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103 years ago, in 1906, Maurice Fréchet submitted his outstanding thesis Sur
quelques points du calcul functionnel introducing (within a systematic study
of functional operations) the notion of metric space (E-espace, E from écart).

Also, 95 wyears ago, in 1914, Felix Hausdorff published his famous
Grundziige der Mengenlehre where the theory of topological and metric
spaces (metrische Riume) was created.

Let this Encyclopedia be our homage to the memory of these great mathe-
maticians and their lives of dignity through the hard times of the first half of
the twentieth century.

Maurice Fréchet (1878-1973) coined  Feliz Hausdorff (1868-1942) coined
in 1906 the concept of écart in 1914 the term metric space
(semi-metric)



Preface

Encyclopedia of Distances is the result of re-writing and extending
our Dictionary of Distances published in 2006 (and put online
http://www.sciencedirect.com/science/book/9780444520876) by Elsevier.
About a third of the definitions are new, and majority of the remaining
ones have been upgraded.

We were motivated by the growing intensity of research on metric spaces
and, especially, in distance design for applications. Even if we do not address
the practical questions arising during the selection of a “good” distance func-
tion, just a sheer listing of the main available distances should be useful for
the distance design community.

This Encyclopedia is the first one treating fully the general notion of dis-
tance. This broad scope is useful per se, but has limited our options for
referencing. We have given an original reference for many definitions but
only when it was not too difficult to do so. On the other hand, citing some-
body who well developed the notion but was not the original author may
induce problems. However, with our data (usually, author name(s) and year),
a reader can easily search sources using the Internet.

We found many cases where authors developed very similar distances in
different contexts and, clearly, were unaware of it. Such connections are indi-
cated by a simple “cf.” in both definitions, without going into priority issues
explicitly.

Concerning the style, we have tried to make it a mixture of resource and
coffee-table book, with maximal independence of its parts and many cross-
references.

PREFACE TO DICTIONARY OF DISTANCES 2006

The concept of distance is basic to human experience. In everyday life it
usually means some degree of closeness of two physical objects or ideas, i.e.,
length, time interval, gap, rank difference, coolness or remoteness, while the
term metric is often used as a standard for a measurement.

But here we consider, except for the last two chapters, the mathe-
matical meaning of those terms, which is an abstraction of measurement.

vii
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viii Preface

The mathematical notions of distance metric (i.e., a function d(z,y) from
X x X to the set of real numbers satisfying to d(z,y) > 0 with equality only
forz =y, d(x,y) = d(y,x), and d(z,y) < d(x, z)+d(z,y)) and of metric space
(X,d) were originated a century ago by M. Fréchet (1906) and F. Hausdorff
(1914) as a special case of an infinite topological space. The triangle inequal-
ity above appears already in Euclid. The infinite metric spaces are usually
seen as a generalization of the metric |z —y| on the real numbers. Their main
classes are the measurable spaces (add measure) and Banach spaces (add
norm and completeness).

However, starting from K. Menger (who, in 1928, introduced metric spaces
in Geometry) and L.M. Blumenthal (1953), an explosion of interest in both
finite and infinite metric spaces occurred. Another trend is that many math-
ematical theories, in the process of their generalization, settled on the level of
metric space. It is an ongoing process, for example, for Riemannian geometry,
Real Analysis, Approximation Theory.

Distance metrics and distances have now become an essential tool in
many areas of Mathematics and its applications including Geometry, Proba-
bility, Statistics, Coding/Graph Theory, Clustering, Data Analysis, Pattern
Recognition, Networks, Engineering, Computer Graphics/Vision, Astronomy,
Cosmology, Molecular Biology, and many other areas of science. Devising
the most suitable distance metrics and similarities, to quantify the prox-
imity between objects, has become a standard task for many researchers.
Especially intense ongoing search for such distances occurs, for example, in
Computational Biology, Image Analysis, Speech Recognition, and Informa-
tion Retrieval.

Often the same distance metric appears independently in several differ-
ent areas; for example, the edit distance between words, the evolutionary
distance in Biology, the Levenstein distance in Coding Theory, and the
Hamming+Gap or shuffle-Hamming distance.

This body of knowledge has become too big and disparate to operate
in. The numbers of worldwide web entries offered by Google on the topics
“distance,” “metric space” and “distance metric” approach 300 million (i.e.,
about 2% of all), 6.5 million and 5.5 million, respectively, not to mention
all the printed information outside the Web, or the vast “invisible Web”
of searchable databases. However, this vast information on distances is too
scattered: the works evaluating distance from some list usually treat very
specific areas and are hardly accessible to non-experts.

Therefore many researchers, including us, keep and cherish a collection
of distances for use in their areas of science. In view of the growing gen-
eral need for an accessible interdisciplinary source for a vast multitude
of researchers, we have expanded our private collection into this Dictio-
nary. Some additional material was reworked from various encyclopedias,
especially Encyclopedia of Mathematics [EMO98], MathWorld [Weis99],
PlanetMath [PM], and Wikipedia [WFE]. However, the majority of dis-
tances are extracted directly from specialist literature.



Preface ix

Besides distances themselves, we have collected many distance-related
notions (especially in Chap.[l) and paradigms, enabling people from applica-
tions to get those (arcane for non-specialists) research tools, in ready-to-use
fashion. This and the appearance of some distances in different contexts can
be a source of new research.

In the time when over-specialization and terminology fences isolate re-
searchers, this Dictionary tries to be “centripetal” and “ecumenical,” provid-
ing some access and altitude of vision but without taking the route of scientific
vulgarization. This attempted balance has defined the structure and style of
the Dictionary.

This reference book is a specialized encyclopedic dictionary organized by
subject area. It is divided into 29 chapters grouped into seven parts of about
the same length. The titles of the parts are purposely approximative: they
allow a reader to figure out her/his area of interest and competence. For
example, Parts II, IIT and IV, V require some culture in, respectively, pure
and applied Mathematics. Part VII can be read by a layman.

The chapters are thematic lists, by areas of Mathematics or applications,
which can be read independently. When necessary, a chapter or a section
starts with a short introduction: a field trip with the main concepts. Be-
sides these introductions, the main properties and uses of distances are given,
within items, in some instances. We also tried, when it was easy, to trace dis-
tances to their originator(s), but the proposed extensive bibliography has a
less general ambition: just to provide convenient sources for a quick search.

Each chapter consists of items ordered in a way that hints of connections
between them. All item titles and (with majiscules only for proper nouns)
selected key terms can be traced in the large Subject Index; they are boldfaced
unless the meaning is clear from the context. So, the definitions are easy to
locate, by subject, in chapters and/or, by alphabetic order, in the Subject
Index.

The introductions and definitions are reader-friendly and generally inde-
pendent of each other; but they are interconnected, in the three-dimensional
HTML manner, by hyperlink-like boldfaced references to similar definitions.

Many nice curiosities appear in this “Who is Who” of distances. Examples
of such sundry terms are: ubiquitous Euclidean distance (“as-the-crow-flies”),
flower-shop metric (shortest way between two points, visiting a “flower-shop”
point first), knight-move metric on a chessboard, Gordian distance of knots,
Earth Mover distance, biotope distance, Procrustes distance, lift metric, Post
Office metric, Internet hop metric, WWW hyperlink quasi-metric, Moscow
metric, and dogkeeper distance.

Besides abstract distances, the distances having physical meaning also
appear (especially in Part VI); they range from 1.6 x 107%*m (Planck
length) to 4.3 x 1025 m (the estimated size of the observable Universe, about
27 x 1050 Planck lengths).

The number of distance metrics is infinite, and therefore our Dictionary
cannot enumerate all of them. But we were inspired by several success-
ful thematic dictionaries on other infinite lists; for example, on Numbers,
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Integer Sequences, Inequalities, Random Processes, and by atlases of Func-
tions, Groups, Fullerenes, etc. On the other hand, the large scope often forced
us to switch to the mode of laconic tutorial.

The target audience consists of all researchers working on some measuring
schemes and, to a certain degree, students and a part of the general public
interested in science.

We have tried to address, even if incompletely, all scientific uses of the
notion of distance. But some distances did not made it to this Dictionary due
to space limitations (being too specific and/or complex) or our oversight. In
general, the size/interdisciplinarity cut-off, i.e., decision where to stop, was
our main headache. We would be grateful to readers who send us their favorite
distances missed here. Four pages at the end are reserved for such personal
additions.
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Part 1
Mathematics of Distances



Chapter 1
General Definitions

1.1 Basic definitions

e Distance
Let X be a set. A function d : X x X — R is called a distance (or
dissimilarity) on X if, for all z,y € X, there holds:

1. d(z,y) > 0 (non-negativity).
2. d(z,y) = d(y,x) (symmetry).
3. d(x,z) = 0 (reflexivity).

In Topology, the distance d with d(z,y) = 0 implying = y is called a
symmetric. A distance which is a squared metric is called a quadrance.

For any distance d, the function D1, defined for = # y by D;(z,y) =
d(z,y)+c, where ¢ = max, , .ex (d(z,y) —d(z, 2) —d(y, 2)), and D(z,x) =
0, is a metric. Also, Dy(z,y) = d(x,y)¢ is a metric for sufficiently small
c>0.

The function D3(z,y) = inf ), d(2;, zi11), where the infimum is taken
over all sequences z = zy, ..., 2,+1 = ¥, is a semi-metric.

e Distance space
A distance space (X, d) is a set X equipped with a distance d.

e Similarity
Let X be a set. A function s : X x X — R is called a similarity on X if s
is non-negative, symmetric, and if s(z,y) < s(z,z) holds for all z,y € X,
with equality if and only if x = y.

The main transforms used to obtain a distance (dissimilarity) d from a
similarity s bounded by 1 from above are: d =1—s,d = %, d=+v1-—s,
d=+/2(1—-s?),d=arccoss, d= —1Ins (cf. Chap.H).

e Semi-metric
Let X be a set. A function d : X x X — R is called a semi-metric (or
écart) on X if d is non-negative, symmetric, if d(z,2) = 0 for all z € X,
and if
d(z,y) < d(z,2) +d(z,y)

for all z,y, 2 € X (triangle or, sometimes, triangular inequality).

M.M. Deza and E. Deza, Encyclopedia of Distances, 3
DOI 10.1007/978-3-642-00234-2_1, (© Springer-Verlag Berlin Heidelberg 2009



1 General Definitions

In Topology, it is called a pseudo-metric, while the term semi-metric
is sometimes used for a symmetric (a distance d(z,y) with d(z,y) = 0
only if z = y) or for a special case of it; cf. symmetrizable space in
Chap.21

For a semi-metric d, the triangle inequality is equivalent, for each fixed
n > 4, to the following n-gon inequality

d(.’E, y) é d(xvzl) + d(Zl,ZQ) +oee d(zn*27y)7

for all x,y,21,...,2p—2 € X.

For a semi-metric d on X, define an equivalence relation by = ~ y if
d(z,y) = 0; equivalent points are equidistant from all other points. Let [z]
denote the equivalence class containing x; then D([z],[y]) = d(z,y) is a
metric on the set {[z] : © € X} of classes.

Metric
Let X be a set. A function d : X x X — R is called a metric on X if, for
all z,y,z € X, there holds:

1. d(z,y) > 0 (non-negativity).

2. d(z,y) = 0 if and only if x = y (identity of indiscernibles).
3. d(z,y) = d(y,x) (symmetry).

4. d(z,y) <d(x,z) +d(z,y) (triangle inequality).

In fact, 1 follows from 3 and 4.
Metric space
A metric space (X, d) is a set X equipped with a metric d.

A pointed metric space (X,d,xzq) is a metric space (X,d) with a

selected base point xy € X.

Metric scheme

A metric scheme is a metric space with an integer-valued metric.
Extended metric

An extended metric is a generalization of the notion of metric: the value
oo is allowed for a metric d.

Quasi-distance

Let X be a set. A function d : X x X — R is called a quasi-distance on
X if d is non-negative, and d(z,x) = 0 holds for all x € X.

In Topology, it is also called a parametric.

For a quasi-distance d, the strong triangle inequality d(z,y) <
d(x,2) + d(y, z) imply that d is symmetric and so, a semi-metric.
Quasi-semi-metric
Let X be a set. A function d : X x X — R is called a quasi-semi-metric
on X if d is non-negative, if d(z,z) = 0 for all z € X, and if

d(x,y) < d(z,z) + d(z,y)

for all z,y,z € X (oriented triangle inequality).
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The set X can be partially ordered by the specialization order: x < y if
and only if d(z,y) = 0.

A weak quasi-metric is a quasi-semi-metric d on X with weak sym-
metry, i.e., for all z,y € X the equality d(z,y) = 0 implies d(y,x) = 0.

An Albert quasi-metric is a quasi-semi-metric d on X with weak
definiteness, i.e., for all z,y € X the equality d(z,y) = d(y,z) = 0 implies
T =1y.

A weightable quasi-semi-metric is a quasi-semi-metric d on X with
relaxed symmetry, i.e., for all z,y,z € X

d(z,y) + d(y, z) + d(z,x) = d(z,2) + d(z,y) + d(y, x),

holds or, equivalently, there exists a weight function w(z) € R on X with
d(z,y)—d(y,z) = w(y)—w(z) forall z,y € X (ie., d(z,y)+5(w(z)—w(y))
is a semi-metric). If d is a weightable quasi-semi-metric, then d(z, y)+w(x)
is a partial semi-metric (moreover, partial metric if d is an Albert
quasi-metric).
e Partial metric

Let X be a set. A non-negative symmetric function p : X x X — R is
called a partial metric [Matt92] if, for all z,y, z € X, there holds:

1. p(x,x) < p(x,y) (i.e., every self-distance p(x,x) is small).
2. x =y if p(z,x) = plx,y) = ply,y) =0 (Ty separation axiom).
3. p(x,y) < p(z,z) + p(z,y) — p(z, z) (sharp triangle inequality).

If above separation axiom is dropped, the function p is called a partial
semi-metric. The function p is a partial semi-metric if and only if p(z, y)
—p(x,x) is a weightable quasi-semi-metric with w(z) = p(z, ).

If above condition p(z,z) < p(x,y) is also dropped, the function p is
called (Heckmann 1999) a weak partial semi-metric.

Cf. distance from measurement in Chap.[3} it is related topologically
(Waszkiewicz 2001) to partial metrics.

Sometimes, the term partial metric is used when a metric d(z,y) is
defined only on a subset of the set of all pairs x,y of points.

e Quasi-metric

Let X be a set. A function d : X x X — R is called a quasi-metric on X
if d(z,y) > 0 holds for all z,y € X with equality if and only if z = y, and

d(x,y) < d(z,z) + d(z,y)

for all z,y,z € X (oriented triangle inequality). A quasi-metric space
(X,d) is a set X equipped with a quasi-metric d.

For any quasi-metric d, the functions max{d(z,y), d(y, )}, min{d(z,y),
d(y,z)} and 3(dP(z,y) + dp(y,w))% with p > 1 (usually, p = 1 is taken)
are equivalent metrics.
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A non-Archimedean quasi-metric d is a quasi-distance on X
which satisfies the following strengthened version of the oriented triangle
inequality:

d(z,y) < max{d(x,z),d(z,y)}

for all z,y,z € X.
Near-metric
Let X be a set. A distance d on X is called a near-metric (or weak
metric) if
d(z,y) < C(d(z,2) + d(z,y))

for all z,y,z € X and some constant C > 1 (C-triangle inequality).

Some recent papers use the term quasi-triangle inequality for above in-
equality and so, quasi-metric for the notion of near-metric.

The power transform (cf. Chap.Hl) (d(x,y))* of any near-metric is a
near-metric for any o > 0. Also, any near-metric d admits a bi-Lipschitz
mapping on (D(z,y))* for some semi-metric D on the same set and a
positive number a.

A near-metric d on X is called a Holder near-metric if the inequality

|d(@,y) = d(z, 2)| < Bd(y, 2)*(d(z,y) + d(z,2)) =

holds for some § > 0, 0 < a < 1 and all points z,y,z € X. Cf. Hélder
mapping.

Coarse-path metric

Let X be a set. A metric d on X is called a coarse-path metric if, for a
fixed C' > 0 and for every pair of points z,y € X, there exists a sequence
x = xp,21,...,2; =y for which d(z;—1,2;) < C fori=1,...t, and

d(z,y) > d(zo,z1) + d(z1,22) + - - + d(xe—1,2¢) — C,

i.e., the weakened triangle inequality d(z,y) < 25:1 d(x;—1,2;) becomes
an equality up to a bounded error.

Weak ultrametric

A weak ultrametric (or C-pseudo-distance, C-inframetric) d is a
distance on X such that for a constant C' > 1 the inequality

0< d(ﬁ,y) < Omax{d(xvz)ad(zay)}

holds for all z,y,z € X, x # y.

The term pseudo-distance is also used, in some applications, for any
of a pseudo-metric, a quasi-distance, a near-metric, a distance which
can be infinite, a distance with an error, etc.
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e Ultrametric
An ultrametric (or non-Archimedean metric) is (Krasner 1944) a metric
d on X which satisfies the following strengthened version of the triangle
inequality (Hausdorff 1934), called the ultrametric inequality:

d(z,y) < max{d(x,z),d(z,y)}

for all z,y,z € X. So, at least two of d(x,y),d(z,y) and d(z, z) are the
same.

A metric d is an ultrametric if and only if its power transform (see
Chap.[) d* is a metric for any real positive number «. Any ultrametric
satisfies the four-point inequality. A metric d is an ultrametric if and
only if it is a Farris transform (cf. Chap.H) of a four-point inequality
metric.

For a finite set X, a symmetric non-negative matrix A = (A(z,y) :
x,y € X) is called ultrametric if there exists an ultrametric d on X such
that d(z,y) < d(z, z) implies A(x,y) > A(z, 2).

¢ Robinsonian distance
A distance d on X is called a Robinsonian distance (or monotone dis-
tance) if there exists a total order < on X compatible with it, i.e., for
r,y,w,z € X,

x <y 2w = z implies d(y, w) < d(z, z),
or, equivalently, for z,y,z € X,
x 2y =< z implies d(x,y) < max{d(x, z),d(z,y)}.

Any ultrametric is a Robinsonian distance.

e Four-point inequality metric
A metric d on X is a four-point inequality metric (or additive
metric) if it satisfies the following strengthened version of the triangle
inequality called the four-point inequality: for all z,y, z,u € X

d(e,y) + d(z,u) < max{d(z, 2) + d(y,u), d(,w) + d(y. 2)}

holds. Equivalently, among the three sums d(z, y)+d(z, u), d(z, z)+d(y, u),
d(x,u) + d(y, z) the two largest sums are equal.

A metric satisfies the four-point inequality if and only if it is a tree-like
metric.

Any metric, satisfying the four-point inequality, is a Ptolemaic metric
and an Ly -metric (cf. Ly-metric in Chap.[]).
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A bush metric is a metric for which all four-point inequalities are
equalities, i.e., d(z,y) + d(u,z) = d(z,u) + d(y, z) holds for any u,z,y,
ze X.

Relaxed four-point inequality metric
A metric d on X satisfies the relaxed four-point inequality if, for all
x,y,z,u € X, among the three sums

d(z,y) +d(z,u),d(z, 2) + d(y,u), d(z,u) + d(y, 2)

at least two (not necessarily the two largest) are equal.

A metric satisfies the relaxed four-point inequality if and only if it is a
relaxed tree-like metric.
Ptolemaic metric
A Ptolemaic metric d is a metric on X which satisfies the Ptolemaic
inequality

d(z, y)d(u, 2) < d(z,u)d(y, z) + d(z, z)d(y, v)

(shown by Ptolemy to hold in the Euclidean space) for all z,y,u, z € X.
A Ptolemaic space is a normed vector space (V,]|.||) such that its norm
metric ||z — y|| is a Ptolemaic metric. A normed vector space is a Ptole-
maic space if and only if it is an inner product space (cf. Chap.[Hl);
so, a Minkowskian metric (cf. Chap.[d]) is Euclidean if and only if it is
Ptolemaic.
The involution space (X\z,d,), where d,(x,y) = %
space, for any z € X, if and only if d is Ptolemaic [FoSCO6].
For any metric d, the metric v/d is Ptolemaic [FoSCO6].
d-hyperbolic metric
Given a number § > 0, a metric d on a set X is called d-hyperbolic if
it satisfies the Gromov d-hyperbolic inequality (another weakening of
the four-point inequality): for all z,y,z,u € X

, is a metric

d(z,y) + d(z,u) < 20 + max{d(z, z) + d(y, u), d(z,u) + d(y, 2)}
holds. A metric space (X, d) is -hyperbolic if and only if

($~y)a;0 > min{(x'z)ﬂim (y'z)wo} -0

for all z,y,2z € X and for any xg € X, where (2.y),, = %(d(xo,z) +
d(zo,y) — d(z,y)) is the Gromov product of the points x and y of X
with respect to the base point zg € X.

A metric space (X,d) is O-hyperbolic exactly when d satisfies the
four-point inequality. Every bounded metric space of diameter D is
D-hyperbolic. The n-dimensional hyperbolic space is In 3-hyperbolic.
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Every d-hyperbolic metric space is isometrically embeddable into a
geodesic metric space (Bonk and Schramm 2000).
e Gromov product similarity
Given a metric space (X,d) with a fixed point g € X, the Gromov
product similarity (or Gromov product, covariance) (.)s, is a similarity
on X, defined by

(2:0)zy = 3 (dla, 20) + d(y, w0) — d(,)).

If (X,d) is a tree, then (2.y),, = d(xo,[z,y]). If (X,d) is a measure
semi-metric space, i.e., d(z,y) = p(xAy) for a Borel measure p on
X, then (z.y)g = p(z Ny). If d is a distance of negative type, i.e.,
d(z,y) = d%(z,y) for a subset X of an Euclidean space E", then (x.y)o is
the usual inner product on E”.

Cf. Farris transform metric in Chap.[l

e Cross difference
Given a metric space (X,d) and quadruple (x,y, z,w) of its points, the
cross difference is the real number cd defined by

Cd(.T,y,Z,’LU) - d(xay) + d(z,w) - d(g:,z) - d(yaw)

For all z,y, z,w,p € X,

%cd(x,y, z,w) = —(z.y)p — (W) + (2.2)p + (y.w),

in terms of the Gromov product similarity; in particular, it becomes
(xy)p if y=w=p.

Given a metric space (X, d) and quadruple (x,y, z, w) of its points with
x # z and y # w, the cross-ratio is the real number cr defined by

er(x,y,z,w) = > 0.

e 2k-gonal distance
A 2k-gonal distance d is a distance on X which satisfies the 2k-gonal
inequality

Z bzbjd(.’L‘“.’L‘J) S 0

1<i<j<n

for all b € Z™ with I b; = 0 and >, |b;| = 2k, and for all distinct
elements z1,...,2z, € X.
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e Distance of negative type
A distance of negative type d is a distance on X which is 2k-gonal for
any k > 1, i.e., satisfies the negative type inequality

Z blbjd(l’z,l’j) S 0

1<i<j<n

for all b € Z" with Y/ ;b; = 0, and for all distinct elements z1,...,
T, € X.

A distance can be of negative type without being a semi-metric. Cayley
proved that a metric d is an Lo-metric if and only if d? is a distance of
negative type.

e (2k 4+ 1)-gonal distance
A (2k+1)-gonal distance d is a distance on X which satisfies the (2k+1)-
gonal inequality
Z blbjd(l’z,l’j) S 0
1<i<j<n
for all b € Z™ with 7" ; b; =1 and >, |b;| = 2k +1, and for all distinct
elements z1,...,2z, € X.

The (2k + 1)-gonal inequality with & = 1 is the usual triangle inequality.

The (2k + 1)-gonal inequality implies the 2k-gonal inequality.

e Hypermetric
A hypermetric d is a distance on X which is (2k + 1)-gonal for any
k > 1, i.e., satisfies the hypermetric inequality

Z bzbjd(l‘“l‘j) S 0

1<i<j<n

for all b € Z" with Y. ;b; = 1, and for all distinct elements z1,...,
T, € X.

Any hypermetric is a semi-metric, a distance of negative type and,
moreover, it can be isometrically embedded into some n-sphere S™ with
squared Euclidean distance. Any Lq-metric (cf. L,-metric in Chap.[) is
a hypermetric.

e P-metric
A P-metric d is a metric on X with values in [0, 1] which satisfies the
correlation triangle inequality

d(z,y) <d(z,z) +d(y,z) — d(z, 2)d(z, y).

The equivalent inequality (1 —d(z,y)) > (1—d(z, z))(1—d(z,y)) expresses
that the probability, say, to reach x from y via z is either equal to (1 —
d(x,2))(1 —d(z,y)) (independence of reaching z from z and y from z), or
greater than it (positive correlation).

A metric is a P-metric if and only if it is a Schoenberg transform
metric (cf. Chap.Hl).



1.2 Main distance-related notions 11

1.2 Main distance-related notions

e Metric ball
Given a metric space (X, d), the metric ball (or closed metric ball) with
center zop € X and radius r > 0 is defined by B(zg,7) = {z € X :
d(zg,x) < r}, and the open metric ball with center zp € X and radius
r > 0 is defined by B(zg,r) = {z € X : d(xg,z) < r}.

The metric sphere with center xy € X and radius r > 0 is defined by
S(xg,r) ={x € X : d(xg,x) =r}.

For the norm metric on an n-dimensional normed vector space (V, |.||),
the metric ball B" = {2z € V : ||z|| < 1} is called the unit ball, and the set
Sl ={x eV :||z|| = 1} is called the unit sphere (or unit hypersphere).
In a two-dimensional vector space, a metric ball (closed or open) is called
a metric disk (closed or open, respectively).

e Distance-invariant metric space
A metric space (X, d) is distance-invariant if all metric balls B(z,r) =
{z € X : d(xo,z) < r} of the same radius have the same number of
elements.

e Closed subset of metric space
Given a subset M of a metric space (X, d), a point « € X is called a limit
point of M (or accumulation point) if every open metric ball B(z,r) =
{y € X : d(x,y) < r} contains a point =’ € M with 2’ # x. The closure
of M, denoted by M, is the set M together with all its limit points. The
subset M is called closed if M = M.

A closed subset M is perfect if every point of M is a limit point of M.

Every point of M which is not a limit point of M, is called an iso-
lated point. The interior int(M) of M is the set of all its isolated points;
the exterior ext(M) of M is int(X\M) and the boundary (M) of M is
X\(int(M) U ext(M)).

A subset M is called topologically discrete if M = int(M).

e Open subset of metric space
A subset M of a metric space (X,d) is called open if, given any point
x € M, the open metric ball B(z,r) = {y € X : d(z,y) < r} is
contained in M for some positive number 7. The family of open subsets of
a metric space forms a natural topology on it.

An open subset of a metric space is called clopen if it is closed. An open
subset of a metric space is called a domain if it is connected.

A door space is a metric (in general, topological) space in which every
subset is either open or closed.

e Connected metric space
A metric space (X, d) is called connected if it cannot be partitioned into
two non-empty open sets (cf. connected space in Chap.[2).

(X,d) is distance m locally (path)-connected (extending Holub-Xiong,
2009) if any subspace ({y € X: d(z,y) € (0,m]},d), z € X, is (path)-
connected. A totally disconnected metric space is a space in which
all connected subsets are () and one-point sets.
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A path-connected metric space is a connected metric space such
that any two its points can be joined by an arc (cf. metric curve).
Cantor connected metric space
A metric space (X, d) is called Cantor connected (or pre-connected) if,
for any two its points x, y and any € > 0, there exists an e-chain joining
them, i.e., a sequence of points * = zp,21,...,2n_1,2n = ¥y such that
d(zk, zk+1) < € for every 0 < k < n. A metric space (X,d) is Cantor
connected if and only if it cannot be partitioned into two remote parts
A and B, i.e., such that inf{d(z,y): x € A,y € B} > 0.

The maximal Cantor connected subspaces of a metric space are called its
Cantor connected components. A totally Cantor disconnected metric
is the metric of a metric space in which all Cantor connected components
are one-point sets.

Indivisible metric space

A metric space (X,d) is called indivisible if it cannot be partitioned
into two parts, neither of which contains an isometric copy of (X, d). Any
indivisible metric space with |X| > 2 is infinite, bounded and totally
Cantor disconnected (Delhomme, Laflamme, Pouzet and Sauer 2007).

A metric space (X,d) is called an oscillation stable metric space
(Nguyen Van The 2006) if, given any e > 0 and any partition of X into
finitely many pieces, the e-neighborhood of one of the pieces includes an
isometric copy of (X, d).

Metric topology
A metric topology is a topology on X induced by a metric d on X; cf.
equivalent metrics.

More exactly, given a metric space (X,d), define the open set in X
as an arbitrary union of (finitely or infinitely many) open metric balls
B(z,r)={y e X :d(z,y) <r},z € X,r € R,r > 0. A closed setis defined
now as the complement of an open set. The metric topology on (X, d) is
defined as the set of all open sets of X. A topological space which can arise
in this way from a metric space is called a metrizable space (cf. Chap.[).

Metrization theorems are theorems which give sufficient conditions
for a topological space to be metrizable.

On the other hand, the adjective metric in several important mathe-
matical terms indicates connection to a measure, rather than distance,
for example, metric Number Theory, metric Theory of Functions, metric
transitivity.

Equivalent metrics

Two metrics d; and ds on a set X are called equivalent if they define the
same topology on X i.e., if, for every point zy € X, every open metric ball
with center at xy defined with respect to dy, contains an open metric ball
with the same center but defined with respect to ds, and conversely.

Two metrics d; and ds are equivalent if and only if, for every € > 0 and
every x € X, there exists 0 > 0 such that d;(z,y) < ¢ implies da(z,y) < €
and, conversely, da(x,y) < ¢ implies dy(z,y) < e.
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All metrics on a finite set are equivalent; they generate the discrete
topology.
e Closed metric interval
Given two different points 2,y € X of a metric space (X,d), the closed
metric interval between x and y is the set

I(a,y) ={z € X :d(z,y) = d(z,2) +d(z,y)}.

e Underlying graph of a metric space
The underlying graph (or neighborhood graph) of a metric space (X, d)
is a graph with the vertex-set X and xy being an edge if I(z,y) = {z,y},
i.e., there is no third point z € X, for which d(z,y) = d(z, z) + d(z, y).
e Distance monotone metric space
A metric space (X, d) is called distance monotone if any interval I(x, ")
is closed, i.e., for any y € X\I(z,2'), there exists 2" € I(z,2’) with
d(y,z") > d(z, ).
e Metric triangle
Three distinct points x,y,z € X of a metric space (X,d) form a met-
ric triangle if the closed metric intervals I(z,y),I(y,z) and I(z,z)
intersect only in the common end points.
e Metric space having collinearity
A metric space (X, d) has collinearity if for any ¢ > 0 every its infinite
subset M contains three distinct e-collinear (i.e., with d(x,y) + d(y,z) —
d(z,z) <€) points z,y, z.
e Modular metric space
A metric space (X,d) is called modular if, for any three different points
x,y,z € X, there exists a point v € I(x,y) N I(y,z) N I(z,z). This should
not be confused with modular distance in Chap.[I0]and modulus met-
ric in Chap.[al
e Median metric space
A metric space (X, d) is called a median metric space if, for any three
points z,y, z € X, there exists an unique point w € I(x,y)NI(y, z)NI(z,x).
Any median metric space is an Ly -metric; cf. L,-metric in Chap.[fand
median graph in Chap.[I5
A metric space (X, d) is called an antimedian metric space if, for any
three points x,y,z € X, there exists a unique point v € X maximizing
d(z,u) + d(y,u) + d(z,u).
e Metric quadrangle
Four different points x,y, z,u € X of a metric space (X, d) form a metric
quadrangle if z, z € I(y,u) and y,u € I(z, z). Then d(x,y) = d(z,u) and
d(x,u) = d(y, z) in such metric quadrangle.
A metric space (X, d) is called weakly spherical if, for any three different
points x,y,z € X with y € I(x, 2), there exists u € X such that z,y, z,u
form a metric quadrangle.
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e Metric curve
A metric curve (or, simply, curve) v in a metric space (X,d) is a
continuous mapping 7 : I — X from an interval I of R into X. A curve is
called an arc (or path, simple curve) if it is injective. A curve v : [a, b] —
X is called a Jordan curve (or simple closed curve) if it does not cross
itself, and ~(a) = v(b).
The length of a curve v : [a,b] — X is the number [(v) defined by

I(v) = sup{ Z d(y(ti),v(ti-1)) tn€Nya =ty <ty <--- <t, =b}.

1<i<n

A rectifiable curve is a curve with a finite length. A metric space (X, d),
where every two points can be joined by a rectifiable curve, is called a
quasi-convex metric space (or, specifically, C-quasi-convex metric
space) if there exists a constant C' > 1 such that every pair z,y € X
can be joined by a rectifiable curve of length at most Cd(x,y). If C =1,
then this length is equal to d(z,y), i.e., (X,d) is a geodesic (or strictly
intrinsic) metric space (cf. Chap.[d).

The metric derivative of an arc v : I — X at a limit point ¢ of I is,

if it exists,
L diy e+ 5),5(0)
P

It generalizes the notion of speed to the metric spaces which have not a
notion of direction (such as vector spaces).

e Geodesic
Given a metric space (X,d), a geodesic is a locally shortest metric
curve, i.e., it is a locally isometric embedding of R into X; cf. Chap.[d

A subset S of X is called a geodesic segment (or metric segment,
shortest path, minimizing geodesic) between two distinct points  and y in
X, if there exists a segment (closed interval) [a,b] on the real line R and
an isometric embedding v : [a,b] — X, such that v[a,b] = S, v(a) =  and
7() = y.

A metric straight line is a geodesic which is minimal between any two
of its points; it is an isometric embedding of the whole R into X. A metric
ray and metric great circle are isometric embeddings of, respectively,
the half-line R>o and a circle S*(0,7) into X.

A geodesic metric space (cf. Chap.[f]) is a metric space in which any
two points are joined by a geodesic segment. If, moreover, the geodesic
is unique, the space is called totally geodesic. A geodesic metric space is
called geodesically complete if every geodesic is a subarc of a metric straight
line.

e Geodesic convexity
Given a geodesic metric space (X,d) and a subset M C X, the set
M is called geodesically convex (or convez) if, for anytwo points of M,
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there exists a geodesic segment connecting them which lies entirely in M;
the space is called locally convex if such a segment exists for any two
sufficiently close points in M.

The injectivity radius of the set M is the least number r such that,
for any two points in M at distance <r, there exists exactly one geodesic
segment connecting them which lies entirely in M.

The set M C X is called a totally convex metric subspace of (X, d)
if, for any two points of M, any geodesic segment connecting them lies
entirely in M. For a given point € X, the radius of convexity is the
radius of largest totally convex metric ball with center at x.

e Busemann convexity
A geodesic metric space (X, d) is called Busemann convex (or glob-
ally non-positively Busemann curved) if, for any three points z,y, z €
X and midpoints m(x, z) and m(y, z) (i.e., d(x,m(z,2)) = d(m(z,2),z) =
$d(z, z) and d(y,m(y,z)) = d(m(y, z), z) = 3d(y, z)), there holds

(=), mly,2)) < 3d(z,y).

Equivalently, the distance D(cy,cs) between any geodesic segments ¢; =
[a1,b1] and co = [ag, bo] is a convex function; cf. metric between inter-
vals in Chap.[I0 (A real-valued function f defined on an interval is called
converif f(Axz+(1—=N)y) < Af(x)+(1—=N)f(y) for any x,y and A € (0,1).)

The flat Euclidean strip {(x,y) € R? : 0 < x < 1} is Gromov hyper-
bolic but not Busemann convex. In a complete Busemann convex metric
space any two points are joined by a unique geodesic segment. A metric
space is CAT(0) (cf. Chap.[d) if and only if it is Busemann convex and
Ptolemaic (Foertsch, Lytchak and Schroeder 2007).

A geodesic metric space (X,d) is Busemann locally convex
(Busemann 1948) if the above inequality holds locally. Any geodesic
locally CAT(0) metric space (cf. Chap.[d) is Busemann locally convex,
and any geodesic CAT(0) metric space is Busemann convex but not
vice versa.

e Menger convexity
A metric space (X, d) is called Menger convex if, for any different points
x,y € X, there exists a third point z € X for which d(x,y) = d(z,z) +
d(z,y), i.e., [I(x,y)| > 2 holds for the closed metric interval I(z,y) =
{z€ X :(x,y) =d(z,2) +d(z,y)}. It is called strictly Menger convex
if such z is unique for all z,y € X.

The geodesic convexity implies the Menger convexity. The converse
holds for complete metric spaces.

A subset M C X is a d-convex set (Menger 1928) if I(x,y) C M for any
different points x,y € M. A function f : M — R defined on a d-convex
set M C X is a d-convex function if for any z € I(z,y) C M

d(y, z) d(z, z)

flz) <
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e Midpoint convexity
A metric space (X,d) is called midpoint convex (or having mid-
points, admitting a midpoint map) if, for any different points z,y €
X, there exists a third point m(z,y) € X for which d(xz,m(z,y)) =
d(m(z,y),y) = d(z,y). Such a point m(z,y) is called a midpoint and
the map m : X x X — X is called a midpoint map (cf. midset); this map
is unique if m(x,y) is unique for all z,y € X. For example, the geomet-
ric mean /zy is the midpoint map for the metric space (Rso,d(z,y) =
|log z —log y|).
A complete metric space is a geodesic metric space if and only if it is
midpoint convex.
A metric space (X, d) is said to have approximate midpoints if, for
any points z,y € X and any € > 0, there exists an e-midpoint, i.e., a point
z € X such that d(z,z) < 3d(z,y) + € > d(z,y).
e Ball convexity
A midpoint convex metric space (X, d) is called ball convex if

d(m(z,y), z) < max{d(z, 2),d(y, 2)}

for all ,y,z € X and any midpoint map m(x,y).

Ball convexity implies that all metric balls are totally convex and,
in the case of geodesic metric space, vice versa. Ball convexity implies
also the uniqueness of a midpoint map (geodesics in the case of complete
metric space).

The metric space (R?, d(x,y) = Z?:l |z — y:|) is not ball convex.

e Distance convexity
A midpoint convex metric space (X, d) is called distance convex if

d(m(z,y),z) < 5(d(z, 2) +d(y, 2))-

DN =

A geodesic metric space is distance convex if and only if the restriction
of the distance function d(z,-), € X, to every geodesic segment is a
convex function.

Distance convexity implies ball convexity and, in the case of
Busemann convex metric space, vice versa.

e Metric convexity
A metric space (X,d) is called metrically convex if, for any differ-
ent points xz,y € X and any A € (0,1), there exists a third point z =
z(x,y,\) € X for which d(z,y) = d(z,2) + d(z,y) and d(x, z) = Ad(z,y).
Metric convexity implies Menger convexity.

The space is called strictly metrically convex if such point z(x,y, A)
is unique for all z,y € X and any X € (0,1).

A metric space (X, d) is called strongly metrically convex if, for any
different points x,y € X and any A, A2 € (0, 1), there exists a third point
z = z(x,y,\) € X for which d(z(z,y, A1), 2(x,y, \2)) = [A1 — A2ld(z,y).
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Strong metric convexity implies metric convexity, and every Menger convex
complete metric space is strongly metrically convex.

A metric space (X, d) is called nearly convex (Mandelkern 1983) if, for
any different points z,y € X and any A, u > 0 such that d(z,y) < X + g,
there exists a third point z € X for which d(z,2) < A and d(z,y) < y, i.e.,
z € B(x,\) N B(y, p). Metric convexity implies near convexity.

e Takahashi convexity
A metric space (X,d) is called Takahashi convex if, for any differ-
ent points z,y € X and any A € (0,1), there exists a third point
z = z(x,y,A\) € X such that d(z(z,y,\),u) < Md(z,u) + (1 — N)d(y,u)
for all w € X. Any convex subset of a normed space is a Takahashi convex
metric space with z(x,y,\) = Az + (1 — N)y.

A set M C X is Takahashi convex if z(z,y,\) € M for all z,y € X and
any A € [0,1]. Takahashi has shown in 1970 that, in a Takahashi convex
metric space, all metric balls, open metric balls, and arbitrary intersections
of Takahashi convex subsets are all Takahashi convex.

e Hyperconvexity
A metric space (X, d) is called hyperconvex (Aronszajn and Panitchpakdi
1956) if it is metrically convex and its metric balls have the infinite
Helly property, i.e., any family of mutually intersecting closed balls in X
has non-empty intersection. A metric space (X,d) is hyperconvex if and
only if it is an injective metric space.

The spaces [, 22 and [? are hyperconvex but [$° is not.

e Distance matrix
Given a finite metric space (X = {x1, -+ ,2,},d), its distance matrix
is the symmetric n x n matrix ((d;;)), where d;; = d(x;, z;) for any 1 <4,
j<n.

The probability that a symmetric n x n matrix, whose diagonal elements
are zeros and all other elements are uniformly random real numbers, is a
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distance matrix is (Mascioni 2005) 5, 135 for n = 3,4 and it is within

[1—(0.918)"",1 — (0.707)""] for n = 5.

e Metric cone
The metric cone M ET,, is the polyhedral cone in R() of all distance
matrices of semi-metrics on the set V,, = {1,...,n}. Vershik (2004)
considers M ET,,, i.e., the weakly closed convex cone of infinite distance
matrices of semi-metrics on N.

The metric fan is a canonical decomposition M F,, of M ET,, into sub-
cones whose faces belong to the fan, and the intersection of any two of
them is their common boundary. Two semi-metrics d,d € MET, lie in
the same cone of the metric fan if the subdivisions d4, 4 of the polyhedron
0(n,2) = conv{e;+e; : 1 <i<j<n} CR"areequal. Here a subpolytope
P of 6(n,2) is a cell of the subdivision d4 if there exists y € R™ satisfying
yi +yj = dij if e; + €5 is a vertex of P, and y; + y; > d;; otherwise. The
complex of bounded faces of the polyhedron dual to d4 is the tight span
of the semi-metric d; cf. combinatorial dimension.



1 General Definitions

The term metric cone is also used in Bronshtein (1998) for a convex
cone equipped with a complete metric compatible with its operations of
addition and multiplication by non-negative numbers.

Cayley—Menger matrix
Given a finite metric space (X = {x1,...,2,},d), its Cayley—Menger
matrix is the symmetric (n 4+ 1) x (n + 1) matrix

crxa= (5 p).

where D = ((d*(z;,2;))) and e is the n-vector all components of which
are 1.

The determinant of CM (X, d) is called the Cayley—Menger determinant.
If (X, d) is a metric subspace of the Euclidean space E"~!, then CM (X, d)
is (=1)"2" 71 ((n — 1)!)? times squared (n — 1)-dimensional volume of the
convex hull of X in R*~1,
Gram matrix
Given elements vy, ..., v; of a Euclidean space, their Gram matrix is the
symmetric k X k matrix

Gor,- s ok) = (((vi,v5)))

of pairwise inner products of vy,..., vg.

A kx k matrix is positive-semi-definite if and only if it is a Gram matrix.
A k x k matrix is positive-definite if and only if it is a Gram matrix with
linearly independent defining vectors.

We have G(vy,...vp) = 2((d%(vo, v;) +d% (vo, v;) — d% (v, v5))), i.e., the
inner product (,) is the Gromov product similarity of the squared
Euclidean distance d%,. A k x k matrix ((d%(v;,v;))) defines a distance
of negative type on {1,...,k}; all such k& x k matrices form the (non-
polyhedral) closed convex cone of all such distances on a k-set.

The determinant of a Gram matrix is called the Gram determinant; it
is equal to the square of the k-dimensional volume of the parallelotope
constructed on vy, ... vk.

Midset
Given a metric space (X, d) and distinct y, 2 € X, the midset (or bisector)
of points y and z is the set M = {z € X : d(z,y) = d(z, z)} of midpoints x.

A metric space is said to have the n-points midset property if, for every
pair of its points, the midset has exactly n points. The 1-point midset
property mean uniqueness of the midpoint map (cf. midpoint convexity).
Distance k-sector
Given a metric space (X, d) and disjoint subsets Y, Z C X, the bisector of
Y and Z is the set M = {o € X :inf cy d(x,y) = inf.cz d(x,2)}.

The distance k-sector of Y and Z is the sequence My,..., My 1 of
subsets of X such that M;, for any 1 < i < k—1, is the bisector of sets M;_;
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and M; 1, where Y = My and Z = Mj. Asano, Matousek and Tokuyama
(2006) considered the distance k-sector on the Euclidean plane (R?l5);
for compact sets Y and Z, the sets My,..., M}_1 are curves partitioning
the plane into k£ parts.
e Metric basis

Given a metric space (X, d), a subset M C X is called a metric basis (or
set of uniqueness) of X if d(x,s) = d(y, s) for all s € M implies = y. For
x € X, the numbers d(z, s),s € M, are called metric coordinates of .

1.3 Metric numerical invariants

e Metric density
A metric space (X, d) is called metrically dense (or, specifically, u-dense)
if (Tukia and Vaisiala 1980) there exist numbers A, Ay with 0 < A\ <
Ao < 1 such that, for every pair of points z,y € X, there exists a point
z € X with Md(z,y) < d(z,z) < Xed(x,y). In this case, pu = (%ﬁ‘iz))2

The quantity inf{p}, where (X, d) is p-dense, is the coefficient of metric

density of (X,d). For the middle-third Cantor set on the interval [0, 1],
this coefficient is 12.25 (Ibragimov 2002).

e Metric entropy
Given € > 0, the metric entropy (or e-entropy) H.(M,X) of a subset
M C X of a metric space (X,d), is defined (Kolmogorov and Tihomirov
1956) by

H.(M,X) =logy, CAP.(M, X),

where the function CAP. (M, X) of € > 0, called the capacity of metric
space (M, d), is the smallest number of points in an e-net (or e-covering,
e-approzimation) for the metric space (M, d), i.e., a set of points such that
the union of open e-balls, centered at those points, covers M.

The notion of metric entropy for a dynamical system is one of the
most important invariants in Ergodic Theory.

e Metric dimension

For a metric space (X, d) and any real number ¢ > 0, let Nx (¢) be the min-
imal number of sets with diameter at most ¢ which are needed in order to

cover X (cf. metric entropy). The number lim._, % (if it exists) is

called the metric dimension (or Minkowski—Bouligand dimension,
Minkowski dimension, packing dimension, boz-counting dimension) of X.

If the limit above does not exist, then the following notions of dimension
are considered:

1. The number lim,_,, lgl(g\g?) is called the lower Minkowski dimen-

sion (or lower metric dimension, lower box dimension, Pontryagin—
Snirelman dimension);
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2. The number HHO% is called the Kolmogorov—Tihomirov di-

mension (or upper metric dimension, entropy dimension, upper box
dimension).

See below examples of other, less prominent, notions of metric dimension
occurring in the mathematical literature:

1. The (basis) metric dimension (or location number) of a metric space is
the minimum cardinality of its metric basis. The partition dimension
(Chartrand, Salevi and Zhang 1998) is the minimum cardinality of its
resolving partition, i.e., an ordered partition Sy, ..., Sk of the space such
that no two points have, for 1 < i < k, the same minimal distances to
the set S;. So, partition dimension is at most basis metric dimension
plus 1.

2. The (equilateral) metric dimension of a metric space is the maximum
cardinality of its equidistant subset, i.e., such that any two of its distinct
points are at the same distance. For a normed space, this dimension is
equal to the maximum number of translates of its unit ball that pairwise
touch.

3. For any ¢ > 1, the (normed space) metric dimension dim.(X) of a
finite metric space (X, d) is the least dimension of a real normed space
(V,]|.|]) such that there is an embedding f : X — V with 1d(z,y) <
|1/ () = F@W)II < d(z,y).

4. The (Euclidean) metric dimension of a finite metric space (X,d) is
the least dimension n of a Euclidean space E™ such that (X, f(d)) is
its metric subspace, where the minimum is taken over all continuous
monotone increasing functions f(¢) of t > 0.

5. The dimensionality of a metric space is 4=, where p and o? are the
mean and variance of its histogram of distance values; this notion is used
in Information Retrieval for proximity searching. The term dimension-
ality is also used for the minimal dimension, if it is finite, of Euclidean
space in which a given metric space embeds isometrically.

e Volume of finite metric space
Given a metric space (X,d) with |X| = k < oo, its volume (Feige 2000)
is the maximal (k — 1)-dimensional volume of the simplex with vertices
{f(x) : * € X} over all short mappings f : (X,d) — (R*"1/l,). The
volume coincides with the metric for £ = 2. It is monotonically increasing
and continuous in the metric d.

e Rank of metric space
The Minkowski rank of metric space (X, d) is the maximal dimension
of a normed vector space (V, ||.||) such that there is an isometric embedding
WV, L) — (X, d).

The Euclidean rank of metric space (X, d) is the maximal dimension

of a flat in it, that is of a Euclidean space E™ such that there is an isometric
embedding E" — (X, d).
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The quasi-Euclidean rank of metric space (X,d) is the maximal
dimension of a quasi-flat in it, that is, of a Euclidean space E™ such that
there is a quasi-isometry E" — (X,d). Every Gromov hyperbolic
metric space has this rank 1.

e Hausdorff dimension
For a metric space (X,d) and any real p,g>0, let MJ(X)= inf
j:of(diam(Ai))p, where the infimum is taken over all countable cov-
erings {4;}; of X with the diameter of A; less than ¢. The Hausdorff
dimension (or fractal dimension, Hausdorff-Besicovitch dimension,
capacity dimension) dimpa,s(X,d) of (X, d) is defined by

inf{p : lim M}J(X) = 0}.
q—0

Any countable metric space has Hausdorff dimension 0; the Hausdorff
dimension of the Euclidean space E" is equal to n.

For each totally bounded metric space, its Hausdorff dimension is
bounded from above by its metric dimension and from below by its
topological dimension.

e Topological dimension
For any compact metric space (X,d) its topological dimension (or
Lebesgue covering dimension) is defined by

igl/f{dimHaus (X,d)},

where d’ is any metric on X topologically equivalent to d, and dimgqqs 1S
the Hausdorff dimension.

This dimension does not exceed also the Assouad-Nagata dimension
of (X,d).

In general, the topological dimension of a topological space X is the
smallest integer n such that, for any finite open covering of X, there exists
a finite open sub-covering (i.e., a refinement of it) with no point of X
belonging to more than n + 1 elements.

e Fractal

For a metric space, its topological dimension does not exceed its
Hausdorff dimension. A fractal is a metric space for which this in-
equality is strict. (Originally, Mandelbrot defined a fractal as a point set
with non-integer Hausdorff dimension.) For example, the Cantor set, seen
as a compact metric subspace of (R,d(z,y) = |x — y|) has the Hausdorff
dimension E—g; cf. another Cantor metric on it in Chaps.[ITand [I8 An-
other classical fractal, the Sierpinski carpet of [0,1] x [0,1] is a complete
geodesic metric subspace of (R?,d(z,y) = ||z — yl|1).

The term fractal is used also, more generally, for self-similar (i.e.,
roughly, looking similar at any scale) object (usually, a subset of R™).
Cf. scale invariance in Chap.29
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Doubling dimension

The doubling dimension of a metric space (X, d) is the smallest integer
n (or oo if such n does not exist) such that every metric ball (or, say, a set
of finite diameter) can be covered by a family of at most 2" metric balls
(respectively, sets) of half the diameter.

If (X, d) has finite doubling dimension (or, equivalently, finite Assouad-
Nagata dimension), then d is called a doubling metric.
Assouad-Nagata dimension
The Assouad-Nagata dimension dimn (X, d) of a metric space (X, d)
is the smallest integer n (or oo if such n does not exist) for which there
exists a constant C' > 0 such that, for all s > 0, there exists a covering of
X by its subsets of diameter <C's with every subset of X of diameter <s
meeting <n + 1 elements of covering.

Replacing “for all s > 0”7 in above definition by “for s > 0 suffi-
ciently large” or by “for s > 0 sufficiently small,” gives microscopic
mi-diman(X,d) and macroscopic ma-diman(X,d) Assouad-Nagata
dimensions, respectively. Then (Brodskiy, Dudak, Higes and Mitra
2006) mi-diman(X,d) = diman(X,min{d,1}) and ma-diman(X,d) =
diman (X, max{d,1}) (here max{d(x,y),1} means 0 for z = y).

In general, the Assouad-Nagata dimension is not preserved under quasi-
isometry but it is preserved (Lang and Schlichenmaier 2004) under quasi-
symmetric mapping.

Vol’berg—Konyagin dimension

The Vol’berg—Konyagin dimension of a metric space (X,d) is the
smallest constant C' > 1 (or oo if such C' does not exist) for which X
carries a doubling measure, i.e., a Borel measure p such that

u(B(z,2r)) < Cp(B(x,7))

for all x € X and r > 0.

A metric space (X,d) carries a doubling measure if and only if d is a
doubling metric, and any complete doubling metric carries a doubling
measure.

The Karger—Ruhl constant of a metric space (X,d) is the smallest
constant ¢ > 1 (or oo if such ¢ does not exist) such that

|B(x,2r)| < c|B(z,7r)|

forall z € X and r > 0.

If ¢ is finite, then the doubling dimension of (X, d) is at most 4c.
Hyperbolic dimension
A metric space (X, d) is called an (R, N)-large-scale doubling if there exist
a number R > 0 and integer N > 0 such that every ball of radius r > R

in (X, d) can be covered by N balls of radius .
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The hyperbolic dimension hypdim(X,d) of a metric space (X,d)
(Buyalo and Schroeder 2004) is the smallest integer n such that, for every
r > 0, there exist a real number R > 0, an integer N > 0 and a covering
of X with the following properties:

1. Every ball of radius r meets at most n + 1 elements of covering.
2. The covering is an (R, N)-large-scale doubling, and any finite union of
its elements is an (R’, N)-large-scale doubling for some R’ > 0.

The hyperbolic dimension is 0 if (X, d) is a large-scale doubling, and it is
n if (X, d) is the n-dimensional hyperbolic space.

Also, hypdim(X,d) < asdim(X,d) since the asymptotic dimen-
sion asdim(X,d) corresponds to the case N =1 in the definition of
hypdim (X, d).

The hyperbolic dimension is preserved under a quasi-isometry.

e Asymptotic dimension
The asymptotic dimension asdim(X,d) of a metric space (X,d)
(Gromov 1993) is the smallest integer n such that, for every r > 0,
there exist a constant D = D(r) and a covering of X by its subsets of
diameter at most D such that every ball of radius r meets at most n + 1
elements of the covering.

The asymptotic dimension is preserved under a quasi-isometry.

e Width dimension
Let (X, d) be a compact metric space. For a given number € > 0, the width
dimension Widim.(X, d) of (X, d) is (Gromov 1999) the minimum integer
n such that there exist an n-dimensional polyhedron P and a continuous
map f : X — P (called an e-embedding) with Diamf~1(y) < e for all
y e P.

lime_oWidim(X,d) is the topological dimension of (X, d). Thus the

width dimension of (X, d) is its macroscopic dimension at the scale > e.
e Godsil-MaKay dimension
We say that a metric space (X, d) has Godsil-McKay dimension n > 0
if there exists an element o € X and two positive constants ¢ and C
such that the inequality ck™ < |[{z € X : d(z,z¢) < k}| < Ck™ holds for
every integer k& > 0. This notion was introduced in [GoMc80] for the path
metric of a countable locally finite graph. It was proved there that, if the
group Z" acts faithfully and with a finite number of orbits on the vertices
of the graph, then this dimension is equal to n.
e Length of metric space
The Fremlin length of a metric space (X,d) is the one-dimensional
Hausdorff outer measure on X.

The Hejcman length Ing(M) of a subset M C X of a metric space
(X, d) is sup{ing(M") : M’ € M,|M’| < oo}. Here Ing()) = 0 and, for a
finite subset M’ C X, Ing(M') = min )., d(z;_1, ;) over all sequences
Zoy ..., &y such that {z; :4=0,1,...,n} = M'.
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The Schechtman length of a finite metric space (X, d) is inf />, a?
over all sequences aq,...,a, of positive numbers such that there exists a
sequence X, ..., X, of partitions of X with following properties:

1. Xo={X}and X,, = {{z} : x € X}.

2. X, refines X;_1 fori=1,...,n.

3. Fori=1,...,nand B,C C A € X,_; with B,C € X, there exists
a one-to-one map f from B onto C such that d(z, f(z)) < a; for all
z € B.

Roundness of metric space
The roundness of a metric space (X, d) is the supremum of all ¢ such
that

d(z1,22) + d(y1,y2)? < d(z1,y51)? + d(z1,y2)? + d(x2, y1)? + d(z2,y2)?

for any four points x1, x2,y1,y2 € X.

Every metric space has roundness >1; it is <2 if the space has approx-
imate midpoints. The roundness of L,-space is pif 1 <p < 2.

The generalized roundness of a metric space (X,d) is (Enflo 1969) the
supremum of all g such that, for any 2k > 4 points z;,y; € X with
1<i<k,

D () +dlyny)) <Y d(ws,yy)”

1<i<y<k 1<i,5<k

So, the generalized roundness is the supremum of ¢ such that the power
transform (cf. Chap.Hl) d? is 2k-gonal distance.

Every CAT(0) space (cf. Chap.[]) has roundness 2, but some of them
have generalized roundness 0 (Lafont and Prassidis 2006).
Type of metric space
The Enflo type of a metric space (X,d) is p if there exists a con-
stant 1 < C < oo such that, for every n € N and every function
fo =L = X, Y i dP(f(e). f(—e€)) is at most CP35T_,
Zee{—l,l}" dp(f(El, e ,6]‘_1, Ej, €j+1, ey 67,,), f(él, ey €j_1, —Ej, Ej+1,
ce€n)).

A Banach space (V,]].||) of Enflo type p has Rademacher type p, i.e., for
every xi,...,xrn, €V,

n n
Yo D el <Py P
ee{—-1,1}n  j=1 j=1

Given a metric space (X,d), a symmetric Markov chain on X is a
Markov chain {Z;}7°, on a state space {z1,..., %y} C X with a symmetri-
cal transition m x m matrix ((a;;)), such that P(Zj11 = z; : Z; = x;) = ay;
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and P(Zy = x;) = % for all integers 1 < 4,57 < m and [ > 0. A metric
space (X, d) has Markov type p (Ball 1992) if sup; M,(X,T) < co where
M,(X,T) is the smallest constant C' > 0 such that the inequality

EdP(Zr, Zo) < TCPEdP(Zy, Zo)

holds for every symmetric Markov chain {Z;}7°, on X holds, in terms
of expected value (mean) E[X]| = > ap(z) of the discrete random vari-
able X.
A metric space of Markov type p has Enflo type p.
e Strength of metric space
Given a finite metric space (X, d) with s different non-zero values of d;; =
d(i,j), its strength is the largest number ¢ such that, for any integers
p,q > 0 with p + ¢ < ¢, there is a polynomial fy,(s) of degree at most
min{p, g} such that (d9))((d1)) = ((fpu(d)).
e Polynomial metric space
Let (X,d) be a metric space with a finite diameter D and a finite nor-
malized measure px. Let the Hilbert space Lo(X,d) of complex-valued
functions decompose into a countable (when X is infinite) or a finite (with
D + 1 members when X is finite) direct sum of mutually orthogonal sub-
spaces Lo(X,d) =Vo V1 @ ....
Then (X, d) is a polynomial metric space if there exists an ordering of
the spaces Vp, V1, ... such that, for i = 0,1,..., there exist zonal spherical
functions, i.e., real polynomials Q;(t) of degree i such that

Qu(t(dw ) = Y vy () )

for all z,y € X, where r; is the dimension of V;, {v;(z) : 1 < j <r;} isan
orthonormal basis of V;, and ¢(d) is a continuous decreasing real function
such that t(0) = 1 and ¢(D) = —1. The zonal spherical functions constitute
an orthogonal system of polynomials with respect to some weight w(t).
The finite polynomial metric spaces are also called (P and Q )-polynomial
association schemes; cf. distance-regular graph in Chap.[I5
The infinite polynomial metric spaces are the compact connected two-
point homogeneous spaces; Wang (1952) classified them as the Euclidean
unit spheres, the real, complex, quaternionic projective spaces or the Cay-
ley projective line and plane.
e Growth rate of metric space
Let (X,d) be a distance-invariant metric space, i.e., all metric balls
B(z,n) = {y € X :d(z,y) < n} of the same radius have the same number
of elements. The growth rate of a metric space (X, d) is the function

f(n) =|B(z,n)|.
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(X,d) is a metric space of polynomial growth if there are some pos-
itive constants k,C such that f(n)gan for all n>0. It has expo-
nential growth if there is a constant C'>1 such that f(n)>C"™ for all
n > 0. Cf. graph of polynomial growth, including the group case, in
Chap.[T8

For a metrically discrete metric space (X,d) (ie., with a =
infy yex.azy d(z,y) > 0), its growth rate was defined also (Gordon, Linial
and Rabinovich 1998) by

log | B(z, ar)|
max ———1 ~°.
zEX,r>2 log r

Rendez-vous number

Given a metric space (X,d), its rendez-vous number (or Gross num-
ber, magic number) is a positive real number r(X,d) (if it exists), defined
by the property that for each integer n and all (not necessarily distinct)
r1,...,r, € X there exists a point £ € X such that

1 n
r(X,d) = — d(z;,x).
(o) = > dlai

If the number (X, d) exists, then it is said that (X, d) has the average
distance property. Every compact connected metric space has this prop-
erty. The unit ball {x € V : ||z|| <1} of a Banach space (V,]|.||) has the
rendez-vous number 1.
Wiener polynomial
Given a finite subset M of a metric space (X,d) and a parameter ¢, the
Wiener polynomial of M is

1
W(ig)=5 Y v
T, yeEM:x#y

It is a generating function for the distance distribution (cf. a very similar
notion in Chap.[8)) of M, i.e., the coefficient of ¢* in W (M; q) is the number
of unordered pairs x,y € M having d(z,y) = i.

The number W/(M;1) = %Zm’yeM d(x,y), in the case when d is the
path metric of a graph with vertex-set M, is called Wiener index; cf.
chemical distance in Chap.2Z4l The degree distance of this graph is
(Dobrynin and Kochetova 1994) 23~ yem Az, y)(r(x)+r(y)), where r(z)
is the degree of the vertex z € M.

The average distance of M is the number W > wyen AT, Y).
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e s-energy
Given a finite subset M of a metric space (X,d), the s-energy of M is
the number

1 1
Z y and Z log e =— H d(z,y),

z,yEM,z#y z,yEM,z#y z,yeEM, z#y

for s #£ 0 and s = 0, respectively. The (—s)-energy with s > 0 is also called
the (unnormalized) s-moment of M.

The discrete Riesz s-energy is s-energy for Euclidean distance d and
s> 0.

A I-median and a center of mass of M are points x7], x5 € X minimizing
the functionals >y, d(z1,y) and 3 d*(z2,y), respectively.

In general, given a completely monotonic (i.e., (—1)Ff¥ > 0 for any k)
function f € C*°, the f-potential energy of a finite subset M of a met-
ric space (X,d) I8 D7, carosy f(d?(z,y)). The metric subspace (M, d)
is called (Cohn and Kumar 2007) universally optimal if it minimizes,
among subspaces (M',d) with |M'| = |M|, f-potential energy for any
such function f.

Given an ordered subset M ={z1,...,2,} of a metric space (X,d)
(usually [3), its Lennard-Jones potential energy is Z?;ll Z?:Hl(d(xi,
£L'j)712 — Qd(.’ﬂi,.’ﬂj)iﬁ).

e Transfinite diameter
The n-th diameter D,, (M) and the n-th Chebyshev constant Cp,(M) of a
set M C X in a metric space (X,d) are defined (Fekete 1923, for the
complex plane C) as

D,(M)=  sup Hd(x“xj)"("l*l) and
L1y, Tn €M ij

The number log D,, (M) (the supremum of average distance) is called the
n-extent of M. The numbers D, (M),C,(M) come from the geometric
mean averaging; they also come as the limit case s — 0 of the s-moment
> izj d(zi, ) averaging.

The transfinite diameter (or co-th diameter) and the co-th Chebyshev
constant Coo (M) of M are defined as

Doo(M) = lim D,(M) and Coo (M) = lim C,(M);
these limits existing since {D,,(M)} and {C, (M)} are non-increasing se-
quences of non-negative real numbers. Define Do () = 0. The transfinite
diameter of a compact subset of C is its capacity; for a segment in C, it is
i of its length.
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e Metric diameter
The metric diameter (or diameter, width) diam(M) of a set M C X in
a metric space (X, d) is defined by

sup d(z,y).
z,yeM

The diameter graph of M has, as vertices, all points € M with
d(x,y) = diam(M) for some y € M; it has, as edges, all pairs of its vertices
at distance diam (M) in (X, d).

A metric space (X,d) is called an antipodal metric space (or dia-
metrical metric space) if, for any x € X, there exists the antipode, i.e., a
unique z’ € X such that the interval I(x,2’) is X.

In a metric space endowed with a measure, one says that the isodiametric
inequality holds if the metric balls maximize the measure among all sets
with given diameter. It holds for the volume in Euclidean space but not,
for example, for the Heisenberg metric on the Heisenberg group (cf.
Chap.[I0).

The k-diameter of a finite metric space (X, d) is (Chung, Delorme and
Sole 1999) maxyc x.|K|=k Mily yek: 22y d(,y); cf. minimum distance
in Chap.[IG

Given a property P C X x X of a pair (K, K’) of subsets of a finite
metric space (X, d), the conditional diameter (or P-diameter, Balbuena,
Carmona, Fabrega and Fiol 1996) is max(x g/)cp Min( e x i d(T,Y)-
It is diam(X,d) if P = {(K,K') € X x X : |K| = |K'| = 1}. When (X, d)
models an interconnection network, the P-diameter corresponds to the
maximum delay of the messages interchanged between any pair of clusters
of nodes, K and K’, satisfying a given property P of interest.

e Metric spread
Given a metric space (X,d), let M be a bounded (i.e., with finite di-
ameter A) and metrically discrete (i.e., the infimum a = inf, yenr 22y
d(x,y) > 0) subset of X.

The metric spread (or aspect ratio, distance ratio, normalized diame-

ter) of M is the ratio 2.

e Eccentricity
Given a bounded metric space (X, d), the eccentricity (or Koenig num-
ber) of a point € X is the number e(z) = maxyecx d(z,y).

The numbers max,ex e(x) and min,ex e(z) are called the diameter
and the radius of (X,d), respectively. For finite | X|, the average eccen-
tricity is ﬁ Y osex e(x).

The sets {z € X : e(x) < e(z) forany z € X}, {z € X : e(z) >
e(z) forany z € X} and {z € X : 3 v d(z,y) <> cxd(z,y) for any
z € X} are called, respectively, the metric center (or eccentricity center,
center), metric antimedian (or periphery) and the metric median (or
distance center) of (X,d).
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e Radii of metric space
Given a bounded metric space (X, d) and aset M C X, the metric radius
(or radius) r(M) of M is the infimum of radii of metric balls which con-
tain M, i.e., the number inf,e s sup, ey d(,y). Then %(]\/[) <r(M)<
diam(M), where diam(M) is the diameter of the set M, with r(M) =
diam (M) in any equidistant metric space and r(M) = dmmT(M) in any

injective metric space. Some authors define the radius to be the number
diam (M)

T2he covering radius of a set M C X is max,ey mingen d(z,y), Le.,
the smallest number R such that the open metric balls of radius R with
centers at the elements of M cover X. It is also called the directed Haus-
dorff distance from X to M. The set M is called an e-covering if its
covering radius does not exceed €. Given a positive number m, a min-
imax distance design of size m is a m-subset of X having smallest
covering radius.

The packing radius of a set M C X is the largest r such that the open
metric balls of radius r with centers at the elements of M are pairwise
disjoint, i.e., mingepr mingepn (23 d(z,y) > 2r. The set M is called an
e-packing if its packing radius is no less than e. Given a positive number
m, a maximum distance design of size m is an m-subset of X having
largest packing radius.

The size of the smallest e-covering is at most the size of the largest §-
packing. An §-packing M is non-extendible if M U{x} is not an §-packing
for every x € X\M, i.e., M is also an e-net.

e Congruence order of metric space
A metric space (X, d) has congruence order n if every finite metric space
which is not isometrically embeddable in (X, d) has a subspace with
at most n points which is not isometrically embeddable in (X, d).

For example, the congruence order of 1§ is n + 3 (Menger 1928); it is 4

for the path metric of a tree.

e Chromatic numbers of metric space

Given a metric space (X,d) and a set D of positive real numbers, the
D-chromatic number of (X,d) is the standard chromatic number of
the D-distance graph of (X,d), i.e., the graph with the vertex-set X
and the edge-set {zy : d(z,y) € D}. Usually, (X,d) is an [,-space and
D = {1} (Benda—Perles chromatic number) or D = [1 — ¢, 1 + €] (the
chromatic number of the e-unit distance graph). Rosenfeld conjectured that
the D-chromatic number of R? is oo if D is the set of odd integers.

For a metric space (X, d), the polychromatic number is the minimum
number of colors needed to color all the points x € X so that, for each
color class C;, there is a distance d; such that no two points of C; are at
distance d;.

For any integer t > 0, the ¢t-distance chromatic number of a metric
space (X, d) is the minimum number of colors needed to color all the points
x € X so that any two points whose distance is <t have distinct colors.
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For any integer ¢ > 0, the t-th Babai number of (X, d) is the minimum
number of colors needed to color all the points € X so that, for any set D
of positive distances with |D| < ¢, any two points whose distance belongs
to D have distinct colors.

e Steiner ratio
Given a metric space (X, d) and a finite subset V' C X, consider the com-
plete weighted graph G = (V, E) with the vertex-set V' and edge-weights
d(z,y) for all z,y € V.

A spanning tree T in G is a subset of |V]| — 1 edges forming a tree on V'
with the weight d(T) equal to the sum of weights of its edges. Let M STy
be a minimum spanning tree in G, i.e., a spanning tree in G with the
minimal weight d(M STy ).

A minimum Steiner tree on V is a tree SM Ty, such that its vertex-set
is a subset of X containing V, and d(SMTy ) = infyrex . vear d(MSThy).

The Steiner ratio St(X,d) of the metric space (X, d) is defined by

e dSMTy)
vex d(MSTy)

For any metric space (X, d) we have 1+ < St(X,d) < 1. For the lo-metric

(cf. L,-metric in Chap.[]) on R?, it is equal to §7 while for the [;-metric
on R? it is equal to %
Cf. arc routing problems in Chap.[I5

1.4 Metric mappings

e Distance function
A distance function (or ray function) is a continuous function on a
metric space (X, d) (usually, on an Euclidean space E") f : X — Rxg
which is homogeneous, i.e., f(tx) =tf(z) for all t > 0 and all z € X.
A distance function f is called symmetric if f(z) = f(—x), positive if
f(x) >0 for all x # 0, and convex if f(z+y) < f(x)+ f(y) with f(0) = 0.
If X = E", the set {x € R" : f(z) < 1} is called a star body; it cor-
responds to a unique distance function. The star body is bounded if f is
positive, it is symmetric about the origin if f is symmetric, and it is convex
if f is a convex distance function.
In Topology, the term distance function is often used for distance.
e Convex distance function
Given a compact convex region B C R™ which contains the origin in its
interior, the convex distance function (or gauge, Minkowski distance
function) dp(z,y) is the quasi-metric on R™ defined, for  # y, by

inf{a > 0:y— 2z € aB}.
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It is also defined, equivalently, as HZ:;”H; , where z is the unique point of the

boundary d(z + B) hit by the ray from z through y. Then B = {z € R":
dp(0,z) < 1} with equality only for x € 9B. A convex distance function
is called polyhedral if B is a polytope, tetrahedral if it is a tetrahedron and
SO on.

If B is centrally-symmetric with respect to the origin, then dp is a

Minkowskian metric (cf. Chap.[d]) whose unit ball is B.

e Element of best approximation
Given a metric space (X, d) and a subset M C X, an element ug € M is
called an element of best approximation to a given element z € X
if d(z,ug) = infyerrd(z,u), ie., if d(z,up) is the point-set distance
d(z, M).

A metric projection (or operator of best approximation, nearest point
map) is a multi-valued mapping associating to each element = € X the set
of elements of best approximation from the set M (cf. distance map).

A Chebyshev set in a metric space (X, d) is a subset M C X contain-
ing a unique element of best approximation for every z € X.

A subset M C X is called a semi-Chebyshev set if the number of
such elements is at most one, and a proximinal set if this number is at
least one.

The Chebyshev radius of the set M is inf,ex sup, ), d(z,y), and a
Chebyshev center of M is an element zy € X realizing this infimum.

e Distance map
Given a metric space (X, d) and a subset M C X, the distance map is a
function far : X — Rxo, where far(z) = infy,ecar d(x, u) is the point-set
distance d(x, M) (cf. metric projection).

If the boundary B(M) of the set M is defined, then the signed distance
function gy is defined by gas(v) = —inf e d(z,u) for x € M, and
gu(x) = inf,epr d(x,u) otherwise. If M is a (closed and orientable)
manifold in R™, then g is the solution of the eikonal equation |Vg| = 1
for its gradient V.

If X = R™ and, for every x € X, there is unique element u(z) with
d(x, M) = d(z,u(x)) (i.e., M is a Chebyshev set), then ||z — u(x)|| is
called a vector distance function.

Distance maps are used in Robot Motion (M being the set of obstacle
points) and, especially, in Image Processing (M being the set of all or
only boundary pixels of the image). For X = R?, the graph {(z, far(z)) :
x € X} of d(x, M) is called the Voronoi surface of M.

e Isometry
Given metric spaces (X,dx) and (Y, dy), a function f: X — Y is called
an isometric embedding of X into Y if it is injective and the equality
dy (f(z), f(y)) = dx(z,y) holds for all z,y € X.

An isometry (or congruence mapping) is a bijective isometric embed-
ding. Two metric spaces are called isometric (or isometrically isomorphic)
if there exists an isometry between them.
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A property of metric spaces which is invariant with respect to isometries
(completeness, boundedness, etc.) is called a metric property (or metric
invariant).

A path isometry (or arcwise isometry) is a mapping from X into Y’
(not necessarily bijective) preserving lengths of curves.

Rigid motion of metric space
A rigid motion (or, simply, motion) of a metric space (X,d) is an
isometry of (X, d) onto itself.

For a motion f, the displacement function ds(x) is d(z, f(x)). The
motion f is called semisimple if inf,ex df(z) = d(zo, f(x0)) for some
xo € X, and parabolic otherwise. A semisimple motion is called elliptic if
infyex df(z) = 0, and azial (or hyperbolic) otherwise. A motion is called
a Clifford translation if the displacement function dy(z) is a constant for
all z € X.

Symmetric metric space

A metric space (X, d) is called symmetric if, for any point p € X, there
exists a symmetry relative to that point, i.e., a motion f, of this metric
space such that f,(fp(x)) = « for all € X, and p is an isolated fixed
point of f,.

Homogeneous metric space

A metric space is called homogeneous (or highly transitive, ultrahomoge-
neous) if any isometry between two of its finite subspaces extends to the
whole space.

A metric space is called point-homogeneous if, for any two points of it,
there exists a motion mapping one of the points to the other. In general,
a homogeneous space is a set together with a given transitive group of
symmetries.

A metric space (X, d) is called (Griinbaum-Kelly) a metrically homo-
geneous metric space if {d(z,z) : z € X} = {d(y,2) : z € X} for any
x,y € X.

Dilation

Given a metric space (X,d) and a positive real number r, a function
f X — X is called a dilation if d(f(z), f(y)) =rd(z,y) holds for any
z,y € X.

Metric cone structure

Given a pointed metric space (X, d, zg) (i.e., a space (X, d) with a fixed
point zg € X), a metric cone structure on it is a (pointwise) continuous
family f; (¢t € Rsg) of dilations of X, leaving the point z( invariant, such
that d(fi(x), fi(y)) = td(z,y) for all z,y and fio fs = fis.

A Banach space has such a structure for the dilations fi(z) =tz (t €
Rso). The Euclidean cone over a metric space (cf. cone over metric
space in Chap.[l) is another example. Cf. also cone metric in Chap.Bl

A cone over a topological space (X,7) (the base of the cone) is the
quotient space (X x [0,1])/(X x {0}) obtained from the product X x [0, 1]
by collapsing the subspace X x {0} to a point v (the vertex of the cone).
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The tangent metric cone over a metric space (X, d) at a point xg is
(for all dilatations tX = (X,td)) the closure of U;~otX, i.e., of lim;
tX taken in the pointed Gromov-Hausdorff topology (cf. Gromov—
Hausdorff metric).

The asymptotic metric cone over (X,d) is its tangent metric cone
“at infinity,” i.e., Ny>otX = lim;_otX. Cf. boundary of metric space
in Chap.[d

e Metric fibration
Given a complete metric space (X, d), two subsets M; and My of X are
called equidistant if for each x € M there exists y € My with d(z,y) being
equal to the Hausdorff metric between the sets M; and M>. A metric
fibration of (X,d) is a partition F of X into isometric mutually equidis-
tant closed sets.

The quotient metric space X/F inherits a natural metric for which the
distance map is a submetry.

e Paradoxical metric space
Given a metric space (X,d) and an equivalence relation on the subsets
of X, the space (X,d) is called paradoxical metric space if X can be
decomposed into two disjoint sets My, My so that M;, My and X are
pairwise equivalent.

Deuber, Simonovitz and Sés (1995) introduced this idea for wobbling
equivalent subsets My, My C X, i.e., there is a bijective wobbling (a map-
ping f : My — M, with bounded sup, . x d(z, f(x))). For example,
(R2,1y) is paradoxical for wobbling equivalence but not for isometry
equivalence.

¢ Homeomorphic metric spaces
Two metric spaces (X,dx) and (Y,dy) are called homeomorphic
(or topologically isomorphic) if there exists a homeomorphism from X
to Y, i.e., a bijective function f : X — Y such that f and f~! are
continuous (the preimage of every open set in Y is open in X).

Two metric spaces (X, dx) and (Y, dy) are called uniformly isomorphic
if there exists a bijective function f : X — Y such that f and f~! are
uniformly continuous functions. (A function g is uniformly continuous if,
for any € >0, there exists d >0 such that, for any x,y € X, the inequal-
ity dx(x,y) < 0 implies that dy (g(x), f(y)) <e€; a continuous function is
uniformly continuous if X is compact.)

e Mobius mapping
Given a metric space (X, d) and quadruple (x,y, z, w) of its distinct points,
the cross-ratio is the positive number defined by

d(z, y)d(z,w)

cer((z,y, z,w),d) = m
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Given metric spaces (X, dx) and (Y, dy), a homeomorphism f: X —Y
is called a Mébius mapping if, for every quadruple (z,y, z, w) of distinct
points of X,

cr((m,y,z,w),dx) = cr((f(ac),f(y), f(Z),f(’w)),dy)

A homeomorphism f : X —Y is called a quasi-M&bius mapping
(Véaisdld 1984) if there exists a homeomorphism 7 : [0,00) — [0, 00) such
that, for every quadruple (z,y, z,w) of distinct points of X,

CT((f(JC), f(y)7 f(Z), f(w)),dy) < T(CT‘((Z‘,y, Z7w)’ dX))

Quasi-symmetric mapping
Given metric spaces (X, dx) and (Y,dy), a homeomorphism f: X —Y
is called a quasi-symmetric mapping (Tukia and Viisila 1980) if there
exists a homeomorphism 7 : [0,00) — [0,00) such that, for every triple
(z,y, z) of distinct points of X,

dy (f(2), F(y) _ _dx
dy (f(z), f(2)) = dx(

dx(z,y)
x,2)

Quasi-symmetric mappings are quasi-Mo6bius, and quasi-Moébius map-
pings between bounded metric spaces are quasi-symmetric. In the case
f:R" — R", quasi-symmetric mappings are exactly the same as quasi-
conformal mappings.

Conformal metric mapping
Given metric spaces (X,dx) and (Y,dy), which are domains in R", a

homeomorphism f: X — Y is called a conformal metric mapping

dy (f(=),f(y))

A(z,y) exists,

if, for any non-isolated point x € X, the limit lim,_.,
is finite and positive.

A homeomorphism f: X — Y is called a quasi-conformal mapping
(or, specifically, C-quasi-conformal mapping) if there exists a constant

C such that

. max{dy (f(z), f(y)) : dx(z,y) <7}
i sup T (@), F(y) - dx (zy) >} = C

for each x € X. The smallest such constant C' is called the conformal
dilation.

The conformal dimension of a metric space (X,d) (Pansu 1989) is
the infimum of Hausdorff dimension over all quasi-conformal mappings
of (X, d) into some metric space. For the middle-third Cantor set on [0, 1],
it is 0 but, for any of its quasi-conformal images, it is positive.
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e Holder mapping
Let ¢, & > 0 be constants. Given metric spaces (X, dx) and (Y, dy ), a func-
tion f: X — Y is called H6lder mapping (or a-Hélder mapping if the
constant « should be mentioned) if for all z,y € X

dy (f(z), f(y)) < cldx (2, 9))*.

A 1-Holder mapping is a Lipschitz mapping; 0-Holder mapping means
that the metric dy is bounded.
e Lipschitz mapping
Let ¢ be a positive constant. Given metric spaces (X,dx) and (Y, dy),
a function f : X — Y is called a Lipschitz mapping (or c-Lipschitz
mapping if the constant ¢ should be mentioned) if for all z,y € X

dy (f(z), f(y)) < cdx(z,y).

A c-Lipschitz mapping is called a short mapping if ¢ = 1, and is called
a contraction if ¢ < 1.
e Bi-Lipschitz mapping
Let ¢ > 1 be a positive constant. Given metric spaces (X, dx) and (Y, dy),
a function f : X — Y is called a bi-Lipschitz mapping (or c-bi-Lipschitz
mapping, c-embedding) if there exists a positive real number r such that,
for any z,y € X, we have the following inequalities:

rdx(z,y) < dy(f(x), f(y)) < erdx(z,y).

Every bi-Lipschitz mapping is a quasi-symmetric mapping.

The smallest ¢ for which f is a ¢-bi-Lipschitz mapping is called the dis-
tortion of f. Bourgain proved that every k-point metric space c-embeds
into a Euclidean space with distortion O(lnk). Gromov’s distortion for
curves is the maximum ratio of arclength to chord length.

Two metrics d; and do on X are called bi-Lipschitz equivalent met-
rics if there are positive constants ¢ and C such that edy (z,y) < da(z,y) <
Cdy(z,y) for all z,y € X, i.e., the identity mapping is a bi-Lipschitz
mapping from (X,d;) into (X,dy). Bi-Lipschitz equivalent metrics are
equivalent, i.e., generate the same topology but, for example, equiva-
lent L;-metric and Lo-metric (cf. Ly-metric in Chap.[) on R are not
bi-Lipschitz equivalent.

A bi-Lipschitz mapping f : X — Y is a c-isomorphism f : X — f(X).

e c-isomorphism of metric spaces
Given two metric spaces (X, dx) and (Y,dy), the Lipschitz norm ||.||zip
on the set of all injective mappings f : X — Y is defined by

Hf”Lip = sup M

z,yeX, x#y dX(xay)
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Two metric spaces X and Y are called c-isomorphic if there exists an
injective mapping f : X — Y such that || f||Lip||f || 2ip < c
Metric Ramsey number
For a given class M of metric spaces (usually, l,-spaces), an integer n > 1,
and a real number ¢ > 1, the metric Ramsey number (or c-metric
Ramsey number) Raq(c,n) is the largest integer m such that every n-point
metric space has a subspace of size m that c-embeds into a member of M
(see [BLMNOS]).

The Ramsey number R, is the minimal number of vertices of a com-
plete graph such that any coloring of the edges with n colors produces a
monochromatic triangle. The following metric analog of R, was consid-
ered in [Masc04]. Let D,, be the least number of points a finite metric
space must contain in order to contain an equilateral triangle, i.e., to have
equilateral metric dimension greater than 2.

Uniform metric mapping

Given metric spaces (X,dx) and (Y, dy), a function f : X — Y is called
a uniform metric mapping if there are two non-decreasing functions g;
and go from Rxg to itself with lim, .. g;(r) = oo for i = 1,2, such that
the inequality

g1(dx (,y)) < dy (f(2), f(y)) < g2(dx (z,y))

holds for all z,y € X.

A bi-Lipschitz mapping is a uniform metric mapping with linear func-
tions g; and go.
Metric compression
Given metric spaces (X,dx) (unbounded) and (Y,dy), a function
f: X —=Y is a large scale Lipschitz mapping if, for some ¢ > 0, D > 0 and
all z,y € X,

dy (f(z), f(y)) < edx(z,y) + D.

The compression of such a mapping f is ps(r) = infy (54>, dy (f(z),

f))-
The metric compression of (X,dx) in (Y,dy) is defined by

1 1
R(X,Y) = supflim, . 28mex{pr(). 1},
f log r

where supremum is over all large scale Lipschitz mappings f.

The main interesting case, when (Y, dy) is a Hilbert space and (X, dx)
is a (finitely generated discrete) group with word metric, was considered
by Guentner and Kaminker in 2004. Then R(X,Y) = 0 if there is no
uniform metric mapping from (X, dx) to (Y,dy) and R(X,Y) =1 for
free groups (even if there is no quasi-isometry). Arzhantzeva, Guba and
Sapir (2006) found groups with 2 < R(X,Y) < 2.
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e Quasi-isometry
Given metric spaces (X,dx) and (Y, dy), a function f : X — Y is called
a quasi-isometry (or (C, ¢)-quasi-isometry) if there exist real numbers
C > 1 and ¢ > 0 such that

C™ldx(z,y) — ¢ < dy (f(2), f(y)) < Cdx(z,y) +c,

and Y = Uzex By, (f(2), ¢), i.e., for every point y € Y, there exists a point
x € X such that dy (y, f(z)) < §. Quasi-isometry is an equivalence relation
on metric spaces; it is a bi-Lipschitz equivalence up to small distances.

A quasi-isometry with C' = 1 is called a coarse isometry (or rough
isometry, almost isometry, Hausdorff approximation).

Cf. quasi-Euclidean rank of a metric space.

e Coarse embedding
Given metric spaces (X,dx) and (Y,dy), a function f : X —Y is called
a coarse embedding if there exist non-decreasing functions pi,ps :
[0,00) — [0,00) such that py(dx(z,y)) < dy(f(2), f(y)) < p2(dx(z,y))
for all x,y € X, and lim;_, o p1(t) = +o00.

Metrics di and ds on X are called coarsely equivalent metrics if there
exist non-decreasing functions f, g : [0,00) — [0, 00) such that dy < f(ds2)
and dy < g(dy).

e Contraction
Given metric spaces (X,dx) and (Y,dy), a function f: X — Y is called
a contraction if the inequality

dy(f(]?), f(y>) < CdX(xay)

holds for all 2,y € X and some real number ¢, 0 < ¢ < 1.

Every contraction is a contractive mapping (but not necessarily the
other way around) and it is uniformly continuous. Banach Fized Point
Theorem (or Contraction Principle): every contraction from a complete
metric space into itself has a unique fixed point.

e Contractive mapping
Given metric spaces (X,dx) and (Y,dy), a function f : X — Y is called
a contractive mapping (or strictly short mapping) if, for all different
points z,y € X,
dy (f(@), F()) < dx (2, ).

Every contractive mapping from a compact metric space into itself has
a unique fixed point.

A function f : X — Y is called a non-contractive mapping (or
dominating mapping) if, for all different z,y € X,

dy (f(x), f(y)) = dx(z,y).

Every non-contractive bijection from a totally bounded metric space
onto itself is an isometry.
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Short mapping

Given metric spaces (X, dx) and (Y,dy ), a function f : X — Y is called a
short mapping (or I-Lipschitz mapping, non-expansive mapping, metric
mapping semi-contraction) if the inequality

dy (f(z), f(y)) < dx(z,y)

holds for all z,y € X.

A submetry is a short mapping such that the image of any metric ball
is a metric ball of the same radius.

The set of short mappings f : X — Y for bounded metric spaces (X, dx)
and (Y, dy) is a metric space under uniform metric sup{dy (f(z), g(z)) :
re X}

Two subsets A and B of a metric space (X, d) are called (Gowers 2000)
similar if there exist short mappings f: A — X, g: B — X and a small
€ > 0 such that every point of A is within € of some point of B, every point
of B is within e of some point of A, and |d(z, g(f(x))) — d(y, f(g(y)))| < e
for every z € A and y € B.

Category of metric spaces

A category U consists of a class ObW, whose elements are called objects of
the category, and a class MorWV, elements of which are called morphisms
of the category. These classes have to satisfy the following conditions:

1. To each ordered pair of objects A, B is associated a set H(A, B) of
morphisms.

2. Each morphism belongs to only one set H(A, B).

3. The composition f - ¢ of two morphisms f: A — B, g : C — D is
defined if B = C' in which case it belongs to H(A, D).

4. The composition of morphisms is associative.

5. Each set H(A, A) contains, as an identity, a morphism id4 such that
frida = fand idy-g = g for any morphisms f: X — Aandg: A — Y.

The category of metric spaces, denoted by Met (see [[sbe64]), is a
category which has metric spaces as objects and short mappings as mor-
phisms. A unique injective envelope exists in this category for every
one of its objects; it can be identified with its tight span. In Met,
the monomorphisms are injective short mappings, and isomorphisms are
isometries. Met is a subcategory of the category which has metric spaces
as objects and Lipschitz mappings as morphisms.

Injective metric space

A metric space (X, d) is called injective if, for every isometric embedding
f X — X' of (X,d) into another metric space (X’,d’), there exists a
short mapping f’ from X’ into X with f’- f =idy, i.e., X is a retract
of X’'. Equivalently, X is an absolute retract, i.e., a retract of every
metric space into which it embeds isometrically. A metric space (X, d) is
injective if and only if it is hyperconvex.
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Examples of injective metric spaces include [3-space, [ -space, any real

tree and the tight span of a metric space.

e Injective envelope

The notion of injective envelope (or metric envelope) is a generaliza-
tion of the notion of Cauchy completion. Given a metric space (X d)
it can be embedded isometrically into an injective metric space (X d)
given any such isometric embedding f : X — X, there exists a unique
smallest injective subspace (X, d) of (X, d) containing f(X) which is called
injective envelope of X. It is isometrically identified with the tight span
of (X,d).

A metric space coincides with its injective envelope if and only if it is

an injective metric space.

e Tight extension
An extension (X', d’) of a metric space (X, d) is called a tight extension
if, for every semi-metric d’ on X’ satisfying the conditions d”(z1,x3) =
d(xy,9) for all 21,29 € X, and d”(y1,y2) < d'(y1,y2) for any y1, 92 € X/,
one has d”(y1,y2) = d'(y1,y2) for all y1,y2 € X'.

The tight span is the universal tight extension of X, i.e., it contains, up
to canonical isometries, every tight extension of X, and it has no proper
tight extension itself.

e Tight span
Given a metric space (X,d) of finite diameter, consider the set RY =
{f : X — R}. The tight span T(X,d) of (X,d) is defined as the set
T(X,d) = {f € RN : f(z) = sup,cx(d(z,y) — f(y)) forall z € X},
endowed with the metric induced on T'(X,d) by the sup norm ||f|] =
sup,ex | ()]

The set X can be identified with the set {h, € T(X,d) : hy(y) = d(y,z)}
or, equivalently, with the set T°(X,d) = {f € T(X,d) : 0 € f(X)}. The
injective envelope (X, d) of X is isometrically identified with the tight
span T(X,d) by

X = T(X,d), T — hz € T(X,d) : hz(y) = d(f(y),Z).

The tight span T(X,d) of a finite metric space is the metric space
(T(X),D(f,g) = max|f(xz) — g(z)|), where T(X) is the set of functions
f:+ X — R such that for any x,y € X, f(x) + f(y) > d(z,y) and, for each
x € X, there exists y € X with f(z)+ f(y) = d(x,y). The mapping of any
x into the function f,(y) = d(z,y) gives an isometric embedding of (X, d)
into T'(X,d). For example, if X = {21, z2}, then T'(X,d) is the interval of
length d(z1,x2).

The tight span of a metric space (X,d) of finite diameter can be con-
sidered as a polytopal complex of bounded faces of the polyhedron

{yeREy 1y +y; > d(wy,my) for 1 <i<j<n}
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if, for example, X = {x1,...,2,}. The dimension of this complex is called
(Dress 1984) the combinatorial dimension of (X, d).
e Real tree

A metric space (X, d) is called (Tits 1977) areal tree (or R-tree) if, for all
x,y € X, there exists a unique arc from x to y, and this arc is a geodesic
segment. So, an R-tree is a (uniquely) arcwise connected metric space in
which each arc is isometric to a subarc of R. A real tree is also called a
metric tree, not to be confused with a metric tree in Data Analysis (cf.
Chap.[I7).

A metric space (X, d) is a real tree if and only if it is path-connected
and Gromov O-hyperbolic (i.e., satisfies the four-point inequality).

Real trees are exactly tree-like metric spaces which are geodesic; they
are injective metric spaces among tree-like spaces. Tree-like metric spaces
are by definition metric subspaces of real trees.

If (X, d) is a finite metric space, then the tight span T(X,d) is a real
tree and can be viewed as an edge-weighted graph-theoretical tree.

A metric space is a complete real tree if and only if it is hyperconvex
and any two points are joined by a metric segment.

The plane R? with the Paris metric or lift metric (cf. Chap.[[J) are
examples of R-tree.

1.5 General distances

e Discrete metric
Given a set X, the discrete metric (or trivial metric, sorting dis-
tance) is a metric on X, defined by d(z,y) = 1 for all distinct z,y € X
and d(z,z) = 0. Cf. the more general notion of a (metrically or topologi-
cally) discrete metric space.

e Indiscrete semi-metric
Given a set X, the indiscrete semi-metric d is a semi-metric on X,
defined by d(z,y) = 0 for all z,y € X.

e Equidistant metric
Given a set X and a positive real number ¢, the equidistant metric d
is a metric on X, defined by d(x,y) = ¢t for all distinct =,y € X (and
d(z,z) =0).

e (1,2) — B-metric
Given a set X, the (1,2) — B-metric d is a metric on X such that, for any
x € X, the number of points y € X with d(z,y) = 1 is at most B, and all
other distances are equal to 2. The (1,2) — B-metric is the truncated
metric of a graph with maximal vertex degree B.
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e Permutation metric
Given a finite set X, a metric d on it is called a permutation met-
ric (or linear arrangement metric) if there exists a bijection w : X —
{1,...,|X]|} such that for all x,y € X

d(z,y) = |w(z) — w(y)].

Given an integer n > 1, the line metric on {1,...,n} is defined by
| —y| for any 1 < 2,y < n. Even, Naor, Rao and Schieber (2000) defined
more general spreading metric, i.e., any metric d on {1,...,n} such that

dyen Az, y) = W forany 1 <z <nand M C {1,...,n}\ {z}
with |M| > 2.

e Induced metric
Given a metric space (X,d) and a subset X’ C X, an induced metric
is the restriction d’ of d to X’. A metric space (X’,d’) is called a met-
ric subspace of (X,d), and the metric space (X,d) is called a metric
extension of (X', d).

¢ Katétov mapping
Given a metric space (X, d), the mapping f: X — R is a Katétov map-
ping if

|f(z) = f(y)| < d(z,y) < fz) + f(y)

for any z,y € X, i.e., setting d(z,z) = f(x) defines a one-point metric
extension (X U {z},d) of (X,d).

The set E(X) of Katétov mappings on X endowed with distance
D(f,g) =sup,cx |f(z) — g(z)| is a complete metric space; (X, d) embeds
isometrically in it via the Kuratowski mapping x — d(z,.), with unique
extension of each isometry of X to one of E(X).

e Dominating metric
Given metrics d and dy on a set X, d; dominates d if dy (z, y) > d(x,y) for
all z,y € X. Cf. non-contractive mapping (or dominating mapping).
e Metric transform
A metric transform is a distance obtained as a function of a given metric
(cf. Chap.H).
e Complete metric
Given a metric space (X,d), a sequence {x,}, z, € X, is said to have
convergence to z* € X if lim,, o d(x,,z*) = 0, i.e., for any € > 0, there
exists ng € N such that d(z,,z*) < € for any n > ng.

A sequence {x,, }n, 2, € X, is called a Cauchy sequence if, for any e > 0,
there exists ng € N such that d(z,, 2, ) < € for any m,n > ng.

A metric space (X,d) is called a complete metric space if every
Cauchy sequence in it converges. In this case the metric d is called a com-

plete metric. An example of incomplete metric space is (N, d(m,n) =
[m—n| )
mn
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Cauchy completion

Given a metric space (X,d), its Cauchy completion is a metric space
(X*,d*) on the set X* of all equivalence classes of Cauchy sequences, where
the sequence {x,}, is called equivalent to {yy, }n if lim, 0o d(2y,y,) = 0.
The metric d* is defined by

d*(2",y") = lim d(zn,yn)

for any z*,y* € X*, where {x,}, (respectively, {y,},) is any element in
the equivalence class «* (respectively, y*).

The Cauchy completion (X*,d*) is a unique, up to isometry, complete
metric space, into which the metric space (X, d) embeds as a dense metric
subspace.

The Cauchy completion of the metric space (Q,|z — y|) of rational
numbers is the real line (R,|z — y[). A Banach space is the Cauchy
completion of a normed vector space (V,|.||) with the norm metric
||z —yl||. A Hilbert space corresponds to the case an inner product norm
|||l = v/{z, z).

Perfect metric space
A complete metric space (X, d) is called perfect if every point z € X is a
limit point, i.e., |B(z,r) ={y € X : d(x,y) < r}| > 1 holds for any r > 0.

Every non-empty perfect totally disconnected compact metric space
is homeomorphic to the Cantor set with the natural metric |z —y|. The
totally disconnected countable metric space (Q, |z—yl|) of rational numbers
also consists only of limit points but it is not complete and not locally
compact.

Every proper metric ball of radius r in a metric space has diameter
at most 2r. Given a number 0 < ¢ < 1, a metric space is called a c-
uniformly perfect metric space if this diameter is at least 2cr. Cf.
radius of metric space.

Metrically discrete metric space

A metric space (X, d) is called metrically discrete (or uniformly discrete)
if there exists a number r > 0 such that B(z,r) = {y € X : d(z,y) <r} =
{z} for every x € X.

(X,d) is a topologically discrete metric space (or a discrete met-
ric space) if the underlying topological space is discrete, i.e., each point
x € X is an isolated point: there exists a number r(z) > 0 such that
B(z,r(z)) = {z}. For X = {2 : n = 1,2,3,...}, the metric space
(X, |z — y|) is topologically but not metrically discrete. Cf. translation
discrete metric in Chap.[I0

Alternatively, a metric space (X, d) is called discrete if any of the fol-
lowing holds:

1. (Burdyuk and Burdyuk 1991) it has a proper isolated subset, i.e.,
M C X with inf{d(x,y):x € M,y ¢ M} > 0 (any such space admits a
unique decomposition into continuous, i.e., non-discrete, components).
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2. (Lebedeva, Sergienko and Soltan 1984) for any two distinct points z,y €
X, there exists a point z of the closed metric interval I(z,y) with
I(x,2) ={x, z}.

3. a stronger property holds: for any two distinct points z,y € X, every
sequence of points z1, 22, ... with z; € I(x,y) but zp+1 € I(z, z1) \ {2k}
for Kk =1,2,... is a finite sequence.

¢ Bounded metric space
A metric (moreover, a distance) d on a set X is called bounded if there
exists a constant C' > 0 such that d(z,y) < C for any z,y € X.

For example, given a metric d on X, the metric D on X, defined by
D(z,y) = 115;2’;”)1/), is bounded with C' = 1.

A metric space (X,d) with a bounded metric d is called a bounded
metric space.

e Totally bounded metric space
A metric space (X,d) is called totally bounded if, for every ¢ > 0,
there exists a finite e-net, i.e., a finite subset M C X with the point-set
distance d(z, M) < e for any = € X (cf. totally bounded space in
Chap.[2).

Every totally bounded metric space is bounded and separable.

A metric space is totally bounded if and only if its Cauchy completion
is a compact metric space.

e Separable metric space
A metric space is called separable if it contains a countable dense subset,
i.e., some countable subset with which all its elements can be approached.

A metric space is separable if and only if it is second-countable, and

if and only if it is Lindelo6f.

e Metric compactum
A metric compactum (or compact metric space) is a metric space in
which every sequence has a Cauchy subsequence, and those subsequences
are convergent. A metric space is compact if and only if it is totally
bounded and complete.

Every bounded and closed subset of a Euclidean space is compact. Every
finite metric space is compact. Every compact metric space is second-
countable.

e Proper metric space
A metric space is called proper (or finitely compact, or having the
Heine-Borel property) if every closed metric ball in it is compact. Every
proper metric space is complete.

e UC metric space
A metric space is called a UC metric space (or Atsuji space) if any
continuous function from it into an arbitrary metric space is uniformly
continuous.

Every metric compactum is a UC metric space. Every UC metric
space is complete.
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e Polish space
A Polish space is a complete separable metric space. A metric space
is called a Souslin space if it is a continuous image of a Polish space.

A metric triple (or mm-space) is a Polish space (X, d) with a Borel
probability measure pu, i.e., a non-negative real function g on the Borel
sigma-algebra F of X with the following properties: (@) = 0, u(X) =1,
and pu(UnAy) =, (Ay) for any finite or countable collection of pairwise
disjoint sets A,, € F.

Given a topological space (X, 7), a sigma-algebra on X is a collection
F of subsets of X with the following properties: ) € F, X\U € F for
U € F,and U, A, € F for a finite or countable collection {A,,},, 4, € F.

The sigma-algebra on X which is related to the topology of X, i.e.,
consists of all open and closed sets of X, is called a Borel sigma-algebra
of X. Any metric space is a Borel space, i.e., a set equipped with a Borel
sigma-algebra.

e Norm metric
Given a normed vector space (V,]].||), the norm metric on V' is defined by

Iz —yll.

The metric space (V, ||z — y||) is called a Banach space if it is com-
plete. Examples of norm metrics are [,- and L,-metrics, in particular,
the Euclidean metric.

Any metric space (X, d) admits an isometric embedding into a Banach
space B such that its convex hull is dense in B (cf. Monge—Kantorovich
metric); (X,d) is a linearly rigid metric space if such embedding is
unique up to isometry.

e Path metric
Given a connected graph G = (V, E), its path metric (or graphic met-
ric) dpatn is a metric on V, defined as the length (i.e., the number of
edges) of a shortest path connecting two given vertices « and y from V
(cf. Chap.[IH).

e Editing metric
Given a finite set X and a finite set O of (unary) editing operations on
X, the editing metric on X is the path metric of the graph with the
vertex-set X and xy being an edge if y can be obtained from x by one of
the operations from O.

e Gallery metric
A chamber system is a set X (whose elements are referred to as chambers)
equipped with n equivalence relations ~;, 1 < i < n. A gallery is a se-
quence of chambers z1,...,2,, such that x; ~; 2,11 for every i and some
j depending on 1.

The gallery metric is an extended metric on X which is the length
of the shortest gallery connecting 2 and y € X (and is equal to oo if there is
no connecting gallery). The gallery metric is the (extended) path metric
of the graph with the vertex-set X and xy being an edge if x ~; y for some
1<i<n.



1.5 General distances 45

e Riemannian metric
Given a connected n-dimensional smooth manifold M™, its Riemannian
metric is a collection of positive-definite symmetric bilinear forms ((g;;))
on the tangent spaces of M"™ which varies smoothly from point to point.

The length of a curve v on M™ is expressed as f7 N> ; 9ijdz;dz;, and

the intrinsic metric on M™, sometimes also called the Riemannian
distance, is the infimum of lengths of curves connecting any two given
points x,y € M™. Cf. Chap.[l

e Linearly additive metric
A linearly additive metric (or projective metric) d is a continuous metric
on R™ which satisfies the condition

d(x, 2) = d(z,y) + d(y, z)

for any collinear points x,y, z lying in that order on a common line. The
Hilbert fourth problem asked in 1900 to classify such metrics; it is solved
only for dimension n = 2 [AmbaT76]. Cf. Chap.[d
Every norm metric on R” is linearly additive. Every linearly additive

metric on R? is a hypermetric.

e Product metric
Given a finite or countable number n of metric spaces (X1, d1), (X2, ds),
..o, (Xn,dy), the product metric is a metric on the Cartesian product
XixXogx - xX, ={z = (x1,29,...,2p) : 1 € X1,...,2, € X, },
defined as a function of dy, ..., d, (cf. Chap.H).

¢ Hamming metric
The Hamming metric dy is a metric on R”, defined (Hamming 1950) by

On binary vectors z,y € {0,1}" the Hamming metric and the I;-metric
(cf. L,-metric in Chap.B) coincide; they are equal to |I(z)AI(y)| =
[T(2)\I(v)] + [T(y)\I(x)|, where I(z) = {1 < i < n:z = 1}. In fact,
max{|I(x)\I(y)l],|I(y)\I(z)|} is also a metric.

e Lee metric
Given m,n € N, m > 2, the Lee metric dr.. is a metric on Z], =
{0,1,...,m —1}", defined (Lee 1958) by

Z min{|x; — yil, m — |z; — yil}.

1<i<n

The metric space (Z7,dre.) is a discrete analog of the elliptic space.

The Lee metric coincides with the Hamming metric dg if m = 2 or
m = 3. The metric spaces (Z},dLc.) and Z3",dy) are isometric. The Lee
metric is applied for phase modulation while the Hamming metric is used
in case of orthogonal modulation.
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Cf. absolute summation distance and generalized Lee metric in
Chap.[I6
Symmetric difference metric
Given a measure space (9, A, p), the symmetric difference semi-
metric (or measure semi-metric) da is a semi-metric on the set
A, ={A e A: u(A) < oo}, defined by

HAAB),

where AAB = (AU B)\(AN B) is the symmetric difference of the sets A
and B € A,.

The value da (A, B) = 0 if and only if u(AAB) =0, i.e., A and B are
equal almost everywhere. Identifying two sets A, B € A, if uy(AAB) =0,
we obtain the symmetric difference metric (or Fréchet—Nikodym—
Aronszyan distance, measure metric).

If p is the cardinality measure, i.e., u(A) = | Al is the number of elements
in A, then da (A, B) = |AAB. In this case |[AAB| =0 if and only if A =
B. The Johnson distance between k-sets A and B is @ =k—|ANB].

The symmetric difference metric between ordered q-partitions A =
(A1,...,Ay) and B = (By,...,B,) of a finite set is >.¢ | |A;,AB;|. Cf.
metrics between partitions in Chap.[I0
Enomoto—Katona metric
Given a finite set X and an integer k, 2k < |X|, the Enomoto—Katona
metric is the distance between unordered pairs (X7, X2) and (Y1, Y2) of
disjoint k-subsets of X, defined by

min{[ Xy \ V1] + [ X2\ Yo, [ X1\ Yo| + [ X2 \ Y1}

Steinhaus distance
Given a measure space (€2, A, 1), the Steinhaus distance dg; is a semi-
metric on the set A, = {A € A: p(A) < oo}, defined by

WAAB) - u(ANB)

WAUB) ~ pu(AUB)

if £n(AUB) > 0 (and is equal to 0 if u(A) = u(B) = 0). It becomes a metric
on the set of equivalence classes of elements from A, ; here A, B € A,, are
called equivalent if p(AAB) = 0.

The biotope distance (or Tanimoto distance, Marczewski—
|AAB]
[AUD]
obtained for the cardinality measure pu(A) = |A| for finite sets (cf. also

generalized biotope transform metric in Chap.H]).

Steinhaus distance) is the special case of Steinhaus distance



1.5 General distances 47

e Point-set distance
Given a metric space (X,d), the point-set distance d(x, A) between a
point x € X and a subset A of X is defined as

inf .
[nf, d(z,y)

For any z,y € X and for any non-empty subset A of X, we have the
following version of the triangle inequality: d(z, A) < d(z,y) + d(y, A) (ct.
distance map).

For a given point-measure p(x) on X and a penalty function p, an op-
timal quantizer is a set B C X such that [ p(d(z, B))du(x) is as small
as possible.

e Set-set distance
Given a metric space (X, d), the set-set distance between two subsets A
and B of X is defined by

inf  d(z,y).
mEE}yEB ((E y)

This distance can be 0 even for disjoint sets, for example, for the intervals
(1,2), (2,3) on R. The sets A and B are positively separated if their set-set
distance is positive.

In Data Analysis, the set-set distance between clusters is called the
single linkage, while sup, ¢ 4 ,c d(z,y) is called the complete linkage.

e Matching distance
Given a metric space (X, d), the matching distance (or multiset-multiset
distance) between two multisets A and B in X is defined by

inf max d(z, ¢(z)),

¢ x€

where ¢ runs over all bijections between A and B, as multisets. Cf. metrics
between multisets.

The matching distance in d’Amico, Frosini and Landi (2006) is, roughly,
the case when d is the L..-metric on cornerpoints of the size functions
f{(z,y) eR*:z <y} - N.

The matching distance is not related to the perfect matching dis-
tance in Chap.[[Hnor to the non-linear elastic matching distance in
Chap.211

e Hausdorff metric
Given a metric space (X,d), the Hausdorff metric (or two-sided
Hausdorff distance) dpqays 18 a metric on the family F of all compact
subsets of X, defined by

max{ddHaus (Aa B)7 ddHaus (Bv A)}v
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where dgpqus (A, B) = max,ec 4 minge g d(x, y) is the directed Hausdorff
distance (or one-sided Hausdorff distance) from A to B. In other words,
dHaus (A, B) is the minimal number e (called also the Blaschke dis-
tance) such that closed e-neighborhood of A contains B and a closed
e-neighborhood of B contains A. Then dgqys(A, B) is equal to

sup |d(z, A) — d(z, B)|,
rzeX

where d(z, A) = minye 4 d(z,y) is the point-set distance. The Hausdorff
metric is not a norm metric.

