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In Praise of Digital Design: An Embedded
Systems Approach Using Verilog

“Peter Ashenden is leading the way towards a new curriculum for
educating the next generation of digital logic designers. Recognizing that
digital design has moved from being gate-centric assembly of custom
logic to processor-centric design of embedded systems, Dr. Ashenden has
shifted the focus from the gate to the modern design and integration of
complex integrated devices that may be physically realized in a variety of
forms. Dr. Ashenden does not ignore the fundamentals, but treats them
with suitable depth and breadth to provide a basis for the higher-level
material. As is the norm in all of Dr. Ashenden’s writing, the text is lucid
and a pleasure to read. The book is illustrated with copious examples and
the companion Web site offers all that one would expect in a text of such
high quality.”

— GRANT MARTIN, Chief Scientist, Tensilica Inc.

“Dr. Ashenden has written a textbook that enables students to obtain a
much broader and more valuable understanding of modern digital system
design. Readers can be sure that the practices described in this book will
provide a strong foundation for modern digital system design using hard-
ware description languages.”

— GARY SPIVEY, George Fox University

“The convergence of miniaturized, sopbisticated electronics into handheld,
low-power embedded systems such as cell phones, PD As, and MP3 players
depends on efficient, digital design flows. Starting with an intuitive explo-
ration of the basic building blocks, Digital Design: An Embedded Systems
Approach introduces digital systems design in the context of embedded
systems to provide students with broader perspectives. Throughout the
text, Peter Ashenden’s practical approach engages students in understand-
ing the challenges and complexities involved in implementing embedded
systems.”

— GREGORY D. PETERSON, University of Tennessee

“Digital Design: An Embedded Systems Approach places emphasis on
larger systems containing processors, memory, and involving the design



and interface of 1/O functions and application-specific accelerators. The
book’s presentation is based on a contemporary view that reflects the
real-world digital system design practice. At a time when the university
curriculum is generally lagging significantly behind industry development,
this book provides much needed information to students in the areas of
computer engineering, electrical engineering and computer science.”

—DONALD HUNG, San Jose State University

“Digital Design: An Embedded Systems Approach presents the design flow
of circuits and systems in a way that is both accessible and up-to-date.
Because the use of hardware description languages is state-of-the-art, it
is necessary that students learn how to use these languages along with
an appropriate methodology. This book presents a modern approach for
designing embedded systems starting with the fundamentals and progress-
ing up to a complete system—it is application driven and full of many
examples. 1 will recommend this book to my students.”

— GOERAN HERRMANN, TU Chemnitz

“Digital Design: An Embedded Systems Approach is surprisingly easy to
read despite the complexity of the material. It takes the reader in a journey
from the basics to a real understanding of digital design by answering the
‘whys’ and ‘hows’—it is persuasive and instructive as it moves deeper and
deeper into the material.”

—ANDREY KOPTYUG, MidSweden University

“This up-to-date text on digital design is written in a very accessible style
using a modern design methodology and the real world of embedded
systems as its contexts. Digital Design: An Embedded Systems Approach
provides excellent coverage of all aspects of the design of embedded sys-
tems, with chapters not just on logic design itself, but also on processors,
memories, input/output interfacing and implementation technologies. It’s
particularly good at emphasizing the need to consider more than just logic
design when designing a digital system: the design has to be implemented
in the real world of engineering, where a whole variety of constraints,
such as circuit area, circuit interconnections, interfacing requirements,
power and performance, must be considered. For those who think logic
design is mundane, this book brings the subject to life.”

—ROLAND IBBETT, University of Edinburgh
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PREFACE

APPROACH

This book provides a foundation in digital design for students in computer
engineering, electrical engineering and computer science courses. It deals
with digital design as an activity in a larger systems design context. Instead
of focusing on gate-level design and aspects of digital design that have
diminishing relevance in a real-world design context, the book concen-
trates on modern and evolving knowledge and design skills.

Most modern digital design practice involves design of embedded
systems, using small microcontrollers, larger CPUs/DSPs, or hard or soft
processor cores. Designs involve interfacing the processor or processors
to memory, I/O devices and communications interfaces, and developing
accelerators for operations that are too computationally intensive for pro-
cessors. Target technologies include ASICs, FPGAs, PLDs and PCBs. This
is a significant change from earlier design styles, which involved use of
small-scale integrated (SSI) and medium-scale integrated (MSI) circuits.
In such systems, the primary design goal was to minimize gate count or
IC package count. Since processors had lower performance and memories
had limited capacity, a greater proportion of system functionality was
implemented in hardware.

While design practices and the design context have evolved, many text-
books have not kept track. They continue to promote practices that are
largely obsolete or that have been subsumed into computer-aided design
(CAD) tools. They neglect many of the important considerations for mod-
ern designers. This book addresses the shortfall by taking an approach that
embodies modern design practice. The book presents the view that digital
logic is a basic abstraction over analog electronic circuits. Like any abstrac-
tion, the digital abstraction relies on assumptions being met and constraints
being satisfied. Thus, the book includes discussion of the electrical and tim-
ing properties of circuits, leading to an understanding of how they influence
design at higher levels of abstraction. Also, the book teaches a methodology
based on using abstraction to manage complexity, along with principles
and methods for making design trade-offs. These intellectual tools allow
students to track evolving design practice after they graduate.

Perhaps the most noticeable difference between this book and its
predecessors is the omission of material on Karnaugh maps and related
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logic optimization techniques. Some reviewers of the manuscript argued
that such techniques are still of value and are a necessary foundation for
students learning digital design. Certainly, it is important for students
to understand that a given function can be implemented by a variety of
equivalent circuits, and that different implementations may be more or
less optimal under different constraints. This book takes the approach of
presenting Boolean algebra as the foundation for gate-level circuit trans-
formation, but leaves the details of algorithms for optimization to CAD
tools. The complexity of modern systems makes it more important to
raise the level of abstraction at which we work and to introduce embed-
ded systems early in the curriculum. CAD tools perform a much better
job of gate-level optimization than we can do manually, using advanced
algorithms to satisfy relevant constraints. Techniques such as Karnaugh
maps do have a place, for example, in design of specialized hazard-free
logic circuits. Thus, students can defer learning about Karnaugh maps
until an advanced course in VLSI, or indeed, until they encounter the need
in industrial practice. A web search will reveal many sources describing
the techniques in detail, including an excellent article in Wikipedia.

The approach taken in this book makes it relevant to Computer Sci-
ence courses, as well as to Computer Engineering and Electrical Engi-
neering courses. By treating digital design as part of embedded systems
design, the book will provide the understanding of hardware needed for
computer science students to analyze and design systems comprising
both hardware and software components. The principles of abstraction
and complexity management using abstraction presented in the book are
the same as those underlying much of computer science and software
engineering.

Modern digital design practice relies heavily on models expressed in
hardware description languages (HDLs), such as Verilog and VHDL. HDL
models are used for design entry at the abstract behavioral level and for
refinements at the register transfer level. Synthesis tools produce gate-level
HDL models for low-level verification. Designers also express verification
environments in HDLs. This book emphasizes HDL-based design and
verification at all levels of abstraction. The present version uses Verilog
for this purpose. A second version, Digital Design: An Embedded Systems
Approach Using VHDL, substitutes VHDL for the same purpose.

OVERVIEW

For those who are musically inclined, the organization of this book can be
likened to a two-act opera, complete with overture, intermezzo, and finale.

Chapter 1 forms the overture, introducing the themes that are to fol-
low in the rest of the work. It starts with a discussion of the basic ideas of
the digital abstraction, and introduces the basic digital circuit elements.



It then shows how various non-ideal behaviors of the elements impose
constraints on what we can design. The chapter finishes with a discussion
of a systematic process of design, based on models expressed in a hard-
ware description language.

Act I of the opera comprises Chapters 2 through 5. In this act, we
develop the themes of basic digital design in more detail.

Chapter 2 focuses on combinational circuits, starting with Boolean
algebra as the theoretical underpinning and moving on to binary coding
of information. The chapter then surveys a range of components that can
be used as building blocks in larger combinational circuits, before return-
ing to the design methodology to discuss verification of combinational
circuits.

Chapter 3 expands in some detail on combinational circuits used
to process numeric information. It examines various binary codes for
unsigned integers, signed integers, fixed-point fractions and floating-point
real numbers. For each kind of code, the chapter describes how some
arithmetic operations can be performed and looks at combinational cir-
cuits that implement arithmetic operations.

Chapter 4 introduces a central theme of digital design, sequential cir-
cuits. The chapter examines several sequential circuit elements for storing
information and for counting events. It then describes the concepts of a
datapath and a control section, followed by a description of the clocked
synchronous timing methodology.

Chapter 5 completes Act I, describing the use of memories for storing
information. It starts by introducing the general concepts that are com-
mon to all kinds of semiconductor memory, and then focuses on the par-
ticular features of each type, including SRAM, DRAM, ROM and flash
memories. The chapter finishes with a discussion of techniques for dealing
with errors in the stored data.

The intermezzo, Chapter 6, is a digression away from functional
design into physical design and the implementation fabrics used for digi-
tal systems. The chapter describes the range of integrated circuits that are
used for digital systems, including ASICSs, FPGAs and other PLDs. The
chapter also discusses some of the physical and electrical characteristics of
implementation fabrics that give rise to constraints on designs.

Act 1I of the opera, comprising Chapters 7 through 9, develops the
embedded systems theme.

Chapter 7 introduces the kinds of processors that are used in embed-
ded systems and gives examples of the instructions that make up embed-
ded software programs. The chapter also describes the way instructions
and data are encoded in binary and stored in memory and examines ways
of connecting the processor with memory components.

Chapter 8 expands on the notion of input/output (I/O) controllers
that connect an embedded computer system with devices that sense and
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affect real-world physical properties. It describes a range of devices that
are used in embedded computers and shows how they are accessed by an
embedded processor and by embedded software.

Chapter 9 describes accelerators, that is, components that can be
added to embedded systems to perform operations faster than is possible
with embedded software running on a processor core. This chapter uses
an extended example to illustrate design considerations for accelerators,
and shows how an accelerator interacts with an embedded processor.

The finale, Chapter 10, is a coda that returns to the theme of design
methodology introduced in Chapter 1. The chapter describes details of
the design flow and discusses how aspects of the design can be optimized
to better meet constraints. It also introduces the concept of design for
test, and outlines some design for test tools and techniques. The opera
finishes with a discussion of the larger context in which digital systems
are designed.

After a performance of an opera, there is always a lively discussion
in the foyer. This book contains a number of appendices that correspond
to that aspect of the opera. Appendix A provides sample answers for the
Knowledge Test Quiz sections in the main chapters. Appendix B provides
a quick refresher on electronic circuits. Appendix C is a summary of the
subset of Verilog used for synthesis of digital circuits. Finally, Appendix D
is an instruction-set reference for the Gumnut embedded processor core
used in examples in Chapters 7 through 9.

For those not inclined toward classical music, I apologize if the pre-
ceding is not a helpful analogy. An analogy with the courses of a feast
came to mind, but potential confusion among readers in different parts
of the world over the terms appetizer, entrée and main course make the
analogy problematic. The gastronomically inclined reader should feel free
to find the correspondence in accordance with local custom.

COURSE ORGANIZATION

This book covers the topics included in the Digital Logic knowledge area of
the Computer Engineering Body of Knowledge described in the IEEE/ACM
Curriculum Guidelines for Undergraduate Degree Programs in Computer
Engineering. The book is appropriate for a course at the sophomore level,
assuming only previous introductory courses in electronic circuits and com-
puter programming. It articulates into junior and senior courses in embed-
ded systems, computer organization, VLSI and other advanced topics.

For a full sequence in digital design, the chapters of the book can be
covered in order. Alternatively, a shorter sequence could draw on Chapter 1
through Chapter 6 plus Chapter 10. Such a sequence would defer material
in Chapters 7 through 9 to a subsequent course on embedded systems
design.



For either sequence, the material in this book should be supplemented
by a reference book on the Verilog language. The course work should
also include laboratory projects, since hands-on design is the best way to
reinforce the principles presented in the book.

WEB SUPPLEMENTS

No textbook can be complete nowadays without supplementary material
on a website. For this book, resources for students and instructors are
available at the website:

textbooks.elsevier.com/9780123695277

For students, the website contains:

» Source code for all of the example HDL models in the book

» Tutorials on the VHDL and Verilog hardware description languages

» An assembler for the Gumnut processor described in Chapter 7 and
Appendix D

» A link to the ISE WebPack FPGA EDA tool suite from Xilinx

» A link to the ModelSim Xilinx Edition IIl VHDL and Verilog simula-
tor from Mentor Graphics Corporation

» A link to an evaluation edition of the Synplify Pro PFGA synthesis
tool from Synplicity, Inc. (see inside back cover for more details).

» Tutorials on use of the EDA tools for design projects

For instructors, the website contains a protected area with additional
resources:

» An instructor’s manual

» Suggested lab projects

» Lecture notes

» Figures from the text in JPG and PPT formats

Instructors are invited to contribute additional material for the benefit of
their colleagues.

Despite the best efforts of all involved, some errors have no doubt
crept through the review and editorial process. A list of detected errors
will be available accumulated on the website mentioned above. Should
you detect such an error, please check whether it has been previously
recorded. If not, I would be grateful for notice by email to

peter@ashenden.com.au
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INTRODUCTION AND
METHODOLOGY

This first chapter introduces some of the fundamental ideas underlying
design of modern digital systems. We cover quite a lot of ground, but at
a fairly basic level. The idea is to set the context for more detailed discus-
sion in subsequent chapters.

We start by looking at the basic circuit elements from which digital
systems are built, and seeing some of the ways in which they can be put
together to perform a required function. We also consider some of the
nonideal effects that we need to keep in mind, since they impose con-
straints on what we can design. We then focus on a systematic process of
design, based on models expressed in a hardware description language.
Approaching the design process systematically allows us to develop com-
plex systems that meet modern application requirements.

1.1 DIGITAL SYSTEMS AND
EMBEDDED SYSTEMS

This book is about digital design. Let’s take a moment to explore those
two words. Digital refers to electronic circuits that represent informa-
tion in a special way, using just two voltage levels. The main rationale
for doing this is to increase the reliability and accuracy of the circuits,
but as we will see, there are numerous other benefits that flow from the
digital approach. We also use the term logic to refer to digital circuits. We
can think of the two voltage levels as representing truth values, leading
us to use rules of logic to analyze digital circuits. This gives us a strong
mathematical foundation on which to build. The word design refers to
the systematic process of working out how to construct circuits that meet
given requirements while satisfying constraints on cost, performance,
power consumption, size, weight and other properties. In this book,
we focus on the design aspects and build a methodology for designing
complex digital systems.



CHAPTER ONE

INTRODUCTION AND METHODOLOGY

Digital circuits have quite a long and interesting history. They were
preceded by mechanical systems, electromechanical systems, and analog
electronic systems. Most of these systems were used for numeric com-
putations in business and military applications, for example, in ledger
calculations and in computing ballistics tables. However, they suffered
from numerous disadvantages, including inaccuracy, low speed, and high
maintenance.

Early digital circuits, built in the mid-twentieth century, were con-
structed with relays. The contacts of a relay are either open, blocking
current flow, or closed, allowing current to flow. Current controlled in
this manner by one or more relays could then be used to switch other
relays. However, even though relay-based systems were more reliable than
their predecessors, they still suffered from reliability and performance
problems.

The advent of digital circuits based on vacuum tubes and, sub-
sequently, transistors led to major improvements in reliability and
performance. However, it was the invention of the integrated circuit (1C),
in which multiple transistors were fabricated and connected together,
that really enabled the “digital revolution.” As manufacturing technol-
ogy has developed, the size of transistors and the interconnecting wires
has shrunk. This, along with other factors, has led to ICs, containing
billions of transistors and performing complex functions, becoming
commonplace now.

At this point, you may be wondering how such complex circuits can
be designed. In your electronic circuits course, you may have learned how
transistors operate, and that their operation is determined by numerous
parameters. Given the complexity of designing a small circuit containing
a few transistors, how could it be possible to design a large system with
billions of transistors?

The key is abstraction. By abstraction, we mean identifying aspects
that are important to a task at hand, and hiding details of other aspects.
Of course, the other aspects can’t be ignored arbitrarily. Rather, we make
assumptions and follow disciplines that allow us to ignore those details
while we focus on the aspects of interest. As an example, the digital
abstraction involves only allowing two voltage levels in a circuit, with
transistors being either turned “on” (that is, fully conducting) or turned
“off” (that is, not conducting). One of the assumptions we make in sup-
porting this abstraction is that transistors switch on and off virtually
instantaneously. One of the design disciplines we follow is to regulate
switching to occur within well-defined intervals of time, called “clock
periods.” We will see many other assumptions and disciplines as we pro-
ceed. The benefit of the digital abstraction is that it allows us to apply
much simpler analysis and design procedures, and thus to build much
more complex systems.



1.1 Digital Systems and Embedded Systems

The circuits that we will deal with in this book all perform functions
that involve manipulating information of various kinds over time. The
information might be an audio signal, the position of part of a machine,
or the temperature of a substance. The information may change over time,
and the way in which it is manipulated may vary with time.

Digital systems are electronic circuits that represent information in
discrete form. An example of the kind of information that we might rep-
resent is an audio sound. In the real world, a sound is a continuously vary-
ing pressure waveform, which we might represent mathematically using
a continuous function of time. However, representing that function with
any significant precision as a continuously varying electrical signal in a
circuit is difficult and costly, due to electrical noise and variation in circuit
parameters. A digital system, on the other hand, represents the signal as
a stream of discrete values sampled at discrete points in time, as shown
in Figure 1.1. Each sample represents an approximation to the pressure
value at a given instant. The approximations are drawn from a discrete
set of values, for example, the set {—10.0, —9.9, —9.8, ..., —0.1, 0.0,
0.1,...,9.9, 10.0}. By limiting the set of values that can be represented,
we can encode each value with a unique combination of digital values,
each of which is either a low or high voltage. We shall see exactly how
we might do that in Chapter 2. Furthermore, by sampling the signal at
regular intervals, say, every 50us, the rate and times at which samples
arrive and must be processed is predictable.

Discrete representations of information and discrete sequencing in
time are fundamental abstractions. Much of this book is about how to
choose appropriate representations, how to process information thus rep-
resented, how to sequence the processing, and how to ensure that the
assumptions supporting the abstractions are maintained.

The majority of digital systems designed and manufactured today are
embedded systems, in which much of the processing work is done by one
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FIGURE 1.1 A pressure
waveform of a sound, continuously
varying over time, and the discrete
representation of the waveform in
a digital system.
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or more computers that form part of the system. In fact, the vast majority
of computers in use today are in embedded systems, rather than in PCs
and other general purpose systems. Early computers were large systems
in their own right, and were rarely considered as components of larger
systems. However, as technology developed, particularly to the stage of
IC technology, it became practical to embed small computers as compo-
nents of a circuit and to program them to implement part of the circuit’s
functionality. Embedded computers usually do not take the same form as
general purpose computers, such as desktop or portable PCs. Instead, an
embedded computer consists of a processor core, together with memory
components for storing the program and data for the program to run on
the processor core, and other components for transferring data between
the processor core and the rest of the system.

The programs running on processor cores form the embedded soft-
ware of a system. The way in which embedded software is written bears
both similarities and differences with software development for general
purpose computers. It is a large topic area in its own right and is beyond
the scope of this book. Nonetheless, since we are dealing with embedded
systems in this book, we need to address embedded software at least at a
basic level. We will return to the topic as part of our discussion of interfac-
ing with embedded processor cores in Chapters 8 and 9.

Since most digital systems in use today are embedded systems, most
digital design practice involves developing the interface circuitry around
processor cores and the application-specific circuitry to perform tasks not
done by the cores. That is why this book deals specifically with digital
design in the context of embedded systems.

1.2 BINARY REPRESENTATION AND
CIRCUIT ELEMENTS

The simplest discrete representation that we see in a digital system is called
a binary representation. It is a representation of information that can have
only two values. Examples of such information include:

» whether a switch is open or closed
» whether a light is on or off
» whether a microphone is active or muted

We can think of these as logical conditions: each is either true or
false. In order to represent them in a digital circuit, we can assign a
high voltage level to represent the value true, and a low voltage level to
represent the value false. (This is just a convention, called positive logic,
or active-high logic. We could make the reverse assignment, leading to
negative logic, or active-low logic, which we will discuss in Chapter 2.)
We often use the values 0 and 1 instead of false and true, respectively.
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The values 0 and 1 are binary (base 2) digits, or bits, hence the term
binary representation.

The circuit shown in Figure 1.2 illustrates the idea of binary
representation. The signal labeled switch_pressed represents the state of
the switch. When the push-button switch is pressed, the signal has a high
voltage, representing the truth of the condition, “the switch is pressed.”
When the switch is not pressed, the signal has a low voltage, representing
the falsehood of the condition. Since illumination of the lamp is controlled
by the switch, we could equally well have labeled the signal lamp_lit, with
a high voltage representing the truth of the condition, “the lamp is lit,”
and a low voltage representing the falsehood of the condition.

A more complex digital circuit is shown in Figure 1.3. This circuit
includes a light sensor with a digital output, dark, that is true (high volt-
age) when there is no ambient light, or false (low voltage) otherwise. The
circuit also includes a switch that determines whether the digital signal
lamp_enabled is low or high (that is, false or true, respectively). The sym-
bol in the middle of the figure represents an AND gate, a digital circuit
element whose output is only true (1) if both of its inputs are true (1).
The output is false (0) if either input is false (0). Thus, in the circuit, the
signal lamp_lit is true if lamp_enabled is true and dark is true, and is false
otherwise. Given this behavior, we can apply laws of logic to analyze
the circuit. For example, we can determine that if there is ambient light,
the lamp will not light, since the logical AND of two conditions yields
falsehood when either of the conditions is false.

The AND gate shown in Figure 1.3 is just one of several basic digital
logic components. Some others are shown in Figure 1.4. The AND gate, as

l lamp_enabled

iﬁ [ ) lamp it ® J7

dark

sensor
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FIGURE 1.2 Acircuitin
which a switch controls a lamp.

FIGURE 1.3 Adigital circuit
for a night-light that is only lit
when the switch is on and the light
sensor shows that it is dark.
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logic gates.

FIGURE1.5 The vat buzzer
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we mentioned above, produces a 1 on its output if both inputs are 1, or a 0
on the output if either input is 0. The OR gate produces the “inclusive or” of
its inputs. Its output is 1 if either or both of the inputs is 1, or 0 if both inputs
are 0. The inverter produces the “negation” of its input. Its output is 1 if the
input is 0, or 0 if the input is 1. Finally, the multiplexer selects between the
two inputs labeled “0” and “1” based on the value of the “select” input at
the bottom of the symbol. If the select input has the value 0, then the output
has the same value as that on the “0” input, whereas if the select input has
the value 1, then the output has the same value as that on the “1” input.

We can use these logic gates to build digital circuits that implement
more complex logic functions.

EXAMPLE 1.I  Suppose a factory has two vats, only one of which is used at
a time. The liquid in the vat in use needs to be at the right temperature, between
25°C and 30°C. Each vat has two temperature sensors indicating whether the
temperature is above 25°C and above 30°C, respectively. The vats also have low-
level sensors. The supervisor needs to be woken up by a buzzer when the temper-
ature is too high or too low or the vat level is too low. He has a switch to select
which vat is in use. Design a circuit of gates to activate the buzzer as required.

SOLUTION  For the selected vat, the condition for activating the buzzer is
“temperature not above 25°C or temperature above 30°C, or level low.” This
can be implemented with a gate circuit for each vat. The switch can be used to
control the select input of a multiplexer to choose between the circuit outputs
for the two vats. The output of the multiplexer then activates the buzzer. The
complete circuit is shown in Figure 1.5.

>30°C
vat 0 >25°C
low level
D buzzer
>30°C
+V
vat 1 >25°C l select vat 1
iselect vat 0
low level
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Circuits such as those considered above are called combinational.
This means that the values of the circuit’s outputs at any given time are
determined purely by combining the values of the inputs at that time.
There is no notion of storage of information, that is, dependence on val-
ues at previous times. While combinational circuits are important as parts
of larger digital systems, nearly all digital systems are sequential. This
means that they do include some form of storage, allowing the values of
outputs to be determined by both the current input values and previous
input values.

One of the simplest digital circuit elements for storing information is
called, somewhat prosaically, a flip-flop. It can “remember” a single bit
of information, allowing it to “flip” and “flop” between a stored 0 state
and a stored 1 state. The symbol for a D flip-flop is shown in Figure 1.6.
It is called a “D” flip-flop because it has a single input, D, representing
the value of the data to be stored: “D” for “data.” It also has another
input, clk, called the clock input, that indicates when the value of the
D input should be stored. The behavior of the D flip-flop is illustrated
in the timing diagram in Figure 1.7. A timing diagram is a graph of the
values of one or more signals as they change with time. Time extends
along the horizontal axis, and the signals of interest are listed on the
vertical axis. Figure 1.7 shows the D input of the flip-flop changing at
irregular intervals and the clk input changing periodically. A transition
of clk from 0 to 1 is called a rising edge of the signal. (Similarly, a transi-
tion from 1 to 0 is called a falling edge.) The small triangular marking
next to the clk input specifies that the D value is stored only on a rising
edge of the clk input. At that time, the Q output changes to reflect the
stored value. Any subsequent changes on the D input are ignored until
the next rising edge of clk. A circuit element that behaves in this way is
called edge-triggered.

While the behavior of a flip-flop does not depend on the clock input
being periodic, in nearly all digital systems, there is a single clock signal
that synchronizes all of the storage elements in the system. The system
is composed of combinational circuits that perform logical functions on
the values of signals and flip-flops that store intermediate results. As we

rising edge falling edge
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FIGURE 1.6 A D flip-flop.

FIGURE 1.7 Timing diagram
for a D flip-flop.
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FIGURE 1.8 A sequential
circuit for comparing successive
bits of an input.
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shall see, use of a single periodic synchronizing clock greatly simplifies
design of the system. The clock operates at a fixed frequency and divides
time into discrete intervals, called clock periods, or clock cycles. Modern
digital circuits operate with clock frequencies in the range of tens to
hundreds of megahertz (MHz, or millions of cycles per second), with
high-performance circuits extending up to several gigahertz (GHz, or
billions of cycles per second). Division of time into discrete intervals allows
us to deal with time in a more abstract form. This is another example of
abstraction at work.

EXAMPLE 1.2 Develop a sequential circuit that has a single data input sig-
nal, S, and produces an output Y. The output is 1 whenever S has the same value
over three successive clock cycles, and 0 otherwise. Assume that the value of S
for a given clock cycle is defined at the time of the rising clock edge at the end of
the clock cycle.

SOLUTION In order to compare the values of S in three successive clock
cycles, we need to save the values of S for the previous two cycles and compare
them with the current value of S. We can use a pair of D flip-flops, connected in
a pipeline as shown in Figure 1.8, to store the values. When a clock edge occurs,
the first flip-flop, ff1, stores the value of S from the preceding clock cycle. That
value is passed onto the second flip-flop, ff2, so that at the next clock edge, ff2
stores the value of S from two cycles prior.

The output Y is 1 if and only if three successive value of S are all 1 or are all 0.
Gates g1 and g2 jointly determine if the three values are all 1. Inverters g3, g4
and g5 negate the three values, and so gates g6 and g7 determine if the three
values are all 0. Gate g8 combines the two alternatives to yield the final
output.

ff1 ff2
S D Q St D Q—S2
> clk > clk gl
g2
clk DL vy
g8
g5 g7 Y
g4 g6 YO
g3 {>c
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Figure 1.9 shows a timing diagram of the circuit for a particular sequence of
input values on S over several clock cycles. The outputs of the two flip-flops
follow the value of S, but are delayed by one and two clock cycles, respectively.
This timing diagram shows the value of S changing at the time of a clock edge.
The flip-flop will actually store the value that is on S immediately before the
clock edge. The circles and arrows indicate which signals are used to determine
the values of other signals, leading to a 1 at the output. When all of S, S1 and S2
are 1, Y1 changes to 1, indicating that S has been 1 for three successive cycles.
Similarly, when all of S, ST and S2 are 0, YO changes to 1, indicating that

S has been 0 for three successive cycles. When either of Y1 or YO is 1, the output
Y changes to 1.

1. What are the two values used in binary representation?

2. [If one input of an AND gate is 0 and the other is 1, what is the
output value? What if both are 0, or both are 1?

3. If one input of an OR gate is 0 and the other is 1, what is the output
value? What if both are 0, or both are 1?

4. What function is performed by a multiplexer?

5. What is the distinction between combinational and sequential
circuits?

How much information is stored by a flip-flop?

