

j + �t

�x2
(un

j−1 − 2un
j + un

j+1),

j = 1,2, . . . ,N − 1, n = 0,1, . . . ,

un+1
0 = 1,

un+1
N = 1,

u0
j = f1(xj ),

as illustrated in Fig. 10.10(a). With u0
j known for all j , u1

j can be computed for all
j , and so on until we reach the final time level.

Even if the solution is obtained by stepping forward in time, one could still use an
approximation based on the Euler backward scheme, just as for ordinary differential
equations discussed above. The forward difference in time is replaced by a backward
difference, which gives

un+1
j = un

j + �t

�x2
(un+1

j−1 − 2un+1
j + un+1

j+1),

j = 1,2, . . . ,N − 1, n = 0,1, . . . ,

un+1
0 = 1,

un+1
N = 1,

u0
j = f1(xj ), (10.13)

see Fig. 10.10(b). This is an implicit scheme, and it requires more computation for
each time step. Since all grid points at the new time level tn+1 are coupled to each
other, this complication is more severe compared to ODE. We must solve a large
system of equations for each time step.

For a well posed problem, there is still a possibility that the numerical scheme
goes wrong as we saw for the equation ∂u/∂t + ∂u/∂x = 0 above. We run the first
explicit approximation above with two different time steps. Figure 10.11 shows the
result for the step size �t = 0.000310 and �t = 0.000315.

Apparently there is a critical limit somewhere in between these two values. In-
deed, by using analytical tools the theoretical stability limit on �t can be found. In
the next section we shall describe how this can be done.
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Fig. 10.11 The heat equation

The implicit scheme above does not have any stability restriction on the time
step. It is unconditionally stable, which is typical for implicit schemes.

The consistency and convergence concepts can be defined in analogy with ordi-
nary differential equations. A consistent difference scheme approaches formally the
differential equation as �x → 0 and �t → 0. It is convergent if for any fixed t = T

the numerical solution converges to the true solution:

‖uT/�t
j − u(xj , T )‖ → 0 as �x → 0, �t → 0.

The norm is a measure of the discrete function at a given time level corresponding
to vector norms.

The consistency is usually easy to verify by a direct application of Taylor expan-
sions, but convergence is not. However, there is a fundamental theorem saying that
a consistent scheme is convergent if it is stable. Therefore, stability analysis is the
key to the construction of accurate difference schemes. In the next section we shall
indicate how it can be carried out by using a Fourier technique.

Exercise 10.4 Show that the difference method (10.13) requires the solution of a
tridiagonal system (see Sect. 3.3) for each time step. Write down the system in
detail.

Exercise 10.5 Suggest a difference method for ∂u/∂t = ∂2u/∂x2 that uses a com-
bination of (un

j−1 −2un
j +un

j+1)/�x2 and (un+1
j−1 −2un+1

j +un+1
j+1)/�x2 for approx-

imation of ∂2u/∂x2.

10.3 Fourier Stability Analysis

In this section we shall describe how one can analyze a given difference scheme for
a partial differential equation with respect to its stability properties. We shall limit
ourselves to the simplest form of analysis, which is based on the Fourier transform.
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Even if the solutions are nonperiodic, it turns out that the analysis of a modified
problem with periodic solutions gives significant information about the stability. Let
us discuss the solution of the heat equation above, and the difference scheme

un+1
j = un

j + �t

�x2 (un
j−1 − 2un

j + un
j+1),

j = 0,1, . . . ,N, n = 0,1, . . . , (10.14)

u0
j = fj .

Here we have canceled the boundary conditions, and assume periodicity instead:
un

j+N+1 = un
j . For difference methods, only the grid values are accounted for. There-

fore, the solution at any time level tn can be represented as a discrete Fourier series
as was demonstrated in Sect. 6.2. We write the series in the form

un
j =

N/2∑

k=−N/2

cn
k eikxj , j = 0,1, . . . ,N,

where the coefficients are defined by

cn
k = 1

2π

N∑

j=0

un
j e

−ikxj �x.

The coefficients cn
k are now time dependent, and the idea is to investigate how these

coefficients are behaving when time increases.
At a first glance, it seems like a complication to study these coefficients instead

of the original grid values un
j . But there are two facts that show why it is a good

idea:

1. The difference scheme takes a particularly simple form when it is formulated in
terms of the Fourier coefficients.

2. The behavior of the Fourier coefficients is directly related to the behavior of the
original grid values via the discrete Parseval’s relation (6.10).

We introduce the Fourier series into the difference approximation of the second
space derivative and obtain

un
j−1 − 2un

j + un
j+1 =

N/2∑

k=−N/2

cn
k (eikxj−1 − 2eikxj + eikxj+1)

=
N/2∑

k=−N/2

cn
k eikxj q(ξ),

where

q(ξ) = e−iξ − 2 + eiξ , ξ = k�x.

The whole difference scheme can now be written as
N/2∑

k=−N/2

(
cn+1
k − (

1 + σq(ξ)
)
cn
k

)
eikxj = 0,
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where σ = �t/�x2. In Sect. 6.2 it was demonstrated that the N + 1 grid func-
tions eikxj (which can also be considered as vectors) are linearly independent. By
definition this means that each one of the coefficients in the sum must be zero, i.e.,

cn+1
k = (

1 + σq(ξ)
)
cn
k , k = 0,1, . . . ,N, |ξ | ≤ π. (10.15)

This is quite a simplification! The original difference scheme couples neighboring
points in space to each other, and the whole set of variables must be treated together.
On the contrary, there is no coupling between the Fourier coefficients for different
k-values, and the development with time can be handled separately for each one
of them. This is in exact analogy with the “continuous” Fourier transform and dif-
ferential operators as discussed in Sect. 6.1. A differential operator is replaced by
multiplication by a number by using the Fourier transform also in that case.

Knowledge about the behavior of the Fourier coefficients is transferred to the
solution of the difference scheme by the discrete Parseval’s relation. If we can make
sure that the Fourier coefficients do not grow with time, i.e.,

|cn+1
k | ≤ |cn

k |, k = 0,1, . . . ,N,

then
N∑

j=0

|un+1
j |2�x = 2π

N/2∑

k=−N/2

|cn+1
k |2 ≤ 2π

N/2∑

k=−N/2

|cn
k |2

=
N∑

j=0

|un
j |2�x ≤ · · · ≤

N∑

j=0

|u0
j |2�x.

If we order the grid values un
j in a vector un, then the norm is defined by

‖un‖2 =
N∑

j=0

|un
j |2�x,

and we have

‖un‖2 ≤ ‖u0‖2.

This could be used as the definition of stability. However, a more reasonable defini-
tion is to allow a constant in the estimate:

A difference approximation is stable if the solution satisfies

‖un‖ ≤ K‖u0‖,
where K is a constant independent of n and u0.

We are now in a very good position. By making sure that the Fourier coefficients
satisfy the von Neumann condition

|cn+1
k | ≤ |cn

k |,
we have a final stability estimate for the solution. But (10.15) shows that this condi-
tion is satisfied if

|1 + σq(ξ)| ≤ 1.
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By using the trigonometric interpretation of eiξ , we get

q(ξ) = e−iξ − 2 + eiξ = 2 cos ξ − 2,

leading to the inequality

|1 − 2σ(1 − cos ξ)| ≤ 1.

Since cos ξ never exceeds one, the critical point is cos ξ = −1. This leads to the final
condition

σ = �t

�x2 ≤ 1

2
.

The difference scheme is stable if the time step is chosen small enough:

�t ≤ �x2

2
.

It may seem that the periodicity assumption on the solutions is too restrictive, mak-
ing the stability result of little value. But it is not. It is actually a necessary stability
condition, and it is often sufficient as well. The heat conduction problem above with
the temperature specified at both boundaries is such an example. Furthermore, if the
heat conduction coefficient depends on x and t , so that the differential equation is

∂u

∂t
= ∂

∂x

(
a(x, t)

∂u

∂x

)

with a(x, t) > 0, then the corresponding generalized difference scheme has the sta-
bility limit

�t ≤ �x2

2 maxx,t a(x, t)
.

Let us take another look at the transformation procedure used above. If the grid
functions are organized as vectors

un =

⎡

⎢⎢⎢⎣

un
0

un
1
...

un
N

⎤

⎥⎥⎥⎦ ,

then we can consider the difference scheme as a relation between the two vectors
un and un+1 connected by a matrix Q:

un+1 = Qun.

For our example with periodic solutions, the matrix is

Q =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

1 − 2σ σ σ

σ 1 − 2σ σ

σ 1 − 2σ σ

. . .
. . .

. . .

σ 1 − 2σ σ

σ σ 1 − 2σ

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

.
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In Sect. 6.2 we introduced the matrix F for the Fourier transform, and we multi-
ply with it from the left, getting

Fun+1 = FQF−1Fun.

With the new vector vn = Fun and � = FQF−1, we get

vn+1 = �vn.

The vector vn is the Fourier transform of un, and it has the elements cn
k . Conse-

quently we have a system of equations for each one of the Fourier coefficients cn
k ,

and by (10.15) we can see that � = FQF−1 is a diagonal matrix:

� = diag

(
1 − σq

((
−N

2

)
�x

)
,1 − σq

((
−N

2
+ 1

)
�x

)
, . . . ,

1 − σq

(
N

2
�x

))
.

By these arguments we have shown that the application of the Fourier transform
is equivalent to diagonalizing the corresponding vector/matrix formulation of the
scheme. It is then very easy to do the analysis, since we are now dealing with a set
of scalar equations.

For more general initial-boundary value problems, a different kind of theory is
required. However, the Fourier type stability analysis is still very powerful. Indeed it
is often the only type of analysis that is done for many realistic application problems,
and quite often it leads to the correct stability limit on �t .

Exercise 10.6 Consider the PDE ∂u/∂t = ∂2u/∂x2 with periodic boundary condi-
tions. Prove that the ODE system that is obtained by discretizing in space by using
the standard second order difference operator is stiff (see definition in Sect. 10.1).

Exercise 10.7 Write down the Euler backward difference scheme corresponding
to (10.13), but now for the periodic case. Derive the exact form of the system of
equations that must be solved for advancing this scheme one step. Compare the
form to the nonperiodic case (Exercise 10.4).

Exercise 10.8 Use the Fourier method to prove that the Euler backward method in
Exercise 10.7 is unconditionally stable.

Exercise 10.9 Consider the PDE ∂u/∂t = a∂u/∂x and the leap-frog difference
scheme

un+1
j = un−1

j + a
�t

�x
(un

j+1 − un
j−1).

Use Fourier analysis to derive the stability condition.
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10.4 Several Space Dimensions

Problems in one space dimension are almost exclusively used as model problems
for analysis and preliminary investigations. Real life problems have almost always
at least two space dimensions, and we shall make a few comments on these.

The differential equation has the form

∂u

∂t
= P(∂x, ∂y)u

with proper initial and boundary conditions. Finite difference methods are not
well suited for problems where the computational domain is irregular, since both
the construction of the computational grid and the analysis become more compli-
cated. However, for regular geometries, we can use structured grids, and the easiest
2D-case is a rectangle 0 ≤ x ≤ a, 0 ≤ y ≤ b. The grid is defined by

(xj1 , yj2) = (j1�x, j2�y), j1 = 0,1, . . . ,N1, N1�x = a,

j2 = 0,1, . . . ,N2, N2�y = b,

in the x, y-plane, see Fig. 10.12.
The solution u(xj1 , yj2 , tn) is approximated by un

j1j2
. The Fourier analysis is eas-

ily generalized from 1D. The grid function is transformed as

un
j1j2

=
N1/2∑

k1=−N1/2

N2/2∑

k2=−N2/2

cn
k1k2

ei(k1xj1 +k2yj2 ),

j1 = 0,1, . . . ,N1, j2 = 0,1, . . . ,N2,

where the coefficients are defined by

cn
k1k2

= 1

(2π)2

N1∑

j1=0

N2∑

j2=0

un
j1j2

e−i(k1xj1+k2yj2 )�x�y.

The wave numbers k1 and k2 correspond to the wave number k in 1D. After dis-
cretization in time and Fourier transformation of the difference scheme in space, we
get a number of scalar relations of the type

vn+1 = q(ξ, η)vn, 0 ≤ |ξ |, |η| ≤ π,

where ξ = k1�x, η = k2�y. Also in the 2D-case we have obtained a number of sim-
ple algebraic equations instead of a difficult partial differential equation. We simply
have to make sure that the amplification factor satisfies the inequality |q(ξ, η)| ≤ 1
for 0 ≤ ξ, η < 2π , making the difference scheme stable.

Difference schemes can be used for other computational domains than rectangles.
As long as we can map the domain to a rectangle we are in good shape. For example,
if the boundaries are circular, we use the well known polar coordinates r and θ

defined by

x = r cos θ, y = r sin θ.
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Fig. 10.12 Two-dimensional
grid

Fig. 10.13 Mapping by
using polar coordinates

Figure 10.13 shows the mapping for a domain between two circles with radius a

and b respectively (the scales are changed in the right figure). The computation is
done on the computational grid in the r, θ -plane to the right.

When changing the coordinate system, we must also change the dependent vari-
ables and the differential equation. If u(x, y) is a given function, then we get a new
function by

u(x, y) → u(r cos θ, r sin θ) → v(r, θ).

The new differential equation is obtained by using the relations

∂v

∂r
= ∂u

∂x

∂x

∂r
+ ∂u

∂y

∂y

∂r
= cos θ

∂u

∂x
+ sin θ

∂u

∂y
,

∂v

∂θ
= ∂u

∂x

∂x

∂θ
+ ∂u

∂y

∂y

∂θ
= −r sin θ

∂u

∂x
+ r cos θ

∂u

∂y
,
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leading to

∂u

∂x
= 1

r

(
r cos θ

∂v

∂r
− sin θ

∂v

∂θ

)
.

∂u

∂y
= 1

r

(
r sin θ

∂v

∂r
+ cos θ

∂v

∂θ

)
.

These relations can be further differentiated to obtain higher order derivatives in the
new coordinates.

In Sect. 2.3 we introduced the gradient of a function. We must be careful when
transferring this concept to a new coordinate system. The direct translation [vr , vθ ]T
doesn’t work. The definition of the gradient is that it is the vector pointing in the
direction where the function has the strongest growth, and with a magnitude that
equals this growth rate. Then we must take into account the geometric properties of
the new system, and for polar coordinates it turns out that the gradient is

∇v(r, θ) =
[

∂v
∂r

(r, θ)

1
r

∂v
∂θ

(r, θ)

]
.

We now go back to the heat equation

∂u

∂t
= ∂2u

∂x2
+ ∂2u

∂y2
, (10.16)

and change variables such that

v(r, θ, t) = u
(
x(r, θ), y(r, θ), t

)
.

Then it can be shown that the equation takes the form

∂v

∂t
= ∂2

∂r2 + 1

r

∂

∂r
+ 1

r2

∂2

∂θ2 .

The boundaries would be difficult to represent by a rectangular grid in the original
(x, y)-coordinates, and the mapping makes it possible to represent the boundaries
exactly while still keeping a structured grid.

There is a technical difficulty with these coordinates if the computational domain
contains the center point r = 0, since the coefficients 1/r and 1/r2 become infinite
there. Since the physics doesn’t know anything about coordinate systems, this sin-
gularity has to be an artificial effect caused by the choice of coordinates. One can
avoid the problem by excluding the point r = 0 from the computational grid. How-
ever, one should be aware that these coordinates are no good anyway, since the
coordinate lines in the original Cartesian system converge at the center point result-
ing in a very small step size �θ . We shall discuss this further in Sect. 17.4, where
the same type of problem occurs at the poles of the globe when doing atmospheric
simulations.

There are classic coordinate systems for many different types of geometry, and
these should of course be used for computing. We saw above that the differential
equation got a different and more complicated form. In Appendix A.2, the most
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Fig. 10.14 Part of irregular
domain and computational
domain

common differential operators are listed in polar, cylindrical and spherical coordi-
nates.

It may be possible to use structured grids even for other domains where no obvi-
ous coordinate system is available. In 2D, a general transformation is

ξ = ξ(x, y), η = η(x, y),

with a unique inverse transformation

x = x(ξ, η), y = y(ξ, η).

The transformed differential equation contains derivatives of the variables x, y with
respect to ξ, η and, if the transformation has been constructed by some numerical
procedure, these are not known by any explicit expression. However, they can be
approximated by finite differences, and in this way we can still keep a structured
grid. If the final computation can be carried out on a uniform rectangular grid, we are
in good shape, since the algebraic operations can be organized in an efficient way.
This usually outweighs the extra complication caused by the fact that the differential
equation contains more terms. There is also the advantage that the boundary can be
represented exactly, with the exact form of boundary conditions. Figure 10.14 shows
part of a domain with a curved boundary, and part of the computational domain.

In many applications, the solution varies on a much smaller scale in some parts
of the domain than in others, which means that an efficient method should use a
finer grid in those parts. A typical application where this occurs is fluid dynamics,
where the solution may have very sharp gradients near solid walls. These are called
boundary layers, and they require a fine grid. Figure 10.15 shows such a case with
a simple geometry with the original coordinates to the left, and the computational
coordinates to the right.

There is actually another way of handling irregular domains with curved bound-
aries. The problem is to construct a grid that is structured all over the domain. This
difficulty is partially avoided by constructing a local grid near the boundary, and
then couple it to one or more rectangular grids in the remaining part of the domain
without requiring that the grid points match each other at the edges. This is called
overlapping grids, and an example is shown in Fig. 10.16.
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Fig. 10.15 Boundary layer
grid

Fig. 10.16 Overlapping grids

The grid nearest the boundary is called a curvilinear grid, and is constructed such
that the boundary conditions are easy to approximate. But there is now a new prob-
lem. Each one of computational domains has a new boundary, and since they are
located in the inner part of the domain, there are no boundary conditions to pick up
from the original problem. This is of course as it should be, since each grid must be
coupled to the other one, and that coupling is obtained through new boundary con-
ditions at these artificial boundaries. The most straightforward method is to define
the boundary values by interpolation from the other grid. A certain point at the inner
edge of the curvilinear grid (filled circle) is given a value that is interpolated from
the nearest surrounding points in the rectangular grid. In the same way, a point at the
outer edge of the rectangular grid (open circle) is interpolated from the nearest sur-
rounding points in the curvilinear grid. The number of points used for interpolation
is determined by the accuracy of the main difference scheme. A higher order scheme
requires higher order interpolation using more points, otherwise the accuracy goes
down.

Exercise 10.10 Write down the explicit difference scheme corresponding to (10.14)
but now for the two-dimensional equation (10.16). Derive the stability condition.





Chapter 11
Finite Element Methods

Finite element methods (FEM) were used very early for problems in structural me-
chanics. Such problems often have a natural discretization by partitioning the struc-
ture in a number of finite elements, and this gave the name to this class of methods.
This kind of mechanical approach merged with the more mathematical approach that
gained momentum in the 1960s. FEM are more flexible than finite difference meth-
ods in the sense that irregular domains can more easily be represented accurately.
In this chapter we shall discuss boundary and initial-boundary value problems, and
in the latter case assume that finite difference methods are used for discretization in
time.

In the final section we discuss discontinuous Galerkin methods (DG), which have
become very popular recently. They are closely connected to FEM, and are therefore
included in this chapter, even if they could be considered as a separate class of
methods by themselves.

11.1 Boundary Value Problems

In order to describe finite element methods, we begin by discussing boundary value
problems, and consider first the example

d2u

dx2 + au = F, 0 ≤ x ≤ 1,

u(0) = 0,

u(1) = 0,

(11.1)

where a is a constant, and F = F(x) is a known function. (This problem does not
have a unique solution for all a, but we assume here that a is such that it has.)
There are several versions of the finite element method, but the most common one is
closely connected to the least square method. We choose a set of basis functions for
representation of the approximate solution v(x), and determine the coefficients such
that the error becomes minimal. For the least square method described in Chap. 8,
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the error is simply defined as ‖u − v‖ measured in a certain norm, and then we
require that the error is orthogonal to the basis functions. Unfortunately, this doesn’t
lead anywhere for the problem (11.1), since the solution u is not known. There are
no data to feed into the least square algorithm.

Another approach would be to minimize the error in the differential equation,
i.e., we look for an approximating function v such that ‖d2v/dx2 + av − F‖2 be-
comes as small as possible. This is a direct analogue of the least square method for
overdetermined algebraic systems Ax = b as discussed at the end of Sect. 8.3. The
solution is there given by the system AT Ax∗ = AT b, and we can use the same for-
mal procedure for the differential equation. However, in this case the matrix AT A is
replaced by a differential operator that is of order four. This is a severe complication,
since the original problem (11.1) contains only a second order derivative.

To get a simpler algorithm, we require instead that the error in the differential
equation d2v/dx2 + av − F , also called the residual, is orthogonal to all basis
functions. But before deriving these equations, we shall reformulate the differential
equation.

Assume that φ(x) is a certain function that will be specified later. We start by
multiplying the differential equation by φ and then integrating it over the interval
[0, 1], obtaining

∫ 1

0

(
d2u

dx2
+ au

)
φ dx =

∫ 1

0
Fφ dx. (11.2)

If φ represents a basis function, this relation resembles the orthogonality condition.
However, because we are aiming for approximation by piecewise polynomials, we
encounter a problem here. Consider the roof functions discussed in Sect. 5.1.2 as
basis functions. The approximating function v(x) has the form

v(x) =
N∑

j=1

cjφj (x),

where the coefficients cj are to be determined. Since each function φj (x) is a
straight line between the nodes, the function v(x) is piecewise linear as shown in
Fig. 11.1(a).

We now want to replace u(x) by v(x) in (11.2), but here is where the new dif-
ficulty arises. Figure 11.1(b) shows the derivative dv/dx of the piecewise linear
function v. It is a well defined step function, but it has a discontinuity at every node.
Equation (11.2) contains the second derivative, i.e., the first derivative of dv/dx. It
is well defined between the nodes, but what is it at the nodes? This question requires
some abstract mathematics that is not well suited for practical computation, and we
need some other technique to overcome this difficulty. The trick is to do so called
integration by parts, see (2.14). Since the function v is zero at the end points of the
interval [0, 1], the identity

∫ 1

0

du

dx
(x)v(x) dx = −

∫ 1

0
u(x)

dv

dx
(x) dx (11.3)
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Fig. 11.1 Piecewise linear function (a) and its derivative (b)

follows, provided that the functions u and v are such that the integrals exist. The
differentiation operator d/dx is transferred from one of the functions to the other
one.

By applying integration by parts to the first term in (11.2), we obtain
∫ 1

0

(
−du

dx

dφ

dx
+ auφ

)
dx =

∫ 1

0
Fφ dx. (11.4)

This is called the weak form of the differential equation. With the scalar product
defined by an integral (see for example Sect. 5.1.1), we can write the equation as

(
−du

dx
,
dφ

dx

)
+ (au,φ) = (F,φ). (11.5)

Solutions of the original problem (11.1) with bounded second derivatives are called
strong solutions. Obviously they satisfy the weak form (11.5) as well, but there are
weak solutions that do not satisfy the original strong form.

When choosing the basis functions φj for the solution u, we get a larger class
to choose from if there are less restrictions on the differentiability. In mathemati-
cal terms, all possible functions of the form v = ∑

j cjφj (x) constitute a function
space S . Formally we write it as

S =
{
v(x) : ‖v‖2 +

∥∥∥∥
dv

dx

∥∥∥∥
2

< ∞, v(0) = v(1) = 0

}
. (11.6)

The approximation of the true solution u is to be chosen from this space, and the
trick with integration by parts makes S larger than it would be otherwise. There
are more functions in S compared to the original space S ∗, where it is natural to
require that also the second derivatives are bounded:

S ∗ =
{
v(x) : ‖v‖2 +

∥∥∥∥
dv

dx

∥∥∥∥
2

+
∥∥∥∥

d2v

dx2

∥∥∥∥
2

< ∞, v(0) = v(1) = 0

}
.

We use the notation S ∗ ⊂ S to indicate that all functions in S ∗ are included in
the larger space S . With N basis functions {φj }, the approximation problem has
N degrees of freedom, i.e., there are N unknown coefficients {cj } to be determined.
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Fig. 11.2 Function spaces
and FEM solution v

approximating u

One can also say that the approximating function space SN has dimension N , while
the true solution space S has infinite dimension. The boundary value problem has a
unique solution u in S , but this one cannot be found. Instead we look for a solution
v in the smaller space SN . In abstract form, the original problem in weak form is
defined by:

Find the function u ∈ S such that (11.5) is satisfied for all φ ∈ S .

The approximative solution is defined by:

Find the function v ∈ SN ⊂ S such that (11.5) is satisfied for all φ ∈ SN .

Figure 11.2 shows a schematic picture of the relation between the function
spaces.

Since the basis functions {φj } span the space SN , the last problem can be for-
mulated as

∫ 1

0

(
− d

dx

(
N∑

j=1

cjφj (x)

)
dφk

dx
(x) + a

N∑

j=1

cjφj (x)φk(x)

)
dx

=
∫ 1

0
F(x)φk(x) dx, k = 1,2, . . . ,N. (11.7)

The only quantities that are unknown here are the coefficients ck . We reformulate
the system as

N∑

j=1

(
−

∫ 1

0

dφj

dx
(x)

dφk

dx
(x) + a

∫ 1

0
φj (x)φk(x) dx

)
cj

=
∫ 1

0
F(x)φk(x) dx, k = 1,2, . . . ,N. (11.8)

This is a linear system with N equations for the N unknowns cj . This method of
finding an approximation is called the Galerkin method.

With the least square method applied to the original differential equation, we
would minimize ‖d2v/dx2 + av − F‖2. In Chap. 8 the condition for a minimum
of the squared norm was derived for the standard function approximation problem.
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If this condition is generalized to the differential equation, we would have products
d2φj/dx2 · d2φk/dx2 occurring in the system for the coefficients cj without any
possibility of bringing down the order of the derivatives. Any attempt of integration
by parts would lower the order on one basis function, but increase the order on the
other one, and the situation would become even worse.

With piecewise linear basis functions the product φj (x)φk(x) is zero for most
j, k. Only for k = j −1, j, j +1 is there any contribution to the integrals. The same
conclusion holds for the product dφj/dx · dφk/dx. The integrals on the left hand
side of (11.8) are easily computed, but for the integrals on the right hand side we
may be forced to use numerical methods.

Once the coefficients cj have been computed, the values of the approximation at
the nodes are particularly easy to compute. Since the piecewise linear basis functions
φj (x) are zero at all nodes except at xj , we have v(xj ) = cj .

If the distribution of nodes is uniform with a step size �x we get a particularly
simple system where all the equations have the form

(
1 + a�x2

6

)
cj−1 +

(
−2 + 4a�x2

6

)
cj +

(
1 + a�x2

6

)
cj+1

= �x2
∫ 1

0
F(x)φj (x) dx, j = 1,2, . . . ,N. (11.9)

This system involves the two extra coefficients c0 and cN+1. However, with the
extended representation

v(x) =
N+1∑

j=0

cjφj (x),

the boundary conditions imply that c0 = cN+1 = 0, and therefore we have as many
equations as unknowns.

The system can be written in matrix/vector form. With

c =

⎡

⎢⎢⎢⎣

c1
c2
...

cN

⎤

⎥⎥⎥⎦ , K =

⎡

⎢⎢⎢⎣

−2 1
1 −2 1

. . .
. . .

. . .

−2 1

⎤

⎥⎥⎥⎦ ,

M = a�x2

6

⎡

⎢⎢⎢⎣

4 1
1 4 1

. . .
. . .

. . .

4 1

⎤

⎥⎥⎥⎦ ,

F = �x2

⎡

⎢⎢⎢⎢⎣

∫ 1
0 F(x)φ1(x) dx

∫ 1
0 F(x)φ2(x) dx

...∫ 1
0 F(x)φN(x)dx

⎤

⎥⎥⎥⎥⎦
,
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Fig. 11.3 Finite element
solution of (11.1),
N = 15 (−−), N = 31 (· · ·),
exact (—)

the system is

Kc + Mc = F. (11.10)

The matrix K is the stiffness matrix, and M is the mass matrix.
We note that the system is very similar to a difference scheme and, after dividing

by �x2, we recognize the three point approximation of d2u/dx2. However, instead
of the more natural representation cj of v(xj ), the finite element uses a weighted
average over three points with the weights 1/6, 4/6, 1/6. Another difference is that
it provides a solution everywhere, and not only at the grid points. With our choice
of basis functions, the solution is piecewise linear, i.e., it is a straight line between
the nodes. The solution is shown in Fig. 11.3 for a = 1 and F(x) = −1/(0.02 +
|x − 0.5|) for two different resolutions. The convergence towards the true solution
for increasing N is clearly seen.

So far we have used approximations v(x) that are straight lines between the
nodes, i.e., v(x) has the form a0 + a1x in each interval. A more accurate solution
is obtained if we allow for higher order polynomials, a0 + a1x + · · · + apxp , and
in Sect. 5.1.2 quadratic and cubic polynomials were discussed. The nonzero part of
the basis functions φj (x) is wider, but still spread over very few subintervals. The

integrals
∫ 1

0 φj (x)φj+1(x) dx etc. are still easy to compute.
Even if the grid is nonuniform, only neighboring basis functions φj give any

contribution to the integrals. This is the reason for calling the procedure a finite
element method. For linear functions this means that each equation in the system
for the coefficients cj has the form

aj−1cj−1 + aj cj + aj+1cj+1 = Fj ,

and these equations can be written in the matrix/vector form (11.10) with different
but still tridiagonal stiffness and mass matrices. For higher order polynomials, more
neighboring coefficients become involved, but still very few compared to the total
number. This means that we are dealing with sparse matrices, and we shall discuss
later how these systems can be solved effectively.
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The generalization to two space dimensions is mathematically straightforward,
but of course computationally more demanding. Consider the extension of the prob-
lem (11.1) to a two-dimensional domain � with boundary �

∂2u

∂x2
+ ∂2u

∂y2
+ au = F in �,

u = 0 at �.

This is the well known Poisson equation. In order to bring the order of the derivatives
down one step, we need the generalization of integration by parts, which is the
Green’s theorem. We first multiply the equation by a function v(x, y) and take the
scalar product:

∫ ∫

�

(
∂2u

∂x2
+ ∂2u

∂y2
+ au

)
v dx dy =

∫ ∫

�

Fv dx dy.

On replacing u by v∂u/∂x and v by v∂u/∂y in the divergence theorem (2.19), and
taking into account that v vanishes at the boundary, we get

∫ ∫

�

(
∂2u

∂x2
+ ∂2u

∂y2

)
v dx dy = −

∫ ∫

�

(
∂u

∂x

∂v

∂x
+ ∂u

∂y

∂v

∂y

)
dx dy.

This gives the weak Galerkin formulation

−
∫ ∫

�

(
∂u

∂x

∂φ

∂x
+ ∂u

∂y

∂φ

∂y
+ au

)
v dx dy =

∫ ∫

�

Fv dx dy.

The scalar product and norm are defined by

(u, v) =
∫ ∫

�

u(x, y)v(x, y) dx dy, ‖u‖2 = (u,u).

The regularity requirement on u and φ is now that the first derivatives should be
bounded. The proper function space is

S =
{
v(x)/‖v‖2 +

∥∥∥∥
dv

dx

∥∥∥∥
2

+
∥∥∥∥
dv

dy

∥∥∥∥
2

< ∞, v = 0 at the boundary �

}
.

