
Complete Guide: Compiling Festival 1.96 on Modern
Linux and Creating a Debian Package

This comprehensive guide documents the complete process for successfully compiling

Festival Speech Synthesis System version 1.96 on modern Linux systems with current

GCC compilers, and packaging it as a Debian package with high-quality Nitech HTS

voices.
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Prerequisites

Install required development libraries:

Step 1: Download Required Files

Download all necessary files from http://festvox.org/packed/festival/1.96/ :

bash

sudo apt-get update

sudo apt-get install build-essential libncurses5-dev libtinfo-dev alsa-utils

https://claude.ai/chat/09befa9c-f533-48a0-97fd-932f4458d485#prerequisites
https://claude.ai/chat/09befa9c-f533-48a0-97fd-932f4458d485#prerequisites
https://claude.ai/chat/09befa9c-f533-48a0-97fd-932f4458d485#step-1-download-required-files
https://claude.ai/chat/09befa9c-f533-48a0-97fd-932f4458d485#step-1-download-required-files
https://claude.ai/chat/09befa9c-f533-48a0-97fd-932f4458d485#step-2-extract-all-archives
https://claude.ai/chat/09befa9c-f533-48a0-97fd-932f4458d485#step-2-extract-all-archives
https://claude.ai/chat/09befa9c-f533-48a0-97fd-932f4458d485#step-3-modify-gcc-configuration-for-speech-tools
https://claude.ai/chat/09befa9c-f533-48a0-97fd-932f4458d485#step-3-modify-gcc-configuration-for-speech-tools
https://claude.ai/chat/09befa9c-f533-48a0-97fd-932f4458d485#step-4-compile-speech-tools-library
https://claude.ai/chat/09befa9c-f533-48a0-97fd-932f4458d485#step-4-compile-speech-tools-library
https://claude.ai/chat/09befa9c-f533-48a0-97fd-932f4458d485#step-5-modify-gcc-configuration-for-festival
https://claude.ai/chat/09befa9c-f533-48a0-97fd-932f4458d485#step-5-modify-gcc-configuration-for-festival
https://claude.ai/chat/09befa9c-f533-48a0-97fd-932f4458d485#step-6-configure-festival-installation-paths
https://claude.ai/chat/09befa9c-f533-48a0-97fd-932f4458d485#step-6-configure-festival-installation-paths
https://claude.ai/chat/09befa9c-f533-48a0-97fd-932f4458d485#step-7-compile-festival
https://claude.ai/chat/09befa9c-f533-48a0-97fd-932f4458d485#step-7-compile-festival
https://claude.ai/chat/09befa9c-f533-48a0-97fd-932f4458d485#step-8-test-festival
https://claude.ai/chat/09befa9c-f533-48a0-97fd-932f4458d485#step-8-test-festival
https://claude.ai/chat/09befa9c-f533-48a0-97fd-932f4458d485#step-9-download-and-install-nitech-hts-voices
https://claude.ai/chat/09befa9c-f533-48a0-97fd-932f4458d485#step-9-download-and-install-nitech-hts-voices
https://claude.ai/chat/09befa9c-f533-48a0-97fd-932f4458d485#step-10-create-debian-package
https://claude.ai/chat/09befa9c-f533-48a0-97fd-932f4458d485#step-10-create-debian-package
https://claude.ai/chat/09befa9c-f533-48a0-97fd-932f4458d485#step-11-install-and-test-the-package
https://claude.ai/chat/09befa9c-f533-48a0-97fd-932f4458d485#step-11-install-and-test-the-package
https://claude.ai/chat/09befa9c-f533-48a0-97fd-932f4458d485#automated-build-script
https://claude.ai/chat/09befa9c-f533-48a0-97fd-932f4458d485#automated-build-script


Alternative: To download all files automatically:

Step 2: Extract All Archives

Extract everything in the same parent directory:

The lexicons and voices will automatically extract into festival/lib/ .

Step 3: Modify GCC Configuration for Speech Tools

Modern linkers require special handling for duplicate symbols in old code.

