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Abstract—Many modern smartphones and car radios are
shipped with embedded FM radio receiver chips. The number
of devices with similar chips could grow very significantly if the
U.S. Congress decides to make their inclusion mandatory in any
portable device as suggested by organizations such as the RIAA.
While the main goal of embedding these chips is to provide access
to traditional FM radio stations, a side effect is the availability of
a data channel, the FM Radio Data System (RDS), which connects
all these devices. Different from other existing IP-based data
channels among portable devices, this new one is open, broadcast
in nature, and so far completely ignored by security providers.
This paper illustrates for the first time how to exploit the FM
RDS protocol as an attack vector to deploy malware that, when
executed, gains full control of the victim’s device. We show how
this attack vector allows the adversary to deploy malware on
different platforms. Furthermore, we have shown the infection
is undetected on devices running the Android OS, since malware
detection solutions are limited in their ability due to some features
of the Android security model. We support our claims by imple-
menting an attack using RDS on different devices available on
the market (smartphones, car radios, and tablets) running three
different versions of Android OS. We also provide suggestions
on how to limit the threat posed by this new attack vector and
explain what are the design choices that make Android vulnerable.
However, there are no straightforward solutions. Therefore, we
also wish to draw the attention of the security community towards
these attacks and initiate more research into countermeasures.

Index Terms—Android security, smartphone security, FM radio,
novel attack vectors.

I. INTRODUCTION

M INIATURIZATION and economy of scale is making it
possible to embed computational power, communica-

tion capabilities and storage capacity inmany new products (i.e.,
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domestic appliances, cars, apparel, etc.). Users can be online and
interact virtually at any time and from anywhere, by means of
devices such as smartphones, tablets, eReaders, etc. Many of
these devices rely on the Internet Protocol (IP) for data commu-
nications. Thus, the sender needs to know the recipients’ address
to be able to reach it.
For devices that do not support IP, like feature phones, alter-

native methods like the Short Message Service (SMS) can be
used to send data. However, SMSs also require knowledge of
the recipient’s address—the mobile phone number.
Most recently though, device manufacturers started embed-

ding FM Radio receiver chips in devices such as smartphones
and car radios. The side effect of this decision is the availability
of a new data communication channel, the FM Radio Data
System, that different from existing ones is open and broadcast
so senders do not need to know the recipients’ address to be
able to communicate with them. Furthermore the system can
be used to reach all devices located in a specific geographical
area. While this decision affects millions of devices, the impact
can be even much wider as the U.S. Congress is currently ad-
dressing the issue of mandating the inclusion of FM receivers in
all portable electronics [18]. Thus affecting many other devices
such as alarm clocks, digital photo frames, music players, etc.
This paper shows for the first time, how the FM Radio broad-

cast data channel can be exploited as a new and effective at-
tack vector to deploy malware. Different from other IP-based
attack vectors, this one does not require port scanning. Further-
more, once the malware is downloaded on the victim’s device,
the attack leaves very few explicit information to trace back the
source of the attack. Moreover, the attack can be geographically
targeted and does not require network access. Also, it can be ex-
ecuted at a time and place of the attacker’s choosing. By means
of the FM Radio broadcast channel, malware can potentially in-
fect a larger number and a wider range of devices compared to
existing malware deployment techniques.
We have implemented concrete examples of attacks on dif-

ferent devices: smartphones, car radios and tablets all running
(different) versions of the Android OS.
We demonstrate how to split the malware into two pieces to

evade malware detection. A victim is first tricked into installing
a benign looking app that uses the RDS interface; this app con-
tains no malicious behavior at installation time. Thus, even a
strict vetting process would not find any malicious behavior in
the code of the app. The attacker can easily publish the applica-
tion on the Android Market. Then, the app dynamically down-
loads the back door that allows it to reassemble RDS packets and
execute the payload. Dynamic download of updates and patches
is a common practice in the Android world done by means of a
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well known API, the DexClassLoader [5] that we used as
well. We also show how to distribute an existing exploit pay-
load over the RDS interface such that when executed gets root
access to the infected device.
To be able to mount this attack we reverse engineered the FM

Radio API of the target devices.
As we explain in Section VI, the exploit is undetected due

to a feature in the Android security model Antiviruses cannot
scan what an application downloads at runtime. As a matter of
fact, the devices we attacked, with the exception of the car radio,
for which we did not find any antivirus, were running antivirus
solutions (free and commercial) and no alarm was raised.
We conducted these attacks for scientific purposes and with a

limited budget, however similar techniques and vulnerabilities
can be exploited in amuchmore effective and dangerous way by
organized crime or attackers sponsored by governmental agen-
cies. Moreover, these attacks have highlighted several important
and open security issues.

a) Contributions: The main contributions of the paper are
the following:
• We show for the first time, how the FM Radio broadcast
data channel can be exploited as a new and effective attack
vector to deploy malware.

• We implemented concrete examples of attacks for different
HW platforms: smartphones, car radios and tablets, run-
ning different version of the Android OS.

• We reverse engineered the FM Radio API of the target de-
vices, highlighting a security problem with the implemen-
tation of such API, which allows the attacker to bypass the
native Android OS security checks.

• We provide an analysis on the current limitation of the ef-
fectiveness of Antivirus software running on Android OS
in detecting malware download at runtime.