For the finite element method we need a subspace SN of S . With the basis func-
tions {φj (x, y)}, the Galerkin method is formulated precisely as in the 1D-case. The
remaining question is how to choose SN and the basis functions.

Two-dimensional piecewise polynomials were discussed in Sect. 5.1.2, and it
was shown that triangles are very natural as the geometrical basis not only for linear
polynomials, but also for quadratic and cubic polynomials. The computational do-
main is therefore divided into triangles, as shown in Fig. 11.4. For piecewise linear
functions, the solution is a plane in the 3-D space corresponding to each triangle.
The shaded area shows where one basis function is nonzero.

Even if rectangles could be used as finite elements with other types of approxi-
mating function spaces, for example bilinear, triangles are better from another point
of view. If the domain is irregular, it is much easier to approximate the boundary
by triangle sides. If the sides of each triangle and each rectangle are of the order
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Fig. 11.4 Triangular grid for
finite elements

�x, the distance between the true and the approximative boundary is O(�x2) with
triangles and O(�x) with rectangles, see Fig. 11.5.

As we showed in Sect. 5.1.2, one can use general quadrilaterals instead of rectan-
gles. They give more flexibility, and in certain situations they are a good choice. For
certain types of boundary conditions it is an advantage to have the edges perpendic-
ular to the boundary, and Fig. 11.6 shows an example of a computational domain,
where this is arranged easily by the use of quadrilaterals.

Once the grid and the type of polynomials have been chosen, the finite element
method can be defined. With the ansatz

v(x, y) =
N∑

j=1

cjφj (x, y)

for the numerical solution the coefficients are found by solving the system

N∑

j=1

(
−

∫ ∫

�

(
∂φj (x, y)

∂x

∂φk(x, y)

∂x
+ ∂φj (x, y)

∂y

∂φk(x, y)

∂y

)
dx dy

+ a

∫ ∫

�

φj (x, y)φk(x, y) dx dy

)
cj

=
∫ ∫

�

F(x, y)φk(x, y) dx dy, k = 1,2, . . . ,N,

that corresponds to (11.8). This system of equations for the coefficients is much
larger than for one-dimensional problems. However, since the basis functions are
zero in all but a few of the subdomains, the system is still sparse, and allows for fast
solution methods.

The basis functions are usually chosen to be zero at all nodes {x, y}j except
one. This means that v({x, y}j ) = cj at the nodes. By using the basis functions, the
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Fig. 11.5 Boundary
approximation with triangles
and rectangles

Fig. 11.6 Quadrilateral grid

system for {cj } is easily derived. However, for practical computational purposes, the
coefficient matrix for the system is not computed this way. This process is called the
assembly of the matrix. It is done by going over all finite elements one by one, and
computing their contribution to the matrix elements. There is a connection between
the nodal values vj and the coefficients of the local polynomial at each one of the
finite elements. For example, in 1D with linear elements, we have for xj ≤ x ≤ xj+1

v(x) = vj + x − xj

xj+1 − xj

(vj+1 − vj ) =
(

1 − x − xj

xj+1 − xj

)
vj + x − xj

xj+1 − xj

vj+1,

and
dv

dx
= vj+1 − vj

xj+1 − xj

,

where v(xj ) = vj and v(xj+1) = vj+1. In the same way the basis functions can be
expressed in each subinterval in terms of their values at the nodes, which is one for
one node and zero for all others. For example,

φj (x) = 1 − x − xj

xj+1 − xj

,
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and
dφj

dx
= − 1

xj+1 − xj

.

The system (11.7) is rewritten in its original form as

−
∫ 1

0

dv

dx
(x)

dφk

dx
(x) dx +

∫ 1

0
av(x)φk(x) dx =

∫ 1

0
F(x)φk(x) dx,

k = 1,2, . . . ,N.

Each integral is now partitioned into its pieces corresponding to the subintervals
∫ 1

0
=

∑

j

∫ xj+1

xj

,

and computed in terms of the unknowns vj and vj+1. For our example only two
basis functions contribute for each subinterval. Furthermore, for a given φk , the
corresponding equation contains only the three unknowns vk−1, vk, vk+1 and, by
assembling all contributions, we get a tridiagonal system with the stiffness and mass
matrices that were already derived above. For the integrals on the right hand side we
may have to use a numerical method for the integration.

The same assembly principle is used with any type of piecewise polynomials
and in any number of space dimensions. As an example, consider the triangular
grid in Fig. 11.4. The integrals are computed over each triangle and added together.
The basis function φk(x, y) associated with the node in the middle of the shaded
area influences the integrals over the six triangles in the same area. This means for
linear polynomials that, in equation number k, there will be 7 unknown nodal values
cj = vj involved. For quadratic polynomials there are nodes also in the middle of
each triangle edge, and there will be 19 unknowns in each equation.

When comparing to finite difference methods, there is a similarity in the sense
that the nodal values vj are carried as unknowns. However, the brief discussion
of Hermite polynomials in Sect. 5.1.2 shows that the derivative nodal values can
be introduced as well. The assembly process is carried out in the same way, but
now with a slightly more complicated connection between the nodal values and the
integrals. However this computation is carried out once and for all, and the matrices
are stored for use with any number of right hand sides.

When deriving error estimates for the FEM solutions, it can be shown that this
problem can be referred back to a pure function approximation problem. How close
to a given function in S can we come by using an approximation in SN ? We as-
sume that the distance between the nodes is of the order �x (also in several dimen-
sions), and that the given function is smooth. Then it can be shown that, with piece-
wise polynomials of degree p, the error is O(�xp+1). This result requires some
other conditions, in particular on the regularity of the finite elements. For example,
the triangles must have a uniform lower bound on the smallest angle. Furthermore,
the boundary and the boundary conditions must be approximated accurately enough.
We saw above that triangles give an O(�x2) error when it comes to approximation
of the boundary which corresponds to linear polynomials. But how is this change
of boundary possible when it comes to the Galerkin formulation? The condition
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Fig. 11.7 Modification of the
computational domain

SN ⊂ S requires that every function in SN must satisfy the boundary conditions
exactly. But there is now a numerical boundary �� made up of the outer triangle
edges, that approximates the true boundary �. Assume that we substitute the true
boundary condition

u = 0, (x, y) ∈ �

with

v = 0, (x, y) ∈ ��.

Since the FEM solution is not even defined on the true boundary, the condition
SN ⊂ S is not fulfilled. However, there is a simple fix for this problem. The com-
putational domain �� is extended such that it agrees with �, and v is defined as
zero in the whole strip between the two boundaries, see Fig. 11.7.

We still have a piecewise linear function space, but with a special form near �.
This leads to a final error estimate of second order for the whole solution.

With quadratic or higher degree polynomials we must do better to keep the higher
order accuracy, and use some sort of curved edge for the triangles nearest to the
boundary.

Exercise 11.1 Derive the FEM system of equations obtained with piecewise linear
polynomials on a nonuniform node distribution for the problem (11.1), i.e., derive
the generalized form of (11.9).

Exercise 11.2 Consider the boundary value problem

d4u

dx4 + au = F, 0 ≤ x ≤ 1,

u(0) = ∂u

∂x
(0) = 0,

u(1) = ∂u

∂x
(1) = 0.
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(a) Use integration by parts to derive the weak form of the problem.
(b) Define the function space S for this case (corresponding to (11.6) for the sec-

ond order equation).
(c) Discuss the choice of piecewise polynomials for the finite element method

for this problem. Why are cubic Hermite polynomials a proper choice, while
quadratic polynomials are not (see Sect. 5.1.2)?

11.2 Initial-Boundary Value Problems

As an example of an initial-boundary value problem, we consider the problem

∂u

∂t
= ∂2u

∂x2
, 0 ≤ x ≤ 1, 0 ≤ t,

u(0, t) = 0,

u(1, t) = 0,

u(x,0) = f (x).

(11.11)

The finite element method for time dependent initial–boundary value problems is
very similar to the procedure for boundary value problems. The basis functions
φj (x) are also in this case independent of t , and they satisfy the boundary con-
ditions. The integration by parts is carried out as above, and we obtain

∫ 1

0

∂u

∂t
φ dx = −

∫ 1

0

∂u

∂x

∂φ

∂x
dx.

The approximation v(x, t) is

v(x, t) =
N∑

j=1

cj (t)φj (x),

where the coefficients cj (t) now are time dependent. The initial function is also
approximated as a combination of the basis functions:

f (x) ≈
N∑

j=1

djφj (x).

These coefficients dj are obtained by the least square method resulting in the system

N∑

j=1

dj

∫ 1

0
φj (x)φk(x) dx =

∫ 1

0
f (x)φk(x) dx, k = 1,2, . . . ,N.

This is a linear system of equations for the N coefficients dj . It is sparse, and the
particular choice of roof functions φj gives a tridiagonal system. The integrals on
the right hand side must be computed by some numerical method in the general
case.
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With this representation of f (x), the final system for computation of the coeffi-
cients cj (t) is

N∑

j=1

dcj

dt

∫ 1

0
φj (x)φk(x) dx

= −
N∑

j=1

cj

∫ 1

0

dφj (x)

dx

dφk(x)

dx
dx, k = 1,2, . . . ,N,

ck(0) = dk, k = 1,2, . . . ,N.

(11.12)

This system is a set of ordinary differential equations, and together with the initial
conditions it constitutes an initial value problem for the N unknown functions cj (t).
The finite element method has reduced the partial differential equation to a system
of ordinary differential equation. This way of discretizing in space and leaving time
continuous, is called the method of lines. A graph in the x, t plane would show a
collection of vertical lines, one for each x-node.

It remains to solve the initial value problem, and again we have to use a numerical
method. Usually a difference method is applied as described in Sect. 10.1, but other
methods can be used as well, for example the finite element method. There is a
special feature that we have to take into consideration here. If the coefficients cj

and dj are ordered as vectors

c =

⎡

⎢⎢⎢⎣

c1
c2
...

cN

⎤

⎥⎥⎥⎦ , d =

⎡

⎢⎢⎢⎣

d1
d2
...

dN

⎤

⎥⎥⎥⎦ ,

the system (11.12) can be written in vector/matrix form

M
dc
dt

= Kc,

c(0) = d,

(11.13)

where M is the mass matrix and K is the stiffness matrix. Even if an explicit differ-
ence method is used for the time integration, for example the Euler method

M(cn+1 − cn) = �tKcn,

c0 = d,

there is a system of equations to be solved for each time step. However, we recall
that M is a sparse matrix, making the solution procedure simpler.

Error estimates are derived much in the same way as for boundary value prob-
lems, and we may expect an O(�xp+1) error for p-degree polynomials. The stabil-
ity concept was an important issue for time dependent difference approximations,
and one may ask how it comes into the picture for FEM. The answer is that it is es-
sential also here, but it follows automatically if the original problem is well posed in
a certain sense. However, the condition SN ⊂ S in the formulation of the Galerkin
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method is essential. It means that the choice of approximating piecewise polyno-
mials must be made very carefully for irregular domains. We saw above how this
is done for linear polynomials on triangles in the case of curved boundaries. For
higher degree approximations it requires some extra effort to retain the accuracy.

Exercise 11.3 Consider the initial-boundary value problem (11.11) and the finite
element method with piecewise linear polynomials on a uniform node distribution.

(a) Derive the explicit form of the matrices M and K in (11.13).
(b) Assume periodic solutions in space and use Fourier analysis to derive the sta-

bility condition for the Euler forward and the Euler backward methods applied
to (11.13).

(c) Estimate the number of arithmetic operations in each time step for the two meth-
ods.

11.3 Discontinuous Galerkin Methods

An essential property for finite element methods based on the Galerkin principle is
that the approximating subspace SN consists of globally defined functions. Even if
the basis functions are nonzero only at a small number of elements, they are defined
everywhere with at least continuity over the element boundaries. One effect of this
is that there is a coupling between neighboring points leading to a coupling between
all the nodal values for the full system. The mass matrix is a band matrix, and even
if an explicit difference method is used for integration in time, there is a system of
equations to be solved at each time step. This may be a significant disadvantage,
and one would like to get rid of it. This can be achieved by introducing local basis
functions, leading to discontinuous Galerkin methods.

We shall consider a conservation law

∂u

∂t
+ ∂f (u)

∂x
= 0,

where f (u) is called the flux function, which in general is a nonlinear function of
u = u(x, t). Integration by parts over an interval [x1, x2] gives

d

dt

∫ x2

x1

udx = −
∫ x2

x1

∂f (u)

∂x
udx = f

(
u(x1, t)

) − f
(
u(x2, t)

)
. (11.14)

The label “conservation law” for this class of PDE is motivated by the fact that, if
u vanishes outside an interval [x1, x2], the integral of the solution is independent of
time:

d

dt

∫ x2

x1

udx = 0,

The form (11.14) is actually the basis for finite volume methods. The integral is
considered as a “cell average”, and the u-values at the end points x1 and x2 are
approximated in terms of the neighboring cell averages. The advantage with such
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methods is that the conservation property is retained with a proper discretization of
the integral. They will be further discussed in Sect. 17.3.

Discontinuous Galerkin methods are similar to finite volume methods. We multi-
ply the original conservation form by a function φ(x) and integrate over an interval
Ij = [xj−1/2, xj+1/2]:

∫

Ij

∂u

∂t
φ dx +

∫

Ij

∂f (u)

∂x
φ dx = 0,

which after integration by parts becomes

∫

Ij

∂u

∂t
φ dx + f

(
u(xj+1/2)

)
φ(xj+1/2)

− f
(
u(xj−1/2)

)
φ(xj−1/2) −

∫

Ij

f (u)
∂φ

∂x
dx = 0.

In contrast to the Galerkin method, the flux function is replaced by a numerical flux
function g = g(u−, u+) that depends on both the left and right limits

u−(x) = lim
δ→0

u(x − δ), δ > 0,

u+(x) = lim
δ→0

u(x + δ), δ > 0.

At all points where u is continuous, we require g(u−, u+) = f (u), but here we
allow also discontinuous functions u. In this case the numerical solution v satisfies

∫

Ij

∂v

∂t
φ dx + g

(
v−(xj+1/2), v

+(xj+1/2)
)
φ(xj+1/2)

− g
(
v−(xj−1/2), v

+(xj−1/2)
)
φ(xj−1/2) −

∫

Ij

f (v)
∂φ

∂x
dx = 0.

The numerical solution is defined on each subinterval Ij as a linear function ex-
pressed in terms of the two basis functions

φj = 1

�xj

(xj+1/2 − x), ψj = 1

�xj

(x − xj−1/2), x ∈ Ij ,

where �xj is the length of Ij . Figure 11.8 shows what they look like at two neigh-
boring subintervals.

In each subinterval, the numerical solution has the form

v(x, t) = aj (t)φj (x) + bj (t)ψj (x), x ∈ Ij ,

where the coefficients aj and bj are to be determined. With N intervals Ij in the
domain, the weak form of the problem is now obtained as
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Fig. 11.8 Piecewise linear
discontinuous basis functions

∫ xj+1/2

xj−1/2

(
daj

dt
φj + dbj

dt
ψj

)
φj dx + g

(
v−(xj+1/2), v

+(xj+1/2)
)
φj (xj+1/2)

− g
(
v−(xj−1/2), v

+(xj−1/2)
)
φj (xj−1/2)

−
∫ xj+1/2

xj−1/2

f (ajφj + bjψj )
∂φj

∂x
dx = 0,

∫ xj+1/2

xj−1/2

(
daj

dt
φj + dbj

dt
ψj

)
ψj dx + g

(
v−(xj+1/2), v

+(xj+1/2)
)
ψj(xj+1/2)

− g
(
v−(xj−1/2), v

+(xj−1/2)
)
ψj (xj−1/2)

−
∫ xj+1/2

xj−1/2

f (ajφj + bjψj )
∂ψj

∂x
dx = 0,

j = 1,2, . . . ,N.

The coupling between the different subintervals is obtained solely by the choice of
flux function g. In order to get a simple illustration we choose the equation

∂u

∂t
+ ∂u

∂x
= 0,

i.e., f (u) = u. Since information is flowing from left to right, it is natural to make
the solution in Ij dependent on the action in Ij−1. The simplest choice is

g(u−, u+) = u−,

and from the form of the basis functions we get

g
(
v−(xj−1/2), v

+(xj−1/2)
) = v−(xj−1/2) = bj−1,

g
(
v−(xj+1/2), v

+(xj+1/2)
) = v−(xj+1/2) = bj .

The final approximation then becomes
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∫ xj+1/2

xj−1/2

(
daj

dt
φj + dbj

dt
ψj

)
φj dx + bj−1 −

∫ xj+1/2

xj−1/2

(ajφj + bjψj )
∂φj

∂x
dx = 0,

∫ xj+1/2

xj−1/2

(
daj

dt
φj + dbj

dt
ψj

)
ψj dx + bj −

∫ xj+1/2

xj−1/2

(ajφj + bjψj )
∂ψj

∂x
dx = 0,

j = 1,2, . . . ,N.

Since the basis functions are known and have a simple form, the integrals can be
computed. For simplicity we assume a uniform node distribution separated by a
distance �x. For each subinterval we get when dropping the subscript

∫
φ2 dx = h

3
,

∫
φψ dx = h

6
,

∫
ψ2 dx = h

3
,

∫
φ

∂φ

∂x
dx = −1

2
,

∫
ψ

∂φ

∂x
dx = −1

2
,

∫
φ

∂ψ

∂x
dx = 1

2
,

∫
ψ

∂ψ

∂x
dx = 1

2
,

leading to the ODE system

�x

3

daj

dt
+ �x

6

dbj

dt
= bj−1 − 1

2
bj ,

�x

6

daj

dt
+ �x

3

dbj

dt
= 1

2
aj − 1

2
bj , j = 1,2, . . . ,N.

(11.15)

Since information is flowing from left to right, the equation requires a boundary
condition at the left boundary, i.e., b0 is known.

The advantage compared to the Galerkin method is now obvious. There is no
coupling of daj /dt and dbj/dt to the corresponding coefficients at neighboring
intervals, i.e., the mass matrix has a simple block diagonal form. Each 2 × 2 system
is easily reformulated before the computation, and we get

daj

dt
= 1

�x
(4bj−1 − 3aj − bj ),

dbj

dt
= 1

�x
(−2bj−1 + 3aj − bj ), j = 1,2, . . . ,N.

This form is the semidiscrete approximation, and allows for a fast explicit ODE-
solver in time, just as for finite difference methods.

When putting the pieces of the solution on each subinterval together, we real-
ize that there is a dual representation of v at each node xj+1/2. But this is of lit-
tle practical trouble. When evaluating and/or plotting the solution, we simply use
v(x) = v−(x) everywhere (or v(x) = v+(x)).

In contrast to Galerkin methods, the stability does not follow automatically for
the semidiscrete approximation. The necessary analysis techniques are outside the
scope of this book, where we limit the stability analysis to the standard Fourier
technique.
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Fig. 11.9 Eigenvalues of
Q̂(ξ), 0 ≤ ξ ≤ 2π

Fig. 11.10 u(x,6) (−),
v(x,6) (−−), r = 1, N = 20

For our example, the original PDE problem with periodic solutions in space have
a constant norm in time. The Fourier transformed system for the vectors a and b
representing the discrete solution is

d

dt

[
â

b̂

]
= 1

�x

[−3 4e−iξ − 1
3 −2e−iξ − 1

][
â

b̂

]
.

The eigenvalues of the coefficient matrix Q̂ on the right hand side are shown in
Fig. 11.9 for discrete ξ -values and �x = 1. All of them are located in the left half
plane, with the single eigenvalue zero at the imaginary axis. It is easily shown that Q̂

can be transformed to diagonal form and, referring back to Sect. 10.1, we conclude
that the solutions are bounded independent of �x and t .
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Fig. 11.11 u(x,6) (−),
v(x,6) (−−), r = 3, N = 20

Fig. 11.12 u(x,6) (−),
v(x,6) (−−), r = 5, N = 20

As a numerical test we solved the periodic problem for −1 ≤ x ≤ 1 , 0 ≤ t ≤ 6
with the initial data

u(x,0) =
∣∣∣∣sin

πx

2

∣∣∣∣
r

.

The nodes are defined such that xj = −1 + j�x. At t = 6 the wave has made 3
complete rotations, and is back to its original position.

Figures 11.10, 11.11, 11.12 show the solution

v =
N∑

j=1

(ajφj + bjψj )

for r = 1, 3, 5 and N = 20.
The case r = 1 is the most difficult one, since there is a sharp cusp at x = 0,

but the results are quite good. On the scale used in the pictures, it is hard to see the
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Fig. 11.13 u(x,6),
r = 1 (−), v(x,6), N = 20

discontinuities at the nodes xj+1/2. In Fig. 11.13, showing the solution near x = −1
at another scale, they are clearly visible.

The basis functions φj and ψj were chosen in order to illustrate the block di-
agonal structure of the mass matrix. In our case, we could as well have chosen
them such that a diagonal mass matrix is obtained without solving the 2 × 2 sys-
tems. It is easily obtained by choosing the orthogonal linear functions φj = 1 and
ψj = 2(x − xj )/hj .

Higher order methods are obtained by simply raising the degree of the polyno-
mials in each subinterval. There is still no coupling between the time derivatives
in different subintervals, but the local systems become larger. However, as noted
above, by choosing orthogonal polynomials, even this minor problem is eliminated.

The generalization to several space dimensions is done in analogy with the
Galerkin methods. The polynomials are constructed locally in each element such
as triangles in two space dimensions. The basis functions associated with a certain
triangle Tj are zero at all other triangles, and the solution v becomes discontinuous
at the edges of each triangle.

DG methods is currently a very active area of research, and the methods are now
being used for an increasing number of applications. For a complete description
of the current state of the art, we recommend the recent book by Hesthaven and
Warburton [14].

Exercise 11.4 Carry out the analysis for the example above, but now using
quadratic polynomials on each subinterval. Derive the semidiscrete system corre-
sponding to (11.15).



Chapter 12
Spectral Methods

Earlier in this book we have demonstrated how functions can be represented by a
series

u(x) =
∞∑

k=1

akφk(x), (12.1)

where {φk(x)} are certain basis functions. By choosing the φk properly, the co-
efficients ak can sometimes be found without too much effort, and hopefully the
coefficients are such that the function is well represented by the first few terms.

When looking for the solution to a differential equation, we cannot expect that
the finite sum can satisfy the differential equation everywhere. Here we shall use the
collocation principle to relax the conditions on the approximate solution. We require
only that the differential equation is satisfied at the collocation points, or grid points
as described in Sect. 9.1.

The fundamental interpretation of spectral methods was originally that the differ-
ential equation is transformed such that we work all the time with the coefficients ak

as a representation of the function instead of the usual explicit function values. But
this leads to severe limitations when it comes to differential equations with variable
coefficients or nonlinear problems. Instead we shall use the spectral representation
for only a part of the solution procedure, which leads to something called pseudo-
spectral methods. We shall begin with an introductory example.

12.1 An Example with a Sine Expansion

We gave several examples of orthogonal basis functions in Chap. 7, for which the
computation becomes particularly simple. Here we shall use still another set of or-
thogonal functions, namely φk(x) = sin(kπx) on the interval 0 ≤ x ≤ 1. The scalar
product and norm are defined by

(f, g) =
∫ 1

0
f (x)g(x) dx, ‖f ‖2 = (f,f ),
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Fig. 12.1 Sine expansion (−−) of the function x2(1 − x2) (—)

and we have

‖sin(kπx)‖2 = 1

2
, k = 1,2, . . . .

Consider the function u(x) = x2(1 − x2). It is easy enough to handle as it is, but for
illustration we try to write it as a sine series. The coefficients are found by integration
and, by orthogonality,

ak = 2
∫ 1

0
u(x) sin(kπx)dx, k = 1,2, . . . .

These integrals are easily computed for our function u(x), and we get the explicit
formula

ak =
(

1

kπ
+

(
12

(kπ)2 + 1

)(
− 1

kπ
+ 2

(kπ)3

))
coskπ −

(
12

(kπ)2 + 1

)
16

(kπ)3 .

It can be shown that the infinite sum converges to the function u(x). Figure 12.1
shows the finite approximating sum

N∑

k=1

ak sin(kπx)

for N = 3 and N = 5.
We consider again the simple heat conduction problem

∂u

∂t
= ∂2u

∂x2
, 0 ≤ x ≤ 1, 0 ≤ t,

u(0, t) = 0,

u(1, t) = 0,

u(x,0) = f (x).

(12.2)

The boundary conditions with zero temperature are not very realistic, but we use
them here in order to illustrate the basic numerical method. We now assume that
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there is a finite sum representation with time dependent coefficients ak , giving the
approximation

u(x, t) =
N∑

k=1

ak(t) sin(kπx). (12.3)

When plugging this into the differential equation, we get

N∑

k=1

dak(t)

dt
sin(kπx) = −

N∑

k=1

(kπ)2ak(t) sin(kπx).

This is an example of separation of variables, which is often used as a mathe-
matical tool. The x- and t -dependence are separated, with the x-dependence con-
fined to sin(kπx) and the t -dependence to ak(t). The orthogonality of the functions
sin(kπx) implies that this equation is satisfied for all x and t if and only if it holds
for each term by itself:

dak(t)

dt
= −(kπ)2ak(t), k = 1,2, . . . ,N.

This is a system of ordinary differential equations, which is a significant reduction
in complexity compared to a partial differential equation. Since each basis function
sin(kπx) satisfies the boundary conditions, the whole sum does so as well. Hence,
we need only an initial condition for the system. This condition is obtained by ap-
proximating the initial function by a sine expansion as well:

f (x) ≈
N∑

k=1

bk sin(kπx).

The coefficients bk are found by the least square method as demonstrated earlier,
and we get the initial value problem

dak(t)

dt
= −(kπ)2ak(t), k = 1,2, . . . ,N,

ak(0) = bk, k = 1,2, . . . ,N.

This system is usually solved by a finite difference method as described in
Sect. 10.1. The final solution is then obtained by evaluating the sum (12.3) for
any given t .

The whole procedure is an example of a spectral method. The name originates
from the concept of the spectrum of an operator. In our example the operator is the
differential operator d2/dx2 acting on functions u(x) with u(0) = u(1) = 0. The
relation

d2

dx2
sin(kπx) = −(kπ)2 sin(kπx) (12.4)

is a remarkable one, since it converts a differential operator to a simple multiplica-
tion acting on the same function. Referring back to Sect. 3.4 we note the similarity
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with eigenvalues of a matrix. A complicated matrix is applied to a certain vector and
returns the same vector multiplied by a number. For our case, the numbers

λk = −(kπ)2, k = 1,2, . . .

are the eigenvalues of the operator d2/dx2, and the functions sin(kπx) are the
eigenfunctions. The whole set of eigenvalues {λk} is called the spectrum. We can
also see the eigenfunctions and the eigenvalues as the possible solutions to the
boundary value problem

d2u

dx2 − λu = 0, 0 ≤ x ≤ 1,

u(0) = 0,

u(1) = 1.

Such a problem is called a Sturm–Liouville problem after the French mathematicians
Charles-Francois Sturm (1803–1855) and Joseph Liouville (1809–1892). This type
of problem is an example where for a given value of λ there is not a unique solution,
and there are two possibilities. If λ does not belong to the set {λk} as defined above,
there is no solution at all (we don’t include the trivial solution u(x) ≡ 0 here). If, on
the other hand, λ = −(kπ)2 for some integer k, there are infinitely many solutions
since c sin(kπx) is a solution for any constant c.

Unfortunately, the method described above does not work well for more general
forms of the problem. If the heat equation is changed such that the heat conduction
coefficient depends on x resulting in the differential equation

∂u

∂t
= κ(x)

∂2u

∂x2 , (12.5)

we are in trouble. Even if there is an expansion

κ(x) =
N∑

k=1

κ̂k sin(kπx),

the product κ(x)u(x, t) cannot be directly represented as a sine expansion with N

terms. Therefore, the spectral method in the form described above is not well suited
for problems like this one. But there is an alternative.

We introduce a grid

xj = j�x, j = 0,1, . . . ,N + 1, (N + 1)�x = 1

in space just as for difference methods. Let us assume that a certain function u(x) is
known at the grid points xj . We now define an interpolating function

v(x) =
N∑

k=1

ak sin(kπx) (12.6)

such that

v(xj ) = u(xj ), j = 1,2, . . . ,N.
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This is in complete analogy with the Fourier interpolation leading to the discrete
Fourier transform as described in Sect. 6.2. The set of coefficients ak is the discrete
sine transform of the set {v(xj )}. Even if the interval [0,1] is only half a period for
the function sinπx, the fast Fourier transform FFT can still be used for computation
of the coefficients.

We now go back to our example. The interpolating function (12.6) can of course
be used for the obvious purpose of representing the grid function for all x in between
the grid points. But here we use it for another purpose. We want to construct an
approximation of the derivative in space. For a grid function known only at the grid
points, we are limited to finite differences. Here we are in a better position since
v(x) is known everywhere when the coefficients ak are known. The derivative of
the approximation function v(x) is well defined, and the second derivative of v(x)

is easily obtained as

d2v

dx2 (x) = w(x) =
N∑

k=1

bk sin(kπx) = −
N∑

k=1

(kπ)2ak sin(kπx).

Here is where the importance of an accurate approximation v(x) for all x becomes
obvious. At the grid points the accuracy of the function values is by definition infi-
nite for any interpolating function, since the approximation agrees exactly with the
given values. However, if there are severe oscillations in between the grid points, the
derivative is not going to be accurate at the grid points. Orthogonality of the basis
functions is the key to good approximations, as we have shown in Chaps. 6 and 7,
and here we benefit from this property of the sine functions.

With the new coefficients bk known, the grid values w(xj ) can be computed via
the inverse sine transform, also this one in ∼N logN arithmetic operations.

We now have the foundation for a new type of solution method. Symbolically
we form a vector v containing the grid values vj = v(xj ), and compute the coef-
ficients ak . This can be seen as a matrix/vector multiplication a = T v, where the
matrix T is the discrete sine transform. The differentiation is represented by the
diagonal matrix

D = −π2diag(1, 4, 9, . . . ,N2), (12.7)

and we get the new coefficients bk by b = DT v. The new grid values wj are finally
obtained by w = T −1DT v, where T −1 is the inverse sine transform.

In this way the partial differential equation ∂u/∂t = ∂2u/∂x2 is transferred to an
ODE system for the vector v:

dv
dt

= T −1DT v. (12.8)

This system requires a numerical method for integration in time, and usually the
discretization is done by using a difference method. The simplest discretization is
the one we have used before:

vn+1 = vn + �tT −1DT vn.

The complete procedure is the pseudo-spectral method. The prefix pseudo is in-
troduced because there is no complete transformation to spectral space where we
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would work solely with the coefficients ak . In contrast to the spectral method we are
working with a grid in space, switching back and forth between the original space
and the spectral space for each time step.

For our simple example, the pseudo-spectral method actually gives the same re-
sult as the spectral method if the same discretization is used in time. The great
advantage with the pseudo-spectral method is that it can easily be generalized to
more complicated problems. For the problem (12.5) we form the diagonal matrix

K =

⎡

⎢⎢⎢⎣

κ(x1)

κ(x2)

. . .

κ(xN )

⎤

⎥⎥⎥⎦ .

