Complete Guide: Compiling Festival 1.96 on Modern
Linux and Creating a Debian Package

This comprehensive guide documents the complete process for successfully compiling
Festival Speech Synthesis System version 1.96 on modern Linux systems with current
GCC compilers, and packaging it as a Debian package with high-quality Nitech HTS
voices.

Table of Contents

1. Prerequisites

Download Required Files

Extract All Archives

Modify GCC Configuration for Speech Tools

Compile Speech Tools Library

Configure Festival Installation Paths

Compile Festival

. Test Festival

2.
3
4
5
6. Modify GCC Configuration for Festival
7
8
9
0

10. Download and Install Nitech HTS Voices

11. Create Debian Package

12. Install and Test the Package

13. Automated Build Script

Prerequisites

Install required development libraries:

bash

sudo apt-get update
sudo apt-get install build-essential libncurses5-dev libtinfo-dev alsa-utils

Step 1: Download Required Files

Download all necessary files from (http:/festvox.org/packed/festival/1.96/}:

https://claude.ai/chat/09befa9c-f533-48a0-97fd-932f4458d485#prerequisites
https://claude.ai/chat/09befa9c-f533-48a0-97fd-932f4458d485#prerequisites
https://claude.ai/chat/09befa9c-f533-48a0-97fd-932f4458d485#step-1-download-required-files
https://claude.ai/chat/09befa9c-f533-48a0-97fd-932f4458d485#step-1-download-required-files
https://claude.ai/chat/09befa9c-f533-48a0-97fd-932f4458d485#step-2-extract-all-archives
https://claude.ai/chat/09befa9c-f533-48a0-97fd-932f4458d485#step-2-extract-all-archives
https://claude.ai/chat/09befa9c-f533-48a0-97fd-932f4458d485#step-3-modify-gcc-configuration-for-speech-tools
https://claude.ai/chat/09befa9c-f533-48a0-97fd-932f4458d485#step-3-modify-gcc-configuration-for-speech-tools
https://claude.ai/chat/09befa9c-f533-48a0-97fd-932f4458d485#step-4-compile-speech-tools-library
https://claude.ai/chat/09befa9c-f533-48a0-97fd-932f4458d485#step-4-compile-speech-tools-library
https://claude.ai/chat/09befa9c-f533-48a0-97fd-932f4458d485#step-5-modify-gcc-configuration-for-festival
https://claude.ai/chat/09befa9c-f533-48a0-97fd-932f4458d485#step-5-modify-gcc-configuration-for-festival
https://claude.ai/chat/09befa9c-f533-48a0-97fd-932f4458d485#step-6-configure-festival-installation-paths
https://claude.ai/chat/09befa9c-f533-48a0-97fd-932f4458d485#step-6-configure-festival-installation-paths
https://claude.ai/chat/09befa9c-f533-48a0-97fd-932f4458d485#step-7-compile-festival
https://claude.ai/chat/09befa9c-f533-48a0-97fd-932f4458d485#step-7-compile-festival
https://claude.ai/chat/09befa9c-f533-48a0-97fd-932f4458d485#step-8-test-festival
https://claude.ai/chat/09befa9c-f533-48a0-97fd-932f4458d485#step-8-test-festival
https://claude.ai/chat/09befa9c-f533-48a0-97fd-932f4458d485#step-9-download-and-install-nitech-hts-voices
https://claude.ai/chat/09befa9c-f533-48a0-97fd-932f4458d485#step-9-download-and-install-nitech-hts-voices
https://claude.ai/chat/09befa9c-f533-48a0-97fd-932f4458d485#step-10-create-debian-package
https://claude.ai/chat/09befa9c-f533-48a0-97fd-932f4458d485#step-10-create-debian-package
https://claude.ai/chat/09befa9c-f533-48a0-97fd-932f4458d485#step-11-install-and-test-the-package
https://claude.ai/chat/09befa9c-f533-48a0-97fd-932f4458d485#step-11-install-and-test-the-package
https://claude.ai/chat/09befa9c-f533-48a0-97fd-932f4458d485#automated-build-script
https://claude.ai/chat/09befa9c-f533-48a0-97fd-932f4458d485#automated-build-script