• Finally, we suggest possible countermeasures that could
help to prevent or at least limit the effect of the presented
attacks.
b) Organization: The rest of the paper starts with back-

ground information on RDS and Android security (Section II).
Following that, FM RDS-Based attacks are introduced along
with a description of the Threat Model (Section III). Then,
we detail real attacks on different devices (Section IV), along
with technical information on how they were executed. We
follow these with possible optimizations and countermeasures
(Sections V and VI). We then review the most closely related
research (Section VII) and we conclude in Section VIII.

II. BACKGROUND

This section contains some preliminary concepts and back-
ground knowledge used in the rest of the paper.

A. Radio Data System (RDS)

FM (Frequency Modulation) broadcasts are a very popular
and widespread form of entertainment. The FM broadcast
standard includes the Radio Data System (RDS) protocol. The
corresponding U.S. version is Radio Data Broadcast Standard
(RDBS). Radio stations use these widely adopted protocols to
transmit small amounts of data to receivers. These data include

Fig. 1. Baseband coding.

program name, alternative frequencies and traffic congestion
updates. Additionally, RDS has been adapted to be used in
emergency warning systems [1]. Recent research has proposed
a mechanism to provide value added services over RDS [36].
RDS carries information on a 57 KHz signal. This is techni-

cally referred to as a subcarrier. The digital data sent over RDS
is organized as groups. As shown in Fig. 1, we can see that each
group is 104 bits in length. Each group is divided into 4 blocks
(in Fig. 1, these are blocks A, B, C and D). There are several
types of groups, based on the organization of bits in a group.
Type 2A/2B is known as RadioText (RT) and carries arbitrary
ASCII text. Group 0A/0B is known as Program Service (PS). PS
name refers to the name of the current radio station. All groups
will contain a Program Identification value (PI) which is used
to identify the country where the transmission takes place. The
data rate of RDS is 1187.5 bits/s. It takes 87.6 ms to transmit one
group. RDS has an inbuilt error correction mechanism which
can detect single and double bit errors in a block. Additionally,
it can detect a single error burst spanning 10 bits or less.

B. Android Overview

Google Android is an open source Linux-based mobile
platform developed by the Open Handset Alliance (OHA).
We chose Android as target of our analysis since it is the
fastest growing OS. Android runs on a long list of different
devices such as smartphones, tablets, TVs, car entertainment
systems, and in-flight entertainment systems of the Boeing 787
Dreamliner [17], just to name a few. Most of the Android ap-
plications are programmed in Java and compiled into a custom
byte-code that is run by the Dalvik Virtual Machine (DVM).
In particular, each Android application is executed in its own
address space and in a separate DVM. Android applications
are built combining any of the following four basic compo-
nents. Activities represent a user interface; Services execute
background processes; Broadcast Receivers are mailboxes for
communications within components of the same application, or
belonging to different applications; Content Providers store and
share application’s data. Application components communicate
through messages called Intents.

C. Android Security Model

Focusing on security, Android combines two levels of en-
forcement [27], [40]: at the Linux system level and the appli-



FERNANDES et al.: FM 99.9, RADIO VIRUS: EXPLOITING FM RADIO BROADCASTS FOR MALWARE DEPLOYMENT 1029

cation framework level. At the Linux system level Android is
a multiprocess system. During installation, an application is as-
signed a unique Linux user identifier (UID). Additionally, an
application can be made a member of a group to enable the
application to access certain resources like the network inter-
face. Thus, in the {Android OS} each application is executed as
a different user process within its own, isolated, address space
and storage space. Moreover, these applications execute in user
space and there is no way in which they can elevate their privi-
leges. These mechanisms constitute the Android sandbox.
At the application framework level, Android provides access

control through the Intercomponent Communication (ICC) ref-
erence monitor. The reference monitor provides Mandatory Ac-
cess Control (MAC) enforcement on how applications access
the components. In the simplest form, protected features are as-
signed with unique security labels—permissions. Protected fea-
tures may include protected application components and system
services (e.g., Bluetooth). To make use of protected features,
the developer of an application must declare the required per-
missions in its package manifest file—AndroidManifest.
xml.
As an example, consider an application that

needs to monitor incoming SMSs, AndroidMani-
fest.xml included in the application’s package would
specify:
`` '' . Permissions
declared in the package manifest are granted at the installation
time and cannot be modified later. Each permission definition
specifies a protection level which can be: normal (automat-
ically granted), dangerous (requires user confirmation),
signature (requesting application must be signed with
the same key as the application declaring the permission), or
signature or system (granted to packages signed with
the system key).

III. FM RDS-BASED ATTACKS

Here we present an overview of our FM RDS-Based attacks
and how we implemented them. We describe the threat model
we considered. Furthermore, we provide a description of the
software and equipment required to mount such an attack.

A. Threat Model

Our attacks assume the adversary owns equipment that is ca-
pable of broadcasting customRDS data. To send the custom data
to receivers, all that is required is an FM transmitter that can
overpower the transmission on a frequency which is used by a
real station, which is authorized to transmit on that frequency.
Important, the attacker does not require a IP-based communi-
cation channel to talk to the device. and the victims’ device are
not required to have network enabled.
We bought for few hundred U.S. dollars, a transmitter that

is highly mobile, easily fits into a backpack, powered by a
11 Volt battery and can cover a radius of 3.5 miles. This area
is sufficiently large, so as to attack a large number of devices.
Our transmitter complies with existing regulations and laws.
We should not expect the same behavior from a real attacker.

