
Complete Guide: Compiling Festival 1.96 on Modern
Linux and Creating a Debian Package

This comprehensive guide documents the complete process for successfully compiling

Festival Speech Synthesis System version 1.96 on modern Linux systems with current

GCC compilers, and packaging it as a Debian package with high-quality Nitech HTS

voices.

Table of Contents

1. Prerequisites

2. Download Required Files

3. Extract All Archives

4. Modify GCC Configuration for Speech Tools

5. Compile Speech Tools Library

6. Modify GCC Configuration for Festival

7. Configure Festival Installation Paths

8. Compile Festival

9. Test Festival

10. Download and Install Nitech HTS Voices

11. Create Debian Package

12. Install and Test the Package

13. Automated Build Script

Prerequisites

Install required development libraries:

Step 1: Download Required Files

Download all necessary files from http://festvox.org/packed/festival/1.96/ :

bash

sudo apt-get update

sudo apt-get install build-essential libncurses5-dev libtinfo-dev alsa-utils

https://claude.ai/chat/09befa9c-f533-48a0-97fd-932f4458d485#prerequisites
https://claude.ai/chat/09befa9c-f533-48a0-97fd-932f4458d485#prerequisites
https://claude.ai/chat/09befa9c-f533-48a0-97fd-932f4458d485#step-1-download-required-files
https://claude.ai/chat/09befa9c-f533-48a0-97fd-932f4458d485#step-1-download-required-files
https://claude.ai/chat/09befa9c-f533-48a0-97fd-932f4458d485#step-2-extract-all-archives
https://claude.ai/chat/09befa9c-f533-48a0-97fd-932f4458d485#step-2-extract-all-archives
https://claude.ai/chat/09befa9c-f533-48a0-97fd-932f4458d485#step-3-modify-gcc-configuration-for-speech-tools
https://claude.ai/chat/09befa9c-f533-48a0-97fd-932f4458d485#step-3-modify-gcc-configuration-for-speech-tools
https://claude.ai/chat/09befa9c-f533-48a0-97fd-932f4458d485#step-4-compile-speech-tools-library
https://claude.ai/chat/09befa9c-f533-48a0-97fd-932f4458d485#step-4-compile-speech-tools-library
https://claude.ai/chat/09befa9c-f533-48a0-97fd-932f4458d485#step-5-modify-gcc-configuration-for-festival
https://claude.ai/chat/09befa9c-f533-48a0-97fd-932f4458d485#step-5-modify-gcc-configuration-for-festival
https://claude.ai/chat/09befa9c-f533-48a0-97fd-932f4458d485#step-6-configure-festival-installation-paths
https://claude.ai/chat/09befa9c-f533-48a0-97fd-932f4458d485#step-6-configure-festival-installation-paths
https://claude.ai/chat/09befa9c-f533-48a0-97fd-932f4458d485#step-7-compile-festival
https://claude.ai/chat/09befa9c-f533-48a0-97fd-932f4458d485#step-7-compile-festival
https://claude.ai/chat/09befa9c-f533-48a0-97fd-932f4458d485#step-8-test-festival
https://claude.ai/chat/09befa9c-f533-48a0-97fd-932f4458d485#step-8-test-festival
https://claude.ai/chat/09befa9c-f533-48a0-97fd-932f4458d485#step-9-download-and-install-nitech-hts-voices
https://claude.ai/chat/09befa9c-f533-48a0-97fd-932f4458d485#step-9-download-and-install-nitech-hts-voices
https://claude.ai/chat/09befa9c-f533-48a0-97fd-932f4458d485#step-10-create-debian-package
https://claude.ai/chat/09befa9c-f533-48a0-97fd-932f4458d485#step-10-create-debian-package
https://claude.ai/chat/09befa9c-f533-48a0-97fd-932f4458d485#step-11-install-and-test-the-package
https://claude.ai/chat/09befa9c-f533-48a0-97fd-932f4458d485#step-11-install-and-test-the-package
https://claude.ai/chat/09befa9c-f533-48a0-97fd-932f4458d485#automated-build-script
https://claude.ai/chat/09befa9c-f533-48a0-97fd-932f4458d485#automated-build-script

Alternative: To download all files automatically:

Step 2: Extract All Archives

Extract everything in the same parent directory:

The lexicons and voices will automatically extract into festival/lib/ .