The system of ODE now becomes

dv
dt

= KT −1DT v,

which is also solved by a difference method.
The pseudo-spectral method has very high order of accuracy, since it uses every

grid point for approximating the x-derivative. This means that, even for very high
accuracy requirements, the grid can be quite coarse, and it is very efficient for prob-
lems where the solution is smooth. On the other hand, we demonstrated in Sect. 6.1
that trigonometric functions don’t handle discontinuous functions very well. Much
research has been done to develop various types of filter to eliminate this disadvan-
tage, but for problems in several space dimensions there is still work to do.

Exercise 12.1 Consider the problem

∂u

∂t
= ∂2u

∂x2 + au, 0 ≤ x ≤ 1, 0 ≤ t,

u(0, t) = 0,

u(1, t) = 0,

u(x,0) = f (x),

i.e., (12.2) with an extra term au added to the differential equation.

(a) Prove that sin(kπx) are still the eigenfunctions of the new differential operator
in space, but that the eigenvalues change to λk = −(kπ)2 + a.

(b) Prove that the spectral and the pseudo-spectral methods are equivalent for this
problem.

12.2 Fourier Methods

In the previous section we used sine functions which are a special case of more
general trigonometric functions. They are particularly convenient for second order
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differential operators, since we are getting the sine functions back after two differen-
tiations. For general problems with p-periodic solutions u(x + p) = u(x) for all x,
we can use the complex Fourier grid functions and the FFT for fast computation as
described in Sect. 6.2. Periodic solutions are quite frequent in applications, and the
computation in such a case can be limited to one period. The size of the period can
be modified by a proper scaling, and a convenient choice is [0,2π], with the basis
functions

φk(x) = eikx.

The differentiation of the interpolating function v(x) yields the same basis functions
for the new vector w:

ak = 1

2π

N∑

j=0

vj e
−ikxj �x,

v(x) =
N/2∑

k=−N/2

ake
ikx,

wj =
N/2∑

k=−N/2

ikake
ikxj .

For a first order PDE
∂u

∂t
= c(x, t)

∂u

∂x
,

we define the diagonal matrices

C(t) =

⎡

⎢⎢⎢⎣

c(x0, t)

c(x1, t)

. . .

c(xN, t)

⎤

⎥⎥⎥⎦ ,

D = i

⎡

⎢⎢⎢⎣

−N
2 −N

2 + 1
. . .

N
2

⎤

⎥⎥⎥⎦ .

The pseudo-spectral method with these basis functions (often called the Fourier
method) gives the ODE system

dv
dt

= C(t)F−1DFv,

where F is the matrix representing the FFT as explained in Sect. 6.2. For discretiza-
tion in time we can use the leap-frog scheme

vn+1 = vn−1 + 2�tC(tn)F
−1DFvn.

Figure 12.2 shows the pseudo-spectral principle.
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Fig. 12.2 The pseudo-spectral method

Let us now take a look at the stability of this scheme for the simplified case that
c(x, t) = c is a constant, i.e., C = cI . We showed how the Fourier transform is used
for the stability analysis for difference schemes. For the Fourier method it is even
more natural to use the same method of analysis, since the Fourier transformation
is already involved. By multiplying the scheme from the left by F , and introducing
the new vector an = Fvn, which contains the Fourier coefficients, we get

an+1 = an−1 + 2c�tDan.

But this is a set of scalar equations, and the maximal magnitude of the elements of
D is N/2. By the results in Sect. 10.1, we get the stability limit

c�t
N

2
≤ 1,

and, since (N + 1)�x = 2π , this is equivalent to

c�t

(
π

�x
− 1

2

)
≤ 1.

But �x is arbitrarily small, so the final condition is

c�t

�x
≤ 1

π
.

Exercise 12.2 Apply the Fourier method to the problem ∂u/∂t = ∂2u/∂x2 with
periodic solutions.

(a) What is the stability condition for the Euler forward time discretization?
(b) Find the stability condition for the same time discretization of the sine expan-

sion method applied to the problem (12.2) (with nonperiodic solutions). Com-
pare the two conditions.
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12.3 Polynomial Methods

In the previous sections we have used trigonometric expansions with the discrete
Fourier transform as the basic tool. For nonperiodic solutions, there are many other
types of functions that can be used. The class of orthogonal polynomials {Pk(x)}
that we have described in Chap. 7 is very common, in particular the Chebychev and
Legendre polynomials. However, the differentiation is a little more complicated in
these cases. The interpolating Chebychev polynomial is

v(x) =
N∑

n=0

anTn(x),

which equals the given function values at the special grid points

xj = cos
jπ

N
, j = 0,1, . . . ,N.

The coefficients an are obtained by the cosine transform. But what is the derivative
w(x) at the grid points? There is actually a recursive formula also for the derivative,
and there is a connection to the polynomials themselves:

T ′
n+1(x) = 2(n + 1)Tn(x) + n + 1

n − 1
T ′

n−1(x),

(1 − x2)T ′
n(x) = n

2

(
Tn−1(x) − Tn+1(x)

)
.

With the derivative evaluated at the grid points, the inverse discrete Chebychev
transform is used to get back to the original space represented by uj .

Even if the cosine transform is fast, the direct discrete relation between the given
values uj and the computed derivatives wj = w(xj ) is sometimes used. This re-
lation is represented by a matrix S corresponding to F−1DF in the Fourier case.
After a little work we find that the elements sjn of S are defined by

sjn =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−(2N2 + 1)/6, j = n = 0,

−xj /(2(1 − x2
j )), j = n = 1,2, . . . ,N − 1,

(2N2 + 1)/6, j = n = N,

cj (−1)j+n/(cn(xj − xn)), j 	= n,

where

cj =
{

1, j = 1,2, . . . ,N − 1,

2, j = 0,N.

The distribution of the grid points is such that they cluster near the boundaries. This
may be an advantage if the true solution has boundary layers as we have seen above.
On the other hand, it is a disadvantage if the solution has no special features near
the boundaries. We are wasting grid points where they are not needed. However,
the clustering is there, and nothing can be done about it as long as we want the
interpolation and differentiation to be correct.
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There is also another disadvantage that follows from this clustering. The step size
�x near the boundaries is of the order 1/N2 and, if an explicit time discretization
is used, the step size �t in time must be kept of the order 1/N2 as well.

In several space dimensions and special geometries, there may be special types of
suitable functions. In Sect. 17.4 we discuss this for the case when the computational
domain is a sphere.



Part IV
Numerical Methods for Algebraic

Equations





Chapter 13
Numerical Solution of Nonlinear Equations

Numerical methods for differential equations naturally lead to equations or systems
of equations that require numerical solution methods. In fact, these equations are
most often the central part of the whole solution procedure, and they must there-
fore be solved as effectively as possible. In this chapter, we shall describe the basic
principles for the construction and analysis of such methods.

13.1 Scalar Nonlinear Equations

In Sect. 10.1 it was shown how certain types of numerical methods for ordinary dif-
ferential equations lead to algebraic equations that must be solved in each time step.
Linear scalar equations with only one unknown are trivial to solve, but nonlinear
equations are not. Only in very special cases can they be solved by direct methods
but, in general, iterative methods are required. We start by guessing a solution, and
then use a step by step algorithm to compute new and better approximations at each
step. We want to solve the equation f (x) = 0 for the unknown x, where we assume
that f (x) has a known algebraic form, and can be computed for any given x-value.
One difficulty is that in general there are many solutions. For example, we know that
the equation x2 − 1 = 0 has the two solutions x = 1 and x = −1. Often we are aim-
ing for just one solution, and we may have some rough idea about its location. We
choose an initial guess as accurately as we can, and then we hope that the algorithm
takes us to the right solution.

The most commonly used method is the classic Newton–Raphson method. The
essence of the method was first developed by Isaac Newton (1643–1727) and was
later described in a different way by Joseph Raphson (1678–1715). It can be derived
geometrically as demonstrated in Fig. 13.1.

We want to find the point x∗ where the curve f (x) passes through the x-axis.
Assume that we have an approximate solution xj and that we can compute f (xj ).
The figure shows the tangent to the curve at that point, and we recall that the slope
of the tangent is f ′(xj ). The tangent doesn’t deviate much from the curve in the
immediate neighborhood of xj and, if we are sufficiently close to the true solution,

B. Gustafsson, Fundamentals of Scientific Computing,
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Fig. 13.1
Newton–Raphson’s method

the intersection with the x-axis should be close to x∗. The intersection can be com-
puted, and this point is chosen as our next approximation xj+1. The slope is found
geometrically as f ′(xj ) = f (xj )/(xj − xj+1), which we rewrite as

xj+1 = xj − f (xj )

f ′(xj )
. (13.1)

Another way of deriving this formula is to use the Taylor expansion around a given
approximation xj . We have

0 = f (x∗) = f (xj ) + (x∗ − xj )f
′(xj ) + O

(|x∗ − xj |2
)
.

If the last term is disregarded, we get

x∗ ≈ xj − f (xj )

f ′(xj )

and, by substituting x∗ by xj+1, we have the formula (13.1).
The repeated use of this formula with the initial value x0 is the Newton–Raphson

method. If we have a good idea about the location of the solution, the method is very
efficient. As an example we take the equation x5 − 3x + 1 = 0, which was solved
by iteration in Sect. 1.1. Newton–Raphson’s method is

xj+1 = xj − x5
j − 3xj + 1

5x4 − 3
,

and with x0 = 1 it produces the values

x0 = 1.0000,

x1 = 1.5000,

x2 = 1.3165,

x3 = 1.2329,
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x4 = 1.2154,

x5 = 1.2146,

x6 = 1.2146,

i.e., we obtain the solution with 4 accurate decimals in five iterations. But wait
a minute! Looking back to the iteration in Sect. 1.1 we find that it produced the
solution x = 0.3347, and that with the same initial value x0 = 1. This is of course
no contradiction. Both values are correct solutions to the equation, after all there are
five different roots to choose from. We shall discuss this further below.

However, there is not always plain sailing with the Newton–Raphson method.
The function f (x) may not be as smooth as in our example and, furthermore, we
may not have a very good initial guess x0. In both cases the tangent in our figure
may not intersect the x-axis very close to the solution. Indeed, the new value xj+1
may actually be further away than the previous value xj , and the method does not
converge at all. Many software packages use a strategy which picks a large num-
ber of different initial values x0 with the hope that at least one of them is in the
right neighborhood, such that the iteration produces the right solution. There are
also other iterative methods that do not use the derivative of the function, which
sometimes is not known, or is difficult to compute.

The convergence analysis for iterative solvers is quite difficult for the general
case. The reason is that, if the initial guess is far from the true solution (or one of
the true solutions), the restrictions on the function f (x) are severe in order to get a
good idea about the behavior of the iterations. A nonlinear function has too much
freedom to change in the domain. But if we know that we are in the neighborhood
of the solution, it is possible to verify convergence. We assume that the iterative
formula is

xj+1 = g(xj ), j = 0,1, . . . . (13.2)

Each new approximation is obtained by using only one previous approximation. If
the original equation is f (x) = 0, there are of course many ways of rewriting it as
x = g(x), but it can always be done. A simple way is

x = x − f (x),

which obviously has the same solution. But there is no guarantee that the itera-
tion converges with this choice of g(x). The most general convergence result is the
following:

Suppose that |g′(x)| ≤ α < 1 everywhere in the interval I = {x : |x − x∗| ≤ d},
where x∗ = g(x∗). If x0 ∈ I , then the points xj generated by the iteration formula
(13.2) have the properties

• xj ∈ I, j = 0,1, . . . .

• xj → x∗ as j → ∞.
• There is no other solution in I .

The iteration process can be interpreted geometrically. The function y = g(x) and
the straight line y = x are drawn, and the intersection of the two (or one of the
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Fig. 13.2 Converging and diverging solutions of x = g(x)

intersections) is the solution. The initial guess is x0 and the point (x0, g(x0)) is
found. A horizontal line through that point intersects the line y = x. This gives the
new point x1 = g(x0), and the process is then repeated, showing either convergence
or divergence. Figure 13.2 shows the iteration process for two cases with |g′| < 1
and two cases with |g′| > 1.

When solving time dependent differential equations, Newton–Raphson’s method
is perfect in the sense that a good initial value is known in almost all cases. When
solving for the solution un+1 at the new time level, we simply use un as the initial
guess.

Let us finally take a closer look at the example above, where we arrived at differ-
ent solutions with two different methods. Figure 13.3 shows the first iteration with
the Newton–Raphson method to the left, and the method

xj+1 = g(xj ),

g(x) = x5

3
+ 1

3
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Fig. 13.3 Two iteration methods for f (x) = x5 − 3x + 1 = 0

to the right. There are 3 real roots, and the figure shows the two larger ones x∗
L

and x∗
R . In the first case the tangent at x = x0 = 1 cuts the x-axis to the right of x0

causing the subsequent iterations to converge to x∗
R , while in the second case the

iteration turns to the left and converges to the left alternative x∗
L.

Exercise 13.1 Write a computer program for the iteration method (13.2) and for the
Newton–Raphson method. Use different initial values x0, and try to get the roots of
the equation x5 − 3x + 1 = 0 by both methods. Use also complex initial values to
find the complex roots.

Exercise 13.2 The Newton–Raphson method is a special case of the general itera-
tion formula (13.2). Assume that f ′(x∗) and f ′′(x∗) are nonzero, where x∗ is the
solution. Prove that the convergence condition on g(x) is satisfied if the approxima-
tion xj is sufficiently close to x∗.

Exercise 13.3 The Newton–Raphson method has quadratic convergence, which
means that |xj+1 − xj | ≤ c|xj − xj−1|2, where c is a constant. Prove this property
by using the Taylor expansion of f (xj ) around xj−1 and then using the equality
xj − xj−1 = −f (xj−1)/f

′(xj−1).

13.2 Vector Equations

So far we have treated scalar equations, i.e., f (x) is a single number for any given
number x. In most applications, we are dealing with systems of equations. An im-
plicit difference method for a system of ODE gives rise to a system of equations
to be solved for each time step. For example, the system (10.3) is obtained for the
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backward Euler method. In order to simplify the notation, we introduce the vector v
by

v =

⎡

⎢⎢⎢⎣

v1
v2
...

vN

⎤

⎥⎥⎥⎦ ,

and write the system in the standard form corresponding to the scalar case

f(v) = 0,

where the vector f also has N elements. When trying to write down the Newton–
Raphson method, we encounter a problem. We get something that looks like f′(v)

in the denominator, and what is that? Not only do we have many independent vari-
ables vj , but also many elements fj in the vector f.

We go back to the basis for the Newton–Raphson’ method, which is the Taylor
expansion. Assuming that v∗ is the true solution and that v is an approximate so-
lution that we want to improve, we have according to Sect. 4.2 for each element
of f

0 = fj (v∗) = fj (v) +
N∑

k=1

∂fj

∂vk

(x)(v∗
k − vk) + O(‖v∗ − v‖2), j = 1,2, . . . ,N.

Here ‖v∗ −v‖ is any reasonable norm, for example the usual Euclidean vector norm.
We write the expansion as a vector equation

0 = f(v∗) = f(v) + ∂f
∂v

(v)(v∗ − v) + O(‖v∗ − v‖2),

where ∂f/∂v is an N × N matrix. It is called the Jacobian of the vector f, and we
give it the notation f ′:

f ′(v) =

⎡

⎢⎢⎢⎢⎢⎢⎣

∂f1
∂v1

∂f1
∂v2

. . .
∂f1
∂vN

∂f2
∂v1

∂f2
∂v2

. . .
∂f2
∂vN

...
. . .

...

∂fN

∂v1

∂fN

∂v2
. . .

∂fN

∂vN

⎤

⎥⎥⎥⎥⎥⎥⎦
.

When disregarding the squared terms, we get a new approximation ṽ of v∗ by

0 = f(v) + ∂f
∂v

(v)(ṽ − v).

In order to avoid confusion with the notation vn
j representing a vector at a grid point

(xj , tn), we shall use the notation v(n) for the approximation at iteration number n

in an iterative scheme. The new approximation is obtained by

v(n+1) = v(n) − (f ′)−1(v(n))f(v(n)).
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This is the Newton–Raphson formula for nonlinear vector equations. For implicit
methods for differential equations, the vector v∗ represents the numerical solution
un+1 at the fixed time level tn+1.

The inverse (f ′)−1 is almost always a dense matrix and, even if it could be com-
puted, it should not be stored. Instead we solve the system of equations

f ′(v(n))(v(n+1) − v(n)) = −f(v(n))

for the difference between the new and the old approximation. The Jacobian f ′ may
be difficult or impossible to derive, but just as for the scalar case there are many
other methods that do not use the Jacobian. The most general iteration formula is

v(n+1) = g(v(n)),

where g has N components. For the scalar case we stated a sufficient condition for
convergence and, as is often the case in numerical analysis, the role of the scalar
derivative is taken over by the eigenvalues of the corresponding matrix, which is the
Jacobian. Under certain conditions, it can be shown that a sufficient condition for
convergence is

ρ
(
g′(v)

)
< 1

near the solution v∗, where ρ(g′) is the spectral radius of the matrix. However, one
should be aware that, just as it may be difficult to derive the Jacobian f ′, it may be
difficult to estimate g′.

For any type of iterative method, the systems arising for PDE applications are
large but sparse and linear. Again we have broken down a nonlinear problem to a
series of linear ones, which is so typical for computational mathematics. In the next
chapter we shall discuss methods for linear systems.

Exercise 13.4 Write down the Newton–Raphson method for the system

u + d(u2 − v) = 0,

v + d(v3 − u) = 0,
(13.3)

where d is a constant.

Exercise 13.5 Write a computer program for the Newton–Raphson method applied
to general 2 × 2-systems f(v) = 0, where the vector f and the Jacobian ∂f/∂v are
given in separate functions. Use the program to solve (13.3).

Exercise 13.6 Consider the Euler backward difference method (10.13) for the heat
equation ∂u/∂t = ∂2u/∂x2. For the nonlinear equation ∂u/∂t = u∂2u/∂x2 the cor-
responding approximation is

un+1
j = un

j + �t

�x2 un+1
j (un+1

j−1 − 2un+1
j + un+1

j+1).

Write down the system to be solved for the unknowns un+1
j , j = 1,2, . . . ,N − 1,

in each time step, and derive the Newton–Raphson method for solving it.





Chapter 14
Linear Systems of Equations

Implicit methods for initial value problems for linear systems of ODE or PDE lead
to linear algebraic systems in each time step. For linear boundary value problems we
arrive at one single system to solve. If the differential equations are nonlinear we saw
in the previous chapter, that the iterative Newton–Raphson method leads to linear
systems in each iteration. Apparently, the numerical solution of large linear systems
of equations is a key issue in computational mathematics. We shall demonstrate how
to solve them.

There are two different types of solution methods. Direct methods are based on
a scheme that computes the solution in a fixed number of steps that depends on
the number of unknowns. Iterative methods keep iterating with an initial guess as
starting point, and hopefully provide accurate solutions within a reasonable number
of iterations.

However, independent of the solution method, the condition of the system plays
an important role, and we shall first discuss how it effects the quality of the com-
puted solution.

14.1 The Condition of a System

Not all systems of equations have a unique solution as we saw in Sect. 3.3, where
the system

x + 2y = a,

2x + 4y = 6

was discussed. The coefficient matrix is singular, and there is a solution only if
a = 3. But even in that case we are in trouble, since there are infinitely many solu-
tions. In order to make sure that there is a unique solution, we must change the ma-
trix such that it becomes nonsingular. However, as usual, when dealing with numer-
ical computations, the situation is not as clearcut. We change the system slightly to

x + 2.01y = 3,

2x + 4y = 6.

B. Gustafsson, Fundamentals of Scientific Computing,
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The coefficient matrix is no longer singular, and we can write down the unique
solution x = 3, y = 0. We now perturb the right hand side a little as well:

x + 2.01y = 3.01,

2x + 4y = 6.

Perhaps somewhat surprised we now find the unique solution x = 1, y = 1, i.e.,
it has changed completely. The change is quite large compared to the very small
change in the right hand side. The reason is that coefficient matrix

A = [a1 a2] =
[

1 2.01
2 4

]
(14.1)

is almost singular in the sense that

a1 − 0.5a2 =
[

0.01
0

]
.

Despite the fact that the coefficients on the left hand side are not small, the combina-
tion of the column vectors is almost the zero vector. This means that the determinant
is small; we have Det(A) = −0.02. We encounter here another case, where the prob-
lem is not well posed, sometimes also called an ill conditioned problem. A small
perturbation in the given data gives rise to a large perturbation in the solution. When
the problem is such already before any numerical methods are applied, we must be
extra careful when designing the algorithms.

In Chap. 8 a more realistic ill conditioned example was mentioned. If standard
polynomials are used for least square approximation, then the matrix that arises for
finding the coefficients in the polynomial becomes almost singular, and the situation
becomes worse when the degree of the polynomials increases. One way of avoiding
this difficulty is to use orthogonal polynomials as basis functions.

The conclusion from the example above is that any linear system of equations
should first be analyzed and, if it turns out that the system is ill conditioned, we
must expect trouble no matter what numerical method we come up with.

Let us formally derive an estimate of the condition. Given the system Ax = b,
we perturb the right hand side by a small vector δb such that we get a perturbation
δx in the solution:

A(x + δx) = b + δb.

From this we get

δx = A−1δb,

which leads to

‖δx‖ = ‖A−1δb‖ ≤ ‖A−1‖ ‖δb‖.
This is an estimate of the absolute error. Since the size depends on the scaling of
the quantities, for example measuring in meters instead of millimeters, it is better to
estimate the relative error ‖δx‖/‖δx‖. We have

‖b‖ = ‖Ax‖ ≤ ‖A‖‖x‖,
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or equivalently

1

‖x‖ ≤ ‖A‖
‖b‖ .

Finally we get

‖δx‖
‖x‖ ≤ ‖A‖‖A−1‖‖δb‖

‖b‖ . (14.2)

We have here a relation that connects the error of the solution to the error in the data.
The constant involved is the condition number

cond(A) = ‖A‖‖A−1‖
encountered earlier when dealing with differential equations. If A is an Hermitian
matrix (symmetric in the real case), it was shown in Sect. 3.4 that the norm can be
replaced by the maximal eigenvalue. The condition number is in this case

cond(A) = maxj |λj |
minj |λj | . (14.3)

Exercise 14.1 Compute the condition number cond(A) for the matrix (14.1).

Exercise 14.2 Verify that the perturbation δx in the solution of the example above
satisfies the estimate (14.2).

14.2 Direct Methods

Assuming that we have a well conditioned system, we shall now see how it can be
solved. Here, as well as for many other problems, we find numerical algorithms that
are based on a technique invented by some well known mathematician who lived
and worked a long time ago. In the case of linear systems of equations it is Carl
Friedrich Gauss (1777–1855). In order to illustrate his general technique, let us start
with a simple example from school mathematics. We want to find the solution x, y

to the system

x + y = 2,

2x − y = −5.
(14.4)

We first multiply the second equation by 0.5, and then subtract it from the first one.
In this way we get a new equation where x is no longer present. We keep the first
equation and get the new system

x + y = 2,

1.5y = 4.5.

The second equation is easily solved, and we substitute the solution y = 3 into the
first equation, which is solved for x. The final solution is obtained as

x = −1,

y = 3.
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The Gauss elimination is just a generalization of this technique to larger systems. We
call the unknowns x1, x2, . . . , xN , and illustrate the algorithm for the case N = 8.
The system is written in the symbolic form

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

× × × × × × × ×
× × × × × × × ×
× × × × × × × ×
× × × × × × × ×
× × × × × × × ×
× × × × × × × ×
× × × × × × × ×
× × × × × × × ×

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

×
×
×
×
×
×
×
×

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

×
×
×
×
×
×
×
×

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where each × represents one term in the system. The first two equations are treated
as in the example above. We multiply the second equation with a proper number
such that the coefficient of the first unknown x1 is the same in the first two equa-
tions. After subtraction of the second equation, we get a new equation where x1 is
eliminated, and it replaces the original second equation. Next we carry out exactly
the same procedure for the third equation together with the first one, and obtain a
new equation, where x1 is eliminated. By continuing to the end, we get a new system
that has the form

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

× × × × × × × ×
× × × × × × ×
× × × × × × ×
× × × × × × ×
× × × × × × ×
× × × × × × ×
× × × × × × ×
× × × × × × ×

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

×
×
×
×
×
×
×
×

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

×
×
×
×
×
×
×
×

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (14.5)

We now leave the first equation as it is, and start over with the remaining system
with N − 1 equations. The first two equations in that system are used to eliminate
x2, and the procedure continues as above. The result is a system of the form

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

× × × × × × × ×
× × × × × × ×

× × × × × ×
× × × × × ×
× × × × × ×
× × × × × ×
× × × × × ×
× × × × × ×

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

×
×
×
×
×
×
×
×

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

×
×
×
×
×
×
×
×

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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We now continue with the next subsystem with N − 2 equations, and continue until
we have a triangular system of the form

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

× × × × × × × ×
× × × × × × ×

× × × × × ×
× × × × ×

× × × ×
× × ×

× ×
×

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

×
×
×
×
×
×
×
×

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

×
×
×
×
×
×
×
×

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The last equation is now solved for xN , and this value is substituted into the second
equation from the bottom, which gives the solution xN−1. We continue like this
until we have obtained the values for all the unknowns. This procedure of solving
the triangular system is called back substitution.

The Gauss elimination for solution of a system Ax = b can be seen as a factor-
ization of the coefficient matrix A = LR, where L is lower triangular and R is upper
triangular. The reduction to a triangular system is described by the process

LRx = b → Rx = L−1b.

With y = L−1b, the back substitution is the process

Rx = y → x = R−1y.

There are possible obstacles in Gauss elimination. For example, x1 may not
be present in the first equation, and then the procedure cannot even be started.
This can of course also happen later in the process, such that the first unknown
is missing in the first equation of a subsystem, causing the elimination pro-
cedure to break down. The remedy for this difficulty is to reorder the equa-
tions, such that we always have the necessary variable present. Actually, it can
be shown that the best numerical results are obtained if we pick the equation
with the largest coefficient of the first unknown as the upper one. This is called
row pivoting. One can also use column pivoting, where the largest coefficient in
the horizontal direction is chosen. This requires a reordering of the unknowns,
not of the equations. Complete pivoting as opposed to partial pivoting means
that we look for the largest coefficient in the whole submatrix that remains for
elimination of unknowns. This requires reordering of equations and unknowns
alike.

The systems of equations arising from discretization of partial differential equa-
tions are very large. With N unknowns, one can easily count the number of arith-
metic operations W for a complete solution, which is approximately N3/3. A realis-
tic problem may have 10 million unknowns, and in that case we have W ≈ 3.3 ·1020,
which is an enormous number. The maximal speed of a high performance computer
of today is of the order 1014 flops, i.e., it can carry out 1014 floating point arith-
metic operations per second (the fastest supercomputer is about 20 times faster, but
is terribly expensive, see Sect. 18.3). This means that the solution of one such sys-
tem may take 38 days if the computer can work all the time at maximal speed,
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and this time is of course unacceptable. Furthermore, the high performance com-
puters have a massively parallel architecture, which means that all the proces-
sors must work simultaneously for maximum speed. This is not possible for the
Gauss elimination procedure, since it has a serial structure which is hard to paral-
lelize.

A special type of direct method is to compute the inverse A−1 and then use a
matrix/vector multiplication to obtain x = A−1b. However, the number of arithmetic
operations required for inversion of a matrix is proportional to N3, i.e., it is of the
same order as Gauss elimination, and with a larger constant multiplying N3. Only
if the system is to be solved for a large number of different right hand sides b could
the explicit computation of the inverse be worthwhile.

Even if direct methods are expensive for very large problems, they are still useful
when going down in size. Furthermore, they have been made very effective over
the years in the sense that the algorithms are almost optimal within the theoretical
bounds for direct methods. One example is the general LAPACK system that is
particularly effective on parallel computers. It can not only solve linear systems, but
also do various other matrix/vector operations, for example eigenvalue computation.
For more information, see http://www.netlib.org/lapack/.

Exercise 14.3 Verify the operation count ≈ N3/3 for Gauss elimination.

Exercise 14.4 For a large system Ax = b to be solved for M different right hand
side vectors b, it may be worthwhile to store the triangular matrices L and R, and
then solve the two systems Ly = b, Rx = y for each vector b. Estimate the compu-
tational gain when using this procedure instead of doing the full Gauss elimination
for each b.

14.3 Iterative Methods

One conclusion to be made from the previous section describing direct methods, is
that we need some other type of numerical method, and we turn to iterative methods.
We have already discussed the Newton–Raphson iterative method for the solution
of nonlinear equations, and the basic idea is the same here. We start from an ini-
tial guess, and then compute a better value by some algorithm that doesn’t require
too much work. The development of fast iterative methods has been an intensive
research area during the last decades, and it is still going on. We shall first illustrate
the simplest iterative method that was developed by the German mathematician Carl
Jacobi (1804–1851).

We assume that all the diagonal elements in the coefficient matrix A are nonzero,
and leave the diagonal terms on the left hand side of the system. All the other terms
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are moved to the right hand side:
⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

×
×

×
×

×
×

×
×

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

×
×
×
×
×
×
×
×

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

× × × × × × ×
× × × × × × ×
× × × × × × ×
× × × × × × ×
× × × × × × ×
× × × × × × ×
× × × × × × ×
× × × × × × ×

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

×
×
×
×
×
×
×
×

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

×
×
×
×
×
×
×
×

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Let us now define the method in mathematical terms. If D is the diagonal matrix
containing the diagonal of A and zeros elsewhere, we can write the matrix as A =
D − B . With an initial vector x(0) given for the general case, the Jacobi method is
then defined by

x(n+1) = D−1Bx(n) + D−1b, n = 0,1, . . . . (14.6)

This is a very simple algorithm, since the computation on the right hand side con-
tains only additions and multiplications (the matrix D−1B and the vector D−1b are
stored once and for all). If the matrix B is dense, i.e., most of the coefficients are
nonzero, then each iteration requires approximately 2N2 arithmetic operations. If
the procedure converges within a small number of iterations, then we have a much
faster algorithm compared to Gauss elimination. However, discretizations of partial
differential equations lead to sparse matrices. If for example, there are 5 nonzero co-
efficients in each original equation, each iteration requires 8N arithmetic operations
and, if the iterations converge rapidly to the right solution, we have a fast method
even for very large systems.

The Jacobi method is a special form of the general iterative formula

x(n+1) = Mx(n) + f, n = 0,1, . . . , (14.7)

where f is a given vector. If the iterations converge, the solution is x = (I − M)−1f.
But how do we make sure that they converge?

Let us first assume that the matrix M has a full set of linearly independent eigen-
vectors that form the columns of the matrix T . By the arguments put forward in
Sect. 3.3, we know that the inverse of T exists, and we multiply the iteration for-
mula from the left by T −1:

T −1x(n+1) = T −1MT T −1x(n) + T −1f, n = 0,1, . . . .

Here we have squeezed in the identity matrix T T −1 after M . By introducing the
new vectors y = T −1x and g = T −1f, and recalling the diagonalization procedure
from Sect. 3.4, we get the new formula

y(n+1) = �y(n) + g, n = 0,1, . . . ,

where � is a diagonal matrix containing the eigenvalues of M . After m iterations,
we have the formula

y(m) = �my(0) +
m−1∑

n=0

�ng. (14.8)



220 14 Linear Systems of Equations

We note that

(I − �)

m−1∑

n=0

�n = I − �m,

i.e.,

m−1∑

n=0

�n = (I − �)−1(I − �m).