Thus, the transmission range can be higher to cover a wider
area than we were able to do.
Its worth mentioning that an attacker can intrude on legal

broadcasts from a radio station (in a way similar to TV signal
intrusion reported in [16]) and broadcast custom RDS data to all
devices listening to that radio station. This has the potential to
attack a larger number of devices, as compared to our prototype.
Another assumption is that the attacker publishes an appli-

cation on the Android market (or other suitable software dis-
tribution point specific to the desired target). This application,
besides performing its functions, will also execute exploits we
transmit over RDS. The API used by our application to execute
the exploit is normally used by many other legitimate applica-
tion to download updates and extensions at runtime (e.g., player
skins) after their installation. So an automated code review or a
behavioral analysis will not be able to flag our application as
malicious.
As an example of distribution sources, consider third party

marketplaces that provide Android applications. Recent work
[42] has highlighted the issue that many of these marketplaces
have repackaged applications and hence, it is not easy for a user
to distinguish between the real and repackaged applications. To
increase the download count of his application, the attacker can
choose to repackage a well-known application and masquerade
it on these marketplaces.

B. Attack Overview

In this section, we provide a general description of how we
implemented our attack. As we have seen in Section II-A, Ra-
dioText carries arbitrary textual data. We leverage the RadioText
field to transmit an exploit that will enable us to gain control of
the target by a privilege escalation attack. The attack is mounted
in three phases.
Phase 1: The attacker has two main tasks which represent

the two paths through which we mount the attack. The first is
to create an apparently honest app (Step 1a, Fig. 2) and upload
it to a popular distribution point. The second task is to obtain
a privilege escalation exploit for the desired targets (Step 1b).
Since the bandwidth of the RDS protocol is very low, we need
to packetize the exploit, and attach sequence numbers to them
(Step 1c). This packetization step basically breaks up a multik-
ilobyte binary payload (more detail in Section IV-C) into several
smaller Base64 encoded packets. The packets are modulated as
FM and broadcast via an FM Transmitter (Step 1d). Whether an
audio track is transmitted does not matter, as the receivers can
receive RadioText without the need to play the audio. In case
the user is listening to a track, we can easily transmit a popular
audio track, which is identical to the one being played on a real
FM channel.
There are a few options to choose from to select a transmis-

sion frequency. The most obvious is to scan the spectrum for an
unused frequency and start transmitting on that. In our proto-
type attack, we do this. The other is to hijack an alternative fre-
quency of an existing channel, as done in [19]. Basically, it relies
on the FM Capture Effect, wherein only one of the stronger of
two signals at, or near the same frequency will be demodulated.
Another option is Broadcast Signal Intrusion. This is a common
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Fig. 2. Attack overview.

method of hijacking analog transmissions wherein a high pow-
ered transmitter is situated geographically closer to the intended
victims, but after the original transmitter. The effect of this is es-
sentially jamming the original signal and transmitting a totally
new signal.
Phase 2: The user downloads and installs the trojan applica-

tion, thus making the device a target for the attack (Step 2). The
app then contacts an update server to update its functionality
(Step 3). In the case of an FM player, basic functionality can be
only playing of music, and the update could add the ability to
record. The side-effect is that the attacker uses this to also push
FM hardware control code into the app. This extra code decodes
and assembles the payload (Steps 4 and 5). On an Android re-
lated note, we achieve this through the recently added API class
DexClassLoader [5]. This class allows us to plug in code
at runtime into a previously installed Android application. This
has the advantage of bypassing any static checks implemented
in the Android market (Google recently revealed a service code
named ‘Bouncer’ which performs checks on Android market
applications [9]). The trojan will appear to be not harmful since
the only “suspicious” activity is the download of a class at run-
time.
An alternative method to introduce the trojan in the phone

could be to leverage the Class Hijacking attack [2]. This attack
leverages insecure programming techniques of not adhering to
Android secure coding guidelines [21] utilized by the target
application: an application uses DexClassLoader to load
classes from an SD card—this behavior should be avoided, since
there is no access control on SD, and the classes to be loaded
could be modified by other applications.
Phase 3: Finally, the assembled payload is executed by the

trojan to elevate privileges.

C. Alternative/Existing Attack Methodologies

We note that there are existing methods of downloading ma-
licious code into a device. However, we also stress that they are

quite different from the RDS attack presented in this paper. Tra-
ditional code infiltration techniques include drive-by downloads
and downloads of “nonexecutable” data such as JPEG images
which contain malicious code fragments embedded in them. An
example is the recent drive-by download attack “NotCompat-
ible” [11]. The way the drive-by download attack works is that
when a website is compromised, the attacker inserts a hidden
iframe at the bottom of a webpage. When the user accesses
the webpage from his mobile device, the browser automatically
starts a download of an APK file specified in the iframe. When
the download is complete, the system will prompt the user to in-
stall the application. NotCompatible disguises itself as a system
update, and an unsuspecting user will confirm installation. How-
ever, for this attack to be successful, two conditions need to be
met. The first is that side-loading of applications needs to be
activated and the second is that the user must actually confirm
installation. Contrasting this with our attack, the benign app is
hosted on the official market and side-loading does not need to
be activated. Additionally, the point to note is that in thesemech-
anisms, there exists a commonality of the transmission medium.
All utilize the network and content scanning solutions for the
network exist. Contrasting this with our RDS attack, no solu-
tions exist that will detect or prevent them.