Step 3: Modify GCC Configuration for Speech Tools

Modern linkers require special handling for duplicate symbols in old code.

Edit the GCC defaults file:

bash

mkdir -p ~/app_installs/festival/196/build

cd ~/app_installs/festival/196/build

Download core components

wget http://festvox.org/packed/festival/1.96/speech_tools-1.2.96-beta.tar.gz

wget http://festvox.org/packed/festival/1.96/festival-1.96-beta.tar.gz

Download lexicons (required)

wget http://festvox.org/packed/festival/1.96/festlex_CMU.tar.gz

wget http://festvox.org/packed/festival/1.96/festlex_POSLEX.tar.gz

Download at least one voice

wget http://festvox.org/packed/festival/1.96/festvox_kallpc16k.tar.gz

bash

wget -r -np -nH --cut-dirs=3 -R "index.html*" -e robots=off --wait=1 \

 http://festvox.org/packed/festival/1.96/

bash

cd ~/app_installs/festival/196/build

tar xzf speech_tools-1.2.96-beta.tar.gz

tar xzf festival-1.96-beta.tar.gz

tar xzf festlex_CMU.tar.gz

tar xzf festlex_POSLEX.tar.gz

tar xzf festvox_kallpc16k.tar.gz

Add -Wl,--allow-multiple-definition to all *_LINKFLAGS lines. Find these lines and modify

them:

Save and exit (Ctrl+X, Y, Enter).

Step 4: Compile Speech Tools Library

Configure and compile Speech Tools with compatibility flags:

Key compiler flags explained:

• -fpermissive : Downgrades C++ errors to warnings for old code

• -std=c++98 : Uses C++98 standard that Festival was designed for

• -D_GLIBCXX_USE_CXX11_ABI=0 : Forces old C++ ABI for compatibility with modern

systems (CRITICAL)

• -DSUPPORT_EDITLINE : Enables command-line editing features

Expected result: Compilation should complete with a "Remove Links:" message

showing successful build.

Step 5: Modify GCC Configuration for Festival

bash

cd ~/app_installs/festival/196/build/speech_tools

nano config/compilers/gcc_defaults.mak

make

DEBUG_LINKFLAGS = -g -Wl,--allow-multiple-definition

WARN_LINKFLAGS = -Wall -Wl,--allow-multiple-definition

VERBOSE_LINKFLAGS = -Wl,--allow-multiple-definition

OPTIMISE_LINKFLAGS = -O$(OPTIMISE) -Wl,--allow-multiple-definition

PROFILE_prof_LINKFLAGS = -p -Wl,--allow-multiple-definition

PROFILE_gprof_LINKFLAGS = -pg -Wl,--allow-multiple-definition

SHARED_LINKFLAGS = -fno-shared-data -Wl,--allow-multiple-definition

STATIC_LINKFLAGS = -static -Wl,--allow-multiple-definition

bash

cd ~/app_installs/festival/196/build/speech_tools

./configure

make CXXFLAGS="-O0 -g -Wall -fpermissive -std=c++98 -D_GLIBCXX_USE_CXX11_ABI=0 -DSUPPORT_EDITLINE"

Festival needs the same linker flags as Speech Tools. First, run configure to generate

the config files:

Then, if config/compilers/gcc_defaults.mak exists, edit it:

Add the same -Wl,--allow-multiple-definition to all *_LINKFLAGS lines as in Step 3.

Note: If this file doesn't exist, Festival will inherit the compiler settings from Speech

Tools, which is acceptable.

Step 6: Configure Festival Installation Paths

CRITICAL STEP: By default, Festival compiles with hardcoded paths pointing to the

build directory. We need to change this so the installed Festival looks for libraries in /

usr/local/share/festival/ .

Edit the project configuration:

Find the line:

Comment it out and add the installation path:

Alternative method (more robust):

bash

cd ~/app_installs/festival/196/build/festival

./configure

bash

nano config/compilers/gcc_defaults.mak

bash

cd ~/app_installs/festival/196/build/festival

nano config/project.mak

make

FTLIBDIR = $(FESTIVAL_HOME)/lib

make

#FTLIBDIR = $(FESTIVAL_HOME)/lib

FTLIBDIR = /usr/local/share/festival

Verify the change:

Should show:

Why this matters: This tells Festival to look for its library files in /usr/local/share/

festival/ at runtime, instead of looking in your build directory. Without this change,

Festival will only work from the build directory.