Edit the GCC defaults file:

bash

mkdir -p ~/app_installs/festival/196/build

cd ~/app_installs/festival/196/build

# Download core components

wget http://festvox.org/packed/festival/1.96/speech_tools-1.2.96-beta.tar.gz

wget http://festvox.org/packed/festival/1.96/festival-1.96-beta.tar.gz

# Download lexicons (required)

wget http://festvox.org/packed/festival/1.96/festlex_CMU.tar.gz

wget http://festvox.org/packed/festival/1.96/festlex_POSLEX.tar.gz

# Download at least one voice

wget http://festvox.org/packed/festival/1.96/festvox_kallpc16k.tar.gz

bash

wget -r -np -nH --cut-dirs=3 -R "index.html*" -e robots=off --wait=1 \

  http://festvox.org/packed/festival/1.96/

bash

cd ~/app_installs/festival/196/build

tar xzf speech_tools-1.2.96-beta.tar.gz

tar xzf festival-1.96-beta.tar.gz

tar xzf festlex_CMU.tar.gz

tar xzf festlex_POSLEX.tar.gz

tar xzf festvox_kallpc16k.tar.gz



Add -Wl,--allow-multiple-definition  to all *_LINKFLAGS  lines. Find these lines and modify

them:

Save and exit (Ctrl+X, Y, Enter).

Step 4: Compile Speech Tools Library

Configure and compile Speech Tools with compatibility flags:

Key compiler flags explained:

• -fpermissive : Downgrades C++ errors to warnings for old code

• -std=c++98 : Uses C++98 standard that Festival was designed for

• -D_GLIBCXX_USE_CXX11_ABI=0 : Forces old C++ ABI for compatibility with modern

systems (CRITICAL)

• -DSUPPORT_EDITLINE : Enables command-line editing features

Expected result: Compilation should complete with a "Remove Links:" message

showing successful build.

Step 5: Modify GCC Configuration for Festival

bash

cd ~/app_installs/festival/196/build/speech_tools

nano config/compilers/gcc_defaults.mak

make

DEBUG_LINKFLAGS = -g -Wl,--allow-multiple-definition

WARN_LINKFLAGS = -Wall -Wl,--allow-multiple-definition

VERBOSE_LINKFLAGS = -Wl,--allow-multiple-definition

OPTIMISE_LINKFLAGS = -O$(OPTIMISE) -Wl,--allow-multiple-definition

PROFILE_prof_LINKFLAGS = -p -Wl,--allow-multiple-definition

PROFILE_gprof_LINKFLAGS = -pg -Wl,--allow-multiple-definition

SHARED_LINKFLAGS = -fno-shared-data -Wl,--allow-multiple-definition

STATIC_LINKFLAGS = -static -Wl,--allow-multiple-definition

bash

cd ~/app_installs/festival/196/build/speech_tools

./configure

make CXXFLAGS="-O0 -g -Wall -fpermissive -std=c++98 -D_GLIBCXX_USE_CXX11_ABI=0 -DSUPPORT_EDITLINE"



Festival needs the same linker flags as Speech Tools. First, run configure to generate

the config files:

Then, if config/compilers/gcc_defaults.mak  exists, edit it:

Add the same -Wl,--allow-multiple-definition  to all *_LINKFLAGS  lines as in Step 3.

Note: If this file doesn't exist, Festival will inherit the compiler settings from Speech

Tools, which is acceptable.

Step 6: Configure Festival Installation Paths

CRITICAL STEP: By default, Festival compiles with hardcoded paths pointing to the

build directory. We need to change this so the installed Festival looks for libraries in /

usr/local/share/festival/ .

Edit the project configuration:

Find the line:

Comment it out and add the installation path:

Alternative method (more robust):

bash

cd ~/app_installs/festival/196/build/festival

./configure

bash

nano config/compilers/gcc_defaults.mak

bash

cd ~/app_installs/festival/196/build/festival

nano config/project.mak

make

FTLIBDIR = $(FESTIVAL_HOME)/lib

make

#FTLIBDIR = $(FESTIVAL_HOME)/lib

FTLIBDIR = /usr/local/share/festival



Verify the change:

Should show:

Why this matters: This tells Festival to look for its library files in /usr/local/share/

festival/  at runtime, instead of looking in your build directory. Without this change,

Festival will only work from the build directory.