IV. SPECIFIC ATTACKS

All of the attacks work on Android devices running antivirus
software. We have validated the attacks with the help of popular
antiviruses. In particular, we installed two free and three paid
antiviruses and ran a complete attack (see Section IV-C for
an in-depth discussion) on the Samsung Galaxy S. The results
are summarized in Table I. Traditionally written malware are
detected by antiviruses [8], [30]. This is because they embed
known exploits directly in the APK, which also causes the
package name to get blacklisted. A scanner will detect these
signatures since they can scan the APK. However, our malware
approach is different in the sense that the application contains
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TABLE I
ANTIVIRUSES USED

Fig. 3. Transmitter setup.

no exploits, and it receives these exploits over a novel channel.
The antiviruses were configured to be in their most secure state.
This validation is important as malicious applications assemble
and execute privilege escalations from the file system.
We use several low cost off-the-shelf components to build

a system that a malicious person could use to mount an attack.
Specifically, we use the PIRA32RDS generator [12], and a stan-
dard FM Transmitter (2 mW). The RDS generator is capable of
generating signals that are compliant with the RDS protocol.
This is interfaced to a laptop computer via a RS232 to USB
adapter. The antenna for the FM Radio can be constructed in
several ways. We just use a length of coaxial cable, with an
impedance of about 50 ohms.
The PIRA32 is controlled by an ASCII based instruction set.
Fig. 3 depicts the transmitter setup. We have an audio signal

over BNC (Bayonet Neill-Concelman is a type of RF con-
nector), as well as the RDS encoder connected over BNC to
the transmitter circuit (the circuit to the left). Fig. 4 shows the
Parrot Asteroid car radio along with the exploit transmitter.

A. Packaging the Exploit

In this section we explain how we leverage the RDS signal to
send our exploit to the victim’s phone.
From Section II-A, we recall how RDS works. Each data unit

is 26 bits in length. Each of these data units can be either of
typeProgram Service (PS) orRadioText (among others). It takes
87.6 ms to transmit four such data units which is the basic pro-
tocol data unit (104 bits in length).

Now, we describe the payload transmission protocol. Say
is the payload to be transmitted (e.g., a file). We first send a PS
packet (we remind the reader that the PS packet has, by defini-
tion, 8 bytes of payload). We choose to set the first two bytes to
be et (these are used on the client side to recognize our exploit
packets), the remaining 6 bytes are numbers in decimal form
(containing the size of the payload—in terms of bytes—that we
are going to transmit next). We observe that for our purposes, a
value that we can specify with 6 digits, is enough.
Then we send as many RT packets as required such that our

payload, is transmitted completely. In particular:
• is split into packets of 61 bytes each.
• For each packet we add a three byte sequence number. The
sequence number is the ASCII form of decimal numbers.

• After adding the sequence number, each packet will con-
tain 64 bytes.

• Since we can have at most 1000 packets of 61 bytes of pay-
load each, the payload transmitted is at most 61000 bytes.
In the case of Android, we would like to point out that this
much space is more than enough for all known privilege
escalation exploits.

• For each resulting packet, we set its value into the RDS
transmitter and then ask the transmitter (with the RT1 com-
mand) to transmit that data (as an RT packet) for a time
period of 7 seconds.

B. Alternative Transmission Algorithms

As the FM channel is lossy and packet sizes are relatively
small, a discussion of why we choose the above algorithm is
needed. One standard method of dealing with packet loss is to
request retransmissions of dropped packets. However, this is not
applicable to our situation for several reasons. The first reason is
that retransmission requires the presence of a feedback channel
and FM is unidirectional. To overcome this, one may propose
to use the network (cellular or WiFi) to transmit sequence num-
bers of packets to be retransmitted. This mechanism dampens
the stealthiness of our attack and opens it up to detection by
traditional network scanning. Another drawback is that it cre-
ates a footprint of activity which violates one of the advantages
of our attack - negligible footprint. Additionally, multiple re-
transmission requests introduce high overheads on the side of
the transmitter since it needs to serve each request individu-
ally. Consider the situation where the attacker is in a stadium
with 500,000 people. Assuming a 100,000 of those phones have
the benign application, it would generate more than a 100,000
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Fig. 4. System setup (devices placed adjacently only for illustrative purposes).

retransmission requests (assuming every infected phone expe-
riences a dropped packet). This will result in the transmitter
spending a large majority of its time serving retransmission re-
quests rather than transmitting the payload in a cyclic manner.