7. What is meant by the terms rising edge and falling edge?

1.3 REAL-WORLD CIRCUITS

In order to analyze and design circuits as we have discussed, we are making
a number of assumptions that underlie the digital abstraction. We have
assumed that a circuit behaves in an ideal manner, allowing us to think in
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FIGURE 1.9 Timing diagram
for the sequential comparison
circuit.
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FIGURE 1.10 Photomicro-
graph of a section of an IC.
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terms of 1s and Os, without being concerned about the circuit’s electrical
behavior and physical implementation. Real-world circuits, however, are
made of transistors and wires forming part of a physical device or package.
The electrical properties of the circuit elements, together with the physical
properties of the device or package, impose a number of constraints on
circuit design. In this section, we will briefly describe the physical structure
of circuit elements and examine some of the most important properties
and constraints.

1.3.1 INTEGRATED CIRCUITS

Modern digital circuits are manufactured on the surface of a small flat
piece of pure crystalline silicon, hence the common term “silicon chip.”
Such circuits are called integrated circuits, since numerous components
are integrated together on the chip, instead of being separate components.
We will explore the process by which ICs are manufactured in more
detail in Chapter 6. At this stage, however, we can summarize by say-
ing that transistors are formed by depositing layers of semiconducting
and insulating material in rectangular and polygonal shapes on the chip
surface. Wires are formed by depositing metal (typically copper) on top
of the transistors, separated by insulating layers. Figure 1.10 is a photo-
micrograph of a small area of a chip, showing transistors interconnected
by wires.

The physical properties of the IC determine many important operat-
ing characteristics, including speed of switching between low and high
voltages. Among the most significant physical properties is the minimum
size of each element, the so-called minimum feature size. Early chips had
minimum feature sizes of tens of microns (1 micron= 1Mm=10_6m).
Improvements in manufacturing technology has led to a steady reduction
in feature size, from 10um in the early 1970s, through 1um in the mid
1980s, with today’s ICs having feature sizes of 90nm or 65nm. As well as
affecting circuit performance, feature size helps determine the number of
transistors that can fit on an IC, and hence the overall circuit complexity.
Gordon Moore, one of the pioneers of the digital electronics industry,
noted the trend in increasing transistor count, and published an article
on the topic in 1965. His projection of a continuing trend continues to
this day, and is now known as Moore’s Law. It states that the number
of transistors that can be put on an IC for minimum component cost
doubles every 18 months. At the time of publication of Moore’s article,
it was around 50 transistors; today, a complex IC has well over a billion
transistors.

One of the first families of digital logic ICs to gain widespread use
was the “transistor-transistor logic” (TTL) family. Components in this
family use bipolar junction transistors connected to form logic gates.
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The electrical properties of these devices led to widely adopted design
standards that still influence current logic design practice. In more
recent times, TTL components have been largely supplanted by com-
ponents using “complementary metal-oxide semiconductor” (CMOS)
circuits, which are based on field-effect transistors (FETs). The term
“complementary” means that both n-channel and p-channel MOSFETs
are used. (See Appendix B for a description of MOSFETS and other
circuit components.) Figure 1.11 shows how such transistors are used
in a CMOS circuit for an inverter. When the input voltage is low, the
n-channel transistor at the bottom is turned off and the p-channel tran-
sistor at the top is turned on, pulling the output high. Conversely, when
the input voltage is high, the p-channel transistor is turned off and the
n-channel transistor is turned on, pulling the output low. Circuits for
other logic gates operate similarly, turning combinations of transistors
on or off to pull the output low or high, depending on the voltages at
the inputs.

1.3.2 LOGIC LEVELS

The first assumption we have made in the previous discussion is that
all signals take on appropriate “low” and “high” voltages, also called
logic levels, representing our chosen discrete values 0 and 1. But what
should those logic levels be? The answer is in part determined by the
characteristics of the electronic circuits. It is also, in part, arbitrary,
provided circuit designers and component manufacturers agree. As a
consequence, there are now a number of “standards” for logic levels.
One of the contributing factors to the early success of the TTL family
was its adoption of uniform logic levels for all components in the family.
These TTL logic levels still form the basis for standard logic levels in
modern circuits.

Suppose we nominate a particular voltage, 1.4V, as our threshold
voltage. This means that any voltage lower than 1.4V is treated as a “low”
voltage, and any voltage higher than 1.4V is treated as a “high” voltage.
In our circuits in preceding figures, we use the ground terminal, 0V, as
our low voltage source. For our high voltage source, we used the positive
power supply. Provided the supply voltage is above 1.4V, it should be
satisfactory. (5V and 3.3V are common power supply voltages for digital
systems, with 1.8V and 1.1V also common within ICs.) If components,
such as the gates in Figure 1.5, distinguish between low and high volt-
ages based on the 1.4V threshold, the circuit should operate correctly. In
the real world, however, this approach would lead to problems. Manufac-
turing variations make it impossible to ensure that the threshold volt-
age is exactly the same for all components. So one gate may drive only
slightly higher than 1.4V for a high logic level, and a receiving gate with
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to noise on wires.
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a threshold a little more above 1.4V would interpret the signal as a low
logic level. This is shown in Figure 1.12.

As a way of avoiding this problem, we separate the single thresh-
old voltage into two thresholds. We require that a logic high be greater
than 2.0V and a logic low be less than 0.8V. The range in between these
levels is not interpreted as a valid logic level. We assume that a signal
transitions through this range instantaneously, and we leave the behav-
ior of a component with an invalid input level unspecified. However,
the signal, being transmitted on an electrical wire, might be subject to
external interference and parasitic effects, which would appear as voltage
noise. The addition of the noise voltage could cause the signal voltage to
enter the illegal range, as shown in Figure 1.13, leading to unspecified
behavior.

The final solution is to require components driving digital signals to
drive a voltage lower than 0.4V for a “low” logic level and greater than
2.4V for a “high” logic level. That way, there is a noise margin for up to
0.4V of noise to be induced on a signal without affecting its interpretation
as a valid logic level. This is shown in Figure 1.14. The symbols for the
voltage thresholds are

» V(r: output low voltage—a component must drive a signal with a
voltage below this threshold for a logic low

» Vo output high voltage—a component must drive a signal with a
voltage above this threshold for a logic high
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» Vy:input low voltage—a component receiving a signal with a
voltage below this threshold will interpret it as a logic low

» Vg input high voltage—a component receiving a signal with a
voltage above this threshold will interpret it as a logic high

The behavior of a component receiving a signal in the region between
Vi and Vyy is unspecified. Depending on the voltage and other factors,
such as temperature and previous circuit operation, the component may
interpret the signal as a logic low or a logic high, or it may exhibit some
other unusual behavior. Provided we ensure that our circuits don’t violate
the assumptions about voltages for logic levels, we can use the digital
abstraction.

1.3.3 STATIC LOAD LEVELS

A second assumption we have made is that the current loads on compo-
nents are reasonable. For example, in Figure 1.3, the gate output is acting
as a source of current to illuminate the lamp. An idealized component
should be able to source or sink as much current at the output as its load
requires without affecting the logic levels. In reality, component outputs
have some internal resistance that limits the current they can source or
sink. An idealized view of the internal circuit of a CMOS component’s
output stage is shown in Figure 1.15. The output can be pulled high by
closing switch SW1 or pulled low by closing switch SW0. When one
switch is closed, the other is open, and vice versa. Each switch has a series
resistance. (Each switch and its associated resistance is, in practice, a
transistor with its on-state series resistance.) When SW1 is closed, current
is sourced from the positive supply and flows through R1 to the load con-
nected to the output. If too much current flows, the voltage drop across
R1 causes the output voltage to fall below Voy. Similarly, when SWO is
closed, the output acts as a current sink from the load, with the current
flowing through RO to the ground terminal. If too much current flows in
this direction, the voltage drop across RO causes the output voltage to rise
above V.. The amount of current that flows in each case depends on the

CHAPTER ONE 13

FIGURE 1.14 Logic level
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view of the output stage of a
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TABLE 1.1  Electrical
characteristics of a family
of logic gates.
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output resistances, which are determined by component internal design
and manufacture, and the number and characteristics of loads connected
to the output. The current due to the loads connected to an output is
referred to as the static load on the output. The term szatic indicates that
we are only considering load when signal values are not changing.

The load connected to the AND gate in Figure 1.3 is a lamp, whose
current characteristics we can determine from a data sheet or from
measurement. A more common scenario is to connect the output of one
gate to the inputs of one or more other gates, as in Figure 1.5. Each
input draws a small amount of current when the input voltage is low and
sources a small amount of current when the input is high. The amounts,
again, are determined by component internal design and manufacture.
So, as designers using such components and seeking to ensure that we
don’t overload outputs, we must ensure that we don’t connect too many
inputs to a given output. We use the term fanout to refer to the number
of inputs driven by a given output. Manufacturers usually publish current
drive and load characteristics of components in data sheets. As a design
discipline when designing digital circuits, we should use that information
to ensure that we limit the fanout of outputs to meet the static loading
constraints.

EXAMPLE 1.3 The data sheet for a family of CMOS logic gates that
use the TTL logic levels described earlier lists the characteristics shown in
Table 1.1. Currents are specified with a positive value for current flowing into
a terminal and a negative value for current flowing out of a terminal. The

PARAMETER TEST CONDITION MIN MAX
Viu 2.0V
Vi 0.8V
Iy SpA
Iy —SpA
Wiom o= —12mA 2.4V
Top = —24mA 2.2V
Vo Iop = 12mA 0.4V
Iop = 24mA 0.55V
Tl —24mA

IOL 24mA
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parameters Ijpy and Iy are the input currents when the input is at a logic high
or low, respectively, and Iy and Iy are the static load currents at an output
driving logic high or low, respectively. What is the maximum fanout for an
output driving multiple inputs using this logic family, taking account of static
loading only?

SOLUTION For both high and low logic levels, an output can source or sink
up to 24mA of current, and an input load is SwA. Thus each output can drive
up to 24mA/5pA = 4800 inputs. However, in sourcing that much current in the
high level, the output voltage may drop to 2.2V, and in the low level, the output
voltage may rise to 0.55V. This gives a noise margin of only 0.2V for a high level
and 0.15V for a low level. If we want to preserve our 0.4V noise margins, we
need to limit the output currents to 12mA, in which case the maximum fanout
would be 2400 inputs.

In practice, we cannot connect anywhere near as many inputs to an
output as this example might suggest. Static loading is only one factor
that determines maximum fanout. In the next part of this section, we
will describe another factor that limits fanout more significantly in most
designs.

1.3.4 CAPACITIVE LOAD AND PROPAGATION DELAY

A further assumption we’ve made in the preceding discussion has been
that signals change between logic levels instantaneously. In practice, level
changes are not instantaneous, but take an amount of time that depends
on several factors that we shall explore. The time taken for the signal
voltage to rise from a low level to a high level is called the rise time,
denoted by t,, and the time for the signal voltage to fall from a high level
to a low level is called the fall time, denoted by t;. These are illustrated in
Figure 1.16.

One factor that causes signal changes to occur over a nonzero time
interval is the fact that the switches in the output stage of a digital com-
ponent, illustrated in Figure 1.15, do not open or close instantaneously.
Rather, their resistance changes between near zero and a very large value
over some time interval. However, a more significant factor, especially
in CMOS circuits, is the fact that logic gates have a significant amount
of capacitance at each input. Thus, if we connect the output of one

3.0V
2.0V
1.0V
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FIGURE 1.16 Rise time and
fall time for a signal whose value
is changing.
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FIGURE 1.17 Connection of
an output stage to a capacitively
loaded input.
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component to the input of another, as shown in Figure 1.17, the input
capacitance must be charged and discharged through the output stage’s
switch resistances in order to change the logic level on the connecting
signal.

If we connect a given output to more than one input, the capacitive
loads of the inputs are connected in parallel. The total capacitive load
is thus the sum of the individual capacitive loads. The effect is to make
transitions on the connecting signal correspondingly slower. For CMOS
components, this effect is much more significant than the static load of
component inputs. Since we usually want circuits to operate as fast as
possible, we are constrained to minimize the fanout of outputs to reduce
capacitive loading.

A similar argument regarding time taken to switch transistors on and
off and to charge and discharge capacitance also applies within a digital
component. Without going into the details of a component’s circuit, we
can summarize the argument by saying that, due to the switching time
of the internal transistors, it takes some time for a change of logic level
at an input to cause a corresponding change at the output. We call that
time the propagation delay, denoted by tpq, of the component. Since the
time for the output to change depends on the capacitive load, component
data sheets that specify propagation delay usually note the capacitive load
applied in the test circuit for which the propagation delay was measured,
as well as the input capacitance.

EXAMPLE 1.4 For a collection of CMOS gate components, the manufacturer’s
data sheet specifies a typical input capacitance, C;;,, of SpF. The AND gate compo-
nent has a maximum propagation delay, t,4, of 4.3ns measured with a load capaci-
tance, Cy, of 50pF. What is the maximum fanout for the AND gate that can be used
without causing the propagation delay to exceed the specified maximum?
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SOLUTION Allowing only for the capacitive loading effect of the inputs, the
maximum fanout is

CL/C;, = SOpF/SpF =10

In practice, other stray capacitance between the output and the inputs would
limit the maximum fanout to a smaller value.

In many components, the propagation delay differs depending on
whether the output is changing from 0 to 1 or from 1 to 0. If it is impor-
tant to distinguish between the two cases, we can use the symbol t 401
for the propagation delay when the output changes from 0 to 1,and t, 41 for
the propagation delay when the output changes from 1 to 0. If we don’t
need to make this distinction, we usually use the largest of the two values,
that is,

tpd = max (tpd()l’ tple)

1.3.5 WIRE DELAY

Yet another assumption we’ve made about the behavior of digital systems
is that a change in the value of a signal at the output of a component
is seen instantaneously at the input of other connected components. In
other words, we’ve assumed that wires are perfect conductors that propa-
gate signals with no delay. For very short wires, that is, wires of a few
centimeters on a circuit board or up to a millimeter or so within an IC,
this assumption is reasonable, depending on the speed of operation of the
circuit. For longer wires, however, we need to take care when designing
high-speed circuits. Problems can arise from the fact that such wires have
parasitic capacitance and inductance that are not negligible and that delay
propagation of signal changes. Such wires should be treated as transmis-
sion lines and designed carefully to avoid unwanted effects of reflection of
wavefronts from stubs and terminations. A detailed treatment of design
techniques in these cases is beyond the scope of this book. However, we
need to be aware that relatively long wires add to the overall propagation
delay of a circuit. Later, we will describe the use of computer-based tools
that can help us to understand the effects of wire delays and to design our
circuits appropriately.

1.3.6 SEQUENTIAL TIMING

In our discussion of sequential digital systems in Section 1.2, we assumed
that a flip-flop stores the value of its data input at the moment the clock
input rises from 0 to 1. Moreover, we assumed that the stored value is
reflected on the output instantaneously. It should not be surprising now
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FIGURE 1.18 Setup, hold
and clock-to-output times for a
flip-flop.
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that these assumptions are an abstraction of realistic sequential circuit
behavior, and that we must observe design disciplines to support the
abstraction. Real flip-flops require that the value to be stored be present
on the data input for an interval, called the setup time, before the rising
clock edge. Also, the value must not change during that interval and for
an interval, called the hold time, after the clock edge. Finally, the stored
value does not appear at the output instantaneously, but is delayed by an
interval called the clock-to-output delay. These timing characteristics are
shown in Figure 1.18. In this timing diagram, we have drawn the rising
and falling edges as sloped, rather than vertical, to suggest that the transi-
tions are not instantaneous. We have also drawn both 0 and 1 values for
the data input and output, suggesting that it is not the specific values that
are relevant, but the times at which values change, shown by the coinci-
dent rising and falling values. The diagram illustrates the constraint that
changes on the data input must not occur within a time window around
the clock rising edge, and that the data output cannot be assumed correct
until after some delay after the clock edge.

In most sequential digital circuits, the output of one flip-flop is either
connected directly to the data input of another, or passes through some
combinational logic whose output is connected to the data input of another
flip-flop. In order for the circuit to operate correctly, a data output result-
ing from one clock edge must arrive at the second flip-flop ahead of a setup
interval before the next clock edge. This gives rise to a constraint that we
can interpret in two ways. One view is that the delays in the circuit between
flip-flops are fixed and place an upper bound on the clock cycle time, and
hence on the overall speed at which the circuit operates. The other view is
that the clock cycle time is fixed and places an upper bound on the permissi-
ble delays in the circuit between flip-flops. According to this view, we must
ensure that we design the circuit to meet that constraint. We will examine
timing constraints for sequential circuits in much more detail in Chapter 4,
and describe a design discipline that ensures that we meet the constraints,
thus allowing us to use the timing abstraction of periodic clock cycles.

1.3.7 POWER

Many modern applications of digital circuits require consideration of
the power consumed and dissipated. Power consumption arises through
current being drawn from a constant-voltage power supply. All gates and
other digital electronic components in a circuit draw current to operate the
transistors in their internal circuitry, as well as to switch input and output
transistors on and off. While the current drawn for each gate is very small,
the total current drawn by millions of them in a complete system can be
many amperes. When the power supply consists of batteries, for example,
in portable appliances such as phones and notebook computers, reducing
power consumption allows extended operating time.



1.3 Real-World Circuits

The electrical power consumed by the current passing through
resistance causes the circuit components to heat up. The heat serves no
useful purpose and must be exhausted from the circuit components.
Designers of the physical packaging of ICs and complete electronic
systems determine the rate at which thermal energy can be transferred
to the surroundings. As circuit designers, we must ensure that we do not
cause more power dissipation than can be handled by the thermal design,
otherwise the circuit will overheat and fail. Puffs of blue smoke are the
usual sign of this happening!

There are two main sources of power consumption in modern digital
components. The first of these arises from the fact that transistors, when
turned off, are not perfect insulators. There are relatively small leakage
currents between the two terminals, as well as from the terminals to
ground. These currents cause static power consumption. The second
source of power consumption arises from the charging and discharging of
load capacitance when outputs switch between logic levels. This is called
dynamic power consumption. To a first approximation, the static power
consumption occurs continuously, independent of circuit operation,
whereas dynamic power consumption depends on how frequently signals
switch between logic levels.

As designers, we have control over both of these forms of power
consumption. We can control static power consumption of the circuit by
choosing components with low static power consumption, and, in some
cases, by arranging for parts of circuits that are not needed for periods
of time to be turned off. We can control dynamic power consumption by
reducing the number and frequency of signal transitions that must occur
during circuit operation. This is becoming an increasingly important part
of the design activity, and computer-based tools for power analysis are
gaining increased use. We will discuss the topic of power analysis in more
detail throughout this book.

1.3.8 AREA AND PACKAGING

In most applications of digital electronics, cost of the final manufactured
product is an important factor, particularly when the product is to be sold
in a competitive market. There are numerous factors that influence cost,
many of them based on business decisions rather than engineering design
decisions. However, one factor over which designers have control and
that strongly affects the final product cost is circuit area.

As we mentioned earlier, digital circuits are generally implemented as
integrated circuits, in which transistors and wires are chemically formed
on the surface of a wafer of crystalline silicon (see Figure 1.19). The more
transistors and wires in our circuit, the more surface area it consumes.
The manufacturing process for ICs is based on wafers of a fixed size, up
to 300mm in diameter, with a fixed cost of manufacture. Multiple ICs
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FIGURE 1.20 A packaged
IC soldered onto a printed circuit
board.
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are manufactured on a single wafer in a series of steps. The wafer is then
broken into individual ICs, which are encapsulated in packages that can
be soldered onto the circuit board of a complete system (see Figure 1.20).
Thus, the larger the individual IC, the fewer there are per wafer, and so the
greater their cost. Unfortunately, the manufacturing process is not perfect,
so defects occur, distributed across the surface of the wafer. Those ICs that
have a defect that cause them not to function correctly are discarded. Since
the cost of manufacturing a wafer is fixed, the functional ICs must bear
the cost of those that are nonfunctional, increasing the final product cost
of the IC. The larger an individual IC, the greater the proportion that have
defects. So the final cost of an IC is disproportionately dependent on area.

Since each IC is packaged individually, the cost of the package is a
direct cost of the final product. The package serves two purposes. One is
to provide connection pins, allowing the wires of the IC to be connected
to external wires in the larger digital system, as well as providing for
power supply and ground connections. An IC with more external con-
nections requires more pins and, thus, a more costly package. Therefore,
the pin count of the IC is a factor that constrains our designs. The other
purpose served by the IC package is to transfer heat from the IC to the
surroundings so that the IC does not overheat. If the IC generates more
thermal power than the package can dissipate, additional cooling devices,
such as heat sinks, fans or heat pipes, are required, adding to cost. Thus,
thermal concerns arising from packaging also constrain our designs.

As we have suggested, a packaged IC may not be the final product
of a design. The IC may be one of several components on a printed cir-
cuit board, which, in turn, is assembled with other items into a complete
packaged product. Similar arguments to those above can be made about
the cost of a printed circuit board based on the number of ICs and other
components, the number of external connections, the area or size of the
board and package, and heat dissipation in the enclosing case or cabinet.

1. What are the TTL output voltage levels, input threshold voltages
and noise margins?

2. What is meant by the term fanout?

3. How is the propagation delay of a component defined?

4. Why do we try to minimize fanout of components?

5. Do wires contribute to delay in a circuit?

6. What is meant by the terms setup time, hold time and clock-to-output
time of a flip-flop?

7. What are the two sources of power consumption in a digital component?

8. Is the cost of an IC proportional to the area of the IC?
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1.4 MODELS

Aschildren, many of us will have made or played with models of real-world
things, for example, model airplanes. One way of thinking of a model
is that it is a representation of an object that incorporates aspects of
interest for a particular purpose while omitting aspects that are not rel-
evant. In other words, it is an abstraction of an object. A model airplane
may, for example, have the look of a real airplane, but does not have
the scale or detailed mechanical aspects of the real thing. The model
incorporates just those aspects that satisfy a child’s wish to play with an
airplane.

Now that we’ve grown up (mostly!) and turned to digital circuit
design, our task is to design circuits that perform certain required func-
tions while meeting various constraints. We could try to build a prototype
circuit to check that it performs as required, but that would be costly and
time consuming, since we would usually need to work through numer-
ous versions before we get things right. A more effective approach is to
develop models of our designs and to evaluate them. A model of a digital
circuit is an abstract expression in some modeling language that captures
those aspects that we are interested in for certain design tasks and omits
other aspects. For example, one form of model may express just the func-
tion that the circuit is to perform, without including aspects of timing,
power consumption or physical construction. Another form of model
may express the logical structure of the circuit, that is, the way in which
it is composed of interconnected components such as gates and flip-flops.
Both of these forms of model may be conveniently expressed in a hard-
ware description language (HDL), which is a form of computer language
akin to programming languages, specialized for this purpose.

Functional models may also be expressed in mathematical notations,
such as Boolean equations and finite state machine notations, that we will
introduce in later chapters. Structural models may also be expressed in
the form of graphical circuit schematics, such as those in earlier figures in
this chapter. We will use all of these forms of models where appropriate,
but we will focus on models expressed in an HDL, since that allows us
to take advantage of computer-aided design (CAD) tools to help us with
design tasks. Designing electronic circuits using CAD tools is also called
electronic design automation (EDA).

In this book, we will introduce and use an HDL called Verilog. Verilog
was originally developed by Phil Moorby at a company called Gateway
Design Automation, which was subsequently acquired by Cadence Design
Systems. Since then, the specification of Verilog has been standardized in
the United States by the Institute of Electrical and Electronic Engineers
(IEEE) and internationally by the International Electrotechnical Commis-
sion (IEC), and the language has been widely adopted by designers and
tool developers.

CHAPTER ONE
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Verilog is not the only HDL used for digital system design. The other
main HDL in widespread use is VHDL. Fairly recently, SystemVerilog has
been developed as an extension to Verilog, aimed at design and verification
of complex digital systems. Also, SystemC, an extension of the C++
programming language, is gaining increased usage. While these languages
have many basic features in common, they vary in their more advanced
features. Moreover, they are all evolving, with new features being added
in successive revisions to meet evolving design challenges. Choice among
them is often dictated by tool availability and organizational culture, as
well as the kind of design work to be performed.

EXAMPLE 1.5 Develop a Verilog model that expresses the logical structure
of the gate circuit in Figure 1.5. Assume that the sensor signals and the switch
signal are inputs to the model, and that the buzzer signal is the output from the
model.

SOLUTION The Verilog model consists of a module definition, describing
the inputs and output of the circuit and the implementation of the circuit:

module vat_buzzer_struct
( output buzzer,
input above_25_0, above_30_0, Tow_level_ O,
input above_25_1, above_30_1, Tow_level_1,
input select_vat_1 );

wire below_25_0, temp_bad_0, wake_up_O0;
wire below_25_1, temp_bad_1, wake_up_1;

// components for vat 0

not inv_0 (below_25_0, above_25_0);

or or_0a (temp_bad_0, above_30_0, below_25_0);
or or_Ob (wake_up_0, temp_bad_0, Tow_level_0);

// components for vat 1

not inv_1 (below_25_1, above_25_1);

or or_la (temp_bad_1, above_30_1, below_25_1);
or or_1b (wake_up_1, temp_bad_1, Tow_level_1);

mux2 select_mux (buzzer, select_vat_1, wake_up_0, wake_up_1);

endmodule

The module in this case is named vat_buzzer_struct. The module has ports,
named in the port list of the module declaration. Each port is given a name
and is either an output or an input.

The remainder of the module definition contains the details of the circuit model.
In this case, the circuit is modeled as a collection of interconnected components.
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We use the term structural model to refer to a model in this form. A number of
named #nets are declared, introduced by the keyword wire, for connecting the
components together. In this case, Verilog would allow us to omit the net decla-
rations, since each net is a simple wire carrying just a 0 or 1 value. We introduce
the declarations in this example to illustrate where they can occur in a module,
but will omit them in subsequent examples where Verilog permits.

Following the net declarations are a number of instances. Each has a name to
distinguish it, and specifies which kind of component is instantiated. For example,
inv_0 is an instance of the not component, representing the inverter for vat 0 in

the circuit. Some components, such as the or and not components, are built into
Verilog. Others, such as the mux2 component, are defined as separate modules that
we instantiate. (The source code of the mux2 module, along with other source code
and documentation, is provided on the companion website for this book.) Within
parentheses, the nets and circuit outputs and inputs connected to the ports of each
component are listed. For example, the inverter inv_0 has the net below_25_0 con-
nected to its first port and the input above_25_0 connected to its second port. The
built-in primitive components all have the output port first in the list, followed by
the input ports. When we write our own modules, we can choose the order of input
and output ports. However, in this book, we largely follow the convention of listing
output ports before input ports, for consistency with the built-in primitives.

We have also included some comments in this module to provide documentation.
One form of comment, shown here, starts with two slash characters and extends
to the end of the line. Another form starts with the characters /* and extends to the
characters */. This form can extend over more than one line. Figure 1.21 shows the
vat buzzer circuit again with the net and component names included for reference.

FIGURE 1.21 The vat buzzer
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EXAMPLE 1.6 Develop a Verilog model that expresses the function per-
formed by the gate circuit in Figure 1.5.

SOLUTION  We can use the same port list and port declarations as for the
structural model, since the inputs and outputs are the same. We simply need to
revise the body of the module:

module vat_buzzer_behavior
( output buzzer,
input above_25_0, above_30_0, low_level_O,
input above_25_1, above_30_1, Tow_level_1,
input select_vat 1 );

assign buzzer =
select_vat 1 ? Tow_level_ 1 | (above_30_1 | ~above_25_1)
Tow_level 0 | (above_30_0 | ~above_ 25 0);

endmodule

A model of this form, in which we describe the function performed by the
circuit, is called a behavioral model. (Some people also use this term for more
abstract models of functionality, but in the absence of a better term, we will use
it as described here.) Within the module, we have a single assignment statement
that determines the value of the output port using the values of the input ports.
The operators | and ~ correspond in function to the OR gates and inverters,
respectively, in the circuit. The choice of value to assign to the output port
depends on the condition in the ... ? ... : ... else construct, corresponding to
the multiplexer in the circuit. The value before the ? character is tested. If it

is 1, the value of the expression after the ? character is used, otherwise the value
after the : character is used.

The examples above illustrate the general organization of structural
and behavioral Verilog models. The Verilog tutorial and reference material
included on the companion website for this book provide more detailed
information on the specifics of writing Verilog models. The source code
for all of the example models in this book is also provided on the com-
panion website. We follow the convention of naming each source code file
after the module it contains. This makes it easier to locate the file contain-
ing a given model.

There are three principal design tasks that benefit from the use of
Verilog. The first of these is design entry, that is, expressing a model in a
form that can be input to a CAD tool. For simple circuits, design entry can
also be done using graphical schematics, and many CAD tools provide
for that form of input. However, schematics for larger and more complex
circuits can be cumbersome, particularly when they are annotated with



1.4 Models

information such as the types of signals. Moreover, a textual form, such
as Verilog, allows for richer forms of expression, as we shall see in later
examples. It also works better with other computer tools, such as script-
ing tools and source-code control tools. For these reasons, we shall focus
on Verilog descriptions of circuits and use circuit schematics for illustra-
tive purposes in this book.