If the above definition is extended for non-compact closed subsets A and
B of X, then dgaus(A, B) can be infinite, i.e., it becomes an extended
metric.

For not necessarily closed subsets A and B of X, the Hausdorff semi-
metric between them is defined as the Hausdorff metric between their
closures. If X is finite, dgq.s is @ metric on the class of all subsets of X.
L,-Hausdorff distance
Given a finite metric space (X, d), the L,-Hausdorff distance [Badd92]
between two subsets A and B of X is defined by

(O~ Jd(x, A) — d(z, B)|?)7,

zeX

where d(z, A) is the point-set distance. The usual Hausdorff metric
corresponds to the case p = oco.

Generalized G-Hausdorff metric

Given a group (G, -, e) acting on a metric space (X,d), the generalized
G-Hausdorff metric between two closed bounded subsets A and B of
X is defined by

i aus A b) B b)
glfrgl;ngH (91(A), g2(B))

where dpyqus is the Hausdorff metric. If d(g(z),g(y)) = d(z,y) for any
g € G (i.e., if the metric d is left-invariant with respect of G), then above
metric is equal to mingeg dygus(4, g(B)).

Gromov—Hausdorff metric

The Gromov—Hausdorff metric is a metric on the set of all isometry
classes of compact metric spaces, defined by

inf dHaus(f(X)a g(Y))

for any two classes X* and Y* with the representatives X and Y, respec-
tively, where dpqys is the Hausdorff metric, and the minimum is taken
over all metric spaces M and all isometric embeddings f : X =M, g:Y —
M. The corresponding metric space is called the Gromov-Hausdorff space.
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The Hausdorff—Lipschitz distance between isometry classes of
compact metric spaces X and Y is defined by

inf{dep (X, X1)+dp(X1,Y1) +deu (Y, Y1)},

where dgpy is the Gromov—Hausdorff metric, dy, is the Lipschitz metric,
and the minimum is taken over all (isometry classes of compact) metric
spaces X1, Y7.
e Fréchet metric
Let (X,d) be a metric space. Consider a set F of all continuous map-
pings f: A — X, g: B — X, ..., where A, B,... are subsets of R",
homeomorphic to [0, 1]™ for a fixed dimension n € N.
The Fréchet semi-metric dp is a semi-metric on F, defined by

igf ilelg d(f(z),g(o(x))),

where the infimum is taken over all orientation preserving homeomor-
phisms ¢ : A— B. It becomes the Fréchet metric on the set of
equivalence classes f* = {g : dr(g,f) = 0}. Cf. the Fréchet surface
metric in Chap.’l
¢ Banach—Mazur distance
The Banach—Mazur distance dp); between two Banach spaces V' and
W is
inf ||7] - |71,

where the infimum is taken over all isomorphisms 7 : V — W.

It can also be written as Ind(V,W), where the number d(V,W) is
the smallest positive d > 1 such that By, C T(By,) C d By, for some lin-
ear invertible transformation T': V — W. Here By, = {z € V : ||z||y < 1}
and By, = {z € W;||z||lw < 1} are the unit balls of the normed spaces
(V. LIy and (W, |[[w), respectively.

One has dpp (V, W) = 0 if and only if V and W are isometric, and dppy
becomes a metric on the set X" of all equivalence classes of n-dimensional
normed spaces, where V' ~ W if they are isometric. The pair (X™,dgp) is
a compact metric space which is called the Banach—Mazur compactum.

The Gluskin—Khrabrov distance (or modified Banach-Mazur dis-
tance) is defined by

inf{||T||x—y : |detT| = 1} - inf{||T||y —x : |detT| = 1}.

Tomczak—Jaegermann distance (or weak Banach—Mazur distance)
is defined by

max{7y (idx),Vx (idy)},
where id is the identity map and, for an operator U : X — Y, 7,(U) de-
notes inf > ||Wg]|||Vk||- Here the infimum is taken over all representations
U=> W,V for Wy, : X — Z and V}, : Z — Y. This distance never
exceeds the corresponding Banach—Mazur distance.
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e Kadets distance
The gap (or opening) between two closed subspaces X and Y of a Banach
space (V,||.|]) is defined by

gap(X,Y) = max{d(X,Y),0(Y, X)},

where 6(X,Y) = sup{inf ey ||z —y|| : € X, ||z|| = 1} (cf. gap distance
in Chap.[[2] and gap metric in Chap.[Ig]).

The Kadets distance between two Banach spaces V and W is a
semi-metric, defined (Kadets 1975) by

inf B B
Zlf}ﬂggap( F(v)s Bgowy),

where the infimum is taken over all Banach spaces Z and all linear iso-
metric embeddings f:V — Z and g : W — Z; here By and By are
the unit metric balls of Banach spaces f(V) and g(W), respectively.

The non-linear analogue of the Kadets distance is the following
Gromov—Hausdorff distance between Banach spaces U and W:

Zlf}”f,.q dHaus(f<BV)>g(BW))’

where the infimum is taken over all metric spaces Z and all isometric em-

beddings f : V — Zand g : W — Z; here dp 45 is the Hausdorff metric.
The Kadets path distance between Banach spaces V and W is de-

fined (Ostrovskii 2000) as the infimum of the length (with respect to the

Kadets distance) of all curves joining V and W (and is equal to oo if there

is no such curve).

e Lipschitz distance
Given « > 0 and two metric spaces (X,dx), (Y,dy), the a-Hdlder norm
[||| o1 on the set of all injective functions f: X — Y is defined by

Ul = sup UEIG)

z,yeX,x#y dX (x7y)a

The Lipschitz norm ||.||Lip is the case a =1 of ||.||gor-
The Lipschitz distance between metric spaces (X, dx) and (Y, dy) is
defined by

lnir}f N zip - 11F " ips

where the infimum is taken over all bijective functions f:X — Y. Equiva-
lently, it is the infimum of numbers In a such that there exists a bijective
bi-Lipschitz mapping between (X,dx) and (Y,dy) with constants
exp(—a), exp(a).
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It becomes a metric — Lipschitz metric — on the set of all isometry
classes of compact metric spaces. Cf. Hausdorff-Lipschitz distance.

This distance is an analog to the Banach—Mazur distance and, in
the case of finite-dimensional real Banach spaces, coincides with it.

It coincides also with the Hilbert projective metric on non-negative
projective spaces, obtained by starting with R?; and identifying any point
x with cz, ¢ > 0.

e Lipschitz distance between measures

Given a compact metric space (X, d), the Lipschitz semi-norm ||.||Lip on
the set of all functions f:X —R is defined by [|f|[Lip = SUP, yex o2y

\f(zsz)(y)l_
.y
The Lipschitz distance between measures p and v on X is de-

fined by
swp_ [ pa(u—).
fllLip<1

If © and v are probability measures, then it is the Kantorovich—
Mallows—Monge—Wasserstein metric.

An analog of the Lipschitz distance between measures for the state
space of unital C*-algebra is the Connes metric.

e Barycentric metric space

Given a metric space (X,d), let (B(X),||u — v||Tv) be the metric space,
where B(X) is the set of all regular Borel probability measures on X
with bounded support, and || — v||7v is the total variation norm dis-

tance [y [p(n) — p(v)|dA. Here p(p) and p(v) are the density functions of
ptv
5

measures p and v, respectively, with respect to the o-finite measure
A metric space (X, d) is barycentric if there exist a constant 5 > 0
and a surjection f : B(X) — X such that the inequality

d(f(w), f(v)) < Bdiam(supp(p+v))|lp — vilrv

holds for any measures p,v € B(X).

Any Banach space (X,d = ||z — y||) is a barycentric metric space with
the smallest 5 being 1 and the map f(u) being the usual center of mass
Jx zdp(x).

Any Hadamard space (i.e., a complete CAT(0) space, cf. Chap.[d)
is barycentric with the smallest ( being 1 and the map f(u) being the
unique minimizer of the function g(y) = [ d ~ @*(z,y)du(z) on X.

e Metrics between multisets
A multiset (or bag) on a set S is a mapping m : S — Z>¢, where m(x)
represents the “multiplicity” of x € S. Multisets are good models for
multi-attribute objects as, say, all symbols in a string, all words in a
document, criminal records, etc.

A multiset m is finite if S and all m(x) are finite; the complement
of a finite multiset m is the multiset @ : S — Zso, where m(z) =
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max,ecs m(y) —m(x). Given two multisets mq and mg, denote by m; Uma,
my N mg, mi\mo and miAmsy the multisets on S, defined, for any
z €S, by mi Uma(x)= max{mi(z),ma(z)}, mi Nma(z) = min{mq(x),
ma(x)}, mi\ma(x) = max{0,mi(x) — mo(z)} and miAms(z) =
|my (x) —ma(z)|, respectively. Also, my C my denotes that mq (z) < ma(x)
forall z € S.

The measure p(m) of a multiset m may be defined, for instance, as a
linear combination pu(m) = > ¢ AMx)m(z) with A(z) > 0. In particular,
the number |m| of elements in the multiset m, ) ¢ m(x), is its counting
measure.

For any measure p(m) € Rxg, Petrovsky (2003) proposed several met-
rics between multisets m; and mq including dq (mq,m2) = p(miAms)
and da(mq,mg) = % (with dy(0,0) = 0 by definition). Cf. sym-
metric difference metric and Steinhaus distance.

Among examples of other metrics between multisets are matching
distance in Chap.[I] metric space of roots in Chap.I2] pu-metric in
Chap.[IH and, in Chap.[dl bag distance max{|m\mal,|m2\m1|} and
g-gram similarity.

Metrics between fuzzy sets

A fuzzy subset of a set S is a mapping u : S — [0, 1], where u(x) represents
the “degree of membership” of x € S. It is an ordinary (crisp) if all u(x)
are 0 or 1. Fuzzy sets are good models for gray scale images (cf. gray
scale images distances in Chap.21]), random objects and objects with
non-sharp boundaries.

Bhutani and Rosenfeld (2003) introduced the following two metrics be-
tween two fuzzy subsets p and v of a finite set S. The diff-dissimilarity
is a metric (a fuzzy generalization of Hamming metric), defined by

d(p,v) =Y |p(e) = v(z)|.
€S

The perm-dissimilarity is a semi-metric, defined by

min{d(y, p(v))},

where the minimum is taken over all permutations p of S.

The Chaudhuri-Rosenfeld metric (1996) between two fuzzy sets
p and v with crisp points (i.e., the sets {x € S : u(x) = 1} and
{z € S:v(z) =1} are non-empty) is an extended metric, defined by

/1 2tdgaus({x € S : p(z) > t},{x € S : v(z) > t})dt,
0

where dp 4. is the Hausdorff metric.

A fuzzy number is a fuzzy subset p of the real line R such that the level
set {x € R : p(x) > t} is convex for every ¢ € [0,1]. The sendograph of a
fuzzy set p is the set
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send(u) = {(z,£) € § x [0,1] : pu(2) > 0, () > t}.

The sendograph metric (Kloeden 1980) between two fuzzy numbers p,
v with crisp points and compact sendographs is the Hausdorff metric

max{ sup d(a, send(v)), sup d(b, send(1))},
a=(z,t)€send () b=(z’,t')Esend(v)

where d(a,b) = d((z,t), (2/,t")) is a box metric (cf. Chap.l) max{|z —
a'l, |t =]}

The t-cut of a fuzzy set p is the set A, (t) = {z € S : p(z) > t}.

The Klement—Puri-Ralesku metric (1988) between two fuzzy
numbers p, v is

/1 Aaus(Au(t), A, (1))dt,
0

where dpqus(A,(t), Au(t)) is the Hausdorff metric

max{ sup inf |z—y|l, sup inf |z —y|}.
{xeAm) yeAu@)' | xeADa)meAM(w' 1}

Several other Hausdorff-like metrics on some families of fuzzy sets were
proposed by Boxer in 1997, Fan in 1998 and Brass in 2002; Brass also
argued the non-existence of a “good” such metric.

If ¢ is a quasi-metric on [0,1] and S is a finite set, then Q(u,v) =
sup,eg ¢(u(x), v(x)) is a quasi-metric on fuzzy subsets of S.

Cf. fuzzy Hamming distance in Chap.[ITland, in Chap.23] fuzzy set
distance and fuzzy polynucleotide metric. Cf. fuzzy metric spaces
in Chap.[3 for fuzzy-valued generalizations of metrics and, for example,
[Bloc99] for a survey.

e Metrics between intuitionistic fuzzy sets
An intuitionistic fuzzy subset of a set S is (Atanassov 1999) an ordered pair
of mappings p,v :— [0,1] with 0 < pu(z) + v(x) <1 for all z € S, repre-
senting the “degree of membership” and the “degree of non-membership”
of z € S, respectively. It is an ordinary fuzzy subset if u(x) +v(z) =1 for
all z € S.

Given two intuitionistic fuzzy subsets (u(x),v(x)) and (¢/(x), ' (x)) of
a finite set S = {x1,...,z,}, their Atanassov distances (1999) are:

% Z(Lu(a:z) — w' ()] + |v(z;) — V' (2;)]) (Hamming distance) and

DN =

Z((,u(ml) — ' (x:))? + (v(z;) — V' (x;)?) (Euclidean distance).
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Their Grzegorzewski distances (2004) are:

Z max{|u(z;) — p'(x;)], |v(x;) — v/ (2;)|} (Hamming distance) and
i=1

Z max{(u(x;) — p'(z:))?, (v(z;) — V' (2;))?} (Euclidean distance).

The normalized versions — dividing the above four sums by n — were
proposed also.

Szmidt and Kacprzyk (1997) proposed modification of the above, adding
m(x) — 7' (x), where 7(z) is the third mapping 1 — p(z) — v(x).

An interval-valued fuzzy subset of a set S is a mapping p :— [I], where
[1] is the set of closed intervals [a~,a™] C [0,1]. Let p(z) = [u~ (z), u™ (x)],
where 0 < p~(z) < pt(z) < 1 and an interval-valued fuzzy subset is an
ordered pair of mappings u~ and p*. This notion is very close to the
above intuitionistic one; so, the above distance can easily be adapted. For
example, 1, max{ i~ (2:) — '~ ()], |pr+ () — p* (1)} is & Hamming
distance between interval-valued fuzzy subsets (u=, u+) and (', /™).
Compact quantum metric space
Let V be a normed space (or, more generally, a locally convex topological
vector space, and let V’ be its continuous dual space, i.e., the set of
all continuous linear functionals f on V. The weak* topology (or Gelfand
topology) on V' is defined as the weakest (i.e., with the fewest open sets)
topology on V' such that, for every z € V, the map F, : V' — R defined
by F.(f) = f(x) for all f € V', remains continuous.

An order-unit space is a partially ordered real (complex) vector space
(A, <) with a distinguished element e, called an order unit, which satisfies
the following properties:

1. For any a € A, there exists r € R with a < re.
2. If a € A and a < re for all positive r € R, then a < 0 (Archimedean

property).

The main example of an order-unit space is the vector space of all self-
adjoint elements in a unital C*-algebra with the identity element being
the order unit. Here a C*-algebra is a Banach algebra over C equipped
with a special involution. It is called wunital if it has a unit (multiplica-
tive identity element); such C*-algebras are also called, roughly, compact
non-commutative topological spaces.

The typical example of a unital C*-algebra is the complex algebra of
linear operators on a complex Hilbert space which is topologically closed
in the norm topology of operators, and is closed under the operation of
taking adjoints of operators.
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The state space of an order-unit space (A, =<,e) is the set S(A4) =
{f € Al - ||f|| = 1} of states, i.e., continuous linear functionals f with
IfIl = fle) =1.

Rieffel’s compact quantum metric space is a pair (4, ||.||1ip), Where
(A, <, e) is an order-unit space, and ||.||p is a semi-norm on A (with val-
ues in [0, +00]), called Lipschitz semi-norm, which satisfies the following
conditions:

1. For a € A, ||al|Lip = 0 holds if and only if a € Re.
2. The metric dr;,(f,9) = SUP4e ay|jal|,, <1 |/(@) — g(a)| generates on the
state space S(A) its weak* topology.

So, one has a usual metric space (S(A),drip). If the order-unit space
(A, =,e) is a C*-algebra, then dj,, is the Connes metric, and if, more-
over, the C*-algebra is non-commutative, the metric space (S(A),dr;p) is
called a non-commutative metric space.

The expression quantum metric space comes from the belief, by many
experts in Quantum Gravity and String Theory, that the Planck-scale ge-
ometry of space—time is similar to one coming from such non-commutative
C*-algebras.

For example, Non-commutative Field Theory supposes that, on suffi-
ciently small (quantum) distances, the spatial coordinates do not commute,
i.e., it is impossible to measure exactly the position of a particle with re-
spect to more than one axis.

e Dynamical system
A (deterministic) dynamical system is a tuple (T, X, f) consisting of
a metric space (X,d), called the phase space, a time set T C R, and a
continuous function f : T x X — X, called the evolution law. The system
is discrete (or cascade) if T = {0,1,2...}; it is continuous (or real, flow)
if T is an open interval in R.

The dynamical systems are studied in Control Theory in the context of
stability of systems; Chaos Theory considers the systems with maximal
possible instability.

A discrete dynamical system is defined by a self-map f:X — X. For
any © € X, its orbit (or trajectory) is the sequence {f™(z)},; here
f(x) = f(f*1(x)) with fO(z) = 2. The orbit of x € X is called periodic
if f™(x) = x for some n > 0.

A pair (z,y) € X x X is called prozimal if lim,,_, d(f™(z), f"(y)) =0
and distal otherwise. The system is called distal if any pair (x, y) of distinct
points is distal.

The dynamical system is called ezpansive if there exists a constant
D > 0 such that the inequality d(f™(x), f™(y)) > D holds for any distinct
x,y € X and some n.

An attractor is a closed subset A of X such that there exists an open
neighborhood U of A with the property that lim,, . d(f™(b), A) = 0 for
every b € U, i.e., A attracts all nearby orbits. Here d(x, A) = infyca d(z,y)
is the point-set distance.
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If for large n and small r there exists a number « such that

{G,5) d(f'(@), f/(x)) Sm1<ij<n}| .

-
n? ’

C(X,n,r) =

then « is called (Grassberger, Hentschel and Procaccia 1983) the correla-
tion dimension.

Universal metric space

A metric space (U,d) is called universal for a collection M of metric
spaces if any metric space (M,dps) from M is isometrically embed-
dable in (U,d), i.e., there exists a mapping f : M — U which satisfies
dy(z,y) = d(f(x), f(y)) for any =,y € M. Some examples follow.

Every separable metric space (X, d) isometrically embeds (Fréchet 1909)
in (a non-separable) Banach space [2. In fact, d(x,y) = sup; |d(x,a;)
—d(y,a;)|, where (a1,...,a;,...) is a dense countable subset of X.

Every metric space isometrically embeds (Kuratowski 1935) in the
Banach space L*°(X) of bounded functions f : X — R with the norm
sup,ex | f()]:

The Urysohn space is a homogeneous complete separable space
which is the universal metric space for all separable metric spaces.

The Hilbert cube is the universal metric space for the class of metric
spaces with a countable base.

The graphic metric space of the Random graph (Rado 1964; the
vertex-set consists of all prime numbers p = 1 (mod 4) with pg being an
edge if p is a quadratic residue modulo ¢) is the universal metric space for
any finite or countable metric space with distances 0, 1 and 2 only. It is a
discrete analog of the Urysohn space.

There exists a metric d on R, inducing the usual (interval) topology,
such that (R,d) is a universal metric space for all finite metric spaces
(Holsztynski 1978). The Banach space [74 is a universal metric space for
all metric spaces (X,d) with |X| < n + 2 (Wolfe 1967). The Euclidean
space E™ is a universal metric space for all ultrametric spaces (X, d) with
|X| < n + 1; the space of all finite functions f(t) : R>o — R equipped
with the metric d(f,g) = sup{t : f(t) # g(t)} is a universal metric space
for all ultrametric spaces (A. Lemin and V. Lemin 1996).

The universality can be defined also for mappings, other than isometric
embeddings, of metric spaces, say, bi-Lipschitz embedding, etc. For exam-
ple, any compact metric space is a continuous image of the Cantor set
with the natural metric |z —y| inherited from R, and any complete separa-
ble metric space is a continuous image of the space of irrational numbers.
Constructive metric space
A constructive metric space is a pair (X,d), where X is some set
of constructive objects (usually, words over an alphabet), and d is an
algorithm converting any pair of elements of X into a constructive real
number d(z,y) such that d becomes a metric on X.
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e Effective metric space
Let {x,}nen be a sequence of elements from a given complete met-
ric space (X,d) such that the set {x, : n € N} is dense in (X,d). Let
N (m,n, k) be the Cantor number of a triple (n,m, k) € N3, and let {qx } xen
be a fixed total standard numbering of the set QQ of rational numbers.
The triple (X,d,{x,}nen) is called an effective metric space
[Hemm02] if the set {N(n,m,k) : d(zm,zn) < q} is recursively enu-
merable. It is an adaptation of Weihrauch’s notion of computable
metric space (or recursive metric space).



Chapter 2
Topological Spaces

A topological space (X,7) is a set X with a topology T, i.e., a collection of
subsets of X with the following properties:

1. Xer, Der.
2. If A, Ber,then ANBeT.
3. For any collection {A,}, if all A, € 7, then U, A, € 7.

The sets in 7 are called open sets, and their complements are called closed
sets. A base of the topology 7 is a collection of open sets such that every
open set is a union of sets in the base. The coarsest topology has two open
sets, the empty set and X, and is called the trivial topology (or indiscrete
topology). The finest topology contains all subsets as open sets, and is called
the discrete topology.

In a metric space (X, d) define the open ball as the set B(z,r) = {y € X :
d(xz,y) < r}, where © € X (the center of the ball), and r € R,r > 0 (the
radius of the ball). A subset of X which is the union of (finitely or infinitely
many) open balls, is called an open set. Equivalently, a subset U of X is called
open if, given any point x € U, there exists a real number € > 0 such that,
for any point y € X with d(z,y) <e, y € U.

Any metric space is a topological space, the topology (metric topology,
topology induced by the metric d) being the set of all open sets. The metric
topology is always Ty (see below a list of topological spaces). A topological
space which can arise in this way from a metric space, is called a metrizable
space.

A quasi-pseudo-metric topology is a topology on X induced similarly by a
quasi-semi-metric d on X, using the set of open d-balls B(z,r) as the base.
In particular, quasi-metric topology and pseudo-metric topology are the terms
used in Topology for the case of, respectively, quasi-metric and semi-metric
d. In general, those topologies are not Tj.

Given a topological space (X, 7), a neighborhood of a point = € X is a set
containing an open set which in turn contains z. The closure of a subset of a
topological space is the smallest closed set which contains it. An open cover
of X is a collection L of open sets, the union of which is X; its subcover is
a cover C such that every member of K is a member of L; its refinement

M.M. Deza and E. Deza, Encyclopedia of Distances, 59
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is a cover K, where every member of K is a subset of some member of L.
A collection of subsets of X is called locally finite if every point of X has a
neighborhood which meets only finitely many of these subsets.

A subset A C X is called dense if it has non-empty intersection with every
non-empty open set or, equivalently, if the only closed set containing it is X.
In a metric space (X, d), a dense set is a subset A C X such that, for any
x € X and any e > 0, there exists y € A, satisfying d(z,y) < e. A local base
of a point x € X is a collection U of neighborhoods of x such that every
neighborhood of = contains some member of U.

A function from one topological space to another is called continuous if
the preimage of every open set is open. Roughly, given z € X, all points
close to « map to points close to f(z). A function f from one metric space
(X,dx) to another metric space (Y,dy) is continuous at the point ¢ € X
if, for any positive real number €, there exists a positive real number § such
that all z € X satisfying dx (x, c) < § will also satisfy dy (f(x), f(¢)) < €; the
function is continuous on an interval [ if it is continuous at any point of I.

The following classes of topological spaces (up to Ty) include any metric
space:

e Tj-space
A Ty-space (or Kolmogorov space) is a topological space (X, 7) fulfilling
the Ty-separation axiom: for every two points z,y € X there exists an
open set U such that x € U and y ¢ U, or y € U and = ¢ U (every two
points are topologically distinguishable).

e T)-space
A Ti-space (or accessible space) is a topological space (X, 1) fulfilling the
T1-separation azxiom: for every two points z,y € X there exist two open
sets U and V such that x e U,y ¢ U, and y € V, & € V (every two points
are separated). Ti-spaces are always Tp.

e T)-space
A Ty-space (or Hausdorff space, separated space) is a topological space
(X, 7) fulfilling the Th-aziom: every two points z,y € X have disjoint
neighborhoods. Thus, (X, 7) is Hausdorff if and only if it is both T and
preregular, i.e., any two topologically distinguishable points in it are sep-
arated by neighbourhoods. T-spaces are always T7.

e Regular space
A regular space is a topological space in which every neighborhood of a
point contains a closed neighborhood of the same point.

e T3-space
A Ts-space (or Vietoris space, reqular Hausdorff space) is a topological
space which is T and regular.

e Completely regular space
A completely regular space (or Tychonoff space) is a Hausdorff space
(X, 7) in which any closed set A and any x ¢ A are functionally separated.



Topological Spaces 61

Two subsets A and B of X are functionally separated if there exists a
continuous function f : X — [0, 1] such that f(x) =0 for any x € A, and
f(y) =1 for any y € B.

Perfectly normal space

A perfectly normal space is a topological space (X, 7) in which any two
disjoint closed subsets of X are functionally separated.

Normal space

A normal space is a topological space in which, for any two disjoint
closed sets A and B, there exist two disjoint open sets U and V such that
AcCcU,and BCV.

T,-space

A Ty-space (or Tietze space, normal Hausdorff space) is a topological
space which is 77 and normal. Any metric space (X, d) is a Ty-space.
Completely normal space

A completely normal space is a topological space in which any two
separated sets have disjoint neighborhoods.

Sets A and B are separated in X if each is disjoint from the other’s
closure.

Ts-space

A Ts-space (or completely normal Hausdorff space) is a topological space
which is completely normal and T3. T5-spaces are always T}.
Ts-space

A Tg-space (or perfectly normal Hausdorff space) is a topological space
which is T7 and perfectly normal. Ts-spaces are always T5.

Moore space

A Moore space is a regular space with a development.

A development is a sequence {U,}, of open covers such that, for ev-
ery x € X and every open set A containing x, there exists n such that
St(x,Uy) = WU €U, : x € U} C A, ie., {St(x,U,)}n is a neighborhood
base at x.

Separable space

A separable space is a topological space which has a countable dense
subset.

Lindelof space

A Lindeldf space is a topological space in which every open cover has a
countable subcover.

First-countable space

A topological space is called first-countable if every point has a countable
local base. Any metric space is first-countable.

Second-countable space

A topological space is called second-countable if its topology has a
countable base. Second-countable spaces are always separable, first-
countable, and Lindel6f.

For metric spaces the properties of being second-countable, separable,
and Lindelof are all equivalent.

The Euclidean space E™ with its usual topology is second-countable.
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Baire space

A Baire space is a topological space in which every intersection of count-
ably many dense open sets is dense. Every complete metric space is a Baire
space. Every locally compact Th-space (hence, every manifold) is a Baire
space.

Alexandrov space

An Alexandrov space is a topological space in which every intersection
of arbitrarily many open sets is open.

A topological space is called a P-space if every Gs-set (i.e., the inter-
section of countably many open sets) is open.

A topological space (X, 1) is called a Q-space if every subset A C X is
a Gg-set.

Connected space

A topological space (X, 7) is called connected if it is not the union of
a pair of disjoint non-empty open sets. In this case the set X is called a
connected set.

A topological space (X, 7) is called locally connected if every point
x € X has a local base consisting of connected sets.

A topological space (X, 7) is called path-connected (or 0-connected)
if for every points z,y € X there is a path v from x to y, i.e., a continuous
function « : [0,1] — X with y(x) = 0,~(y) = 1.

A topological space (X, 7) is called simply connected (or 1-connected)
if it consists of one piece, and has no circle-shaped “holes” or “handles”
or, equivalently, if every continuous curve of X is contractible, i.e., can be
reduced to one of its points by a continuous deformation.

Paracompact space

A topological space is called paracompact if every open cover of it has
an open locally finite refinement. Every metric (moreover, metrizable)
space is paracompact.

Totally bounded space

A topological space (X, 7) is called totally bounded (or pre-compact) if
it can be covered by finitely many subsets of any fixed size.

A metric space (X, d) is a totally bounded metric space if, for every
real number r > 0, there exist finitely many open balls of radius r, whose
union is equal to X.

Compact space
A topological space (X, 7) is called compact if every open cover of X has
a finite subcover.

Compact spaces are always Lindelof, totally bounded, and para-
compact. A metric space is compact if and only if it is complete and
totally bounded. A subset of a Euclidean space E" is compact if and
only if it is closed and bounded.

There exist a number of topological properties which are equivalent to
compactness in metric spaces, but are nonequivalent in general topological
spaces. Thus, a metric space is compact if and only if it is a sequentially
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compact space (every sequence has a convergent subsequence), or a count-
ably compact space (every countable open cover has a finite subcover), or a
pseudo-compact space (every real-valued continuous function on the space
is bounded), or a weakly countably compact space (i.e., every infinite subset
has an accumulation point).

Continuum

A continuum is a compact connected T>-space.

Locally compact space

A topological space is called locally compact if every point has a local
base consisting of compact neighborhoods. The Euclidean spaces E" and
the spaces Q,, of p-adic numbers are locally compact.

A topological space (X, 7) is called a k-space if, for any compact set
Y € X and A C X, the set A is closed whenever ANY is closed. The
k-spaces are precisely quotient images of locally compact spaces.
Locally convex space
A topological vector space is a real (complex) vector space V which is a
Tr-space with continuous vector addition and scalar multiplication. It is
a uniform space (cf. Chap.[3).

A locally convex space is a topological vector space whose topology
has a base, where each member is a convex balanced absorbent set. A subset
A of V is called convex if, for all x,y € A and all t € [0,1], the point
tr+ (1 —t)y € A, i.e., every point on the line segment connecting x and y
belongs to A. A subset A is balanced if it contains the line segment between
x and —x for every x € A; A is absorbent if, for every x € V, there exist
t > 0 such that tz € A.

The locally convex spaces are precisely vector spaces with topology in-
duced by a family {||.||o} of semi-norms such that = = 0 if ||z||, = 0 for
every a.

Any metric space (V, ||z —y||) on a real (complex) vector space V' with
a norm metric ||z — y|| is a locally convex space; each point of V has a
local base consisting of convex sets. Every L, with 0 < p < 1is an example
of a vector space which is not locally convex.

Fréchet space
A Fréchet space is a locally convex space (V, 1) which is complete as
a uniform space and whose topology is defined using a countable set of

semi-norms [|.||1,...,]||-||ln,- .., i.e., a subset U C V is open in (V, 1) if, for
every u € U, there exist € > 0 and N > 1 with {v e V : [lu—v]||; <eif i <
N} cCU.

A Fréchet space is precisely a locally convex F-space (cf. Chap.[H). Its
topology can be induced by a translation invariant metric and it is a
complete and metrizable space with respect to this topology. But this
topology may be induced by many such metrics; so, there is no natural
notion of distance between points of a Fréchet space.

Every Banach space is a Fréchet space.
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Countably-normed space

A countably-normed space is a locally convex space (V,7) whose
topology is defined using a countable set of compatible norms ||.||1,. ..,
[l.llns - - .- It means that, if a sequence {z,}, of elements of V that is
fundamental in the norms ||.||; and ||.||; converges to zero in one of these
norms, then it also converges in the other. A countably-normed space is a
metrizable space, and its metric can be defined by

o0

Zi |z = ylln
27 1+ [z = ylln

n=1

Metrizable space

A topological space is called metrizable if it is homeomorphic to a metric
space, i.e., X admits a metric d such that the set of open d-balls { B(z,r) :
r > 0} forms a neighborhood base at each point = € X.

Metrizable spaces are always paracompact Tx-spaces (hence, normal
and completely regular), and first-countable.

A topological space is called locally metrizable if every point in it has
a metrizable neighborhood.

A topological space (X,7) is called submetrizable if there exists a
metrizable topology 7 on X which is coarser than 7.

A topological space (X, 1) is called protometrizable if it is paracom-
pact and has an orthobase, i.e., a base B such that, for B’ C B, either NB’
is open, or B’ is a local base at the unique point in NB’.

Some examples of other direct generalizations of metrizable spaces
follow.

A sequential space is a quotient image of a metrizable space.

Morita’s M-space is a topological space (X, 7) from which there exists
a continuous map f onto a metrizable topological space (Y, 7’) such that
f is closed and f~!(y) is countably compact for each y € Y.

Ceder’s Mj-space is a topological space (X,7) having a o-closure-
preserving base (metrizable spaces have o-locally finite bases).

Okuyama’s o-space is a topological space (X,7) having a o-locally
finite net, i.e., a collection U of subsets of X such that, given of a point
x € U with U open, there exists U’ € U with & € U’ C U (a base is a net
consisting of open sets). Every compact subset of a o-space is metrizable.

Michael’s cosmic space is a topological space (X, 7) having a countable
net (equivalently, a Lindel6f o-space). It is exactly a continuous image of a
separable metric space. A Ty-space is called analytic if it is a continuous
image of a complete separable metric space; it is called a Lusin space if,
moreover, the image is one-to-one.

Quasi-metrizable space

A topological space (X, 7) is called a quasi-metrizable space if X admits
a quasi-metric d such that the set of open d-balls {B(x,r) : r > 0} forms
a neighborhood base at each point x € X.
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A more general y-space is a topological space admitting a vy-metric d
(i.e., afunction d : X x X — R>q with d(z, z,) — 0 whenever d(x,y,,) — 0
and d(yn, zn) — 0) such that the set of open forward d-balls {B(z,r) : r >
0} forms a neighborhood base at each point = € X.

The Sorgenfrey line is the topological space (R, 7) defined by the base
{la,b) : a,b € R,a < b}. It is not metrizable but it is a first-countable
separable and paracompact Ts-space; neither it is second-countable, nor
locally compact or locally connected. However, the Sorgenfrey line is quasi-
metrizable by the Sorgenfrey quasi-metric (cf. Chap.[I2]) defined as y—x
if y > x, and 1 otherwise.

e Symmetrizable space

A topological space (X, 7) is called symmetrizable (and 7 is called the
distance topology) if there is a symmetric d on X (i.e., a distance
d: X x X — Rso with d(z,y) = 0 implying x = y) such that a subset
U C X is open if and only if, for each x € U, there exists ¢ > 0 with
B(z,e) = {y € X : d(z,y) < ¢} C U. In other words, a subset H C X
is closed if and only if d(z, H) = inf,{d(z,y) : y € H} > 0 for each
x € X\U. A symmetrizable space is metrizable if and only if it is a
Morita’s M-space.

In Topology, the term semi-metrizable space refers to a topological
space (X, 7) admitting a symmetric d such that, for each x € X, the family
{B(z,€) : € > 0} of balls forms a (not necessarily open) neighborhood base
at x. In other words, a point z is in the closure of a set H if and only if
d(z,H) = 0. A topological space is semi-metrizable if and only if it is
symmetrizable and first-countable. Also, a symmetrizable space is semi-
metrizable if and only if it is a Fréchet—Urysohn space (or E-space), i.e.,
for any subset A and for any point z of its closure, there is a sequence in
A converging to x.

e Hyperspace
A hyperspace of a topological space (X, 7) is a topological space on the
set CL(X) of all non-empty closed (or, moreover, compact) subsets of X.
The topology of a hyperspace of X is called a hypertopology. Examples
of such a hit-and-miss topology are the Vietoris topology, and the Fell
topology. Examples of such a weak hyperspace topology are the Hausdorff
metric topology, and the Wigsman topology.

e Discrete topological space
A topological space (X, 1) is discrete if 7 is the discrete topology (the
finest topology on X), i.e., containing all subsets of X as open sets. Equiv-
alently, it does not contain any limit point, i.e., it consists only of isolated
points.

e Indiscrete topological space
A topological space (X,7) is indiscrete if 7 is the indiscrete topology
(the coarsest topology on X), i.e., having only two open sets, (} and X.
It can be considered as the semi-metric space (X, d) with the indiscrete
semi-metric: d(z,y) = 0 for any =,y € X.



66 2 Topological Spaces

e Extended topology

Consider a set X and a map ¢l : P(X) — P(X), where P(X) is the set
of all subsets of X. The set cl(A) (for A C X), its dual set int(A) =
X\cl(X\A) and the map N : X — P(X) with N(z) ={A C X : 2 €
int(A)} are called the closure, interior and neighborhood map, respectively.
So, x € cl(A) is equivalent to X\A € P(X)\N(z). A subset A C X
is closed if A = cl(A) and open if A = int(A). Consider the following
possible properties of ¢l; they are meant to hold for all A, B € P(X):

cl(0) = 0.

A C B implies cl(A) C cl(B) (isotony).

A C cl(A)(enlarging).

cl(AUB) = cl(A) Ucl(B) (linearity, and, in fact, 4 implies 2).
c(cl(A)) = cl(A) (idempotency).

G o=

The pair (X, cl) satisfying 1 is called an extended topology if 2 holds,
a Brissaud space (Brissaud 1974) if 3 holds, a neighborhood space
(Hammer 1964) if 2 and 3 hold, a Smyth space (Smyth 1995) if 4 holds,
a pretopology (Cech 1966) if 3 and 4 hold, and a closure space (Soltan
1984) if 2, 3 and 5 hold.

(X, cl) is the usual topology, in closure terms, if 1, 3, 4 and 5 hold.



Chapter 3
Generalizations of Metric Spaces

Some immediate generalizations of the notion of metric, for example, quasi-
metric, near-metric, extended metric, were defined in Chap.[l Here
we give some generalizations in the direction of Topology, Probability,
Algebra, etc.

3.1 m-metrics

e m-hemi-metric
Let X be a set. A function d : X™T! — R is called m-hemi-metric if:

1. d is non-negative, i.e., d(x1,...,xn11) > 0 for all z1,..., 2,11 € X.

2. d is totally symmetric, i.e., satisfies d(z1,...,Tmy1) = d(Try,. ..,
Tr(ms1)) for all @y,... 21 € X and for any permutation 7 of
{1,...,m+1}.

3. d is zero conditioned, i.e., d(z1,...,Tmy1) = 0 if and only if
Z1,...,Tm+1 are not pairwise distinct.

4. For all z1,..., 2y € X, d satisfies the m-simplex inequality:

m—+1
d([L‘l, . ,.’Eerl) S Z d(.’L‘h R 7 [P o7 S (PO ,.’Eerg).
i=1

e 2-metric
Let X be a set. A function d : X?> — R is called a 2-metric if d is
non-negative, totally symmetric, zero conditioned, and satisfies the tetra-
hedron inequality

d(I1,$2,$3) S d(l’4, £E2,$3) + d($1,l‘47l’3) + d(l’l,l'g, 134).

It is the most important case m = 2 of the m-hemi-metric.

M.M. Deza and E. Deza, Encyclopedia of Distances, 67
DOI 10.1007/978-3-642-00234-2_3, (© Springer-Verlag Berlin Heidelberg 2009
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(m, s)-super-metric

Let X be aset, and let s be a positive real number. A function d : X™+! —
R is called (m, s)-super-metric [DeDu03] if d is non-negative, totally sym-
metric, zero conditioned, and satisfies t the (m, s)-simplex inequality:

m—+1
Sd($17 cee 7xm+1) S Z d(x17 sy L1y L1y e e - 7.’17m+2).
=1

An (m, s)-super-metric is an m-hemi-metric if s > 1.

3.2 Indefinite metrics

Indefinite metric

An indefinite metric (or G-metric) on a real (complex) vector space V is
a bilinear (in the complex case, sesquilinear) form G on V, i.e., a function
G :V xV — R (C), such that, for any x,y, 2z € V and for any scalars «, (3,
we have the following properties: G(ax + By, z) = aG(x, z)+ 8G(y, ), and
G(z,ay + B2) = aG(z,y) + BG(x, z), where @ = a + bi = a — bi denotes
the complex conjugation.

If a positive-definite form G is symmetric, then it is an inner product on
V', and one can use it to canonically introduce a norm and the correspond-
ing norm metric on V. In the case of a general form G, there is neither
a norm, nor a metric canonically related to G, and the term indefinite
metric only recalls the close relation of such forms with certain metrics
in vector spaces (cf. Chaps.[7 and 24]).

The pair (V,G) is called a space with an indefinite metric. A finite-
dimensional space with an indefinite metric is called a bilinear metric space.
A Hilbert space H, endowed with a continuous G-metric, is called a
Hilbert space with an indefinite metric. The most important example of
such space is a J-space.

A subspace L in a space (V, G) with an indefinite metric is called a posi-
tive subspace, negative subspace, or neutral subspace, depending on whether
G(z,z) >0, G(z,z) <0, or G(x,z) =0 for all z € L.

Hermitian G-metric
A Hermitian G-metric is an indefinite metric G on a complex vector
space V such that, for all x,y € V', we have the equality

G (z,y) = G (y,x),

where @ = a + bi = a — bi denotes the complex conjugation.
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e Regular G-metric
A regular G-metric is a continuous indefinite metric G on a Hilbert
space H over C, generated by an invertible Hermitian operator T' by the
formula

G(JZ, y) = <T($), y>7

where (,) is the inner product on H.

A Hermitian operator on a Hilbert space H is a linear operator T on H,
defined on a domain D(T) of H such that (T'(z),y) = (x,T(y)) for any
z,y € D(T). A bounded Hermitian operator is either defined on the whole
of H, or can be so extended by continuity, and then T"= T*. On a finite-
dimensional space a Hermitian operator can be described by a Hermitian
matriz ((ai;)) = ((@;:))-

e J-metric
A J-metric is a continuous indefinite metric G on a Hilbert space H
over C, defined by a certain Hermitian involution J on H by the formula

Glz,y) = (J(2),9),

where (,) is the inner product on H.

An involution is a mapping H onto H whose square is the identity
mapping. The involution J may be represented as J = Py — P_, where Py
and P_ are orthogonal projections in H, and Py + P_ = H. The rank of
indefiniteness of the J-metric is defined as min{dim P, ,dim P_}.

The space (H,G) is called a J-space. A J-space with finite rank of
indefiniteness is called a Pontryagin space.

3.3 Topological generalizations

e Metametric space
A metametric space (Viisiala 2003) is a pair (X, d), where X is a set,
and d is a non-negative symmetric function d : X x X — R such that
d(xz,y) = 0 implies « = y and triangle inequality d(z,y) < d(z, z) +d(z,y)
holds for all x,y, z € X. A metametric space is metrizable: the metametric
d defines the same topology as the metric d’ defined by d’(z,z) = 0 and
d'(z,y) = d(z,y) if x # y. A metametric d induces a Hausdorff topology
with the usual definition of a ball B(xzg,r) = {z € X : d(xo,z) < r}.

e Resemblance
Let X be a set. A function d : X x X — R is called a resemblance on X
if d is symmetric and if, for all x,y € X, either d(z,z) < d(z,y) (in which
case d is called a forward resemblance), or d(z,x) > d(z,y) (in which
case d is called a backward resemblance).
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Every resemblance d induces a strict partial order < on the set of all
unordered pairs of elements of X by defining {z,y} < {u,v} if and only if
d(z,y) < d(u,v).

For any backward resemblance d, the forward resemblance —d induces
the same partial order.
w-distance
Given a metric space (X,d), a w-distance on X (Kada, Suzuki and
Takahashi 1996) is a non-negative function p : X x X — R which sat-
isfies the following conditions:

1. p(z,2) < p(z,y) +p(y, 2) for all z,y,z € X.

2. For any x € X, the function p(z,.) : X — R is lower semicontinuous,
ie., if a sequence {y,}, in X converges to y € X, then p(z,y) <
liminf, . p(z, yn)-

3. For any e > 0, there exists § > 0 such that p(z,z) < ¢ and p(z,y) <4
imply d(x,y) <, for each x,y,z € X.

T-distance space

A 7-distance space is a pair (X, f), where X is a topological space and
f is an Aamri-Moutawakil’s 7-distance on X, i.e., a non-negative function
f: X x X — R such that, for any z € X and any neighborhood U of z,
there exists € > 0 with {y € X : f(x,y) <e} CU.

Any distance space (X,d) is a 7-distance space for the topology T
defined as follows: A € 74 if, for any € X, there exists ¢ > 0 with
{y € X : f(x,y) < €} C A. However, there exist non-metrizable 7-distance
spaces. A 7-distance f(z,y) need be neither symmetric, nor vanishing for
x = y; for example, el*~¥l is a r-distance on X = R with usual topology.
Proximity space
A proximity space (Efremovich 1936) is a set X with a binary relation
0 on the power set P(X) of all of its subsets which satisfies the following
conditions:

1. AdB if and only if B6A (symmetry).
2. A§(BUCQ) if and only if AdB or A6C (additivity).
3. AJA if and only if A # 0 (reflexivity).

The relation § defines a proximity (or prozimity structure) on X. If AéB
fails, the sets A and B are called remote sets.

Every metric space (X,d) is a proximity space: define AdB if and only
if d(A, B) = inf:cEA,yEB d(CC, y) = 0.

Every proximity on X induces a (completely regular) topology on X
by defining the closure operator cl : P(X) — P(X) on the set of all subsets
of X as cl(A) ={z € X : {z}dA}.

Uniform space
A uniform space is a topological space (with additional structure) pro-
viding a generalization of metric space, based on set-set distance.
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A uniform space (Weil 1937) is a set X with an uniformity (or
uniform structure) U — a non-empty collection of subsets of X x X, called
entourages, with the following properties:

1. Every subset of X x X which contains a set of & belongs to U.

2. Every finite intersection of sets of U belongs to U.

3. Every set V' € U contains the diagonal, i.e., the set {(z,2) : x € X} C
X xX.

4. If V belongs to U, then the set {(y,x) : (z,y) € V'} belongs to U.

5. If V belongs to U, then there exists V' € U such that (z,2) € V
whenever (z,v), (y,2) € V.

Every metric space (X, d) is a uniform space. An entourage in (X,d) is a
subset of X x X which contains the set V; = {(z,y) € X x X : d(z,y) < €}
for some positive real number e. Other basic example of uniform space are
topological groups.

Every uniform space (X,U) generates a topology consisting of all sets
A C X such that, for any = € A, there is a set V € U with {y : (z,y) €
V}icA.

Every uniformity induces a proximity o where Ao B if and only if Ax B
has non-empty intersection with any entourage.

A topological space admits a uniform structure inducing its topology
if only if the topology is completely regular (cf. Chap.B2) and, also,
if only if it is a gauge space, i.e., the topology is defined by a family of
semi-metrics.

e Nearness space
A nearness space (Herrich 1974) is a set X with a nearness structure, i.e.,
a non-empty collection U of families of subsets of X, called near families,
with the following properties:

1. Each family refining a near family is near.

2. Every family with non-empty intersection is near.

3. Vs near if {cl(A) : A € V'} is near, where cl(A) is {x € X : {{z}, A} €
ut.

4. () is near, while the set of all subsets of X is not.

5. f {AUB: A€ Fy,B € Fy} is near family, then so is F; or Fs.

The uniform spaces are precisely paracompact nearness spaces.
e Approach space

An approach space is a topological space providing a generalization of
metric space, based on point-set distance.

An approach space (Lowen 1989) is a pair (X, D), where X is a set and
D is a point-set distance, i.e., a function X x P(X) — [0, 00] (where
P(X) is the set of all subsets of X) satisfying, for all z € X and all
A, B € P(X), the following conditions:

1. D(z,{z}) =0.
2. D(x,{0}) = .
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3. D(x,AU B) = min{D(x, A), D(x, B)}.
4. D(z,A) < D(z, A%)+e for any € € [0, oo], where A = {z : D(z, A) < ¢}
is the “e-ball” with center z.

Every metric space (X,d) (moreover, any extended quasi-semi-metric
space) is an approach space with D(x, A) being the usual point-set distance
minge 4 d(z,y).

Given a locally compact separable metric space (X, d) and the family
F of its non-empty closed subsets, the Baddeley—Molchanov distance
function gives a tool for another generalization. It is a function D : X x
F — R which is lower semi-continuous with respect to its first argument,
measurable with respect to the second, and satisfies the following two
conditions: F' = {& € X : D(z,F) < 0} for I € F, and D(x,Fy) >
D(z, Fy) for x € X, whenever Iy, Fy, € F and Fy C F.

The additional conditions D(z,{y}) = D(y,{z}), and D(z,F) <
D(z,{y}) + D(y, F) for all z,y € X and every F' € F, provide analogs of
symmetry and the triangle inequality. The case D(z, F') = d(x, F') corre-
sponds to the usual point-set distance for the metric space (X, d); the case
D(z,F) = d(x,F) for x € X\F and D(z,F) = —d(z, X\F) for x € X
corresponds to the signed distance function in Chap.[Il

e Metric bornology
Given a topological space X, a bornology of X is any family A of proper
subsets A of X such that the following conditions hold:

1. Ugenld = X.

2. Ais an ideal, i.e., contains all subsets and finite unions of its members.

The family A is a metric bornology if, moreover:

A contains a countable base.

4. For any A € A there exists A’ € A such that the closure of A coincides
with the interior of A’.

e

The metric bornology is called trivial if A is the set P(X) of all subsets of
X; such a metric bornology corresponds to the family of bounded sets of
some bounded metric. For any non-compact metrizable topological space
X, there exists an unbounded metric compatible with this topology. A non-
trivial metric bornology on such a space X corresponds to the family of
bounded subsets with respect to some such unbounded metric. A non-
compact metrizable topological space X admits uncountably many non-
trivial metric bornologies.

3.4 Beyond numbers

e Probabilistic metric space
A notion of probabilistic metric space is a generalization of the notion
of metric space (see, for example, [ScSk83]) in two ways: distances become
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probability distributions, and the sum in the triangle inequality becomes
a triangle operation.

Formally, let A be the set of all probability distribution functions, whose
support lies in [0, 00]. For any a € [0, 00| define step functions e, € A by
€(x) =1if x> a or x = oo, and ¢,(x) = 0, otherwise. The functions
in A are ordered by defining F' < G to mean F(x) < G(z) for all z > 0;
the minimal element is ¢y. A commutative and associative operation 7
on A is called a triangle function if 7(F,¢y) = F for any F' € A and
T(E,F) < 7(G,H) whenever E < G, F < H. The semi-group (A,7)
generalizes the group (R, +).

A probabilistic metric space is a triple (X, D, 1), where X is a set,
D is a function X x X — A, and 7 is a triangle function, such that for
any p,q,m € X:

1. D(p,q) = € if and only if p = q.
2. D(p,q) = D(q,p)-
3. D(p,r) = 7(D(p, q), D(q, 7))-

For any metric space (X,d) and any triangle function 7, such that
7(€a, €) > €qyp for all a,b > 0, the triple (X, D = €g(y,,), ) is a proba-
bilistic metric space.

For any = > 0, the value D(p,q) at = can be interpreted as “the proba-
bility that the distance between p and ¢ is less than z;” this was approach
of Menger, who proposed in 1942 the original version, statistical metric
space, of this notion.

A probabilistic metric space is called a Wald space if the triangle function
is a convolution, i.e., of the form 7, (F, F) fR x —t)dF(t).

A probabilistic metrlc space is called a generahzed Menger space if
the triangle function has form 7,(E,F) = sup,,,—, T(E(u), F(v)) for a
t-norm T, i.e., such a commutative and associative operation on [0, 1] that
T(a,1) =a, T(0,0) =0 and T'(¢,d) > T(a,b) whenever ¢ > a,d > b.

e Fuzzy metric spaces
A fuzzy subset of a set S is a mapping p : S — [0, 1], where u(x) represents
the “degree of membership” of = € S.

A continuous t-norm is a binary commutative and associative continuous
operation T on [0, 1], such that T'(a,1) = a and T'(c,d) > T'(a,b) whenever
c>a,d>Db.

A KM fuzzy metric space (Kramosil and Michalek 1975) is a pair
(X, (1, T)), where X is a non-empty set and a fuzzy metric (u,T) is a pair
comprising a continuous t-norm 7" and a fuzzy set p : X? x R>o — [0,1],
such that for z,y,z € X and s,t > 0:

p(z,y,0) = 0.
w(z,y,t) =1 if and only if z = y,¢ > 0.
p(@,y,t) = ply, =, 1).
T(p(z,y, 1), 1y, 2,5)) < plx, 2,t + 5).
The function u(z,y,-) : R>g — [0, 1] is left continuous.

.U‘FP-"!\".H



3 Generalizations of Metric Spaces

A KM fuzzy metric space is called also a fuzzy Menger space since by
defining D, (p, q) = u(p, q,t) one gets a generalized Menger space. The
following modification of the above notion, using a stronger form of metric
fuzziness, can be seen as a generalized Menger space with D;(p, ¢) positive
and continuous on Ry for all p,q.

A GV fuzzy metric space (George and Veeramani 1994) is a pair
(X, (u,T)), where X is a non-empty set, and a fuzzy metric (u, T') is a pair
comprising a continuous t-norm 7' and a fuzzy set u: X? x R — [0, 1],
such that for z,y,z € X and s,t > O:

plx, y,t) >

wlx,y, )fllfandonlylf:c*y

(:E Y, )* (y,x t)

T(pu(z,y,t), mly, z,8)) < plx, 2,t + 5).

The function pu(x,y,-) : Rsg — [0, 1] is continuous.

9“!“9"’.“.*‘

An example of a GV fuzzy metric space can be obtained from any metric
space (X, d) by defining T(a,b) = b — ab and p(z,y,t) = m. Con-
versely, any GV fuzzy metric space (and also any KM fuzzy metric space)
generates a metrizable topology.

A fuzzy number is a fuzzy set p : R — [0, 1] which is normal ({z € R :
wu(z) =1} #0), convez (u(tz+(1—1t)y) > min{u(z), u(y)} for every x,y €
R and ¢ € [0,1]) and upper semicontinuous (at each point g, the values
wu(x) for x near xq are either close to p(zg) or less than pu(zp)). Denote
the set of all fuzzy numbers which are non-negative, i.e., u(xz) = 0 for all
x < 0, by G. The additive and multiplicative identities of fuzzy numbers
are denoted by 0 and 1, respectively. The level set [u]; = { : u(x) >t} of
a fuzzy number p is a closed interval.

Given a non-empty set X and a mapping d : X2 — G, let the mappings
L,R:[0,1]> — [0,1] be symmetric and non-decreasing in both arguments
and satisfy L(0,0) = 0, R(1,1) = 1. For all z,y € X and t € (0,1], let
[d(.’lﬁ, y)]t = [)‘t(x’ y)» pt('r’ y)]

A KS fuzzy metric space (Kaleva and Seikkala 1984) is a quadruple

X,d, L, R) with fuzzy metric d, if for all z,y,z € X:

(

1. d(z,y) = 0 if and only if z =y

2. d(x,y) = d(y, x).

3. ( y)(s +t) > L(d(x,z2)(s),d(z,y)(t)) whenever s < Ai(x,2), t <

(z7 y), and s +t < Ay (z,y).

4. d(z,y)(s +t) < R(d(z, )( ),d(z,y)(t)) whenever s > Ai(z,2), t >
/\1(z y), and s+t > A (z,y).

The following functions are some frequently used choices for L and R:

max{a + b — 1,0}, ab, min{a, b}, max{a, b},a + b — ab,min{a + b, 1}.
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Several other notions of fuzzy metric space were proposed, including
those by Erceg (1979), Deng (1982), and Voxman (1998), Xu and Li
(2001), Tran and Duckstein (2002), C. Chakraborty and D. Chakraborty
(2006). Cf. also metrics between fuzzy sets, fuzzy Hamming dis-
tance, gray-scale image distances and fuzzy polynucleotide metric
in Chaps.[I M1l 2T and 23] respectively.
e Interval-valued metric space

Let I(R>) denote the set of closed intervals of R>q.

An interval-valued metric space (Coppola and Pacelli 2006) is a pair
(X, <),A), where (X, <) is a partially ordered set and A is an interval-
valued mapping A : X x X — I(Rxg), such that for every z,y,z € X:

~A(2,2) % A, 2) + Az y),

— Alz,y) 2 Alw, ) + Ay, y).
x <z’ and y <y imply A(x,y) C A2, y).
A(z,y) = 0 if and only if z = y and x,y are atoms (minimal elements
of (X,<)).

SR i
>
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Here the following interval arithmetic rules hold: [u, v] < [u/,v] if and only
if u<a/,

[, v] * [u/, 0] = [min{uv’, wo’, v, v’ }, max{uv’, uv’, vu', Vo' }],

[u,v] + [/, 0] = [u+ v/, v + 0] and [u,v] — [u/, 0] = [u —u',v — V']

Cf. metric between intervals in Chap.[I0

The usual metric spaces coincide with above spaces in which all z € X
are atoms.

o Generalized metric

Let X be a set. Let (G,+, <) be an ordered semi-group (not necessarily
commutative) having a least element 0. A function d : X x X — G is
called a generalized metric if the following conditions hold:

1. d(z,y) = 0 if and only if x = y.
2. d(z,y) <d(z,z) +d(z,y) for all z,y € X.
3. d(z,y) = d(y, z), where @ is a fixed order-preserving involution of G.

The pair (X, d) is called a generalized metric space.
If the condition 2 and “only if” in 1 above are dropped, we obtain a
generalized distance d, and a generalized distance space (X, d).
e Cone metric
Let C be a proper cone in a real Banach space W, i.e., C is closed, C' # 0,
the interior of C' is not equal to {0} and:

1. If z,y € C and a,b € R>g, then ax + by € C.
2. If x € C and —x € C, then x = 0.
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Define a partial ordering (W, <) on W by letting x < y if y —z € C.
The following variation of generalized metric was defined in Huang and
Zhang (2007). Given a set X, a cone metric is a mapping d : X x X —
(W, <) such that:

1. d(z,y) > 0 with equality if and only if x = y.
2. d(z,y) = d(y,z) for all z,y € X.
3. d(z,y) <d(z,z)+d(z,y) for all z,y € X.

Distance on building
A Cozxeter group is a group (W,-, 1) generated by the elements
{wy,...,wy, : (ww;)™ = 1,1 < 4,5 < n}. Here M = ((my;)) is a
Cozeter matriz, i.e., an arbitrary symmetric n X n matrix with m;; = 1,
and the other values are positive integers or co.

The length l(z) of x € W is the smallest number of generators wy, . .., wy,
needed to represent x.

Let X be a set, and let (W, -, 1) be a Coxeter group. The pair (X, d) is
called a building over (W,-,1) if the function d : X x X — W, called a
distance on building, has the following properties:

1. d(z,y) = 1 if and only if = y.

2. d(y,x) = (d(mvy))_l'

3. The relation ~;, defined by x ~; y if d(x,y) = 1 or w;, is an equivalence
relation.

4. Given x € X and an equivalence class C of ~;, there exists a unique y €
C' such that d(x,y) is shortest (i.e., of smallest length), and d(z,y’) =
d(x,y)w; for any y' € C,y’ # y.

The gallery distance on building d’ is a usual metric on X, defined
by I(d(x,y)). The distance d’ is the path metric in the graph with the
vertex-set X and zy being an edge if d(z,y) = w; for some 1 < i < n.
The gallery distance on building is a special case of a gallery metric (of
chamber system X).
Boolean metric space
A Boolean algebra (or Boolean lattice) is a distributive lattice (B,V, )
admitting a least element 0 and greatest element 1 such that every = € B
has a complement * with x VZ =1 and x AT = 0.

Let X be a set, and let (B, V, A) be a Boolean algebra. The pair (X, d)
is called a Boolean metric space over B if the function d: X x X — B
has the following properties:

1. d(z,y) = 0 if and only if x = y.
2. d(z,y) <d(z,z)Vd(z,y) for all z,y,z € X.

Space over algebra

A space over algebra is a metric space with a differential-geometric
structure, whose points can be provided with coordinates from some alge-
bra (usually, an associative algebra with identity).
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A module over an algebra is a generalization of a vector space over a
field, and its definition can be obtained from the definition of a vector
space by replacing the field by an associative algebra with identity. An
affine space over an algebra is a similar generalization of an affine space
over a field. In affine spaces over algebras one can specify a Hermitian
metric, while in the case of commutative algebras even a quadratic metric
can be given. To do this one defines in a unital module a scalar product
(x,y), in the first case with the property (z,y) = J((y,x)), where J is
an involution of the algebra, and in the second case with the property
(y,7) = (z,y).

The n-dimensional projective space over an algebra is defined as the vari-
ety of one-dimensional submodules of an (n+1)-dimensional unital module
over this algebra. The introduction of a scalar product {x,y) in a unital
module makes it possible to define a Hermitian metric in a projective space
constructed by means of this module or, in the case of a commutative alge-
bra, quadratic elliptic and hyperbolic metrics. The metric invariant of the
points of these spaces is the cross-ratio W = (z, z) =Nz, y) (y,y) " {y, ). If
W is a real number, then the invariant w, for which W = cos? w, is called
the distance between z and y in the space over algebra.

e Partially ordered distance
Let X be a set. Let (G, <) be a partially ordered set with a least element gg.
A partially ordered distance is a function d : X x X — G such that,
for any x,y € X, d(z,y) = go if and only if z = y.

A generalized ultrametric (Priess-Crampe and Ribenboim 1993) is
a symmetric (i.e., d(z,y) = d(y,z)) partially ordered distance, such that
d(z,2) < g and d(z,y) < g imply d(z,y) < g for any z,y,z € X and
g€ aqG.

Suppose from now that G’ = G\{go} is non-empty and, for any g1, g2 €
G’, there exists g3 € G’ such that g3 < g; and g3 < go. Consider the
following possible properties:

1. For any g1 € G, there exists go € G’ such that, for any z,y € X, from
d(x,y) < go it follows that d(y,z) < ¢;.

2. For any g; € G’, there exist go, g3 € G’ such that, for any z,y,z € X,
from d(z,y) < g2 and d(y, z) < gs it follows that d(z,z) < ¢1.

3. For any g1 € G, there exists go € G’ such that, for any z,y,2 € X,
from d(z,y) < g2 and d(y, z) < g it follows that d(y,z) < ¢;.

4. G’ has no first element.

5. d(x,y) = d(y,z) for any z,y € X.

6. For any g; € G’, there exists go € G’ such that, for any z,y,2 € X,
from d(z,y) <* g2 and d(y,z) <* g2 it follows that d(x, z) <* gi; here
p <* q means that either p < ¢, or p is not comparable to q.

7. The order relation < is a total ordering of G.

In terms of above properties, d is called: the Appert partially ordered
distance if 1 and 2 hold; the Golmez partially ordered distance of
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first type if 4, 5, and 6 hold; the Golmez partially ordered distance
of second type if 3, 4, and 5 hold; the Kurepa—Fréchet distance if 3,
4, 5, and 7 hold.

In fact, the case G = R of the Kurepa—Fréchet distance corresponds to
the Fréchet V-space, i.e., a pair (X, d), where X is a set, and d(x,y) is a
non-negative symmetric function d : X x X — R (voisinage of points z and
y) such that d(x,y) = 0 if and only if 2 = y, and there exists a non-negative
function f: R — R with lim; ¢ f(¢t) = 0 with the following property: for
all z,y,z € X and all positive r, the inequality max{d(z,y),d(y,z)} <r
implies d(x, z) < f(r).

Distance from measurement
This notion is an analog of distance on domains in Computer Science; it
was developed in [Mart00)].

A dcpo is a partially ordered set (D, <), in which every directed subset
S c D (ie., S # 0 and any pair z,y € S is bounded: there is z € S with
x,y =< z) has a supremum US, i.e., the least of such upper bounds z. For
x,y € D, y is an approximation of x if, for all directed subsets S C D,
x = S implies y < s for some s € S.

A depo (D, <) is continuous if for all x € D the set of all approxima-
tions of x is directed and x is its supremum. A domain is a continuous
depo (D, <) such that for all z,y € D there is z € D with z < x,y. A
Scott domain is a continuous depo (D, <) with least element, in which any
bounded pair x,y € D has a supremum.

A measurement is a mapping p : D — Rsg between dcpo (D, <) and
depo (R>g, =), where R is ordered as « < y if y < z, such that:

1. <y implies u(x) < p(y).
2. p(US) =U({p(s) : s € S}) for every directed subset S C D.
3. For all x € D with p(z) = 0 and all sequences (z,,),n — oo, of approx-

imations of  with lim,, .. pu(z,) = u(x), one has LU {z,}) = .

Given a measurement u, the distance from measurement is a mapping
d: D x D — Rsq given by

d(z,y) = inf{u(z) : z approximates x,y} = inf{u(z) : z < z,y}.

One has d(z,z) =< p(x). The function d(z,y) is a metric on the set
{z € D : p(x) = 0} if p satisfies the following measurement triangle
inequality: for all bounded pairs =,y € D, there is an element z < x,y
such that u(z2) < p(z) + p(y).

Waszkiewicz (2001) found topological connections between topologies
coming from a distance from measurement and from a partial metric
defined in Chap.[Il



Chapter 4
Metric Transforms

There are many ways to obtain new distances (metrics) from given distances
(metrics). Metric transforms give new distances as a functions of given metrics
(or given distances) on the same set X. A metric so obtained is called a
transform metric. We give some important examples of transform metrics
in Sect.[Z11

Given a metric on a set X, one can construct a new metric on an exten-
sion of X; similarly, given a collection of metrics on sets Xi,...,X,, one
can obtain a new metric on an extension of Xi,...,X,. Examples of such
operations are given in Sect.[.2]

Given a metric on X, there are many distances on other structures con-
nected with X, for example, on the set of all subsets of X. The main distances
of this kind are considered in Sect.Z3l

4.1 Metrics on the same set

e Metric transform
A metric transform is a distance on a set X, obtained as a function of
given metrics (or given distances) on X.

In particular, given a continuous monotone increasing function f(z) of
x > 0 with f(0) = 0, called the scale, and a distance space (X,d), one
obtains another distance space (X, dy), called a scale metric transform
of X, defining d;(z,y) = f(d(x,y)). For every finite distance space (X, d),
there exists a scale f, such that (X, dy) is a metric subspace of a Euclidean
space E™.

If (X,d) is a metric space and f is a continuous differentiable strictly
increasing scale with f(0) = 0 and non-increasing f’, then (X,dy) is a
metric space (cf. functional transform metric).

The metric d is an ultrametric if and only if f(d) is a metric for every
non-decreasing function f : R>g — R>o.

e Transform metric
A transform metric is a metric on a set X which is a metric transform,
i.e., is obtained as a function of a given metric (or given metrics) on X. In

M.M. Deza and E. Deza, Encyclopedia of Distances, 79
DOI 10.1007/978-3-642-00234-2_4, (© Springer-Verlag Berlin Heidelberg 2009
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particular, transform metrics can be obtained from a given metric d (or
given metrics d; and dg) on X by any of the following operations (here
t>0):

1. td(z,y) (t-scaled metric, or dilated metric, similar metric)
min{t,d(z,y)} (t-truncated metric)

max{t,d(z,y)} for  # y (t-uniformly discrete metric)
d(z,y) + t for x # y (t-translated metric)

d(z,y)
1+d(z,y)
dP(z,y) = d(z,p)+2dd((yw,;o%)-s-d(z,y)’ where p is an fixed element of X
(biotope transform metric, or Steinhaus transform metric)
7. max{d1 (.’177 y)a d2 ($7 y)}

8. ady(x,y) + Bda(z,y), where a, f > 0 (cf. metric cone in Chap.[])

o Tk

Generalized biotope transform metric
For a given metric d on a set X and a closed set M C X, the generalized
biotope transform metric d" on X is defined by

2d(x,y)
d(fL’, y) + inszM(d(xv z) + d(y, z)) '

d"(z,y) =

In fact, d™(x,y) and its 1-truncation min{1,d™ (z,y)} are both met-
rics. The biotope transform metric is d* (z,y) with M consisting only
of a point, say, p; the Steinhaus distance from Chap.[Il is the case
d(z,y) = p(zAy) with p # () and the biotope distance from Chap.[23]is
its subcase d(z,y) = p(zly) = |[zAy|.

Metric-preserving function
A function f : Rsg — R with f71(0) = {0} is a metric-preserving
function if, for each metric space (X, d), the metric transform

df(x’y) = f(d(xv y))

is a metric on X; cf. [Cora99]. In this case dy is called a functional
transform metric. For example, ad (o > 0), d*(0 < o < 1), In(1 + d),
arcsinh d, arccosh (1 4+ d), and 11 - are functional transform metrics.
The superposition, sum and maximum of two metric-preserving func-
tions are metric-preserving. If f is subadditive, i.e., f(z+y) < f(z)+ f(y)
for all z,y > 0, and non-decreasing, then it is metric-preserving. But, for

example, the function f(z) = %, for > 0, and f(0) = 0, is decreas-

ing and metric-preserving. If f is concave, i.e., f(%) > %ﬂy) for all
x,y > 0, then it is metric-preserving. In particular, a twice differentiable
function f : R>¢ — Rx¢ such that f(0) =0, f’(z) > 0 for all > 0, and
f"(z) <0 for all x > 0, is metric-preserving.

If f is metric-preserving, then it is subadditive.
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The function f is strongly metric-preserving function if d and
f(d(z,y)) are equivalent metrics on X, for each metric space (X,d).
A metric-preserving function is strongly metric-preserving if and only if it
is continuous at 0.

e Power transform metric
Let 0 < a < 1. Given a metric space (X, d), the power transform metric
(or snowflake transform metric) is a functional transform metric on
X, defined by

(d(z,y))*.

The distance d(z,y) = (3.7 |o; — y;|P)? with 0 < p = & < 1 is not a
metric on R™, but its power transform (d(z,y)®) is a metric.

For a given metric d on X and any a > 1, the function d“ is, in general,
only a distance on X. It is a metric, for any positive «, if and only if d is
an ultrametric.

A metric d is a doubling metric if and only if (Assouad 1983) the
power transform metric d* admits a bi-Lipschitz embedding in some
Euclidean space for every 0 < o < 1 (cf. Chap.[Il for definitions).

e Schoenberg transform metric
Let A > 0. Given a metric space (X,d), the Schoenberg transform
metric is a functional transform metric on X, defined by

1 — e~ d(@y)

The Schoenberg transform metrics are exactly P-metrics (cf. Chap.[).
e Pullback metric
Given two metric spaces (X,dx), (Y,dy) and an injective mapping ¢ :
X — Y, the pullback metric (of (Y,dy) by g) on X is defined by

dy (9(x), 9(y))-

If (X,dx) coincides with (Y, dy), then the pullback metric is called a
g-transform metric.
e Internal metric
Given a metric space (X,d) in which every pair of points z,y is joined
by a rectifiable curve, the internal metric (or inner metric, induced
intrinsic metric, interior metric) D is a transform metric on X,
obtained from d as the infimum of the lengths of all rectifiable curves
connecting two given points z and y € X.
The metric d on X is called an intrinsic metric (or length metric,
cf. Chap.[d) if it coincides with its internal metric.
e Farris transform metric
Given a metric space (X, d) and a point z € X, the Farris transform is a
metric transform D, on X\{z} defined by D, (z,z) = 0 and, for different
z,y € X\{z}, by
Dz(x’y) =C = (z.y),
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where C is a positive constant, and (z.y). = 3(d(z,2) + d(y,z) —
d(z,y)) is the Gromov product (cf. Chap.[). It is a metric if C >
max,e v\ d(, 2); in fact, there exists a number Cy € (max, yex\g} 24y
(2.y) 2, max, e x\ (-} d(x, 2)] such that it is a metric if and only if C' > Cp.
The Farris transform is an ultrametric if and only if d satisfies the four-
point inequality. In Phylogenetics, where it was applied first, the term
Farris transform is used for the function d(z,y) — d(z, z) — d(y, 2).
e Involution transform metric
Given a metric space (X, d) and a point z € X, the involution transform

metric is a metric transform d, on X\{z} defined by

__ d=y)
B )

It is a metric for any z € X, if and only if d is a Ptolemaic met-

ric [FoSCO6].

4.2 Metrics on set extensions

e Extension distances
If d is a metric on V,, = {1,...,n}, and o € R, > 0, then the following
extension distances (see, for example, [DelLa97]) are used.
The gate extension distance gat = gat? is a metric on V,,; =
{1,...,n+ 1}, defined by the following conditions:

1. gat(l,n+1) = .
2. gat(i,n+1)=a+d(1,i)if2<i<n.
3. gat(i,j) = d(i,j) if 1 <i < j <n.

The distance gatd is called the gate 0-extension or, simply, 0-extension
of d.

If @ > maxa<;<, d(1,1), then the antipodal extension distance ant =
ant is a distance on V,, 41, defined by the following conditions:

1.ant(l,n+1) = a.
2. ant(i,n+1) =a—d(1,7) if 2<i <n.
3. ant(i,j) =d(i,5) if 1 <i<j<n.

If @ > maxi<; j<n d(i, ), then the full antipodal extension distance
Ant = Antd is a distance on Vo, = {1,...,2n}, defined by the following
conditions:

1. Ant(i,n+i)=aif 1 <i<n.

2. Ant(i,n+j)=a—d(i,j)if 1 <i#j<n.
3. Ant(i,§) = d(i,j) if 1 <i#j<n.

4. Ant(n+i,n+j) =d(i,5) if 1 <i#j <n.
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It is obtained by applying the antipodal extension operation iteratively n
times, starting from d.

The spherical extension distance sph = sph? is a metric on V1,
defined by the following conditions:

1. sph(i,n+1)=aif 1 <i<n.
2. sph(i,j)=d(i,5)if 1 <i<j<n.

e l-sum distance
Let dy be a distance on a set X7, let dy be a distance on a set X5, and
suppose that X7 N Xo = {zp}. The 1-sum distance of d; and ds is the
distance d on X7 U X5, defined by the following conditions:

dl(IE,y), if T,y € )(17
), if x,y € Xo,
d(z,x0) +d(zo,y), if ze€Xi,yeXo.

In Graph Theory, the 1-sum distance is a path metric, corresponding to
the clique 1-sum operation for graphs.

e Disjoint union metric
Given a family (Xy,d;), t € T, of metric spaces, the disjoint union met-
ric is an extended metric on the set | J, X; x {t}, defined by

d((.]?, tl)) (yv t2)) = dt(xv y)

for t1 = to, and d((z,t1), (y,t2)) = oo otherwise.

e Product metric
Given finite or countable number n of metric spaces (X1,d1), (Xa,ds2),
..., (Xn,dy), the product metric is a metric on the Cartesian product
X1 x Xox -+ x X, ={r = (r1,20,...,20) : 71 € X1,...,2, € Xy},
defined as a function of dy, ..., d,. The simplest finite product metrics are
defined by:

LoYor di(zi,y) )
2. (X0 d(zi,y:))7, 1 <p< oo
3. maxi<i<n di(wi, yi)

n 1 di(zi,yi)
4. Zi:l 20 1+d; (x;,yi)

The last metric is bounded and can be extended to the product of count-
ably many metric spaces.

IfXy=--=X,=Rjand dy =--- =d,, =d, where d(z,y) = |z —y| is
the natural metric on R, all product metrics above induce the Euclidean
topology on the n-dimensional space R™. They do not coincide with the
Fuclidean metric on R™, but they are equivalent to it. In particular, the set
R™ with the Euclidean metric can be considered as the Cartesian product
R x -+ x R of n copies of the real line (R,d) with the product metric,

defined by /> i, d*(xi, y;).
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e Box metric
Let (X, d) be a metric space and I the unit interval of R. The box metric
is the product metric d’ on the Cartesian product X x I defined by

d/((.’L‘l,tl), (.132,152)) = max(d(ml,xg), |t1 — t2|).

Cf. unrelated bounded box metric in Chap.[I8l
e Fréchet product metric
Let (X,d) be a metric space with a bounded metric d. Let X =
Xx--xX...={z=(21,...,2pn,...) 121 € X1,...,2 € Xp,...}
be the countable Cartesian product space of X.
The Fréchet product metric is a product metric on X*°, defined by

Z And(Zn, Yn),
n=1

where > ° | A, is any convergent series of positive terms. Usually, A,, =
2% is used.
A metric (sometimes called the Fréchet metric) on the set of all se-

quences {x, }, of real (complex) numbers, defined by

oo

ZATL |xn_yn| ,
1+ |xn - yn|

n=1

where Zzo:l A, is any convergent series of positive terms, is a Fréchet
product metric of countably many copies of R (C). Usually, 4,, = % or
A, = 2% are used.

e Hilbert cube metric
The Hilbert cube IN0 is the Cartesian product of countable many copies of

the interval [0, 1], equipped with the metric

o0
Z 27 i — il
i=1

(cf. Fréchet infinite metric product). It also can be identified up to
homeomorphisms with the compact metric space formed by all sequences
{zn}n of real numbers such that 0 < z,, < %, where the metric is defined
as /S (@0 — )
¢ Hamming cube

Given integers n > 1 and ¢ > 2, the Hamming space H(n,q) is the set
of all n-tuples over an alphabet of size ¢ (say, the Cartesian product of n
copies of the set {0,1,...,¢ — 1}), equipped with the Hamming metric
(cf. Chap.[), i.e., the distance between two n-tuples is the number of
coordinates where they differ. The Hamming cube is the Hamming space
H(n,?2).
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The infinite Hamming cube H(00,2) is the set of all infinite strings over
the alphabet {0,1} containing only finitely many 1s, equipped with the
Hamming metric.

e Cameron—Tarzi cube
Given integers n > 1 and g > 2, the normalized Hamming space H,(q)
is the set of all n-tuples over an alphabet of size ¢, equipped with the
Hamming metric divided by n. Clearly, there are isometric embeddings

Hi(q) — Ha(q) — Ha(q) — Hs(q) —

Let H(q) denote the Cauchy completion (cf. Chap.[l) of the union
(denote it by H,/(q)) of all metric spaces H,(g) with n > 1. This metric
space was introduced in [CaTa08]. Call H(2) the Cameron—Tarzi cube.

It is shown in [CaTa08] that H,(2) is the word metric space (cf.
Chap.[I0) of the countable Nim group, i.e., the elementary Abelian 2-group
of all natural numbers under bitwise addition modulo 2 of the number ex-
pressions in base 2. The Cameron—Tarzi cube is also the word metric space
of an Abelian group.

¢ Warped product metric
Let (X,dx) and (Y,dy) be two complete length spaces (cf. Chap.[I),
and let f : X — R be a positive continuous function. Given a curve
v : [a,b] — X x Y, consider its projections v : [a,b] — X and
'72 : Ja,b] — Y to X and Y, and define the length of v by the formula
S VPO + P®)aP@dt

The Warped product metric is a metric on X x Y, defined as the
infimum of lengths of all rectifiable curves connecting two given points in

X XY (see [BulvO1]).

4.3 Metrics on other sets

Given a metric space (X,d), one can construct several distances between
some subsets of X. The main such distances are: the point-set distance
d(z,A) = infycad(z,y) between a point x € X and a subset A C X,
the set-set distance inf,ca yepd(x,y) between two subsets A and B
of X, and the Hausdorff metric between compact subsets of X, which
are considered in Chap.[ll In this section we list some other distances of
this kind.

e Line-line distance
The line-line distance (or vertical distance between lines) is the
set-set distance in E? between two skew lines, i.e., two straight lines
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that do not lie in a plane. It is the length of the segment of their common
perpendicular whose end points lie on the lines. For [; and [, with equations
lirx=p+qt,t €R, and ls: x =r + st, t € R, the distance is given by

|(r —p,q % s)]
llg x sl|2

where x is the cross product on E3, (,) is the inner product on E3, and
[|.||2 is the Euclidean norm. For x = (q1,¢2,93), s = (81, $2,83), one has
q x5 = (q253 — 4352, 4351 — q153, 152 — q251).
Point-line distance
The point-line distance is the point-set distance between a point and
a line.
In E2, the distance between a point z = (21, 22) and a line I: axq +bxgy +

¢ =0 is given by

lazy + bzo + ¢
In E3, the distance between a point z and a line I: © = p + gt, t € R, is
given by

llg x (p—2)ll2

llall2

where x is the cross product on E?, and ||.||2 is the Euclidean norm.
Point-plane distance

The point-plane distance is the point-set distance in E3 between a
point and a plane. The distance between a point z = (21, 22,23) and a
plane a: axy + brs + cr3z + d = 0 is given by

)

lazy + bze + c23 + d|
Va2 +2+e2

Prime number distance

The prime number distance is the point-set distance in (N, |n —m)|)
between a number n € N and the set of prime numbers P C N. It is the
absolute difference between n and the nearest prime number.

Distance up to nearest integer

The distance up to nearest integer is the point-set distance in
(R, |z — y|) between a number z € R and the set of integers Z C R,
ie., min,ez |z — n|.

Busemann metric of sets

Given a metric space (X, d), the Busemann metric of sets (see [Buse55])
is a metric on the set of all non-empty closed subsets of X, defined by

sup |d(z, A) — d(z, B)|e™ "),
zeX

where p is a fixed point of X, and d(z, A) = minye 4 d(z, y) is the point-
set distance.
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Instead of the weighting factor e~*(?) one can take any distance trans-
form function which decreases fast enough (cf. L,-Hausdorff distance in
Chap.[ll and the list of variations of the Hausdorff metric in Chap.2T]).

¢ Quotient semi-metric
Given an extended metric space (X, d) (i.e., a possibly infinite metric)
and an equivalence relation ~ on X, the quotient semi-metric is a
semi-metric on the set X = X/ ~ of equivalence classes defined, for any
7,7 € X, by

i=1

where the infimum is taken over all sequences x1,¥y1,%2,¥Y2,- -, Tm,Ym
with 1 € T, y, € U, and y; ~ w41 for i = 1,2,...,m — 1. One has
d(z,7) < d(z,y) for all z,35 € X, and d is the biggest semi-metric on X
with this property.



Chapter 5
Metrics on Normed Structures

In this chapter we consider a special class of metrics, defined on some normed
structures, as the norm of the difference between two given elements. This
structure can be a group (with a group norm), a vector space (with a vector
norm or, simply, a norm), a vector lattice (with a Riesz norm), a field (with
a valuation), etc.

e Group norm metric
A group norm metric is a metric on a group (G, +,0), defined by

lz + (=9Il = ll= = yl],

where ||.|| is a group norm on G, i.e., a function ||.|| : G — R such that,
for all x,y € G, we have the following properties:

1. [|z]| > 0, with ||z|| = 0 if and only if z = 0.
2. ||zl = | = =l.
3. ||z +yl| <||z]| + ||y|| (triangle inequality).

Any group norm metric d is right-invariant, i.e., d(z,y) = d(z + z,y + 2)
for any z,y,z € G. Conversely, any right-invariant (as well as any left-
invariant, and, in particular, any bi-invariant) metric d on G is a group
norm metric, since one can define a group norm on G by ||z|| = d(z,0).
e F-norm metric
A wector space (or linear space) over a field F is a set V equipped with
operations of vector addition + : V x V. — V and scalar multiplication - :
FxV — V such that (V, +,0) forms an Abelian group (where 0 € V' is the
zero vector), and, for all vectors x,y € V and any scalars a,b € F, we have
the following properties: 1-x = = (where 1 is the multiplicative unit of F),
(ab) -z =a-(b-z), (a+b)-z=a-x+b-z,anda- (z+y)=a-x+a-y.
A vector space over the field R of real numbers is called a real vector
space. A vector space over the field C of complex numbers is called complex
vector space.
A F-norm metric is a metric on a real (complex) vector space V,
defined by

|z —yllF,

M.M. Deza and E. Deza, Encyclopedia of Distances, 89
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where ||.||F is an F-norm on V, i.e., a function ||.||p : V' — R such that,
for all z,y € V and for any scalar a with |a| = 1, we have the following
properties:

1. ||z]|r > 0, with ||z||F = 0 if and only if 2 = 0.
2. |jaz||F = ||| r.
3. ||z +yllr < lz||F + ||lyl|F (triangle inequality).

An F-norm is called p-homogeneous if ||az||r = |a|?||z||F for any scalar a.
Any F-norm metric d is a translation invariant metric, i.e., d(x,y) =

d(x+z,y+z) for all z,y,z € V. Conversely, if d is a translation invariant

metric on V, then ||z||r = d(x,0) is an F-norm on V.

F*-metric

An F*-metric is an F-norm metric ||z — y||r on a real (complex) vec-

tor space V such that the operations of scalar multiplication and vector

addition are continuous with respect to ||.||p. Thus [|.||r is a function

[lll7 : V — R such that, for all z,y,z, € V and for all scalars a, a,,, we

have the following properties:

. |z||F > 0, with ||z||7 = 0 if and only if 2 = 0.
. Nlaz||F = ||z||F for all a with |a| = 1.

iz + il < llzll + 13l

. Nanz||F — 0 if a,, — 0.

. Nazn||lF — 0 if 2, — 0.

. Nanznllp — 0if a,, — 0, 2, — 0.

S T W N =

The metric space (V, ||z — y||r) with an F*-metric is called a nF*-space.
Equivalently, an F™*-space is a metric space (V,d) with a translation
invariant metric d such that the operation of scalar multiplication and
vector addition are continuous with respect to this metric.

A complete F*-space is called an F-space. A locally convex F-space
is known as a Fréchet space (cf. Chap.)) in Functional Analysis.

A modular space is an F*-space (V,||.||r) in which the F-norm ||.||¢

is defined by

l|z||F = inf{A > 0: p (f) <AL
and p is a metrizing modular on V, i.e., a function p : V — [0, 00] such
that, for all x,y,z, € V and for all scalars a,a,, we have the following
properties:

p(x) =0 if and only if z = 0.

plax) = p(x) implies |a| = 1.

plaz + by) < p(x) + p(y) implies a,b > 0,a + b = 1.
plapz) — 0 if a, — 0 and p(x) < oc.

plaxy,) — 0 if p(x,) — 0 (metrizing property).

For any = € V, there exists k > 0 such that p(kz) < cc.

A e
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e Norm metric
A norm metric is a metric on a real (complex) vector space V', defined
by
llz = yll,

where ||.|| is a norm on V, i.e., a function ||.|| : V — R such that, for all
x,y € V and for any scalar a, we have the following properties:

1. ||z|| > 0, with ||z|| = 0 if and only if = 0.
2. [|az[| = |a|[|||
3. |z +yl| < ||z|| + |ly]| (triangle inequality).

Therefore, a norm ||.|| is a 1-homogeneous F-norm. The vector space
(VL ]]-1]) is called a normed vector space or, simply, normed space.

Any metric space can be embedded isometrically in some normed vector
space as a closed linearly independent subset. Every finite-dimensional
normed space is complete, and all norms on it are equivalent.

In general, the norm ||.|| is equivalent (Maligranda 2008) to the norm

1
zlfup = (lz + 2] - wl[P + |z = ]| - ul[)7,

introduced, for any v € V and p > 1, by Odell and Schlumprecht in 1998.
The norm-angular distance between = and y is defined (Clarkson
1936) by

€T Yy
d(z,y) = || — L.
) = e~ !

The following sharpening of the triangle inequality (Maligranda 2003)
holds:

[l — wll — el — lyll < d(zy) < [l = yll + [ll=l = [lwlll
min{|fz|], [|y[[} max{] |z[], [ly[[}

(2 = d(z, —y)) min{[|z[|, [[y|[} < ||| + [ly[| = [|z + yl]
< (2 = d(z, —y)) max{][z]], |ly[[}-

Dragomir, 2004, call | fab fz)dx| < fj fl(x)|dz  continuous triangle
inequality.

e Reverse triangle inequality
The triangle inequality ||z +y|| < ||z|| 4+ ||y|| in a normed space (V,||.|]) is
equivalent to the following inequality, for any z1,...,x, € V with n > 2:

n n
1Y Sl <Dl
i=1 i=1

If in the normed space (V||.||) for some C' > 1 one has

n n
ol il = 3 el
=1 =1
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then this inequality is called the reverse triangle inequality. This term
is used, sometimes, also for the inverse triangle inequality (cf. kine-
matic metric in Chap.20) and for the eventual inequality Cd(z,z) >
d(x,y) + d(y, z) with C' > 1 in a metric space (X, d).

The triangle inequality ||z + y|| < [|z|| + ||y||, for any z,y € V, in a
normed space (V,[|.||) is, for any number ¢ > 1, equivalent (Belbachir,
Mirzavaziri and Moslenian 2005) to the following inequality:

[l +yl17 < 277 (|27 + [Jy|).

The parallelogram inequality ||z + y||* < 2(||z|[* + [|y||?) is the case ¢ = 2
of above.

Semi-norm semi-metric

A semi-norm semi-metric is a semi-metric on a real (complex) vector
space V', defined by

llz = yll,

where ||.|| is a semi-norm (or pseudonorm) on V, i.e., a function ||.|| : V —
R such that, for all z,y € V and for any scalar a, we have the following
properties:

1. ||lz|| > 0, with ||0]| = 0.
2. [Jaz[| = |a|||||
3. lz+yll <|lz|| + ||y|| (triangle inequality).

The vector space (V,||.||) is called a semi-normed wvector space. Many
normed vector spaces, in particular, Banach spaces, are defined as the
quotient space by the subspace of elements of semi-norm zero.

A quasi-normed space is a vector space V', on which a quasi-norm is
given. A quasi-norm on V is a non-negative function ||.|| : V' — R which
satisfies the same axioms as a norm, except for the triangle inequality
which is replaced by the weaker requirement: there exists a constant
C > 0 such that, for all z,y € V, the following C-triangle inequality
holds:

|z +yll < C(l=[] +[lyl])

(cf. near-metric in Chap.[ll). An example of a quasi-normed space, that
is not normed, is the Lebesgue space L,(€2) with 0 < p < 1 in which a
quasi-norm is defined by

171l = ( / F@)Pdz)/?, f € Ly(9).
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e Banach space
A Banach space (or B-space) is a complete metric space (V, ||z — yl|)
on a vector space V with a norm metric ||z — y||. Equivalently, it is the
complete normed space (V,|].]|). In this case, the norm [|.|| on V is called
the Banach norm. Some examples of Banach spaces are:

1. [} -spaces, I;°-spaces, 1 <p < oo, n €N
2. The space C of convergent numerical sequences with the norm ||z|| =

sup,, |5
3. The space Cy of numerical sequences which converge to zero with the
norm ||z|| = max,, |z,

4. The space C’f; o 1 < p < o0, of continuous functions on [a,b] with the

Ly-norm || f|l, = (J2 |£(t)Pdt)?

5. The space Ck of continuous functions on a compactum K with the
norm || f|| = maxe | f(t)]

6. The space (Cq)" of functions on [a,b] with continuous deriva-
tives up to and including the order n with the norm |[|f|l, =
ZZ:O maXg<t<p |f(k) (t)‘

7. The space C™[I™] of all functions defined in an m-dimensional cube that
are continuously differentiable up to and including the order n with the
norm of uniform boundedness in all derivatives of order at most n

8. The space M|, of bounded measurable functions on [a,b] with the
norm

1fI] = ess sup |f(t)] = inf — sup |f(t)]
a<t<b e,1(e)=0te[a,b]\e
9. The space A(A) of functions analytic in the open unit disk A = {z €

C : |z| < 1} and continuous in the closed disk A with the norm || f|| =
max, oz |£(2)]

10. The Lebesgue spaces L,({2), 1 <p < o0

11. The Sobolev spaces WEP(Q), Q ¢ R®, 1 < p < oo, of functions f
on ) such that f and its derivatives, up to some order k, have a finite
Ly-norm, with the norm || f][x, = S5 [[£@]],

12. The Bohr space AP of almost periodic functions with the norm

IAll=" sup  [f (D)
<

—oco<t<+00

A finite-dimensional real Banach space is called a Minkowskian space.
A norm metric of a Minkowskian space is called a Minkowskian
metric (cf. Chap.[d). In particular, any [,-metric is a Minkowskian
metric.

All n-dimensional Banach spaces are pairwise isomorphic; the set of such
spaces becomes compact if one introduces the Banach—Mazur distance
by dpa(V,W) = lninfr ||T|| - ||T!||, where the infimum is taken over all
operators which realize an isomorphism 7 : V — W.
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l,-metric
The [,-metric d;,, 1 < p < oo, is a norm metric on R™ (or on C"),
defined by

[z = yllp,

where the I,-norm ||.||, is defined by

" 1
llellp = (Y l2il?)7.
i=1

For p = oo, we obtain ||z]lecc = limp_oo &/D iy 2P = maxi<i<p |2l
The metric space (R™,d;,) is abbreviated as Iy and is called [} -space.

The l,-metric, 1 < p < oo, on the set of all sequences z = {z,}22,
of real (complex) numbers, for which the sum Y ;2 |z;|P (for p = oo, the
sum Y .2, |z;]) is finite, is defined by

o0

(> Jai — wilP)7.

i=1

For p = oo, we obtain max;>1 |z; — y;|. This metric space is abbreviated
as [;° and is called [°-space.

Most important are [1-, ls- and [,-metrics; the [o-metric on R™ is also
called the Euclidean metric. The ls-metric on the set of all sequences
{z,,}», of real (complex) numbers, for which Y., |z;]* < oo, is also known
as the Hilbert metric. On R all [,-metrics coincide with the natural
metric |z — y|.

Among [,-metrics, only [;- and [.-metrics are crystalline metrics,
i.e., metrics having polygonal unit balls.

Euclidean metric
The Euclidean metric (or Pythagorean distance, as-the-crow-flies
distance, beeline distance) dp is the metric on R™, defined by

lle = yllz = V(@1 —y1)? + - + (@0 — ya)?-

It is the ordinary ly-metric on R™. The metric space (R",dg) is abbre-
viated as E™ and is called Euclidean space (or real Fuclidean space).
Sometimes, the expression “Euclidean space” stands for the case n = 3,
as opposed to the Fuclidean plane for the case n = 2. The FEuclidean line
(or real line) is obtained for n = 1, i.e., it is the metric space (R, |z — y]|)
with the natural metric |z — y| (cf. Chap.[I2)).

In fact, E™ is an inner product space (and even a Hilbert space),
ie, dg(x,y) = ||z — yll2 = V/{x —y,x —y), where (z,y) is the inner
product on R™ which is given in a suitably chosen (Cartesian) coordinate
system by the formula (z,y) = > | z;y;. In a standard coordinate system
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one has (x,y) = ZZ] 9ijx:y;, where g;; = (e;, e;), and the metric tensor
((gi;)) is a positive-definite symmetric n x n matrix.

In general, a Euclidean space is defined as a space, the properties of
which are described by the axioms of Euclidean Geometry.

e Norm-related metrics on R"

On the vector space R™, there are many well-known metrics related to
a given norm ||.|| on R™, especially, to the Euclidean norm |[|.||2. Some
examples are given below:

1. The British Rail metric (cf. Chap.[I9), defined by

[l + [yl

for x # y (and is equal to 0, otherwise).
2. The radar screen metric (cf. Chap.[I9]), defined by

min{1, [z —yl[}.
3. The (p, ¢)-relative metric (cf. Chap.[IJ), defined by

|z —yll2
q
(3 ([lll5 + llyl15))

)

for z or y # 0 (and equal to 0, otherwise), where 0 < ¢ < 1, and
p > max{1l — g, Q—gq} For ¢ = 1 and any 1 < p < oo, one obtains the
p-relative metric; for ¢ = 1 and p = oo, one obtains the relative
metric (cf. Chap.[I9).

4. The M-relative metric (cf. Chap.[T9), defined by

|z — yll2
FUlzll2) - F(llyll2)”

for x or y # 0, where f : [0,00) — (0,00) is a convex increasing func-
tion such that % is decreasing for x > 0. In particular, the distance

[lz—yl[2 : . n s . .,
is a metric on R™ if and only if p > 1. A similar
1 1E /1 T1E yer=

metric on R™”\{0} can be defined by H“:”_iy”z

o|l2-[lyll2 "

The last two constructions can be used for any Ptolemaic space (V,]].|]).
e Unitary metric

The unitary metric (or complex Euclidean metric) is the lo-metric on

C", defined by

lle = yllz = Viz1 =g+ + fzn — yal®.
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The metric space (C", ||z — yl||2) is called the unitary space (or complex
Euclidean space). For n = 1, we obtain the complex plane (or Argand
plane), i.e., the metric space (C,|z — u|) with the complex modulus
metric |z — ul; here |z| = |21 + iz2| = /2] + 23 is the complex modulus
(cf. also quaternion metric in Chap.[I2]).

L,-metric

An Ly-metric dr,, 1 < p < oo, is anorm metric on L, (2, A, i), defined by

1S = gllp

for any f,g € L,(Q, A, ). The metric space (L,(Q, A, ), dz,) is called
the L,-space (or Lebesgue space).

Here Q is a set, and A is n o-algebra of subsets of €2, i.e., a collection of
subsets of ) satisfying the following properties:

1. Qe A
2. If A€ A, then Q\A € A.
3. If A=U52 A, with A; € A, then A € A.

A function p @ A — Rxg is called a measure on A if it is additive, i.e.,
p(Ui>14;) = >,5q 1(A;) for all pairwise disjoint sets A; € A, and satisfies
w(0) = 0. A measure space is a triple (2, A4, u).

Given a function f : Q — R(C), its L,-norm is defined by

It = ( /. f<w>f’u<dw>)’l’ |

Let L,(Q, A, 1) = L,(2) denote the set of all functions f : & — R (C)
such that || f||, < oco. Strictly speaking, L, (€2, A, ut) consists of equivalence
classes of functions, where two functions are equivalent if they are equal
almost everywhere, i.e., the set on which they differ has measure zero. The
set Loo(Q, A, 1) is the set of equivalence classes of measurable functions
f:Q — R (C) whose absolute values are bounded almost everywhere.

The most classical example of an L,-metric is dz,, on the set L, (22, A, 1),
where ) is the open interval (0, 1), A is the Borel o-algebra on (0,1), and
w is the Lebesgue measure. This metric space is abbreviated by L,(0,1)
and is called L,(0,1)-space.

In the same way, one can define the L,-metric on the set C,p of
all real (complex) continuous functions on [a,b]: dr,(f,g) = (ff |f(z) —
g(x)\Pdm)%. For p = o0, dr_ (f,9) = maxe<a<p | f(2) — g(x)]. This metric
space is abbreviated by C’[’; ) and is called Cﬁl ] space.

If Q =N, A= 2% is the collection of all subsets of Q, and p is the
cardinality measure (i.e., p(A) = |A| if A is a finite subset of Q, and
p(A) = oo, otherwise), then the metric space (L, (€2,2%,1.]),dy,) coincides
with the space [p°.
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If Q =V, is a set of cardinality n, A = 2"», and pu is the cardinality
measure, then the metric space (Ly(V,,2"",|.]),dr,) coincides with the
space [y

e Dual metrics
The [,-metric and the [,-metric, 1 < p,q < oo, are called dual if 1/p +
1/¢=1.

In general, when dealing with a normed vector space (V,||.||v), one is
interested in the continuous linear functionals from V into the base field
(R or C). These functionals form a Banach space (V',||.||v/), called
the continuous dual of V. The norm ||.||y» on V' is defined by ||T||v: =
SUP| |1y <1 |7 (2)]-

The continuous dual for the metric space Iy (15°) is I (I7°, respectively).
The continuous dual of I (I$°) is I (I, respectively). The continuous
duals of the Banach spaces C' (consisting of all convergent sequences, with
loo-metric) and Cj (consisting of the sequences converging to zero, with
loo-metric) are both naturally identified with [$°.

e Inner product space
An inner product space (or pre-Hilbert space) is a metric space (V, ||z —
y||) on a real (complex) vector space V' with an inner product (x,y) such
that the norm metric ||z — y|| is constructed using the inner product norm
2]l = /T, 2).

An inner product (,) on a real (complex) vector space V is a symmetric
bilinear (in the complex case, sesquilinear) form on V, i.e., a function
(,) : VxV — R (C) such that, for all z,y,z € V and for all scalars «, 3,
we have the following properties:

1. (x,x) > 0, with (z,z) = 0 if and only if = 0.
2. {(x,y) = (y,x), where the bar denotes complex conjugation.
3. {ax + By, 2) = afz, z) + B{y, 2)-

For a complex vector space, an inner product is called also a Hermitian
inner product, and the corresponding metric space is called a Hermitian
inner product space.

A norm ||.|| in a normed space (V,|].|]) is generated by an inner product if
and only if, for all z,y € V, we have: ||z +y||>+ ||z —y||*> = 2(||z]|*+]|y]|?)

e Hilbert space

A Hilbert space is an inner product space which, as a metric space,
is complete. More precisely, a Hilbert space is a complete metric space
(H, ||x —y||) on a real (complex) vector space H with an inner product {,)
such that the norm metric ||z — y|| is constructed using the inner product
norm ||z|| = \/{(z,z). Any Hilbert space is a Banach space.

An example of a Hilbert space is the set of all sequences x = {z,}, of
real (complex) numbers such that Y7~ |x;|* converges, with the Hilbert
metric defined by
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Other examples of Hilbert spaces are any Lo-space, and any finite-
dimensional inner product space. In particular, any Euclidean space is
a Hilbert space.

A direct product of two Hilbert spaces is called a Liouwville space (or
line space, extended Hilbert space).

Given an infinite cardinal number 7 and a set A of the cardinality 7, let
Ra, a € A, be the copies of R. Let H(A) = {{z,} € [[,eaRa: > 22 <
oo}; then H(A) with the metric, defined for {z,}, {v.} € H(A) as

(3 (2a — 5)®)?,

acA

is called the generalized Hilbert space of weight 7.

Erdoés space

The Erdé6s space (or rational Hilbert space) is the metric subspace of o
consisting of all vectors in [y the coordinates of which are all rational. It
has topological dimension 1 and is not complete. Erdos space is homeo-
morphic to its countable infinite power, and every non-empty open subset
of it is homeomorphic to whole space.

The complete Erdés space (or irrational Hilbert space) is the complete
metric subspace of [5 consisting of all vectors in I3 the coordinates of which
are all irrational.

Riesz norm metric
A Riesz space (or vector lattice) is a partially ordered vector space (Vg;, <)
in which the following conditions hold:

1. The vector space structure and the partial order structure are compat-
ible, i.e., from x < y it follows that x + z < y 4+ z, and from z > 0,
a € R, a > 0 it follows that az > 0.

2. For any two elements =,y € Vg;, there exist the join x Vy € Vi; and

meet © Ay € Vg; (cf. Chap.[I0).

The Riesz norm metric is a norm metric on Vg; defined by

|z — yl|rs,

where ||.||r; is a Riesz norm on Vg, i.e., a norm such that, for any z,y €
Vri, the inequality |z| =< |y|, where |z| = (=) V (x), implies ||z||r; <
1l

The space (Vg,||.||ri) is called a normed Riesz space. In the case of
completeness, it is called a Banach lattice.
Banach—Mazur compactum
The Banach—Mazur distance dg); between two n-dimensional normed
spaces (V. ||.||v) and (W, |].||w) is defined by

i [|7]] - |7,



5 Metrics on Normed Structures 99

where the infimum is taken over all isomorphisms 7" : V — W. It is a
metric on the set X™ of all equivalence classes of n-dimensional normed
spaces, where V' ~ W if and only if they are isometric. Then the pair
(X™, dppr) is a compact metric space which is called the Banach—Mazur
compactum.
e Quotient metric
Given a normed space (V,|].||y) with a norm ||.||y and a closed subspace
W of V, let (V/W,||.|lv/w) be the normed space of cosets 2 +W = {z+w :
w e W}, x eV, with the quotient norm ||z +W||y w = infuew ||z+wl|y.
The quotient metric is a norm metric on V/W defined by

Iz +W) = (y+W)llvyw-

e Tensor norm metric
Given normed spaces (V, ||.||v) and (W, ||.||w), a norm ||.||g on the tensor
product V@ W is called tensor norm (or cross norm) if ||z ® yllg =
[l||v||ly||w for all decomposable tensors x ® y.
The tensor product metric is a norm metric on V' ® W defined by

|z = tlle-

Forany z e VW, 2z = Zj z; ®y;, x; €V, y; € W, the projective norm
(or m-norm) of z is defined by ||z[[p = inf ) |[z;[|v[|y;|lw, where the
infimum is taken over all representations of z as a sum of decomposable
vectors. It is the largest tensor norm on V @ W.

e Valuation metric
A valuation metric is a metric on a field F defined by

Il = yll;

where ||.|| is a valuation on F, i.e., a function ||.|| : F — R such that, for
all z,y € F, we have the following properties:

1. [|z]| > 0, with ||z|| = 0 if and only if z = 0.

2. lzyll = [l llyl]-
3. ||z +yl| <||z]| + ||y|| (triangle inequality).

If ||o + y|| < max{||z||,||y||}, the valuation ||.|| is called non-Archimedean.
In this case, the valuation metric is an ultrametric. The simplest valua-
tion is the trivial valuation ||.||¢r: ||0]]er = 0, and ||z||s = 1 for x € F\{0}.
It is non-Archimedean.

There are different definitions of valuation in Mathematics. Thus, the
function v : F — R U {oo} is called a waluation if v(z) > 0, v(0) = oo,
v(zy) = v(z) + v(y), and v(r + y) > min{v(z),v(y)} for all z,y € F.
The valuation ||.|| can be obtained from the function v by the formula
||| = a¥®) for some fixed 0 < a < 1 (cf. p-adic metric in Chap.[@IJ).
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The Kirschik valuation |.|grs is a function |.|k,s : F — R such that
|x‘Krs > 07 |5L'|Krs = 0 if and Only if v = Oa |xy|Krs = |x‘Krs|y‘Krs, and
|2 4+ ylrrs < Cmax{|z|krs, |y|xrs} for all 2,y € F and for some positive
constant C, called the constant of valuation. If C < 2, one obtains the
ordinary valuation ||.|| which is non-Archimedean if C' < 1. In general,
any |.|krs is equivalent to some ||.||, i.e., |.[%,, = ||.|| for some p > 0.

Finally, given an ordered group (G, -, e, <) equipped with zero, the Krull
valuation is a function |.| : F — G such that |z| = 0 if and only if z = 0,
|zy| = |z||y|, and |z +y| < max{|z|, |y|} for any x,y € F. It is a generaliza-
tion of the definition of non-Archimedean valuation ||.|| (cf. generalized
metric in Chap.[B).

e Power series metric
Let F be an arbitrary algebraic field, and let F(x~!) be the field of power
series of the form w = o™ 4+ -+ oo + a1z~ + -+, a; € F. Given
[ > 1, a non-Archimedean valuation ||.|| on F(z~1) is defined by

I i w0,
”w'{o, it w=0.

The power series metric is the valuation metric ||[w — v|| on F(z~1).
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Chapter 6
Distances in (Geometry

Geometry arose as the field of knowledge dealing with spatial relationships.
It was one of the two fields of pre-modern Mathematics, the other being the
study of numbers. Earliest known evidence of abstract representation — ochre
rocks marked with cross hatches and lines to create a consistent complex
geometric motif, dated about 70,000 BC — were found in Blombos Cave, South
Africa. In modern times, geometric concepts have been generalized to a high
level of abstraction and complexity.

6.1 Geodesic Geometry

In Mathematics, the notion of “geodesic” is a generalization of the notion of
“straight line” to curved spaces. This term is taken from Geodesy, the science
of measuring the size and shape of the Earth.

Given a metric space (X, d), a metric curve v is a continuous function
v : 1 — X, where [ is an interval (i.e., non-empty connected subset) of R.
If v is  times continuously differentiable, it is called a reqular curve of class
C"; if r = o0, 7y is called a smooth curve.

In general, a curve may cross itself. A curve is called a simple curve (or arc,
path) if it does not cross itself, i.e., if it is injective. A curve v : [a,b] — X is
called a Jordan curve (or simple closed curve) if it does not cross itself, and
+(a) = ~(b).

The length (which may be equal to co) I(7) of a curve 7 : [a,b] — X is
defined by sup .1, d(v(t;—1),7(t;)), where the supremum is taken over all
finite decompositions a =ty < t1 < ... < t, = b, n € N, of [a,b]. A curve with
finite length is called rectifiable. For each regular curve v : [a,b] — X define
the natural parameter s of v by s = s(t) = [(7V|ja,q), Where I(7](4,4) is the
length of the part of v corresponding to the interval [a,t]. A curve with this
natural parametrization v = 7(s) is called of unit speed, (or parameterized
by arc length, normalized); in this parametrization, for any t1,¢s € I, one has

l(v‘[tl,tz]) = |t2 - t1|7 and l(’Y) = ‘b - a’|'

M.M. Deza and E. Deza, Encyclopedia of Distances, 103
DOI 10.1007/978-3-642-00234-2_6, (© Springer-Verlag Berlin Heidelberg 2009
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The length of any curve 7 : [a,b] — X is at least the distance between its
end points: [(y) > d(y(a),v(b)). The curve ~, for which I(v) = d(v(a), (D)),
is called the geodesic segment (or shortest path) from x = ~y(a) to y =
~(b), and denoted by [z, y]. Thus, a geodesic segment is a shortest join of its
endpoints; it is an isometric embedding of [a,b] in X. In general, geodesic
segments need not exist, except for a trivial case when the segment consists
of one point only. A geodesic segment joining two points need not be unique.