C. Attacking Smartphones

Several commercial Android phones in use today already fea-
ture an FM Radio with RDS. For our attack, we consider a re-
cent model, the Samsung Galaxy S (one of the most popular
Samsung phones [13]). It runs the GingerBread version of An-
droid. (GingerBread runs on 58% of all Android devices [3]).
Since there is no public API that allows our client app to control
the FM Radio hardware, we reverse engineered the FM Radio
subsystem on the Galaxy S and obtained full control of the FM
hardware, through what is known as a “Stub-Method trick”1. In
this method, packages (read: stubs) are created with the same
name as those of the internal packages we wish to access. This
is just to compile the application. These stubs are empty. When
the system loads classes for an application with these packages,
the loader notices that the system’s boot classpath contains the
same packages. So, it prevents the loading of the stubs and loads
the actual classes. Note that an application written in such a way
will not experience any problems when it is deployed to the An-
droid market. Thus, we gain access to internal methods. In the
case of the FM subsystem, we are able to completely control the
FM receiver chip, including powering it on and off as per our
discretion. Furthermore, this reverse engineering method is ex-
tensible to different FMRadio hardware on different phones and
devices as well, provided they conform to a small set of rules.
These are as follows:
1) A Java based API is constructed around the FM chip device
driver. This can be in the form of a System Server. This is
a common design practice on Android. In fact, many of the
other hardware devices are controlled in a similar manner
(GPS, WiFi).

2) The class library exists in an internal package. Again, this
is a common design pattern on Android. Private function-
ality exists in internal classes until they are mature enough
for general use.

1The steps were also performed on an HTC Desire HD, and yet again, we
obtained complete and silent access to the FM Radio hardware.

3) The class library is not protected by permission strings (see
Section II-C). This is crucial, and represents a failure to
adhere to Android’s secure coding guidelines. Among all
the devices we attacked, none of them were protected by
permission strings.

1) Reverse Engineering the FM Radio API on the Samsung
Galaxy S: The Samsung Galaxy S features an Si4709 FM re-
ceiver chip. Samsung has built an internal API for its FM-Radio
app. These APIs are hidden and therefore not directly accessible
to Android applications written with the standard SDK (Soft-
ware Development Kit). However, this is yet another example
of security by obscurity, since the API exists in the internal
com.samsung.media.fmradio package andmore impor-
tantly their access is not protected since they do not usecheck-
Permission (which is a standard Android security mecha-
nism) to protect the FM service. As a consequence, a normal
app can control the FM chip and receive RDS.
To reverse engineer this internal API we used ded decom-

piler, smali and baksmali tools. ded is a dalvik decompiler
[25] for dalvik classes. smali and baksmali are decompila-
tion tools, in this case used for conversion of odex to dex and
hence to jar, as we will see later.
1) We begin by extracting the FM Radio application package,

FMRadio.apk from the Samsung Galaxy S. We then run
ded, as well as smali on this APK. By reading the dis-
assembled code (and cross checking the outputs of the two
tools), we were able to know that the application depends
on a system provided functionality which is implemented
as a system server.

2) We then pull the core framework files, as these will con-
tain the code for the system server. On a device the files
are core.odex, framework.odex, services.
odex, ext.odex, android.policy.odex,
core-junit.odex and bouncycastle.odex.

3) After this, we run baksmali and smali to obtain the
normal dex format data. We then use dex2jar to con-
vert these dex format files to the jar format. This jar
file is used to find out the method signatures and library
hierarchy.

4) Finally, we use a “stub method trick” to get an Android
application to compile. In this method, we create packages
and classes with the exact same name as that of the internal
methods. When the dalvik class loader tries to load these
classes, it sees that our stubs match the internal API. So, it
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forbids the loading of these stubs, and instead loads the “ac-
tual” internal API classes from framework.jar which
exists on the device.

2) Privilege Escalation With Gingerbreak: As stated in
Section III-B, the application downloads a class from a lo-
cation maintained by the app writer. This class will silently
tune to a known frequency and listen for RDS data. Upon
detecting a specific byte sequence in the RDS stream, it will
start assembling subsequent bytes. The exploit we transmitted
is GingerBreak [7]. Its size is 7719 bytes (after the packaging
step) and its received in 28.3 minutes (this time is for 2 com-
plete transmission cycles. Depending on existing interference,
this could reduce, which in turn results in a reception time of
14 minutes). GingerBreak is a local privilege escalation attack
which makes use of a negative index array write in vold,
the Android volume daemon. Once the trojan has assembled
the payload, it will execute it. The ordinary application (read:
trojan) has now elevated to root privileges and it can perform
any task, ranging from reading private contacts to shutting
down the phone.
Twenty eight minutes may seem like a long period of time,

however there are many situations in which our phones are ex-
posed for such intervals. Examples can include waiting in the
metro station, on the bus or even more interestingly during bas-
ketball or football matches, rock concerts and movie theaters.
These are situations where hundreds or even thousands of de-
vices are located in a single geographical location for an ex-
tended period of time and they can all get infected at the same
time.