The second design task that benefits from use of Verilog is verification,
that is, ensuring that the design meets its requirements and constraints.
There are several aspects to verification. Functional verification involves
ensuring that the design performs the required function. Timing verifica-
tion involves ensuring that the design meets its timing constraints. Timing
constraints are ultimately derived from the performance requirements of
the circuit. For example, in a circuit that processes a digital representation
of an audio signal, the processing steps must be performed at the sam-
pling rate of the signal. Other verification tasks include power verifica-
tion (ensuring that the circuit meets power consumption and dissipation
constraints); manufacturability verification (ensuring that the circuit will
operate correctly for all variations that might arise in the manufacturing
processes); and fest verification (ensuring that the manufactured circuit
can be tested to identify defective parts). All of these forms of verification
involve analysis of models of the circuit to determine the relevant proper-
ties and checking that the property values are acceptable.

Functional verification is often the most time consuming part of the
entire design process. One approach to functional verification is simula-
tion, in which the model is interpreted as an executable computer program
by a CAD tool called a simulator. This involves applying different com-
binations and sequences of values to the input ports, executing the model
code, and ensuring that it produces the required values on the output ports.
For behavioral models, the expressions in assignment statements can be
executed directly. For structural models, each component instance must
have a corresponding behavioral model that can be invoked by the simula-
tor. The simulator passes values produced at the outputs of components
along the interconnecting signals to the inputs of other components.

The problem with simulation, particularly for large and complex
models, is that covering all possible combinations and sequences of values
that might arise in the real circuit is time consuming and resource inten-
sive, and is generally not feasible. An alternative to simulation is formal
verification, which involves mathematical proof of properties of the
design. The properties take the form of logical statements relating values
of inputs and outputs, or sequences of values of inputs and outputs, that
express the functional requirements, usually in a more abstract form than
that of the model being verified. The analysis of the model and proof
of the properties is performed by a CAD tool called a model checker.
Formal verification is a relatively new technology, and can require
significant computational resources. In practice, functional verification of
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real-world circuits is most effectively done using a combination of simula-
tion and formal verification. We will return to this issue in more detail in
our discussions of design methodology in Section 1.5 and Chapter 10.

The third design task that benefits from use of Verilog is synthesis.
This involves automatic refinement and optimization of a model at
a higher level of abstraction into a structural model at a lower level of
abstraction. For example, the register transfer level (RTL) of abstraction
in Verilog involves expressing behavior in terms of assignment statements
and expressions, such as those in Example 1.6, as well as procedural
blocks, that we shall come to later. An RTL synthesis CAD tool automati-
cally refines an RTL model into an optimized gate-level model, that is,
a structural model using gate components such as that of Example 1.5.
Since a synthesis tool automates a task that we would otherwise have to
perform manually, it greatly improves our productivity. In particular, it
makes more complex designs tractable.

Since hardware description languages such as Verilog help so signifi-
cantly with these design tasks, they have become central to modern design
methods. Throughout this book, as we introduce digital components and
circuits, we will also show Verilog models that describe them. As we intro-
duce design methods, we will show how CAD tools that process models
help us perform these methods.

1. What does a Verilog module define?
2. What information is specified for each port in a Verilog module?

What is meant by the terms structural model and behavioral
model?

4. What are functional verification and timing verification?
Identify two approaches to functional verification.

6. What is meant by synthesis?

1.5 DESIGN METHODOLOGY

Designing a digital system of any significant complexity is a large under-
taking, requiring a systematic approach. This is especially important
when many people are collaborating on a design, as is usually the case.
Depending on the complexity of the product, design teams can range in
size from a handful of engineers for a relatively simple product, to several
hundred people for a complex IC or packaged system. We use the term
design methodology to refer to the systematic process of design, verifica-
tion and preparation for manufacture of a product. A design methodology
specifies the tasks undertaken, the information required and produced by
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each task, the relationships between the tasks, including dependencies and
sequencing, and the CAD tools used. A mature design methodology will
also be reflective, specifying measurements that will be made of the design
process, such as adherence to schedule and budget, and numbers of design
errors detected and missed. Accumulated data from previous projects can
be used to improve the design methodology for subsequent projects. The
benefit of a good methodology is that it makes the design process more
reliable and predictable, thus reducing risk and cost. Even a small design
project benefits from a design methodology, though perhaps on a reduced
scale.

Given its importance, we will focus on design methodology through-
out this book. We will start by outlining a relatively simple methodology,
since we are in the early stages of learning digital design. In Chapter 10,
we will see what’s involved in a more complete methodology for real-
world systems.

Figure 1.22 illustrates a simple design methodology. The starting
point is a collection of requirements and constraints. These are usually
generated externally to the design team, for example, by the marketing
group of a company or by a customer for whom a product develop-
ment is undertaken. They usually include function requirements (what
the product is to do), performance requirements (how fast it is to do
it), and constraints on power consumption, cost and packaging. The
design methodology specifies three tasks—design, synthesis and physical
implementation—each of which is followed by a verification task. (The
design and functional verification tasks are outlined to indicate that they
are actually a bit more involved than is shown on the diagram. We will
come back to this shortly.) If verification fails at any stage, we must revisit
a previous task to correct the error. Ideally, we would like to revisit only
the immediately preceding task and make a minor correction. However,
if the error is severe enough, we may need to backtrack further to make
more significant changes. Hence, when performing a given design task, it
is worth keeping in mind the constraints applying in subsequent tasks, so
as to avoid introducing errors that will be detected later. Once the tasks
and associated verification activities have been performed, the product
can be manufactured, and each unit tested to ensure that it is functional.
We will now spend a little time examining the stages in this methodology
in more detail.

The design task involves understanding the requirements and con-
straints and developing a specification of a digital circuit that meets the
requirements and constraints. The information produced by this task is
a collection of models that describe the design. The methodology then
specifies that we verify the function of the design, using techniques such
as simulation and formal verification. In preparation for the verification
task, we should prepare a verification plan that identifies what input and
output cases should be verified, and what CAD tools should be used. We
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will illustrate development of verification plans in parallel with design
tasks throughout this book.

We’ve already discussed use of abstractions to make the design task
more manageable, and the need to adhere to design disciplines to ensure
that we don’t violate assumptions underlying the abstractions. However,
for a system of any significant complexity, that is still not sufficient to
make the task tractable. Another form of abstraction that allows us to
manage design complexity is hierarchical composition. This involves
developing a subcircuit that performs some relatively simple function,
then treating it as a “black box.” Provided we adhere to assumptions
made in designing the subcircuit, we can then use it in a larger circuit
that performs a more complex function. As an example, the subcircuit
might be a small liquid-crystal display (LCD) controller, which is used as
part of the user interface of a cordless phone. We can repeat the step of
using one subcircuit as part of a more complex circuit. For example, the
user-interface subcircuit might be used as a black box within the cordless
phone handset. At each level of the hierarchical design, we can focus on
the aspects that are relevant and hide the details of the lower-level compo-
nents. Using abstraction in this way makes the task of designing complex
systems tractable. It also allows us to re-use subcircuits, either from previ-
ous projects or from third-party providers. Design re-use can potentially
save significant design effort and cost.

Hierarchical composition in a design also makes functional verifica-
tion more tractable. We can first verify each of the most primitive subcir-
cuits as independent units. Next, we can verify a subsystem that uses the
subcircuits by treating the subsystem as a collection of black boxes. In
particular, we can use more abstract models of the black box subcircuits
instead of detailed models that describe their internal composition. This
approach means that the verification tools have less work to do, allowing
them to verify more input/output cases for the subsystem. We can repeat
this process until we have verified the entire system.

Returning to the design and verification tasks shown in Figure 1.22,
we can expand the design and functional verification tasks to illustrate
use of hierarchical composition, as shown in Figure 1.23. This approach
is often called top-down design. Architectural design involves analyzing
the requirements and developing the overall organization of a digital
system to meet them. One of the main tools used for this level of design
is a white board, on which system architects draw (and redraw) block
diagrams describing the main subsystems and their interconnections. The
next step is unit design, in which the subsystems and sub-subsystems are
designed. Each unit can then be verified, possibly requiring some rede-
sign if any of the units fail verification. Finally, the units can be inte-
grated and the subsystems and entire system verified, as we described
above. Again, if verification fails, units may need to be redesigned. If the
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failure is severe enough, it may be necessary to revise the architectural
organization of the system, and then to reflect the changes in the unit
designs.

The tasks immediately after functional verification in the design
methodology of Figure 1.22 are synthesis and post-synthesis verification.
We described synthesis in the previous section as automatic refinement
and optimization of a model at a higher level of abstraction to a structural
model at a lower level of abstraction. Currently, synthesis is usually per-
formed from register-transfer level to gate level, as CAD tool technology
for this level of refinement is quite mature. Behavioral synthesis (also
called high-level synthesis), from higher levels of abstraction to RTL, is
much less mature, though the subject of much active development work.

In order to perform RTL synthesis, we specify information about the
implementation fabric that we intend to use for our design. We might also
annotate the RTL models with additional information to guide the syn-
thesis CAD tool in its optimization task. The tool then selects primitive
components from a library of components available in the chosen imple-
mentation fabric and constructs a circuit with the same function as that
of the RTL design. The library may contain further information about the
properties of each component, such as timing parameters, power dissipa-
tion, and so on. Our design methodology shows that we use this informa-
tion, together with the refined design produced by the synthesis tool, to
further verify the design. Using the timing parameters and the information
about the way components are interconnected, a static timing analysis tool
can estimate propagation delays in the circuit and verify that timing con-
straints are met. Similarly, using information about the number or transis-
tors and amount of wiring required for components, a floor planning tool
can estimate the area of the design and verify that area and packaging
constraints are met. Note that the properties used at this stage are esti-
mates of final property values for the manufactured circuit, and need to
be refined later in the design process. As a further step in verification, an
equivalence checker can compare the function of the refined design with
that of the original RTL design to verify that the synthesis tool has done its
job correctly and that the functional requirements are still met.

The next task in the design methodology is physical implementation.
This involves using the refined design, expressed as an interconnection
of primitive circuit elements, and generating the information required to
manufacture the circuit. The precise steps to be performed depend on the
implementation fabric chosen for the circuit. By implementation fabric,
we mean the kind of IC used to implement a design. The two main imple-
mentation fabrics in common use today are field-programmable gate
arrays (FPGAs) and application-specific integrated circuits (ASICs). An
FPGA consists of a large number of gates and flip-flops whose intercon-
nection can be determined, or programmed, after the IC is manufactured.
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In this book, we will focus on FPGAs, especially in lab projects, since they
are widely used for a range of circuits of varying size and complexity, can
be reprogrammed, and are cost-effective for nearly all but large-volume
applications. ASICs, as their name suggests, are ICs that are customized
for a particular application, and cannot be programmed. We will describe
these implementation fabrics in more detail in Chapter 6. However, for
now, we can identify some general steps that are common to physical
implementation on both of these fabrics, as well as on printed circuit
boards.

The first of these steps is mapping, which involves determining the
particular circuit resources to be used for each of the components in
the refined design. Next, placement and routing determines where each
mapped component is to be positioned in the physical circuit and where
the interconnecting wires run. Once mapping, placement and routing are
done, refined estimates of circuit properties can be extracted. In particu-
lar, since the physical wiring details have been determined, propagation
delays through wires can be included in the timing estimates. These refined
estimates are used to perform final physical verification. Finally, one or
more files of information are generated for manufacturing the circuit.
When that step is passed, we reach a golden milestone, called zape out
for ASIC design, referring historically to production of a magnetic tape
containing the manufacturing data to be shipped out to the manufacturer.
These days, the data is more likely to be transferred by file transfer over
the Internet. Nonetheless, reaching the milestone is usually reason for the
design team to hold a party!

The final tasks shown in the design methodology are the manufactur-
ing and test tasks. For ASICs, manufacturing is done by a foundry that
uses the design information to control the chemical processes that form
ICs on silicon wafers. For FPGAs, prefabricated parts are programmed
using the design information. In your lab work, you will encounter the
CAD tools and equipment needed to program FPGAs. The test task for
ASICs involves exercising each manufactured circuit to ensure that it
operates correctly. Some parts, as we’ve mentioned, will fail to operate
due to defects in their manufacture and must be discarded. Alternatively,
all of the manufactured parts may fail due to design errors that escaped
the various verification steps we performed. Identifying the errors that
cause such failures is very difficult and costly, involving use of measuring
instruments to probe wires within the circuit to trace actual operation.
It is much better to avoid bug escapes by verifying the design more thor-
oughly earlier in the design process. Testing of FPGA ICs also occurs once
they are manufactured, but before they are delivered to customers for
programming. Once an FPGA has been programmed, the programming
device will often read back the program to verify that it has been correctly
installed.
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1.5.1 EMBEDDED SYSTEMS DESIGN

In Section 1.1 we introduced the idea of an embedded system, a digital
system in which one or more computers are used as components. Each
embedded computer comprises a processor core, memory and interfaces
with other parts of the system. Since the computers must be programmed
to implement part of the system’s functionality, we must augment our
design methodology to include embedded software design.

Recall that the initial inputs to the design methodology are the
functional requirements and constraints for the system. As part of our
architectural design considerations, we can choose which aspects of
functionality can be implemented by embedded software on a processor
core, and which parts can be implemented as digital subcircuits, that is,
by hardware. Designing the hardware and software for a system together
is called hardware/software codesign. Deciding which parts to put in
hardware and which in software is called partitioning. There are numer-
ous trade-offs to consider. Functionality that involves testing many
conditions and taking alternative actions can be hard to implement in
hardware, but is relatively straightforward in software. On the other
hand, functionality that involves performing rapid computations on
large amounts of data or data that arrives at a high rate may need a very
high performance (and hence costly and power hungry) processor core,
and so may more readily be performed by customized hardware. A fur-
ther consideration is that embedded software may be stored in memory
circuits that may be reprogrammed after the system is manufactured or
deployed. Thus, the software may be upgraded to correct design errors
or add functionality without revising the hardware design or replacing
deployed systems.

Once functionality has been partitioned between hardware and
software, development of the two can proceed concurrently, as shown
in Figure 1.24. For those aspects of the embedded software that depend
on hardware, the abstract behavioral models from the hardware design
task can be used to verify the software design. This can be done using an
instruction-set simulator for the processor core working in tandem with
a simulator for the hardware model. A similar approach can be used to
verify parts of the hardware that interface directly with a processor core.
Test programs can be run using the processor simulator running in tan-
dem with the hardware simulator. The benefits of developing hardware
and software concurrently include avoiding the extra time involved in
developing one after the other, and early detection of errors in the inter-
play of software and hardware.

1. What is meant by the term design methodology?

2. Why is a design methodology beneficial?
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FIGURE 1.24 Adesign
methodology for hardware/
software codesign.
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1.6 CHAPTER SUMMARY

» Abstraction means identifying aspects that are important to a task at
hand and hiding details of other aspects. Using abstractions requires
following design disciplines to avoid violating assumptions inherent
in the abstractions.

» The digital abstraction considers voltages to be high or low logic
levels, and time to be a sequence of intervals called clock periods.

» Binary representation uses bits (0 and 1) to represent logical condi-
tions. These can be implemented in a circuit using low and high logic
levels.

» Logic gates are circuit elements that implement logical operations on
binary-represented information. Logic gates can be interconnected in
a circuit to perform more complex logical functions.

» Combinational circuits are those whose outputs depend only on the
current values of inputs. They do not include any storage of informa-
tion. Sequential circuits are those whose outputs depend on current
and past input values. They include storage elements.

» A flip-flop is a storage element that stores one bit of information.
An edge-triggered flip-flop stores the value of its input when a clock
input changes, that is, when a clock edge occurs.

» The output low voltage of a driver is lower than the input low
threshold of a receiver, and the output high voltage of a driver is
higher than the input high threshold of a receiver. The differences are
called the noise margins.

» Static and capacitive loading limits the fanout of a driver, that is, the
number of inputs that can be connected to the output.

» Propagation delay depends on delay within components, capacitive
loading and wire delays. Flip-flops have setup and hold time win-
dows and clock-to-output delays.

» Circuits consume and dissipate static power, due to current leakage,
and dynamic power, due to switching between logic levels.

» Circuit area and packaging have significant effects on cost.

» A model written in a hardware description language allows us to
enter a design description into CAD tools, to verify it (using simula-
tion and formal verification), and to synthesize it.

» A behavioral model describes the function performed by a circuit.
A structural model describes the circuit as an interconnection of
components.
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» A design methodology specifies the tasks to be performed, the
information required and produced by each task, the dependencies
and sequencing of tasks, and the CAD tools used.

» Verification involves analyzing a model to ensure that requirements
and constraints are met.

» Embedded systems are digital systems that contain one or more
processor cores, each running embedded software.

1.7 FURTHER READING

“Cramming more components onto integrated circuits,” Gordon E.
Moore, Electronics, Volume 38, Number 8, April 19, 1965.
ftp://download.intel.com/museum/Moores_Law/Articles-Press_
Releases/Gordon_Moore_1965_Article.pdf. The article describing
trends in IC manufacture, from which Moore’s Law originated.

Foundations of Analog and Digital Electronic Circuits, Anant Agarwal
and Jeffrey H. Lang, Morgan Kaufmann Publishers, 2005. As well
as providing a thorough grounding in analog circuit analysis, this
book introduces the basics of digital gate circuits and their ana-
log behavior. Topics covered include static and dynamic loading,
propagation delays, power dissipation, binary representation and
gate-level circuits.

LVC and LV Low Voltage CMOS Logic Data Book, Texas Instruments,
1998. A comprehensive listing of the manufacturer’s component
products, with detailed data on electrical and timing parameters.
The book also contains application reports covering details of elec-
trical design on digital circuits. Available from www.ti.com.

The Designer’s Guide to VHDL, 2nd Edition, Peter ]. Ashenden,
Morgan Kaufmann Publishers, 2002. A comprehensive reference on
VHDL.

The Student’s Guide to VHDL, Peter J. Ashenden, Morgan Kaufmann
Publishers, 1998. A condensed version of The Designer’s Guide to
VHDL.

The Verilog® Hardware Description Language, 5th Edition, Donald
E. Thomas and Philip R. Moorby, Springer, 2002. A comprehensive
reference on Verilog.

A Verilog HDL Primer, 3rd Edition, ]. Bhasker, Star Galaxy Publishing,
2005. A tutorial-style introduction to Verilog.
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SystemVerilog for Design: A Guide to Using SystemVerilog for
Hardware Design and Modeling, 2nd Edition, Stuart
Sutherland, Simon Davidmann, Peter Flake, and P. Moorby,
Springer, 2006. Describes how SystemVerilog extends Verilog,
and shows how the extensions can be used to model digital
systems.

SystemC: From the Ground Up, David C. Black, Jack Donovan, Bill
Bunton, and Anna Keist, Springer, 2004. Describes the language,
presents examples of its use, and shows how it fits within a system
design methodology.

The Electronic Design Automation Handbook, Dirk Jansen (Editor),
Springer, 2003. Provides information on EDA tools, methodologies,
and systems, and a tutorial guideline on how to apply these con-
cepts to high-performance ASIC design.

Reuse Methodology Manual for System-On-A-Chip Designs, 3rd Edition,
Michael Keating, Russell John Rickford, and Pierre Bricaud,
Springer, 2006. Describes a design methodology for creating reusable
ASIC designs.

Comprebensive Functional Verification: The Complete Industry
Cycle, Bruce Wile, John C. Goss, and Wolfgang Roesner, Morgan
Kaufmann Publishers, 2005. Describes the place of verification in
a design methodology, simulation-based verification and formal
verification.

Surviving the SOC Revolution: A Guide to Platform-Based
Design, Henry Chang et al., Springer, 1999. Describes a design
methodology based on reuse of programmable hardware/software
platforms.

Computers as Components: Principles of Embedded Computing System
Design, Wayne Wolf, Morgan Kaufmann Publishers, 2001. Includes
descriptions of software and hardware components, design and
analysis techniques, and design methodology.

EXERCISE T.T Suppose a digital system samples a sinusoidal waveform
every 10us, with each sample in the discrete set {—10.0, —9.0, —8.0, ..., —1.0,
0.0, 1.0, ..., 0.0, 10.0}. Draw graphs similar to that in Figure 1.1 showing the
sample values over a 100ps interval if the waveform has:

a) a period of 100us and peak-to-peak amplitude of 10.0
b) a period of 30ps and a peak-to-peak amplitude of 4.0
¢) aperiod of 100ps and a peak-to-peak amplitude of 0.4
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FIGURE 1.25

FIGURE 1.26
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EXERCISE 1.2 Devise a circuit for a simple burglar alarm that activates a
siren if either a motion sensor detects motion or a sensor on a window detects
that the window is open.

EXERCISE 1.3 Revise the night-light circuit of Figure 1.3 by adding an
override switch that turns the lamp on, regardless of any other conditions.

EXERCISE I.4 Revise the night-light circuit of Figure 1.3 to include a switch
that selects between activating the light when it is dark and activating the light dur-
ing night-time hours. Assume there is a timer that produces a 1 output at night.

EXERCISE I.5 Suppose a factory has a vat with a sensor that outputs 1
when the vat is empty, a 0 otherwise. The vat also has a pump to empty it, and
a control switch to activate the pump. Devise a circuit that turns the pump on
when the switch is set to activate the pump and the vat is not empty.

EXERCISE 1.6 Complete the timing diagram in Figure 1.25, showing the
operation of a rising-edge-triggered D flip-flop.

ok I I I I I I

EXERCISE 1.7 Develop a sequential circuit with a single data input S and

a single data output Y. The output is 1 when the input value in the current clock
cycle is different from the input value in the previous clock cycle, as shown in the
timing diagram in Figure 1.26.

I | |
s, | |

EXERCISE 1.8 Suppose, for a family of logic components, Vy; is 0.6V and
Vg is 1.2V. What voltages are required for Vo and Vo to provide a noise
margin of 0.2V?
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EXERCISE 1.9 Suppose the gate components described in Example 1.4
were used in a circuit that added 5pF of stray capacitance to each input. What
would the maximum fanout be reduced to?

EXERCISE 1.10 Use graph paper to estimate how many whole 15mm X
15mm ICs would fit on a 300mm diameter wafer. Bear in mind that the ICs must
be aligned in rows and columns so that they can be separated by cutting the
wafer in straight lines. What percentage of the wafer area is wasted?
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COMBINATIONAL BASICS

In this chapter, we look at combinational circuits in some detail. We start
with some of the theory underpinning combinational circuits, and show
how circuits of gates correspond to formulas in the theory. Next, we show
how information can be represented in binary form for processing by
digital circuits. We then survey a range of components that can be used as
building blocks in larger combinational circuits. Finally, we return to our
design methodology and discuss verification of combinational circuits.

2.1 BOOLEAN FUNCTIONS AND
BOOLEAN ALGEBRA

In Chapter 1, we showed how a digital signal can be used to represent
information with two possible values, such as the truth or falsehood of
a logical condition. We will now expand on that discussion and show
how the laws of logic can be used to analyze and design digital systems
that use binary representation. The theoretical foundation that we will
use is called Boolean algebra, named after the nineteenth century British
mathematician, George Boole, who invented the mathematical theory that
deals with logical propositions.

2.1.1 BOOLEAN FUNCTIONS

According to our abstract view, a digital logic circuit has inputs and out-
puts, each of which has a low or high voltage at any given time. We think
of these two voltage levels as electrical implementations of two Boolean
values, 0 and 1, respectively. We could choose other names for the Boolean
values, such as F and T, corresponding to falsehood and truth of logical
conditions. However, that would make them harder to distinguish from
the names of variables that we also introduce. Use of 0 and 1 is equally
valid, less confusing, and closer to the way we express Boolean values in
hardware description languages.
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TABLE 2.1 Truth tables for
the logical OR, AND and negation
functions.

COMBINATIONAL BASICS

The combinational circuits that we mentioned in Chapter 1 have
outputs that depend only on the current input values. In such circuits, each
output value is a Boolean function of one or more inputs. This means that,
for each possible combination of Boolean input values, the output takes
on a specified Boolean value. This is analogous to functions on other sets
of values, such as addition on numbers, where for each possible combina-
tion of operand numbers, a function yields a result number.

The most direct way of defining a Boolean function is simply to list
the result values for each combination of input values. We call a table
containing such a list a truth table. Table 2.1 shows truth tables for three
basic Boolean functions that we will denote with the symbols “+7, «-”
and the overbar notation (“~ ). The “+” function is the logical OR of its
two operands, and the “-” function is the logical AND of its operands. We
use these operator symbols because the functions have many properties
in common with arithmetic addition and multiplication. However, there
are some differences, as we will see. The function denoted by the overbar
notation is the logical negation (logical “NOT?) of its single operand.

Another way of defining a Boolean function is to use a Boolean
expression, in which we combine the literal values 0 and 1 and Boolean
variables with Boolean operators. We will use alphanumeric names such
as x, y and z for variables. Each variable represents a Boolean value, such
as the value of a signal in a digital circuit or the value of a logical con-
dition. Note that the column headings in Table 2.1 are simple Boolean
expressions. More generally, we can include an arbitrary number of liter-
als, variables and operators, and can use parentheses to specify an order of
evaluation. We adopt the convention of giving “-” higher precedence than
“+7, allowing us to omit parentheses in expressions such as (a-b) +c¢,
giving the equivalent expression a-b + c.

In practical terms, the literal values 0 and 1 are usually implemented as
low-voltage and high-voltage digital signal values, respectively. The opera-
tor “+7” is implemented as an OR gate, “-” as an AND gate, and “ ” as
an inverter. (We introduced these basic gates in Chapter 1.) Named vari-
ables in Boolean expressions are implemented by digital signals of the same
name. A complete Boolean expression is implemented by a circuit of inter-
connected gates, in which there is one gate corresponding to each opera-
tor in the expression. We can also write a Boolean equation in which one
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2.1 Boolean Functions and Boolean Algebra

Boolean expression is defined to be equal to another. A Boolean equation
in which a single variable of a given name is defined to be equal to a Bool-
ean expression is implemented by the circuit for the expression yielding an
output with the given name. For example, the Boolean equation

f=(x+y)z

is implemented by the digital logic circuit shown in Figure 2.1.

We can show that truth tables and Boolean expressions are equally
valid ways of specifying Boolean functions. For any Boolean expression,
we can write a truth table with a column for each variable mentioned in
the expression and a column for the expression value. We systematically
fill in a row for each combination of variable values. For an expression
with # distinct variables, there are 2”7 combinations, so we need 2" rows.
For each combination, we substitute the variable values into the expres-
sion and evaluate the result. We write the result in the same row as the
variable values, under the expression column.

EXAMPLE 2.1 Derive the truth table corresponding to the Boolean expres-
sion (x +7v)-z.

SOLUTION There are three distinct variables in the expression, namely, x,

y and z, so we will need 23 =8 rows in our truth table, as shown in Table 2.2.
The easiest way to systematically fill in the variable values is to start with the
value 0 for x in the first half of the table and 1 in the second half. Then, in each
half, fill in the value O for y in the first half of that half and 1 in the second half
of that half. In general, keep on filling in columns to the right, reducing the
number of successive Os and 1s by half each time, until single Os and 1s alternate
in the column for the last variable. Now evaluate the expression for the first
row, substituting 0 values for x, y and z, to get the result 0. For the second row,
substitute 0 for x and y and 1 for z, also giving the result 0. Continue in this way
until all rows are filled in.

We can also work in the reverse direction and derive a Boolean expres-
sion for a function represented by a truth table. We do this by examining
the rows for which the expression has the value 1. For each such row,
we form the logical AND of those variables for which the input value is 1,
together with the negation of those variables for which the input value
is 0. Such a conjunction is called a minterm of the function. For example,
the third row of Table 2.2 gives us the minterm X-y-z. The complete
expression for the function is then the logical OR of all the minterms for
which the function value is 1. Thus, for the function of Table 2.2, the
expression is

Xy z+tx-yzt+tx-y-z
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FIGURE 2.1  Circuit imple-
menting a Boolean equation.
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FIGURE 2.2 Two equivalent
digital circuits.
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Note that this is not the same expression as (x +y)-z, but it does
have the same value for all combinations of input values. We say that the
two expressions are equivalent, denoting the same function, and write the
Boolean equation

(x+y)-z=xyz+x-yz+x-y-z
The right-hand expression in this equation is in sum-of-products form,
meaning that it is the “sum” (logical OR) of a number of “product”(logical
AND) terms, or p-terms, of variables. Note that each term in a sum-of-
products expression need not be a minterm; that is, it need not include

every variable that is mentioned in the expression. For example, another
sum-of-products expression that is equivalent to the above expression is

Xy Z+x-z

An implication of equivalence of Boolean expressions is that digi-
tal circuits corresponding to equivalent expressions also implement the
same function. For example, the two circuits shown in Figure 2.2, cor-
responding to the equivalent expressions (x +y)-zZand x-y-z+x-%, are
functionally equivalent. This is a very important idea, as it means we can
choose among the various equivalent circuits to implement a given func-
tion in order to satisfy nonfunctional constraints. Making such choices
is a form of optimization, and is central to digital logic design. Note that a
circuit with the minimal number of logic gates may not be the best choice
in all circumstances. It depends on the particular constraints that apply.
For example, if we are constrained to implement the function in certain
kinds of programmable logic device, the circuit on the left may actually
have more delay than the circuit on the right. We will return to the idea
of constraint-dependent optimization many times throughout this book.
In particular, in Section 2.1.2, we will look at some ways in which we can
determine equivalent circuits for a given Boolean function.