Save and exit.

Step 7: Compile Festival

Compile Festival with matching flags:

Important: Use the same compiler flags as Speech Tools for ABI compatibility. The -

D_GLIBCXX_USE_CXX11_ABI=0 flag is absolutely critical.

Step 8: Test Festival

Test that Festival compiles and runs from the build directory:

At the Festival prompt:

bash

cd ~/app_installs/festival/196/build/festival

sed -i '/^FTLIBDIR = \$(FESTIVAL_HOME)\/lib$/s/^/#/' config/project.mak

echo "FTLIBDIR = /usr/local/share/festival" >> config/project.mak

bash

grep FTLIBDIR config/project.mak

#FTLIBDIR = $(FESTIVAL_HOME)/lib

FTLIBDIR = /usr/local/share/festival

bash

cd ~/app_installs/festival/196/build/festival

make CXXFLAGS="-O0 -g -Wall -fpermissive -std=c++98 -D_GLIBCXX_USE_CXX11_ABI=0"

bash

cd ~/app_installs/festival/196/build/festival

./bin/festival

You'll see "Linux: can't open /dev/dsp" - this is expected and normal. We'll configure

ALSA audio in the package.

Verify the path is correct:

This should show /usr/local/share/festival/... NOT your build directory path. If it shows

your build directory, go back to Step 6 and ensure FTLIBDIR was set correctly.

Exit Festival:

Step 9: Download and Install Nitech HTS Voices

The Nitech HTS voices are high-quality voices that work specifically with Festival 1.96.

Download the Nitech Voices

Using the mirrored archive (recommended):

This extracts individual voice archive files. Now extract all of them:

After extraction, you'll have a lib/ directory structure containing all the voices and

hts.scm .

scheme

festival> (SayText "Hello world, Festival is working!")

scheme

festival> (car load-path)

scheme

festival> (quit)

bash

cd ~/app_installs/festival/196/build

wget http://erewhon.superkuh.com/nitech_voices_for_festival_196.tar.gz

tar xzf nitech_voices_for_festival_196.tar.gz

bash

Extract all voice archives

for f in festvox_nitech_us_*_arctic_hts-2.1.tar.bz2; do

tar xjf "$f"

done

Install Voices to System Location (Optional for Testing)

Note: This step is optional if you're going straight to creating the DEB package, as the

package will include these files.

Step 10: Create Debian Package

Now we'll package everything into a distributable .deb file.

Create Package Directory Structure

Copy Festival Binaries

bash

cd ~/app_installs/festival/196/build

Create voice directory

sudo mkdir -p /usr/local/share/festival/voices/us

Copy all Nitech voices from the lib directory

sudo cp -r lib/voices/us/* /usr/local/share/festival/voices/us/

Copy the HTS engine support file

sudo cp lib/hts.scm /usr/local/share/festival/hts.scm

bash

cd ~/app_installs/festival/196/build

Create directory structure

mkdir -p festival-1.96-deb/DEBIAN

mkdir -p festival-1.96-deb/usr/local/bin

mkdir -p festival-1.96-deb/usr/local/share/festival/voices/us

mkdir -p festival-1.96-deb/usr/local/share/doc/festival

mkdir -p festival-1.96-deb/etc/festival

Copy Festival Libraries and Data

Copy Documentation

Create System-Wide Configuration

Create the configuration file that Festival will actually load:

bash

Copy Festival binaries

cp festival/bin/festival festival-1.96-deb/usr/local/bin/

cp festival/bin/festival_client festival-1.96-deb/usr/local/bin/

cp festival/bin/text2wave festival-1.96-deb/usr/local/bin/

Copy Speech Tools utilities

cp speech_tools/bin/ch_wave festival-1.96-deb/usr/local/bin/

cp speech_tools/bin/ch_track festival-1.96-deb/usr/local/bin/

cp speech_tools/bin/wagon festival-1.96-deb/usr/local/bin/

bash

Copy Festival core libraries

cp -r festival/lib/* festival-1.96-deb/usr/local/share/festival/

Copy Nitech voices from the extracted lib directory

cp -r lib/voices/us/* festival-1.96-deb/usr/local/share/festival/voices/us/

Copy HTS engine support

cp lib/hts.scm festival-1.96-deb/usr/local/share/festival/

bash

cp festival/README festival-1.96-deb/usr/local/share/doc/festival/ 2>/dev/null || true

cp festival/ACKNOWLEDGMENTS festival-1.96-deb/usr/local/share/doc/festival/ 2>/dev/null || true

cp festival/COPYING festival-1.96-deb/usr/local/share/doc/festival/ 2>/dev/null || true