(N
bash

mkdir -p ~/app_installs/festival/196/build
cd ~/app_installs/festival/196/build

wget http://festvox.org/packed/festival/1.96/speech tools-1.2.96-beta.tar.gz
wget http://festvox.org/packed/festival/1.96/festival-1.96-beta.tar.gz

wget http://festvox.org/packed/festival/1.96/festlex CMU.tar.gz
wget http://festvox.org/packed/festival/1.96/festlex POSLEX.tar.gz

wget http://festvox.org/packed/festival/1.96/festvox kallpcl6k.tar.gz

G J

Alternative: To download all files automatically:

bash

wget -r -np -nH --cut-dirs=3 -R "index.html*" -e robots=off --wait=1 \
http://festvox.org/packed/festival/1.96/

Step 2: Extract All Archives

Extract everything in the same parent directory:

4 R
bash

cd ~/app installs/festival/196/build

tar xzf speech tools-1.2.96-beta.tar.gz
tar xzf festival-1.96-beta.tar.gz

tar xzf festlex CMU.tar.gz

tar xzf festlex POSLEX.tar.gz

tar xzf festvox kallpcl6k.tar.gz

- J

The lexicons and voices will automatically extract into |festival/lib/).

Step 3: Modify GCC Configuration for Speech Tools

Modern linkers require special handling for duplicate symbols in old code.

Edit the GCC defaults file:

bash

cd ~/app installs/festival/196/build/speech tools

nano config/compilers/gcc_defaults.mak

Add (-W1,--allow-multiple-definition) to all (* LINKFLAGS) lines. Find these lines and modify
them:

4 R
make

DEBUG LINKFLAGS = -g -WI,--allow-multiple-definition

WARN LINKFLAGS = -Wall -Wl,--allow-multiple-definition

VERBOSE LINKFLAGS = -Wl,--allow-multiple-definition

OPTIMISE LINKFLAGS = -O$(OPTIMISE) -Wl,--allow-multiple-definition
PROFILE prof LINKFLAGS = -p -Wl,--allow-multiple-definition
PROFILE gprof LINKFLAGS = -pg -W],--allow-multiple-definition
SHARED LINKFLAGS = -fno-shared-data -W],--allow-multiple-definition
STATIC LINKFLAGS = -static -Wl,--allow-multiple-definition

G J/

Save and exit (Ctrl+X, Y, Enter).

Step 4: Compile Speech Tools Library

Configure and compile Speech Tools with compatibility flags:

4 I\
bash

cd ~/app installs/festival/196/build/speech tools
./configure
make CXXFLAGS="-00 -g -Wall -fpermissive -std=c++98 -D GLIBCXX USE CXX11 ABI=0 -DSUP}

- J

Key compiler flags explained:

. : Downgrades C++ errors to warnings for old code

o (-std=c++98): Uses C++98 standard that Festival was designed for

e (-D GLIBCXX USE CXX11 ABI=0): Forces old C++ ABI for compatibility with modern
systems (CRITICAL)

 (-DSUPPORT EDITLINE): Enables command-line editing features

Expected result: Compilation should complete with a "Remove Links:" message
showing successful build.

Step 5: Modify GCC Configuration for Festival

Festival needs the same linker flags as Speech Tools. First, run configure to generate
the config files:

bash

cd ~/app installs/festival/196/build/festival
./configure

Then, if (config/compilers/gccfdefaults.mak] exists, edit it:

bash

nano config/compilers/gcc_defaults.mak

Add the same (-W1,--allow-multiple-definition) to all (* LINKFLAGS) lines as in Step 3.

Note: If this file doesn't exist, Festival will inherit the compiler settings from Speech
Tools, which is acceptable.

Step 6: Configure Festival Installation Paths

CRITICAL STEP: By default, Festival compiles with hardcoded paths pointing to the
build directory. We need to change this so the installed Festival looks for libraries in [/

usr/local/share/festival/).