A geodesic (cf. Chap.[l) is a curve which extends indefinitely in both
directions and behaves locally like a segment, i.e., is everywhere locally a
distance minimizer. More exactly, a curve v : R — X, given in the natural
parametrization, is called a geodesic if, for any ¢t € R, there exists a neighbor-
hood U of t such that, for any t1,t2 € U, we have d(y(t1),7(t2)) = [t1 — ta.
Thus, any geodesic is a locally isometric embedding of the whole of R in X.

A geodesic is called a metric straight line if the equality d(y(t1),y(t2)) =
|t1 — t2| holds for all t1,t2 € R. Such a geodesic is an isometric embedding of
the whole real line R in X. A geodesic is called a metric great circle if it is
an isometric embedding of a circle S*(0,7) in X. In general, geodesics need
not exist.

e (Geodesic metric space
A metric space (X,d) is called geodesic if any two points in X can be
joined by a geodesic segment, i.e., for any two points z,y € X, there is an
isometry from the segment [0, d(x,y)] into X. Any complete Riemannian
space and any Banach space is a geodesic metric space.

A metric space (X, d) is called a locally geodesic metric space if any
two sufficiently close points in X can be joined by a geodesic segment; it
is called D-geodesic if any two points at distance <D can be joined by a
geodesic segment.

e Geodesic distance
The geodesic distance (or shortest path distance) is the length of a
geodesic segment (i.e., a shortest path) between two points.

e Intrinsic metric
Given a metric space (X,d) in which every two points are joined by a
rectifiable curve, the internal metric (cf. Chap.d) D on X is defined as
the infimum of the lengths of all rectifiable curves, connecting two given
points z,y € X.

The metric d on X is called the intrinsic metric (or length metric)
if it coincides with its internal metric D. A metric space with the intrinsic
metric is called a length space (or path metric space, inner metric
space, intrinsic space).

If, moreover, any pair z,y of points can be joined by a curve of length
d(x,y), the intrinsic metric d is called strictly intrinsic, and the length
space (X, d) is a geodesic metric space.

A complete metric space (X, d) is a length space if and only if it is hav-
ing approximate midpoints, i.e., for any points z,y € X and for any
€ > 0, there exists a third point z € X with d(z, 2),d(y,z) < %d(m,y) +e.
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Any complete locally compact length space is a proper geodesic metric
space.
e (G-space
A G-space (or space of geodesics) is a metric space (X,d) with the
geometry characterized by the fact that extensions of geodesics, defined
as locally shortest lines, are unique. Such geometry is a generalization of

Hilbert Geometry (see [Busebd).
More exactly, a G-space (X, d) is defined by the following conditions:

1. Tt is proper (or finitely compact), i.e., all metric balls are compact.

2. It is Menger-convex, i.e., for any different =,y € X, there exists a
third point z € X, z # x,y, such that d(x, z) + d(z,y) = d(x,y).

3. It is locally extendable, i.e., for any a € X, there exists » > 0 such that,
for any distinct points z,y in the ball B(a,r), there exists z distinct
from 2 and y such that d(z,y) + d(y, z) = d(z, 2).

4. Tt is uniquely extendable, i.e., if in 3 above two points z; and zy were
found, so that d(y, z1) = d(y, 22), then z; = 2z5.

The existence of geodesic segments is ensured by finite compactness and
Menger-convexity: any two points of a finitely compact Menger-convex set
X can be joined by a geodesic segment in X. The existence of geodesics is
ensured by the axiom of local prolongation: if a finitely compact Menger-
convex set X is locally extendable, then there exists a geodesic containing a
given segment. Finally, the uniqueness of prolongation ensures the assump-
tion of Differential Geometry that a line element determines a geodesic
uniquely.

All Riemannian and Finsler spaces are G-spaces. A one-dimensional
G-space is a metric straight line or a metric great circle. Any two-
dimensional G-space is a topological manifold.

Every G-space is a chord space, i.e., a metric space with a set distin-
guished geodesic segments such that any two points are joined by a unique
such segment (see [BuPhL8T]).

e Desarguesian space

A Desarguesian space is a G-space (X, d) in which the role of geodesics
is played by ordinary straight lines. Thus, X may be topologically mapped
into a projective space RP™ so that each geodesic of X is mapped into a
straight line of RP™. Any X mapped into RP™ must either cover all of
RP™ and, in such a case, the geodesics of X are all metric great circles of
the same length, or X may be considered as an open convex subset of an
affine space A™.

A space (X,d) of geodesics is a Desarguesian space if and only if the
following conditions hold:

1. The geodesic passing through two different points is unique.

2. For dimension n = 2, both the direct and the converse Desargues the-
orems are valid and, for dimension n > 2, any three points in X lie in
one plane.
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Among Riemannian spaces, the only Desarguesian spaces are Euclidean,
hyperbolic, and elliptic spaces. An example of the non-Riemannian De-
sarguesian space is the Minkowskian space which can be regarded as the
prototype of all non-Riemannian spaces, including Finsler spaces.
e (-space of elliptic type

A G-space of elliptic type is a G-space in which the geodesic through
two points is unique, and all geodesics are the metric great circles of the
same length.

Every G-space such that there is unique geodesic through each given
pair of points is either a G-space of elliptic type, or a straight G-space.

e Straight G-space

A straight G-space is a G-space in which extension of a geodesic is
possible globally, so that any segment of the geodesic remains a shortest
path. In other words, for any two points z,y € X, there is a unique geodesic
segment joining = to y, and a unique metric straight line containing x
and y.

Any geodesic in a straight G-space is a metric straight line, and is
uniquely determined by any two of its points. Any two-dimensional straight
G-space is homeomorphic to the plane.

All simply-connected Riemannian spaces of non-positive curvature (in-
cluding Euclidean and hyperbolic spaces), Hilbert geometries, and Te-
ichmiiller spaces of compact Riemann surfaces of genus g > 1 (when
metrized by the Teichmiiller metric) are straight G-spaces.

e Gromov hyperbolic metric space
A metric space (X, d) is called Gromov hyperbolic if it is geodesic and
d-hyperbolic for some ¢ > 0.

Any complete simply connected Riemannian space of sectional curvature
k < —a? is a Gromov hyperbolic metric space with § = % An important
class of Gromov hyperbolic metric spaces are the hyperbolic groups, i.e.,
finitely generated groups whose word metric is d-hyperbolic for some
6 > 0. A metric space is a real tree exactly when it is a Gromov hyperbolic
metric space with § = 0.

A geodesic metric space (X,d) is 6-hyperbolic if and only if it is Rips
40-hyperbolic, i.e., each of its geodesic triangles (the union of three geodesic
segments [x,yl, [z,z], [y,z]) is 4d-thin (or 4d-slim): every side of the
triangle is contained in the 49-neighborhood of the other two sides (a 44-
neighborhood of a subset A C X is the set {b € X :inf,c4 d(b,a) < 46}).

Every CAT (k) space with k < 0 is Gromov hyperbolic. Every Euclidean
space E™ is a CAT(0) space; it is Gromov hyperbolic only for n = 1.

e CAT(k) space
Let (X,d) be a metric space. Let M? be a simply connected two-
dimensional Riemannian manifold of constant curvature k, i.e., the
2-sphere S2 with k > 0, the Euclidean plane E? with x = 0, or the
hyperbolic plane H? with x < 0. Let D, denote the diameter of M? i.e.,
Dn:%if/ﬁ>0,andD,{:ooif/£§O.
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A triangle T in X consists of three points in X together with three
geodesic segments joining them pairwise; the segments are called the sides
of the triangle. For a triangle T C X, a comparison triangle for T in M?
is a triangle 7" C M? together with a map fr which sends each side of T
isometrically onto a side of 7”. A triangle T is said to satisfy the Gromov
CAT (k) inequality (for Cartan, Alexandrov and Toponogov) if, for every
xz,y € T, we have

d(z,y) < dye=(fr(z), fr(y)),

where fr is the map associated to a comparison triangle for T in M?2.
So, the geodesic triangle T is at least as “thin” as its comparison triangle
in M?2.

The metric space (X, d) is a CAT (k) space if it is D,-geodesic (i.e.,
any two points at distance <D, can be joined by a geodesic segment), and
all triangles T with perimeter <2D,, satisfy the CAT(k) inequality.

Every CAT(k1) space is a CAT(k2) space if k1 < ka. Every real tree
is a CAT(—00) space, i.e., is a CAT (k1) space for all k € R.

An Alexandrov space with curvature bounded from above by
k (or locally CAT(k) space) is a metric space (X,d) in which every
point p € X has a neighborhood U such that any two points z,y € U
are connected by a geodesic segment, and the CAT (k) inequality holds for
any z,y,z € U. A Riemannian manifold is locally CAT (k) if and only if
its sectional curvature is at most .

An Alexandrov space with curvature bounded from below by
k is a metric space (X, d) in which every point p € X has a neighborhood
U such that any two points x,y € U are connected by a geodesic segment,
and the reverse CAT (k) inequality

d(x,y) = dar>(fr(2), fr(y))

holds for any x,y,z € U, where fr is the map associated to a comparison
triangle for T in M?2.

The above two definitions differ only by the sign (<0 or >0) of
d(x,y) —dpr2 (fr(x), fr(y)). In the case k = 0, the above spaces are called
non-positively curved and non-negatively curved metric spaces,
respectively; they differ also by the sign of

202z, m(,9)) — (& (2,) + (2,9) + 50(2,0)

(<0 or >0, respectively) where again x,y,z are any three points in a
neighborhood U for each p € X, and m(z,y) is the midpoint of the metric
interval I(z,y).

In a CAT(0) space, any two points are connected by a unique geodesic
segment, and the distance is a convex function. Any CAT(0) space is Buse-
mann convex and Ptolemaic (cf. Chap.[Il) and vice versa.
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Euclidean spaces, hyperbolic spaces, and trees are CAT(0) spaces.
Complete CAT(0) spaces are called also Hadamard spaces.
e Bruhat—Tits metric space
A metric space (X, d) satisfies semi-parallelogram law (or Bruhat-Tits
CN inequality) if for any =,y € X, there is a point m(x,y) that satisfies

202z, m(, ) — (&2, 2) + & (,) + 5P(2,)) <O

In fact, the point m(z,y) is the unique midpoint between z and y (cf.
midpoint convexity in Chap.[I]).

A geodesic space is a CAT(0) space if and only if it satisfies above
inequality.

The usual vector parallelogram law ||u—v||? +|Ju+v||* = 2||u|*+2||v||?,
characterizing norms induced by inner products, is equivalent to the semi-
parallelogram law with the inequality replaced by an equality.

A Bruhat—Tits metric space is a complete metric space satisfying
the semi-parallelogram law.

e Boundary of metric space
There are many notions of the boundary 90X of a metric space (X, d).
We give below some of the most general among them. Usually, if (X, d) is
locally compact, X U0X is its compactification:

1. Ideal boundary. Given a geodesic metric space (X,d), let v* and
7? be two metric rays, i.e., geodesics with isometry of R>¢ into X.
These rays are called equivalent if the Hausdorff distance between
them (associated with the metric d) is finite, i.e., if sup,~ d(v*(¢), v2(¢))
< o0. -

The boundary at infinity (or ideal boundary) of (X,d) is the
set Jso X of equivalence classes 74 of all metric rays. Cf. metric cone
structure, asymptotic metric cone in Chap.[Il

If (X,d) is a complete CAT(0) space, then the Tits metric (or
asymptotic angle of divergence) on 0, X is defined by

2 arcsin (B)
2

for all 71,72 € 050X, where p = limy— 4o +d(v'(t),7%(t)). The set
OsoX equipped with the Tits metric is called the Tits boundary of X.

If (X, d, xo) is a pointed complete CAT(—1) space, then the Bourdon
metric (or visual distance) on 0, X is defined by

e~ (@)

for any distinct points z,y € 9, X, where (x.y) denotes the Gromov
product (z.y),.
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The visual sphere of (X,d) at a point z; € X is the set of
equivalence classes of all metric rays emanating from xzg.

2. Gromov boundary. Given a pointed metric space (X,d,x¢), the
Gromov boundary of it (as generalized by Buckley and Kokkendorff
2005, from the case of the Gromov hyperbolic space) is the set dgX of
equivalence classes of Gromov sequences. A sequence x = {x, }, in X is
a Gromov sequence if the Gromov product (z;.2;)g, — 00 as 4, j — oo.
Two Gromov sequences x and y are equivalent if there is a finite chain
of Gromov sequences z¥, 0 < k < k’, such that = 2%,y = a:kl, and
lim; j oo inf(xf‘l.xi) =oofor 0 <k <FE.

In a proper geodesic Gromov hyperbolic space (X,d), the visual
sphere does not depends on the base point xy and is naturally isomor-
phic to its Gromov boundary 0 X, which can be identified with 0., X.

3. g-boundary. Denote by X, the metric completion of (X, d) and, view-
ing X as a subset of X, denote by 90X, the difference X \X. Let
(X,1,20) be a pointed unbounded length space, i.e., its metric coin-
cides with the internal metric [ of (X, d). Given a measurable function
g : R>g — Rsg, the g-boundary of (X,d,z) (as generalized by
Buckley and Kokkendorff 2005, from spherical and Floyd boundaries) is
0,X = 0X,\0X;, where o(x,y) = inf f,yg(z)dl(z) for all ,y € X (here
the infimum is taken over all metric segments v = [z, y]).

4. Hotchkiss boundary. Given a pointed proper Busemann convex
metric space (X,d,zo), the Hotchkiss boundary of it is the set
On (X, o) of isometries f : R>g — X with f(0) = x¢. The bound-
aries 97 X and 0y X are homeomorphic for distinct zg,z; € X. In
a Gromov hyperbolic space, 077 X is homeomorphic to the Gromov
boundary dg X.

5. Metric boundary. Given a pointed metric space (X,d,xo) and an
unbounded subset S of R>¢, aray v : .S — X is called a weakly geodesic
ray if, for every z € X and every € > 0, there is an integer N such that
|[d((t),7(0))—t| < e, and |d(v(t),z)—d(v(s),x)—(t—s)| < efor all s,t €
T with s,t > N. Let G(X, d) be the commutative unital C*-algebra with
the norm ||.||~, generated by the (bounded, continuous) functions which
vanish at infinity, the constant functions, and the functions of the form
gy(x) = d(x,z0) — d(z,y); cf. quantum metric space for definitions.

The Rieffel’s metric boundary drX of (X, d) is the difference Yd\X ,

where X is the metric compactification of (X,d), i.e., the maximum
ideal space (the set of pure states) of this C*-algebra.

For a proper metric space (X, d) with a countable base, the bound-
ary OrX consists of the limits lim; o f(7(t)) for every weakly
geodesic ray 7 and every function f from the above C*-algebra (Rieffel
2002).
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e Projectively flat metric space

A metric space, in which geodesics are defined, is called projectively
flat if it locally admits a geodesic mapping (or projective mapping), i.e., a
mapping preserving geodesics into an Euclidean space. Cf. Euclidean rank
of metric space in Chap.[l} similar terms are: affinely flat, conformally
flat, etc.

A Riemannian space is projectively flat if and only if it has constant
(sectional) curvature.

6.2 Projective Geometry

Projective Geometry is a branch of Geometry dealing with the properties and
invariants of geometric figures under projection. Affine Geometry, Similarity
(or Metric) Geometry and Euclidean Geometry are subsets of Projective Ge-
ometry of increasing complexity. The main invariants of Projective, Affine,
Metric, Euclidean Geometry are, respectively, cross-ratio, parallelism (and
relative distances), angles (and relative distances), absolute distances.

An n-dimensional projective space FP™ is the space of one-dimensional
vector subspaces of a given (n+ 1)-dimensional vector space V over a field F.
The basic construction is to form the set of equivalence classes of non-zero
vectors in V' under the relation of scalar proportionality. This idea goes back
to mathematical descriptions of perspective. The use of a basis of V' allows
the introduction of homogeneous coordinates of a point in KP"™ which are
usually written as (z1 : @9 @ ... : &y, : Tpy1) — a vector of length n + 1, other
than (0:0:0:...:0). Two sets of coordinates that are proportional denote
the same point of the projective space. Any point of projective space which
can be represented as (21 : xg : ... : @, : 0) is called a point at infinity. The
part of a projective space KP"™ not “at infinity,” i.e., the set of points of the
projective space which can be represented as (x1 : x3 : ... : z, : 1), is an
n-dimensional affine space A™.

The notation RP™ denotes the real projective space of dimension n, i.e.,
the space of one-dimensional vector subspaces of R**1. The notation CP™
denotes the complex projective space of complex dimension n. The projective
space RP™ carries a natural structure of a compact smooth n-dimensional
manifold. It can be viewed as the space of lines through the zero element 0 of
R+ (i.e., as a ray space). It can be viewed also as the set R", considered as
an affine space, together with its points at infinity. Also it can be seen as the
set of points of an n-dimensional sphere in R**! with identified diametrically-
opposite points.

The projective points, projective straight lines, projective planes,...,
projective hyperplanes of KP™ are one-dimensional, two-dimensional, three-
dimensional, ..., n-dimensional subspaces of V', respectively. Any two
projective straight lines in a projective plane have one and only one common
point. A projective transformation (or collineation, projectivity) is a bijection
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of a projective space onto itself, preserving collinearity (the property of
points to be on one line) in both directions. Any projective transformation is
a composition of a pair of perspective projections. Projective transformations
do not preserve sizes or angles but do preserve type (that is, points remain
points, and lines remain lines), incidence (that is, whether a point lies on a
line), and cross-ratio.

Here, given four collinear points x, y, z,t € FP™, their cross-ratio is defined
by (x,y,z,t) = %, where 7= denotes the ratio % for some
affine bijection f from the straight line [, , through the points = and y onto
K. Given four projective straight lines l,,l,,!.,[;, containing points z,y, z, ¢,

respectively, and passing through a given point, their cross-ratio, defined by
(la: ly lz lt) _ sin(ly,l) sin(ly,l)

= S coincides with (x,y,z,t). The cross-ratio of
(z—2)(y—t)

four complex numbers z,y, z,t is given by (x,y, z,t) = (ESICEDE
if and only if the four numbers are either collinear or concyclic.

It is real

e Projective metric
Given a convex subset D of a projective space RP", the projective met-
ric d is a metric on D such that shortest paths with respect to this metric
are parts of or entire projective straight lines. It is assumed that the fol-
lowing conditions hold:

1. D does not belong to a hyperplane.

2. For any three non-collinear points x,y,z € D, the triangle inequality
holds in the strict sense: d(z,y) < d(x, z) + d(z,y).

3. If x,y are different points in D, then the intersection of the straight
line I, , through = and y with D is either all of [, ,, and forms a met-
ric great circle, or is obtained from [, , by discarding some segment
(which can be reduced to a point), and forms a metric straight line.

The metric space (D,d) is called a projective metric space (cf. pro-
jectively flat space). The problem of determining all projective metrics
constitutes the fourth problem of Hilbert; it has been solved only for dimen-
sion n = 2. In fact, given a smooth measure on the space of hyperplanes
in RP"™, define the distance between any two points x,y € RP™ as one-
half the measure of all hyperplanes intersecting the line segment joining x
and y. The obtained metric is projective; it is the Busemann’s construction
of projective metrics. For n = 2, Ambartzumian [Amba76] proved that all
projective metrics can be obtained from the Busemann’s construction.

In a projective metric space there cannot simultaneously be both types
of straight lines: they are either all metric straight lines, or they are all met-
ric great circles of the same length (Hamel’s theorem). Spaces of the first
kind are called open. They coincide with subspaces of an affine space; the
geometry of open projective metric spaces is a Hilbert Geometry. Hyper-
bolic Geometry is a Hilbert Geometry in which there exist reflections at all
straight lines. Thus, the set D has Hyperbolic Geometry if and only if it is
the interior of an ellipsoid. The geometry of open projective metric spaces
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whose subsets coincide with all of affine space, is a Minkowski Geometry.
Euclidean Geometry is a Hilbert Geometry and a Minkowski Geometry,
simultaneously. Spaces of the second kind are called closed; they coincide
with the whole of RP™. Elliptic Geometry is the geometry of a projective
metric space of the second kind.
e Strip projective metric

The strip projective metric [BuKe53] is a projective metric on the
strip St = {x € R? : —71/2 < x5 < 7/2} defined by

V(T —y1)2 + (v2 — y2)2 + |tanzg — tanyo|.

Note, that St with the ordinary Euclidean metric /@1 — y1)2 + (@2 — y2)2
is not a projective metric space.

e Half-plane projective metric
The half-plane projective metric [BuKe53] is a projective metric on
R? = {z € R?: 25 > 0} defined by

1 1

€2 Y2

V(@ —y1)2 + (22 — y2)% +

e Hilbert projective metric

Given a set H, the Hilbert projective metric h is a complete pro-
jective metric on H. It means that H contains, together with two
arbitrary distinct points z and y, also the points z and ¢ for which
h(z,z)+h(z,y) = h(z,y), h(z,y)+h(y,t) = h(x,t), and that H is homeo-
morphic to a convez set in an n-dimensional affine space A", the geodesics
in H being mapped to straight lines of A™. The metric space (H, h) is called
the Hilbert projective space, and the geometry of a Hilbert projective space
is called Hilbert Geometry.

Formally, let D be a non-empty conver open set in A™ with the bound-
ary 0D not containing two proper coplanar but non-collinear segments
(ordinarily the boundary of D is a strictly convex closed curve, and D
is its interior). Let x,y € D be located on a straight line which intersects
0D at z and t, z is on the side of y, and ¢ is on the side of z. Then the
Hilbert metric h on D is defined by

g ln(x7 y7 Z) t)?

where (z,y, z,t) is the cross-ratio of x,y,z,t, and r is a fixed positive
constant.

The metric space (D, h) is a straight G-space. If D is an ellipsoid,
then h is the hyperbolic metric, and defines Hyperbolic Geometry on D.
On the unit disk A = {z € C : |z| < 1} the metric h coincides with
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the Cayley—Klein—Hilbert metric. If n = 1, the metric h makes D
isometric to the Euclidean line.

If 0D contains coplanar but non-collinear segments, a projective metric
on D can be given by h(z,y) + d(z,y), where d is any Minkowskian
metric (usually, the Euclidean metric).

e Minkowskian metric
The Minkowskian metric (or Minkowski—-Hé6lder distance) is the
norm metric of a finite-dimensional real Banach space.

Formally, let R™ be an n-dimensional real vector space, let K be a
symmetric convexr body in R™ i.e., an open neighborhood of the origin
which is bounded, convex, and symmetric (x € K if and only if —x € K).
Then the Minkowski functional ||.||x : R™ — [0, 00) defined by

\|z||x = inf{a > 0 g € 0K}
is a norm on R™, and the Minkowskian metric m on R is defined by

Iz = yll -

The metric space (R™, m) is called Minkowskian space. It can be considered
as an n-dimensional affine space A™ with a metric m in which the role of
the unit ball is played by a given centrally-symmetric convex body. The
geometry of a Minkowskian space is called Minkowski Geometry. For a
strictly convex symmetric body the Minkowskian metric is a projective
metric, and (R",m) is a G-straight space. A Minkowski Geometry is
Euclidean if and only if its unit sphere is an ellipsoid.

The Minkowskian metric m is proportional to the Euclidean metric dg
on every given line [, i.e., m(z,y) = ¢(I)dg(x,y). Thus, the Minkowskian
metric can be considered as a metric which is defined in the whole affine

space A™ and has the property that the affine ratio < of any three collinear
points a, b, ¢ (cf. Sect.[63) is equal to their distance ratio %

e Busemann metric
The Busemann metric [Busebd] is a metric on the real n-dimensional

projective space RP"™ defined by

n+1

n+1
min — — T 7| —_—
{; el Tlyl] E [ |y||}

for any @ = (1 : .. @ Zpt1),y = (Y1 ¢ oo @ Ynt1) € RP™, where ||z|| =
/ +1
Z?:l x% .
e Flag metric

Given an n-dimensional projective space FP", the flag metric d is a metric
on FP" defined by a flag, i.e., an absolute consisting of a collection of
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m-planes a,,, m = 0,...,n — 1, with «;_1 belonging to «a; for all i €
{1,...,n — 1}. The metric space (FP™,d) is abbreviated by F" and is
called a flag space.

If one chooses an affine coordinate system (x;); in a space F™, so that
the vectors of the lines passing through the (n — m — 1)-plane ,—m—1
are defined by the condition x; = ...z, = 0, then the flag metric d(z,y)
between the points x = (21,...,2,) and y = (y1,...,yn) is defined by

dw,y) = |x1 — |, if 21 #y1, d(z,y) = |22 — 2|, if 21 = y1, 22 # v2,. ..

7d($7y) = |$k_yk‘7 leE]_ =Yty Th—1 = Yk—1,Tk #ykw-' .

e Projective determination of a metric
The projective determination of a metric is an introduction, in sub-
sets of a projective space, of a metric such that these subsets become
isomorphic to a Euclidean, hyperbolic, or elliptic space.

To obtain a Fuclidean determination of a metric in RP™, one should
distinguish in this space an (n — 1)-dimensional hyperplane , called the
hyperplane at infinity, and define E™ as the subset of the projective space
obtained by removing from it this hyperplane 7. In terms of homogeneous
coordinates, m consists of all points (z; : ... : z,, : 0), and E™ consists of
all points (21 : ... : &y : Tpy1) wWith 2,41 # 0. Hence, it can be written as
E'"={z € RP":z = (21 : ... : &, : 1)}. The Euclidean metric dg on E"
is defined by

<x_y7x_y>7

where, for any @ = (1 : ... : @y 2 1),y = (y1 : ... : yp : 1) € E™, one has
(z,y) = 21 Ty

To obtain a hyperbolic determination of a metricin RP™, a set D of inte-
rior points of a real oval hypersurface €2 of order two in RP"™ is considered.
The hyperbolic metric dj,, on D is defined by

S,y 2.8),

where z and ¢ are the points of intersection of the straight line [, , through
the points x and y with Q, (z,y, z,t) is the cross-ratio of the points z, y, z, ,
and r is a fixed positive constant. If, for any = = (z1 : ... : Tpy1),y =
(y1 : ot Yny1) € RP™, the scalar product (x,y) = —x1y1 + Z?;l T;1; 18
defined, the hyperbolic metric on the set D = {x € RP" : (x,x) < 0} can
be written as

|(z, )|

Vi) (y,y)

where r is a fixed positive constant, and arccosh denotes the non-negative
values of the inverse hyperbolic cosine.

T arccosh
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To obtain an elliptic determination of a metric in RP™, one should
consider, for any = = (1 : ... : Tpy1),y = (Y1 ¢ .. : Ynt1) € RP™, the
inner product (x,y) = Z?:ll z;v;. The elliptic metric d.; on RP™ is

defined now by

|{x, )|
Vi z)(y, )

where r is a fixed positive constant, and arccos is the inverse cosine in [0, 7].

In all the considered cases, some hypersurfaces of the second order
remain invariant under given motions, i.e., projective transformations
preserving a given metric. These hypersurfaces are called absolutes. In the
case of a Euclidean determination of a metric, the absolute is an imaginary
(n —2)-dimensional oval surface of order two, in fact, the degenerate abso-
lute 22 +---+22 = 0, 7,41 = 0. In the case of a hyperbolic determination
of a metric, the absolute is a real (n — 1)-dimensional oval hypersurface of
order two, in the simplest case, the absolute —z% + 23 4+ -+ + 22, = 0.
In the case of an elliptic determination of a metric, the absolute is an
imaginary (n — 1)-dimensional oval hypersurface of order two, in fact, the
absolute 7 + - +z2 ;= 0.

7 arccos

6.3 Affine Geometry

An n-dimensional affine space over a field F is a set A™ (the elements of which
are called points of the affine space) to which corresponds an n-dimensional
vector space V over IF (called the space associated to A™) such that, for any a €
A" A =a+V = {a+v : v € V}.In the other words, if a = (aq, ..., a,)andb =
(b1,...,b,) € A™, then the vector ab = (by —a1,...,by — a,) belongs to V.
In an affine space, one can add a vector to a point to get another point, and
subtract points to get vectors, but one cannot add points, since there is no
origin. Given points a,b,c,d € A™ such that ¢ # d, and the vectors ab and
Zi are collinear, the scalar A\, defined by a—>b = /\;i, is called the affine ratio
of ab and cd, and is denoted by Z—Z.

An affine transformation (or affinity) is a bijection of A™ onto itself which
preserves collinearity (i.e., all points lying on a line initially, still lie on a
line after transformation) and ratios of distances (for example, the midpoint
of a line segment remains the midpoint after transformation). In this sense,
affine indicates a special class of projective transformations that do not move
any objects from the affine space to the plane at infinity or conversely. Any
affine transformation is a composition of rotations, translations, dilations, and
shears. The set of all affine transformations of A™ forms a group Aff(A"),
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called the general affine group of A™. Each element f € Af f(A) can be given
by a formula f(a) = b, b; = Z?:l pijaj + ¢j, where ((p;;)) is an invertible
matrix.

The subgroup of Aff(A™), consisting of affine transformations with
det((p;j)) = 1, is called the equi-affine group of A™. An equi-affine space is
an affine space with the equi-affine group of transformations. The funda-
mental invariants of an equi-affine space are volumes of parallelepipeds. In
an equi-affine plane A?, any two vectors vi,vy have an invariant |v; x vy
(the modulus of their cross product) — the surface area of the parallelogram
constructed on v, and vy. Given a non-rectilinear curve v = ~(t), its affine
parameter (or equi-affine arc length) is an invariant parameter defined by

s = f:o Iy x ~"[V/3dt. The invariant k = % X % is called the equi-affine
curvature of . Passing to the general affine group, two more invariants of
the curve are considered: the affine arc length o = fkl/st, and the affine
curvature k = k31/2 %.

For A™, n > 2, the affine parameter (or equi-affine arc length) of a curve
v = ~(t) is defined by s = j;to 1Y,y ™)
(v1,...,vy) is the (oriented) volume spanned by the vectors vy, ..., v,, which
is equal to the determinant of the n x n matrix whose i-th column is the
vector v;.

72 . .
~n(n+1) dt, where the invariant

e Affine distance
Given an affine plane A2, a line element (a,l,) of A% consists of a point
a € A? together with a straight line I, C A2 passing through a.
The affine distance is a distance on the set of all line elements of A?
defined by

2f1/3,

where, for a given line elements (a,l,) and (b,1;), f is the surface area of
the triangle abc if ¢ is the point of intersection of the straight lines [, and
lp. The affine distance between (a,l,) and (b,[;) can be interpreted as the
affine length of the arc ab of a parabola such that [, and [, are tangent to
the parabola at a and b, respectively.

e Affine pseudo-distance
Let A2 be an equi-affine plane, and let v = (s) be a curve in A2 defined as
a function of the affine parameter s. The affine pseudo-distance dp, s
for A? is defined by

dy

ab
Xi
“ ds

)

i.e., is equal to the surface area of the parallelogram constructed on the
—

vectors ab and %, where b is an arbitrary point in A2, @ is a point on v,

and Z—Z is the tangent vector to the curve v at the point a.
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The affine pseudo-distance for an equi-affine space A® can be defined
in a similar manner as

— dy d?y
(ab, =1, =),
"ds’ ds
where v = 7(s) is a curve in A2, defined as a function of the affine param-
o 2
eter s, b € A3, a is a point of 7, and the vectors ‘;—Z, ZTZ are obtained at
the point a.
For A", n > 3, we have dp,ss(a,b) = |(ab, T ‘ég 1)|. For an ar-
bitrary parametrization 7= 7v(t), one obtains dp,f¢(a,b) = |(ab,’y e,

YOOI ...,y D) 3

o Affine metric
The affine metric is a metric on a non-developable surface r = r(uy, us)
in an equi-affine space A3, given by its metric tensor ((g;;)):

gii = @ij
Y ldet((ag))[V

where a;; = (017, Oor, 0;57), 1,7 € {1,2}.

6.4 Non-Euclidean Geometry

The term non-Euclidean Geometry describes both Hyperbolic Geometry (or
Lobachevsky Geometry, Lobachevsky—Bolyai—Gauss Geometry) and Elliptic
Geometry (sometimes called also Riemannian Geometry) which are con-
trasted with Fuclidean Geometry (or Parabolic Geometry). The essential
difference between Euclidean and non-Euclidean Geometry is the nature of
parallel lines. In Euclidean Geometry, if we start with a line [ and a point a,
which is not on [, then there is only one line through « that is parallel to [. In
Hyperbolic Geometry there are infinitely many lines through a parallel to [.
In Elliptic Geometry, parallel lines do not exist.

The Spherical Geomelry is also “non-Euclidean,” but it fails the axiom
that any two points determine exactly one line.

e Spherical metric
Let $7(0,7) = {z € R*™! . 32" 142 — 12} be the sphere in R™! with
the center 0 and the radius » > 0.
The spherical metric (or great circle metric) d,p;, is a metric on

S™(0,r) defined by
n+1
7 arccos <|ZZ L xlyl) ,
2
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where arccos is the inverse cosine in [0, 7]. It is the length of the great

circle arc, passing through x and y. In terms of the standard inner prod-

uct (z,y) = Z?:f x;y; on R"M1 the spherical metric can be written as
K,y

T arccos ——(w,wﬂy,y} .

The metric space (S™(0,7), dspp) is called n-dimensional spherical space.
It is a space of curvature 1/r2, and r is the radius of curvature. It is a model
of n-dimensional Spherical Geometry. The great circles of the sphere are
its geodesics and all geodesics are closed and of the same length. (See, for
example, [Blum70].)

e Elliptic metric

Let RP™ be the real n-dimensional projective space. The elliptic metric
deyy is a metric on RP" defined by

r arccos M
(,2)(y,y)
where, for any = (21 : ... : Tpy1) and y = (y1 ¢ ... : Yng1) € RP™, one

has (x,y) = Z?:ll x;y;, T is a fixed positive constant, and arccos is the

inverse cosine in [0, 7.

The metric space (RP™,d.y) is called n-dimensional elliptic space. Tt is
a model of n-dimensional Elliptic Geometry. It is the space of curvature
1/r%, and r is the radius of curvature. As r — oo, the metric formulas
of Elliptic Geometry yield formulas of Euclidean Geometry (or become
meaningless).

If RP™ is viewed as the set E™(0,r), obtained from the sphere S™(0,r) =
{z e R 2" 42 — 42} in R™H! with center 0 and radius 7 by iden-
tifying diametrically-opposite points, then the elliptic metric on E™(0,r)
can be written as dgpn(z,y) if depn(z,y) < 57, and as 7 — dgpn (@, y) if
dspn(x,y) > §r, where dgpy, is the spherical metric on S™(0,7). Thus,
no two points of £"(0,7) have distance exceeding 7. The elliptic space
(E2(0,7),dey) is called the Poincaré sphere.

If RP™ is viewed as the set E™ of lines through the zero element 0 in
R™1, then the elliptic metric on E™ is defined as the angle between the
corresponding subspaces.

An n-dimensional elliptic space is a Riemannian space of constant pos-
itive curvature. It is the only such space which is topologically equivalent
to a projective space. (See, for example, [Blum70], [Buse55].)

e Hermitian elliptic metric
Let CP™ be the n-dimensional complex projective space. The Hermitian
elliptic metric d’, (see, for example, [Buse55]) is a metric on CP™ defined
by

T arccos
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where, for any © = (z1 : ... : ©py1) and y = (y1 ¢ ... : Ypt1) € CP™, one
has (x,y) = Z?Ill T;y;, T 1s a fixed positive constant, and arccos is the
inverse cosine in [0, 7].
The metric space (CP™, dgl) is called n-dimensional Hermitian elliptic

space (cf. Fubini—Study metric in Chap.[T).

e Elliptic plane metric
The elliptic plane metric is the elliptic metric on the elliptic plane
RP2. If RP? is viewed as the Poincaré sphere (i.e., a sphere in R? with
identified diametrically-opposite points) of diameter 1 tangent to the ex-
tended complex plane C = C U {oo} at the point z = 0, then, under the
stereographic projection from the “north pole” (0,0, 1), C with identified
points z and —% is a model of the elliptic plane, and the elliptic plane
metric dey; on it is defined by its line element ds®> = %.

e Pseudo-elliptic distance
The pseudo-elliptic distance (or elliptic pseudo-distance) dpey; is a dis-
tance on the extended complex plane C = C U {oo}, with identified points
z and —% defined by

z—u

1+zu

In fact, dpey(z,u) = tan dey (2, w), where dey; is the elliptic plane metric.
e Hyperbolic metric
Let RP™ be the n-dimensional real projective space. Let, for any = =
(1 ¢ oot @pyr) and ¥y = (Y1 ¢ oo @ Yny1) € RP™, the scalar product
(x,y) = —z191 + Z?:zl z,;9; be considered.
The hyperbolic metric dj,, is a metric on the set H" = {x € RP" :
(x,x) < 0} defined by

[z, )|

rarccosh ,
(z,2){y,y)
where r is a fixed positive constant, and arccosh denotes the non-negative
values of the inverse hyperbolic cosine. In this construction, the points of
H™ can be viewed as the one-spaces of the pseudo-Euclidean space R™?!
inside the cone C = {x € R™! : (z,z) = 0}.

The metric space (H™,dpyp) is called n-dimensional hyperbolic space.
It is a model of n-dimensional Hyperbolic Geometry. It is the space of
curvature —1/r2, and r is the radius of curvature. Replacement of r by
ir transforms all metric formulas of Hyperbolic Geometry into the corre-
sponding formulas of Elliptic Geometry. As r — oo, both systems yield
formulas of Euclidean Geometry (or become meaningless).
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If H™ is viewed as the set {z € R" : >_"" | 27 < K}, where K > 1is an
arbitrary fixed constant, the hyperbolic metric can be written as

rln1+\/1—7(w,y)

2 1- 1—7($,y)

)

n 2 n 2
where vy(z,y) = (K_Z(:;(:jgn), (Kz__yz_)g:l Yi )7 and r is a positive number with
i=1TiYi

tanh% = LK

If H™ is viewed as a submanifold of the (n + 1)-dimensional pseudo-
Euclidean space R™' with the scalar product (z,y) = —x1y1 + E?I; TiY;
(in fact, as the top sheet {x € R™! : (z,x) = —1,27 > 0} of the two-
sheeted hyperboloid of revolution), then the hyperbolic metric on H™ is
induced from the pseudo-Riemannian metric on R™! (cf. Lorentz
metric in Chap.[20)).

An n-dimensional hyperbolic space is a Riemannian space of constant
negative curvature. It is the only such space which is complete and topo-
logically equivalent to an Euclidean space. (See, for example, [Blum?7(0],
[Buses).)

e Hermitian hyperbolic metric
Let CP™ be the n-dimensional complex projective space. Let, for any x =
(1 ¢ oot @py1) and ¥y = (Y1 ¢ oo @ Yny1) € CP", the scalar product
(x,y) = —T1y1 + E?I; T;y; be considered.

The Hermitian hyperbolic metric dj/ , (see, for example, [Buse55])
is a metric on the set CH"” = {o € CP"™ : (z,z) < 0} defined by

[z, y)|

Vi, 2){y,y)

where r is a fixed positive constant, and arccosh denotes the non-negative
values of the inverse hyperbolic cosine.

The metric space (CH™, thyp) is called n-dimensional Hermitian hyper-
bolic space.

e Poincaré metric

The Poincaré metric dp is the hyperbolic metric for the Poincaré disk
model (or conformal disk model) of Hyperbolic Geometry. In this model
every point of the unit disk A = {z € C : |z] < 1} is called a hyperbolic
point, the disk A itself is called the hyperbolic plane, circular arcs (and
diameters) in A which are orthogonal to the absolute Q = {z € C : |z| = 1}
are called hyperbolic straight lines. Every point of §2 is called an ideal point.
The angular measurements in this model are the same as in Hyperbolic
Geometry. The Poincaré metric on A is defined by its line element

rarccosh

ds? — |dz|? _ dz? 2+ dz%2 .
(I—[2[?)>  (1—=27—23)2
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The distance between two points z and u of A can be written as

1 1—zu — —

—1In | Zﬁ| 1z —ul = arctanhw.

2 |1 —zul— |z —ul |1 — 27|
In terms of cross-ratio, it is equal to

1 B N Gt [ )

§ln(2’u’z’u):§ln 2* —u)(u* - z)’

where z* and u* are the points of intersection of the hyperbolic straight
line passing through z and u with Q, z* on the side of u, and u* on the
side of z.

In the Poincaré half-plane model of Hyperbolic Geometry the hyperbolic
plane is the upper half-plane H? = {z € C : 2o > 0}, and the hyperbolic
lines are semi-circles and half-lines which are orthogonal to the real axis.
The absolute (i.e., the set of ideal points) is the real axis together with the
point at infinity. The angular measurements in the model are the same as
in Hyperbolic Geometry.

The line element of the Poincaré metric on H? is given by

5 |dz|? B dz? +dz3

T 2

The distance between two points z,u can be written as

1 —u _ _
—In |zg|—|——|zu\ = arctanh |2 E|
2 |z—1| -]z —ul |z —
In terms of cross-ratio, it is equal to
25— z2)(u* —u)

1 1
Eln(z,mz*,u*) = 5111

where z* is the ideal point of the half-line emanating from z and passing
through u, and u* is the ideal point of the half-line emanating from u and
passing through z.

In general, the hyperbolic metric in any domain D C C with at least
three boundary points is defined as the preimage of the Poincaré metric in
A under a conformal mapping f : D — A. Its line element has the form

o PRI
=R
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The distance between two points z and v in D can be written as

1, L= FfEf )] +]f(z) — fu)]

20 1= f()f W] = If(z) = flw)]

e Pseudo-hyperbolic distance
The pseudo-hyperbolic distance (or Gleason distance, hyperbolic
pseudo-distance) dpp,, is a metric on the unit disk A = {z € C:|z] < 1},
defined by

Z—U

1—Zu

In fact, dppnyp(z,u) = tanhdp(z,u), where dp is the Poincaré metric
on A.

e Cayley—Klein—Hilbert metric
The Cayley—Klein—Hilbert metric doxy is the hyperbolic metric
for the Klein model (or projective disk model, Beltrami-Klein model) for
Hyperbolic Geometry. In this model the hyperbolic plane is realized as the
unit disk A = {z € C : |z] < 1}, and the hyperbolic straight lines are
realized as the chords of A. Every point of the absolute Q = {z € C :
|z| = 1} is called an ideal point. The angular measurements in this model
are distorted. The Cayley—Klein—Hilbert metric on A is given by its
metric tensor ((g;;)), 4,5 =1,2:

r2(1 — 22) 22120 r2(1 — 2%)
g11 = 3 oy 912 = 755 ooy Y22 = o5 oo
(1 =27 — 25) (1 =27 — 23) (1 =27 — 23)

where r is an arbitrary positive constant. The distance between points z
and v in A can be written as

1 — z1u1 — 20us
r arccosh ,

V1=22 = 22/1—u? — 3

where arccosh denotes the non-negative values of the inverse hyperbolic
cosine.

e Weierstrass metric
Given a real n-dimensional inner product space (R",(,)), n > 2, , the
Weierstrass metric dyy is a metric on R" defined by

arccosh(v/1 + (z,z)v/1+ (y,y) — (z,9)),

where arccosh denotes the non-negative values of the inverse hyperbolic
cosine.
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Here, (z,/1+ (z,z)) € R" @ R are the Weierstrass coordinates of x €
R™, and the metric space (R™, dy ) can be identified with the Weierstrass
model of Hyperbolic Geometry.

The Cayley—Klein—Hilbert metric dogp(xz,y) =  arccosh

\/1_;371)_@,!/) on the open ball B" = {z € R" : (z,z) < 1} can be
obtained from dw by derxp(z,y) = dw(u(x), u(y)), where p : R* — B™

is the Weierstrass mapping: u(x) = ﬁ
—(z,x

e Harnack metric
Given a domain D C R™, n > 2, the Harnack metric is a metric on
D defined by

fly)”

where the supremum is taken over all positive functions which are har-
monic on D.

e Quasi-hyperbolic metric
Given a domain D C R™, n > 2, the quasi-hyperbolic metric is a metric

on D defined by
inf / 2] ,
ver Sy p(2)

where the infimum is taken over the set I' of all rectifiable curves connecting
x and y in D, p(z) = infycop ||z — ul|2 is the distance between z and the
boundary 0D of D, and ||.||2 is the Euclidean norm on R".

This metric is Gromov hyperbolic if the domain D is uniform, i.e.,
there exist constants C,C’ such that each pair of points z,y € D can
be joined by a rectifiable curve v = y(z,y) € D of length /() at most
Clz — y|, and min{l(vy(x, 2)),1(v(z,y))} < C"d(z,0D) holds for all z € ~.

For n = 2, one can define the hyperbolic metric on D by

sup | log
!

2|f'(2)]

inf [ = B,
fots 71—|f(z)|2‘ 2l

where f : D — A is any conformal mapping of D onto the wunit disk
A = {z € C: |z|] < 1}. For n > 3, this metric is defined only for the
half-hyperplane H™ and for the open unit ball B™ as the infimum over all
~ € I' of the integrals f,y % and f,y lz‘ﬁzzh%’ respectively.

The quasi-hyperbolic metric is the inner metric (cf. Chap.[) of the
Vuorinen metric.

e Apollonian metric

Let D C R™, D # R"™, be a domain such that the complement of D is not
contained in a hyperplane or a sphere.
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The Apollonian metric (or Barbilian metric, [Barb35]) is a metric
on D defined by the cross-ratio in the following way:

sup 1o Je = 2ll2llb —yll2
up n )
abeon |la—yll2[|b — z[|2

where 0D is the boundary of D, and [|.||2 is the Euclidean norm on R™.
This metric is Gromov hyperbolic.
e Half-Apollonian metric
Given a domain D C R™, D # R", the half-Apollonian metric 7p
(H&sto and Lindén 2004) is a metric on D, defined by

lla — yll2

In
lla — ||

sup
acdD

)

where 0D is the boundary of D, and [|.||2 is the Euclidean norm on R™.
This metric is Gromov hyperbolic only if the domain is R™\{z}, i.e.,
D has only one boundary point.
e Gehring metric
Given a domain D C R™, D # R", the Gehring metric jp (Gehring
1982) is a metric on D, defined by

(o) (),

where [|.||2 is the Euclidean norm on R™, and p(z) = inf,cop ||x — ]2 is
the distance between x and the boundary 0D of D.
This metric is Gromov hyperbolic.
e Vuorinen metric
Given a domain D C R"™, D # R", the Vuorinen metric jp (Vuorinen
1988) is a metric on D defined by

= —yll2
" (1 * min{p<x>,p<y>}) ’
where ||.||2 is the Euclidean norm on R"™, and p(x) = inf,cop ||z — u||2 is
the distance between x and the boundary 0D of D.
This metric is Gromov hyperbolic only if the domain is R™\{z}, i.e.,
D has only one boundary point.
e Ferrand metric

Given a domain D C R™, D # R™, the Ferrand metric op (Ferrand
1987) is a metric on D defined by

—b
inf/ sup lla = bll> |dz],
V€T Jy apeop |12 — all2[|z = bl|2
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where the infimum is taken over the set I" of all rectifiable curves connecting
x and y in D, 9D is the boundary of D, and |[|.||2 is the Euclidean norm
on R”™.

This metric is Gromov hyperbolic if D is uniform, i.e., there ex-
ist constants C,C’ such that each pair of points x,y € D can be
joined by a rectifiable curve v € D of length [(v) at most Clx — y|, and
min{l(y(z, 2)),(v(z,y))} < C'd(z,0D) holds for all z € ~.

The Ferrand metric is the inner metric (cf. Chap.[) of the Seitten-
ranta metric.

e Seittenranta metric
Given a domain D C R™, D # R"™, the Siettenranta metric dp (Siet-
tenranta 1999) is a metric on D defined by

— h—
ap 1 (14 Jo 2l sl
eneon U e =l = ol

where 0D is the boundary of D, and [|.||2 is the Euclidean norm on R™.
This metric is Gromov hyperbolic.
e Modulus metric
Let D C R™, D # R™, be a domain, whose boundary 0D has positive
capacity.
The modulus metric (Gal 1960) up (Gal 1960) is a metric on D,
defined by
inf M(A(Cyy,0D, D)),
zy
where M (T') is the conformal modulus of the curve family I', and Cy, is
a continuum such that for some v : [0,1] — D we have the following
properties: Cpy = ([0,1]), 7(0) = z, and 7(1) = y (cf. extremal metric
in Chap.R]).
This metric is Gromov hyperbolic if D is the open ball B" = {z €
R" : (z,x) < 1} or a simply connected domain in R2.
e Ferrand second metric
Let D C R™, D # R"™, be a domain such that [R"\{D}| > 2. The Ferrand
second metric A}, (Ferrand 1997) is a metric on D defined by

( inf M(A(Cx,(}y,p)>)1in7

x5,y

where M(T") is the conformal modulus of the curve family I', and C.,
z = x,v, is a continuum such that, for some v, : [0,1] — D, C, = ¥([0,1)),
z € |V.], and 4. (t) — 0D as t — 1 (cf. extremal metric in Chap.[).

This metric is Gromov hyperbolic if D is the open ball B" = {z €
R™ : (x,2) < 1} or a simply connected domain in R?.
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e Parabolic distance
The parabolic distance is a metric on R”*!, considered as R™ xR defined
by

\/(731 —y1)? 4+ (T = Yn)? e — ty|1/ma m €N,

for any « = (z1,...,Zn,t2), ¥y = W1, -, Yn, ty) € R x R,
The space R™ x R can be interpreted as multidimensional space—time.
Usually, the value m = 2 is applied. There exist some variants of the
parabolic distance, for example, the parabolic distance

sup{|z1 — y1, [z2 — yo| 2}

on R? (cf. also Rickman’s rug metric in Chap.[[d), or the half-space
parabolic distance on ]R‘:’_ ={ze R3: 2y > 0} defined by

|21 — 1| + |22 — yo
+V/|z3 — ysl.
VT + T2+ /|2 — 1|




Chapter 7
Riemannian and Hermitian Metrics

Riemannian Geometryis a multidimensional generalization of the intrinsic ge-
ometry of two-dimensional surfaces in the Euclidean space E2. It studies real
smooth manifolds equipped with Riemannian metrics, i.e., collections of
positive-definite symmetric bilinear forms ((g;;)) on their tangent spaces
which vary smoothly from point to point. The geometry of such ( Riemannian)
manifolds is based on the line element ds® = Z” gijdx;dx;. This gives, in
particular, local notions of angle, length of curve, and volume. From these
notions some other global quantities can be derived, by integrating local
contributions. Thus, the value ds is interpreted as the length of the vector
(dxq,...,dx,), and it is called the infinitesimal distance. The arc length of

a curve 7y is expressed by f7 Do j gijdridx;, and then the intrinsic met-

ric on a Riemannian manifold is defined as the infimum of lengths of curves
joining two given points of the manifold.

Therefore, a Riemannian metric is not an ordinary metric, but it induces an
ordinary metric, in fact, the intrinsic metric, sometimes called Riemannian
distance, on any connected Riemannian manifold. A Riemannian metric is
an infinitesimal form of the corresponding Riemannian distance.

As particular special cases of Riemannian Geometry, there occur Fuclidean
Geometry as well as the two standard types, Elliptic Geometry and Hyperbolic
Geometry, of Non-Euclidean Geometry.

If the bilinear forms ((g;;)) are non-degenerate but indefinite, one obtains
Pseudo-Riemannian Geometry. In the case of dimension four (and signa-
ture (1,3)) it is the main object of the General Theory of Relativity. If
ds = F(x1,...,Zp,dx1,...,dx,), where F is a real positive-definite convex
function which can not be given as the square root of a symmetric bilinear
form (as in the Riemannian case), one obtains the Finsler Geometry gener-
alizing Riemannian Geometry.

Hermitian Geometry studies complex manifolds equipped with Hermitian
metrics, i.e., collections of positive-definite symmetric sesquilinear forms (or
%-linear forms) since they are linear in one argument and antilinear in the
other) on their tangent spaces, which vary smoothly from point to point. It
is a complex analog of Riemannian Geometry. A special class of Hermitian
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metrics form Kahler metrics which have a closed fundamental form w.
A generalization of Hermitian metrics give complex Finsler metrics which
can not be written in terms of a bilinear symmetric positive-definite sesqulin-
ear form.

7.1 Riemannian metrics and generalizations

A real n-dimensional manifold M™ with boundary is a Hausdorff space in
which every point has an open neighborhood homeomorphic to either an open
subset of E™, or an open subset of the closed half of E™. The set of points
which have an open neighborhood homeomorphic to E" is called the interior
(of the manifold); it is always non-empty. The complement of the interior is
called the boundary (of the manifold); it is an (n — 1)-dimensional manifold.
If the boundary of M™ is empty, one obtains a real n-dimensional manifold
without boundary.

A manifold without boundary is called closed if it is compact, and open
otherwise.

An open set of M"™ together with a homeomorphism between the open
set and an open set of E" is called a coordinate chart. A collection of charts
which cover M™ is called an atlas on M™. The homeomorphisms of two over-
lapping charts provide a transition mapping from a subset of E™ to some
other subset of E™. If all these mappings are continuously differentiable, then
M™ is called a differentiable manifold. If all the connecting mappings are k
times continuously differentiable, then the manifold is called a C* manifold;
if they are infinitely often differentiable, then the manifold is called a smooth
manifold (or C*° manifold).

An atlas of a manifold is called oriented if the coordinate transformations
between charts are all positive, i.e., the Jacobians of the coordinate transfor-
mations between any two charts are positive at every point. An orientable
manifold is a manifold admitting an oriented atlas.

Manifolds inherit many local properties of the Euclidean space. In particu-
lar, they are locally path-connected, locally compact, and locally metrizable.
Every smooth Riemannian manifold embedds isometrically (Nash 1956) in
some finite-dimensional Euclidean space.

Associated with every point on a differentiable manifold is a tangent space
and its dual, a cotangent space. Formally, let M™ be a C* manifold, k > 1,
and p a point of M". Fix a chart ¢ : U — E", where U is an open subset
of M™ containing p. Suppose that two curves 4! : (—=1,1) — M™ and ~? :
(—1,1) — M™ with v*(0) = +2(0) = p are given such that ¢ -y and p-~? are
both differentiable at 0. Then 4! and 42 are called tangent at 0 if the ordinary
derivatives of ¢ -~' and ¢ - 42 coincide at 0: (¢ -71) (0) = (¢ - 42) (0). If the
functions ¢-~* : (=1,1) — E", i = 1,2, are given by n real-valued component
functions (¢ - v")1(t),..., (@ - ¥)n(t), the condition above means that their
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Jacobians (d(“a'zl?l(t),...,d(@'zl)”'(t)> coincide at 0. This is an equivalence

relation, and the equivalence class 7/ (0) of the curve « is called a tangent
vector of M™ at p. The tangent space T,(M™) of M™ at p is defined as the
set of all tangent vectors at p. The function (dy), : T,(M™) — E™ defined by
(de), (v (0)) = (¢ - ) (0), is bijective and can be used to transfer the vector
space operations from E™ over to T,,(M™).

All the tangent spaces T,,(M"), p € M", when “glued together,” form the
tangent bundle T(M™) of M™. Any element of T'(M™) is a pair (p,v), where
v € T,(M™). If for an open neighborhood U of p the function ¢ : U — R™ is
a coordinate chart, then the preimage V of U in T'(M™) admits a mapping
¥V — R*xR™ defined by ¥ (p,v) = (¢(p), dp(p)). It defines the structure of
a smooth 2n-dimensional manifold on T'(M™). The cotangent bundle T*(M™)
of M™ is obtained in similar manner using cotangent spaces T, (M™),pe M™.

A wector field on a manifold M™ is a section of its tangent bundle T'(M™),
i.e., a smooth function f : M™ — T(M™) which assigns to every point p € M™
a vector v € T,,(M™).

A connection (or covariant derivative) is a way of specifying a derivative of
a vector field along another vector field on a manifold. Formally, the covariant
derivative V of a vector u (defined at a point p € M™) in the direction of the
vector v (defined at the same point p) is a rule that defines a third vector at
p, called V,u, which has the properties of a derivative. A Riemannian metric
uniquely defines a special covariant derivative called the Levi—Civita connec-
tion. It is the torsion-free connection V of the tangent bundle, preserving the
given Riemannian metric.

The Riemann curvature tensor R is the standard way to express the cur-
vature of Riemannian manifolds. The Riemann curvature tensor can be given
in terms of the Levi-Civita connection V by the following formula:

R(u,v)w =V, V,w —V,V,w— V [u, o)W,

where R(u,v) is a linear transformation of the tangent space of the manifold

M™; it is linear in each argument. If u = % and v = % are coordi-
; ,

nate vector fields, then [u,v] = 0, and the formula simplifies to R(u,v)w =
V.Vyw — V,Vy,w, ie., the curvature tensor measures anti-commutativity
of the covariant derivative. The linear transformation w — R(u,v)w is also
called the curvature transformation.

The Ricci curvature tensor (or Ricci curvature) Ric is obtained as the
trace of the full curvature tensor R. It can be thought of as a Laplacian of
the Riemannian metric tensor in the case of Riemannian manifolds. Ricci
curvature is a linear operator on the tangent space at a point. Given an
orthonormal basis (e;); in the tangent space T,,(M™), we have

Ric(u) = Z R(u,e;)e;.
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The value of Ric(u) does not depend on the choice of an orthonormal ba-
sis. Starting with dimension four, the Ricci curvature does not describe the
curvature tensor completely.

The Ricci scalar (or scalar curvature) Sc of a Riemannian manifold M™
is the full trace of the curvature tensor; given an orthonormal basis (e;); at
p € M™, we have

Sc= Z(R(ei, ejlej,e;) = Z(Ric(ei), ei).

i,J i

The sectional curvature K (o) of a Riemannian manifold M™ is defined as
the Gauss curvature of an o-section at a point p € M". Here, given a 2-
plane o in the tangent space T),(M"), a o-section is a locally-defined piece of
surface which has the plane ¢ as a tangent plane at p, obtained from geodesics
which start at p in the directions of the image of ¢ under the exponential

mapping.

e Metric tensor
The metric tensor (or basic tensor, fundamental tensor) is a symmetric
tensor of rank 2, that is used to measure distances and angles in a real
n-dimensional differentiable manifold M™. Once a local coordinate system
(x;); is chosen, the metric tensor appears as a real symmetric n X n matrix
((9i3))-

The assignment of a metric tensor on an n-dimensional differentiable
manifold M™ introduces a scalar product (i.e., symmetric bilinear, but in
general not positive-definite, form) (,), on the tangent space T,,(M") at
any point p € M™ defined by

(2, 9)p = gp(z,y) = Zgij(p)xiyjy
2

where g;;(p) is a value of the metric tensor at the point p € M™, and x =
(1, 2n), Y= (Y1, .., Yn) € Tp(M™). The collection of all these scalar
products is called the metric g with the metric tensor ((g;;)). The length
ds of the vector (dxi,...,dz,) is expressed by the quadratic differential
form

d52 = Zgijdxid$j7
4,J

which is called the line element (or first fundamental form) of the metric

g. The length of a curve v is expressed by the formula f,y \/ 20 Gigdrida;.

In general it may be real, purely imaginary, or zero (an isotropic curve).
The signature of a metric tensor is the pair (p,q) of positive (p) and

negative (¢) eigenvalues of the matrix ((g;;)). The signature is said to
be indefinite if both p and ¢ are non-zero, and positive-definite if ¢ = 0.
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A Riemannian metric is a metric g with a positive-definite signature (p, 0),
and a pseudo-Riemanian metric is a metric ¢ with an indefinite signa-
ture (p, q).

e Non-degenerate metric
A non-degenerate metric is a metric g with the metric tensor ((gi;)),
for which the metric discriminant det((g;;)) # 0. All Riemannian and
pseudo-Riemannian metrics are non-degenerate.

A degenerate metric is a metric g with the metric tensor ((gi;))
for which the metric discriminant det((g;;)) = 0 (cf. semi-Riemannian
metric and semi-pseudo-Riemannian metric). A manifold with a de-
generate metric is called an isotropic manifold.

e Diagonal metric
A diagonal metric is a metric g with a metric tensor ((g;;)) which is zero
for ¢ # j. The Euclidean metric is a diagonal metric, as its metric tensor
has the form g;; = 1,955 = 0 for i # j.

e Riemannian metric
Consider a real n-dimensional differentiable manifold M™ in which each
tangent space is equipped with an inner product (i.e., a symmetric positive-
definite bilinear form) which varies smoothly from point to point.

A Riemannian metric on M" is a collection of inner products (, ), on
the tangent spaces T,,(M"), one for each p € M™.

Every inner product (,), is completely defined by inner products

(ei,€j)p = gij(p) of elements e, ..., e, of a standard basis in E”, i.e., by
the real symmetric and positive-definite n x n matrix ((¢i;)) = ((9:5(p))),
called a metric temsor. In fact, (z,y), = >, gij(p)ziy;, where

r=(21,...,2y) and y = (y1,...,Yn) € Tp(M"). The smooth function g
completely determines the Riemannian metric.

A Riemannian metric on M" is not an ordinary metric on M™. However,
for a connected manifold M™, every Riemannian metric on M"™ induces
an ordinary metric on M™", in fact, the intrinsic metric of M"; for any
points p, g € M™ the Riemannian distance between them is defined as

d’y d’y dx; d:cj
1f/ dt dt 1dt = 1nf/ Zgw

(S

where the infimum is taken over all rectifiable curves v : [0,1] — M™,
connecting p and q.

A Riemannian manifold (or Riemannian space) is a real n-dimensional
differentiable manifold M™ equipped with a Riemannian metric. The the-
ory of Riemannian spaces is called Riemannian Geometry. The simplest
examples of Riemannian spaces are FEuclidean spaces, hyperbolic spaces,
and elliptic spaces. A Riemannian space is called complete if it is a com-
plete metric space.
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e Conformal metric
A conformal structure on a vector space V is a class of pairwise-homothetic
Euclidean metrics on V. Any Euclidean metric dg on V' defines a conformal
structure {A\dg : A > 0}.

A conformal structure on a manifold is a field of conformal structures
on the tangent spaces or, equivalently, a class of conformally equivalent
Riemannian metrics. Two Riemannian metrics g and h on a smooth man-
ifold M™ are called conformally equivalent if g = f - h for some positive
function f on M™, called a conformal factor.

A conformal metric is a Riemannian metric that represents the con-
formal structure (cf. conformally invariant metric in Chap.[).

e Conformal space
The conformal space (or inversive space) is the Euclidean space E™
extended by an ideal point (at infinity). Under conformal transformations,
i.e., continuous transformations preserving local angles, the ideal point can
be taken to be an ordinary point. Therefore, in a conformal space a sphere
is indistinguishable from a plane: a plane is a sphere passing through the
ideal point.

Conformal spaces are considered in Conformal Geometry (or Angle-
Preserving Geometry, Mébius geometry, Inversive Geometry) in which
properties of figures are studied that are invariant under conformal trans-
formations. It is the set of transformations that map spheres into spheres,
i.e., generated by the Euclidean transformations together with inversions

x;

2
which in coordinate form are conjugate to x; — <, where r is the

PR
radius of the inversion. An inversion in a sphere becomes an everywhere
well-defined automorphism of period two. Any angle inverts into an equal
angle.

The two-dimensional conformal space is the Riemann sphere, on which
the conformal transformations are given by the Mdbius transformations
z— S ad —be #0.

In general, a conformal mapping between two Riemannian manifolds is
a diffeomorphism between them such that the pulled back metric is con-
formally equivalent to the original one. A conformal Euclidean space
is a Riemannian space admitting a conformal mapping onto an Fuclidean
space.

In the General Theory of Relativity, conformal transformations are con-
sidered on the Minkowski space R'3 extended by two ideal points.

e Space of constant curvature
A space of constant curvature is a Riemannian space M™ for which the
sectional curvature K (o) is constant in all two-dimensional directions o.

A space form is a connected complete space of constant curvature. A
flat space is a space form of zero curvature.

The Euclidean space and the flat torus are space forms of zero curvature
(i.e., flat spaces), the sphere is a space form of positive curvature, the
hyperbolic space is a space form of negative curvature.
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e Generalized Riemannian spaces

A generalized Riemannian space is a metric space with the intrin-
sic metric, subject to certain restrictions on the curvature. Such spaces
include spaces of bounded curvature, Riemannian spaces, etc. Generalized
Riemannian spaces differ from Riemannian spaces not only by greater gen-
erality, but also by the fact that they are defined and investigated on the
basis of their metric alone, without coordinates.

A space of bounded curvature (<k and >k’) is a generalized Riemannian
space defined by the condition: for any sequence of geodesic triangles T,
contracting to a point we have

— 5T,
k> limé( n)

>k

~—

where a geodesic triangle T = xyz is the triplet of geodesic segments [z, y],
[y, 2], [z, x] (the sides of T') connecting in pairs three different points z, y, z,
6(T) = a+ 4 — is the excess of the geodesic triangle 7', and o (T°) is
the area of a Euclidean triangle T° with the sides of the same lengths. The
intrinsic metric on the space of bounded curvature is called a metric
of bounded curvature.

Such a space turns out to be Riemannian under two additional condi-
tions: local compactness of the space (this ensures the condition of local
existence of geodesics), and local extendibility of geodesics. If in this case
k = k', it is a Riemannian space of constant curvature k (cf. space of

geodesics in Chap.[d]).

A space of curvature <k is defined by the condition mj((?g)) < k. In
such a space any point has a neighborhood in which the sum ot B+~ of
the angles of a geodesic triangle T does not exceed the sum ay + B + Vi
of the angles of a triangle T* with sides of the same lengths in a space
of constant curvature k. The intrinsic metric of such space is called a
k-concave metric.

A space of curvature >k is defined by the condition lim

jg:é)) > k. In
such a space any point has a neighborhood in which o + 8+ v > ay +
Bi + i, for triangles T and T%. The intrinsic metric of such space is called
a K-concave metric.

An Alexandrov space is a generalized Riemannian space with upper,

lower or integral curvature bounds.

¢ Complete Riemannian metric
A Riemannian metric g on a manifold M" is called complete if M forms
a complete metric space with respect to g. Any Riemannian metric on a
compact manifold is complete.

e Ricci-flat metric
A Ricci-flat metric is a Riemannian metric with vanished Ricci curvature
tensor.




134 7 Riemannian and Hermitian Metrics

A Ricci-flat manifold is a Riemannian manifold equipped with a
Ricci-flat metric. Ricci-flat manifolds represent vacuum solutions to the
Einstein field equation, and are special cases of Kdhler—FEinstein man-
ifolds. Important Ricci-flat manifolds are Calabi—Yau manifolds, and
hyper-Kahler manifolds.

e Osserman metric
An Osserman metric is a Riemannian metric for which the Riemannian
curvature tensor R is Osserman. It means that the eigenvalues of the Jacobi
operator J () : y — R(y,x)x are constant on the unit sphere S"~! in E",
i.e., they are independent of the unit vectors x.

e (-invariant metric
A G-invariant metric is a Riemannian metric g on a differentiable man-
ifold M™, that does not change under any of the transformations of a
given Lie group (G,-,id) of transformations. The group (G, -, id) is called
the group of motions (or group of isometries) of the Riemannian space
(M™, g).

e Ivanov—Petrova metric
Let R be the Riemannian curvature tensor of a Riemannian manifold M™,
and let {z,y} be an orthogonal basis for an oriented 2-plane 7 in the
tangent space T,,(M™) at a point p of M™.

The Ivanov—Petrova metric is a Riemannian metric on M" for
which the eigenvalues of the antisymmetric curvature operator R(m) =
R(z,y) [[xSt95] depend only on the point p of a Riemannian manifold
M™, but not upon the plane 7.

e Zoll metric
A Zoll metric is a Riemannian metric on a smooth manifold M"™ whose
geodesics are all simple closed curves of an equal length. A two-dimensional
sphere S? admits many such metrics, besides the obvious metrics of con-
stant curvature. In terms of cylindrical coordinates (z,0) (z € [—1,1],
0 € [0,27)), the line element

22 4+ (1 — 2%)dh*

defines a Zoll metric on S? for any smooth odd function f : [-1,1] —
(—1,1) which vanishes at the end points of the interval.

e Cycloidal metric
The cycloidal metric is a Riemannian metric on the half-plane Ri =
{x € R? : 11 > 0} defined by the line element

 dai 4 dx3
- 2$1 ’

ds?

It is called cycloidal because its geodesics are cycloid curves. The cor-
responding distance d(z,y) between two points z,y € Ri is equivalent to
the distance
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p(z,y) = |z1 — y1] + |22 — v
VI /T2 + o/ |£U2 - y2|

in the sense that d < Cp, and p < Cd for some positive constant C.

e Berger metric
The Berger metric is a Riemannian metric on the Berger sphere (i.e.,
the three-sphere S® squashed in one direction) defined by the line element

ds* = df? + sin® 0d¢? + cos® a(di) + cos 0dg)?,

where « is a constant, and 0, ¢, 1 are Euler angles.

e Carnot—Carathéodory metric
A distribution (or polarization) on a manifold M™ is a subbundle of the
tangent bundle T'(M™) of M™. Given a distribution H(M™), a vector field
in H(M™) is called horizontal. A curve v on M™ is called horizontal (or
distinguished, admissible) with respect to H(M™) if ~'(t) € He, ) (M™)
for any t.

A distribution H(M™) is called completely non-integrable if the Lie
brackets of H(M™), i.e., [---,[H(M™), H(M™)]], span the tangent bun-
dle T'(M™), i.e., for all p € M™ any tangent vector v from T,(M™) can be
presented as a linear combination of vectors of the following types: u, [u, w],
[w, [w,t]], [u, [w,[t,s]]], - € Tp(M™), where all vector fields u,w,t,s,...
are horizontal.

The Carnot—Carathéodory metric (or CC metric,sub-Riemannian
metric, control metric) is a metric on a manifold M"™ with a completely
non-integrable horizontal distribution H(M™) defined as the section g of
positive-definite scalar products on H(M™). The distance d¢(p, q) between
any points p,q € M" is defined as the infimum of the go-lengths of the
horizontal curves joining p and q.

A sub-Riemannian manifold (or polarized manifold) is a manifold M™
equipped with a Carnot—Carathéodory metric. It is a generalization of a
Riemannian manifold. Roughly, in order to measure distances in a sub-
Riemannian manifold, one is allowed to go only along curves tangent to
horizontal spaces.

e Pseudo-Riemannian metric
Consider a real n-dimensional differentiable manifold M™ in which every
tangent space T,,(M™), p € M", is equipped with a scalar product which
varies smoothly from point to point and is non-degenerate, but indefinite.

A pseudo-Riemannian metric on M™" is a collection of scalar prod-
ucts (, ), on the tangent spaces T,,(M"™), p € M™, one for each p € M".

Every scalar product (,), is completely defined by scalar products
(eisej)p = gij(p) of elements eq,..., e, of a standard basis in E", i.e.,
by the real symmetric indefinite n x n matrix ((g;;)) = ((g:;(p))), called
a metric tensor (cf. Riemannian metric in which case this tensor
is not only non-degenerate but, moreover, positive-definite). In fact,
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<I7y>p = ZiJ glj(p)zly]a where z = (xlv e 727”) and Yy = (yla RS yn) €
T, (M™). The smooth function g determines the pseudo-Riemannian metric.
The length ds of the vector (dzi,...,dz,) is given by the quadratic

differential form
= Zgijdxid-rj-
%]

The length of a curve v : [0,1] — M™ is expressed by the formula

f \/ 2 Gijdridr; = fo ,/Z” i % djﬂ dt. In general it may be real,

purely imaginary or zero (an isotropic curve).

A pseudo-Riemannian metric on M" is a metric with a fixed, but
indefinite signature (p, q), p+ ¢ = n. A pseudo-Riemannian metric is non-
degenerate, i.e., its metric discriminant det((g;;)) # 0. Therefore, it is a
non-degenerate indefinite metric.

A pseudo-Riemannian manifold (or pseudo-Riemannian space) is a
real n-dimensional differentiable manifold M™ equipped with a pseudo-
Riemannian metric. The theory of pseudo-Riemannian spaces is called
Pseudo-Riemannian Geometry.

e Pseudo-Euclidean distance
The model space of a pseudo-Riemannian space of signature (p, q) is
the pseudo-Fuclidean space RP1 p 4+ q = n, which is a real n-dimensional
vector space R” equipped with the metric tensor ((g;;)) of signature (p, q)
defined by g11 = -+ = gpp = 1, Gpr1p+1 = *** = Gnn = —1, gij = 0 for
1 # j. The line element of the corresponding metric is given by

d32zdxf+---+dxf,—dxf)+1—---—de.

n

The pseudo-Euclidean distance of signature (p,g = n — p) on R™ is
defined, for x,y € R™, by

Bply)=> (@i—y)*— > (2 —y)
i—1 i=p+1

Such a pseudo-Euclidean space can be seen as R? x iR?, where i = /—1.

The pseudo-Euclidean space with (p,q) = (1,3) is used as space—time
model of Special Relativity; cf. Minkowsky metric in Chap.26 The
points correspond to events; the line spanned by events x and y is space-
like if d(x,y) > 0 and time-like if d(x,y) < 0. If d(x,y) > 0, then /d(x,y)
is Euclidean distance and if d(z,y) < 0, then +/|d(x,y)| is the life time of
a particle (from z to y).

The general quadratic-form distance for two points =,y € R", is de-
fined by \/(z — y)TA(x — y), where A is a real non-singular symmetric
n X n matrix; cf Mahalonobis distance in Chap.[[7] The pseudo-
Euclidean distance of signature (p,q = n — p) is the case A = diag(a;)
witha; =1for1<i<panda;=—-1forp+1<i<n.
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Lorentzian metric
A Lorentzian metric (or Lorentz metric) is a pseudo-Riemannian
metric of signature (1,p).

A Lorentzian manifold is a manifold equipped with a Lorentzian metric.
The Minkowski space RMP with the flat Minkowski metric is a model of
it, in the same way as Riemannian manifolds can be modeled on Euclidean
space.

Osserman Lorentzian metric

An Osserman Lorentzian metric is a Lorentzian metric for which
the Riemannian curvature tensor R is Osserman, i.e., the eigenvalues of the
Jacobi operator J(x) : y — R(y,x)x are independent of the unit vectors x.

A Lorentzian manifold is Osserman if and only if it is of constant

curvature.

Blaschke metric

The Blaschke metric on a non-degenerate hypersurface is a pseudo-
Riemannian metric, associated to the affine normal of the immersion
¢ : M™ — R"™1 where M™ is an n-dimensional manifold, and R"*!
is considered as an affine space.

Semi-Riemannian metric

A semi-Riemannian metric on a real n-dimensional differentiable
manifold M™ is a degenerate Riemannian metric, i.e., a collection of
positive-semi-definite scalar products (x,y), = Zi,j gij(p)x;y; on the tan-
gent spaces T),(M™), p € M™; the metric discriminant det((g;;)) = 0.

A semi-Riemannian manifold (or semi-Riemannian space) is a
real n-dimensional differentiable manifold M™ equipped with a semi-
Riemannian metric.

The model space of a semi-Riemannian manifold is the semi-FEuclidean
space R, d > 1 (sometimes denoted also by RI'_,), ie., a real
n-dimensional vector space R" equipped with a semi-Riemannian metric.
It means that there exists a scalar product of vectors such that, relative to
a suitably chosen basis, the scalar product (z,x) of any vector with itself
has the form (z,z) = Y.77* 2. The number d > 1 is called the defect (or
deficiency) of the space.

Grushin metric
The Grushin metric is a semi-Riemannian metric on R? defined by the
line element 5

ds* = dx? + d—x;

7

Agmon distance
Given a Schrédinger operator H(h) = —h*A + V(x) on Lo(R?), where V
is a potential and h is the Planck constant, consider a semi-Riemannian
metric on R? with respect to the energy Eo(h) = h™%eq defined by the
line element

ds* = max{0,V(z) — Eo(h)}dz?.
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Then the Agmon distance on R? is the corresponding Riemannian
distance defined, for any z,y € R%, by

1
it Vax VE ) = Balh),0) -1y (9)]dss2(0) = 2.9(1) = 97 € €',

¢ Semi-pseudo-Riemannian metric
A semi-pseudo-Riemannian metric on a real n-dimensional differen-
tiable manifold M™ is a degenerate pseudo-Riemannian metric, i.e., a col-
lection of degenerate indefinite scalar products (x,y), = Z” 9ij(p)xiy; on
the tangent spaces T,(M™), p € M™; the metric discriminant det((g;;)) =
0. In fact, a semi-pseudo-Riemannian metric is a degenerate indefinite
metric.

A semi-pseudo-Riemannian manifold (or semi-pseudo-Riemannian
space) is a real n-dimensional differentiable manifold M™ equipped with a
semi-pseudo-Riemannian metric.

The model space of a semi-pseudo-Riemannian manifold is the semi-
pseudo-Euclidean space Ry, ;. , i.e., a real n-dimensional vector space

ey
R™ equipped with a semi-pseudo—Pl{iemannian metric. It means that there
exist r scalar products (x,y)s = Y. €, i, Vi, , wherea =1,...7,0 =mg <
mp < -+ < Mp =N, tqg = Mg—1 + 1,... Mg, €, = £1, and —1 occurs
l, times among the numbers ¢€;, . The product (x,y), is defined for those
vectors for which all coordinates x;,79 < mq_1 or i > m, + 1 are zero.
The first scalar square of an arbitrary vector x is a degenerate quadratic
form (z,z); = — Y01, 22 + Z;:ffﬂ 3. The number I; > 0 is called the
index, and the number d = n — m; is called the defect of the space. If
ly = -+ =1, =0, we obtain a semi-Fuclidean space. The spaces RZ and

w. are called quasi-FEuclidean spaces.

The semi-pseudo-non-Euclidean space S} . . can be defined as a

hypersphere in Rﬁ“z with identified antipodal points. If [y = -+ =

MY,y My

[ = 0, the space S"” is called a semi-elliptic space (or semi-non-
my

M1
Euclidean space). If there exist [; # 0, the space Si' . is called a
semi-hyperbolic space. '

e Finsler metric
Consider a real n-dimensional differentiable manifold M™ in which every
tangent space T,,(M™), p € M™, is equipped with a Banach norm ||.|| such
that the Banach norm as a function of position is smooth, and the matrix
((9i3)),

_ 10°||=|?

n 2 axﬁxj ’

9ij = gz‘j(va)

is positive-definite for any p € M™ and any = € T,(M™).
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A Finsler metric on M™ is a collection of Banach norms ||.|| on the
tangent spaces T,(M™), one for each p € M"™. The line element of this

metric has the form
= Zgijdxidxj-
%]

The Finsler metric can be given by a real positive-definite convex function
F(p,z) of coordinates of p € M™ and components of vectors z € T),(M™)
acting at the point p. F'(p,x) is positively homogeneous of degree one in
x: F(p, A\x) = AF(p, z) for every A > 0. The value of F(p,z) is interpreted
as the length of the vector x. The Finsler metric tensor has the form

((gi5)) = ((é%)) The length of a curve v : [0,1] — M™ is given by

fo (p, E )dt. For each fixed p the Finsler metric tensor is Riemannian in
the variables x.

The Finsler metric is a generalization of the Riemannian metric, where
the general definition of the length ||z|| of a vector x € T,(M™) is not
necessarily given in the form of the square root of a symmetric bilinear
form as in the Riemannian case.

A Finsler manifold (or Finsler space) is a real n-dimensional differen-
tiable manifold M™ equipped with a Finsler metric. The theory of Finsler
spaces is called Finsler Geometry. The difference between a Riemannian
space and a Finsler space is that the former behaves locally like a Euclidean
space, and the latter locally like a Minkowskian space or, analytically, the
difference is that to an ellipsoid in the Riemannian case there corresponds
an arbitrary convex surface which has the origin as the center.

A generalized Finsler space is a space with the intrinsic metric, subject
to certain restrictions on the behavior of shortest curves, i.e., the curves
with length equal to the distance between their ends. Such spaces include
spaces of geodesics, Finsler spaces, etc. Generalized Finsler spaces differ
from Finsler spaces not only in their greater generality, but also in the
fact that they are defined and investigated starting from a metric, without
coordinates.

e Kropina metric
The Kropina metric is a Finsler metric Fk, on a real n-dimensional
manifold M™ defined by
2o Gi i

Zi bl(p)xz

for any p € M™ and x € T,(M"), where ((g;;)) is a Riemannian metric
tensor, and b(p) = (b;(p)) is a vector field.

e Randers metric
The Randers metric is a Finsler metric Fg, on a real n-dimensional
manifold M™ defined by

Z 9ijTiTj + Z bi(p)wi
\/ i i
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for any p € M™ and x € T,(M"), where ((g;;)) is a Riemannian metric
tensor, and b(p) = (b;(p)) is a vector field.

e Klein metric
The Klein metric is a Riemannian metric on the open unit ball B™ =
{z € R" : ||z]|]2 < 1} in R™ defined by

VI3 = (=13 11y113 — (=.9)?)

1— ||(3

for any © € B™ and y € T,,(B™), where ||.||2 is the Euclidean norm on R”,
and (,) is the ordinary inner product on R".

e Funk metric
The Funk metric is a Finsler metric Fr, on the open unit ball B" =
{z € R": ||z]|2 < 1} in R™ defined by

VIl — (llBllyl3 — (z,9)%) + (2. y)
1= ||[[3

for any x € B™ and y € T,,(B™), where ||.||2 is the Euclidean norm on R™,

and (,) is the ordinary inner product on R™. It is a projective metric.
e Shen metric

Given a vector a € R™, ||all2 < 1, the Shen metric is a Finsler metric

Fsy, on the open unit ball B" = {x € R™ : ||z||2 < 1} in R™ defined by

VI — (l=[BlylE = (z,9)?) + (z,9) _ (a,y)
1= ||zlf3 1+ (a, )

for any x € B™ and y € T,,(B"™), where ||.||2 is the Euclidean norm on R",
and (,) is the ordinary inner product on R™. It is a projective metric.
For a = 0 it becomes the Funk metric.

e Berwald metric
The Berwald metric is a Finsler metric Fg. on the open unit ball B™ =
{z € R : ||z||s < 1} in R™ defined by

2

(VIWIB=TTBTWIB = .0 + {z.0))
(1= 112132 T1 — (R2T3T81B — (e, )°)

for any x € B™ and y € T,,(B"), where ||.||2 is the Euclidean norm on R",

and (,) is the ordinary inner product on R™. It is a projective metric.
In general, every Finsler metric on a manifold M™ induces a spray

(second-order homogeneous ordinary differential equation) yia% — 26”51

which determines the geodesics. A Finsler metric is called a Berwalyi
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metric if the spray coefficients G* = G'(z, y) are quadratic in y € T,,(M™)
at any point z € M", ie., G' = ;F;k( z)y'y*. Every Berwald metric is
affinely equivalent to a Riemannian metric.

e Douglas metric
A Douglas metric a Finsler metric for which the spray coefficients G* =

G'(x,y) have the following form:

1
G = 2F w(@)yiyr + P(x, )y

Every Finsler metric which is projectively equivalent to a Berwald
metric is a Douglas metric. Every known Douglas metric is (locally) pro-
jectively equivalent to a Berwald metric.

e Bryant metric
Let a be an angle with |a| < Z. Let, for any z,y € R", A = [|y||3 sin® 20+

2
(13 cos 2o+ [|2[|3]1yl[3 — (=, 9)%)", B = |lylI3 cos 2a+||z[3|ly|3—{z, »)*,
C = (z,y)sin 2, D = ||z||3 + 2||z||3 cos 2 + 1. Then one obtains a (pro-

jective) Finsler metric F' by

A+ B c\?> cC
VA+B_ (C\° C
2D D D

On the two-dimensional unit sphere S, it is the Bryant metric.

e Kawaguchi metric
The Kawaguchi metric is a metric on a smooth n-dimensional manifold
M™, given by the arc element ds of a regular curve x = x(t), t € [to, 1],
expressed by the formula

dx dbx
=Flx,—,...,——
ds (=, e’ dtk) b

where the metric function F' satisfies Zermelo’s conditions: Zle sx(®)

s)z F ES_T(Q) s T—H)?F( Yi — O7 x(g)l == dt* 5 F(s)z %, and r =
2,...,k. These conditions ensure that the arc element ds is independent
of the parametrization of the curve z = x(t).

A Kawaguchi manifold (or Kawaguchi space) is a smooth manifold
equipped with a Kawaguchi metric. It is a generalization of a Finsler
manifold.

e DeWitt supermetric
The DeWitt supermetric (or Wheeler-DeWitt supermetric) G =
((Gijk1)) calculates distances between metrics on a given manifold, and
it is a generalization of a Riemannian (or pseudo-Riemannian) metric

g = ((gi5))-
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More exactly, for a given connected smooth three-dimensional manifold
M3, consider the space M (M?3) of all Riemannian (or pseudo-Riemannian)
metrics on M?3. Identifying points of M(M?3) that are related by a diffeo-
morphism of M? one obtains the space Geom(M?) of 3-geometries (of
fixed topology), points of which are the classes of diffeomorphically equiv-
alent metrics. The space Geom(M?3) is called a superspace. It plays an
important role in several formulations of Quantum Gravity.

A supermetric, i.e., a “metric on metrics,” is a metric on M(M?3) (or
on Geom(M?)) which is used for measuring distances between metrics on
M3 (or between their equivalence classes). Given a metric g = ((gi;)) €
M(M?3), we obtain

691 = | daGH (w3955 (2)0gu0)
M3
where G**! is the inverse of the DeWitt supermetric

1
Gijki = ——=—=——=(9ik9j1 + 9uGjx — \Gi;j9ki)-
2/ det((9:5))

The value \ parameterizes the distance between metrics in M(M?3), and

may take any real value except A = %, for which the supermetric is singular.
e Lund—Regge supermetric

The Lund—Regge supermetric (or simplicial supermetric) is an ana-

log of the DeWitt supermetric, used to measure the distances between

simplicial 3-geometries in a simplicial configuration space.

More exactly, given a closed simplicial three-dimensional manifold M3
consisting of several tetrahedra (i.e., 3-simplices), a simplicial geometry on
M? is fixed by an assignment of values to the squared edge lengths of
M3, and a flat Riemannian Geometry to the interior of each tetrahedron
consistent with those values. The squared edge lengths should be posi-
tive and constrained by the triangle inequalities and their analogs for the
tetrahedra, i.e., all squared measures (lengths, areas, volumes) must be
non-negative (cf. tetrahedron inequality in Chap.Bl). The set 7 (M?3)
of all simplicial geometries on M3 is called a simplicial configuration
space.

The Lund-Regge supermetric ((Gyn,)) on T (M?3) is induced from the
DeWitt supermetric on M(M?3), using for representations of points in
T (M?3) such metrics in M(M?3) which are piecewise flat in the tetrahedra.

e Space of Lorentz metrics
Let M™ be an n-dimensional compact manifold, and L£(M™) the set of
all Lorentz metrics (i.e., the quasi-Riemannian metrics of signature
(n—1,1)) on M".

Given a Riemannian metric g on M™, one can identify the vector space
S2(M™) of all symmetric 2-tensors with the vector space of endomorphisms
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of the tangent to M™, which are symmetric with respect to g. In fact, if his
the endomorphism associated to a tensor h, then the distance on S?(M™)
is given by

dg(h,t) = sup y/tr(hy —ts)
xEM™

[ V)

The set £L(M™) equipped with the distance d, is an open subset of
S2(M™) called the space of Lorentz metrics. Cf. manifold triangu-
lation metric in Chap.[

e Perelman supermetric proof
The Thurston’s Geometrization Conjecture is that, after two well-known
splittings, any three-dimensional manifold admits, as remaining compo-
nents, only one of 8 Thurston model geometries. If true, this conjecture
implies the validity of the famous Poincaré Conjecture of 1904, that any
3-manifold, in which every simple closed curve can be deformed continu-
ously to a point, is homeomorphic to the 3-sphere.

In 2003, Perelman gave a sketch of a proof of Thurston’s conjecture using
a kind of supermetric approach to the space of all Riemannian metrics on
a given smooth 3-manifold. In a Ricci flow the distances decrease in direc-
tions of positive curvature since the metric is time-dependent. Perelman’s
modification of the standard Ricci flow permitted systematic elimination
of arising singularities.

7.2 Riemannian metrics in Information Theory

Some special Riemannian metrics are commonly used in Information Theory.
A list of such metrics is given below.

e Fisher information metric
In Statistics, Probability, and Information Geometry, the Fisher infor-
mation metric (or Fisher metric, Rao metric) is a Riemannian metric
for a statistical differential manifold (see, for example, [Amar85], [Frie98g]).
It addresses the differential geometry properties of families of classical
probability densities.

Formally, let pg = p(x,0) be a family of densities, indexed by n param-
eters 6 = (01,...,0,) which form the parameter manifold P. The Fisher
information metric g = gp on P is a Riemannian metric, defined by the
Fisher information matriz ((1(6):;)), where

p(x,0)dx.

1(0)ij = Eg {mnpg 81np9] _ / Olnp(z,0) dlnp(x,0)

90;  00; 0 0,
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It is a symmetric bilinear form which gives a classical measure (Rao
measure) for the statistical distinguishability of distribution parameters.

Putting i(x,0) = —Inp(z, d), one obtains an equivalent formula
0%i(z,0) 0%i(z,0)
I L= E P Sk S/ - 7 .
©)is =Es [ 96,00, } 36,09, P+ 0

In a coordinate-free language, we get

1(0)(u, v) = Eg [u(lnpg) - v(Inpy)],

where u and v are vectors tangent to the parameter manifold P, and
u(Inpy) = % In pgu|t—o is the derivative of Inpy along the direction u.
A manifold of densities M is the image of the parameter manifold P
under the mapping 6 — pg with certain regularity conditions. A vector u
tangent to this manifold is of the form u = %pg+tu‘t=0, and the Fisher
metric g = g, on M, obtained from the metric go on P, can be written as

gp(u,v) = Ky [z : ;] :

e Fisher—-Rao metric
Let P, = {p € R" : Y_I' \pi = 1,p; > 0} be the simplex of strictly
positive probability vectors. An element p € P, is a density of the n-point
set {1,...,n} with p(i) = p;. An element u of the tangent space T,,(P,,) =
{ueR™:>"  u; =0} at a point p € P, is a function on {1,...,n} with
The Fisher—-Rao metric g, on P, is a Riemannian metric defined by

U3 V4
Pi

gp(ua U) =
=1

for any w,v € T,(P,), i.e., it is the Fisher information metric on P,.
The Fisher-Rao metric is the unique (up to a constant factor) Riemannian
metric on P, contracting under stochastic maps [Chen72].

The Fisher-Rao metric is isometric, by p — 2(/p1,...,/Pn), With the
standard metric on an open subset of the sphere of radius two in R™. This
identification of P, allows one to obtain on P, the geodesic distance,
called the Fisher distance (or Bhattacharya distance 1), by

2 arccos( Zpl/Q 1/2

The Fisher-Rao metric can be extended to the set M,, = {p € R",p; > 0}
of all finite strictly positive measures on the set {1,...,n}. In this case,
the geodesic distance on M,, can be written as
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23 (e~ V3
for any p,q € M,, (cf. Hellinger metric in Chap.[I4).
e Monotone metric

Let M,, be the set of all complex n X n matrices. Let M C M, be the
manifold of all complex positive-definite n x n matrices. Let D C M,
D = {p e M:Trp = 1}, be the manifold of all density matrices. The
tangent space of M at p € M is T,(M) = {z € M,, : « = z*}, i.e., the set
of all n x n Hermitian matrices. The tangent space T,(D) at p € D is the
subspace of traceless (i.e., with trace 0) matrices in T,(M).

A Riemannian metric A on M is called monotone metric if the in-
equality

)‘h(p)(h(u)r h(u)) < )‘p(uv u)

holds for any p € M, any u € T,(M), and any completely positive trace
preserving mapping h, called stochastic mapping. In fact [Petz96], \ is
monotone if and only if it can be written as

Ap(u,v) = Tr ud,(v),

: _ 1
where J, is an operator of the form J, = T RE, - dere Ly and R, are

the left and the right multiplication operators, and f : (0,00) — R is an
operator monotone function which is symmetric, i.e., f(t) = tf(t~1), and
normalized, i.e., f(1) = 1. Then J,(v) = p~'v if v and p are commute,
i.e., any monotone metric is equal to the Fisher information metric on
commutative submanifolds. Therefore, monotone metrics generalize the
Fisher information metric on the class of probability densities (classical
or commutative case) to the class of density matrices (quantum or non-
commutative case) which are used in Quantum Statistics and Information
Theory. In fact, D is the space of faithful states of an n-level quantum
system.

A monotone metric A\,(u,v) = Tr um(v) can be rewritten as

Ao(u,v) = Tr uwe(L,, R,)(v), where the function c(z,y) = +-+— is the
Morozova-Chentsov function related to .

The Bures metric is the smallest monotone metric, obtained for f(t) =
Lt (for c(z,y) = %_‘_y) In this case J,(v) = g, pg + gp = 2v, is the
symmetric logarithmic derivative.

The right logarithmic derivative metric is the greatest monotone
_ 2t

metric, corresponding to the function f(t) = 135 (for c(z,y) = ZTJF;’) In

this case J,(v) = 2(p~ v +vp~?t) is the right logarithmic derivative.
The Bogolubov—Kubo—Mori metric is obtained for f(z) = = (for
Inz—Inz )

c(z,y) = F5=,-*). It can be written as A,(u,v) = %Tr(p + su)In(p +
tv)|s,t:0-
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The Wigner—Yanase-Dyson metrics A\ are monotone for a €
[—3,3]. For @« = £1, we obtain the Bogolubov—Kubo-Mori metric; for
«a = +3 we obtain the right logarithmic derivative metric. The smallest in
the family is the Wigner—Yanase metric, obtained for a = 0.
e Bures metric
The Bures metric (or statistical metric) is a monotone metric on
the manifold M of all complex positive-definite n x n matrices defined by

Ap(u,v) =T ud,(v),

where J,(v) = g, pg + gp = 2v, is the symmetric logarithmic derivative. It
is the smallest monotone metric.

For any p1, po € M the Bures distance, i.e., the geodesic distance
defined by the Bures metric, can be written as

2\/T7“Pl +Trpa — 2Tr(py/* papy/ )12,

On the submanifold D = {p € M : Trp = 1} of density matrices it has
the form
2 arccos Tr(p}/2p2p1/2)1/2.
e Right logarithmic derivative metric
The right logarithmic derivative metric (or RLD-metric) is a mono-
tone metric on the manifold M of all complex positive-definite n x n
matrices defined by
Ap(u,v) =Tr ud,(v),

where J,(v) = $(p~'v+vp~?t) is the right logarithmic derivative. It is the
greatest monotone metric.

e Bogolubov-Kubo—Mori metric
The Bogolubov—Kubo—Mori metric (or BKM-metric) is a monotone
metric on the manifold M of all complex positive-definite n x n matrices

defined by
2

0
Ap(u,v) = 8SatTr(p + su) In(p + tv)|s,1=0-

¢ Wigner—Yanase—Dyson metrics
The Wigner—Yanase—Dyson metrics (or WYD-metrics) form a family
of metrics on the manifold M of all complex positive-definite n x n matrices
defined by

2

o 0
)\p(u7v> = atasTTfa(P‘f'tU)ffa(p‘f'S'U)|s,t:0>

where f,(x) = %m%, if « # 1, and is Inz, if & = 1. These

metrics are monotone for o € [—3,3]. For @« = =+1 one obtains the
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Bogolubov-Kubo—Mori metric; for @« = +£3 one obtains the right
logarithmic derivative metric.

The Wigner—Yanase metric (or WY-metric) A, is the Wigner—
Yanase-Dyson metric )\8, obtained for o = 0. It can be written as

Mp(u,v) = 4Tr u(\/L, + V/R,)?(v),

and is the smallest metric in the family. For any p1, p2 € M the geodesic
distance defined by the WY -metric, has the form

2\/T7“p1 +Trpy — 2Tr(p}/2p;/2).

On the submanifold D = {p € M : Trp = 1} of density matrices it is
equal to
2 arccos Tr(pi/Qpé/Z).
e Connes metric
Roughly, the Connes metric is a generalization (from the space of all
probability measures of a set X, to the state space of any unital C*-algebra)
of the Kantorovich—Mallows—Monge—Wasserstein metric defined as
the Lipschitz distance between measures.

Let M™ be a smooth n-dimensional manifold. Let A = C°°(M™) be the
(commutative) algebra of smooth complex-valued functions on M™, rep-
resented as multiplication operators on the Hilbert space H = L?(M™, S)
of square integrable sections of the spinor bundle on M™ by (f¢)(p) =
f(p)&(p) for all f € A and for all £ € H. Let D be the Dirac opera-
tor. Let the commutator [D, f] for f € A be the Clifford multiplication
by the gradient Vf so that its operator norm |[|.|| in H is given by
1D, £l = supyerse [V £1]

The Connes metric is the intrinsic metric on M"™, defined by

sup [f(p) = f(a)l-

feAlD flI<1

This definition can also be applied to discrete spaces, and even general-
ized to “non-commutative spaces” (unital C*-algebras). In particular, for
a labeled connected locally finite graph G = (V, E) with the vertex-set
V ={v1,...,0,,...}, the Connes metric on V' is defined by

sup ‘f/v':, _f'Uj|
1D, f111=Ildf[|<1

for any v;,v; € V, where {f = Y fo,vi + > |fu:|? < oo} is the set of
formal sums f, forms a Hilbert space, and || [D, f]|| can be obtained by

1D, 11 = sup, (1) (fo, = Fo)?)E.
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7.3 Hermitian metrics and generalizations

A wvector bundle is a geometrical construct where to every point of a topological
space M we attach a vector space so that all those vector spaces “glued
together” form another topological space E. A continuous mapping 7 : £ —
M is called a projection E on M. For every p € M, the vector space 7~ 1(p) is
called a fiber of the vector bundle. A real (complez) vector bundle is a vector
bundle 7 : E — M whose fibers 7=1(p), p € M, are real (complex) vector
spaces.

In a real vector bundle, for every p € M, the fiber 7=1(p) locally looks
like the vector space R, i.e., there is an open neighborhood U of p, a natural
number n, and a homeomorphism ¢ : U x R® — 7~ 1(U) such that, for all z €
U and v € R™, one has 7(¢(x,v)) = v, and the mapping v — ¢(x,v) yields an
isomorphism between R™ and 7=!(z). The set U, together with ¢, is called a
local trivialization of the bundle. If there exists a “global trivialization,” then
a real vector bundle 7w : M x R™ — M is called trivial. Similarly, in a complex
vector bundle, for every p € M, the fiber 7=1(p) locally looks like the vector
space C™. The basic example of a complex vector bundle is the trivial bundle
7m:U x C" — U, where U is an open subset of R¥.

Important special cases of a real vector bundle are the tangent bundle
T(M™) and the cotangent bundle T*(M™) of a real n-dimensional manifold
Mg = M™. Important special cases of a complex vector bundle are the tan-
gent bundle and the cotangent bundle of a complex n-dimensional manifold.

Namely, a complex n-dimensional manifold M{ is a topological space in
which every point has an open neighborhood homeomorphic to an open set
of the n-dimensional complex vector space C”, and there is an atlas of charts
such that the change of coordinates between charts is analytic. The (complex)
tangent bundle T¢ (M) of a complex manifold Mg is a vector bundle of all
(complex) tangent spaces of M at every point p € M. It can be obtained
as a complezification Tr(MZ) ® C = T(M"™) ® C of the corresponding real
tangent bundle, and is called the complezified tangent bundle of M¢.

The complexified cotangent bundle of M¢ is obtained similarly as
T*(M"™) ® C. Any complex n-dimensional manifold Mg = M™ can be re-
garded as a special case of a real 2n-dimensional manifold equipped with
a complex structure on each tangent space. A compler structure on a real
vector space V is the structure of a complex vector space on V that is
compatible with the original real structure. It is completely determined by
the operator of multiplication by the number 4, the role of which can be
taken by an arbitrary linear transformation J : V — V, J? = —id, where id
is the identity mapping.

A connection (or covariant derivative) is a way of specifying a derivative
of a wector field along another vector field in a vector bundle. A metric
connection is a linear connection in a vector bundle 7w : E — M, equipped
with a bilinear form in the fibers, for which parallel displacement along an
arbitrary piecewise-smooth curve in M preserves the form, that is, the scalar
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product of two vectors remains constant under parallel displacement. In the
case of a non-degenerate symmetric bilinear form, the metric connection is
called the Fuclidean connection. In the case of non-degenerate antisymmetric
bilinear form, the metric connection is called the symplectic connection.

e Bundle metric
A bundle metric is a metric on a vector bundle.

e Hermitian metric
A Hermitian metric on a complex vector bundle 7 : E — M is a
collection of Hermitian inner products (i.e., positive-definite symmetric
sesquilinear forms) on every fiber E, = 7 !(p), p € M, that varies
smoothly with the point p in M. Any complex vector bundle has a Her-
mitian metric.

The basic example of a vector bundle is the trivial bundle 7 : U x C"* —
U, where U is an open set in R*. In this case a Hermitian inner product
on C", and hence, a Hermitian metric on the bundle 7 : U x C" — U, is
defined by
(u,v) = uT HT,

where H is a positive-definite Hermitian matriz, i.e., a complex n X n

matrix such that H* = H' = H, and 77 Hv > 0 for all v € C"\{0}. In
the simplest case, one has (u,v) = > """ | u;7;.

An important special case is a Hermitian metric h on a complex manifold
M™, i.e., on the complexified tangent bundle T(M™) @ C of M™. This is
the Hermitian analog of a Riemannian metric. In this case h = g+iw, and
its real part g is a Riemannian metric, while its imaginary part w is a non-
degenerate antisymmetric bilinear form, called a fundamental form. Here
9(J (@), J(y)) = g(z,y), w(J(x), J(y)) = w(z,y), and w(z,y) = g(x, J(y)),
where the operator J is an operator of complex structure on M"; as a
rule, J(z) = ixz. Any of the forms g, w determines h uniquely. The term
Hermitian metric can also refer to the corresponding Riemannian metric
g, which gives M"™ a Hermitian structure.

On a complex manifold a Hermitian metric h can be expressed in local
coordinates by a Hermitian symmetric tensor ((hqj)):

h=>hijdz @ dz;,
i,

where ((h;j)) is a positive-definite Hermitian matrix. The associated fun-
damental form w is then written as w = £ 3, - hijdz; A dz;.

A Hermitian manifold (or Hermitian space) is a complex manifold
equipped with a Hermitian metric.

e Kahler metric

A Kahler metric (or Kdhlerian metric) is a Hermitian metric h = g +
1w on a complex manifold M™ whose fundamental form w is closed, i.e.,
satisfies the condition dw = 0. A Kdhler manifold is a complex manifold
equipped with a Kéahler metric.
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If h is expressed in local coordinates, i.e., h = . ; h;jdz; ®dz;, then the

associated fundamental form w can be written as w = 5 Zi,j hijdz; NdZ;,
where A is the wedge product which is antisymmetric, i.e., dr Ady = —dy N
dx (hence, dx A dx = 0). In fact, w is a differential 2-form on M", i.e.,
a tensor of rank 2 that is antisymmetric under exchange of any pair of
indices: w = Y7, ; fijdx’ Adz?, where fi; is a function on M™. The exterior

derivative dw of w is defined by dw = Z” Yok 88];‘: day N dx; N dxy,. If
dw = 0, then w is a symplectic (i.e., closed non-degenerate) differential
2-form. Such differential 2-forms are called Kdhler forms.

The metric on a Kahler manifold locally satisfies

o K
K 8zi8§j

for some function K, called the Kdahler potential.

The term Kdahler metric can also refer to the corresponding Riemannian
metric g, which gives M" a Kéhler structure. Then a Kahler manifold is
defined as a complex manifold which carries a Riemannian metric and a
Kahler form on the underlying real manifold.

e Hessian metric
Given a smooth f on an open subset of a real vector space, the associated
Hessian metric is defined by

o
g” B (917281']

A Hessian metric is also called an affine Kahler metric since a Kahler

metric on a complex manifold has an analogous description as - of
dziazj

e Calabi—Yau metric
The Calabi—Yau metric is a Kéhler metric which is Ricci-flat.

A Calabi-Yau manifold (or Calabi-Yau space) is a simply-connected
complex manifold equipped with a Calabi—Yau metric. It can be consid-
ered as a 2n-dimensional (six-dimensional being particularly interesting)
smooth manifold with holonomy group (i.e., the set of linear transforma-
tions of tangent vectors arising from parallel transport along closed loops)
in the special unitary group.

¢ Kaiahler—Einstein metric
A Kahler—Einstein metric (or Einstein metric) is a Kéhler metric
on a complex manifold M™ whose Ricci curvature tensor is proportional
to the metric tensor. This proportionality is an analog of the Einstein field
equation in the General Theory of Relativity.

A Kdhler-Finstein manifold (or Finstein manifold) is a complex man-
ifold equipped with a Kahler-Einstein metric. In this case the Ricci
curvature tensor, considered as an operator on the tangent space, is just
multiplication by a constant.
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Such a metric exists on any domain D C C™ that is bounded and pseudo-
convex. It can be given by the line element

Z 821 dzl

) = e?* on

where u is a solution to the boundary value problem: det(az o%;
D, and u = oo on 0D.
The Kéahler-Einstein metric is a complete metric. On the unit disk A =
{z € C: |z| < 1} it is coincides with the Poincaré metric.
e Hodge metric
The Hodge metric is a Kahler metric whose fundamental form w de-
fines an integral cohomology class or, equivalently, has integral periods.
A Hodge manifold (or Hodge variety) is a complex manifold equipped
with a Hodge metric. A compact complex manifold is a Hodge manifold
if and only if it is isomorphic to a smooth algebraic subvariety of some
complex projective space.
e Fubini—-Study metric
The Fubini—Study metric (or Cayley—Fubini—Study metric) is a Kahler
metric on a complex projective space CP™ defined by a Hermitian inner
product {,) in C"*1. It is given by the line element

d52'_ <$,$><d$,d1» —-<$,d§>€f,d$>
- (z,x)? '
The distance between two points (z1 : ... : Zp41) and (Y1 @ ... : Yny1) €

CP™, where * = (x1,...,%n41) and y = (Y1,...,Yns1) € CPTH\{0}, is
equal to
(2, )|

(z,2)(y,y)

The Fubini-Study metric is a Hodge metric. The space CP™ endowed
with the Fubini-Study metric is called a Hermitian elliptic space (cf. Her-
mitian elliptic metric).

e Bergman metric

The Bergman metric is a Kahler metric on a bounded domain D C

C™ defined by the line element

arccos

0?InK(z,z)
ds? = " dzdz;,
Z Bzz(%J R
i,j
where K(z,u) is the Bergman kernel function. The Bergman metric is in-
variant under all automorphisms of D; it is complete if D is homogeneous.
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For the unit disk A = {z € C : |z| < 1} the Bergman metric coincides
with the Poincaré metric (cf. also Bergman p-metric in Chap.[3]).

The Bergman kernel function is defined as follows. Consider a domain
D C C™ in which there exists analytic functions f # 0 of class Ls(D)
with respect to the Lebesgue measure. The set of these functions forms
the Hilbert space L (D) C Lo(D) with an orthonormal basis (¢;);.
The Bergman kernel function in the domain D x D C C?" is defined by
Kp(z,u) = K(z,u) = Y202, 64()64(u).

e Hyper-Kihler metric
A hyper-Kihler metric is a Riemannian metric g on a 4n-dimensional
Riemannian manifold which is compatible with a quaternionic structure
on the tangent bundle of the manifold.

Thus, the metric g is Kahlerian with respect to the three Kahler struc-
tures (I,wr,g), (J,wy,g), and (K, wg, g), corresponding to the complex
structures, as endomorphisms of the tangent bundle which satisfy the
quaternionic relationship

P=J=K>=1JK =—-JIK = —1.

A hyper-Kdhler manifold is a Riemannian manifold equipped with a
hyper-Kéhler metric. It is a special case of a Kdhler manifold. All hyper-
Kéhler manifolds are Ricci-flat. Compact four-dimensional hyper-Kéhler
manifolds are called Kj-surfaces; they are studied in Algebraic Geometry.

e Calabi metric
The Calabi metric is a hyper-Kahler metric on the cotangent bundle
T*(CP™1) of a complex projective space CP™ V1. For n = 4k + 4, this
metric can be given by the line element
dr? 1

ds? = ppp— + ZTQ(l —r N 422 4 2+

1 1
+5(7 = D(oa +032) + 5 + D(Zh, + 25,),

where (A, v1, V2, 014, 0245 210, 224), With a running over k values, are left-
invariant one-forms (i.e., linear real-valued functions) on the coset SU (k +
2)/U (k). Here U (k) is the unitary group consisting of complex k x k unitary
matrices, and SU (k) is the special unitary group of complex k x k unitary
matrices with determinant 1.
For k = 0, the Calabi metric coincides with the Eguchi—Hanson

metric.

e Stenzel metric
The Stenzel metric is a hyper-Kahler metric on the cotangent bundle
T*(S"*1) of a sphere S

e SO(3)-invariant metric
An SO(3)-invariant metric is a four-dimensional hyper-Kéhler metric
with the line element given, in the Bianchi-I X formalism, by
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ds* = f2(t)dt* + a®(t)o? + b*(t)os + A (t)o3,

where the invariant one-forms o1, o9, 03 of SO(3) are expressed in terms of
Euler angles 0, ¥, ¢ as o1 = % (sintpdf —sin  cos de), oo = —5(cos Yd +
sinfsin1pde), o3 = 5(d)+cos fde), and the normalization has been chosen
so that o; Aoy = %eijkdak. The coordinate t of the metric can always be
chosen so that f(t) = %abc, using a suitable reparametrization.
e Atiyah—Hitchin metric

The Atiyah—Hitchin metric is a complete regular SO(3)-invariant
metric with the line element

1 dk ’
5 = 1020 (g )+ @00t + B + bk,

where a,b, ¢ are functions of k, ab = —K(k)(E(k) — K(k)), bc = —K (k)
(E(k)—(1-k?)K(k)), ac = =K (k)E(k), and K (k), E(k) are the complete
elliptic integrals, respectively, of the first and second kind, with 0 < k < 1.
The coordinate t is given by the change of variables ¢ = —%(_kk)’z) up to
an additive constant.

e Taub-NUT metric
The Taub-NUT metric is a complete regular SO(3)-invariant met-
ric with the line element

T—m
2
0'3,

1
2_1T¥ g + (r? = m?)(0? 4+ 03) + 4m?

ds? =
y 4r—m r+m

where m is the relevant moduli parameter, and the coordinate r is related
totby r=m+ ﬁ

e Eguchi-Hanson metric
The Eguchi-Hanson metric is a complete regular SO(3)-invariant
metric with the line element

dr? 4
d52:$+r2 o402+ (1 4 o2,
() g

p
where a is the moduli parameter, and the coordinate r is related to ¢ by
r? = a? coth(a’t).