Also create a reference copy in /etc/festival/ :

Create Control File

Detect your architecture and create the control file:

bash

cat > festival-1.96-deb/usr/local/share/festival/siteinit.scm << 'EOF'

;;; System-wide Festival configuration

; Use ALSA for audio output

(Parameter.set 'Audio_Method 'Audio_Command)

(Parameter.set 'Audio_Command "aplay -q -c 1 -t raw -f s16 -r $SR $FILE")

; Set default voice to SLT (high-quality female voice)

(set! voice_default 'voice_nitech_us_slt_arctic_hts)

EOF

bash

cat > festival-1.96-deb/etc/festival/siteinit.scm << 'EOF'

;;; System-wide Festival configuration

;;; Note: The active configuration is in /usr/local/share/festival/siteinit.scm

;;; This file is for reference only.

; Use ALSA for audio output

(Parameter.set 'Audio_Method 'Audio_Command)

(Parameter.set 'Audio_Command "aplay -q -c 1 -t raw -f s16 -r $SR $FILE")

; Set default voice to SLT (high-quality female voice)

(set! voice_default 'voice_nitech_us_slt_arctic_hts)

EOF

Note: Change the Maintainer field to your actual name and email.

Create Post-Install Script

This script ensures the audsp binary has execute permissions (critical for --tts mode):

bash

ARCH=$(dpkg --print-architecture)

cat > festival-1.96-deb/DEBIAN/control << EOF

Package: festival

Version: 1.96-nitech1

Section: sound

Priority: optional

Architecture: $ARCH

Depends: libc6 (>= 2.31), libstdc++6 (>= 10), libncurses6, libtinfo6, alsa-utils

Maintainer: Your Name <your.email@example.com>

Description: Festival Speech Synthesis System with Nitech HTS Voices

 Festival is a general multi-lingual speech synthesis system developed

 at CSTR (Centre for Speech Technology Research). It offers a full text

 to speech system with various APIs, as well as an environment for

 development and research of speech synthesis techniques.

 .

 This is version 1.96 (July 2004) compiled for modern Linux systems

 with GCC compatibility patches.

 .

 This package includes:

 - Festival speech synthesis engine

 - Speech Tools utilities

 - CMU and POSLEX lexicons

 - Nitech HTS voices (high-quality parametric synthesis)

 - US English diphone voices

 - Pre-configured ALSA audio output

 .

 Available voices include:

 - nitech_us_slt_arctic_hts (female, high quality, default)

 - nitech_us_awb_arctic_hts (male)

 - nitech_us_bdl_arctic_hts (male)

 - nitech_us_clb_arctic_hts (female)

 - nitech_us_rms_arctic_hts (male)

 - nitech_us_jmk_arctic_hts (male)

EOF

Set Correct Permissions

This is critical - improper permissions will cause the --tts mode to fail:

bash

cat > festival-1.96-deb/DEBIAN/postinst << 'EOF'

#!/bin/bash

set -e

Ensure audsp binary is executable (critical for --tts mode)

find /usr/local/share/festival -type f -name "audsp" -exec chmod 755 {} \; 2>/dev/null || true

echo ""

echo "Festival 1.96 with Nitech HTS voices has been installed."

echo ""

echo "Quick tests:"

echo " echo 'Hello world' | festival --tts"

echo " echo \"Hello world\" | text2wave | aplay"

echo " echo '(SayText \"Hello world\")' | festival"

echo ""

echo "Convert text to WAV file:"

echo " echo \"Hello world\" | text2wave -o output.wav"

echo ""

echo "Interactive mode:"

echo " festival"

echo " festival> (SayText \"Hello world\")"

echo ""

echo "Default voice: nitech_us_slt_arctic_hts (female)"

echo "Configuration: /usr/local/share/festival/siteinit.scm"

echo ""

exit 0

EOF

chmod 755 festival-1.96-deb/DEBIAN/postinst

Why the audsp permissions matter: Festival's --tts mode uses the audsp (audio

spooler) binary to handle audio output. If this binary doesn't have execute permissions,

you'll get "pipe_open: failed to start audsp" errors.