We assume that the eigenvalues λj satisfy

|λj | < 1, j = 1,2, . . . ,N,

i.e., ρ(M) < 1. The eigenvalues of I − M are 1 − λj �= 0, which means that I − M

is nonsingular, and consequently the matrix (I − M)−1 exists.
It is now time to let m tend to infinity. The iteration formula (14.8) is written as

y(m) = �(m)y(0) + (I − �)−1(I − �m)g.

The matrices in this formula are all diagonal, and in the limit we get

y(∞) = 0 + (I − �)−1(I − 0)g = (I − �)−1g.

After multiplication from the left by T (I − �) we get

T y(∞) − T �T −1T y(∞) = T g,

i.e.,

x(∞) − Mx(∞) = f,

which gives the correct solution

x = (I − M)−1f.

If the matrix M doesn’t have a full set of eigenvectors, one can still show that the
eigenvalue condition is sufficient for convergence, but it takes a little extra effort to
prove it. Indeed one can show that the condition is also necessary for convergence.

The magnitude of the eigenvalues is often difficult to estimate, and other suffi-
cient convergence conditions are sometimes applied. For the Jacobi method there is
a very simple criterion: it converges if the coefficient matrix is diagonally dominant.
By this we mean that the elements satisfy

|ajj | >
∑

k �=j

|ajk|, j = 1,2, . . . ,N.

The more the diagonal elements dominate the other elements in the same row, the
faster is the convergence.

For the general iteration formula, a direct measure of the convergence rate is
obtained by comparing the error

‖e(n+1)‖ = ‖x(n+1) − x(∞)‖
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with the previous one

‖e(n)‖ = ‖x(n) − x(∞)‖.
By subtracting the iteration formula from the corresponding equation for x(∞) we
get rid of the given right hand side vector, and we have the homogeneous system

e(n+1) = Me(n), n = 0,1, . . . .

Without restriction we can assume that the diagonalization has already been done.
The convergence rate is determined by the component in e that corresponds to the
largest eigenvalue of M , which means that ρ(M) should be small.

Let us go back to the Jacobi method and see how it works for the boundary value
problem

∂2u

∂x2 = F(x), 0 ≤ x ≤ 1,

u(0) = 0,

u(1) = 0,

with the standard difference approximation

uj−1 − 2uj + uj+1 = �x2F(xj ), j = 1,2, . . . ,N,

u0 = 0,

uN+1 = 0,

where the step size is �x = 1/(N + 1). The boundary values can be eliminated, and
with

u =

⎡

⎢⎢⎢⎣

u1
u2
...

uN

⎤

⎥⎥⎥⎦ , b = �x2

⎡

⎢⎢⎢⎣

F1
F2
...

FN

⎤

⎥⎥⎥⎦ , A =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

−2 1
1 −2 1

1 −2 1
. . .

. . .
. . .

−2 1
1 −2

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

,

the system is

Au = b.

With A = D − B , where D is the diagonal of A, the Jacobi method

u(n+1) = D−1Bu(n) + D−1b, n = 0,1, . . .

can be written in the form

u(n+1) = u(n) − D−1(Au(n) − b), n = 0,1, . . . .

The convergence rate is determined by the eigenvalues of the iteration matrix M =
I − D−1A. By using the usual trigonometric formulas and the ansatz

vkj = sin(kπxj ), k = 1,2, . . . ,N,
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for the elements vkj of the eigenvectors vk of A, it is easy to show that the eigenval-
ues are

μk = −4 sin2 kπ�x

2
, k = 1,2, . . . ,N.

This means that the iteration matrix M has the eigenvalues

λk = 1 − 2 sin2 kπ�x

2
, k = 1,2, . . . ,N.

The spectral radius never exceeds one, but there are two critical eigenvalues where
it almost does, and that is for k = 1 and k = N . For k = 1 we have

λ1 = 1 − 2 sin2 π�x

2
= 1 − (π�x)2

2
+ O(�x4) ≈ 1 − π2

2
�x2,

which shows that for a fine grid the eigenvalue becomes very close to one. A similar
analysis for k = N shows the same thing for the eigenvalue λN , and the conclusion
is that the Jacobi method converges very slowly for this example.

There is a very natural modification of the Jacobi method, when looking for faster
convergence. When the first vector element x

(n+1)
1 has been computed, why not use

it in the computation of next element x
(n+1)
2 ? And then continue using both of the

first elements in the next computation, and so on. Starting from the formula (14.7),
we partition the matrix M into its lower triangular and upper triangular parts:

M = L + U =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

×
× ×
× × ×
× × × ×
× × × × ×
× × × × × ×
× × × × × × ×

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

×
×
×
×
×
×
×
×

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

× × × × × × ×
× × × × × ×

× × × × ×
× × × ×

× × ×
× ×

×

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

×
×
×
×
×
×
×
×

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(Recall that the diagonal of M is zero.) The iteration formula then is

(I − L)x(n+1) = Ux(n) + f, n = 0,1, . . . . (14.9)

This method is called the Gauss–Seidel method after Gauss and the German math-
ematician and astronomer Philipp Ludwig von Seidel (1821–1896).

After the introduction of modern computers, the development of fast iterative
methods got a restart (like many other areas of numerical analysis). The most com-
monly used methods today are based on the so-called conjugate gradient method,
and we shall describe the underlying principle here.

The original conjugate gradient method was presented in a famous paper by Mag-
nus Hestenes and Aduard Stiefel in 1952. The system is Ax = b, where A is a sym-
metric positive definite matrix. We consider first the quadratic form

f (x) = 1

2
xT Ax − bT x
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for all vectors x. For N = 2 we have

f (x) = 1

2

(
x1(a11x1 + a12x2) + x2(a21x1 + a22x2)

) − (b1x1 + b2x2).

Looking for the minimum value of f (x), we put the partial derivatives equal to zero
(gradf = 0). Recalling the symmetry condition a21 = a12, we get

∂f

∂x1
= a11x1 + a12x2 − b1 = 0,

∂f

∂x2
= a12x1 + a22x2 − b2 = 0.

But this can be written in the form

Ax − b = 0,

and this equation holds also in the N -dimensional space. It can be shown that
there is no other local minimum of f (x). (In 1D this is easily seen since f (x) =
Ax2/2 − bx.) Accordingly, finding the solution of Ax = b is equivalent to minimiz-
ing f (x). There are many minimization methods, and the conjugate gradient method
is one of them.

Two vectors u and v are orthogonal if (u,v) = uT v = 0. If the matrix A is sym-
metric and positive definite, one can generalize the orthogonality concept and re-
quire uT Au = 0. We say that the vectors are orthogonal with respect to this scalar
product, or that they are conjugate. The conditions on A make sure that the general-
ized squared norm uT Au = ‖u‖2

A is positive.
The minimization will be constructed as a search procedure, and we shall search

along certain directions that are mutually conjugate. Having an initial guess x(0), the
question is now how to choose these conjugate directions. When choosing the first
one, there is no other direction to relate to, and this gives us a certain freedom in the
choice. There is a minimization method called the method of steepest descent, which
means that, at any step in the iterative procedure, we choose the direction which
points along the steepest downhill slope, i.e., in the direction of −gradf (x(0)) (see
Sect. 2.3.1). But this is exactly the residual

r(0) = b − Ax(0),

and we choose the initial direction d(0) as

d(0) = r(0).

Let us now assume that at a certain point in the stepwise procedure we have an
approximate solution point x(n), a residual r(n) and a direction d(n). The question is
how to choose the next point

x(n+1) = x(n) + αd(n).

It is quite natural to choose the parameter α such that f (x(n+1)) becomes as small
as possible. This point is obtained by differentiating

f (x(n) + αd(n)) = 1

2
(x(n) + αd(n))T A(x(n) + αd(n)) − bT (x(n) + αd(n))
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with respect to α, and equating it to zero:

(d(n))T A(x(n) + αd(n)) − bT d(n) = 0.

This gives

α = α(n) = (d(n))T r(n)

(d(n))T Ad(n)
.

We now have a new approximative solution point x(n+1) and a new residual

r(n+1) = b − Ax(n+1).

For n = 0, the procedure is identical to the steepest descent method, but the choice
of a new direction d(n+1) makes it different. We require that the new direction is
conjugate to the previous ones. Picking the latest direction d(n) and using the ansatz

d(n+1) = r(n+1) + βd(n)

gives the condition

(d(n))T A(r(n+1) + βd(n)) = 0,

resulting in the choice

β = β(n) = − (d(n))T Ar(n+1)

(d(n))T Ad(n)
.

It can be shown that all directions d(j), j = 0,1, . . . , n + 1, become mutually con-
jugate by this choice.

The full iteration step is now complete. We have a new solution point x(n+1),
a new solution residual r(n+1) and a new direction d(n+1):

x(n+1) = x(n) − (d(n))T r(n)

(d(n))T Ad(n)
d(n),

r(n+1) = b − Ax(n+1),

d(n+1) = r(n+1) − (d(n))T Ar(n+1)

(d(n))T Ad(n)
d(n).

This is called the conjugate gradient method.
We consider next the example

⎡

⎣
2 −1 0
−1 2 −1
0 −1 2

⎤

⎦

⎡

⎣
x1
x2
x3

⎤

⎦ =
⎡

⎣
1
1
1

⎤

⎦ ,

and apply the conjugate gradient method. It turns out that with x(0) = [1 1 1]T , the
exact solution x = [1.5 2.0 1.5]T is obtained after only 3 steps. Furthermore, no
matter what initial solution x(0) we choose, the final result is the same: the exact
solution is obtained after three steps (sometimes even fewer). This can hardly be a
coincidence, and we shall see why it is not.
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Fig. 14.1 The conjugate
gradient method for N = 2

One can show that not only are all directions mutually conjugate, but also that all
residuals are mutually orthogonal:

(r(j))T r(k) = 0, j �= k.

This leads to a very interesting observation. In an N -dimensional space, there can
be only N mutually orthogonal vectors. Therefore there can be only N nonzero
residuals that are generated by the conjugate gradient procedure, and the conclusion
is that after at most N steps we have a solution x(n) that solves the system Ax(n) = b
exactly. Figure 14.1 shows how the procedure ends after two steps when N = 2. The
dashed trail shows how the basic steepest descent method would handle the iterative
procedure for the same initial point x(0).

So what have we achieved with the conjugate gradient algorithm? Just another
direct method for solving a system of linear equations? We saw that Gauss elimina-
tion requires O(N3) arithmetic operations. For the conjugate direction method, the
matrix/vector multiplication carried out for each step requires O(N2) operations,
and we take N steps. This means that here we also need O(N3) operations. For
sparse matrices, the count goes down but, compared to Gauss elimination, we still
don’t gain much, if anything. However, something interesting happens here.

At the n-th iteration we would like to know how small the error ‖x − x(n)‖ is
compared to the initial error ‖x − x(0)‖. By a quite straightforward analysis we find
that the space spanned by the first n directions d(n) is equivalent to the so called
Krylov space Kn spanned by the vectors

Kn = {r(0), Ar(0), A2r
(0)

, . . . , An−1r
(0)}.

Furthermore, if we consider the least square problem of minimizing ‖x − x(n)‖ over
the space Kn, the solution is x(n) − x(0). This leads to the conclusion that the initial
error is reduced by a factor ε in

n ≥ 1

2

√
cond(A) log

2

ε

iterations. We recall from Sect. 3.4 that for symmetric matrices, the condition num-
ber is the ratio between the maximal and minimal eigenvalues. For PDE discretiza-
tions we typically have cond(A) = O(N), where N is very large, and the gain from
O(N) iterations to O(

√
N) operations is significant.

As a simple example we consider the boundary value problem

−d2u

dx2 + au = F(x), 0 ≤ x ≤ 1,

u(0) = 0,

u(1) = 0,
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Fig. 14.2 The residual as a
function of the number of
iterations

and the standard three point difference approximation

−uj−1 + 2uj − uj+1 + a�x2uj = �x2F(xj ), j = 1,2, . . . ,N,

u0 = 0,

uN+1 = 0

(14.10)

with (N + 1)�x = 1. Figure 14.2 shows the norm of the residual ‖b − Ax(n)‖ as
a function of n for the conjugate gradient method and N = 160. Obviously, the
iterations can be stopped well before the theoretical end; how early depends on the
required accuracy.

Considering the conjugate gradient method as an iterative method was a real
breakthrough when it was invented. However, another surprise soon came up. It
turned out that computations with the new method often went completely wrong,
and the true solution was not obtained, not even after the full cycle with N itera-
tions. The theory was not wrong, but it assumed exact arithmetic. On a computer we
have to deal with rounding errors in each operation, and the method showed great
sensitivity to these. In fact it is unstable in the sense that small perturbations cause
increasingly large errors later in the computation.

The method was soon modified such that the operations are carried out in a dif-
ferent order leading to stable algorithms. Gene Golub (1932–2007) was one of the
main players here, and there is today a large number of different versions of the con-
jugate gradient methods, also for other systems where the matrix A is not symmetric
and positive definite. For a survey, see [7].

Exercise 14.5 Consider the system

2x + y = 2,

x − 3y = −2.5.

(a) Derive the matrix M in the iteration formula (14.7) for the Jacobi method, and
compute the spectral radius ρ(M).
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(b) The same problem as (a), but now for the Gauss–Seidel method. Compare with
ρ(M) for the Jacobi method.

14.4 Preconditioning

The efficiency of most numerical methods depends on the type of problem. We have
seen how the number of iterations for a given method depends on certain proper-
ties of the equations. A key concept is then various types of transformations. Before
applying the numerical method, we try to transform the problem so that it fits the
optimal conditions. For linear systems of equations, we saw above that the conver-
gence rate for the conjugate gradient method is determined by the condition number
of the coefficient matrix. Therefore, if it is possible, it makes sense to modify the
system such that the condition number goes down. This is called preconditioning.

Let M be a nonsingular matrix with inverse M−1. The original system

Ax = b

is premultiplied by M−1, giving the new system

M−1Ax = M−1b.

The solution of this system is obviously the same as for the original one. The idea
is now to choose M such that the new matrix M−1A has better properties when it
comes to the convergence rate of the iterative method. The choice M = A is optimal
in the sense that the solution is obtained without any iteration at all. But finding
M−1 is of course equivalent to solving the original system, and we have achieved
nothing. We need a matrix M such that any system My = c is easy to solve, but at
the same time changes the properties of A in a favorable way from a convergence
point of view. This is a balancing act, since the two criteria usually work against
each other. The survey article [2] gives a good overview of various techniques.

14.5 Multigrid Methods

In the seventies a new type of solution method for linear systems emerged as an al-
ternative to traditional methods. It was originally constructed for systems that arise
from finite difference methods for boundary value problems, but has later been gen-
eralized to other types of system. It is today one of the most frequently used meth-
ods, and under certain conditions it is the fastest method available.

We illustrate it here for the standard model problem (14.10) which we write as

Au = b,

where u is the vector with elements u1, u2, . . . , uN and bj = �x2F(xj ). Here
�x = 1/(N + 1), and for convenience we shall switch notation: �x → h. Since
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we are going to use different grids, we also introduce the notation uh for the solu-
tion vector on the original grid, and Ah for the corresponding N × N matrix.

Let us first make an observation. If v is an approximate solution, r = b − Av is
the residual. Since v = A−1(b − r), the true solution can formally be obtained in
two steps:

Aw = r,
u = v + w.

The fundamental multigrid idea is to compute v by one or more iterations on the
original fine grid Gh, and then solve the first of the equations above on a coarser
grid. At a first glance it looks like a bad idea to complicate things in this way, but it
turns out that the convergence rate may be improved dramatically. We shall explain
why.

The multigrid method needs an iterative method. In Sect. 14.3 the Jacobi iter-
ative method was described. Here we shall use a slightly generalized version by
introducing a parameter θ , and change the formula to

u(n+1) = u(n) − θD−1(Au(n) − b), n = 0,1, . . . .

The method is called the damped Jacobi method, and it allows for a different weight
of the correction term. The eigenvalues of the iteration matrix M = I − θD−1A are
obtained in exactly the same way as for the original method, and they are for our
example

λk = 1 − 2θ sin2 kπh

2
, k = 1,2, . . . ,N.

Convergence requires that 0 ≤ θ ≤ 1. The convergence rate on a fixed grid is very
poor for all these values of θ . In fact the fastest convergence based on the largest
eigenvalue magnitude is obtained with the original choice θ = 1. It seems that the
Jacobi method is a bad choice, but we shall see that it works much better in the
multigrid setting.

We take a closer look at the convergence properties as a function of ξ = kπh

for 0 < ξ < π . Each eigenvalue λk corresponds to an eigenvector with elements
sin kπhj, j = 1,2, . . . ,N . For increasing k, the eigenvector can be seen as a grid
function vj (k) that takes a more oscillatory behavior, and for k = N it is es-
sentially the function (−1)j . It is then interesting to see what the convergence
properties are for different wave numbers k. Figure 14.3 shows the eigenvalues
λ = λ(ξ).

No matter how the parameter θ is chosen, the convergence rate for small ξ is
poor. However, if we look at the upper half of the ξ -interval, the choice θ = 0.5
gives a very good convergence rate, since

max
π/2≤ξ≤π

|λ(ξ)| = 0.5.

This means that the oscillatory part of the error will be eliminated quickly, while the
smooth part will essentially stay untouched.
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Fig. 14.3 Eigenvalues
λ = λ(ξ) of the damped
Jacobi iteration, θ = 1 (—),
θ = 0.5 (−−)

The trick is now to represent the remaining smooth part on a coarser grid by
doubling the step size. In one dimension as we have here, the system becomes half
as big, and a solution can be obtained with much less work. In several dimensions
this effect becomes much more pronounced. In 2D, we gain a factor 4 in system
size, in 3D a factor 8. Furthermore there is another effect. The highest possible wave
number on the fine grid is k ≈ 1/h, while it is k ≈ 1/(2h) on the twice as coarse
grid. This means that the good convergence properties of the iterative method are
converted to lower wave numbers on the coarse grid. This means in turn that the
iterative method can be expected to converge faster.

Obviously, we need to handle transfers between nonidentical grids. It is most
convenient to double the grid size such that the coarse grid is G2h. Therefore we
choose N + 1 as an even number. There are many ways of representing a certain
vector uh on G2h. The most straightforward one is to simply pick the corresponding
grid value such that uh

2j becomes u2h
j for j = 0,1, . . . , (N + 1)/2. But for reasons

that we shall see later, it is better to use

u2h
j = 1

4
(uh

2j−1 + 2uh
2j + uh

2j+1), j = 0,1, . . . , (N + 1)/2.

This transfer is called a restriction, and it can be represented by the matrix

R = 1

4

⎡

⎢⎢⎢⎣

1 2 1
1 2 1

. . .

1 2 1

⎤

⎥⎥⎥⎦

for the inner points. We also need the opposite transfer, called a prolongation, by
defining a fine grid vector from a coarse grid vector. It turns out that a good proce-
dure is to use a similar principle, i.e., if a point in Gh coincides with a point in G2h,
it gets the full corresponding value, while the neighboring points gets an average of
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Fig. 14.4 Restriction to a coarser grid and prolongation to a finer grid

the two nearest points. The corresponding matrix P is exactly the transpose of R,
except for a scaling factor 2:

P = RT = 1

2

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2
1 1

2
1

. . .

1
2
1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Figure 14.4 shows the transfer procedures.
We are now ready to define the whole two grid method. The damped Jacobi

method is denoted by u(n+1) = Su(n) + T b. With a given initial vector u(0)h, one
iteration of the two grid method is:

vh = Shu(0)h + T hbh,

rh = bh − Ahvh,

r2h = Rrh,

A2hw2h = r2h,

wh = P w2h,

u(1)h = vh + wh.

For a numerical test case we use

F(x) = − 1

128

(
sin2 π

32
sin(πx) + sin2 15π

32
sin(15πx)

)
,
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Fig. 14.5 Exact solution and error with the two grid method

which has the discrete solution

uj = 1

2

(
sin(πxj ) + sin(15πxj )

)
, j = 0,1, . . . ,N + 1,

for �x = 1/16. The solution has two distinct wave numbers as shown in Fig. 14.5(a),
where the points uj are connected by straight lines.

Figure 14.5(b) shows the error uj −u(xj ) at three different stages of the two grid
algorithm. The dotted line is the initial error for the zero initial guess. The dashed
line is after one iteration with the damped Jacobi method on the fine grid. The high
oscillatory part of the error is almost completely eliminated. The solid line shows
the final error after the coarse grid correction, which here has been done by an exact
solution of the system A2hw2h = r2h.

There are two obvious ways of modifying the algorithm. The first one is to apply
the Jacobi iteration several times on each grid. The second one is to go to even
coarser grids G4h,G8h, . . . . This is possible if we choose N + 1 = 2p , where p is
large enough. Then we have the true multigrid method.

The implementation of the multigrid method is of course more troublesome for
multi-dimensional problems, in particular for finite element methods on unstruc-
tured grids. However, for model problems, there is currently no other iteration
method that can beat the multigrid method when it comes to convergence rate. But
there are problems where the method is not robust enough, and it takes a certain
amount of tuning to get it to work properly.
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Applications





Chapter 15
Wave Propagation

There are many types of wave propagation, and there is no precise definition of it.
The somewhat vague definition is that some sort of feature is transported through a
medium with a certain typical speed. It can be a wave crest or some other feature
that is recognizable at different times at different positions in space. If it is located
at x0 at time t = t0, and has moved to another point x1 at t = t1, and the distance is
x1 −x0 = c(t1 − t0), then c is the wave speed. The classic areas for wave propagation
are acoustics, electromagnetism and elasticity.

When simulating wave propagation, we are interested in the time evolution of the
solution. A typical feature is that the energy is conserved for all time, at least in the
ideal situation where there is no significant damping in the medium. In mathematics
one needs strict definitions of the models, and for wave propagation these models
are hyperbolic PDE. We shall begin by discussing these, and define their typical
properties.

15.1 Hyperbolic PDE

In Sect. 9.1 conditions for hyperbolicity were given for second order PDE. However,
for wave propagation the models are often formulated as first order systems, and we
shall first discuss these.

The simplest differential equation for wave propagation is the 1D-transport equa-
tion that we have used several times for illustration of various things in this book:

∂u

∂t
+ c

∂u

∂x
= 0. (15.1)

Any feature is transported in the positive x-direction by the velocity c. If there are
no boundaries, the solution is simply

u(x, t) = f (x − ct),

where f (x) is the initial function at t = 0. Every line x − ct = a, where a is a con-
stant, is called a characteristic of the system. The initial value f (a) is carried along

B. Gustafsson, Fundamentals of Scientific Computing,
Texts in Computational Science and Engineering 8,
DOI 10.1007/978-3-642-19495-5_15, © Springer-Verlag Berlin Heidelberg 2011

235



236 15 Wave Propagation

Fig. 15.1 Characteristics for
(15.1), c = 1.5

these characteristics when time increases. Figure 15.1 shows three characteristics in
the (x, t) plane for c = 1.5.

The transport equation is not a complete model for any of the three applications
mentioned above. However, since it has the typical properties for wave propagation,
it is one of the most studied PDE when it comes to analysis of numerical methods.
Even if there is a simple explicit formula for the solution, we shall use Fourier
analysis for investigation of the properties. In this way we can generalize it to more
general differential equations.

It was shown in Sect. 6.1 how a PDE can be Fourier transformed yielding

∂û

∂t
+ ikcû = 0,

where k is the wave number. The solution û(k, t) is

û(k, t) = e−ikct û(k,0),

i.e., the magnitude |û(k, t)| of the amplitude is independent of time for all wave
numbers. This is typical for wave propagation.

The transport equation is a special case of a hyperbolic system:

∂u
∂t

+ A
∂u
∂x

= 0,

where the matrix A can be diagonalized and has real eigenvalues λj . If � = T −1AT

is a diagonal matrix containing the eigenvalues, we make the transformation v =
T −1u, and obtain

∂v
∂t

+ �
∂v
∂x

= 0.

This is a set of uncoupled equations, and we have

∂vj

∂t
+ λj

∂vj

∂x
= 0, j = 1,2, . . . ,m,

with exactly the same properties as the scalar equation above with m different wave
speeds. In accordance with the concept of characteristics, the variables vj are called
the characteristic variables.

If boundaries are involved, for example at x = 0 and x = 1, we need boundary
conditions if the solution is nonperiodic. If a certain eigenvalue λj is positive, the
waves are moving from left to right, and if it is negative they are moving from right
to left. Consequently, the corresponding variable vj must be given a prescribed value
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at x = 0 in the first case, and at x = 1 in the second case. Note that a value can be
prescribed only at one boundary for each variable. At the opposite boundary, the
solution for that particular variable is uniquely determined by the process inside the
domain.

Actually, the boundary conditions may have a more general form than the spec-
ification of the variables corresponding to the “ingoing” variables vj , and we shall
take a look at this. The transformation can always be constructed such that the eigen-
values appear in an a priori prescribed order in the diagonal. We assume that

λj > 0, j = 1,2, . . . , r,

λj < 0, j = r + 1, r + 2, . . . ,m,

and define the vectors

vI =

⎡

⎢⎢⎢⎣

v1
v2
...

vr

⎤

⎥⎥⎥⎦ , vII =

⎡

⎢⎢⎢⎣

vr+1
vr+2

...

vm

⎤

⎥⎥⎥⎦ .

There are m − r sets of characteristics carrying the solution vII towards the left
boundary. At any given point in time, these values are available at the left bound-
ary, and the ingoing solution vI can be coupled to these by a boundary condition.
Similarly, at the right boundary, the solution vII transported into the domain can be
coupled to the outgoing solution vI . Consequently, the complete set of boundary
conditions has the general form

vI (0, t) = BI vII(0, t) + gI (t),

vII(1, t) = BIIvI(1, t) + gII(t),
(15.2)

where gI (t) and gII(t) are given vector functions of t . The situation is illustrated in
Fig. 15.2 for the case with one element in vI and two elements in vII .

Sometimes there are zero eigenvalues of the matrix. This means that the charac-
teristics are parallel to the t-axis, and the corresponding characteristic variable vj

is well defined by its initial value through the differential equation ∂vj /∂t = 0. In
such a case, these variables may be included on the right hand side of the boundary
conditions, and we get the generalized form

vI (0, t) = BI vII(0, t) + CI vIII(0, t) + gI (t),

vII(1, t) = BIIvI(1, t) + CIIvIII(1, t) + gII(t),
(15.3)

where the zero characteristic variables are collected in the vector vIII .
The solution u is computed with the original system as a basis, and the trans-

formation to diagonal form is made for the purpose of analysis only. Therefore, the
true boundary conditions used for the computation have the form

L0u(0, t) = g0(t),

L1u(1, t) = g1(t).
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Fig. 15.2 Boundary
conditions for a hyperbolic
system

Here L0 is an r × m matrix, L1 is an (m − r) × m matrix, and g0, g1 are vectors
with r and m − r components respectively as shown below for r = 1 and m = 3
corresponding to Fig. 15.2:

x = 0 : [× × × ]
⎡

⎣
×
×
×

⎤

⎦ = [× ]
,

x = 1 :
[× × ×
× × ×

] ⎡

⎣
×
×
×

⎤

⎦ =
[×
×

]
.

In order to be sure that these boundary conditions lead to a well posed problem, the
transformation u = T v is introduced, and it is checked that the correct form can be
obtained. This means that, after transformation, the vector vI can be solved for in
terms of vII and vIII at the left boundary, and that vII can be solved for in terms of
vI and vIII at the right boundary.

Turning to multidimensional problems, we begin with the transport equation
in 3D:

∂u

∂t
+ cx

∂u

∂x
+ cy

∂u

∂y
+ cz

∂u

∂z
= 0.

The Fourier transform is
∂û

∂t
+ i(cxkx + cyky + czkz)û = 0,

where there are now three wave numbers corresponding to the Fourier mode

ei(kxx+kyy+kzz) = eikxxeikyyeikzz.

Since the Fourier transform of the differential operator is purely imaginary, the con-
clusion about energy conservation holds precisely as for the 1D-case.

A hyperbolic system in 3D has the form

∂u
∂t

+ Ax

∂u
∂x

+ Ay

∂u
∂y

+ Az

∂u
∂z

= 0.
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Here it is not enough to require that each matrix has real eigenvalues. The condition
on the matrices for hyperbolicity is stated in Fourier space. The differential operator

Ax
∂

∂x
+ Ay

∂

∂y
+ Az

∂

∂z

takes the form

iÂ = i(kxAx + kyAy + kzAz), (15.4)

and the requirement is that Â can be diagonalized and has real eigenvalues for
all kx, ky, kz. This implies that each one of the matrices can be diagonalized,
since any pair of wave numbers can be put equal to zero. On the other hand, it
does not imply that the three matrices can be diagonalized by one and the same
transformation. The requirement that there is a matrix T such that all matrices
T −1AxT , T −1AyT , T −1AzT are diagonal is a very restrictive condition, and it
is seldom fulfilled in real applications. On the other hand, it is quite common that
hyperbolic systems arising in various applications are symmetrizable (sometimes
called symmetric), i.e., there is a matrix T such that the transformed matrices above
are symmetric. These systems are much easier to analyze, and have a nice time
dependent behavior.

Regarding the boundary conditions, we can generalize the results from the
1D-case. If part of the boundary is a plane x = 0, then we simply consider the
case that the y-derivatives and the z-derivatives are zero, and then apply the diago-
nalization procedure giving the form (15.2) for the boundary conditions. The same
procedure is then applied for the parts of the boundary satisfying y = 0 and z = 0.

But what should we do when the computational domain is not a parallelepiped?
The solution is to consider the PDE locally at every boundary point (x0, y0, z0). The
normal n to the surface is identified, and then a local coordinate system (ξ, η, ζ ) is
defined with the ξ -axis pointing along the normal n as shown in Fig. 15.3.

The system is rewritten in terms of these coordinates:

∂w
∂t

+ Aξ
∂w
∂ξ

+ Aη
∂w
∂η

+ Aζ
∂w
∂ζ

= 0.

The analysis then follows the lines above. It will be further discussed in Sects. 15.2
and 17.1.2.

It should be stressed that this way of designing the boundary conditions based
on the simplified 1D-case, is necessary for wellposedness, but not sufficient. The
theory for the multidimensional case is available, but is somewhat complicated to
apply for a given system. By experience, the 1D-analysis used in practice often leads
to boundary conditions that work very well for many applications in several space
dimensions.

Sometimes first order systems of PDE are rewritten as second order systems (or
scalar equations), where the order of both the time and space derivatives goes up
one step. These are classified as hyperbolic as well, satisfying the conditions given
in Sect. 9.1 for scalar equations in two space dimensions. We shall come back further
to these second order formulations in the next application sections.

We shall now briefly discuss some of the main types of wave propagation.
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Fig. 15.3 Local coordinate system at the boundary

15.2 Acoustics

Acoustics is about propagation of sound, and it is a very important topic in the
modern society. For example, when designing a new highway or a new airport, the
generated noise in the immediate surroundings must be kept under control. Sound
in air is a variation p of the pressure on a fast scale compared to the slowly varying
atmospheric pressure p0. The total pressure p0 +p is always positive, but p may be
negative. A sound source is a combination of different frequencies ω that describes
the number of pressure oscillations that take place during one second, and it is mea-
sured in the unit Hz = 1/sec after the German physicist Heinrich Hertz (1857–1894).
The sound corresponding to one particular frequency can be represented by a sine
wave sin(2πωt), where there are ω full periods during each second.