An interesting thing about the logical OR, AND and negation
operators is that any Boolean function can be written as an expression
involving just these operators. One way to see the truth of this state-
ment is to recognize that any function can be written as a truth table, and
from there as a sum of products of minterms. Such an expression only
involves the basic operators. A corollary is that any Boolean function can
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1> 1

NOR gate NAND gate

::)D :\')D AND-OR-invert gate

XOR gate XNOR gate

be implemented using only OR gates, AND gates and inverters. However,
such an implementation may not be optimal or even meet constraints. In
fact, in most implementation fabrics, these gates are not the most simple
that we can use. Figure 2.3 shows a number of other gates. They are often
called complex gates, as their functions are combinations of the basic
logical operations. The NOR, NAND and AND-OR-invert gates are of
particular interest, since their internal circuitry in many implementation
fabrics is very simple, and hence fast. Use of those gates can often lead
to smaller and faster circuits for a given Boolean function than circuits
involving OR and AND gates.

The function implemented by the NOR gate is the negation of the
OR operation. Similarly, the function implemented by the NAND gate is
the negation of the AND operation. The term XOR is short for exclusive
OR, denoted by the operator “®” in Boolean expressions. The result of
the exclusive OR operator is 1 if either, but not both, of the inputs is 1;
and is 0 if both inputs are 0 or both inputs are 1. This is closer to what we
usually mean when we say “or” informally in English. For example, when
we’re asked if we’d like ice cream or cake for dessert, we usually don’t
expect both! The function implemented by the XNOR gate is the negation
of the exclusive OR operation. It is 1 when both inputs are the same and
0 when the inputs differ. For this reason, it is also called an equivalence
gate. Finally, the AND-OR-invert gate performs the logical AND on each
of two pairs of inputs, then performs a NOR operation on the two results.
While it may look overly complicated to be called a single gate, the electri-
cal implementation as a transistor circuit is surprisingly simple, which is
why we include it here. The truth table for the functions implemented by
the two-input gates are shown in Table 2.3. The truth table for the AND-
OR-invert gate is left as an exercise.

0 0 1 1 0 1
0 1 0 1 1 0
1 0 0 1 1 0
1 1 0 0 0 1
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FIGURE 2.3 Complex logic
gates.

TABLE 2.3 Truth table for
functions implemented by complex
gates.
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TABLE 2.4 Truth table for the
first function.

TABLE 2.5 Truth table for the
second function.

FIGURE 2.4 Two equivalent
gate circuits.

COMBINATIONAL BASICS

EXAMPLE 2.2  Use truth tables to show that the following two Boolean
functions are equivalent. Design a circuit using NOR and NAND gates for the
first function, and a circuit using OR and AND gates and inverters for the second.

fi=a-b+c and fr=(a-b)C

SOLUTION  The truth table for f; is shown in Table 2.4, and that for /, is
shown in Table 2.5. For each combination of input values, both functions have
the same result value, so they are equivalent.

a b c a-b a-b+c f1
0 0 0 1 1 0
0 0 1 1 1 0
0 1 0 1 1 0
0 1 1 1 1 0
1 0 0 1 1 0
1 0 1 1 1 0
1 1 0 0 0 1
1 1 1 0 1 0
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The function f; involves the NAND operation applied to a and b, followed by
the NOR operation applied to the result and c. The circuit implementing this
function is shown at the top of Figure 2.4. The function f, involves the AND
operation applied to a and b, followed by the AND operation applied to the
result and the negation of c. The circuit for this function is shown at the bottom
of Figure 2.4. Note that, since NAND and NOR gates are considerably simpler
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and faster in most implementation fabrics, the circuit at the top would be the
preferred implementation.

There is one further Boolean function that we need to consider, namely,
the identity function. This function has one input, and the function’s value
is just the value of the input. The simplest implementation of the identity
function is a piece of wire. However, there is also a gate component, called
a buffer, that implements the identity function. The symbol for a buffer is
shown in Figure 2.5.

It might seem strange to waste precious circuit area and power on a
component that doesn’t do anything. However, if we recall our discus-
sion in Chapter 1 of static and capacitive loading of component outputs,
we realize that buffer components are useful when we need to connect a
given output to many inputs. If we just connect the output directly to the
inputs, the output may be overloaded, affecting its ability to drive proper
logic levels or to change between logic levels with acceptable rise and fall
times. By inserting buffers between the output and the inputs, as shown in
Figure 2.6, we can reduce the loading on the output to just that of the buf-
fer inputs. Furthermore, each buffer output is now driving a fraction of
the original inputs. When the number of inputs to be driven is very large,
we can buffer the outputs of the buffers, and so on, forming a buffer tree,
as shown in Figure 2.7. This is a two-level buffer tree, meaning that the
original output drives each of the original inputs through two intervening
buffers. If we extrapolate this arrangement, we can see that the number of
inputs that can be driven from an output increases exponentially with the
number of levels in the buffer tree.
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FIGURE 2.6 Using buffers to
reduce loading on a component.

FIGURE 2.7 A two-level
buffer tree.



46 CHAPTER TWO

TABLE 2.6 Complete and
compacted truth tables for the
multiplexer function.

COMBINATIONAL BASICS

Aswe shall see later, one important use for buffer trees is for connecting
a clock signal from a clock-generator circuit to all of the flip-flops in a
system. Meanwhile, however, we just need to be aware that buffers and
buffer trees can be used in combinational circuits where many inputs are
to be driven from a single output.

Don’t Care Notation

While truth tables provide a systematic way to completely define a Boolean
function, they can be cumbersome, particularly when the function has a lot
of inputs. In many such cases, we can write the truth table in more compact
form using the don’t care notation for function inputs. In this book, we
use the notation “—” for don’t care, but “X” is another commonly used
notation. Use of the don’t care notation takes advantage of the property of
many Boolean functions that, if some inputs have given values, the values
of other inputs don’t affect the result value. This is illustrated in Table 2.6,
which shows the complete truth table and the compacted truth table for
the function

z=s5a+s'b

This is a Boolean equation for the multiplexer component that we intro-
duced in Chapter 1. The input s represents the select input, and a and b
represent the two data inputs: a is selected when s=0 and b is selected
when s =1.

Note that, for this function, when s =0, we don’t care what value
b has, and the output is the same as 4. Similarly, when s=1, we don’t
care what value a has, and the output is the same as b. This is shown
in the compacted form using the dash symbol to denote an input whose
value we don’t care about. This simple expedient reduces the table to half
the size, while still specifying the same information about the function.
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In some designs, we can also use the don’t care notation for the result
of a function. We can do this if the design only requires a partial func-
tion, that is, if the function result need only be specified for some com-
binations of inputs and not for others. Usually, the input combinations
for which we don’t care about the result are those combinations that
cannot arise during operation of the circuit; the combinations are logi-
cally impossible, given the functionality of the system of which the circuit
is a part. However, any real circuit that we design will yield some value,
either 0 or 1, for all possible input combinations. The benefit of specify-
ing “don’t care” for the impossible combinations, rather than arbitrarily
choosing 0 or 1 as the function result, is that it gives us more scope for
optimizing the circuit. We might be able to identify two candidate cir-
cuits that both produce the required outputs for the combinations we do
care about, but that differ in their output for the “don’t care” combina-
tions. If one of the candidates better meets constraints than the other, we
would choose it, accepting whatever result it yields for the “don’t care”
combinations.

EXAMPLE 2.3 The truth table in Table 2.7 has two don’t care entries for
the function £, since a result of 0 or 1 is equally acceptable for those two “impos-
sible” input combinations. Compare the circuits that result from choosing 0 or 1
as the actual function result for both of the don’t care combinations.

-
0 0 0 = 0 1
0 0 1 0 0 0
0 1 0 1 1 1
0 1 1 0 0 0
1 0 0 = 0 1
1 0 1 1 1 1
1 1 0 0 0 0
1 1 1 0 0 0

SOLUTION If a value of 0 is chosen for both of the input combinations,
the resulting function can be expressed as the sum of two minterms
fi=a-b-c+a-b-c, and can be implemented by the circuit shown at the top of
Figure 2.8. If a value of 1 is chosen for the combinations, the resulting function
has more minterms, but can be reduced to the sum of products , =a b+a-c,
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TABLE 2.7 Truth table for a
function with “don’t care” results,
and two realizations of the function.
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FIGURE 2.8 Realizations of a
partial function.
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implemented by either of the middle or bottom circuits in Figure 2.8. Our choice
among these circuits may depend on the implementation fabric to be used. If

we are simply concerned with minimizing the number of gate inputs, we would
choose the middle circuit, yielding a result of 1 for the impossible input combi-
nations. If our implementation fabric is based on sum-of-product circuit, and
the minterms can also be shared as part of other functions in the system, we
would choose the first, yielding a result of 0 for the impossible input combina-
tions. Some implementation fabrics are based on multiplexers, introduced in
Chapter 1, as the primitive circuit elements. If we were using such a fabric, we
would choose the bottom circuit.

2.1.2 BOOLEAN ALGEBRA

The mathematical abstraction that we use as the foundation for digital
design is Boolean algebra. It deals with Boolean expressions containing
symbols that denote Boolean values, variables and operations. We can
interpret the symbols as representing digital signals and gates.

Boolean algebra is based on a number of axioms. These are just Boolean
equations that we take as given without requiring proof. The axioms of
Boolean algebra are:

» Commutative laws:

xt+ty=y+x (2.1)
X' y=y-x (2.2)
» Associative laws:
(x+y)+tz=x+(y+2) (2.3)
(x-y)-z=x-(y-2) (2.4)
» Distributive laws:
xt(y-z)=(x+y)(x+z) (2.5)
x-(y+z)=(x-y)+(x-2) (2.6)
» Identity laws:
x+0=x (2.7)
x-1=x (2.8)
» Complement laws:
x+x=1 (2.9)
xx=0 (2.10)

Although we don’t have to prove these laws, we can see that they make
sense, since any consistent substitution of 0 and 1 values for variables in
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Y Y Y
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each law demonstrates the equality. The laws also suggest ways in which
we can transform digital circuits while maintaining functional equivalence.
For example, the commutative laws tell us that it doesn’t matter which way
around we connect the two inputs of an OR gate or an AND gate; we will
get the same result either way. Similarly, the associative laws tell us that we
don’t need the parentheses when forming the logical OR or logical AND of
three values, and that the circuits in each row in Figure 2.9 are equivalent.
The distributive laws suggest how we can transform a circuit into sum-of-
products form. This can be very useful, since many implementation fabrics
allow efficient implementation of sum-of-product circuits.

Notice that we have presented the axioms in pairs, with each axiom
being similar in form to the other in the pair. Each axiom is called the dual
of the other in the pair. The duality principle of Boolean algebra states
that we can take any Boolean equation and form its dual by interchanging
the “+” and “-” operators and interchanging occurrences of 0 and 1; the
dual is then a valid Boolean equation.

Given the axioms of Boolean algebra listed above, we can derive a
number of further useful theorems:

» Idempotence laws:

x+x=x (2.11)
X Xx=x (2.12)
» Further identity laws:

x+1=1 (2.13)
x-0=0 (2.14)

» Absorption laws:
x+(x-y)=x (2.15)
x(x+ty)=x (2.16)

» DeMorgan laws:
(x+y) =x-y (2.17)
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FIGURE 2.9 Circuits whose
equivalence follows from the asso-
ciative laws.
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FIGURE 2.10 Adcircuit that
directly implements a Boolean
function.
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EXAMPLE 2.4 Prove the idempotence laws using just the axioms.

SOLUTION To prove law 2.11:

x+x=(x+x)-1 by identity law 2.8
=(x+x) (x+Xx) by complement law 2.9
=x+ (x-x) by distributive law 2.5
=x+0 by complement law 2.10
=x by identity law 2.7

Law 2.12 immediately follows, since it is the dual of law 2.11.

EXAMPLE 2.5 Suppose we are to implement the following Boolean function
using AND and OR gates and inverters:

f=x+y-2)(y2)
If we were to implement it directly, as shown in Figure 2.10, the longest path
through the circuit is four gates. Show how the Boolean equation for f can
be transformed into sum-of-products form, thus reducing the length of the
longest path.

|N‘<X

SOLUTION  We can transform the Boolean equation as follows:

f=+y-2)(y2)
=(x+y-z)(y+z) DeMorgan law 2.18
=x-(y+2)+(y-2)(y+32) distributive law 2.6
=xy+tx-z+y-z:y+y-z:2 distributive law 2.6 twice
=xy+x-z2+0:2+y-2-2 complement law 2.10
=x-y+x-z2+0+y-2:z identity law 2.14
=x-y+x-z2+0+y-z idempotence law 2.12
=xy+x-z2+yz identity law 2.7

This reduced sum-of-products form of the Boolean equation can be implemented
by the circuit of Figure 2.11, in which the longest path is reduced to three gates.
Moreover, the circuit may be more efficiently implemented in this form in many
fabrics.
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The laws of Boolean algebra can be used to transform Boolean
equations and their corresponding circuits, and to verify equivalence of
Boolean expressions and circuits. However, they don’t provide a recipe
for finding an optimal circuit. That’s mainly because the criteria for opti-
mization depend on many different factors, including the implementation
fabric to be used, power consumption constraints, physical packaging
requirements, design resources available, and others. Optimization proce-
dures, such as use of Karnaugh maps and the Quine-McClusky procedure,
are described in many textbooks on digital logic design. They and other
more involved procedures are founded on the laws of Boolean algebra.
Given the complexity of the Boolean equations in real-world systems and
the fact that computer aided design tools are needed to make optimiza-
tion tractable, we won’t go into the detail of the procedures in this book.
Rather, we will focus on identifying the constraints that apply so that we
can bring appropriate tools to bear on design problems.

2.1.3 VERILOG MODELS OF BOOLEAN EQUATIONS

In the design methodology described in Chapter 1, we focused on the
use of models expressed in an HDL such as Verilog. Modern CAD tools
are very good at analyzing, verifying and synthesizing Boolean functions
expressed in an HDL. In this section, we will see how to express Boolean
equations in Verilog. Later, as we introduce more complex combinational
components and circuits, we will also show how they can be expressed in
Verilog.

As we mentioned earlier, a Boolean equation in which a name is defined
to be equal to a Boolean expression can be implemented by the circuit for
the expression yielding an output with the given name. We can write a
Boolean equation directly in Verilog using an assignment statement within
a module. We use the keyword assign, then write the name of a net or port
on the left hand side of the assignment symbol, “=", and a Verilog expres-
sion corresponding to the Boolean expression on the right hand side.
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FIGURE 2.11 Acircuit that
implements the sum-of-products
form.
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EXAMPLE 2.6 Develop a Verilog model for a circuit that implements the
Boolean equation of Example 2.5.

SOLUTION The equation refers to three inputs, x, y and z, and one output,
f. We represent them as input and output ports in the module definition. The
module contains an assignment statement that represents the Boolean equation,
as follows:

module circuit ( output f,
input X, y, z );
assign f = (x | (y & ~2)) & ~(y & 2);

endmodule

In order to write arbitrary Boolean equations in Verilog, we need to
know how to form Verilog expressions that mean the same as Boolean
expressions. The example above uses the Verilog operators &, |, and ~,
corresponding to the Boolean operators “-”; “+” and the overbar nota-
tion, respectively. Verilog also provides the A and ~A operators, corre-
sponding to the XOR and XNOR operations and the XOR and XNOR
gates that we introduced in Section 2.1.1. However, Verilog does not pro-
vide separate operators for the NAND and NOR operations. Instead, we
model those operations using the ~ operator together with & and |. For
example, we would write the NAND of a and b as ~(a & b). The Verilog
operators, the Boolean expressions they represent and the correspond-
ing gates are summarized in Figure 2.12. Note that Verilog makes the
same assumptions about precedence of logical operations that we have
made for Boolean expressions. The ~ operators are evaluated first, then
& operators, and finally | operators. However, we can include parentheses
in Verilog expressions, as we did in the assignment in Example 2.6, to
clarify or force the order of evaluation of operators.

When we write Verilog models for combinational circuits, we should
generally not try to rearrange the Boolean expressions to imply any par-
ticular circuit of gates or other components. Rather, we should express the
Boolean equations in the way that makes them most readily understood,
then let our CAD tools synthesize and optimize a circuit based on
constraints and our chosen implementation fabric. CAD tools can usually
do a much better job at this than we could do manually. Where a CAD
tool requires us to rearrange an expression to enable an optimization, we
should clearly document the change and the reason for it using comments
in the model code.
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EXAMPLE 2.7 Develop a Verilog model for a combinational circuit that
implements the following three Boolean equations, representing part of the con-
trol logic for an air conditioner:

heater_on = temp_low - auto_temp + manual_heat
cooler_on = temp_high-auto_temp + manual_cool
fan_on = heater_on + cooler_on + manual_fan

SOLUTION  The module definition defines the input and output ports and
contains assignment statements for the Boolean equations, as follows:

module aircon ( output heater_on, cooler_on, fan_on,
input temp_Tlow, temp_high, auto_temp,
input manual_heat, manual_cool, manual_fan );

assign heater_on = (temp_low & auto_temp) | manual_heat;
assign cooler_on = (temp_high & auto_temp) | manual_cool;
assign fan_on = heater_on | cooler_on | manual_fan;

endmodule

A straightforward synthesis of a digital circuit from this model is shown at

the top of Figure 2.13. There are two subcircuits, one each for heater_on and
cooler_on. The outputs of these circuits then drive the third subcircuit for
fan_on. For some implementation fabrics, however, CAD tools might transform
the circuit as shown at the bottom of Figure 2.13. The logical OR operations

manual_heat ‘7777777‘
temp_low | heater_on
auto_temp |
iiiiii ]
. \
temp_high | cooler_on
manual_cool | | ——
[ _ ‘ f
an_on
manual_fan \ —D—'i_
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FIGURE 2.13 Circuits
corresponding to the assignment
statements for the air conditioner
control logic.
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that produce the heater_on and cooler_on outputs are replicated and merged
with the logical OR operation for fan_on. This circuit would fit well in a sum-
of-products implementation fabric, and would have reduced propagation delay
in that fabric.

1. Write a truth table for the Boolean function f=a-b +c.

2. Use truth tables to show that the Boolean expression a-b is
equivalent to a + b.

3. What is meant by a Boolean expression being in sum-of-products form?

4. Write the truth table for the AND-OR-invert gate shown in
Figure 2.3.

5. Why are buffers used in digital circuits?

6. Use the “don’t care” notation for inputs to compact the truth table
for the function f; shown in Table 2.4.

7. What is the benefit of using the “don’t care” notation for outputs in
a truth table?

8. What is the dual of the following Boolean equation?
atb-c=a-b+a-c

9. Write a Verilog assignment statement to model the Boolean equation
f=a-b+c.

10. Why should we generally not try to optimize Boolean equations
manually when modeling them in Verilog?

2.2 BINARY CODING

Thus far, we have looked at digital representation of information that has
two possible values and shown how we can use Boolean algebra as the
formal basis for circuits that deal with such information. We now extend
our discussion to dealing with information involving more than two val-
ues. An obvious example is numeric information. However, since repre-
sentation and computation of numeric information is such an important
and extensive topic, it deserves a chapter of its own (Chapter 3). First, we
will look at more general principles that underlie digital representation of
all forms of information.

We saw in Chapter 1 that we can represent two-valued information
with two distinct voltage levels in a circuit. Using our digital abstraction,
we called the levels “low” and “high,” but then refined them to ranges
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of voltages for pragmatic reasons. If we need to represent information
that can take on N possible values, we could choose N distinct voltage
levels (or voltage ranges, with intermediate thresholds). However, design-
ing electronic circuits that can distinguish between more than two levels
is extremely complex, and we would lose many of the benefits of binary
digital circuits.

A better approach is to use multiple binary signals to represent
a multivalued piece of information. Since each individual signal is
binary, we can continue to use binary logic gates in our circuits with
all of the advantages that they afford. We will use the values 0 and 1,
as we did when discussing Boolean algebra, as the abstract values for
each binary signal. We will continue to use the term bit to refer to these
values.

Suppose that we have two signals, a1 and a,, available for represent-
ing some information. There are four possible combinations of binary
values for the pair (ay, ay), namely, (0, 0), (0, 1), (1, 0) and (1, 1). Each
possible combination is called a code word, and the set of all of the code
words is called a binary code. Since a two-bit code has four possible
code words, we can use a two-bit code to represent information with any
number of values up to and including four. We just need to specify which
code word corresponds to which value of the information. We say that
a code word encodes the corresponding value.

EXAMPLE 2.8 Devise a binary code for the state of a road traffic light.
The possible states are red, yellow and green.

SOLUTION  Since there are three possible values to represent, we can use
a two-bit binary code with one code word unused. One possible code is

red: (0, 0) vyellow: (0, 1) green: (1, 0)

In this case, the code word (1, 1) is unused.

If two bits, with four possible code words, are not sufficient for the
information we need to represent, we can just use more bits. In general
an n-bit code has 2” possible code words, so an n-bit code can represent
information with up to 2” values. Conversely, if we need to represent
information with N values, we need at least[log, N1 bits in our code. (The
notation [ x| is called ceiling of x, and denotes the smallest integer that is
greater than or equal to x.) We might choose a longer code, for a variety
of reasons that we will explore, in which case there will be more unused
code words.
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EXAMPLE 2.9 Many ink-jet printers have six cartridges for different
colored ink: black, cyan, magenta, yellow, light cyan and light magenta. A multi-
bit signal in such a printer indicates selection of one of the colors. Devise a
minimal length code for the signal.

SOLUTION Since there are six values to encode, the minimal length code
is [log,6 |= 3 bits long. There are 23 = 8 possible code words, so two will remain
unused. One possible code is

black: (0, 0, 1) cyan: (0, 1, 0) magenta: (0, 1, 1)
yellow: (1, 0, 0) light cyan: (1, 0, 1) light magenta: (1, 1, 0)

While it might make sense in some cases to use the shortest code, in
other cases a longer code is better. A particular case of a non—minimal-
length code is a one-hot code, in which the code length is the number
of values to be encoded. Each code word has exactly one 1 bit with the
remaining bits 0. The advantage of a one-hot code becomes clear when
we want to test whether the encoded multibit signal represents a given
value; we just test the single-bit signal corresponding to the 1 bit in the
code word for that value.

EXAMPLE 2.10 Devise a one-hot code for the state of the traffic light
described in a preceding example.

SOLUTION  Since there are three values to encode, we need a 3-bit one-hot
code. A possible code is

red: (1, 0, 0) yellow: (0, 1, 0) green: (0, 0, 1)

With this code, the left-most bit can be used to activate the red light, the middle
bit to activate the yellow light, and the right-most bit to activate the green light.
No additional circuitry is needed to decode the encoded signals to determine
which light to activate.

2.2.1 USING VECTORS FOR BINARY CODES

Since a collection of binary coded bits conceptually represents a single
piece of information, it would be convenient to be able to represent it as
a single net in Verilog. We can do so using a vector net instead of using
several individual nets. For example, if we need a net w to carry a 5-bit
binary coded value, we could declare it as

wire [4:0] w;
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This defines w to be a collection of five nets, w[4], w[3], w[2], w[1] and
w[0], each of which is a single bit. Apart from condensing the declaration
of the nets quite considerably, using vectors for encoded values gives us
many other benefits, as we shall see throughout this book.

When we declare a vector net or port, the part in brackets (4:0 in the
above example) specifies the index range for the elements of the vector.
The first value is the index of the left-most element, and the second value
is the index of the right-most element. If we want to number elements in
descending order, we make the left-most index greater than the right-most
index, as in the above example. We can also number elements in ascend-
ing order by making the left-most index less than the right-most index, as
in the following:

wire [1:3] a;

Here, the elements from left to right are w[1], w[2] and w[3]. The choice
between ascending and descending order is often a question of style, and
may be addressed by coding guidelines used in an organization. This
example also shows that we don’t have to use 0 for the least index value;
it can be any number.

EXAMPLE 2.TT Assume that the one-hot code for the traffic lights in

Example 2.10 is represented using a 3-element vector with element 1
corresponding to red, 2 to yellow and 3 to green. Develop a Verilog model for a
light controller that has an encoded input, an encoded output, and a single-bit
input that enables the lights. When the enable input is 1, the encoded output is
the same as the encoded input. When the enable input is 0, all bits of the output
are 0.

SOLUTION  One approach is to control each bit of the output by “AND-
ing” the corresponding input with the enable bit. A module that does this is

module light_controller_and_enable
( output [1:3] 1lights_out,
input [1:3] lights_in,
input enable );
assign lights_out[1l] = Tlights_in[1l] & enable;
assign lights_out[2] Tights_in[2] & enable;
assign lights_out[3] = Tights_in[3] & enable;

endmodule
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An alternative approach is to use the enable input to select whether to assign the
input to the output (when enable is 1) or to set the output to all 0 bits otherwise.
A module that takes this approach is

module Tlight_controller_conditional_enable
( output [1:3] Tights_out,
input [1:3] Tights_in,
input enable );

assign lights_out = enable ? lights_in : 3'b000;

endmodule

The assignment statement in this module uses the ? : operator to select between
the alternatives. Note that we use the notation 3'b000 to form a literal vector
value of three 0 bits. The notation 'b specifies that a binary code word follows,
and the number before 'b specifies how many bits in the vector.

2.2.2 BIT ERRORS

While digital circuits are much more immune to noise than analog electrical
circuits, they are not completely immune from interference. The effect of
interference is occasionally to change the value of a signal from 0 to 1 or
from 1 to 0. We sometimes prosaically call this a biz flip. If the signal is a
single bit representing a logical condition, the rest of the circuit continues
operating on the incorrect value, possibly causing erroneous outputs. If
the signal is one of several bits in a binary-coded representation of some
information, there are two possibilities. The flipped bit results in the code
word being changed either to another valid code word or to a bit com-
bination that is not a valid code word. If the result is a valid code word,
the rest of the circuit operates on the incorrect value, as in the single-bit
case, possibly producing erroneous outputs. If the result is an invalid code
word, operation of the circuit depends on how we deal with invalid codes
in the design.

One design approach is to consider invalid code words as “impossible”
inputs, and not to specify the behavior of circuits that operate on invalid
inputs. If we adopt this approach, the actual behavior of the circuits will
depend on the implementation for the valid-code-word cases and on opti-
mizations performed by CAD tools. It may be acceptable not to care about
the circuit output values for invalid code words, particularly if cost reduc-
tion is a driving constraint. For example, in a mass-produced consumer
toy, no one really cares about a once-a-year glitch, particularly if fixing it
would increase the cost from $1.00 to $1.05.
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If, on the other hand, the application demands more deterministic
outputs, we can adopt a “fail safe” design approach. We can design our
circuit to produce correct outputs for valid code words, and to produce
known safe outputs should an invalid code word arise due to interference.
For example, in our ink-jet printer of Example 2.9, if interference caused
the signal for selecting the color to take on the code word (1, 1, 1), we
could deliberately select no color, rather than spoiling a printout with
incorrect colors or damaging the mechanism by trying to select more than
one color at once.

EXAMPLE 2.12 InExample 2.10, we suggested that the bits of the one-
hot-coded signal could be used to activate the red, yellow and green lights,
respectively. However, an error in the three-bit signal could cause multiple lights
to activate, or no light to activate. Design a circuit that causes the three lights
to activate normally for valid one-hot code words, and for the red light to be
activated alone for invalid code words.

SOLUTION Let us represent the three-bit signal with the bits s_red, s_yellow
and s_green. The green light should be activated only when s_green is 1 and
s_yellow and s_red are both 0. The Boolean equation is

green=s_red-s_yellow-s_green

Similarly, the yellow light should be activated when s_yellow is 1 and s_green
and s_red are both 0, giving the Boolean equation

yellow =s_red-s_yellow -s_green

The red light should be activated when s_red is 1 and s_yellow and s_green are
both 0, but it should also be activated in all other cases when neither the green
nor yellow light is activated. The Boolean equation is

red =s_red-s_yellow-s_green + (green + yellow)

There are many other ways we could write this last Boolean equation, for
example, by substituting for green and yellow and using the laws of Boolean
algebra to rearrange it. However, we can leave that to a CAD tool, and simply
enter the equations in the form above as part of a Verilog model.