Save and exit.

Step 7: Compile Festival

Compile Festival with matching flags:

Important: Use the same compiler flags as Speech Tools for ABI compatibility. The -

D_GLIBCXX_USE_CXX11_ABI=0  flag is absolutely critical.

Step 8: Test Festival

Test that Festival compiles and runs from the build directory:

At the Festival prompt:

bash

cd ~/app_installs/festival/196/build/festival

sed -i '/^FTLIBDIR = \$(FESTIVAL_HOME)\/lib$/s/^/#/' config/project.mak

echo "FTLIBDIR = /usr/local/share/festival" >> config/project.mak

bash

grep FTLIBDIR config/project.mak

#FTLIBDIR = $(FESTIVAL_HOME)/lib

FTLIBDIR = /usr/local/share/festival

bash

cd ~/app_installs/festival/196/build/festival

make CXXFLAGS="-O0 -g -Wall -fpermissive -std=c++98 -D_GLIBCXX_USE_CXX11_ABI=0"

bash

cd ~/app_installs/festival/196/build/festival

./bin/festival



You'll see "Linux: can't open /dev/dsp" - this is expected and normal. We'll configure

ALSA audio in the package.

Verify the path is correct:

This should show /usr/local/share/festival/...  NOT your build directory path. If it shows

your build directory, go back to Step 6 and ensure FTLIBDIR was set correctly.

Exit Festival:

Step 9: Download and Install Nitech HTS Voices

The Nitech HTS voices are high-quality voices that work specifically with Festival 1.96.

Download the Nitech Voices

Using the mirrored archive (recommended):

This extracts individual voice archive files. Now extract all of them:

After extraction, you'll have a lib/  directory structure containing all the voices and

hts.scm .

scheme

festival> (SayText "Hello world, Festival is working!")

scheme

festival> (car load-path)

scheme

festival> (quit)

bash

cd ~/app_installs/festival/196/build

wget http://erewhon.superkuh.com/nitech_voices_for_festival_196.tar.gz

tar xzf nitech_voices_for_festival_196.tar.gz

bash

# Extract all voice archives

for f in festvox_nitech_us_*_arctic_hts-2.1.tar.bz2; do

tar xjf "$f"

done



Install Voices to System Location (Optional for Testing)

Note: This step is optional if you're going straight to creating the DEB package, as the

package will include these files.

Step 10: Create Debian Package

Now we'll package everything into a distributable .deb  file.

Create Package Directory Structure

Copy Festival Binaries

bash

cd ~/app_installs/festival/196/build

# Create voice directory

sudo mkdir -p /usr/local/share/festival/voices/us

# Copy all Nitech voices from the lib directory

sudo cp -r lib/voices/us/* /usr/local/share/festival/voices/us/

# Copy the HTS engine support file

sudo cp lib/hts.scm /usr/local/share/festival/hts.scm

bash

cd ~/app_installs/festival/196/build

# Create directory structure

mkdir -p festival-1.96-deb/DEBIAN

mkdir -p festival-1.96-deb/usr/local/bin

mkdir -p festival-1.96-deb/usr/local/share/festival/voices/us

mkdir -p festival-1.96-deb/usr/local/share/doc/festival

mkdir -p festival-1.96-deb/etc/festival



Copy Festival Libraries and Data

Copy Documentation

Create System-Wide Configuration

Create the configuration file that Festival will actually load:

bash

# Copy Festival binaries

cp festival/bin/festival festival-1.96-deb/usr/local/bin/

cp festival/bin/festival_client festival-1.96-deb/usr/local/bin/

cp festival/bin/text2wave festival-1.96-deb/usr/local/bin/

# Copy Speech Tools utilities

cp speech_tools/bin/ch_wave festival-1.96-deb/usr/local/bin/

cp speech_tools/bin/ch_track festival-1.96-deb/usr/local/bin/

cp speech_tools/bin/wagon festival-1.96-deb/usr/local/bin/

bash

# Copy Festival core libraries

cp -r festival/lib/* festival-1.96-deb/usr/local/share/festival/

# Copy Nitech voices from the extracted lib directory

cp -r lib/voices/us/* festival-1.96-deb/usr/local/share/festival/voices/us/

# Copy HTS engine support

cp lib/hts.scm festival-1.96-deb/usr/local/share/festival/

bash

cp festival/README festival-1.96-deb/usr/local/share/doc/festival/ 2>/dev/null || true

cp festival/ACKNOWLEDGMENTS festival-1.96-deb/usr/local/share/doc/festival/ 2>/dev/null || true

cp festival/COPYING festival-1.96-deb/usr/local/share/doc/festival/ 2>/dev/null || true