The differential equation can be derived from the nonlinear Euler equations in
fluid dynamics (see Sect. 17.1.2) by introducing a small perturbation to a given
state. By disregarding quadratic and higher powers of the perturbation, we arrive at
a system of linear differential equations that contain the unknown pressure p and the
particle velocity vector u containing the components u, v, w in the three coordinate
directions. In 1D, the system is

∂

∂t

[
p

u

]
+

[
0 c2

1 0

]
∂

∂x

[
p

u

]
= 0.
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Fig. 15.4 Solution to the
wave equation at
t = 0 (—), 0.4 (−−), 1.2 (−·)

The eigenvalues of the coefficient matrix are ±c, which represent the two sound
waves, one propagating to the right and one propagating to the left.

A common situation is that the speed of sound c = c(x) varies in space, but not
in time. For example, if the salinity in ocean water varies, then the speed of sound
does that as well. However, for a simulation of a process that lasts a few seconds
over a domain with length of a few kilometers, the time variation of the salinity in
time can be neglected, while the space variation cannot. A typical application of this
type is submarine warfare, where the problem is to identify sonic information in an
exact way such that the position of the enemy submarine can be determined. As is
often the case in science, the military is in the forefront when it comes to acoustics
research, but the refined methods are nowadays used for sophisticated non-military
sonar equipment as well.

By differentiating the first equation with respect to t and using the second equa-
tion, the variable u is eliminated, and we arrive at the second order wave equation

∂2p

∂t2
= c(x)2 ∂2p

∂x2
.

If c is constant, the solution has the form

p(x, t) = f1(x + ct) + f2(x − ct),

representing the two waves identified above for the first order system.
Let us now consider a certain feature in p at t = 0 and x = x0. When time pro-

gresses, one part of the solution stays constant along the line x = x0 − ct in the
(x, t)-plane. We can identify this as wave propagation with velocity dx/dt = −c.
For the other part of the solution the wave propagation has velocity c. Figure 15.4
shows how a pulse at t = 0 separates into two parts that move in opposite directions
with velocity c = ±1.

The wave equation requires initial and boundary conditions. Since there is a sec-
ond derivative in time, not only p must be prescribed at t = 0, but also ∂p/∂t .
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The Fourier transform of the equation is

d2p̂

dt2 = −c2k2p̂,

which has the solution

p̂(k, t) = a1e
ickt + a2e

−ickt

corresponding to the two waves. Clearly, each component of the solution has a con-
stant amplitude which is determined by the initial conditions. In Fourier space these
conditions are

p̂(k,0) = f̂ (k),

dp̂

dt
(k,0) = ĝ(k),

and we get the system

a1 + a2 = f̂ (k),

ikca1 − ikca2 = ĝ(k).

This system is easily solved, and the original solution p is obtained by an inverse
Fourier transform.

By differentiating the second equation in the first order system, and then elimi-
nating p, we get

∂2u

∂t2
= ∂

∂x

(
c(x)2 ∂u

∂x

)
,

which for c(x) = const. is identical to the wave equation for p. Perturbations in
either one of the variables p or u behaves in exactly the same way in that case.

Let us now take a look at the full 3D case. Assuming a constant speed of sound c,
the system is

∂

∂t

⎡

⎢⎢⎣

p

u

v

w

⎤

⎥⎥⎦ +

⎡

⎢⎢⎣

0 c2 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎤

⎥⎥⎦
∂

∂x

⎡

⎢⎢⎣

p

u

v

w

⎤

⎥⎥⎦ +

⎡

⎢⎢⎣

0 0 c2 0
0 0 0 0
1 0 0 0
0 0 0 0

⎤

⎥⎥⎦
∂

∂y

⎡

⎢⎢⎣

p

u

v

w

⎤

⎥⎥⎦

+

⎡

⎢⎢⎣

0 0 0 c2

0 0 0 0
0 0 0 0
1 0 0 0

⎤

⎥⎥⎦
∂

∂z

⎡

⎢⎢⎣

p

u

v

w

⎤

⎥⎥⎦ = 0.

To simplify the analysis, we look for plane waves that are propagating along the
x-axis, i.e., all y- and z-derivatives are zero. The reduced system then becomes

∂

∂t

⎡

⎢⎢⎣

p

u

v

w

⎤

⎥⎥⎦ +

⎡

⎢⎢⎣

0 c2 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎤

⎥⎥⎦
∂

∂x

⎡

⎢⎢⎣

p

u

v

w

⎤

⎥⎥⎦ = 0.
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The only nonzero eigenvalues are ±c, which shows that there is only one wave speed
(with two possible signs) in the system, and it corresponds to particles moving in
the same direction as the wave is propagating. These are the sound waves in the full
3D-space.

In analogy with the 1D case above, we can differentiate the system and obtain
the full wave equation

∂2p

∂t2 = c2
(

∂2p

∂x2 + ∂2p

∂y2 + ∂2p

∂z2

)
.

Exactly the same equation is obtained with p replaced by u, v or w respectively. If
there is no coupling at the boundaries, we can deal with scalar equations if we use
the second order formulation. If, for example, we solve for the pressure this way, the
velocities can then be obtained by a simple integration of the first order differential
relations.

The boundary conditions depend on what type of domain in space we are deal-
ing with. For a solid wall, the type of boundary condition follows from the first
order formulation, and the 1D-version tells it all. The particle normal velocity u is
obviously zero for all time at the wall, and it follows that ∂u/∂t = 0 as well. The
differential equation ∂u/∂t = −∂p/∂x then implies that ∂p/∂x = 0, and this is the
boundary condition for the second order wave equation for p. For the 3D-case there
are three velocity components u, v, w, and it is the component that is pointing in
the direction of the normal n that is zero. According to the discussion in the previ-
ous section, the PDE is rewritten in local coordinates with ξ pointing in the normal
direction. With the new velocity components lined up with the new coordinates, the
PDE is obviously the same, since the physics of acoustics doesn’t know anything
about coordinate directions. Accordingly, the boundary condition is ∂p/∂n = 0, i.e.,
the normal derivative is zero.

Another case is where there is a known sound source at the boundary, in which
case the pressure is prescribed. If the boundary surface is given by

x = x(r, s),

y = y(r, s),

z = z(r, s),

where the two parameters r and s vary within certain intervals, the boundary condi-
tion is

p
(
x(r, s), y(r, s), z(r, s)

) = g(r, s).

In acoustic problems the domain is often open without any bounds in some di-
rections. For example, the noise from a starting aircraft is spreading in all directions
with no boundary except the ground. However, a computer simulation requires a fi-
nite domain, and we must introduce some artificial boundaries that are not present in
the physical space. The problem is then that the differential equation requires some
type of condition also at these boundaries. Construction of such conditions is not an
easy task. Everything that is going on outside the computational domain is actually
governed by the wave equation, and it is not at all certain that this can be described
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Fig. 15.5 Computational
domain for noise simulation

by a local boundary condition in open space. But the situation is not hopeless. If we
know that there is only one source, and furthermore, that the direction of the wave is
approximately known, we can use conditions that simply let the waves out through
the boundary. The concept absorbing boundary conditions is often used, pointing
out the fact that no reflections should occur. Many different techniques exist, but it
is still an active research area.

Let us now discuss an example closely related to real life. The city council in a
certain city is planning to build a new street with heavy traffic through a residential
area. People living there are coming in with various objections to the project, the
main one being the high noise level that is expected. The city council proposes a
hoarding along the street, but the inhabitants doubt if it will be effective. This is a
typical situation where computer simulation comes in handy.

For preliminary simulations one tries to simplify the problem as much as possi-
ble. We assume that the street is directed along the y-axis, and the worst case traffic
is homogeneous creating a continuous sound source along the street. The hoarding
is also straight and parallel to the street. The computational domain is shown in
Fig. 15.5.

The problem is solved by using the Acoustics module of the Comsol Multi-
physics system. The lower boundary including the hoarding is modeled as a solid
wall. At the left boundary, the source is modeled as a sine function with frequency
100 Hz which is decreasing in magnitude in the z-direction. The upper and the right
boundaries are open with an absorbing boundary condition.

The geometry of the computational domain makes it possible to use a rectangular
grid, but here we have been using a triangular grid, which is the most common
type for FEM in two space dimensions. The grid is automatically generated by the
system, and Fig. 15.6 shows what it looks like.

The interesting quantity for the simulation is the sound pressure level defined as

Lp = 10 log
|p|2
|p0|2

in the unit dB. The reference value p0 is taken as p0 = 2 · 10−5 Pa, which cor-
responds to the lowest sound pressure level Lp = 0 that the human ear is able to
hear.

The sound source at the left boundary is not tuned very accurately here. The
purpose with the example is simply to demonstrate the effect of a change in the
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Fig. 15.6 Finite element grid

geometry. In this problem one might wonder if it is worthwhile to build a very high
hoarding in order to get the sound pressure level sufficiently low. Figure 15.7 shows
the result for a 5 meter high hoarding, while Fig. 15.8 shows the effect of increasing
the height to 10 meters. There is a small effect in the noise level, but taking the cost
and esthetic values into effect, it may be sufficient to build the lower alternative.

In this book we have used the Fourier transform in space for analysis of the
differential equations, but in acoustics it is more natural to use it for transformation
in time. Sound is a compound of different frequencies ω, and each one is represented
by a Fourier mode eiωt , where we again use the complex (but actually simpler)
version. The solution has the form

p(x, y, z, t) =
∞∑

ω=−∞
p̂(x, y, z,ω)eiωt ,

and this is the basis for the Fourier transform of the PDE in time:

∂2p̂

∂x2
+ ∂2p̂

∂y2
+ ∂2p̂

∂z2
+ ω2

c2
p̂ = 0, ω = 0,±1,±2, . . . .

This is the Helmholtz equation, named after the German physicist Hermann von
Helmholtz (1821–1894). It has a close resemblance to the Laplace equation, but
the extra zero order term causes certain trouble. We have here a case where the
principal part of the differential operator is elliptic and could be solved as a boundary
value problem, see Sect. 9.1. However, the lower order term makes a fundamental
difference in the properties. The complete problem including boundary conditions
may not have a unique solution for certain values of ω/c. Mathematically speaking,
the differential operator ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2 may have an eigenvalue that
equals −ω2/c2, and this corresponds to the physical resonance effect. However, if
we avoid these eigenvalues, it is possible to solve the equation for given frequencies,
and in 3D an iterative solver is required. Much effort has been given to this problem,
and there is still progress being made towards so-called fast Helmholtz solvers.

In practice we have to limit the computation to a finite and reasonable number of
frequencies ω. Once the solution p̂ has been found, the solution p in physical space
is obtained via the inverse discrete Fourier transform.
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Fig. 15.7 Pressure sound
level, hoarding height 5 m

Fig. 15.8 Pressure sound
level, hoarding height 10 m

15.3 Electromagnetics

The Maxwell equations express the relation between the electric field E and mag-
netic field H . Before stating the equations, we need to define the parameters

ε0 permittivity of vacuum
μ0 permeability of vacuum
εr relative permittivity
μr relative permeability.

With ε = ε0εr and μ = μ0μr , the equations are in their simplest form (linear non-
conductive materials)

∂

∂t

[
E

H

]
+

[
0 1/ε

1/μ 0

]
∂

∂x

[
E

H

]
= 0.

Note that this system of PDE has exactly the same structure as the system for acous-
tics. The coefficient matrix has the real eigenvalues ±1/

√
εμ, showing that the sys-
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tem is hyperbolic. Electromagnetic waves behave exactly as sound waves, except
for the propagation speed. In a vacuum

c0 = 1/
√

ε0μ0 = 299792458 m/sec

is the speed of light. This means that, if we have a good algorithm for acoustic
problems, then we can solve electromagnetic problems as well, by simply changing
the parameters.

In 3D, the electric and magnetic fields are vectors

E =
⎡

⎣
Ex

Ey

Ez

⎤

⎦ , H =
⎡

⎣
Hx

Hy

Hz

⎤

⎦ ,

where each element represents the component in the corresponding coordinate di-
rection. The equations are

∂

∂t

[
E
H

]
+ Ax

∂

∂x

[
E
H

]
+ Ay

∂

∂y

[
E
H

]
+ Az

∂

∂z

[
E
H

]
= 0,

where

Ax =

⎡

⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
0 0 0 0 0 1/ε

0 0 0 0 −1/ε 0
0 0 0 0 0 0
0 0 −1/μ 0 0 0
0 1/μ 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎦
,

Ay =

⎡

⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 −1/ε

0 0 0 0 0 0
0 0 0 1/ε 0 0
0 0 1/μ 0 0 0
0 0 0 0 0 0

−1/μ 0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎦
,

Az =

⎡

⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 1/ε 0
0 0 0 −1/ε 0 0
0 0 0 0 0 0
0 −1/μ 0 0 0 0

1/μ 0 0 0 0 0
0 0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎦
.

For a plane wave moving along the x-axis, the y- and z-derivatives are zero, and
we have

∂

∂t

[
E
H

]
+ Ax

∂

∂x

[
E
H

]
= 0.

The six eigenvalues of Ax are

λ1,2 = 1/
√

εμ, λ3,4 = −1/
√

εμ, λ5,6 = 0,
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i.e., there is only one type of wave moving with the speed of light either forwards or
backwards.

Just as for acoustics, we can derive second order forms of the equations. By
differentiating the equations, H can be eliminated, and with c = 1/

√
εμ we get

∂2E
∂t2

= c2
(

∂2E
∂x2

+ ∂2E
∂y2

+ ∂2E
∂z2

)
.

The same procedure can be carried out for elimination of E, resulting in an identical
system for H. This means that we have six independent scalar equations, one for
each component of the electric field and of the magnetic field. However, the nor-
mal situation is that there is a coupling between the different variables through the
boundary conditions.

There are several effects that can be incorporated in the equations. The immediate
one is the introduction of the current density J which is coupled to the electric field
by J = σE, where σ is the electric conductivity. This introduces a new term:

∂

∂t

[
E
H

]
+ Ax

∂

∂x

[
E
H

]
+ Ay

∂

∂y

[
E
H

]
+ Az

∂

∂z

[
E
H

]
+ σE = 0.

For the Fourier analysis we go back to the 1D-equations

∂

∂t

[
E

H

]
+

[
0 1/ε

1/μ 0

]
∂

∂x

[
E

H

]
+

[
σ 0
0 0

][
E

H

]
= 0.

The Fourier transform is formally obtained by substituting the number ik for the
differential operator ∂/∂x:

∂

∂t

[
Ê

Ĥ

]
+

[
σ ik/ε

ik/μ 0

][
Ê

Ĥ

]
= 0.

The eigenvalues of the coefficient matrix are given by

λ1,2 = σ

2
±

√
σ 2

4
− c2k2 = σ

2

(
1 ±

√

1 − 4c2k2

σ 2

)
, c2 = 1

εμ
.

The question is whether the real part of them can be negative, resulting in growing
solutions. But this can happen only if the real part of the square-root exceeds one,
and it does not. The conclusion is that the Fourier components do not grow with
time. On the contrary, there is a certain damping caused by the electric conductivity.

Let us now take a look at the boundary conditions. The zero order term has no
influence on the type of boundary condition. According to our recipe for hyperbolic
systems, we put the y- and z-derivatives equal to zero and consider the 1D-system
(but with all six variables remaining)

∂

∂t

⎡

⎢⎢⎢⎢⎢⎢⎣

Ex

Ey

Ez

Hx

Hy

Hz

⎤

⎥⎥⎥⎥⎥⎥⎦
+

⎡

⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
0 0 0 0 0 1/ε

0 0 0 0 −1/ε 0
0 0 0 0 0 0
0 0 −1/μ 0 0 0
0 1/μ 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎦

∂

∂x

⎡

⎢⎢⎢⎢⎢⎢⎣

Ex

Ey

Ez

Hx

Hy

Hz

⎤

⎥⎥⎥⎥⎥⎥⎦
= 0.
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The diagonal form is here obtained by taking the proper combinations of the vari-
ables pairwise, giving

∂

∂t

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

√
εEy + √

μHz√
εEz − √

μHy√
εEy − √

μHz√
εEz + √

μHy

Ex

Hx

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡

⎢⎢⎢⎢⎢⎢⎣

c 0 0 0 0 0
0 c 0 0 0 0
0 0 −c 0 0 0
0 0 0 −c 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎦

∂

∂x

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

√
εEy + √

μHz√
εEz − √

μHy√
εEy − √

μHz√
εEz + √

μHy

Ex

Hx

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

= 0.

With the notation used in Sect. 15.1, with vI containing the ingoing characteristic
variables, vII containing the outgoing characteristic variables and vIII containing the
zero eigenvalue variables, we have

vI =
[√

εEy + √
μHz√

εEz − √
μHy

]
, vII =

[√
εEy − √

μHz√
εEz + √

μHy

]
, vIII =

[
Ex

Hx

]
.

The boundary conditions then have the form (15.3).
Since there are always two positive eigenvalues, two characteristics are pointing

into the domain, and there should be two boundary conditions. There are many ways
of choosing these variables, but a natural one from a physical point of view is to
specify the tangential magnetic field. In the original coordinates with the boundary
x = 0, this means that Hy and Hz are specified:

Hy = gy(t),

Hz = gz(t).

In terms of the characteristic variables v we have the relations

Ey = v1 + v3

2
√

ε
, Hz = v1 − v3

2
√

μ
, Ez = v2 + v4

2
√

ε
, Hy = v4 − v2

2
√

μ
,

so the boundary conditions are in this case

vI =
[

1 0
0 1

]
vII + gI (t), gI (t) = 2

[ √
μgz(t)

−√
μgy(t)

]
,

which has the right form.
For numerical solution of the Maxwell equations, there is also here a choice

between the first order Maxwell equations and the second order PDE derived above.
Traditionally the first order system has been dominating, and there is a well known
difference scheme for solving it, called the Yee scheme. It is based on so-called
staggered grids which are well suited for these equations, For illustration we use
the 1D-equations

∂E

∂t
+ 1

ε

∂H

∂x
= 0,

∂H

∂t
+ 1

μ

∂E

∂x
= 0.
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Fig. 15.9 The staggered grid

A staggered grid means that the variables E and H are stored at the different points.
In addition to the usual grid points (xj , tn), where H is stored, another set of grid
points (xj+1/2, tn+1/2) shifted half a step in both directions is defined for storage
of E. The structure of the differential equations is such that a more compact differ-
ence stencil is obtained this way, and the scheme is

E
n+1/2
j+1/2 = E

n−1/2
j+1/2 − �t

ε�x
(Hn

j+1 − Hn
j ),

Hn+1
j = Hn

j − �t

μ�x
(E

n+1/2
j+1/2 − E

n+1/2
j−1/2),

which is illustrated in Fig. 15.9.
For the standard centered approximation on a standard grid we have for smooth

functions u(x)

u(xj+1) − u(xj−1)

2�x
= du

dx
(xj ) + �x2

6

d3u

dx3 (xj ) + O(�x4). (15.5)

On a staggered grid the approximation is centered at x = xj+1/2, and we have

u(xj+1) − u(xj )

�x
= du

dx
(xj+1/2) + �x2

24

d3u

dx3
(xj+1/2) + O(�x4), (15.6)

showing that the truncation error is four times smaller. This is due to the more com-
pact computing stencil, effectively halfing the step size. The same improvement is
obtained in the t-direction, since we have the same type of compact structure also
there.

The staggered grid can be generalized to several space dimensions. In 2D the
equations are

∂Hx

∂t
+ 1

μ

∂Ez

∂y
= 0,

∂Hy

∂t
− 1

μ

∂Ez

∂x
= 0,
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∂Ez

∂t
− 1

ε

∂Hy

∂x
+ 1

ε

∂Hx

∂y
= 0,

∂Ex

∂t
− 1

ε

∂Hz

∂y
= 0,

∂Ey

∂t
+ 1

ε

∂Hz

∂x
= 0,

∂Hz

∂t
+ 1

μ

∂Ey

∂x
− 1

μ

∂Ex

∂y
= 0.

The equations have been ordered in two groups independent of each other. There
are three variables in each group, and they are represented at different grid points.
Figure 15.10 shows the grid structure for the first group of variables Hx, Hy, Ez.
It also shows how the variables Hx, Hy are first advanced in time, and then the
variable Ez.

Fig. 15.10 Staggered grid in 2D
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15.4 Other Types of Wave Propagation

In this section we shall present the wave equations for a few other types of wave
propagation.

15.4.1 Elasticity

When dealing with elastic materials, the equations are stated in terms of the dis-
placement u, which is a vector that contains the three components u, v, w repre-
senting the displacements in the x-, y-, z-directions. The general formulation of the
equations is

ρ
∂2u
∂t2 = μ�u + (λ + μ)∇(∇ · u),

where λ and μ are the Lamé parameters expressed in the unit Pa = N/m2. In Carte-
sian coordinates the equations are

ρ
∂2u

∂t2 = μ

(
∂2u

∂x2 + ∂2u

∂y2 + ∂2u

∂z2

)
+ (λ + μ)

(
∂2u

∂x2 + ∂2v

∂x∂y
+ ∂2w

∂x∂z

)
,

ρ
∂2v

∂t2
= μ

(
∂2v

∂x2
+ ∂2v

∂y2
+ ∂2v

∂z2

)
+ (λ + μ)

(
∂2u

∂x∂y
+ ∂2v

∂y2
+ ∂2w

∂y∂z

)
,

ρ
∂2w

∂t2
= μ

(
∂2w

∂x2
+ ∂2w

∂y2
+ ∂2w

∂z2

)
+ (λ + μ)

(
∂2u

∂x∂z
+ ∂2v

∂y∂z
+ ∂2w

∂z2

)
.

In order to find the typical wave speeds, we make the usual simplification assuming
that all y- and z-derivatives are zero, i.e., plane waves are moving along the x-axis.
We get the reduced system

∂2

∂t2

⎡

⎣
u

v

w

⎤

⎦ = 1

ρ

⎡

⎣
λ + 2μ 0 0

0 μ 0
0 0 μ

⎤

⎦ ∂2

∂x2

⎡

⎣
u

v

w

⎤

⎦ .

Here we have a new feature when comparing to acoustics and electromagnetics,
since there are two different wave speeds:

c1 = √
(λ + 2μ)/ρ, c2 = √

μ/ρ.

The first one corresponds to longitudinal waves, where the propagation direction is
the same as the displacement direction. These waves are in direct analogy to sound
waves discussed in Sect. 15.2. Sometimes they are called compression waves or
P-waves. The second wave speed is lower and corresponds to transverse waves,
where the propagation direction is perpendicular to the displacement direction.
Other names for them are shear waves or S-waves. (P and S stands for Primary
and Secondary.) This type of wave is analogous to surface waves resulting from a
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pebble dropped in water with a glazed surface. The water particles move vertically,
while the waves propagate horizontally (in a circular pattern in this case).

In 3D, all the variables in the system are fully coupled. However, there is a way
to uncouple them. By applying the divergence and curl operator (see Appendix A.2)
to the system, we get

∂2

∂t2 (∇ · u) = λ + 2μ

ρ
�(∇ · u),

∂2

∂t2 (∇ × u) = μ

ρ
�(∇ × u).

The first one is a scalar equation, the second one is a vector equation with 3 com-
ponents. They are all independent of each other, but usually coupled through the
boundary and initial conditions.

These equations are of fundamental importance in seismology, in particular when
it comes to tracing waves from earthquakes. The wave speeds are not constant in the
upper part of the earth, but typical values are 6–8 km/s for the P-wave and 3–5 km/s
for the S-wave near the surface.

15.4.2 The Schrödinger Equation

The most fundamental differential equation in theoretical physics is probably the
Schrödinger equation, presented 1926 by the Austrian theoretical physicist Erwin
Schrödinger (1887–1961). It is a very general description of how physical systems
evolve with time, and is a generalization of Newton’s classical mechanics theory to
quantum mechanics. It applies to particles on the atomic level, where the position
of a certain particle cannot be exactly determined, but rather the probability that it
is at a given position.

At center of the theory is the complex wave function � = �(x,y, z, t) which
represents this probability in the form of its amplitude. The general form of the
PDE is

i�
∂�

∂t
= Ĥ�,

where Ĥ is the Hamiltonian operator and h = 1.05457162853 · 10−34 J s is the
Planck constant. As usual, a compact mathematical form doesn’t mean that the equa-
tion is simple. On the contrary, the Hamiltonian is a differential operator that can
be given many different forms. Considering a single particle with potential energy
V = V (x, y, z), the equation is

i�
∂�

∂t
= − �

2

2m

(
∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2

)
� + V �,

where m is the mass of the particle.
At a first glance the Schrödinger equation has certain similarities with the heat

conduction equation, which has no wave propagation properties at all. But the whole
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difference is made by the imaginary constant on the left hand side. We use the
Fourier transform in space to find the essential properties. With V as a constant, we
get

d�̂

dt
= iα�̂, α = − �

2m
(k2

1 + k2
2 + k2

2) − 1

�
V.

Since Planck’s constant is real, α is real, and we have the solution as the two waves

�̂(t) = c1e
iαt + c2e

−iαt .

When constructing numerical methods, we have to choose between those which are
well suited for energy conserving wave propagation problems.



Chapter 16
Heat Conduction

The prediction of heat and temperature distribution in a material is of great im-
portance in many applications. The conduction of heat has certain similarities with
diffusion. The mathematical model is in both cases a parabolic PDE with the typical
property that variations in various quantities are smoothed out with time. We have
treated the simplest version of such equations earlier in this book, but here we shall
look into its properties a little further. We shall also take a look at the steady state
problem which leads to elliptic equations.

16.1 Parabolic PDE

In Sect. 9.1 the classification of general second order PDE was discussed. It was
mentioned that the first order derivatives play an important role in the parabolic
case. We have used a simple parabolic PDE earlier in this book for illustration, and
we use it here again:

∂u

∂t
= a

∂2u

∂x2 .

Here a is a constant, and it was shown in Chap. 2 that it must be positive if the
problem is to be solved forward in time. As usual we use the Fourier transform to
study the properties of the equation, and we get for the Fourier coefficients

∂û

∂t
= −ak2û, k = 0,±1,±2, . . . .

The solution is

û(k, t) = e−ak2t û(k,0),

which shows that the magnitude decreases for each wave number k as time in-
creases. Higher wave numbers mean faster oscillations in the x-direction, and obvi-
ously there is stronger damping of the amplitude for faster oscillation in space. This
has significant implications from a computational point of view. Oscillatory solu-
tions are considered as problematic in computing, since they require fine resolution
leading to large scale computational problems. Furthermore, perturbations may lead
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Fig. 16.1 Solution of heat equation (—), initial function (−−)

to nonphysical oscillations. However, this equation is forgiving in the sense that the
solution becomes smoother. The conclusion is that PDE of this type are “easier” to
solve than for example hyperbolic PDE that were discussed in the previous chapter.

For illustrating the smoothing effect, we choose the initial solution

u(x,0) = 1 − 0.5x + 0.4 sin 10πx + 0.2 sin 30πx,

which has two oscillating components. The boundary conditions are

u(0, t) = 1,

u(1, t) = 0.5,

i.e., the temperature is held fixed at the boundaries. Figure 16.1 shows clearly that
the faster oscillating component (corresponding to the wave number 30) is damped
out faster than the other one.

For 2D-problems, the differential equation is

∂u

∂t
= a

∂2u

∂x2 + b
∂2u

∂x∂y
+ c

∂2u

∂y2 ,

with the Fourier transform
∂û

∂t
= −q(kx, ky)û, q(kx, ky) = ak2

x + bkxky + ck2
y,

where kx and ky are the wave numbers corresponding to the x- and y-directions.
We want to make sure that there are no growing solutions and that there is damping
for nonzero wave numbers. The expression multiplying û is called a quadratic form,
and the parabolicity condition is

q(kx, ky) ≥ K(k2
x + k2

y), (16.1)

where K is a constant independent of kx and ky . For 3D-problems, the differential
operator in space has the form

∂u

∂t
= a

∂2u

∂x2
+ b

∂2u

∂y2
+ c

∂2u

∂z2
+ d

∂2u

∂x∂y
+ e

∂2u

∂x∂z
+ f

∂2u

∂y∂z
,

and the parabolicity condition is generalized in an obvious way.
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The classification of the PDE is independent of initial and boundary conditions.
It determines the basic behavior of the solutions for any initial functions, but it is
restricted to periodic solutions in space, or to infinite space with no boundaries.
However, as noted several times earlier in this book, it still tells a good deal about
the behavior also for the case where boundary conditions are involved.

For nonperiodic parabolic PDE on a bounded domain, boundary conditions are
required and, unlike hyperbolic equations, they are required at all parts of the bound-
ary. For any type of domain, we consider the differential equation locally at each
point at the boundary, and define the inward pointing normal n. The general form of
the boundary condition is

αu + β
∂u

∂n
= g(t),

where ∂/∂n denotes differentiation along the normal n. If β = 0, so that the func-
tion u itself is specified, we have a Dirichlet boundary condition named after the
German mathematician Peter Gustav Lejeune Dirichlet (1805–1859). If β �= 0, we
have a Neumann boundary condition. The name refers to Dirichlet’s countryman
Carl Gottfried Neumann (1832–1925), and should not be confused with John von
Neumann (1903–1957), who is associated with difference methods (among many
other things) and the von Neumann condition, see Sect. 10.3.

So far we have discussed PDE with derivatives of at most second order in space.
But we can have parabolic equations with derivatives of any even high order, for
example

∂u

∂t
= a

∂4u

∂x4 .

For the Fourier transform, the differential operator ∂4/∂x4 corresponds to
(ik)4 = k4. Consequently, the constant a must be negative to avoid fast growing
solutions. A general PDE

∂u

∂t
= a

∂2pu

∂x2p

with a real constant a, is parabolic if

a > 0, if p is odd,

a < 0, if p is even.

The generalization to higher space dimensions should be obvious.
When going to systems of PDE, the role of the scalar Fourier transform is taken

over by the eigenvalues of the corresponding Fourier matrix. For matrices we must
keep in mind that the eigenvalues may be complex even if the elements of the ma-
trix are real. But this is not much of a complication. The condition of nongrowing
solutions to a scalar equation dû/dt = αû is Reα ≤ 0, and this is applied to the
eigenvalues. For example, the system

∂u
∂t

= A
∂2u
∂x2

+ B
∂2u
∂y2
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is parabolic if the eigenvalues λ(kx, ky) of the matrix k2
xA + k2

yB satisfy the condi-
tion

Reλ(kx, ky) ≥ K(k2
x + k2

y),

where K is a constant independent of kx and ky .

16.2 Elliptic PDE

Elliptic equations are closely connected to parabolic equations by simply setting
∂u/∂t = 0. For example, the equation

a
∂2u

∂x2
+ b

∂2u

∂x∂y
+ c

∂2u

∂y2
= F(x, y),

is elliptic if the condition (16.1) is satisfied. We have here included a forcing func-
tion F(x, y) as a right hand side. However, since the classification should be inde-
pendent of the right hand side, we can of course replace F(x, y) by −F(x, y), and
we expect the differential equation to stay in the same elliptic class. The quadratic
form q(kx, ky) may be either positive definite or negative definite. In the real coef-
ficient case, the condition

ac −
(

b

2

)2

> 0

guarantees that the quadratic form has one and the same sign for all kx, ky , be it
positive or negative. For example, if b = 0, the simple elliptic condition is that a

and c have the same sign. This is sufficient for ellipticity.
The definition of elliptic systems of PDE is formulated exactly as for parabolic

systems by transferring the conditions to the eigenvalues of the Fourier transform.
Elliptic equations on bounded domains always lead to boundary value problems.