A third design approach to dealing with errors introduced by interfer-
ence is to have the circuit detect when they occur and then to take excep-
tional action. This is, in a sense, an extension of the “fail safe” approach.
However, rather than producing a safe “normal” output, the circuit pro-
duces an “exceptional” output that indicates the circuit’s function has not
been performed correctly. An example of this approach is seen in modern
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TABLE 2.8 Truth table for
the parity bit of a code of original
length 2, giving even parity for the
augmented code.
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cars that include digital circuits to manage the engine. If an error arises, the
circuit detects the error and illuminates a warning light in the instrument
panel as its exceptional output. Detecting that interference has flipped
a bit in a code word requires that the code include unused code words,
and that the bit flip change a valid code word to one of the invalid code
words. Circuits that use the encoded information can check for invalid
code words and take action, such as suppressing outputs or activating an
error signal. Of course, if interference causes a valid code word to change
to a different valid code word, the error would not be detected.

One technique that is often used for error detection is parity, which
refers to the number of bits that are 1 in a code word. Parity error check-
ing involves increasing the code length by one bit, called the parity bit. In
the even parity scheme, the parity bit in each augmented code word is set
to 0 or 1 to ensure that the total number of 1 bits is even. For example,
if the original code word is 1011, the augmented code word is 10111.
(The converse odd parity scheme sets the parity bit to ensure that the
total number of 1 bits is odd.) In an even parity scheme, valid augmented
code words have even parity, and invalid augmented code words have
odd parity. If interference causes a 0 bit to change to 1, the number of 1
bits is increased by one, making the parity odd. Similarly, if interference
changes a 1 bit to 0, the number of 1 bits is decreased by one, again mak-
ing the parity odd. So to check whether a bit has flipped, we simply count
the number of 1 bits, including the parity bit. If the count is odd, parity
has been reversed, so an error has occurred. If the count is even, either no
error has occurred, or an even number of bits have been flipped, which
we can’t detect. In many applications, the probability of two or more bits
flipping is much lower than the probability of one bit flipping, so it is
acceptable not to be able to detect an even number of bit flips.

Counting the number of bits in a code word might, at first, seem a
rather complicated function to perform. However, since we’re only inter-
ested in whether the total is even, the task is much simpler. For a code
of original length 2, the function p to generate the parity bit so that the
augmented code has even parity is shown in the truth table in Table 2.8.
As we can see, this function is equivalent to the exclusive-OR function.
So we can use an exclusive-OR gate to generate the parity bit to augment
a 2-bit code. We can extend this to augment a 3-bit code by taking the
exclusive OR of the parity of two bits with the third bit. In general, for
a code of any length, we can just take the exclusive OR of all of the bits.
Since the exclusive-OR function is commutative and associative, the order
in which we apply the exclusive OR to the bits of the code doesn’t matter.
A common approach is to use a parity tree, as shown in Figure 2.14, since
it keeps the overall propagation delay small and avoids using gates with
large numbers of inputs. The tree at the left of the figure generates the
parity bit to augment an 8-bit code, creating a code of nine bits with even
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FIGURE 2.14 Parity trees
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parity. The tree at the right checks the augmented code and yields a 1 if
there is a parity error.

There are two problems with parity schemes. First, if interference
flips two bits, parity is preserved, so we miss that error. The same applies
if four, six, or any even number of bits are flipped. In many applications,
however, the probability of multiple bits being flipped is extremely low, so
the cost of a more elaborate error detection scheme is not warranted. The
second problem is that for any given invalid code word, there are several
possible bit flips from a valid code word that could yield the invalid code
word. So while we can detect occurrence of a single-bit error, we can’t tell
which bit is in error. If detection of errors and taking some exceptional
action is sufficient for the application, parity is a good choice. However,
if corrective action is needed, the approach can be extended by including
sufficient invalid code words in the code that a flip of any given bit yields
a distinct invalid code word. When that invalid code word is detected,
it indicates that the given bit has been flipped. So correcting the error is
simply a matter of flipping it back, that is, using the negation of that bit’s
value. This kind of code is called an error correcting code (ECC).

The design of codes to provide for error detection and correction is
a very broad topic area. We will return to it as part of our discussion of
storage in Chapter 3, since that is one place where errors can arise. Mean-
while, when we design circuits that operate on binary coded information,
we should think about how they should behave when interference pro-
duces bit errors.

1. How many code words are possible with a code of 5 bits? KNOWLEDGE
TEST QUIZ

2.  What is the minimum number of bits needed to encode information
with 12 possible values?

3. Devise a one-hot code to represent the days of the week (Monday
through Sunday).
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4. Write a Verilog declaration for a net, named w, representing an 8-bit
binary coded value.

5.  Write a Verilog assignment that drives each bit of w with a 0 value.

6. Does a single bit flip in a one-hot code word produce an invalid
code word always, never, or sometimes?

7. How does extending a code with a parity bit to ensure odd parity
enable detection of single-bit errors?

8. Can parity checking be used to correct the effect of a bit flip? If so,
how? If not, why not?

2.3 COMBINATIONAL COMPONENTS
AND CIRCUITS

In this section, we will introduce a number of combinational circuit compo-
nents that are used as building blocks in larger digital systems. While these
components can, themselves, be constructed from gates, it is generally not
useful to do so. Instead, we will work at a higher level of abstraction. We
will think of these components as basic blocks that, together with gates,
are used to construct complex combinational circuits. We will rely on syn-
thesis tools to refine our descriptions of such circuits into implementations
using gates or other elements provided by the target implementation fabric.
We will also return to the notion of negative logic, briefly mentioned in
Chapter 1. The material presented in this section will form the basis for
our consideration of larger-scale digital systems in later chapters.

2.3.1 DECODERS AND ENCODERS

In Section 2.2, we described how information can be binary coded. In
many designs, we need to derive a number of control signals from a binary
coded signal, with one control signal corresponding to each valid code
word. When the encoded signal takes on a given code value, the corre-
sponding control signal is activated. We call a circuit that derives the con-
trol signals in this way a decoder. For an n-bit code, if every code word
is valid, the decoder will have 2" outputs. As we shall see in Chapter 3,
decoders are an important building block in memory designs.

We can derive the Boolean equation for each output of a decoder by
looking at the corresponding code word. To illustrate, suppose we have
an encoded 4-bit input signal (a3, a,, a1, 4y), and we need to determine the
Boolean equation for the output corresponding to the code word 1011.
The output is 1 only when a3=1, a,=0, a;=1 and a¢=1. Thus, the
output is the value of the expression
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A similar argument applies for other outputs. Each is the logical AND of
the input bits, either directly (for bits that are 1 in the corresponding code
word) or negated (for bits that are 1 in the corresponding code word).

EXAMPLE 2.13 Develop a Verilog model for a decoder for use in the ink-
jet printer described in Example 2.9. The decoder has three input bits represent-
ing the choice of color cartridge and six output bits, one to select each cartridge.

SOLUTION A module with assignment statements representing the Boolean
equations for the outputs is

module ink_jet_decoder ( output black, cyan, magenta, yellow,
Tight_cyan, Tlight_magenta,
input color2, colorl, color0 );

assign black = ~color2 & ~colorl & color0;
assign cyan = ~color2 & colorl & ~colorO;
assign magenta ~color2 & colorl & color0;
assign yellow color2 & ~colorl & ~colorQ;
assign light_cyan color2 & ~colorl & color0;
assign light_magenta color2 & colorl & ~color0;

endmodule

If an invalid code occurs on the input bits, none of the outputs is activated. This
can be considered a “fail safe” design.

The inverse of a decoder is called an encoder. It has, as inputs, a num-
ber of single-bit signals, and as outputs, a collection of signals representing
the bits of an encoded value. We will assume for the moment that at most
one of the inputs is 1 at any time, and the others are all 0. The code word
at the output corresponds to the particular input that is 1.

We can derive the Boolean equation for each bit of the output by
identifying those inputs for which the output bit is 1. The output bit is
then the logical OR of those inputs. However, we need to take account
of the possibility that none of the inputs is 1, since that would cause our
encoder to output a code word of all 0 bits. If that code word is invalid,
we can use it to imply that no inputs are 1, essentially extending the code.
Alternatively, if the all-Os code word is valid and corresponds to one of
the inputs being 1, we need to have a separate output that indicates when
any of the inputs is 1. When this output is 0, we ignore the code word
produced by the encoder.
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EXAMPLE 2.14 Design an encoder for use in a domestic burglar alarm that
has sensors for each of eight zones. Each sensor signal is 1 when an intrusion

is detected in that zone, and 0 otherwise. The encoder has three bits of output,
encoding the zone as follows:

Zone 1: 000 Zone 2: 001 Zone 3: 010 Zone 4: 011
Zone 5: 100 Zone 6: 101 Zone 7: 110 Zone 8: 111

SOLUTION  Since all code words are used, we need a separate output to
indicate when there is a valid code-word output. The module definition is

module alarm_eqn ( output [2:0] intruder_zone,
output valid,
input [1:8] zone );

assign intruder_zone[2] = zone[5] | zone[6] |
zone[7] | zone[8];
assign intruder_zone[l] = zone[3] | zone[4] |
zone[7] | zone[8];
assign intruder_zone[0] = zone[2] | zone[4] |
zone[6] | zone[8];

assign valid = zone[1l] | zone[2] | zone[3] | zone[4] |
zone[5] | zone[6] | zone[7] | zone[8];

endmodule

The left-most bit of the output code is 1 when any of the zone 5 through zone
8 inputs is 1, so the equation for that output is the logical OR of those zone
inputs. The equations for the other two output code bits are derived similarly.
The valid output is the logical OR of all of the zone inputs.

Now let’s consider the possibility of more than one input to an encoder
being 1 at a time. The design we described above would produce an incor-
rect output, possibly an invalid code word. The solution is to assign pri-
orities to the inputs, so that if multiple inputs are 1, the encoder outputs
the code word corresponding to the input with highest priority. Such an
encoder is called, not surprisingly, a priority encoder. One application
of priority encoders is to prioritize interrupts in embedded systems. (We
describe interrupts in Chapter 8.)

EXAMPLE 2.15 Revise the encoder for the burglar alarm to be a priority
encoder, with zone 1 having highest priority, down to zone 8 having lowest priority.

SOLUTION  The port list is unchanged, since we need the same inputs and
outputs for the encoder. The truth table for the priority encoder is shown in
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Table 2.9. From this, we can derive the Boolean equations for each bit of the
output. A revised module definition is shown below.

module alarm_priority ( output [2:0] intruder_zone,
output valid,
input [1:8] zone );

wire [1:8] winner;

assign winner[1l] = zone[1l];

assign winner[2] = zone[2] & ~zone[l];

assign winner[3] = zone[3] & ~(zone[2] | zone[l]);

assign winner[4] = zone[4] & ~(zone[3] | zone[2] | zone[1l]);
assign winner[5] = zone[5] & ~(zone[4] | zone[3] | zone[2] |

zone[1]);
zone[6] & ~(zone[5] | zone[4] | zone[3] |
zone[2] | zone[l1l]);

assign winner[6]

assign winner[7] = zone[7] & ~(zone[6] | zone[5] | zone[4] |
zone[3] | zone[2] | zone[l1l]);
assign winner[8] = zone[8] & ~(zone[7] | zone[6] | zone[5] |
zone[4] | zone[3] | zone[2] |
zone[1]);
assign intruder_zone[2] = winner[5] | winner[6] |
winner[7] | winner[8];
assign intruder_zone[1l] = winner[3] | winner[4] |
winner[7] | winner[8];
assign intruder_zone[0] = winner[2] | winner[4] |
winner[6] | winner[8];

assign valid = zone[l] | zone[2] | zone[3] | zone[4] |
zone[5] | zone[6] | zone[7] | zone[8];
endmodule

zone intruder_zone

(1) (2) (3) (4) (5) (6) (7) (8) (2) (1) (0) valid
1 - - - - - - Z 0 0 o0 1

0 1 - - - - - - 0 0 1 1

0 0 1 = = = = = 0 1 0 1

0 0 0 1 - - - - 0 1 1 1 TABLE 2.9 Truth table for a

0 0 0 0 1 _ _ _ 1 0 0 1 priority encoder for a burglar alarm.
0 0 0 0 0 1 - - 1 0 1 1

0 0 0 0 0 0 1 - 1 1 0 1

0 0 0 0 0 0 0 1 1 1 1 1

0 0 0 0 0 0 0 0 - - - 0
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In this module, each element of the internal net winner indicates when the cor-
responding zone is 1 and has not lost to a higher priority zone. The encoder
then uses the elements of the internal net instead of the zone inputs directly to
generate the output code word. Another way of expressing this in Verilog is
shown in the following module:

module alarm_priority_1 ( output [2:0] intruder_zone,
output valid,
input [1:8] zone );

assign intruder_zone = zone[l] ? 3'b000 :
zone[2] ? 3'b001 :
zone[3] ? 3'b010 :
zone[4] ? 3'b011 :
zone[5] ? 3'b100 :
zone[6] ? 3'b101 :
zone[7] ? 3'b110 :
zone[8] ? 3'bl1ll :
3'b000;

assign valid = zone[l] | zone[2] | zone[3] | zone[4] |
zone[5] | zone[6] | zone[7] | zone[8];
endmodule

The conditional assignment in this module tests a series of conditions to
determine the value to assign to the net intruder_zone. First the zone 1 input is
tested, and the result assigned 000 if the zone 1 input is 1. Otherwise, the zone

2 input is tested, and the result assigned 001 if the zone 2 input is 1. Testing con-
tinues in this way, with priority implied by the order of testing the conditions.
This form of assignment for priority encoding is much easier to understand, and
leaves the hard work of determining and optimizing the Boolean equations to
the synthesis CAD tool.

BCD Code and 7-Segment Decoders

One form of information that we might wish to encode is numeric infor-
mation. As we mentioned earlier, we will look at this topic in detail in
Chapter 3. However, in this section, we will look at a particular form of
numeric coding called binary coded decimal (BCD). If we consider just a
single decimal digit, the ten possible values are 0, 1, 2, 3,4, 5, 6, 7, 8 and
9. We need at least 4 bits in a binary code for these values. There are a
large number of possible codes, but BCD is the most common, having the
following code words:

0: 0000 1:0001 2:0010 3:0011 4:0100
5: 0101 6:0110 7:0111 8:1000 9:1001



2.3 Combinational Components and Circuits CHAPTER TWO 67

If we have more than one decimal digit of information to represent, we
simply use groups of four bits, with each group corresponding to one decimal
digit. For example, a system that deals with three-digit numbers would use

a 12-bit code. The number 493 would be encoded as 0100 1001 0011.
Many digital systems display decimal numbers using 7-segment dis-

a
plays. Each display digit consists of seven separate lights, arranged as >
shown in Figure 2.15. If we have a digit encoded using BCD and we need fU g Ub
to display the digit on a 7-segment display, we need a 7-segment decoder. (>
Strictly speaking, we should call it a “7-segment code converter,” since it e U d U c
converts from a BCD code input to a 7-segment code output. However, (I

the term “7-segment decoder” is widely used. Assuming a segment is lit if

its input is 1, we need a 7-bit code for representing the digits 0 through 9.  FIGURE 2.15 A 7-segment
The code word for each digit has a 1 bit corresponding to each seg-  display digit. The segments are
ment that is lit and a 0 bit corresponding to each segment that is not lit. ~ named “a” through “g;" as shown.
A 7-segment decoder then converts between BCD and this 7-bit code. One

possible code is shown in Figure 2.16, with the bits corresponding left to

right with segments g through a.

o O O o O
o0 O o o O

FIGURE 2.16 A 7-segment

0111111 0000110 1011011 1001111 1100110 code for decimal digits. In each
code word, the bits correspond to
'-0 '-0 U-' '-' '-' segments g through a in left-to-
<) ) — ) <)

0-' '-' Q:' '-' 0-' right order.

1101101 1111101 0000111 1111111 1101111

EXAMPLE 2.16 Develop a Verilog model for a 7-segment decoder. Include
an additional input, blank, that overrides the BCD input and causes all segments
not to be lit.

SOLUTION  We could determine the BCD code words that result in each
segment being lit, and so derive Boolean equations for each segment output.
However, that would make the model hard to understand. A better approach is
to list the 7-bit code word corresponding to each BCD code word, as we did in
Figure 2.16. A module that does this is

module seven_seg_decoder ( output [7:1] seg,
input [3:0] bcd,
input blank );
reg [7:1] seg_tmp;

(continued)
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always @*

case (bcd)
4'b0000: seg_tmp = 7'b0111111; // O
4'b0001: seg_tmp = 7'b0000110; // 1
4'pb0010: seg_tmp = 7'b1011011; // 2
4'b0011: seg_tmp = 7'b1001111; // 3
4'pb0100: seg_tmp = 7'b1100110; // 4
4'pb0101: seg_tmp = 7'b1101101; //
4'pb0110: seg_tmp = 7'b1111101; //
4'pb0111: seg_tmp = 7'b0000111; //
4'p1000: seg_tmp = 7'b1111111; //
4'b1001: seg_tmp = 7'b1101111; //
default: seg_tmp = 7'b1000000; //

endcase

O oo~NOoO v

-" for invalid code

assign seg = blank ? 7’b0000000 : seg_tmp;

endmodule

We have written the list of code-word values in a case statement contained
within an always block. (An always block is one kind of procedural block; we
shall return to the other kind in Section 2.4). For a combinational function, the
always block starts with an event list of the form @*, indicating that the block
responds to any change of value on any of the inputs to the function. The case
statement includes an expression in parentheses whose value is used to select
among the alternatives. Each alternative lists a possible value of the expres-
sion (before the : character) and has an assignment to seg_tmp. The default
alternative in the case statement deals with values not explicitly listed. In this
module, the default alternative deals with invalid codes. Note that Verilog
requires the target of an assignment within a procedural block to be declared
as a variable, in this case using the keyword reg, instead of as a net using the
keyword wire. The difference is that a variable retains the value assigned within
a block, whereas a net continuously gains its value from an assignment state-
ment (written outside a block using the assign keyword) or from a connection
to an instance. The final assignment statement within the module uses the
blank input to determine whether to drive the encoded output with all Os, caus-
ing all segments not to be lit, or to copy the value decoded from the BCD input
to the output.

2.3.2 MULTIPLEXERS

Multiplexers are an important building block in many digital systems. We
introduced a simple multiplexer in Section 1.2. It has two data inputs, one
data output, and a select input that determines which input value is used
for the output value. We can expand on this simple multiplexer along two
dimensions. First, we can add more data inputs, which also requires adding
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further select inputs to encode the choice of input to drive the output.
Second, we can use multiplexers in parallel to select between two sources
of multibit encoded data. Let’s look at the alternatives in more detail.

Suppose that, instead of selecting between two input bits, we need to
select between four input bits. Since there are four input sources, we need
to have four values for the select input. We can encode the select input
using two bits. Figure 2.17 shows a 4-to-1 multiplexer. The select input is
drawn as a thicker line to indicate that it is a multibit encoded input. In
this book, we will mostly use line thickness to distinguish between single-
bit and multibit signals. Occasionally, where we want to emphasis that a
signal is multibit, we will add a stroke across the line and show the num-
ber of bits, as in Figure 2.17. The code for the select input is

00: input 0 O1: inputl 10:input2 11: input 3

We could describe a gate circuit to implement the multiplexer, but
there is little point, for two reasons. First, a synthesis tool would probably
optimize the circuit, changing it from what we specify. Second, in a num-
ber of implementation fabrics, multiplexers can be constructed from indi-
vidual transistors more efficiently than as a circuit of gates. Multiplexers
would be considered primitive elements in those fabrics. So instead of
a gate-level circuit, we will just consider how to express a multiplexer
function in Verilog.

EXAMPLE 2.17 Develop a Verilog model for a 4-to-1 multiplexer.

SOLUTION The module definition is

module multiplexer_4_to_1 ( output reg z,
input [3:0] a,
input sel );

always @*

case (sel)
2'b00: z = a[0];

2'b01: z = a[l];
2'b10: z = af[2];
2'bl11l: z = a[3];
endcase
endmodule

The case statement in the always block uses the value of the sel input to deter-
mine which input bit to copy to the output. This example illustrates a further
point about using always blocks to model combinational functions. As we
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A circuit for

a 2-to-1 multiplexer for 3-bit data
sources (top), and a symbol for the
multiplexer (bottom).

FIGURE 2.19
a Boolean function using
multiplexers.
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mentioned in Example 2.16, the target of the assignments in the block must be
declared as a variable, using the keyword reg in this case. When the target is a
port of the module, the reg declaration can be combined with the output port

declaration.

We can further expand this multiplexer to have eight data inputs,
which would require a 3-bit select input. The number of data inputs need
not be a power of 2. If it is not, then the select input code will have unused
code words. We must then ensure that an invalid code word is never pre-
sented to the select input. In general, a multiplexer having N input bits
needs [log, N1 bits for the select input, since the select input carries a
binary code requiring N values.

Now let’s consider using multiplexers to select between two sources
of encoded data. If the code length is m (that is, each code word has
m bits), we can use m two-input multiplexers, one for each bit of the two
data sources. This is illustrated in Figure 2.18 for selecting between two
sources each of three bits. The circuit at the top of the figure shows the
three separate 2-to-1 multiplexers. At the bottom of the figure is a symbol
that represents a 2-to-1 multiplexer operating on the 3-bit encoded data
inputs and output.

EXAMPLE 2.18 Develop a Verilog model for the 3-bit 2-to-1 multiplexer.

SOLUTION The module definition is

module multiplexer_3bit 2 _to 1 ( output [2:0] z,
input [2:0] a0, al,
input sel );

assign z = sel ? al : a0;

endmodule

We can, of course, combine these two forms of expansion. If we need
to select between N sources of data, each of which is encoded with #z bits,
we simply use m lots of N-to-1 multiplexers. The details are left as an
exercise.

Before we leave the topic of multiplexers, it is interesting to note that
all Boolean functions can be expressed in terms of multiplexers combined
with negation. To illustrate, consider the function that we examined ear-
lier, f= (x +y) -z whose truth table is shown in Table 2.2. This function
can be implemented using the circuit shown in Figure 2.19. Note the use
of a literal 0 value for one input. This can be implemented by hard wiring
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the input to the OV ground. We won’t go into the general principles of
how to implement Boolean functions using multiplexers here. We raise
the topic since multiplexers can be very efficiently implemented in some
fabrics. As an example, the basic circuit elements in FPGAs manufac-
tured by Actel Corporation consist of two multiplexers and a small num-
ber of other associated components. However, the details of mapping

arbitrary Boolean equations to multiplexers are generally handled by
CAD tools.

2.3.3 ACTIVE-LOW LOGIC

Thus far, we have focused on circuits in which a low logic level represents
the falsehood of some condition and a high logic level represents truth
of the condition. In Chapter 1, we identified this convention as positive
logic, or active-high logic. In principle, the correspondence of low with
falsehood and high with truth is largely arbitrary. We could just as well
represent falsehood with a high logic level and truth with a low logic
level, a convention that we referred to in Chapter 1 as negative logic,
or active-low logic. Note that “positive” and “negative” in this context
don’t refer to the voltage polarity, but simply distinguish between the two
conventions. We will use the terms “active high” and “active low” to
avoid the confusion. We will also maintain the convention of associating
0 with a low logic level and 1 with a high logic level.

In a circuit that mixes both active-low and active-high logic, we could
get confused about which convention is used for which signal. We should
still label signals with the conditions they represent so that we can under-
stand the intended function of the circuit. A commonly adopted approach
is to label an active-low signal with the negation of the condition it rep-
resents. For example, an active-low signal representing the condition that
a lamp is lit would be labeled lamp_lit, since the signal is 1 when the con-
dition is false and 0 when the condition is true.

One reason for using active-low logic is that some kinds of digital
circuits are able to sink more current when driving an output low than
they can source when driving the output high. If such an output is used
to activate some condition for which current flow is required, it would be
better to use a low logic level rather than a high logic level.

EXAMPLE 2.19 Revise the night-light circuit from Figure 1.3 in Chapter 1
by connecting the lamp to the positive power supply instead of to ground.

SOLUTION To make current flow in the lamp and light it, we need to drive
the controlling signal low. Thus, we must use an active-low signal to implement
the “lamp lit” condition. This is shown in Figure 2.20, in which the controlling
signal is labeled lamp_lit. The gate performs the logical AND function of the
lamp_enabled and dark signals, but its output must be negated to match the

CHAPTER TWO
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FIGURE 2.20 The night-light
circuit using an active-low signal.

FIGURE 2.21 The night-light
circuit with negation implied by
connecting an active-low signal to
an active-high input.

COMBINATIONAL BASICS

w +V
i lamp_enabled lamp_lit ®
dark
sensor

negation of the “lamp lit” condition. Hence, we use a NAND gate in place of
the AND gate in the original circuit.

In general, this approach to dealing with active-low logic involves
matching negation “bubbles” on components with active-low signals.
When we do that, no negation of the logical condition represented by
the signal is implied. Thus, we can interpret the circuit of Figure 2.20
as saying, “The lamp is lit when the lamp is enabled and it is dark.” If
we connect an active-low signal to a component without a bubble at the
connection point, we are implying negation of the logical condition rep-
resented by the symbol.

EXAMPLE 2.20 Returning to the original night-light circuit from
Figure 1.3 in Chapter 1, think of the sensor as having an active-low output
representing the condition “it is light.” Redraw the circuit to take account of
this change.

SOLUTION  Asshown in Figure 2.21, we label the signal connected to

the sensor light to show that it is active-low. We draw a bubble on the sensor
output to indicate it is an active-low output. There is no negation implied by
the connection at the sensor output, since we have a bubble output connected to
an active-low signal. However, since there is no bubble on the AND gate input,
logical negation is implied for its connection to light. Thus, we can interpret the
circuit as saying, “The lamp is lit when the lamp is enabled and it is not light.”

lamp_enabled

| |
i\c TN lamp_lit @

sensor p

light
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When we draw gate circuits for Boolean functions, it is important to
use AND and OR gates as appropriate for the logical operations applied
to conditions represented by signals. If any of those signals are active-
low, and no implicit negation is intended, we should “draw a bubble”
where the signal connects to a gate. We can make use of DeMorgan’s
laws to derive alternate views of gates. For example, Equation 2.18 tells
us that the component that we have called a NAND gate when operating
on active-high inputs can also perform an OR function upon conditions
represented by active-low inputs. We can draw two distinct symbols for
the gate component, as shown in Figure 2.22. It is important to realize,
however, that both symbols represent the same circuit of interconnected
transistors!

One of the problems we encounter when modeling designs with
active-low signals in Verilog is that we don’t have a way of drawing a
negation bar over a signal name or drawing a bubble on a port. Instead,
we usually adopt a textual naming convention, such as appending the
suffix "_N" to a name, to indicate which signals and ports are active-low.
For example, a Verilog model might give the active-low output of the
sensor in Figure 2.21 the name light_N. A Verilog model for the sensor
would assign 0 to the light_N signal when it is light and 1 when it is dark.
The model for the AND gate assigns 1 to its output when both inputs are
1, and O to its output otherwise. Thus, the lamp_lit signal is assigned 1
when lamp_enabled is 1 (“the lamp is enabled”) and light_N is 1 (“it is
not light”). When we’re dealing with active-low logic in Verilog models,
we need to think carefully about which Verilog value represents truth or
falsehood of each condition, and design accordingly.

1. For a decoder with inputs (a,, a1, ag), write the Boolean equation
for the output corresponding to the code word 100.

2. What would be the output of the encoder in Example 2.14 if both
the Zone 2 and Zone 3 inputs were 1 at the same time? Would this
output be correct?

3. What problem would arise if we did not include the valid output
from the encoder in Example 2.14?

4. How does a priority encoder solve the problem of multiple inputs
being 1 at the same time?

What decimal digit is represented by the BCD code 0101?
What is the 7-segment code corresponding to the BCD code 0011?

What is the purpose of a multiplexer?

® N

How many select input bits are needed for a 6-to-1 multiplexer?
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FIGURE 2.22 Alternate logic
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9. How can we construct a 2-to-1 multiplexer for 5-bit encoded data
inputs?

10. What logic level would you expect on a signal labeled door_closed,
connected to a door sensor, when the door is open?

11. If a Verilog net named motor_on_N represents an active-low
signal, what Verilog value would you assign it to turn the motor on?

2.4 VERIFICATION OF COMBINATIONAL
CIRCUITS

In Section 1.5 we introduced a design methodology to guide us in the
design and implementation of a digital system. The first task was to
develop and enter a design description based on the application’s require-
ments and constraints. In this chapter, we have seen examples of design
descriptions, expressed as schematics and as Verilog models, for simple
combinational circuits and components. Most systems are more involved
and include sequential components as well as combinational subcircuits,
so there is a limit to how much of the methodology we can demonstrate.
Nonetheless, there are small-scale applications where combinational cir-
cuits are sufficient, so we will show how we can apply our design meth-
odology to them.