The Eguchi-Hanson metric coincides with the four-dimensional Calabi
metric.

e Complex Finsler metric
A complex Finsler metric is an upper semi-continuous function F' :
T(M™) — Ry on a complex manifold M™ with the analytic tangent bundle
T(M™) satisfying the following conditions:

1. F? is smooth on M", where M" is the complement in T(M™) of the
zero section.
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2. F(p,z) >0 for all p e M™ andeM;}.
3. F(p, \z) = [A\F(p,x) for all pe M", x € T,(M"), and A € C.

The function G = F? can be locally expressed in terms of the coordinates
(P1y- -y Dns T1, ..., &y); the Finsler metric tensor of the complex Finsler

metric is given by the matrix((Gy;)) = ((3 aéi-ig;j ), called the Levi matriz.

If the matrix ((Gyj;)) is positive-definite, the complex Finsler metric F is
called strongly pseudo-convez.
e Distance-decreasing semi-metric
Let d be a semi-metric which can be defined on some class M of com-
plex manifolds containing the unit disk A = {z € C : |z| < 1}. It is
called distance-decreasing for all analytic mappings if, for any ana-
lytic mapping f : My — My with My, My € M, the inequality d(f(p),
f(q)) < d(p,q) holds for all p,q € M,.
Cf. Kobayashi metric, Carathéodory metric and Wu metric.
¢ Kobayashi metric
Let D be a domain in C™. Let O(A, D) be the set of all analytic mappings
f:A — D, where A ={z € C: |z] < 1} is the unit disk.
The Kobayashi metric (or Kobayashi—Royden metric) F is a
complex Finsler metric defined by

Fr(z,u) =inf{a>0:3f € O(A, D), f(0) = z,af (0) = u}

for all z € D and u € C™. It is a generalization of the Poincaré metric
to higher-dimensional domains. Then Fk(z,u) > Fo(z,u), where F¢ is
the Carathéodory metric. If D is convex, and d(z,u) = inf{A: 24+ 2 €

D if |a| > A}, then M < Fr(z,u) = Fo(z,u) < d(z,u).
Given a complex manifold M"™, the Kobayashi semi-metric F is

defined by
Fr(p,u) = inf{a > 0:3f € O(A, M"), f(0) = p,af (0) = u}

for all p € M™ and u € T,(M"). Fg(p,u) is a semi-norm of the tangent
vector u, called the Kobayashi semi-norm. Fy is a metric if M™ is taut,
ie., O(A, M™) is a normal family.

The Kobayashi semi-metric is an infinitesimal form of the so-called
Kobayashi semi-distance (or Kobayashi pseudo-distance) Kpn on M™,
defined as follows. Given p,q € M™, a chain of disks o from p to ¢
is a collection of points p = p°,p!,...,pF = ¢ of M™, pairs of points
a',b';...;a" b* of the unit disk A, and analytic mappings fi, ... fx from
A into M™, such that f;(a’) = p’~! and f;(b/) = p’ for all j. The length
I(a) of a chain « is the sum dp(at,b') + - - + dp(a®,b*), where dp is the
Poincaré metric. The Kobayashi semi-metric Kjy;» on M™ is defined by

Ko (p,a) = infl(a),
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where the infimum is taken over all lengths I(«) of chains of disks « from
p to q.

The Kobayashi semi-distance is distance-decreasing for all analytic
mappings. It is the greatest semi-metric among all semi-metrics on M",
that are distance-decreasing for all analytic mappings from A into M™,
where distances on A are measured in the Poincaré metric. K is the
Poincaré metric, and K¢n = 0.

A manifold is called Kobayashi hyperbolic if the Kobayashi semi-distance
is a metric on it. In fact, a manifold is Kobayashi hyperbolic if and only if
it is biholomorphic to a bounded homogeneous domain.

¢ Kobayashi—Busemann metric
Given a complex manifold M", the Kobayashi-Busemann semi-
metric on M™ is the double dual of the Kobayashi semi-metric. It is
a metric if M™ is taut.

e Carathéodory metric
Let D be a domain in C™. Let O(D, A) be the set of all analytic mappings
f:D— A, where A = {z € C: |z] < 1} is the unit disk.

The Carathéodory metric Fo is a complex Finsler metric de-
fined by )

Fo(z,u) = sup{|f (2)u| : f € O(D,A)}

for any z € D and v € C". It is a generalization of the Poincaré metric to
higher-dimensional domains. Then Fg(z,u) < Fk(z,u), where Fi is the
Kobayashi metric. If D is convex and d(z,u) = inf{\: 2 + 2 € D if |a| >
A}, then d(zT’“) < Fo(z,u) = Fr(z,u) < d(z,u).

Given a complex manifold M™, the Carathéodory semi-metric F¢
is defined by

Fe(p,u) = sup{|f (p)ul : f € O(M",A)}

for all p € M™ and u € T,(M™). F¢ is a metric if M™ is taut.
The Carathéodory semi-distance (or Carathéodory pseudo-distance)
Cyn is a semi-metric on a complex manifold M™, defined by

Cun(p,q) = sup{dp(f(p), f(q)) : f € O(M",A)},

where dp is the Poincaré metric. In general, the integrated semi-
metric of the infinitesimal Carathéodory semi-metric is internal for
the Carathéodory semi-distance, but does not coincides with it.

The Carathéodory semi-distance is distance-decreasing for all an-
alytic mappings. It is the smallest distance-decreasing semi-metric. Ca
coincides with the Poincaré metric, and C¢cn = 0.

e Azukawa metric
Let D be a domain in C". Let gp(z,u) = sup{f(u) : f € Kp(2)},
where Kp(z) is the set of all logarithmically plurisubharmonic functions
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f:D —[0,1) such that there exist M,r > 0 with f(u) < M|lu — z||2 for
all u € B(z,r) C D; here ||.||2 is the l3-norm on C", and B(z,r) = {x €
C": ||z —zl|]2 < r}.

The Azukawa metric (in general, a semi-metric) F is a complex
Finsler metric defined by

1
= ;136 sup ng(Z, z 4+ Au)

Fa(z,u)
for all z € D and uw € C™. It “lies between” the Carathéodory metric
Fe and the Kobayashi metric Fi: Fo(z,u) < Fa(z,u) < Fg(z,u) for
all z € D and u € C™. If D is convex, then all these metrics coincide.

The Azukawa metric is an infinitesimal form of the so-called Azukawa
semi-distance.

e Sibony semi-metric

Let D be a domain in C". Let Kp(z) be the set of all logarithmically
plurisubharmonic functions f : D — [0,1) such that there exist M,r > 0
with f(u) < M||lu — z||2 for all w € B(z,7) C D; here ||.||2 is the l3-norm
on C", and B(z,r) = {z € C": ||z — z|]2 < r}. Let C? () be the set of
all functions of class C? on some open neighborhood of z.

The Sibony semi-metric Fg is a complex Finsler semi-metric
defined by

(2)uiti;

FS(Z,U) = sup -
FEKD(NCE,(2) \| 75 02;0%;

loc

for all z € D and u € C”. When it is a metric, it “lies between” the
Carathéodory metric Fo and the Kobayashi metric Fi: Fo(z,u) <
Fs(z,u) < Fyg(z,u) < Fg(z,u) for all z € D and v € C”, where F is the
Azukawa metric. If D is convex, then all these metrics coincide.
The Sibony semi-metric is an infinitesimal form of the so-called Sibony
semi-distance.
e Wu metric
The Wu metric Wy« is an upper-semi-continuous Hermitian metric on
a complex manifold M™, that is distance-decreasing for all analytic
mappings. In fact, for two n-dimensional complex manifolds M{* and M3,
the inequality Wazp (f(p), f(q)) < v/nWharr (p, q) holds for all p,q € M.
Invariant metrics, including the Carathéodory, Kobayashi, Bergman,
and Kéahler—Einstein metrics, play an important role in Complex Function
Theory and Convex Geometry. The Carathéodory and Kobayashi met-
rics are used mostly because of the distance-decreasing property. But they
are almost never Hermitian. On the other hand, the Bergman metric and
the Kéhler-Einstein metric are Hermitian (in fact, Kéhlerian), but the
distance-decreasing property, in general, fails for them.



7.3 Hermitian metrics and generalizations 157

e Teichmiiller metric

A Riemann surface R is a one-dimensional complex manifold. Two
Riemann surfaces Ry and Ry are called conformally equivalent if there ex-
ists a bijective analytic function (i.e., a conformal homeomorphism) from
R, into Rs. More precisely, consider a fixed closed Riemann surface Ry of
a given genus g > 2. For a closed Riemann surface R of genus g, construct
a pair (R, f), where f : Ry — R is a homeomorphism. Two pairs (R, f)
and (Rq, f1) are called conformally equivalent if there exists a conformal
homeomorphism A : R — R; such that the mapping (f1)~-h-f : Ry — Ro
is homotopic to the identity.

An abstract Riemann surface R* = (R, f)* is the equivalence class of
all Riemann surfaces, conformally equivalent to R. The set of all equiva-
lence classes is called the Teichmiiller space T(Ry) of the surface Ry. For
closed surfaces Ry of given genus g, the spaces T'(Ry) are isometrically
isomorphic, and one can speak of the Teichmuiiller space T, of surfaces of
genus g. Ty is a complex manifold. If Ry is obtained from a compact sur-
face of genus g > 2 by removing n points, then the complex dimension of
Ty is 3g — 3 +n.

The Teichmiiller metric is a metric on 7, defined by

L.
5 uﬁfan(h)

for any R}, R5 € Ty, where h : Ry — Ry is a quasi-conformal homeomor-
phism, homotopic to the identity, and K (h) is the mazimal dilation of h.
In fact, there exists a unique extremal mapping, called the Teichmaller
mapping, which minimizes the maximal dilation of all such h, and the dis-
tance between R} and Rj is equal to %ln K, where the constant K is the
dilation of the Teichmiiller mapping.

In terms of the extremal length extr-(7), the distance between R} and
R3 is

1 extp: (7)

— Insup ,
2 v extrs(7y)

where the supremum is taken over all simple closed curves on Ry.

The Teichmiiller space T,, with the Teichmiiller metric on it, is a
geodesic metric space (moreover, a straight G-space) but it is nei-
ther Gromov hyperbolic, nor a globally non-positively Busemann
curved metric space.

The Thurston quasi-metric on the Teichmiiller space Ty is defined by

1.
§1rﬁfln||h||Lip
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for any R}, R; € Ty, where h : Ry — Ry is a quasi-conformal homeo-
morphism, homotopic to the identity, and ||.||z;p is the Lipschitz norm

on the set of all injective functions f : X — Y defined by ||f||Lip =

dy (f(z).f(v))
Supa:,yeX,w;Ey W

The moduli space R4 of conformal classes of Riemann surfaces of genus
g is obtained by factorization of T, by some countable group of auto-
morphisms of it, called the modular group. Examples of metrics related
to moduli and Teichmiiller spaces are, besides the Teichmiiller metric,
the Weil-Petersson metric, Quillen metric, Carathéodory met-
ric, Kobayashi metric, Bergman metric, Cheng-Yau-Mok metric,
McMullen metric, asymptotic Poincaré metric, Ricci metric, perturbed
Ricci metric, VHS-metric.

e Weil-Petersson metric
The Weil-Petersson metric is a Kahler metric on the Teichmiiller
space T}, of abstract Riemann surfaces of genus g with n punctures and
negative Euler characteristic.

The Weil-Peterson metric is Gromov hyperbolic if and only if
(Brock and Farb 2006) the complex dimension 3g — 3 + n of T, ,, is at
most 2.

e Gibbons—Manton metric
The Gibbons—Manton metric is a 4n-dimensional hyper-Kéahler met-
ric on the moduli space of n-monopoles, admitted an isometric action of
the n-dimensional torus T™. It can be described also as a hyper-Kahler
quotient of a flat quaternionic vector space.

e Zamolodchikov metric
The Zamolodchikov metric is a metric on the moduli space of two-
dimensional conformal field theories.

e Metrics on determinant lines
Let M™ be an n-dimensional compact smooth manifold, and let F' be a
flat vector bundle over M™. Let H*(M", F) = @& (H'(M™, F) be the de
Rham cohomology of M™ with coefficients in F'. Given an n-dimensional
vector space V', the determinant line det V' of V is defined as the top
exterior power of V, ie., det V = A"V. Given a finite-dimensional
graded vector space V' = @7 ,V;, the determinant line of V' is defined
as the tensor product det V. = ®?:O(deﬂ/i)(*1)7’. Thus, the determi-
nant line detH®*(M™, F) of the cohomology H®(M™, F) can be written
as detH*(M"™, F) = @7_o(detH (M™, F))(=1".

The Reidemeister metric is a metric on detH®(M™, F'), defined by a
given smooth triangulation of M™, and the classical Reidemeister—Franz
torsion.

Let g and g7™") be smooth metrics on the vector bundle F and
tangent bundle T'(M™), respectively. These metrics induce a canoni-
cal Lo-metric h#'M™"F) on H®(M™ F). The Ray-Singler metric
on detH®*(M™, F) is defined as the product of the metric induced on
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detH®*(M™, F) by hH"M™F) with the Ray Singler analytic torsion. The
Milnor metric on detH®(M™, F') can be defined in a similar manner us-
ing the Milnor analytic torsion. If g¥" is flat, the above two metrics coincide
with the Reidemeister metric. Using a co-Euler structure, one can define
a modified Ray-Singler metric on detH®(M"™, F).

The Poincaré—Reidemeister metric is a metric on the cohomo-
logical determinant line detH®(M™, F) of a closed connected oriented
odd-dimensional manifold M™. It can be constructed using a combination
of the Reidemeister torsion with the Poincaré duality. Equivalently, one can
define the Poincaré-Reidemeister scalar product on detH®(M™, F') which
completely determines the Poincaré-—Reidemeister metric but contains an
additional sign or phase information.

The Quillen metric is a metric on the inverse of the cohomological de-
terminant line of a compact Hermitian one-dimensional complex manifold.
It can be defined as the product of the Lo-metric with the Ray—Singler
analytic torsion.

e Kaihler supermetric
The Kahler supermetric is a generalization of the Kahler metric for
the case of a supermanifold. A supermanifold is a generalization of the
usual manifold with fermonic as well as bosonic coordinates. The bosonic
coordinates are ordinary numbers, whereas the fermonic coordinates are
Grassmann numbers.

e Hofer metric
A symplectic manifold (M™,w), n = 2k, is a smooth even-dimensional
manifold M" equipped with a symplectic form, i.e., a closed non-
degenerate 2-form, w.

A Lagrangian manifold is a k-dimensional smooth submanifold L of
a symplectic manifold (M™ w), n = 2k, such that the form w vanishes
identically on L*, ie., for any p € L* and any =,y € T,(L*), one has
w(z,y) =0.

Let L(M™, A) be the set of all Lagrangian submanifolds of a closed sym-
plectic manifold (M™, w), diffeomorphic to a given Lagrangian submanifold
A. A smooth family o = {L;}, t € [0,1], of Lagrangian submanifolds
Ly € L(M™,A) is called an ezact path connecting Ly and Ly, if there ex-
ists a smooth mapping ¥ : A x [0, 1] — M™ such that, for every ¢ € [0, 1],
one has U(A x {t}) = L, and ¥ xw = dH; A dt for some smooth function
H : A x[0,1] — R. The Hofer length l(«) of an exact path « is defined by
l(a) = fol {max,ea H(p,t) — minpea H(p,t)}dt.

The Hofer metric on the set L(M™, A) is defined by

inf /()

for any Lo, L1 € L(M™,A), where the infimum is taken over all exact
paths on L(M™, A), that connect Lo and L.
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The Hofer metric can be defined in similar way on the group Ham(™, w)
of Hamiltonian diffeomorphisms of a closed symplectic manifold (M™, w),
whose elements are time-one mappings of Hamiltonian flows ¢If: it is
inf, I(c), where the infimum is taken over all smooth paths a = {¢f},
t € [0,1], connecting ¢ and .
e Sasakian metric
A Sasakian metric is a metric of positive scalar curvature on a contact
manifold, naturally adapted to the contact structure.
A contact manifold equipped with a Sasakian metric is called a Sasakian
space, and is an odd-dimensional analog of Kdahler manifolds.
e Cartan metric
A Killing form (or Cartan—Killing form) on a finite-dimensional Lie algebra
Q over a field F is a symmetric bilinear form

B(z,y) = Tr(ady - ady),

where T'r denotes the trace of a linear operator, and ad, is the image of
x under the adjoint representation of Q, i.e., the linear operator on the
vector space  defined by the rule z — [z, 2], where [,] is the Lie bracket.

Let e, ... e, be a basis for the Lie algebra , and [e;,e;] = > 1 _, ijek,
where ’yfj are corresponding structure constants. Then the Killing form is
given by

n
B(zi,x;) = gij = Y V-
k=1

In Theoretical Physics, the metric tensor ((g;;)) is called a Cartan
metric.



Chapter 8
Distances on Surfaces and Knots

8.1 General surface metrics

A surface is a real two-dimensional manifold M?, i.e., a Hausdorff space,
each point of which has a neighborhood which is homeomorphic to a plane
[E2, or a closed half-plane (cf. Chap.[7).

A compact orientable surface is called closed if it has no boundary, and it is
called a surface with boundary, otherwise. There are compact non-orientable
surfaces (closed or with boundary); the simplest such surface is the Mdbius
strip. Non-compact surfaces without boundary are called open.

Any closed connected surface is homeomorphic to either a sphere with,
say, g (cylindric) handles, or a sphere with, say, g cross-caps (i.e., caps with
a twist like Mo6bius strip in them). In both cases the number ¢ is called the
genus of the surface. In the case of handles, the surface is orientable; it is
called a torus (doughnut), double torus, and triple torus for g = 1,2 and
3, respectively. In the case of cross-caps, the surface is non-orientable; it is
called the real projective plane, Klein bottle, and Dyck’s surface for g = 1,2
and 3, respectively. The genus is the maximal number of disjoint simple closed
curves which can be cut from a surface without disconnecting it (the Jordan
curve theorem for surfaces).

The Euler—Poincaré characteristic of a surface is (the same for all polyhe-
dral decompositions of a given surface) the number y = v — e+ f, where v, e
and f are, respectively, the number of vertices, edges and faces of the decom-
position. Then y = 2 — 2g if the surface is orientable, and y = 2 — g if not.
Every surface with boundary is homeomorphic to a sphere with an appropri-
ate number of (disjoint) holes (i.e., what remains if an open disk is removed)
and handles or cross-caps. If h is the number of holes, then y =2 —2g — h
holds if the surface is orientable, and x = 2 — g — h if not.

The connectivity number of a surface is the largest number of closed cuts
that can be made on the surface without separating it into two or more parts.
This number is equal to 3 — x for closed surfaces, and 2 — x for surfaces with
boundaries. A surface with connectivity number 1,2 and 3 is called, respec-
tively, simply, doubly and triply connected. A sphere is simply connected,
while a torus is triply connected.

M.M. Deza and E. Deza, Encyclopedia of Distances, 161
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A surface can be considered as a metric space with its own intrinsic
metric, or as a figure in space. A surface in E? is called complete if it is a
complete metric space with respect to its intrinsic metric.

A surface is called differentiable, regular, or analytic, respectively, if in a
neighborhood of each of its points it can be given by an expression

r=r(u,v) =r(x(u,v), x2(u,v), x3(u,0)),

where the position vector r = r(u,v) is a differentiable, regular (i.e., a suf-
ficient number of times differentiable), or real analytic, respectively, vector
function satisfying the condition r, x r, # 0.

Any regular surface has the intrinsic metric with the line element (or first
fundamental form)

ds* = dr* = E(u,v)du® + 2F (u,v)dudv + G(u,v)dv?,
where E(u,v) = (ry, ry), F(u,v) = (ry, ), G(u,v) = (ry,ry). The length of

a curve, defined on the surface by the equations u = u(t), v = v(t), t € [0,1],
is computed by

1
/ VEu? 4+ 2Fuv + Gu'2dt,
0

and the distance between any points p,q € M? is defined as the infimum of
the lengths of all curves on M?2, connecting p and ¢. A Riemannian metric
is a generalization of the first fundamental form of a surface.

For surfaces, two kinds of curvature are considered: Gaussian curvature,
and mean curvature. To compute these curvatures at a given point of the
surface, consider the intersection of the surface with a plane, containing a
fixed normal vector, i.e., a vector which is perpendicular to the surface at this
point. This intersection is a plane curve. The curvature k of this plane curve
is called the normal curvature of the surface at the given point. If we vary
the plane, the normal curvature k& will change, and there are two extremal
values, the maximal curvature ki, and the minimal curvature ko, called the
principal curvatures of the surface. A curvature is taken to be positive if the
curve turns in the same direction as the surface’s chosen normal, otherwise
it is taken to be negative.

The Gaussian curvature is K = kiko (it can be given entirely in terms of
the first fundamental form). The mean curvature is H = %(k1 + k2).

A minimal surface is a surface with mean curvature zero or, equivalently,
a surface of minimum area subject to constraints on the location of its
boundary.

A Riemann surface is a one-dimensional compler manifold, or a two-
dimensional real manifold with a complex structure, i.e., in which the local
coordinates in neighborhoods of points are related by complex analytic func-
tions. It can be thought of as a deformed version of the complex plane. All
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Riemann surfaces are orientable. Closed Riemann surfaces are geometrical
models of complex algebraic curves. Every connected Riemann surface can be
turned into a complete two-dimensional Riemannian manifold with constant
curvature —1, 0, or 1. The Riemann surfaces with curvature —1 are called
hyperbolic, and the unit disk A = {z € C : |z| < 1} is the canonical example.
The Riemann surfaces with curvature 0 are called parabolic, and C is a typical
example. The Riemann surfaces with curvature 1 are called elliptic, and the
Riemann sphere C U {00} is a typical example.

Regular metric
The intrinsic metric of a surface is regular if it can be specified by the
line element

ds?> = Edu® + 2Fdudv + Gdv?,

where the coefficients of the form ds? are regular functions.

Any regular surface, given by an expression r = r(u,v), has a regular
metric with the line element ds?, where E(u,v) = (ry,m.), F(u,v) =
(ru,ro), G(u,v) = (ry, ry).

Analytic metric
The intrinsic metric on a surface is analytic if it can be specified by the
line element

ds* = Edu® + 2F dudv + Gdv?,

where the coefficients of the form ds? are real analytic functions.

Any analytic surface, given by an expression r = r(u, v), has an analytic
metric with the line element ds?, where E(u,v) = (ry,r.), F(u,v) =
(ruyro)y G(u,v) = (1y,1y).

Metric of positive curvature

A metric of positive curvature is the intrinsic metric on a surface of
positive curvature, i.e., a surface in E? that has positive Gaussian curvature
at every point.

Metric of negative curvature

A metric of negative curvature is the intrinsic metric on a surface
of negative curvature, i.e., a surface in E? that has negative Gaussian
curvature at every point.

A surface of negative curvature locally has a saddle-like structure. The
intrinsic geometry of a surface of constant negative curvature (in par-
ticular, of a pseudo-sphere) locally coincides with the geometry of the
Lobachevsky plane. There exists no surface in E? whose intrinsic geometry
coincides completely with the geometry of the Lobachevsky plane (i.e., a
complete regular surface of constant negative curvature).

Metric of non-positive curvature

A metric of non-positive curvature is the intrinsic metric on a saddle-
like surface. A saddle-like surface is a generalization of a surface of negative
curvature: a twice continuously-differentiable surface is a saddle-like sur-
face if and only if at each point of the surface its Gaussian curvature is
non-positive.
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These surfaces can be seen as antipodes of conver surfaces, but they do

not form such a natural class of surfaces as do convex surfaces.

e Metric of non-negative curvature
A metric of non-negative curvature is the intrinsic metric on a convez
surface.

A convez surfaceis a domain (i.e., a connected open set) on the boundary
of a convez body in E3 (in some sense, it is an antipode of a saddle-like
surface).

The entire boundary of a convex body is called a complete convex sur-
face. If the body is finite (bounded), the complete convex surface is called
closed. Otherwise, it is called infinite (an infinite convex surface is home-
omorphic to a plane or to a circular cylinder).

Any convex surface M 2 in Elisa surface of bounded curvature. The total
Gaussian curvature w(A) = [ [, K(x)do(z) of a set A C M? is always
non-negative (here a() is the area, and K ( ) is the Gaussian curvature
of M? at a point x), i.e., a convex surface can be seen as a surface of
non-negative curvature.

The intrinsic metric of a convex surface is a convex metric (not to be
confused with metric convexity from Chap.[I)) in the sense of Surface
Theory, i.e., it displays the convezity condition: the sum of the angles of
any triangle whose sides are shortest curves is not less that .

e Metric with alternating curvature
A metric with alternating curvature is the intrinsic metric on a surface
with alternating (positive or negative) Gaussian curvature.

e Flat metric
A flat metric is the intrinsic metric on a developable surface, i.e., a surface,
on which the Gaussian curvature is everywhere zero.

e Metric of bounded curvature
A metric of bounded curvature is the intrinsic metric p on a surface
of bounded curvature.

A surface M? with an intrinsic metric p is called a surface of bounded
curvature if there exists a sequence of Riemannian metrics p,,, defined
on M?, such that for any compact set A C M? one has pn — p uniformly,
and the sequence |w,|(A) is bounded, where |w/,( ffA |K (z)|do ()
is the total absolute curvature of the metric py, (here K (x) is the Gaussian
curvature of M? at a point z, and o(.) is the area).

e A-metric
A A-metric (or metric of type A) is a complete metric on a surface with
curvature bounded from above by a negative constant.

A A-metric does not have embeddings into E3. It is a generalization
of the classical result of Hilbert (1901): no complete regular surface of
constant negative curvature (i.e., a surface whose intrinsic geometry co-
incides completely with the geometry of the Lobachevsky plane) exists
in E3.
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e (h,A)-metric
A (h, A)-metric is a metric on a surface with a slowly-changing negative
curvature.

A complete (h, A)-metric does not permit a regular isometric embed-
ding in three-dimensional Euclidean space (cf. A-metric).

e (F-distance

A connected set G of points on a surface M? is called a geodesic region
if, for each point = € G, there exists a disk B(x,r) with center at z, such
that Bg = G N B(xz,r) has one of the following forms: Bg = B(z,r) (x is
a regular interior point of G); Bg is a semi-disk of B(z,r) (z is a regular
boundary point of G); B is a sector of B(x,r) other than a semi-disk (x is
an angular point of G); B¢ consists of a finite number of sectors of B(x, r)
with no common points except = (a nodal point of G).

The G-distance between any = and y € G is the greatest lower bound of
the lengths of all rectifiable curves connecting = and y € G and completely
contained in G.

e Conformally invariant metric

Let R be a Riemann surface. A local parameter (or local uniformizing
parameter, local uniformizer) is a complex variable z considered as a con-
tinuous function z,, = @, (p) of a point p € R which is defined everywhere
in some neighborhood (parametric neighborhood) V (po) of a point py € R
and which realizes a homeomorphic mapping (parametric mapping) of
V(po) onto the disk (parametric disk) A(po) = {z € C : |z| < r(po)},
where ¢, (po) = 0. Under a parametric mapping, any point function g(p),
defined in the parametric neighborhood V' (pg), goes into a function of the
local parameter z: g(p) = g(¢,.(2)) = G(z).

A conformally invariant metric is a differential p(z)|dz| on the Rie-
mann surface R which is invariant with respect to the choice of the local
parameter z. Thus, to each local parameter z (2 : U — C) a function
pz : 2(U) — [0, 0] is associated such that, for any local parameters z; and
29, we have

dz1(p)
dza(p)

Every linear differential \(z)dz and every quadratic differential Q(z)dz>

induce conformally invariant metrics |A(z)||dz| and |Q(2)|*/?||dz|, respec-

tively (cf. @Q-metric).

e ()-metric

An Q-metric is a conformally invariant metric p(z)|dz| = |Q(z)['/?

|dz| on a Riemann surface R, defined by a quadratic differential Q(z)dz>.
A quadratic differential Q(z)dz? is a non-linear differential on a Rie-

mann surface R which is invariant with respect to the choice of the local

parameter z. Thus, to each local parameter z (z : U — C) a function

Q. : 2(U) — C is associated such that, for any local parameters z; and

29, we have

Pz (22(p))

for any p € Uy NUs.

Pz (21(p))
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Qs (22(p) (d21 (p)
dza(p)

Q= (21(p))

e Extremal metric

An extremal metric is a conformally invariant metric in the modulus

problem for a family I" of locally rectifiable curves on a Riemann surface

R which realizes the infimum in the definition of the modulus M (T").
Formally, let T" be a family of locally rectifiable curves on a Riemann

surface R, let P be a non-empty class of conformally invariant metrics

p(z)|dz| on R such that p(z) is square-integrable in the z-plane for every

local parameter z, and the integrals

2
> for any p € Uy NUs.

A,,(R)://Rp?(z)dxdy and LP(F)—Airrelg/yp(z)|dz|

are not simultaneously equal to 0 or oo (each of the above integrals is
understood as a Lebesgue integral). The modulus of the family of curves
I is defined by

— inf e B)
M= e Lo

The eztremal length of the family of curves I' is equal to sup,cp (i“’((lgiz,

i.e., is the reciprocal of M(T").

The modulus problem for I' is defined as follows: let Py, be the subclass of
P such that, for any p(z)|dz| € Pr, and any v € T', one has fv p(z)|dz| > 1.
If P, # 0, then the modulus M(T) of the family T' can be written as
M(T') = inf,cp, A,(R). Every metric from Pp, is called an admissible
metric for the modulus problem on I'. If there exists p* for which

M(T) = inf A,(R) = A,(R),

the metric p*|dz| is called an extremal metric for the modulus problem
on I'.
o Fréchet surface metric

Let (X, d) be a metric space, M? a compact two-dimensional manifold, f a
continuous mapping f : M? — X, called a parameterized surface, and o :
M? — M? a homeomorphism of M? onto itself. Two parameterized sur-
faces f1 and f, are called equivalent if inf, max,e pr2 d(f1(p), f2(c(p))) =0,
where the infimum is taken over all possible homeomorphisms o. A class
f* of parameterized surfaces, equivalent to f, is called a Fréchet surface.
It is a generalization of the notion of a surface in Euclidean space to the
case of an arbitrary metric space (X, d).
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The Fréchet surface metric on the set of all Fréchet surfaces is
defined by

inf max d(f1(p), f2(c(p)))

o peM?

for any Fréchet surfaces f; and f3, where the infimum is taken over all
possible homeomorphisms o. Cf. the Fréchet metric in Chap.[Il

8.2 Intrinsic metrics on surfaces

In this section we list intrinsic metrics, given by their line elements (which, in
fact, are two-dimensional Riemannian metrics), for some selected surfaces.

e Quadric metric

A quadric (or quadratic surface, surface of second order) is a set of points in
[E2, whose coordinates in a Cartesian coordinate system satisfy an algebraic
equation of degree two. There are 17 classes of such surfaces. Among them
are: ellipsoids, one-sheet and two-sheet hyperboloids, elliptic paraboloids,
hyperbolic paraboloids, elliptic, hyperbolic and parabolic cylinders, and
conical surfaces.

For example, a cylinder can be given by the following parametric
equations:

21 (u,v) = acosv, xa(u,v) = asinv, x3(u,v) = u.
The intrinsic metric on it is given by the line element
ds* = du® + a*dv®.

An elliptic cone (i.e., a cone with elliptical cross-section) has the follow-
ing equations:

h—u h—u
5 Cos v, xo(u,v) =b -

z1(u,v) = a sinv, z3(u,v) =wu,
where h is the height, a is the semi-major axis, and b is the semi-minor
axis of the cone. The intrinsic metric on it is given by the line element
h? + a® cos® v + b2 sin® v a® — b%)(h — u) cosvsinw
ds® = 2 du? + 2" i = )

dudv+

N (h — u)?(a? sizz v+ b? cos? v) s

e Sphere metric
A sphere is a quadric, given by the Cartesian equation (z1 — a)? + (22 —
b)2 + (23 — ¢)? = 2, where the point (a,b,c) is the center of the sphere,
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and r > 0 is the radius of the sphere. The sphere of radius r, centered at
the origin, can be given by the following parametric equations:

x1(0,¢) = rsinfcosd, x2(0,¢) = rsinfsineg, x3(0,¢) = rcosb,

where the azimuthal angle ¢ € [0,27), and the polar angle 6 € [0, .
The intrinsic metric on it (in fact, the two-dimensional spherical
metric) is given by the line element

ds?® = r2d6? + r?sin? 0d¢>.

A sphere of radius r has constant positive Gaussian curvature equal to 7.
e Ellipsoid metric

An ellipsoid is a quadric given by the Cartesian equation 1 + —S =+ —3- =1,

or by the following parametric equations:

x1(0,¢) = acos psinb, xo(0,¢) = bsingsinb, x3(0,$) = ccosb,

where the azimuthal angle ¢ € [0, 27), and the polar angle 6 € [0, 7).
The intrinsic metric on it is given by the line element

ds* = (b*cos®¢ + a” sin¢) sin? 0dp? + (b* — a?) cos ¢ sin ¢ cos O sin Odfdp+

+((a® cos? ¢ + b2 sin? ¢) cos? 0 + ¢2 sin® 0)dhH>.

e Spheroid metric
A spheroid is an ellipsoid having two axes of equal length. It is also a
rotation surface, given by the following parametric equations:

z1(u,v) = asinvcosu, xa(u,v) =asinvsinu, xs(u,v) = ccosv,

where 0 < u < 27, and 0 < v < 7.
The intrinsic metric on it is given by the line element

1
ds* = a”sin® vdu® + 2(a + 2 + (a® — ¢?) cos(2v))dv?.

e Hyperboloid metric
A hyperboloid is a quadric which may be one- or two-sheeted. The one-
sheeted hyperboloid is a surface of revolution obtained by rotating a
hyperbola about the perpendicular bisector to the line between the foci,
while the two-sheeted hyperboloid is a surface of revolution obtained by
rotating a hyperbola about the line joining the foci. The one-sheeted cir-
cular hypegboloid, oriented along the xs-axis, is given by the Cartesian

equation & + 23 — 2 = 1, or by the following parametric equations:

112
z1(u,v) = a1+ u?cosv, z2(u,v) =av1+u?sinv, x3z(u,v) = cu,
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where v € [0, 27). The intrinsic metric on it is given by the line element

ds? = (2 + atu’ du® + a®(u? + 1)dv?.
u? 41

¢ Rotation surface metric
A rotation surface (or surface of revolution) is a surface generated by
rotating a two-dimensional curve about an axis. It is given by the following
parametric equations:

x1(u,v) = ¢(v) cosu, xa(u,v) = P(v)sinu, x3(u,v)=1Y(v).
The intrinsic metric on it is given by the line element
ds® = ¢*du® + (6% + %) dv?.

e Pseudo-sphere metric
A pseudo-sphere is a half of the rotation surface generated by rotating
a tractriz about its asymptote. It is given by the following parametric
equations:

x1(u,v) = sechu cosv, x2(u,v) = sechusinv, zz(u,v) = u — tanhu,

where u > 0, and 0 < v < 27. The intrinsic metric on it is given by the
line element
ds® = tanh? udu? + sech®udv?.

The pseudo-sphere has constant negative Gaussian curvature equal to —1,
and in this sense is an analog of the sphere which has constant positive
Gaussian curvature.

e Torus metric
A torusis a surface having genus one. A torus azimuthally symmetric about
the z3-axis is given by the Cartesian equation (¢ — /23 + 23)? + 23 = a?,
or by the following parametric equations:

x1(u,v) = (c+ acosv) cosu, xa(u,v) = (c+ acosv)sinu, xsu,v) = asinv,

where ¢ > a, and u,v € [0, 27).
The intrinsic metric on it is given by the line element

ds® = (¢ + acosv)?du® + a®dv.
e Helical surface metric

A helical surface (or surface of screw motion) is a surface described by a
plane curve v which, while rotating around an axis at a uniform rate, also
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advances along that axis at a uniform rate. If v is located in the plane
of the axis of rotation z3 and is defined by the equation x5 = f(u), the
position vector of the helical surface is

r = (ucosv, usinv, f(u) = hv), h = const,
and the intrinsic metric on it is given by the line element
ds> = (1 + f)du® + 2hf dudv + (u® + h?)dv?.

If f = const, one has a helicoid; if h = 0, one has a rotation surface.
e Catalan surface metric
The Catalan surface is a minimal surface, given by the following equations:

z1(u,v) = u — sinucoshv, xa(u,v) =1 — cosucoshwv,

x3(u,v) = 4sin (%) sinh (%) .

The intrinsic metric on it is given by the line element
ds? = 2 cosh? (%) (coshv — cosu)du? + 2cosh2(§) (coshv — cos u) dv?.

e Monkey saddle metric
The monkey saddle is a surface, given by the Cartesian equation x3 =
x1(2? — 323), or by the following parametric equations:

z1(u,v) = u, xo(u,v) = v, x3(u,v) = u’ — Juv?.

This is a surface which a monkey can straddle with both legs and his tail.
The intrinsic metric on it is given by the line element

ds® = (1 + (su® — 30v?)?)du® — 2(18uv(u? — v?))dudv + (1 + 36uv?)dv?).

8.3 Distances on knots

A knot is a closed, non-self-intersecting curve that is embedded in S2. The
trivial knot (or unknot) O is a closed loop that is not knotted. A knot can be
generalized to a link which is a set of disjoint knots. Every link has its Seifert
surface, i.e., a compact oriented surface with the given link as boundary.
Two knots (links) are called equivalent if one can be smoothly deformed
into another. Formally, a link is defined as a smooth one-dimensional subman-
ifold of the 3-sphere S2; a knot is a link consisting of one component; two
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links Ly and Ly are called equivalent if there exists an orientation-preserving
homeomorphism f : S% — S2 such that f(L;) = Lo.

All the information about a knot can be described using a knot diagram.
It is a projection of a knot onto a plane such that no more than two points
of the knot are projected to the same point on the plane, and at each such
point it is indicated which strand is closest to the plane, usually by erasing
part of the lower strand. Two different knot diagrams may both represent
the same knot. Much of Knot Theory is devoted to telling when two knot
diagrams represent the same knot.

An unknotting operation is an operation which changes the overcrossing
and the undercrossing at a double point of a given knot diagram. The unknot-
ting number of a knot K is the minimum number of unknotting operations
needed to deform a diagram of K into that of the trivial knot, where the
minimum is taken over all diagrams of K. Roughly, the unknotting number
is the smallest number of times a knot K must be passed through itself to
untie it.

An f-unknotting operation in a diagram of a knot K is an analog of the
unknotting operation for a f-part of the diagram consisting of two pairs of par-
allel strands with one of the pair overcrossing another. Thus, an f-unknotting
operation changes the overcrossing and the undercrossing at each vertex of
obtained quadrangle.

e Gordian distance
The Gordian distance is a metric on the set of all knots defined, for
given knots K and K ', as the minimum number of unknotting operations
needed to deform a diagram of K into that of K ', where the minimum is
taken over all diagrams of K from which one can obtain diagrams of K .
The unknotting number of K is equal to the Gordian distance between K
and the trivial knot O.

Let 7K be the knot obtained from K by taking its mirror image, and
let —K be the knot with the reversed orientation. The positive reflec-
tion distance Ref, (K) is the Gordian distance between K and rK. The
negative reflection distance Ref_(K) is the Gordian distance between
K and —rK. The inversion distance Inv(K) is the Gordian distance
between K and —K.

The Gordian distance is the case k = 1 of the Cj-distance which is the
minimum number of Cy-moves needed to transform K into K '; Habiro
(1994) and Goussarov (1995), independently proved that, for k£ > 1, it
is finite if and only if both knots have the same Vassiliev invariants of
order less than k. A Ci-move is a single crossing change, a Cy-move (or
delta-move) is a simultaneous crossing change for three arcs forming a
triangle. Cs- and C3-distances are called delta distance and clasp-pass
distance, respectively.

e f-Gordian distance
The #-Gordian distance (see, for example, [Mura85]) is a metric on the
set of all knots defined, for given knots K and K ', as the minimum number
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of f-unknotting operations needed to deform a diagram of K into that of
K /, where the minimum is taken over all diagrams of K from which one
can obtain diagrams of K "

Let rK be the knot obtained from K by taking its mirror image, and let
—K be the knot with the reversed orientation. The positive f-reflection
distance Re f_ﬁi_(K ) is the #§-Gordian distance between K and rK. The
negative f-reflection distance Ref* (K) is the $-Gordian distance be-
tween K and —rK. The f-inversion distance Inv*(K) is the f-Gordian
distance between K and —K.

¢ Knot complement hyperbolic metric
The complement of a knot K (or a link L) is S\ K (or S®\L, respectively).

A knot (or, in general, a link) is called hyperbolic if its complement
supports a complete Riemannian metric of constant curvature —1. In this
case, the metric is called a knot (or link) complement hyperbolic
metric, and it is unique.

A knot is hyperbolic if and only if (Thurston 1978) it is not a satellite
knot (then it supports a complete locally homogeneous Riemannian metric)
and not a torus knot (does not lie on a trivially embedded torus in S3). The
complement of any non-trivial knot supports a complete non-positively
curved Riemannian metric.



Chapter 9
Distances on Convex Bodies, Cones,
and Simplicial Complexes

9.1 Distances on convex bodies

A convex body in the n-dimensional Euclidean space E™ is a compact convex
subset of E™. It is called proper if it has non-empty interior. Let K denote
the space of all convex bodies in E", and let K, be the subspace of all proper
convex bodies.

Any metric space (K, d) on K is called a metric space of convex bodies. Met-
ric spaces of convex bodies, in particular the metrization by the Hausdorff
metric, or by the symmetric difference metric, play a basic role in the
foundations of analysis in Convex Geometry (see, for example, [Grub93]).

For C, D € K\{(} the Minkowski addition and the Minkowski non-negative
scalar multiplication are defined by C+ D = {z +y : 2 € C,y € D}, and
aC = {ax : x € C}, a > 0, respectively. The Abelian semi-group (K,+)
equipped with non-negative scalar multiplication operators can be considered
as a conver cone.

The support function hc : S* ' — R of C € K is defined by ho(u) =
sup{(u,z) : x € C} for any u € S"~!, where S"~! is the (n — 1)-dimensional
unit sphere in E™, and (,) is the inner product in E™.

Given a set X C E", its convex hull conv(X) is the minimal convez set
containing X.

e Area deviation
The area deviation (or template metric) is a metric on the set K, in
E? (i.e., on the set of plane convex disks), defined by

A(CAD),

where A(.) is the area, and A is the symmetric difference. If C C D, then
it is equal to A(D) — A(C).

e Perimeter deviation
The perimeter deviation is a metric on K, in E?, defined by

2p(conv(C' U D)) = p(C) = p(D),

M.M. Deza and E. Deza, Encyclopedia of Distances, 173
DOI 10.1007/978-3-642-00234-2_9, (© Springer-Verlag Berlin Heidelberg 2009
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where p(.) is the perimeter. In the case C' C D, it is equal to p(D) — p(C).
e Mean width metric
The mean width metric is a metric on K, in E?, defined by

2W (conv(C' U D)) — W(C) — W (D),

where W (.) is the mean width: W (C) = p(C)/n, and p(.) is the perimeter.
¢ Pompeiu—Hausdorff-Blaschke metric

The Pompeiu—Hausdorff-Blaschke metric is a metric on K, de-

fined by

ax{sup inf - sup inf -
mX{I‘éEJQD”I yllmygg;gc\lx yll2},

where ||.||2 is the Euclidean norm on E™.
In terms of support functions, using Minkowski addition, the metric is

sup |ho(u) = hp(u)| = [[hc = hplle =

uesSn—1

=inf{A>0:CcD+AB",DcC+\B"},
where B" is the unit ball of E".

This metric can be defined using any norm on R” instead of the Eu-
clidean norm. It can be defined for the space of bounded closed subsets of
any metric space.

¢ Pompeiu—Eggleston metric
The Pompeiu—Eggleston metric is a metric on K, defined by

. 4 f _ 1 f _
zlelgylnglx y\lz+jggggcllx yll2,

where ||.||2 is the Euclidean norm on E™.
In terms of support functions, using Minkowski addition, the metric is

max{0, sup (hc(u)—hp(u))} +max{0, sup (hp(u)—hc(uw))} =

ueSn—1 uesSn—1

=inf{A>0:CCD+AB"}+inf{A>0:Dc C+AB"},

where B" is the unit ball of E™.

This metric can be defined using any norm on R” instead of the Eu-
clidean norm. It can be defined for the space of bounded closed subsets of
any metric space.

e McClure—Vitale metric
Given 1 < p < oo, the McClure—Vitale metric is a metric on K, defined
by

</S lhe(u) — hD(U)|pdcr(u)>; = ||hc = hpllp.
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e Florian metric
The Florian metric is a metric on K, defined by

/snﬂ |he(u) — hp(u)|do(u) = ||he — hpl|:-

It can be expressed in the form 2S(conv(C U D)) — S(C) — S(D) for
n = 2 (cf. perimeter deviation); it can be expressed also in the form
nkn, (2W (conv(C U D)) — W(C) — W(D)) for n > 2 (cf. mean width
metric).

Here S(.) is the surface area, ky, is the volume of the unit ball B" of E",
and W(.) is the mean width: W(C') = ﬁ gn-1(hc(u) +ho(—u))do(u).

e Sobolev distance

The Sobolev distance is a metric on K, defined by

lhe = hpllw,

where ||.||,, is the Sobolev 1-norm on the set Ggn-1 of all real continuous
functions on the unit sphere S?~1 of E™.

The Sobolev 1-norm is defined by ||f||w = (f, f>11u/2, where (,),, is an
inner product on Ggn-1, given by

1
w

n-k,

Frah= [ (Fo+ Vilf.a)dwo, wo =

V(f,9) = (grads f, gradsg), (,) is the inner product in E", and grad, is

the gradient on S"~! (see [ArWe92]).

e Shephard metric
The Shephard metric is a metric on K, defined by

In(1+2inf{A\>0:CCD+AXD-D),DCC+XC-0C)}).

e Nikodym metric
The Nikodym metric is a metric on K, defined by

V(CAD),

where V(.) is the volume (i.e., the Lebesgue n-dimensional measure), and

A is the symmetric difference. For n = 2, one obtains the area deviation.
e Steinhaus metric

The Steinhaus metric (or homogeneous symmetric difference

metric, Steinhaus distance) is a metric on K, defined by

V(CAD)
V(CuD)’
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. .. .. da(C,D) . .
where V(.) is the volume. So, it is V(COD) where da is the Nikodym
metric.
This metric is bounded; it is affine invariant, while the Nikodym metric
is invariant only under volume-preserving affine transformations.
e Eggleston distance
The Eggleston distance (or symmetric surface area deviation) is a
distance on K, defined by

S(CUD) - 8(CND),

where S(.) is the surface area. It is not a metric.

e Asplund metric
The Asplund metric is a metric on the space K,/ =~ of affine-equivalence
classes in K, defined by

Ininf{\ >1:37:E" — E" affine, z € E",C C T(D) C A\C + z}

for any equivalence classes C* and D* with the representatives C' and D,
respectively.

e Macbeath metric
The Macbeath metric is a metric on the space K,/ =~ of affine-
equivalence classes in K, defined by

Ininf{|detT - P|: 3T, P : E" — E" regular affine, C C T(D),D C P(C)}

for any equivalence classes C* and D* with the representatives C' and D,
respectively.
Equivalently, it can be written as

In6,(C, D) + Ind1(D, C),

where 6,(C,D) = infT{Vg/T(((g));C' C T(D)}, and T is a regular affine
mapping of E™ onto itself.

e Banach—Mazur metric
The Banach-Mazur metric is a metric on the space K,/ ~ of the
equivalence classes of proper O-symmetric convex bodies with respect to

linear transformations, defined by

Ininf{A > 1:37: E" — E" linear, C C T(D) C A\C'}

for any equivalence classes C* and D* with the representatives C' and D,
respectively.

It is a special case of the Banach—Mazur distance between n-
dimensional normed spaces.
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e Separation distance
The separation distance between two disjoint convex bodies C' and
D in E™ is (Buckley 1985) the minimum Euclidean distance (in gen-
eral, the set-set distance between any two disjoint subsets of E"):
inf{||z — y||2 : « € C,y € D}, while sup{||z —y||2 : © € C,y € D} is called
the spanning distance.

e Penetration depth distance
The penetration depth distance between two inter-penetrating convex
bodies C and D in E™ (in general, between any two inter-penetrating
subsets of E™) is (Cameron and Culley 1986) defined as the minimum
translation distance that one body undergoes to make the interiors of C
and D disjoint:

min{||¢||2 : interior(C +t) N D = 0}.

Keerthi and Sridharan (1991) considered ||¢||1- and ||¢||so-analogues of the
above definition.

Cf. penetration distance in Chap.23] and penetration depth in
Chap.24

e Growth distances

Let C,D € K, be two compact convex bodies with non-empty interior.
Fix their seed points pc € int C' and pp € int D; usually, they are the
centroids of C' and D. The growth function g(C, D) is the minimal number
A > 0, such that

({pc} + AMC\{pc})) N ({pp} + AM(D\{pp})) # 0.

It is the amount objects must be grown if g(C, D) > 1 (i.e., CND = ), or
contracted if g(C, D) > 1 (i.e., int C Nint D # 0) from their internal seed
points until their surfaces just touch. The growth separation distance
ds(C, D) and the growth penetration distance dp(C, D) [OnGi96] are
defined as

ds(C, D) = max{0,rcp(g(C, D) — 1)} and

ds(C, D) = max{0,rcp(1l — g(C, D))},

where reop is the scaling coefficient (usually, the sum of radii of circum-
scribing spheres for the sets C\{pc} and D\{pp}).

The one-sided growth distance between disjoint C' and D (Leven and
Sharir 1987) is —1 + min A > 0: ({pc} + M (C\{pc})) N D # 0}.

e Minkowski difference
The Minkowski difference on the set of all compact subsets, in par-
ticular, on the set of all sculptured objects (or free form objects), of R? is
defined by
A-B={zx—y:x€Aye B}.
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If we consider object B to be free to move with fixed orientation, the
Minkowski difference is a set containing all the translations that bring
B to intersect with A. The closest point from the Minkowski difference
boundary, (A — B), to the origin gives the separation distance between
A and B.

If both objects intersect, the origin is inside of their Minkowski dif-
ference, and the obtained distance can be interpreted as a penetration
depth distance.

e Demyanov distance
Given C € K, and u € S"7!, denote, if |{c € C : (u,c) = ho(u)}| = 1,
this unique point by y(u, C) (exposed point of C in direction u).

The Demyanov difference A © B of two subsets A,B € K, is the

closure of
conv(Ur(aynr(s){y(u, A) — y(u, B)}),

where T(C) = {u € S" L :|{ce C: (u,c) =hc(u)}| = 1}.
The Demyanov distance between two subsets A, B € K, is defined by

|IA© B|| = max_|[c]l.
ceASB

It is shown in that [|A & B|| = sup, ||Sta(A) — Sto(M)]|2,
where Sto(C) is a generalized Steiner point and the supremum is over all
“sufficiently smooth” probabilistic measures a.

¢ Maximum polygon distance
The maximum polygon distance is a distance between two convex
polygons P = (p1,...,pn) and Q = (q1,. .., qm), defined by

n}a}XHpiquHg, 1e{l,....,n}, je{L,...,m},

where ||.||2 is the Euclidean norm.

e Grenander distance
Let P = (p1,...,pn) and Q = (q1, - - ., gm ) be two disjoint convex polygons,
and let L(p;, q;), L(pi, ¢m) be two intersecting critical support lines for P
and @. Then the Grenander distance between P and @ is defined by

1pi — qjll2 + [lpr = gmll2 — X(pi 1) — (95, Gm)>

where ||.||2 is the Euclidean norm, and X(p;,p;) is the sum of the edges
lengths of the polynomial chain p;, ..., p;.

Here P = (p1,...,pn) is a convex polygon with the vertices in standard
form, i.e., the vertices are specified according to cartesian coordinates in
a clockwise order, and no three consecutive vertices are collinear. A line
L is a line of support of P if the interior of P lies completely to one side
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of L. Given two disjoint polygons P and @), the line L(p;, q;) is a critical
support line if it is a line of support for P at p;, a line of support for Q at
g;j, and P and @ lie on opposite sides of L(p;, g;).

9.2 Distances on cones

A conver cone C in a real vector space V is a subset C' of V such that
C+CcCC,\CcCCforany A >0, and CN(—C)={0}. A cone C induces
a partial order on V by

xRy ifand only if y — 2z € C.

The order < respects the vector structure of V', i.e.; if <y and z < u, then
T4z < y+u,and if x < y, then Az < Ay, A € R, A > 0. Elements z,y € V are
called comparable and denoted by x ~ y if there exist positive real numbers
«a and ( such that ay < x <X fBy. Comparability is an equivalence relation;
its equivalence classes (which belong to C or to —C) are called parts (or
components, constituents).

Given a convex cone C, asubset S = {z € C': T(z) = 1}, whereT: V — R
is some positive linear functional, is called a cross-section of C.

A convex cone C'is called almost Archimedean if the closure of its restric-
tion to any two-dimensional subspace is also a cone.

e Thompson part metric
Given a convex cone C' in a real vector space V, the Thompson part
metric on a part K C C\{0} is defined by

In max{m(z,y), m(y,x)}

for any x,y € K, where m(z,y) = inf{A e R:y < Az}.

If C is almost Archimedean, then K equipped with the Thompson
part metric is a complete metric space. If C' is finite-dimensional, then
one obtains a chord space, i.e., a metric space in which there is a dis-
tinguished set of geodesics, satisfying certain axioms. The positive cone
RY = {(z1,...,2n) : ; > 0for 1 < i < n} equipped with the Thomp-
son part metric is isometric to a normed space which one may think of as
being flat.

If C is a closed cone in R™ with non-empty interior, then int C' can be
considered as an n-dimensional manifold M". If for any tangent vector v €
T,(M™), p € M™, we define a norm |[Jv||]" = inf{a > 0: —ap < v < ap},
then the length of any p1ecew1se differentiable curve v : [0,1] — M™ can

be written as (v fo ||7 dt and the distance between z and y is

w(t
equal to inf. I(y ) where the infimum is taken over all such curves v with

7(0) =z and y(1) = y.
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e Hilbert projective semi-metric
Given a convex cone C' in a real vector space V, the Hilbert projective
semi-metric is a semi-metric on C'\{0}, defined, for any z,y € C\{0}, by

In(m(z,y) - m(y, z)),

where m(z,y) = inf{\ € R: y < Az}. It is equal to 0 if and only if z = Ay
for some A > 0, and it becomes a metric on the space of rays of the cone.

If C is finite-dimensional, and S is a cross-section of C' (in particular,
S ={z € C:|Jz|| = 1}, where ||.|| is a norm on V'), then, for any distinct
points x,y € S, their distance is equal to |In(z,y, z,t)|, where z,t are
the points of the intersection of the line [, , with the boundary of S, and
(x,y,2,t) is the cross-ratio of x,y, z, t.

If C is almost Archimedean and finite-dimensional, then each part of
C is a chord space under the Hilbert projective metric. The Lorentz cone
{(t,21,...,,) € R*L 1 2 > 22 + ... + 22} equipped with the Hilbert
projective metric is isometric to the n-dimensional hyperbolic space. The
positive cone Rt = {(x1,...,2,) : x; > 0 for 1 <4 < n} with the Hilbert
projective metric is isometric to a normed space which can be seen as
being flat.

If C is a closed cone in R™ with non-empty interior, then int C' can be
considered as an n-dimensional manifold M™. If for any tangent vector
v € Ty(M"), p € M™, we define a semi-norm |[v|[[f = m(p,v) — m(v,p),
then the length of any piecewise differentiable curve v : [0,1] — M™ can

be written as (v fo ||7 dt, and the distance between z and y is

t)
equal to inf. I(y ) where the 1n¥’1(mum is taken over all such curves v with
7(0) =z and v(1) = y.

e Bushell metric
Given a convex cone C' in a real vector space V', the Bushell metric on
the set S = {z € C: 31" | |x;| = 1} (in general, on any cross-section of
(') is defined by

1—m(z,y) -m(y,z)

for any x,y € S, where m(x,y) = inf{\ € R:y < Az}. In fact, it is equal
to tanh(3h(z,y)), where h is the Hilbert projective semi-metric.
e k-oriented distance

A simplicial cone C in R™ is defined as the intersection of n (open or closed)
half-spaces, each of whose supporting planes contain the origin 0. For any
set M of n points on the unit sphere, there is a unique simplicial cone C
that contains these points. The azes of the cone C' can be constructed as
the set of the n rays, where each ray originates at the origin, and contains
one of the points from M.
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Given a partition {Cq,...,Cr} of R™ into a set of simplicial cones
Ci,...,C}, the k-oriented distance is a metric on R", defined by
di(z —y)

for all z,y € R™, where, for any « € C;, the value di(z) is the length of the
shortest path from the origin 0 to x traveling only in directions parallel to
the axes of C;.
e Cones over metric space

A cone over a metric space (X, d) is the quotient space Con(X,d) =
(X x[0,1])/(X x {0}) obtained from the product X x R>¢ by collapsing
the fiber (subspace X x {0}) to a point (the apex of the cone). Cf. metric
cone structure, tangent metric cone in Chap.[l

Let a metric on Con(X) be defined, for any (x,t), (y,s) € Con(X,d), by

V12 + 2 — 2ts cos(min{d(z, y), 7}).

The cone Con(X,d) with this metric is called the Euclidean cone over the
metric space (X, d).

If (X, d) is a compact metric space with diameter <2, the Krakus met-
ric is a metric on Con(X,d) defined, for any (xz,t), (y,s) € Con(X,d), by

min{s, t}d(z,y) + [t — s]|.

The cone Con(X,d) with the Krakus metric admits a unique midpoint for
each pair of its points if (X, d) has this property.

If M™ is a manifold with a (pseudo) Riemannian metric g, one can
consider a metric dr? 4+ r?g (more generally, a metric tdr? + r?g, k # 0)
on the cone Con(M™) = M™ x Ry,.

e Suspension metric
A spherical cone (or suspension) X (X) over a metric space (X,d) is the
quotient of the product X x [0, a] obtained by identifying all points in the
fibers X x {0} and X x {a}.

If (X,d) is a length space (cf. Chap.[d) with diameter diam(X) < ,
and a = 7, the suspension metric is a metric on X' (X), defined, for any
(337 t)a (y7 s) € Z(X)a by

arccos(costcos s + sintsin s cosd(z,y)).

9.3 Distances on simplicial complexes

An r-dimensional simplex (or geometrical simplex, hypertetrahedron) is the
convezx hull of r + 1 points of E™ which do not lie in any (r — 1)-plane. The

boundary of an r-simplex has r + 1 0-faces (polytope vertices), T(TTH) 1-faces
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(polytope edges), and (fj_'ll) i-faces, where (I) is the binomial coefficient.
The content (i.e., the hypervolume) of a simplex can be computed using the
Cayley—Menger determinant. The regular simplex of dimension r is denoted
by .

Roughly, a geometrical simplicial complez is a space with a triangulation,
i.e., a decomposition of it into closed simplices such that any two simplices
either do not intersect or intersect only along a common face.

An abstract simplicial complex S is a set, whose elements are called vertices,
in which a family of finite non-empty subsets, called simplices, is distin-
guished, such that every non-empty subset of a simplex s is a simplex, called
a face of s, and every one-element subset is a simplex. A simplex is called
i-dimensional if it consists of ¢ 4+ 1 vertices. The dimension of S is the maxi-
mal dimension of its simplices. For every simplicial complex S there exists a
triangulation of a polyhedron whose simplicial complex is .S. This geometric

simplicial complex, denoted by G, is called the geometric realization of S.

e Simplicial metric

Let S be an abstract simplicial complex, and GS a geometric simplicial
complex which is a geometric realization of S. The points of GS can be
identified with the functions o : S — [0, 1] for which the set {x € S :
a(z) # 0} is a simplex in S, and ) _ga(z) = 1. The number a(x) is
called the z-th barycentric coordinate of c.

The simplicial metric on GS (Lefschetz 1939) is the Euclidean metric
on it:

> (alz) - Bl))*.

zeS

Tukey (1939) found another metric on G'S, topologically equivalent to
a simplicial one. His polyhedral metric is the intrinsic metric on G.S,
defined as the infimum of the lengths of the polygonal lines joining the
points « and [ such that each link is within one of the simplices. An
example of a polyhedral metric is the intrinsic metric on the surface of a
convex polyhedron in E3.

A polyhedral metric can be considered on a complex of simplices in
a space of constant curvature and, in general, on complexes which are
manifolds.

e Manifold triangulation metric
Let M™ be a compact PL (piecewise-linear) n-dimensional manifold. A
triangulation of M™ is a simplicial complex such that its corresponding
polyhedron is PL-homeomorphic to M™. Let Ty~ be the set of all combi-
natorial types of triangulations, where two triangulations are equivalent if
they are simplicially isomorphic.

Every such triangulation can be seen as a metric on the smooth manifold
M if one assigns the unit length for any of its one-dimensional simplices;
so, Ty can be seen as a discrete analogue of the space of Riemannian
structures, i.e., isometry classes of Riemannian metrics on M™.
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A manifold triangulation metric between two triangulations x and
y is (Nabutovsky and Ben-Av 1993) an editing metric on Ty, i.e., the
minimal number of elementary moves, from a given finite list of operations,
needed to obtain y from z.

For example, the bistellar move consists of replacing a subcomplex of
a given triangulation, which is simplicially isomorphic to a subcomplex
of the boundary of the standard (n + 1)-simplex, by the complementary
subcomplex of the boundary of an (n-+1)-simplex, containing all remaining
n-simplices and their faces. Every triangulation can be obtained from any
other triangulation by a finite sequence of bistellar moves (Pachner 1986).

e Polyhedral chain metric

An r-dimensional polyhedral chain A in E" is a linear expression y .-, d;t!,
where, for any 4, the value ¢} is an r-dimensional simplex of E". The bound-
ary of a chain is the linear combination of boundaries of the simplices in the
chain. The boundary of an r-dimensional chain is an (r — 1)-dimensional
chain.

A polyhedral chain metric is a norm metric

1A - Bl

on the set C,.(E™) of all r-dimensional polyhedral chains. As a norm ||.||
on C,(E™) one can take:

1. The mass of a polyhedral chain, i.e., |A] = >, |d;||tF], where [¢t"| is
the volume of the cell ¢} .

2. The flat norm of a polyhedral chain, i.e., |A]” = infp{|A — dD| + |D|},
where |D| is the mass of D, 9D is the boundary of D, and the infimum
is taken over all (r+1)-dimensional polyhedral chains; the completion of
the metric space (C,.(E™),|.|") by the flat norm is a separable Banach
space, denoted by Cﬁ (E™), its elements are known as r-dimensional flat
chains.

3. The sharp norm of a polyhedral chain, i.e.,

|A|umf<zz dl +|ZdT trb>

where |A|” is the flat norm of A, and the infimum is taken over all shifts
v (here T,t" is the cell obtained by shifting ¢t" by a vector v of length
|v]); the completion of the metric space (C,.(E™),|.|*) by the sharp norm
is a separable Banach space, denoted by C#(E"), and its elements are
called r-dimensional sharp chains. A flat chain of finite mass is a sharp
chain. If » = 0, than |A]” = |AJ*.
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The metric space of polyhedral co-chains (i.e., linear functions of polyhedral
chains) can be defined in similar way. As a norm of a polyhedral co-chain
X one can take:

1. The co-mass of a polyhedral co-chain, i.e., [ X| = sup| 4= | X (A4)[, where
X (A) is the value of the co-chain X on a chain A

2. The flat co-norm of a polyhedral co-chain, ie., |X|* = supapp=1 | X
(4)]

3. The sharp co-norm of a polyhedral co-chain, i.e., |X|* = SUp| 4j6—1
X (4)]
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Chapter 10
Distances in Algebra

10.1 Group metrics

A group (G,-,e) is a set G of elements with a binary operation -, called
the group operation, that together satisfy the four fundamental properties of
closure (x-y € G for any z,y € G), associativity (x-(y-z) = (xz-y) - z for any
x,y,z € G), the identity property (x-e =e-x = x for any « € G), and the
inverse property (for any x € G, there exists an element x~! € G such that
r-27 =271 2 = e). In additive notation, a group (G, +,0) is a set G with
a binary operation + such that the following properties hold: x +y € G for
anyz,y € G,x+(y+z2)=(x+y)+zforanyz,y,2€ G,xa+0=0+x==2x
for any x € G, and, for any = € G, there exists an element —z € G such that
x4+ (—x) = (—z)+2 = 0. A group (G, -, e) is called finite if the set G is finite.
A group (G, -, e) is called Abelian if it is commutative, i.e., x -y = y - « for
any z,y € G.
Most metrics considered in this section are group norm metrics on a
group (G, -, e), defined by
2y

(or, sometimes, by ||y~ - z||), where ||.|| is a group norm, i.e., a function

[|.]| : G — R such that, for any x,y € G, we have the following properties:

1. [|z]| > 0, with ||z|| = 0 if and only if x = e.
2. [l = [l=1.
3. Mz - yll < [l + [lyl| (triangle inequality).

In additive notation, a group norm metric on a group (G,+,0) is defined
by Ilz + (—y)ll = Il — yII, or, sometimes, by ||(~y) + ]|

The simplest example of a group norm metric is the bi-invariant ultra-
metric (sometimes called the Hamming metric) ||z-y~!||g, where ||z||z = 1
for x # e, and ||e|]|g = 0.

e Bi-invariant metric
A metric (in general, a semi-metric) d on a group (G, -, e) is called bi-
invariant if
dz,y)=d(x-z,y-2)=d(z-x,2-y)

M.M. Deza and E. Deza, Encyclopedia of Distances, 187
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for any x,y,z € G (cf. translation invariant metric in Chap.[H). Any
group norm metric on an Abelian group is bi-invariant.

A metric (in general, a semi-metric) d on a group (G, -, e) is called a
right-invariant metric if d(z,y) = d(z - z,y - z) for any z,y,z € G,
i.e., the operation of right multiplication by an element z is a motion of
the metric space (G, d). Any group norm metric, defined by ||z - y~], is
right-invariant.

A metric (in general, a semi-metric) d on a group (G, -, e) is called a
left-invariant metric if d(x,y) = d(z - 2, z - y) holds for any z,y,z € G,
i.e., the operation of left multiplication by an element z is a motion of
the metric space (G,d). Any group norm metric, defined by ||y~ - z||, is
left-invariant.

Any right-invariant or left-invariant (in particular, bi-invariant) metric
d on (G is a group norm metric, since one can define a group norm on G
by [|z]| = d(z,0).

e Positively homogeneous metric
A metric (in general, a distance) d on an Abelian group (G, +,0) is called
positively homogeneous if

d(mz,my) = md(z,y)

for all x,y € G and all m € N, where mx is the sum of m terms all equal
to .

e Translation discrete metric
A group norm metric (in general, a group norm semi-metric) on a group
(G,-,e) is called translation discrete if the translation distances (or
translation numbers)

n
Te(x) = lim [
n—oo n
of the non-torsion elements x (i.e., such that 2™ # e for any n € N) of the
group with respect to that metric are bounded away from zero.
If the numbers 7¢(x) are just non-zero, such a group norm metric is
called a translation proper metric.
e Word metric
Let (G, -, e) be a finitely-generated group with a set A of generators (i.e.,
A is finite, and every element of G can be expressed as a product of finitely
many elements A and their inverses). The word length wii, () of an element
x € G\{e} is defined by

wiy(z) =inf{r:z=a$...a5,a; € A, & € {£1}},
and wi, (e) = 0.
The word metric d{j‘V associated with A is a group norm metric on
G, defined by

wip(z -y~ ).
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As the word length w{j‘v is a group norm on G, d{j‘v is right-invariant.
Sometimes it is defined as wi},(y~! - x), and then it is left-invariant. In
fact, d‘v“v is the maximal metric on G that is right-invariant, and such that
the distance from any element of A or A~! to the identity element e is
equal to one.
If A and B are two finite sets of generators of the group (G, -, e), then
the identity mapping between the metric spaces (G,di,) and (G, dE,) is a
quasi-isometry, i.e., the word metric is unique up to quasi-isometry.
The word metric is the path metric of the Cayley graph T of (G, -, e),
constructed with respect to A. Namely, I' is a graph with the vertex-set G
in which two vertices x and y € G are connected by an edge if and only if
y=a‘z, e ==xl,a€ A.
e Weighted word metric
Let (G, -, e) be a finitely-generated group with a set A of generators. Given
a bounded weight function w : A — (0,00), the weighted word length
wity () of an element x € G'\{e} is defined by

t
Wiy (T) = inf{Zw(ai),t eN:xz=ai'...a;',a; € Aj¢; € {:l:l}},

i=1

and wijy (e) = 0.
The weighted word metric di} .y associated with A is a group norm
metric on G, defined by

wiyw (@ -y~ ).

As the weighted word length wij - is a group norm on G, dijy, is right-
invariant. Sometimes it is defined as w{},;;(y~* - z), and then it is left-
invariant.

The metric dévw is the supremum of semi-metrics d on G with the
property that d(e,a) < w(a) for any a € A.

The metric d?;lvw is a coarse-path metric, and every right-invariant
coarse path metric is a weighted word metric up to coarse isometry.

The metric d{j‘VW is the path metric of the weighted Cayley graph 'y,
of (G, -, e) constructed with respect to A. Namely, I'yy is a weighted graph
with the vertex-set GG in which two vertices = and y € G are connected by
an edge with the weight w(a) if and only if y = a‘z, e = £1, a € A.

e Interval norm metric
An interval norm metric is a group norm metric on a finite group
(G, -, e), defined by
| ‘.’E ! yil | |int7

where ||.||int 18 an interval norm on G, i.e., a group norm such that the
values of ||.||int form a set of consecutive integers starting with 0.
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To each interval norm ||.||;»+ corresponds an ordered partition {By, ...,
B,,} of G with B; = {z € G : ||z||ins = i} (cf. Sharma—Kaushik dis-
tance in Chap.[I6l). The Hamming norm and the Lee norm are special
cases of interval norms. A generalized Lee norm is an interval norm for
which each class has a form B; = {a,a™'}.

e (-metric
A C-metric d is a metric on a group (G, -, e) satisfying the following
conditions:

1. The values of d form a set of consecutive integers starting with 0.
2. The cardinality of the sphere B(z,r) = {y € G : d(z,y) = r} is inde-
pendent of the particular choice of x € G.

The word metric, the Hamming metric, and the Lee metric are
C-metrics. Any interval norm metric is a C-metric.
e Order norm metric

Let (G, -, e) be a finite Abelian group. Let ord(z) be the order of an element
x € @G, i.e., the smallest positive integer n such that ™ = e. Then the
function ||.||ora : G — R, defined by ||z||ora = Inord(x), is a group norm
on G, called the order norm.

The order norm metric is a group norm metric on G, defined by

[

ord-

¢ Monomorphism norm metric
Let (G,+,0) be a group. Let (H, -, e) be a group with a group norm ||.||g.
Let f: G — H be a monomorphism of groups G and H, i.e., an injective
function such that f(z +y) = f(x) - f(y) for any z,y € G. Then the
function ||||é : G — R, defined by ||a:\|é = ||f(x)||x, is a group norm on
G, called the monomorphism norm.

The monomorphism norm metric is a group norm metric on G,
defined by

!
|z = ylle-

e Product norm metric

Let (G, +,0) be a group with a group norm ||.||c. Let (H,-,e) be a group
with a group norm ||.||g. Let G x H = {a = (z,y) : v € G,y € H}
be the Cartesian product of G and H, and (z,y) - (2,t) = (x + z,y-1).
Then the function ||.||gxg : G x H — R, defined by ||a|laxag =
[|(z,)laxz = |lzlle + lylla, is a group norm on G x H, called the
product norm.

The product norm metric is a group norm metric on G x H,
defined by

l|a- ﬁ_l||G><F-
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On the Cartesian product G x H of two finite groups with the inter-
val norms \|||g’t and ||||}_}‘t, an interval norm ||.||%%,,; can be defined.
In fact, [lall#ty = Iz )2y = llzllc + (m + 1)llyllm, where m
maxec | al {5
e Quotient norm metric

Let (G,-,e) be a group with a group norm ||.||g. Let (N,-,e) be a
normal subgroup of (G,-,e), ie., tN = Nz for any x € G. Let (G/
N,-,eN) be the quotient group of G, i.e., G/N = {&xN : x € G} with
aN = {z-a : a € N}, and N - yN = zyN. Then the function
I[llg/n : G/N — R, defined by ||z N||¢/y = mingen |[zal|x, is a group
norm on G/N, called the quotient norm.

A quotient norm metric is a group norm metric on G/N, de-

fined by . B .
llzN - (yN) g/~ = llzy™ Nlla/n-

If G = Z with the norm being the absolute value, and N = mZ, m € N,
then the quotient norm on Z/mZ = Z,, coincides with the Lee norm.

If a metric d on a group (G, -, e) is right-invariant, then for any normal
subgroup (N, -, ¢e) of (G, -, e) the metric d induces a right-invariant metric
(in fact, the Hausdorff metric) d* on G/N by

d*(zN,yN) = max{ggla;])\([ argglv d(a,b), max brg% d(a,b)}.

e Commutation distance

Let (G,-,e) be a finite non-Abelian group. Let Z(G) = {c € G: z-¢c =
c¢-x for any = € G} be the center of G. The commutation graph of G
is defined as a graph with the vertex-set G in which distinct elements
x,y € G are connected by an edge whenever they commute, i.e., x-y = y-x.
(Darafsheh, 2009, consider non-commuting graph on G\ Z(G).) Obviously,
any two distinct elements x,y € G that do not commute, are connected in
this graph by the path z, ¢, y, where ¢ is any element of Z(G) (for example,
e). A path x = 2!, 22,..., 2% = y in the commutation graph is called an
(z—y) N-pathif 2* ¢ Z(G) for any i € {1,...,k}. In this case the elements
x,y € G\Z(G) are called N-connected.

The commutation distance (see [DeHu98]) d is an extended distance

on G, defined by the following conditions:

1. d(z,z) = 0.

2. d(zyy)=1ife#y,andx-y=y-x.

3. d(x,y) is the minimum length of an (x —y) N-path for any N-connected
elements z and y € G\ Z(G).

4. d(z,y) = o0 if 2,y € G\Z(G) are not connected by any N-path.

Given a group G and a G-conjugacy class X in it, Bates, Bundy, Perkins
and Rowley in 2003, 2004, 2007, 2008 considered commuting graph (X, E)
whose vertex set is X and distinct vertices x,y € X are joined by an edge
e € E whenever they commute.
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e Modular distance
Let (Zy,+,0), m > 2, be a finite cyclic group. Let r € N, r > 2. The
modular r-weight w,(z) of an element x € Z,, = {0,1,...,m} is defined
as wy(x) = min{w,(x), w,(m—x)}, where w,(z) is the arithmetic r-weight
of the integer z. The value w,(x) can be obtained as the number of non-
zero coefficients in the generalized non-adjacent formx = e, r™+. .. e1r+eq
with e; € Z, |e;| < r, |e; + ei11] < 7, and |e;| < |e;r1] if e;e;401 < 0 (cf.
arithmetic r-norm metric in Chap.[I2]).
The modular distance is a distance on Z,,, defined by

wy(z —y).

The modular distance is a metric for w,.(m) = 1, w,.(m) = 2, and for
several special cases with w,(m) = 3 or 4. In particular, it is a metric for
m=r7r"orm=r"—1;if r =2, it is a metric also for m = 2" + 1 (see, for
example, [Ernv85]).

The most popular metric on Z,, is the Lee metric, defined by || — y|| Lee,
where ||z]|Lee = min{z, m — z} is the Lee norm of an element x € Z,,.

e (GG-norm metric

Consider a finite field Fj,» for a prime p and a natural number n. Given a
compact convex centrally-symmetric body G in R", define the G-norm of
an element = € Fpyn by ||z|[¢ = inf{u > 0: 2 € pZ" + pG}.

The G-norm metric is a group norm metric on [F», defined by

|z -y ]e-

e Permutation norm metric
Given a finite metric space (X, d), the permutation norm metric is a
group norm metric on the group (Symy,-,id) of all permutations of X
(id is the identity mapping), defined by

1f - 97 lsym,

where the group norm ||.||sym on Symx is given by ||f|lsym =
maxgex d(z, f(x)).
e Metric of motions
Let (X, d) be a metric space, and let p € X be a fixed element of X.
The metric of motions (see [Busebd]) is a metric on the group ({2, -, id)
of all motions of (X, d) (id is the identity mapping), defined by

sup d(f(x), g(x)) - e 10
reX

for any f,g € 2 (cf. Busemann metric of sets in Chap.[3). If the space
(X,d) is bounded, a similar metric on {2 can be defined as

sup d(f(z), g(z)).
rxeX
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Given a semi-metric space (X,d), the semi-metric of motions on
(£2,-,id) is defined by
d(f(p):9(p))-

e General linear group semi-metric

Let F be a locally compact non-discrete topological field. Let (F™ ||.||pn ),
n > 2, be a normed vector space over F. Let ||.|| be the operator norm
associated with the normed vector space (F”,[|.||g=). Let GL(n,F) be the
general linear group over F. Then the function |.|, : GL(n,F) — R, defined
by |glop = sup{|In||g|||,|In|[g~|| |}, is a semi-norm on GL(n,TF).

The general linear group semi-metric is a semi-metric on the group
GL(n,F), defined by

g - h™ op-

It is a right-invariant semi-metric which is unique, up to coarse isom-

etry, since any two norms on F" are bi-Lipschitz equivalent.
e Generalized torus semi-metric

Let (T, -, e) be a generalized torus, i.e., a topological group which is isomor-
phic to a direct product of n multiplicative groups F; of locally compact
non-discrete topological fields F;; then there is a proper continuous ho-
momorphism v : T — R”, namely, v(z1,...,2,) = (v1(z1),...,0n(2)),
where v; : 7 — R are proper continuous homomorphisms from the F to
the additive group R, given by the logarithm of the valuation. Every other
proper continuous homomorphism v T — R™ is of the form v = a - v
with @ € GL(n,R). If ||.|| is a norm on R™, one obtains the corresponding
semi-norm ||z||7 = [|[v(z)|| on T.

The generalized torus semi-metric is defined on the group (7', -, ¢) by

lay ™Ml = [Jo(zy™ )l = [lv(z) = v()]]-

e Stable norm metric
Given a Riemannian manifold (1, g), the stable norm metric is a group
norm metric on its real homology group Hy(M,R), defined by the follow-
ing stable norm ||h||s: the infimum of the Riemannian k-volumes of real
cycles representing h.

The Riemannian manifold (R", g) is within finite Gromov-Hausdoff
distance (cf. Chap.[l) from an n-dimensional normed vector space
AT

If (M,g) is a compact connected oriented Riemannian manifold, then
the manifold Hy(M,R)/H,(M,R) with metric induced by ||.||s is called
theAlbanese torus (or Jacobi torus) of (M, g). This Albanese metric is
a flat metric (cf. Chap.R).

e Heisenberg metric
Let (H,-, e) be the (real) Heisenberg group H™, i.e., a group on the set
H = R"™ x R" x R with the group law h - b/ = (z,y,t) - (2/,y',t') =
(z+a2',y+y, t+t'+2>" (2hy; —x;y.), and the identity e = (0,0, 0). Let
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|.| meis be the Heisenberg gauge (Cygan 1978) on H™, defined by |h|geis =
(@, y, )| mreis = (07 (2F +y7))* + 1) M/%

The Heisenberg metric (or Koranyi metric, Cygan metric, gauge
metric) dp.is is a group norm metric on H", defined by

|‘KE_1 : y|Heis~

One can identify the Heisenberg group H" ! = C"~! x R with OHZ \
{oo}, where Hf is the Hermitian (i.e., complex) hyperbolic n-space, and
oo is any point of its boundary JHg. So, the usual hyperbolic metric of
Hg“ induces naturally a metric on H". The Hamenstadt distance on
OHE \ {oo} (Hersonsky and Paulin 2004) is %de—s.

Sometimes, the term Cygan metric is reserved for the extension of the
metric dpe;s on whole HE and (Apanasov 2004) for its generalization (via
the Carnot group F"~' x ImF) on F-hyperbolic spaces Hf over numbers
F that can be complex numbers, or quaternions or, for n = 2, octonions.
Also, the generalization of dp.;s on Carnot groups of Heisenberg type is
called the Cygan metric.

The second natural metric on H" is the Carnot—Carathéodory met-
ric (or CC metric, sub-Riemannian metric; cf. Chap.[) d¢, defined as
the length metric (cf. Chap.[dl) using horizontal vector fields on H™. This
metric is the internal metric (cf. Chap.H]) corresponding to dg.;s. The
metric dge;s is bi-Lipschitz equivalent with do but not with any Rie-
mannian distance and, in particular, not with any FEuclidean metric. For
both metrics, the Heisenberg group H" is a fractal since its Hausdorff
dimension, 2n + 2, is strictly greater than its topological dimension,
2n + 1.

e Metric between intervals
Let G be the set of all intervals [a,b] of R. The set G forms semi-groups
(G,+) and (G, -) under addition I + J ={x +y:x € I,y € J} and under
multiplication [ - J ={x-y:x € I,y € J}, respectively.

The metric between intervals is a metric on G, defined by

max{/[1],[J]}

for all I, J € G, where, for I = [a,b], one has |I| = |a — b|.

e Metric between games
Consider positional games, i.e., two-player nonrandom games of perfect
information with real-valued outcomes. Play is alternating with a nonter-
minated game having move options for both players. Real-world examples
include Chess, Go and Tic-Tac-Toe. Formally, let Fg be the universe of
games defined inductively as follows:

1. Every real number r € R belongs to Fr and is called an atomic game.
2. If AyB C Fg with 1 < |A|,|B| < oo, then {A|B} € Fr (non-atomic
game).
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Write any game G = {A|B} as {G¥|GT}, where GF = A and G = B are
the set of left and right moves of G, respectively.

Fr becomes a commutative semi-group under the following addition
operation:

1. If p and ¢ are atomic games, then p + ¢ is the usual addition in R.

2. p+{gs--lgr,--- =19, + 0, |gr, +p,--. }.

3. If G and H are both non-atomic, then {G*|GE}+{HE|H} = {IF|I7},
where I'* = {g;+ H,G+h;: g € GF,hy € H'} and I = {g, + H,G +
h, : g, € GR h, € HE}.

For any game G € Fg, define the optimal outcomes L(G) and R(G) (if
both players play optimally with Left and Right starting, respectively) as
follows:

L(p) = R(p) = p and L(G) = max{R(q) : g € G"}, R(G) =
max{L(g,) : g- € G}

The metric between games G and H defined by Ettinger (2000) is
the following extended metric on Fy:

sup |L(G + X) — L(H + X)| =sup |R(G + X) — R(H + X)|.
X X

e Helly semi-metric
Consider a game (A, B, H) between player A and B. Here A and B are
the strategy sets for players A and B respectively, and H = H(-,") is the
payoff function, i.e., if player A plays a € A and player B plays b € B, then
A pays H(a,b) to B. A player’s strategy set is the set of available to him
pure strategies, i.e., complete algorithms for playing the game, indicating
the move for every possible situation throughout it.
The Helly semi-metric between strategies a; € A and as € A of A is
defined by
sup |H (a1,b) — H(az,b)|.
beB
e Factorial ring semi-metric
Let (A, +,-) be a factorial ring, i.e., a ring with unique factorization.
The factorial ring semi-metric is a semi-metric on the set A\{0},

defined by l 1)
.cm.(x,y

g.c.d.(x,y)’

where l.c.om.(z,y) is the least common multiple, and g.c.d.(x,y) is the great-
est common divisor of elements x,y € A\{0}.

e Frankild—Sather-Wagstaff metric
Let G(R) be the set of isomorphism classes, up to a shift, of semidualizing
complexes over a local Noetherian commutative ring R. An R-complez is
a particular sequence of R-module homomorphisms; see [ErWal]) for exact
Commutative Algebra definitions.



196 10 Distances in Algebra

The Frankild—Sather-Wagstaff metric is a metric on G(R),
defined, for any classes [K]|,[L] € G(R), as the infimum of the lengths
of chains of pairwise comparable elements starting with [K] and ending
with [L].

10.2 Metrics on binary relations

A binary relation R on a set X is a subset of X x X; it is the arc-set of the
directed graph (X, R) with the vertex-set X.

A binary relation R which is symmetric ((z,y) € R implies (y,z) € R),
reflexive (all (x,x) € R), and transitive ((x,y), (y,z) € R imply (z,z) € R) is
called an equivalence relation or a partition (of X into equivalence classes).
Any q-ary sequence x = (x1,...,2,), ¢ > 2 (e, with 0 < 2; < g — 1 for
1 <4 < n), corresponds to the partition {By,...,By—1} of V, = {1,...,n},
where B; = {1 <i <n:x; =j} are the equivalence classes.

A binary relation R which is antisymmetric ((z,y), (y,z) € Rimply x = y),
reflexive, and transitive is called a partial order, and the pair (X, R) is called
a poset (partially ordered set). A partial order R on X is denoted also by
< with < y if and only if (z,y) € R. The order < is called linear if any
elements =,y € X are compatible, i.e., x X y or y < x.

A poset (L, =) is called a lattice if every two elements x,y € L have the
join xVy and the meet x Ay. All partitions of X form a lattice by refinement;
it is a sublattice of the lattice (by set-inclusion) of all binary relations.

¢ Kemeny distance
The Kemeny distance between binary relations R, and R on a set X
is the Hamming metric |R;ARy|. It is twice the minimal number of
inversions of pairs of adjacent elements of X which is necessary to obtain
Rs from R;.

If Ry, Ry are partitions, then the Kemeny distance coincides with the
Mirkin—Tcherny distance, and 1 — ‘fgﬁ%‘ is the Rand index.

If binary relations Ry, Ry are linear orders (or rankings, permutations)
on the set X, then the Kemeny distance coincides with the inversion
metric on permutations.

The Drapal-Kepka distance between distinct quasigroups (differing
from groups in that they need not be associative) (X,+) and (X,-) is
defined by [{(z,y) : x +y # 2 - y}|.

e Metrics between partitions

Let X be a finite set of cardinality n = | X|, and let A, B be non-empty
subsets of X. Let Px be the set of partitions of X, and P,Q € Px. Let
Bi,...,Bg be blocks in the partition P, i.e., the pairwise disjoint sets such
that X = By U---UBy, ¢ > 2. Let PV Q@ be the join of P and @, and
PV Q the meet of P and Q in the lattice Px of partitions of X.
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Consider the following editing operations on partitions:

— An augmentation transforms a partition P of A\{B} into a partition of

A by either including the objects of B in a block, or including B itself
as a new block.

— An remowal transforms a partition P of A into a partition of A\{B} by

deleting the objects in B from each block that contains them.

— A division transforms one partition P into another by the simultaneous

removal of B from B; (where B C B;, B # B;), and augmentation of
B as a new block.

— A merging transforms one partition P into another by the simultaneous

removal of B from B; (where B = B;), and augmentation of B to B;
(where j # 1).

— A transfer transforms one partition P into another by the simultaneous

removal of B from B; (where B C B;), and augmentation of B to B;
(where j # ).

Define (see, for example, [Day81]), in terms of above operations, the fol-
lowing editing metrics on Px:

1.

5.

6

The minimum number of augmentations and removals of single objects

needed to transform P into Q.

. The minimum number of divisions, mergings, and transfers of single
objects needed to transform P into Q).

. The minimum number of divisions, mergings, and transfers needed to

transform P into Q.

The minimum number of divisions and mergings needed to transform

P into Q; in fact, it is equal to |P|+ |Q| — 2|P V Q|.

o(P)+0(Q) —20(P AQ), where o(P) =3 _p p | F|(|F] = 1).

. e(P) +e(Q) —2e(P A Q), where e(P) =logon+ > p cp ‘Z"" log, L.

n

The Reignier distance is the minimum number of elements that must
be moved between the blocks of partition P in order to transform it into
Q. (Cf. Earth Mover distance in Chap.2I] and the above metric 2.)

10.

3 Metrics on lattices

Consider a poset (L, <). The meet (or infimum) x Ay (if it exists) of two
elements x and y is the unique element satisfying x Ay < z,y, and z < z Ay

if z

= a,y; similarly, the join (or supremum) x V y (if it exists) is the unique

element such that z,y <xVy,and xVy <X zif z,y < z.
A poset (L, =) is called a lattice if every two elements x,y € L have the

join

2 Vy and the meet © Ay. A poset (L, =) is called ameet semi-lattice (or
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lower semi-lattice) if only the meet-operation is defined. A poset (L, <) is
called a join semi-lattice (or upper semi-lattice) if only the join-operation is
defined.

A lattice L = (L,=X,V,A) is called a semi-modular lattice (or semi-
Dedekind lattice) if the modularity relation x My is symmetric: 2 My implies
yMz for any x,y € L. The modularity relation here is defined as follows: two
elements x and y are said to constitute a modular pair, in symbols xMy, if
xA(yVz)=(xAy)Vzforany z < x.

A lattice L in which every pair of elements is modular, is called a modular
lattice (or Dedekind lattice). A lattice is modular if and only if the modular
law is valid: if z < x, then 2 A (y V 2) = (x Ay) V z for any y. A lattice is
called distributive if x A (y V z) = (x Ay) V (z A z) for any x,y,z € L.

Given a lattice L, a function v : L — R>¢, satisfying v(z Vy) +v(z Ay) <
v(z) +v(y) for all x,y € L, is called a subvaluation on L. A subvaluation v
is called isotone if v(z) < v(y) whenever z =< y, and it is called positive if
v(z) < v(y) whenever x <y, x # y.

A subvaluation v is called a valuation if it is isotone and v(xVy)+v(xAy) =
v(z) +v(y) for all z,y € L. An integer-valued valuation is called the height
(or length) of L.

e Lattice valuation metric
Let L = (L, =,V,A) be a lattice, and let v be an isotone subvaluation on
L. The lattice subvaluation semi-metric d,, on L is defined by

20(z Vy) —v(x) —v(y).

(It can be defined also on some semi-lattices.) If v is a positive subvaluation
on IL, one obtains a metric, called the lattice subvaluation metric. If v
is a valuation, d, can be written as

v(xVy) —v(xAy) =v(x)+v(y) — 20T Ay),

and is called the valuation semi-metric. If v is a positive valuation on L,
one obtains a metric, called the lattice valuation metric.
If L = N (the set of positive integers), xVy = l.c.m.(x,y) (least common

multiple), z Ay = g.c.d.(z,y) (greatest common divisor), and the positive
l.c.om.(z,y)
g.c.d(z,y)
generalized on any factorial ring (i.e., a ring with unique factorization)

equipped with a positive valuation v such that v(z) > 0 with equality
only for the multiplicative unit of the ring, and v(zy) = v(z) + v(y). (Cf.
ring semi-metric).

e Finite subgroup metric
Let (G,-,e) be a group. Let L = (L,C,N) be the meet semi-lattice of
all finite subgroups of the group (G,-,e) with the meet X N'Y and the
valuation v(X) = In|X]|.

valuation v(z) = Inz, then d,(z,y) = In . This metric can be
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The finite subgroup metric is a valuation metric on L, defined by

(XY

v(X)+ oY) =20(X AY)=1In Xnv)E

e Scalar and vectorial metrics
Let L = (L, <, max, min) be a lattice with the join max{z, y}, and the meet
min{x,y} on a set L C [0,00) which has a fixed number a as the greatest
element and is closed under negation, i.e., for any = € L, one has T =
a—x € L.
The scalar metric d on L is defined, for x # y, by

d(z,y) = max{min{z, 7}, min{Z, y}}.
The scalar metric d* on L* = L U {x}, x ¢ L, is defined, for x # y, by

d(z,y), if wzyel,
d*(z,y) = { max{x, T}, if y=x*,a # x*,
max{y, 7}, if = =x*1y#x*

Given a norm ||.|| on R”, n > 2, the vectorial metric on L" is de-
fined by
H(d(x17y1)7 ceey d(xna yn))Hv

and the vectorial metric on (L*)" is defined by

‘|(d*(x17y1)’ - '7d*(xn7yn))”'

The vectorial metric on LY = {0,1}" with l3-norm on R™ is the
Fréchet—Nikodym—Aronszyan distance. The vectorial metric on
Lr =10, ﬁ, cel ﬁ—j, 1}™ with Iy -norm on R™ is the Sgarro m-valued

metric. The vectorial metric on [0, 1]™ with [1-norm on R™ is the Sgarro
fuzzy metric.

If L is Ly, or [0,1], and 2 = (Z1,...,Tn,sTnt1ye oy Tngr), Y =
(Y1, -+ Yn,*, ..., %), where % stands in r places, then the vectorial metric
between = and y is the Sgarro metric (see, for example, [CSYO0T]).

e Metrics on Riesz space

A Riesz space (or vector lattice) is a partially ordered vector space (Vg;, <)
in which the following conditions hold:

1. The vector space structure and the partial order structure are com-
patible: from z =< y it follows that x + z < y + 2z, and from x > 0,
A € R, A > 0 it follows that Az > 0.

2. For any two elements z,y € Vg; there exists the join  Vy € Vg, (in
particular, the join and the meet of any finite set of elements from Vg,
exist).
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The Riesz norm metric is a norm metric on Vg;, defined by

|z = yllri,

where ||.||gr; is a Riesz norm, i.e., a norm on Vg, such that, for any z,y €
Vri, the inequality |z| < |y|, where |z| = (=) V (x), implies ||z||r; <
[ly||ri- The space (Vgi, ||-||ri) is called a normed Riesz space. In the case
of completeness it is called a Banach lattice. All Riesz norms on a Banach
lattice are equivalent.

An element e € Vg’i = {x € Vg; : © = 0} is called a strong unit of Vg;
if for each x € Vg; there exists A € R such that |z| < Ae. If a Riesz space
Vr: has a strong unit e, then ||z|| = inf{\ € R : |z| < Ae} is a Riesz norm,
and one obtains on Vg; a Riesz norm metric

inf{A e R: |z —y| =< Ae}.

A weak unit of Vi, is an element e of Vi, such that e A [z| = 0 implies
x = 0. A Riesz space Vg; is called Archimedean if, for any two x,y € VIJ{Z-,
there exists a natural number n, such that nx < y. The uniform metric
on an Archimedean Riesz space with a weak unit e is defined by

inf{\ e R: |z —y|Ae =< Ae}.

e Gallery distance of flags

Let L be a lattice. A chain C in L is a subset of L which is linearly
ordered, i.e., any two elements of C' are compatible. A flag is a chain in L
which is maximal with respect to inclusion. If L is a semi-modular lattice,
containing a finite flag, then IL has a unique minimal and a unique maximal
element, and any two flags C', D in L have the same cardinality, n+1. Then
n is the height of the lattice L. Two flags C, D in L are called adjacent if
either they are equal or D contains exactly one element not in C. A gallery
from C to D of length m is a sequence of flags C' = Cy,C4,...,C,, = D
such that C;_; and C; are adjacent for i = 1,...,m.

A gallery distance of flags (see [Abel91]) is a distance on the set
of all flags of a semi-modular lattice I with finite height, defined as the
minimum of lengths of galleries from C to D. It can be written as

|Cv D[ -|C|=|CVvD[-I|D],

where CV D = {¢Vd:c e C,d e D} is the upper sub-semi-lattice
generated by C' and D.

The gallery distance of flags is a special case of the gallery metric (of
the chamber system consisting of flags).



Chapter 11
Distances on Strings and Permutations

An alphabet is a finite set A, |A| > 2, elements of which are called characters
(or symbols). A string (or word) is a sequence of characters over a given finite
alphabet A. The set of all finite strings over the alphabet A is denoted by
W (A). Examples of real world applications, using distances and similarities of
string pairs, are Speech Recognition, Bioinformatics, Information Retrieval,
Machine Translation, Lexicography, Dialectology.

A substring (or factor, chain, block) of the string = x1...z, is any
contiguous subsequence ;x;41 ... 2, with 1 <i <k <n. A prefiz of a string
T1...T, is any substring of it starting with x1; a suffix is any substring of it
finishing with x,,. If a string is a part of a text, then the delimiters (a space,
a dot, a comma, etc.) are added to the alphabet A.

A wvector is any finite sequence consisting of real numbers, i.e., a finite
string over the infinite alphabet R. A frequency vector (or discrete probability
distribution) is any string z; ...z, with all ; > 0 and >\ 2z, = 1. A
permutation (or ranking) is any string xj ...z, with all x; being different
numbers from {1,...,n}.

An editing operation is an operation on strings, i.e., a symmetric binary
relation on the set of all considered strings. Given a set of editing operations
O ={0,...,0,}, the corresponding editing metric (or unit cost edit dis-
tance) between strings x and y is the minimum number of editing operations
from O needed to obtain y from z. It is the path metric of a graph with the
vertex-set W (A) and zy being an edge if y can be obtained from x by one
of the operations from O. In some applications, a cost function is assigned to
each type of editing operation; then the editing distance is the minimal total
cost of transforming z into y. Given a set of editing operations O on strings,
the corresponding necklace editing metric between cyclic strings = and
y is the minimum number of editing operations from O needed to obtain y
from x, minimized over all rotations of z.

The main editing operations on strings are:

e Character indel, i.e., insertion or deletion of a character
o Character replacement
e Character swap, i.e., an interchange of adjacent characters

M.M. Deza and E. Deza, Encyclopedia of Distances, 201
DOI 10.1007/978-3-642-00234-2_11, (© Springer-Verlag Berlin Heidelberg 2009
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e Substring mowve, i.e., transforming, say, the string z = x; ...z, into the
string @1 ... 21X .. . Xk 1% ... Tj_1T ... Ty

o Substring copy, i.e., transforming, say, £ = x1 ..., into x1...T;1Xj...
Xk_1Tj---Tp

e Substring uncopy, i.e., the removal of a substring provided that a copy of
it remains in the string

We list below the main distances on strings. However, some string distances
will appear in Chaps.[T8 BT and 23] where they fit better, with respect to
the needed level of generalization or specification.

11.1 Distances on general strings

e Levenstein metric
The Levenstein metric (or edit distance, shuffle-Hamming distance,
Hamming+ Gap metric) is (Levenstein 1965) an editing metric on W (A),
obtained for O consisting of only character replacements and indels.
The Levenstein metric dy,(x,y) between strings @ = 1 ...z, and y =
Y1 .. -Yn is equal to

min{dg(z*,y")},

where z*, y* are strings of length k, k¥ > max{m,n}, over the alphabet
A* = AU {x} so that, after deleting all new characters *, strings 2* and
y* shrink to = and y, respectively. Here, the gap is the new symbol *, and
x*, y* are shuffles of strings x and y with strings consisting of only .

dr (z,y)
max{m,n}"

The Damerau—Levenstein metric (Damerau 1964) is an editing met-
ric on W(A), obtained for O counsisting only of character replacements,
indels and transpositions. In the Levenstein metric, a transposition corre-
sponds to two editing operations: one insertion and one deletion.

The constrained edit distance (Oomen 1986) is the Levenstein met-
ric, but the ranges for the number of replacements, insertions and deletions
are specified.

e Editing metric with moves
The editing metric with moves is an editing metric on W (.A) [Corm03],
obtained for O consisting of only substring moves and indels.

e Editing compression metric
The editing compression metric is an editing metric on W (A) [Corm03],
obtained for O consisting of only indels, copy and uncopy operations.

e Indel metric
The indel metric is an editing metric on W (.A), obtained for O consisting
of only indels.

The Levenstein similarity is 1 —
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It is an analog of the Hamming metric |[XAY| between sets X and
Y. For strings * = z1...2,, and y = y1 ...y, it is equal to m +n —
2LCS(z,y), where the similarity LC'S(x,y) is the length of the longest
common subsequence of = and y.

The factor distance on W (A) is m +n —2LCF(x,y), where the simi-
larity LO'F(z,y) is the length of the longest common substring (factor) of
r and y.

The LCS ratio and the LCF ratio are the similarities on W (A) defined
b L.C'S(m,y) and LCF(:c,y)

min{m,n} min{m,n}’

max{m,n} or L=

e Swap metric
The swap metric is an editing metric on W (.A), obtained for O consisting
only of character swaps.

o Edit distance with costs
Given a set of editing operations O = {O,...,0,,} and a weight (or cost
function) w; > 0, assigned to each type O; of operation, the edit distance
with costs between strings x and y is the minimal total cost of an editing
path between them, i.e., the minimal sum of weights for a sequence of
operations transforming z into y.

The normalized edit distance between strings = and y (Marzal and
Vidal 1993) is the minimum, over all editing paths P between them, of

VLV((;,D)), where W(P) and L(P) are the total cost and the length of the
editing path P.

e Transduction edit distances
The Levenstein metric with costs between strings x and y is modeled
in [RiYi98] as a memoryless stochastic transduction between z and y.

Each step of transduction generates either a character replacement pair
(a,b), a deletion pair (a,(), an insertion pair (§,b), or the specific termi-
nation symbol ¢ according to a probability function ¢ : EU {t} — [0,1],
where E is the set of all possible above pairs. Such a transducer induces a
probability function on the set of all sequences of operations.

The transduction edit distances between strings = and y are [RiY198]
Inp of the following probabilities p:

for the Viterbi edit distance, the probability p of the most likely
sequence of editing operations transforming x into y;

for the stochastic edit distance, the probability p of the string pair
(z,y).

Those distances are never zero unless they are infinite for all other string
pairs.

This model allows one to learn (in order to reduce error rate) the edit
costs for the Levenstein metric from a corpus of examples (training set
of string pairs). This learning is automatic; it reduces to estimating the
parameters of above transducer.

respectively; sometimes, the denominator is
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e Bag distance
The bag distance (or multiset metric, counting filter) is a metric on
W (A), defined (Navarro 1997) by

max{|X\Y], |[Y\X|}

for any strings x and y, where X and Y are the bags of symbols (multisets
of characters) in strings « and y, respectively, and, say, | X\Y| counts the
number of elements in the multiset X\Y. Cf. metrics between multisets
in Chap.[I

The bag distance is a (computationally) cheap approximation of the
Levenstein metric.

e Marking metric

The marking metric is a metric on W (A) [EhHa88], defined by

logy ((dif f(x,y) +1)(dif f(y,x) + 1))

for any strings © = x1...x,, and y = y1...Yn, where dif f(x,y) is the
minimal size |M| of a subset M C {1,...,m} such that any substring of
x, not containing any x; with ¢ € M, is a substring of y.
Another metric, defined in [EhHa88], is logy (dif f(x,y) +dif f(y,z)+1).
e Transformation distance
The transformation distance is an editing distance with costs on
W(A) (Varre, Delahaye and Rivals 1999) obtained for O consisting only of
substring copy, uncopy and substring indels. The distance between strings
x and y is the minimal cost of transformation x into y using these opera-
tions, where the cost of each operation is the length of its description. For
example, the description of the copy requires a binary code specifying the
type of operation, an offset between the substring locations in z and in v,
and the length of the substring. A code for insertion specifies the type of
operation, the length of the substring and the sequence of the substring.
e [, rearrangement distance
The L; rearrangement distance (Amir, Aumann, Indyk, Levy and
Porat 2007) between strings = 1 ... &, and y = y1 ...y, is equal to

m
min Y |i — m(i)],
™
i=1

where 7 : {1,...,m} — {1,...,m} is a permutation transforming = into
y; if there are no such permutations, the distance is equal to occ.

The L. rearrangement distance (Amir, Aumann, Indyk, Levy
and Porat 2007) between strings z = z1...2Zy, and y = y1...Ym IS
min; maxj<;<m, [t — 7(7)| and, again, it is oo if such a permutation does
not exist.

Cf. genome rearrangement distances in Chap.23
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e Normalized information distance
The normalized information distance d between two binary strings x
and y is a symmetric function on W ({0,1}) [LCLMO04], defined by

max{K (z|y*), K (y|z*)}
max{K(x), K(y)}

Here, for binary strings v and v, u* is a shortest binary program to compute
u on an appropriate (i.e., using a Turing-complete language) universal
computer, the Kolmogorov complexity (or algorithmic entropy) K (u) is
the length of u* (the ultimate compressed version of «), and K(u|v) is
the length of the shortest program to compute u if v is provided as an
auxiliary input.

The function d(z,y) is a metric up to small error term: d(z,x) =
O((K(x))7), and d(z,2) — d(z,y) — d(y,2) = O((max{K(z),K(y),
K(2)})™1). ( Cf. d(z,y) the information metric (or entropy metric)
H(X|Y)+ H(Y|X) between stochastic sources X and Y.)

The Kolmogorov complexity is uncomputable and depends on the cho-
sen computer language; so, instead of K (u), were proposed the minimum
message length (shortest overall message) by Wallace (1968) and the mini-
mum description length (largest compression of data) by Rissanen (1978).

The normalized compression distance is a distance on W ({0, 1})

[LCLMO4], [BGLVZI8), defined by

Clay) —min{C(z),C(y)}
max{C(z), C(y)}

for any binary strings z and y, where C(z),C(y), and C(zy) denote the
size of the compression (by fixed compressor C, such as gzip, bzip2, or
PPMZ) of strings x, y, and their concatenation xy. This distance is not a
metric. It is an approximation of the normalized information distance. A
similar distance is defined by % -3

e Lempel-Ziv distance
The Lempel—Ziv distance between two binary strings x and y of length
n is

LZ(z]y) LZ(ylw)}

LZ(z) " LZ(y)

max{

where LZ(z) = w is the Lempel-Ziv complexity of x, ap-
proximating its Kolmogorov complexity K(x). Here P(z) is the set of
non-overlapping substrings into which x is parsed sequentially, so that
the new substring is not yet contained in the set of substrings generated
so far. For example, such a Lempel-Ziv parsing for x = 001100101010011
is 0[01]1]00{10/101]001[11. Now, LZ(z|y) = L&NPWlos PN
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¢ Anthony—Hammer similarity
The Anthony—Hammer similarity between a binary string z =
Z1...T, and the set Y of binary strings y = y1...y, is the maximal
number m such that, for every m-subset M C {1,...,n}, the substring of
x, containing only x; with ¢ € M, is a substring of some y € Y containing
only y; with ¢ € M.

e Jaro similarity
Given strings t = x1...2,, and y = y1...Yn, call a character aci common
with y if z; = yj, where li —j| < M Let ' = z)...2 ., be all
the characters of x Wthh are common Wlth y (in the same order as they
appear in z), and let y = y1 . yn be the analogous string for y.

The Jaro similarity Jaro(x,y) between strings x and y is defined by

1 m, n/ 1 <7 <min m/’n, :aj/.:/.
<++{_ < minfm’,n'} : o] ym).

3\m n min{m’,n’}

This and following two similarities are used in Record Linkage.
e Jaro—Winkler similarity
The Jaro—Winkler similarity between strings x and y is defined by

max{4, LCP(z,y)}

Jaro(z,y) + 10

(1 - J(lT'O(iL’, y))a

where Jaro(z,y) is the Jaro similarity, and LCP(z,y) is the length of
the longest common prefix of = and y.

e ¢-gram similarity
Given an integer ¢ > 1 (usually, ¢ is 2 or 3), the ¢g-gram similarity
between strings x and y is defined by

where ¢(z), ¢(y) and ¢(z,y) are the sizes of multisets of all ¢-grams (sub-
strings of length ¢) occurring in x, y and both of them, respectively.
Sometimes, ¢(z,y) is divided not by the average of ¢(z) and ¢(y), as above,
but by their minimum, maximum or harmonic mean % Cf. met-
rics between multisets in Chap.[Il and, in Chap.[I7, Dice similarity,
Simpson similarity, Braun—-Blanquet similarity and Anderberg
similarity.

Sometimes, the strings « and y are padded before computing their g-gram
similarity, i.e., ¢ — 1 special characters are added to their beginnings and
ends. Padding increases the matching quality since g-grams at the begin-
ning and end of strings are g-grams not matched to other g-grams.