D. Attacking Car Radios

To demonstrate the ability to deploy malware via RDS across
different platforms (and different versions of the Android OS),
we attacked a car radio system. We selected the Parrot Asteroid
car radio that features an NXP TEF6624 FM receiver chip. The
device runs the Cupcake version of Android. Also for the Parrot
Asteroid we had to reverse engineer the internal FM API fol-
lowing similar steps described in Section IV-C1. We were able
to access RadioText and Program Service name as well as other
information like current station information, frequency etc. In
our attack, we can just hijack the current frequency and take
control of it. Thus, we don’t really need to tune to a specific
frequency. Otherwise, if the tuner has already been started, we
can perform a full scan and use the internal method goto-
FullScanIndex(Long) to go to a specific frequency.
For the exploit, we have modified the KillingI-

nTheNameOf [10] exploit and added some of our own code to
enable local root access. The new exploit, KillingCar-
Radio is 5328 bytes long (after the packaging step) and we
received it over RDS in 19.6 minutes.
1) ADB TCP/IP Exploit for the Parrot Asteroid: We describe

a root exploit we run on the Parrot Asteroid. Note that a trojan
is already installed, which is similar to the one we use for the
Samsung Galaxy S. There is a facility that allows users to in-
stall custom applications on their car radio. The applications are
downloaded from a market.
The Android Debug Bridge (ADB) is a debugging daemon

for Android devices. It is composed of two components. One is

a daemon that runs on the device. This is known as adbd. The
other component runs on the debugger, or host system. When
a developer wishes to debug the device, a connection is estab-
lished, usually over a USB cable, to the adbd daemon running
inside the phone. The adb shell command opens up an inter-
active shell on the host. ADB runs as the shell user which has
more privileges than normal Android applications. It normally
waits for USB connections to service debugging requests, how-
ever, it can also service these requests over TCP.
On the Parrot Asteroid, ADB runs over TCP by default. We

connect to ADB from within the device itself, i.e., we mas-
querade as a host. From the point of view of the ADB daemon,
for all purposes, we appear to be a normal debugging host. Using
the ADB documentation, tcpdump and tcpick, we figure
out what is the interaction sequence between the ADB host and
the ADB daemon. We then write a C socket program which
can talk to ADB from within the device. This program will
launch KillingCarRadio from an ADB shell, and when
it eventually is killed (this happens because KillingCar-
Radio requires an ADB restart), we again establish a socket
connection to ADB. This time, we get a root shell since ADB
is running as root. KillingCarRadio is our custom privi-
lege escalation exploit for the Parrot Asteroid. It makes use of a
bug in the ashmem (Android Shared Memory) implementation
(drawing inspiration from KillingInTheNameOf), wherein
the system property space can be mapped as read/write by any
process (note that this entire process is automated. It happens
automatically when the binary is executed).
Also, being able to talk to ADB from within the device itself

is a privilege escalation to the ADB shell user. We can do sev-
eral things here. For example, replace the IME (Input Method
Extension), or silently install a package. Therefore, its not com-
pletely necessary to elevate to root. Sufficient damage can be
done by just talking to ADB.
Now that we can elevate to root or shell on the car radio,

we basically “own” the device.
At the moment, our attack can control only the entertainment

and the navigation systems provided by the Parrot Asteroid.
However, the Parrot Asteroid has a 4-wire UART (Universal
Asynchronous Receiver Transmitter) port, and Parrot has an-
nounced support for the Steering Wheel Control (SWC) inter-
face soon. This can potentially open up the CAN (Controller
Area Network) bus to the attacker and, escalate the type of
damage the attacker can achieve by taking direct control of the
car electronic control units [22].

E. Attacking Other Platforms

While many smartphones and car radios are equipped with
FM Radio receivers many other devices do not have, natively,
FM Radio. In this section we describe how FM RDS-based at-
tacks can still affect such devices.
On the market there are several USB dongles supporting FM

Radio functionality for less than 50 U.S. dollars. Furthermore,
since Android 3.1, a Java based USB Host API has been intro-
duced which makes it possible to write applications that inter-
face with USB devices. We selected one such product, the ADS/
Tech InstantFM Music RDX-155-EF. It is based on the popular
si470x chip from SILabs and the associated reference design.
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The dongle does not interface with the Android userspace but
only Linux, so there is no driver for Android and no way to use
this dongle with an APK. However, we wrote such a driver with
common APIs. This device exposes the si470x chip registers as
HID (Human Interface Device) reports.
We have written a driver for the ADS/Tech FM Receiver using

the USB Host API. We achieve plug and play. The user has to
just plug in the dongle, install our application and she instantly
receives FM. Actually, offering this functionality might be a
good motivation for the people to install our trojan. As a result
we can switch on the device, tune to a frequency and assemble
RadioText andProgram Service Name, which is exactly what we
need to execute an attack. Once this is done, we follow the same
procedure as outlined in earlier sections to assemble a malicious
payload and execute it to elevate our privileges.
As a demonstration, we successfully mounted an attack on

the Asus EEE Pad Transformer TF101G tablet which runs the
Honeycomb version of Android.
Attacks similar to the one described here can potentially be

implemented on devices equipped with a USB port and running
the Android OS, such as Google-TVs, alarm clocks, e-Readers
and digital photo frames. Device users may be tempted to incor-
porate radio functionality given the ease of carrying out such an
integration.

V. POSSIBLE OPTIMIZATIONS

There are several possible optimizations to make our attacks
even more effective, even if we consider their implementation
outside the scope of the paper.
In our attacks, we require approximately 25 minutes (aver-

aged over 5 runs) to receive a payload. Such long time is re-
quired also to deal with the inherently lossy nature of the FM
channel. A way to reduce the time needed to receive the payload
is the use of proposed standards like eXtended RDS (xRDS) [6],
which is expected to achieve a data rate of 2 Kbits/s (transmit-
ting up to 6 RDS channels on a single FM carrier).
Apart from these new standards that can become practical in

the near future, a simple optimization we already successfully
tested is to use multiple frequencies and transmit the different
parts of the exploits in parallel. In fact, we observe that the time
issue is due to the unidirectional nature of the FM channel (from
the station to the receiver). As described in Section IV-A, the
approach we used to transmit a (long) data packet is simply
to transmit packets repeatedly and consecutively, until all the
packets have been received correctly. Since we cannot have a
feedback channel from the receiver, our idea is to parallelize
rather than serialize the packets to be transmitted, and transmit
groups of them on a different frequency. In this way, we re-
duce the overall transmission time at the cost of more complex
receiver logic that should deal with reconstructing the original
payload.