There is no way to solve them as initial- or initial–boundary value problems without
introducing some extra damping mechanism. This was demonstrated in Sect. 9.1 by
using the Fourier transform which can be applied to problems with periodic solu-
tions. Another very similar example is the initial–boundary value problem

∂2u

∂y2
= −∂2u

∂x2
,

u(0, y) = 0, u(1, y) = 0,

u(x,0) = f (x).

In analogy with the example in Sect. 12.1, the solution can be expanded in a sine
series u(x, y) = ∑

k û(y) sin(kπx), and we get

∂2û

∂y2
= (kπ)2û,

û(k,0) = f̂ (k),
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which has the solution

û(k, y) = αekπy + βe−kπy

for some constants α and β . Apparently, there is always one growing component
in the positive y-direction and, since the wave number k is arbitrarily large, the
problem is ill posed. The conclusion is that we need boundary conditions all the way
around the computational domain, not only at three sides as above. The solution has
to be tied down by using a boundary condition for some value of y > 0. In this way
the possibility of an unbounded solution for growing y is eliminated.

16.3 The Heat Equation

Heat conduction in a certain material depends on the thermal conductivity coeffi-
cient a, and it may depend on the specific direction we are considering. However, it
is very common that the material is isotropic with regard to heat conductivity, i.e.,
a is independent of the direction. In that case the heat equation is

∂u

∂t
= 1

ρC

(
∂

∂x

(
a

∂u

∂x

)
+ ∂

∂y

(
a
∂u

∂y

)
+ ∂

∂z

(
a
∂u

∂z

))
+ Q,

where the various variables and parameters are

u temperature
ρ density
C heat capacity
a thermal conductivity
Q heat source.

In the most general case, all these quantities depend on the temperature, which
means that the equation is nonlinear. (In the anisotropic case, a depends also on
∂u/∂x, ∂u/∂y, ∂u/∂z.) However, since they may be independent of u for a large
range of temperatures, the linear case is of significant interest. Furthermore, for the
analysis of the equation we make ρ, C, a constant, and put Q = 0. The equation
becomes

∂u

∂t
= a

ρC

(
∂2u

∂x2 + ∂2u

∂y2 + ∂2u

∂z2

)

and, since a/(ρC) is positive, the equation is parabolic.
There are many different types of boundary conditions. A common one is that

the temperature u = g(t) is prescribed. Another one is perfect insulation, which is
the Neumann condition

∂u

∂n
= 0,

where ∂/∂n is differentiation in the direction perpendicular to the boundary.
The following example illustrates the heat conduction problem in 2D for a square

with 160 cm side. The initial temperature is 20°C everywhere, and the experiment
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Fig. 16.2 Triangular grid

Fig. 16.3 Temperature
distribution after 10 minutes

simulates the situation where two edges are suddenly given the temperature 100°C,
while the other two edges are held at the initial temperature 20°C. The following
parameters are used:

ρ = 8700 kg/m3,

C = 385 J/(kg·K),

a = 400 W/(m·K).

The higher temperature is spread into the inner part of the domain with time and
there is a strong discontinuity in the temperature at two of the corners. In such a
case the solutions of more general PDE are difficult to compute since oscillations
are generated near the corners. However, the parabolic character keeps the solution
smooth. The finite element method within the COMSOL system is used for solution
on a triangular grid. Figure 16.2 shows the grid containing 3784 triangles and 7689
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Fig. 16.4 Temperature
profile 1 cm from the bottom
edge after 10 minutes

Fig. 16.5 Temperature
distribution at steady state

parameters to be determined, i.e., there are 7689 degrees of freedom. Figure 16.3
shows a surface plot of the temperature after 10 minutes, and Fig. 16.4 shows a cut
through the domain 1 cm from the bottom edge at the same point in time. Obviously,
there are no oscillations at all near the corner. The sharp gradient, that is necessarily
there with these boundary conditions, is well represented.

In order to illustrate the solution of an elliptic problem, we choose the steady
state problem for the same heat conduction example. After sufficiently long time,
the temperature distribution settles down to a steady state, and we want to compute
it. The equation is

a

ρC

(
∂2u

∂x2
+ ∂2u

∂y2
+ ∂2u

∂z2

)
= 0,
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Fig. 16.6 Temperature
profile 1 cm from the bottom
edge at steady state

with u specified at the boundaries as above. We use again the COMSOL system to
solve it, and the result is shown in Fig. 16.5.

One can see that the solution is smoothed out in the central part of the domain.
At the south-east and north-west corners there are discontinuities in the boundary
data, but the solution still becomes smooth as soon as we move inside the domain.
Figure 16.6 shows the same cut as for the time dependent case above.

Another way to compute this solution would be to run the previous program,
which solves the time dependent problem. By letting it go for a long time, the steady
state solution should be obtained. However, that would require a very long computer
time, and it is not a good procedure for this kind of problem, particularly not for
problems in 3D.



Chapter 17
Fluid Dynamics

Fluid dynamics is an area which has driven the development of numerical methods
probably more than any other area. Computer simulations were done already in the
1940s, but more than 60 years later there are still many remaining challenges that
are not yet solved. The computation of turbulent flow around a complete aircraft
is still out of reach, even with the gigantic computers that are available today. The
mathematical models have been known for more than 150 years, but sufficiently
efficient computational methods are still lacking. In this chapter we shall give a
brief presentation of the basic equations and methods, and then follow up with a
few applications.

17.1 Basic Differential Equations

The most complete model describing the dynamics of a fluid (liquid or gas) is the set
of Navier–Stokes equations after the French physicist and engineer Claude–Louis
Navier (1785–1836) and the British mathematician and physicist George Gabriel
Stokes (1819–1903). These equations are quite complicated, and they are nonlin-
ear. In the effort to derive solutions and to analyze the properties, many different
simplifications can be made, and there are a number of less complicated equations
that describe different kinds of fluids with special behavior. Any fluid has a certain
viscosity, i.e., there is some degree of internal resistance to flow forces. Oil has high
viscosity and water has low viscosity. For air, the viscosity is even lower, and in the
limit one talks about inviscid flow. It is always an idealization of a real fluid, but
often it is such an accurate assumption that no error is committed from a practical
point of view. And in a certain sense it simplifies the mathematical/numerical anal-
ysis considerably. On the other hand some extra unwanted complications occur as
we shall see.

A fluid is always compressible, which means that the density of the fluid changes
as a result of pressure variations. For gases the compressibility effects may be con-
siderable. On the other hand, certain fluids may be almost incompressible, like for
example water under normal conditions. If the effects on the density tend to zero,
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we talk about incompressible flow. It is an idealization of any real fluid, but in anal-
ogy with the assumption of inviscid flow, we get a considerable simplification of the
differential equations.

In this section we shall discuss the equations for inviscid (but compressible) flow,
and for incompressible (but viscous) flow.

17.1.1 The Continuity Equation

In this book we have not yet given the derivation of any models for any nontrivial
problem. In order to give a taste of such derivations, we shall take a look at the con-
tinuity equation, which is one of the basic ingredients in fluid dynamics. Consider
a cube with side length �x as shown in Fig. 17.1. For convenience we assume that
the fluid is moving in the x-direction with no variation in the y- or z-directions.

The density is ρ1 to the left, and ρ2 to the right (in kg/m3), while the particle ve-
locity is u1 and u2 m/sec respectively. The average density in the cube is ρ x so that
the total mass in the cube is ρ x�x3 kg. We now consider a time interval [t, t + �t],
and for any variable v we define the time average v t over this interval. During the
time �t the mass u1ρ1

t�t�x2 enters from the left, and the mass u2ρ2
t�t�x2 is

leaving to the right. Therefore, the change of the mass is ( u1ρ1
t − u2ρ2

t )�t�x2,
and we get the equation

(
ρ x(t + �t) − ρ x(t)

)
�x3 = (

u1ρ1
t − u2ρ2

t
)
�t�x2, (17.1)

or equivalently

ρ x(t + �t) − ρ x(t)

�t
+ uρ t(x + �x) − uρ t (x)

�x
= 0. (17.2)

By taking the limit as �x and �t tend to zero, the averages turn into point values
ρ(x, t) and u(x, t), and we get the final equation

∂ρ

∂t
+ ∂(uρ)

∂x
= 0. (17.3)

Here we assumed that there is no variation in the y- and z-directions. When remov-
ing this restriction, the partial derivatives in these directions enter as well. With v

and w denoting the velocity components in the y- and z-directions, we get

∂ρ

∂t
+ ∂(uρ)

∂x
+ ∂(vρ)

∂y
+ ∂(wρ)

∂z
= 0. (17.4)

This is the continuity equation, which simply describes the fact that mass is nei-
ther created or destroyed. The change in time and the change in space must cancel
each other. This is true whether or not the fluid is viscous, and whether or not it is
compressible.
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Fig. 17.1 Flow through a
small cube

17.1.2 Euler equations

Obviously the continuity equation is not enough to describe a fluid motion. The
quantities density and velocity are involved, and we need more differential equa-
tions.

Inviscid flow is governed by the Euler system of equations. The 2D-version was
presented in the introductory chapter, but here we shall analyze it a little further. The
full 3D-equations are

∂ρ

∂t
+ ∂(ρu)

∂x
+ ∂(ρv)

∂y
+ ∂(ρw)

∂z
= 0,

∂(ρu)

∂t
+ ∂(ρu2 + p)

∂x
+ ∂(ρuv)

∂y
+ ∂(ρuw)

∂z
= 0,

∂(ρv)

∂t
+ ∂(ρuv)

∂x
+ ∂(ρv2 + p)

∂y
+ ∂(ρvw)

∂z
= 0,

∂(ρw)

∂t
+ ∂(ρuw)

∂x
+ ∂(ρvw)

∂y
+ ∂(ρw2 + p)

∂z
= 0,

∂E

∂t
+ ∂(u(E + p))

∂x
+ ∂(v(E + p))

∂y
+ ∂(w(E + p))

∂z
= 0.

The state variables are

ρ density,
u velocity component in x-direction,
v velocity component in y-direction,
w velocity component in z-direction,
E total energy per unit volume,
p pressure.

There are six state variables but only five differential equations. Therefore we
need an equation of state

p = p(ρ,u, v,w,E),

which defines the pressure as an explicitly given function of the other variables.
Under certain conditions there is a simple relation p = p(ρ) between density and
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pressure. This is isentropic flow, and in that case the last differential equation (called
the energy equation) can be left out.

For analysis of the equations, we take the simple case of one-dimensional isen-
tropic flow, where all the y- and z-derivatives are zero, as well as the velocity com-
ponents v and w:

∂ρ

∂t
+ u

∂ρ

∂x
+ ρ

∂u

∂x
= 0,

u
∂ρ

∂t
+ ρ

∂u

∂t
+ 2ρu

∂u

∂x
+ u2 ∂ρ

∂x
+ ∂p

∂x
= 0.

In order to get a closed system, we eliminate the pressure variable. It occurs as
∂p/∂x in the differential equation for u, and according to the chain rule for differ-
entiation we have

∂p

∂x
= dp

dρ

∂ρ

∂x
.

After elimination of ∂ρ/∂t from the second equation, we get the system

∂

∂t

[
ρ

u

]
+

[
u ρ

c2/ρ u

]
∂

∂x

[
ρ

u

]
= 0,

where c2 = dp/dρ. The system is nonlinear, but it looks very similar to the acoustics
equations. We know from Sect. 15.1 that in the linear case wellposedness requires
that the eigenvalues λj of the matrix are real, and it is natural to require that here as
well. The eigenvalues are

λ1,2 = u ± c,

showing that also here there are two waves. The PDE is just the nonlinear version
of the acoustics equations, and c denotes the speed of sound here as well. The only
difference is that c = c(ρ) depends on the solution itself, and that the speed of the
waves is shifted by the particle velocity u. The sound waves are given an extra push
by the fluid movement. We also note that, if u > c, both waves are propagating in
the same direction. We call this supersonic flow, and it has great significance for the
properties of the solution as we shall show in the next section.

The system is classified as hyperbolic, even if it is nonlinear. The number of
boundary conditions is determined by the sign of the eigenvalues. It was demon-
strated in Sect. 15.1 how to construct admissible boundary conditions. At any
boundary point, the equations are written in terms of the local coordinates, where
one direction is along the inward normal n perpendicular to the boundary surface.
The corresponding coefficient matrix then determines the form of the boundary
conditions. We can without restriction use the coefficient matrix for ∂/∂x for the
analysis, assuming that the boundary is the plane x = 0. It can be shown that the
eigenvalues are

u, u, u, u + c, u − c.

There are four different situations, and the number of boundary conditions are de-
termined by Table 17.1.
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Table 17.1 Number of
boundary conditions for
various flow conditions

Flow condition Number of boundary conditions

supersonic outflow u ≤ −c 0

subsonic outflow −c < u ≤ 0 1

subsonic inflow 0 < u ≤ c 4

supersonic inflow c < u 5

Fig. 17.2 Type of free
stream boundary conditions
for an ellipse

Note that it is always the velocity component perpendicular to the boundary
that determines the number of boundary conditions. The flow may well be su-
personic in the sense that the particles are moving faster than the sound, i.e.,√

u2 + v2 + w2 > c but, if the normal component is smaller than the speed of sound,
there must be less than 5 boundary conditions. Figure 17.2 shows a 2D-example with
an ellipse as an open boundary far away from an object. It is assumed here that the
flow outside the ellipse is uniformly supersonic and constant without any influence
from the flow close to the object. This may not be exactly true on the downstream
side, but is often used for practical computations anyway.

A solid wall is a special type of boundary. On physical grounds, the boundary
condition should be un = 0, where un is the normal velocity component. The ques-
tion is whether the theory supports this one as the only necessary condition. For-
tunately it does. It is a borderline case with 3 zero eigenvalues, and only one is
positive. We recall from Sect. 15.1 that zero eigenvalues don’t require any bound-
ary condition for the corresponding characteristic variables. Accordingly, the single
solid wall condition on the velocity is sufficient. Actually, the nonlinearity causes a
double effect. The condition u = 0 makes three eigenvalues zero, and at the same
time it provides the necessary boundary condition.

17.1.3 Shocks

The Euler equations are nonlinear and, in order to analyze them, we made them
linear by the standard linearization procedure. However, some of the key features
of the equations cannot be caught by studying the linearized version. One of those
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Fig. 17.3 Solution of
Burgers’ equation, t = 0 (−·),
t = 0.5 (−−), t = 1 (—)

features is the formation of shocks, which is the name for a certain type of discon-
tinuity. For illustration we shall use a much simplified but still nonlinear equation,
namely the Burgers’ equation

∂u

∂t
+ u

∂u

∂x
= 0,

which got its name from the Dutch physicist J.M. Burgers (1895–1981). It is an
example of a conservation law that was introduced in Sect. 11.3, which is seen by
writing it in the form

∂u

∂t
+ ∂

∂x

(
u2

2

)
= 0.

The first version is very similar to the linear transport equation used many times
earlier in this book. Actually it acts much the same as long as the solution is smooth,
i.e., the coefficient u multiplying ∂u/∂x plays the role of wave speed. At any given
moment and any given point, a certain feature in the solution is moving with speed
u(x, t).

Let us look at an example in the interval −1 ≤ x ≤ 1 with the boundary condition
u(−1, t) = 1, and a continuous initial function according to Fig. 17.3. No boundary
condition is required at x = 1 as long as the solution is non-negative there. The top
part of the solution in the left half of the domain is moving at speed one, while it
goes down linearly to zero at x = 0. In the right part nothing happens. The result at
t = 0.5 and t = 1 is shown in Fig. 17.3.

At t = 1, the discontinuity has formed at x = 0, and we call it a shock. But this
causes big trouble. The upper part wants to continue with speed one, while the lower
part stands still. This is an impossible situation; we cannot have a solution that tips
over, such that there is no unique value of the function anymore. The question then
is: how should the solution be defined for t > 1? It seems reasonable that the shock
should continue moving to the right, but what should the speed be? For an answer
we try to see what nature would do.
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Fig. 17.4 Solution of the
viscous Burgers’ equation,
t = 0 (−·), t = 1 (−−), t = 2
(—)

There is no fluid that is truly inviscid, even if the viscosity is extremely small.
As we shall see below, viscosity introduces a second derivative in the differential
equation. Let us see what happens if we introduce a tiny viscous effect into our
simplified model equation:

∂u

∂t
+ u

∂u

∂x
= ε

∂2u

∂x2
.

Here the coefficient ε is small. The equation is called the viscous Burgers’ equation.
We choose ε = 0.01 and apply a standard second order difference scheme. The
result is shown in Fig. 17.4.

The shock is clearly identified, but now has rounded shoulders. This is typ-
ical for viscous flow compared to inviscid flow. The equation has now become
parabolic, and the solution is smoother. The really interesting fact is that the dif-
ferential equation now decided to produce a unique solution, and it decided upon
the speed u = 0.5 for propagation of the shock. This is the average of the two ex-
treme values when the shock formed.

For decreasing values of the viscosity coefficient ε, the shock will become
sharper and sharper, and in the limit we are back to a discontinuous solution. We use
this limit process to bring order into the inviscid case. With the notation u(x, t, ε)

for the viscous solution, and u(x, t) for the inviscid solution, we make the definition

u(x, t) = lim
ε→0

u(x, t, ε).

For smooth solutions of the inviscid equation this definition doesn’t introduce any-
thing new and is not necessary. But for a discontinuous solution it does.

For the Euler equations there is the same kind of situation. For supersonic flow,
there will be shocks. The viscosity can here be introduced in the physically correct
way, and we get the Navier–Stokes equations which have a quite complicated struc-
ture. But we can also introduce viscosity in a simpler form. No matter what form
is chosen, the physically relevant solutions can also here be defined as the limit of
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viscous solutions. There are several other ways to define the same unique solution,
but in all cases we say that it satisfies the entropy condition.

Numerical methods for shock problems can be separated into shock fitting meth-
ods and shock capturing methods. In the first case, the discontinuity is treated as an
internal boundary, and the location of it is kept as a special variable that is computed
for each time step. On each side of the shock the differential equation is solved by
some method that does not use any grid points on the other side. In the second case,
the differential equation is solved across the discontinuity, but with some special
procedure near the shock. Usually these methods use some kind of artificial vis-
cosity, which has the effect of smoothing the solution in analogy with the example
above.

Theory and methods for shock problems is a large and complicated issue. We
refer to the final chapter for literature on this topic.

17.1.4 Incompressible Navier–Stokes Equations

It can be shown that for low speed flow the compressibility effects are very small,
and they can be neglected without much loss of accuracy. The challenge that is
occupying many scientists today is the simulation of turbulence, and the incom-
pressible Navier–Stokes equations is the main model. The problem is to resolve the
very small scales for the variation of the variables, compared to the size of the typ-
ical object. A common method for getting some insight into a certain large-scale
problem, is to reduce the size of the problem by taking out one space dimension.
Unfortunately, this doesn’t make much sense for turbulence simulation, since the
underlying assumption is that there is little or no variation in one of the space direc-
tions. Turbulence is a true three-dimensional process.

Here we shall not involve ourselves into this very difficult subject. However,
there are certain basic properties of the mathematical and numerical models that
still apply to many applications, and we shall now discuss the differential equations
for incompressible but viscous flow. The continuity equation (17.4) can be written
in the form

∂ρ

∂t
+ u

∂ρ

∂x
+ v

∂ρ

∂y
+ w

∂ρ

∂z
= −ρ

(
∂u

∂x
+ ∂v

∂y
+ ∂w

∂z

)
,

where the left hand side is called the total derivative of ρ, and is denoted by Dρ/Dt .
It describes a change in a fluid element that is following the flow. The correct defi-
nition of incompressibility is

Dρ

Dt
= 0,

i.e., there is no change in the density if one follows the fluid particles. Since ρ > 0,
it then follows from the continuity equation that an equivalent condition is

∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0.
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The left hand side is called the divergence of the velocity, and the velocity field is
here “divergence free”. A special case of incompressible flow is when the density
ρ = ρ0 is a constant. It is such a frequent case in applications, that it is sometimes
taken as the definition of incompressibility.

In Cartesian coordinates the incompressible Navier–Stokes equations are

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
+ 1

ρ

∂p

∂x
= ν

(
∂2u

∂x2
+ ∂2u

∂y2
+ ∂2u

∂z2

)
,

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
+ 1

ρ

∂p

∂y
= ν

(
∂2v

∂x2 + ∂2v

∂y2 + ∂2v

∂z2

)
,

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
+ 1

ρ

∂p

∂z
= ν

(
∂2w

∂x2 + ∂2w

∂y2 + ∂2w

∂z2

)
,

∂u

∂x
+ ∂u

∂y
+ ∂u

∂z
= 0.

Here ν is the kinematic viscosity coefficient and has the dimension m2/s. Sometimes
one is using instead the dynamic viscosity coefficient μ = ρν which has the dimen-
sion kg/(m·s) = Pa·s. The variable p is usually called the pressure also here, but it
is not the same physical quantity as in the compressible case.

It is often convenient to use vector notation

∇ =
⎡

⎣
∂/∂x

∂/∂y

∂/∂z

⎤

⎦ , u =
⎡

⎣
u

v

w

⎤

⎦ ,

where ∇ is called the gradient operator. With (·, ·) denoting the vector scalar prod-
uct, the divergence condition can be written as

(∇,u) = 0.

By using the vectors defined above, the system takes the compact form

∂u
∂t

+ (u,∇u) + 1

ρ
∇p = ν�u,

(∇,u) = 0.

The notation ∇u indicates that a vector is acting on a vector, and that is a new type
of operation in our presentation so far. With the interpretation

∇u =
⎡

⎣
∇u

∇v

∇w

⎤

⎦ ,

the formal rule

(u,∇u) =
⎡

⎣
(u,∇u)

(u,∇v)

(u,∇w)

⎤

⎦

makes sense, and gives the correct equations.
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The operator � is the Laplacian. It is often written in the form � = ∇2, where
∇2 should be interpreted as the scalar product (∇,∇).

The advantage with the compact notation is not only that it saves space in writing,
but also that it is easy to rewrite the equations in other coordinate systems, see
Appendix A.2. The expanded form of the operators ∇ and � is well known for all
standard coordinates.

The incompressible Navier–Stokes equations don’t have any of the standard
forms that we have seen so far. There are four unknown variables u, v, w, p and
four differential equations, but the time derivative of the pressure p doesn’t occur
anywhere. The pressure is implicitly determined by the continuity equation.

In order to get an idea about the relative size of different variables and parame-
ters, the system is written in dimensionless form. If t0, L, u0 are typical values of
time, length and velocity respectively, the new variables are obtained by the scaling
relations

t → t/t0, x → x/L, u → u/u0, p → p/(ρu2
0).

With the dimensionless Reynolds number defined by

Re = ρLu0

ν
,

the dimensionless Navier–Stokes equations take the simple form

∂u
∂t

+ (u,∇u) + ∇p = 1

Re
�u,

(∇,u) = 0.

The Reynolds number was introduced by Stokes, but is named after Osborne
Reynolds (1842–1912). For fluids with low viscosity, for example air, and normal
speed and size of the object, the Reynolds number is large. A flying aircraft corre-
sponds to Reynolds numbers of the order 107. On the other hand, even if air has
low viscosity, a flying mosquito corresponds to a much smaller Reynolds number,
because L is small. Due to its small size and relatively low speed, the mosquito may
experience the air as quite viscous.

High Reynolds numbers means that the right hand side of the PDE system has
the character of a singular perturbation. By this we mean that second order deriva-
tives are added to a first order system, but with a small coefficient. Second order
differential equations have very different properties when compared to first order
ones, and this is the reason why the perturbation is called singular.

As an illustration of this, we take the extremely simple problem

du

dx
= 0, 0 ≤ x ≤ 1,

u(0) = 1,

which has the solution u(x) = 1. If we now consider the perturbed equation

du

dx
= ε

d2u

dx2
, 0 ≤ x ≤ 1,
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Fig. 17.5 Solution with
boundary layer, ε = 0.1
(−−−), ε = 0.01 (−−)

we need two boundary conditions. With

u(0) = 1, u(1) = 0,

the solution is

u(x, ε) = ex/ε − e1/ε

1 − e1/ε
.

For small ε we have

u(x, ε) ≈ 1 − e−(1−x)/ε.

This shows that the solution is practically identical to the original unperturbed so-
lution for almost all x, but there is a sharp boundary layer near x = 1. Figure 17.5
shows the solution for ε = 0.1 and ε = 0.01.

We have here a problem where the limit u(x,0) of the solutions u(x, ε) do not
converge to the original solution u(x) despite the fact that the differential equation
formally converges to the original differential equation. The source of the difficulty
is the fact that the perturbed equation requires an extra boundary condition, and
it does so no matter how small ε is. Then in the very limit ε = 0 the boundary
condition becomes superfluous.

It is important to point out that this is not an academic mathematical exercise
with no practical value. On the contrary, if the problem is more realistic such that
the solutions must be computed numerically, the analysis above has significant im-
plications on the solution methods. Even if the grid is very fine, there is always an
ε small enough such that the numerical solutions don’t behave well. We applied the
standard second order difference scheme to the problem with ε = 0.002. Figure 17.6
shows the solution for 50 grid points and for 100 grid points. Severe oscillations oc-
cur near the boundary layer in both cases.

In the past we have dealt with hyperbolic equations with constant norm solution
over time, and with parabolic equations with solutions that are damped with time.
Let us now take a look at the incompressible Navier–Stokes equations (which are
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Fig. 17.6 Numerical solution (—) of a boundary layer problem, ε = 0.002. True solution (−−)

neither hyperbolic or parabolic), and again use the Fourier technique to determine
their properties.

We take the 2D-equations with constant coefficients u = a, v = b and ε = 1/Re:

∂u

∂t
+ a

∂u

∂x
+ b

∂u

∂y
+ ∂p

∂x
= ε

(
∂2u

∂x2
+ ∂2u

∂y2

)
,

∂v

∂t
+ a

∂v

∂x
+ b

∂v

∂y
+ ∂p

∂y
= ε

(
∂2v

∂x2 + ∂2v

∂y2

)
,

∂u

∂x
+ ∂v

∂y
= 0.

By differentiating the first equation with respect to x and the second equation with
respect to y and adding the two, almost all terms disappear due to the divergence
condition. The remaining part is

∂2p

∂x2
+ ∂2p

∂y2
= 0,

and we replace the divergence condition with this equation. The resulting Fourier
transformed system is

dû

dt
+ aikxû + bikyû + ikxp̂ = −ε(k2

x + k2
y)û,

dv̂

dt
+ aikxv̂ + bikyv̂ + ikyp̂ = −ε(k2

x + k2
y)v̂,

(k2
x + k2

y)p̂ = 0.

For nonzero kx or ky we get p̂ = 0, and the first two equations become

dû

dt
= −(

aikx + biky + ε(k2
x + k2

y)
)
û,

dv̂

dt
= −(

aikx + biky + ε(k2
x + k2

y)
)
v̂.
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These two scalar equations both correspond to parabolic PDE, with the characteris-
tic damping properties caused by the viscosity.

The original equations are nonlinear, but it turns out that the solutions behave as
expected with a smoothing property as long as ε is not too small. This is a striking
example, where a much simplified model and a Fourier analysis serve to understand
some of the basic properties of a complicated PDE.

When it comes to boundary conditions, the most common type is specification of
the velocity:

u = u0(t), v = v0(t).

In the special case of a solid wall, the viscosity makes the fluid stick to the wall,
and we have u = v = 0. This is in contrast to the inviscid case, where the normal
component vanishes, but the tangential component does not.

The case with outflow open boundaries is the most difficult one. Prescription of
the velocity gives a well posed problem with a unique solution, but the problem is
that it is very difficult to find the correct data, since it is part of the solution. With a
rectangular domain with an outflow boundary x = x0 at one end, it is reasonable to
assume that there is no change in the x-direction, and we can use the conditions

∂u

∂x
= 0,

∂v

∂x
= 0.

However, for a more realistic 3D-problem, the computational domain must be kept
as small as possible, and these conditions may not be accurate enough. There are
many different ways of designing “far field boundary conditions”, or general “open
boundary conditions”. It is still a problem area where much research is going on,
and we shall not go further into this here.

For the steady state problem, it can be shown that a unique solution requires that
the pressure is prescribed at one point or, alternatively, that the average pressure is
prescribed.

The form of the equations is such that an explicit method for time discretization
cannot be used. There is no time derivative for the pressure, so it cannot be advanced
in a standard way. With an implicit method advancing the solution from tn to tn+1,
terms containing pn+1 will be involved. Together with the divergence condition, we
get a fully coupled system of equations for all three variables at all grid points. But
we need of course an effective method for solution of the system.

For finite element methods used for discretization in space, there is an elegant
way of eliminating the difficulty with the missing time derivative. The divergence
condition is eliminated before discretization in time by defining the subspace SN

(see Chap. 11) such that all functions in it are divergence free. Such elements have
been constructed also for high order accuracy. The remaining differential equations
for the velocity components are then solved in the usual Galerkin formulation.

There is another way of eliminating the divergence condition, and it was used for
the simplified equations above. The first equation is differentiated with respect to x

and the second one with respect to y, and the two are then added. Most of the terms
cancel each other by using the divergence condition in its differentiated form, but
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not all. The final equation is an elliptic equation for the pressure, and the complete
system is

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ ∂p

∂x
= ε

(
∂2u

∂x2
+ ∂2u

∂y2

)
,

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ ∂p

∂y
= ε

(
∂2v

∂x2 + ∂2v

∂y2

)
,

∂2p

∂x2 + ∂2p

∂y2 +
(

∂u

∂x

)2

+ 2
∂v

∂x

∂u

∂y
+

(
∂v

∂y

)2

= 0.

The idea is to use an iterative procedure, which is now more natural with the pres-
sure occurring in the third equation. Assuming that all three variables are known at
t = tn, the first two equations are advanced one step, providing preliminary values
ũn+1, ṽn+1. These are now used in the third equation to compute new values pn+1.
For better accuracy, these iterations are repeated. Note that this type of iteration
does not work with the original continuity equation for u and v. With the prelimi-
nary values ũn+1 and ṽn+1, how should we get new values pn+1 from the continuity
equation?

Since we have raised the order of the differential equation one step, another
boundary condition must be specified, to be used for the pressure equation. This
condition can be stated in terms of the normal derivative ∂p/∂n, which can be de-
rived from the first two equations since ∂p/∂x and ∂p/∂y both are present there.

In applications, one is often interested only in the steady state solution, i.e., with
a given initial solution u(x, y,0) we want to compute

lim
t→∞ u(x, y, t) = u∞(x, y).

One way of doing this is to use a consistent method for the time dependent equa-
tions, and then advance the solution in time until it settles down to a state where
there is almost no change at all. There may be a solver available for the time de-
pendent problem, and it is convenient to apply it. This may well be a possible way
that works fine, but in general it is not very efficient. First of all, the time integra-
tion method may be designed for high accuracy, but we need good accuracy only
in the (x, y)-space for the converged solution. This suggest that we can go down in
accuracy, and optimize the time integration with respect to convergence rate as time
increases. We can also go one step further and disregard the consistency with the
correct time behaviour completely. After all, we care only about the final result, not
about the way it is arrived at. The situation is illustrated symbolically in Fig. 17.7.
It is assumed there that the discretization in space is one and the same, such that all
methods produce the same solution. (In Sect. 16.3 we solved the steady state heat
conduction problem without going via the time dependent equations.)