The second step in our design methodology is functional verification,
that is, ensuring that the design performs the operation required of it.
Since, in a combinational circuit, the values of the outputs depend only
on the current values of the inputs, we can simply verify that the circuit
produces the required output for each combination of input values. For a
design description expressed in Verilog, we can develop a testbench model
that provides input values to the design under verification (DUV) and
checks that the output values are correct. The DUV is also frequently
called a device under test (DUT), but that usage may be confused with
physical testing of manufactured devices. We will use the term DUV in
this book to avoid the confusion. The testbench model is, itself, a Verilog
model that we can execute using a simulator. However, it is not intended
to describe hardware that will be built. Rather, its purpose is to apply a
sequence of values, called test cases, to the input connections of the DUV,
and to monitor the output connections to ensure that correct values are
produced. The DUV is usually an instance of the Verilog module that
describes the design. A simulator mimics the passage of time, executing
the DUV and testbench models, and assigning values to nets and variables
at appropriate simulated times.

The difficult part of developing a testbench model is working out how
to express the correctness conditions. If the requirements are expressed as
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Boolean equations, the design will probably implement those equations
directly, so expressing the correctness conditions as Boolean equations
gains nothing. A better approach is to determine some more abstract con-
ditions that are required to hold, and to test that the design satisfies those
conditions.

EXAMPLE 2.21 Develop a testbench model for the light_controller_and_enable
module for the traffic light control circuit of Example 2.11. Verify the conditions
that, when the enable input is 1, the output is the same as the light input, and
when the enable input is 0, all light outputs are inactive.

SOLUTION  The testbench model includes an instance of the design under
verification, as well as code to apply test cases and to check for correct outputs.
The organization of these components is shown in Figure 2.23.

apply_test_cases DUV check_outputs
AN lights_in
: lights_out
NNNMINNUNIN enable light_controller = NI
NNNMINAMINIWNINY NNNMNANINIWMNINY

Since the testbench is a Verilog model, it needs a modue definition. However,
since there are no external connections to the testbench, the module has no
ports. The module definition is

‘timescale 1ms/1ms
module Tight_testbench;

wire [1:3] Tlights_out;
reg [1:3] Tights_in;
reg enable;

Tight_controller_and_enable duv ( .lights_out(lights_out),
.lights_in(lights_in),
.enable(enable) );

initial begin
enable = 0; lights_in 3'b000;
#1000 enable = 0; Tights_in 3'b001;
#1000 enable = 0; lights_in = 3'b010;

(continued)
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FIGURE 2.23 Organization
of the testbench for the light
controller.
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#1000 enable =
#1000 enable =
#1000 enable =
#1000 enable =
#1000 enable =
#1000 enable =
#1000 $finish;
end

Tights_in = 3'b100;
Tights_in = 3'b001;
Tights_in = 3'b010;
Tights_in = 3'b100;
Tights_in = 3'b000;
Tights_in = 3'b111;

RRRPRRPO

always @(enable or Tights_in) begin
#10
if (1 C ( enable & lights_out == Tights_in) ||
(!enable && Tights_out == 3’b000) ))
$display(“Error in Tight controller output”);
end

endmodule

The first line is a time-scale directive that indicates to the simulator the time
units to be used for delays in the model. In Verilog models, delays are specified
as numbers without units. The timescale directive is required to ascribe units
to these numbers. In our example, we specify that delays are multiples of Tms
(the first number in the directive), with a precision of 1ms.

Within the module, duv is an instantiation of the light_controller_and_enable
module that describes the traffic light control circuit. The input and output ports
of the instance are connected to internal variables and nets declared within the
testbench module. Note that we have used named port connection here, rather
than positional port connection as we did in Example 1.5. In named associa-
tion, we write the name of the module port after the “.” symbol and the variable
or net to which it is connected within parentheses. This allows us to write the
connections in any order, rather than following the order of ports in the module.
Given the advantages and clarity of named connection, we will use it in models

from now on.

Following the instantiation statement is an initial block that applies test cases to
the DUV. An initial block is the second kind of procedural block, along with the
always block that we introduced in Section 2.3. In general, a procedural block
is a collection of Verilog statements that are executed one after another, much
like statements in a programming language. An initial block starts executing at
the beginning of simulation, and when the last statement in the block has been
executed, it terminates. We only use initial blocks in testbench models, not in
models for circuit designs. In particular, we don’t use initial blocks to set the ini-
tial conditions for sequential circuits. We will see how to reset sequential circuits
in Chapter 4.

The first line of the initial block in this module makes an assignment to the
enable input, followed by an assignment to the lights_in input. These two assign-
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ments constitute application of one test case to the inputs of the DUV. The block
then delays, indicated by the # symbol, for 1000 units of simulated time. Since
the timescale directive specified 1ms as the time unit, the delay is for 1 second

of simulated time. During this delay, other parts of the model, including the
instance of the lights controller, continue executing. After the 1 second delay, the
block continues, applying the next test case to the DUV inputs and then wait-
ing a further second of simulated time. The block continues in this way until it
reaches the last statement, which is a $finish system task. System tasks, identified
by the $ symbol, are built-in operations performed by the simulator. The $finish
system task finishes simulation and exits the simulator.

The procedural block at the end of the module is an always block. In Verilog,

an always block typically responds to some event, described by the event list
after the @ symbol. Whenever that event occurs, the statements in the always
block are executed. The block then waits for another occurrence of the event.

In this module, the always block has the job of ensuring that the DUV outputs
meet the requirements. In developing this block, we need to determine when to
check the outputs. If we were to check them at the same time as changing the
inputs, the DUV would not yet have responded to the input change, and the out-
puts would still reflect the previous inputs. In this example, we will wait for an
interval of 10ms of simulated time after an input change before checking the out-
puts. The always block responds to a change in value of either (or both) of the
inputs enable or lights_in. When that occurs, the block delays for the 10ms inter-
val. It then tests whether there is an incorrect output from the DUV, and if so,
displays an error message using the $display system task. Note that in checking
the condition, we use the logical operators && (logical AND), || (logical OR) and
I (logical NOT), rather than the &, |, and ~ operators we used previously. The
forms used here deal with truth values and should be used for condition tests in
if statements. The forms we used previously deal with bit and vector values and
should be used in Boolean equations.

One thing to note about the test cases in this example is that not all
possible input combinations are included. While it might be feasible to
extend this testbench to be exhaustive, for larger designs, that would be
intractable. Even if we wrote Verilog code to generate the input combina-
tions automatically, rather than writing them out explicitly, a simulation
would take too long to execute. That is because the number of test cases
rises exponentially with the number of inputs. At issue here is the func-
tional coverage of our testbench, that is, the proportion of the possible
input combinations we have exercised. In the example, we have covered
the usual operational cases and two unusual cases. In a larger model, we
would have to be selective, and perhaps just cover a “typical” sample
of normal cases plus a few unusual cases. We will return to the topic of
coverage as part of our more detailed discussion of design methodology
in Chapter 10.
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Another thing to note about the test cases in the example is that the
Verilog code is very repetitious. Each test case involves an assignment to
the two inputs, followed by waiting for an interval. In larger models, there
are more statements for each test case, and writing them repeatedly can be
error prone. Fortunately, Verilog provides a feature that lets us abstract out
the common parts of the test cases. We can write a task containing the com-
mon statements, and invoke the task once for each test case. We provide
the particular values to use in each test case as ports to the procedure.

EXAMPLE 2.22 Revise the testbench model of Example 2.21 to use a task
for applying the test cases.

SOLUTION  The entity declaration is unchanged. The revised module
definition is

“timescale 1ms/1ms
module Tight_testbenchl;

wire [1:3] lights_out;
reg [1:3] Tlights_in;

reg enable;
task apply_test ( input enable_test,
input [1:3] lights_in_test );
begin
enable = enable_test; Tights_in = lights_in_test;
#1000;
end
endtask

Tight_controller_and_enable duv ( .lights_out(lights_out),
.Tights_in(lights_in),
.enable(enable) );

initial begin
apply_test(0, 3'b000);
apply_test(0, 3'b001);
apply_test(0, 3'b010);
apply_test(0, 3'b100);
apply_test(1l, 3'b001);
apply_test(1l, 3'b010);
apply_test(l, 3'b100);
apply_test(1l, 3'b000);
apply_test(1l, 3'b1l11l);
$finish;

end

(continued)
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always @(enable or Tlights_in) begin
#10
if (1C ( enable && Tights_out == Tights_in) ||
(lenable && Tights_out == 3'b000) ))
$display("Error in 1light controller output");
end

endmodule

The difference between this testbench and the one in Example 2.21 is the inclu-
sion of the apply_test task definition within the module. The task definition con-
tains the statements needed to apply each test case. The values to be applied are
represented by the ports enable_test and lights_in_test. Each of the port defini-
tions looks similar to the definition of an input port of a module, specifying the
direction (into the task in this case), name, and index range for the parameter.

In the initial block, we invoke, or call, the task, once per test to be applied.
Within parentheses in the task call, we supply the actual values to be used for
the task ports for that call. The task then performs the statements in the task
body, using those values in place of the port names. When the task statements
finish, the task call is complete.

Having verified the functionality of the design, the next task in the
design methodology is synthesis. To do that, we need to know what
implementation fabric will be used, since synthesis involves refining the
design to a structural implementation using primitive elements from the
implementation fabric. We will discuss implementation fabrics, including
those that can be used for combinational circuits, in more detail in
Chapter 6. However, if the circuit is very simple, involving just a few
gates, we may be able to use single gates packaged individually. This kind
of circuit is sometimes needed as part of a larger system involving off-the-
shelf ICs that must be connected together. If one of the ICs has outputs
that differ slightly in function from the inputs of another, a small combi-
national circuit can deal with the differences.

EXAMPLE 2.23 A processor IC has three active-high outputs to
control a memory that stores data: mem_en to enable operation of the
memory, rd to control reading of data from the memory, and wr to control
writing of data to the memory. A memory IC, however, has two active-high
inputs: mem_rd to cause it to read data, and mem_wr, to cause it to write
data. All other interconnections between the processor and memory are
mutually compatible. Implement an interface circuit to compensate for the
differences.

79



80 CHAPTER TWO

KNOWLEDGE
TEST QUIZ

COMBINATIONAL BASICS

SOLUTION The mem_rd input to the memory can be derived using an
AND gate applied to the mem_en and rd outputs of the processor. Similarly, the
mem_wr input can be derived using an AND gate applied to the mem_en and wr
outputs. Thus, we just need two AND gates. These could be implemented using
two 1G08 devices, each of which contains a single AND gate in a small 5-pin
package that can be used on a printed circuit board. Given the simplicity of

this circuit, we would synthesize it manually. That is, we would just instantiate
AND-gate components in a structural model of the entire system.

—_

What is the purpose of a testbench model?

2. Write a Verilog statement to delay for 1 time unit and then to apply
a test-case value of 0101 to a variable named s.

3. What does a Verilog always block do when execution reaches the
last statement in the block?

4. Why should a block that checks outputs of a combinational circuit
not check them at the same time that the inputs change?

5.  When might it be appropriate to implement a combinational circuit
using discrete logic gates in individual packages?

6. Whatisa PLD?
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2.5 CHAPTER SUMMARY

» A combinational circuit has outputs that depend only on its current
inputs. Each output is a Boolean function of the inputs.

» Boolean functions can be defined by truth tables and by Boolean
equations. Basic Boolean functions are AND, OR and negation.
Other Boolean functions are NAND, NOR, XOR and XNOR. All of
these have corresponding implementations as logic gates.

» A Boolean expression in sum-of-products form is the logical OR of
product terms (p-terms), each of which is the logical AND of inputs,
either directly or negated.

» Boolean expressions are equivalent if they have the same value for all
combinations of input values. Optimization of combinational circuits
involves choice among implementations of equivalent expressions for
the function performed by the circuit.

» Buffers are gate components that perform the identity function. They
are used to drive multiple loads from a single source.

» The don’t care notation used for inputs in a truth table allows
compaction of the truth table. The don’t care notation used for
outputs in a truth table expresses partial functions, and allows
optimization of an implementation by choice of actual value for the
function.

» The rules of Boolean algebra provide a formal basis for transforming
circuits while maintaining equivalence. CAD tools perform optimiza-
tion procedures based on the rules.

» Verilog models describe combinational circuits using assignment
statements in modules and combination always blocks.

» Binary coding allows us to represent information with more than
two values using multiple bits. An 7-bit code can represent up to
2" values. To represent information with N values, we need at least
[log, N bits.

» A one-hot code representing N values has N bits, with exactly one
1bit in each code word.

» In Verilog, vector nets and variables can be used to represent binary
coded information.

» Interference can cause bit flips in binary coded information, giving
rise to invalid code words. A design can ignore them, fail safely, or
take exception.
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» Parity is an approach to error detection based on counting 1s in code
words and augmenting the code with a parity bit. The value of the
parity bit is set to ensure an odd number of 1s (odd parity) or an
even number of 1s (even parity).

» A decoder derives a separate control signal for each code word of a
binary coded input.

» An encoder derives a binary coded representation of whichever of
a number of input bits is active. A priority encoder assigns relative
priorities among its inputs, and encodes the active input with highest
priority.

» Binary coded decimal (BCD) is a 4-bit binary code for decimal digits.
A 7-segment decoder decodes a BCD input to control outputs for
activating segments of a 7-segment display.

» A multiplexer chooses among two or more input sources to deter-
mine the value of its output. Multiplexers can be used in parallel for
binary coded inputs.

» Active-low logic uses a high logic level to represent falsehood of a
condition and a low logic level to represent truth of the condition.
Bubbles on inputs and outputs of circuit symbols represent active-
low connections.

» A Verilog testbench model is used to verify a design by applying test-
case inputs and checking for correct outputs. Test cases are applied
by initial blocks containing assignments and delays. Outputs are
checked by always blocks containing test statements.

» Simple combinational circuits can be implemented using discrete
gates or in programmable logic devices (PLDs).

2.6 FURTHER READING

Discrete Mathematics, 5Sth Edition, K. R. Ross and C. R. B. Wright,
Prentice Hall, 2003. Includes a rigorous presentation of Boolean
algebra, and uses it as the basis for an introduction to digital logic.

Digital Design: Principles and Practices, 3rd Edition, John F. Wakerly,
Prentice Hall, 2001. A textbook on basic digital logic design,
including coverage of Karnaugh maps and other manual optimiza-
tion methods.

A Verilog HDL Primer, 3rd Edition, ]. Bhasker, Star Galaxy Publishing,
2005. A supplementary reference showing how to model combina-
tional circuits with Verilog.
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Assertion-Based Design, Harry D. Foster, Adam C. Krolnik, David
J. Lacey, Kluwer Academic Publishers, 2003. Presents a design
methodology based on incorporating assertions into design to make
verification more tractable.

Digital Logic Pocket Data Book, Texas Instruments, 2002. A listing of
the manufacturer’s digital logic components, including basic and
complex gates. Available from www.ti.com.

EXERCISE 2.1 Derive truth tables for the following Boolean expressions: EXERCISES
a) a+b-c
R
) (a+b)-(c+d) 0 0 0 1
EXERCISE 2.2 Draw schematic circuit diagrams for the combinational 0 0 1 0
circuits described by each of the Boolean expressions in Exercise 2.1. 0 1 0 0
. . . 0 1 1 1
EXERCISE 2.3 Given the truth table in Table 2.10, write a Boolean expres-
sion for the function f, expressed as a sum of minterms. 1 0 0 1
1 0 1 0
EXERCISE 2.4 Draw a schematic circuit diagram for the combinational 1 1 0 0
circuit described by the truth table in Table 2.10.
1 1 1 0
EXERCISE 2.5 Derive a truth table for the Boolean function implemented
by the circuit in Figure 2.24.
TABLE 2.10
oo
Y f FIGURE 2.24

k4

EXERCISE 2.6 Derive Boolean expressions for the circuit in Figure 2.24,
both directly from the circuit and in the form of a sum of minterms from the
truth table.

EXERCISE 2.7 Derive a truth table for the majority function M that is 1
when two or more of the inputs a, b and ¢ are 1, and 0 otherwise.

EXERCISE 2.8 Show, using truth tables, that the two Boolean expressions
in each of the following pairs are equivalent:

a) (y'z)and x-y+x-2
a

b)

x-
x®

nd x

<2
2|
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EXERCISE 2.9 Draw a schematic for a buffer tree to drive 12 inputs from a

X %

source, assuming that the source and each buffer can each drive at most three inputs.
0 0 0 1
0 0 1 1 EXERCISE 2.10 Reduce the size of the truth table in Table 2.11 by using
0 1 0 0 the don’t care notation for inputs.
0 1 1 0 EXERCISE 2.1 1 The truth table in Table 2.12 uses the don’t care notion
1 0 0 1 for the output. Add four columns to the truth table, one for each of the possible
1 0 1 1 assignments of 0 or 1 as the actual output for the don’t care combinations.
1 1 0 1 EXERCISE 2.12 Figure 2.9 shows circuits whose equivalence follows from
1 1 1 1 the associative laws in Equations 2.3 and 2.4. Draw circuits that similarly follow

from the distributive laws in Equations 2.5 and 2.6.
TABLE 2.11 EXERCISE 2.13 Prove the identity laws (Equations 2.13 and 2.14) and

the absorption laws (Equations 2.15 and 2.16) using just the axioms of
Boolean algebra.

0 0 0 0 EXERCISE 2.14 Use the laws of Boolean algebra to transform the Boolean
equation (w + ) - (x + ) into sum-of-products form.

0 0 1 1

0 1 0 0 EXERCISE 2.15 Use the laws of Boolean algebra to prove that the Boolean

0 1 1 . expressionsa-b-c+a-b-c+a-b-c+a-b-canda-b+b-c+a-care equivalent.

1 0 0 - EXERCISE 2.16 For each of the following Boolean equations, write a

1 0 1 1 Verilog model for a circuit that implements the equation.

1 1 0 1 a) m=a-b+tb-cta-c

1 1 1 0 b) s=(x+y)-(x+%)
c) y=(@®b)-(a+c)

TABLE 2.12

EXERCISE 2.17 Devise a minimal-length binary code to represent the state
of a phone: on-hook, dial-tone, dialing, busy, connected, disconnected, ringing.

EXERCISE 2.18 Write a Boolean equation involving the bits of the code
in Exercise 2.17 that determines when the phone is off-hook (that is, in a state
other than on-hook or ringing).

EXERCISE 2.19 Devise a one-hot code for the state of a phone, described
in Exercise 2.17.

EXERCISE 2.20 Develop a Verilog model for a circuit that has an input
representing the state of the phone described in Exercise 2.17 and an output that
is 1 when the phone is off-hook.




Exercises

EXERCISE 2.21 Revise the Boolean equations of Example 2.12 so that no
light is activated for invalid code words.

EXERCISE 2.22 Draw circuit diagrams of parity trees, similar to those in
Figure 2.14, but generating and checking odd parity for an 8-bit code.

EXERCISE 2.23 Devise an example using an 8-bit code word to show that
even parity and odd parity cannot be used to detect two separate bit flips in a
code word.

EXERCISE 2.24 Write Boolean equations for a decoder for the code used
in the burglar alarm of Example 2.14.

EXERCISE 2.25 Develop a Verilog model of a decoder for the code used in
the burglar alarm of Example 2.14.

EXERCISE 2.26 Write Boolean equations for an ordinary (nonpriority)
encoder for the code used in the ink-jet printer described in Example 2.9. For
each pair of inputs, determine the code word output of the encoder if the two
inputs are both 1.

EXERCISE 2.27 Develop a Verilog model of a priority encoder for the code
used in the ink-jet printer described in Example 2.9.

EXERCISE 2.28 Write Boolean equations for a BCD decoder, that is, a
decoder that has a BCD code word as input and that has outputs y, through yg.
Draw a circuit that uses AND and OR gates and inverters to implement the decoder.

EXERCISE 2.29 Develop a Verilog model of the BCD decoder described in
Exercise 2.28.

EXERCISE 2.30 Write Boolean equations for a 2-to-1 multiplexer. Draw a
circuit that uses AND and OR gates and inverters to implement the multiplexer.

EXERCISE 2.3 1 Usea 2-to-1 multiplexer to implement a circuit whose
output is given by the Boolean expression a- (b+¢c) when enable - sel is 1, and by
the Boolean expression x @y otherwise.

EXERCISE 2.32 Develop a Verilog model of a circuit with the behavior
described in Exercise 2.31.

EXERCISE 2.3 3 Draw a circuit diagram for a multiplexer that selects
among four sources of data, each of which is encoded with three bits. The circuit
should be implemented 4-to-1 multiplexers (see Figure 2.17).
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EXERCISE 2.3 4 Develop a Verilog model of the multiplexer described in
Exercise 2.33.

EXERCISE 2.3 5 Revise the vat buzzer circuit of Figure 1.5 so that the low-
level sensor inputs and the buzzer output use active-low signals.

EXERCISE 2.3 6 Revise the Verilog models of the vat buzzer from Exam-
ples 1.5 and 1.6 so that the low-level sensor input ports and the buzzer output port
use active-low logic.

EXERCISE 2.37 Develop a Verilog testbench model for the vat buzzer from
Example 1.5 and Example 1.6. Include test cases to ensure that the buzzer is
activated when required, and not activated otherwise.
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One of the most common kinds of information processed by digital
systems is numeric information. In this chapter, we will examine various
binary codes for unsigned integers, signed integers, fixed-point fractions
and floating-point real numbers. For each kind of code, we will describe
how some arithmetic operations can be performed. We will also look at
combinational circuits that implement arithmetic operations, and discuss
trade-offs among different circuits that perform the same operation.

3.1 UNSIGNED INTEGERS

In many applications of digital electronics, we deal with signals that only
take on nonnegative integer values. Some signals may be representations
of real-world information, for example, the temperature set on a thermo-
stat. Other signals may arise as a consequence of the way we organize the
digital system, for example, as numeric indices for tables of information
stored in the system’s memory. In this section, we start with the most
common representation for nonnegative integers, then describe arithmetic
operations using that representation. We will finish the section by looking
at an alternative representation that is used in some systems.

3.1.1 CODING UNSIGNED INTEGERS

We are all familiar with decimal positional representation of numbers.
A decimal number such as 124, denotes the sum of 1 hundred, 2 tens
and 4 units. We use the subscript notation to specify that the number is
to be interpreted as decimal, that is, base 10. The position of each digit in
the number determines the power of 10 by which the digit is multiplied,
starting with 10° for the right-most digit, 10! for the next digit to the left,
and increasing by successive powers of ten for further digits from right to
left. Thus, we write
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12419=1x10%>+2x 10" +4 x 10°

In most applications that deal with nonnegative integers, the natural
way to represent the numeric values is using unsigned binary numbers.
Unsigned binary representation works in the same way as decimal repre-
sentation, except that we only use the binary digits 0 and 1 and we mul-
tiply digits by powers of 2 instead of powers of 10. We can represent the
same numeric value as 1244 in binary by determining the powers of two
that sum to the number, namely,

124;5=1%x20+1x 23 +1x2*+1x23 +1x 22+ 0x21 +0x2°
=1111100,

So, to represent this number in a digital system, we would need seven
single-bit signals, each carrying one bit of the binary number. In general,
we represent a number x using 7 bits x,, _ 1, x,, _ 2, ... , x(, with

x=x,_ 12" VT4x, 52" 2+ +x,20

EXAMPLE 3.1  What number is represented by the unsigned binary
number 101101,?

SOLUTION  Express the number as a sum of powers of two and calculate
the result:

101101, =1X25 +0x2* +1x 23 +1x 22+ 0x 21 +1x 20
=1X32+0X16+1X8+1X4+0X2+1x1
:4510

Our discussion of binary codes in Section 2.2 applies equally to
unsigned binary representation of numbers, since that is just one particu-
lar binary code. Thus, given an n-bit unsigned binary code, we can repre-
sent 2” distinct numbers. The smallest number has all 0 bits, representing
the number 0, and the largest number has all 1 bits, representing

1in—l+1in_2+...+1)<21+1><20:2n_1

Conversely, if we need to represent numbers between 0 and N—1,
we need at least [log, N1 bits for the unsigned binary representation. In
computer systems, unsigned binary numbers are typically 8, 16 or 32 bits
long, allowing representation of numbers up to 256, over 65,000, and
over 4 billion, respectively. However, when we are designing a digital sys-
tem with no other constraints applied to the number of bits, we would
typically choose the smallest number of bits that can represent the range
of numbers we expect to encode. There is no reason why this should not
be a number of bits other than 8, 16 or 32, such as 5, 17 or 26.
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EXAMPLE 3.2 Suppose we are designing a scientific instrument to measure
the time interval between two random events very precisely, with a resolution of
nanoseconds (1ns =107 seconds). Events may occur as much as a day apart.
How many bits are needed to represent the interval as a number of nanoseconds?

SOLUTION There are 10? nanoseconds per second, and 60 X 60 X 24 = 86,400
seconds per day, so the largest number we need to allow for is 8.64 X 103, The
number of bits needed is

log(8.64 x 1013)

[og,(8.64 x 1013)1—[
log2

}—f46.296...1—47

So at least 47 bits are needed.

Unsigned Integers in Verilog

We saw in Section 2.1.3 that we can use vectors to model binary coded
data. Since unsigned binary is just one form of binary code, we can use
vectors for numeric data also, specifying ranges of index values for nets,
variables and ports, and using indexing to refer to individual bits. When
we look at arithmetic operations on unsigned integers, we will see how
they can be modeled in Verilog as operations on vectors.

EXAMPLE 3.3 Develop a Verilog model of a 4-to-1 multiplexer that selects
among four unsigned 6-bit integers.

SOLUTION The module definition is

module multiplexer_6bit_4_to_ 1

( output reg [5:0] z,

input [5:0] a0, al, a2, a3,
input [1:0] sel );
always @*
case (sel)
2'b00: z = a0;
2'b01: z = al;
2'b10: z = a2;
2'bll: z = a3;
endcase

endmodule
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This is much the same as the multiplexer model that we saw in Section 2.3.2.
The input ports a0 through a3 and the output port z are all 6-bit unsigned vec-
tors, indexed from 5 down to 0. We choose this index range so that the index
of each bit in a vector corresponds to the power of its binary weight. The input
port sel, used to select among the inputs, is also a vector, though we are not
interpreting it as representing a number.

Octal and Hexadecimal Codes

We have seen that we need at least approximately log, N bits to represent
the number N in unsigned binary form. The same number is represented
in decimal with approximately log;oN digits. Now

logyN=log 19N/log 192 =1og19gN/0.301...=log (N X 3.32 ...

In other words, we need more than three times as many binary digits
as decimal digits to represent a given number. While that is not necessarily
a problem in terms of the digital system, it is cumbersome and error prone
for us to write down and read the long strings of bits required for large
numbers. For this reason, we often use hexadecimal (base 16) or, less
commonly, octal (base 8) for those purposes. We will show how these
representations work first, then discuss the advantages of using them.

Octal is just another form of positional number system, except that
we use the digits 0 through 7 and multiply them by powers of 8 depending
on their position. Thus, for example,

253g=2x8%+5x81+3x8"
=2X64+5X8+3x1
=128+40+3 =171y,

More important, for a given octal number, we can factor out powers
of two in each digit and so very quickly determine the binary representa-
tion of the same number. For example,

253g=2%8%+5x 81 +3x8"

=(0x22+1x21+0x20)x 82+ (1x22+0x21+1x2% x 8!
+(0x22+1x21+1x2%x g0

=(0x22+1x21+0x20) %20+ (1x22+0x 21 +1x2%x23
+(0x22+1x21+1x2% %20

=(0x284+1x27+0x2%)+(1x2°+0x2%+1x23)
+(0x22+1x21+1x29)
=010101011,

In general, given an octal number, we can replace each digit with the
corresponding three binary digits to give the unsigned binary represen-
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tation of the number. The three-bit patterns corresponding to the octal
digits are

0: 000 1:001 2:010 3:011 4:100 5:101 e6:110 7:111

Note that we need to take care when using an octal number for an
unsigned binary code if the code is not a multiple of three in length. We
need to understand or specify explicitly how long the binary code is and
drop unused bits from the left when converting from octal. For example,
had we specified that the number 253 stood for an 8-bit binary number,
we would have dropped the left-most bit to get 10101011,. If any of
the bits we drop from the left are 1 rather than 0, the octal number is
greater than the largest number that can be encoded in the given number
of bits. Usually, this is considered an error.

We can also work in the reverse direction from an unsigned binary
number. We divide the bits in to groups of three, starting from the right,
and replace each group with the corresponding octal digit. For example,
given the unsigned binary number 11001011, we can convert it to octal
as follows:

11001011,=11 001 011 =313y

Note that in this example, the number of bits is not a multiple of
three, so we had to assume a 0 bit on the left. Again, we need to take care
that the actual number of bits in the unsigned binary representation is
understood or explicitly stated.