VI. COUNTERMEASURES

Now that we have demonstrated how to exploit FM Radio
broadcasts, it is important to understand how to prevent and
fix these problems. Concerned parties can protect their systems

against attacks like the ones shown in this paper by taking the
following steps:
1) Prevent Unauthorized Reception of Data via the Covert

FM Channel: The reader may have noticed that it was pos-
sible for us to gain access to FM hardware mainly due to
the fact that it was not protected by the appropriate permis-
sions (Section IV-C). Android provides a permission model
(Section II-C), and if the guidelines were followed correctly
[4], we would not have been able to control the FM hardware
silently. Hence, adherence to secure coding guidelines would
have prevented the attacker from accessing the data on the FM
channel. This is an example of a preventive countermeasure.
2) Prevent an App From Acting on Received Data: This

method relies on the ability of antiviruses to work correctly, as
the attack mainly uses known OS exploits. The main problem
with Android antiviruses is that they have to run as a normal user
application due to the Android sandbox. In order for an antivirus
or anti-malware product to perform the analysis required to de-
tect malware, there are a few basic requirements that should be
provided by the underlying operating system. These are as fol-
lows:
1) The ability to intercept packet data on the network inter-
face, i.e., a firewall mechanism.

2) The ability to scan the whole file system and all data con-
tained in it.

3) The ability to scan process memory (virtual memory).
These requirements can be accomplished if the AV product

runs with sufficient privileges. On a Linux-like system, this co-
incides with running with root privileges. There is no mech-
anism to accomplish this on Android. Therefore, we propose
changes that will allow “certified” antiviruses to elevate priv-
ileges in a controlled fashion. In this way, an antivirus will
be able to scan all private memory and storage directories of
other applications, and detect whether these applications utilize
known exploits.We observe that this is not possible with the cur-
rent Android sandbox. A possible modification could be the fol-
lowing security model. The antiviruses could be signed by the
system key (allowing them to elevate privileges). Companies
that wish to develop antiviruses for the Android platform, must
undergo a code review process similar to one used for the Apple
Store, and get “certified” by the vendor—both figuratively and
literally. The Android system might make a special API avail-
able for antivirus purposes—to scan memory and private struc-
tures. The access to this API will be protected by the signature
permission.
Similarly, suppose we have a special process group, say the

av group: all processes which belong to this group (i.e., all “cer-
tified” antiviruses) will be able to use the special API mentioned
above. In turn, an antivirus can be assigned to the av group at
installation time. This is done by the Android installer. Let us
assume an application declares to be an antivirus. When its in-
stallation is requested via the Android Market, the Market can
check with the Certification Authority whether the application
is actually authorized. If it is so, the Market will communicate
this to the Android installer. Note that this change only applies to
antivirus products. For all other products, the deployment cycle
is the same as it is now. From the user’s point of view, there is
no change at all.
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Another mechanism is to extend Android’s architecture such
that it supports the loading of “privileged pluggable modules”.
These modules are similar in spirit to Linux kernel modules, but
their task in the context of Android is to enable more effective
Antiviruses.As stated earlier in this section, giving the right priv-
ileges toAntiviruseswill allowscanningofprivatememoryareas
and can potentially detect RDS attacks. One may note that sup-
porting pluggable modules would require a change in the sig-
nature scheme that Android uses currently, since we want An-
tiviruses to be developed by trusted AV vendors and not system
developers. However, making this work correctlywithin the cur-
rent Android signature scheme is an open research question.
Finally, another approach for a countermeasure is to focus on

defending from the malicious FM channel itself. While content
certification even if effective, might require a huge change in the
FM infrastructure, more practical solutions could be to use tech-
niques like content validation [38], and radio fingerprinting [37].

VII. RELATED WORK

Since our attacks relate to the security of the Internet of
Things (IoT) and portable devices in particular, we consider
existing work on this issue. While some assessment of IoT
security has been done [14], it has been only considered from
an architectural point of view, without a complete analysis
of possible attack vectors. Nevertheless, there exists previous
work investigating some attack vectors for the Internet of
Things. As an example, in [38] the authors raise the attention
to malware spreading via RFID tags. Other more recent work
focused on attack vectors for automobiles [32], [22], which
can be seen to some extent as items of the internet of things. In
[32], the authors demonstrate that an attacker can circumvent a
broad array of safety-critical systems, and control a wide range
of automotive functions and completely ignore driver’s input,
by assuming a malicious component is already present in the
system. This latter assumption has been further relaxed in [22],
where the authors show that remote exploitation is also pos-
sible via a broad range of attack vectors (including mechanics
tools, CD players, Bluetooth and cellular radio), hence paving
the way for long distance vehicle control, location tracking,
in-cabin audio ex-filtration and theft.
Coming to RDS, there exists previous work already sug-