The g-gram similarity is an example of token-based similarities, i.e.,
ones defined in terms of tokens (selected substrings or words). Here tokens
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are g-grams. A generic dictionary-based metric between strings z and
y is |D(xz)AD(y)|, where D(z) denotes the full dictionary of z, i.e., the set
of all of its substrings.

e Prefix-Hamming metric
The prefix-Hamming metric between strings * = z1...x,, and y =
Y1 --..Yn is defined by

(max{m,n} — min{m,n}) + {1 < i < min{m, n} : z; # y; }|.

e Weighted Hamming metric
If (A, d) is a metric space, then the weighted Hamming metric between
strings x = x1...2,, and y = ¥y ... ¥ is defined by

m

> d(@i, ).

i=1

The term weighted Hamming metric (or weighted Hamming distance) is
also used for >2, ;. ., wi, where, for any 1 <i < m, w(i) > 0 is its
weight.

e Fuzzy Hamming distance

If (A, d) is a metric space, the fuzzy Hamming distance between strings
rT=x1...T, and y = y1 ...y is an editing distance with costs on
W(A) obtained for O consisting of only indels, each of fixed cost ¢ > 0,
and character shifts (i.e., moves of 1-character substrings), where the cost
of replacement of ¢ by j is a function f(]i—j|). This distance is the minimal
total cost of transforming = into y by these operations. Bookstein, Klein,
Raita (2001) introduced this distance for Information Retrieval and proved
that it is a metric if f is a monotonically increasing concave function on
integers vanishing only at 0. The case f(]i — j|) = C|i — j|, where C' > 0 is
a constant and |i — j| is a time shift, corresponds to the Victor—Purpura
spike train distance in Chap.23l

Ralescu (2003) introduced, for Image Retrieval, another fuzzy Ham-
ming distance on R™. The Ralescu distance between two strings
T =1x1...Tm and y = y1...Yn is the fuzzy cardinality of the difference
fuzzy set Do (z,y) (where « is a parameter) with membership function

;g =1— e*"‘(”"*y"')i 1<i<m.

The non-fuzzy cardinality of the fuzzy set D, (x,y) approximating its fuzzy
cardinality is [{1 <i < m:p; > £}

e Needleman—Wunsch—Sellers metric
If (A,d) is a metric space, the Needleman—Wunsch—Sellers metric
(or global alignment metric) is an editing distance with costs on
W(A) [NeWuT0], obtained for O consisting of only indels, each of fixed
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cost ¢ > 0, and character replacements, where the cost of replacement of ¢
by j is d(i, 7). This metric is the minimal total cost of transforming x into
y by these operations. Equivalently, it is

min{dy,m(z*,y*)},

where z*, y* are strings of length k, k¥ > max{m,n}, over the alphabet
A* = AU {x}, so that, after deleting all new characters *, strings z*
and y* shrink to x and y, respectively. Here d, i (z*,y*) is the weighted
Hamming metric between 2* and y* with weight d(a},y}) = ¢ (i.e., the
editing operation is an indel) if one of z}, y; is *, and d(x},y}) = d(i,J),
otherwise.

The Gotoh—Smith—Waterman distance (or string distance with
affine gaps) is a more specialized editing metric with costs (see [Goto82]).
It discounts mismatching parts at the beginning and end of the strings =z,
y, and introduces two indel costs: one for starting an affine gap (contiguous
block of indels), and another one (lower) for extending a gap.

e Duncan metric
Consider the set X of all strictly increasing infinite sequences x =
{xn}n of positive integers. Define N(n,z) as the number of elements
in x = {z,}, which are less than n, and §(z) as the density of x, i.e.,
0(x) = limy,— 00 w Let Y be the subset of X consisting of all sequences
x = {xy}n for which §(x) < .
The Duncan metric is a metric on Y, defined, for = # y, by

1

————— +[0(x) =

e A )l
where LO'P(z,y) is the length of the longest common prefix of  and y.

e Martin metric

The Martin metric d* between strings © = z1...2,, and ¥y = y1...Yn
is defined by

max{m,n}

‘27"7‘ - 27n| + Z ‘A|t sup |k(Z .’,E) k(Z,y)L

t=1

where z is any string of length ¢, k(z,z) is the Martin kernel of a
Markov chain M = {M;}2,, and the sequence a € {a={a;}2, : a; > 0,
Yoo, ar < oo} is a parameter.

e Baire metric

The Baire metric is an ultrametric between finite or infinite strings z
and y, defined, for = # y, by

1
1+ LCP(x,y)’
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where LC'P(x,y) is the length of the longest common prefix of z and y.
Cf. Baire space in Chap.2

Given an infinite cardinal number xk and a set A of cardinality k, the
Cartesian product of countably many copies of A endowed with above
ultametric m is called the Baire space of weight x and denoted
by B(k). In particular, B(Xg) (called the Baire zero-dimensional space) is
homeomorphic to the space Irr of irrationals with continued fraction
metric (cf. Chap.[I2)).

e Generalized Cantor metric

The generalized Cantor metric (or, sometimes, Baire distance) is an
ultrametric between infinite strings x and y, defined, for z # y, by

al—&-LCP(.r,y),

where a is a fixed number from the interval (0,1), and LC'P(z,y) is the
length of the longest common prefix of x and y.
This ultrametric space is compact. In the case a= %, the metric
W was considered on a remarkable fractal (cf. Chap.[) from
[0, 1], the Cantor set; cf. Cantor metric in Chap.[I8

Comyn and Dauchet (1985) and Kwiatkowska (1990) introduced some
analogues of generalized Cantor metric for traces, i.e., equivalence classes
of strings with respect to a congruence relation identifying strings z,y
that are identical up to permutation of concurrent actions (xy = yzx).

e Parentheses string metrics
Let P, be the set of all strings on the alphabet {(,)} generated by a
grammar and having n open and n closed parentheses. A parentheses
string metric is an editing metric on P, (or on its subset) corresponding
to a given set of editing operations.

For example, the Monjardet metric (Monjardet 1981) between two
parentheses strings x,y € P, is the minimum number of adjacent paren-
theses interchanges [“()” to “)(” or “)(” to “()”] needed to obtain y from
x. It is the Manhattan metric between their representations p, and p,,
where p, = (p.(1),...,p-(n)) and p. () is the number of open parentheses
written before the i-th closed parenthese of z € P,.

There is a bijection between parentheses strings and binary trees; cf.
the tree rotation distance in Chap.[IHl

Similarly, Autord-Dehornoy distance between shortest expressions x and
y of a permutation as a product of transpositions, is the minimal number
of braid relations needed to get x from y.

e Schellenkens complexity quasi-metric
The Schellenkens complexity quasi-metric is a quasi-metric be-
tween infinite strings © = zg,Z1,...,Tm,--- and ¥ = Yo, Y1, -+ Yn, - - -
over R>q with > % 2”%_ < 00 (seen as complexity functions), defined
(Schellenkens 1995) by

(oo}

- 1 1
E 27" max{0, — — —}.
=0 Ti  Yi
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e Graev metrics
Let (X, d) be a metric space. Let X = X U X' U{e}, where X' = {2/ 1z €
X} is a disjoint copy of X, and e ¢ X U X’. We use the notation (¢/)’ =e
and (2')" = z for any x € X; also, the letters x, y, z;, y; will denote elements
of X. Let (X, D) be a metric space such that D(z,y) = D(2/,y') = d(x,y),
D(z,e) = D(a',e) and D(z,y’) = D(2',y) for all z,y € X.

Denote by W(X) the set of all words over X and, for each word
w € W(X), denote by [(w) its length. A word w € W(X) is called irre-
ducibleif w = eor w = xg...x,, where z; # e and x;41 # 2} for 0 < i < n.

For each word w over X, denote by @ the unique irreducible word
obtained from w by successively replacing any occurrence of zz’ in w by e
and eliminating e from any occurrence of the form wiews, where at least
one of the words w; and wsy is non-empty.

Denote by F(X) the set of all irreducible words over X and, for
u,v € F(X), define u - v = w’, where w is the concatenation of words
u and v. Then F(X) becomes a group; its identity element is the (non-
empty) word e.

For any two words v = zg...2, and u = yg ...y, over X of the same
length, let p(v,u) = Y., D(x;,y;). The Graev metric between two
irreducible words u = u,v € F(X) is defined [DiGa07] by

— o~
*

inf{p(u*,v*) : u*,v* € W(X), l(u*) =1(v"), u* = u,v* = v}.

Graev proved that this metric is a bi-invariant metric on F(X), ex-
tending the metric d on X, and that F(X) is a topological group in the
topology induced by it.

11.2 Distances on permutations

A permutation (or ranking) is any string xq ...z, with all z; being differ-
ent numbers from {1,...,n}; a signed permutation is any string zi ...z,
with all |z;| being different numbers from {1,...,n}. Denote by (Symy, -, id)
the group of all permutations of the set {1,...,n}, where id is the identity
mapping.

The restriction, on the set Sym,, of all n-permutation vectors, of any metric
on R” is a metric on Sym,,; the main example is the ,-metric (>, |z; —
yilP)r,p > 1.

The main editing operations on permutations are:

Block transposition, i.e., a substring move

Character move, i.e., a transposition of a block consisting of only one

character
e Character swap, i.e., interchanging of any two adjacent characters
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e Character exchange, i.e., interchanging of any two characters (in Group
Theory, it is called transposition)

e One-level character exchange, i.e., exchange of characters x; and z;, 7 < 7,
such that, for any k with ¢ < k < j, either min{x;,z;} > xy, or z; >
max{x;, ;}

e Block reversal, i.e., transforming, say, the permutation x = x; ...x, into
the permutation xy .. ST 1X§Xjo1 - X 1XiT 41 - - Ty (so, a swap is a re-
versal of a block consisting only of two characters)

e Signed reversal, i.e., a reversal in signed permutation, followed by multi-
plication on —1 of all characters of the reversed block

Below we list the most used editing and other metrics on Sym,,.

¢ Hamming metric on permutations
The Hamming metric on permutations dy is an editing metric on
Sym,,, obtained for O consisting of only character replacements. It is a

bi-invariant metric. Also, n — dg(x,y) is the number of fixed points of

T
e Spearman p distance

The Spearman p distance is the Euclidean metric on Sym,,:

(Cf. Spearman p rank correlation in Chap.[I7)
e Spearman footrule distance
The Spearman footrule distance is the l;-metric on Sym,,:

n

Z|$z‘*yz‘|-

i=1

(Cf. Spearman footrule similarity in Chap.[I7)
Both Spearman distances are bi-invariant.
e Kendall 7 distance
The Kendall 7 distance (or inversion metric, permutation swap metric)
1 is an editing metric on Sym,,, obtained for O consisting only of character
swaps.

In terms of Group Theory, I(z,y) is the number of adjacent trans-
positions needed to obtain z from y. Also, I(x,y) is the number of
relative inversions of x and y, i.e., pairs (i,7), 1 < i < j < n, with
(x; —x;)(yi —y;) < 0. (Cf. Kendall 7 rank correlation similarity in
Chap.[I7)

In [BCFSIT] the following metrics were also given, associated with the
metric I(x,y):

L. minzegym, (I(z,2) + I(z71,y™1))
2. max,cgym, I(2x,2y)
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3. min;egym, I(zx,2y) = T(z,y), where T is the Cayley metric
4. Editing metric, obtained for O consisting only of one-level character
exchanges

e Daniels—Guilbaud semi-metric
The Daniels—Guilbaud semi-metric is a semi-metric on Sym,,, defined,
for any x,y € Sym,,, as the number of triples (i,j,k), 1 <i<j <k <n,
such that (z;,x;,2x) is not a cyclic shift of (y;,y;,yx); so, it is 0 if and
only if z is a cyclical shift of y (see [Monj98g]).

e Cayley metric
The Cayley metric T is an editing metric on Sym,, obtained for O
consisting only of character exchanges.

In terms of Group Theory, T'(z,y) is the minimum number of transposi-
tions needed to obtain = from y. Also, n — T'(x,y) is the number of cycles
in 2y~!. The metric T is bi-invariant.

e Ulam metric
The Ulam metric (or permutation editing metric) U is an editing
metric on Sym,,, obtained for O consisting only of character moves.

Equivalently, it is an editing metric, obtained for O consisting only of
indels. Also, n — U(z,y) = LCS(z,y) = LIS(xy~ '), where LCS(z,y) is
the length of the longest common subsequence (not necessarily a substring)
of x and y, while L1S(z) is the length of the longest increasing subsequence
of z € Sym,,.

This and the preceding six metrics are right-invariant.

e Reversal metric
The reversal metric is an editing metric on Sym,,, obtained for O con-
sisting only of block reversals.

e Signed reversal metric
The signed reversal metric (Sankoff 1989) is an editing metric on the
set of all 2"n! signed permutations of the set {1,...,n}, obtained for O
consisting only of signed reversals.

This metric is used in Biology, where a signed permutation represents
a single-chromosome genome, seen as a permutation of genes (along the
chromosome) each having a direction (so, a sign + or —).

e Chain metric
The chain metric (or rearrangement metric) is a metric on Sym,, [Pag ,
defined, for any =,y € Sym,,, as the minimum number, minus 1, of chains
(substrings) vi, ..., y; of y, such that & can be parsed (concatenated) into,
e, x=uy. y;

e Lexicographic metric
The lexicographic metric (Golenko and Ginzburg 1973) is a metric on
Sym,,, defined by

[N (z) = N(y)l,
where N(z) is the ordinal number of the position (among 1,...,n!) occu-
pied by the permutation x in the lexicographic ordering of the set Sym,,.
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In the lezicographic ordering of Symy,, t = x1... 2y <Yy = Y1 ...Yn if
there exists 1 <14 < n such that z1 =1, ..., ;1 = y;_1, but x; < y;.
e Fréchet permutation metric
The Fréchet permutation metric is the Fréchet product metric on
the set Symy, of permutations of positive integers, defined by

o0

201+ |z — il

i=1



Chapter 12
Distances on Numbers, Polynomials,
and Matrices

12.1 Metrics on numbers

Here we consider some of the most important metrics on the classical number
systems: the semi-ring N of natural numbers, the ring Z of integers, and the
fields Q, R, and C of rational, real, and complex numbers, respectively. We

consider also the algebra Q of quaternions.

e Metrics on natural numbers

There are several well-known metrics on the set N of natural numbers:

1. |n — m|; the restriction of the natural metric (from R) on N
2. p~%, where « is the highest power of a given prime number p dividing
m — n, for m # n (and equal to 0 for m = n); the restriction of the

p-adic metric (from Q) on N

3. In l.c.om.(m,n) .
: g.c.d.(m,n)?’
4. wy(n —m), where w,(n) is the arithmetic r-weight of n; the restriction

of the arithmetic r-norm metric (from Z) on N
5. %Tml (cf. M-relative metric in Chap.[I9)

6. 1+ min for m # n (and equal to 0 for m = n); the Sierpinski metric

an example of the lattice valuation metric

Most of these metrics on N can be extended on Z. Moreover, any one of
the above metrics can be used in the case of an arbitrary countable set X.
For example, the Sierpinski metric is defined, in general, on a countable
set X = {z,, : n € N} byl—i—#_mforallxm,xneXWithm;én(andis
equal to 0, otherwise).

Arithmetic r-norm metric
Let r € N,r > 2. The modified r-ary form of an integer x is a representation

x=epr" +---+e1r + e,

where e; € Z, and |e;| < r for all ¢ = 0,...,n. An r-ary form is called
minimal if the number of non-zero coefficients is minimal. The minimal
form is not unique, in general. But if the coefficients e;, 0 < i < n — 1,

M.M. Deza and E. Deza, Encyclopedia of Distances, 215
DOI 10.1007/978-3-642-00234-2_12, (© Springer-Verlag Berlin Heidelberg 2009
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satisfy the conditions |e; + e; 11| < 7, and |e;| < |ei41] if ejeir1 < 0,
then the above form is unique and minimal; it is called the generalized
non-adjacent form.

The arithmetic r-weight w,(z) of an integer x is the number of non-zero
coefficients in a minimal r-ary form of z, in particular, in the general-
ized non-adjacent form. The arithmetic r-norm metric on Z (see, for

example, [Ernv85]) is defined by
Wy (‘T - y)

e p-adic metric

Let p be a prime number. Any non-zero rational number x can be repre-
sented as x = p* <, where ¢ and d are integers not divisible by p, and « is a
unique integer. The p-adic norm of x is defined by |z|, = p~*. Moreover,
|0], = 0 is defined.

The p-adic metric is a norm metric on the set QQ of rational numbers,
defined by

|.23 - y|p

This metric forms the basis for the algebra of p-adic numbers. In fact, the
Cauchy completion of the metric space (Q, | —y|,) gives the field Q, of
p-adic numbers; also the Cauchy completion of the metric space (Q, |z —y|)
with the natural metric |z — y| gives the field R of real numbers.

The Gaji¢ metric is an ultrametric on the set Q of rational numbers
defined, for x # y (via the integer part |z| of a real number z), by

inf{27™" :neZ, [2"(z—¢e)] =[2"(y—¢€)]},

where e is any fixed irrational number. This metric is equivalent to the
natural metric |z — y| on Q.

e Continued fraction metric on irrationals
The continued fraction metric on irrationals is a complete metric on
the set Irr of irrational numbers defined, for x # y, by

1

b

n

where n is the first index for which the continued fraction expansions of
x and y differ. This metric is equivalent to the natural metric |z — y|
on Irr, which is non-complete and disconnected. Also, the Baire zero-
dimensional space B(Rg) (cf. Baire metric in Chap.[IT]) is homeomorphic
to Irr endowed with this metric.
e Natural metric

The natural metric (or absolute value metric, or the distance between
numbers) is a metric on R, defined by

Sy ifr—y <0,
o y|_{zy,ifzy20.
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On R all [,-metrics coincide with the natural metric. The metric space
(R, |x — yl) is called the real line (or Fuclidean line).

There exist many other metrics on R coming from |z — y| by some
lz—yl

) 1—H:z—y|’
|z| + |z — y| + |y| (for  # y) and, for a given 0 < o < 1, the generalized
absolute value metric |z — y|*.

e Zero bias metric

The zero bias metric is a metric on R, defined by

metric transform (cf. Chap.@l). For example: min{1, | — y|}

1+ [z —yl
if one and only one of x and y is strictly positive, and by

|:L,7y|7

otherwise, where |z —y| is the natural metric (see, for example, [Gile87]).
e Sorgenfrey quasi-metric
The Sorgenfrey quasi-metric is a quasi-metric d on R, defined by

y—x

if y > x, and equal to 1 otherwise.
Some examples of similar quasi-metrics on R are:

1. dy(z,y) = max{y — x,0}.

. da(z,y) = min{y — x,1} if y > x, and equal to 1 otherwise.

3. ds(z,y) =y —x if y > z, and equal to a(x — y) (for fixed a > 0)
otherwise.

4. dy(xz,y) =¥ —e® if y > x, and equal to e™¥ — e~ otherwise.

[\

e Real half-line quasi-semi-metric
The real half-line quasi-semi-metric is defined on the half-line R by

maX{O,lng}.
x

e Janous—Hametner metric
The Janous—Hametner metric is defined on the half-line R-y by

|z —yl
(x+y)
where t = —1 or 0 <t <1, and |z — y| is the natural metric.

e Extended real line metric
An extended real line metric is a metric on R U {+oo} U {—o0}. The
main example (see, for example, [Cops68]) of such metric is given by

[f(@) = f(y)l,
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where f(x) = 7 forz eR, f(+00) =1, and f(—o0) = —1. Another

metric, commonly used on R U {+o00} U {—o0}, is defined by
| arctan & — arctan y|,

where —17 < arctanz < 17 for —0o < z < o0, and arctan(+oo) = +1m.
¢ Complex modulus metric

The complex modulus metric is a metric on the set C of complex
numbers, defined by

|z — ul,
where, for any z € C, the real number |z| = |21 + 22i| = \/27 + 23 is the
complex modulus. The metric space (C, |z —wu]) is called the complex plane
(or Argand plane).

Examples of other useful metrics on C are: the British Rail metric,

defined by

2| + [ul
for z # u (and is equal to 0 otherwise); the p-relative metric, 1 <p < co
(cf. (p, q)-relative metric in Chap.[[9)), defined by

|2 — ul
(|27 + [ul) 7

for |z| + |u| # 0 (and is equal to 0 otherwise); for p = co one obtains the
relative metric, written for |z| + |u| # 0 as

|2 = u|
max{|z], |ul}

e Chordal metric B
The chordal metric d, is a metric on the set C=C U {oo}, defined by

2|z — ul

dy(z,u) =
! VIF P+

for all z,u € C, and by

2

dy(z,00) = ———
V= T

for all z € C (cf. M-relative metric in Chap.[I9). The metric space
(C, dy) is called the extended complex plane. It is homeomorphic and con-
formally equivalent to the Riemann sphere.

In fact, a Riemann sphere is a sphere in the Euclidean space E3, consid-
ered as a metric subspace of E3, onto which the extended complex plane
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is one-to-one mapped under stereographic projection. The wunit sphere
S% = {(x1,22,73) € E®: 22 + 23 + 23 = 1} can be taken as the Riemann
sphere, and the plane C can be identified with the plane x5 = 0 such that
the real axis coincides with the z;-axis, and the imaginary axis with the
xo-axis. Under stereographic projection, each point z € C corresponds to
the point (r1, 72, 73) € S? obtained as the point where the ray drawn from
the “north pole” (0,0,1) of the sphere to the point z meets the sphere S?;
the “north pole” corresponds to the point at infinity co. The chordal dis-
tance between two points p,q € S? is taken to be the distance between
their preimages z,u € C.

The chordal metric can be defined equivalently on R = R™ U {o0}.
Thus, for any =,y € R”, one has

2[jz — ylla
V1l + [yl

dx(xvy) =

and for any x € R", one has

2

dy(x,0) = ——,
(% 0) 1+ [|z[[3

where ||.||2 is the ordinary Euclidean norm on R™.

The metric space (R, d, ) is called the M&bius space. It is a Ptolemaic
metric space (cf. Ptolemaic metric in Chap.[I]).

Given a > 0, 8 > 0, p > 1, the generalized chordal metric is a
metric on C (in general, on (R™,[|.||2) and even on any Ptolemaic space
(V3 [[-11)), defined by

|2 = u|

(a+ Bl2P)7 - (a+ Blulp) 7

It can be easily generalized to C (or R").
e Quaternion metric

Quaternions are members of a non-commutative division algebra Q over
the field R, geometrically realizable in a four-dimensional space [Hami66].
The quaternions can be written in the form g = q1 + ¢21 + ¢35 + quk,
¢; € R, where the quaternions 4, j, and k, called the basic units, satisfy
the following identities, known as Hamilton’s rules: i* = j2 = k? = —
and ij = —ji = k.

The quaternion norm ||q|| of ¢ = ¢1 + q2i + q3j + quk € Q is defined by

lgll = vag = \/q%+q§+q§+qi, T=q1— @20 — q3j — qak.

The quaternion metric is a norm metric ||z — y|| on the set Q of all
quaternions.



220 12 Distances on Numbers, Polynomials, and Matrices

12.2 Metrics on polynomials

A polynomial is an expression involving a sum of powers in one or more
variables multiplied by coefficients. A polynomial in one variable (or monic
polynomial) with constant real (complex) coefficients is given by P = P(z) =
>oreo arz®, ar € R (ay € C).

The set P of all real (complex) polynomials forms a ring (P, +,-,0). It is
also a vector space over R (over C).

e Polynomial norm metric
A polynomial norm metric (or polynomial bar metric) is a norm
metric on the set P of all real (complex) polynomials, defined by

where ||.|| is a polynomial norm, i.e., a function ||.|| : P — R such that, for
all P,@ € P and for any scalar k, we have the following properties:

1. ||P]| = 0, with ||P|| = 0 if and only if P = 0.
2. [[kP|| = [K[[|P]]-
3. [P+ Q| < ||P|| + |Q|| (triangle inequality).

For the set P several classes of norms are commonly used. The I,-norm,
1 < p < oo, of a polynomial P(z) = > ;_, axz" is defined by

n

1Pl = QO larl?),

k=0

giving the special cases ||P|l1 = > 1 _olakl, [|Pll2 = />op—olax|?, and
[|P||loo = maxo<k<n |ak|. The value [|P|| is called the polynomial height.
The L,-norm, 1 < p < oo, of a polynomial P(z) = >_;'_, axz" is defined by

,df

27
i0 s
1P, = (| PP

giving the special cases ||P||p, = f027r|P(ew)|%, l|P||L, = \/fgw\P(eiH)P%,
and [Pz = supj.i_y [P(2)].

e Bombieri metric
The Bombieri metric (or polynomial bracket metric) is a poly-
nomial norm metric on the set P of all real (complex) polynomials,
defined by

[P = Qlp,
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where [.],, 0 < p < 00, is the Bombieri p-norm. For a polynomial P(z) =
> h_oaxz® it is defined by

[Pl = (O () Plaw ),

k=0

where (}) is a binomial coefficient.

e Metric space of roots
The metric space of roots is (Curgus and Mascioni 2006) the space
(X,d) where X is the family of all multisets of complex numbers with n
elements and the distance between multisets U = {uy,...,u,} and V =
{v1,...,v,} is defined by the following analog of the Fréchet metric:

min  max |u; — U,(;
TESYMy, 1§j§n| 7 T(])|’

where 7 is any permutation of {1,...,n}. Here the set of roots of some
monic complex polynomial of degree n is considered as a multiset with n
elements. Cf. metrics between multisets in Chap.[Il

The function assigning to each polynomial the multiset of its roots
is (Curgus and Mascioni 2006) a homeomorphism between the metric
space of all monic complex polynomials of degree n with the polynomial
norm metric /., and the metric space of roots.

12.3 Metrics on matrices

An m x n matrix A = ((a;;)) over a field F is a table consisting of m rows
and n columns with the entries a;; from IF. The set of all m x n matrices with
real (complex) entries is denoted by My, . It forms a group (M, n, +, 0m.n),
where ((a;;)) + ((bij)) = ((aij + bi;)), and the matrix 0,,, = 0, ie., all
its entries are equal to 0. It is also an mn-dimensional vector space over
R (over C). The transpose of a matrix A = ((a;;)) € My, is the matrix
AT = ((aji)) € My m. The conjugate transpose (or adjoint) of a matrix
A = ((ai;)) € My, is the matrix A* = ((@j:)) € Mym.

A matrix is called a square matriz if m = n. The set of all square n x n
matrices with real (complex) entries is denoted by M,. It forms a ring
(M,,+,-,0,), where + and 0,, are defined as above, and ((a;;)) - ((bi;)) =
((Ok_y airby;)). It is also an n*-dimensional vector space over R (over C).
The trace of a square n x n matrix A = ((a;;)) is defined to be the sum of
the elements on the main diagonal (the diagonal from the upper left to the
lower right) of A, i.e., TrA =", a;. A matrix A = ((a;;)) € M, is called
symmetric if a;; = aj; for all 4,5 € {1,...,n}, i.e., if A= AT. The identity
matriz is 1, = ((¢;;)) with ¢;; = 1, and ¢;; = 0, ¢ # j. A unitary matriz
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U = ((ui;)) is a square matrix, defined by U~! = U*, where U~! is the
inverse matriz of U, i.e., U -U~! = 1,. An orthonormal matriz is a matrix
A € M, such that A*A =1,,.

If for a matrix A € M, there is a vector x such that Ax = Az for some
scalar A, then A is called an eigenvalue of A with corresponding eigenvector x.
Given a complex matrix A € M, ., its singular values s;(A) are defined as the
square roots of the eigenvalues of the matrix A* A, where A* is the conjugate
transpose of A. They are non-negative real numbers s1(A4) > so(A) > ....

e Matrix norm metric
A matrix norm metric is a norm metric on the set M,, , of all real
(complex) m x n matrices, defined by

1A= B,

where ||.|| is a matriz norm, i.e., a function ||.|| : M,,,, — R such that, for
all A, B € M,, ,, and for any scalar k, we have the following properties:

1. ||A]] > 0, with ||A|| = 0 if and only if A = 0,, .
2. ||RA[| = [K[[|All.
3. ||A+ B|| < ||A]| +||B]] (triangle inequality).

All matrix norm metrics on M, , are equivalent. A matrix norm ||.||
on the set M, of all real (complex) square n x n matrices is called sub-
multiplicative if it is compatible with matrix multiplication, i.e., ||[AB]|| <
[|A|| - ||B]| for all A, B € M,,. The set M,, with a sub-multiplicative norm
is a Banach algebra.

The simplest example of a matrix norm metric is the Hamming metric
on M, ,, (in general, on the set M,, ,,(F) of all m x n matrices with entries
from a field ), defined by |[A — B||g, where ||A|| is the Hamming norm
of A € My, p, i.e., the number of non-zero entries in A.

e Natural norm metric
A natural norm metric (or induced norm metric, subordinate
norm metric) is a matrix norm metric on the set M, of all real (com-
plex) square n x n matrices, defined by

||A*B||natv

where ||.||nat 18 & natural norm on M,,.
The natural norm ||.||nat on M, induced by the vector norm ||z||, x €
R™ (z € C™), is a sub-multiplicative matriz norm, defined by

Ax
Allnat = sup ”|| ||H = sup ||Az||= sup ||Az]).
[|lz|[£0 [T [|z]]=1 [Jz||<1
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The natural norm metric can be defined in similar way on the set M, ,
of all m x n real (complex) matrices: given vector norms ||.||gm on R™
and ||.||gr on R™, the natural norm ||Al|lpnae of a matrix A € My, .,
induced by [|.||gr and [|.||gm, is a matrix norm, defined by ||Al|lnar =
SUP| || |gn =1 || Az[gm.

e Matrix p-norm metric
A matrix p-norm metric is a natural norm metric on M,,, defined by

||A B||nat7

where [[.|[P ,; is the matriz p-norm, i.e., a natural norm, induced by the
vector l,-norm, 1 < p < oo:

IlA IInatAAVHI?aX |Az|lp, where |[|z|], = jijlﬂflp )P,
=1

The maximum absolute column metric (more exactly, mazimum abso-
lute column sum norm metric) is the matrix 1-norm metric ||A— B||!_,
on M,. The matriz 1-norm ||.||%,;, induced by the vector lj-norm, is
also called the mazimum absolute column sum norm. For a matrix A =
((a;;)) € M, it can be written as

n
A = max E aijl.
H ||nat 1<j<n ‘ 1]|
=1
The maximum absolute row metric (more exactly, mazimum absolute
row sum norm metric) is the matrix co-norm metric ||A— B||2%, on M,,.
The matriz co-norm ||.||3%;, induced by the vector l-norm, is also called
the mazimum absolute row sum norm. For a matrix A = ((a;;)) € M, it
can be written as

HA”nat - max Z ‘a13|

The spectral norm metric is the matrix 2-norm metric ||A — B||?,
on M,,. The matrix 2-norm [|.||2,,, induced by the vector l3-norm, is also
called the spectral norm and denoted by ||.||sp. For a matrix A = ((a;5)) €
M, it can be written as

[|Al|sp = ( maximum eigenvalue of A*A)%,

where A* = ((@j;)) € M, is the conjugate transpose of A (cf. Ky Fan
norm metric).
e Frobenius norm metric
The Frobenius norm metric is a matrix norm metric on M,, ,,, de-
fined by
|A = Bl|pr,
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where ||.||p, is the Frobenius norm. For a matrix A = ((a;j)) € My, p, it is

Al Fr =

It is also equal to the square root of the matrix trace of A*A,
where A* = ((@;;)) is the conjugate transpose of A, or, equivalently, to the
square root of the sum of eigenvalues \; of A*A: ||Al|p,r = \/Tr(A*A) =

\/Zznzirl’{m’"} Ai (cf. Schatten norm metric in Chap.[I3). This norm

comes from an inner product on the space M,, ,, but it is not sub-
multiplicative for m = n.
e (c¢,p)-norm metric
Let k € N,k <min{m,n},c€R¥ ¢; >co>---> ¢ >0,and 1 < p < oo.
The (¢, p)-norm metric is a matrix norm metric on M,, ,,, defined
by
||A - B||é€c,p)7

where ||.||](€C7p) is the (¢,p)-norm on My, . For a matrix A € M,, ,, it is
defined by

AN,y = O east(A))7,
i=1
where s1(A4) > s2(A) > -+ > si(A) are the first k singular values of A.
If p = 1, one obtains the c-norm. If, moreover, ¢; = --- = ¢ = 1, one
obtains the Ky Fan k-norm.
¢ Ky Fan norm metric

Given k € N, k < min{m,n}, the Ky Fan norm metric is a matrix
norm metric on M,, ,,, defined by

14 = Bl

where ||.||% . is the Ky Fan k-norm on M, ,,. For a matrix A € M,, ,, it
is defined as the sum of its first k singular values:

k

||A||II€(F = ZS’L(A)

i=1

For k = 1, it is the spectral norm. For k = min{m,n}, one obtains the
trace norm.
e Schatten norm metric
Given 1 < p < 00, the Schatten norm metric is a matrix norm metric
on My, , defined by
||A - B| |IS)’cha
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where ||.||%,,, is the Schatten p-norm on M, ,,. For a matrix A € My, ,, it
is defined as the p-th root of the sum of the p-th powers of all its singular

values:
min{m,n}

Al = > sh(A)s.
i=1
For p = 2, one obtains the Frobenius norm and, for p = 1, one obtains the
trace norm.
e Trace norm metric
The trace norm metric is a matrix norm metric on M,, ,, defined by

|4 = Blltr,

where ||.||¢ is the trace norm on M, ,. For a matrix A € M, ,, it is
defined as the sum of all its singular values:

min{m,n}

Al = > si(A).

i=1

e Cut norm metric
The cut norm metric is a matrix norm metric on M,, ,, defined by

||A_B||cut7

where ||.||cu 1s the cut norm on M, ,, defined, for a matrix A = ((a;;)) €
Mo, s as:

[Allcur = max }| Z agjl-

1C{1m} JC{1,m} | A
ct mhJc{ " iel,jed

Cf. in Chap.[I3 the rectangle distance on weighted graphs and
the cut semi-metric, but the weighted cut metric in Chap.[I9is not
related.

e Sym™ metric
Let Sym™ be the set of all nxn real positive definite matrices, i.e., matrices
A such that 7 Az > 0 for any non-zero vector x € R".
The Sym™ metric is defined, for any A, B € Sym™, as

(i log? \;)?,
=1

where Aq, ..., \,, are the eigenvalues of the matrix AB~!.
The Sym™ metric is the Riemannian distance, arising from the
Riemannian metric, called the trace metric: ds* = Tr(A~1dA)%.
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e Distances between graphs of matrices
The graph G(A) of a complex m X n matriz A is the range (i.e., the span
of columns) of the matrix R(A) = ([IAT])T. So, G(A) is a subspace of
C™*" of all vectors v, for which the equation R(A)z = v has a solution.
A distance between graphs of matrices A and B is a distance
between the subspaces G(A) and G(B). It can be an angle distance
between subspaces or, for example, the following distance (cf. also the
Kadets distance in Chap.[lland the gap metric in Chap.[Ig]).
The spherical gap distance between subspaces A and B is defined by

B A
max{zgls%dzs(xﬂ( )),yg}%)dfz(yﬂ( N}

where S(A), S(B) are the unit spheres of the subspaces A4, B, d(z, C) is the
point-set distance inf,cc d(z,y) and dg(z,y) is the Euclidean distance.
e Angle distances between subspaces

Consider the Grassmannian space G(m,n) of all n-dimensional subspaces
of Euclidean space E™; it is a compact Riemannian manifold of dimension
n(m —n).

Given two subspaces A, B € G(m,n), the principal angles 5 > 6, > ...
> 0,, > 0 between them are defined, for £k = 1,...,n, inductively by

cosf, = maxmaxz’y = (zF)Ty"
€A yeEB

subject to the conditions ||z|]s = |yl = 1, 272! = 0, yTy* = 0, for
1 <i¢ < k-1, where ||.||2 is the Euclidean norm.

The principal angles can also be defined in terms of orthonormal ma-
trices Q4 and @Qp spanning subspaces A and B, respectively: in fact, n
ordered singular values of the matrix QaQp € M, can be expressed as
cosines cosfy, ..., cosf,.

The geodesic distance between subspaces A and B is (Wong 1967)
defined by

=1

The Martin distance between subspaces A and B is defined by

In the case when the subspaces represent autoregressive models, the Martin
distance can be expressed in terms of the cepstrum of the autocorrelation
functions of the models (cf. Martin cepstrum distance in Chap.Z)).
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The Asimov distance between subspaces A and B is defined by
0.

It can be expressed also in terms of the Finsler metric on the manifold
G(m,n).
The gap distance between subspaces A and B is defined by

sin 31.

It can be expressed also in terms of orthogonal projectors as the ly-norm of

the difference of the projectors onto A and B, respectively. Many versions

of this distance are used in Control Theory (cf. gap metric in Chap.[Ig]).
The Frobenius distance between subspaces A and B is defined by

It can be expressed also in terms of orthogonal projectors as the Frobenius
norm of the difference of the projectors onto A and B, respectively. A

similar distance /Y"1 sin®; is called the chordal distance.

e Semi-metrics on resemblances
The following two semi-metrics are defined for any two resemblances dy
and dy on a given finite set X (moreover, for any two real symmetric
matrices).
The Lerman semi-metric (cf. Kendall 7 distance on permutations
in Chap.[)) is defined by

{({z, v}, {u, v}) : (di(z,y) — di(u,v))(d2(@,y) — d2(u,v)) <0}
(|X|2+1)2 ’

where ({z,y},{u,v}) is any pair of unordered pairs of elements x,y, u,v
from X.
The Kaufman semi-metric is defined by

{2y} {u,v}) - (die,y) — di(u, v))(da(2,y) — da(u, v)) <0}
{{z, b {u, v}) : (da(z, y) — di(u, v))(da(x, y) — da(u,v)) # O}




Chapter 13
Distances in Functional Analysis

Functional Analysis is the branch of Mathematics concerned with the study
of spaces of functions. This usage of the word functional goes back to the
calculus of variations which studies functions whose argument is a function.
In the modern view, Functional Analysis is seen as the study of complete
normed vector spaces, i.e., Banach spaces.

For any real number p > 1, an example of a Banach space is given by
L,-space of all Lebesgue-measurable functions whose absolute value’s p-th
power has finite integral.

A Hilbert space is a Banach space in which the norm arises from an
inner product. Also, in Functional Analysis are considered continuous linear
operators defined on Banach and Hilbert spaces.

13.1 Metrics on function spaces

Let I C R be an open interval (i.e., a non-empty connected open set) in R.
A real function f : I — R is called real analytic on I if it agrees with its
Taylor series in an open neighborhood U, of every point xg € I: f(x) =

> %(aj — x0)" for any x € U,,. Let D C C be a domain (i.e., a
convez open set) in C.

A complex function f: D — C is called complex analytic (or, simply, ana-
lytic) on D if it agrees with its Taylor series in an open neighborhood of every
point zg € D. A complex function f is analytic on D if and only if it is holo-
morphic on D, i.e., if it has a complex derivative f (z9) = lim,_.., %ﬁz‘))
at every point zg € D.

e Integral metric
The integral metric is the L;-metric on the set Cl, ) of all continuous
real (complex) functions on a given segment [a, b], defined by

b
/ (@) — glo)lda.
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The corresponding metric space is abbreviated by C[la,b]. It is a Banach
space.
In general, for any compact (or countably compact) topological space
X the integral metric can be defined on the set of all continuous functions
f:X =R (C) by [y|f(z) - g(x)|dz.
e Uniform metric
The uniform metric (or sup metric) is the L,-metric on the set

Clap) of all real (complex) continuous functions on a given segment [a, ],
defined by

sup |f(z) —g(z)].

z€[a,b]
The corresponding metric space is abbreviated by Cﬁf,b]' It is a Banach
space.

A generalization of C[C:b] is the space of continuous functions C(X),
i.e., a metric space on the set of all continuous (more generally, bounded)
functions f : X — C of a topological space X with the L..,-metric
SuDyex |£(x) — 9(a)].

In the case of the metric space C(X,Y") of continuous (more generally,
bounded) functions f : X — Y from one metric compactum (X, dx) to
another (Y, dy), the sup metric between two functions f,g € C(X,Y) is
defined by sup,.c y dy (f(x). g(x)).

The metric space C[jl'fb], as well as the metric space C[la o) are two of
the most important cases of the metric space Cﬁl,b], 1 < p < o0, on the

set Clqp) With the Ly-metric (f: |f(z) — g(ac)|pdx)%. The space C[Z; p) Is an
example of an L,-space.
e Dogkeeper distance

Given a metric space (X, d), the dogkeeper distance is a metric on the
set of all functions f : [0,1] — X, defined by

inf sup d(f(t),9(o(t))),

7 telo,1]

where o : [0,1] — [0, 1] is a continuous, monotone increasing function such
that o(0) = 0, o(1) = 1. This metric is a special case of the Fréchet
metric. It is used for measuring the distances between curves.
e Bohr metric

Let R be a metric space with a metric p. A continuous function f: R — R
is called almost periodic if, for every € > 0, there exists | = [(¢) > 0 such
that every interval [tg,to + [(€)] contains at least one number 7 for which
p(f(t), f(t+ 7)) <efor —o0 <t < +00.

The Bohr metric is the norm metric ||f — g|| on the set AP of all
almost periodic functions, defined by the norm

Ifll=" sup [f(D)].

—oo<t<+00
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It makes AP a Banach space. Some generalizations of almost periodic
functions were obtained using other norms; cf. Stepanov distance, Weyl
distance, Besicovitch distance and Bochner metric.

e Stepanov distance
The Stepanov distance is a distance on the set of all measurable func-
tions f : R — C with summable p-th power on each bounded integral,

defined by
1 z+1 l/p
swp (7 [ 1@~ gla)lrd)
T€R T

The Weyl distance is a distance on the same set, defined by

1 -+l 1/17
lim sup ( / 1 (z) - g(a:)|pda:>
l—00 2R l T

Corresponding to these distances one has the generalized Stepanov and
Weyl almost periodic functions.

e Besicovitch distance
The Besicovitch distance is a distance on the set of all measurable
functions f : R — C with summable p-th power on each bounded integral,

defined by "
T [ 1f(@) - g@)Pd
M7 e ST x) — g(x)|Pdx .

The generalized Besicovitch almost periodic functions correspond to this
distance.

e Bochner metric
Given a measure space (€2, A, 1), a Banach space (V,||.||v), and 1 < p <
o0, the Bochner space (or Lebesgue-Bochner space) LP(2, V) is the set of
all measurable functions f : 2 — V such that || f]|zr(0,v) < 0.

Here the Bochner norm || f||r»(o,v) is defined by ([, ||f(w)||€,d,u(w))%
for 1 < p < o0, and, for p = oo, by esssup,,eq || f(w)||v.
e Bergman p-metric
Given 1 < p < oo, let L,(A) be the L,-space of Lebesgue measur-
able functions f on the wunit disk A = { € C : |z| < 1} with

1
171l = (fa 1F(2) Pu(d2)) ¥ < oo,

The Bergman space Ly(A) is the subspace of L,(A) consisting of ana-
lytic functions, and the Bergman p-metric is the L,-metric on Lg(A)
(cf. Bergman metric in Chap.[7]). Any Bergman space is a Banach space.

e Bloch metric
The Bloch space B on the unit disk A = {z € C : |z| < 1} is the set of all
analytic functions f on A such that ||f||5 = sup,ca (1 — |2]?)|f (2)] < cc.
Using the complete semi-norm ||.||p, a norm on B is defined by

A= 1O+ [I7]l5-
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The Bloch metric is the norm metric ||f — g|| on B. It makes B a
Banach space.

e Besov metric
Given 1 < p < oo, the Besov space B, on the unit disk A = {z € C :
|z] < 1} is the set of all analytic functions f in A such that [|f||p, =

(fA(l — |z|2)p|f/(z)|pd/\(z)> 7 < oo, where dA(z) = (1‘1(‘?2))2 is the Mobius
invariant measure on A. Using the complete semi-norm ||.||s,, the Besov
norm on B, is defined by

A1l = 1F O]+ [I£1l5,-

The Besov metric is the norm metric ||f — g|| on B,. It makes B, a
Banach space.

The set B, is the classical Dirichlet space of functions analytic on A
with square integrable derivative, equipped with the Dirichlet metric.
The Bloch space B can be considered as B..

e Hardy metric
Given 1 < p < 00, the Hardy space HP(A) is the class of functions, analytic
on the unit disk A = {z € C: |z| < 1}, and satisfying the following growth
condition for the Hardy norm ||.||pge:

1

1 2 ] >

I[fllzr(a) = sup <2 / If(rew)”dﬁ) < .
0<r<1 ™ Jo

The Hardy metric is the norm metric || f —g|| zr(a) on HP(A). It makes
HP(A) a Banach space.

In Complex Analysis, the Hardy spaces are analogs of the L,-spaces
of Functional Analysis. Such spaces are applied in Mathematical Analysis
itself, and also to Scattering Theory and Control Theory (cf. Chap.[IS).

e Part metric
The part metric is a metric on a domain D of R?, defined for any z,y €

R? by
i (22)
fy)
where H™ is the set of all positive harmonic functions on the domain D.
A twice-differentiable real function f: D — R is called harmonic on D

sup
feH+

i

it i _ o, 9% ishes
if its Laplacian Af = ] + 922 vanishes on D.

e Orlicz metric
Let M(u) be an even convex function of a real variable which is increas-
ing for u positive, and lim, .ou"*M(u) = lim, o u(M(u))~* = 0. In
this case the function p(v) = M (v) does not decrease on [0,00), p(0) =
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lim,_ p(v) = 0, and p(v) > 0 when v > 0. Writing M (u) = ()‘ulp(v)dv,

and defining N(u) = l ‘ ~1(v)dv, one obtains a pair (M (u), N(u)) of
complementary functzons

Let (M (u), N(u)) be a pair of complementary functions, and let G be a
bounded closed set in R™. The Orlicz space L;(G) is the set of Lebesgue-
measurable functions f on G satisfying the following growth condition for
the Orlicz norm ||f]|a:

||f|MSup{/Gf(t dt/N dt<1}

The Orlicz metric is the norm metric ||f — g||m on L}, (G). It makes
L3,(GQ) a Banach space [Orli32].

When M(u) =uP,1 < p < o0, L},(G) coincides with the space L,(G),
and, up to scalar factor, the L,-norm ||f]|, coincides with ||f||/as. The
Orlicz norm is equivalent to the Luzemburg norm || f||(ay = inf{A > 0 :
J MOCF(®)dt < 1); in fact, [|flloan) < I1fllar < 2]l

° Orhcz—Lorentz metric
Let w : (0,00) — (0,00) be a non-increasing function. Let M : [0, 00) —
[0,00) be a non-decreasing and convex function with M (0) = 0. Let G be
a bounded closed set in R™.

The Orlicz—Lorentz space Ly, 11 (G) is the set of all Lebesgue-measurable
functions f on G satisfying the following growth condition for the Orlicz—
Lorentz norm || f||w,m:

£, = inf{/\ >0: /Ooow(l‘)M (f*)(\x)> dx < 1} < 00

where f*(z) = sup{t : u(|f| > t) > x} is the non-increasing rearrangement
of f.

The Orlicz—Lorentz metric is the norm metric ||f — g||w,n on
Ly, v (G). It makes Ly, a(G) a Banach space.

The Orlicz-Lorentz space is a generalization of the Orlicz space L}, (G)
(cf. Orlicz metric), and the Lorentz space L., 4(G), 1 < ¢ < o0, of all
Lebesgue-measurable functions f on G satisfying the following growth con-
dition for the Lorentz norm:

va= ([ w@r @) <.
e Holder metric

Let L*(G) be the set of all bounded continuous functions f, defined on a
subset G of R™, and satisfying the Hélder condition on G. Here, a function

f satisfies the Hélder condition at a point y € G with indez (or order) a,
0 < a <1, and with coefficient A(y), if |f(z) — f(y)| < A(y)|x — y|* for
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all x € G sufficiently close to y. If A = sup,cs(A(y)) < oo, the Holder
condition is called uniform on G, and A is called the Hélder coefficient
of G. The quantity |f|o = sup, ,eq W, 0 < a <1, is called the
Hélder a-semi-norm of f, and the Hélder norm of f is defined by

| flze(c) = sup [f(@)] + [fla-
zeG

The H6lder metric is the norm metric || f —g|[ () on L*(G). It makes
L*(G) a Banach space.

e Sobolev metric
The Sobolev space WP is a subset of an L,-space such that f and its
derivatives up to order k have a finite L,-norm. Formally, given a subset
G of R™, define

WEP = WEP(G) = {f € L,(G) : [ € L(G),1 <i <k},

where () = ogpL...0gn f, a1 + -+ +a, =i, and the derivatives are taken
in a weak sense. The Sobolev norm on WP is defined by

k
1 1lkp = D LS.

=0

In fact, it is enough to take only the first and last in the sequence, i.e., the
norm defined by || f|[k,p = || fllp + |1/ *|[, is equivalent to the norm above.
For p = oo, the Sobolev norm is equal to the essential supremum of | f|:
[|fllk,00 = esssup,cq | f(x)], i.e., it is the infimum of all numbers a € R
for which |f(z)] > a on a set of measure zero.
The Sobolev metric is the norm metric ||f —g||r, on W*P. It makes
WkP a Banach space.
The Sobolev space W52 is denoted by H*. It is a Hilbert space for the
inner product (f, ) = Y5, (F0,g0) 1, = S5, [ FOFOp(dw).
Sobolev spaces are the modern replacement for the space C* (of func-
tions having continuous derivatives) for solutions of partial differential
equations.
e Variable exponent space metrics
Let G be a non-empty open subset of R™, and let p : G — [1,00) be
a measurable bounded function, called a variable exponent. The variable
exponent Lebesque space Lyy(G) is the set of all measurable functions
f: G — R for which the modular o,\(f) = [, |f(2)|P®)dz is finite. The
Luzemburg norm on this space is defined by

[fllp) = inf{A >0 0,0)(f/A) <1}
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The variable exponent Lebesgue space metric is the norm metric
I1f = gllpcy on Ly (G).

A wariable exponent Sobolev space WP()(G) is a subspace of L,y(G)
consisting of functions f whose distributional gradient exists almost ev-
erywhere and satisfies the condition |V f| € L,)(G). The norm

Aoy = I 1lo) 1V Fllpe)

makes Wl’p(')(G) a Banach space. The variable exponent Sobolev
p(.) on Wl’p(').

e Schwartz metric
The Schwartz space (or space of rapidly decreasing functions) S(R™) is
the class of all Schwartz functions, i.e., infinitely-differentiable functions
f :R™ — C that decrease at infinity, as do all their derivatives, faster than
any inverse power of x. More precisely, f is a Schwartz function if we have
the following growth condition:

oot Tom (g, )
— 1 Bn ) s n
f = su - < o0
|| HOCB :ch pn |l‘1 Ly, ax?1 o ax%n |

for any non-negative integer vectors a and (. The family of semi-norms
||.]|ap defines a locally convex topology of S(R™) which is metrizable
and complete. The Schwartz metric is a metric on S(R™) which can be
obtained using this topology (cf. countably normed space in Chap.[2).
The corresponding metric space on S(R™) is a Fréchet space in the sense
of Functional Analysis, i.e., a locally convex F'-space.
e Bregman quasi-distance
Let G C R™ be a closed set with the non-empty interior G°. Let f be a
Bregman function with zone G.
The Bregman quasi-distance D : G x GY — Ry is defined by

Dy(x,y) = f(x) = f(y) = (Vf(y),z —y),

where Vf = (Tf, ) Dy¢(z,y) = 0 if and only if x = y. Also
Dy(,y) + Dy(y, 2) - Df(év z) = (Vf(z) = Vf(y),z — y) but, in general,
Dy does not satisfy the triangle inequality, and is not symmetric.

A real-valued function f whose effective domain contains G is called a

Bregman function with zone G if the following conditions hold:

1. f is continuously differentiable on G°.

2. f is strictly convex and continuous on G.

3. For all § € R the partial level sets I'(z,8) = {y € G° : D¢(x,y) < 6}
are bounded for all x € G.

4. If {yn}n C G° converges to y*, then Ds(y*,y,) converges to 0.
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5 If {x,}n C G and {y,}n C GY are sequences such that {z,},
is bounded, lim, o yn = y*, and lim, o Df(2n,yn) = 0, then

When G = R", a sufficient condition for a strictly convex function to be a
Bregman function has the form: limHmHHoo % = 0.

13.2 Metrics on linear operators

A linear operator is a function T : V' — W between two vector spaces V, W
over a field F, that is compatible with their linear structures, i.e., for any
x,y € V and any scalar k € F, we have the following properties: T'(x + y) =
T(z) + T(y), and T'(kx) = kT (x).

e Operator norm metric
Consider the set of all linear operators from a normed space (V,||.||v) into
a normed space (W, ||.||lw). The operator norm ||T|| of a linear operator
T :V — W is defined as the largest value by which T stretches an element
of V., ie.,

T(v
I[T|] = sup ITw)llw _ sup |[T'(v)|lw = sup |[T'(v)|lw-
1

vz [ollv lJollv =1 llollv <

A linear operator T : V' — W from a normed space V into a normed
space W is called bounded if its operator norm is finite. For normed spaces,
a linear operator is bounded if and only if it is continuous.

The operator norm metric is a norm metric on the set B(V, W) of
all bounded linear operators from V into W, defined by

T — PJl.

The space (B(V,W),||.]|) is called the space of bounded linear operators.
This metric space is complete if W is. If V' = W is complete, the space
B(V,V) is a Banach algebra, as the operator norm is a sub-multiplicative
norm.

A linear operator T' : V. — W from a Banach space V into another
Banach space W is called compact if the image of any bounded subset of
V' is a relatively compact subset of W. Any compact operator is bounded
(and, hence, continuous). The space (K (V,W),||.||) on the set K(V, W) of
all compact operators from V' into W with the operator norm |[|.|| is called
the space of compact operators.

e Nuclear norm metric
Let B(V, W) be the space of all bounded linear operators mapping a Ba-
nach space (V,|].||v) into another Banach space (W, ||.||w ). Let the Banach
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dual of V' be denoted by V/, and the value of a functional z € V' at a
vector 2 € V by (z,z ). A linear operator T € B(V, W) is called a nuclear
operator if it can be represented in the form x +— T'(z) = Zf;(x,x;)y“
where {x;}l and {y; }; are sequences in V' and W, respectively, such that
S Nz v lyillw < oo. This representation is called nuclear, and can
be regarded as an expansion of T' as a sum of operators of rank 1 (i.e.,
with one-dimensional range). The nuclear norm of T is defined as

o0
. ’
1T e = E Y Nl gl lw,

i=1

where the infimum is taken over all possible nuclear representations of 7.
The nuclear norm metric is the norm metric ||T — P||pyue on the
set N(V,W) of all nuclear operators mapping V into W. The space
(N(V, W), ||| lnue), called the space of nuclear operators, is a Banach space.
A nuclear space is defined as a locally convex space for which all
continuous linear functions into an arbitrary Banach space are nuclear
operators. A nuclear space is constructed as a projective limit of Hilbert
spaces H, with the property that, for each a € I, one can find g € [
such that Hz C H,, and the embedding operator Hg > x — x € H, is
a Hilbert-Schmidt operator. A normed space is nuclear if and only if it is
finite-dimensional.
e Finite nuclear norm metric
Let F(V,W) be the space of all linear operators of finite rank (i.e., with
finite-dimensional range) mapping a Banach space (V,||.||y/) into another
Banach space (W, ||.||w). A linear operator T € F(V,W) can be repre-
sented in the form = — T'(z) = Z?:l(:c,x;>yi, where {z,}; and {y;}; are
sequences in V' (Banach dual of V') and W, respectively, and (z, wl> is the
value of a functional 2 € V' at a vector z € V. The finite nuclear norm
of T is defined as

n
1T e = it Y gy llyillw

i=1

where the infimum is taken over all possible finite representations of 7.
The finite nuclear norm metric is the norm metric ||7'— P|| fpuc o0

F(V,W). The space (F(V,W),||.||fnuc) is called the space of operators of

finite rank. It is a dense linear subspace of the space of nuclear operators

N(V,W).

e Hilbert—Schmidt norm metric

Consider the set of all linear operators from a Hilbert space (Hi,|l|.||m,)

into a Hilbert space (Ha, ||.||r,). The Hilbert-Schmidt norm ||T||gs of a

linear operator T': H; — H> is defined by
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1 Trrs = (Y 11T (ea)ll 7).

acl

where (eq4)aer is an orthonormal basis in Hy. A linear operator T : H; —
H, is called a Hilbert-Schmidt operator if ||T||%4 < oco.
The Hilbert—Schmidt norm metric is the norm metric ||T— P||gs
on the set S(Hy, Hs) of all Hilbert—Schmidt operators from H; into Ho.
For Hi = Hy = H, the algebra S(H,H) = S(H) with the Hilbert—
Schmidt norm is a Banach algebra. It contains operators of finite rank
as a dense subset, and is contained in the space K(H) of compact op-
erators. An inner product (,)gs on S(H) is defined by (T,P)pys =
Yowci{T(ea), Plea)), and [|T||lgs = (T, T)}{; Therefore, S(H) is a
Hilbert space (independent of the chosen basis (€4 )aer)-
e Trace-class norm metric

Given a Hilbert space H, the trace-class norm of a linear operator T :
H — H is defined by

1T]]ee = Y (ITl(ea); ea)s

acl

where |T| is the absolute value of T in the Banach algebra B(H) of all
bounded operators from H into itself, and (e, )qcs is an orthonormal basis
of H. An operator T : H — H is called a trace-class operatorif ||T||t. < oo.
Any such operator is the product of two Hilbert-Schmidt operators.

The trace-class norm metric is the norm metric ||T — P||;. on the
set L(H) of all trace-class operators from H into itself. The set L(H)
with the norm ||.||¢. forms a Banach algebra which is contained in the
algebra K (H) (of all compact operators from H into itself), and contains
the algebra S(H) (of all Hilbert—Schmidt operators from H into itself).

e Schatten p-class norm metric
Let 1 < p < oo. Given a separable Hilbert space H, the Schatten p-class
norm of a compact linear operator T': H — H is defined by

1
T, (Dsm) |
n

where {s, }, is the sequence of singular values of T. A compact operator
T : H — H is called a Schatten p-class operator if ||T|[%, < oo.

The Schatten p-class norm metric is the norm metric ||T — P||;,
on the set S, (H) of all Schatten p-class operators from H onto itself. The
set Sp(H) with the norm ||.||%_, forms a Banach space. Si(H) is the trace-
class of H, and Sa(H ) is the Hilbert-Schmidt class of H (cf. also Schatten
norm metric in Chap.[I2).
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e Continuous dual space
For any vector space V' over some field, its algebraic dual space is the set
of all linear functionals on V.
Let (V, ||.]]) be a normed vector space. Let V' be the set of all continuous
linear functionals T' from V into the base field (R or C). Let ||.||" be the
operator norm on V/, defined by

Tl = sup [T'(z)].

llzl[<1

The space (V',]|.||') is a Banach space which is called the continuous
dual (or Banach dual) of (V,||.]]).
In fact, the continuous dual of the metric space Iy (15°) is If (I5°, re-
spectively). The continuous dual of I} (1°) is {7, (I, respectively). The
continuous duals of the Banach spaces C' (consisting of all convergent
sequences, with the [,-metric) and Cy (consisting of all sequences con-
verging to zero, with the [,.-metric) are both naturally identified with [$°.
e Distance constant of operator algebra
Let A be an operator algebra contained in B(H), the set of all bounded
operators on a Hilbert space H. For any operator T' € B(H), let 5(T, A) =
sup{||P+TP|| : P is a projection, and P AP = (0)}. Let dist(T,.A) be
the distance of T' from the algebra A, i.e., the smallest norm of an operator
T — A, where A runs over A. The smallest positive constant C' (if it exists)
such that, for any operator T' € B(H),

dist(T, A) < CB(T, A)

is called the distance constant for the algebra A.



Chapter 14
Distances in Probability Theory

A probability space is a measurable space (2, A, P), where A is the set of all
measurable subsets of Q, and P is a measure on A with P(Q) = 1. The set
is called a sample space. An element a € A is called an event. In particular,
an elementary event is a subset of Q that contains only one element. P(a)
is called the probability of the event a. The measure P on A is called a
probability measure, or (probability) distribution law, or simply (probability)
distribution.

A random wvariable X is a measurable function from a probability space
(Q, A, P) into a measurable space, called a state space of possible values of the
variable; it is usually taken to be the real numbers with the Borel o-algebra,
so X : 2 — R. The range X of the random variable X is called the support
of the distribution P; an element z € X is called a state.

A distribution law can be uniquely described via a cumulative distribu-
tion function (CDF, distribution function, cumulative density function) F(x)
which describes the probability that a random value X takes on a value at
most z: F(z) =P(X <z)=PlweQ: X(w) <x).

So, any random variable X gives rise to a probability distribution which
assigns to the interval [a,b] the probability P(a < X <b) = Pw € Q:a <
X (w) <b), i.e., the probability that the variable X will take a value in the
interval [a, b].

A distribution is called discrete if F(xz) consists of a sequence of
finite jumps at x;; a distribution is called continuous if F(x) is con-
tinuous. We consider (as in the majority of applications) only dis-
crete or absolutely continuous distributions, i.e., the CDF function
F : R — R is absolutely continuous. It means that, for every num-
ber ¢ > 0, there is a number § > 0 such that, for any sequence of
pairwise disjoint intervals [z, yx], 1 < k < n, the inequality ), ., .
(yr — zx) < 6 implies the inequality >, ., o, [Fyr) — F(zr)| < e -

A distribution law also can be uniquely defined via a probability density
function (PDF, density function, probability function) p(z) of the underly-
ing random variable. For an absolutely continuous distribution, the CDF
is almost everywhere differentiable, and the PDF is defined as the deriva-
tive p(z) = F'(z) of the CDF; so, F(z) = P(X < z) = [* p(t)dt, and

M.M. Deza and E. Deza, Encyclopedia of Distances, 241
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fjp(t)dt = P(a < X < b). In the discrete case, the PDF (the density
of the random variable X) is defined by its values p(z;) = P(X = z); so
F(x) =), <, p(xi). In contrast, each elementary event has probability zero
in any continuous case.

The random variable X is used to “push-forward” the measure P on €2 to a
measure dF on R. The underlying probability space is a technical device used
to guarantee the existence of random variables and sometimes to construct
them.

For simplicity, we usually present the discrete version of probability met-
rics, but many of them are defined on any measurable space; see [Bass89],
[ChaOf]. For a probability distance d on random quantities, the condi-
tions P(X =Y) = 1 or equality of distributions imply (and characterize)
d(X,Y) = 0; such distances are called [Rach91] compound or simple dis-
tances, respectively. In many cases, some ground distance d is given on the
state space X and the presented distance is a lifting of it to a distance on
distributions.

In Statistics, many of the distances below, between distributions P and P,
are used as measures of goodness of fit between estimated, P,, and theoretical,
Py, distributions. Also, in Statistics, a distance that not satisfy the triangle
inequality, is often called a distance statistic; a statistic is a function of a
sample which is independent of its distribution.

Below we use the notation E[X] for the expected value (or mean) of the
random variable X: in the discrete case E[X] = > xp(z), in the continuous
case E[X] = [ zp(z)dx. The variance of X is E[(X —E[X])?]. Also we denote
Px :)p(x) = P(X =u2), Fx = F(z) = P(X < z), p(z,y) = P(X = x,
Y =vy).

14.1 Distances on random variables

All distances in this section are defined on the set Z of all random variables
with the same support X'; here XY € Z.

e p-average compound metric
Given p > 1, the p-average compound metric (or L,-metric between
variables) is a metric on Z with X C R and E[|Z]P] < oo for all Z € Z,
defined by

EIX -Y[PDYP=( > |z—ylPp(z,y)"".
(z,y)EX XX

For p = 2 and oo, it is called, respectively, the mean-square distance and
essential supremum distance between variables.
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e Absolute moment metric
Given p > 1, the absolute moment metric is a metric on Z with X C R
and E[|Z|P] < oo for all Z € Z, defined by

(IEIXPDYP — E[Y D).

For p =1 it is called the engineer metric.
e Indicator metric
The indicator metric is a metric on Z, defined by

EDX;AY] = Z 1x7éyp(x7 y) = Z p(ﬂ?, y)'

(z,y) XXX (z,y) EX XX xHY

(Cf. Hamming metric in Chap.[Il)
¢ Ky Fan metric K
The Ky Fan metric K is a metric K on Z, defined by

inf{e >0: P(|X —Y|>e¢) < e}

It is the case d(z,y) = | X — Y| of the probability distance.
¢ Ky Fan metric K*
The Ky Fan metric K* is a metric K* on Z, defined by

IXYI} |z — 9
E{ ————p(x,y).
)T R T

e Probability distance
Given a metric space (X, d), the probability distance on Z is defined by

inf{e >0:P(d(X,Y)>¢€) <e}

14.2 Distances on distribution laws

All distances in this section are defined on the set P of all distribution
laws such that corresponding random variables have the same range X’; here
P, Py, eP.

e [, -metric between densities
The L,-metric between densities is a metric on P (for a countable X),
defined, for any p > 1, by

(S~ Ip1(@) = pa(@)|P)7.
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For p = 1, one half of it is called the total variation metric (or vari-

ational distance, trace-distance). For p = 2, it is the Patrick-Fisher

distance. The point metric sup,, |p1(z) — p2(z)| corresponds to p = co.
The Lissak-Fu distance with parameter o > 0 is defined as ) |p1(z) —

pa()[°.

e Bayesian distance

The error probability in classification is the following error probability

of the optimal Bayes rule for the classification into 2 classes with a priori

probabilities ¢, 1 — ¢ and corresponding densities py, p2 of the observations:

P. = min(¢pi(2), (1 - $)p2(x)).

The Bayesian distance on P is defined by 1 — P,.

For the classification into m classes with a priori probabilities ¢;, 1 < i <
m, and corresponding densities p; of the observations, the error probability
becomes

P—l—Zp maXPC|x)

where P(C;|z) is the a posteriori probability of the class C; given the
observation z and p(z) = Y.*, ¢;P(2|C;). The general mean distance
between m classes C; (cf. m-hemi-metric in Chap.[)) is defined (Van der
Lubbe 1979), for « > 0 and 3 > 1, by

> w3 P(Cil))”

The case a = 1,8 = 2 corresponds to the Bayesian distance in Devijver
(1974); the case 3 = L was considered in Trouborst, Baker, Bockee and
Boxma (1974).

e Mahalanobis semi-metric
The Mahalanobis semi-metric (or quadratic distance) is a semi-metric
on P (for X C R™), defined by

V(Ep, [X] — Ep, [X])T AL (Ep, [X] ~ Ep,[X])

for a given positive-definite matrix A.
e Engineer semi-metric
The engineer semi-metric is a semi-metric on P (for X C R), defined by

Ep[X] —Ep,[X]| =) z(pi(z) — p2(a))].
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Stop-loss metric of order m
The stop-loss metric of order m is a metric on P (for X C R),

defined by
S E - — .
tlelﬂg ot m)! (p1(2) = pa(2))

Kolmogorov—Smirnov metric
The Kolmogorov—Smirnov metric (or Kolmogorov metric, uniform
metric) is a metric on P (for X C R), defined by

sup | P (X <z) — Py(X < x)|.
z€R

The Kuiper distance on P is defined by

(Cf. Pompeiu—Eggleston metric in Chap.[l)
The Anderson—Darling distance on P is defined by
up LX) — BX < 7))
veRIn /(P (X <2)(1 - P(X <x))

The Crnkovic—Drachma distance is defined by

1
SUp(P(X < 7) = Po(X < o)) In VPIX <2)(1- P (X < x))Jr

1
< — < .
e e N ST (B )

The above three distances are used in Statistics as measures of goodness
of fit, especially, for VaR (Value at Risk) measurements in Finance.
Cramer—von Mises distance
The Cramer—von Mises distance is a distance on P (for X C R),
defined by

+oo
/ (Pi(X < z) — Po(X < 2))?da.
— 00

This is the squared La-metric between cumulative density functions.
Levy—Sibley metric

The Levy metric is a metric on P (for X C R only), defined by

inf{e>0: P (X<z—¢€)—e<P(X <2)<P(X<x+¢€)+ec for any z€R}.

It is a special case of the Prokhorov metric for (X,d) = (R, |z — y|).
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e Prokhorov metric
Given a metric space (X, d), the Prokhorov metric on P is defined by

inf{e>0:P, (X €B) < P,(X€B)+ ¢ and P»(X € B)<P;(X € B°) + ¢},

where B is any Borel subset of X, and B = {z : d(z,y) < €,y € B}.

It is the smallest (over all joint distributions of pairs (X,Y") of random
variables X,Y such that the marginal distributions of X and Y are P;
and Py, respectively) probability distance between random variables X
and Y.

e Dudley metric
Given a metric space (X, d), the Dudley metric on P is defined by

sup [Ep, [f(X)] = Ep, [f(X)]]| = sup 1D f@ p2(x))l;

fer zeX

where F = {f : X — R/|[fll + Lipa(f) < 1}, and Lipa(f) =

Lf (@)= f W)l
SUPzyeX oty d(zy) -

e Szulga metric
Given a metric space (X, d), the Szulga metric on P is defined by

suplZlf )Pp1 ()77 = (D 1 (@)[Ppa(x)) /7],

reX TEX

where F' = {f : X — R, Lipqa(f) < 1}, and Lipg(f) = SUD, ye X waty

[f(z)—f(y)]
d(z,y)
e Zolotarev semi-metric

The Zolotarev semi-metric is a semi-metric on P, defined by

Supl > f p2(2))l,

reX

where F is any set of functions f : X — R (in the continuous case, F is any
set of such bounded continuous functions); cf. Szulga metric, Dudley
metric.
e Convolution metric

Let G be a separable locally compact abelian group, and let C'(G) be the
set of all real bounded continuous functions on G vanishing at infinity. Fix
a function g € C(G) such that |g| is integrable with respect to the Haar
measure on GG, and {# € G* : g() = 0} has empty interior; here G* is the
dual group of G, and g is the Fourier transform of g.
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The convolution metric (or smoothing metric) is defined (Yukich
1985), for any two finite signed Baire measures P, and P, on G, by

sup| [ g(ay™)(dPy — dP2)(y)].
zeG Jyed
This metric can also be seen as the difference Tp, (g) — Tp,(g) of convolu-
tion operators on C(G) where, for any f € C(G), the operator Tp f(z) is
J, e oy H)dP ().
e Discrepancy metric
Given a metric space (X, d), the discrepancy metric on P is defined by

sup{|P1(X € B) — P,(X € B)|: B is any closed ball}.

e Bi-discrepancy semi-metric
The bi-discrepancy semi-metric is a semi-metric evaluating the prox-
imity of distributions Py, Py (over different collections A;,.42 of measur-
able sets), defined in the following way:

D(Py, Py) + D(P», Pr),

where D(Py, P2) = sup{inf{P(C) : B C C € Ay} — Pi(B) : B € A}
(discrepancy).
e Le Cam distance
The Le Cam distance is a semi-metric, evaluating the proximity of
probability distributions P;, P> (on different spaces X;, X»), defined in the
following way:
max{&(Ph PQ), (5(P2, Pl)},

where §(Py, Py) = infp sze% |BPy(Xy = x9) — BPy(X3 = x2)] is the Le
Cam deficiency. Here BP(Xy = x9) = leexl p1(x1)b(xs|x1), where B
is a probability distribution over & x X, and

b(o|a ):B(X1=901,X2:$2) _ B(X; = x1, Xo = x2)
2 B(X, = 1) Spen, BXi =2, Xo =a)

So, BPy(X2 = x3) is a probability distribution over Xs, since )
b(l‘Q‘xl) =1.

Le Cam distance is not a probabilistic distance, since P; and P» are de-
fined over different spaces; it is a distance between statistical experiments

(models).

T2 E€EAX2

e Skorokhod—Billingsley metric
The Skorokhod—Billingsley metric is a metric on P, defined by

fly)—f(=)
y—

ir}f max {sup|P1(X<x)—P2(X<f(m))|, sup|f(z)—x|,sup|ln

TFy

8

where f: R — R is any strictly increasing continuous function.
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e Skorokhod metric
The Skorokhod metric is a metric on P, defined by

inf{e >0: max{sgp [P (X <) — Py(X < f(x))|,s1ip [f(z) — x|} <€}

where f: R — R is a strictly increasing continuous function.
e Birnbaum—Orlicz distance
The Birnbaum—Orlicz distance is a distance on P, defined by

sup f(|PL(X < z) — Po(X <)),
rzeR

where f : R>y — R>( is any non-decreasing continuous function with
f(0) =0, and f(2t) < Cf(t) for any ¢ > 0 and some fixed C > 1. It is a
near-metric, since the C-triangle inequality d(P;, P>) < C(d(Py, P3)+
d(Pg, PQ)) holds.

Birnbaum—Orlicz distance is also used, in Functional Analysis, on the
set of all integrable functions on the segment [0, 1], where it is defined by
fol H(|f(z) — g(x)|)dz, where H is a non-decreasing continuous function
from [0, c0) onto [0, co) which vanishes at the origin and satisfies the Orlicz
condition: sup;.q % < o0.

e Kruglov distance
The Kruglov distance is a distance on P, defined by

/f(Pl(X < 2)— Py(X < 2))da,

where f : R>9 — Rysg is any even strictly increasing function with
f(0)=0, and f(s +1¢) < C(f(s) + f(t)) for any s,t > 0 and some
fixed C' > 1. It is a near-metric, since the C-triangle inequality
d(Pl, PQ) S C(d(Pl, Pg) + d(P3,P2)) holds.
e Burbea—Rao distance
Consider a continuous convex function ¢(t) : (0,00) — R and put ¢(0) =
lim; 0 ¢(t) € (—o0,00]. The convexity of ¢ implies non-negativity of the
function 4, : [0,1]? — (—o0, 00|, defined by d4(z,y) = M — (=)
if (z,y) # (0,0), and 64(0,0) = 0.
The corresponding Burbea—Rao distance on P is defined by

> Ss(pr(@), pa(2)).

¢ Bregman distance
Consider a differentiable convex function ¢(¢) : (0,00) — R, and put
$(0) = limy_0P(t) € (—o0,00]. The convexity of ¢ implies that the
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function d4 : [0,1]*> — (—o00,00] defined by continuous extension of
g(u,v) = ¢(u) — ¢(v) — ¢ (v)(u —v), 0 < u,v < 1, on [0,1]? is non-
negative.

The corresponding Bregman distance on P is defined by

m

Z%(Piy(h)

1

(Cf. Bregman quasi-distance.)
e f-divergence of Csizar
The f-divergence of Csizar is a function on P x P, defined by

St (56)

where f is a continuous convex function f: R>o — R.

The cases f(t) = tlnt and f(t) = (¢t — 1)?/2 correspond to the
Kullback—Leibler distance and to the y2-distance below, respectively.
The case f(t) = |t—1]| corresponds to the Ly -metric between densities, and
the case f(t) = 4(1 — /1) (as well as f(t) = 2(t + 1) — 4\/1) corresponds
to the squared Hellinger metric.

Semi-metrics can also be obtained, as the square root of the f-divergence
of Csizar, in the cases f(t) = (t — 1)?/(t + 1) (the Vajda—Kus semi-
metric), f(t) = [t — 1]'/¢ with 0 < a < 1 (the generalized Matusita
distance), and f(t) = (taﬂ)l/al_fl(;;a)/a(tﬂ)
metric).

e Fidelity similarity
The fidelity similarity (or Bhattacharya coefficient, Hellinger affinity)

on P is
p(Pr, P2) Z\/pl z)p2(z

(the Osterreicher semi-

e Hellinger metric
In terms of the fidelity similarity p, the Hellinger metric (or Hellinger-
Kakutani metric) on P is defined by

23 (Vpi(@) — Vp2(@))?)F = 2(1 — p(P1, Py))?.

Sometimes, (>, (v/p1(z) — Vp2(2))?)7 is called the Matusita dis-

tance, while (3, (\/p1(z) —\/p2(2))? is called the squared-chord distance.
e Harmonic mean similarity
The harmonic mean similarity is a similarity on P, defined by

P1 )
Z +p2 (x)
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e Bhattacharya distance 1
In terms of the fidelity similarity p, the Bhattacharya distance 1 on
P is
(arccos p(Py, Py))?.
Twice this distance is used also in Statistics and Machine Learning, where
it is called the Fisher distance.
e Bhattacharya distance 2
In terms of the fidelity similarity p, the Bhattacharya distance 2 on
P is
—In p(Pl, PQ)
e y2-distance
The x?-distance (or Pearson y2-distance) is a quasi-distance on P,
defined by
) (p1(x) — pa(2))®
p2(z) '

The Neyman Y2-distance is a quasi-distance on P, defined by

xT

(p1(z) — pa(x))?
2 p1(x) '

x

The probabilistic symmetric y2-measure is a distance on P, de-

fined by
(p1(x (z))°
25 —.
” z) + p2(x)

The half of the probabilistic symmetric y2-measure is called squared x2.
e Separation quasi-distance
The separation distance is a quasi-distance on P (for a countable X')

defined by
max (1 — pl(x)> .
z p2(7)

(Not to be confused with separation distance in Chap.[)

o Kullback—Leibler distance
The Kullback—Leibler distance (or relative entropy, information devi-
ation, information gain, KL-distance) is a quasi—distance on P, defined by

KL(P1, P) =Ep[InL] = Zpl )

where L = ﬁ ;Ei; is the likelihood ratio. Therefore,

KL(P,P,) = Z(p1 (@) In po(@) +Z(p1 @) In py@) = H(Py, Py) — H(P),
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where H(Py) is the entropy of Py, and H(Py, Py) is the cross-entropy of
P, and Ps.

If P, is the product of marginals of Py (say, pa(x,y) = p1(x)p1(y)), the
KL-distance KL(Py, P,) is called the Shannon information quantity and

(cf. Shannon distance) is equal to >7(, e v,y P1(7,y)In %.
e Skew divergence

The skew divergence is a quasi-distance on P, defined by
KL(Pl, CLPQ + (1 — (I)Pl),

where a € [0, 1] is a constant, and K L is the Kullback—Leibler distance.
The cases a = 1 and a = § correspond to K L(Py, P,) and K -divergence.

e Jeffrey divergence
The Jeffrey divergence (or J-divergence, divergence distance, KL2-

distance) is a symmetric version of the Kullback—Leibler distance,
defined by

KLIP, P KL P) = ) o) 022

xT

For P, — Py, the Jeffrey divergence behaves like the y2-distance.
e Jensen—Shannon divergence
The Jensen—Shannon divergence is defined by

G,KL(Pl,Pg) + (1 - CI,)KL(PQ,Pg),

where P3 = aP; + (1 — a)P,, and a € [0,1] is a constant (cf. clarity
similarity).

In terms of entropy H(P) = —>_ p(x)In p(z), the Jensen-Shannon
divergence is equal to H(aP; + (1 — a)P2) — aH(Py) — (1 — a)H(Ps).

e Topsge distance

Let P3 denote 1 (P,+P,). The Topsge distance (or information statistics)
is a symmetric version of the Kullback—Leibler distance (or rather of
the K-divergence KL(Py, Ps)):

p1(z) p2(z)
KL(Pl,Pg,) —|—KL(P2,P3) = <p1(l‘) In +p2(17) In .
zm: p3(x) p3(x)
The Topsge distance is twice the Jensen—Shannon divergence with
a = % Some authors use the term Jensen—Shannon divergence only for
this value of a. It is not a metric, but its square root is a metric.
The Taneja distance is defined by

z) In 7])3@) .
2m@h =S
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e Resistor-average distance
The Johnson—Simanovié’s resistor-average distance is a symmetric ver-
sion of the Kullback—Leibler distance on P which is defined by the
harmonic sum

1 1 -1
(KL(Pl,Pg) + KL(PQ,P1)> '

Cf. resistance metric for graphs in Chap.[I5l

e Ali-Silvey distance
The Ali—Silvey distance is a quasi-distance on P, defined by the func-
tional

f(Epl [g(L)]),

212) g the likelihood ratio, f is a non-decreasing function on

p2(x)
R, and g is a continuous convex function on R (cf. f-divergence of

Csizar).

The case f(z) = z, g(x) = xlnx corresponds to the Kullback—Leibler
distance; the case f(r) = —Inz, g(z) = z! corresponds to the Chernoff
distance.

e Chernoff distance
The Chernoff distance (or Rényi cross-entropy) is a distance on P, de-
fined by

where L =

max Dt(P1, PQ),
te[0,1]
where 0 <t < 1 and Dy(P, ) = —InY", (p1(z))!(p2(z))' =" (called the
Chernoff coefficient or Hellinger path), which is proportional to the Rényi
distance.
The case t = % corresponds to the Bhattacharya distance 2.
e Rényi distance
The Rényi distance (or order t Rényi entropy) is a quasi-distance on P,
defined, for any constant 0 < ¢ < 1, by

1 pi(z)\’
" . pele) <P2(x)> '

The limit of the Rényi distance, for ¢ — 1, is the Kullback—Leibler
distance. For t = %7 one half of the Rényi distance is the Bhattacharya
distance 2 (cf. f-divergence of Csizar and Chernoff distance).

e Clarity similarity
The clarity similarity is a similarity on P, defined by

(KL(Py, Py) + KL(Py, Py)) — (KL(Py, Py) + KL(Py, Py)) =

= T an(x) T np1($)
_Z<p1( ! p3(x) *pa(e)] PB(ff))’
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where KL is the Kullback—Leibler distance, and P; is a fixed prob-
ability law. It was introduced in [CCL0I] with P; being the probability
distribution of English.

e Shannon distance
Given a measure space (2, A, P), where the set Q is finite and P is a
probability measure, the entropy (or Shannon information entropy) of a
function f : Q) — X, where X is a finite set, is defined by

H(f) ==Y P(f=ux)log,(P(f =x));

zeX

here a = 2, e, or 10 and the unit of entropy is called a bit, nat, or dit (digit),
respectively. The function f can be seen as a partition of the measure
space. For any two such partitions f : QQ — X and g : Q — Y, denote by
H(f,g) the entropy of the partition (f, g) : Q@ — X XY (joint entropy), and
by H(f|g) the conditional entropy (or equivocation); then the Shannon
distance between f and ¢ is a metric defined by

H(flg) + H(g|f) = 2H(f,9) — H(f) — H(g) = H(f,9) = I(f;9),

where I(f;g9) = H(f)+H(g9)—H(f, g) is the Shannon mutual information.
If P is the uniform probability law, then Goppa showed that the Shannon
distance can be obtained as a limiting case of the finite subgroup metric.
In general, the information metric (or entropy metric) between two
random variables (information sources) X and Y is defined by

H(X|Y)+H(Y|X)=H(X,Y) - I(X;Y),

where the conditional entropy H(X|Y) is defined by 37, c > cy p(z,Y)
In p(x|y), and p(x|y) = P(X = z|Y = y) is the conditional probability.

The Rajski distance (or normalized information metric) is defined
(Rajski 1961, for discrete probability distributions X, Y') by

H(X]Y) + H(Y|X) I(X;Y)

H(X,Y) H(X.Y)

It is equal to 1 if X and Y are independent. (Cf., a different one, normal-
ized information distance in Chap.[IT]).

e Kantorovich—Mallows—Monge—Wasserstein metric
Given a metric space (X,d), the Kantorovich—-Mallows—-Monge—
Wasserstein metric is defined by

inf Eg[d(X,Y)],
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where the infimum is taken over all joint distributions S of pairs (X,Y") of
random variables X,Y such that marginal distributions of X and Y are
P, and Ps.

For any separable metric space (X,d), this is equivalent to the
Lipschitz distance between measures supfffd(P1 — Py), where
the supremum is taken over all functions f with |f(z) — f(y)| < d(z,y)
for any x,y € X.

More generally, the L,-~Wasserstein distance for X = R" is defined by

(inf Eg[dP(X,Y)])Y?,

and, for p = 1, it is also called the p-distance. For (X,d) = (R, |z — y]|),
it is also called the L,-metric between distribution functions (CDF), and
can be written as

(inf E[LX — Y7 = ( /R IFi(2) - Fg(m)lpda:>1/p

-(/ F ) - F;l(azﬂpdw)w

with F; () = sup, (Pi(X < x) < u).

The case p = 1 of this metric is called the Monge—Kantorovich met-
ric or Hutchinson metric (in Fractal Theory), Wasserstein metric,
Fortet—Mourier metric.

e Ornstein d-metric
The Ornstein d-metric is a metric on P (for X = R"), defined by

1 n
—inf / (Z 1%#%) ds,
" Y \i=1

where the infimum is taken over all joint distributions S of pairs (X,Y") of
random variables X,Y such that marginal distributions of X and Y are
P1 and P2.



Part IV
Distances in Applied Mathematics



Chapter 15
Distances in Graph Theory

A graph is a pair G = (V, E), where V is a set, called the set of vertices of
the graph G, and F is a set of unordered pairs of vertices, called the edges
of the graph G. A directed graph (or digraph) is a pair D = (V, E), where V
is a set, called the set of vertices of the digraph D, and F is a set of ordered
pairs of vertices, called arcs of the digraph D.

A graph in which at most one edge may connect any two vertices, is called
a simple graph. If multiple edges are allowed between vertices, the graph is
called a multi-graph.

The graph is called finite (infinite) if the set V of its vertices is finite
(infinite, respectively). The order of a finite graph is the number of its vertices;
the size of a finite graph is the number of its edges.

A graph, together with a function which assigns a positive weight to each
edge, is called a weighted graph or network.

A subgraph of a graph G is a graph G’ whose vertices and edges form
subsets of the vertices and edges of G. If G is a subgraph of G, then G is
called a supergraph of G'. An induced subgraph is a subset of the vertices of a
graph G together with all edges both of whose endpoints are in this subset.

A graph G = (V,E) is called connected if, for any vertices u,v € V,
there exists a (u — v) path, i.e., a sequence of edges uw, = wowy, wiws, ...,
Wp—1Wy, = Wp—1v from E such that w; # w; for i # j, i,7 € {0,1,...,n}.
A graph is called m-connected if there is no set of m — 1 edges whose removal
disconnects the graph; a connected graph is 1-connected. A digraph D =
(V, E) is called strongly connected if, for any vertices u,v € V, the directed
(u—v) path and the directed (v — ) path both exist. A maximal connected
subgraph of a graph G is called its connected component.

Vertices connected by an edge are called adjacent. The degree deg(v) of a
vertex v € V of a graph G = (V, E) is the number of its vertices adjacent
to v.

A complete graph is a graph in which each pair of vertices is connected
by an edge. A bipartite graph is a graph in which the set V of vertices is
decomposed into two disjoint subsets so that no two vertices within the same
subset are adjacent. A path is a simple connected graph in which two vertices
have degree one, and other vertices (if they exist) have degree two; the length
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of a path is the number of its edges. A cycle is a closed path, i.e., a simple
connected graph in which every vertex has degree two. A tree is a simple
connected graph without cycles.

Two graphs which contain the same number of vertices connected in the
same way are called isomorphic. Formally, two graphs G = (V(G), E(G))
and H = (V(H),E(H)) are called isomorphic if there is a bijection f :
V(G) — V(H) such that, for any u,v € V(G), wv € E(G) if and only if
Fu)f(v) € B(H).

We will consider mainly simple finite graphs and digraphs; more exactly,
the equivalence classes of such isomorphic graphs.

15.1 Distances on vertices of a graph

e Path metric
The path metric (or graphic metric, shortest path metric) dpaen is a
metric on the vertex-set V' of a connected graph G = (V| E), defined, for
any u,v € V, as the length of a shortest (u—v) path in G, i.e., a geodesic.
The path metric of the Cayley graph T' of a finitely-generated group
(G, -, e) is called a word metric. The path metric of a graph G = (V, E),
such that V' can be cyclically ordered in a Hamiltonian cycle (a circuit
containing each vertex exactly once), is called a Hamiltonian metric.
The hypercube metric is the path metric of a hypercube graph H(m, 2)
with the vertex-set V' = {0,1}™, and whose edges are the pairs of vectors
x,y € {0,1}™ such that |{i € {1,...,n} : &; # y;}| = 1; it is equal to
{ie{l,...,n}:a;, = 1}A{i € {1,...,n} : y; = 1}|. The graphic metric
space associated with a hypercube graph is called a hypercube metric space.
It coincides with the metric space ({0,1}™,d;,).
Given an integer n > 1, the line metric on {1,...,n} in Chap.[dlis the
path metric of the path P, = {1,...,n}.
e Weighted path metric
The weighted path metric dypen is a metric on the vertex-set V'
of a connected weighted graph G = (V,E) with positive edge-weights
(w(e))ecr, defined by

m}inZw(e)7

ecP

where the minimum is taken over all (v —v) paths P in G.

e Detour distance
Given a connected graph G = (V, E), the detour distance (or codistance)
is a distance on the vertex-set V, defined as the length of a longest (u—v)
path in G. In general, it is not a metric.
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The smallest detour distance between distinct vertices is called the co-
diameter of G. A graph is called a detour graph if its detour distance
coincides with its path metric.

e Path quasi-metric in digraphs
The path quasi-metric in digraphs dgp.:, is a quasi-metric on the
vertex-set V' of a strongly connected directed graph D = (V| E), defined,
for any w,v € V, as the length of a shortest directed (u — v) path in D.

e Graph diameter
Given a connected graph G = (V, E), its graph diameter is the maximal
length of shortest (u — v)-path in G, i.e., it is the largest value of the
path metric between vertices of G. A connected graph is vertex-critical
(edge-critical) if deleting any vertex (edge) increases its diameter.

Given a strong orientation O of a connected graph G = (V, E), i.e.,
a strongly connected directed graph D = (V, E’) with arcs e’ € E’ obtained
from edges ¢’ € E’ by orientation O, the oriented diameter of D is the
maximal length of shortest directed (u — v)-path in it. The orientation O
is tight if the diameter of G is equal to the oriented diameter of D. For
example, a hypercube graph H(m,2) admits a tight orientation if m > 4
(McCanna 1988).

e Circular metric in digraphs
The circular metric in digraphs is a metric on the vertex-set V of a
strongly connected directed graph D = (V, E), defined by

ddpath(ua ’U) + ddpath(va 'LL),

where dgpqtn is the path quasi-metric in digraphs.

e Strong metric in digraphs
The strong metric in digraphs is a metric between vertices v and v
of a strongly connected directed graph D = (V| E), defined (Chartrand,
Erwin, Raines and Zhang 1999) as the minimum size (the number of edges)
of a strongly connected subdigraph of D, containing v and v. Cf. Steiner
distance.

e T-metric
Given a class T of connected graphs, the metric d of a metric space (X, d)
is called a Y-metric if (X, d) is isometric to a subspace of a metric space
(V. dwpatn), where G = (V,E) € T, and dypan is the weighted path
metric on the vertex-set V of G with positive edge-weight function w (see
tree-like metric).

e Tree-like metric
A tree-like metric (or weighted tree metric) d on a set X is a
YT-metric for the class Y of all trees, i.e., the metric space (X,d) is iso-
metric to a subspace of a metric space (V. dypatn), where T = (V, E) is
a tree, and dypatp is the weighted path metric on the vertex-set V' of
T with a positive weight function w. A metric is a tree-like metric if and
only if it satisfies the four-point inequality.
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A metric d on a set X is called a relaxed tree-like metric if the set
X can be embedded in some (not necessary positively) edge-weighted tree
such that, for any x,y € X, d(z,y) is equal to the sum of all edge weights
along the (unique) path between corresponding vertices z and y in the
tree. A metric is a relaxed tree-like metric if and only if it satisfies the
relaxed four-point inequality.

e Katz similarity
Given a graph G = (V,FE) with positive edge-weight function w =
(w(e))eer, let V.= {v1,...,v,}. Denote by A the n x n-matrix ((a;;)),
where a;; = a;; = w(ij) if ij is an edge, and a;; = 0, otherwise. Let I
be the identity n X n-matrix, and let ,0 < o < 1, be a parameter with
a < (max; |A;]) 7!, where the maximum is taken over the eigenvalues \; of
matrix A. Define the n x n-matrix S = ((s;;)) as follows:

S= > MAr=(I-x)"' -1

1<k<oco

The number s;; is called the Katz similarity between vertices v; and
vj; it was proposed (Katz 1953) for evaluating social status with better
accounting of all paths between v; and v;.
e Resistance metric

Given a connected graph G = (V, E) with positive edge-weight function
w = (w(e))eer, let us interpret the edge-weights as resistances. For any two
different vertices u and v, suppose that a battery is connected across them,
so that one unit of a current flows in at u and out in v. The voltage (poten-
tial) difference, required for this is, by Ohm’s law, the effective resistance
between u and v in an electrical network; it is called the resistance met-
ric Q(u,v) between them (Gvishiani-Gurvich, 1987, and Klein-Randic,
1993). So, if a potential of one volt is applied across vertices u and v, a
current of ﬁ will flow. The number ﬁ can be seen, like electrical
conductance, as a measure of connectivity between u and v.

Let r(u,v) = wée) if wv is an edge, and r(u,v) = 0 otherwise. Formally,

Qu,v) = (Y flw)r(w,v))™,

weV

where f: V — [0,1] is the unique function with f(u) = 1, f(v) = 0 and
ey (f(w) = F(2)r(w, 2) = 0 for any w # u,v.

The resistance metric is applied when the number of paths between any
two vertices w and v matters; in short, it is a weighted average of the
lengths of all (u — v) paths.

A probabilistic interpretation (Gobel and Jagers 1974) is: Q(u,v) =
(deg(u)Pr(u — v))~ !, where deg(u) is the degree of the vertex u, and
Pr(u — v) is the probability for a random walk leaving u to arrive at v
before returning to u. The expected commuting time between vertices u
and v is 2 . pw(e)Q(u,v) in general.
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Then Q(u,v) < minp )  p ﬁ, where P is any (u — v) path, with
equality if and only if such a path P is unique. So, if w(e) = 1 for all
edges, the equality means that G is a geodetic graph, and hence the
path and resistance metrics coincide.

If w(e) =1 for all edges, then Q(u,v) = (Guu + gov) — (Guv + Gou), Where
((gij)) is the Moore-Penrose generalized inverse of the Laplacian matriz
((L;5)) of the graph G: here l;; is the degree of vertex ¢ while, for ¢ # j,
l;; = 1 if the vertices ¢ and j are adjacent, and l;; = 0 otherwise.

The distance /Q(u,v) is a Mahalanobis distance (cf. Chap.[IT)
with a weighting matrix ((g;;)). This distance is called a diffusion metric
in [CLLMNWZ05], because it (as well as diffusion) depends on a ran-
dom walk.

e Hitting time quasi-metric
Let G = (V,E) be a connected graph with m edges. Consider random
walks on GG, where at each step the walk moves to a vertex randomly with
uniform probability from the neighbors of the current vertex. The hitting
(or first-passage) time quasi-metric H(u,v) from u € V to v € V is the
expected number of steps (edges) for a random walk on G beginning at u
to reach v for the first time; it is 0 for u = v.

This quasi-metric is a weightable quasi-semi-metric (cf. Chap.[).

The commuting time metric is C(u,v) = H(u,v) + H(v,u).

Then C(u,v) = 2mQ(u,v), where Q(u,v) is the resistance metric
(or effective resistance), i.e., 0 if v = v and, otherwise, ﬁ is the
current flowing into v, when grounding v and applying a 1V poten-

tial to u (each edge is seen as a resistor of 1Q). Then Q(u,v) =

SUP .V R, D(£)>0 W, where D(f) is the Dirichlet energy of f,

el Yoen(F(s) — F(1)2.
Above setting can be easily generalized to weighted graphs.
e Forest metric
Given o > 0 and a connected weighted multi-graph (multiple edges are
allowed) G = (V, F; w) with positive edge-weight function w = (w(e))ccr,
the a-forest metric (Chebotarev and Shamis 2006) between vertices u
and v is defined by

1
5((]uu + Quv — Quov — QUu)

for ((9ij)) = (I + aL)™', where I is the identity |V| x |V| matrix, and
L = ((I)) is the Laplacian (or Kirchhoff) matrix of G, i.e., l;; = —w(ij)
for i 7éj and lz‘j = — Zj;ﬁi l”

Chebotarev and Shamis showed that twice the a-forest metric of G is
the resistance distance of the weighted multi-graph G’ = (V’, F/;w’)
with V/ =V U{0}, E' = EU{u0 : u € V}), while w'(e) = aw(e) for all
e € F and w'(u0) =1 for all uw € V.

Their forest metric (1998) is the case a = 1 of the a-forest metric.
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e Truncated metric
The truncated metric is a metric on the vertex-set of a graph, which is
equal to 1 for any two adjacent vertices, and is equal to 2 for any non-
adjacent different vertices. It is the 2-truncated metric for the path
metric of the graph. It is the (1,2) — B-metric if the degree of any vertex
is at most B.

e Hsu-Lyuu-Flandrin-Li distance
Given an m-connected graph G = (V, E') and two vertices u,v € V, a con-
tainer C(u,v) of width m is a set of m (u —v) paths with any two of them
intersecting only in v and v. The length of a container is the length of the
longest path in it.

The Hsu-Lyuu-Flandrin-Li distance between vertices u and v (Hsu-
Lyuu 1991 and Flandrin-Li 1994) is the minimum of container lengths
taken over all containers C'(u,v) of width m. This generalization of the
path metric is used in parallel architectures for interconnection networks.

e Multiply-sure distance
The multiply-sure distance is a distance on the vertex-set V of an
m-connected weighted graph G = (V, E), defined, for any u,v € V, as
the minimum weighted sum of lengths of m disjoint (u — v) paths. This
generalization of the path metric helps when several disjoint paths between
two points are needed, for example, in communication networks, where
m —1 of (u—wv) paths are used to code the message sent by the remaining

(u — v) path (see [McCa97]).

e Cut semi-metric
A cut is a partition of a set into two parts. Given a subset S of V,, =
{1,...,n}, we obtain the partition {S, V,\S} of V,,. The cut semi-metric
(or split semi-metric) dg, defined by this partition, is a semi-metric on
V., defined by
o 1, if i #4,1SN{i, 5} =1,
0s(1,7) = {0, = ‘other{wigg.'

Usually, it is considered as a vector in RIF»l E(n) = {{i,j} : 1 < i <
Jj <n}.

A circular cut of V,, is defined by a subset Sy = {k+1,...,1}
(modn) C V,,: if we consider the points {1,...,n} as being ordered along a
circle in that circular order, then Sj; 11 ;) is the set of its consecutive vertices
from k + 1 to [. For a circular cut, the corresponding cut semi-metric is
called a circular cut semi-metric.

An even cut semi-metric (odd cut semi-metric) is dg on V,, with
even (odd, respectively) |[S|. A k-uniform cut semi-metric is s on
V., with |S| € {k,n — k}. An equicut semi-metric (inequicut semi-
metric) is g on V,, with S| € {[5],[51} (IS| € {[5],[5 |}, respectively);
see, for example, [DeLa97].
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e Decomposable semi-metric
A decomposable semi-metric is a semi-metric on V,, = {1, ..., n} which
can be represented as a non-negative linear combination of cut semi-
metrics. The set of all decomposable semi-metrics on V,, is a convexr cone,
called the cut cone CUT,,.

A semi-metric on V,, is decomposable if and only if it is a finite
l1-semi-metric.

A circular decomposable semi-metric is a semi-metric on V,, =
{1,...,n} which can be represented as a non-negative linear combination
of circular cut semi-metrics.

A semi-metric on V,, is circular decomposable if and only if it is
a Kalmanson semi-metric with respect to the same ordering (see
[ChFi98]).

e Finite [, -semi-metric
A finite [,-semi-metric d is a semi-metric on V,, = {1,...,n} such that
(V, d) is a semi-metric subspace of the [ -space (R™, d;,) for some m € N.
If, instead of V,,, is taken X = {0,1}", the metric space (X, d) is called
the ) -cube. The [7-cube is called a Hamming cube; cf. Chap.ll

¢ Kalmanson semi-metric
A Kalmanson semi-metric d is a semi-metric on V,, = {1,...,n} which
satisfies the condition

max{d(i, j) + d(r,s),d(i,s) +d(j,r)} < d(i,r) + d(j, 5)

forall 1 < i < j <r < s < n. In this definition the ordering of the
elements is important; so, d is a Kalmanson semi-metric with respect to
the ordering 1,...,n.

Equivalently, if the points {1,...,n} are ordered along a circle C,, in
that circular order, then the distance d on V,, is a Kalmanson semi-metric
if the inequality

d(i,r) +d(j,s) < d(i,j) +d(r,s)

holds for ¢, j, r, s € V,, whenever the segments [i, j], [r, s] are crossing chords
of Cp,.

A tree-like metric is a Kalmanson metric for some ordering of the
vertices of the tree. The Euclidean metric, restricted to the points that
form a convex polygon in the plane, is a Kalmanson metric.

e Multi-cut semi-metric
Let {S1,...,8¢}, ¢ > 2, be a partition of the set V,, = {1,...,n}, ie., a
collection S1,...,S, of pairwise disjoint subsets of V;, such that S; U---U
Sqg ="V

The multi-cut semi-metric ds, ... s, is a semi-metric on V;,, defined by

0, if 4,5 € Sy for some h,1 < h < gq,
1, otherwise.

05,5, (1,7) = {
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e Oriented cut quasi-semi-metric
Given a subset S of V,, = {1,...,n}, the oriented cut quasi-semi-
metric dg is a quasi-semi-metric on V,,, defined by

b 1, if i€ S¢S,
d5(i:7) = {0, otherwise.

Usually, it is considered as the vector of RlI»l| I(n) = {(i,7) : 1 < i #
j < n}. The cut semi-metric dg is Jg + (5;/"\5.
e Oriented multi-cut quasi-semi-metric
Given a partition {Si1,...,5¢}, ¢ > 2, of V,,, the oriented multi-cut
quasi-semi-metric 5:91’“.7 s, is a quasi-semi-metric on V;,, defined by

(i,j) = 1, if i€ Sy,7€ S, h<m,
Lo Sa B I ) = 0, otherwise .

15.2 Distance-defined graphs

Below we first give some graphs defined in terms of distances between their
vertices. Then some graphs associated with metric spaces are presented.

A graph (V, E) is, say, distance-invariant or distance monotone if its metric
space (V, dpasn) is distance invariant or distance monotone, respectively
(cf. Chap.[l). The definitions of such graphs, being straightforward subcases
of corresponding metric spaces, will be not given below.

e k-power of a graph
The k-power of a graph G = (V, E) is the supergraph G* = (V, E') of G
with edges between all pairs of vertices having path distance at most k.

e Isometric subgraph
A subgraph H of a graph G = (V, E) is called an isometric subgraph
if the path metric between any two points of H is the same as their path
metric in G.

A subgraph H is called a convex subgraph if it is isometric, and for any
u,v € H every vertex on a shortest (u — v)-path belonging to H also
belongs to H.

A subset M C V is called gated if for every u € V' \ M there exists a
unique vertex g € M (called a gate) lying on a shortest (v — v)-path for
every v € M. The subgraph induced by a gated set is a convex subgraph.

e Retract subgraph
A subgraph H of a graph G = (V,E) is called a retract subgraph
if it is induced by an idempotent short mapping of G into itself, i.e.,
2= f:V — V with dpan(f(u), f(v)) < dpatn(u,v) for all u,v € V. Any
retract subgraph is isometric.
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e Median graph
A connected graph G = (V, E) is called a median if, for every three
vertices u,v,w € V, there exists a unique vertex that lies simultaneously
on a shortest (u— v)-path, a shortest (v — w)-path and a shortest (w — v)-
path, i.e., (V,dpain) is a median metric space. The median graphs are
exactly retract subgraphs of hypercubes. Also, they are exactly such
isometric subgraphs of hypercubes that the vertex-set of any conver
subgraph is gated (cf. isometric subgraph).

e Geodetic graph
A connected graph is called geodetic if there exists exactly one shortest
path between any two of its vertices. Every tree is a geodetic graph.

The geodetic number of a finite connected graph (V, E) [BuHa90] is
min | M| over sets M C V of vertices such that any vertex « € V lies on a
shortest (v — v)-path where u,v € M.

e Interval distance monotone graph

A connected graph G = (V, E) is called interval distance monotone
if any of its intervals I (u,v) induces a distance monotone graph, i.e., its
path-metric is distance monotone, cf. Chap.[Il A graph is interval dis-
tance monotone if and only if (Zhang and Wang 2007) each of its intervals
is isomorphic to either a path, a cycle or a hypercube.

e Distance-regular graph
A connected graph G = (V| E) of diameter T is called distance-regular
if, for any of its vertices u,v and any integers 0 < 4,7 < T, the number of
vertices w, such that dpqn(u, w) = ¢ and dpaen (v, w) = j, depends only on
i,j and k = dpqen(u,v), but not on the choice of u and v.

A special case of it is a distance-transitive graph, i.e., such that its
group of automorphisms is transitive, for any 0 < i < T, on the pairs of
vertices (u,v) with dpain (u, v) = 1.

Any distance-regular graph is a distance-balanced graph(i.e., [{z €
Vid(z,u) < d(z,v)} = {z € V : d(z,v) < d(z,u)}| for any edge uv),
a distance degree regular graph (i.e., |[{x € V : d(z,u) = i}| depends
only on i, not on u € V), and a walk-regular graph (i.e., the number of
closed walks of length i starting at « depends only on 7, not on u).

A distance-regular graph is also called a metric association scheme
or P-polynomial association scheme. A finite polynomial metric space
(cf. Chap.[l) is a special case of it, also called a (P and Q )-polynomial
association scheme.

e Metrically almost transitive graph
An automorphism of a graph G = (V, E) is amap g : V — V such that u
is adjacent to v if and only if g(u) is adjacent to g(v), for any vertices u
and v. The set Aut(G) of all automorphisms of G is a group with respect
to the composition of functions.

A graph G(V, E) is metrically almost transitive (Krén and Moller
2008) if there is an integer r such that, for any vertex u,

UgeAut(G) {9(B(u,m))} =V,
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where B(u,r) = {v € V : dpan(u,v) < r}. The smallest such integer r
is called the covering radius of G. Cf radii of metric space in Chap.[1l
e Graph of polynomial growth
Let G = (V, E) be a transitive locally-finite graph. For a vertex v € V, the
growth function is defined by

fn)=HueV:du,v) <n},

and it does not depend on a particular vertex v. Cf. growth rate of
metric space in Chap.[Il

The graph G is a graph of polynomial growth if there are some
positive constants k, C' such that f(n) < Cn* for all n > 0. It is a graph
of exponential growth if there is a constant C' > 1 such that f(n) > C"
for all n > 0.

A group with a finite symmetric set of generators has polynomial growth
rate if the corresponding Cayley graph has polynomial growth. Here the
metric ball consists of all elements of the group which can be expressed as
products of at most n generators, i.e., it is a closed ball centered in the
identity in the word metric, cf. Chap.[I0

e Distance-polynomial graph
Given a connected graph G = (V, E) of diameter T, for any 2 < i < T
denote by G; the graph with the same vertex-set as GG, and with edges uv
such that dpeen(u, v) = i. The graph G is called a distance-polynomial
if the adjacency matrix of any G;, 2 < i < T, is a polynomial in terms of
the adjacency matrix of G.

Any distance-regular graph is a distance-polynomial.

e Distance-hereditary graph
A connected graph is called distance-hereditary if each of its connected
induced subgraphs is isometric.

A graph is distance-hereditary if each of its induced paths is isometric.
A graph is distance-hereditary, bipartite distance-hereditary, block
graph, tree if and only if its path metric is a relaxed tree-like met-
ric for edge-weights being, respectively, non-zero half-integers, non-zero
integers, positive half-integers, positive integers.

A graph is called a parity graph if, for any of its vertices u and v, the
lengths of all induced (u — v)-paths have the same parity. A graph G is
k-distance hereditary (Meslem-Aider, 2009) if dp (u,v) < dg(u,v) + k for
vertices of any its connected induced subgraph H.

e Block graph
A graph is called a block graph if each of its blocks (i.e., a maximal
2-connected induced subgraph) is a complete graph. Any tree is a block
graph.
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A graph is a block graph if and only if its path metric is a tree-like
metric or, equivalently, satisfies the four-point inequality.
e Ptolemaic graph
A graph is called Ptolemaic if its path metric satisfies the Ptolemaic
inequality

d(z,y)d(u, 2) < d(x,u)d(y, ) + d(z, 2)d(y, u).

A graph is Ptolemaic if and only if it is distance-hereditary and chordal,
i.e., every cycle of length greater than 3 has a chord. So, any block graph
is Ptolemaic.

e {-irredundant set
A set S C V of vertices in a connected graph G = (V,E) is called
t-irredundant (Hattingh and Henning 1994) if for any u € S there exists
a vertex v € V such that, for the path metric dpq4p of G,

dpath(U7 l’) S t < dpath(va V\S) - Hgg dpath(vv ’LL)

The t-irredundance number ir; of G is the smallest cardinality |S| such
that S is ¢-irredundant but S'U {v} is not, for every v € V'\S.

The t-domination number ~; and t-independent number oy of G are,
respectively, the cardinality of the smallest ¢-covering and largest %—
packing of the metric space (V, dpqn(u,v)) (cf. radius of metric space
in Chap.[)). Denote by ;" the smallest |S| such that S is £-packing but
SU{v} is not, for every v € V\S; so, this non-extendible £-packing is also
a t-covering. Then ’”;‘1 <irg <y < 'yé" < oy.

e k-distant chromatic number

The k-distant chromatic number of a graph G = (V, E) is the minimum

number of colors needed to color vertices of G so that any two vertices at

distance at most k have distinct colors, i.e., it is the chromatic number of

the k-power of G.

e [D-distance graph

Given a set D of positive numbers containing 1 and a metric space (X, d),

the D-distance graph D(X,d) is a graph with the vertex-set X and the

edge-set {uv : d(u,v) € D} (cf. D-chromatic number in Chap.[I]).
A D-distance graph is called a distance graph (or unit-distance graph)
if D = {1}, an e-unit graph if D = [1 —¢, 1+¢€], a unit-neighborhood graph if

D = (0,1], an integral-distance graph if D = Z.., a rational-distance graph

if D = Q4, and a prime-distance graph if D is the set of prime numbers

(with 1).