Hexadecimal is another form of positional number system, like octal,
but based on powers of 16. The only minor problem we encounter is
that we need digits with values from 0 through 15. We use the normal
digits O through 9, but augment them with the letters A through F for the
remaining digits. The correspondence is

A1g=1019 Big=1119 Ci6=121
Dig=1319 Ejs=1419 Fic=1519
Thus, for example,
3CEs=3%x16>+12%x 16" +14x 16°
=3X256+12X16+14X1
=768+ 192+ 14 =974,

By similar arguments to those for octal numbers, we can arrive at a
quick method for converting between hexadecimal and unsigned binary
representations of a number. Whereas for octal, we formed groups
of three bits (since 8 =23), for hexadecimal we form groups of 4 bits
(since 16 =2%). The 4-bit patterns corresponding to the hexadecimal
digits are
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0: 0000 1: 0001 2: 0010 3: 0011 4: 0100 5: 0101 6: 0110 7: 0111

8:1000 9:1001 A:1010 B: 1011 C: 1100 D: 1101 E: 1110 F: 1111

Thus, for example, 3CE{4=0011 1100 1110,. In the reverse direction:
11001011, =1100 1011 = CBy,

As we mentioned earlier, nearly all computer systems use number
representations that are 8, 16 or 32 bits long. Hence, the term byte
for 8 bits of data has entered the common language. Since these are all
multiples of 4 in length and not multiples of 3, hexadecimal is a more
natural representation to convert to than octal. (Engineers sometimes use
the term nibble to refer to 4 bits of data, punning on the fact that a nibble
is a small bite.) With hexadecimal in these applications, we don’t need to
worry about assuming or dropping leading 0 bits. That’s why program-
mers usually deal with hexadecimal and not octal. However, since we,
as hardware designers, can select the number of bits that is best for our
needs, we may find octal more useful in some cases, particularly if the
number of bits is a multiple of 3.

3.1.2 OPERATIONS ON UNSIGNED INTEGERS

Since unsigned integers are binary coded, we can perform on them all
of the operations on encoded data described in Section 2.3. A common
application is to decode an n-bit unsigned binary number representing the
location of information in a memory. The decoder has 2” control outputs,
which we can use to activate a particular memory location. We shall see
this in more detail in Chapter 5. We can also use multiplexers in parallel,
one per bit of an unsigned binary representation, to choose between
multiple sources of numeric data. This was illustrated in Example 3.3.
We should also expect to be able to perform arithmetic operations on
numbers represented in unsigned binary. However, before we look at that,
we will discuss some simpler operations.

Resizing Unsigned Integers

When we write numbers in decimal on paper, we usually don’t write any
leading insignificant zeros. We just use the least number of digits needed to
represent the number. For example, we just write 123, and not 0123
or 000123, although all represent the same number. We could do the
same in binary, and just write 10110,, and not 010110, or 00010110,.
However, in a digital circuit, each bit is implemented by a physical wire,
and we choose the number of bits based on the largest value we expect
to occur during operation of the circuit. Since wires do not come and go
as values change, we normally do write leading insignificant zeros for
unsigned binary numbers occurring in a digital circuit.
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x(] yO
xl yl
xn—l yn—l
yn
ym—l
ym—l
\Y%

Recall that the largest value that can be represented with 7 bits is
2" — 1. Suppose we have some numeric data x represented with # bits:

x=2x,_12" 4x, 52" 2+ +x,20

However, in order to perform some arithmetic operations, which may
result in larger values than 2” — 1, we need to represent the same value in
m bits, where m > n:

Y=Y 12" T ey, 2y, 2 gy 27T 2 4 y20

Since we want y = x, we can just set y; = x;, fori=0,1,...,n—1,and y; =0,
fori=n,n+1,...,m—1.In other words, we just add leading insignificant
0 bits to the left of the n-bit representation to form the m-bit representa-
tion. In terms of circuit implementation, we simply add extra bit signals
with their value hard-wired to 0, usually by connecting them to the circuit
ground, as shown in Figure 3.1. This technique is called zero extension.

We can express zero extension in a Verilog model by concatenating a
string of O bits to the left of a vector representing an unsigned integer. For
example, given nets declared as

wire [3:0] x;
wire [7:0] y;

We can write the following assignment statement in a module to zero
extend the value of x and assign it to y:

assign y = {4'b0000, x};

The notation that we have used here simply joins two vector values
together to form a larger vector. For example, if x has the value 1010,
the value assigned to y would be 00001010. As a convenience, Verilog
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automatically zero extends a literal vector value to the specified size. So
we could rewrite the above assignment as

assign y = {4'b0, x};

In this case, Verilog extends the bit value 0 with additional 0 bits to make
a total of 4 bits.

Verilog also allows us to perform zero extension implicitly. If we assign
an unsigned vector of a smaller size to a vector net or variable of a larger
size, the value is implicitly zero extended to the size of the assignment tar-
get. For example, we could have written the above assignment simply as

assign y = x;

in which case the 4-bit value of x would be implicitly zero extended to
8 bits, the size of y. While this might appear to be a more succinct and
convenient way to write the assignment, we should be aware that zero
extension occurs. Using the vector concatenation operation makes the
extension explicit, which better documents our design intent.

The converse operation to zero extension is truncation, in which we
reduce the number of bits used to represent a numeric value from » to a
smaller size, 7. Recall again that the largest value representable in 7 bits
is 2" — 1. Any m-bit value less than or equal to this value has 0 for all
of the left-most 7 — n bits. So to represent the value in 7 bits, we simply
discard the left-most #m —n bits. The problem that might arise is that
the value represented in m bits might be larger than 2”7 — 1, and so not
be representable in 7 bits. Such a value has at least one of the left-most
m — n bits being 1. In most applications where we need to truncate, this
situation does not arise, and we can discard the bits with impunity. We
only reduce the number of bits when we know that the value must be
within the range representable by the smaller number of bits. We might
arrive at that conclusion by analyzing the arithmetic operations per-
formed to derive the larger-sized value. In terms of circuit implementa-
tion, discarding bits does not mean physically removing anything from
the circuit. Rather, we just leave the left-most bits unconnected, as illus-
trated in Figure 3.2.

An alternative view of truncation of y from m bits to 7 bits is that it
implements the operation y mod 2”. We can demonstrate this as follows:

y mod 2"
= 12" Ty, 2y, 27 T+ 9020) mod 27
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=((ym_12m_"_1+~~- +yn20)2”+yn_12”_1+--~ —I—yOZO) mod 2"
=y,—12" e 4 yp2°

Thus, if we want to compute y mod 2", we just truncate y to 7 bits,
regardless of the values of any of the discarded bits.

In a Verilog model, we express truncation of a value by picking
out a part select of the net or variable representing the value. For
example, given nets x and y declared as above, we can write the fol-
lowing assignment statement in a module to truncate the value of y
and assign it to x:

assign x = y[3:0];

The range of values in brackets specifies the index positions of the right-
most elements that we want to use for the smaller representation. For
example, if y has the value 00001110, the value assigned to x would be
1110.

Addition of Unsigned Integers

The addition operation on unsigned binary integers is analogous to the
operation on decimal numbers. We start with the two least significant
operand bits and add them to form the least significant sum bit and a
carry into the next position. We then repeat until we reach the most sig-
nificant position, forming the most significant sum bit and the carry out.
The difference between doing this in binary and decimal is that, in binary,
the sum of the two operand bits and the carry into a position is either 0,
1, 2 or at most 3. Since bits can only be 0 or 1, the case of the sum being
2 means the sum bit is 0 and the carry out is 1, and the case of the sum
being 3 means the sum bit is 1 and the carry out is 1.
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0011110000
1010111100
0011010010

1110001110

FIGURE 3.3 Unsigned addi-
tion with carry out of O.

11

001

01001
11101

00110

FIGURE 3.4 Unsigned addi-
tion with carry out of 1.

y;
0 0
0 0
0 1
0 1
1 0
1 0
1 1
1 1

TABLE 3.1
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EXAMPLE 3.4 Show the addition of the unsigned binary numbers
1010111100, and 0011010010,.

SOLUTION The addition is shown in Figure 3.3. Here, we have included
the carry-out bit from the most significant position. Since it is 0, the result can
be represented in the same number of bits as the two operands.

EXAMPLE 3.5 Show the addition of the unsigned binary numbers 01001,
and 11101,.

SOLUTION The addition is shown in Figure 3.4. Again, we have included
the carry out from the most significant position. However, this time it is 1,
indicating that the result value cannot be represented in the same number of bits
as the operands. If the design in which we are doing this addition requires the
result to be five bits long, the carry out of 1 is an error condition. Alternatively,
if the design allows us to use an extra bit for the result, we can use the carry-out
bit as the extra most significant bit, as indicated in grey. This is the same as if we
had zero extended the operands by one bit.

As these examples show, if we need to represent the result in the same
number of bits as the operands (a not uncommon case), we can use the
carry-out bit from the most significant position to indicate whether an over-
flow condition has occurred. When the bit is 1, the sum bits are incorrect.

Let’s now look at how to design a digital circuit to perform addition
upon unsigned binary numbers. Such a circuit is called, unsurprisingly,
an adder. If we consider the method for addition described above, we see
that for the least significant position, the sum (sg) and carry-out (cq) bits
are Boolean functions of the two least significant operand bits (x, yg). We
can express the functions as Boolean equations:

so=x0®yg  c1=%0"Y0 (3.1)

A circuit to implement these equations is called a half adder, and can
be constructed with an XOR gate to produce the sum bit and an AND
gate to produce the carry-out bit. The reason it’s only half an adder will
become clear in a moment.

For the remaining bits, at each position i, the sum (s;) and carry-out
(¢;+1) bits are Boolean functions of the operand (x;, y;) and carry-in (c;)
bits. The functions are as shown in the truth table in Table 3.1. They can
also be expressed as Boolean equations, as follows:

;= (x;®y;)®D¢; (3.2)
Ci+1=%;" YT (x;®@y;) ¢; (3.3)

A circuit that implements these equations is called a full adder, since we
can construct it from two half adders: one to add the two operand bits
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and one to add the result of that with the carry-in bit. A small amount of
additional logic is needed to form the carry out. However, this form of full
adder is largely of historical interest, since constraints that apply in most
designs lead to different implementations.

One thing to note about the equations for a full adder is that, if the
carry in, ¢;, is 0, the equations simplify to those for a half adder. A con-
sequence is that we can use a full adder for the least significant position
instead of a half adder simply by setting the carry-in bit to 0. This allows
us to treat all positions uniformly, and will also afford another advantage
that we shall see when we get to signed integer addition and subtraction.
Thus, a complete structure for an adder for unsigned integers consists of
a full adder cell for each bit position, with carry outs chained to carry ins
of adjacent positions, as shown in Figure 3.5. (For arithmetic circuits, we
usually arrange components left-to-right in order of decreasing signifi-
cance, to match the left-to-right order of bits of a number. The arrows
on the carry connections in Figure 3.5 indicate that carry values flow
from right to left, contrary to our usual convention of left-to-right flow.)
The carry out of the most significant position can be used as the most
significant sum bit if the sum is allowed to be longer than the operands.
Otherwise, it can be used as an overflow condition signal.

This kind of adder structure is called a ripple-carry adder. We can
see why it has this name by considering the flow of information through
the structure. At each bit position, the values of the sum and carry out-
puts depend not only on the two operand bit inputs, but also on the
carry from the adjacent less significant position. We can also see this by
examining the Boolean equations for the full adder. They form a recur-
rence relation, so that, ultimately, each sum bit and the final carry-out
bit depend on all of the less significant operand bits. When two operand
values arrive at the adder inputs, each full adder determines a transient
value for its sum and carry-out outputs. However, the full adders have
some propagation delay, since they are just logic circuits. Thus, the carry
out from the least significant position acts as an input to the next posi-
tion after the propagation delay, possibly affecting the output of that
position. Its carry out, after another propagation delay, may affect the
output of the third position. In this way, carry values “ripple” from least
significant to most significant position, possibly affecting sum-bit values
along the way.

xn—l yn—] xi yi x1 yl xO yO
[ [ || ||
C.| full f_n-l_ _ _Ci+] full (i L C_z full < full | %
adder adder adder adder (_<\7
| | | |
Sn Sn—l Si Sl S0
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full adder cells.
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In the worst case, the delay from operand values arriving to the sum
value settling is the product of each full adder’s propagation delay and the
number of bits in the unsigned binary representation. If the performance
constraints of the application allow for an addition to be done slowly,
a ripple-carry adder is a simple and effective adder structure. However,
many applications require that arithmetic operations have high perfor-
mance in order to meet timing constraints. In those cases, we can find
alternate adder structures that have less delay, though at the expense of
greater circuit area and power consumption.

We will now outline a couple of ways in which we can improve the
adder performance over that of a ripple-carry adder. As the basis of our
discussion, let’s return to Equations 3.2 and 3.3 and to the truth table in
Table 3.1. For a given position i, we can see the following properties.

» If x; and y; are both 0, then ¢; ; ; =0, regardless of the value of ¢;. In
this case, any carry in to the position is killed. We define a signal for
this condition:

ki=%;"yi (3.4)

» If one of x; and y; is 1 and the other is 0, then ¢; . { = ¢;. In this case,
the carry in is propagated to the next position. A signal for this
condition is

pi=x;®y; (3.5)

» Ifx;and y; are both 1, then ¢; ; { = 1, regardless of the value of ¢;. In
this case, a carry out is generated for the next position. We define a
signal for this condition:

8i=Xi'Yi (3.6)

Substituting Equations 3.5 and 3.6 into Equations 3.2 and 3.3 gives
s;i=p;i®¢; (3.7)
Ci+1=8tDi¢i (3.8)

One way in which these reformulated equations help is by exposing
a way of determining the carry values at each position more quickly than
the ripple-carry method. Note that the k;, p; and g; signals only depend
on the operand bit values at their respective positions, so they can be
determined quickly after the operand values arrive at the adder inputs. If
a carry is killed or generated at a given position, we don’t need to wait for
the carry in from less significant positions; we can drive a 0 or 1 carry-out
value immediately. On the other hand, if carry is to be propagated, we
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can switch the carry in to the carry out very quickly. These observations
form the basis for the structure of a fast-carry-chain adder, sometimes
also called a Manchester adder.

Figure 3.6 shows two alternate implementations of the full-adder
cell used in such an adder. In the implementation on the left, the box at
the top derives the propagate signal, which drives the select input of a
multiplexer. If p; is 0, then the carry is either generated (x; and y; are both
1) or killed (x; and y; are both 0). So either of the input bits can be selected
to derive the carry out, without having to wait for the carry in. If p; is 1,
then the carry out is the same as the carry in. Like the ripple-carry adder,
in the worst case, the carry has to propagate from the least significant
to the most significant position. However, if the implementation fabric
provides fast multiplexers (which many do), the propagation delay along
this carry chain is much less than that of a chain of gate circuits based
on Equation 3.3. As an example, several FPGA families manufactured by
Xilinx include fast-carry chains using multiplexers, allowing fast-carry-
chain adders to be implemented.

The full-adder cell shown at the right of Figure 3.6 is very similar.
The box at the top derives all of the generate, propagate and kill signals.
These are used to drive the control inputs of electronic switches to derive
the carry-out bit. If g; is 1, the carry-out bit is switched to 1; if k; is 1, the
carry-out bit is switched to 0; and if p; is 1, the carry-out bit is switched
from the carry-in input. Again, in the worst case, a carry may have
to propagate from the least significant to the most significant position.
However, fabrics such as custom or standard-cell ASICs include switch
components that have very small propagation delay, allowing fast-carry-
chain adders to be implemented in this way.

Another way in which we can use the reformulated equations is to
solve Equation 3.8 as a recurrence relation and determine all of the carry
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FIGURE 3.6 Fast-carry-chain
full-adder cells.
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bits at once. Equation 3.8 gives us the equation for ¢q directly. We can
substitute this back into Equation 3.8 to get the equation for ¢,:

ca=81+p1° (&t Po co) =g P18 +P1Po <o
We can repeat substitution and similarly get the equations for ¢3 and ¢4:
3=8& tP2°81TP2°P178& P27 P17 Po" <o
€4=83 P38 TP3 P28+ P3 P2 P18 TP3 P2°P1 Do Co

Note that each of these expressions is a function of only ¢y and the
operand input bits (since the generate and propagate signals are func-
tions only of the operand bits). This gives us a way to determine the
carry bit at each position without having to wait for carries to propa-
gate up from less significant positions. We can then use the carry bit
to derive the sum bits according to Equation 3.2. An adder based on
this formulation is called a carry-lookabead adder. A 4-bit version of
such an adder is illustrated in Figure 3.7. Each of the boxes at the top
derives the generate and propagate signals for the corresponding bit
position. The carry-lookabead generator implements the equations
shown above to derive the carry signals. These are combined with the
propagate signals to derive the sum bits. The trade-off for getting the
sum bits faster is the area and power consumed by the carry-lookahead
generator circuitry.

We have shown a carry-lookahead generator for 4 bits, since that is
about as large as we can practically make it. In principle, we could con-
tinue substituting in Equation 3.8 to get further carry bits. However, a
more practical approach for wider adders is to use 4-bit carry-lookahead
adders for segments of 4 bits, and to use a second level of carry-lookahead
generators to derive the carry-in bits for each segment. There are also
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other forms of adders that build upon the reformulated expressions to
compute carry bits in different ways. The choice among them is a ques-
tion of making trade-offs among circuit area, power and performance,
constrained by the resources available in implementation fabrics. A full
discussion of these adder structures is beyond the scope of this book, but
there are many references that go into detail.

In all of our discussion of adders so far, we have not yet described
how to model them in Verilog. We could simply translate the Bool-
ean expressions in the various forms we have discussed into Verilog.
However, doing so would disguise our design intent of adding unsigned
binary numbers. In particular, a CAD tool would just try to implement
the model as combinational circuitry, and may not readily be able to
recognize the opportunity to use any specialized circuit resources, such
as fast-carry chains, available in an implementation fabric. A much
better approach is to use the addition operator provided by Verilog to
operate on vector values. A synthesis CAD tool can then implement the
addition operation using the most appropriate form of adder provided
by the target fabric to meet design constraints. Alternatively, we could
develop a structural model, selecting the most appropriate form of adder
from a library of arithmetic components, and verify that the structural
model produces the same results as a behavioral model using the addi-
tion operator.

EXAMPLE 3.6 Given the Verilog declaration of three nets:

wire [7:0] a, b, s;

write a Verilog statement to assign the sum of a and b to s.

SOLUTION The required statement is

assign s = a + b;

The + operator works on two unsigned values to produce an unsigned result
whose length is the larger of the two operands. It does not produce a carry out,
so if there is an overflow, it remains undetected.

EXAMPLE 3.7 Revise the statements to produce a carry-out bit, c.

SOLUTION We can do this by zero extending a and b by one extra bit before
doing the additions, in order to get a 9-bit result. The carry out is then
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the most significant bit of that result, and the 8-bit sum is the remaining bits.
We need to declare a net for the 9-bit intermediate result and for the carry bit:

wire [8:0] tmp_result;
wire C;

The required statements are

{1'b0, a} + {1'b0, b};
tmp_result[8];
tmp_result[7:0];

assign tmp_result
assign c
assign s

An alternative way of writing these assignments is

assign {c, s} = {1'b0, a} + {1'b0, b};

In this assignment, the left-hand side is written as a concatenation of the carry
bit and sum nets. The bits of the result of addition are assigned to the corre-
sponding bits of the concatenated nets. We can simplify this further, since Verilog
has rules that cover implicit extension of expression operands based on the size
of the left-hand side of an assignment. If we write

assign {c, s} = a + b;

the Verilog rules determine that the size of the left-hand side is 9 bits, so the values
of a and b must be extended to 9 bits. Since they are unsigned values, they are
implicitly zero extended, and the result of the addition is also 9 bits long. As we
mentioned earlier, while these rules might appear to make the assignment more
succinct, we must take care that implicit extensions have the effect we really want.
If in doubt, or if we want to make our intent explicit, we can use explicit extension.

The above example shows how we can use vectors when we need
to access the individual bits of the binary code. Often, we can raise the
level of abstraction in our Verilog model by considering only the numeric
aspects of data and not their binary encoding. Verilog allows us to do so
using the type integer for numbers. We can declare a variable (but not a
net) to be of type integer as follows:

integer n;
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Integer variables are typically 32 bits long, though a Verilog implementa-
tion is allowed to use a larger size. The range of values represented by a
32-bit integer includes the unsigned values up to approximately 2 billion.
It also includes negative numbers, which we will discuss further in the
next section.

EXAMPLE 3.8 Revise the declaration and statement in Example 3.6 to use
integer variables instead of vector nets.

SOLUTION  The revised declaration is

integer a, b, s;

Since we are using variables instead of nets, the assignment must be in a proce-
dural block. We replace the assignment statement with the always block:

always @*
S =a+ b;

The addition expression looks exactly like that in the original assignment. The
only difference is that we are not concerned about the size of the variables and
are ignoring the possibility of any carry out. A synthesis tool would infer at least
a 32-bit adder with no overflow checking, since we have not indicated the actual
range of values that can occur. That is one reason why we would not generally
use integer types for synthesizable models where the range of values is known to
be smaller than 32.

Subtraction of Unsigned Integers

We can work out how to perform subtraction of unsigned binary inte-
gers by following a process similar to that for addition. First, we devise
the steps for binary subtraction, bit by bit, analogously to subtraction of
decimal digits. Recall that, in decimal, if we subtract a larger digit from a
smaller digit, we borrow from the next column. We do the same in binary,
borrowing if we subtract 1 from 0.

01011000
10100110
-01001010

103

b:
EXAMPLE 3.9 Show the subtraction of the unsigned binary numbers x:
10100110, and 01001010,. y:
SOLUTION The subtraction is shown in Figure 3.8. Here, we have included d:
the borrow-out bit from the most significant position. Since it is 0, the result
can be represented in the same number of bits as the two operands. FIGURE 3.8  Unsigned

subtraction.

01011100
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Next, we look at how to design a subtracter circuit to perform sub-
traction upon unsigned binary numbers. For the least significant position,
the difference (dy)) and borrow-out (bq) bits are Boolean functions of the
two least significant operand bits. The Boolean equations are

do=x0®y9 b1=%y"Y

For the remaining bits, at each position 4, the difference (d;) and borrow-out
(b;+1) bits are Boolean functions of the operand (x;, y;) and borrow-in (b;)
bits, with the truth table shown in Table 3.2. They can also be expressed as
Boolean equations, as follows:

di=(x;®y;, ®b; (3.9)

bi1=%;"y;+ (x;®y;) - b; (3.10)

As we did in the case of the adder, we can set the borrow in for the least
significant position to 0 and just use Equations 3.9 and 3.10 uniformly for all
positions. We could now go ahead and develop circuits for these equations.
However, many systems that need a subtracter also need an adder, and
choose whether to add or subtract the operands. A little algebraic manipu-
lation will expose a trick that allows us to use the same circuit to perform
either addition or subtraction. Notice that the equation for the difference is
the same as that for the sum in an adder, and that the equation for the bor-
row is similar to that for the carry. The trick lies in using the complemented
form of the borrow bits. If we do that, we can rewrite the equations as

d;= (x;®7)) ®b; (3.11)

b 1=x;"y;+ (x;®y;)- b (3.12)

Proof of this is left to Exercise 3.27. If we compare these equations with Equa-
tions 3.2 and 3.3, we see that they are identical in form, but with y; replacing
y; and b; replacing ¢;. Consequently, we can use an adder circuit to perform
subtraction simply by negating each bit of the second operand and using a
negated form of borrow. For the least significant position, we set the negated
borrow-in bit to 1. We can use the negated borrow out from the most sig-
nificant position to indicate underflow: if it is 0, indicating a borrow, the true
difference is negative, and so cannot be represented as an unsigned integer.
Now let’s see how to modify an adder circuit to perform both addition
and subtraction. Suppose we have a control signal that is 0 when we want
the circuit to perform addition and 1 when we want it to perform subtrac-
tion. Since addition requires a 0 value for the least significant carry in and
subtraction requires a 1 for the least significant negated borrow in, we
can just use the control signal as the carry in/negated borrow in. We could
also use the control signal to control an #n-bit 2-to-1 multiplexer selecting
between the second operand and its negation as the second input to the
circuit. However, another part of the trick is to notice that y;®0 =1y, and
y;®1=79;. So we can connect each bit of the second operand to an XOR
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gate with the control signal as the other gate input, and connect the gate
outputs to the adder. The final circuit for an adder/subtracter is shown in
Figure 3.9. The adder can be any of the circuits we described earlier: ripple-
carry or optimized for the application’s requirements and constraints.

As with Verilog models that perform addition, we normally write
models that apply the subtraction operator to vector values, rather than
directly implementing the Boolean equations for a subtracter. That way,
we can let the synthesis CAD tool decide on an appropriate subtracter
circuit to use depending on constraints that apply. Moreover, if the system
we are designing performs both addition and subtraction, the tool can
decide whether to use separate circuits for the operations, or to share
a single adder/subtracter between the operations. Naturally, it can only
share the circuit if operations are to be done at different times. We shall
see in later chapters how to control sequencing of operations. For now,
we will just consider combinational circuits that assume the existence of a
control signal for selecting between addition and subtraction operations.

EXAMPLE 3.10 Develop a Verilog behavioral model of an adder/subtracter
for 12-bit unsigned binary numbers. The circuit has data inputs x and y, a data
output s, a control input mode that is 0 for addition and 1 for subtraction, and
an output ovf_unf that is 1 when an addition overflow or a subtraction under-
flow occurs.

SOLUTION  The module performs the addition and subtraction using the +
and — operators on the vector operand values, as follows:

module adder_subtracter ( output [11:0] s,

output ovf_unf,
input [11:0] x, Yy,
input mode );

assign {ovf_unf, s} = Imode ? (x +y) : (x - y);

endmodule
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FIGURE 3.9 Adapting an
adder to perform addition and
subtraction.
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The assignment in the module uses the mode input to choose between addition
and subtraction of the operands. Since we want to use the carry-out or borrow-
out bit for the ovf_unf output, we assign to the concatenation of the two outputs
using the notation we saw in Example 3.7. Verilog implicitly extends the addi-
tion and subtraction operands to match the 13-bit size of the assignment target.
The least significant 12 bits of the result are used as the sum or difference output
value and the most significant bit as the ovf_unf value. In the case of addition,
the most significant bit is the carry out: 1 for overflow, or 0 otherwise. In the
case of subtraction, the most significant bit is the borrow out, not negated: 1 for
underflow, or 0 otherwise. Thus, we can use this bit for the ovf_unf output.

EXAMPLE 3.11 Develop a verification testbench for the adder/subtracter
that compares the result with the result of addition or subtraction performed on
values of type integer.

SOLUTION  The module, test_add_sub, has no ports, since it is a self-
contained testbench:
“timescale 1ns/1ns
module test_add_sub;
reg [11:0] x, y;
wire [11:0] s;
reg mode;
wire ovf_unf;

integer x_num, y_num, S_num;

task apply_test ( input integer x_test, y_test,

input mode_test );
begin
X = x_test; y = y_test; mode = mode_test;
#10;
end
endtask

adder_subtracter duv ( .x(x), .y(y), .s(s),
.mode(mode), .ovf_unf(ovf_unf) );

initial begin

apply_test( 0, 10, 0);
apply_test( 0, 10, 1);
apply_test( 10, 0, 0);
apply_test( 10, 0, 1);

apply_test(2**11, 2**11, 0);

(continued)
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apply_test(2**11, 2**11, 1);

// ... further test cases
#10 $finish;
end

always @* begin

#5
X_Num = X; y_num = y; s_num = S;
if (!mode)

if (x_num + y_num > 2**12-1) begin
if (lovf_unf)
$display("Addition overflow: ovf_unf should be 1");

end
else begin
if (! (lovf_unf && s_num = = x_num + y_num))
$display("Addition result incorrect");
end
else

if (x_num - y_num < 0) begin
if (lovf_unf)
$display("Subtraction underflow: ovf_unf should be 1");

end
else begin
if (! (lovf_unf && s_num = = x_num — y_num))
$display("Subtraction result incorrect");
end
end
endmodule

The module declares nets and variables to connect to the inputs and outputs of
the adder/subtracter instance, duv. The instance is followed by a task to apply
individual test cases. The initial block makes successive calls to the task to assign
a sequence of input values to the inputs, exercising both addition and subtrac-
tion with cases that produce normal results, overflow and underflow. Note the
use of the value 2**11, which is the way we write 21! in Verilog. The ** operator
performs exponentiation.