gesting the use of RDS in a malicious way [19], [41]. In
particular, in [19], [41], the authors exploit RDS to hijack the
TMC (Traffic Message Channel) to spoof RDS-TMC reception,
and thereby convincing GPS-based navigators to change the
calculated route. However, these attacks target RDS services
and do not exploit RDS for malware deployment. While we
leverage RDS channel in a malicious way as the work in [19],
[41], our approach is completely different. In fact, in [19], [41]
authors only exploit the implicit vulnerabilities of the RDS pro-
tocol, and only to attack systems which are usually dependent
on RDS data (i.e., RDS assisted navigation systems). Instead, in
our approach, we just leverage the RDS channel to convey part
of the attack data, in a way which is stealthy and undetected by
common security mechanisms (e.g., antiviruses)—our target
being to attack the end-device and not just a service depending
on RDS.

We underline that the proposed attack detection techniques,
like the one introduced in [31], would not be effective against
our novel approach to stealthily attack any device equipped with
RDS capabilities. In fact, in [31] the authors base the detection
of malicious behavior on the anomaly of energy consumption,
with the main purpose of detecting energy depletion attacks.
Firstly, our attack target is not to deplete energy. Furthermore,
there is no specific energy consumption pattern associated with
our actual attack: the FMRadio is active any time the apparently
honest application is running—not only when the FM Radio
actually receives the malicious exploit.
Our attacks were possible also due to some limitations of the

Android OS to prevent or at least detect them.
After the first version of Android had been published,

researchers put a significant effort to discover security vulner-
abilities that malicious applications can leverage to thwart the
system. Possible countermeasures have also been proposed.
One of the first solutions, Kirin [26], aimed at providing a
lightweight certification mechanism for applications at the time
of installation. Similar security policy enforcement has been
also proposed considering the run-time behavior [34], [23].
Other researchers focused on restricting access to data [20],
[29]. However, restricting the permission of applications or
data accesses might not be enough to resolve the issues raised
by malware. In fact, malicious applications can also act by
means of other (honest) applications. Some solutions to address
this problem have been proposed [24], [39], however they are
not backward compatible with most existing applications.
While a significant research effort has been put to limit the

effect of malicious mobile applications (in Android, as well as
for other systems for mobile devices [28], [33]), little effort
has been concentrated on investigating actual attack vectors. In-
deed, all the security confinements and restrictions imposed by
the described systems become ineffective when the following
conditions hold for a malicious application: i) it is not identified
as malware by antiviruses or other security systems; and ii) it is
able to gain root privileges.
A different approach in detecting malware focuses on off-

loading heavy computations from the mobile device (e.g., a
smartphone, which is resource constrained) to the cloud [35]:
the basic idea is to have on the cloud a clone of the actual device;
to replicate in the clone all the actions being run in the device;
hence, detecting the malicious behavior (which is a computa-
tion-demanding activity) on the cloud clone, rather than on the
actual device. While this approach might be interesting from the
computation-saving point of view, we argue that it still requires
a significant amount of communication (with the cloud) plus
it adds delay. Another solution to temper malware in Android
is SEAndroid [15]. The idea is to replicate the experience of
SELinux on the Linux layer of Android. Since the complexity of
configuring SELinux was one of the main deterrents to its wide
adoption, we foresee similar, if not worse problems with SEAn-
droid since most smartphone users are not security experts.

VIII. CONCLUSIONS AND FUTURE WORK

After being envisaged by researchers and companies, a world
of always on and always connected mobile devices is finally be-
coming a reality, thanks to the miniaturization and the spread
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of pervasive services (e.g., cloud). Furthermore, an increasing
number of these devices are equipped with FM Radio func-
tionalities, which implies the availability of the FM Radio Data
System (RDS) channel.
In this work, we have shown for the first time how to exploit

the FM RDS protocol as an attack vector to deploy malware
that, when executed, gains full control of the victim’s device. In
particular, we have shown how this attack vector allows an ad-
versary to deploy malware on different types of devices (smart-
phones, car radios, and tablets). Furthermore, our attack imple-
mentation on the Android OS has shown that the infection is
undetected on devices running this OS: malware detection so-
lutions are limited in their ability due to the current design of
the Android security model.
As we experienced in our work, setting up an FM transmitter

is not only quite simple but also cheap: the economic effort to
spread the malware is only a few hundred U.S. dollars. Further-
more, the inherently broadcast nature of the FM Radio makes
the vulnerability even more important, making it easy to attack a
large number of devices in a given area at once. Finally, the mo-
bile devices which constitute the envisaged Internet of Things
are not only currently highly exposed, but can also become the
Internet of Bad Things. In fact, many devices are also equipped
with FM transmitter capabilities (an example is theNokia N900,
which comes with an FM API). Hence, it is easy to see how we
can not only affect a large number of devices at once, but also
the devices already infected can becomemalicious FM transmit-
ters, and continue spreading the world’s first FM-based worm,
and recruiting nodes for the first FM-based botnet.
To the best of our knowledge, as this is the first paper that

looks at the FM RDS channel from this point of view, this work
opens up a new vein of research, which is needed to improve
the security of all the pervasive mobile devices we surround
ourselves with.
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