Usually, the metric space (X,d) is a subspace of a Euclidean space

E™. Moreover, every finite graph G = (V, E) can be represented by a

D-distance graph in some E™. The minimum dimension of such Euclidean

space is called the D-dimension of G.
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e Distance-number of a graph
Given a graph G = (V, E), its degenerate drawingis a mapping f : V — R?
such that |f(V)| = |V| and f(uv) is an open straight-line segment joining
the vertices f(u) and f(v) for any edge uv € E} it is a drawing if, moreover,
f(w) ¢ f(uw) for any wv € E and w € V.

The distance-number of a graph G = (V| E), denoted by dn(G),
is (Carmi, Dujmovié¢, Morin and Wood 2008) the minimum number of
distinct edge-lengths in a drawing of G. The degenerate distance-number
of G, denoted by ddn(G), is the minimum number of distinct edge-lengths
in a degenerated drawing of G.

The first of the Erdos-type distance problems in Chap.[I9is equiv-
alent to determining ddn(K,,).

The unit-distance graph of a set M C R? is a graph G’ = (V', E') with
V' = M and xy € E’ if and only if points z,y € S are at unit distance.
In general, ddn(G) = 1 if and only if G is isomorphic to a subgraph of a
unit-distance graph.

Any n-vertex m-edge graph G satisfies (Spencer, Szemerédi and Trotter
1984) dn(G) > ddn(G) > Cmn~3 for a constant C > 0.

Erdés, Harary and Tutte (1965) defined the dimension of a graph G as
the minimum number k such that G has a degenerate drawing in R with
straight-line edges of unit length.

A graph is k-realizable if, for every mapping of its vertices to (not nec-
essarily distinct) points of R® with s > k, there exists such a mapping in
RF which preserves edge-lengths. K3 is 2-realizable but not 1-realizable.
Belk and Connely (2007) proved that a graph is 3-realizable if and only if
it has no minors K5 or Ky 7 ».

e Bar framework
A pair (G, f) is called a bar framework if G = (V, E) is a finite graph (no
loops and multiple edges) and f : V' — R™ is a map with f(u) # f(v) when-
ever uv € F. The vertices and edges are called joints and bars, respectively,
in terms of Structural Engineering. A tensegrity (Fuller 1948) is a bar
framework in which bars are either cables (i.e., cannot get further apart),
or struts (i.e., cannot get closer together).

An (infinitesimal) motion of a bar framework (G, f) is a map m : V —
R™ with (m(u) —m(v))(f(u) — f(v)) = 0 whenever uv € E. A motion is
trivial if it can be extended to an isometry of R™. A bar framework is an
(infinitesimally) rigid framework if every motion of it is trivial.

A bar framework (G, f) is an elastic framework if, for any ¢ > 0,
there exists a § > 0 such that the following condition holds: for every
edge-weighting w : E — R with maxy,ep [w(uv) — || f(u) — f(v)||2] <4,
there exist a bar framework (G, f’) with max,ev ||f(u) — f'(v)]|2 < e

A bar framework is isostatic (i.e., rigid and the deletion of any of its
edges will cause loss of rigidity) if and only if (Tay and Nievergelt 1997)
it is elastic and the addition of any new edge will cause loss of elasticity.
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e Distance-two labelling

Given a decreasing sequence o = (a, . . ., ay) of numbers, A, -labelling of a
graph G = (V| F) is an assignment of labels f(v) from the set {0,1,..., A}
of integers to the vertices v € V such that, for any ¢t with 0 < t < k,
|f(v) = f(u)] > a; whenever the path distance between u and v is t.
The radio frequency assignment problem, where vertices v are transmitters
and labels f(v) are frequencies of (not-interfering) channels, consists of
minimizing .

Distance-two labelling () (3 1)-labelling) is the main interesting case

a=(2,1).

e Distance labelling scheme
A graph family A is said (Peleg 2000) to have an I(n) distance la-
belling scheme if there is a function Lg labelling the vertices of each
n-vertex graph G € A with distinct labels up to I(n) bits, and there
exists an algorithm, called a distance decoder, that decides the dis-
tance d(u,v) between any two vertices u,v € X in a graph G € A, i.e.,
d(u,v) = f(Lgu), Lgv)), polynomial in time in the length of their labels
L(u), L(v).

e Arc routing problems
Given a finite set X, a quasi-distance d(z,y) on it and a set A C {(z,y) :
x,y € X}, consider the weighted digraph D = (X, A) with the vertex-
set X and arc-weights d(z,y) for all arcs (x,y) € A. For given sets V of
vertices and F of arcs, the arc routing problem consists of finding a
shortest (i.e., with minimal sum of weights of its arcs) (V, E)-tour, i.e., a
circuit in D = (X, A), visiting each vertex in V' and each arc in F exactly
once or, in a variation, at least once.

The Asymmetric Traveling Salesman Problem corresponds to the case
V =X, E = 0; the Traveling Salesman Problem is the symmetric version
of it (usually, each vertex should be visited exactly once). The Bottle-
neck Traveling Salesman Problem consists of finding a (V, E)-tour T" with
smallest max, ,)er d(, ).

The Windy Postman Problem corresponds to the case V=0, E=A,
while the Chinese Postman Problem is the symmetric version of it.

The above problems are also considered for general arc- or edge-weights;
then, for example, term Metric TSP is used when edge-weights in the
Traveling Salesman Problem satisfy the triangle inequality, i.e., d is a
quasi-semi-metric.

e Steiner distance of a set
The Steiner distance of a set S C V of vertices in a connected graph
G = (V, E) is (Chartrand, Oellermann, Tian and Zou 1989) the minimum
size (number of edges) of a connected subgraph of G, containing S. Such
a subgraph is, obviously, a tree, and is called a Steiner tree for S. Those
of its vertices which are not in S are called Steiner points.
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The Steiner distance of the set S = {u, v} is the path metric between u

and v.

e {-spanner
A spanning subgraph H = (V, E(H)) of a connected graph G = (V, E)
is called a t-spanner of G if, for every w,v € V, the inequality
dfath(u,v)/dfath(u, v) < t holds. The value ¢ is called the stretch fac-
tor of H.

A spanning subgraph H = (V, E(H)) of a graph G = (V, E) is called a
k-additive spanner of G if, for every u,v € V, the inequality dﬁlth(u, v) <
dfath(u, v) + k holds.

e Proximity graph
Given a finite subset V' of a metric space (X,d), a proximity graph
of V' is a graph representing neighbor relationships between points of V.
Such graphs are used in Computational Geometry and many real-world
problems. The main examples are presented below. Cf. also underlying
graph of a metric space in Chap.[I

A spanning tree of V is a set T of |V| — 1 unordered pairs (z,y) of dif-
ferent points of V' forming a tree on V'; the weight of T is E(z,y)eT d(z,y).
A minimum spanning tree MST(V) of V is a spanning tree with
the minimal weight. Such a tree is unique if the edge-weights are
distinct.

Nearest neighbor graph is the directed graph NNG(V) = (V, E)
with vertex-set V' = v1,...,vy| and, for x,y € V, 2y € E if y is the
nearest neighbor of x, i.e., d(z,y) = min,, cy\ {2} d(z,v;) and only v; with
maximal index ¢ is picked. The k-nearest neighbor graph arises if k such
v; with maximal indices are picked. The indirect version of NNG(V) is a
subgraph of MST(V).

Relative neighborhood graph is (Toussaint 1980) the graph
RNG(V) = (V,E) with vertex-set V and, for x,y € V, zy € E if
there is no point z € V' with max{d(z, 2),d(y, z)} < d(x,y). Also consid-
ered, in the main case (X,d) = (R?, ||z — y||2), are the related Gabriel
graph GG(V) (in general, -skeleton) and Delaunay triangulation DT (V);
then NNG(V) C MST(V) C RNG(V) C GG(V) C DT (V).

For any = € V, its sphere of influence is the open metric ball B(z,r,) =
{z € X : d(x,z) < r} in (X,d) centered at x with radius r, =
minzev\{x} d(l‘, Z)

Sphere of influence graph is the graph SIG(V) = (V, E) with vertex-
set V and, for z,y € V, zy € E if B(z,r,;) N B(y,ry) # 0; so, it is a
proximity graph and an intersection graph. The closed sphere of influ-

ence graph is the graph CSIG(V) = (V,E) with xy € E if B(z,r;) N

B(y,’l“y) 7& @
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e Chartrand—Kubicki—Schultz distance
The Chartrand—Kubicki—Schultz distance (or ¢-distance 1998)
between two connected graphs Gi = (Vi,E;1) and Gy = (Va, Ey) with
Vil =[Va| =nis

min{z lda, (u,v) — da,(¢(w), p(v))|},

where dg,,dg, are path metrics of graphs G, Ga, the sum is taken over
all unordered pairs u, v of vertices of G1, and the minimum is taken over
all bijections ¢ : V; — V5.
e Subgraph metric
Let F = {Fy = V1,E1), Fo = (Va,Es),...,} be the set of isomorphism
classes of finite graphs. leen a finite graph G = (V, E), denote by s;(G)
the number of injective homomorphisms from F; into G (i.e., the number
of injections ¢ : V; — V with ¢(z)¢(y) € E whenever zy € E;) divided
by the number % of such injections from F; with |V;| < |V| into
Kjy)). Set s(G) = (s:(G))2, € [0,1]> ‘
Let d be the Cantor metric (cf. Chap.08) d(z,y) = > o, 27 @i — yi

n [0,1]°° or any metric on [0,1]*° inducing the product topology. Then,
the subgraph metric (Bollobds and Riordan 2007) between the graphs
G and (> is defined by

d(S(Gl), S(Gg))

Bollobas and Riordan (2007) defined other metrics and generalized the
subgraph distance on kernels (or graphons), i.e., symmetric measurable
functions k : [0,1] x [0,1] — R, replacing G by k and the above s;(G)

by si(k) = flo yvat Tsee, k(wswe) TIL dag
e Rectangle distance on weighted graphs
Let G = G(a, 3) be a complete weighted graph on {1,...,n} with vertex-
weights a; > 0, 1 <4 < n, and edge-weights 8;; € R, 1 <1 < j < n.
i Bij

Denote by A(G) the n x n matrix ((a;;)), where a;; = T e

The rectangle distance (or cut distance) between two weighted graphs
G = G(a,B) and G' = G(o/, ') (with vertex-weights (o) and edge-

3

weights (;;)) is (Borgs, Chayes, Lovész, Sés and Vesztergombi 2007):

o |

o 1Y fa a3
1,Jc{1,...,n}| )l ‘Zl<3<na3 >

icl,jeJ

where A(G) = ((ai;)) and A(G") = ((aj;))-

In the case (o) = (o), the rectangle distance is ||A(G) — A(G")]|cut, i-e.,
the cut norm metric (cf. Chap.[[2)) between matrices A(G) and A(G")

<j<n @
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and the rectangle distance from Frieze and Kannan (1999). In this case, the
l1- and lx-metrics between two weighted graphs G and G’ are defined as
[|A(G) — A(G")||1 and ||A(G) — A(G")]|2, respectively. The subcase a; = 1
for all 1 <14 < n corresponds to unweighted vertices.

Cf. the Robinson—Foulds weighted metric between phylogenetic
trees.

Borgs, Chayes, Lovdsz, S6s and Vesztergombi (2007) defined other met-
rics and generalized the rectangle distance on kernels (or graphons), i.e.,
symmetric measurable functions k : [0,1] x [0,1] — R>¢, using the cut
norm ([Fllew = 5upszio. | forz K. y)dadyl.

A map ¢ : [0,1] — [0,1] is measure-preserving if, for any measurable
subset A C [0, 1], the measures of A and ¢~!(A) are equal. For a kernel k,
define the kernel k® by k?(z,y) = k(¢(z), #(y)). The Lovéasz—Szegedy
semi-metric (2007) between kernels k; and k; is defined by

H{})f ||]€(1z5 - k2||cut7

where ¢ ranges over all measure-preserving bijections [0,1] — [0,1].
Cf. Chartrand—Kubicki—Schultz distance.

e Subgraph—supergraph distances
A common subgraph of graphs G1 and G» is a graph which is isomorphic
to induced subgraphs of both G and G3. A common supergraph of graphs
(1 and G is a graph which contains induced subgraphs isomorphic to G
and Gs.

The Zelinka distance dy [ZeliTh] on the set G of all graphs (more
exactly, on the set of all equivalence classes of isomorphic graphs) is
defined by

dz = max{n(Gi1),n(G2)} — n(G1,G2)

for any G1, G2 € G, where n(G;) is the number of vertices in G;, i = 1,2,
and n(G1, G2) is the maximum number of vertices of a common subgraph
of G1 and Gs.
The Bunke—Shearer metric (1998) on the set of non-empty graphs is
defined by
n(Gl, Gz)
max{n(G1),n(Gz2)}

Given an arbitrary set M of graphs, the common subgraph distance
dpr on M is defined by

max{n(G1)7 n(G2)} - n(le GQ))
and the common supergraph distance d}, on M is defined by

N(Gl, Gg) - min{n(Gl), n(GQ)}
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for any Gy, G € M, where n(G;) is the number of vertices in G;, i = 1,2,
n(Gy, G2) is the maximum number of vertices of a common subgraph G €
M of G; and Go, and N(G1,G2) is the minimum number of vertices of a
common supergraph H € M of G; and Gs.

dps is a metric on M if the following condition (1) holds:

(1) if H € M is a common supergraph of Gy, Gy € M, then there exists
a common subgraph G € M of G; and Gy with n(G) > n(G1) + n(G2) —

d}; is a metric on M if the following condition (2) holds:

(2) if G € M is a common subgraph of Gy, G € M, then there exists a
common supergraph H € M of G and Gy with n(H) < n(G;) +n(Gs) —
n(G).

One has dy < dj; if the condition (1) holds, and dys > dj, if the
condition (2) holds.

The distance dj; is a metric on the set G of all graphs, the set of all
cycle-free graphs, the set of all bipartite graphs, and the set of all trees.
The distance dj; is a metric on the set G of all graphs, the set of all
connected graphs, the set of all connected bipartite graphs, and the set of
all trees. The Zelinka distance dz coincides with dps and d}; on the set
G of all graphs. On the set T of all trees the distances dy; and d}, are
identical, but different from the Zelinka distance.

The Zelinka distance dz is a metric on the set G(n) of all graphs with
n vertices, and is equal to n — k or to K —n for all G, G2 € G(n), where
k is the maximum number of vertices of a common subgraph of G; and
G4, and K is the minimum number of vertices of a common supergraph
of G; and G. On the set T(n) of all trees with n vertices the distance dz
is called the Zelinka tree distance (see, for example, [Zeli79]).

e Fernandez—Valiente metric
Given graphs G and H, let G; = (V1, E1) and Go = (Va, E3) be their mazi-
mum common subgraph and minimum common supergraph; cf. subgraph—
supergraph distances.

The Ferndandez—Valiente metric (2001) between graphs G and H is
defined by

(V] + |E2]) — (IVA] + [Ex]).

e Editing graph metric
The editing graph metric (Axenovich, Kézdy and Martin 2008) between
graphs Gy = (V1, Ey) and Gy = (V3, Es) with the same number of vertices
is defined by
min ‘El AE3|,
G3

where G3 = (V3, E3) is any graph isomorphic to Gs. It is the minimum
number of edge deletions or additions (cf. the indel metric in Chap.[IT])
needed to transform G into a graph isomorphic to Gs. It corresponds to
the Hamming distance between the adjacency matrices of G; and Gs.
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Bunke (1997) defined the graph edit distance between vertex- and
edge-labeled graphs G; and G2 as the minimal total cost of matching
G1 and G, using deletions, additions and substitutions of vertices and
edges. Cf. also tree, top-down, unit cost and restricted edit distance
between rooted trees.

Myers, Wilson and Hancock (2000) defined the Bayesian graph edit
distance between two relational graphs (i.e., triples (V, E, A), where V, E
and A are the sets of vertices, edges and vertez-attributes) as their graph
edit distance with costs defined by probabilities of operations along an
editing path seen as a memoryless error process. Cf. transduction edit
distances (Chap.[[T) and Bayesian distance (Chap.[Iq]).

e Edge distance
The edge distance is a distance on the set G of all graphs, defined by

|Ev| + | EBa| — 2| Er2| + [[Va] — [Val|

for any graphs G1 = (Vl,El) and G2 = (‘/2,E2)7 where G12 = (‘/12,E12)
is a common subgraph of G; and G2 with maximal number of edges. This
distance has many applications in Organic and Medical Chemistry.
e Contraction distance
The contraction distance is a distance on the set G(n) of all graphs
with n vertices, defined by
n—=k

for any G, G2 € G(n), where k is the maximum number of vertices of a
graph which is isomorphic simultaneously to a graph, obtained from each
of G; and G4 by a finite number of edge contractions.

To perform the contraction of the edge wv € E of a graph G = (V, E)
means to replace v and v by one vertex that is adjacent to all vertices of
V\{u, v} which were adjacent to u or to v.

e Edge move distance
The edge move distance is a metric on the set G(n,m) of all graphs
with n vertices and m edges, defined, for any G1,Gy € G(m,n), as the
minimum number of edge moves necessary for transforming the graph G,
into the graph Gs. It is equal to m — k, where k is the maximum size of a
common subgraph of G and Gs.

An edge move is one of the edge transformations, defined as follows:
H can be obtained from G by an edge move if there exist (not necessarily
distinct) vertices u, v, w, and x in G such that wv € E(G), wx ¢ E(G),
and H = G — uwv + wzx.

e Edge jump distance
The edge jump distance is an extended metric (which in general can
take the value oo) on the set G(n,m) of all graphs with n vertices and m
edges, defined, for any G1, Gy € G(m,n), as the minimum number of edge
jumps necessary for transforming G5 into Gs.
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An edge jump is one of the edge transformations, defined as follows:
H can be obtained from G by an edge jump if there exist four distinct
vertices u,v,w, and x in G, such that wv € E(G), wx ¢ E(G), and H =
G — av + wz.

e Edge flipping distance
Let P = {vy,...,v,} be a collection of points on the plane. A triangulation
T of P is a partition of the convex hull of P into a set of triangles such
that each triangle has a disjoint interior and the vertices of each triangle
are points of P.

The edge flipping distance is a distance on the set of all triangulations
of P, defined, for any triangulations 7" and 77, as the minimum number
of edge flippings necessary for transforming 7" into 77.

An edge e of T is called flippable if it is the boundary of two triangles ¢
and t of T, and C' =t Ut is a convex quadrilateral. The flipping e is one
of the edge transformations, which consists of removing e and replacing it
by the other diagonal of C'. The edge flipping is an special case of edge
jump.

Edge flipping distance can be extended on pseudo-triangulations, i.e.,
partitions of the convex hull of P into a set of disjoint interior pseudo-
triangles (simply connected subsets of the plane that lie between any three
mutually tangent convex sets) whose vertices are given points.

e Edge rotation distance
The edge rotation distance is a metric on the set G(n, m) of all graphs
with n vertices and m edges, defined, for any G1,Gs € G(m,n), as the
minimum number of edge rotations necessary for transforming G into Gs.

An edge rotation is one of the edge transformations, defined as follows: H
can be obtained from G by an edge rotation if there exist distinct vertices
u,v, and w in G, such that uwv € E(G), uw ¢ E(G), and H = G —uv +uw.

e Tree edge rotation distance
The tree edge rotation distance is a metric on the set T(n) of all trees
with n vertices, defined, for all T}, To € T(n), as the minimum number
of tree edge rotations necessary for transforming 77 into Ts. For T(n) the
tree edge rotation distance and the edge rotation distance may differ.

A tree edge rotation is an edge rotation performed on a tree, and resulting
in a tree.

e Edge shift distance
The edge shift distance (or edge slide distance) is a metric on the set
G.(n,m) of all connected graphs with n vertices and m edges, defined, for
any G1,Gs2 € G.(m,n), as the minimum number of edge shifts necessary
for transforming G into Gs.

An edge shift is one of the edge transformations, defined as follows: H
can be obtained from G by an edge shift if there exist distinct vertices u, v,
and w in G such that uwv,vw € E(G), uvw ¢ E(G), and H = G — uv 4+ uw.
Edge shift is a special kind of edge rotation in the case when the vertices
v, w are adjacent in G.
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The edge shift distance can be defined between any graphs G and H
with components G;(1 <i < k) and H;(1 <1 < k), respectively, such that
G; and H; have the same order and the same size.

e [-rotation distance
The F-rotation distance is a distance on the set Gg(n,m) of all graphs
with n vertices and m edges, containing a subgraph isomorphic to a given
graph F' of order at least 2, defined, for all Gy, G2 € Gg(m,n), as the
minimum number of F'-rotations necessary for transforming G into Gs.

An F-rotation is one of the edge transformations, defined as follows: let
F'bea subgraph of a graph G, isomorphic to F', let u, v, w be three distinct
vertices of the graph G such that v & V(F'), v,w € V(F'), wv € E(G),
and uw ¢ E(G); H can be obtained from G by the F-rotation of the edge
uv into the position uvw if H = G — uv + uw.

e Binary relation distance
Let R be a non-reflexive binary relation between graphs, i.e., R C G X G,
and there exists G € G such that (G, G) ¢ R.

The binary relation distance is an extended metric (which in general
can take the value co) on the set G of all graphs, defined, for any graphs
G1 and G, as the minimum number of R-transformations necessary for
transforming G into G5. We say, that a graph H can be obtained from a
graph G by an R-transformation if (H,G) € R.

An example is the distance between two triangular embeddings of a
complete graph (i.e., its cellular embeddings in a surface with only 3-gonal
faces) defined as the minimal number ¢ such that, up to replacing ¢ faces,
the embeddings are isomorphic.

e Crossing-free transformation metrics
Given a subset S of R?, a non-crossing spanning tree of S is a tree whose
vertices are points of S, and edges are pairwise non-crossing straight line
segments.

The crossing-free edge move metric (see [AAHO00]) on the set Tg of
all non-crossing spanning trees of a set S, is defined, for any 77,75 € Tg,
as the minimum number of crossing-free edge moves needed to transform
Ty into To. A crossing-free edge move is an edge transformation which
consists of adding some edge e in T' € Tg and removing some edge f from
the induced cycle so that e and f do not cross.

The crossing-free edge slide metric is a metric on the set Tg of all
non-crossing spanning trees of a set S, defined, for any 17,7, € Tg, as the
minimum number of crossing-free edge slides necessary for transforming T}
into T5. A crossing-free edge slide is one of the edge transformations which
consists of taking some edge e in T' € Tg and moving one of its endpoints
along some edge adjacent to e in T', without introducing edge crossings and
without sweeping across points in S (that gives a new edge f instead of e).
The edge slide is a special kind of crossing-free edge move: the new tree is
obtained by closing with f a cycle C' of length 3 in T, and removing e from
C, in such a way that f avoids the interior of the triangle C'.
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e Traveling salesman tours distances
The Traveling Salesman Problem is the problem of finding the shortest
tour that visits a set of cities. We shall consider only Traveling Salesman
Problems with undirected links. For an N-city traveling salesman problem,
the space 7y of tours is the set of (N;U! cyclic permutations of the cities
1,2,...,N.
The metric D on 7y is defined in terms of the difference in form: if tours
T,T" € Ty differ in m links, then D(T,T") = m.
A k-OPT transformation of a tour T' is obtained by deleting & links from
T, and reconnecting. A tour 7", obtained from T by a k-OPT transforma-
tion, is called a k-OPT of T. The distance d on the set 7y is defined
in terms of the 2-OPT transformations: d(T, T/) is the minimal ¢, for
which there exists a sequence of i 2-OPT transformations which trans-
forms T to T".
In fact, d(T,T") < D(T,T") for any T,T" € Ty (see, for example,
[MaMoD)).
Cf. arc routing problems.
e Orientation distance
The orientation distance (Chartrand, Erwin, Raines and Zhang 2001)
between two orientations D and D’ of a finite graph is the minimum
number of arcs of D whose directions must be reversed to produce an
orientation isomorphic to D’.
e Subgraphs distances
The standard distance on the set of all subgraphs of a connected graph
G = (V, E) is defined by

min{dpen(u,v) : u € V(F),ve V(H)}

for any subgraphs F, H of G. For any subgraphs F', H of a strongly con-
nected digraph D = (V, E), the standard quasi-distance is defined by

min{dgpqn(u,v) : u € V(F),v € V(H)}.

Using standard transformations (rotation, shift, etc.) on the edge-set of
a graph, one gets corresponding distances between its edge-induced sub-
graphs with given size, which are subcases of similar distances on the set
of all graphs with a given size and order.

The edge rotation distance on the set S¥(G) of all edge-induced
subgraphs with k edges in a connected graph G is defined as the minimum
number of edge rotations required to transform ' € S¥(G) into H € S*(G).
We say that H can be obtained from F' by an edge rotation if there exist
distinct vertices u, v, and w in G such that uv € E(F), uw € E(G)\E(F),
and H = F — uv + uw.

The edge shift distance on the set S*(G) of all edge-induced sub-
graphs with k£ edges in a connected graph G is defined as the minimum
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number of edge shifts required to transform F € S¥(G) into H € S*(G).
We say that H can be obtained from F' by an edge shift if there exist dis-
tinct vertices w, v and w in G such that uv, vw € E(F), uw € E(G)\E(F),
and H = F — uv + uw.

The edge move distance on the set S¥(G) of all edge-induced sub-
graphs with &k edges of a graph G (not necessary connected) is defined as
the minimum number of edge moves required to transform F' € S¥(G) into
H € SF(G). We say that H can be obtained from I by an edge move if
there exist (not necessarily distinct) vertices u, v, w, and « in G such that
ww € E(F), we € E(G)\E(F), and H = F — uv + wz. The edge move
distance is a metric on S*(G). If F and H have s edges in common, then
it is equal to k — s.

The edge jump distance (which in general can take the value oo)
on the set S¥(G) of all edge-induced subgraphs with k edges of a graph
G (not necessary connected) is defined as the minimum number of edge
jumps required to transform F € S¥(GQ) into H € S¥(G). We say that
H can be obtained from F by an edge jump if there exist four distinct
vertices u,v,w, and = in G such that wv € E(F), we € E(G)\E(F), and
H=F —uv+wz.

15.4 Distances on trees

Let T be a rooted tree, i.e., a tree with one of its vertices being chosen as the
root. The depth of a vertex v, depth(v), is the number of edges on the path
from v to the root. A vertex v is called a parent of a vertex u, v = par(u), if
they are adjacent, and depth(u) = depth(v)+1; in this case u is called a child
of v. A leaf is a vertex without child. Two vertices are siblings if they have
the same parent. The in-degree of a vertex is the number of its children. T'(v)
is the subtree of T', rooted at a node v € V(T'). If w € V(T'(v)), then v is an
ancestor of w, and w is a descendant of v; nca(u,v) is the nearest common
ancestor of the vertices u and v. T is called a labeled tree if a symbol from a
fixed finite alphabet A is assigned to each node. T' is called an ordered tree if
a left-to-right order among siblings in 7" is given.

On the set T,;, of all rooted labeled ordered trees there are three editing
operations:

e Relabel — change the label of a vertex v

e Deletion — delete a non-rooted vertex v with parent v', making the children
of v become the children of v'; the children are inserted in the place of v
as a subsequence in the left-to-right order of the children of v

e Insertion — the complement of deletion; insert a vertex v as a child of a v’
making v the parent of a consecutive subsequence of the children of v
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For unordered trees the editing operations can be defined similarly, but insert
and delete operations work on a subset instead of a subsequence.

We assume that there is a cost function defined on each editing operation,
and the cost of a sequence of editing operations is the sum of the costs of
these operations.

The ordered edit distance mapping is a representation of the editing oper-
ations. Formally, define the triple (M,T1,T5) to be an ordered edit distance
mapping from Ty to Ty, T1,Ts € Ty, if M C V(T1) x V(T3) and, for any
(v1,w1), (v2,we) € M, the following conditions hold: vy = vy if and only if
wy = we (one-to-one condition), vy is an ancestor of vy if and only if w; is
an ancestor of wy (ancestor condition), vq is to the left of v if and only if w;
is to the left of wy (sibling condition).

We say that a vertex v in 17 and T3 is touched by a line in M if v occurs
in some pair in M. Let N7 and Ny be the set of vertices in 77 and T3,
respectively, not touched by any line in M. The cost of M is given by v(M) =
P wawyem YO = W)+ 3 en, YW = A) + 3 en, V(A — w), where y(a — b)
= v(a,b) is the cost of an editing operation a — b which is a relabel if a, b € A,
a deletion if b = ), and an insertion if a = . Here A\ ¢ A is a special blank
symbol, and ~ is a metric on the set AU A\ (excepting the value (A, \)).

e Tree edit distance
The tree edit distance (see [Tai79)]) on the set Ty, of all rooted labeled
ordered trees is defined, for any 77,75 € T,,, as the minimum cost of a
sequence of editing operations (relabels, insertions, and deletions) turning
T1 into T2.

In terms of ordered edit distance mappings, it is equal to min s 7, 1)
~v(M), where the minimum is taken over all ordered edit distance mappings
(M, Ty, T5).

The edit tree distance can be defined in similar way on the set of all
rooted labeled unordered trees.

e Selkow distance
The Selkow distance (or top-down edit distance, degree-1 edit dis-
tance) is a distance on the set T,;, of all rooted labeled ordered trees,
defined, for any 77,75 € T, as the minimum cost of a sequence of edit-
ing operations (relabels, insertions, and deletions) turning 77 into T if
insertions and deletions are restricted to leaves of the trees (see [Selk77]).
The root of T7 must be mapped to the root of Ts, and if a node v is to be
deleted (inserted), then any subtree rooted at v is to be deleted (inserted).

In terms of ordered edit distance mappings, it is equal to min s 7, 1)
~v(M), where the minimum is taken over all ordered edit distance mappings
(M, Ty, Ts) satisfying the following condition: if (v, w) € M, where neither
v nor w is the root, then (par(v), par(w)) € M.

o Restricted edit distance
The restricted edit distance is a distance on the set T,;, of all rooted
labeled ordered trees, defined, for any 77,75 € T,,, as the minimum cost
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of a sequence of editing operations (relabels, insertions, and deletions)
turning 77 into T, with the restriction that disjoint subtrees should be
mapped to disjoint subtrees.

In terms of ordered edit distance mappings, it is equal to min s 7, 1)
~v(M), where the minimum is taken over all ordered edit distance mappings
(M, Ty, T) satisfying the following condition: for all (vi,w), (ve,ws),
(vs,w3) € M, nca(vy,vy) is a proper ancestor of wvs if and only if
nca(wy,we) is a proper ancestor of ws.

This distance is equivalent to the structure respecting edit distance, de-
fined by min¢as,r, 7,y 7(M), where the minimum is taken over all ordered
edit distance mappings (M, Ty, T»), satisfying the following condition:

for all (v1,wy), (va,ws), (v3,ws)€ M, such that none of vy,vy, and
v3 is an ancestor of the others, nca(vy,vs) = nca(vy,vs) if and only if
nea(wy, we) = nca(wy, ws).

Cf. constrained edit distance in Chap.[I1l

e Unit cost edit distance
The unit cost edit distance is a distance on the set T,;, of all rooted
labeled ordered trees, defined, for any 77,75 € T,,, as the minimum
number of editing operations (relabels, insertions, and deletions) turning
Tl into TQ.

e Alignment distance
The alignment distance (see [JWZ94]) is a distance on the set T,;, of
all rooted labeled ordered trees, defined, for any 711,75 € T,,, as the
minimum cost of an alignment of T} and Ts. It corresponds to a restricted
edit distance, where all insertions must be performed before any deletions.

Thus, one inserts spaces, i.e., vertices labeled with a blank symbol A, into
T1 and T5 so that they become isomorphic when labels are ignored; the
resulting trees are overlayed on top of each other giving the alignment Ty
which is a tree, where each vertex is labeled by a pair of labels. The cost
of T4 is the sum of the costs of all pairs of opposite labels in T'4.

e Splitting-merging distance
The splitting-merging distance (see [ChLu85|) is a distance on the set
T,., of all rooted labeled ordered trees, defined, for any 17,15 € T,,, as the
minimum number of vertex splittings and mergings needed to transform
T, into T5.

e Degree-2 distance
The degree-2 distance is a metric on the set T; of all labeled trees
(labeled free trees), defined, for any T7,T> € T, as the minimum number
of editing operations (relabels, insertions, and deletions) turning 7; into
T5 if any vertex to be inserted (deleted) has no more than two neighbors.
This metric is a natural extension of the tree edit distance and the
Selkow distance.

A phylogenetic X -tree is an unordered, unrooted tree with the labeled
leaf set X and no vertices of degree two. If every interior vertex has degree
three, the tree is called binary (or fully resolved).
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¢ Robinson—Foulds metric
A cut A|B of X is a partition of X into two subsets A and B (see cut
semi-metric). Removing an edge e from a phylogenetic X-tree induces a
cut of the leaf set X which is called the cut associated with e.
The Robinson—Foulds metric (or Bourque metric, bipartition dis-
tance) is a metric on the set T(X) of all phylogenetic X-trees, defined, for
all Ty, T, € T(X), by

SIZTMIAS(T)| = L 5(T) — S(T)| + 519(T) — (1),

where X(T') is the collection of all cuts of X associated with edges of T.
The Robinson—Foulds weighted metric is a metric on the set T(X)
of all phylogenetic X-trees, defined by

Z |wi(A|B) — wa(A|B)|

A|BeX(T1)UX(Ts)

for all T}, T» € T(X), where w; = (w(e))ecp(r,) is the collection of positive
weights, associated with the edges of the X-tree T;, X(T;) is the collection
of all cuts of X, associated with edges of T;, and w;(A|B) is the weight of
the edge, corresponding to the cut A|B of X, i=1,2.

Cf. more general cut norm metric in Chap.[[2 and rectangle dis-
tance on weighted graphs.

e s-metric

Given a phylogenetic X-tree T" with n leaves and a vertex v in it, let
wv) = (u1(v), ..., pn(v)), where p;(v) is the number of different paths
from the vertex v to the i-th leaf. Let u(7") denote the multiset on the
vertex-set of T with p(v) being the multiplicity of the vertex v.

The p-metric (Cardona, Rosell6 and Valiente 2008) is a metric on the
set T(X) of all phylogenetic X-trees, defined, for all T}, T, € T(X), by

ST AT,

where A denotes the symmetric difference of multisets. Cf. metrics
between multisets in Chap.[ll and Dodge—Shiode WebX quasi-
distance in Chap.22l
e Nearest neighbor interchange metric

The nearest neighbor interchange metric (or crossover metric) is a
metric on the set T(X) of all phylogenetic X-trees, defined, for all Ty, T, €
T(X), as the minimum number of nearest neighbor interchanges required
to transform 73 into T5.

A nearest neighbor interchange consists of swapping two subtrees in a
tree that are adjacent to the same internal edge; the remainder of the tree
is unchanged.
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e Subtree prune and regraft distance
The subtree prune and regraft distance is a metric on the set T(X)
of all phylogenetic X-trees, defined, for all 77,75 € T(X), as the minimum
number of subtree prune and regraft transformations required to transform
T1 into T2.

A subtree prune and regraft transformation proceeds in three steps:
one selects and removes an edge uv of the tree, thereby dividing the tree
into two subtrees T, (containing u) and T, (containing v); then one selects
and subdivides an edge of T},, giving a new vertex w; finally, one connects
u and w by an edge, and removes all vertices of degree two.

e Tree bisection-reconnection metric
The tree bisection-reconnection metric (or TBR-metric) on the set
T(X) of all phylogenetic X-trees is defined, for all T7,T> € T(X), as
the minimum number of tree bisection and reconnection transformations
required to transform T3 into T5.

A tree bisection and reconnection transformation proceeds in three steps:
one selects and removes an edge uv of the tree, thereby dividing the tree
into two subtrees T,, (containing u) and T, (containing v); then one selects
and subdivides an edge of T, giving a new vertex w, and an edge of T,
giving a new vertex z; finally one connects w and z by an edge, and removes
all vertices of degree two.

e Quartet distance
The quartet distance (see [EMMS5]) is a distance of the set Tj,(X) of all
binary phylogenetic X-trees, defined, for all Ty, T5 € Ty(X), as the number
of mismatched quartets (from the total number (}) possible quartets) for
T1 and TQ.

This distance is based on the fact that, given four leaves {1,2,3,4} of
a tree, they can only be combined in a binary subtree in three different
ways: (12]34), (13]24), or (14/23): a notation (12|34) refers to the binary
tree with the leaf set {1,2,3,4} in which removing the inner edge yields
the trees with the leaf sets {1,2} and {3,4}.

e Triples distance
The triples distance (see [CPQ90]) is a distance of the set Ty(X) of
all binary phylogenetic X-trees, defined, for all 77,7y € Ty(X), as the
number of triples (from the total number (%) possible triples) that differ
(for example, by which leaf is the outlier) for 77 and T5.

e Perfect matching distance
The perfect matching distance is a distance on the set Ty, (X) of all
rooted binary phylogenetic X-trees with the set X of n labeled leaves,
defined, for any 71,75 € Ty, (X), as the minimum number of interchanges
necessary to bring the perfect matching of 77 to the perfect matching of T5.

Given a set A = {1,...,2k} of 2k points, a perfect matching of A is
a partition of A into k pairs. A rooted binary phylogenetic tree with n
labeled leaves has a root and n — 2 internal vertices distinct from the root.
It can be identified with a perfect matching on 2n — 2, different from the



15.4 Distances on trees 283

root, vertices by following construction: label the internal vertices with
numbers n + 1,...,2n — 2 by putting the smallest available label as the
parent of the pair of labeled children of which one has the smallest label
among pairs of labeled children; now a matching is formed by peeling off
the children, or sibling pairs, two by two.
e Tree rotation distance

The tree rotation distance is a distance on the set T,, of all rooted
ordered binary trees with n interior vertices, defined, for all T, T, € T,,,
as the minimum number of rotations, required to transform 77 into T5.

Given interior edges uv, vv’, vv” and uw of a binary tree, the rotation
is replacing them by edges uv, uv”, vv’ and vw.

There is a bijection between edge flipping operations in triangulations
of convex polygons with n + 2 vertices and rotations in binary trees with
n interior vertices.

e Attributed tree metrics
An attributed tree is a triple (V, E, «), where T' = (V, E) is the underlying
tree, and « is a function which assigns an attribute vector a(v) to every
vertex v € V. Given two attributed trees (V1, E1, «) and (Va, Es, ), con-
sider the set of all subtree isomorphisms between them, i.e., the set of all
isomorphisms f : Hy — Hy, Hy C Vi, Hy C V5, between their induced
subtrees.

Given a similarity s on the set of attributes, the similarity between
isomorphic induced subtrees is defined as W(f) =) <y, s(a(v), B(f(v))).
Let ¢ be the isomorphism with maximal similarity W (¢) = W(¢).

The following semi-metrics on the set T, of all attributed trees are
used:

. max{|V1],|Va|} — W(9)
il + Vo] — 2W(9)
31— — W)

4.1

N =

max{|Vi[,[Va]}
_ W)
[Vi[+[Va[-W ()

They become metrics on the set of equivalences classes of attributed trees:
two attributed trees (Vi, E1, «) and (Va, Es, ) are called equivalent if they
are attribute-isomorphic, i.e., if there exists an isomorphism ¢ : V4 — V5
between the trees 77 and T, such that, for any v € V3, we have a(v) =
B(g(v)). Then V] = [Va| = W (g).
e Greatest agreement subtree distance

The greatest agreement subtree distance is a distance of the set T
of all trees, defined, for all 77,7, € T, as the minimum number of leaves
removed to obtain a (greatest) agreement subtree.

An agreement subtree (or common pruned tree) of two trees is an iden-
tical subtree that can be obtained from both trees by pruning leaves with
the same label.



Chapter 16
Distances in Coding Theory

Coding Theory deals with the design and properties of error-correcting codes
for the reliable transmission of information across noisy channels in trans-
mission lines and storage devices. The aim of Coding Theory is to find codes
which transmit and decode fast, contain many valid code words, and can
correct, or at least detect, many errors. These aims are mutually exclusive,
however; so, each application has its own good code.

In communications, a code is a rule for converting a piece of information
(for example, a letter, word, or phrase) into another form or representation,
not necessarily of the same sort. Encoding is the process by which a source
(object) performs this conversion of information into data, which is then sent
to a receiver (observer), such as a data processing system. Decoding is the
reverse process of converting data, which has been sent by a source, into
information understandable by a receiver.

An error-correcting code is a code in which every data signal conforms to
specific rules of construction so that departures from this construction in the
received signal can generally be automatically detected and corrected. It is
used in computer data storage, for example in dynamic RAM, and in data
transmission. Error detection is much simpler than error correction, and one
or more “check” digits are commonly embedded in credit card numbers in
order to detect mistakes. The two main classes of error-correcting codes are
block codes, and convolutional codes.

A block code (or uniform code) of length n over an alphabet A, usually,
over a finite field Fy = {0,...,¢—1}, is a subset C' C A"; every vector z € C'
is called a codeword, and M = |C| is called size of the code. Given a metric d
on Fy (for example, the Hamming metric, Lee metric, Levenstein met-
ric), the value d* = d*(C) = ming yec oy d(x,y) is called the minimum
distance of the code C. The weight w(x) of a codeword x € C is defined as
w(x) = d(x,0). An (n, M, d*)-code is a g-ary block code of length n, size M,
and minimum distance d*. A binary code is a code over Fs.

When codewords are chosen such that the distance between them is maxi-
mized, the code is called error-correcting, since slightly garbled vectors can be
recovered by choosing the nearest codeword. A code C'is a t-error-correcting
code (and a 2t-error-detecting code) if d*(C') > 2t + 1. In this case each
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neighborhood Uy(x) = {y € C : d(z,y) < t} of € C is disjoint with Uy(y) for
any y € C,y # x. A perfect code is a g-ary (n, M,2t 4+ 1)-code for which the
M spheres U;(x) of radius t centered on the codewords fill the whole space
I} completely, without overlapping.

A block code €' C Fy is called linear if C'is a vector subspace of Fy.
An [n, k]-code is a k-dimensional linear code C' C Fy (with the minimum
distance d*); it has size ¢, i.e., it is an (n, ¢¥, d*)-code. The Hamming code
is the linear perfect one-error correcting (%, qq%ll — 1, 3)-code.

A k x n matrix G with rows that are basis vectors for a linear [n, k]-code C
is called a generator matriz of C. In standard form it can be written as (15| A),
where 1y, is the k x k identity matrix. Each message (or information symbol,
source symbol) u = (uy,...,ug) € IF’; can be encoded by multiplying it (on the
right) by the generator matrix: uG € C. The matrix H = (—A”|1,,_;) is called
the parity-check matrizof C. The number r = n — k corresponds to the number
of parity check digits in the code, and is called the redundancy of the code C.
The information rate (or code rate) of a code C'is the number R = %. For
a g-ary [n, k]-code, R = %log2 g; for a binary [n, k]-code, R = %

A convolutional code is a type of error-correction code in which each k-bit
information symbol to be encoded is transformed into an n-bit codeword,
where R = % is the code rate (n > k), and the transformation is a function
of the last m information symbols, where m is the constraint length of the
code. Convolutional codes are often used to improve the performance of radio
and satellite links. A variable length code is a code with codewords of different
lengths.

In contrast to error-correcting codes which are designed only to increase
the reliability of data communications, cryptographic codes are designed to
increase their security. In Cryptography, the sender uses a key to encrypt
a message before it is sent through an insecure channel, and an authorized
receiver at the other end then uses a key to decrypt the received data to a
message. Often, data compression algorithms and error-correcting codes are
used in tandem with cryptographic codes to yield communications that are
efficient, robust to data transmission errors, and secure to eavesdropping and
tampering. Encrypted messages which are, moreover, hidden in text, image,
etc., are called steganographic messages.

16.1 Minimum distance and relatives

e Minimum distance
Given a code C' C V, where V is an n-dimensional vector space equipped
with a metric d, the minimum distance d* = d*(C) of the code C is
defined by

min d(z,vy).
L n (z,y)
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The metric d depends on the nature of the errors for the correction of which
the code is intended. For a prescribed correcting capacity it is necessary
to use codes with a maximum number of codewords. The most widely
investigated such codes are the g-ary block codes in the Hamming metric
dp(z,y) =iz £y, i=1,...,n}.

For a linear code C the minimum distance d*(C') = w(C), where
w(C) = min{w(z) : z € C} is a minimum weight of the code C'. As there
are rank(H) < n — k independent columns in the parity check matrix H
of an [n, k]-code C, then d*(C) < n — k + 1 (Singleton upper bound).

e Dual distance
The dual distance d* of a linear [n, k]-code C' C F? is the minimum
distance of the dual code C*+ of C.

The dual code C+ of C is defined as the set of all vectors of [y that
are orthogonal to every codeword of C: C*+ = {v € FJ : (v,u) = 0 for any
u € C}. The code C is a linear [n,n — k]-code. The (n — k) x n generator
matrix of C* is the parity-check matrix of C.

e Bar product distance
Given linear codes C7 and C5 of length n with Cy C C1, their bar product
C1|Cy is a linear code of length 2n, defined by C1|Cy = {z|z +y : x €
Cr,y € Ca}.

The bar product distance is the minimum distance d*(C1|Cs) of the

bar product C4|Cs.

e Design distance

A linear code is called a cyclic code if all cyclic shifts of a codeword
also belong to C, i.e., if for any (ag,...,a,—1) € C the vector (a,—_1,
ag,...,an—2) € C. It is convenient to identify a codeword (aq,...,an—1)
with the polynomial ¢(z) = ag + a1x + - -+ + a,_12"~1; then every cyclic
[n, k]-code can be represented as the principal ideal (g(z)) = {r(z)g(x) :
r(z) € Ry} of the ring R,, = F,(z)/(z™ — 1), generated by the polynomial
g(z) = go+grz+---+2"F, called the generator polynomial of the code C.

Given an element « of order n in a finite field Fys, a Bose-Chaudhuri—
Hocquenghem [n, k]-code of design distance d is a cyclic code of length
n, generated by a polynomial g(z) in Fy(x) of degree n — k, that has roots
at a, o2, ..., a®"!. The minimum distance d* of such a code of odd design
distance d is at least d.

A Reed-Solomon code is a Bose-Chaudhuri-Hocquenghem code with
s = 1. The generator polynomial of a Reed—Solomon code of design dis-
tance d is g(z) = (z — @) ... (z — a™1) with degree n — k = d — 1; that
is, for a Reed—Solomon code the design distance d = n — k + 1, and the
minimum distance d* > d. Since, for a linear [n, k]-code the minimum dis-
tance d* < n — k + 1 (Singleton upper bound), a Reed—Solomon code has
the minimum distance d* = n — k + 1 and achieves the Singleton upper
bound. Compact disc players use a double-error correcting (255,251, 5)
Reed-Solomon code over Fosg.
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e Goppa designed minimum distance
The Goppa designed minimum distance is a lower bound
d*(m) for the minimum distance of one-point geometric Goppa codes (or
algebraic geometry codes) G(m). For G(m), associated to the divisors D
and mP, m € N, of a smooth projective absolutely irreducible algebraic
curve of genus ¢g > 0 over a finite field Fy, one has d*(m) = m +2 — 2g if
2g—2<m<n.

In fact, for a Goppa code C(m) the structure of the gap sequence at P
may allow one to give a better lower bound of the minimum distance (cf.
Feng—Rao distance).

e Feng—Rao distance
The Feng—Rao distance dpr(m) is a lower bound for the minimum
distance of one-point geometric Goppa codes G(m) which is better than
the Goppa designed minimum distance. The method of Feng and
Rao for encoding the code C'(m) decodes errors up to half the Feng-Rao
distance dpg(m), and gives an improvement of the number of errors that
one can correct for one-point geometric Goppa codes.

Formally, the Feng—Rao distance is defined as follows. Let S be a sub-
semi-group S of NU{0} such that the genus g = [NU{0}\S] of S is finite,
and 0 € S. The Feng—Rao distance on S is a function érg : S — NU{0}
such that dpr(m) = min{v(r) : r > m,r € S}, where v(r) = [{(a,b) €
S? 1 a+ b = r}|. The generalized r-th Feng—Rao distance on S is
defined by 6% p(m) = min{v[my,...,m,] :m <m; <--- < m,,m; € S},
where v[ms,...,m,;] ={a € S:m; —a €S for some i =1,...,7r}|. Then
Spr(m) = 0kr(m). (See, for example, [FaMu03].)

e Free distance
The free distance is the minimum non-zero Hamming weight of any code-
word in a convolutional code or a variable length code.

Formally, the k-th minimum distance dj of a convolutional code or
a variable length code is the smallest Hamming distance between any two
initial codeword segments which are k frame long and disagree in the
initial frame. The sequence d,d5,d5,... (df < d5 < dj < ...) is called
the distance profile of the code. The free distance of a convolutional code
or a variable length code is max; dj = lim;_.o df = d.

o Effective free distance
A turbo code is a long block code in which there are L input bits, and
each of these bits is encoded ¢ times. In the j-th encoding, the L bits are
sent through a permutation box P;, and then encoded via an [N;, L] block
encoder (code fragment encoder) which can be thought of as an L x N;
matrix. The overall turbo code is then a linear [Ny +- - -+ Ny, L]-code (see,
for example, [BGT93]).

The weight-i input minimum distance d*(C) of a turbo-code C' is the
minimum weight among codewords corresponding to input words of weight
1. The effective free distance of C is its weight-2 input minimum dis-
tance d*(C), i.e., the minimum weight among codewords corresponding to
input words of weight 2.
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e Distance distribution
Given a code C over a finite metric space (X,d) with the diameter
diam(X,d) = D, the distance distribution of C' is a (D + 1)-vector
(Ao,...,Ap), where A; = ‘—é‘|{(c,c/) e C?: d(c,c/) = 4}|. That is, one
considers A;(c) as the number of code words at distance ¢ from the code-
word ¢, and takes A; as the average of A;(c) over all ¢ € C. Ay = 1 and,
if d* = d*(C) is the minimum distance of C, then A; =--- = Ag_1 = 0.

The distance distribution of a code with given parameters is important,
in particular, for bounding the probability of decoding error under dif-
ferent decoding procedures from maximum likelihood decoding to error
detection. It can also be helpful in revealing structural properties of codes
and establishing nonexistence of some codes.

e Unicity distance

The unicity distance of a cryptosystem (Shannon 1949) is the minimal
length of a cyphertext that is required in order to expect that there exists
only one meaningful decryption for it. For classic cryptosystems with fixed
key space, the unicity distance is approximated by the formula H(K)/D,
where H(K) is the key space entropy (roughly log, N, where N is the
number of keys), and D measures the redundancy of the plaintext source
language in bits per letter.

A cryptosystem offers perfect secrecy if its unicity distance is infinite.
For example, the one-time pads offer perfect secrecy; they were used for
the “red telephone” between the Kremlin and the White House.

More generally, Pe-security distance of a cryptosystem (Tilburg and
Boekee 1987) is the minimal expected length of cyphertext that is required
in order to break the cryptogram with an average error probability of at
most Pe.

16.2 Main coding distances

e Arithmetic codes distance

An arithmetic code (or code with correction of arithmetic errors) is a fi-
nite subset of the set Z of integers (usually, non-negative integers). It is
intended for the control of the functioning of an adder (a module perform-
ing addition). When adding numbers represented in the binary number
system, a single slip in the functioning of the adder leads to a change in
the result by some power of 2, thus, to a single arithmetic error. Formally,
a single arithmetic error on 7 is defined as a transformation of a number
n € Z to a number n’ =n+2,i=12....

The arithmetic codes distance is a metric on Z, defined, for any
ni,ng € Z, as the minimum number of arithmetic errors taking ni to ny. It
can be written as we(ny —ng), where wa(n) is the arithmetic 2-weight of n,
i.e., the smallest possible number of non-zero coefficients in representations
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n = Zf:o ;2!, where ¢; = 0,41, and k is some non-negative integer.
In fact, for each n there is a unique such representation with e, # 0,
eieir1 = 0 for all ¢ = 0,...,k — 1, which has the smallest number of
non-zero coefficients (cf. arithmetic r-norm metric in Chap.[I2]).

e Sharma—Kaushik distance
Let ¢ > 2, m > 2. A partition {By, B1,...Bq_1} of Z,, is called a
Sharma-Kaushik partition if the following conditions hold:

1. B():{O};

2. Forany i€ Z,,,i € Bgifand only if m—i€ Bs, s=1,2,...,¢q—1;

3. If i € By, j € By, and s > ¢, then min{i, m — i} > min{j,m — j};

4. If s >t, s,t =0,1,...,q — 1, then |Bg| > |By| except for s = ¢—1 in
which case |By_1| > $|By_a|.

Given a Sharma—Kaushik partition of Z,,, the Sharma—Kaushik weight
wgr(x) of any element © € Z,, is defined by wgk(x) = i if € By,
i€{0,1,...,q—1}.

The Sharma—Kaushik distance (see, for example, [ShKa97]) is a met-
ric on Z,,, defined by

wsk(z —vy).

The Sharma-Kaushik distance on Z), is defined by w¥y (z — y) where,
for x = (z1,...3,) € Z1, one has w, (z) = > | wsk ().

The Hamming metric and the Lee metric arise from two specific
partitions of the above type: Py = { By, B1}, where By = {1,2,...,q—1},
and Py = {Bo, B1,...,B|g2}, where B; = {i,m —i}, i =1,...,[2].

e Absolute summation distance
The absolute summation distance (or Lee distance) is the Lee metric
on the set Z' = {0,1,...,m — 1}", defined by

Wee (SIJ - il/) )

where wree(x) = > min{z;,m — x;} is the Lee weight of x =
(X1,...,xpn) €EZT,.

If Z7 is equipped with the absolute summation distance, then a subset
C of Z is called a Lee distance code. Lee distance codes are used for
phase-modulated and multilevel quantized-pulse-modulated channels, and
have several applications to the toroidal interconnection networks. The
most important Lee distance codes are negacyclic codes.

e Mannheim distance

Let Z[i] = {a+bi : a,b € Z} be the set of Gaussian integers. Let m = a+bi
(a > b>0) be a Gaussian prime, i.e., either

(1) (a+bi)(a—bi) = a®>+b* = p, where p = 1 (mod 4) is a prime number, or
(2) m=p+0-i=p, where p =3 (mod 4) is a prime number.
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The Mannheim distance is a distance on Z[i], defined, for any two
Gaussian integers x and y, as the sum of the absolute values of the real
and imaginary parts of the difference z—y (mod 7). The modulo reduction,
before summing the absolute values of the real and imaginary parts, is the
difference between the Manhattan metric and the Mannheim distance.

The elements of the finite field F, = {0,1,...,p—1} for p =1 (mod 4),
p = a® + b?, and the elements of the finite field Fy2 for p = 3 (mod 4),
p = a, can be mapped on a subset of the Gaussian integers using the
complex modulo function p(k) = k — [W](a +bi), k=0,...,p—1,
where [.] denotes rounding to the closest Gaussian integer. The set of the
selected Gaussian integers a + bi with the minimal Galois norms v a? + b?
is called a constellation. This representation gives a new way to construct
codes for two-dimensional signals. Mannheim distance was introduced to
make QQAM-like signals more susceptible to algebraic decoding methods.
For codes over hexagonal signal constellations a similar metric can be
introduced over the set of the Fisenstein—Jacobi integers. It is useful for
block codes over tori. (See, for example, [Hube93|, [Hube94].)

e Generalized Lee metric

Let F,,m denote the finite field with p™ elements, where p is prime number
and m > 1 is an integer. Let ¢; = (0,...,0,1,0,...,0), 1 < i < k, be
the standard basis of Z*. Choose elements a; € Fpm, 1 <4 < k, and
the mapping ¢ : Z¥ — Fpm, sending any = = Zle zie;, x; € ZF, to
o(x) = Zle a;z;(mod p), so that ¢ is surjective. So, for each a € Fpm,
there exists z € Z* such that a = ¢(z). For each a € Fym, its k-dimensional
Lee weight is wyr(a) = min{g:f:1 || : = (2;) € Zya = ¢(x)}.

The generalized Lee metric between vectors (a;) and (b;) of F}.. is
defined (Nishimura and Hiramatsu 2008) by

Zka(aj — b])
=1

It is the Lee metric (or absolute summation distance) if ¢(e;) = 1
while ¢(e;) = 0 for 2 < i < k. It is the Mannheim distance if k = 2,
p = 1 (mod 4), ¢(e1) = 1 while ¢(e2) = a is a solution in F, of the
quadratic congruence 22 = —1 (mod p).
e Poset distance
Let (V,,, =) be a poset on V,, = {1,...,n}. A subset I of V,, is called ideal
if v € I and y < 2 imply that y € I. If J C V,,, then (J) denotes the
smallest ideal of V,, which contains J. Consider the vector space Fy over a
finite field F,. The P-weight of an element x = (z1,...,x,) € Fy is defined
as the cardinality of the smallest ideal of V,, containing the support of x:
wp(z) = [(supp(x))|, where supp(z) = {i: z; # 0}.
The poset distance (see [BGLI3]) is a metric on Fy, defined by

wp(r —y).
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If Fy is equipped with a poset distance, then a subset C' of Fy is called a
poset code. If V,, forms the chain 1 < 2 < --- < n, then the linear code C
of dimension k consisting of all vectors (0,...,0,ap—g41,...,an) € Fyisa
perfect poset code with the minimum (poset) distance di(C) =n—k+ 1.
If V,, forms an antichain, then the poset distance coincides with
the Hamming metric. If V,, consists of finite disjoint union of
chains of equal lengths, then the poset distance coincides with the
Rosenbloom—Tsfasman metric.
e Rank distance
Let F, be a finite field, K = Fy= an extension of degree m of I, and
E = K" a vector space of dimension n over K. For any a = (a1,...a,) € E
define its rank, rank(a), as the dimension of the vector space over Fy,
generated by {ai,...,a,}.
The rank distance is a metric on E, defined by

rank(a — b).

Since the rank distance between two codewords is at most the Hamming
distance between them, for any code C' C E its minimum (rank) distance
dp(C) < min{m,n — log,m |C| + 1}. A code C with dj;(C) = n —
log,m [C| 41, n < m, is called a Gabidulin code (see [Gabi85]). A code C
with dj, ;- (C) =m, m < n, is called a full rank distance code. Such a code
has at most ¢" elements. A mazimal full rank distance code is a full rank
distance code with ¢™ elements; it exists if and only if m divides n.
e Gabidulin—Simonis metrics

Let 7 be the vector space over a finite field F, and let F' = {F; :i € I} be
a finite family of its subsets such that the minimal linear subspace of Fy
containing U;er F; is Fy. Without loss of generality, F' can be an antichain
of linear subspaces of Fy.

The F-weight wr of a vector x = (x1,...,2,) € Fy is the smallest |.J]
over such subsets J C I that x belongs to the minimal linear subspace of
Iy containing Ui;e s F;. A Gabidulin—Simonis metric (or F-distance,
see [GaSi98]) on FY is defined by

wp(x —y).

The Hamming metric corresponds to the case of F;,7 € I, forming the
standard basis. The Vandermonde metric is F-distance with F;,i € I,
being the columns of a generalized Vandermonde matrix. Among other
coding Gabidulin—Simonis metrics are: rank distance, b-burst distance,
Gabidulin’s combinatorial metrics (cf. poset distance), etc.
e Rosenbloom—Tsfasman metric

Let My, n(F,) be the set of all m x n matrices with entries from a fi-
nite field F, (in general, from any finite alphabet A = {a1,...,a4}). The
Rosenbloom—Tsfasman norm ||.||rr on My, ,(Fy) is defined as follows:
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it m=1and a= (&,&,...,&) € Mi,(Fy), then [|01,]|rr = 0, and
lla||rr = max{i : & # 0} for a # 01,5 if A= (a1,...,am)" € My ,(Fy),
aj € My, (Fy), 1 < j <m, then |[A]|rr = 371, |laj|[rr.

The Rosenbloom—Tsfasman metric m (or ordered distance,
in [MaSt99]) is a matrix norm metric (in fact, an ultrametric) on
My, (Fy), defined by

[|[A = Bl||rr.

For every matrix code C' C M,, ,(F,) with qk elements the minimum
(Rosenbloom—-Tsfasman) distance djp(C) < mn — k + 1. Codes meeting
this bound are called mazimum distance separable codes.

The most used distance between codewords of a matrix code C' C
My, (Fy) is the Hamming metric on M, ,,(F,), defined by ||A — B||#,
where ||Al|g is the Hamming weight of a matrix A € M,, ,(F,), i.e., the
number of its non-zero entries.

The LRTJ-metric (introduced as Generalized-Lee—Rosenbloom—
Tsfasman pseudo-metric by Jain, 2008) is the norm metric for the
following generalization of the above norm ||a||gr in the case a # 01 ,:

llal|Lrrs = max min{&;,q — &} +max{i — 1: & # 0}.
1<i<n

It is the Lee metric for m = 1 and the Rosenbloom—Tsfasman metric for
q=2,3.

e Interchange distance
The interchange distance (or swap metric) is a metric on the code
C C A" over an alphabet A, defined, for any z,y € C, as the minimum
number of transpositions, i.e., interchanges of adjacent pairs of symbols,
converting x into y.

¢ ACME distance
The ACME distance on a code C' C A" over an alphabet A is defined by

min{dy (z,y),dr(z,y)},

where dp is the Hamming metric, and d; is the interchange distance.
e Indel distance

Let W be the set of all words over an alphabet A. A deletion of a letter in

a word 3 = by...b, of the length n is a transformation of § into a word

ﬁ/ =b1...b;—1b;11...b, of the length n — 1. An insertion of a letter in

a word 3 = by ...b, of the length n is a transformation of § into a word

ﬁ” =b1...b;bbiy1 ... by, of the length n + 1.

The indel distance (or distance of codes with correction of deletions
and insertions) is a metric on W, defined, for any «, 5 € W, as the min-
imum number of deletions and insertions of letters converting « into (3.
(Cf. indel metric in Chap.[ITl)
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A code C with correction of deletions and insertions is an arbitrary finite
subset of W. An example of such a code is the set of words 5 = by ...b, of
length n over the alphabet A = {0, 1} for which """, ib; =0 (mod n+1).
The number of words in this code is equal to m S 0(k)2 Dk where
the sum is taken over all odd divisors k of n+1, and ¢ is the Fuler function.

e Interval distance
The interval distance (see, for example, [Bata99]) is a metric on a finite

group (G, +,0), defined by
Wint (.’L‘ - y>7

where w;,:(2) is an interval weight on G, i.e., a group norm whose values
are consecutive non-negative integers 0, ..., m. This distance is used for
group codes C' C G.

e Fano metric
The Fano metric is a decoding metric with the goal to find the best
sequence estimate used for the Fano algorithm of sequential decoding of
convolutional codes.

A convolutional code is a type of error-correction code in which each k-bit
information symbol to be encoded is transformed into an n-bit codeword,
where R = % is the code rate (n > k), and the transformation is a function
of the last m information symbols. The linear time-invariant decoder (fized
convolutional decoder) maps an information symbol u; € {us,...,un},
u; = (W1, - Uik), u;; € Fo, into a codeword z; € {z1,...,an}, x; =
(i1, ..., Tin), Tij € Fa, so one has a code {z1,...,xn} with N code-
words which occur with probabilities {p(x1),...,p(xn)}. A sequence of
I codewords forms a stream (or path) x = w1y = {w1,...,2;} which is
transmitted through a discrete memoryless channel, resulting in the re-
ceived sequence y = yj1;. The task of a decoder which minimizes the
sequence error probability is to find a sequence which maximizes the joint
probability of input and output channel sequences p(y, ) = p(y|z) - p(z).
Usually it is sufficient to find a procedure that maximizes p(y|z), and
a decoder that always chooses as its estimate one of the sequences that
maximizes it or, equivalently, the Fano metric, is called a maz-likelihood
decoder.

Roughly, we consider each code as a tree, where each branch repre-
sents one codeword. The decoder begins at the first vertex in the tree,
and computes the branch metric for each possible branch, determining
the best branch to be the one corresponding to the codeword x; resulting
in the largest branch metric, pp(z;). This branch is added to the path,
and the algorithm continues from the new node which represents the sum
of the previous node and the number of bits in the current best code-
word. Through iterating until a terminal node of the tree is reached, the
algorithm traces the most likely path.
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In this construction, the bit Fano metric is defined by

p(yilzi) _

log ;
? P(yi)

the branch Fano metric is defined by

n

() = g P ),

and the path Fano metric is defined by
l
pr(epn) =Y ure(r;),
j=1

where p(y;|r;i) are the channel transition probabilities, p(y;) = >,
P(2m)p(Yi|Tm) is the probability distribution of the output given the input
symbols averaged over all input symbols, and R = % is the code rate.

For a hard-decision decoder p(y; = 0|z; = 1) = p(y; = 1lz; = 0) = p,
0<p< %7 the Fano metric for a path ;) can be written as

pr(xp) = —adu(yp, zp,g) +68-1-n,

where a = —log, 1’%}) >0, 8 =1—R+log,(1—p), and d is the Hamming
metric.
The generalized Fano metric for sequential decoding is defined by

in w
w PlY;1 ;4
LICIEDS (1°g2 p((y]j|>1]—)w - wR) ’

j=1

0 < w < 1. When w = 1/2, the generalized Fano metric reduces to the
Fano metric with a multiplicative constant 1/2.

e Metric recursion of a MAP decoding
Maximum a posteriori sequence estimation, or MAP decoding for variable
length codes, used the Viterbi algorithm, and is based on the metric re-
cursion

i (m)
m 7 p(yk,n L, = +1) m
Agcm) = A,(g_)1 + Z x,(cnjl) log, o \x(;n) + 2log, p(u,(€ )),
n=1 k,n k,n = -

where Afcm) is the branch metric of branch m at time (level) k, zy,
is the n-th bit of the codeword having l,(cm) bits labeled at each branch,
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Yk,n is the respective received soft-bit, u}" is the source symbol of branch m
at time k and, assuming statistical independence of the source symbols,
the probability p(u,(cm)) is equivalent to the probability of the source sym-
bol labeled at branch m, that may be known or estimated. The metric
increment is computed for each branch, and the largest value, when us-
ing log-likelihood-values, of each state is used for further recursion. The
decoder first computes the metric of all branches, and then the branch
sequence with largest metric starting from the final state backward is

selected.



Chapter 17
Distances and Similarities in Data
Analysis

A data set is a finite set comprising m sequences (le, conxd), jefl,...,m},
of length n. The values z},..., 2™ represent an attribute S;. It can be nu-

merical, including continuous (real numbers) and binary (presence/absence
expressed by 1/0), ordinal (numbers expressing rank only), or nominal (which
are not ordered).

Cluster Analysis (or Classification, Taxonomy, Pattern Recognition) con-
sists mainly of partition of data A into a relatively small number of clusters,
i.e., such sets of objects that (with respect to a selected measure of distance)
are at best possible degree, “close” if they belong to the same cluster, “far”
if they belong to different clusters, and further subdivision into clusters will
impair the above two conditions.

We give three typical examples. In Information Retrieval applications,
nodes of peer-to-peer database network export data (collection of text docu-
ments); each document is characterized by a vector from R™. An user query
consists of a vector z € R™, and the user needs all documents in the database
which are relevant to it, i.e., belong to the ball in R™, center x, of fixed
radius and with a convenient distance function. In Record Linkage, each doc-
ument (database record) is represented by a term-frequency vector x € R™
or a string, and one wants to measure semantic relevancy of syntactically
different records.

In FEcology, let x,y be species abundance distributions, obtained by two
sample methods (i.e., z;,y; are the numbers of individuals of species j,
observed in a corresponding sample); one needs a measure of the distance
between = and y, in order to compare two methods. Often data are organized
in a metric tree first, i.e., in a tree indexed in a metric space.

Once a distance d between objects is selected, the linkage metric, i.e.,
a distance between clusters A = {ay,...,a,} and B = {b1,...,b,} is usually
one of the following:

average linkage: the average of the distances between the all members

e s iy daidy)
of the clusters, i.e., ==L ———;

single linkage: the distance between the nearest members of the clusters,
i.e., mini’j d(ai, bj),
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complete linkage: the distance between the furthest members of the
clusters, i.e., max; ; d(a;, b;);
centroid linkage: the distance between the centroids of the clusters,

ie., ||@— b2, where a = ZTG, and b = %;
Ward linkage: the distance /™% [|a — bl

Multidimensional Scaling is a technique developed in the behavioral and
social sciences for studying the structure of objects or people. Together with
Cluster Analysis, it is based on distance methods. But in Multi-dimensional
Scaling, as opposed to Cluster Analysis, one starts only with some m x m
matrix D of distances of the objects and (iteratively) looks for a represen-
tation of objects in R™ with low n, so that their Euclidean distance matrix
has minimal square deviation from the original matrix D. The related Metric
Nearness Problem (Dhillon, Sra and Tropp 2003) is to approximate a given
finite distance space (X, d) by a metric space (X,d").

There are many similarities used in Data Analysis; the choice depends
on the nature of data and is not an exact science. We list below the main
such similarities and distances.

Given two objects, represented by non-zero vectors x = (z1,...,z,) and
y= (y1,--.,yn) from R™ the following notation is used in this chapter.

> x; means Y., ;.

1 is the characteristic function of event F: 1p = 1 if F' happens, and
17 = 0 otherwise.

[|z|]2 = v/>_ @2 is the ordinary Euclidean norm on R".

T denotes —m, i.e., the mean value of components of . So, T = % if ©
is a frequency vector (discrete probability distribution), i.e., all z; > 0, and
Sa;=1;and T = "TH if z is a ranking (permutation), i.e., all z; are different
numbers from {1,...,n}.

In the binary case x € {0,1}" (i.e., when z is a binary n-sequence), let
X={1<i<n:z;=1}and X = {1 <i<n:x; =0}. Let | XNY|, | XUY],
|X\Y| and |XAY| denote the cardinality of the intersection, union, dif-
ference and symmetric difference (X\Y) U (Y\X) of the sets X and Y,

respectively.

17.1 Similarities and distances for numerical data

e Ruzicka similarity
The Ruzicka similarity is a similarity on R™, defined by

> min{z;,y; }
>_omax{z;, ¥}
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The corresponding distance

1 domin{wi,yi} ) |wi —yil
S max{z;,y;} > max{wz;,y;}
coincides on RZ, with the fuzzy polyonucleotide metric (cf. Chap.23)).

e Roberts similarity
The Roberts similarity is a similarity on R™, defined by

Z(xz + yz) min{x;,y; }

max{z;,y; }

Yo(xi +vi)

e Ellenberg similarity
The Ellenberg similarity is a similarity on R", defined by

Y@+ yiﬂm-yﬁm
> (@i + i) (L + Layy—0)
The binary cases of Ellenberg and Ruzicka similarities coincide; it is

called Tanimoto similarity (or Jaccard similarity of community,
Jaccard 1908):

|X NY]|
IXuYy|

The Tanimoto distance (or biotope distance, Jaccard distance)
is a distance on {0, 1}", defined by

XNY|  |XAY]

1-— = .
XUY| |[XUY

e Gleason similarity
The Gleason similarity is a similarity on R", defined by

S(wi+y)

The binary cases of Cleason, Motyka and Bray—Curtis similarities coincide;
it is called Dice similarity 1945, (or Segrensen similarity, Czekanowsky
similarity):
21X NY| 21X NnY|
XUY|+|XNY|] |X|+]|Y]

The Czekanowsky—Dice distance (or nonmetric coefficient, Bray and
Curtis 1957) is a near-metric on {0,1}", defined by

2AXNY|  |XAY]
(XI+ Y] X[+ Y]
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e Intersection distance
The intersection distance is a distance on R™, defined by

> min{z;, y;}
min{d >z, Y yi}

e Motyka similarity
The Motyka similarity is a similarity on R™, defined by

Zmin{xi7yi} _ nZ min{xiayi}
(@i +yi) T+y

e Bray—Curtis similarity
The Bray—Curtis similarity 1957, is a similarity on R", defined by

2 .
m Zmln{x“yj}.

It is called Renkonen % similarity (or percentage similarity) if x,y are
frequency vectors.

e Sgrensen distance
The Sgrensen distance (or Bray—Curtis distance) is a distance on
R™, defined (Sgrensen 1948) by

Z |xz yz|
Z(zz +yi)

e Canberra distance
The Canberra distance (Lance and Williams 1967) is a distance on R™,

defined by
|xz - yz
2 e 5w |2 + [yl

e Kulczynski similarity 1
The Kulczynski similarity 1 is a similarity on R", defined by

Z min{xi, yi}
> |z — wil
The corresponding distance is

> |wi = yil
Z min{xi, yi} ’

The Soergel distance is

ol — il
Z ma‘X{x% y7}
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e Kulczynski similarity 2
The Kulczynski similarity 2 is a similarity on R™, defined by

1 1
g (sc + y) Zmin{fmyi}
In the binary case it takes the form

(X NY]- (X[ +[Y])
21X - 1Y

e Baroni—Urbani—Buser similarity
The Baroni—Urbani—Buser similarity is a similarity on R™, defined by

Y_min{z;, y; } + \/E min{x;, y; } Z(max1§j§n Tj — max{z;,y;}) .
Yo max{w;, y;} + \/Z min{z;, y; } Z(maxlgjgn Tj — max{z;,y;})

In the binary case it takes the form

|XmY|+\/|XmY|-|XuY\

XUY|+y/IXnY[-[XUY|

17.2 Relatives of Euclidean distance

e Power (p,r)-distance
The power (p,r)-distance is a distance on R", defined by

O Jei — wil?)™

For p =r > 1, it is the [,-metric, including the Euclidean, Manhattan
(or magnitude) and Chebyshev (or mazimum-value, dominance) metrics
for p = 2,1 and oo, respectively.

The case (p,r) = (2,1) corresponds to the squared Euclidean dis-
tance.

The power (p,r)-distance with 0 < p = r < 1 is called the fractional
l,-distance (not a metric since the unit balls are not convex); it is used
for “dimensionality-cursed” data, i.e., when there are few observations and
the number n of variables is large. The case 0 < p < r = 1, i.e., of the p-th
power of the fractional /,-distance, corresponds to a metric on R".

The weighted versions (3 w;|x; — yi|p)% (with non-negative weights w;)
are also used, for p = 1,2, in applications.
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e Penrose size distance
The Penrose size distance is a distance on R", defined by

\/ﬁz |5 — yil-

It is proportional to the Manhattan metric.
The mean character distance (Czekanowsky 1909) is defined by
> lzi—yil
P
The Lorentzian distance is a distance defined by > In(1 + |z; — vil)-
e Penrose shape distance
The Penrose shape distance is a distance on R"”, defined by

V(@i —7) — (i - )2

The sum of squares of two above Penrose distances is the squared
Euclidean distance.

e Binary Euclidean distance
The binary Euclidean distance is a distance on R", defined by

\/Z(lmi>0 —1y,50)%.

e Mean censored Euclidean distance
The mean censored Euclidean distance is a distance on R", defined by

(@i —yi)?
Z 1x?+yi2;£0

e Normalized [,-distance
The normalized /,-distance, 1 < p < o0, is a distance on R”, defined by

|z = yllp
[zllp + [yl

The only integer value p for which the normalized [,-distance is a metric,
is p = 2. Moreover, in it is shown that, for any a,b > 0, the

z—yll2 : ;
ST+ [pllz) 1S & metric.
e Clark distance

The Clark distance (Clark 1952) is a distance on R", defined by

[ ()

distance
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e Meehl distance
The Meehl distance (or Meehl index) is a distance on R", defined by

Z (i = yi = Tit1 +yir1)”

1<i<n—1

e Hellinger distance
The Hellinger distance is a distance on R}, defined by

[ (E-E)

(Cf. Hellinger metric in Chap.[I4])
The Whittaker index of association is defined by %
e Symmetric y?-measure
The symmetric y?-measure is a distance on R”, defined by

Z 2 (27 —y@)?
Ty i+ Yi

T

<[S

e Symmetric y2-distance
The symmetric x2-distance (or chi-distance) is a distance on R", de-
fined by

Z T+7 ﬂ y12_ Z x+y (i —yiT)?
xz+yz x2+yz .

e Mahalanobis distance
The Mahalanobis distance (or statistical distance) is a distance on R™,
defined (Mahalanobis 1936) by

o= ylla = /(detA) (z — y) A~ @ — )T,

where A is a positive-definite matrix (usually, the covariance matriz of
a finite set consisting of observation wvectors); cf. Mahalanobis semi-
metric in Chap.[I4).

If A is a diagonal matrix (moreover, the identity matrix), then the
Mahalanobis distance is called the normalized Euclidean distance
(moreover, is the Euclidean distance). For heterogenous data sets (i.e.,
with ranges and variances of data points z,y € R" dependent on dimen-
sion i € {1,...,n}) the scaled Euclidean distance is

. q.)2
Z (ajz U?yz) ’

i
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where o7 is the variance in dimension i. The maximum scaled differ-
ence (used by Maxwell and Buddemeier 2002, for coastal typology) is
defined by

(zi — yi)2

max
¢ P 3

K2

17.3 Similarities and distances for binary data

Usually, such similarities s range from 0 to 1 or from —1 to 1; the correspond-

ing distances are usually 1 — s or 155, respectively.

e Hamann similarity
The Hamann similarity 1961, is a similarity on {0, 1}", defined by

2[XAY| L= 2| XAY|
n N n '

e Rand similarity
The Rand similarity (or Sokal-Michener’s simple matching) is a simi-
larity on {0,1}", defined by

XAY] _, _|xAY]
n n

Its square root is called the Fuclidean similarity. The corresponding metric
@ is called the wvariance or Manhattan similarity; cf. Penrose size
distance.

e Sokal-Sneath similarity 1
The Sokal-Sneath similarity 1 is a similarity on {0,1}", defined by

2| XAY|
n+ |XAY|

e Sokal-Sneath similarity 2
The Sokal-Sneath similarity 2 is a similarity on {0, 1}", defined by

IXNY]|
X UY|+ | XAY]

e Sokal-Sneath similarity 3
The Sokal-Sneath similarity 3 is a similarity on {0, 1}", defined by

| XAY|
| XAY|
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Russel-Rao similarity
The Russel-Rao similarity is a similarity on {0, 1}", defined by

XNY|
—

Simpson similarity
The Simpson similarity (overlap similarity) is a similarity on {0,1}",
defined by
|X NY]|
min{| X[, [Y'[}
Forbes similarity
The Forbes similarity is a similarity on {0,1}", defined by

n|X NY]|
Xyl

Braun—Blanquet similarity
The Braun—Blanquet similarity is a similarity on {0,1}", defined by

IXNY]
max{|X|, [Y[}

The average between it and the Simpson similarity is the Dice
similarity.
Roger—Tanimoto similarity
The Roger—Tanimoto similarity 1960, is a similarity on {0,1}", de-
fined by
| XAY|
n+ | XAY|

Faith similarity
The Faith similarity is a similarity on {0,1}", defined by

X NY|+ | XAY|
2n ’

Tversky similarity
The Tversky similarity is a similarity on {0,1}", defined by

XY
A XAY [+ 00X Y]

It becomes the Tanimoto, Dice and (the binary case of ) Kulczynsky 1
similarities for (a,b) = (1,1), (1,1) and (1,0), respectively.
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¢ Mountford similarity
The Mountford similarity 1962, is a similarity on {0, 1}", defined by

21X NY]
[ X[IYAX |+ [Y[[X\Y]

¢ Gower—Legendre similarity
The Gower—Legendre similarity is a similarity on {0,1}", defined by

IXAY| B |XAY|
alXAY|+ |XAY| n+(a—1)|XAY]|

e Anderberg similarity
The Anderberg similarity (or Sokal-Sneath 4 similarity) is a similarity
on {0,1}", defined by

Xon (L, LY BT, L
4 X[ Y 4 X1 Yl)

e Yule @) similarity
The Yule @ similarity (Yule 1900) is a similarity on {0,1}", defined by

X NY|-[XUY| - [X\V][V\X]
IXNY| [ XUY|+|X\Y]-|Y\X|

e Yule Y similarity of colligation
The Yule Y similarity of colligation (Yule 1912) is a similarity on
{0,1}", defined by

VX Y| [XOY| - VXWX

JIX Ay KOV + RV

e Dispersion similarity
The dispersion similarity is a similarity on {0,1}", defined by

(X NY|- | XUY|—|X\Y] |[Y\X]
5 .

n

e Pearson ¢ similarity
The Pearson ¢ similarity is a similarity on {0, 1}", defined by

[XNY|: | XUY|—|X\Y]| [Y\X]
VXX Y] - 7]
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e Gower similarity 2
The Gower similarity 2 (or Sokal-Sneath 5 similarity) is a similarity on
{0,1}", defined by
IXNY| | XUY]|

VIXI-IX]- Y] 7]

e Pattern difference
The pattern difference is a distance on {0,1}", defined by

4X\Y] - \X|

n2

e ()o-difference
The Qo-difference is a distance on {0, 1}", defined by

X\ VY]
XNY[- [XUY|

17.4 Correlation similarities and distances

e Covariance similarity
The covariance similarity is a similarity on R", defined by

(@ —T)(yi —7) _ > Ty

n n

—Z-7.

e Correlation similarity
The correlation similarity (or Pearson correlation, or, by its full name,
Pearson product-moment correlation linear coefficient) s is a similarity on

R™, defined by
> (@i —7T)(yi —7) '
V(=7 Xy — 7))

The dissimilarities 1 — s and 1 — s are called the Pearson correlation
distance and squared Pearson distance, respectively. Moreover,

2(1—3s) =

T —T B Yi— Y
2 <\/Z($j -7 V(Y —y)2>

is a normalization of the Euclidean distance (cf., a different one, normal-
ized [,-distance above in this chapter).

In the case T = 7 = 0, the correlation similarity becomes m
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e Cosine similarity
The cosine similarity (or Orchini similarity, angular similarity, normal-
ized dot product) is a similarity on R"™, defined by

(z,y)

——— = Cos ¢,
(|2 - [|y]]2

where ¢ is the angle between vectors x and y. In the binary case, it becomes

XY
[ XT]- 1Y

and is called the Ochiai—Otsuka similarity.

In Record Linkage, cosine similarity is called TF-IDF similarity; it (or
tf-idf, TFIDF) are used as an abbreviation of Frequency — Inverse Docu-
ment Frequency. In Ecology, cosine similarity is often called niche overlap
similarity, cf. Chap.23

The cosine distance is defined by 1 — cos ¢.

The Kumar—Hassebrook similarity is defined by

(z,y)
|z —yll3 + (2, y)

e Angular semi-metric
The angular semi-metric on R" is the angle (measured in radians) be-
tween vectors z and y:

(z,y)

arccos ———————.
[lz[]2 - [yl

e Orloci distance
The Orloci distance (or chord distance) is a distance on R", defined by

5 <1_ (z,y) )
llll2 - [lyll2
e Similarity ratio

The similarity ratio (or Kohonen similarity) is a similarity on R™,
defined by

(z,y)
(z,y) + ||z =yl

Its binary case is the Tanimoto similarity. Sometimes, the similarity
ratio is called the Tanimoto coefficient or extended Jaccard coefficient.
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e Morisita—Horn similarity
The Morisita—Horn similarity (Morisita 1959) is a similarity on R”,
defined by

2(z,y)
lll13 - % + llyll3 -

<||8]

e Spearman rank correlation
In the case when x,y € R™ are rankings (or permutations), i.e., the compo-
nents of each of them are different numbers 1,...,n, one hasT =73 = "T“
For such ordinal data, the correlation similarity becomes

6
L= ey 2w

It is the Spearman p rank correlation, called also the Spearman rho
metric, but it is not a distance. The Spearman p distance is the
Fuclidean metric on permutations.

The Spearman footrule is defined by

3
1_n2_12|$i—yi|~

It is the [;-version of the Spearman rank correlation. The Spearman
footrule distance is the [{-metric on permutations.

Another correlation similarity for rankings is the Kendall 7 rank cor-
relation, called also Kendall 7 metric (but it is not a distance), which is
defined by

2 Zlgiq’gn sign(x; — xj)sign(y; — y;)
n(n—1) ’

The Kendall 7 distance on permutations is defined by

{@i,5) : 1 <i < g <, (xi —25)(yi — ;) < O}].

e Cook distance
The Cook distance is a distance on R™ giving a statistical measure of de-
ciding if some i-th observation alone affects much regression estimates. It
is a normalized squared Euclidean distance between estimated pa-
rameters from regression models constructed from all data and from data
without i-th observation.

The main similar distances, used in Regression Analysis for detecting
influential observations, are DFITS distance, Welsch distance, and Hadi
distance.

e Distance-based machine learning
The following setting is used for many real-world applications (neural
networks, etc.), where data are incomplete and have both continuous
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and nominal attributes. Given an m x (n + 1) matrix ((x;;)), its row
(i0, Xi1, - - -, Tin ) denotes an instance input vector x; = (x;1, ..., Ty ) With
output class x;o; the set of m instances represents a training set during
learning. For any new input vector y = (y1,...,¥yn), the closest (in terms
of a selected distance d) instance x; is sought, in order to classify y, i.e.,
predict its output class as x;q.

The distance [WiMa97] d(z;,y) is defined by

with dj(z;;,y;) = 1 if x;; or y; is unknown. If the attribute j (i.e., the
range of values z;; for 1 < ¢ < m) is nominal, then d;(x;;,y;) is defined,
for example, as 1;,,4,,, or as

Z‘ {1<t<m:azp=a,zi=zy5} [{1<t<m:zp=a,zi;=y;}||*

" {1<t<m: =z} {1<t<m:zy=y;}

for ¢ =1 or 2; the sum is taken over all output classes, i.e., values a from
{z10 : 1 <t < m}. For continuous attributes j, the number d; is taken
to be |z;; — y;| divided by max; x;; — min; x,;, or by i of the standard
deviation of values x4, 1 <t < m.



Chapter 18
Distances in Mathematical Engineering

In this chapter we group the main distances used in Robot Motion, Cellular
Automata, Feedback Systems and Multi-objective Optimization.

18.1 Motion planning distances

Automatic motion planning methods are applied in Robotics, Virtual Real-
ity Systems and Computer Aided Design. A motion planning metric is a
metric used in automatic motion planning methods.

Let a robot be a finite collection of rigid links organized in a kinematic
hierarchy. If the robot has n degrees of freedom, this leads to an n-dimensional
manifold C, called the configuration space (or C-space) of the robot. The
workspace W of the robot is the space in which the robot moves. Usually, it
is modeled as the Euclidean space E2. The obstacle region C'B is the set of
all configurations ¢ € C' that either cause the robot to collide with obstacles
B, or cause different links of the robot to collide among themselves. The
closure cl(Cfree) of Cpree = C\{CB} is called the space of collision-free
configurations. A motion planning algorithm must find a collision-free path
from an initial configuration to a goal configuration.

A configuration metric is a motion planning metric on the configuration
space C of a robot.

Usually, the configuration space C' consists of six-tuples (x,y, z, a, 3,7),
where the first three coordinates define the position, and the last three the
orientation. The orientation coordinates are the angles in radians. Intuitively,
a good measure of the distance between two configurations is a measure of
the workspace region swept by the robot as it moves between them (the
swept volume distance). However, the computation of such a metric is
prohibitively expensive.

The simplest approach has been to consider the C-space as a Cartesian
space and to use Euclidean distance or its generalizations. For such config-
uration metrics, one normalizes the orientation coordinates so that they

M.M. Deza and E. Deza, Encyclopedia of Distances, 311
DOI 10.1007/978-3-642-00234-2_18, (© Springer-Verlag Berlin Heidelberg 2009
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get the same magnitude as the position coordinates. Roughly, one multiplies
the orientation coordinates by the maximum =z, y or z range of the workspace
bounding box. Examples of such metrics are given below.

More generally, the configuration space of a three-dimensional rigid body
can be identified with the Lie group ISO(3): C = R3 x RP3. The general
form of a matrix in ISO(3) is given by

RX
(47)

where R € SO(3) = RP3, and X € R3. If X, and R, represent the trans-
lation and rotation components of the configuration ¢ = (X,, R,) € ISO(3),
then a configuration metric between configurations ¢ and r is given by
Wi || Xq—Xr| [+ wror f(Ry, Ry ), where the translation distance || X, —X,|| is
obtained using some norm ||.|| on R?, and the rotation distance f(R,, R,)
is a positive scalar function which gives the distance between the rotations
R,, R, € SO(3). The rotation distance is scaled relative to the translation
distance via the weights wy, and wy.¢.

A workspace metric is a motion planning metric in the workspace R3.

There are many other types of metrics used in motion planning methods,
in particular, the Riemannian metrics, the Hausdorff metric and, in
Chap.[@ the separation distance, the penetration depth distance and
the growth distances.

e Weighted Euclidean distance
The weighted Euclidean distance is a configuration metric on RS,
defined by

1

3

3 6
(Z |z — il® + Z(wz’|$i - yz’|)2>
=1 i=4

for any z,y € R® where = (1,...,76), 71,272,723 are the position
coordinates, x4, x5, xg are the orientation coordinates, and w; is the nor-
malization factor. It gives the same importance to both position and
orientation.

e Scaled weighted Euclidean distance
The scaled weighted Euclidean distance is a configuration metric
on RS, defined by

1
2

3 6
<SZ|9C¢—Z/¢|2 1_5 Z ’LU1|1'1 yz )
i=1 i=4

for any z,3 € RS. The scaled weighted Euclidean distance changes the
relative importance of the position and orientation components through
the scale parameter s.
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e Weighted Minkowskian distance
The weighted Minkowskian distance is a configuration metric on
RS, defined by

1
P

3 6
(Z |lzi — gl + Z(wi|$i - yi|)p>
i=1 =4

for any =,y € RS. It uses a parameter p > 1; as with Euclidean, both
position and orientation have the same importance.

e Modified Minkowskian distance
The modified Minkowskian distance is a configuration metric on
RS, defined by

1

3 6 P3
(z I yi|>m)

=1 i=4

for all z,y € RS. It distinguishes between position and orientation coordi-
nates using the parameters p; > 1 (for the position) and py > 1 (for the
orientation).

e Weighted Manhattan distance
The weighted Manhattan distance is a configuration metric on RS,

defined by
3 6
Z |z — yi| + Z’UJJSCZ — yil
i=1 i=4
for any z,y € RS. It coincides, up to a normalization factor, with the usual
Iy -metric on RY.
¢ Robot displacement metric
The robot displacement metric (or DISP distance, Latombe 1991, and
LaValle 20006) is a configuration metric on a configuration space C' of a
robot, defined by
ma la(g) ~ a(r)]
for any two configurations ¢, € C, where a(q) is the position of the point
a in the workspace R? when the robot is at configuration ¢, and ||.|| is one
of the norms on R3, usually the Euclidean norm. Intuitively, this metric
yields the maximum amount in workspace that any part of the robot is
displaced when moving from one configuration to another (cf. bounded
box metric).
e FEuler angle metric
The Euler angle metric is a rotation metric on the group SO(3) (for
the case of using roll-pitch-yaw Fuler angles for rotation), defined by

Wyot \/A(glv 92)2 + A(¢17 ¢2)2 + A(nla 772)2
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for all Ry, Ry € SO(3), given by Euler angles (01, ¢1,m1), (02, ¢2,12), re-
spectively, where A(6y, 02) = min{|0; — 03], 27 — |61 — 02|}, 0; € [0, 27], is
the metric between angles, and w,..; is a scaling factor.
e Unit quaternions metric

The unit quaternions metric is a rotation metric on the unit quater-
nion representation of SO(3), i.e., a representation of SO(3) as the set
of points (unit quaternions) on the unit sphere S° in R* with identified
antipodal points (¢ ~ —¢q).

This representation of SO(3) suggested a number of possible metrics on
it, for example, the following ones:

L min{{lg —7[|,[lg + (I}
2. [[In(g~r)]|

3. wree(1 = |A])

4. arccos |\l

where ¢ = q1 + @i + q3J + quk, 2?21 ¢ =1, ||| is a norm on R*, X\ =
(q,7) = Z?Zl qiri, and w,o; s a scaling factor.

e Center of mass metric
The center of mass metric is a workspace metric, defined as the
FEuclidean distance between the centers of mass of the robot in the two
configurations. The center of mass is approximated by averaging all object
vertices.

¢ Bounded box metric
The bounded box metric is a workspace metric, defined as the max-
imum Fuclidean distance between any vertex of the bounding box of the
robot in one configuration and its corresponding vertex in the other con-
figuration. Cf. unrelated box metric in Chap.[l

e Pose distance
A pose distance provides a measure of dissimilarity between actions
of agents (including robots and humans) for Learning by Imitation in
Robotics.

In this context, agents are considered as kinematic chains, and are repre-
sented in the form of a kinematic tree, such that every link in the kinematic
chain is represented by a unique edge in the corresponding tree. The con-
figuration of the chain is represented by the pose of the corresponding tree
which is obtained by an assignment of the pair (n;,l;) to every edge e;.
Here n; is the unit normal, representing the orientation of the correspond-
ing link in the chain, and [; is the length of the link.

The pose class consists of all poses of a given kinematic tree. One of the
possible pose distances is a distance on a given pose class which is the sum
of measures of dissimilarity for every pair of compatible segments in the
two given poses.

Another way is to view a pose D(m) in the context of the a precedent and
a subsequent frames as a 3D point cloud {D? (i) : m—a < i < m+a,j € J},
where J is the joint set. The set D(m) contains k = |J|(2a + 1) points
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(joint positions) p; = (x4, yi,2i), 1 < ¢ < k. Let Ty, . denote the linear
transformation which simultaneously rotates all points of a point cloud
about the y axis by an angle 6 € [0.27] and then shifts the resulting points
in the xz plane by a vector (z,0,2) € R3. Then the 3D point cloud
distance (Kover and Gleicher 2002) between the poses D(m) = (pi)iec[1,k
and D(n) = (gi)ic[1,x) is defined as

k
min{z |lpi — To,x,z(Qi)Hg}-
=1

0,2,z 4
i

Cf. Procrustes distance in Chap.2Il
e Millibot train metrics
In Microbotics (the field of miniature mobile robots), nanorobot, micro-
robot, millirobot, minirobot, and small robot are terms for robots with
characteristic dimensions at most 1 Wm, mm, cm, dm, and m, respectively.
A millibot train is a team of heterogeneous, resource-limited millirobots
which can collectively share information. They are able to fuse range in-
formation from a variety of different platforms to build a global occupancy
map that represents a single collective view of the environment. In the mo-
tion planning of millibot trains for the construction of a motion planning
metric, one casts a series of random points about a robot and pose each
point as a candidate position for movement. The point with the highest
overall utility is then selected, and the robot is directed to that point.
Thus, the free space metric, determined by free space contour, only
allows candidate points that do not drive the robot through obstructions;
obstacle avoidance metric penalizes for moves that get too close to
obstacles; frontier metric rewards for moves that take the robot to-
wards open space; formation metric rewards for moves that maintain
formation; localization metric, based on the separation angle between
one or more localization pairs, rewards for moves that maximize localiza-
tion (see [GKCO04]); cf. collision avoidance distance, piano movers
distance in Chap.[[9

18.2 Cellular automata distances

Let S,2 < |S| < oo, denote a finite set (alphabet), and let S denote the
set of bi-infinite sequences {z;}°___ (configurations) of elements (letters)
of S. A (one-dimensional) cellular automaton is a continuous mapping f :
S — S§°° that commutes with the translation map g : S® — S5, de-
fined by g(z;) = x;11. Once a metric on S is defined, the resulting metric
space (X, d) together with the self-mapping f form a dynamical system,

cf. Chap.[
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A cellular automaton can be defined as any discrete dynamical system
on the finite state space X. Cellular automata (generally, bi-infinite arrays
instead of sequences) are used in Symbolic Dynamics, Computer Science and,
as models, in Physics and Biology. The main distances between configurations

{z;}; and {y; }; from S (see [BFK99]) follow.

e Cantor metric
The Cantor metric is a metric on S°° defined, for x # y, by

92— min{i>0:|z; —y;|+|z_;—y—;|#0} )

It corresponds to the case a = % of the generalized Cantor metric in
Chap.[TIl The corresponding metric space is compact.
e Besicovitch semi-metric

The Besicovitch semi-metric is a semi-metric on S* defined, for z #
y, by
| =l <i<l:x; #y

2041

hml—>oo

Cf. Besicovitch distance on measurable functions in Chap.[I3]
The corresponding semi-metric space is complete.
¢ Weyl semi-metric
The Weyl semi-metric is a semi-metric on S°°, defined by

I .

lim;_. ., max
keZ

This and the above semi-metric are translation invariant, but are nei-
ther separable nor locally compact. Cf. Weyl distance in Chap.[I3

18.3 Distances in Control Theory

Control Theory considers the feedback loop of a plant P (a function repre-
senting the object to be controlled, a system) and a controller C' (a function
to design). The output y, measured by a sensor, is fed back to the reference
value . Then the controller takes the error e = r — y to make inputs u = Ce.
Subject to zero initial conditions, the input and output signals to the plant
are related by y = Pu, where r,u,v and P,C are functions of the frequency
variable s. So, y = 1fI§CT and y ~ r (i.e., one controls the output by simply
setting the reference) if PC is large for any value of s. If the system is mod-
eled by a system of linear differential equations, then its transfer function

PC_ s a rational function. The plant P is stable if it has no poles in the

+PC
closed right half-plane C.={s € C: s > 0}.
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The robust stabilization problem is: given a nominal plant (a model) Py
and some metric d on plants, find the open ball of maximal radius which
is centered in P, such that some controller (rational function) C stabilizes
every element of this ball.

The graph G(P) of the plant P is the set of all bounded input-output pairs
(u,y = Pu). Both u and y belong to the Hardy space H*(Cy) of the right
half-plane; the graph is a closed subspace of H?(C, )+ H?(C,). In fact, G(P)
is a closed subspace of H?(C?), and G(P) = f(P)- H*(C?) for some function
f(P), called the graph symbol.

All metrics below are gap-like metrics; they are topologically equivalent,
and the stabilization is a robust property with respect of each of them.

e Gap metric
The gap metric between plants P; and P, (Zames and El-Sakkary 1980)
is defined by
gap(Py, Py) = [[II(Py) — II(P2)|]2,

where II(P;), ¢ = 1,2, is the orthogonal projection of the graph G(P;) of
P; seen as a closed subspace of H?(C?). We have

gap(Pr, Py) = max{d1(P1, P2), 01 (P, P1)},

where 01 (P, P») = infgepe ||f(P1) — f(P2)Q||a=, and f(P) is a graph
symbol.

Here H®° is the space of matrix-valued functions that are analytic and
bounded in the open right half-plane {s € C: s > 0}; the H*>°-norm is
the maximum singular value of the function over this space.

If A is an m X n matrix with m < n, then its n columns span an
n-dimensional subspace, and the matrix B of the orthogonal projection
onto the column space of A is A(ATA)~'AT. If the basis is orthonormal,
then B = AAT. In general, the gap metric between two subspaces of
the same dimension is the lo-norm of the difference of their orthogonal
projections; see also the definition of this distance as an angle distance
between subspaces.

In some applications, when subspaces correspond to autoregressive mod-
els, the Frobenius norm is used instead of the ly-norm. Cf. Frobenius
distance in Chap.[I2

e Vidyasagar metric
The Vidyasagar metric (or graph metric) between plants P, and Ps is
defined by
max{dg(Pl, Pg),ég(Pg,Pl)},

where 02(Py, P) = inf) <1 [|f(P1) — f(P2) Q] m=.

The behavioral distance is the gap between extended graphs of P;
and P; a term is added to the graph G(P), in order to reflect all possible
initial conditions (instead of the usual setup with the initial conditions
being zero).
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e Vinnicombe metric
The Vinnicombe metric (v-gap metric) between plants P; and P, is
defined by

8,(Pi,P) = ||(1+ PoPy) 3 (P — P)(1+ PyP1) "%

if wno(f*(P2)f(P1)) = 0, and it is equal to 1 otherwise. Here f(P) is
the graph symbol function of plant P. See [Youn98| for the definition
of the winding number wno(f) of a rational function f and for a good
introduction to Feedback Stabilization.

18.4 MOEA distances

Most optimization problems have several objectives but, for simplicity, only
one of them is optimized, and the others are handled as constraints. Multi-
objective optimization considers (besides some inequality constraints) an
objective vector function f : X C R™ — R¥ from the search (or genotype,
decision variables) space X to the objective (or phenotype, decision vectors)
space f(X) = {f(x) :x € X} C RF.

A point 2* € X is Pareto optimal if, for every other z € X, the decision
vector f(x) does not Pareto dominate f(z*), i.e., f(x) < f(x*). The Pareto
optimal front is the set PF* = {f(x) : * € X*}, where X* is the set of all
Pareto optimal points.

Multi-objective evolutionary algorithms (MOEA) produce, at each genera-
tion, an approzimation set (the found Pareto front PFy,wn approximating
the desired Pareto front PF™) in objective space in which no element Pareto
dominates another element. Examples of MOEA metrics, i.e., measures
evaluating how close PF 0w, 18 to PE™, follow.

e Generational distance
The generational distance is defined by

(T d)?

)
m

where m = |PFgnown|, and d; is the Euclidean distance (in the objec-
tive space) between f7(z) (i.e., j-th member of PF},00,) and the nearest
member of PF*. This distance is zero if and only if PFppown = PF*.
The term generational distance (or rate of turnover) is also used
for the minimal number of branches between two positions in any system
of ranked descent represented by an hierarchical tree. Examples are:
phylogenetic distance on a phylogenetic tree, the number of generations
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separating a photocopy from the original block print, and the number of
generations separating the audience at a memorial from the commemo-
rated event.

e Spacing
The spacing is defined by

ST @—d)?
m—1 ’

where m = |PF known|, d; is the L1 -metric (in the objective space) between
fi(x) (i.e., j-th member of PFj,ouwn) and the nearest other member of
PF 1p0wn, while d is the mean of all d;.

e Overall non-dominated vector ratio
The overall non-dominated vector ratio is defined by

|PFknown|
|PF™|
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Chapter 19
Distances on Real and Digital Planes

19.1 Metrics on real plane

In the plane R? we can use many different metrics. In particular, any
L,-metric (as well as any norm metric for a given norm ||.|| on R?) can be
used on the plane, and the most natural is the Lo-metric, i.e., the Euclidean
metric dp(z,y) = \/(r1 —y1)2 + (¥2 — y2)? which gives the length of the
straight line segment [z, y], and is the intrinsic metric of the plane. How-
ever, there are other, often “exotic,” metrics on R?. Many of them are used
for the construction of generalized Voronoi diagrams on R? (see, for example,
Moscow metric, network metric, nice metric). Some of them are used
in Digital Geometry.

Erdés-type distance problems (given, usually, for the Euclidean metric
on R?) are of interest for R™ and for other metrics on R%. Examples of such
problems are to find out:

the least number of different distances (or largest occurrence of a given
distance) in an m-subset of R?; the largest size of a subset of R? determining
at most m distances;

the minimum diameter of an m-subset of R? with only integral distances
(or, say, without a pair (dy,ds) of distances with 0 < |dy — da| < 1);

existence of an m-subset of R? with, for each 1 < i < m, a distance
occurring exactly ¢ times (examples are known for m < 8);

existence of a dense subset of R? with rational distances (Ulam problem);

existence of m,m > 7, non-collinear points of R? with integral distances;

forbidden distances of a partition of R?, i.e., distances not occurring within
each part.

e City-block metric
The city-block metric is the Li-metric on R?, defined by

|z =yl = |1 —y1| + |22 — 2l

This metric is also called the taxicab metric, Manhattan metric,
rectilinear metric, right-angle metric; on Z? it is called the grid
metric and 4-metric.

M.M. Deza and E. Deza, Encyclopedia of Distances, 323
DOI 10.1007/978-3-642-00234-2_19, (© Springer-Verlag Berlin Heidelberg 2009
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e Chebyshev metric
The Chebyshev metric (or lattice metric, chessboard metric, king-
move metric, 8-metric) is the L.,-metric on R?, defined by

|7 = Ylloo = max{[z1 — v, [x2 — y2l}.

On Z™, this metric is called also the uniform metric, sup metric and
boz metric.
e (p,q)-relative metric
Let 0 < g <1, p>max{l —gq, z—gq}, and let [|.||2 be the Euclidean norm
on R? (in general, on R™).
The (p, q)-relative metric is a metric on R? (in general, on R and
even on any Ptolemaic space (V,||.]|)), defined by

|z = yll2
a
(z(Il[l5 + llylI))?

for x or y # 0 (and is equal to 0 otherwise). In the case of p = oo it has
the form

|z = yll2
(max{][z]], [[yll2})7

For ¢ = 1 and any 1 < p < o0, one obtains the p-relative metric (or
Klamkin-Meir metric); for ¢ = 1 and p = oo, one obtains the relative
metric. The original (1, 1)-relative metric is called the Schattschneider
metric.
e M-relative metric

Let f:[0,00) — (0,00) be a convex increasing function such that % is
decreasing for z > 0. Let ||.||2 be the Euclidean norm on R? (in general,
on R™).

The M-relative metric is a metric on R? (in general, on R" and even
on any Ptolemaic space (V,||.|])), defined by

[z = yll2
FAlzll2) - F(llyll2)

In particular, the distance

[z — yll2

1+ I8 /1 + [lyl13

is a metric on R? (on R™) if and only if p > 1. A similar metric on R?\{0}
(on R™\{0}) can be defined by

|z — yll2
[lz[l2 - [yl
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e MBR metric
The MBR metric (Schonemann 1982, for bounded response scales in
Psychology) is a metric on R?, defined by

|z =yl
1+ [z — yil|ze — yol

= tanh(arctanh(|z; — y1|) + arctanh(|za — y2|)).

e Moscow metric
The Moscow metric (or Karlsruhe metric) is a metric on R?, defined as
the minimum Euclidean length of all admissible connecting curves between
x and y € R2?, where a curve is called admissible if it consists only of
segments of straight lines passing through the origin and segments of circles
centered at the origin (see, for example, [KIeiSg]).

If the polar coordinates for points z,y € R? are (r,,0,), (ry,0,), respec-
tively, then the distance between them is equal to min{r,,r, }A(6, —0,)+
|ry —ry| if 0 < A(0,,0,) < 2, and is equal to r, + 1y, if 2 < A(0,,0,) <,
where A(0,,0,) = min{|0, — 0,|,27 — |0, — 0,]},6,.60, € [0,27), is the
metric between angles.

e French Metro metric
Given a norm [|.|| on R?, the French Metro metric is a metric on R?,
defined by

|z —yll
if x = cy for some ¢ € R, and by

[l + [lyll;

otherwise. For the Euclidean norm [|.||2, it is called the Paris metric,
hedgehog metric, radial metric, or enhanced SNCF metric. In this
case it can be defined as the minimum Euclidean length of all admissible
connecting curves between two given points x and y, where a curve is
called admissible if it consists only of segments of straight lines passing
through the origin.

In graph terms, this metric is similar to the path metric of the tree
consisting of a point from which radiate several disjoint paths.

The Paris metric is an example of an R-tree T which is simplicial, i.e.,
the set of points x with T\{z} not having two components is discrete and
closed.

e Lift metric
The lift metric (or raspberry picker metric or metric “river”) is a
metric on R?, defined by

|SU1 —y1|

if xo = y2, and by
|z1] + 2 — ya2| + |y1]
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if zy # yo (see, for example, [Brya85]). It can be defined as the mini-
mum Euclidean length of all admissible connecting curves between two

given points x and y, where a curve is called admissible if it consists only
of segments of straight lines parallel to the x;-axis and segments of the
To-axis.

The lift metric is an example of an non-simplicial (cf. French Metro
metric) R-tree.

e British Rail metric

Given a norm ||.|| on R? (in general, on R™), the British Rail metric is
a metric on R? (in general, on R™), defined by

[l + {1yl

for x # y (and it is equal to 0, otherwise).

It is also called the Post Office metric, caterpillar metric and
shuttle metric.

e Flower-shop metric

Let d be a metric on R?, and let f be a fixed point (a flower-shop) in the
plane.

The flower-shop metric (sometimes called SNCF metric) is a metric
on R? (in general, on any metric space), defined by

d(z, f) +d(f,y)

for x # y (and is equal to 0 otherwise). So, a person living at point z, who
wants to visit someone else living at point y, first goes to f, to buy some
flowers. In the case d(z,y) = ||z — y|| and the point f being the origin, it
is the British Rail metric.