The always block responds to changes of input values to the adder/
subtracter, then waits for the adder/subtracter to produce outputs. The block
then assigns the unsigned input values to the variables x_num, y_num and
s_num of type integer. The block then checks the value of the mode input. If
it is 0, indicating addition, the block checks the numeric sum of the oper-
ands. Since it does this using the numeric variables, the result is not limited
to the range representable in 12 bits. Hence, the block can compare the true
sum with the largest value representable in 12 bits, namely, 212 — 1. If the
sum is larger, the block verifies that the ovf_unf output is 1. Otherwise, the
block verifies that the ovf_unf output is 0 and that the sum result is equal to
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the computed numeric sum. If mode is 1, indicating subtraction, the block
performs similar checks, but compares the numeric difference between the
operands with 0.

Note that the condition checks and choices between consequent actions in the
always block are written using Verilog if statements. Each if statement has
the form

if ( condition )
statement
else
statement

The first statement is performed if the condition is true, and the second state-
ment is performed if the condition is false. The keyword else and the the second
statement are optional, and are omitted if there is no action to perform if the
condition is false. Since an if statement is just one form of statement, we can nest
an if statement within an alternative of an outer if statement. The always block
illustrates this: it has an outer if statement, if (mode) ..., that has nested if state-
ments for each of the alternatives. If we need to perform more than one state-
ment in either alternative, we bracket the group of statements in the keywords
begin ... end, as shown in the example model. We also use begin ... end
bracketing if a nested if statement omits the else alternative. The bracketing
makes it clear that the else belongs to the outer if statement, not the inner if
statement.

Incrementing and Decrementing Unsigned Integers

There are two further arithmetic operations that we may perform on
unsigned binary integers and that are related to addition and subtrac-
tion. The increment operation involves adding the constant value 1,
and the decrement operation involves subtracting the constant value 1.
These operations arise quite frequently in digital systems, particularly as
part of counters, which generate increasing or decreasing sequences of
numbers.

A straightforward way to design an increment circuit would be to
use an adder with one operand input hard wired to the unsigned binary
representation of 1, namely, 0 ... 001. Alternatively, we could hard wire
one input to the representation of 0 and the carry in to 1. However, since
one input is a constant value, we can simplify the circuit considerably. To
see how, let’s return to the Boolean equations for an adder, Equations 3.2
and 3.3. If we substitute y; = 0, we can simplify to the equations

$i=xi®c¢;  Cir1=X°¢
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which are essentially those for a half adder (Equation 3.1 on page 96).
In other words, an incrementer can be formed using a chain of half
adders, as shown in Figure 3.10. The carry out of the most significant
bit can be used for an overflow condition signal. A decrementer can be
formed similarly by simplifying the equations for a subtracter with one
input hard wired to the representation of 0 and the negated borrow in
hard wired to 0.

Note that the incrementer of Figure 3.10 is a ripple-carry circuit, and
so has similar delay characteristics to a ripple-carry adder. In the same
way that we improved the performance of adders and subtracters, we
could improve the performance of incrementers and decrementers, for
example, using fast carry chains or carry-lookahead.

In Verilog models, we can express the increment or decrement opera-
tion by adding or subtracting the literal value 1 to an operand. For exam-
ple, given nets declared as

wire [15:0] x, s;

we could assign the incremented value of x to s with the statement

assign s = x + 1;

and we could assign the decremented value with the statement

assign s = x - 1;

Note that the value 1 is a numeric value, represented by Verilog in binary
form. The size of the representation is determined by the context. In this
example, it is 16 bits, since that is the size of the addition and subtraction
operands and the assignment target. Using unsized numeric values like
this is a convenient way to make our Verilog models more concise.
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FIGURE 3.10 Structure of
an incrementer for unsigned inte-
gers using half adder cells.
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Comparison of Unsigned Integers

In some applications, it may be necessary to compare two unsigned binary
integers for equality or inequality. Since there is exactly one code word
for each numeric value, we can test for equality of two unsigned binary
integers by testing whether the corresponding bits of each are the same.
When we introduced the XNOR gate in Section 2.1.1, we mentioned that
it is also called an equivalence gate, since its output is 1 only when its
two inputs are the same. Thus, we can test for equality of two unsigned
binary numbers using the circuit of Figure 3.11, called an equality com-
parator. In practice, an AND gate with many inputs is not workable, so
we would modify this circuit to better suit the chosen implementation
fabric. Better yet, we would express the comparison in a Verilog model
and let the synthesis tool choose the most appropriate circuit from its
library of cells.

Comparing two unsigned binary integers for inequality (greater than
or less than comparison) is somewhat more complicated. To test whether
a number x is greater than another number y, we can start by comparing
the most significant bits,x,, _{andy, _{.1fx,_ 1>y, _ 1, we know imme-
diately that x>y. Similarly, if x,, _{ <1y, _1, we know immediately that
x <v. In both cases, the final result is completely determined by compar-
ing just the most significant bits. If x,, _{=1y,,_ 1, the result depends on
the remaining bits, and is true if and only if x,, 5,  ¢>y,_2 o Wecan
now apply the same argument recursively, examining the next pair of bits,
and, if they are equal, continuing to less significant bits. Note that x; >
y; is only true for x;=1 and y; =0, that is, if x; - y; is true. These consid-
erations lead to the circuit of Figure 3.12, called a magnitude compara-
tor. We can use the same circuit to test for less than inequality simply by
exchanging the operands at the inputs.

In Verilog, we can express comparison operations on unsigned val-
ues using the ==, > and < operators. (Note the distinction between
the equality operator, ==, and the assignment operation, =.) We can
also use != for “not-equal,” <= for “less-than or equal,” and >= for
“greater-than or equal.” All of these operators yield a single-bit 0 or 1
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FIGURE 3.12 A magnitude
comparator to test for greater than
inequality.

result, which can also be interpreted as a Boolean false or true result,
respectively. This is convenient if the comparison occurs in the condition
part of an if statement, since a Boolean result is expected in that context.
It is also convenient if we want to assign the result to a net or variable,
for example:

assign gt = X > y;

EXAMPLE 3.12 Develop a Verilog model for a thermostat that has two
8-bit unsigned binary inputs representing the target temperature and the actual
temperature in degrees Fahrenheit (°F). Assume that both temperatures are above
freezing (32°F). The detector has two outputs: one to turn a heater on when the
actual temperature is more than 5°F below target, and one to turn a cooler on
when the actual temperature is more than 5°F above target.

SOLUTION The module definition is

module thermostat ( output heater_on, cooler_on,
input [7:0] target, actual );

assign heater_on
assign cooler_on

actual < target - 5;
actual > target + 5;

endmodule
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The assignments use the subtraction and addition operators to calculate the
thresholds for turning the heater and cooler on. They use the < and > operators
for performing the comparisons against the thresholds.

Scaling by a Constant Power of 2

Before we turn to multiplying unsigned integers in a general way, let’s
look at the specific case of scaling an unsigned integer by a given constant
value that is a power of 2. The simplest case is multiplying by 2. Recall
that the value x represented by the # bits x,,_ 1, x,,_2, ... , X is

x=x,_ 12" T4x, 2" 2+ + x52° (3.13)
If we multiply both sides by 2, we get
2x=x,_12"+x,_22" 1+ 4 x521 +(0)2°

which is an 7z + 1 bit number consisting of the bits of x, shifted left by
one position, and a 0 bit appended as the least significant bit. If we are
working with fixed-length integers, we can truncate the most significant
bit to yield an #-bit number, provided the truncated bit is 0. This opera-
tion is called a logical shift left by one position. We can take this form
of scaling further. To scale by a factor of 2K, we repeat the scaling-by-2
process k times. That is, we shift the bits left by k positions and append
k bits of 0 to the least significant end. If we need to truncate to an n-bit
result, the k& truncated bits must all be zero; otherwise an overflow has
occurred.

Dividing by 2 works similarly. If we divide both sides of Equation 3.13
by 2 we get

x/2=x,_ 12" 2 +x, 2" 3+ + x 20+ x52 7!

Since 2 "1 is the fraction 1, and we are dealing with integers only, we can
discard the last term in this equation. The result is an # — 1 bit number
consisting of the bits of x, except for the least significant bit, shifted right
by one position. If we are working with fixed-length integers, we can
append a 0 to the most significant end to maintain the value. This opera-
tion is called a logical shift right by one position.

We can take this further also. To divide by 2%, we shift the bits right
by k positions, discarding the k least significant bits and appending k bits
of 0 at the most significant end. If any of the discarded bits were nonzero,
the true result of the division is truncated toward 0.

Verilog provides two operators for shifting the bits of an unsigned
value. The << operator performs a logical shift left, and the >> operator
performs a logical shift right. For example, if the unsigned net or vari-
able s has the value 00010011, representing the value 19, the Verilog
expression
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s << 2

would yield the value 01001100, representing the value 761y. The
expression

s >> 2

would yield the value 00000100, representing the value 4.

Multiplication of Unsigned Integers

The final arithmetic operation on unsigned integers that we shall examine
is multiplication. A straightforward approach for multiplying x by y is to
expand the product out as follows:

Xy =x(y, 12" T4y, 52" 4+ y20)

=yn_1x2”71+yn_2x2”72+---—I— yOxZO

The largest value of the product is the product of the largest values of the
operands. For 7n-bit operands, that is

(2"—1)2"—1)=22"—2"—2"+1=22"—(2" "1 1)

which requires 27 bits to represent. If we provide this many bits for the
product, there is no possibility of overflow.

Each of the terms in the expanded product equation is called a
partial product, and consists of the product of a bit y;, the number x
and 2*. Recall that x2/ is just the bits of x shifted left by i positions. Also,
y; is either 0 or 1. If it is O, the partial product is 0. If it is 1, the partial
product is just the shifted version of x. Thus the partial product can be
formed by AND-ing each bit of x with y; and adding it, shifted i places
to the left, into the final product. The addition of the partial prod-
ucts can be performed by a series of adders, as shown in Figure 3.13.
This is a basic form of combinational multiplier, so called because it
is a combinational circuit (albeit a large one). In Chapter 4, we will
look at techniques that allow us to construct a sequential multiplier, in
which we add partial products one at a time in successive clock cycles.
A sequential multiplier trades off reduced area against time taken to
yield the product.

In the multiplier circuit of Figure 3.13, we have not specified what
kind of adder to use. We could use any of the adders we discussed
earlier, with the choice depending on the performance requirements
and area constraints that apply. We could also optimize the circuit by
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FIGURE 3.13 A combina-
tional multiplier constructed from
adders for partial products.
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combining parts of adjacent adders to reduce the overall propagation
delay through the structure. However, techniques for doing so are
beyond the scope of this book. They are discussed in detail in books
cited for further reading in Section 3.6. For our purposes, we will rely
on a synthesis CAD tool selecting an appropriate multiplier from the
resources available to it.

As with other arithmetic operations on unsigned binary integers, we
represent multiplication in Verilog models using an operator on unsigned
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values. The result of the * operator is an unsigned vector whose length
is the larger of the operand lengths. If we need the multiplication to be
performed with size that is the sum of the operand lengths, in order not
to overflow, we must extend the operand values before multiplying them.
For example, given the following declarations:

wire [ 7:0] x;
wire [13:0] y;
wire [21:0] p;

we could assign the product of x and y to p with the following
statement:

assign p = {14'b0, x} * {8'b0, y};

Alternatively, we could rely on Verilog’s implicit zero extension and just
write:

s

assign p = X * y;

Summary of Arithmetic Operations

In this section, we have examined several arithmetic operations that can
be performed on unsigned binary integers, including addition, subtrac-
tion and multiplication. We have deliberately avoided division, since it
is considerably more complex to implement than the other operations,
and arises less frequently in real-world applications. Hence, there are
relatively few application-specific digital systems that include circuits for
performing division. Division circuits are described in the books cited in
Section 3.6.

In our discussion, we focused on addition as a foundational operation
and examined a number of adder circuits that trade off between perfor-
mance and circuit area. This is a recurring theme in digital design, and is
well illustrated through consideration of adder circuits. We return to it
throughout this book.

For each operation, we also discussed how to represent the opera-
tion in Verilog models that use unsigned vectors. This approach allows
us to abstract away from the details of the digital circuits that implement
the arithmetic operations, relying on synthesis CAD tools to choose
appropriate circuits from libraries of cells that can be implemented in
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FIGURE 3.14 An optical
shaft encoder.
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FIGURE 3.15 Gray code
pattern on a shaft-encoder disk.
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the target fabric. As we shall see when we describe our implementation
methodology in more detail, we separate the concerns of specifying
the circuit behavior in Verilog and constraining the implementation.
We provide speed and area constraints for use by the synthesis tool
to determine an appropriate implementation. This approach helps us
manage the complexity of designing systems to perform numerical
computation.

3.1.3 GRAY CODES

The binary code that we have considered so far in this section is not the
only code for unsigned integers, though it is the most natural code to use
when we need to perform arithmetic operations. However, it has some
disadvantages in other applications. Consider a scenario in which we are
to design a system that uses a binary code to represent the angular posi-
tion of a rotating shaft. A common way to measure the position is with
a shaft encoder, illustrated in Figure 3.14. The disk attached to the shaft
has a number of concentric bands, each of which has opaque parts and
transparent parts. For each band, there is a light emitter and a detector.
The detector output is 1 when the light shines through the transparent
part of the band and 0 when the light is obscured by the opaque part of
the band. The collection of four decoder outputs forms a binary code for
the angular position of the shaft.

The pattern of transparency and opacity in the bands on the disk
is shown in Figure 3.15, and corresponds to a 4-bit Gray code, in
which adjacent code words differ by only one bit. A complete rota-
tion is divided into 16 segments, and between any two adjacent seg-
ments, exactly one band changes between transparent and opaque. This
prevents any minor error in positioning of the detectors from caus-
ing incorrect position codes. Suppose, in contrast, that we used the
unsigned binary code of Section 3.1.1 for the angular position. This
would give a code word of 0011 for segment 3 and 0100 for segment
4. A minor error in position of the detector for the second band might
cause it to sense the change from 0 to 1 before the detectors for the
right two bands sense the changes from 1 to 0. This would give a code
word of 0111, representing segment 7, for the angular position close to
the boundary between segments 3 and 4. It is difficult to manufacture
mechanical components with sufficient precision to avoid this kind of
error. The Gray code, on the other hand, is much more tolerant of posi-
tioning error, and so is widely used in electromechanical components
that measure position.

The 4-bit Gray code we have used in this example scenario is listed,
along with the corresponding decimal and unsigned binary codes, in
Table 3.3. Note how adjacent Gray code words differ in only one bit
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DECIMAL UNSIGNED GRAY CODE
BINARY
0 0000 0000
1 0001 0001
2 0010 0011
3 0011 0010
4 0100 0110
5 0101 0111
6 0110 o101 TABLE 3.3 4-bit Gray code,
7 0111 0100 compared to unsigned binary code.
8 1000 1100
9 1001 1101
10 1010 1111
11 1011 1110
12 1100 1010
13 1101 1011
14 1110 1001
15 1111 1000

position, unlike the corresponding unsigned binary code words. This is
not the only 4-bit Gray code; there are others that also have the property
of single-bit difference between adjacent code words. The code we have
used here is generated by the following rules, which allow us to generate
an n-bit Gray code:

» A 1-bit Gray code has the two code words 0 and 1.

» The first 27~ ! code words of an n-bit Gray code consist of the
code words of an (n — 1)-bit Gray code, in order, each with a 0 bit
appended as the left-most bit.

» The last 27~ ! code words of an n-bit Gray code consist of the code
words of an (n — 1)-bit Gray code, in reverse order, each with a 1 bit
appended as the left-most bit.

EXAMPLE 3.13 Develop a Verilog model of a code converter to convert
the 4-bit Gray code to a 4-bit unsigned binary integer.
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SOLUTION For the both the Gray-code input to the converter and the
binary-code output, we use vector ports. The module definition is

module gray_converter ( output reg [3:0] numeric_value,

always @*

input

case (gray_value)

4'b0000:
4'b0001:
4'b0011:
4'b0010:
4'b0110:
4'b0111:
4'b0101:
4'b0100:
4'b1100:
4'b1101:
4'b1111:
4'b1110:
4'b1010:
4'b1011:
4'b1001:
4'b1000:

endcase

endmodule

numeric_value =

numeric_value
numeric_value
numeric_value

numeric_value =
numeric_value =

numeric_value
numeric_value

numeric_value =
numeric_value =

numeric_value
numeric_value
numeric_value

numeric_value =
numeric_value =

numeric_value

[3:0] gray_value );

4'b0000;
4'b0001;
4'b0010;
4'b0011;
4'b0100;
4'b0101;
4'b0110;
4'p0111;
4'b1000;
4'p1001;
4'p1010;
4'b1011;
4'b1100;
4'p1101;
4'p1101;
4'b1111;

The module’s behavior takes the form of a truth table. It uses the Gray-code
value to select which unsigned numeric value to assign to the output.

1. How is a number x represented in binary as a sum of powers of 2?

2.  What range of values can be represented as an #-bit unsigned binary

number?

3. Write a Verilog declaration for a net x to represent unsigned

numbers in the range 0 to 8191.

4. Write the binary number 01011101 in octal and in hexadecimal.

Resize the unsigned binary number 10010011 to 12 bits and to 6
bits. In each case, does the result correctly represent the same value
as the original number?

6. Add the two 8-bit unsigned binary numbers 01001010 and
01100000 to get an 8-bit result. Does the addition overflow?

7.  What distinguishes a ripple-carry adder from a carry-lookahead

adder?
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8. Write Verilog assignments to add two nets s1 and s2 of type wire
[15:0] to get a result net s3 of the same type as s1 and s2 and a
carry-out net c_out.

9. Perform the 8-bit unsigned binary subtraction 01001010 — 01100000
to get an 8-bit result. Does the subtraction underflow?

10. Given a control signal add/sub, how can we adapt an unsigned
adder to perform both addition and subtraction?

11. Write a Verilog assignment that compares two unsigned nets a and b
and assigns 1 to a net smaller if a<<b, or 0 otherwise.

12. How is an unsigned binary number multiplied by 16? How is it
divided by 16?

13. How many bits are required for the product of two #-bit unsigned
binary numbers?

14. Why are Gray codes often used in electromechanical position sensors?

3.2 SIGNED INTEGERS

While many applications deal only with nonnegative integers, there are
others that deal with integers that range over both positive and negative
values. In this section we will explore a binary code for signed integers
and see how to implement operations on these encoded values.

3.2.1 CODING SIGNED INTEGERS

The predominant encoding used in digital systems for signed integers is
called 2s complement. It is a special case of radix complement representa-
tion in which the radix (the base used for positional representation) is 2. We
will refer to the Further Reference books for details of general radix comple-
ment representations, and focus our attention here just on 2s complement.

A signed number is represented in 2s-complement form as a weighted
sum of powers of two, in a similar way to unsigned binary representation.
The difference is that, for an n-bit signed number, the weight of the left-
most bit is negative. An n-bit number x represents the value

x=—2x,_12" T4x, 52" 2+ +x520 (3.14)

This representation has a number of interesting and useful properties
that we will now explore. First, the most negative number that can be
represented has x,,_; =1 and all other bits 0, giving the value —2"~ 1.
The most positive number has x,,_{ =0 and all other bits 1, giving the
value 2”7 ' —1.If x,, _ 1 is 1, the number represented is negative, since the
sum of all the positively weighted powers of 2 is less than 27~ 1. Thus,
X, _ 1 serves as a sign bit: if it is 1, the number is negative, and if it is 0, the
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number is zero or positive. The range of numbers that can be represented
is not symmetric about zero, since the negation of —2”~ ! is one more
than the most positive number that can be represented.

EXAMPLE 3.14 What values are represented by the 8-bit 2s-complement
numbers 00110101 and 101101012

SOLUTION The first number is
IX2+1x24+1x22+1%x29=32+16+4+1=53

The second number is

—IX27HIX2S+ I X2+ 1x22+1x29=—128+32+16+4+1=—-75

While 2s-complement representation for signed integers predomi-
nates, there are other forms that are useful in some applications. One form,
signed magnitude, is analogous to our conventional decimal representa-
tion for signed integers, in which we write a sequence of decimal digits for
the magnitude of a number, preceded by a + or — sign to indicate whether
the number is positive or negative. In signed magnitude binary representa-
tion, we represent a signed number with a sequence of binary digits (bits),
preceded by a binary code for the sign of the number. Usually, we would
encode a — sign with 1 and a + sign with 0. While some early digital
computers used signed magnitude representation, there are a number of
disadvantages that make it uncommon in modern digital systems. For this
reason, we will not describe in any further detail, and instead refer to the
books listed in Section 3.6, Further Reading, for more information.

Representing Signed Integers in Verilog

We saw in Section 3.1.1 that we can use vectors and built-in arithme-
tic operators to deal with unsigned integers. For signed integers, we also
use vectors, but we include the keyword signed in their declarations, for
example:

wire signed [ 7:0] a;
reg signed [13:0] b;

The arithmetic operators then assume 2s-complement representation,
with the sign bit being the left-most bit in a vector and the least significant
bit being the right-most bit.

An important point to note is that, even though we might declare nets
or variables to be unsigned or signed, the interpretation of the bits of a
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value depends on the operator being applied and the declaration of the
other operand. If both operands to an arithmetic operation are signed, a
signed operation is performed. If either or both operations are unsigned,
an unsigned operation is performed. If we really want to interpret values
that are declared unsigned as representing signed values, we can use the
$signed conversion operation, for example:

wire [11:0] s1;
wire signed [11:0] s2;

assign s2 = $signed(sl); // sl is known to be less than 2**11

Similarly, if we want to interpret values declared signed as represent-
ing unsigned values, we use the $unsigned conversion operation, for
example:

assign sl= $unsigned(s2); // s2 is known to be nonnegative

We also mentioned the abstract numeric type integer in Section 3.1.1,
showing how it can be used for nonnegative numbers. In fact, the inte-
ger type represents numbers that can be positive or negative, provided
their 2s-complement representation can fit within 32 bits. We can perform
arithmetic operations on values of type integer, and we can mix inte-
ger with unsigned and signed net and variable values. The type integer is
really just a signed variable type whose size is fixed at 32 bits.

Octal and Hexadecimal Codes for Signed Integers

We saw in Section 3.1.1 that we could use octal or hexadecimal codes
for unsigned integers. We can also use octal and hexadecimal for
2s-complement signed integers. However, when we do so, we don’t usually
think in terms of signed octal or signed hexadecimal numbers. Instead, we
just use octal or hexadecimal as a shorthand notation for the vector of
bits. We divide the vector into groups of three bits (for octal) or four bits
(for hexadecimal) and substitute the corresponding octal or hexadecimal
digit for each group.

EXAMPLE 3.15 The 12-bit 2s-complement representation of 844 is
001101001100. Express the bit vector in hexadecimal.

SOLUTION Dividing into groups of four bits, we get 0011 0100 1100.
Substituting hexadecimal digits for the 4-bit groups gives 34Cy4.
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EXAMPLE 3.16 The 10-bit 2s-complement representation of —42 is
1111010110. Express the bit vector in octal.

SOLUTION Dividing into groups of three bits, we get 1 111 010 110.
Substituting octal digits for the 3-bit groups gives 1726g. When reading this
octal number, we need to understand that it represents 10 bits. The right-most
three digits represent 9 bits, and the left-most digit represents just one bit, the
sign bit. Since the sign bit is 1, the number is negative, even though the octal
number does not include a — sign.

3.2.2 OPERATIONS ON SIGNED INTEGERS

As with unsigned numbers and binary codes in general, we can perform
operations on signed integers that don’t rely on their numeric interpreta-
tion, such as selecting among several encoded numbers using multiplex-
ers. In this section, we will describe operations that relate to the numeric
interpretation, such as arithmetic operations. Most of these operations
are implemented in a similar way to their counterparts for unsigned
integers.

Resizing Signed Integers

The resizing operation on unsigned integers simply involved appending
or truncating leading zeros to reach the desired length of representation
while maintaining the same numeric value. With 2s-complement num-
bers, however, the left-most bit is the sign bit, so appending or truncating
leading zeros will not work in general. Let’s consider the two cases of
nonnegative and negative numbers, respectively.

For nonnegative numbers, the sign bit is 0, and the remaining bits
constitute the magnitude of the number. In this case, the 2s-complement
representation is the same as the unsigned representation, and zero extend-
ing it maintains the same value. We can also truncate leading zeros, as we
did for unsigned numbers, provided both that none of the truncated bits is
1 and that the left-most bit of the result is 0. Were the left-most bit of the
result 1, that would imply a negative result, which would be incorrect. For
example, the 8-bit 2s-complement representation of 414, is 00101001.
Truncating this to 6 bits would give 101001, which, interpreted as a
2s-complement number, is —23. The problem is that 41, cannot be rep-
resented in 6-bit 2s-complement.

For negative numbers, the sign bit is 1. We can extend an #-bit negative
number to m bits by appending leading 1 bits. To see that this conserves
the negative numeric value, consider the value represented by a negative
number x:

x=-2""1qx, 527724 45,20 (3.15)
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Extending this with leading 1 bits gives the 2s-complement number
—omlpom= 2oy, 52" 4 +x20 (3.16)
We can make use of the following identity:
gk k=14 9k=2, 4 904 (3.17)
Expanding the first term in Equation 3.16 using this identity gives
—om=2_  _on=1_on=2_ _50_4
+2m 2o e 27T 2 4 xg20
=-2""2— . =20 14x, 52" 24 4 x20
== (2" 2420 ) b, 2" 2 x20
=2 x50 2 xg20=x

We can argue similarly to show that, for a negative number, we can trun-
cate to a smaller length by truncating leading 1 bits, provided the left-
most bit of the result is 1.

In summary, for a 2s-complement signed integer, extending to a
greater length involves replicating the sign bit to the left. This is called
sign extension, and preserves the numeric value, be it positive or negative.
A circuit to implement sign extension of an #-bit signal x to an m-bit
signal y is shown in Figure 3.16. We can truncate by discarding the
left-most bits, provided all of the discarded bits and the resulting sign bit
are the same as the original sign bit. The circuit implementation for trun-
cation from m bits to # bits is the same as for truncation of an unsigned
value, shown in Figure 3.2, and just involves leaving the left-most 7 —#n
bits unconnected. The problem that might arise is that the value repre-
sented in m bits might be larger in magnitude than can be represented
in 7 bits. Usually, this situation does not arise, since we only reduce the
number of bits when we know that the value must be within the range

xO yO

x] yl

xn -1 yn -1
yn
ym -2
ym -1
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FIGURE 3.16 Animplemen-
tation of sign extension in a circuit.
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representable by the smaller number of bits. We might arrive at that
conclusion by analyzing the arithmetic operations performed to derive
the larger-sized value.

We can express sign extension of a signed value in Verilog using the
bit-replication notation to replicate the sign bit. For example given nets
declared as

wire signed [ 7:0] x;
wire signed [15:0] y;

we can write the following assignment to sign extend the value of x and
assign it to y:

assign y = {{8{x[71}}, x};

The notation {n{...}} specifies n replications of the bits inside the inner
braces.

Sign extension or truncation of a signed value in a Verilog model
also occurs implicitly when we assign the value to a target that is
of a different length. For example, we can rewrite the above assignment
statement as

assign y = x; // x is sign-extended to 16 bits

Similarly, we can write the following assignment to truncate the value of
y and assign it to x:

assign x = y; // y is truncated to 8 bits

Negating Signed Integers

Since we can represent both positive and negative numbers using 2s-
complement encoding, it makes sense to consider negating a number. The
steps needed to perform negation of a number x are first to complement
each bit of x (that is, change each 0 to 1 and each 1 to 0), and then to
add 1. We can prove that this yields the 2s-complement representation of
—x. We need to use the bit identity x; = 1 — x; together with the identity in
Equation 3.17. The proof is
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X+t1=—(1—2x,_1)2" "+ (1—x,_2)2" 2+ -+ (1—x5)2°+1
=20y, q2r a2 502 42052041
:_<_Xn,1 2”71+xn,22”72+---+x020)

=2l =24 42049

=—x—2r"lpn=1—o_y

EXAMPLE 3.1I7 Determine the 8-bit 2s-complement representation of —43.

SOLUTION  The 8-bit 2s-complement representation of 43 is 00101011.
Complementing this gives 11010100. Adding 1 gives 11010101, which is the
required result.

Recall that the range of numbers representable in 2s-complement form
is not symmetric about zero. Consider what happens if we try to comple-
ment and add 1 to the representation of —2” !, which is 100 ... 0. Com-
plementing gives 011 ... 1. Adding 1 to this gives 100 ... 0, which is the
negative number we started with. So if we are to negate a 2s-complement
number, we need either to sign extend it by one bit to allow for this case,
or be sure that the value —2” ~ ! cannot occur as input.

In Verilog models, we express negation of a signed value with the
prefix — operator. For example, to assign the negation of a net x to a net
y, we would write:

assign y = -X;

Addition of Signed Integers

We can add two 2s-complement numbers x and y using much the same
procedure that we used for unsigned binary numbers. The main differ-
ence lies in the way we deal with the sign bit, which has a negative
weight of —2” 1. In order to understand how 2s-complement addition
works, we 