Edit the project configuration:

bash

cd ~/app _installs/festival/196/build/festival
nano config/project.mak

Find the line:

make

FTLIBDIR = $(FESTIVAL HOME)/lib

Comment it out and add the installation path:

make

#FTLIBDIR = $(FESTIVAL HOME)/lib
FTLIBDIR = /usr/local/share/festival

Alternative method (more robust):

bash

cd ~/app installs/festival/196/build/festival
sed -i '/"FTLIBDIR = \$(FESTIVAL HOME)\/lib$/s/”/#/"' config/project.mak
echo "FTLIBDIR = /usr/local/share/festival" >> config/project.mak

&

Verify the change:

bash

grep FTLIBDIR config/project.mak

Should show:

#FTLIBDIR = $(FESTIVAL HOME)/lib
FTLIBDIR = /usr/local/share/festival

Why this matters: This tells Festival to look for its library files in (/usr/local/share/
festival/) at runtime, instead of looking in your build directory. Without this change,
Festival will only work from the build directory.

Save and exit.

Step 7: Compile Festival

Compile Festival with matching flags:

bash

cd ~/app _installs/festival/196/build/festival
make CXXFLAGS="-O0 -g -Wall -fpermissive -std=c++98 -D GLIBCXX USE CXX11 ABI=0"

Important: Use the same compiler flags as Speech Tools for ABI compatibility. The [
D GLIBCXX USE_CXX11 ABI=0) flag is absolutely critical.

Step 8: Test Festival

Test that Festival compiles and runs from the build directory:

bash

cd ~/app installs/festival/196/build/festival
./bin/festival

At the Festival prompt:

scheme

festival> (SayText "Hello world, Festival is working!")

You'll see "Linux: can't open /dev/dsp" - this is expected and normal. We'll configure
ALSA audio in the package.

Verify the path is correct:

scheme

festival> (car load-path)

This should show [/usr/local/share/festival/...] NOT your build directory path. If it shows
your build directory, go back to Step 6 and ensure FTLIBDIR was set correctly.

Exit Festival:

scheme

festival> (quit)

Step 9: Download and Install Nitech HTS Voices

The Nitech HTS voices are high-quality voices that work specifically with Festival 1.96.

Download the Nitech Voices

Using the mirrored archive (recommended):

s ~
bash

cd ~/app_installs/festival/196/build
wget http://erewhon.superkuh.com/nitech voices for festival 196.tar.gz
tar xzf nitech voices for festival 196.tar.gz

N J

This extracts individual voice archive files. Now extract all of them:

s N
bash

for fin festvox nitech us * arctic _hts-2.1.tar.bz2; do
tar xjf "$f"
done

G J

After extraction, you'll have a directory structure containing all the voices and

(Hts.som),

Install Voices to System Location (Optional for Testing)

e
bash

cd ~/app_installs/festival/196/build

sudo mkdir -p /usr/local/share/festival/voices/us

sudo cp -r lib/voices/us/* /usr/local/share/festival/voices/us/

sudo cp lib/hts.scm /usr/local/share/festival/hts.scm

.

Note: This step is optional if you're going straight to creating the DEB package, as the
package will include these files.

Step 10: Create Debian Package
Now we'll package everything into a distributable file.

Create Package Directory Structure

p
bash

cd ~/app_installs/festival/196/build

mkdir -p festival-1.96-deb/DEBIAN

mkdir -p festival-1.96-deb/usr/local/bin

mkdir -p festival-1.96-deb/usr/local/share/festival/voices/us
mkdir -p festival-1.96-deb/usr/local/share/doc/festival
mkdir -p festival-1.96-deb/etc/festival

Copy Festival Binaries

bash

cp festival/bin/festival festival-1.96-deb/usr/local/bin/
cp festival/bin/festival client festival-1.96-deb/usr/local/bin/
cp festival/bin/text2wave festival-1.96-deb/usr/local/bin/

cp speech tools/bin/ch wave festival-1.96-deb/usr/local/bin/
cp speech tools/bin/ch track festival-1.96-deb/usr/local/bin/
cp speech tools/bin/wagon festival-1.96-deb/usr/local/bin/