Build the DEB Package

Verify the Package

Check package contents and metadata:

bash

Set ownership to root (required for proper package installation)

sudo chown -R root:root festival-1.96-deb/

Ensure main binaries are executable

sudo chmod 755 festival-1.96-deb/usr/local/bin/*

Make sure audsp binary is executable (CRITICAL for --tts mode)

sudo find festival-1.96-deb/usr/local/share/festival -type f -name "audsp" -exec chmod 755 {} \;

Make sure any other binaries in festival lib are executable

sudo find festival-1.96-deb/usr/local/share/festival/bin -type f -exec chmod 755 {} \; 2>/dev/null || true

Set standard directory and file permissions

sudo find festival-1.96-deb/usr/local/share/festival -type d -exec chmod 755 {} \;

sudo find festival-1.96-deb/usr/local/share/festival -type f -exec chmod 644 {} \;

Re-apply executable permissions to binaries (in case the above made them non-executable)

sudo find festival-1.96-deb/usr/local/share/festival -type f -name "audsp" -exec chmod 755 {} \;

sudo find festival-1.96-deb/usr/local/share/festival/bin -type f -exec chmod 755 {} \; 2>/dev/null || true

bash

cd ~/app_installs/festival/196/build

Build the package

sudo dpkg-deb --build festival-1.96-deb

Rename to descriptive name

ARCH=$(dpkg --print-architecture)

sudo mv festival-1.96-deb.deb festival_1.96-nitech1_${ARCH}.deb

Change ownership back to your user

sudo chown $USER:$USER festival_1.96-nitech1_${ARCH}.deb

The audsp entry should show rwxr-xr-x (executable) permissions.

Step 11: Install and Test the Package

Install the Package

Test All Functionality

Test the different ways to use Festival:

Test Interactive Mode

bash

List contents

dpkg -c festival_1.96-nitech1_amd64.deb

Check package info

dpkg -I festival_1.96-nitech1_amd64.deb

Verify audsp has execute permissions in the package

dpkg -c festival_1.96-nitech1_amd64.deb | grep audsp

bash

sudo dpkg -i festival_1.96-nitech1_amd64.deb

bash

Test 1: Command-line TTS (--tts mode)

echo 'Hello world' | festival --tts

Test 2: text2wave with aplay

echo "Hello world" | text2wave | aplay

Test 3: Direct Scheme command

echo '(SayText "Hello world")' | festival

Test 4: Create WAV file

echo "Hello world" | text2wave -o test.wav

aplay test.wav

bash

festival

In interactive mode:

Verify Installation Paths

Start Festival and verify it's using the correct paths:

Expected output:

• load-path should show /usr/local/share/festival/...

• Audio_Method should be Audio_Command

• Audio_Command should be "aplay -q -c 1 -t raw -f s16 -r $SR $FILE"

Create Personal Configuration (Optional)

To customize Festival for your user, create ~/.festivalrc :

scheme

; List all available voices

festival> (voice.list)

; Test the default SLT voice (female)

festival> (SayText "This is the SLT female voice")

; Try other voices

festival> (voice_nitech_us_awb_arctic_hts)

festival> (SayText "This is the AWB male voice")

festival> (voice_nitech_us_clb_arctic_hts)

festival> (SayText "This is the CLB female voice")

; Exit

festival> (quit)

bash

festival

scheme

festival> (car load-path)

festival> (Parameter.get 'Audio_Method)

festival> (Parameter.get 'Audio_Command)

Automated Build Script

For convenience, an automated bash script is available that performs all these steps

automatically. Save this as build_festival_196_nitech.sh :

The script is available in the artifacts and includes:

• Automatic dependency checking

• All compilation steps with proper flags

• Correct FTLIBDIR configuration

• Proper permission setting for audsp

• Complete package creation

• Error handling and progress reporting

To use:

The script creates a festival196nitech directory and builds everything automatically,

producing a ready-to-install .deb package in about 10-15 minutes.

bash

cat > ~/.festivalrc << 'EOF'