Also create a reference copy in /etc/festival/ :

Create Control File

Detect your architecture and create the control file:

bash

cat > festival-1.96-deb/usr/local/share/festival/siteinit.scm << 'EOF'

;;; System-wide Festival configuration

; Use ALSA for audio output

(Parameter.set 'Audio_Method 'Audio_Command)

(Parameter.set 'Audio_Command "aplay -q -c 1 -t raw -f s16 -r $SR $FILE")

; Set default voice to SLT (high-quality female voice)

(set! voice_default 'voice_nitech_us_slt_arctic_hts)

EOF

bash

cat > festival-1.96-deb/etc/festival/siteinit.scm << 'EOF'

;;; System-wide Festival configuration

;;; Note: The active configuration is in /usr/local/share/festival/siteinit.scm

;;; This file is for reference only.

; Use ALSA for audio output

(Parameter.set 'Audio_Method 'Audio_Command)

(Parameter.set 'Audio_Command "aplay -q -c 1 -t raw -f s16 -r $SR $FILE")

; Set default voice to SLT (high-quality female voice)

(set! voice_default 'voice_nitech_us_slt_arctic_hts)

EOF



Note: Change the Maintainer field to your actual name and email.

Create Post-Install Script

This script ensures the audsp  binary has execute permissions (critical for --tts  mode):

bash

ARCH=$(dpkg --print-architecture)

cat > festival-1.96-deb/DEBIAN/control << EOF

Package: festival

Version: 1.96-nitech1

Section: sound

Priority: optional

Architecture: $ARCH

Depends: libc6 (>= 2.31), libstdc++6 (>= 10), libncurses6, libtinfo6, alsa-utils

Maintainer: Your Name <your.email@example.com>

Description: Festival Speech Synthesis System with Nitech HTS Voices

 Festival is a general multi-lingual speech synthesis system developed

 at CSTR (Centre for Speech Technology Research). It offers a full text

 to speech system with various APIs, as well as an environment for

 development and research of speech synthesis techniques.

 .

 This is version 1.96 (July 2004) compiled for modern Linux systems

 with GCC compatibility patches.

 .

 This package includes:

  - Festival speech synthesis engine

  - Speech Tools utilities

  - CMU and POSLEX lexicons

  - Nitech HTS voices (high-quality parametric synthesis)

  - US English diphone voices

  - Pre-configured ALSA audio output

 .

 Available voices include:

  - nitech_us_slt_arctic_hts (female, high quality, default)

  - nitech_us_awb_arctic_hts (male)

  - nitech_us_bdl_arctic_hts (male)

  - nitech_us_clb_arctic_hts (female)

  - nitech_us_rms_arctic_hts (male)

  - nitech_us_jmk_arctic_hts (male)

EOF



Set Correct Permissions

This is critical - improper permissions will cause the --tts  mode to fail:

bash

cat > festival-1.96-deb/DEBIAN/postinst << 'EOF'

#!/bin/bash

set -e

# Ensure audsp binary is executable (critical for --tts mode)

find /usr/local/share/festival -type f -name "audsp" -exec chmod 755 {} \; 2>/dev/null || true

echo ""

echo "Festival 1.96 with Nitech HTS voices has been installed."

echo ""

echo "Quick tests:"

echo "  echo 'Hello world' | festival --tts"

echo "  echo \"Hello world\" | text2wave | aplay"

echo "  echo '(SayText \"Hello world\")' | festival"

echo ""

echo "Convert text to WAV file:"

echo "  echo \"Hello world\" | text2wave -o output.wav"

echo ""

echo "Interactive mode:"

echo "  festival"

echo "  festival> (SayText \"Hello world\")"

echo ""

echo "Default voice: nitech_us_slt_arctic_hts (female)"

echo "Configuration: /usr/local/share/festival/siteinit.scm"

echo ""

exit 0

EOF

chmod 755 festival-1.96-deb/DEBIAN/postinst



Why the audsp permissions matter: Festival's --tts  mode uses the audsp  (audio

spooler) binary to handle audio output. If this binary doesn't have execute permissions,

you'll get "pipe_open: failed to start audsp" errors.