Copy Festival Libraries and Data

4 N\
bash

cp -r festival/lib/* festival-1.96-deb/usr/local/share/festival/

cp -r lib/voices/us/* festival-1.96-deb/usr/local/share/festival/voices/us/

cp lib/hts.scm festival-1.96-deb/usr/local/share/festival/

Copy Documentation

4 N

bash

cp festival/README festival-1.96-deb/usr/local/share/doc/festival/ 2>/dev/null || true
cp festiva/ACKNOWLEDGMENTS festival-1.96-deb/usr/local/share/doc/festival/ 2>/dev/null || true
cp festival/COPYING festival-1.96-deb/usr/local/share/doc/festival/ 2>/dev/null || true

Create System-Wide Configuration

Create the configuration file that Festival will actually load:

(N

bash

cat > festival-1.96-deb/usr/local/share/festival/siteinit.scm << 'EOF"
;;; System-wide Festival configuration

; Use ALSA for audio output
(Parameter.set 'Audio Method 'Audio Command)
(Parameter.set 'Audio Command "aplay -q -c 1 -t raw -f s16 -r $SR $FILE")

; Set default voice to SLT (high-quality female voice)
(set! voice default 'voice nitech us slt arctic hts)

EOF
.)
Also create a reference copy in (/etc/festival/):
4 A
bash

cat > festival-1.96-deb/etc/festival/siteinit.scm << 'EOF"

;;; System-wide Festival configuration

;;; Note: The active configuration is in /usr/local/share/festival/siteinit.scm
;;; This file is for reference only.

; Use ALSA for audio output
(Parameter.set 'Audio Method 'Audio Command)
(Parameter.set 'Audio Command "aplay -q -c 1 -t raw -f s16 -r $SR $FILE")

; Set default voice to SLT (high-quality female voice)
(set! voice default 'voice nitech us slt arctic hts)
EOF

Create Control File

Detect your architecture and create the control file:

(N
bash

ARCH=$(dpkg --print-architecture)

cat > festival-1.96-deb/DEBIAN/control << EOF

Package: festival

Version: 1.96-nitechl

Section: sound

Priority: optional

Architecture: $ARCH

Depends: libc6 (>= 2.31), libstdc++6 (>= 10), libncurses6, libtinfo6, alsa-utils
Maintainer: Your Name <your.email@example.com>

Description: Festival Speech Synthesis System with Nitech HTS Voices
Festival is a general multi-lingual speech synthesis system developed
at CSTR (Centre for Speech Technology Research). It offers a full text
to speech system with various APIs, as well as an environment for
development and research of speech synthesis techniques.

This is version 1.96 (July 2004) compiled for modern Linux systems
with GCC compatibility patches.

This package includes:

- Festival speech synthesis engine

- Speech Tools utilities

- CMU and POSLEX lexicons

- Nitech HTS voices (high-quality parametric synthesis)
- US English diphone voices

- Pre-configured ALSA audio output

Available voices include:
- nitech us slt arctic hts (female, high quality, default)
- nitech us awb arctic hts (male)
- nitech us bdl arctic hts (male)
- nitech us clb arctic hts (female)
- nitech us rms arctic hts (male)
- nitech us jmk arctic_hts (male)
EOF

. J/

Note: Change the Maintainer field to your actual name and email.

Create Post-Install Script
This script ensures the binary has execute permissions (critical for mode):

(N
bash

cat > festival-1.96-deb/DEBIAN/postinst << 'EOF"
#!/bin/bash
set -e

Ensure audsp binary is executable (critical for --tts mode)

find /usr/local/share/festival -type f -name "audsp" -exec chmod 755 {} \; 2>/dev/null || true
echo ""

echo "Festival 1.96 with Nitech HTS voices has been installed."
echo ""

echo "Quick tests:"

echo " echo 'Hello world' | festival --tts"

echo " echo \"Hello world\" | text2wave | aplay"
echo " echo '(SayText \"Hello world\")' | festival"
echo ""

echo "Convert text to WAV file:"

echo " echo \"Hello world\" | text2wave -o output.wav"
echo ""

echo "Interactive mode:"

echo " festival"

echo " festival> (SayText \"Hello world\")"
echo ""

echo "Default voice: nitech us slt arctic hts (female)"
echo "Configuration: /usr/local/share/festival/siteinit.scm"

echo

exit O
EOF

chmod 755 festival-1.96-deb/DEBIAN/postinst

Set Correct Permissions

This is critical - improper permissions will cause the mode to fail:

(N

bash

Set ownership to root (required for proper package installation)
sudo chown -R root:root festival-1.96-deb/

Ensure main binaries are executable
sudo chmod 755 festival-1.96-deb/usr/local/bin/*

Make sure audsp binary is executable (CRITICAL for --tts mode)
sudo find festival-1.96-deb/usr/local/share/festival -type f -name "audsp" -exec chmod 755 {} \;

Make sure any other binaries in festival lib are executable
sudo find festival-1.96-deb/usr/local/share/festival/bin -type f -exec chmod 755 {} \; 2>/dev/null || t

Set standard directory and file permissions
sudo find festival-1.96-deb/usr/local/share/festival -type d -exec chmod 755 {} \;
sudo find festival-1.96-deb/usr/local/share/festival -type f -exec chmod 644 {} \;

Re-apply executable permissions to binaries (in case the above made them non-executable)
sudo find festival-1.96-deb/usr/local/share/festival -type f -name "audsp" -exec chmod 755 {} \;
sudo find festival-1.96-deb/usr/local/share/festival/bin -type f -exec chmod 755 {} \; 2>/dev/null || t

Why the audsp permissions matter: Festival's mode uses the (audio
spooler) binary to handle audio output. If this binary doesn't have execute permissions,
you'll get "pipe open: failed to start audsp" errors.

Build the DEB Package

-

bash
cd ~/app_installs/festival/196/build

Build the package
sudo dpkg-deb --build festival-1.96-deb

Rename to descriptive name
ARCH=$(dpkg --print-architecture)
sudo mv festival-1.96-deb.deb festival 1.96-nitechl ${ARCH}.deb

Change ownership back to your user
sudo chown $USER:$USER festival 1.96-nitechl ${ARCH}.deb

Verify the Package

Check package contents and metadata:

bash

dpkg -c festival 1.96-nitechl amd64.deb

dpkg -I festival 1.96-nitechl amd64.deb

dpkg -c festival 1.96-nitechl amd64.deb | grep audsp

.

The audsp entry should show (executable) permissions.

Step 11: Install and Test the Package

Install the Package

bash

sudo dpkg -i festival 1.96-nitechl amd64.deb

Test All Functionality

Test the different ways to use Festival:

p
bash

echo 'Hello world' | festival --tts

echo "Hello world" | text2wave | aplay

echo '(SayText "Hello world")" | festival

echo "Hello world" | text2wave -o test.wav

aplay test.wav

Test Interactive Mode

bash

festival

In interactive mode:

-

scheme

festival> (voice.list)

festival> (SayText "This is the SLT female voice")

festival> (voice nitech us awb arctic hts)

festival> (SayText "This is the AWB male voice")

festival> (voice nitech us clb arctic hts)

festival> (SayText "This is the CLB female voice")

festival> (quit)

Verify Installation Paths

Start Festival and verify it's using the correct paths:

p
bash

festival

scheme

festival> (car load-path)
festival> (Parameter.get 'Audio Method)
festival> (Parameter.get 'Audio Command)

&

Expected output:

o (load-path) should show (/usr/local/share/festival/...]

e (Audio Method) should be (Audio_Command)

. [Audio_Command] should be ["aplay -q-c 1 -traw -fsl16 -r $SR $FILE"]

Create Personal Configuration (Optional)

To customize Festival for your user, create | ~/.festivalrc :

(Y

bash

cat > ~/.festivalrc << 'EOF"
;;; Personal Festival configuration

; Use ALSA for audio
(Parameter.set 'Audio Method 'Audio Command)
(Parameter.set 'Audio Command "aplay -q -c 1 -t raw -f s16 -r $SR $FILE")

; Pitch adjustment: Speed up by 5% to raise pitch slightly
;(Parameter.set 'Audio Command "aplay -q -c 1 -t raw -f s16 -r $(($SR*105/100)) $FILE")

; Set default voice

(set! voice default 'voice nitech us slt arctic hts)