;;; Personal Festival configuration

; Use ALSA for audio

(Parameter.set 'Audio_Method 'Audio_Command)

(Parameter.set 'Audio_Command "aplay -q -c 1 -t raw -f s16 -r $SR $FILE")

; Pitch adjustment: Speed up by 5% to raise pitch slightly

;(Parameter.set 'Audio_Command "aplay -q -c 1 -t raw -f s16 -r $(($SR*105/100)) $FILE")

; Set default voice

(set! voice_default 'voice_nitech_us_slt_arctic_hts)

; Volume boost (doubles amplitude)

(set! default_after_synth_hooks

 (list (lambda (utt) (utt.wave.rescale utt 2.0 t))))

EOF

bash

chmod +x build_festival_196_nitech.sh

./build_festival_196_nitech.sh

Troubleshooting

Issue: "malloc(): corrupted top size" error

Cause: Missing the -D_GLIBCXX_USE_CXX11_ABI=0 flag during compilation.

Solution: This flag is absolutely critical. Ensure you compiled both Speech Tools and

Festival with this flag. If not, go back to Steps 4 and 7 and recompile.

Issue: "can't open /dev/dsp" error

Cause: OSS audio system not available on modern Linux.

Solution: This is normal in interactive mode before configuration is loaded. The

package includes ALSA configuration in /usr/local/share/festival/siteinit.scm which

handles this automatically. If you still get this error after installation, verify:

Issue: "pipe_open: failed to start audsp" or "Audio spooler has died

unexpectedly"

Cause: The audsp binary doesn't have execute permissions.

Solution:

To verify audsp is executable:

Should show rwxr-xr-x permissions.

Issue: Festival looks in wrong directory for libraries

Cause: FTLIBDIR wasn't set correctly in config/project.mak before compilation.

Solution: Verify Step 6 was completed correctly:

bash

cat /usr/local/share/festival/siteinit.scm

bash

sudo find /usr/local/share/festival -type f -name "audsp" -exec chmod 755 {} \;

bash

find /usr/local/share/festival -name "audsp" -exec ls -la {} \;

Should show: FTLIBDIR = /usr/local/share/festival

If not, you must recompile Festival after fixing this.

Issue: --tts mode doesn't work but interactive mode does

Cause: The audsp binary lacks execute permissions.

Solution: See "pipe_open: failed to start audsp" above.

Issue: Voice not found or "unbound variable" errors

Cause: Voices not properly installed or HTS engine support missing.

Solution: Verify files exist:

If missing, reinstall the package or copy the voices manually from the build directory.

Issue: Multiple definition linker errors during compilation

Cause: Missing -Wl,--allow-multiple-definition flags.

Solution: Ensure you modified config/compilers/gcc_defaults.mak in both Speech Tools

and Festival (Steps 3 and 5).

Uninstalling

To remove the package:

To remove including configuration files:

bash

cat festival/config/project.mak | grep FTLIBDIR

bash

ls -la /usr/local/share/festival/voices/us/nitech_us_slt_arctic_hts/

ls -la /usr/local/share/festival/hts.scm

bash

sudo dpkg -r festival

bash

sudo dpkg --purge festival

Directory Structure

After successful installation, the directory structure is:

Performance Notes

This guide uses -O0 (no optimization) for maximum compatibility. If you need better

performance, you can try -O2 :

However, test thoroughly as higher optimization may expose hidden bugs in the old

codebase.

Why Festival 1.96?

/usr/local/

├── bin/

│ ├── festival # Main Festival executable

│ ├── festival_client # Client for Festival server

│ ├── text2wave # Convert text to WAV files

│ ├── ch_wave # Speech Tools wave manipulation

│ ├── ch_track # Speech Tools track manipulation

│ └── wagon # CART tree builder

├── share/

│ └── festival/

│ ├── hts.scm # HTS engine support

│ ├── init.scm # Festival initialization

│ ├── siteinit.scm # Site configuration (ALSA audio, default voice)

│ ├── etc/

│ │ └── */audsp # Audio spooler binary (must be executable!)

│ ├── voices/

│ │ └── us/

│ │ ├── nitech_us_slt_arctic_hts/ # Female voice (default)

│ │ ├── nitech_us_awb_arctic_hts/ # Male voice

│ │ ├── nitech_us_clb_arctic_hts/ # Female voice

│ │ └── [other voices...]