No matter what method we are using, the discretization in space leads to some
kind of system of equations. In Chaps. 13 and 14 we described some of the most
common solution methods for fast convergence.

In the next section we shall apply the Navier–Stokes equations to a few real, but
still simple problems.
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Fig. 17.7 Solution of steady
state problems

Fig. 17.8 A driven cavity

17.2 Low Speed Flow

As noted above, when it comes to liquids or gases with low particle speed, one
can disregard the compressibility effects and still keep quite good accuracy. In this
section we shall present two applications where the incompressible Navier–Stokes
equations is a good model. The first one is the classic test problem called the driven
cavity problem, see Fig. 17.8. In this problem we have a 1 × 1 m square box with
four solid walls containing a fluid, with the upper wall moving with a constant ve-
locity u0.

The fluid is sticking to the wall, such that a swirling motion is taking place in
the fluid. We are again using the COMSOL Multiphysics system for computing the
steady state solution, and the equations are written in dimensional form:

ρ

(
u

∂u

∂x
+ v

∂u

∂y

)
+ ∂p

∂x
= μ

(
∂2u

∂x2 + ∂2u

∂y2

)
,

ρ

(
u

∂v

∂x
+ v

∂v

∂y

)
+ ∂p

∂y
= μ

(
∂2v

∂x2
+ ∂2v

∂y2

)
.
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Fig. 17.9 Driven cavity, grid and velocity field

∂u

∂x
+ ∂u

∂y
= 0,

We are using the parameters ρ = 1 kg/m3 and μ = 0.05 Pa·s. The upper wall moves
with u0 = 10 m/s and, based on this normalization speed, the Reynolds number is
Re = 200. Due to the moving upper wall, there is a discontinuity in the upper cor-
ners. However, due to the smoothing property of the equations, the solution becomes
continuous away from the corner. In the previous section, it was mentioned that a
given point value of the pressure is required for a unique solution, and we prescribe
p = 0 at one corner.

The geometry of the computational domain suggests a rectangular grid, but we
have local refinements in mind, and then a triangular grid is easier to handle. The
result of the first computation and its grid is shown in Fig. 17.9. The arrows show
the direction of the fluid particles, but not the magnitude of the velocity. The fluid is
moving much faster in the upper part of the cavity.

The plot indicates that the velocity field has some special features in the lower
corners. We refine the mesh there, and run the program again. The result is shown
in Fig. 17.10, with a magnification of the velocity field in the lower left corner.

In order to see in even more detail what is going on very close to the lower cor-
ners, we make two more local refinements. The first one is done in an approximate
square with sides 0.1, and the final one with sides 0.015. Figure 17.11 shows the
result near the lower left corner.

The velocity field figure shows a magnification of a very small part in the left
corner. We can see that there is actually a second recirculation area, with the
same rotation direction as in the main part of the cavity. This feature would have
been practically impossible to reveal by using a uniform grid in the whole do-
main.

We shall now turn to a second application concerning cross-country skiing. It is
well known that a skier close behind the leading skier has an advantage, particu-
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Fig. 17.10 Grid and velocity field with local grid refinement

Fig. 17.11 Grid and velocity field in lower left corner with three local grid refinements

larly when the speed is high. The second skier is partially shielded from the wind
resistance by the first skier, and we shall compute how large this effect is. We use
a simple two-dimensional model with no vertical effects. The first skier is modeled
by an ellipse (seen from above) with axis 60 cm along the direction of motion and
40 cm across. The whole computational domain is a 10 × 4 meter rectangle. We
are using the parameters for air at 0°C: ρ = 1.292 kg/m3 and μ = 0.0178 Pa·s. The
constant speed u0 = 10 m/s is prescribed at the forward inflow boundary as well
as at the two side boundaries. At the backward outflow boundary we prescribe the
pressure p0 = 0. Figure 17.12 shows the grid and the result.

As expected there is a low speed area behind the skier. To see more exactly
the strength of the effect, we plot the wind speed from the back of the skier and
backwards. The result is shown in Fig. 17.13 for three different positions: right
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Fig. 17.12 Grid and velocity field for u0 = 10 m/s

Fig. 17.13 Velocity behind the skier as a function of distance

behind the skier, 20 cm to the side, and 40 cm to the side (x = 0 corresponds to the
back of the skier).

If the second skier stays in exactly the same track as the first one, there is actually
not only a lee area, but he also gets an extra push from behind (negative velocity)
if he stays very close! However, if he moves slightly to the side, the effect is much
less as shown in the next two subfigures.

The model used here is very coarse, but it can easily be refined with a more
detailed geometry and a three-dimensional model. The point we want to make here
is that modern mathematical/numerical models can easily be used for estimation of
certain effects that may be of great help for practical purposes. (An Olympic gold
medal in 50 km cross country skiing may require some other ingredients as well. . . )

17.3 High Speed Flow and Aircraft Design

In Sect. 1.1 we used aircraft design as an example to illustrate the basics of computa-
tional mathematics. Here we shall follow up a little more on this particular problem.

The full Navier–Stokes equations is the correct model for all types of flows, since
it takes the nonlinear compressibility effects into account as well as the viscous
effects. For high speed flow there is no way of getting any reasonable results with
an assumption of incompressible flow. However, for preliminary aircraft design, it
makes sense to disregard the viscous effects, and we shall use the Euler equations
just as in the introductory chapter.
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Fig. 17.14 Transonic airfoil

An aircraft has a complicated geometry, and even with the computers of today it
is not possible to do full-scale computations with all details included. As a simplifi-
cation we reduce the geometry to an airfoil as in the introductory chapter.

From an economic point of view, the flying properties of a passenger aircraft are
particularly important at the cruising speed that is held most of the time for long
distance flights, since it determines almost completely the fuel consumption. A fun-
damental quantity is the speed of sound cs as introduced in Sect. 17.1.2. It depends
on the various flow quantities, but in air at the cruising altitude of 11,000 meters
it is approximately 295 m/sec, or 1062 km/h. If the speed of a moving object is
c m/sec, the Mach number is defined as M = c/cs . A subsonic passenger jet aircraft
has a typical cruising speed around 850 km/h, which corresponds to M = 0.8. For
our setup with a steady wind blowing from the left towards the fixed airfoil, the
corresponding Mach number M = Mf is called the free stream Mach number. The
speed increases above the airfoil, and it goes supersonic, i.e., M > 1. Further to the
right it has to go subsonic again, and we call this situation transonic flow. It can be
shown theoretically that there has to be a sudden jump in the pressure where the
flow goes from supersonic to subsonic. This discontinuity is a shock as described
in Sect. 17.1.3. A typical situation is shown in Fig. 17.14. Unfortunately, the pres-
ence of the shock causes trouble, since there will be a sharp increase in the drag.
This is the reason why manufacturers stay away from cruising speeds very close
to the speed of sound, since the shock strength increases with the speed, causing a
higher fuel consumption. (For supersonic aircraft, there is an even worse situation,
since other even stronger shocks occur.) However, strong efforts are being made to
go as high as possible in cruising speed, and this is why the design of the wings is
such a crucial problem. Two different geometries may give quite different pressure
distributions for the same cruising speed.

Referring to Fig. 1.1 in the introductory chapter, we ask ourselves the same ques-
tion again: how can the airfoil be optimized? If the shock can be eliminated or be
made weak, the flying conditions will improve considerably.

The Euler equations were given for the simplified two-dimensional steady state
problem in Sect. 1.1. Here we present them again, but now with the time derivatives
included:

∂ρ

∂t
+ ∂(ρu)

∂x
+ ∂(ρv)

∂y
= 0,
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∂(ρu)

∂t
+ ∂(ρu2 + p)

∂x
+ ∂(ρuv)

∂y
= 0,

∂(ρv)

∂t
+ ∂(ρuv)

∂x
+ ∂(ρv2 + p)

∂y
= 0,

∂E

∂t
+ ∂(u(E + p))

∂x
+ ∂(v(E + p))

∂y
= 0, p = p(ρ,u, v,E).

For a long time, the computational procedure was based on trial and error, i.e., the
pressure distribution is computed for different geometries and the best one is chosen.
The geometries are chosen by skilled engineers with good knowledge about aerody-
namics and the influence of certain geometrical features. But the whole procedure
is actually an optimization that can be formulated mathematically. For example, for
a given required lifting force, the drag is defined as a function of the geometry. But
there are infinitely many parameters which define the geometry of the wing and, as
usual, it is necessary to discretize in such a way that there are only a finite number of
parameters. There are different ways of achieving this discretization. A very direct
way is to define a number of coordinates xj on the surface, and then interpolate by
piecewise polynomials. The optimization is then formulated as

min
X∈D

f (X),

where f represents the drag and X is a vector containing all the subvectors x. But
this vector must be limited to some predefined domain D corresponding to certain
limitations on the wing shape. For example, the wing must be thick enough for fuel
storage etc. There are also other constraints like the requirement on a minimal lift.

This formulation looks simple enough, but it hides a number of severe challenges.
The function f is an abstract notation which couples the geometry to the drag. For
a given geometry X, the value of f (X) is defined through the solution of the Euler
equations. A large optimization problem is always solved by iteration, which for
each step requires the computation of f (X(n)). We need an efficient Euler solver.

We have earlier described the three general numerical methods: finite difference,
finite element and spectral methods. In fluid dynamics, one often uses still another
method called the finite volume method, which was mentioned in Sect. 11.3. It is
constructed for conservation laws, and we shall describe it briefly here for problems
in 2D

∂u

∂t
+ ∂f (u)

∂x
+ ∂g(u)

∂y
= 0,

where f (u) and g(u) are given functions of the unknown solution u. The computa-
tional domain is partitioned into quadrilaterals Vj , which are called finite volumes
(referring to the 3D case) as shown in Fig. 17.15.

In 1D there is the simple integration formula
∫ b

a

df

dx

(
u(x)

)
dx = f

(
u(b)

) − f
(
u(a)

)
,
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Fig. 17.15 Finite volume
grid in 2-D

and in 2D it is generalized to the Green’s formula
∫ ∫

Vj

(
∂f (u)

∂x
+ ∂g(u)

∂y

)
dx dy =

∫

∂Vj

f (u)dy −
∫

∂Vj

g(u)dx,

where ∂Vj is the boundary of the volume Vj . The conservation law becomes
∫ ∫

Vj

∂u

∂t
dx dy +

∫

∂Vj

f (u)dy −
∫

∂Vj

g(u)dx = 0,

and this is the starting point for the finite volume method. We note that the label
conservation law originates from this formula. If Vj is taken as the whole domain
for the equation, and the solution is zero at the boundary, then

d

dt

∫ ∫
udx dy = 0,

i.e., the integral is independent of time.
Finite difference methods use point values at the grid points, but here we work

with the averages of the function over each volume:

uj = 1

�Vj

∫ ∫

Vj

udxdy.

The remaining problem is now to approximate the line integrals, which all consist
of four parts. For example, referring to Fig. 17.15 and the quadrilateral V0, we ap-
proximate the part between the corner points D and A by

∫ A

D

f (u)dy ≈ (yA − yD)
f (u0) + f (u1)

2
,

where yA denotes the y-coordinate at the point A etc. With the notation f0 = f (u0)

etc., the method becomes
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2�V0
du0

dt
+ (yA − yD)(f0 + f1) + (yB − yA)(f0 + f2)

+ (yC − yB)(f0 + f3) + (yD − yC)(f0 + f4)

− (xA − xD)(f0 + f1) − (xB − xA)(f0 + f2)

− (xC − xB)(f0 + f3) − (xD − xC)(f0 + f4) = 0.

When summing up over the whole computational domain, all terms cancel each
other, and we get conservation in the discrete sense

d

dt

∑

j

uj �Vj = 0

if the solution is zero at the outer boundary.
It remains to solve the ODE-system in time, and it is done by applying a differ-

ence method as described in Sect. 10.1.
We have described the finite volume method for quadrilaterals here. However, the

method can be worked out also for triangular grids, where the line integrals along
the sides are approximated by using the function values at neighboring triangles.

This is done in the example we present here. The results have kindly been pro-
vided by Olivier Amoignon, see [1], and they were presented already in the intro-
ductory chapter. It is hard to see the details of the triangular grid in Fig. 1.3, and a
close up near the surface is shown in Fig. 17.16. In order to avoid trouble with the
grid and the algorithm, the trailing edge cusp is represented with a small but nonzero
cutoff.

The two cases presented in Sect. 1.1 are actually an illustration of the optimiza-
tion algorithm described above. The dashed curve in Fig. 1.4 shows an initial airfoil
shape with the corresponding pressure distribution shown in Fig. 1.5. The latter has
a strong destructive shock in the transonic area. The optimization procedure is now
applied with a finite volume Euler solver as the key ingredient. The result is the
new airfoil shape represented by the solid curve in Fig. 1.4 with the new pressure
distribution in Fig. 1.5. The shock is now eliminated, and the pressure distribution
provides a weaker drag force.

Fig. 17.16 Close up of the
computational grid near the
trailing edge
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For the steady state problem we are considering here, the time derivatives in the
Euler equations are zero, and for each step in the optimization algorithm there is a
large system of algebraic equations to be solved as indicated in Sect. 1.1. However,
one way of solving this system is to use the time dependent version, and then apply
a solver for this type of equation. For each step in the optimization we have a com-
puted solution from the previous computation. This solution is taken as the initial
function for the time dependent problem, and a consistent time stepping method is
applied. This technique has been applied in the computation presented here.

17.4 Weather Prediction

The use of mathematical models for weather prediction has a long history. After
all, the weather is an effect of the atmospheric state, and if the pressure, density, air
velocity, temperature and humidity are known, then we know what the weather is.
Furthermore, if these state variables are known at a certain time, the basic thermody-
namic differential equations determine the state at a later time. These equations were
completely known already in the nineteenth century, and some of them have been
discussed earlier in this chapter. However, somewhat surprisingly, it took quite a
long time before this theoretical approach was accepted in the meteorological com-
munity. There was rather a belief that statistical methods should be used, based on
weather data from the past. Since there is so much data about old weather patterns,
one could search among them way back in time to find a pattern which is similar
to the one of the last few days. By assuming that the development for the next few
days will be the same as it was in the known case from the past, a prediction could
be made.

As a consequence, when the Norwegian scientist Vilhelm Bjerknes suggested in
1904 that weather predictions should be based on the thermodynamical equations,
a quite strong scepticism resulted. And even if one accepted the idea, there was the
problem that the differential equations are impossible to solve by classic analytical
means.

However, the British mathematician and meteorologist Lewis Richardson (1881–
1953) believed in Bjerknes’ ideas, and he also understood how the differential equa-
tions should be solved. He was probably the first one who made a serious effort to
solve a set of PDE by using a finite difference method. The computations were enor-
mous, even when limited to a few time steps, and his method of using human beings
as the processors organized as a difference scheme, was not realistic. But his work
contributed significantly to later fundamental work on PDE-solvers.

With the introduction of electronic computers, the situation changed dramati-
cally, as for many other scientific and engineering areas. The militaries were in the
forefront (as is often the case), and the first predictions with at least some degree
of reliability were made in the early fifties. But still, after more than fifty years of
development, the predictions sometimes fail, and not only in the small details. Why
is this?
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The thermodynamic physical laws are well known and accurate. The gas-
dynamic equations tell it all when it comes to the behavior of the atmosphere. By
adding an equation governing the humidity in the air, the physics is complete. The
fundamental difficulty is the size of the domain. All parts of the whole atmosphere
around the globe interact with each other, and we need initial data everywhere at
a given time in order to start the computation. Even with all the weather satellites
circling our earth today, the coverage is not fine enough. Furthermore, the advance-
ment in time requires small step sizes in both space and time. We have seen in
Sect. 17.3 about aerodynamic computations that, for example, the pressure may be
varying on a centimeter scale, and it does so even if high speed aircraft are not in-
volved. This is of course a completely unrealistic degree of resolution. Fortunately,
realistic weather computations can be made with a much coarser grid. After all, the
often talked about butterfly on the Tienanmen Square in Beijing does not effect the
course of a low pressure area traveling across the North Sea from the British Isles
to Scandinavia.

But even so, there are certain effects that are important for the dynamic process,
and which cannot be represented on the affordable grid resolution. Before discussing
the degree of possible resolution, we shall briefly describe the numerical methods.

We take Sweden as an example. A typical forecast is based on a two stage pro-
cedure. The first stage is a simulation with the whole globe and its atmosphere as
the computational domain. Many institutes use a finite difference method applied to
all coordinate directions, others use a combination of a pseudo-spectral and finite
difference method. In Chap. 12 we described the principles for the pseudo-spectral
method with basis functions that are associated with a grid. The basis functions
should be well adapted to the geometry and the solution. In order to describe the
atmospheric layer, spherical coordinates are the natural ones. They are the longi-
tude φ, the latitude θ and the radius r with the limits

0 ≤ φ ≤ 2π, 0 ≤ θ ≤ π, r0 ≤ r ≤ r1.

The interval [0,π] for θ is the common one in meteorology, and θ = 0 corresponds
to the north pole. The variation in the angular directions is described by the spheri-
cal harmonics Y n

m(φ, θ), which are closely connected to trigonometric functions and
Legendre polynomials. (They are eigensolutions to the Laplace operator in angular
coordinates.) For the vertical representation it is inconvenient to use the radial coor-
dinate r , since the surface of the earth plays such an important role. If r = r0(φ, θ)

represents the surface, it is better to define this one as z = 0, where z is the new
coordinate representing the height. Any physical variable, for example the tempera-
ture T , is now expressed as

T (φ, θ, z, t) =
M∑

m=1

N∑

n=1

T̂mn(z, t)Ymn(φ, θ).

The angular field is now discretized such that φ = φj and θ = θk . If for certain
z and t the temperature is known at the grid points, the derivatives with respect
to φ and θ are computed by the pseudo-spectral technique. The total number of
grid points is MN , but there is a complication here. The longitudal lines (also for
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Fig. 17.17 Solution of ∂u/∂t = ∂u/∂x, exact (—) and numerical (−−)

Fig. 17.18 Global pressure and temperature

difference methods) are converging towards the two poles, which means that the
grid points become too close to each other in the northern and southern parts. The
remedy is to take out points in those areas, even if it complicates the algorithm a
little. The advantage is that for a given number MN one can afford more points in
other areas. The final result is that typical grids used today have a step size of the
order 25 kilometers.

This is too coarse to catch all features that effect the weather. The character of
the Earth’s surface is of fundamental importance, and it varies at a smaller scale. For
example, there are many lakes that don’t show up at all, and there is a significant
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Fig. 17.19 Local pressure, temperature and wind

difference when it comes to heat exchange between the air and a water surface on
the one side, and between air and a grass field on the other side. Another feature
with a large effect is the presence of clouds, and these may be much smaller than 25
kilometers in diameter.

Fortunately, the lack of resolution doesn’t make the situation hopeless. The rem-
edy is to introduce some kind of parameterization that accounts for the desired ef-
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fects. The effect of the smaller lakes on the heat exchange can be estimated on a
larger scale. Assume that the heat exchange coefficient is as for a certain type of
solid surface, and aw for a water surface. If the combined water surface area is w%
of a certain (not too large) subdomain, a simple and straightforward method is to
adjust the heat exchange coefficient by linear interpolation:

asw =
(

1 − w

100

)
as + w

100
aw.

In weather prediction, as well as in many other applications, one would like to
carry out the simulation over long time intervals. But even with the very best meth-
ods, there is always a limit where the result is too inaccurate for any meaningful
practical purpose. A high pressure area that moves along a certain path, reaching
point A after two weeks, say, will be distorted and dislocated by the numerical
model. A two week prediction for point A may well show a low pressure area in-
stead.

As a simplified example, we consider the equation

∂u

∂t
= ∂u

∂x
, −1 ≤ x ≤ 1,

with 2-periodic solutions and an initial pulse at x = 0 that moves to the left with
speed one. When it leaves the left boundary, it enters at the right boundary again
such that u(x, t) = u(x, t + 2) for any x and t . One complete lap bringing the pulse
back to its original position x = 0 takes 2 time units, which is called one period.
After each one of n periods, where n is any integer, the pulse passes x = 0.

Figure 17.17 shows the result of a simulation over 10 periods. The solid curve
centered at x = 0 represents the original pulse as well as the correct solution after
any number of periods n. The dashed curve is the numerical solution. The figure
shows how the error increases with time. If we think of positive values of u as the
pressure above the normal mean value, we see that the peak is located too far to the
right. Furthermore, a low pressure area centered at x ≈ 0.25 has developed at t = 10,
and it has become even stronger and shifted further to the right at t = 20. Obviously,
a prediction based on these data has very poor quality. The longest predictions made
today that are considered to have reasonable accuracy, are of the order 5–10 days.

Figures 17.18 and 17.19 have kindly been provided by Per Kållberg at the
Swedish Meteorological and Hydrological Institute (SMHI), Norrköping, Sweden.
The first one shows the pressure, temperature and percipitation distribution obtained
from a 4-day global simulation based on difference methods in all directions. The
second one shows a 36-hour local forecast in the Stockholm area where, in addition
to pressure and temperature, the wind strength and direction are also shown.





Chapter 18
Computers and Programming

If a certain numerical method has been developed to solve a given problem, a com-
puter is needed to do the work as prescribed by the algorithm. But this requires that
the algorithm is transferred into a program that can be understood by the computer.
In this chapter we shall briefly describe the principles for this programming process.

18.1 Basic Principles for Programming

The central part of a computer is a processor that among other things can do el-
ementary algebraic operations on numbers in binary form, i.e., numbers that are
represented as a sequence of zeros and ones. The number 19, which is interpreted
as 1 · 10 + 9 · 1 in the familiar decimal system, is given the representation

19 = 1 · 16 + 0 · 8 + 0 · 4 + 1 · 2 + 1 = 1 · 24 + 0 · 23 + 0 · 22 + 1 · 21 + 1 · 20

in the binary system. The coefficients of the powers of 2 result in the number
100112, and this sequence is stored in the computer. (The 64-th birthday is really
something to celebrate in a binary world, since the number looks like a million:
10000002.) The binary form is natural, since the electronic components are made
such that they are either on for a one, or off for a zero.

Noninteger numbers can of course also be represented in binary form. For exam-
ple,

10011.1012 = 19 + 1 · 2−1 + 0 · 2−2 + 1 · 2−3 = 19.625

The precision of computations is limited by the accuracy of the representation of
numbers in the computer. How many binary positions (bits) should be used for each
number? Most computers and operative systems allow for 32- or 64-bit arithmetic,
which is referred to as single precision and double precision. The numbers are rep-
resented in floating point form a2b , where the mantissa a and the exponent b are
stored in binary form with a normalized such that it always is in a certain interval,
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usually 1 ≤ a < 2. For single precision the mantissa occupies 24 bits, such that the
number above is stored as

19.625 = 1.001110100000000000000002 · 2000100002 .

Double precision allows for a 53-bit mantissa.
The representation described here is the common standard, but of course any

manufacturer may use its own type of representation. For example, the base 16 is
sometimes used in the number representation, such that it takes the form c16d .

It is a long way to go from an algorithm arising from a discretized version of a
differential equation to something that can be understood by the computer. It needs
a sequence of instructions that tells it step by step how to carry out the arithmetic.
Such a set of instructions is called a computer program and, since the computer can
understand only zeros and ones, these instructions must be given in binary form as
well. At the beginning of the electronic computer era, mathematicians were engaged
in developing programs. They had to write down the instructions in binary form,
which was an extraordinary effort. As we all know, the development of hardware
for computers has been extremely fast, but so has the development of software.
Programming systems were constructed such that the instructions began looking
more like ordinary mathematical and logical symbols. The FORTRAN language was
developed already in the fifties, and it was followed by several versions that became
more general for each stage. The name is a short form for FORmula TRANslation.
For a long period of time it was the dominating programming language for problems
in scientific computing, and after 60 years it is still used for many applications. More
recent programming languages are C, C++ and Java.

A high level language requires a compiler, which is a program by itself, that
is able to convert the high level instructions to a binary code. For example, the
statement a = b + c is broken down by the compiler to a set of binary instructions
that tells the computer to

(1) take the number in a certain memory cell called b into the algebraic unit
(2) take the number in a certain memory cell called c into the algebraic unit
(3) add the two numbers
(4) store the result in a certain cell called a

It is easy to construct electronic circuits for the basic arithmetic operations addition,
subtraction, multiplication and division. However, elementary functions such as

√
x

are much harder. Even if there are tables for evaluation, it is impossible to include
these in the computer’s memory for every possible positive number x. An algorithm
is needed to compute it for a given value of x. In Sect. 13.1 the Newton-Raphson
method for the solution of algebraic equations was described. This method can be
used for finding the square root s. The equation is

s2 − x = 0,

and the iterative method becomes

sj+1 = sj − s2
j − x

2sj
= 1

2

(
sj + x

sj

)
, j = 0,1, . . . .
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(The case where sj in the denominator approaches zero has to be treated separately.)
This algorithm will give the answer very quickly if a good initial guess s0 is avail-
able. This is a problem by itself, and there are several different strategies for deter-
mining it. One method is to count the number of digits in the number x represented
by its binary form. As an example, consider the computation of

√
145. We have

145 = 100100012,

i.e., there are n = 8 digits. The initial value is chosen as s0 = 2n/2 = 24 = 16. The
algorithm above produces the values

16.00000000

12.51250000

12.05116116

12.04159838

12.04159458

12.04159458

Already after three iterations we have five correct decimals. This is what is going on
also in the hand calculator when pressing the √ key.

This example illustrates that any programming language dealing with mathemat-
ics, has to have access to a large number of algorithms stored for the evaluation of
elementary functions. Such algorithms are part of the software, and are included in
most hand calculators of today.

18.2 MATLAB

Today, there is an abundance of different high level programming languages that are
designed for different types of applications. One of the most well known languages
for scientific computing is MATLAB. It is different from most other high level lan-
guages in the sense that in its basic form no binary program is created by a compiler.
Each command is interpreted and carried out by itself in exactly the order in which
they are written.

This is not the place to give a tutorial on MATLAB, but we shall present an
example for illustration of the structure. The example shows a program for solving
the heat equation in its simplest form

∂u

∂t
= ∂2u

∂x2
, 0 ≤ x ≤ 1, t ≥ 0,

u(0, t) = 0,

u(1, t) = 0,

u(x,0) = 1 − 2|x − 0.5|,
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by the Euler method:

un+1
j = un

j + λ(un
j−1 − 2un

j + un
j+1), j = 1,2, . . . ,N,

un+1
0 = 0,

un+1
N+1 = 0,

u0
j = 1 − 2|xj − 0.5|, j = 1,2, . . . ,N.

Here �x = 1/(N + 1) and λ = �t/�x2. We present first a version with straight-
forward programming using so called for-loops. A %-sign indicates that the line is
a comment used by the programmer for his own benefit, and it is ignored by the
computer. The step size in space is 1/20, and tf is the final time level. The program
is:
———-
clear

% Initialization of parameters

tf = 0.1;
N = 19;
lambda = 0.4;
dx = 1/(N + 1);
dt = lambda ∗ dxˆ2;

% Definition of initial function

for j = 1 : N
x(j) = j ∗ dx;
u0(j) = 1 − 2 ∗ abs(x(j) − 0.5);

end
t = 0;
un = u0;

% Advancing the solution from t = 0 to t = tf

while t < tf
for j = 1 : N

un1(j) = (1 − 2 ∗ lambda) ∗ un(j);
if j > 1, un1(j) = un1(j) + lambda ∗ un(j − 1); end;
if j < N , un1(j) = un1(j) + lambda ∗ un(j + 1); end;

end
un = un1;
t = t + dt;

end

% Adding the end points for the plot

xx = [0 x 1];
u = [0 un 0];
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ui = [0 u0 0];
plot(xx,u, xx,ui,′ −−′)

% Scaling of the axes

axis([0 1 0 1])
———-

It should not be very difficult to understand the code for somebody who is famil-
iar with some kind of programming language. We make a few comments for those
who have never encountered any kind of programming.

A statement a = expression means that the expression on the right hand side is
evaluated and the value is then transferred to the variable on the left. This means
that it makes sense to write a = 2 ∗ a. The value in the variable a is multiplied by
two, and the new value is then stored in the same variable a.

The leading clear-statement makes all variables and the plot figure empty. If the
program has been run before in the same session, the variables are otherwise left
with the old values.

The first for-loop in the program defines the N vector elements in x and the initial
vector u0. The while segment is carried out from the beginning to the end-statement
as long as t < tf . It requires that the parameter t is updated inside the segment,
otherwise there will be an infinite loop that never stops. In the second for-loop it is
necessary to separate out the end values of the index j , since otherwise un

j−1 and
un

j+1 will be undefined.
The two if -statements mean that the instruction before the end-statement will be

carried out only if the relation in the beginning is true. For the plot at the end of
the program we add an extra point at each end of the interval and the corresponding
boundary values for u. The parameters in the axis-statement specify the end points
[xb xe yb ye] of the x-axis and the y-axis in the plot.

MATLAB was born as an effective system for performing various algebraic op-
erations in matrix algebra. In fact, the name is an acronym for MATrix LABoratory.
The current much expanded MATLAB system still has its strength in the fast execu-
tion of matrix algebra, and therefore one should try to express as much as possible
of the algorithm in terms of vectors and matrices. The central part of our algorithm
is the computation of the solution un+1 in terms of un, and this can be formulated
as a matrix-vector multiplication. With

un =

⎡

⎢⎢⎢⎢⎢⎢⎣

un
1

un
2
...
...

un
N−1

⎤

⎥⎥⎥⎥⎥⎥⎦
, A =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

1 − 2λ λ

λ 1 − 2λ λ

λ 1 − 2λ λ

. . .
. . .

. . .

λ 1 − 2λ λ

λ 1 − 2λ

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

,

the formula is

un+1 = Aun.
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MATLAB has many ways of defining vectors and matrices. The simple direct way
is to write them explicitly as in the example A = [1 2 4; 5 3 1] which means the
matrix

A =
[

1 2 4
5 3 1

]
.

For problems like ours this method doesn’t work, since the size of the matrix is gov-
erned by a parameter N , which furthermore may be very large. In our case we have a
band matrix, and it is convenient to use the MATLAB expression ones(m,n), which
means a matrix with m rows and n columns containing only ones. The expression
diag(x, k) means a matrix with the vector x in the k-th diagonal, where k = 0 for
the main diagonal, k = −1 for the first subdiagonal, k = 1 for the first superdiag-
onal etc. (If k is omitted, it is assumed to be zero.) All the remaining elements in
the matrix are zero. If x has N elements, then A is a square (N + |k|) × (N + |k|)
matrix. Accordingly, the statement

A = a ∗ diag(ones(N − 1,1),−1) + b ∗ diag(ones(N,1))

+ c ∗ diag(ones(N − 1,1),1)

defines the matrix

A =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

b c

a b c

a b c

. . .
. . .

. . .

a b c

a b

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

.