; Volume boost (doubles amplitude)
(set! default after synth hooks

(list (lambda (utt) (utt.wave.rescale utt 2.0 t))))
EOF

Automated Build Script

For convenience, an automated bash script is available that performs all these steps
automatically. Save this as (build festival 196 nitech.sh):

The script is available in the artifacts and includes:

e Automatic dependency checking

o All compilation steps with proper flags
e Correct FTLIBDIR configuration

e Proper permission setting for audsp

o Complete package creation

e Error handling and progress reporting

To use:

bash

chmod +x build festival 196 nitech.sh
./build festival 196 nitech.sh

The script creates a [festivall 96nitech] directory and builds everything automatically,
producing a ready-to-install package in about 10-15 minutes.

Troubleshooting

Issue: "malloc(): corrupted top size" error

Cause: Missing the (-D_GLIBCXX USE_CXX11 ABI=0) flag during compilation.

Solution: This flag is absolutely critical. Ensure you compiled both Speech Tools and

Festival with this flag. If not, go back to Steps 4 and 7 and recompile.

Issue: "can't open /dev/dsp" error

Cause: OSS audio system not available on modern Linux.

Solution: This is normal in interactive mode before configuration is loaded. The

package includes ALSA configuration in [/usr/local/share/festival/siteinit.scm) which

handles this automatically. If you still get this error after installation, verify:

bash

cat /usr/local/share/festival/siteinit.scm

Issue: "pipe_open: failed to start audsp" or "Audio spooler has died
unexpectedly"

Cause: The binary doesn't have execute permissions.

Solution:

bash

sudo find /usr/local/share/festival -type f -name "audsp" -exec chmod 755 {} \;

To verify audsp is executable:

bash

find /usr/local/share/festival -name "audsp" -exec Is -la {} \;

Should show permissions.

Issue: Festival looks in wrong directory for libraries

Cause: (FTLIBDIR) wasn't set correctly in [config/project.mak) before compilation.

Solution: Verify Step 6 was completed correctly:

bash

cat festival/config/project.mak | grep FTLIBDIR

Should show: [FTLIBDIR = /usr/local/share/festivalj

If not, you must recompile Festival after fixing this.

Issue: mode doesn't work but interactive mode does

Cause: The binary lacks execute permissions.

Solution: See "pipe open: failed to start audsp" above.

Issue: Voice not found or "unbound variable" errors

Cause: Voices not properly installed or HTS engine support missing.

Solution: Verify files exist:

bash

Is -la /usr/local/share/festival/voices/us/nitech us slt arctic hts/
Is -la /usr/local/share/festival/hts.scm

If missing, reinstall the package or copy the voices manually from the build directory.

Issue: Multiple definition linker errors during compilation

Cause: Missing (-W1,--allow-multiple-definition) flags.

Solution: Ensure you modified (config/compilers/gcc_defaults.mak] in both Speech Tools
and Festival (Steps 3 and 5).

Uninstalling

To remove the package:

bash

sudo dpkg -r festival

To remove including configuration files:

bash

sudo dpkg --purge festival

Directory Structure

After successful installation, the directory structure is:

4 N\
/usr/local/
— bin/
| }— festival # Main Festival executable
| |— festival client # Client for Festival server
| | text2wave # Convert text to WAV files
| F— ch wave # Speech Tools wave manipulation
| | ch track # Speech Tools track manipulation
| L— wagon # CART tree builder
— share/
L— festival/
|— hts.scm # HTS engine support
— init.scm # Festival initialization
— siteinit.scm # Site configuration (ALSA audio, default voice)
F— etc/
| L—*/audsp # Audio spooler binary (must be executable!)
| L—us/

| — nitech us slt arctic hts/ # Female voice (default)
| — nitech us_awb_arctic_hts/ # Male voice
| — nitech us_clb_arctic_hts/ # Female voice
| L— [other voices...]
— dicts/ # Lexicons
L— [other lib files]
L— share/doc/festival/ ~ # Documentation

|
|
|
|
|
|
| F— voices/
|
|
|
|
|
|
|

/etc/festival/
L— siteinit.scm # Reference copy of configuration

Performance Notes

This guide uses (no optimization) for maximum compatibility. If you need better
performance, you can try :

bash

make CXXFLAGS="-02 -Wall -fpermissive -std=c++98 -D_GLIBCXX USE CXX11 ABI=0 -DSUPPO

However, test thoroughly as higher optimization may expose hidden bugs in the old
codebase.