Build the DEB Package

Verify the Package

Check package contents and metadata:

bash

# Set ownership to root (required for proper package installation)

sudo chown -R root:root festival-1.96-deb/

# Ensure main binaries are executable

sudo chmod 755 festival-1.96-deb/usr/local/bin/*

# Make sure audsp binary is executable (CRITICAL for --tts mode)

sudo find festival-1.96-deb/usr/local/share/festival -type f -name "audsp" -exec chmod 755 {} \;

# Make sure any other binaries in festival lib are executable

sudo find festival-1.96-deb/usr/local/share/festival/bin -type f -exec chmod 755 {} \; 2>/dev/null || true

# Set standard directory and file permissions

sudo find festival-1.96-deb/usr/local/share/festival -type d -exec chmod 755 {} \;

sudo find festival-1.96-deb/usr/local/share/festival -type f -exec chmod 644 {} \;

# Re-apply executable permissions to binaries (in case the above made them non-executable)

sudo find festival-1.96-deb/usr/local/share/festival -type f -name "audsp" -exec chmod 755 {} \;

sudo find festival-1.96-deb/usr/local/share/festival/bin -type f -exec chmod 755 {} \; 2>/dev/null || true

bash

cd ~/app_installs/festival/196/build

# Build the package

sudo dpkg-deb --build festival-1.96-deb

# Rename to descriptive name

ARCH=$(dpkg --print-architecture)

sudo mv festival-1.96-deb.deb festival_1.96-nitech1_${ARCH}.deb

# Change ownership back to your user

sudo chown $USER:$USER festival_1.96-nitech1_${ARCH}.deb



The audsp entry should show rwxr-xr-x  (executable) permissions.

Step 11: Install and Test the Package

Install the Package

Test All Functionality

Test the different ways to use Festival:

Test Interactive Mode

bash

# List contents

dpkg -c festival_1.96-nitech1_amd64.deb

# Check package info

dpkg -I festival_1.96-nitech1_amd64.deb

# Verify audsp has execute permissions in the package

dpkg -c festival_1.96-nitech1_amd64.deb | grep audsp

bash

sudo dpkg -i festival_1.96-nitech1_amd64.deb

bash

# Test 1: Command-line TTS (--tts mode)

echo 'Hello world' | festival --tts

# Test 2: text2wave with aplay

echo "Hello world" | text2wave | aplay

# Test 3: Direct Scheme command

echo '(SayText "Hello world")' | festival

# Test 4: Create WAV file

echo "Hello world" | text2wave -o test.wav

aplay test.wav

bash

festival



In interactive mode:

Verify Installation Paths

Start Festival and verify it's using the correct paths:

Expected output:

• load-path  should show /usr/local/share/festival/...

• Audio_Method  should be Audio_Command

• Audio_Command  should be "aplay -q -c 1 -t raw -f s16 -r $SR $FILE"

Create Personal Configuration (Optional)

To customize Festival for your user, create ~/.festivalrc :

scheme

; List all available voices

festival> (voice.list)

; Test the default SLT voice (female)

festival> (SayText "This is the SLT female voice")

; Try other voices

festival> (voice_nitech_us_awb_arctic_hts)

festival> (SayText "This is the AWB male voice")

festival> (voice_nitech_us_clb_arctic_hts)

festival> (SayText "This is the CLB female voice")

; Exit

festival> (quit)

bash

festival

scheme

festival> (car load-path)

festival> (Parameter.get 'Audio_Method)

festival> (Parameter.get 'Audio_Command)



Automated Build Script

For convenience, an automated bash script is available that performs all these steps

automatically. Save this as build_festival_196_nitech.sh :