If £ > 1 flower-shops f1,..., fr are available, one buys the flowers, where
the detour is a minimum, i.e., the distance between distinct points z,y is
equal to miny<;<x{d(z, f;) + d(fi,y)}

e Radar screen metric
Given a norm |.|| on R? (in general, on R"), the radar screen metric is
a metric on R? (in general, on R™), defined by

min{1, ||z —y][}-

It is a special case of the t-truncated metric from Chap.dl
e Rickman’s rug metric
Given anumber « € (0,1), the Rickman’s rug metric on R? is defined by
|21 = yi| + w2 — y2*
It is the case n = 2 of the parabolic distance in Chap.[6} see there other
metrics on R™, n > 2.
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e Burago—Ivanov metric
The Burago—Ivanov metric [Bulv(1] is a metric on R?, defined by

Hlle = [[yllo] + min{|lz|lz, [[y]|2} - vV £(2,9),

where Z(x,y) is the angle between vectors x and y, and ||.||2 is the

Euclidean norm on R2. The corresponding internal metric on R? is
equal to |[|z|l2 — [[yllz] if Z(z,y) = 0, and is equal to [|z||2 + |[yll2,
otherwise.
e 2n-gon metric

Given a centrally symmetric regular 2n-gon K on the plane, the 2n-gon
metric is a metric on R?, defined, for any z,y € R?, as the shortest
Euclidean length of a polygonal line from z to y with each of its sides
parallel to some edge of K.

If K is a square with the vertices {(£1,41)}, one obtains the Man-
hattan metric. The Manhattan metric arises also as the Minkowskian
metric with the unit ball being the diamond, i.e., a square with the ver-
tices {(1,0),(0,1),(—1,0),(0,-1)}.

e Fixed orientation metric
Given a set A, |A| > 2, of distinct orientations (i.e., angles with fixed
z-axis) on the plane R?, the A-distance (Widmayer, Wu and Wong 1987)
is Euclidean length of the shortest (zig-zag) path of line segments with
orientations from A. Any A-distance is a metric; it is called also a fixed
orientation metric.

A fixed orientation metric with A = {Z : 1 < i < n} for fixed
n € [2,00], is called a uniform orientation metric; cf. 2n-gon metric
above. It is the Li-metric, hexagonal metric, Ly-metric for n = 2, 3, oo,
respectively.

e Central Park metric
The Central Park metric is a metric on R?, defined as the length of a
shortest Li-path (Manhattan path) between two points z,y € R? in the
presence of a given set of areas which are traversed by a shortest Euclidean
path (for example, Central Park in Manhattan).

e Collision avoidance distance
Let O = {Oy,...,0,,} be a collection of pairwise disjoint polygons on the
Euclidean plane representing a set of obstacles which are neither transpar-
ent nor traversable.

The collision avoidance distance (or piano movers distance,
shortest path metric with obstacles) is a metric on the set R?\{O},
defined, for any z,y € R*\{O}, as the length of the shortest path among
all possible continuous paths, connecting = and y, that do not intersect
obstacles O;\00; (a path can pass through points on the boundary 90;
of O;),i=1,...m.
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e Rectilinear distance with barriers
Let O ={04,...,0,,} be aset of pairwise disjoint open polygonal barriers
on R%. A rectilinear path (or Manhattan path) P, from x to y is a collection
of horizontal and vertical segments in the plane, joining x and y. The path
P,, is called feasible if Py, N (U",B;) = 0.

The rectilinear distance with barriers (or rectilinear distance in
the presence of barriers) is a metric on R?\{O}, defined, for any z,y €
R2\{0O}, as the length of the shortest feasible rectilinear path from z to y.

The rectilinear distance in the presence of barriers is a restriction of the
Manhattan metric, and usually it is considered on the set {q1,...,¢,} C
R? of n origin-destination points: the problem to find such a path arises,
for example, in Urban Transportation, or in Plant and Facility Layout
(see, for example, [Lali81]).

e Link distance
Let P C R? be a polygonal domain (on n vertices and h holes), i.e., a closed
multiply-connected region whose boundary is a union of n line segments,
forming h + 1 closed polygonal cycles. The link distance (Suri 1986) is a
metric on P, defined, for any x,y € P, as the minimum number of edges
in a polygonal path from x to y within the polygonal domain P.

If the path is restricted to be rectilinear, one obtains the rectilinear link
distance. If each line segment of the path is parallel to one from a set A
of fixed orientations, one obtains the A-oriented link distance; cf. fixed
orientation metric above.

e Facility layout distances
A layout is a partition of a rectangular plane region into smaller rectangles,
called departments, by lines parallel to the sides of original rectangle. All
interior vertices should be three-valent, and some of them, at least one on
the boundary of each department, are doors, i.e., input-output locations.

The problem is to design a convenient notion of distance d(z,y)
between departments x and ¥y which minimizes the cost function
> uy F(@,y)d(z,y), where F(z,y) is some material flow between x and y.
The main distances used are:

The centroid distance, i.e., the shortest Euclidean or Manhattan
distance between centroids (the intersections of the diagonals) of = and y;

The perimeter distance, i.e., the shortest rectilinear distance be-
tween doors of z and y, but going only along the walls, i.e., department
perimeters.

e Quickest path metric
A quickest path metric (or network metric, time metric) is a metric
on R? (or on a subset of R?) in the presence of a given transportation
network, i.e., a finite graph G = (V, E) with V C R? and edge-weight
function w(e) > 1: the vertices and edges are stations and roads. For any
x,y € R? it is the time needed for a quickest path (i.e., a path minimizing
thetravel duration) between them when using, eventually, the network.
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Movement takes place, either off the network with unit speed, or along its
roads e € E with fixed speeds w(e) >> 1, with respect to a given metric d
on the plane (usually, the Euclidean metric, or the Manhattan metric).
The network G can be accessed or exited only at stations (usual discrete
model) or at any point of roads (the continuous model).

The heavy luggage metric (Abellanas, Hurtado and Palop 2005) is
a quickest path metric on R? in the presence of a network with speed 1
outside of the network and speed oo (so, travel time 0) inside of it.

The airlift metric is a quickest path metric on R? in the presence of an
airports network, i.e., a planar graph G = (V, E) on n vertices (airports)
with positive edge weights (we)ecr (flight durations). The graph may be
entered and exited only at the airports. Movement off the network takes
place with unit speed with respect to the Euclidean metric. We assume
that going by car takes time equal to the Euclidean distance d, whereas
the flight along an edge e = uv of G takes time w(e) <d(u,v). In the
simplest case, when there is an airlift between two points a,b € R?, the
distance between x and y is equal to

min{d(z,y),d(z,a) + w+d(b,y),d(x,b) + w + d(a,y)},

where w is the flight duration from a to b.

The city metric is a quickest path metric on R? in the presence of
a city public transportation network, i.e., a planar straight line graph G
with horizontal or vertical edges. G may be composed of many connected
components, and may contain cycles. One can enter/exit G at any point,
be it at a vertex or on an edge (it is possible to postulate fixed entry
points, too). Once having accessed G, one travels at fixed speed v>1
in one of the available directions. Movement off the network takes place
with unit speed with respect to the Manhattan metric (as in a large
modern-style city with streets arranged in north—south and east—west
directions).

The subway metric is a quickest path metric on R? which is a variant
of the city metric: a subway (in the form of a line in the plane) is used
within a city grid.

e Shantaram metric
For any positive numbers a,b with b < 2a < 2b, the Shantaram metric
between two points x,y € R? is 0, a or b if  and y coincide in exactly 2,
1 or no coordinates, respectively.

e Periodic metric
A metric d on R? is called periodic if there exist two linearly independent
vectors v and u such that the translation by any vector w = muv + nu,
m,n € Z, preserves distances, i.e., d(x,y)=d(z + w,y + w) for any
z,y € R? (cf. translation invariant metric in Chap.[).
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e Nice metric
A metric d on R? with the following properties is called nice (Klein and
Wood 1989):

1. d induces the Euclidean topology;

2. The d-circles are bounded with respect to the Euclidean metric;

3. If z,y € R? and 2 # y, then there exists a point z,z # x, 2 # y, such
that d(z,y) = d(z, ) + d(z, y);

4. If o,y € R?, & < y (where < is a fixed order on R?, the lexicographic
order, for example), C(x,y) = {z € R? : d(z,2) < d(y,2)}, D(z,y) =
{z € R? : d(x,2) < d(y,2), and D(z,y) is the closure of D(z,y), then
J(xz,y) = C(z,y) N D(z,y) is a curve homeomorphic to (0,1). The
intersection of two such curves consists of finitely many connected
components.

Every norm metric fulfills 1, 2, and 3 Property 2 means that the metric
d is continuous at infinity with respect to the Euclidean metric. Property
4 is to ensure that the boundaries of the correspondent Voronoi diagrams
are curves, and that not too many intersections exist in a neighborhood
of a point, or at infinity.

A nice metric d has a nice Voronoi diagram: in the Voronoi diagram
V(P,d,R?) (where P = {p1,...,px}, k > 2, is the set of generator points)
each Voronoi region V(p;) is a path-connected set with a non-empty
interior, and the system {V(p1),...,V(pk)} forms a partition of the plane.

e Contact quasi-distances
The contact quasi-distances are the following variations of the dis-
tance convex function (cf. Chap.[l) defined on R? (in general, on R™)
for any z,y € R2.

Given a set B C R?, the first contact quasi-distance dp is defined by

inf{la >0:y—2x € aB}

(cf. sensor network distances in Chap.29)).

Given, moreover, a point b € B and a set A C R2, the lin-
ear contact quasi-distance is a point-set distance defined by
dy(z, A) =inf{a > 0:ab+ 2z € A}.

The intercept quasi-distance is, for a finite set B, defined by
> e do(T,y)

|B| . ) . . . .
e Radar discrimination distance

The radar discrimination distance is a distance on R?, defined by

|pz — Py + 91y|

if z,y € R?\{0}, and by
Pz = pyl
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if z = 0 or y = 0, where, for each “location” x € R?, p, denotes the radial
distance of x from {0} and, for any z,y € R*\{0}, 0,, denotes the radian
angle between them.
e Ehrenfeucht—Haussler semi-metric
Let S be a subset of R? such that x; > x5 —1 > 0 for any = = (z1,22) € S.
The Ehrenfeucht—Haussler semi-metric (see [EhHa88]) on S is

defined by
log, ((ml + 1) (yl + 1)) .
Y2 X2
e Toroidal metric

The toroidal metric is a metricon 7= [0,1) x [0,1) = {z = (z1,22) €
R?:0 < 21,79 < 1}, defined for any z,y € R? by

\/ 13+ 13,

where ¢; = min{|z; — yi|, |x; — y; + 1]} for i = 1,2 (cf. torus metric).

e Circle metric
The circle metric is the intrinsic metric on the unit circle S' in the
plane. As S' = {(x,y) : 22 + 3% =1} = {€ : 0 < § < 27}, it is the length
of the shorter of the two arcs joining the points e, e’ € S, and can be
written as

. B e _ [9—6], i 0<|9—-0|<m,
mind ¢ = 9], 2m — [0 = I} = {27r —19—0), i |9—6] > 7
(Cf. metric between angles.)
e Angular distance
The angular distance traveled around a circle is the number of radians
the path subtends, i.e.,

==,
"

where [ is the length of the path, and r is the radius of the circle.

e Metric between angles
The metric between angles A is a metric on the set of all angles in the
plane, defined for any 6,4 € [0,27) (cf. circle metric) by

— 1 < -0 <
min{|0 — 9], 27 — |0 — Y|} = {27r|f |19(9_|,9‘7 i ! @‘f 9|9>|;_7T,
e Metric between directions
On R?, a direction [ is a class of all straight lines which are parallel to a
given straight line | C R?. The metric between directions is a metric
on the set L of all directions on the plane, defined, for any directions
Z, m € L, as the angle between any two representatives.
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e Circular-railroad quasi-metric
The circular-railroad quasi-metric on the unit circle S C R? is de-
fined, for any x,y € S*, as the length of the counterclockwise circular arc
from x to y in S'.

e Inversive distance
The inversive distance between two non-intersecting circles in the plane
is defined as the natural logarithm of the ratio of the radii (the larger to
the smaller) of two concentric circles into which the given circles can be
inverted.

Let ¢ be the distance between the centers of two non-intersecting circles
of radii @ and b < a. Then their inversive distance is given by

L]a?+ b2 —c?

h™
COs 2ab

The circumcircle and incircle of a triangle with circumradius R and
inradius v are at the inversive distance 2sinh_1(% )

Given three non-collinear points, construct three tangent circles such
that one is centered at each point and the circles are pairwise tangent to
one another. Then there exist exactly two non-intersecting circles that are
tangent to all three circles. These are called the inner and outer Soddy

circles. The inversive distance between the Soddy circles is 2 cosh™* 2.

19.2 Digital metrics

Here we list special metrics which are used in Computer Vision (or Pattern
Recognition, Robot Vision, Digital Geometry).

A computer picture (or computer image) is a subset of Z™ which is called
a digital nD space. Usually, pictures are represented in the digital plane (or
image plane) 7?2, or in the digital space (or image space) Z3. The points of Z?2
and Z3 are called pizels and vozels, respectively. An nD m-quantized space
is a scaling %Z”.

A digital metric (see, for example, [RoPf68]) is any metric on a digital
nD space. Usually, it should take integer values.

The metrics on Z" that are mainly used are the L;- and L.,-metrics,
as well as the Lo-metric after rounding to the nearest greater (or lesser)
integer. In general, a given list of neighbors of a pixel can be seen as a list of
permitted one-step moves on Z2. Let us associate a prime distance, i.e., a
positive weight, to each type of such move.

Many digital metrics can be obtained now as the minimum, over all admis-
sible paths (i.e., sequences of permitted moves), of the sum of corresponding
prime distances.
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In practice, the subset (Z,,)" = {0, 1,...,m —1}" is considered instead of
the full space Z". (Z,)? and (Z,,)? are called the m-grill and m-framework,
respectively. The most used metrics on (Z,,)" are the Hamming metric
and the Lee metric.

e Grid metric
The grid metric is the Li-metric on Z™. The Li-metric on Z" can be
seen as the path metric of an infinite graph: two points of Z™ are adjacent
if their L;-distance is equal to one. For Z? this graph is the usual grid.
Since each point has exactly four closest neighbors in Z? for the L;-metric,
it is also called the 4-metric.

For n = 2, this metric is the restriction on Z? of the city-block met-
ric which is also called the taxicab metric, rectilinear metric, or
Manhattan metric.

e Lattice metric

The lattice metric is the L. -metric on Z". The L .-metric on Z"™ can be
seen as the path metric of an infinite graph: two points of Z" are adjacent if
their L.-distance is equal to one. For Z?2, the adjacency corresponds to the
king move in chessboard terms, and this graph is called the L., -grid, while
this metric is also called the chessboard metric, king-move metric, or
king metric. Since each point has exactly eight closest neighbors in Z?2
for the L ,-metric, it is also called the 8-metric.

This metric is the restriction on Z™ of the Chebyshev metric which
is also called the sup metric, or uniform metric.

e Hexagonal metric
The hexagonal metric is a metric on Z? with a unit sphere S'(x) (cen-
tered at x € Z?), defined by S'(z) = S} () U{(z1 — 1,25 — 1), (x1 — 1,
x5+ 1)} for = even (i.e., with even x5), and by S'(z) = S} (x) U {(z1 +
1,29 — 1), (x1 + 1,22 + 1)} for x odd (i.e., with odd z3). Since any unit
sphere S'(z) contains exactly six integral points, the hexagonal metric is
also called the 6-metric (see [LuRo76]).

For any z,y € Z?2, this metric can be written as

1 zo+ 1 +1
max{|uz|,2(|uQ|+u2)+{22 J_VHQ J_ul,

1 Tg+1 Yo +1
e

where w1 = 1 — y1, and us = x9 — Yo.

The hexagonal metric can be defined as the path metric on the hezxag-
onal grid of the plane. In hexagonal coordinates (hy,hs) (in which the hq-
and hg-axes are parallel to the grid’s edges) the hexagonal distance be-
tween points (hi,hs) and (i1,42) can be written as |hy — 41| + |ha — io] if
(hl—il)(hz—ig) > 0, and as max{\hl—iﬂ, |h2—l2|} if (hl—ll)(hz—lg) S 0.
Here the hexagonal coordinates (hq,hs) of a point x are related to its
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Cartesian coordinates (x1,x2) by hy = 21 — [ %], ho = x5 for x even, and
by hi = x1 — ”32;”, ho = x5 for x odd.

The hexagonal metric is a better approximation to the Euclidean metric
than either Li-metric or Lo, -metric.

e Neighborhood sequence metric
On the digital plane Z?2, consider two types of motions: the city-block
motion, restricting movements only to the horizontal or vertical directions,
and the chessboard motion, also allowing diagonal movements.

The use of both these motions is determined by a neighborhood sequence
B ={b(1),b(2),...,b(])}, where b(i) € {1,2} is a particular type of neigh-
borhood, with b(i) = 1 signifying unit change in 1 coordinate (city-block
neighborhood), and b(i) = 2 meaning unit change also in 2 coordinates
(chessboard neighborhood). The sequence B defines the type of motion to
be used at every step (see [Das90]).

The neighborhood sequence metric is a metric on Z?, defined as the
length of a shortest path between z and y € Z2, determined by a given
neighborhood sequence B. It can be written as

max{d}g (u), dQB(U)}v

where uy = x1 — y1, uz = 2 — ¥a, dll?(u),: max{|u1l, [ua|}, d%(u) =

Sy [Lableltal) | p0) = 0, f(i) = S5, b(), 1 < i < 1, g(j) =

FO - fG-1)-1,1<j<l.

For B = {1} one obtains the city-block metric, for B = {2} one
obtains the chessboard metric. The case B = {1,2} , i.e., the alternative
use of these motions, results in the octagonal metric, introduced in
RoP168].

A proper selection of the B-sequence can make the corresponding metric
very close to the Euclidean metric. It is always greater than the chessboard
distance, but smaller than the city-block distance.

e nD-neighborhood sequence metric
The nD-neighborhood sequence metric is a metric on Z™, defined as
the length of a shortest path between x and y € Z", determined by a given
nD-neighborhood sequence B (see [Faze99]).

Formally, two points x,y € Z™ are called m-neighbors, 0 < m < n, if
0<|z;—y;| <1,1<i<n,and >, |z; —y;| < m. A finite sequence B =
{b(1),...,b(D)}, b(i) € {1,2,...,n}, is called an nD-neighborhood sequence
with period 1. For any x,y € Z™, a point sequence = = z°,z',... 2% =y,
where z¢ and 21, 0 < i < k — 1, are r-neighbors, r = b((i mod 1) + 1),
is called a path from x to y determined by B with length k. The distance
between x and y can be written as

1 .
. . ai + 9i(Jj)
1§?§ndi(u) with d;(z,y) = g {fz(l)J’
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where u = (|u1|, [uz|, ..., [un|) is the non-increasing ordering of [um, |, um =
T — Ym, m = 1,...,n, that is, |u;| < |u,| if i < j; a; = Z?;Hluj;

bi(7) = b(j) if b(j) < n—i+2, and is n—i+1 otherwise; fi(j) = S22_, bi(k)
ifl<j<landis0ifj=0;¢,(j)=fi()—-fi(G—1) =11 <5 <L

The set of 3D-neighborhood sequence metrics forms a complete distribu-
tive lattice under the natural comparison relation.

e Strand—Nagy distances
The face-centered cubic lattice is A3 = {(ai,as,a3) € Z3 : a3 + as +
az = 0(mod2)}, and the body-centered cubic lattice is its dual Aj =
{(a1,a2,a3) € Z3 : a1 = az = az(mod?2)}.

Let L € {As3, A5}, For any points x,y € L, let dy(z,y) = 2?21 |z; — y;]
denote the Lj-metric and d(z,y) = maxjecqi 23y |2; — y;| denote the
Lso-metric between them. Two points x,y € L are called 1-neighbors if
di(z,y) <3and 0 < doo(x,y) < 1; they are called 2-neighbors if dqi(x,y) <
3and 1 < doo(,y) < 2. Given a sequence B = {b(7)}$2, over the alphabet
{1,2}, a B-path in L is a point sequence x = 20, 2!,... 2% =y, where 2
and 2Tt 0 < i < k — 1, are l-neighbors if b(i) = 1 and 2-neighbors if
b(i) = 2.

The Strand—Nagy distance between two points 2,y € L (called the
B-distance by Strand and Nagy 2007) is the length of a shortest B-path
between them. For L = Aj, it is

min{k : k > max{dl(;’y),dm(w) “H{1<i<k:bl) =2}

The Strand—Nagy distance is a metric, for example, for the periodic se-
quence B = (1,2,1,2,1,2,...) but not for the periodic sequence B =
(2,1,2,1,2,1,...).
e Path-generated metric

Consider the lo.-grid, i.e., the graph with the vertex-set Z?, and two ver-
tices being neighbors if their [,.-distance is 1. Let P be a collection of paths
in the lo-grid such that, for any z,y € Z2, there exists at least one path
from P between = and y, and if P contains a path @, then it also contains
every path contained in Q. Let dp(x,y) be the length of the shortest path
from P between z and y € Z2. If dp is a metric on Z2, then it is called a
path-generated metric (see, for example, [Melt91]).

Let G be one of the sets: G1 = {1,—}, Gaa = {1, "}, G2 = {1,\},
Goc = {/,\}, Gap = {—=,\}, Gza = {—=, 1,7}, Gap{—T.\},
G4A = {—>7/7\}a G4B{T7/7\7}7 C7Y5 = {—>7T7/7\}' Let P(G) be
the set of paths which are obtained by concatenation of paths in G and
the corresponding paths in the opposite directions. Any path-generated
metric coincides with one of the metrics dp(g). Moreover, one can obtain
the following formulas:

L dp(a,) (2, y) = |ur] + |uz]
2. d'P(G2A)(‘T7y) = maX{|2ul - u2|7 |u2‘}
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—_

3. dp(ayp) (T,y) = max{|2u; + ua|, [us|}

4. dp(Gae) (T,y) = max{|2uz + w1, [u1|}

5. dp(Gyp) (2, y) = max{|2us — u1l, |u1|}

6. dp(cya) (T y) = max{|ui|, [uzl, [ur — uz|}

7. dp(Gap) (T, y) = max{|uil, [uz], [u1 + uz|}

8. dp(cya) (@, y) = max{2[(|ur| — [uz|)/2], 0} + [ug]
9. dp(c,p) (z,y) = max{2[(Juz| — |u1])/2],0} + |u1]
0. dp(ay)(z,y) = max{|ui|, [ua]}

where u1 = 21 — y1, us = 23 — Y2, and [.] is the ceiling function: for any
real = the number [z] is the least integer greater than or equal to x.

The metric spaces obtained from G-sets which have the same numerical
index are isometric. dp(g,) is the city-block metric, and dp(q,) is the
chessboard metric.

Knight metric

The knight metric is a metric on Z?2, defined as the minimum number
of moves a chess knight would take to travel from x to y € Z2. Its unit
sphere S,im. ght centered at the origin, contains exactly 8 integral points
{(£2,+1), (£1,+2)}, and can be written as S,im-ght = S%l N Slzm, where
53, denotes the Lj-sphere of radius 3, and S7  denotes the Lo-sphere
of radius 2, both centered at the origin (see [DaCh88]).

The distance between x and y is 3 if (M, m) = (1,0), is 4 if (M, m) =
(2,2) and is equal to max{[ 4], [2E2T} + (M + m) — max{[ 4], [2E27}
(mod 2) otherwise, where M = max{|u1]|, |uz|}, m = min{|uq|, |usal|},
Uy = &1 — Y1, U2 = T2 — Y2.

Super-knight metric
Let p,q € N such that p + ¢ is odd, and (p,q) = 1.

A (p, q)-super-knight (or (p,q)-leaper) is a (variant) chess piece whose
move consists of a leap p squares in one orthogonal direction followed by
a 90° direction change, and ¢ squares leap to the destination square.

Chess-variant terms exist for a (p,1)-leaper with p = 0,1,2,3,4
(Wazir, Ferz, usual Knight, Camel, Giraffe), and for a (p,2)-leaper with
p=0,1,2,3 (Dabbaba, usual Knight, Alfil, Zebra).

A (p, q)-super-knight metric (or (p, q)-leaper metric) is a metric on
72, defined as the minimum number of moves a chess (p, q)-super-knight
would take to travel from x to y € Z2. Thus, its unit sphere S;,w centered
at the origin, contains exactly 8 integral points {(+p, +q), (£q, £p)}. (See

aMu90].)

The knight metric is the (1,2)-super-knight metric. The city-block
metric can be considered as the Wazir metric, i.e., (0,1)-super-knight
metric.

Rook metric

The rook metric is a metric on Z2, defined as the minimum number of
moves a chess rook would take to travel from z to y € Z2. This metric can
take only the values {0, 1,2}, and coincides with the Hamming metric
on Z2.
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e Chamfer metric
Given two positive numbers «, 8 with o < f < 2a, consider the («a, 3)-
weighted loo-grid, i.e., the infinite graph with the vertex-set Z?2, two vertices
being adjacent if their l.-distance is one, while horizontal /vertical and
diagonal edges have weights o and 3, respectively.
A chamfer metric (or («, 3)-chamfer metric, [Borg86]) is the weighted
path metric in this graph. For any x,y € Z? it can be written as

Bm+ a(M —m),

where M = max{|u1], |uz|}, m = min{|uq], |ua|}, u1 = 21—y1, us = x2—Ys2.
If the weights a and 3 are equal to the Euclidean lengths 1, /2 of
horizontal /vertical and diagonal edges, respectively, then one obtains the
Euclidean length of the shortest chessboard path between z and y. If
«a = 3 = 1, one obtains the chessboard metric. The (3, 4)-chamfer metric
is the most used one for digital images; it is called simply the (3,4)-metric.
A 3D-chamfer metric is the weighted path metric of the graph
with the vertex-set Z3 of vozels, two voxels being adjacent if their l..-
distance is one, while weights «, 3, and ~+ are associated, respectively,
to the distance from 6 face neighbors, 12 edge neighbors, and 8 corner
neighbors.
e Weighted cut metric
Consider the weighted loo-grid, i.e., the graph with the vertex-set Z2, two
vertices being adjacent if their [ ,-distance is one, and each edge having
some positive weight (or cost). The usual weighted path metric between
two pixels is the minimal cost of a path connecting them. The weighted
cut metric between two pixels is the minimal cost (defined now as the
sum of costs of crossed edges) of a cut, i.e., a plane curve connecting them
while avoiding pixels.
e Digital volume metric
The digital volume metric is a metric on the set K of all bounded
subsets (pictures, or images) of Z?* (in general, of Z"), defined by

vol(AAB),

where vol(A4) = |A|, i.e., the number of pixels contained in A, and AAB
is the symmetric difference between sets A and B.
This metric is a digital analog of the Nikodym metric.
e Hexagonal Hausdorff metric
The hexagonal Hausdorff metric is a metric on the set of all
bounded subsets (pictures, or images) of the hexagonal grid on the plane,
defined by

inf{p,q: ACB+qH, BC A+pH}
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for any pictures A and B, where pH is the regular hexzagon of size p (i.e.,
with p + 1 pixels on each edge), centered at the origin and including its
interior, and + is the Minkowski addition: A+ B={x+y:x € A,y € B}
(cf. Pompeiu—Hausdorff-Blaschke metric in Chap.[). If A is a pixel
z, then the distance between z and B is equal to sup,cp ds (z,y), where
de is the hexagonal metric, i.e., the path metric on the hexagonal
grid.



Chapter 20
Voronoi Diagram Distances

Given a finite set A of objects A; in a space S, computing the Voronoi diagram
of A means partitioning the space S into Voronoi regions V(A;) in such a
way that V(A;) contains all points of S that are “closer” to A; than to any
other object A; in A.

Given a generator set P = {p1,...pr}, k > 2, of distinct points (genera-
tors) from R™, n > 2, the ordinary Voronoi polygon V (p;) associated with a
generator p; is defined by

V(pi) ={z € R" : dg(z,p;) < dg(x,p;) for any j # i},
where dg is the ordinary Euclidean distance on R™. The set

V(P,dg,R") ={V(p1),...,V(pr)}

is called the n-dimensional ordinary Voronoi diagram, generated by P.

The boundaries of (n-dimensional) Voronoi polygons are called ((n — 1)-
dimensional) Voronoi facets, the boundaries of Voronoi facets are called
(n — 2)-dimensional Voronoi faces, ..., the boundaries of two-dimensional
Voronoi faces are called Voronoi edges, and the boundaries of Voronoi edges
are called Voronoi vertices.

A generalization of the ordinary Voronoi diagram is possible in the follow-
ing three ways:

1. The generalization with respect to the generator set A = {4;,..., Ay}
which can be a set of lines, a set of areas, etc.

2. The generalization with respect to the space S which can be a sphere
(spherical Voronoi diagram), a cylinder (cylindrical Voronoi diagram), a
cone (conic Voronoi diagram), a polyhedral surface (polyhedral Voronoi
diagram), etc.

3. The generalization with respect to the function d, where d(z, A;) measures
the “distance” from a point & € S to a generator A; € A.

This generalized distance function d is called the Voronoi generation

distance (or Voronoi distance, V -distance), and allows many more functions

M.M. Deza and E. Deza, Encyclopedia of Distances, 339
DOI 10.1007/978-3-642-00234-2_20, (© Springer-Verlag Berlin Heidelberg 2009
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than an ordinary metric on S. If F' is a strictly increasing function of
a V-distance d, i.e., F(d(z,4;)) < F(d(z,A;)) if and only if d(z, 4;) <
d(z, Aj), then the generalized Voronoi diagrams V (A, F(d), S) and V (A4, d, S)
coincide, and one says that the V-distance F(d) is transformable to the V-
distance d, and that the generalized Voronoi diagram V (A, F(d), S) is a trivial
generalization of the generalized Voronoi diagram V' (A,d, S).

In applications, one often uses for trivial generalizations of the ordinary
Voronoi diagram V' (P,d,R™) the exponential distance, the logarithmic
distance, and the power distance. There are generalized Voronoi diagrams
V(P,D,R"), defined by V-distances, that are not transformable to the Eu-
clidean distance dg: the multiplicatively weighted Voronoi distance,
the additively weighted Voronoi distance, etc.

For additional information see, for example, [OBS92], [KIei89].

20.1 Classical Voronoi generation distances

e Exponential distance
The exponential distance is the Voronoi generation distance

Dezp(xa pi) — edB(2:pi)

for the trivial generalization V' (P, D¢gp, R™) of the ordinary Voronoi dia-
gram V(P,dg,R™), where dg is the Euclidean distance.

e Logarithmic distance
The logarithmic distance is the Voronoi generation distance

Dy (z,p;) = Indg(x,p;)

for the trivial generalization V (P, Dy, R™) of the ordinary Voronoi diagram
V(P,dg,R™), where dg is the Euclidean distance.

e Power distance
The power distance is the Voronoi generation distance

Da(xapi) = dE(xapi)aa o > Oa

for the trivial generalization V (P, D,,, R™) of the ordinary Voronoi diagram
V(P,dg,R"™), where dg is the Euclidean distance.

e Multiplicatively weighted distance
The multiplicatively weighted distance d;;y is the Voronoi genera-
tion distance of the generalized Voronoi diagram V (P, dyw,R™) (multi-
plicatively weighted Voronoi diagram), defined by

1
dyrw (z,pi) = EdE(*Typi)
3
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for any point € R™ and any generator pointp; € P ={p1,...,px}, k > 2,
where w; € w = {w;,...,wg} is a given positive multiplicative weight of
the generator p;, and dg is the ordinary Euclidean distance.

A Mébius diagram (Boissonnat and Karavelas 2003) is a diagram the
midsets (bisectors) of which are hyperspheres. It generalizes the Euclidean
Voronoi and power diagrams, and it is equivalent to power diagrams in
R+

For R2, the multiplicatively weighted Voronoi diagram is called a circular
Dirichlet tessellation. An edge in this diagram is a circular arc or a straight
line.

In the plane R2, there exists a generalization of the multiplicatively
weighted Voronoi diagram, the crystal Voronoi diagram, with the same
definition of the distance (where wj is the speed of growth of the crystal p;),
but a different partition of the plane, as the crystals can grow only in an
empty area.

e Additively weighted distance
The additively weighted distance dap is the Voronoi generation
distance of the generalized Voronoi diagram V(P,daw,R"™) (additively
weighted Voronoi diagram), defined by

daw (x,p;) = de(z,pi) — w;

for any point x € R™ and any generator point p; € P = {p1,...,pr},
k > 2, where w; € w = {w;,...,wi} is a given additive weight of the
generator p;, and dg is the ordinary Euclidean distance.

For R?, the additively weighted Voronoi diagram is called a hyperbolic
Dirichlet tessellation. An edge in this Voronoi diagram is a hyperbolic arc
or a straight line segment.

e Additively weighted power distance
The additively weighted power distance dpy is the Voronoi genera-
tion distance of the generalized Voronoi diagram V (P, dpw, R™) (additively
weighted power Voronoi diagram), defined by

dpw (z,pi) = dE(z, pi) — w;

for any point # € R™ and any generator pointp; € P ={p1,...,px}, k > 2,
where w; € w = {w;,...,wi} is a given additive weight of the generator
pi, and dg is the ordinary Euclidean distance.

This diagram can be seen as a Voronoi diagram of circles or as a Voronoi
diagram with the Laguerre geometry.

The multiplicatively weighted power distance dypw (z,p;) =
w%d%(m, p;i), w; > 0, is transformable to the multiplicatively weighted
distance, and gives a trivial extension of the multiplicatively weighted
Voronoi diagram.
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¢ Compoundly weighted distance
The compoundly weighted distance dcy is the Voronoi generation
distance of the generalized Voronoi diagram V (P, dcw,R™) (compoundly
weighted Voronoi diagram), defined by

dew (@.pe) = —dg(@,p.) - v,
W;

for any point € R™ and any generator point p;, € P = {p1,...,px},
k > 2, where w; € w = {w;,...,wx} is a given positive multiplicative
weight of the generator p;, v; € v = {vy,..., v} is a given additive weight
of the generator p;, and dg is the ordinary Euclidean distance.

An edge in the two-dimensional compoundly weighted Voronoi diagram
is a part of a fourth-order polynomial curve, a hyperbolic arc, a circular
arc, or a straight line.

20.2 Plane Voronoi generation distances

e Shortest path distance with obstacles
Let O = {04,...,0,} be a collection of pairwise disjoint polygons on the
Euclidean plane, representing a set of obstacles which are neither trans-
parent nor traversable.

The shortest path distance with obstacles d;, is the Voronoi gen-
eration distance of the generalized Voronoi diagram V (P, ds,, R*\{O})
(shortest path Voronoi diagram with obstacles), defined, for any x,y €
R2\{0O}, as the length of the shortest path among all possible continu-
ous (z — y)-paths that do not intersect obstacles O;\0O; (a path can pass
through points on the boundary 90; of O;), i =1,...m.

The shortest path is constructed with the aid of the wisibility polygon
and the visibility graph of V (P, ds,, R*\{O}).

e Visibility shortest path distance
Let O = {O4,...,0,,} be a collection of pairwise disjoint line segments
O; = [a;, b;] in the Euclidean plane, with P = {p1,...,pr}, k > 2, the set
of generator points,

VIS(p;) = {x € R? : [z, p;]N|ar, by[= O for all = 1,...,m}

the wvisibility polygon of the generator p;, and dg the ordinary Euclidean
distance.

The visibility shortest path distance d,), is the Voronoi generation
distance of the generalized Voronoi diagram V (P, dysp, R2\{O}) (visibility
shortest path Voronoi diagram with line obstacles), defined by

dE(xapi)7 if € VIS(pZ)7
00, otherwise .

dusp(T, pi) = {
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e Network distances
A network on R? is a connected planar geometrical graph G' = (V, E) with
the set V' of vertices and the set E of edges (links).

Let the generator set P = {p1,...,pr} be a subset of the set V =
{p1,...,p1} of vertices of G, and let the set L be given by points of links
of G.

The network distance d,.;, on the set V is the Voronoi generation
distance of the network Voronoi node diagram V (P, dpetr, V'), defined as
the shortest path along the links of G from p; € V to p; € V. It is the
weighted path metric of the graph G, where w, is the Euclidean length of
the link e € F.

The network distance d,.; on the set L is the Voronoi generation
distance of the network Voronoi link diagram V (P, dpeu, L), defined as the
shortest path along the links from = € L to y € L.

The access network distance dyccne; on R? is the Voronoi generation
distance of the network Voronoi area diagram V (P, dgcenet, R?), defined by

daccnet (1‘, y) = dnetl(l(x)7 l(y)) + dacc(x) + dacc(y)7

where dge.(x) = mineyr d(z,l) = dg(z,l(x)) is the access distance of
a point z. In fact, dye.(z) is the Euclidean distance from z to the ac-
cess point I(z) € L of x which is the nearest to = point on the links
of G.
e Airlift distance
An airports network is an arbitrary planar graph G on n vertices (airports)
with positive edge weights (flight durations). This graph may be entered
and exited only at the airports. Once having accessed G, one travels at
fixed speed v > 1 within the network. Movement off the network takes
place with the unit speed with respect to the ordinary Euclidean distance.
The airlift distance d,; is the Voronoi generation distance of the airlift
Voronoi diagram V (P, d,;, R?), defined as the time needed for a quickest
path between x and y in the presence of the airports network G, i.e., a
path minimizing the travel time between x and y.
e City distance
A city public transportation network, like a subway or a bus transportation
system, is a planar straight line graph G with horizontal or vertical edges.
G may be composed of many connected components, and may contain
cycles. One is free to enter G at any point, be it at a vertex or on an edge
(it is possible to postulate fixed entry points, too). Once having accessed
G, one travels at a fixed speed v > 1 in one of the available directions.
Movement off the network takes place with the unit speed with respect
to the Manhattan metric (we imagine a large modern-style city with
streets arranged in north—south and east—west directions).
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The city distance d.;, is the Voronoi generation distance of the city
Voronoi diagram V (P, deity, R?), defined as the time needed for the quick-
est path between x and y in the presence of the network G, i.e., a path
minimizing the travel time between = and y.

The set P = {p1,...,pr}, k > 2, can be seen as a set of some city
facilities (say, post offices or hospitals): for some people several facilities
of the same kind are equally attractive, and they want to find out which
facility is reachable first.

e Distance in a river
The distance in a river d,;, is the Voronoi generation distance of the
generalized Voronoi diagram V (P, d,.;,, R?) (Voronoi diagram in a river),
defined by

ot = BTG

where v is the speed of the boat on still water, w > 0 is the speed of con-
stant flow in the positive direction of the x;-axis, and a« = % (0 < a < 1)
is the relative flow speed.

e Boat-sail distance
Let Q C R? be a domain in the plane (water surface), let f : Q — R? be
a continuous vector field on €2, representing the velocity of the water flow
(flow field); let P = {p1,...,pr} C 2, k > 2, be a set of k points in
(harbors).

The boat-sail distance [NiSu03] dps is the Voronoi generation dis-

tance of the generalized Voronoi diagram V (P, dps, ) (boat-sail Voronoi
diagram), defined by

dbs(xv y) = lgfé(’}/v z, y)

—1

for all x,y € Q, where (v, z,y) fo Fy el 3| f(v(s))| ds is the time

necessary for the boat with the maxunum speed F' on still water to move
from = to y along the curve v : [0,1] — Q, v(0) = z, (1) = y, and the
infimum is taken over all possible curves -.
e Peeper distance
Let S = {(z1,72) € R* : z; > 0} be the half-plane in R? let P =
{p1,---,px}, k > 2, be a set of points contained in the half-plane
{(z1,22) € R? : 21 < 0}, and let the window be the interval (a,b) with
=(0,1) and b = (0,—1).
The peeper distance d.. is the Voronoi generation distance of the
generalized Voronoi diagram V (P, dpec, S) (peeper’s Voronoi diagram), de-

fined by
N dE(x7p7,)a if [x,p]ﬂ}a, b[# @,
dpee (xapl) - { 00, otherwise ,

where dg is the ordinary Euclidean distance.
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e Snowmobile distance

Let Q@ C R? be a domain in the xjzs-plane of the space R? (a two-
dimensional mapping), and let Q* = {(q,h(q)) : ¢ = (x1(q),22(q)) €
Q,h(q) € R} be the three-dimensional land surface associated with the
mapping Q. Let P = {p1,...,pr} C Q, k > 2, be a set of k points in
(snowmobile stations).

The snowmobile distance dg,, is the Voronoi generation distance of
the generalized Voronoi diagram V (P, dgn,$2) (snowmobile Voronoi dia-
gram), defined by

1
dsm(q,r) = inf d
(q 7“) 13 [yF (1 - ad}L(J;s))) S

for any ¢,r € Q, and calculating the minimum time necessary for the
snowmobile with the speed F on flat land to move from (g, h(q)) to (r, h(r))
along the land path v* : v*(s) = (v(s), h(y(s))) associated with the domain
path v : [0,1] — Q, v(0) = ¢, v(1) = r (the infimum is taken over all
possible paths 7, and « is a positive constant).

A snowmobile goes uphill more slowly than downhill. The situation is
opposite for a forest fire: the frontier of the fire goes uphill faster than
downhill. This situation can be modeled using a negative value of o. The
resulting distance is called the forest-fire distance, and the resulting
Voronoi diagram is called the forest-fire Voronoi diagram.

e Skew distance
Let T be a tilted plane in R3, obtained by rotating the z;2s-plane around
the xi-axis through the angle o, 0 < o < 5, with the coordinate system
obtained by taking the coordinate system of the xjxs-plane, accordingly
rotated. For a point ¢ € T', ¢ = (x1(q), z2(q)), define the height h(q) as its
x3-coordinate in R3. Thus, h(q) = z2(q) -sina. Let P = {p1,...,pr} C T,
k> 2.

The skew distance [AACLI8| djeq, is the Voronoi generation distance
of the generalized Voronoi diagram V (P, dggew, T) (skew Voronoi diagram),
defined by

dskew(‘L T) = dE(qa T) + (h(T) - h(‘])) = dE(Qv T) + Sino‘(ZQ(r) - IQ(Q))
or, more generally, by

dskew (Q7 T) = dE'(q7 T) + k(xQ(T) - l’z(q))

for all ¢,r € T, where dg is the ordinary Euclidean distance, and k > 0 is
a constant.
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20.3 Other Voronoi generation distances

e Voronoi distance for line segments
The Voronoi distance for (a set of) line segments dg; is the Voronoi
generation distance of the generalized Voronoi diagram V (A, dy, R?) (line
Voronoi diagram, generated by straight line segments), defined by

dsl (xa Az) = ylenz‘fﬁ.l dE (J}, y)a
where the generator set A = {Ay,..., Ax}, k > 2, is a set of pairwise dis-

joint straight line segments A; = [a;, b;], and dg is the ordinary Euclidean
distance. In fact,

dg(x,a;), if x € Ry,
dy(z, Aj) = dE(xT, b;), if z € Ry,,
dp(e — i, TG (b — ai)), i w€R\{R,,URy},

where R,, = {x € R? : (b; — a;)T(x — a;) < 0}, Rp, = {x € R? : (a; — b;)T
({E — bl) < 0}

e Voronoi distance for arcs
The Voronoi distance for (a set of circle) arcs d., is the Voronoi gen-
eration distance of the generalized Voronoi diagram V(A,d.q,R?) (line
Voronoi diagram, generated by circle arcs), defined by

dca(x; Az) = ylen}; dE(xvy)u

where the generator set A = {Ay,..., Ax}, k > 2, is a set of pairwise
disjoint circle arcs A; (less than or equal to a semicircle) with radius r;
centered at x.,, and dg is the ordinary Euclidean distance. In fact,

dea(z,A;) = min{dg(x,a;),dp(x,b;), |dp(x, ) — 74},

where a; and b; are the end points of A;.

e Voronoi distance for circles
The Voronoi distance for (a set of) circles d; is the Voronoi genera-
tion distance of a generalized Voronoi diagram V (4, d.;, R?) (line Voronoi
diagram, generated by circles), defined by

dcl(zyAi) - y1€n£ dE(‘Ta y)7

where the generator set A = {Ay,..., Ax}, k > 2, is a set of pairwise
disjoint circles A; with radius r; centered at xz.,, and dg is the ordinary
Euclidean distance. In fact,
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dey(z, A;) = |dp(z, zc;) — 14l

There exist different distances for the line Voronoi diagram, generated
by circles. For example, d%(z,A;) = dg(z,z.) — i, or diy(x,A;) =
d%(z, ;) — r? (the Laguerre Voronoi diagram).
e Voronoi distance for areas
The Voronoi distance for areas d,, is the Voronoi generation distance
of the generalized Voronoi diagram V (A, d,, R?) (area Voronoi diagram),
defined by
dor (2, Ay) = yleni dr(z,y),

where A = {A;,..., Ax}, k > 2, is a collection of pairwise disjoint con-
nected closed sets (areas), and dg is the ordinary Euclidean distance.

Note, that for any generalized generator set A = {Ay,..., Ax}, k > 2,
one can use as the Voronoi generation distance the Hausdorff distance
from a point x to a set A;: dgaus(T, A;) = sup,c 4, de(z,y), where dg is
the ordinary Euclidean distance.

e Cylindrical distance

The cylindrical distance d.,; is the intrinsic metric on the surface
of a cylinder S which is used as the Voronoi generation distance in the
cylindrical Voronoi diagram V (P, d.,;, S). If the axis of a cylinder with unit
radius is placed at the x3-axis in R?, the cylindrical distance between any
points x,y € S with the cylindrical coordinates (1, 8,, z;) and (1, 0,, z,) is
given by

deyi(,y) = Vs —0,) + (20 — 2)%,  if 0, — 0, <,
cyl\T,Y) = \/(9m+27r70y)2+(zzfzy)2, ifay*9x>71'.

e Cone distance
The cone distance d.,,, is the intrinsic metric on the surface of a cone
S which is used as the Voronoi generation distance in the conic Voronoi
diagram V (P, dcon, S). If the axis of the cone S is placed at the z3-axis
in R3, and the radius of the circle made by the intersection of the cone S
with the zjxo-plane is equal to one, then the cone distance between any
points x,y € S is given by

rZ + 12 — 21,1, cos(0, — 0,),
if 0, < 0, + msin(a/2),
\/7”% + 12 — 2ryr, cos(0), + 2msin(a/2) — 0,),

y
if 9;! > 0 + 7sin(a/2),

dcon (J}, y) =

where (z1,22,x3) are the Cartesian coordinates of a point 2 on S, « is
the top angle of the cone, 0, isthe counterclockwise angle from the z;-axis
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to the ray from the origin to the point (x1,z2,0), 9; = 0,sin(a/2), r, =
Vx? + 23 + (23 — coth(a/2))? is the straight line distance from the top of
the cone to the point (z1, 22, z3).

e Voronoi distances of order m
Given a finite set A of objects in a metric space (S,d), and an integer
m > 1, consider the set of all m-subsets M; of A (i.e., M; C A, and
|M;| = m). The Voronoi diagram of order m of A is a partition of S
into Voronoi regions V(M;) of m-subsets of A in such a way that V(M)
contains all points s € S which are “closer” to M; than to any other m-set
M;: d(s,x) < d(s,y) for any x € M; and y € S\M,;. This diagram provides
first, second, ..., m-th closest neighbors of a point in S.

Such diagrams can be defined in terms of some “distance function”
D(s, M;), in particular, some m-hemi-metric (cf. Chap.B) on S. For
M; = {a;,b;}, there were considered the functions |d(s,a;) — d(s,b;)],
d(s,a;)+d(s,b;), d(s,a;)-d(s,b;), as well as 2-metrics d(s,a;) +d(s,b;) +
d(a;,b;) and the area of triangle (s, a;, b;).




Chapter 21
Image and Audio Distances

21.1 Image distances

Image Processing treats signals such as photographs, video, or tomographic
output. In particular, Computer Graphics consists of image synthesis from
some abstract models, while Computer Vision extracts some abstract infor-
mation: say, the 3D (i.e., three-dimensional) description of a scene from video
footage of it. From about 2000, analog image processing (by optical devices)
gave way to digital processing, and, in particular, digital image editing (for
example, processing of images taken by popular digital cameras).

Computer graphics (and our brains) deals with vector graphics images, i.e.,
those represented geometrically by curves, polygons, etc. A raster graphics
image (or digital image, bitmap) in 2D is a representation of a 2D image as a
finite set of digital values, called pizels (short for picture elements) placed on
a square grid Z? or a hexagonal grid. Typically, the image raster is a square
2F x 2k grid with k =8, 9 or 10.

Video images and tomographic or MRI (obtained by cross-sectional slices)
images are 3D (2D plus time); their digital values are called vozels (volume
elements). The spacing distance between two pixels in one slice is referred
to as the interpizel distance, while the spacing distance between slices is
the interslice distance.

A digital binary image corresponds to only two values 0, 1 with 1 being in-
terpreted as logical “true” and displayed as black; so, such image is identified
with the set of black pixels. The elements of a binary 2D image can be seen
as complex numbers = + iy, where (z,y) are coordinates of a point on the
real plane R2. A continuous binary image is a (usually, compact) subset of a
locally compact metric space (usually, Euclidean space E"® with n = 2, 3).

The gray-scale images can be seen as point-weighted binary images. In
general, a fuzzy set is a point-weighted set with weights (membership values);
see metrics between fuzzy sets in Chap.[Il For the gray-scale images, zyi-
representation is used, where plane coordinates (z,y) indicate shape, while
the weight ¢ (short for intensity, i.e., brightness) indicates texture (inten-
sity est pattern). Sometimes, the matrix ((iy,)) of gray-levels is used. The
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brightness histogram of a gray-scale image provides the frequency of each
brightness value found in that image. If an image has m brightness levels
(bins of gray-scale), then there are 2™ different possible intensities. Usually,
m = 8 and numbers 0,1, ...,255 represent the intensity range from black to
white; other typical values are m = 10, 12,14, 16. Humans can differ between
around 350,000 different colors but between only 30 different gray-levels; so,
color has much higher discriminatory power.

For color images, (RGB)-representation is the b known, where space coor-
dinates R, G, B indicate red, green and blue levels; a 3D histogram provides
brightness at each point. Among many other 3D color models (spaces) are:
(CMY) cube (Cyan, Magenta, Yellow colors), (HSL) cone (Hue-color type
given as an angle, Saturation in %, Luminosity in %), and (YUV), (YIQ)
used, respectively, in PAL, NTSC television. CIE-approved conversion of
(RGB) into luminance (luminosity) of gray-level is 0.299 R+ 0.587G +0.114B.

The color histogram is a feature vector of length n (usually, n = 64,256)
with components representing either the total number of pixels, or the per-
centage of pixels of a given color in the image.

Images are often represented by feature vectors, including color histograms,
color moments, textures, shape descriptors, etc. Examples of feature spaces
are: raw intensity (pixel values), edges (boundaries, contours, surfaces),
salient features (corners, line intersections, points of high curvature), and
statistical features (moment invariants, centroids). Typical video features are
in terms of overlapping frames and motions.

Image Retrieval (similarity search) consists of (as for other data: audio
recordings, DNA sequences, text documents, time-series, etc.) finding images
whose features have values either mutual similarity, or similarity to a given
query or in a given range.

There are two methods to compare images directly: intensity-based (color
and texture histograms), and geometry-based (shape representations by me-
dial axis, skeletons, etc.). The imprecise term shape is used for the extent
(silhouette) of the object, for its local geometry or geometrical pattern (con-
spicuous geometric details, points, curves, etc.), or for that pattern modulo
a similarity transformation group (translations, rotations, and scalings). The
imprecise term texture means all that is left after color and shape have been
considered, or it is defined via structure and randomness.

The similarity between vector representations of images is measured
by the usual practical distances: [,-metrics, weighted editing metrics,
Tanimoto distance, cosine distance, Mahalanobis distance and its
extension, Earth Mover distance. Among probabilistic distances, the
following ones are most used: Bhattacharya 2, Hellinger, Kullback—
Leibler, Jeffrey and (especially, for histograms) x2-, Kolmogorov—
Smirnov, Kuiper distances.

The main distances applied for compact subsets X and Y of R™ (usually,
n = 2,3) or their digital versions are: Asplund metric, Shephard metric,



21.1 Image distances 351

symmetric difference semi-metric Vol(XAY') (see Nykodym metric,
area deviation, digital volume metric and their normalizations) and
variations of the Hausdorff distance (see below).

For Image Processing, the distances below are between “true” and ap-
proximated digital images, in order to assess the performance of algorithms.
For Image Retrieval, distances are between feature vectors of a query and
reference.

e Color distances

A color space is a 3-parameter description of colors. The need for exactly
three parameters comes from the existence of three kinds of receptors (cells
on the retina) in the human eye: for short, middle and long wavelengths,
corresponding to blue, green, and red. In fact, their respective sensitivity
peaks are situated around 570, 543 and 442 nm, while wavelength limits
of extreme violet and red are about 700 and 390 nm, respectively. Some
women are tetrachromats, i.e., they have a fourth type of color receptor.
The zebrafish Danio rerio has cone cells sensitive to red, green, blue, and
ultraviolet light.

The CIE (International Commission on Illumination) derived (XYZ)
color space in 1931 from the (RGB)-model and measurements of the human
eye. In the CIE (XYZ) color space, the values X, Y and Z are also roughly
red, green and blue, respectively.

The basic assumption of Colorimetry, supported experimentally (Indow
1991), is that the perceptual color space admits a metric, the true color
distance. This metric is expected to be locally Euclidean, i.e., a Rieman-
nian metric. Another assumption is that there is a continuous mapping
from the metric space of photic (light) stimuli to this metric space.

Cf. probability-distance hypothesis in Chap.28 that the probability
with which one stimulus is discriminated from another is a (continuously
increasing) function of some subjective quasi-metric between these stimuli.

Such a uniform color scale, where equal distances in the color space
correspond to equal differences in color, is not obtained yet and existing
color distances are various approximations of it. A first step in this direc-
tion was given by MacAdam ellipses, i.e., regions on a chromaticity (x,y)
diagram which contains all colors looking indistinguishable to the average
human eye; cf. JND (just-noticeable difference) video quality metric.
Those 25 ellipses define, for any € > 0, the MacAdam metric in a color
space as the metric for which those ellipses are circles of radius e. Here
T = ﬁ and y = ﬁ are projective coordinates, and the colors
of the chromaticity diagram occupy a region of the real projective plane.

The CIE (L*a*b*) (CIELAB) is an adaptation of CIE 1931 (XYZ)
color space; it gives a partial linearization of the MacAdam color metric.
The parameters L*,a*,b* of the most complete model are derived from
L,a,b which are: the luminance L of the color from black L = 0 to white
L = 100, its position a between green a < 0 and red a > 0, and its position
b between green b < 0 and yellow b > 0.
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e Average color distance
For a given 3D color space and a list of n colors, let (c;1,ci,ci3) be
the representation of the i-th color of the list in this space. For a color
histogram = = (x1,...,%,), its average color is the vector (x(1y, z(2), T(3)),
where z(;) = St wicij (for example, the average red, blue and green
values in (RGB)).
The average color distance between two color histograms [HSEEN95]
is the Euclidean distance of their average colors.
e Color component distance
Given an image (as a subset of R?), let p; denote the area percentage of
this image occupied by the color ¢;. A color component of the image is a
pair (¢;,p;).
The color component distance (Ma, Deng and Manjunath 1997)
between color components (c;,p;) and (c;,p;) is defined by

Ipi — pj| - d(ci, ),

where d(c;,c;) is the distance between colors ¢; and ¢; in a given color
space. Mojsilovi¢, Hu and Soljanin (2002) developed an Earth Mover
distance-like modification of this distance.

¢ Riemannian color space
The proposal to measure perceptual dissimilarity of colors by a Rieman-
nian metric (cf. Chap.[l) on a strictly convex cone C' C R? comes from
von Helmholtz (1892) and Luneburg (1947).

Roughly, it was shown in [Resn74] that the only such GL-homogeneous
cones C (i.e., the group of all orientation preserving linear transforma-
tions of R3, carrying C into itself, acts transitively on C) are either
C1 =Rsg X (Rsg X Ryg), or Co =Ry x €7, where C” is the set of 2 x 2
real symmetric matrices with determinant 1. The first factor R~y can be
identified with variation of brightness and the other with the set of lights
of a fixed brightness. Let «; be some positive constants.

The Stiles color metric (Stiles 1946) is the G L-invariant Riemannian
metric on Cy = {(x1,72,23) € R3 : ; > 0} given by the line element

3

dx;
d$2 = ZO@( z )2.
i=1

£

The Resnikoff color metric (Resnikoff 1974) is the G L-invariant
Riemannian metric on Co = {(z,u) : © € Rsg,u € C'} given by the line
element

d
ds?® = al(f)z + aodsi,

where dsZ,, is the Poincare metric (cf. Chap.[f) on C’; so, Cy with this
metric is not isometric to a Euclidean space.
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e Histogram intersection quasi-distance
Given two color histograms = = (z1,...,2,) and y = (y1,...,Y,) (with
x;,y; representing the number of pixels in the bin i), the histogram
intersection quasi-distance between them (cf. intersection distance
in Chap.[[7) is (Swain and Ballard 1991) defined by

> min{zg, y}
D e T

For normalized histograms (total sum is 1) the above quasi-distance
becomes the usual [;-metric >, |z; — y;|. The normalized cross corre-

lation (Rosenfeld and Kak 1982) between z and y is a similarity, defined
by Z:L:1 Ti,Yi

nop2

1—

=11

e Histogram quadratic distance
Given two color histograms = = (21,...,2,) and y = (y1, ..., yn) (usually,
n = 256 or n = 64) representing the color percentages of two images,
their histogram quadratic distance (used in IBM’s Query By Image
Content system) is the Mahalanobis distance, defined by

V=T A —y),

where A = ((a;;)) is a symmetric positive-definite matrix, and the weight
ai; is some, perceptually justified, similarity between colors ¢ and j. For

example (see [HSEFN93|), a;; = 1 — m, where d;; is the
FEuclidean distance between 3-vectors representing ¢ and j in some color
space. Another definition is given by a;; = 1 — %((vz —v;)? + (s; cosh; —
sjcosh;)? 4 (sisinh; — s;sin hj)g)%7 where (h;, s;,v;) and (hj,s;,v;) are
the representations of the colors i and j in the color space (HSV).
e Histogram diffusion distance

Given two histogram-based descriptors * = (z1,...,2,) and y =
(Y1,...,Yn), their histogram diffusion distance (Ling and Okada

2006) is defined by
T
| ot

where T is a constant, and u(t) is a heat diffusion process with initial
condition u(0) = & — y. In order to approximate the diffusion, the ini-
tial condition is convoluted with a Gaussian window; then the sums of
[1-norms after each convolution approximate the integral.
This distance was generalized in Yan, Wang, Liu, Lu and Ma (2007).
e Gray-scale image distances

Let f(x) and g(z) denote the brightness values of two digital gray-scale
images f and ¢ at the pixel z € X, where X is a raster of pixels. Any
distance between point-weighted sets (X, f) and (X, g) (for example, the
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Earth Mover distance) can be applied for measuring distances between
f and g. However, the main used distances (called also errors) between
the images f and g are:

1

1. The root mean-square error RMS(f,g) = (ﬁzggex(f(:c)fg(x)y)z

(a variant is to use the ly-norm |f(x) — g(z)| instead of the l3-norm)

2. The signal-to-noise ratio SNR(f,g) = (%) :
xTE

3. The pizel misclassification error rate |71||{:E € X : f(z) # g(a)}
(normalized Hamming distance)

1

4. The frequency root mean-square error (ﬁZueU(F(u) - G(u))2)2,
where F' and G are the discrete Fourier transforms of f and g, respec-
tively, and U is the frequency domain

5. The Sobolev norm of order 6 error (ﬁ Swer (L4 nu?)° (F(u)—

1

G(u))z) 5, where 0 < 6 < 1 is fixed (usually, § = 1), and 5, is the 2D

frequency vector associated with position u in the frequency domain U

Cf. metrics between fuzzy sets in Chap.[Il
e Image compression L,-metric
Given a number 7, 0 < r < 1, the image compression L,-metric is

the usual L,-metric on Rgzo (the set of gray-scale images seen as n X n

matrices) with p being a solution of the equation r = 21’1;11 eI, So,
p=1,2, or oo for, respectively, r = 0,r = %e% ~ 0.65, or r > g ~ 0.82.

Here r estimates the informative (i.e., filled with non-zeros) part of the
image. According to [KKNO02|, it is the best quality metric to select a
lossy compression scheme.
e Chamfering distances

The chamfering distances are distances approximating Euclidean dis-
tance by a weighted path distance on the graph G = (Z?, E), where two
pixels are neighbors if one can be obtained from another by an one-step
move on Z2. The list of permitted moves is given, and a prime distance,
i.e., a positive weight (see Chap.[[T)), is associated to each type of such
move.

An («, f)-chamfer metric corresponds to two permitted moves — with
I-distance 1 and with [,-distance 1 (diagonal moves only) — weighted «
and (3, respectively.

The main applied cases are (o, 3) = (1,0) (the city-block metric, or
4-metric), (1,1) (the chessboard metric, or 8-metric), (1, v/2) (the
Montanari metric), (3,4) (the (3,4)-metric), (2,3) (the Hilditch—
Rutovitz metric), (5,7) (the Verwer metric).
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The Borgefors metric corresponds to three permitted moves — with
l1-distance 1, with [.-distance 1 (diagonal moves only), and knight
moves — weighted 5, 7 and 11, respectively.

An 3D-chamfer metric (or (a, §,7)-chamfer metric) is the weighted
path metric of the infinite graph with the vertex-set Z3 of voxels, two
vertices being adjacent if their [, -distance is one, while weights «,
and ~ are associated to 6 face, 12 edge and 8 corner neighbors, respec-
tively. If @« = 8 = v = 1, we obtain the l.-metric. The (3,4,5)- and
(1,2, 3)-chamfer metrics are the most used ones for digital 3D images.

The Chaudhuri-Murthy—Chaudhuri metric between sequences
x=(x1,...,2m) and y = (y1,...,Yn) is defined by

|wi(w,y) - yi(:c,y)| + ﬁ Z |€Ez‘ - yi|7
2 1 1<i<n,iti(z,y)
where the maximum value of x; — y; is attained for i = i(x,y). For n = 2
it is the (1, 2)-chamfer metric.
e Earth Mover distance

The Earth Mover distance is a discrete form of the Monge—
Kantorovich distance. Roughly, it is the minimal amount of work
needed to transport earth or mass from one position (properly spread
in space) to the other (a collection of holes). For any two finite se-
quences (21,...,2y,) and (y1,...,y,) over a metric space (X, d), consider
signatures, i.e., point-weighted sets Py = (p1(21),...,p1(2m)) and Py =
(p2(y1), - -, p2(yn)). For example [RTGO0], signatures can represent clus-
tered color or texture content of images: elements of X are centroids of
clusters, and p1(z;), p2(y;) are sizes of corresponding clusters. The ground
distance d is a color distance, say, the Euclidean distance in 3D CIE
(L*a*b*) color space.

Let Wi =3, p1(x;) and Wa = . pa(y;) be the total weights of Py and
P,, respectively. Then the Earth Mover distance (or transport distance)
between signatures P, and P, is defined as the function

Zi,j fi*jd(xiy Y;)
Yl
where the m x n matrix S* = ((f};)) is an optimal, i.e., minimizing
>y fid(i,y;), flow. A flow (of the weight of the earth) is an m x n
matrix S = ((f;;)) with following constraints:

1. All f;; > 0.

2. Zi,j fij = min{Wl, Wg}

3. 32 fij < p2(yy), and 32, fij < p1(wi).

So, this distance is the average ground distance d that weights travel
during an optimal flow.
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In the case W7 = W5, the above two inequalities 3 became equalities.
Normalizing signatures to W; = Wy = 1 (which not changes the distance)
allows us to see P; and P» as probability distributions of random variables,
say, X and Y. Then E” fijd(zi,y;) is just Eg[d(X,Y)], i.e., the Earth
Mover distance coincides, in this case, with the Kantorovich—Mallows—
Monge—Wasserstein metric.

For, say, W, < W, it is not a metric in general. However, replacing the
inequalities 3 in the above definition by equalities:

3. > fij = p2(y;), and Zj fij = %, produces the Giannopoulos—
Veltkamp’s proportional transport semi-metric.

e Parameterized curves distance

The shape can be represented by a parametrized curve on the plane.
Usually, such a curve is simple, i.e., it has no self-intersections. Let
X = X(z(t)) and Y = Y (y(t)) be two parametrized curves, where the
(continuous) parametrization functions x(t) and y(t) on [0,1] satisfy
2(0) =y(0) =0 and z(1) = y(1) = 1.

The most used parametrized curves distance is the minimum, over
all monotone increasing parametrizations z(t) and y(t), of the maximal
Euclidean distance dg (X (x(t)),Y (y(t))). It is the Euclidean special case
of the dogkeeper distance which is, in turn, the Fréchet metric for
the case of curves. Among variations of this distance are dropping the
monotonicity condition of the parametrization, or finding the part of one
curve to which the other has the smallest such distance [VeHa0I].

e Non-linear elastic matching distances
Consider a digital representation of curves. Let 7 > 1 be a constant, and
let A={ay,...,am}, B={b1,...,b,} be finite ordered sets of consecu-
tive points on two closed curves. For any order-preserving correspondence
f between all points of A and all points of B, the stretch s(a;,b;) of
(ai, f(a;) = b;) is r if either f(a;—1) = b; or f(a;) = bj_1, or zero
otherwise.

The relaxed non-linear elastic matching distance is the minimum,
over all such f, of Y (s(a;, b;) + d(a;,b;)), where d(a;, b;) is the difference
between the tangent angles of a; and b;. It is a near-metric for some 7.
For r =1, it is called the non-linear elastic matching distance.

e Turning function distance
For a plane polygon P, its turning function Tp(s) is the angle between the
counterclockwise tangent and the z-axis as a function of the arc length s.
This function increases with each left hand turn and decreases with right
hand turns.

Given two polygons of equal perimeters, their turning function dis-
tance is the L,-metric between their turning functions.

e Size function distance
For a plane graph G = (V, E) and a measuring function f on its vertex-
set V' (for example, the distance from v € V to the center of mass of
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V), the size function Sg(x,y) is defined, on the points (z,y) € R?, as
the number of connected components of the restriction of G on vertices
{veV: f(v) <y} which contain a point v" with f(v') < .

Given two plane graphs with vertex-sets belonging to a raster R C Z?2,
their Uras-Verri’s size function distance is the normalized [;-distance
between their size functions over raster pixels.

e Reflection distance
For a finite union A of plane curves and each point z € R?, let V§ de-
note the union of intervals (z,a), a € A, which are wvisible from z, i.e.,
(z,a)NA = (0. Denote by p% the area of the set {z+v € V§:x—v e Vi}.

The Hagedoorn-Veltkamp’s reflection distance between finite unions
A and B of plane curves is the normalized [;-distance between the corre-
sponding functions p?% and p%, defined by

Je2 195 — plda
Jge max{p%, p§; tdx

e Distance transform
Given a metric space (X = Z?%,d) and a binary digital image M C X,
the distance transform is a function fi; : X —Rxg, where fu(x) =
inf,ep d(z,u) is the point-set distance d(x, M). Therefore, a distance
transform can be seen as a gray-scale digital image where each pixel is
given a label (a gray-level) which corresponds to the distance to the near-
est pixel of the background. Distance transforms, in Image Processing,
are also called distance fields and, especially, distance maps; but we
reserve the last term only for this notion in any metric space. A distance
transform of a shape is the distance transform with M being the boundary
of the image. For X = R?, the graph {(z, f(x)) : z € X} of d(z, M) is
called the Voronoi surface of M.
e Medial axis and skeleton

Let (X, d) be a metric space, and let M be a subset of X. The medial axis
of X is the set MA(X)={x € X :|{m e M : d(x,m) = d(xz, M)} > 2},
i.e., all points of X which have in M at least two elements of best
approximation. M A(X) consists of all points of boundaries of Voronoi
regions of points of M. The cut locus of X is the closure M A(X) of the
medial axis. The medial axis transform MAT(X) is the point-weighted
set M A(X) (the restriction of the distance transform on M A(X)) with
d(x, M) being the weight of x € X.

If (as usual in applications) X C R™ and M is the boundary of X, then
the skeleton Skel(X) of X is the set of the centers of all d-balls inscribed
in X and not belonging to any other such ball; so, Skel(X) = MA(X).
The skeleton with M being continuous boundary is a limit of Voronoi
diagrams as the number of the generating points becomesinfinite. For 2D
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binary images X, the skeleton is a curve, a single-pixel thin one, in the
digital case. The exoskeleton of X is the skeleton of the complement of X,
i.e., of the background of the image for which X is the foreground.
e Procrustes distance

The shape of a form (configuration of points in R?), seen as expression
of translation-, rotation- and scale-invariant properties of form, can be
represented by a sequence of landmarks, i.e., specific points on the form,
selected accordingly to some rule. Each landmark point a can be seen as
an element (a’,a”) € R? or an element a' +a”i € C.

Consider two shapes = and y, represented by their landmark vectors
(x1,...,25) and (y1,...,yn) from C™. Suppose that 2 and y are corrected
for translation by setting > ,x; = >,y = 0. Then their Procrustes
distance is defined by

n
Z |z — wel?,
t=1

where two forms are, first, optimally (by least squares criterion) aligned
to correct for scale, and their Kendall shape distance is defined by

arccos Qe ) (o, yeTe)
(e @) (32, weTr)

where @ =a — a”i is the complex conjugate of o = ad +ai.
e Tangent distance

For any = € R™ and a family of transformations t(z,a), where a € R¥ is
the vector of k parameters (for example, the scaling factor and rotation
angle), the set M, = {t(z,a) : a € R¥} C R" is a manifold of dimension
at most k. It is a curve if £ = 1. The minimum Euclidean distance between
manifolds M, and M, would be a useful distance since it is invariant with
respect to transformations t(x,«). However, the computation of such a
distance is too difficult in general; so, M, is approximated by its tangent
subspace at x: {x + Zle arr’ o € RF} C R", where the tangent vectors
2%, 1 <i < k, spanning it are the partial derivatives of #(z, a) with respect
to a. The one-sided (or directed) tangent distance between elements
x and y of R” is a quasi-distance d, defined by

k

min ||z + E apx’ —y|[2.
83
i=1

The Simard-Le Cun-Denker’s tangent distance is defined by min{d(z, y),
d(y,z)}.

Cf. metric cone structure, tangent metric cone in Chap.[I
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e Pixel distance
Consider two digital images, seen as binary m x n matrices z = ((x;;))
and y = ((yi;)), where a pixel ;; is black or white if it is equal to 1 or 0,
respectively.

For each pixel z;;, the fringe distance map to the nearest pizel of oppo-
site color Dpw (x;) is the number of fringes expanded from (4, j) (where
each fringe is composed by the pixels that are at the same distance from
(7,7)) until the first fringe holding a pixel of opposite color is reached.

The pixel distance (Smith, Bourgoin, Sims and Voorhees 1994) is
defined by

>0 > lwi — vl (Dsw (i) + Dew (yij))-

1<i<m 1<j<n

e Figure of merit quasi-distance
Given two binary images, seen as non-empty finite subsets A and B of a
finite metric space (X, d), their Pratt’s figure of merit quasi-distance
is defined by

<max{|A| 5y W) ,

where « is a scaling constant (usually, %), and d(z, A) = minyea d(z,y)
is the point-set distance.
Similar quasi-distances are Peli-Malah’s mean error distance ﬁ >

d(z, A)2.

zEB
d(x, A), and the mean square error distance |B‘ >
e p-th order mean Hausdorff distance
Given p > 1 and two binary images, seen as non-empty subsets A and B
of a finite metric space (say, a raster of pixels) (X,d), their p-th order
mean Hausdorff' distance is |[Badd92] a normalized L,-Hausdorff
distance, defined by

rEB

1

(|X|Z|dxA >|>p7

rzeX

where d(z, A) = minyecad(z,y) is the point-set distance. The usual
Hausdorff metric is proportional to the oo-th order mean Hausdorff
distance.

Venkatasubraminian’s ¥-Hausdorff distance dgpaus(A, B) + damaus
(B,A) is equal to ) ., pld(z,A) — d(z,B)|, ie., it is a version of
Ly-Hausdorff distance.

Another version of the first order mean Hausdorff distance is Lindstrom-
Turk’s mean geometric error (1998) between two images, seen as surfaces
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A and B. It is defined by

el + Frea®) </A o B)is + [ dtr s ) |

where Area(A) denotes the area of A. If the images are seen as finite sets
A and B, their mean geometric error is defined by

m (Z d, B) + Y d(a, A)) .

z€A r€B

e Modified Hausdorff distance
Given two binary images, seen as non-empty finite subsets A and B of a
finite metric space (X,d), their Dubuisson—Jain’s modified Hausdorff
distance (1994) is defined as the maximum of point-set distances
averaged over A and B:

1
{A| Z x, B) W%d(LA)}.

e Partial Hausdorff quasi-distance
Given two binary images, seen as non-empty subsets A, B of a finite
metric space (X,d), and integers k,l with 1 < k < |A|, 1 <1 < |B]|,
their Huttenlocher—Rucklidge’s partial (k,!)-Hausdorff quasi-distance
(1992) is defined by

max{k!" ,d(z, B), 1! zd(x, A)},

where ki ,d(z, B) means the k-th (rather than the largest |A|-th ranked
one) among |A| distances d(z, B) ranked in increasing order. The case
L%j, I = Lgﬂj corresponds to the modified median Hausdorff
quasi-distance.
e Bottleneck distance
Given two binary images, seen as non-empty subsets A, B with |A| =
| B| = m, of a metric space (X, d), their bottleneck distance is defined by

mfin max d(z, f(x)),

z€A

where f is any bijective mapping between A and B.
Variations of the above distance are:

1. The minimum weight matching: miny ) _, d(x, f(z))
2. The uniform matching: min;{max,cad(z, f(z)) — mingec4 d(z,

f(x)}

3. The minimum deviation matching: ming{max,eca d(z, f(z)) —

TAT Zea A, f(2)}
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Given an integer ¢ with 1 < ¢ < |A|, the {-bottleneck distance be-
tween A and B [[nVe(0] is the above minimum but with f being any
mapping from A to B such that [{z € A: f(z) =y}| <t

The cases ¢ = 1 and t = |A] correspond, respectively, to the bottle-
neck distance, and the directed Hausdorff distance dgpqus(A4, B) =
maxye 4 mingep d(z, y).

e Hausdorff distance up to G
Given a group (G, -, id) acting on the Euclidean space E", the Hausdorff
distance up to G between two compact subsets A and B (used in Image
Processing) is their generalized G-Hausdorff distance (see Chap.[I),
i.e., the minimum of dpaus(4, g(B)) over all g € G. Usually, G is the
group of all isometries or all translations of E”.

e Hyperbolic Hausdorff distance
For any compact subset A of R™, denote by M AT'(A) its Blum’s medial
azis transform, i.e., the subset of X = R" x Rx>(, whose elements are
all pairs x = (a/,r,) of the centers 2’ and the radii 7, of the maximal
inscribed (in A) balls, in terms of the Euclidean distance dg in R™. (Cf.
medial axis and skeleton transforms for the general case.)

The hyperbolic Hausdorff distance [ChSe(00] is the Hausdorff
metric on non-empty compact subsets MAT(A) of the metric space
(X, d), where the hyperbolic distance d on X is defined, for its elements

r=(2',r,) and y = (v, 1), by
maX{Oa dE(xlvy,) - (ry - TI)}

e Non-linear Hausdorff metric
Given two compact subsets A and B of a metric space (X, d), their non-
linear Hausdorff metric (or Szatmdri-Rekeczky—Roska wave distance)
is the Hausdorff distance dpqus(A N B, (AU B)*), where (A U B)* is
the subset of A U B which forms a closed contiguous region with A N B,
and the distances between points are allowed to be measured only along
paths wholly in AU B.
e Video quality metrics

These metrics are between test and reference color video sequences, usu-
ally aimed at optimization of encoding/compression/decoding algorithms.
Each of them is based on some perceptual model of the human vision sys-
tem, the simplest ones being RMSE (root-mean-square error) and PSNR
(peak signal-to-noise ratio) error measures. Among others, threshold met-
rics estimate the probability of detecting in video an artifact (i.e., a visible
distortion that gets added to a video signal during digital encoding). Ex-
amples are: Sarnoff’s JND (just-noticeable differences) metric, Winkler’s
PDM (perceptual distortion metric), and Watson’s DVQ (digital video
quality) metric. DVQ is an [,-metric between feature vectors representing
two video sequences. Some metrics measure special artifacts in the video:
the appearance of block structure, blurriness, added “mosquito” noise
(ambiguity in the edge direction), texture distortion, etc.
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e Time series video distances
The time series video distances are objective wavelet-based spatial-
temporal video quality metrics. A video stream z is processed into
a time series z(t) (seen as a curve on coordinate plane) which is then
(piecewise linearly) approximated by a set of n contiguous line segments
that can be defined by n+1 endpoints (z;,2}), 0 < i < n, in the coordinate
plane. In [WoPi99] are given the following (cf. Meehl distance) distances
between video streams x and y:

1
L. Shape(z,) = T 1hes - 29) = (s — 4.
2. Offset(z,y) = Z?gol Tep B Vi)

2 2
e Handwriting spatial gap distances
Automatic recognition of unconstrained handwritten texts (for example,
legal amounts on bank checks or pre-hospital care reports) require mea-
suring the spatial gaps between connected components in order to extract
words.
Three most used ones, among handwriting spatial gap distances
between two adjacent connected components x and y of text line, are:
Seni and Cohen (1994): the run-length (minimum horizontal Euclidean
distance) between points of x and y;
Seni and Cohen (1994): the horizontal distance between the bounding
boxes of x and y;
Mahadevan and Nagabushnam (1995): Euclidean distance between the
convex hulls of = and y, on the line linking hull centroids.

21.2 Audio distances

Sound is the vibration of gas or air particles that causes pressure variations
within our eardrums. Audio (speech, music, etc.) Signal Processing is the
processing of analog (continuous) or, mainly, digital representation of the
air pressure waveform of the sound. A sound spectrogram (or sonogram) is a
visual three-dimensional representation of an acoustic signal. It is obtained
either by a series of bandpass filters (an analog processing), or by application
of the short-time Fourier transform to the electronic analog of an acoustic
wave. Three axes represent time, frequency and intensity (acoustic energy).
Often this three-dimensional curve is reduced to two dimensions by indicating
the intensity with more thick lines or more intense gray or color values.
Sound is called tone if it is periodic (the lowest fundamental frequency plus
its multiples, harmonics or overtones) and noise, otherwise. The frequency is
measured in ¢ps (the number of complete cycles per second) or Hz (Hertz).
The range of audible sound frequencies to humans is typically 20 Hz—18 kHz.
In fact, it is up to 20 kHz for most young adults, while 8 kHz in the elderly.



21.2 Audio distances 363

The power P(f) of a signal is energy per unit of time; it is proportional to
the square of signal’s amplitude A(f). Decibel dB is the unit used to express
the relative strength of two signals. One tenth of 1dB is bel, the original
outdated unit.

The amplitude of an audio signal in dB is 20log; :((J{,)) = 10log;, %,
where f’ is a reference signal selected to correspond to 0dB (usually, the
threshold of human hearing). The threshold of pain is about 120-140 dB.

Pitch and loudness are auditory subjective terms for frequency and
amplitude.

The mel scale is a perceptual frequency scale, corresponding to the au-
ditory sensation of tone height and based on mel, a unit of perceived
frequency (pitch). It is connected to the acoustic frequency f hertz scale
by Mel(f) =1,127In(1+ =L) (or, simply, Mel(f) = 1,000 log,(1 + ﬁ)) S0

700
that 1,000 Hz correspond to 1,000 mels.

The Bark scale (named after Barkhausen) is a psycho-acoustic scale of
frequency: it ranges from 1 to 24 corresponding to the first 24 critical bands
of hearing

(0,100, 200, ...,1,270,1,480, 1,720, . . ., 950, 12,000, 15,500 Hz).

Those bands correspond to spatial regions of the basilar membrane (of
the inner ear), where oscillations, produced by the sound of given frequency,
activate the hair cells and neurons. The Bark scale is connected to the acoustic
frequency f kilohertz scale by Bark(f) = 13 arctan(0.76f)+3.5 arctan( 0_1;5 )2.

The main way that humans control their phonation (speech, song, laugh-
ter) is by control over the wocal tract (the throat and mouth) shape. This
shape, i.e., the cross-sectional profile of the tube from the closure in the
glottis (the space between the vocal cords) to the opening (lips), is repre-
sented by the cross-sectional area function Area(x), where x is the distance
to the glottis. The vocal tract acts as a resonator during vowel phonation, be-
cause it is kept relatively open. These resonances reinforce the source sound
(ongoing flow of lung air) at particular resonant frequencies (or formants) of
the vocal tract, producing peaks in the spectrum of the sound.

Each vowel has two characteristic formants, depending on the vertical and
horizontal position of the tongue in the mouth. The source sound function is
modified by the frequency response function for a given area function. If the
vocal tract is approximated as a sequence of concatenated tubes of constant
cross-sectional area (of equal length, or epilarynx—pharynx—oral cavity, etc.),

. . . A s .
then the area ratio coefficients are the ratios %@f;) for consecutive tubes;

those coefficients can be computed by LPC (see below).

The spectrum of a sound is the distribution of magnitude (dB) (and
sometimes the phases in frequency (kHz)) of the components of the wave.
The spectral envelope is a smooth contour that connects the spectral peaks.
The estimation of the spectral envelopes is based on either LPC (linear pre-
dictive coding), or FTT (fast Fourier transform using real cepstrum, i.e., the
log amplitude spectrum of the sound).
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FT (Fourier transform) maps time-domain functions into frequency-
domain representations. The cepstrum of the signal f(t) is FT(In(FT(f(t)+
27mi))), where m is the integer needed to unwrap the angle or imaginary
part of the complex logarithm function. The complex and real cepstrum use,
respectively, complex and real log function. The real cepstrum uses only the
magnitude of the original signal f(¢), while the complex cepstrum uses also
phase of f(t). The FFT method is based on linear spectral analysis. The
FFT performs the Fourier transform on the signal and samples the discrete
transform output at the desired frequencies usually in the mel scale.

Parameter-based distances used in recognition and processing of speech
data are usually derived by LPC, modeling the speech spectrum as a lin-
ear combination of the previous samples (as in autoregressive processes).
Roughly, LPC processes each word of the speech signal in the following six
steps: filtering, energy normalization, partition into frames, windowing (to
minimize discontinuities at the borders of frames), obtaining LPC parameters
by the autocorrelation method and conversion to the LPC-derived cepstral
coefficients. LPC assumes that speech is produced by a buzzer at the glottis
(with occasionally added hissing and popping sounds), and it removes the
formants by filtering.

The majority of distortion measures between sonograms are variations of
squared Euclidean distance (including a covariance-weighted one, i.e.,
Mahalanobis, distance) and probabilistic distances belonging to following
general types: generalized total variation metric, f-divergence of Csizar
and Chernoff distance.

The distances for sound processing below are between vectors x and vy
representing two signals to compare. For recognition, they are a template
reference and input signal, while for noise reduction they are the original
(reference) and distorted signal (see, for example, [OASMO03]). Often distances
are calculated for small segments, between vectors representing short-time
spectra, and then averaged.

e Segmented signal-to-noise ratio
The segmented signal-to-noise ratio SN R.4(x, y) between signals = =
(z;) and y = (y;) is defined by

M-—1 nm+n 1‘2
;(10&0 Z (xill/z‘y),

=0 i=nm-+1

35

where n is the number of frames, and M is the number of segments.
The usual signal-to-noise ratio SN R(x,y) between z and y is given by

Z?:l x’?
> (@i — yi)?

10log,
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Another measure, used to compare two waveforms z and y in the time-
domain, is their Czekanovski—Dice distance, defined by

1 i <1 2min{xi,yi})
n & ity )

e Spectral magnitude-phase distortion
The spectral magnitude-phase distortion between signals z = x(w)
and y = y(w) is defined by

(AZ e (w)] = ly(w))* + (1= 1) Y (La(w) — Ay(w))2> ;

i=1

where |z(w)], |y(w)| are magnitude spectra, and Zz(w), Zy(w) are phase

spectra of x and y, respectively, while the parameter \,0 < A < 1, is

chosen in order to attach commensurate weights to the magnitude and

phase terms. The case A\ = 0 corresponds to the spectral phase distance.
Given a signal f(t) = ae~*u(t), a,b > 0, which has Fourier transform

z(w) = 5%, its magnitude (or amplitude) spectrum is |z| = s and
its phase spectrum (in radians) is «(z) = tan~
||(cos a + i sin «v).

¢ RMS log spectral distance
The RMS log spectral distance (or root-mean-square distance, mean
quadratic distance) LSD(x,y) between discrete spectra x = (x;) and y =
(y;) is the following Euclidean distance:

1w

Yoie., z(w) = |z|e"™ =

n

1
—E Inz; — Iny;)2.
- (Inx ny;)

i=1

The corresponding /- and [.-distances are called mean absolute distance
and mazimum deviation. These three distances are related to decibel vari-
ations in the log spectral domain by the multiple 10

The square of the RMS log spectral distance, via the cepstrum represen-
tation Inz(w) = 3770 cje %" (where z(w) is the power spectrum, i.e.,
magnitude-squared Fourier transform) becomes, in the complex cepstral
space, the cepstral distance.

The log area ratio distance LAR(z,y) between x and y is defined by

1 n
- Z 10(log, Area(x;) — logyy Area(y;))?,

i=1
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where Area(z;) denotes the cross-sectional area of the segment of the vocal
tract tube corresponding to z;.

e Bark spectral distance
The Bark spectral distance (Wang-Sekey-Gersho 1992) is a perceptual
distance, defined by

n

BSD(x,y) = Z(Iz — i)

i=1

i.e., is the squared Euclidean distance between Bark spectra (x;) and
(yi) of  and y, where the i-th component corresponds to the i-th auditory
critical band in the Bark scale.

A modification of the Bark spectral distance excludes critical bands ¢
on which the loudness distortion |z; — y;| is less than the noise masking
threshold.

e Itakura—Saito quasi-distance
The Itakura—Saito quasi-distance (or mazimum likelihood distance)
I1S(z,y) between LPC-derived spectral envelopes © = z(w) and y = y(w)
(1968) is defined by

L [ <1n 2(w) | yw) 1) dw.

20 )\ y(w)  w(w)

The cosh distance is defined by IS(x,y) + IS(y, ), i.e., is equal to

I <x(w) n y(w) 2) dw—2 " 2cosh <ln z(w) _ 1) dw,

) \y(w) " (w) 2 y(w)

8

—T

where cosh(t) = Lf is the hyperbolic cosine function.

e Log likelihood ratio quasi-distance
The log likelihood ratio quasi-distance (or Kullback—Leibler dis-
tance) KL(x,y) between LPC-derived spectral envelopes © = x(w) and
y = y(w) is defined by

L[ z(w) In z(w)

2 ),
The Jeffrey divergence K L(x,y) + KL(y,x) is also used.

The weighted likelihood ratio distance between spectral envelopes
z = z(w) and y = y(w) is defined by

i/ﬁ (ln(zgzjg) + ZEZ; —1) x(w) (ln(zEfU;) + ZEB — ) y(w)

Jr
2r)_ . Dz Dy
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where P(z) and P(y) denote the power of the spectra z(w) and y(w),
respectively.

e Cepstral distance
The cepstral distance (or squared Euclidean cepstrum metric) CEP
(z,y) between the LPC-derived spectral envelopes 2 = x(w) and y = y(w)
is defined by

T z(w)\’ T
% - <1n ( )> dw:% » (Inz(w) — Iny(w))? dw

= > (@) =),

j=—00

where ¢;(2) = 5= [ e In|z(w)|dw is j-th cepstral (real) coefficient of
z derived from the Fourier transform or LPC.

The quefrency-weighted cepstral distance (or Yegnanarayana
distance, weighted slope distance) between x and y is defined by

1=—00

“Quefrency” and “cepstrum” are anagrams of “frequency” and “spec-
trum,” respectively.

The Martin cepstrum distance between two AR (autoregressive)
models is defined, in terms of their cepstra, by

o0

ZZ(Cz(f) —ci(y))?

=0

(Cf. general Martin distance in Chap.[I2] defined as an angle distance
between subspaces, and Martin metric in Chap.[II] between strings
which is an [..-analog of it.)

The Klatt slope metric (1982) between discrete spectra = = (z;) and
y = (y;) with n channel filters is defined by

n

Z((ﬂfiﬂ — ;) = (Y1 — ¥i))*.

i=1

e Pitch distance
Pitch is a subjective correlate of the fundamental frequency; cf. the above
Bark scale of loudness (perceived intensity) and Mel scale of perceived
tone height. A musical scale is, usually, a linearly ordered collection of
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pitches (notes). A pitch distance (or interval, musical distance) is
the size of the section of the linearly-perceived pitch-continuum bounded
by those two pitches, as modeled in a given scale. So, an interval describes
the difference in pitch between two notes. The pitch distance between two
successive notes in a scale is called a scale step.

In Western music now, the most used scale is the chromatic scale (octave
of 12 notes) of equal temperament, i.e., divided into 12 equal steps with
the ratio between any two adjacent frequencies being /2. The scale step
here is a semitone, i.e., the distance between two adjacent keys (black and
white) on a piano. The distance between notes whose frequencies are
f1and fo is 1210g2(%) semitones.

A MIDI (Musical Instrument Digital Interface) number of fundamental
frequency f is defined by p(f) = 69 + 12log, ﬁ. The distance be-
tween notes, in terms of MIDI numbers, becomes the natural metric
|m(f1) —m(f2)| on R. It is a convenient pitch distance since it corresponds
to physical distance on keyboard instruments, and psychological distance
as measured by experiments and understood by musicians.

A distance model in Music, is the alternation of two different intervals to
create a non-diatonic musical mode, for example, 1:2 (the octatonic scale),
1:3 (alternation of semitones and minor thirds) and 1:5.

e Distances between rhythms
A rhythm timeline (music pattern) is represented, besides the stan-
dard music notation, in the following ways, used in computational music
analysis.

1. By a binary vector z = (x1,...,%,,) of m time intervals (equal in a
metric timeline), where x; = 1 denotes a beat, while 2; = 0 denotes a
rest interval (silence). For example, the five 12/8 metric timelines of
Flamenco music are represented by five binary sequences of length 12.

2. By a pitch vector ¢ = (q1, - . -, qn) of absolute pitch values ¢; and a pitch

difference vector p = (p1,...,pn—1) where p; = ¢;11 — ¢; represents the
number of semitones (positive or negative) from ¢; to g;1.
3. By an inter-onset interval vector t = (ti,...,t,) of n time intervals

between consecutive onsets.
4. By a chronotonic representation which is a histogram visualizing ¢ as a

sequence of squares of sides t1,...,t,; such a display can be seen as a
piece-wise linear function.
. t;
5. By a rhythm difference vector r = (r1,...,7,-1), where r; = =+

Examples of general distances between rhythms are the Hamming
distance, swap metric (cf. Chap.[[T) and Earth Mover distance be-
tween their given vector representations.

The Euclidean interval vector distance is the Euclidean distance
between two inter-onset interval vectors. The Gustafson chronotonic
distance is a variation of [;-distance between these vectors using the
chronotonic representation.
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Coyle-Shmulevich interval-ratio distance is defined by

where r and 7’ are rhythm difference vectors of two rhythms (cf. the re-
ciprocal of Ruzicka similarity in Chap.[I7).
e Acoustics distances

The wavelength is the distance the sound wave travels to complete one
cycle. This distance is measured perpendicular to the wavefront in the
direction of propagation between one peak of a sine wave (sinusoid) and
the next corresponding peak. The wavelength of any frequency may be
found by dividing the speed of sound (331.4ms~! at sea level) in the
medium by the fundamental frequency.

The far field (cf. Rayleigh distance in Chap.24]) is the part of a
sound field in which sound waves can be considered planar and the sound
intensity decreases as d%, where d is the distance from the source. It cor-
responds to a reduction of ~6dB in the sound level for each doubling
of distance and to halving of loudness (subjective response) for each re-
duction of ~10dB. Humans have the innate ability to adjust their vocal
output to compensate for sound propagation losses to a listener’s position.

The near field is the part of a sound field (usually within about two
wavelengths from the source) where there is no simple relationship between
sound level and distance. A sound measurement is in free field if it is made
in open space at a large distance from the source.

The critical distance is the distance from the source at which the
direct sound (produced by the source) and reverberant sound (reflected
echo produced by the direct sound bouncing off, say, walls, floor, etc.) are
equal in amplitude.

The blanking distance is the minimum sensing range of an ultrasonic
proximity sensor.

The prozimity effect (audio) is the anomaly of low frequencies being
enhanced when a directional microphone is very close to the source.

The acoustic metric is the term used occasionally for some distances
between vowels; for example, the Euclidean distance between vectors of
formant frequencies of pronounced and intended vowel. (Not to be confused
with acoustic metrics in General Relativity and Quantum Gravity; cf.

Chap.B4)



Chapter 22

Distances in Internet and Similar
Networks

22.1 Scale-free networks

A network is a graph, directed or undirected, with a positive number
(weight) assigned to each of its arcs or edges. Real-world complex networks
usually have a gigantic number N of vertices and are sparse, i.e., with rela-
tively few edges.

Interaction networks (Internet, the Web, social networks, etc.) tend to
be small-world [Watt99], i.e., interpolate between regular geometric lat-
tices and random graphs in the following sense: they have a large clustering
coefficient (i.e., the probability that two distinct neighbors of a vertex are
neighbors), as lattices in a local neighborhood, while the average path dis-
tance between two vertices is small, about In N, as in a random graph.

The main subcase of a small-world network is a scale-free network
in which the probability distribution, say, for a vertex, to have de-
gree k is similar to k™7 for some positive constant v which usually belongs
to the segment [2, 3].

This power law implies that very few vertices, called hubs (connectors,
super-spreaders), are far more connected than other vertices.

The power law (or long range dependent, heavy-tail) distributions, in
space or time, has been observed in many natural phenomena (both, physical
and sociological).

e Collaboration distance

The collaboration distance is the path metric (see http://www.oakland.
edu/enp/) of the Collaboration graph, having about 0.4 million vertices
(authors in Mathematical Reviews database) with zy being an edge if
authors = and y have a joint publication among about 2 million papers
itemized in this database. The vertex of largest degree 1416, corresponds
to Paul Erdds; the Erdds number of a mathematician is his collaboration
distance to Paul Erdos.

The Barr’s collaboration metric (http://www.oakland.edu/enp/barr.
pdf) is the resistance metric from Chap.[[Hl in the following extension
of the Collaboration graph. First, put a 1-{ resistor between any two
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authors for every joint two-authors paper. Then, for each n-authors paper,
n > 2, add a new vertex and connect it by a 7-{) resistor to each of its
co-authors.
e Co-starring distance

The co-starring distance is the path metric of the Hollywood graph,
having about 250,000 vertices (actors in the Internet Movie database) with
xy being an edge if the actors z and y appeared in a feature film together.
The vertices of largest degree are Christopher Lee and Kevin Bacon; the
trivia game Siz degrees of Kevin Bacon uses the Bacon number, i.e., the
co-starring distance to this actor.

Similar popular examples of such social scale-free networks are graphs of
musicians (who played in the same rock band), baseball players (as team-
mates), scientific publications (who cite each other), chess-players (who
played each other), mail exchanges, acquaintances among classmates in a
college, business board membership, sexual contacts among members of
a given group. The path metric of the last network is called the sexual
distance.

Among other such studied networks are air travel connections, word co-
occurrences in human language, US power grid, sensor networks, worm
neuronal network, gene co-expression networks, protein interaction net-
works and metabolic networks (with two substrates forming an edge if a
reaction occurs between them via enzymes).

e Forward quasi-distance
In a directed network, where edge-weights correspond to a point in time,
the forward quasi-distance (backward quasi-distance) is the length
of the shortest directed path, but only among paths on which consecutive
edge-weights are increasing (decreasing, respectively).

The forward quasi-distance is useful in epidemiological networks (disease
spreading by contact, or, say, heresy spreading within a church), while the
backward quasi-distance is appropriated in P2P (i.e., peer-to-peer) file-
sharing networks.

¢ Betweenness centrality
For a geodesic metric space (X, d) (in particular, for the path metric of
a graph), the stress centrality of a point z € X is defined (Shimbel
1953) by

Z Number of shortest (y — z) paths through z,
y,2€X, yFr#z

the betweenness centrality of a point * € X is defined (Freeman
1977) by

Number of shortest (y — z) paths through «
glx)= >

ek Tt Number of shortest (y — z) paths
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and the distance-mass function is a function M : R>y — Q, defined by

M ~ Hye X :d(z,y) +d(y,z) = a for some z,y € X}|
(a) = {(z,2) € X x X : d(z, 2) = a}]

It was conjectured in [GOJKK02] that many scale-free networks sat-
isfy to power law g~7 (for the probability that a vertex has betweenness
centrality g), where v is either 2 or ~2.2 with the distance-mass function
M (a) being either linear or non-linear, respectively. In the linear case, for
example, Ma(a) ~ 4.5 for the Internet AS metric, and ~1 for the Web
hyperlink quasi-metric.

e Distance centrality
Given a finite metric space (X, d) (usually, the path metric on the graph
of a network) and a point x € X, we give here examples of metric function-
als used to measure distance centrality, i.e., the amount of centrality of
the point  in X expressed in terms of its distances d(z, y) to other points:

1. The eccentricity (or Koenig number) maxy,cx d(z,y) was given in
Chap.[I} Hage and Harary (1995) considered T AT
y 5

2. The closeness centrality (Sabidussi 1966) m and the mean
ye ’

2yex Uzy)
[X]-1

3. Dangalchev (2006) introduced }°, v .,
d(x,y) = oo (disconnected graphs).

distance

2-4=.9) which allows the case

e Drift distance

The drift distance is the absolute value of the difference between ob-
served and actual coordinates of a node in a NVE (Networked Virtual
Environment). In models of such large-scale peer-to-peer NVE (for exam-
ple, Massively Multiplayer On-line Games), the users are represented as
coordinate points on the plane (nodes) which can move at discrete time-
steps, and each has a visibility range called the Area of Interest. NVE
creates a synthetic 3D world where each user assumes avatar (a virtual
identity) to interact with other users or computer Al

The term drift distance is also used for the current going through a
material, in tire production, etc.

e Semantic proximity
For the words in a document, there are short range syntactic relations
and long range semantic correlations, i.e., meaning correlations between
concepts.

The main document networks are Web and bibliographic databases (dig-
ital libraries, scientific databases, etc.); the documents in them are related
by, respectively, hyperlinks and citation or collaboration.

Also, some semantic tags (keywords) can be attached to the documents
in order to index (classify) them: terms selected by author, title words,
journal titles, etc.
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The semantic proximity between two keywords x and y is their

Tanimoto similarity B{(BSXI, where X and Y are the sets of documents

indexed by z and y, respectively. Their keyword distance is defined by
|XAY].
| XNy’

it is not a metric.

22.2 Network-based semantic distances

Among the main lexical networks (such as WordNet, Framenet, Medical
Search Headings, Roget’s Thesaurus) a semantic lexicon WordNet is the most
popular lexical resource used in Natural Language Processing and Computa-
tional Linguistics.

WordNet (see http://wordnet.princeton.edu)) is an on-line lexical database
in which English nouns, verbs, adjectives and adverbs are organized into
synsets (synonym sets), each representing one underlying lexical concept.

Two synsets can be linked semantically by one of the following links:
upwards = (hyponym) IS-A y (hypernym) link, downwards z (meronym)
CONTAINS y (holonym) link, or a horizontal link expressing frequent co-
occurrence (antonymy), etc. IS-A links induce a partial order, called IS-A taz-
onomy. The version 2.0 of WordNet has 80,000 noun concepts and 13,500 verb
concepts, organized into 9 and 554 separate IS-A hierarchies, respectively.

In the resulting DAG (directed acyclic graph) of concepts, for any two
synsets (or concepts) x and y, let I(x,y) denote the length of the shortest
path between them, using only IS-A links, and let LPS(x,y) denote their least
common subsumer (ancestor) by IS-A taxonomy. Let d(x) denote the depth of
x (i.e., its distance from the root in IS-A taxonomy) and let D = max, d(x).

The semantic relatedness of two noons can be estimated by their ancestral
path distance (cf. Chap.23)), i.e., the length of the shortest ancestral path
(directed path through a common ancestor) connecting them. A list of the
other main semantic similarities and distances follows.

e Path similarity
The path similarity between synsets x and y is defined by

path(l‘, y) = (l(l‘, y))_l'

e Leacock—Chodorow similarity
The Leacock—Chodorow similarity between synsets x and y is de-
fined by

l
leh(z,y) = —In (;S,Dy)7

and the conceptual distance between them is defined by %


http://wordnet.princeton.edu
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¢ Wu—Palmer similarity

The Wu—Palmer similarity between synsets x and y is defined by

wup(z, y) =

e Resnik similarity
The Resnik similarity between synsets z and y is defined by

res(xz,y) = —In p(LPS(x,y)),

where p(z) is the probability of encountering an instance of concept z in
a large corpus, and —In p(z) is called the information content of z.

e Lin similarity
The Lin similarity between synsets z and y is defined by

2In p(LPS(x,y))
In p(z) +In p(y) -

lin(z,y) =

e Jiang—Conrath distance
The Jiang—Conrath distance between synsets x and y is defined by

jen(x,y) = 2In p(LPS(z,y)) — (In p(x) +In p(y)).

e Lesk similarities
A gloss of a synonym set z is the member of this set giving a definition
or explanation of an underlying concept. The Lesk similarities are those
defined by a function of the overlap of glosses of corresponding concepts;
for example, the gloss overlap is

2t(z,y)
t(x) +t(y)’

where t(z) is the number of words in the synset z, and t(z, y) is the number
of common words in = and y.

e Hirst—St-Onge similarity
The Hirst—St-Onge similarity between synsets x and y is defined by

hSO(LE,y) =C- L((E,y) — ck,

where L(x,y) is the length of a shortest path between 2z and y using all
links, k£ is the number of changes of direction in that path, and C,c are
constants.

The Hirst—St-Onge distance is defined by #
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e Semantic biomedical distances
The semantic biomedical distances are the distances used in bio-
medical lexical networks. The main clinical terminologies are UMLS
(United Medical Language System) and SNOMED CT (Systematized
Nomenclature of Medicine — Clinical Terms).

The conceptual distance between two biomedical concepts in UMLS is
(Caviedes and Cimino 2004) the minimum number of IS-A parent links
between them in the directed acyclic graph of IS-A taxonomy of concepts.

An example of semantic biomedical distances used in SNOMED and
presented in Melton, Parsons, Morrisin, Rothschild, Markatou and Hripsak
(2006) is given by the inter-patient distance between two medical cases

(sets X and Y of patient data). It is the Tanimoto distance (cf. Chap.[I])
|XAY]

X0V between them.

22.3 Distances in Internet and Web

Let us consider in detail the graphs of the Web and of its hardware substrate,
Internet, which are small-world and scale-free.

The Internet is the largest WAN (wide area network), spanning the Earth.
This publicly available worldwide computer network came from ARPANET
(started in 1969 by US Department of Defense), NSFNet, Usenet, Bitnet, and
other networks. In 1995, the National Science Foundation in the US gave up
the stewardship of the Internet.

Its nodes are routers, i.e., devices that forward packets of data along net-
works from one computer to another, using IP (Internet Protocol relating
names and numbers), TCP and UDP (for sending data), and (built on top of
them) HTTP, Telnet, FTP and many other protocols (i.e., technical specifi-
cations of data transfer). Routers are located at gateways, i.e., places where
at least two networks connect.

The links that join the nodes together are various physical connectors,
such as telephone wires, optical cables and satellite networks. The Internet
uses packet switching, i.e., data (fragmented if needed) are forwarded not
along a previously established path, but so as to optimize the use of available
bandwidth (bit rate, in million bits per second) and minimize the latency (the
time, in milliseconds, needed for a request to arrive).

Each computer linked to the Internet is usually given a unique “address,”
called its IP address. The number of possible IP addresses is 23 ~ 4.3 billion
only. The most popular applications supported by the Internet are e-mail,
file transfer, Web, and some multimedia as Internet TV and YouTube. In
2006, 161 EB (161 billion gigabytes, 1,288 x 10'® bites, ~3 x 10° times the
information in all the books ever written) of digital information was created
and copied. Internet traffic more than doubles each year.
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The Internet IP graph has, as the vertex-set, the IP addresses of all com-
puters linked to the Internet; two vertices are adjacent if a router connects
them directly, i.e., the passing datagram makes only one hop.

The Internet also can be partitioned into ASs (administratively Au-
tonomous Systems or domains). Within each AS the intra-domain routing
is done by IGP (Interior Gateway Protocol), while inter-domain routing is
done by BGP (Border Gateway Protocol) which assigns an ASN (16-bit num-
ber) to each AS. The Internet AS graph has ASs (about 25.000 in 2007) as
vertices and edges represent the existence of a BGP peer connection between
corresponding ASs.

The World Wide Web (WWW or Web, for short) is a major part of Internet
content consisting of interconnected documents (resources). It corresponds to
HTTP (Hyper Text Transfer Protocol) between browser and server, HTML
(Hyper Text Markup Language) of encoding information for a display, and
URLSs (Uniform Resource Locators), giving unique “addresses” to web pages.
The Web was started in 1989 in CERN which gave it for public use in 1993.

The Web digraph is a virtual network, the nodes of which are documents
(i.e., static HTML pages or their URLs) which are connected by incoming or
outcoming HTML hyperlinks, i.e., hypertext links.

The number of nodes in the Web digraph in 2007 was, by different esti-
mation, between 15 and 30 billion.

The number of web sites (collections of related web pages found at a single
address) reached 182 million in 2008, from 18,957 in 1995. Along with the
Web lies the Deep or Invisible Web, i.e., searchable databases (about 300.000)
with the number of pages (if not actual content) estimated as being about
500 times more than on static Web pages. Those pages are not indexed by
search engines; they have dynamic URL and so can be retrieved only by a
direct query in real time.

On 30 June 2007, 1,173,109,925 users (17.8% of the global population
6,574,666,417) were online, including 69.5% in North America and 39.8% in
Europe. The top six languages on the Internet, at 30 June 2007, were: English,
Chinese, Spanish, Japanese, French, German with, respectively, 31%, 16%,
9%, 7%, 5%, 5% of all Internet users with corresponding Internet penetration
18%, 14%, 23%, 67%, 15%, 61% by languages.

There are several hundred thousand cyber-communities, i.e., clusters of
nodes of the Web digraph, where the link density is greater among members
than between members and the rest. The cyber-communities (a customer
group, a social network, a concept in a technical paper, etc.) are usually
focused around a definite topic and contain a bipartite hubs-authorities sub-
graph, where all hubs (guides and resource lists) point to all authorities
(useful and relevant pages on the topic). Examples of new media, created by
the Web are (we)blogs (digital diaries posted on the Web), Skype (telephone
calls), social site Facebook and Wikipedia (the collaborative encyclopedia).
The project Semantic Web by WWW Consortium aims at linking to meta-
data, merging social data and transformation of WWW into GGG (Giant
Global Graph) of users.
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On average, nodes of the Web digraph are of size 10 kB, out-degree 7.2, and
probability k=2 to have out-degree or in-degree k. A study in [BKMROQ0O] of
over 200 million web pages gave, approximatively, the largest connected com-
ponent “core” of 56 million pages, with another 44 million of pages connected
to the core (newcomers?), 44 million to which the giant core is connected (cor-
porations?) and 44 million connected to the core only by undirected paths
or disconnected from it. For randomly chosen nodes x and y, the probability
of the existence of a directed path from z to y was 0.25 and the average
length of such a shortest path (if it exists) was 16, while maximal length of
a shortest path was over 28 in the core and over 500 in the whole digraph.

A study in [CHKSSO00] of Internet AS graphs revealed the following Medusa
structure of the Internet: “nucleus” (diameter 2 cluster of 100 nodes), “frac-
tal” (15,000 nodes around it), and “tentacles” (=5,000 nodes in isolated
subnetworks communicating with the outside world only via the nucleus).

The distances below are examples of host-to-host routing metrics, i.e.,
values used by routing algorithms in the Internet, in order to compare pos-
sible routes. Examples of other such measures are: bandwidth consumption,
communication cost, reliability (probability of packet loss). Also, the main
computer-related quality metrics are mentioned.

e Internet IP metric
The Internet IP metric (or hop count, RIP metric, IP path length) is the
path metric in the Internet IP graph, i.e., the minimal number of hops (or,
equivalently, routers, represented by their IP addresses) needed to forward
a packet of data. RIP imposes a maximum distance of 15 and advertises
by 16 non-reachable routes.

e Internet AS metric

The Internet AS metric (or BGP-metric) is the path metric in the
Internet AS graph, i.e., the minimal number of ISPs (Independent Service
Providers), represented by their ASs, needed to forward a packet of data.

e Geographic distance
The geographic distance is the great circle distance on the Earth
from the client « (destination) to the server y (source). However, for eco-
nomical reasons, the data often do not follow such geodesics; for example,
most data from Japan to Europe transits via US.

e RTT-distance
The RTT-distance is the RTT (Round Trip Time: to send a packet and
receive an acknowledgement back) of transmission between x and y, mea-
sured in milliseconds (usually, by the ping command) during the previous
day.

See for variations of this distance and connections with
the above three metrics. Fraigniaud, Lebbar and Viennot (2008) found
that RTT is a C-inframetric (Chap. [[l) with C' &~ 7. Sinha, Raz and
Choudhuri (2006) asserted that the average RTT-distance from z to the
nearest backbone (i.e., of Class 1) network, coupled with its geographic
distance, predicts the network distance better than on-line metrics.