We use this method of defining A, and get the following modified version of the
program above:
———-
clear

% Initialization of parameters

tf = 0.1;
N = 19;
lambda = 0.4;
dx = 1/(N + 1);
dt = lambda ∗ dxˆ2;
x = dx ∗ (1 : N)′;

% Definition of initial function

u0 = ones(N,1) − 2 ∗ abs(x − 0.5 ∗ ones(N,1));

% Building the coefficient matrix

A = lambda ∗ (diag(ones(N − 1,1),−1) + diag(ones(N − 1,1),1))

+ (1 − 2 ∗ lambda) ∗ diag(ones(N,1));
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t = 0;
u = u0;

% Advancing the solution from t = 0 to t = tf

while t < tf
u = A ∗ u;
t = t + dt;

end

% Adding the end points for the plot

xx = [0 x ′ 1];
u = [0 u′ 0];
ui = [0 u0′ 0];
plot(xx,u, xx,ui,′ −−′)

% Scaling of the axes

axis([0 1 0 1])
———-

Here we have also used a simpler way of defining the vector x. Note that the
vector (1 : N) is a row vector, and we define x as a column vector by writing (1 : N)′.
Also, in the definition of the initial vector u0 we use the abs-function applied to a
vector. In MATLAB this means that the function is defined for each vector element
by itself. In the plot statements we work with row vectors, which requires the extra
transpose sign ′ on x and u.

There is still another measure to be taken in order to get a more effective com-
putation. Most of the elements in the matrix A are zero. MATLAB has the ability to
store only the nonzero elements of the matrix so that all unnecessary multiplications
by zero can be avoided. The command

B = sparse(A)

stores only the nonzero elements of the matrix in B . The final optimized form of the
program is (with the comments taken out):
———-
clear
tf = 0.1;
N = 19;
lambda = 0.4;
dx = 1/(N + 1);
dt = lambda ∗ dxˆ2;
x = dx ∗ (1 : N)′;
u = ones(N,1) − 2 ∗ abs(x − 0.5 ∗ ones(N,1));
plot([0 x ′ 1], [0 u′ 0],′ −−′)
axis([0 1 0 1])
hold on
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B = sparse(lambda ∗ (diag(ones(N − 1,1),−1) + (diag(ones(N − 1,1),1)))

+ (1 − 2 ∗ lambda) ∗ (diag(ones(N,1),0)));
t = 0;
while t < tf

u = B ∗ u;
t = t + dt;

end
plot([0 x′ 1], [0 u′ 0])
hold off
———-
Here we have saved much storage compared to the previous version. The special
initial vector u0 is also eliminated, and there is only a single vector u involved in the
computation. This requires that the initial function is plotted right after it is defined.
The hold on statement causes the plot to be frozen to wait for the next plot statement
adding the final solution to the figure.

MATLAB has a number of elementary functions. Some of them are listed in
Table 18.1.

The argument x in the parentheses can actually be a vector or a matrix. In that
case the result is a vector or matrix as well, with the function applied to each element
by itself. For example

sin([0 pi/2;pi 3 ∗ pi/2]) results in the matrix
[

0 1
0 −1

]
.

Note that pi is a predefined constant with the value π ; another one is the imaginary
constant i denoted by i.

MATLAB has a large number of special purpose functions, some of them involv-
ing advanced numerical algorithms for the type of problems discussed in this book.

Table 18.1 Elementary
functions in MATLAB Function MATLAB

|x| abs(x)

xa xˆa
ex exp(x)

lnx log(x)

log10 x log10(x)

log2 x log2(x)

sinx sin(x)

cosx cos(x)

tanx tan(x)

cotx cot(x)

arcsinx asin(x)

arccosx acos(x)

arctanx atan(x)

n! factorial(n)
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A few examples:

• y = polyval(a, x) evaluates the polynomial at the point x and stores it in y. Here
and in the following, a is a vector containing the coefficients of the polynomial
anx

n + an−1x
n−1 + · · · + a0 in descending order.

• b = polyder(a) computes the coefficients bn−1, bn−2, . . . , b0 of the derivative of
the polynomial defined by the coefficients in a.

• x = roots(a) computes all roots of the equation anx
n + an−1x

n−1 + · · ·+ a0 = 0,
and stores the result in the vector x (which in general is complex).

• inv(A) computes A−1. Note that the statement x = inv(A)∗b is not a good way of
solving Ax = b since the explicit form of A−1 stored in inv(A) is not necessary in
this case. One should rather use x = A\b that uses Gauss elimination as described
in Sect. 14.2.

• d = eig(A) computes all the eigenvalues of A and stores them in the vector d

(which in general is complex). The statement [V,D] = eig(A) stores the eigen-
values in the diagonal of the matrix D, and the eigenvectors as column vectors in
the matrix V .

• q = quad(@f,a, b) computes an approximation of the integral
∫ b

a
f (x) dx. Here

@f is a “handle” which refers to the MATLAB function f defining f (x) for any
given x. We shall use the notation @f in this sense also in the following. (f can
also be a standard MATLAB function such as sin.)

• x = fminbnd(@f,a, b) computes the point x giving the minimum value of f (x)

in [a, b].
• b = polyfit(x, y,n) computes the coefficients bj of a least square fit bnx

n +
bn−1x

n−1 + · · · + b0 to the data points (xj , yj ) stored in the vectors x, y.
• c = fft(f ) computes the discrete Fourier transform of the vector f . In Sect. 6.2

the transform was described for a discrete function defined on a regular grid in
the interval [0, 2π). However, the MATLAB function is defined for any sequence
{fj }N1 and any N as

ck =
N∑

j=1

fj e
−2πi(j−1)(k−1)/N .

Note that the normalization is different from the one in (6.9), and that the number
of terms is N instead of N + 1.

• f = ifft(c) computes the inverse discrete Fourier transform for any sequence
stored in c. The definition is

fj = 1

N

N∑

k=1

cke
2πi(j−1)(k−1)/N ,

such that ifft(fft(f )) returns the original vector f .
• There are many solvers for the ODE-system du/dt = f(t,u). The most com-

monly used one is ode45(@f, tspan, u0), where @f is the handle to a MAT-
LAB function f that evaluates f(t,u) for any given t and u. The statement
[T ,u] = ode45(@f, [t0 t1], u0) returns the time grid points T (chosen by the
solver) in the vector T , and the matrix u with the rows containing the solution
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for each time step. Another solver with the same structure is ode23, which uses a
Runge–Kutta method of order 2 and 3.

• fplot(@f,[a b]) plots the function f (x) for a ≤ x ≤ b. For example, the statement
fplot(@sin,[0 2*pi]) produces the figure

18.3 Parallel Computers

Faster computers are being developed at an enormous speed. A laptop of today has
a capacity comparable to the fastest computers available 10 years ago. And the su-
percomputers, i.e., the fastest ones available at any given time, are breaking new
barriers. The computing speed is usually measured in Flops, which means one float-
ing point operation per second. “Floating point” refers to the type of number rep-
resentation that was mentioned in Sect. 18.1, and “operation” stands for arithmetic
operation, like addition. If not specifically mentioned, it is assumed that 64-bit arith-
metic is used.

The manufacturers usually announce a theoretical peak performance, which
means the number of Flops that can be achieved if the algorithm is such that the
program allows for a sufficiently smooth data flow. This theoretical speed is never
reached for any practical program. Instead there has been agreement on certain test
programs that are used for measuring the speed. (This is analogous to the test cy-
cles for verifying the fuel consumption for cars.) For performance classification,
one usually uses a standard program for solving a large system of equations and,
based on this test, there is a Top500 list for the 500 fastest computers in the world.
In November 2009, the top position was taken by the Cray XT5 Jaguar computer at
Oak Ridge National Laboratory, when it was logged at 1.759 PFlops. This means
that 1.759 · 1015 floating point arithmetic operations were performed each second.
(An even faster Chinese machine was later installed at the National Supercomputing
Center in Tianjin.)
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How can such an enormous speed be achieved? Each processor or CPU (Central
Processing Unit) is fast, but the main reason for the high speed is that the computer
contains a large number of processors. Furthermore, each CPU, which is a phys-
ically integrated circuit, may have several cores, each one being an independent
processor but integrated on the same chip. Each core is fed data by separate threads.
The Cray XT5 Jaguar has 224162 cores, and it is what is called a massively parallel
computer. This type of architecture with a large number of cores has taken over the
supercomputer market completely today.

With the introduction of transistors in the fifties, computers became energy ef-
ficient and didn’t require much power. However, with modern supercomputers the
situation has changed once again as a consequence of the high number of processors.
The CrayXT5 Jaguar requires 7 MW of power, which is quite high. It is equivalent
to almost 10,000 horsepowers, which is what it takes to run a fully loaded 30,000
ton cargo ship at 15 knots! Furthermore, on top of the 7 MW, the computer needs
cooling, which requires another 2 MW.

This construction trend towards parallel computers was not clear at the end of
the previous century, when there was another competing architecture with few, but
very advanced single vector processors. In that case the arithmetic is done in a
pipeline, much as in an automobile factory. Each operation is broken down into
smaller pieces such that, when a certain operation is completed on a certain set
of numbers, many more numbers are inside the pipeline, but at earlier stages of
the operation. It turned out that later versions of vector processors became very
complicated and very expensive to make, and the market for that type of general
purpose machine all but disappeared at the beginning of this century.

In order to use a parallel computer effectively, all the processors must be busy
working all the time. But this may be impossible depending on the type of algorithm
we are using. For example, the simple iterative method

uj+1 = ajuj , j = 0,1, . . .

with u0 given, cannot be parallelized. The computation of each new value uj+1

requires the previous value uj in the sequence. Consequently, there is no way to
partition the computation between the processors. On the other hand, in practice
the algorithm is a large and complicated one, and there is at least some possibility to
parallelize parts of it. The important feature of an effective algorithm is that the most
time consuming part has a structure such that it can be parallelized. For example, if
the central part is a matrix/vector multiplication Ax, we are in a good position. If aj

are the row vectors of the matrix A, we have

xk = akx =
N∑

j=1

akj xj , k = 1,2, . . . ,N.

If there are p processors, we let them first compute the first p elements xj , then the
next p elements, and so on. In this way we keep all processors busy all the time. The
number of processors is often a power of two, and therefore one tries to choose the
resolution of the problem such that N = 2m, where m is an integer. In that way no
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Fig. 18.1 Parallel computer

processor gets a chance to rest at any time. Figure 18.1 shows the parallel computer
principle for the computation y = Ax.

The development of parallel architectures has had a significant impact on the
choice of numerical methods. Many algorithms that were considered as outdated
on scalar computers were becoming competitive again. Take the Jacobi iterative
method for solving systems of equations as an example. In Sect. 14.3 we described
it as a particular version of the general formula

x(n+1) = Mx(n) + f, n = 0,1, . . . ,

where M is a given matrix. Obviously the matrix/vector multiplication is the core
of the algorithm, and we have just shown how to parallelize it. In the scientific
community such a problem is called embarrassingly parallelizable, since there is
no challenge for the researchers.

When using the Gauss–Seidel iteration formula (14.9) we run into trouble when
implementing the algorithm on a parallel computer. The computation of each new
element x

(n+1)
j must wait for all the previous elements to be computed. There are

ways to partially overcome the difficulty, but an iteration can never be as fast as the
one for the Jacobi method. The improvement of the convergence rate must be big
enough to overtake the extra parallelization complication.

Most modern algorithms require extra effort to make them effective on parallel
computers. This is where much of the research in numerical linear algebra has been
concentrated during the last decades, and it is still going on. The development of
new computer architectures poses new challenges all the time, not only for algorithm
development, but also for construction of effective operating systems.



Chapter 19
Further Reading

In the text above we have not given many references. Instead of listing a large num-
ber of scientific articles, we shall here indicate some books and review articles that
we think will give comprehensive material covering the topic we have in mind quite
well.

The whole field of numerical analysis is covered almost completely in the book
by Dahlquist and Björck [6] which is a follow up of [5]. In particular, the topics
discussed in the three chapters of Part II and in Chap. 13 of this book are thor-
oughly treated. The book is very detailed, and includes also nonstandard material
like interval arithmetic.

There are many books on numerical methods for ODE. Finite difference methods
are dominating here, and they are usually partitioned into Runge–Kutta type meth-
ods and linear multistep methods. For the first class, the world’s best specialist is
John C. Butcher, who has done impressive development and analysis work. Almost
literally everything about these methods up to very high order of accuracy can be
found in his book [4].

Another partition of ODE can be made by separating nonstiff problems from stiff
problems (see Sect. 10.1). The book [11] covers the first class, while the book [12]
covers the second one. These two books together with Butcher’s book should cover
just about everything that is needed about ODE-solvers.

When it comes to PDE and difference methods, we separate between time-
dependent problems and elliptic stationary problems. For the first class, the first
complete book was [21] written by one of the most active scholars in this area at
that time. The book contains a second part devoted completely to applications. In
the second edition [22], the first theoretical part was rewritten with plenty of new
material included. In the period that followed, there was a strong development in the
theory for initial-boundary value problems, largely due to Heinz-Otto Kreiss and his
students. This material, as well as some new concepts in pure initial value problems,
are included in [9]. There is an emphasis on the analysis of the PDE themselves and
the connection to the difference schemes approximating them. There is also a chap-
ter about nonlinear problems and shocks, which is a large and complicated issue.
Peter Lax at the Courant Institute, New York University, is one of the leading re-
searchers in this field (he was awarded the Abel prize in 2005). We recommend his

B. Gustafsson, Fundamentals of Scientific Computing,
Texts in Computational Science and Engineering 8,
DOI 10.1007/978-3-642-19495-5_19, © Springer-Verlag Berlin Heidelberg 2011

303



304 19 Further Reading

book [17], and the books [18, 19] by Randall LeVeque. The last one also gives a very
good description of finite volume methods that were briefly mentioned in Sect. 17.3.

Difference methods for elliptic problems are hardly used for any large scale prob-
lems nowadays, but for special problems with regular geometries they can be effec-
tive. A short presentation is found as a chapter Finite Difference Methods for Elliptic
Equations in [16]. The area is strongly coupled to the development of fast solvers of
systems of algebraic equations, which we shall come back to.

Finite element methods were from the beginning used mostly for problems in
structural mechanics, where the design object allows for a partition into different
physical elements. In the sixties, FEM got an enormous boost for general PDE, when
they were formulated in a unified mathematical manner. A complete presentation of
the theory was given in [24] by G. Strang and G. Fix. 35 years later, the second
edition [25] appeared, and it contains a second part with more details concerning
implementation issues. Many other books have been written on FEM over the years.
One of them is [27] written by O.C. Zienkiewics and R.L. Taylor. T. Hughes is a
specialist in FEM applications in fluid dynamics, and one of his books is [15].

Discontinuous Galerkin methods are closely related to classic finite element
methods as described in Sect. 11.3, and have had a fast expansion period during
the last decade. The theory covering this topic is contained in the book [14] by
J. Hesthaven and T. Warburton.

Spectral methods came up as an alternative solution method for PDE in the sev-
enties. The first book [8] was written by two of the pioneers in the field, David
Gottlieb and Steve Orzsag. A quite recent book that contains almost all new mate-
rial including polynomial methods is [13].

Numerical methods for linear systems of algebraic equations are improved all the
time, partly due to the ever changing architecture of supercomputers. The book [7]
by G. Golub and C.F. van Loan is the third edition of the original that was published
1983. It contains rich material on theory and algorithms for all sorts of problems
including direct and iterative methods for solution of linear systems. The book [23]
by Y. Saad is specialized on iterative methods. Multigrid methods are included in
this book as well, but there are many books devoted solely to this particular class
of methods. Most of the theoretical foundations are included in the book [10] by W.
Hackbusch and in [26] by P. Wesseling. Achi Brandt is one of the most well known
representative for multigrid methods, having developed and used it for just about
every existing problem class. The article [3] is a good survey of the topic.

Cleve Moler is the father of MATLAB, and for an introduction to this program-
ming language we refer to his book [20], which is a revised version of the original
that came out 2004. The major part of the book is actually about numerical meth-
ods, but all the time with emphasis on the MATLAB implementation. Since new
versions of the system are released frequently (MATLAB 7.10 is the latest when
this is written), we refer to the web for detailed descriptions of all features.



Appendix
Mathematical Rules

A.1 Rules for Differentiation

f
df

dx

xa axa−1

ex ex

ax ax lna

lnx
1

x

loga x
1

x lna
sinx cosx

cosx − sinx

tanx
1

cos2 x

cotx − 1

sin2 x

arcsinx
1√

1 − x2

arccosx − 1√
1 − x2

arctanx
1

1 + x2

au a
du

dx

u + v
du

dx
+ dv

dx

uv
du

dx
v + u

dv

dx

u

v

v du/dx − udv/dx

v2

g(u(x))
dg

du

du

dx
(the chain rule)
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A.2 Differential Operators in Different Coordinate Systems

u =
[
u

v

]
in 2D, u =

⎡

⎣
u

v

w

⎤

⎦ in 3D

A.2.1 2D

Cartesian coordinates x, y

∇ =
[
∂/∂x

∂/∂y

]

div u = ∇ · u = ∇ ·
[
u

v

]
= ∂u

∂x
+ ∂v

∂y

� = ∂

∂x2
+ ∂

∂y2

Polar coordinates r ∈ [0,∞), θ ∈ [0,2π): x = r cos θ, y = r sin θ

∇ =
[

∂/∂r

(1/r)∂/∂θ

]

div u = 1

r

∂(ru)

∂r
+ 1

r

∂v

∂θ

� = 1

r

∂

∂r

(
r

∂

∂r

)
+ 1

r2

∂2

∂θ2
= ∂2

∂r2
+ 1

r

∂

∂r
+ 1

r2

∂2

∂θ2

A.2.2 3D

Cartesian coordinates x, y, z

∇ =
⎡

⎣
∂/∂x

∂/∂y

∂/∂z

⎤

⎦

div u = ∇ · u = ∇ ·
⎡

⎣
u

v

w

⎤

⎦ = ∂u

∂x
+ ∂v

∂y
+ ∂w

∂z

curl u = ∇ × u = ∇ ×
⎡

⎣
u

v

w

⎤

⎦ =
⎡

⎣
∂w/∂y − ∂v/∂z

∂u/∂z − ∂w/∂x

∂v/∂x − ∂u/∂y

⎤

⎦



A.3 Trigonometric Formulas 307

� = ∂

∂x2 + ∂

∂y2 + ∂

∂z2

Cylindrical coordinates r ∈ [0,∞), θ ∈ [0,2π), z ∈ [0,∞): x = r cos θ, y =
r sin θ, z = z

∇ =
⎡

⎣
∂/∂r

(1/r)∂/∂r

∂/∂z

⎤

⎦

div u = 1

r

∂(ru)

∂r
+ 1

r

∂v

∂θ
+ ∂w

∂z

curl u =
⎡

⎣
(1/r)∂w/∂θ − ∂v/∂z

∂u/∂z − ∂w/∂r

(1/r)
(
∂(rv)/∂r − ∂u/∂θ

)

⎤

⎦

� = 1

r

∂

∂r

(
r

∂

∂r

)
+ 1

r2

∂2

∂θ2
+ ∂2

∂z2

Spherical coordinates r ∈ [0,∞), θ ∈ [0,2π), φ ∈ [0,π] x = r cos θ sinφ, y =
r sin θ sinφ, z = r cosφ

∇ =
⎡

⎣
∂/∂r

(1/r)∂/∂θ

(1/(r sin θ))∂/∂φ

⎤

⎦

div u = 1

r2

∂(r2u)

∂r
+ 1

r sin θ

∂(v sin θ)

∂θ
+ 1

r sin θ

∂w

∂φ

curl u =
⎡

⎣
(1/(r sin θ))(∂(w sin θ)/∂θ − ∂v/∂φ)

(1/r)((1/ sin θ)∂u/∂φ − ∂(rw)/∂r)

(1/r)(∂(rv)/∂r − ∂u/∂θ)

⎤

⎦

� = 1

r2

∂

∂r

(
r2 ∂

∂r

)
+ 1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+ 1

r2 sin2 θ

∂2

∂φ2

A.3 Trigonometric Formulas

sin(−x) = − sinx

cos(−x) = cosx

sin2 x + cos2 x = 1 (Pythagoras’ theorem)

sin(π − x) = sinx

cos(π − x) = − cosx
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sin(x + y) = sinx cosy + cosx siny

sin(x − y) = sinx cosy − cosx siny

sin(x + y) = cosx cosy − sinx siny

cos(x − y) = cosx cosy + sinx siny

tan(x + y) = tanx + tany

1 − tanx tany

tan(x − y) = tanx − tany

1 + tanx tany

sin 2x = 2 sinx cosx

cos 2x = cos2 x − sin2 x

tan 2x = 2 tanx

1 − tan2 x

sin2 x

2
= 1 − cosx

2

cos2 x

2
= 1 + cosx

2

sinx + siny = 2 sin
x + y

2
cos

x − y

2

sinx − siny = 2 cos
x + y

2
sin

x − y

2

cosx + cosy = 2 cos
x + y

2
cos

x − y

2

cosx − cosy = −2 sin
x + y

2
sin

x − y

2
2 sinx cosy = sin(x + y) + sin(x − y)

2 cosx siny = sin(x + y) − sin(x − y)

2 cosx cosy = cos(x + y) + cos(x − y)

2 sinx siny = − cos(x + y) + cos(x − y)

A.4 Matrix Algebra

In this section we list a number of definitions and rules for matrices of the form
A = (ajk), 1 ≤ j ≤ m, 1 ≤ k ≤ n. Most of the rules apply only for square matrices,
and this is indicated by the symbol � to the left. The right column contains one of
three types of information: a definition, a statement that is equivalent to the state-
ment to the left, or a statement that follows from the statement to the left. In the
latter case there is the leading symbol ⇒.
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C = A + B (cjk) = (ajk + bjk),1 ≤ j ≤ m, 1 ≤ k ≤ n

C = AB cjk = ∑n
r=1 ajrbrk,1 ≤ j ≤ m, 1 ≤ k ≤ n

� A diagonal ajk = 0, j �= k

� diag(a11, a22, . . . , ann) Diagonal matrix with diagonal elements ajj

� Identity matrix I I = diag(1, 1, . . . ,1)

� A upper triangular ajk = 0, j > k

� A lower triangular ajk = 0, j < k

AT (akj ), 1 ≤ j ≤ m, 1 ≤ k ≤ n

A∗ (akj ), 1 ≤ j ≤ m, 1 ≤ k ≤ n

� A, B commute AB = BA

� (AB)T BT AT

� (AB)∗ B∗A∗
� Eigenvalue λ (A − λI)x = 0, x �= 0
� Eigenvector x (A − λI)x = 0, x �= 0
� Spectral radius ρ(A) = max1≤j≤n |λj |
� A−1 A−1A = I ⇔ AA−1 = I

� Similarity transformation T −1AT

T −1AT has the same eigenvalues as A

� (AB)−1 (AB)−1 = B−1A−1

� (AT )−1 (AT )−1 = (A−1)T

� (A∗)−1 (A∗)−1 = (A−1)∗
� A normal AA∗ = A∗A
� Real part of A, A reala (A + AT )/2
� Real part of A, A complex (A + A∗)/2
� A orthogonal (unitary) AA∗ = I

A−1 = A∗
All eigenvalues of A on the unit circle

� A singular Det(A) = 0
Ax = 0 has a nonzero solution x
The column vectors are linearly dependent
The row vectors are linearly dependent
A has at least one zero eigenvalue

� A real, symmetric A = AT

⇒ all eigenvalues are real
⇒ eigenvectors mutually orthogonal

� A real, skew-symmetric A = −AT

⇒ all eigenvalues are imaginary
⇒ eigenvectors mutually orthogonal

� A complex, Hermitianb A = A∗
⇒ all eigenvalues are real
⇒ eigenvectors mutually orthogonal

� A complex, skew-Hermitian A = −A∗
⇒ all eigenvalues are imaginary
⇒ eigenvectors mutually orthogonal

� A real, positive definitec A symmetric, xT Ax > 0, x real, x �= 0
⇒ all eigenvalues positive
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� A complex, positive definite A Hermitian, x∗Ax > 0, x complex, x �= 0

⇒ all eigenvalues positive

Norm of Ad ‖A‖ = max‖x‖=1 ‖Ax‖
‖cA‖, c constant ‖cA‖ = |c| · ‖A‖
‖A + B‖ ‖A + B‖ ≤ ‖A‖ + ‖B‖
‖AB‖ ‖AB‖ ≤ ‖A‖ · ‖B‖

aIt may seem strange to define the real part of a real matrix. But it is not the matrix obtained by
taking the real part of each element ajk . We take the example

A =
[

1 −1

1 1

]

with eigenvalues λ = 1 ± i.
The real part is

A + AT

2
= 1

2

[
1 −1

1 1

]
+ 1

2

[
1 1

−1 1

]
=

[
1 0

0 1

]

with the double eigenvalue 1. So, the concept real part refers to the fact that the eigenvalues of
(A + AT )/2 are the real parts of the eigenvalues of A

bAn Hermitian complex matrix is often called symmetric, even if it is not symmetric as defined for
real matrices
cA nonsymmetric real matrix can be defined as positive definite as well. For the example above we
have

xT Ax = [x1 x2]
[

1 −1

1 1

][
x1

x2

]
= x2

1 + x2
2 > 0.

dThe matrix norm as defined here is subordinate in the sense that it is associated to a certain vector
norm, and the rules for the norm holds for any such vector norm. The most common vector norms
are

‖x‖I = |x1| + |x2| + · · · + |xn|

‖x‖II =
√

|x1|2 + |x2|2 + · · · + |xn|2

‖x‖∞ = max
1≤j≤n

|xj |

The corresponding subordinate matrix norms are

‖A‖I = max
k

m∑

j=1

|ajk | (largest column sum)

‖A‖II = ρ(A∗A) (spectral radius of A∗A)

‖A‖∞ = max
j

n∑

k=1

|ajk | (largest row sum)
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Discretization, 7, 28
Divergence, 68, 271
Divergence theorem, 40
Double precision, 291
Driven cavity, 277

E
Eigenfunction, 196
Eigenvalue, 62
Eigenvector, 62
Elasticity, 252
Electromagnetics, 246
Energy equation, 266
Entire function, 72
Entropy condition, 270
Equation of state, 265
Euclidean norm, 50
Euler, 4
Euler backward method, 146
Euler equations, 5, 265
Euler method, 145
Explicit method, 146
Exponential function, 93

F
Factorial, 72
Finite difference method, 145
Finite element method, 173
Finite volume method, 186, 282
Floating point form, 291
Flow

incompressible, 264
inviscid, 263
isentropic, 266
low speed, 277
supersonic, 266, 281
transonic, 281
viscous, 263

Fluid dynamics, 263
Flux function, 186
Forcing function, 138
Forward difference, 159
Fourier method, 198
Fourier series, 104
Fourier stability analysis, 162
Fourier transform, 103, 108

discrete, 110
fast, 112

Frequency, 103
Function space, 175

G
Galerkin, 140
Galerkin method, 140, 176

Gauss, 215
Gauss elimination, 216
Gauss–Lobatto points, 120
Geometric series, 70
Gibbs, 106
Gibbs phenomenon, 106
Gradient, 37
Gradient operator, 271
Green’s formula, 283
Grid

curvilinear, 171
nonuniform, 141
overlapping, 170
staggered, 249
structured, 141
uniform, 141
unstructured, 141

Grid points, 10, 29

H
Heat conduction, 255
Heat equation, 43, 259
Helmholtz, 245
Helmholtz equation, 245
Hertz, 240
Hyperbolic system, 236

I
Ill conditioned, 51, 214
Ill posed, 44
Implicit method, 146
Independent variables, 20
Initial condition, 27
Initial value problem, 27
Initial-boundary value problem, 42, 184
Integral, 30

curve integral, 40
definite, 31
double, 39
generalized, 71
indefinite, 31
line integral, 40

Integral equation, 13
Integration by parts, 32

J
Jacobi method, 219

damped, 228
Jacobian, 210

K
Kronecker δ, 50
Krylov space, 225
Kutta, 152
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L
Laplace, 37
Laplace equation, 43
Laplace solver, 43
Laplacian, 37, 272
Leap-frog method, 153
Least square method, 125
Legendre, 122
Legendre polynomials, 122

shifted, 123
Legendre transform, 122
Limit solution, 67
Linearization, 151
Linearly dependent, 48
Linearly independent, 48
Liouville, 196
Logarithmic growth, 95
Longitudinal waves, 252

M
Mach number, 281

free stream, 281
Maclaurin series, 72
Mantissa, 291
Mass matrix, 178
MATLAB, 293
Matrix, 54

adjoint, 60
anti-Hermitian, 60
assembly of, 181
band matrix, 57
dense, 219
diagonally dominant, 220
Hermitian, 60
identity matrix, 57
inverse, 58
lower triangular, 57
nonsingular, 59
normal, 60
orthogonal, 60
positive definite, 57
selfadjoint, 60
singular, 59
skew-Hermitian, 60
skew-symmetric, 57
sparse, 57
symmetric, 57
tridiagonal, 57
unitary, 60
upper triangular, 57

Method of lines, 185
Mixed derivatives, 37
Multigrid methods, 227
Multistep method, 153

N
Natural logarithm, 94
Navier, 263
Navier–Stokes equations, 270–272, 277
Neumann, 257
Newton, 4, 205
Newton–Raphson method, 205
Norm, 49
Normal equations, 133
Numerical algorithm, 22
Numerical model, 10

O
One-step method, 152
Order of accuracy, 151
Orthogonal, 49
Orthogonal polynomial, 117
Orthonormal, 50

P
P-waves, 252
Parabolicity condition, 256
Parallel computer, 300
Parseval’s relation, 108

discrete, 110
Partial derivatives, 36
Piecewise linear, 83
Pivoting

column pivoting, 217
complete pivoting, 217
partial pivoting, 217
row pivoting, 217

Polynomial, 77
orthogonal, 89
piecewise polynomial, 83

Preconditioning, 227
Primitive function, 31
Projection, 126
Prolongation, 229
Pseudo-inverse, 133
Pseudo-spectral method, 141, 197

Q
Quadratic convergence, 209
Quadratic form, 222, 256

R
Radon, 14
Radon transform, 14
Raphson, 205
Residual, 174
Resolution, 142
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Restriction, 229
Reynolds number, 272
Riemann sum, 30
Roots of unity, 98
Row vector, 48
Runge, 152
Runge–Kutta method, 152

S
S-waves, 252
Saddle point, 27
Schrödinger, 253
Schrödinger equation, 253
Scientific computing, 17
Separation of variables, 195
Shock, 267, 281
Shock capturing, 270
Shock fitting, 270
Similarity transformation, 64
Sin expansion, 193
Sine transform, 197
Single precision, 291
Singular perturbation, 272
Spectral method, 193
Spectral radius, 64
Spectrum, 104, 196
Speed of sound, 281
Spherical harmonics, 286
Stable, 159

unconditionally stable, 146, 162
Steady state problem, 9
Steepest descent, 223
Stiff differential equation, 156
Stiffness matrix, 178
Stokes, 263
Strong solution, 175
Sturm, 196
Sturm–Liouville problem, 196
Subordinate norm, 56

Symmetrizable, 239
System of equations

direct methods, 215
iterative methods, 218
singular, 58
sparse, 15

T
Taylor series, 72
Test equation, 149
The continuity equation, 264
Total derivative, 270
Trapezoidal rule, 145, 149
Triangle inequality, 50
Trigonometric function, 90
Trigonometric interpolation, 110
Truncation error, 151

local, 151

U
Unit circle, 53
Unstable, 159

V
Vector processor, 301
Vector space, 47, 48
Viscosity coefficient

dynamic, 271
kinematic, 271

Von Neumann condition, 164

W
Wave equation, 241
Wave number, 103
Wave propagation, 235
Wave speed, 235
Weak form of differential equation, 175
Well conditioned, 50
Well posed, 43
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