The script is available in the artifacts and includes:

• Automatic dependency checking

• All compilation steps with proper flags

• Correct FTLIBDIR configuration

• Proper permission setting for audsp

• Complete package creation

• Error handling and progress reporting

To use:

The script creates a festival196nitech  directory and builds everything automatically,

producing a ready-to-install .deb  package in about 10-15 minutes.

bash

cat > ~/.festivalrc << 'EOF'

;;; Personal Festival configuration

; Use ALSA for audio

(Parameter.set 'Audio_Method 'Audio_Command)

(Parameter.set 'Audio_Command "aplay -q -c 1 -t raw -f s16 -r $SR $FILE")

; Pitch adjustment: Speed up by 5% to raise pitch slightly

;(Parameter.set 'Audio_Command "aplay -q -c 1 -t raw -f s16 -r $(($SR*105/100)) $FILE")

; Set default voice

(set! voice_default 'voice_nitech_us_slt_arctic_hts)

; Volume boost (doubles amplitude)

(set! default_after_synth_hooks

    (list (lambda (utt) (utt.wave.rescale utt 2.0 t))))

EOF

bash

chmod +x build_festival_196_nitech.sh

./build_festival_196_nitech.sh



Troubleshooting

Issue: "malloc(): corrupted top size" error

Cause: Missing the -D_GLIBCXX_USE_CXX11_ABI=0  flag during compilation.

Solution: This flag is absolutely critical. Ensure you compiled both Speech Tools and

Festival with this flag. If not, go back to Steps 4 and 7 and recompile.

Issue: "can't open /dev/dsp" error

Cause: OSS audio system not available on modern Linux.

Solution: This is normal in interactive mode before configuration is loaded. The

package includes ALSA configuration in /usr/local/share/festival/siteinit.scm  which

handles this automatically. If you still get this error after installation, verify:

Issue: "pipe_open: failed to start audsp" or "Audio spooler has died

unexpectedly"

Cause: The audsp  binary doesn't have execute permissions.

Solution:

To verify audsp is executable:

Should show rwxr-xr-x  permissions.

Issue: Festival looks in wrong directory for libraries

Cause: FTLIBDIR  wasn't set correctly in config/project.mak  before compilation.

Solution: Verify Step 6 was completed correctly:

bash

cat /usr/local/share/festival/siteinit.scm

bash

sudo find /usr/local/share/festival -type f -name "audsp" -exec chmod 755 {} \;

bash

find /usr/local/share/festival -name "audsp" -exec ls -la {} \;



Should show: FTLIBDIR = /usr/local/share/festival

If not, you must recompile Festival after fixing this.

Issue: --tts  mode doesn't work but interactive mode does

Cause: The audsp  binary lacks execute permissions.

Solution: See "pipe_open: failed to start audsp" above.

Issue: Voice not found or "unbound variable" errors

Cause: Voices not properly installed or HTS engine support missing.

Solution: Verify files exist:

If missing, reinstall the package or copy the voices manually from the build directory.

Issue: Multiple definition linker errors during compilation

Cause: Missing -Wl,--allow-multiple-definition  flags.

Solution: Ensure you modified config/compilers/gcc_defaults.mak  in both Speech Tools

and Festival (Steps 3 and 5).

Uninstalling

To remove the package:

To remove including configuration files:

bash

cat festival/config/project.mak | grep FTLIBDIR

bash

ls -la /usr/local/share/festival/voices/us/nitech_us_slt_arctic_hts/

ls -la /usr/local/share/festival/hts.scm

bash

sudo dpkg -r festival

bash

sudo dpkg --purge festival



Directory Structure

After successful installation, the directory structure is:

Performance Notes

This guide uses -O0  (no optimization) for maximum compatibility. If you need better

performance, you can try -O2 :

However, test thoroughly as higher optimization may expose hidden bugs in the old

codebase.

Why Festival 1.96?