22.3 Distances in Internet and Web 379

e Administrative cost distance
The administrative cost distance is the nominal number (rating the
trustworthiness of a routing information), assigned by the network to the

route between = and y. For example, Circe assigns values 0, 1, ... ,200, 255
for the Connected Interface, Static Route, ..., Internal BGP, Unknown,
respectively.

e DRP-metrics
The DD (Distributed Director) system of Cisco uses (with priorities and
weights) the administrative cost distance, the random metric (select-
ing a random number for each TP address) and the DRP (Direct Response
Protocol) metrics. DRP-metrics ask from all DRP-associated routers one
of the following distances:

1. The DRP-external metric, i.e., the number of BGP (Border Gateway
Protocol) hops between the client requesting service and the DRP server
agent

2. The DRP-internal metric, i.e., the number of IGP hops between the
DRP server agent and the closest border router at the edge of the au-
tonomous system

3. The DRP-server metric, i.e., the number of IGP hops between the
DRP server agent and the associated server

e Network tomography metrics

Consider a network with fixed routing protocol, i.e., a strongly connected
digraph D = (V, E) with a unique directed path T'(u,v) selected for any
pair (u,v) of vertices. The routing protocol is described by a binary routing
matriz A = ((a;j)), where a;; = 1 if the arc e € E, indexed ¢, belongs to
the directed path T'(u,v), indexed j. The Hamming distance between
two rows (columns) of A is called the distance between corresponding
arcs (directed paths) of the network.

Consider two networks with the same digraph, but different routing
protocols with routing matrices A and A’, respectively. Then a routing
protocol semi-metric is the smallest Hamming distance between
A and a matrix B, obtained from A’ by permutations of rows and columns
(both matrices are seen as strings).

e Web hyperlink quasi-metric

The Web hyperlink quasi-metric (or click count) is the length of the
shortest directed path (if it exists) between two web pages (vertices in the
Web digraph), i.e., the minimal number of necessary mouse-clicks in this
digraph.

e Average-clicks Web quasi-distance
The average-clicks Web quasi-distance between two web pages = and y
in the Web digraph [YOI03] is the minimum /", In p% over all directed
paths © = 29, 21,...,2m = y connecting x and y, where zf is the out-
degree of the page z;. The parameter « is 1 or 0.85, while p (the average
out-degree) is 7 or 6.
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e Dodge—Shiode WebX quasi-distance

The Dodge—Shiode WebX quasi-distance between two web pages
x and y of the Web digraph is the number m, where h(z,y) is the
number of shortest directed paths connecting = and y.

e Web similarity metrics
‘Web similarity metrics form a family of indicators used to quantify the
extent of relatedness (in content, links or/and usage) between two web
pages z and y.

Some examples are: topical resemblance in overlap terms, co-citation
(the number of pages, where both are given as hyperlinks), bibliograph-
ical coupling (the number of hyperlinks in common) and co-occurrence
frequency min{ P(x|y), P(y|z)}, where P(x|y) is the probability that a vis-
itor of the page y will visit the page x.

In particular, search-centric change metrics are metrics used by
search engines on the Web, in order to measure the degree of change be-
tween two versions x and y of a web page. If X and Y are the set of all
words (excluding HTML markup) in « and y, respectively, then the word
page distance is the Dice distance

| XAY 21X UY|

X[+ X[+ YT

If v, and v, are weighted vector representations of x and y, then their
cosine page distance is given by

1— <v$7vy>

[vzllz - [loyl]2
Cf. TF-IDF similarity in Chap.[I7

e Web quality control distance function
Let P be a query quality parameter and X its domain. For example, P
can be query response time, or accuracy, relevancy, size of result.

The Web quality control distance function (Chen, Zhu and Wang
1998) for evaluating the relative goodness of two values, x and y, of pa-
rameter P is a function p : X x X — R (not a distance) such that, for
all z,y,z € X:

1. p(z,y) = 0 if and only if x = y.
2. p(z,y) > 0 if and only if p(y,z) < 0.
3. If p(x,y) > 0 and p(y, z) > 0, then p(x,z) > 0.

The inequality p(z,y) > 0 means that x is better than y; so, it defines
a partial order (reflexive, antisymmetric and transitive binary relation)

on X.
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e Lostness metric
Users navigating within hypertext systems often experience disorientation
(the tendency to lose sense of location and direction in a non-linear doc-
ument) and cognitive overhead (the additional effort and concentration
needed to maintain several tasks/trails at the same time). Users miss the
global view of document structure and their working space.
Smith’s lostness metric measures it by

(T -1+ (= -7

where s is the total number of nodes visited while searching, n is the
number of different nodes among them, and r is the number of nodes
which need to be visited to complete a task.
e Trust metrics

A trust metric is, in Computer Security, a measure to evaluate a set of
peer certificates resulting in a set of accounts accepted and, in Sociology,
a measure of how a member of the group is trusted by the others in the
group.

For example, the UNIX access metric is a combination of only read,
write and ezecute kinds of access to a resource. The much finer Advogato
trust metric (used in the community of open source developers to rank
them) is based on bonds of trust formed when a person issues a cer-
tificate about someone else. Other examples are: Technorati, TrustFlow,
Richardson et al’s., Mui et al’s., eBay trust metrics.

e Software metrics
A software metric is a measure of software quality which indicates
the complexity, understandability, description, testability and intricacy of
code. Managers use mainly process metrics which help in monitoring the
processes that produce the software (say, the number of times the program
failed to rebuild overnight).

An architectural metric is a measure of software architecture (de-
velopment of large software systems) quality which indicates the coupling
(inter-connectivity of composites), cohesion (intraconnectivity), abstract-
ness, instability, etc.

e Locality metric
The locality metric is a physical metric measuring globally the locations
of the program components, their calls, and the depth of nested calls by

>ij fiidij
Yl

where d;; is a distance between calling components 4 and j, while f;; is the
frequency of calls from i to j. If the program components are of about same
size, d;; = |i — j| is taken. In the general case, Zhang and Gorla (2000)
proposed to distinguish forward calls, which are placed before the called
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component, and backward (other) calls. Define d;; = d;+d;;, where d; is the
number of lines of code between the calling statement and the end of 7 if call
is forward, and between the beginning of ¢ and the call, otherwise, while
di; = Zf;;l Ly, if the call is forward, and d}; = Zz;ljﬂ Ly, otherwise.
Here Ly is the number of lines in component k.
e Reuse distance

In a computer, the microprocessor (or processor) is the chip doing all the
computations, and the memory usually refers to RAM (random access
memory). A (processor) cache stores small amounts of recently used infor-
mation right next to the processor where it can be accessed much faster
than memory. The following distance estimates the cache behavior of pro-
grams.

The reuse distance (Mattson, Gecsei, Slutz and Treiger 1970; and
Ding and Zhong 2003) of a memory location x is the number of distinct
memory references between two accesses of z. Each memory reference is
counted only once because after access it is moved in the cache. The reuse
distance from the current access to the previous one or to the next one is
called the backward or forward reuse distance, respectively.

e Action at a distance (in Computing)
In Computing, the action at a distance is a class of programming prob-
lems in which the state in one part of a program’s data structure varies
wildly because of difficult-to-identify operations in another part of the
program.

In Software Engineering, Holland’s Law of Demeter is a style guideline:
an unit should “talk only to immediate friends” (closely related units) and
have limited knowledge about other units; cf. principle of locality in

Chap.24
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Chapter 23
Distances in Biology

Distances are mainly used in Biology to pursue basic classification tasks, for
instance, for reconstructing the evolutionary history of organisms in the form
of phylogenetic trees. In the classical approach those distances were based
on comparative morphology, physiology, mating studies, paleontology and
immunodiffusion. The progress of modern Molecular Biology also allowed the
use of nuclear- and/or amino-acid sequences to estimate distances between
genes, proteins, genomes, organisms, species, etc. The importance of distance
can be seen, for example, from the list of 23 Mathematical Challenges funded
by US Department of Defense since DARPA-BAA Tech 2007; the 15-th one
is “The Geometry of Genome Space:” what notion of distance is needed to
incorporate biological utility?

DNA is a sequence of nucleotides (or nuclei acids) A, T, G and C, and
it can be seen as a word over this alphabet of four letters. The (single ring)
nucleotides A, G (short for adenine and guanine) are called purines, while
(double ring) T, C (short for thymine and cytosine) are called pyrimidines (in
RNA, it is uracil U instead of T). Two strands of DNA are held together and
in the opposite orientation (forming a double helix) by weak hydrogen bonds
between corresponding nucleotides (necessarily, a purine and a pyrimidine)
in the strands alignment. These pairs are called base pairs.

A transition mutation is a substitution of a base pair, so that a purine/
pyrimidine is replaced by another purine/pyrimidine; for example, GC is
replaced by AT. A transversion mutation is a substitution of a base pair, so
that a purine/pyrimidine is replaced by a pyrimidine/purine base pair, or
vice versa; for example, GC is replaced by TA.

DNA molecules occur (in the nuclei of eukaryote cells) in the form of long
chaines called chromosomes. Most human cells contain 23 pairs of chromo-
somes, one set of 23 from each parent; human gamete (sperm or egg) is a
haploid, i.e., contains only one set of 23 chromosomes. The (normal) males
and females differ only in the 23-rd pair: XY for males, and X X for female.
The DNA from one human cell has length ~1.8 m but width of ~2.4 nm.

A gene is a functionally complete segment of DNA which encodes (via
transcription, information flow to RNA, and then translation, information
flow from RNA to enzymes) a protein or an RNA molecule. The location of

M.M. Deza and E. Deza, Encyclopedia of Distances, 385
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a gene on its specific chromosome is called the gene locus. Different versions
(states) of a gene are called its alleles. Only ~1.5% of human DNA are in
protein-coding genes.

A protein is a large molecule which is a chain of amino acids; among them
are hormones, catalysts (enzymes), antibodies, etc. The protein length is
the number of amino acids in the chain; average protein length is around
300. There are 20 standard amino acids; the three-dimensional shape of a
protein is defined by the (linear) sequence of amino acids, i.e., by a word in
this alphabet of 20 letters.

The genetic code is universal to all organisms and is a correspondence
between some codons (i.e., ordered triples of nucleotides) and 20 amino acids.
It express the genotype (information contained in genes, i.e., in DNA) as the
phenotype (proteins). Three stop codons (UAA, UAG, and UGA) signify the
end of a protein; any two, among 61 remaining codons, are called synonymous
if they correspond to the same amino acid. Slight variations of the code (codon
reassignments selected, perhaps, for antiviral defense) were observed for some
mitochondria, ciliates, yeasts, etc. In certain enzymes, non-standard amino
acids (21st, selenocysteine and 22nd, pyrrolysine) are substituted for standard
stop codons: UGA and UAG, respectively. On the other hand, more than 60
amino acids were identified in the Murchison meteorite.

A genome is entire genetic constitution of a species or of a living organism.
For example, the human genome is the set of 23 chromosomes consisting of
~23.2 billion base pairs of DNA and organized into 20,000-25,000 genes.

IAM (infinite-alleles model of evolution) assumes that an allele can change
from any given state into any other given state. It corresponds to a primary
role for genetic drift (i.e., random variation in gene frequencies from one
generation to another), especially in small populations, over natural selection
(stepwise mutations). TAM is convenient for allozyme (a form of a protein
which is encoded by one allele at a specific gene locus) data.

SMM (for step-wise mutation model of evolution) is more convenient for
(recently, most popular) micro-satellite data. A repeat is a stretch of base
pairs that is repeated with a high degree of similarity in the same sequence.
Micro-satellites are highly variable repeating short sequences of DNA; their
mutation rate is 1 per 1,000-10,000 replication events, while it is 1/1,000,000
for allozymes. It turns out that micro-satellites alone contain enough informa-
tion to plot the lineage tree of an organism. Micro-satellite data (for example,
for DNA fingerprinting) consist of numbers of repeats of micro-satellites for
each allele. Another popular molecular marker is SSU rRNA (small subunit
ribosomal RNA) data because rRNA genes are essential for the survival of
any organism and their sequences change relatively little.

Examples of distances, representing general schemes of measurement in
Biology, follow.

The term taxonomic distance is used for every distance between two
taxa, i.e., entities or groups, which are arranged into an hierarchy (in the
form of a tree designed to indicate degrees of relationship).
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Linnean taronomic hierarchy is arranged in ascending series of ranks:
Zoology (seven ranks: Kingdom, Phylum, Class, Order, Family Genus,
Species) and Botany (12 ranks). A phenogram is an hierarchy expressing
phenetic relationship, i.e., unweighted overall similarity. A cladogram is a
strictly genealogical (by ancestry) hierarchy in which no attempt is made to
estimate/depict rates or amount of genetic divergence between taxa.

A phylogenetic tree is an hierarchy representing a hypothesis of phylogeny,
i.e., evolutionary relationships within and between taxonomic levels, espe-
cially the patterns of lines of descent. Phenetic distance is a measure of
the difference in phenotype between any two nodes on a phylogenetic tree.
Phylogenetic distance (or cladistic distance, genealogical distance)
between two taxa is the branch length, i.e., the minimum number of edges,
separating them in a phylogenetic tree.

Evolutionary distance (or patristic distance, general genetic dis-
tance) between two taxa is a measure of genetic divergence estimating the
divergence time, i.e., the time that has passed since those populations existed
as a single population. General immunological distance between two taxa
is a measure of the strength of antigen-antibody reactions, indicating the
evolutionary distance separating them.

The next three sections list the main genetic distances for different molec-
ular data (allele frequencies and nucleotide or amino acid sequences). The
main way to estimate the genetic distance between DNA, RNA or proteins
is to compare their nucleotide or amino acid, respectively, sequences. Be-
sides sequencing, the main techniques used are immunological ones, annealing
(cf. hybridization metric) and comparing their gel electrophoresis (sepa-
ration through an electric charge) banding patterns. In fact, chromosomes
stained by some dyes show a 2D pattern of traverse bands of light and heavy
staining.

23.1 Genetic distances for gene-frequency data

In this section, a genetic distance between populations is a way of measur-
ing the amount of evolutionary divergence by counting the number of allelic
substitutions by loci. Among the three most commonly used distances be-
low, Nei standard genetic distance 1972, assumes that differences arise
due to mutation and genetic drift, while Cavalli-Sforza—Edvards chord
distance 1967, and Reynolds—Weir—Cockerham distance 1983, assume
genetic drift only.

A population is represented by a double-indexed vector = (z;;) with
Z?Zl m; components, where x;; is the frequency of i-th allele (the label
for a state of a gene) at the j-th gene locus (the position of a gene on a
chromosome), m; is the number of alleles at the j-th locus, and n is the
number of considered loci.
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Denote by > summation over all ¢ and j. Since x;; is the frequency, z;; > 0

m;
and >, x;; = 1.

Stephens et al. shared allele distance
The Stephens et al. shared allele distance (Stephens, Gilbert, Yuhki
and O’Brien 1992) between populations is defined by

| SA@y)
SA(z) + SA(y)

)

where, for two individuals a and b, SA(a,b) denotes the number of shared
alleles summed over all n loci and divided by 2n, while SA(z), SA(y), and
SA(z,y) are SA(a,b) averaged over all pairs (a,b) with individuals a,b
being in populations, represented by x, by y and, respectively, between
them.
Dps distance.
The Thorpe similarity between populations is defined by > min{z;;,
Yij}-

The Dps distance between populations is defined by

2 min{@g, yigt
- .
Zj:l m;

Prevosti-Ocana—Alonso distance
The Prevosti—Ocana—Alonso distance between populations is defined
(cf. Manhattan metric) by

> |wij — vigl

2n '

Roger distance
The Roger distance is a metric between populations, defined by

Cavalli-Sforza—Edvards chord distance
The Cavalli-Sforza—Edvards chord distance between populations is
defined by

It is a metric (cf. Hellinger distance in Chap.[I7).
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Cavalli-Sforza arc distance
The Cavalli-Sforza arc distance between populations is defined by

2
; arccos (Z A /xijyij) .

(Cf. Fisher distance in Chap.[I4)
Nei—Tajima—Tateno distance
The Nei—Tajima—Tateno distance between populations is defined by

1
O INCT

Nei minimum genetic distance
The Nei minimum genetic distance between populations is defined by

1
o (i — i)

Nei standard genetic distance
The Nei standard genetic distance between populations is defined by

—In I,

where I is Nei normalized identity of genes, defined by m (cf.

Bhattacharya distances in Chap.[[d and angular semi-metric in

Chap.[I7).
Sangvi x? distance
The Sangvi y? distance between populations is defined by

72 ng yZJ
Tij + Yij

Fuzzy set distance
The Dubois—Prade’s fuzzy set distance between populations is de-

fined by
> 111‘.7’#%_7’
Z?:l m;

Goldstein and al. distance
The Goldstein and al. distance between populations is defined by

1 ) 0
LS iz — i)
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Average square distance
The average square distance between populations is defined by

% YU D = eayn

k=1 \1<i<j<m,

Shriver—Boerwinkle stepwise distance
The Shriver—-Boerwinkle stepwise distance between populations is
defined by

1 n . )
-~ DD i ilQuawye — wawin — Yikyn)-

k=11<i,j<my

Kinship distance
The kinship distance between populations is defined by

_ln<x7y>a

and (x,y) is called the kinship coefficient.
Latter F-statistics distance
The Latter F-statistics distance between populations is defined by

(@i — yiy)*
2(n — > wiyis)

Reynolds—Weir—Cockerham distance
The Reynolds—Weir—Cockerham distance (or co-ancestry distance)
between populations is defined by

—In(1 - 10),

_ D(wiy—yy)?
201> wiyig)
tion of their co-ancestry coefficient.

This coefficient of two populations (or individuals) is the probability
that a randomly picked allele from the genetic pool of one population (or
from one individual) is identical by descent (i.e., corresponding genes are
physical copies of the same ancestral gene) to a randomly picked allele in
another. Two genes can be identical by state, i.e., with the same allele label,
but not identical by descent. The co-ancestry coefficient of two individuals
is the inbreeding coefficient of their following generation.

where 6 (cf. Latter F-statistics distance) is an estima-
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e Ancestral path distance
Hereditary trees (or family trees, pedigree graphs) are used to represent an-
cestry relations and, in particular, to identify inbreeding loops and genes
associated with genetic diseases. In such a directed tree, every vertex (per-
son) has in-degree at most two (known parents).

Generally, given a directed acyclic graph, Bender, Farach, Colton,
Pemmasani, Skiena and Sumazin 2001, defined, for any two vertices x, y,
the ancestral path distance as the length of the shortest ancestral
path (directed path through a common ancestor vertex) and the LCA
ancestral path distance as the length of the shortest directed path
through LCA (the least common ancestor) vertex.

The smallest inbreeding loop containing vertices x and y is formed by
concatenating ancestral and descending paths connecting them. The an-
cestral path distance also measures semantic noun relatedness in WorldNet
(cf. Chap.22]).

The unrelated ancestral distance of an extant taxon (Hearn and Huber
2006) is the time (or the number of speciation events, node depth) sepa-
rating it from its most recent ancestor with at least one extant descendant
having an independent character (trait). Cf., also unrelated, co-ancestry
distance.

e Lasker distance

The Lasker distance (Rodrigues and Larralde 1989) between two hu-
man populations x and y, characterized by surname frequency vectors
(2;) and (y;), is the number —In 2R, ,,, where R, , = % >, Tiy; is Lasker’s
coefficient of relationship by isonymy. Surname structure is related to in-
breeding and (in patrilinear societies) to random genetic drift, mutation
and migration. Surnames can be considered as alleles of one locus, and
their distribution can be analyzed by Kimura’s theory of neutral muta-
tions; an isonymy points to a common ancestry.

23.2 Distances for DNA /RNA data

Distances between nucleotide (DNA/RNA) or protein sequences are usually
measured in terms of substitutions, i.e., mutations, between them.

A DNA sequence will be seen as a sequence x = (z1,...,T,) over the
four-letter alphabet of four nucleotides A, T, C, G (or two-letter alphabet
purine/pyramidine); Y denotes > ;.

Protein-coding nucleotide sequences are called codon sequences.

e No. of DNA differences
The No. of DNA differences between DNA sequences is the number of
mutations, i.e., their Hamming metric:

Z 1513i7£yz"
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e p-distance
The p-distance d, between DNA sequences is defined by

Z Lo, 2y, .

n

e Jukes—Cantor nucleotide distance

The Jukes—Cantor nucleotide distance between DNA sequences is
defined by
3

4
~1 In (1 - 3dp(a:,y)) ,

where d,, is the p-distance, subject to d, < %. If the rate of substitution
varies with the gamma distribution, and a is the parameter describing the
shape of this distribution, then the gamma distance for the Jukes—
Cantor model is defined by

(1 gam) 1),

e Tajima—Nei distance
The Tajima—Nei distance between DNA sequences is defined by

—bln (1 — W) , where

J L

1 loey—i\2 1 Loy \2
b= 5 1— < .,z—J@—]> +72 < .qqﬁJz) 7 and
—AT.C.G n ¢ n

c= =

2 i k€{AT,G,C}.j#k (Z lmi:yi:j)(z 1mi:yi:k)

2
1 5 (3" Lary)=(ik))

Let P=1{1 <i<n:{z,y}={AG}or {T,C}}|, and Q = L|{1 <
i <n:{z,y} ={AT}or {G,C}}, ie., P and @ are the frequencies of,
respectively, transition and transversion mutations between x and y.

The following four distances are given in terms of P and Q.

e Jin—Nei gamma distance
The Jin—Nei gamma distance between DNA sequences is defined by

a

2

_op_ )ty kg _og)-t/a 3
(1-2p-@ e+ ja-2g) e -3},

where the rate of substitution varies with the gamma distribution, and a
is the parameter describing the shape of this distribution.
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¢ Kimura 2-parameter distance

The Kimura 2-parameter distance between DNA sequences is
defined by

51 -2P Q) ~ 1l y/T-3Q.

e Tamura 3-parameter distance

The Tamura 3-parameter distance between DNA sequences is
defined by

CbIn (1 _ % _ Q) _ %(1 —b)In(1 - 20),

where f, = L{1 <i<n:2;,=GorC}, fy=L{1<i<n:y =
Gor C}|,and b= f, + [y — 2fafy.
In the case f, = f, = 3 (so, b = %), it is the Kimura 2-parameter
distance.
e Tamura—Nei distance
The Tamura—Nei distance between DNA sequences is defined by

2fAfGln(1 IR PA01PRY>

Ir 2fafa 2fr
2frfc fy 1
fy tn (1 B 2foCPTC - 2fYPRY>
B ~ fafefy  frfcfr 1
2(fRfY n Ty )111 (1 2fRfYPRY>7

where f; = 3= 3 (1s,=j + 1y,—;) for j = A,G,T,C, and fr = fa + fc,
fy = fr+ fo, while Pry = 2[{1 < i < n : Ha,u} N{A,G} =
{zi,y;} N {T,C}| = 1}| (the proportion of transversion differences),
Psc = {1 < i < n: {x,y} = {4 G}}| (the proportion of transi-
tions within purines), and Pre = 1|{1 <i < n: {z;,y;} = {T, C}}| (the
proportion of transitions within pyrimidines).

e Lake paralinear distance
Given two DNA sequences = = (z1,...,2,) and y = (y1,...,Yn), denote
by det(J) the determinant of the 4 x 4 matrix J = ((J;;)), where J;; =
{1 <t < n:wx =i,y = j}| (joint probability) and indices i,j =
1,2, 3,4 represent nucleotides A, T, C, G, respectively. Let f;(z) denote
the frequency of i-th nucleotide in the sequence = (marginal probability),
and let f(z) = fi(z)f2(x)fs(x)fs(z). The Lake paralinear distance
(1994) between sequences x and y is defined by

1 det(J)

——1In

47 /F@) fly)
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It is a four-point inequality metric, and it generalizes trivially

for sequences over any alphabet. Related are the LogDet distance

(Lockhart, Steel, Hendy and Penny 1994) —XIndet(J) and the sym-

metrization 1(d(z,y) + d(y,z)) of the Barry—Hartigan quasi-metric
1 det(J)

(1987) d(x,y) = —3In ek

e Eigen—McCaskill-Schuster distance
The Eigen—McCaskill-Schuster distance between DNA sequences x =
(x1,...,25) and y = (y1,...,Yn) is defined by

{1 <i<n:{zi,y} #{A GHAT, C}}.

It is the number of transversions, i.e., positions ¢ with one of z;, y; denoting
a purine and another one denoting a pyrimidine. It is applied to virus or
cancer proliferation under control of drugs or the immune system.

e Watson—Crick distance
The Watson—Crick distance between DNA sequences x = (z1,...,x,)
and y = (y1,...,Yn) is defined, for x # y, by

|{1 <i<n: {xzayz} # {A7T}7{G7C}}|7

ie., it is the Hamming metric (cf. No. of differences) > 1,,.5. be-
tween x and the Watson—Crick complement § = (yy,...,7,) of y. Here
y, =AT G Cify, =T, A, C,G, respectively.
e Hybridization metric

Hybridization is the process of combining complementary, single-stranded
nucleic acids into a single molecule. Annealing is the binding of two strands
by Watson—Crick complementation, i.e., interchange of all A, T', G, C by
T, A, C, G, respectively. Denaturation is the reverse process of separating
two strands of the double stranded DNA/RNA molecule (heating breaks
the hydrogen bonds between bases).

Cf. the prozimity effect in the production of chromosome aberrations
among proximity effects in Chap.[24l

The rate of annealing of two strands (or the temperature at which de-
naturation occurs) measures similarity between their base sequences.

H-measure between two DNA n-sequences x and y is defined by

H(z,y) = _jmin_

Loiztyz, o
where the indices ¢ + k are modulo n, and y* is the reversal of y followed
by Watson—Crick complementation.

A DNA cube is any maximal set of DNA n-sequences, such that
H(xz,y) = 0 for any two of them. The hybridization metric (Garzon,
Neathery, Deaton, Murphy, Franceschetti and Stevens 1997) between DNA
cubes A and B is defined by
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in H .
L (z,y)

e Interspot distance.

A DNA microarray is a technology consisting of an arrayed series of
thousands of features (microscopic spots of DNA oligonucleotides, each
containing picomoles of a specific DNA sequence) that are used as probes
to hybridize a target (cCRNA sample) under high-stringency conditions.
Probe-target hybridization is quantified by fluorescence-based detection
of fluorophore-labeled targets to determine the relative abundance of nu-
cleic acid sequences in the target.

The interspot distance is the spacing distance between features.
Typical values are 375, 750, 1,500 um (1 pm=10"%m)

e RNA structural distances
An RNA sequence is a string over the alphabet {4, C, G,U} of nucleotides
(bases). Inside a cell, such a string folds in 3D space, because of pairing of
nucleotide bases (usually, by bonds A-U, G-C and G-U). The secondary
structure of an RNA is, roughly, the set of helices (or the list of paired
bases) making up the RNA. Such structure can be represented as a planar
graph and further, as a rooted tree.

The tertiary structure is the geometric form the RNA takes in space;
the secondary structure is its simplified model. The quaternary structure
describes the arrangement of multiple protein molecules into larger com-
plexes.

An RNA structural distance between two RNA sequences is a dis-
tance between their secondary structures. These distances are given in
terms of their selected representation. For example, tree edit distance
(and other distances on rooted trees given in Chap.[IH]) are based on rooted
tree representation.

Let an RNA secondary structure be represented by a simple graph (V, E)
with vertex-set V' = {1,...,n} such that, for every 1 <i <mn, (i,i+1) ¢ E
and (4,7), (i,k) € E imply j = k. Let E = {(i1,71),- -, (i, jr)}, and let
(7j) denote the transposition of ¢ and j. Then 7(G) = Hle(itjt) is an
involution.

Let G = (V,E) and G’ = (V, E’) be such planar graph representations
of two RNA secondary structures. The base pair distance between G
and G’ is the number |FAE'|, i.e., the symmetric difference metric
between secondary structures seen as sets of paired bases.

The Zuker distance between G and G’ is the smallest number % such
that, for every edge (i,7) € E, there is an edge (i, ') € E' with max{|i —
i'l,17—J4'|} < k and, for every edge (k’,l') € E', there is an edge (k,l) € E
with max{|k — K'|, |l = U'|} < k.

The Reidys—Stadler—Rosellé metric between G and G is defined by

|EAE'| — 2T,
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where T' is the number of cyclic orbits of length greater than 2 induced
by the action on V of the subgroup (7(G),7(G’)) of the group Sym,, of
permutations on V. It is the number of transpositions needed to represent

m(G)m(G").
Let I¢ = (wiz; : (v4,2;) € E) be the monomial ideal (in the ring
of polynomials in the variables x1,...,x, with coefficients 0,1), and let

M (1), denotes the set of all monomials of total degree <m that belong
to Ig. For every m > 3, a Liabrés-Rosell6 monomial metric between
G = (V,E)and G' = (V', E') is defined by

|M(Ig)m-—1AM(Ig:)m-1]-

The secondary structure of a protein much depends on its backbone con-
figuration, i.e., the sequence of dihedral angles defining backbone. Wang
and Zheng (2007) presented a variation of Lempel—-Ziv distance between
two such sequences.

e Fuzzy polynucleotide metric
The fuzzy polynucleotide metric (or NTV-metric) is the metric
introduced by Nieto, Torres and Valques-Trasande in 2003 on the 12-
dimensional unit cube I'2. Four nucleotides U,C, A and G of RNA
alphabet being coded as (1,0,0,0), (0,1,0,0), (0,0,1,0) and (0,0,0,1),
respectively, 64 possible triplet codons of the genetic code can be seen as
vertices of I'2.

So, any point (x1,...,712) € I'? can be seen as a fuzzy polynucleotide
codon with each x; expressing the grade of membership of element 7, 1 <
1 < 12, in the fuzzy set x. The vertices of the cube are called the crisp
sets.

The NTV-metric between different points z,y € I'? is defined by

2152‘312 |z — i

Z1gz‘g12 max{w;,y;}

Dress and Lokot showed that Zigicn qu_y?l — is a metric on the whole
Elgign max{|x;|,|y:|}

of R". On RZ, this metric is equal to 1 — s(z,y), where s(z,y) =
gt el s the Ruzicka similarity (cf. Chap. ).
e tRNA interspecies distance

An ensemble of tRNA molecules is necessary to translate triplet codons

into amino acids; eukaryotes have up to 80 different tRNAs. Two tRNA

molecules are called isoacceptor tRNAs if they bind the same amino acid.
tRINA interspecies distance between species m and n is (Xue, Tong,

Marck, Grosjean and Wong 2003), averaged for all 20 amino acids, tRNA
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distance for given amino acid aa;, which is, averaged for all pairs, Jukes—
Cantor protein distance between each of the one or more isoacceptor
tRNAs of aa; from species m and each of the one or more isoacceptor
tRNAs of the same amino acid from species n.
e Whole genome composition distance

Let Aj denote the set of all Zle 4% non-empty words of length at most
k over the alphabet of four RNA nucleotides. For an RNA sequence x =
(x1,...,2p) and any a € Ay, let f,(z) denote the number of occurrences
of a as a block (contiguous subsequence) in z divided by the number of
blocks of the same length in x.

The whole genome composition distance (or, WGCD, Wu, Goebel,
Wan and Lin 2006) between RNA sequences = and y (of two strains of
HIV-1 virus) is defined as the Euclidean distance

Z (fa(x) - fa(y))2'

acAy

Cf. k-mer distance and, in Chap.[I1] ¢g-gram similarity.

¢ Genome rearrangement distances
The genomes of related unichromosomal species or single chromosome or-
ganelles (such as small viruses and mitochondria) are represented by the
order of genes along chromosomes, i.e., as permutations (or rankings) of a
given set of n homologous genes. If one takes into account the directional-
ity of the genes, a chromosome is described by a signed permutation, i.e.,

by a vector x = (z1,...,2,), where |z;| are different numbers 1,...,n, and
any x; can be positive or negative. The circular genomes are represented
by circular (signed) permutations z = (z1,...,2,), where 2,11 = 1 and
SO om.

Given a set of considered mutation moves, the corresponding ge-
nomic distance between two such genomes is the editing metric (cf.
Chap.[Il) with the editing operations being these moves, i.e., the mini-
mal number of moves needed to transform one (signed) permutation into
another.

In addition to (and, usually, instead of) local mutation events, such
as character indels or replacements in the DNA sequence, the large (i.e.,
happening on a large portion of the chromosome) mutations are consid-
ered, and the corresponding genomic editing metrics are called genome
rearrangement distances. In fact, such rearrangement mutations be-
ing rarer, these distances estimate better the true genomic evolutionary
distance. The main genome (chromosomal) rearrangements are inversions
(block reversals), transpositions (exchanges of two adjacent blocks) in a
permutation, and also inverted transposition (inversion combined with
transposition) and, for signed permutations only, signed reversals (sign
reversal combined with inversion).
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The main genome rearrangement distances between two unichromoso-
mal genomes are:

reversal metric and signed reversal metric (cf. Chap.[ITl);

transposition distance: the minimal number of transpositions needed
to transform (permutation representing) one of them into another;

ITT-distance: the minimal number of inversions, transpositions and
inverted transpositions needed to transform one of them into another.

Given two circular signed permutations =z = (z1,...,2,) and y =
(Y155 Yn) (80, i1 = w1 ete.), a breakpoint is a number 4, 1 < i < n,
such that ;11 # ¥;(;)41, where the number j(i), 1 < j(i) < n, is defined
by the equality y; = 2;(;). The breakpoint distance (Watterson, Ewens,
Hall and Morgan 1982) between genomes, represented by x and y, is the
number of breakpoints.

This distance and the permutation editing metric (the Ulam met-
ric from Chap.[II} the minimal needed number of character moves, i.e.,
1-character transpositions) are used for the approximation of genome re-
arrangement distances.

e Syntenic distance
This is a genomic distance between multichromosomal genomes, seen as
unordered collections of synteny sets of genes, where two genes are syntenic
if they appear in the same chromosome. The syntenic distance (Ferretti,
Nadeau and Sankoff 1996) between two such genomes is the minimal num-
ber of mutation moves — translocations (exchanges of genes between two
chromosomes), fusions (merging of two chromosomes into one) and fis-
sions (splitting of one chromosome into two) — needed to transfer one
genome into another. All (input and output) chromosomes of these muta-
tions should be non-empty and not duplicated. The above three mutation
moves correspond to interchromosomal genome rearrangements, which are
rarer than intrachromosomal ones; so, they give information about deeper
evolutionary history.
e Strand length

A single strand of nucleic acid (DNA or RNA sequence) is oriented down-
stream, i.e., from & end toward 3’ end (sites terminating at fifth and third
carbon in the sugar-ring; 5’-phosphate binds covalently to the 3’-hydroxyl
of another nucleotide). So, the structures along it (genes, transcription
factors, polymerases) are either downstream or upstream. The strand
length is the distance from its 5’ to 3’ end.

For a molecule of messenger RNA (mRNA), the gene length is the
distance from the cap site 5', where post-translational stability is ensured,
to the polyadenylation site 3/, where a poly(A) tail of 50-250 adenines is
attached after translation.

e Genome distance
The genome distance between two loci on a chromosome is the number
of base pairs (bp) separating them on the chromosome.
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In particular, the intragenic distance of two neighboring genes is the
smallest distance in base pairs separating them on the chromosome. Some-
times, it is defined as the genome distance between the transcription start
sites of those genes.

Nelson, Hersh and Carrol (2004) defined the intergenic distance of a
gene as the amount of non-coding DNA between the gene and its nearest
neighbors, i.e., the sum of upstream and downstream distances, where up-
stream distance is the genome distance between the start of a gene’s first
exon and the boundary of the closest upstream neighboring exon (irre-
spective of DNA strand) and downstream distance is the distance between
the end of a gene’s last exon and the boundary of the closest downstream
neighboring exon. If exons overlap, the intergenic distance is 0.

e Map distance
The map distance between two loci on a genetic map is the recombina-
tion frequency expressed as a percentage; it is measured in centimorgans
c¢M (or map units), where 1c¢M corresponds to their statistically corrected
recombination frequency 1%. It may be either recombination of genes
(chromosome map) or within genes (gene map).

Typically, a map distance of 1cM (genetic scale) corresponds to a
genome distance (physical scale) of about one megabase (million base
pairs) Mp.

e Action at a distance along a DNA
An action at a distance along a DNA happens when an event at one
location on a DNA molecule affects an event at a distant (say, more than
2,500 base pairs) location on the same molecule.

Many genes are regulated by distant (up to a million base pairs away
and, possibly, located on another chromosome) or short (30-200 base
pairs) regions of DNA, enhancers. Enhancers increase the probability of
such a gene to be transcribed in a manner independent of distance and
position (the same or opposite strand of DNA) relative to the transcription
initiation site (the promoter). The enhancer function can be preserved
even if it is moved on the chromosome or its orientation is reversed.

DNA supercoiling is the coiling of a DNA double helix on itself (twist-
ing around the helical axis once every 10.4 base pairs of sequence, forming
circles and figures of eight) because it has been bent, overwound or under-
wound. Such folding puts a long-range enhancer, which is far from a regu-
lated gene in genome distance, geometrically closer to the promoter. The
genomic radius of requlatory activity of a genome is the genome distance of
the most distant known enhancer from the corresponding promoter; in the
human genome it is ~1 Mp (for enhancer of SSH, Sonic Hedgehog gene).

There is evidence that genomes are organized into enhancer-promoter
loops. But the long-range enhancer function is not fully understood yet.
Akbari, Bae, Johnsen, Villaluz, Wong and Drewell (2008) explain it by
the action of a tether, i.e., a sequence next to a promoter that, as a kind
of postal code, specifically attracts the enhancer.
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Similarly, some viral RNA elements interact across thousands of inter-
vening nucleotides to control translation, genomic RNA synthesis, and
subgenomic mRNA transcription.

23.3 Distances for protein data

A protein sequence (or primary protein structure) is a sequence r =
(#1,...,2,) over a 20-letter alphabet of 20 amino acids; Y denotes Y . ;.

There are many notions of similarity/distance (20 x 20 scoring matrices)
on the set of 20 amino acids, based on genetic codes, physico-chemical prop-
erties, observed frequency of mutations, secondary structural matching and
structural properties. The most important is the 20 x 20 Dayhoff PAM250
matrix which expresses the relative mutability of 20 amino acids.

e PAM distance
The PAM distance (or Dayhoff-Eck distance, PAM value) between
protein sequences is defined as the minimal number of accepted (i.e., fixed)
point mutations per 100 amino acids needed to transform one protein into
another.

1 PAM is a unit of evolution: it corresponds to 1 point mutation per

100 amino acids. PAM values 80, 100, 200, 250 correspond to the distance
(in %) 50, 60, 75, 92 between proteins.

e Genetic code distance
The genetic code distance (Fitch and Margoliash 1967) between amino
acids x and y is the minimum number of nucleotides that must be changed
to obtain z from y. In fact, it is 1, 2 or 3, since each amino acid corresponds
to three bases.

e Miyata—Miyazawa—Yasanaga distance
The Miyata—Masada—Yasanaga distance (or Miyata’s biochemical dis-
tance 1979) between amino acids x, y with polarities p,,p, and volumes
Vg, Uy, Tespectively, is

\/(M)z n (M)g

Op Oy

where o, and o, are standard deviations of |p, — p,| and |v, — vy, respec-
tively.

This distance is derived from the similar Grantam’s chemical distance
(Grantam 1974) based on polarity, volume and carbon-composition of
amino acids.

e Polar distance
The following three physico-chemical distances between amino acids x and
y were defined in Hughes, Ota and Nei (1990).
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Dividing amino acids into two groups — polar (C, D, E, H, K, N, Q,
R, S, T, W,Y) and non-polar (the rest) — the polar distance is 1 if z,y
belong to different groups, and 0 otherwise. The second polarity distance
is the absolute difference between the polarity indices of x and .

Dividing amino acids into three groups — positive (H, K, R), negative
(D, E) and neutral (the rest) — the charge distance is 1 if z,y belong to
different groups, and 0 otherwise.

¢ Feng—Wang distance
In [FeWa0§|, 20 amino acids are ordered linearly by their rank-scaled
functions CI, NI of pK, values for the terminal amino acid groups
COOH and NH{, respectively. 17CT is 1,2,3,4,5,6,7,7,8,9,10,11,12,13,14,
14,15,15,16,17 for C,H,F,P,N,D,R,Q,K,E,Y,S,M,V,G,A,L.LW,T, while
18NT is 1,2,3,4,5,5,6,7,8,9,10,10,11,12,13,14,15,16,17,18 for N,K,R,Y,F,
Q,S,HM,W,G,L,V.EI1,AD,T,P,C.

Given a protein sequence x = (21,...,&pn), define z; < z; if ¢ < j,
Cl(x;) < CI(x;) and NI(x;) < NI(z;) hold. Represent the sequence
x by the augmented m x m Hasse matriz ((a;;(x))), where a;(x) =

w and, for ¢ # j, a;;(x) = —1,1 or O if, respectively, z; < z;,
x; > x; or otherwise.
The Feng—Wang distance between protein sequences z= (21, ..., Zm)

and ¥y = (Y1,...,Yn) is ||L\/:%) - L\/yﬁ)Hg, where A\(z) denotes the largest

eigenvalue (possibly, a complex number) of the matrix ((a;;(2))).
e No. of protein differences
The No. of protein differences is just the Hamming metric between

protein sequences:
Z Loy, -
e Amino p-distance
The amino p-distance (or uncorrected distance) d, between protein se-
quences is defined by
> Loy,

n

e Amino Poisson correction distance
The amino Poisson correction distance between protein sequences is
defined, via the amino p-distance d,,, by

—In(1 —dy(z,y)).

¢ Amino gamma distance
The amino gamma distance (or Poisson correction gamma distance)
between protein sequences is defined, via the amino p-distance d,, by

a((1 = dy(a,y) "V = 1),

where the substitution rate varies with ¢ = 1,...,n according to the
gamma distribution, and a is the parameter describing the shape of the
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distribution. For a = 2.25 and a = 0.65, it estimates the Dayhoff and
Grishin distances, respectively. In some applications, this distance with
a = 2.25 is called simply the Dayhoff distance.

Jukes—Cantor protein distance

The Jukes—Cantor protein distance between protein sequences is de-
fined, via amino p-distance d,,, by

19 20
i N .
20 n( 19d”(x’y))

Kimura protein distance
The Kimura protein distance between protein sequences is defined, via
the amino p-distance d,, by

—In (1 —dp(z,y) — df,(;;,y)) .

Grishin distance
The Grishin distance d between protein sequences can be obtained, via
the amino p-distance d,, from the formula

In(1 + 2d(z,y))

=1-d .
(1) )
k-mer distance
The k-mer distance (Edgar 2004) between sequences © = (x1,...,Tm)
and y = (y1,-..,Yn) over a compressed amino acid alphabet is defined by

1 2 min{z(a),y(a)}
I <10 * min{m,n} —k+1 ) ’

where a is any k-mer (a word of length k over the alphabet), while z(a)
and y(a) are the number of times a occurs in z and y, respectively, as a
block (contiguous subsequence). Cf. g-gram similarity in Chap.[IT]
Immunological distance

An antigen (or immunogen, pathogen) is any molecule eliciting immune
response. Once it gets into the body, the immune system either neutral-
izes its pathogenic effect or destroys the infected cells. the most important
cells in this response are white blood cells: T-cells and B-cells responsi-
ble for the production and secretion of antibodies (specific proteins that
bind to the antigen). When an antibody strongly matches an antigen, the
corresponding B-cell is stimulated to divide, produce clones of itself that
then produce more antibodies, and then differentiate into a plasma or
memory cell. A secreted antibody binds to antigen, and antigen—antibody
complexes are removed.



23.3 Distances for protein data 403

A mammal (usually a rabbit) when injected with an antigen will produce
immunoglobulins (antibodies) specific for this antigen. Then antiserum
(blood serum containing antibodies) is purified from the mammal’s serum.
The produced antiserum is used to pass on passive immunity to many
diseases.

Immunological distance procedures (immunodiffusion and, the main
now, micro-complement fization) measure relative strengths of the im-
munological responses to antigens from different taxa. This strength is
dependent upon the similarity of the proteins, and the dissimilarity of
the proteins is related to the evolutionary distance between the taxa con-
cerned.

The index of dissimilarity id(z,y) between two taxa x and y is the factor
r(x,z)
r(z,y)
by it) antigen concentration must be raised to produce a reaction as strong
as that to the homologous (reacting with its specific antibody) antigen.

The immunological distance between two taxa is given by

by which the heterologous (reacting with an antibody not induced

100(log id(z, y) + log id(y, x)).

It can be 0 between two closely related species.

Earlier immunodiffusion procedures compared the amount of precipitate
when heterologous bloods were added in similar amounts as homologous
ones, or compared the highest dilution giving a positive reaction.

The name of applied antigen (target protein) can be used to spec-
ify immunological distance, say, albumin, transferring lysozyme distances.
Proponents of the molecular clock hypothesis estimate that 1 unit of al-
bumin distance between two taxa corresponds to a540,000 years of their
divergence time, and that 1 unit of Nei standard genetic distance
corresponds to 18-20 million years.

Adams and Boots (2006) call the immunological distance between two
immunologically similar pathogen strains (actually, serotypes of dengue
virus) their cross-immunity, i.e., 1 minus the probability that primary in-
fection with one strain prevents secondary infection with the other. Lee and
Chen (2004) define the antigenetic distance between two influenza viruses
to be the reciprocal of their antigenetic relatedness which is (presented

r(z,y) r(y,)
r(z,@) 7(y,y)
heterologous and homologous antibody titers.

An antiserum titer is a measurement of concentration of antibodies
found in a serum. Titers are expressed in their highest positive dilution;
for example, the antiserum dilution required to obtain a reaction curve
with given peak height (say, 75% microcomplement fixed), or the recipro-
cal of the dilution consistently showing a twofold increase in absorbency
over that obtained with the pre-bleed serum sample.

e Pharmacological distance
The protein kinases are enzymes which transmit signals and control cells
using transfer of phosphate groups from high-energy donor molecules

as a percentage) geometric mean of two ratios between the
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to specific target proteins. So, many drug molecules (against cancer,
inflammation, etc.) are kinase inhibitors (blockers). But their high cross-
reactivity often leads to toxic side effects. Hence, designed drugs should
be specific (say, not to bind to >95% of other proteins).

Given a set {ay,...,a,} of drugs in use, the affinity vector of kinase x
is defined as (—In By (z),...,—In B, (x)), where B;(x) is the binding con-
stant for the reaction of & with drug a;, and B;(z) = 1 if no interaction
was observed. The binding constants are the average of several experiments
where the concentration of binded kinase is measured at equilibrium. The
pharmacological distance (Fabian et al. 2005) between kinases x and y
is the Euclidean distance (), (In B;(z)—In B;(y))?)2 between their affin-
ity vectors.

The secondary structure of a protein is given by the hydrogen bonds
between its residues. A dehydron in a solvable protein is a hydrogen bond
which is solvent-accessible. The dehydron matrixz of kinase x with residue-
set {R1,..., Ry} is the m x m matrix ((D;;(z))), where D;;(x) is 1 if
residues R; and R; are paired by a dehydron and is 0 otherwise. The
packing distance (Maddipati and Ferndndes 2006) between kinases x
and y is the Hamming distance 3, ., [Di;(x) — Di;(y)| between their
dehydron matrices; cf. base pair distance among RN A structural dis-
tances. The environmental distance (Chen, Zhang and Ferndndes 2007)
between kinases is a normalized variation of their packing distance.

e Forster distance
FRET (fluorescence resonance energy transfer; Férster 1948) is a distance-
dependent quantum mechanical property of a fluorophore (molecule com-
ponent causing its fluorescence) resulting in direct non-radiative energy
transfer between the electronic excited states of two dye molecules, the
donor fluorophore and a suitable acceptor fluorophore, via a dipole. In
FRET microscopy, fluorescent proteins are used as non-invasive probes in
living cells since they fuse genetically to proteins of interest. The efficiency
of FRET transfer depends on the square of the donor electric field mag-
nitude, and this field decays as the inverse sixth power of intermolecular
separation (the physical donor—acceptor distance). The distance at which
this energy transfer is 50% efficient, i.e., 50% of excited donors are deacti-
vated by FRET, is called the Férster distance of these two fluorophores.

Measurable FRET occurs only if the donor—acceptor distance is less
than ~10nm, the mutual orientation of the molecules is favorable, and
the spectral overlap of the donor emission with acceptor absorption is
sufficient.

23.4 Other biological distances

Here we collect the main examples of other notions of distance and distance-
related models used in Biology.
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e Migration distance (in Biomotility)
Migration distance (or penetration distance), in Cattle Reproduction
and human infertility diagnosis, is the distance (in millimeters) traveled
by the vanguard spermatozoon during sperm displacement in vitro through
a capillary tube filled with homologous cervical mucus or a gel mimicking
it. Sperm can swim about 10-20 body lengths per second.

Such measurements, under different specifications (duration, tempera-
ture, etc.) of incubation, estimate the ability of spermatozoa to colonize
the oviduct in vivo.

In general, the term migration distance is used in biological mea-
surements of directional motility using controlled migration; for example,
determining the molecular weight of an unknown protein via its migration
distance through a gel, or comparing the migration distance of mast cells
in different peptide media.

e Penetration distance
Penetration distance is, similarly to migration distance, a general
term used in (especially, biological) measurements for the distance from
the given surface to the point where the concentration of the penetrating
substance (say, a drug) in the medium (say, a tissue) had dropped to the
given level. Several examples follow.

During penetration of a macromolecular drug into the tumor intersti-
tium, tumor interstitial penetration is the distance that the drug carrier
moved away from the source at a vascular surface; it is measured in 3D to
the nearest vascular surface.

During the intraperitoneal delivery of cisplatin and heat to tumor metas-
tases in tissues adjacent to the peritoneal cavity, the penetration distance
is the depth to which drug diffuses directly from the cavity into tissues.
Specifically, it is the distance beyond which such delivery is not preferable
to intravenous delivery. It can be the distance from the cavity surface into
the tissues within which drug concentration is, for example, a) greater, at
a given time point, than that in control cells distant from the cavity, or b)
is much higher than in equivalent intravenous delivery, or ¢) has first peak
approaching its plateau value within 1% deviation.

The penetration distance of a drug in the brain is the distance from
the probe surface to the point where the concentration is roughly half its
far-field value.

The penetration distance of chemicals into wood is the distance between
the point of application and the 5mm cut section in which the contami-
nants concentration is at least 3% of the total.

The forest edge-effect penetration distance is the distance to the point
where invertebrate abundance ceased to be different to forest interior abun-
dance. Cf. penetration depth distance in Chap.[dl and penetration
depth in Chap.24l
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e Capillary diffusion distance
One of diffusion processes is osmosis, i.e., the net movement of water
through a permeable membrane to a region of lower solvent potential.
In the respiratory system (the alveoli of mammalian lungs), oxygen Oq
diffuses into the blood and carbon dioxide COs diffuses out.

Capillary diffusion distance is, similarly to penetration distance,
a general term used in biological measurements for the distance, from the
capillary blood through the tissues to the mitochondria, to the point where
the concentration of oxygen has dropped to the given low level.

This distance is measured as, say, the average distance from the capillary
wall to the mitochondria, or the distance between the closest capillary
endothelial cell to the epidermis, or in percentage terms. For example, it
can be the distance where a given percentage (95% for maximal, 50% for
average) of the fiber area is served by a capillary. Or the percent cumulative
frequency of fiber area within a given distance of the capillary when the
capillary to fiber ratio is increased, say, from 0.5 to 4.0.

Another practical example: the effective diffusion distance of nitric oxide
NiO in microcirculation in vivo is the distance within which Ni concen-
tration is greater than the equilibrium dissociation constant of the target
enzyme for oxide action.

Cf. the immunological distance for immunodiffusion and, in Chap.29
the diffusion tensor distance among distances in Medicine.

e Gendron et al. distance
The Gendron et al. distance (Gendron, Lemieux and Major 2001)
between two base—base interactions, represented by 4 x 4 homogeneous
transformation matrices X and Y, is defined by

S(XY~1) + S(X-1Y)
2 b

where S(M) = /12 + (6/«)?, [ is the length of translation, € is the angle
of rotation, and « represents a scaling factor between the translation and
rotation contributions.

e Metabolic distance
The metabolic distance (or pathway distance) between enzymes is
the minimum number of metabolic steps separating two enzymes in the
metabolic pathways.

e Spike train distances
A human brain has ~10'! of neurons (nerve cells) among ~10'* cells in the
human body. Neuronal response to a stimulus is a continuous time series.
It can be reduced, by a threshold criterion, to a much simpler discrete
series of spikes (short electrical pulses).

A spike trainis a sequence x = (t1,...,ts) of s events (neuronal spikes, or

heart beats, etc.) listing absolute spike times or inter-spike time intervals.
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The main distances between spike trains ¢ = z1,...,2,, and y =
Yis .- Yn follow:

1. The spike count distance is defined by

[n —m|
max{m,n}

2. The firing rate distance is defined by

> @ -y

1<i<s
where ¢/ = 2/, ...,z is the sequence of local firing rates of train x =
Z1,...,Ty, partitioned in s time intervals of length T.4¢e.

3. Let 7y; = %min{:z:H_l — T, T — Tio1,Yir1 — Vi, ¥i — Yi—1} and c(x|y)=
Z?il Z;'Lzl Jija where Jij =1, %, 0if0<x; — Yy < Tijs Li=Yi, and oth-
erwise, respectively. The event synchronization distance (Quiroga,
Kreuz and Grassberger 2002) is defined, respectively, by

_ c(zly) + c(ylz)

1 .
vmn

4. Let ;5(t) = min{a; : ; > ¢t} — max{x; : z; < t} for 1 < t < Ty,
and let I(t) = 22500 — 1 §f ,4;(t) < @445(t) and I(t) = 1 — L= other-
wise. The time-weighted and spike-weighted variants of ISI distances

(Kreuz, Haas, Morelli, Abarbanel and Politi 2007) are defined by

/O [I(t)|dt and > [I(x;)].
i=1

5. Various information distances were applied to spike trains: Kullback—
Leibler distance, Chernoff distance (cf. Chap.[I4)). Also, if  and y
are mapped into binary sequences, the Lempel-Ziv distance and a
version of the normalized information distance (cf. Chap.[ITl) were
used.

6. The Victor—Purpura distance is a cost-based editing metric (i.e.,
the minimal cost of transforming z into y) by the following operations
with their associated costs: insert a spike (cost 1), delete a spike (cost 1),
shift a spike by time ¢ (cost gt); here ¢ > 0 is a parameter. Victor
and Purpura introduced this distance in 1996; the fuzzy Hamming
distance (cf. Chap.[IT]), introduced in 2001, identifies cost functions of
shift preserving the triangle inequality.
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7. The van Rossum distance 2001, is defined by

\/ /0 " fule) — g2,

where  is convoluted with h; = Le~*/7 and 7 ~ 12ms (best); f;(z) =
0" h(t — ;). The Victor—Purpura distance and van Rossum distance
are the most commonly used metrics.

8. If components of x,y are seen as the samples of two 0-mean random
variables, then the cross-correlation distances between x and y are

defined b
’ _ {f@), f(y)
Lf@)l2 - 1f W)l

where f(z) is the train  filtered by convolution with a kernel function
f(+). This function is exponential (Haas and White 2002) or Gaussian
(Schreiber, Fellous, Whitmer, Tiesinga and Sejnowski 2004).

9. Given two sets of spike trains labeled by neurons firing them, the
Aronov et al. distance (Aronov, Reich, Mechler and Victor 2003)
between them is a cost-based editing metric (i.e., the minimal cost of
transforming one into the other) by the following operations with their
associated costs: insert or delete a spike (cost 1), shift a spike by time ¢
(cost gt), relabel a spike (cost k), where ¢ and k are positive parameters.

1

e Prototype distance
Given a finite metric space (X, d) (usually, a Euclidean space) and a se-
lected, as typical by some criterion, vertex xo € X, called the prototype
(or centroid), the prototype distance of every € X is the number
d(x,zq). Usually, the elements of X represent phenotypes or morphologi-
cal traits. The average of d(x,xg) over x € X estimates the corresponding
variability.

e Biotope distance
The biotopes here are represented as binary sequences = (z1,...,Zy,),
where z; = 1 means the presence of the species i. The biotope distance
(or Tanimoto distance) between biotopes x and y is defined by

{1 <i<n:z; £y} _ | XAY|
H1<i<n:z;+y >0} [XUY[|

where X ={1<i<n:z;=1}and Y ={1<i<n:y, =1}
e Niche overlap similarity

Let p(x) = (p1(x),...,pn(x)) be a frequency vector (i.e., all p;(x) > 0 and
> ;pi(x) = 1) representing an ecological niche of species z, for instance,
the proportion of resource 4, i € {1,...,n} used by species x.

Niche overlap similarity (or Pianka’s index Ogy) of species x and
y is the term often (starting with Pianka 1973) used in Ecology for the
cosine similarity (cf. Chap.[IT)
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(p(z),p(y))
llp(@)l2 - [lp()]l2”

e Ecological distance

Let a given species be distributed in subpopulations over a given landscape,
i.e., a textured mosaic of patches (homogeneous areas of land use, as fields,
lakes, forest) and linear frontiers (river shores, hedges and road sides). The
individuals move across the landscape, preferentially by frontiers, until
they reach a different subpopulation or they exceed a maximum dispersal
distance.

The ecological distance between two subpopulations (patches) x and y
is (Vuilleumier and Fontanillas 2007):

D(zx,y) + D(y,z)
2 b

where D(z,y) is the distance an individual covers to reach patch y from
patch x, averaged over all successful dispersers from z to y. If no such
dispersers exist, put D(z,y) = min,(D(z, z) + D(z,x)).

The ecological distance in some heterogeneous landscapes depends more
on the genetic than the geographic (Euclidean) distance. The term distance
is used also to compare the species composition of two samples; cf. biotope
distance.

e Dispersal distance
In Biology, the dispersal distance is a range distance to which a species
maintains or expands the distribution of a population. It refers, for exam-
ple, to seed dispersal by pollination and to natal, breeding and migration
dispersal.

e Long-distance dispersal
Long-distance dispersal (or LDD, Kot, Lewis and van den Driessche
1996) refers to the rare events of biological dispersal (especially, plants)
on distances an order of magnitude greater than the median dispersal
distance.

Together with wicarience theory (dispersal via land bridges) based on
continental drift, LDD emerged in Biogeography as the main factor of
biodiversity and species migration patterns. It explained the fast spread
of different organisms in new habitats, for example in paleocolonization
events, plant pathogens, and invasive species. For the regional survival
of some plants, LDD is more important than local (median-distance)
dispersal.

Also, cancer invasion (spread from primary tumors invading new tissues)
can be thought as an invasive species spread via LDD, followed by localized
dispersal.

Transoceanic LDD by wind currents is a probable source of the strong
floristic similarities among landmasses in the southern hemisphere.
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Examples of other LDD vehicles are: rafting by water (corals can tra-
verse 40,000 km during their lifetime), migrating birds, human transport,
extreme climatic events.

e Island distance effect
An island, in Biogeography, is any area of habitat surrounded by areas
unsuitable for the species on the island: true islands surrounded by ocean,
mountains surrounded by deserts, lakes surrounded by dry land, forest
fragments surrounded by human-altered landscapes. The island distance
effect is that the number of species found on an island is smaller when the
degree of isolation (distance to nearest neighbor and mainland) is larger.
The second main factor of island species diversity is its size: the chance of
extinction is greater on smaller islands.

e Migration distance (in Biogeography)
Migration distance, in Biogeography, is the distance between regu-
lar breeding and non-breeding areas within annual large-scale return
movement of birds, fish and insects. The longest such distance recorded
electronically is 64,000 km (sooty shearwaters flying from New Zealand to
the North Pacific Ocean); its rival in migration distance, the Arctic tern,
is too small to be fit with electronic tags.

Migration differs from ranging, i.e., a movement of an animal beyond
its home range which ceases when suitable resource (food, mates, shel-
ter) is found; for example, wandering albatrosses make several seasonal
foraging round trips of up to 3,000 km. So, Kennedy (1985) defined mi-
gratory behavior as persistent and straightened-out movement effected by
the animal’s own locomotory exertions or by its active embarkation upon
a vehicle (say, wind or water currents).

e Isolation-by-distance
Isolation-by-distance is a biological model predicting that the ge-
netic distance between populations increases exponentially with respect
to geographic distance. So, emergence of regional differences (races) and
new species is explained by restricted gene flow and adaptive variations.
Isolation-by-distance for humans was studied, for example, via the distri-
bution of surnames (cf. Lasker distance).

Speciation by force of distance is a speciation despite gene flow
between populations. It was observed in ring species, i.e., two reproduc-
tively isolated populations connected by gene flow through a chain of
intergrading populations. For example, Irwin, Bensch, Irwin and Price
(2005) showed gradual genetic change between greenish warblers in west
and east Siberia; they coexist without interbreeding in central Siberia.

e Malecot’s distance model
The Malecot’s distance model is a migratory model of isolation by dis-
tance, expressed by the following Malecot’s equation for the dependency
pa of alleles at two loci at distance d (allelic association, linkage disequi-
librium, polymorphism distance):
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d
pa=(1—L)Me*“ + L,

where d is the distance between loci along the chromosome (either genome
distance on the physical scale in kilobases, or map distance on the
genetic scale in centimorgans), € is a constant for a specified region, M < 1
is a parameter expressing mutation rate and L is the parameter predicting
association between unlinked loci.

e Distances in Animal Behavior
The first definitions of such distances were derived in Zoo Biology by
Hediger (1950) namely, fight distance (run boundary), critical distance
(attack boundary), personal distance (separating members of non-contact
species) and social distance (for intraspecies communication). Cf. Hall’s
distances between people in Chap.28 The main distances in Animal
Behavior follow.

The individual distance: the distance which an animal attempts to
maintain between itself and other animals. It ranges between “proximity”
and “far apart” (for example, <8 m and >61m in elephant social calls).

The group distance: the distance which a group of animals attempts
to maintain between it and other groups.

The nearest-neighbor distance: the more or less constant distance
which an animal maintains, in directional movement of large groups (such
as schools of fish or flocks of birds), from its immediate neighbors. The
mechanism of allelomimesis (“do what your neighbor does”) prevents the
structural breakdown of a group and can generate seemingly intelligent
evasive maneuvers in the presence of predators. When this distance de-
creases, the mode of movement of the group can change: marching locusts
align, ants build bridges, etc.

The flight initiation distance (FID): the distance from the predator
when escape begins. The alert distance: the distance between a predator
and the prey when the prey turns towards the predator.

The escape distance: the distance at which the animal reacts on the
appearance of a predator or dominating animal of the same species.

The reaction distance: the distance at which the animal reacts to the
appearance of prey; catching distance: the distance at which the predator
can strike a prey.

In general, the detection distance: the maximal distance from the
observer at which the individual or cluster of individuals is seen or heard.
For example, the approximate visual detection distance is 2,000 m for an
eagle searching for displaying sage-grouse, 200 m for a female sage-grouse
searching for a male, and 1,450 m for a sage-grouse scanning for a flying
eagle.

An example of distance estimation (for prey recognition) by some in-
sects: the velocity of the mantid’s head movement is kept constant during
peering; so, the distance to the target is inversely proportional to the ve-
locity of the retinal image.
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Example of unexplained distance prediction by animals is given
(Vannini, Lori, Coffa and Fratini 2008) by snails Cerithidea decollata
migrating up and down in mangrove shore in synchrony with tidal phases.
In the absence of visual cues and chemical marks, snails cluster just above
the high water line, and the distance from the ground correlates better
with the incoming tide level than with previous tide levels.

The gaze following: great apes, ravens and canids follow another’s gaze
direction (head and eye orientation) into distant space, moreover, geo-
metrically behind an obstacle. It could be, more than a mere co-orienting
reflex, an understanding that other has different perception and knowl-
edge, i.e., a precursor to Theory of Mind (the ability to attribute mental
states to oneself and others). But such interpretation, as well as foresight
(mental time travel) in non-human animals is still controversial.

Humans and, perhaps, chimpanzees posess, besides landmark-based rep-
resentation of space, more flexible Euclidean mental map.

The interpupillary distance of mammals in non-leafy environments in-
creases as d ~ M3 (M is the body mass); their eyes face sideways in
order to get the panoramic vision. In leafy environments, this distance is
constrained by the maximum leaf size. Changizi and Shimojo (2008) sug-
gested that the degree of binocular convergence is selected to maximize
how much the mammal can see. So, in cluttered (say, leafy) environments,
forward-facing eyes (and smaller distance d) are better.

The distance-to-shore: the distance to the coastline used to study
clustering of whale strandings (by distorted echolocation, anomalies of
magnetic field, etc.).

Daily distance traveled and feeding time are much greater in larger
groups of primates, according to a meta-analysis in Majolo et al. (2008).
Also, larger groups spent slightly more time grooming and less time resting
than smaller groups.

In the main non-resource-based mating system, lek mating, females in
estrous visit a congregation of displaying males, the lek, for fertilization,
and mate preferentially with males of higher lekking distance rank, i.e.,
relative distance from male territory (the median of his positions) to the
center of the lek. Dominance rank often influences space use: high-ranking
individuals have smaller, centrally located (so, less to travel and more
secure) home ranges.

A distance pheromone, in animal olfactory communication, is a sol-
uble (for example, in the urine) and/or evaporable substance emitted by
an animal, as a chemosensory cue, in order to send a message (on alarm,
sex, food trail, recognition, etc.) to other members of the same species.
In contrast, a contact pheromone is such an insoluble non-evaporable sub-
stance; it coats the animal’s body and is a contact cue. The action radius
of a distance pheromone is its attraction range, the maximum distance
over which animals can be shown to direct their movement to a source.

Distance effect avoiding refers to observed selection (contrary to typical
decision-making of a central place forager) of some good distant source of
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interest over a poor but nearer one in the same direction. For example,
females at a chorusing lek of anurians or arthropods may use the lower
pitch of a bigger/better distant male’s call to select it over louder to her
weaker call nearby. High-quality males help them by placing their calls to
precede or follow those of inferior males. Franks et al. (2007) showed that
ant colonies are able to select a good distant nest over a poorer one in
the way, even nine times closer. Ants might compensate for distance effect
by increasing recruitment latencies and quorum thresholds at nearby poor
nests; also their scouts, founding a low-quality nest, start to look for a
new one.

Matters of relevance at a distance (a distant food source) are communi-
cated mainly by body language; for example, honeybees dance and wolves,
before a hunt, howl to rally the pack, become tense and have their tails
pointing straight. In Animal Communication were observed: conceptual
generalizations (dolphins can transmit identity information independent of
the caller’s voice and location), syntax (putty-nosed monkeys build alarm
calls as “word sequences”) and metacommunication (the “play face” in
dogs signals that subsequent aggressive signal is a play).

The communication distance, in animal vocal communication, is the
maximal distance at which the receiver can still get the signal; animals can
vary signal amplitude and visual display with receiver distance in order to
ensure signal transmission. The frequency and sound power of a maximal
vocalization by an air-breathing animal with body mass M is, usually,
proportional to M%4 and M6, respectively.

Another example of distance-dependent communication is the protective
coloration of some aposematic animals: it switches from conspicuousness
(signaling non-edibility) to crypsis (camouflage) with increasing distance
from a predator.

e Animal long-distance communication
The main modes of animal communication are infrasound (<20 Hz), sound,
ultrasound (>20 kHz), vision (light), chemical (odor), tactile and electrical.
Infrasound, low-pitched sound (as territorial calls) and light in air can be
long-distance.

A blue whale infrasound can travel thousands of kilometers through the
ocean water using SOFAR channel (a layer where the speed of sound is
at a minimum, because water pressure, temperature, and salinity cause a
minimum of water density; cf. distances in Oceanography in Chap.2H]).
On the other hand, Janik (2000) estimated that unmodulated dolphin
whistles at 12kHz in a habitat having a uniform water depth of 10m
would be detectable by conspecifics at distances of 1.5—4 km.

Most elephant communication is in the form of infrasonic rumbles which
may be heard by other elephants at 5km away and, in optimum at-
mospheric conditions, at 10km. The resulting seismic waves can travel
16-32km through the ground. But non-fundamental harmonics of ele-
phant calls are sonic. McComb, Reby, Baker, Moss and Sayialel (2003)
found that, for female African elephants, the peak of social call frequency
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is ~115Hz and the social recognition distance (over which a contact call
can be identified as belonging to a family) is usually 1.5km and at most
2.5km.

Many animals hear infrasound generated by earthquakes, tsunami and
hurricanes before they strike. For example, elephants can hear storms 160—
240km away.

High-frequency sounds attenuate more rapidly with distance; they are
more directional and vulnerable to scattering. But ultrasounds are used
by bats (echolocation) and antropods. Rodents use them to communicate
selectively to nearby receivers without alerting predators and competitors.
Some anurans shift to ultrasound signals in the presence of continuous
background noise (as waterfall, human traffic).

e Plant long-distance communication
Long-distance signaling was observed from roots and mature leaves, ex-
posed to an environmental stress, to newly developing leaves of a higher
plant. For example, flooding of the soil induces (in a few hours for some
dryland species) bending of leaves and slowing of their expansion.

This communication is done cell-to-cell through the plant vascular tran-
spiration system. In this system, macromolecules (except for water, ions
and hormones) carry nutrients and signals, via phloem and zylem conduct-
ing tissues, only in one direction: from lower mature regions to shoots. The
identity of long-distance signals in plants is still unknown but the existence
of information macromolecules is expected.

e Insecticide distance effect

The main means of pest (termites, ants, etc.) control are chemical liquid
insecticides and repellents. The efficiency of an insecticide can be measured
by its all dead distance, i.e., the maximum distance from the standard
toxicant source within which no targeted insects are found alive after a
fixed period. The insecticide distance effect (or transfer effect) is that
the toxicant is spread through the colony because insects groom and feed
each other. The newer bait systems concentrate on this effect.

The toxicant (usually, a growth inhibitor) should act slowly in order
to maximize distance effect and minimize secondary repellency created by
the presence of dying, dead and decaying insects. A bait system should be
reapplied until insects come to it by chance, eat the toxic bait and go back
to the colony, creating a chemical trail. It acts slowly, but it completely
eliminates a colony and is safer to environment.

e Marital distance
The marital distance is the distance between birthplaces of spouses (or
zygotes).

e Ontogenetic depth
Nelson’s ontogenetic depth is the distance, in number of cell divisions,
from the unicellular state (fertilized egg) to the adult metazoan capable
of reproduction (production of viable gametes).
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e Telomere length

The telomeres are repetitive DNA sequences ((TTAGGG),, in vertebrates
cells) at both ends of each linear chromosome in the cell nucleus. They are
long stretches of noncoding DNA protecting coding DNA. The number n of
TTAGGG repeats is called the telomere length; it is 22,000 in humans.
A cell can divide if each of its telomeres has positive length; otherwise, it
becomes senescent and dies, or tries to self-replicate and, eventually, cre-
ates cancer. The Hayflick limit is the maximal number of divisions beneath
which a normal differentiated cell will stop dividing because of shortened
telomeres or DNA damage; for humans it is about 52.

Human telomeres are 3—20 kilobases in length, and they lose ~100 base
pairs, i.e., 16 repeats, at each mitosis (happening each 20-180 min). The
mean leukocyte telomere length, for example, decreases with age by 9%
per decade. There is correlation between telomere length and longevity in
humans and, for example, between chronic emotional stress in women and
telomere shortening.

But telomere length can increase: by transfer of repeats between
daughter telomers or by action of enzyme telomerase. In humans, telom-
erase acts only in germ, stem or proliferating tumor cells. These cells,
unicellular eukaryotes and hydra species are biologically immortal, i.e.,
there is no aging (sustained increase in rate of mortality with age) since
the Hayflick limit does not apply.

The telomere shortening is one of the main proposed mechanisms of
aging. The other ones are stem cell senescence, oxidative damage, evolu-
tionary accumulation of late-acting harmful genes, and general transition
of a biological network from plasticity (childhood) via adaptation (ado-
lescence) to steady rigid state (aging). In Gerontology, aging is (vital
functions) redundancy decay and contemporary risk.

e Gerontologic distance
The gerontologic distance between individuals of ages x and y from
a population with survival fraction distributions Sy(t) and Sa(t), respec-
tively, is defined by
Sa(y)

A function S(t) can be either an empirical distribution, or a parametric

one based on modeling. The main survival functions S(t) are: % (where

| In

N(t) is the number of survivors, from an initial population N (0), at time t),

et (exponential model), e#1=¢") (Gompertz model), 6_% (Weibull
model); here a and b are, respectively, age independent and age dependent
mortality rate coefficients.

Distances are used in Human Gerontology also to model the relationship
between geographical distance and contact between adult children and
their elderly parents.
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A surprising phenomenon, the late-life mortality deceleration (even
plateau) was observed for humans and fruit flies: the probability that the
somatic cells of an organism become senescent tends to be independent of
its age in the long-time limit. In fact, the existence of such a plateau is
typical for many Markov processes.

Also, Fukuda, Taki, Sato, Kinomura, Goteau and Kawashima (2008)
found that gray matter volume linearly decreases with age, and the loss is
slower in women. The presence of gene FOX03A GG triples the chance of
living to 95 years.

e Body size rules
Body size, measured as mass or length, is one of the most important traits
of an organism. Payne et al. (2008) claim that the maximum size of Earth’s
organisms increased in two great leaps (about 1,600 and 600 million years
ago: appearance of eukaryotic cells and multicellularity) due leaps in the
oxygen level, and each time it jumped up by a factor of about a million.
Below are given the main rules of large-scale Ecology involving body size.

Island rule is a principle that, on islands, small mammal species evolve
to larger ones while larger ones evolve to smaller. Damuth (1993) suggested
that in mammals there is an optimum body size ~1kg for energy acquisi-
tion, and so island species should, in the absence of the usual competitors
and predators, evolve to that size.

Insular dwarfism is an evolutionary trend of the reduction in size
of large mammals when their gene pool is limited to a very small en-
vironment (say, islands). One explanation is that food decline activates
processes where only the smaller of the animals survive since they need
fewer resources, and so are more likely to get past the breakpoint where
population decline allows food sources to replenish.

Island gigantism is a biological phenomenon where the size of animals
isolated on an island increases dramatically over generations due the re-
moval of constraints. It is a form of natural selection in which increased
size provides a survival advantage.

Abyssal gigantism is a tendency of deep-sea species to be larger than
their shallow-water counterparts. It can be adaptation for scarcer food re-
sources (delaying sexual maturity results in greater size), greater pressure
and lower temperature.

The Galileo’s square-cube law states that as an object increases in size
its volume V (and mass) increases as the cube of its linear dimensions
while surface area SA increases as the square; so the ratio % decreases.
For materials, high % speeds up chemical reactions and thermodynamic
processes that minimize free energy. This ratio is the main compactness
measure for 3D shapes in Biology. Higher % permits smaller cells to
gather nutrients and reproduce very rapidly. Also, smaller animals in hot
and dry climates better lose heat through the skin and cool the body.

But lower % (and so larger size) improves temperature control in un-
favorable environments: a smaller proportion of the body being exposed
results in slower heat loss or gain. Bergmann—Mayr’s rule is a principle
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that, within a species, the body size increases with colder climate. For
example, Northern Europeans on average are taller than Southern ones.
Allen’s rule: animals from colder climates usually have shorter limbs than
the equivalent ones from warmer climates.

Cope’s rule is a macro-evolutionary trend (common among mammals):
the tendency of body size to increase over geological time. Large size en-
hances reproductive success, ability to avoid predators and capture prey,
and improves thermal efficiency. In large carnivores, bigger species domi-
nate better smaller competitors.

Cope’s rule can be an evolutionary manifestation of Bergmann’s rule:
species and lineages that conform to Bergmann’s rule should evolve toward
larger sizes during episodes of climatic cooling. Large body size favors the
individual but renders the clade more susceptible to extinction via, for
example, dietary specialization.

An allometric law is a relation between the size of an organism and the
size of any of its parts or attributes; for example, Rensch’s rule is that,
in groups of related species, sexual size dimorphism is more pronounced
in larger species.

Examples of allometric power laws are, in terms of body mass M (or,
assuming constant density of biomass, body size) of an animal, propor-
tionalities of metabolic rate to M%7 (Kleber’s law) and of breathing
time to 925,

Many of the allometric 0.25 scaling laws can be explained by the WBE
model (West, Brown and Enquist 1997) positing that biological rates are
limited by the rate at which energy, materials, and waste can be distributed
or removed, and that the process requires an hierarchic space filling net-
work which minimizes needed time and energy.

A cellular organism (for example, bacteria) of linear size (say, diameter)
S has, roughly, internal metabolic activity proportional to cell volume
(so, to S?) and flux of nutrient and energy dissipation proportional to
cell envelope area (so, to S?). Therefore, this size is within the possible
(nanometers) range of the ratio flux/metabolic activity. For viral particles,
there is no metabolism, and their size is, roughly, proportional to the third
root of the genome size.

A time period t° correlates roughly with the size of its cold-blooded
organisms. Also, a rapid average decline of ~20% in size-reated traits was
observed in human-harvested species.

e Distance running model
The distance running model is a model of antropogenesis proposed in
[BrLi04]. Bipedality is a key derived behavior of hominids which appeared
4.5—6 million years ago. However, australopithecines were still animals.

The genus Homo which emerged about 2 million years ago could already
produce rudimentary tools. The Bramble-Lieberman model attributes this
transition to a suite of adaptations specific to running long distances in the
savanna (in order to compete with other scavengers in reaching carcasses).
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They specify how endurance running, a derived capability of Homo, de-
fined the human body form, producing balanced head, low/wide shoulders,
narrow chest, short forearms and heels, large hip, etc.
e Distance coercion model

The distance coercion model is a model, proposed in [OkBi0g], of
the origin of uniquely human extensive/intensive kinship-independent
conspecific social cooperation in spite of conflicts of interest. All the
unique properties of humans (complex symbolic speech, cognitive virtuos-
ity, manipulation-proof transmission of fitness-relevant information, etc.)
can be seen as elements and effects of this cooperation.

The model argues that such non-kin cooperation can arise only as a
result of the instantaneous pursuit of individual self-interest by animals
who possess a capacity for synchronous (remote) projection of coercive
threat.

The individually adaptive advantages of cooperation come as a by-
product of an ongoing individually self-interested coercive threat conjointly
with other group members (preemptive or compensated coercion). So, each
individual will display public behaviors that can be construed as beneficial
to other coalition members.

Humans are the only animal with an innate biological capacity to project
coercive threat remotely: to kill adult conspecifics with thrown projectiles
from a distance of many body diameters (at least 10m). The model posits
that the human throwing capacity briefly preceded the emergence of brain
expansion and so, of needed (in late pregnancy and child-rearing) social
support.

Historical increases in the scale of human social cooperation could be as-
sociated with prior acquisition of a new coercive technology; for instance,
the bow and agricultural civilizations, gunpowder weaponry and the mod-
ern state.

e Distance model of altruism
In Evolutionary Ecology, altruism is explained by kin selection and group
selection, and it is supposed to be a driving force of the transition from
unicellular organisms to multicellularity. The distance model of altru-
ism (see [Koel00]) suggests that altruists spread locally, i.e., with small
interaction distance and offspring dispersal distance, while the evolution-
ary response of egoists is to invest in increasing of those distances. The
intermediate behaviors are not maintained, and evolution will lead to a
stable bimodal spatial pattern.



Chapter 24
Distances in Physics and Chemistry

24.1 Distances in Physics

Physics studies the behavior and properties of matter in a wide variety of
contexts, ranging from the sub-microscopic particles from which all ordinary
matter is made (Particle Physics) to the behavior of the material Universe
as a whole (Cosmology).

Physical forces which act at a distance (i.e., a push or pull which acts with-
out “physical contact”) are nuclear and molecular attraction and, beyond the
atomic level, gravity (completed, perhaps, by anti-gravity), static electricity,
and magnetism. Last two forces can be both push and pull.

Distances on a small scale are treated in this chapter, while large distances
(in Astronomy and Cosmology) are the subject of Chaps.23l and

In fact, the distances having physical meaning range from 1.6 x 1073 m
(Planck length) to 4.3 x 102 m (the estimated size of the observable Uni-
verse). The world appears Euclidean at distances less than about 10%° m (if
gravitational fields are not too strong).

At present, the Theory of Relativity, Quantum Theory and Newtonian
laws permit us to describe and predict the behavior of physical systems in
the range 1071° — 102 m.

Gigantic accelerators are able to register particles measuring 10~ m. Rel-
ativity and Quantum Theory effects, governing Physics on very large and
small scales, are already accounted for in technology, for instance in GPS
satellites and nanocrystals of solar cells.

e Moment
In Physics and Engineering, moment is the product of a quantity and a
distance (or some power of the distance) to some point associated with
that quantity.

e Displacement
A displacement is a special kind of quasi-metric (directed Euclidean
distance) defined in Mechanics; it is the distance along a straight line from
x1 to xo, where 1 and xo are positions occupied by the same moving
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particle at two instants ¢ and to, to > t1, of time. So, a displacement is
a vector 123 of length ||y — 25||2 specifying the position 2o of a particle
in reference to its previous position x.

e Mechanic distance
The mechanic distance is the position of a particle as a function of time
t. For a particle with initial position zy and initial speed vg, which is acted
upon by a constant acceleration a, it is given by

1
x(t) = xo + vot + iat2.

The distance fallen under uniform acceleration a, in order to reach a

’U2

speed v, is given by = = .

A free falling body is a body which is falling subject only to acceleration
by gravity g. The distance fallen by it, after a time ¢, is % gt?; it is called
the free fall distance.

e Terminal distance
The terminal distance is the distance of an object, moving in a resistive
medium, from an initial position to a stop.

Given an object of mass m moving in a resistive medium (where the drag
per unit mass is proportional to speed with constant of proportionality [,
and there is no other force acting on a body), the position z(t) of a body
with initial position xy and initial velocity vq is given by

x(t) = xo + %0(1 —e P,

The speed of the body v(t) = 2 (t) = voe P! decreases to zero over time,
and the body reaches a maximum terminal distance
. 0
Tterminal = 1M I(t) =x0+ —-
t—o00

B
For a projectile, moving from initial position (z,yo) and velocity
o . . . Vg _
(Vzo,Vy, ), the position (x(t),y(t)) is given by z(t) = zo + 5*(1 —e sy,
y(t) = (yo + Do 9y 4 vy(’iﬂ;ge*ﬁt. The horizontal motion ceases at a
B B B
maximum terminal distance

Vg
Tterminal = To + ﬂ .

e Acceleration distance
The acceleration distance is the minimum distance at which an object
(or, say, flow, flame), accelerating in given conditions, reaches a given
speed.
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e Ballistics distances
Ballistics is the study of the motion of projectiles, i.e., bodies which are
propelled (or thrown) with some initial velocity, and then allowed to be
acted upon by the forces of gravity and possible drag.

The horizontal distance traveled by a projectile is called the range, the
maximum upward distance reached by it is the height, and the path of
the object is the trajectory.

The range of a projectile launched with a velocity vy at an angle 6 to
the horizontal is

x(t) = vot cos b,

where t is the time of motion. On a level plane, where the projectile lands
at the same altitude as it was launched, the full range is

vE sin 20

mmam - )

9

which is maximized when 6 = 7/4. If the altitude of the landing point is
Ah higher that of the launch point, then

vg sin 20 2Ahg 12
Tmax = — a7 1+ ({1- "o 2, .
2g vg sin” 6

The height is given by %, and is maximized when 6 = 7 /2.
2
The arc length of the trajectory is given by %O(Sine + cos? Ogd—1(0)),

= —dt_ s the Gudermannian function. The arc length is
0 cosht

maximized when gd~=!(0)sin @ = ( 09 S
solution is 6 ~ 0.9855.
e Interaction distance
The impact parameter is the perpendicular distance between the veloc-
ity vector of a projectile and the center of the object it is approaching.
The interaction distance between two particles is the farthest distance
of their approach at which it is discernable that they will not pass at
the impact parameter, i.e., their distance of closest approach if they had
continued to move in their original direction at their original speed.
e Mean free path (length)
The mean free path (length) of a particle (photon, atom or molecule)
in a medium measures its probability to undergo a situation of a given
kind K; it is the average of an exponential distribution of distances until
the situation K occurs. In particular, this average distance d is called:
nuclear collusion length if K is a nuclear reaction;
interaction length if K is an interaction which is neither elastic, nor
quasi-elastic;
scattering length if K is a scattering event;

where gd(z)

)sinf = 1, and the approximate
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attenuation length (or absorption length) if K means that the prob-
ability P(d), that a particle has not been absorbed, drops to é (cf.
Beer—Lambert law);

radiation length (or cascade unit) if K means that the energy of (high
energy electromagnetic-interacting ) charged particles drops by the factor
% ~ 0.368.

In Gamma-ray Radiography, the mean free path of a beam of photons is
the average distance a photon travels between collisions with atoms of the
target material. It is ai, where « is the material opacity and p is its density.

e Neutron scattering length
In Physics, scattering is the random deviation or reflection of a beam of
radiation or a stream of particles by the particles in the medium.

In Neutron Interferometry, the scattering length « is the zero-energy
limit of the scattering amplitude f = —%. Since the total scattering
cross section (the likelihood of particle interactions) is 4r|f|?, it can be
seen as the radius of a hard sphere from which a point neutron is scattered.

The spin-independent part of the scattering length is the coherent
scattering length.

In order to expand the scattering formalism to absorption, the scattering
length is made complex a = a’ — ia”.

Thomson scattering length is the classical electron radius

~2.81794 x 10~ m.

e Inelastic mean free path
In Electron Microscopy, the inelastic mean free path (or IMFP) is
the average total distance that an electron traverses between events of
inelastic scattering, while the effective attenuation length (or EAL) is
an experimental parameter reflecting the average net distance traveled.

The EAL is the thickness in the material through which electron can
pass with probability % that it survives without inelastic scattering. It is
about 20% less than the IMFP due to the elastic scatterings which deflect
the electron trajectories.
Both are smaller than the total electron range which may be 10-100

times greater.

e Range of a charged particle
The range of a charged particle, passing through a medium and ion-
izing, is the distance to the point where its energy drops to almost zero.

e Gyroradius
The gyroradius (or cyclotron radius, Larmor radius) is the radius of the
circular orbit of a charged particle (for example, an energetic electron that
is ejected from Sun) gyrating around its gliding center.

e Debye screening distance
The Debye screening distance (or Debye length, Debye—Hiickel length)
is the distance over which a local electric field affects the distribution of
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mobile charge carriers (for example, electrons) present in the material
(plasmas and other conductors).
Its order increases with decreasing concentration of free charge carriers,
from 10~*m in gas discharge to 10° m in intergalactic medium.
e Range of fundamental forces
The fundamental forces (or interactions) are gravity and electromagnetic,
weak nuclear and strong nuclear forces. The range of a force is considered
short if it decays (approaches 0) exponentially as the distance d increases.
Both electromagnetic force and gravity are forces of infinite range which
obey inverse-square distance laws. The shorter the range, the higher
the energy. Both weak and strong forces are very short range (about 10718
and 1071% m, respectively) which is limited by the uncertainty principle.
At subatomic distances, Quantum Field Theory describes electromag-
netic, weak and strong interactions with the same formalism but different
constants; they almost coincide at very large energy.
e Inverse-square distance laws
Any law stating that some physical quantity is inversely proportional to
the square of the distance from the source that quantity.
Law of universal gravitation (Newton—Bullialdus): the gravitational
attraction between two point-like objects with masses my, mo at distance

d is given by
mimso

daz
where G is the Newton universal gravitational constant.

The existence of extra dimensions, postulated by M-theory, will be
experimentally checked by LHC (Large Hadron Collider opened 10
September 2008 at CERN, near Geneva) based on the inverse propor-
tionality of the gravitational attraction in n-dimensional space to the
(n — 1)-th degree of the distance between objects; if the Universe has a
fourth dimension, LHC will find out the inverse proportionality to the
cube of the small inter-particle distance.

Coulomb law: the force of attraction or repulsion between two point-
like objects with charges e, es at distance d is given by

G

€1€2
n—dQ ,

where k is the Coulomb constant depending upon the medium that the
charged objects are immersed in. The gravitational and electrostatic forces
of two bodies with Planck mass mp =~ 2.176 x 10~8 kg and unity electrical
charge have equal strength.

The intensity (power per unit area in the direction of propagation) of
a spherical wavefront (light, sound, etc.) radiating from a point source
decreases (assuming that there are no losses caused by absorption or
scattering) inversely proportional to the square d? of the distance from
the source (cf. distance decay in Chap.29)). However, for a radio wave,
it decrease like é.
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¢ EM radiation wavelength range
The wavelength is the distance the wave travels to complete one cycle.

Electromagnetic (EM) radiation wavelength range is: <0.01nm
for gamma rays, 0.01-10nm for X-rays, 100-400nm for ultraviolet,
400-780nm for visible light, 0.78-1,000um for infrared (in lasers),
1-330mm for microwave, 0.33-3,000m for radio frequency radiation,
>3 km for low frequency, and oo for static field.

Besides gamma rays, X-rays and far ultraviolet, the EM radiation is
non-ionizing, i.e., passing through matter, it only ezcites electrons: moves
them to a higher energy state, instead of removing them completely from
an atom or molecule.

e Rayleigh distance
In non-ionizing energy radiation (such as sound and much of electromag-
netic radiation), the Rayleigh distance is the minimum of the distance
d from the antenna source, from which the field strength decreases, up to
a given error, as d~'. This Rayleigh limit can be, say, the point where the
phase error is %6 of a wavelength .

Beyond this point, about from d = %, where D is the maximum overall
dimension of the antenna, the far field starts: the energy radiates only in
the radial direction, its angular distribution does not change with distance,
the wave front is considered planar and the rays approximately parallel.

The Maxwell equations, governing the field strength decay, can be
approximated as d~3, d72 and d~' for three regions: the reactive near

field, the radiating near field and the far field. Approximate outer edges

1

of reactive and radiating near fields are given by % and, say, 0.62(%3) z,
where large with respect to A. Cf. the acoustic distances in Chap.2I}

In Laser Science, beam divergence is defined by its radius, i.e., (for
a Gaussian beam) the distance from the beam propagation axis where
intensity drops to - ~ 13.5% of the maximal value. The waist (or focus)
of the beam is the position on its axis where the beam radius is at its
minimum and the phase profile is flat.

The Rayleigh length (or Rayleigh range) of the beam is the dis-
tance along its propagation direction from the waist to the place where
the beam radius increases by a factor v/2, i.e., the beam can propagate
without significantly diverging.

The Rayleigh length divides the near-field and mid-field; it is the dis-
tance from the waist at which the wavefront curvature is at a maximum.
The divergence really starts in the far field where the beam radius is at
least 10 times its Rayleigh length.

The Rayleigh length is the natural defocusing distance of laser beams.
The confocal parameter (or depth of focus) of the beam is twice its Rayleigh
length. Cf. the lens distances in Chap.28

e Half-value layer
Ionizing radiation consists of highly-energetic particles or waves (es-
pecially, X-rays, gamma rays and far ultraviolet light), which are
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progressively absorbed during propagation through the surrounding
medium, via ionization, i.e., removing an electron from some of its atoms
or molecules. The half-value layer is the depth within a material where
half of the incident radiation is absorbed.

A basic rule of protection against ionizing radiation exposure: doubling
of distance from its source decreases this exposure to a quarter.

In Maxwell Render light simulation software, the attenuation distance
(or transparency) is the thickness of object that absorbs 50% of light
energy.

e Radiation attenuation with distance
Radiation is the process by which energy is emitted from a source and
propagated through the surrounding medium. Radiant energy described in
wave terms includes sound and electromagnetic radiation, as light, X-rays
and gamma rays.

The incident radiation partially changes its direction, gets absorbed,
and the remainder transmitted. The change of direction is reflection,
diffraction, or scattering if the direction of the outgoing radiation is re-
versed, split into separate rays, or randomised (diffused), respectively.
Scattering occurs in non-homogeneous media.

In Physics, attenuation is any process in which the flux density, power
amplitude or intensity of a wave, beam or signal decreases with increasing
distance from the energy source, as a result of absorption of energy and
scattering out of the beam by the transmitting medium. It comes in ad-
dition to the divergence of flux caused by distance alone as described by
the inverse-square distance laws.

Attenuation of light is caused primarily by scattering and absorption of
photons. The primary causes of attenuation in matter are the photoelectric
effect (emission of electrons), Compton scattering (wavelength increase of
an interacting X-ray or gamma ray photon) and pair production (creation
of an elementary particle and its antiparticle from a high-energy photon).

In Physics, absorption is a process in which atoms, molecules, or ions
enter some bulk phase — gas, liquid or solid material; in adsorption, the
molecules are taken up by the surface, not by the volume. Absorption of
EM radiation is the process by which the energy of a photon is taken up
(and destroyed) by, for example, an atom whose valence electrons make
the transition between two electronic energy levels. The absorbed energy
may be re-emitted or transformed into heat.

Attenuation is measured in units of decibels (dB) or nepers (=8.7 dB)
per length unit of the medium and is represented by the medium at-
tenuation coefficient a. When possible, specific absorption or scattering
coefficient is used instead.

Attenuation of signal (or loss) is the reduction of its strength
during transmission. In Signal Propagation, attenuation of a propa-
gating EM wave is called the path loss (or path attenuation). Path
loss may be due to free-space loss, refraction, diffraction, reflection,
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absorption, aperture-medium coupling loss, etc. Path loss in decibels is
L = 10nlog;, d+C, where n is the path loss exponent, d is the transmitter-
receiver distance in m, and C' is a constant accounting for system losses.
The free-space path loss (FSPL) is the loss in signal strength of an
electromagnetic wave that would result from a line-of-sight path through
free space, with no obstacles to cause reflection or diffraction. FSPL is
(‘%d)z, where d is the distance from the transmitter and X is the signal
wavelength (both in meters), i.e., in decibels it is 10log,,(F'SPL) =
20logyy d + 20log,, f — 147.56, where f is the frequency in hertz.
e Beer—Lambert law
The Beer—Lambert law is an empirical relationship for the absorbance
Ab of a substance when a radiation beam of given frequency goes
through it:
Ab = ad = —log,T,
where a = e or (for liquids) 10, d is the path length (distance the beam
travels through the medium), T = % is the transmittance (I and I
are the intensity of the transmitted and incident radiation), and « is the
medium opacity (or linear attenuation coefficient, absorption coefficient);
a is the fraction of radiation lost to absorption and/or scattering per unit
length of the medium.

The extinction coefficient is 2—;‘;@, where A, is the same frequency
wavelength in a vacuum. In Chemistry, « is given as eC, where C is the
absorber concentration, and € is the molar extinction coefficient.

The optical depth is 7 = —1In %, measured along the true (slant)
optical path.

The penetration depth (or attenuation length, mean free path,
optical extinction length) is the thickness d in the medium where the
intensity I; has decreased to % of Iy; so, it is é Cf. half-value layer.

Also, in Helioseismology, the (meridional flow) penetration depth is the
distance from the base of the solar convection zone to the location of the
first reversal of the meridional velocity. In an information network, the
message penetration distance is the maximum distance from the event
message traverses in the valid routing region.

The skin depth is the thickness d where the amplitude A4 of a prop-
agating wave (say, alternating current in a conductor) has decreased to %
of its initial value Ag; it is twice the penetration depth. The propagation
constant is v = —In ﬁ—;’.

The Beer—Lambert law is also applied to describe the attenuation of
solar or stellar radiation. The main components of the atmospheric light
attenuation are: absorption and scattering by aerosols, Rayleigh scattering
(from molecular oxygen Os and nitrogen Niy) and (only absorption) by
carbon dioxide COs, Os, nitrogen dioxide NiOs, water vapor, ozone Og.
Cf. atmospheric visibility distances in Chap.[20l
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The sea is nearly opaque to light: less than 1% penetrates 100 m deep.
In Oceanography, attenuation of light is the decrease in its intensity
with depth due to absorption (by water molecules) and scattering (by
suspended fine particles).

In Astronomy, attenuation of EM radiation is called extinction (or red-
dening). It arises from the absorption and scattering by the interstellar
medium, the Earth’s atmosphere and dust around an observed object.
The photosphere of a star is the surface where its optical depth is % The
optical depth of a planetary ring is the proportion of light blocked by the
ring when it lies between the source and the observer.

e Sound attenuation with distance

Vibrations propagate through elastic solids and liquids, including the
Earth, and consist of two types of elastic (or seismic, body) waves and
two types of surface waves. Elastic waves are: primary (P) wave moving
in the propagation direction of the wave and secondary (S) wave moving
in this direction and perpendicular to it. Also, because the surface acts
as an interface between solid and gas, surface waves occur: the Love wave
moving perpendicular to the direction of the wave and the Rayleigh (R)
wave moving in the direction of the wave and circularly within the vertical
surface perpendicular to it. The geometric attenuation of P- and S-waves
is proportional to d%, when propagated by the surface of an infinite elastic
body, and it is proportional to é, when propagated inside it. For the
R-wave, it is proportional to %.

Sound propagates through gas (say, air) as a P-wave. It attenuates
geometrically over a distance, normally at a rate of d%: the inverse-square
distance law relating the growing radius d of a wave to its decreas-
ing intensity. The far field (cf. Rayleigh distance) is the part of a
sound field in which sound pressure decreases as é (but sound intensity
decreases as 7).

In natural media, further weakening occurs from attenuation, i.e.,
scattering (reflection of the sound in other directions) and absorption
(conversion of the sound energy to heat). Cf. critical distance among
acoustics distances in Chap.2Il

The sound extinction distance is the distance over which its in-
tensity falls to é of its original value. For sonic boom intensities (say,
supersonic flights), the lateral extinction distance is the distance where in
99% of cases the sound intensity is lower than 0.1-0.2 mbar (10-20 Pa) of
atmospheric pressure. The earthquake extinction length is the distance
(in kilometers) over which the primary S-wave energy is decreased by %;
cf. site-source distances in Seismology in Chap.25

Water is transparent to sound. Sound energy is absorbed (due to vis-
cosity) and ~6% of it scattered (due to water inhomogeneities). Sound
attenuation by zooplankton is used in hydroacoustic measurement of fish
and zooplankton abundance.
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Absorbed less in liquids and solids, low frequency sounds can propagate
in these media over much greater distances along lines of minimum sound
speed. Cf. SOFAR channel among distances in Oceanography in
Chap.28

On the other hand, high frequency waves attenuate more rapidly. So,
low frequency waves are dominant further from the source (say, a musical
band or earthquake).

Attenuation of ultrasound waves with frequency f MHz at a given
distance r cm is afr decibels, where o dBMHz ™! em™! is the attenuation
coefficient of the medium. It is used in Ultrasound Biomicroscopy; in a
homogeneous medium (so, without scattering) « is 0.0022, 0.18, 0.85, 20,
41 for water, blood, brain, bone, lung, respectively.

e Optical distance
The optical distance (or optical path length) is a distance dn traveled
by light, where d is the physical distance in a medium and n = £ is the
refractive index of the medium (¢ and v are the speeds of an EM wave
in a vacuum and in the medium). By Fermat’s principle light follows the
shortest optical path. Cf. optical depth.

The light extinction distance is the distance where light propagating
through a given medium reaches its steady-state speed, i.e., a characteristic
speed that it can maintain indefinitely. It is proportional to %\, where p
is the density of the medium and A is the wavelength, and it is very small
for most common media.

e Proximity effects

In Electronic Engineering, an alternating current flowing through an
electric conductor induces (via the associated magnetic field) eddy cur-
rents within the conductor. The electromagnetic proximity effect is the
“current crowding” which occurs when such currents are flowing through
several nearby conductors such as within a wire. It increases the alter-
nating current resistance (so, electrical losses) and generates undesirable
heating.

In Nanotechnology, the quantum % proximity effect is that the % fun-
damental noise in a semiconductor sample is increased by the presence of
another similar current-carrying sample placed in the close vicinity.

The superconducting proximity effect is the propagation of superconduc-
tivity through a NS (normal-superconductor) interface, i.e., a very thin
layer of “normal” metal behaves like a superconductor (that is, with no
resistance) when placed between two thicker superconductor slices.

In E-beam Lithography, if a material is exposed to an electronic beam,
some molecular chains break and many electron scattering events occur.
Any pattern written by the beam on the material can be distorted by this
E-beam prozimity effect.

In LECD (localized electrochemical deposition) technique for fabrica-
tion of miniature devices, the microelectrode (anode) is placed close to
the tip of a fabricated microstructure (cathode). Voltage is applied and
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the structure is grown by deposition. The LECD proximity effect: at small
cathode-anode distances, migration overcomes diffusion, the deposition
rate increases greatly and the products are porous.

In Atomic Physics, the proximity effect refers to the intramolecular
interaction between two (or more) functional groups (in terms of group
contributions models of a molecule) that affects their properties and those
of the groups located nearby.

Cf. also prozimity effect (audio) among acoustics distances in
Chap.211

The term prozimity effect is also used more abstractly, to describe some
undesirable proximity phenomena. For example, the proximity effect in
the production of chromosome aberrations (when ionizing radiation breaks
double-stranded DNA) is that DNA strands can misrejoin if separated
by less than % of the diameter of a cell nucleus. The proximity effect in
innovation process is the tendency to the geographic agglomeration of
innovation activity.

e Hopping distance
Hopping is atomic-scale long range dynamics that controls diffusivity
and conductivity. For example, oxidation of DNA (loss of an electron)
generates a radical cation which can migrate a long (more that 20nm)
distance, called the hopping distance, from site to site (to “hop” from
one aggregate to another) before it is trapped by reaction with water.

e Atomic jump distance
In the solid state the atoms are about closely packed on a rigid lattice. The
atoms of some elements (carbon, hydrogen, nitrogen), being too small to
replace the atoms of metallic elements on the lattice, are located in the
interstices between metal atoms and they diffuse by squeezing between
the host atoms.

Interstitial diffusion is the only mechanism by which atoms can be
transported through a solid substance while, in a gas or liquid, mass
transport is possible by both diffusion and the flow of fluid (for example,
convection currents).

The jump distance is the distance an atom is moved through the lat-
tice in a given direction by one exchange of its position with an adjacent
vacant or occupied lattice site.

The mean square diffusion distance d; from the starting point which
a molecule will have diffused in time ¢, satisfies d7 = r?N = r?vt = 2nDt,
where 7 is the jump distance; N is the number of jumps (equal to vt assum-
ing a fixed jump rate v); n = 1,2,3 for one-, two- and three-dimensional

diffusion; and D = ”2—22 is the diffusivity in square centimeters per second.
For example, D = 1-1.5 x 107°,107% and 107'° for small molecules in
water, small protein in water and proteins in a membrane, respectively.
In diffusion alloy bonding, a characteristic diffusion distance is the
distance between the joint interface and the site wherein the concentration
of the diffusing substance (say, aluminum in high carbon-steel) falls to

zero up to a given error.
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e Diffusion length
Diffusion is a process of spontaneous spreading of matter, heat, momen-
tum, or light: particles move to lower chemical potential implying a change
in concentration.

In Microfluidics, the diffusion length is the distance from the point
of initial mixing to the complete mixing point where the equilibrium
composition is reached.

In semiconductors, electron-hole pairs are generated and recombine;
the (minority carrier) diffusion length of a material is the average dis-
tance a minority carrier can move from the point of generation until it
recombines with majority carriers. Also, the diffusion length, in electron
transport by diffusion, is the distance over which concentration of free
charge carriers injected into semiconductor falls to % of its original value.

Cf. jump distance and, in Chap.23] capillary diffusion distance.

e Thermal diffusion length
The heat propagation into material is represented by the thermal diffu-
sion length, i.e., the propagation distance of the thermal wave producing
an attenuation of the peak temperature to about 0.1 of the maximum
surface value.

For lasers with femtosecond pulse duration, it is so small that the
energy of the beam, not being absorbed by laser-induced plasma, is fully
deposited into the target.

The propagation of the laser-generated shock wave is approximated
as blast wave (instantaneous, massless point explosion). The expansion
distance is the distance between the surface of the target and the position
of a blast wave; it depends on the energy converted into the plasma state.

¢ Hydrodynamic radius
The hydrodynamic radius (or Stokes radius, Stokes—Einstein radius)
of a molecule, undergoing diffusion in a solution (homogeneous mixture
composed of two or more substances), is the hypothetical radius of a hard
sphere which diffuses with the same rate as the molecule.

e Solvent migration distance
In Chromatography, the solvent migration distance is the distance
traveled by the front line of the liquid or gas entering a chromatographic
bed for elution (the process of using a solvent to extract an absorbed
substance from a solid medium).

e Healing length
For a superfluid, the healing length is a length over which the wave
function can vary while still minimizing energy.

For Bose—FEinstein condensates, the healing length is the width of the
bounding region over which the probability density of the condensate
drops to zero.

e Coupling length
In optical fibre devices mode coupling occurs during transmission by
multimode fibres (mainly because of random bending of the fibre axis).
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Between two modes, a and b, the coupling length [. is the length
for which the complete power transfer cycle (from a to b and back) take
place, and the beating length z is the length along which the modes
accumulate a 27 phase difference. The resonant coupling effect is adiabatic
(no heat is transferred) if and only if I, > z.

Furuya, Suematsu and Tokiwa (1978) define the coupling length of
modes a and b as the length of transmission at which the ratio % of mode

intensities reach e?.

e Localization length
Generally, the localization length is the average distance between two
obstacles in a given scale. The localization scaling theory of metal-insulator
transitions predicts that, in zero magnetic field, electronic wave functions
are always localized in disordered 2D systems over a length scale called
the localization length.

e Long range order
A physical system has long range order if remote portions of the same
sample exhibit correlated behavior. For example, in crystals and some
liquids, the positions of an atom and its neighbors define the positions of
all other atoms.

Examples of long range ordered states are: superfluidity and, in solids,
magnetism, charge density wave, superconductivity. Most strongly corre-
lated systems develop long-range order in their ground state.

Short range refers to the first- or second-nearest neighbors of an atom.
More precisely, the system has long range order, quasi-long range order
or is disordered if the corresponding correlation function decays at large
distances to a constant, to zero polynomially, or to zero exponentially (cf.
long range dependency in Chap.[29).

e Correlation length
The correlation length is the distance from a point beyond which
there is no further correlation of a physical property associated with that
point. It is used mainly in statistical mechanics as a measure of the order
in a system for phase transitions (fluid, ferromagnetic, nematic).

For example, in a spin system at high temperature, the correlation
length is 7% where d is the distance between spins and C(d) is the
correlation function.

In particular, the percolation correlation length is an average distance
between two sites belonging to the same cluster, while the thermal corre-
lation length is an average diameter of spin clusters in thermal equilibrium
at a given temperature. In second-order phase transitions, the correlation
length diverges at the critical point.

e Magnetic length
The magnetic length (or effective magnetic length) is the distance
between the effective magnetic poles of a magnet.

The magnetic correlation length is a magnetic-field dependent correla-
tion length.
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e Spatial coherence length
The spatial coherence length is the propagation distance from a co-
herent source to the farthest point where an electromagnetic wave still
maintains a specific degree of coherence. This notion is used in Telecommu-
nication Engineering (usually, for the optical regime) and in synchrotron
X-ray Optics (the advanced characteristics of synchrotron sources provide
highly coherent X-rays).

The spatial coherence length is about 20cm, 100m, and 100 km for
helium—neon, semiconductor and fiber lasers, respectively. Cf. temporal
coherence length which describes the correlation between signals observed
at different moments of time.

For vortex-loop phase transitions (superconductors, superfluid, etc.),
coherence length is the diameter of the largest loop which is thermally
excited. Besides coherence length, the second characteristic length (cf.
Chap.29)) in a superconductor is its penetration depth. If the ratio of
these values (the Ginzburg-Landau parameter) is <v/2, then the phase
transition to superconductivity is of second-order.

e Decoherence length
In disordered media, the decoherence length is the propagation distance
of a wave from a coherent source to the point beyond which the phase is
irreversibly destroyed (for example, by a coupling with noisy environment).

e Dephasing length
Intense laser pulses traveling through plasma can generate, for example, a
wake (the region of turbulence around a solid body moving relative to a lig-
uid, caused by its flow around the body) or X-rays. The dephasing length
is the distance after which the electrons outrun the wake, or (for a given
mismatch in speed of pulses and X-rays) laser and X-rays slip out of phase.

e Metric theory of gravity
A metric theory of gravity assumes the existence of a symmetric
metric (seen as a property of space—time itself) to which matter and non-
gravitational fields respond. Such theories differ by the types of additional
gravitational fields, say, by dependency or not on the location and/or
velocity of the local systems. General Relativity is one such theory; it
contains only one gravitational field, the space—time metric itself, and it
is governed by Einstein’s partial differential equations. It has been found
empirically that, besides Nordstrom’s 1913 conformally-flat scalar theory,
every other metric theory of gravity introduces auxiliary gravitational
fields.

A bimetric theory of gravity is a metric theory of gravity in which
two, instead of one, metric tensors are used for, say, effective Riemannian
and background Minkowski space—times.

@stvang (2001) proposed a quasi-metric framework for relativistic
gravity.
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e Gravitational radius
The gravitational radius (or event horizon) is the radius that a spherical
mass must be compressed to in order to transform it into a black hole. The
Schwarzschild radius is the gravitational radius 2?{” of a Schwarzschild
black hole with mass m.

A “typical” black hole has mass ~6 Mg, diameter ~18 km, tempera-
ture ~1078 K and lifetime ~2 x 10°8 years. The central black hole of the
galaxy M87 (in the center of our Virgo Supercluster) has mass 3 billions
suns and diamet