Why Festival 1.967?

Festival 1.96 is specifically required for compatibility with the Nitech HTS voices.
Newer Festival versions (2.x) are not backward compatible with these high-quality
voices.

Available Voices in This Package

The Nitech HTS voices included are:

o nitech_us_slt_arctic_hts - Female (most popular, default)
e nitech us awb_arctic_hts - Male

o nitech_us_bdl arctic_hts - Male

o nitech us _clb _arctic_hts - Female

e nitech_us_rms_arctic_hts - Male

o nitech_us_jmk_arctic_hts - Male

These are significantly higher quality than the default Festival voices and are well-
suited for applications requiring natural-sounding speech synthesis.

Summary of Critical Points

1. Compiler flags are essential: [—D_GLIBCXX_USE_CXXI1_ABI=O) is non-negotiable

for modern systems

2. Linker flags required: Add (-W1,--allow-multiple-definition] to both projects

w

Path configuration is critical: Modify [FTLIBDIR] in [config/project.makj before

compiling

Compile order matters: Always compile Speech Tools before Festival
Include Nitech voices: They provide the best quality for this Festival version
Test before packaging: Verify Festival works from build directory first

Set proper permissions: Everything in the DEB must be owned by root

audsp must be executable: This is critical for mode to work

© ©® N o 0 &

siteinit.scm location matters: Must be in (/usr/local/share/festival/) not just (/etc/

festival/

Distribution

Your final (festival 1.96-nitechl amd64.deb) package can be:

Installed on any compatible Debian/Ubuntu system
Shared with others
Uploaded to a personal repository

Distributed via file hosting

The package is completely self-contained and includes everything needed for high-
quality text-to-speech synthesis.

Testing Checklist

After installation, verify:

v (echo 'test' | festival —-tts) works (tests audsp permissions)

v (echo 'test' | text2wave | aplay) works (tests audio pipeline)

v Interactive mode works: then ((SayText "test"))

v Path is correct: [(car load—path)j shows [/usr/local/share/festival/...]

v Audio configured: [(Parameter.get 'Audio_Method)] shows [Audio_Command]

v Voices available: [(voice.list) | shows nitech voices

v Can switch voices: ((voice_nitech us awb_arctic_hts)) works

References

Festival Homepage: http://www.cstr.ed.ac.uk/projects/festival/

Festival Manual: http://www.cstr.ed.ac.uk/projects/festival/manual/

Festival 1.96 Downloads: http://festvox.org/packed/festival/1.96/

Nitech HTS Homepage: http://hts.sp.nitech.ac.jp/

Mirrored Nitech Voices: http://erewhon.superkuh.com/

nitech voices for festival 196.tar.gz

Conclusion

Following this guide results in a fully functional Festival 1.96 installation packaged as a
distributable Debian package with high-quality Nitech HTS voices. The entire process
takes about 30-45 minutes depending on compilation speed.

The resulting package provides professional-quality text-to-speech synthesis that works

on any modern Debian-based Linux distribution, with proper ALSA audio support and

the best available voices for Festival 1.96.

http://www.cstr.ed.ac.uk/projects/festival/
http://www.cstr.ed.ac.uk/projects/festival/
http://www.cstr.ed.ac.uk/projects/festival/manual/
http://www.cstr.ed.ac.uk/projects/festival/manual/
http://festvox.org/packed/festival/1.96/
http://festvox.org/packed/festival/1.96/
http://hts.sp.nitech.ac.jp/
http://hts.sp.nitech.ac.jp/
http://erewhon.superkuh.com/nitech_voices_for_festival_196.tar.gz
http://erewhon.superkuh.com/nitech_voices_for_festival_196.tar.gz
http://erewhon.superkuh.com/nitech_voices_for_festival_196.tar.gz
http://erewhon.superkuh.com/nitech_voices_for_festival_196.tar.gz