/usr/local/

├── bin/

│   ├── festival              # Main Festival executable

│   ├── festival_client       # Client for Festival server

│   ├── text2wave            # Convert text to WAV files

│   ├── ch_wave              # Speech Tools wave manipulation

│   ├── ch_track             # Speech Tools track manipulation

│   └── wagon                # CART tree builder

├── share/

│   └── festival/

│       ├── hts.scm          # HTS engine support

│       ├── init.scm         # Festival initialization

│       ├── siteinit.scm     # Site configuration (ALSA audio, default voice)

│       ├── etc/

│       │   └── */audsp      # Audio spooler binary (must be executable!)

│       ├── voices/

│       │   └── us/

│       │       ├── nitech_us_slt_arctic_hts/  # Female voice (default)

│       │       ├── nitech_us_awb_arctic_hts/  # Male voice

│       │       ├── nitech_us_clb_arctic_hts/  # Female voice

│       │       └── [other voices...]

│       ├── dicts/           # Lexicons

│       └── [other lib files]

└── share/doc/festival/      # Documentation

/etc/festival/

└── siteinit.scm            # Reference copy of configuration

bash

make CXXFLAGS="-O2 -Wall -fpermissive -std=c++98 -D_GLIBCXX_USE_CXX11_ABI=0 -DSUPPORT_EDITLINE"



Festival 1.96 is specifically required for compatibility with the Nitech HTS voices.

Newer Festival versions (2.x) are not backward compatible with these high-quality

voices.

Available Voices in This Package

The Nitech HTS voices included are:

• nitech_us_slt_arctic_hts - Female (most popular, default)

• nitech_us_awb_arctic_hts - Male

• nitech_us_bdl_arctic_hts - Male

• nitech_us_clb_arctic_hts - Female

• nitech_us_rms_arctic_hts - Male

• nitech_us_jmk_arctic_hts - Male

These are significantly higher quality than the default Festival voices and are well-

suited for applications requiring natural-sounding speech synthesis.

Summary of Critical Points

1. Compiler flags are essential: -D_GLIBCXX_USE_CXX11_ABI=0  is non-negotiable

for modern systems

2. Linker flags required: Add -Wl,--allow-multiple-definition  to both projects

3. Path configuration is critical: Modify FTLIBDIR  in config/project.mak  before

compiling

4. Compile order matters: Always compile Speech Tools before Festival

5. Include Nitech voices: They provide the best quality for this Festival version

6. Test before packaging: Verify Festival works from build directory first

7. Set proper permissions: Everything in the DEB must be owned by root

8. audsp must be executable: This is critical for --tts  mode to work

9. siteinit.scm location matters: Must be in /usr/local/share/festival/  not just /etc/

festival/

Distribution

Your final festival_1.96-nitech1_amd64.deb  package can be:



• Installed on any compatible Debian/Ubuntu system

• Shared with others

• Uploaded to a personal repository

• Distributed via file hosting

The package is completely self-contained and includes everything needed for high-

quality text-to-speech synthesis.

Testing Checklist

After installation, verify:

• ✓ echo 'test' | festival --tts  works (tests audsp permissions)

• ✓ echo 'test' | text2wave | aplay  works (tests audio pipeline)

• ✓ Interactive mode works: festival  then (SayText "test")

• ✓ Path is correct: (car load-path)  shows /usr/local/share/festival/...

• ✓ Audio configured: (Parameter.get 'Audio_Method)  shows Audio_Command

• ✓ Voices available: (voice.list)  shows nitech voices

• ✓ Can switch voices: (voice_nitech_us_awb_arctic_hts)  works

References

• Festival Homepage: http://www.cstr.ed.ac.uk/projects/festival/

• Festival Manual: http://www.cstr.ed.ac.uk/projects/festival/manual/

• Festival 1.96 Downloads: http://festvox.org/packed/festival/1.96/

• Nitech HTS Homepage: http://hts.sp.nitech.ac.jp/

• Mirrored Nitech Voices: http://erewhon.superkuh.com/

nitech_voices_for_festival_196.tar.gz

Conclusion

Following this guide results in a fully functional Festival 1.96 installation packaged as a

distributable Debian package with high-quality Nitech HTS voices. The entire process

takes about 30-45 minutes depending on compilation speed.

The resulting package provides professional-quality text-to-speech synthesis that works

on any modern Debian-based Linux distribution, with proper ALSA audio support and

the best available voices for Festival 1.96.
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