│ ├── dicts/ # Lexicons

│ └── [other lib files]

└── share/doc/festival/ # Documentation

/etc/festival/

└── siteinit.scm # Reference copy of configuration

bash

make CXXFLAGS="-O2 -Wall -fpermissive -std=c++98 -D_GLIBCXX_USE_CXX11_ABI=0 -DSUPPORT_EDITLINE"

Festival 1.96 is specifically required for compatibility with the Nitech HTS voices.

Newer Festival versions (2.x) are not backward compatible with these high-quality

voices.

Available Voices in This Package

The Nitech HTS voices included are:

• nitech_us_slt_arctic_hts - Female (most popular, default)

• nitech_us_awb_arctic_hts - Male

• nitech_us_bdl_arctic_hts - Male

• nitech_us_clb_arctic_hts - Female

• nitech_us_rms_arctic_hts - Male

• nitech_us_jmk_arctic_hts - Male

These are significantly higher quality than the default Festival voices and are well-

suited for applications requiring natural-sounding speech synthesis.

Summary of Critical Points

1. Compiler flags are essential: -D_GLIBCXX_USE_CXX11_ABI=0 is non-negotiable

for modern systems

2. Linker flags required: Add -Wl,--allow-multiple-definition to both projects

3. Path configuration is critical: Modify FTLIBDIR in config/project.mak before

compiling

4. Compile order matters: Always compile Speech Tools before Festival

5. Include Nitech voices: They provide the best quality for this Festival version

6. Test before packaging: Verify Festival works from build directory first

7. Set proper permissions: Everything in the DEB must be owned by root

8. audsp must be executable: This is critical for --tts mode to work

9. siteinit.scm location matters: Must be in /usr/local/share/festival/ not just /etc/

festival/

Distribution

Your final festival_1.96-nitech1_amd64.deb package can be:

• Installed on any compatible Debian/Ubuntu system

• Shared with others

• Uploaded to a personal repository

• Distributed via file hosting

The package is completely self-contained and includes everything needed for high-

quality text-to-speech synthesis.

Testing Checklist

After installation, verify:

• ✓ echo 'test' | festival --tts works (tests audsp permissions)

• ✓ echo 'test' | text2wave | aplay works (tests audio pipeline)

• ✓ Interactive mode works: festival then (SayText "test")

• ✓ Path is correct: (car load-path) shows /usr/local/share/festival/...

• ✓ Audio configured: (Parameter.get 'Audio_Method) shows Audio_Command

• ✓ Voices available: (voice.list) shows nitech voices

• ✓ Can switch voices: (voice_nitech_us_awb_arctic_hts) works

References

• Festival Homepage: http://www.cstr.ed.ac.uk/projects/festival/

• Festival Manual: http://www.cstr.ed.ac.uk/projects/festival/manual/

• Festival 1.96 Downloads: http://festvox.org/packed/festival/1.96/

• Nitech HTS Homepage: http://hts.sp.nitech.ac.jp/

• Mirrored Nitech Voices: http://erewhon.superkuh.com/

nitech_voices_for_festival_196.tar.gz

Conclusion

Following this guide results in a fully functional Festival 1.96 installation packaged as a

distributable Debian package with high-quality Nitech HTS voices. The entire process

takes about 30-45 minutes depending on compilation speed.

The resulting package provides professional-quality text-to-speech synthesis that works

on any modern Debian-based Linux distribution, with proper ALSA audio support and

the best available voices for Festival 1.96.

http://www.cstr.ed.ac.uk/projects/festival/
http://www.cstr.ed.ac.uk/projects/festival/
http://www.cstr.ed.ac.uk/projects/festival/manual/
http://www.cstr.ed.ac.uk/projects/festival/manual/
http://festvox.org/packed/festival/1.96/
http://festvox.org/packed/festival/1.96/
http://hts.sp.nitech.ac.jp/
http://hts.sp.nitech.ac.jp/
http://erewhon.superkuh.com/nitech_voices_for_festival_196.tar.gz
http://erewhon.superkuh.com/nitech_voices_for_festival_196.tar.gz
http://erewhon.superkuh.com/nitech_voices_for_festival_196.tar.gz
http://erewhon.superkuh.com/nitech_voices_for_festival_196.tar.gz

