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Society’s techno-social systems are becoming ever faster and more computer-orientated. However, far from
simply generating faster versions of existing behaviour, we show that this speed-up can generate a new
behavioural regime as humans lose the ability to intervene in real time. Analyzing millisecond-scale data for
the world’s largest and most powerful techno-social system, the global financial market, we uncover an
abrupt transition to a new all-machine phase characterized by large numbers of subsecond extreme events.
The proliferation of these subsecond events shows an intriguing correlation with the onset of the
system-wide financial collapse in 2008. Our findings are consistent with an emerging ecology of competitive
machines featuring ‘crowds’ of predatory algorithms, and highlight the need for a new scientific theory of
subsecond financial phenomena.

A
s discussed recently by Vespignani1, humans and computers currently cohabit many modern social
environments, including financial markets1–25. However, the strategic advantage to a financial company
of having a faster system than its competitors is driving a billion-dollar technological arms race6–9,16–19 to

reduce communication and computational operating times down to several orders of magnitude below human
response times26,27 -- toward the physical limits of the speed of light. For example, a new dedicated transatlantic
cable18 is being built just to shave 5 milliseconds (5 ms) off transatlantic communication times between US and
UK traders, while a new purpose-built chip iX-eCute is being launched which prepares trades in 740 nanose-
conds19 (1 nanosecond is 1029 seconds). In stark contrast, for many areas of human activity, the quickest that
someone can notice potential danger and physically react, is approximately 1 second26,27 (1 s). Even a chess
grandmaster requires approximately 650 ms just to realize that she is in trouble26,27 (i.e. her king is in checkmate).

In this paper we carry out a study of ultrafast extreme events (UEEs) in financial market stock prices. Our study
is inspired by the seminal works of Farmer, Preis, Stanley, Easley and Cliff and co-workers2,3,6–9 who stressed the
need to understand ultrafast market dynamics. To carry out this research, we assembled a high-throughput
millisecond-resolution price stream across multiple stocks and exchanges using the NANEX NxCore software
package. We uncovered an explosion of UEEs starting in 2006, just after new legislation came into force that made
high frequency trading more attractive2. Specifically, our resulting dataset comprises 18,520 UEEs (January 3rd
2006 to February 3rd 2011) which are also shown visually on the NANEX website at www.nanex.net. These UEEs
are of interest from the basic research perspective of understanding instabilities in complex systems, as well as
from the practical perspective of monitoring and regulating global markets populated by high frequency trading
algorithms.

Results
We find 18,520 crashes and spikes with durations less than 1500 ms in our dataset, with examples of each
given in Fig. 1A (crash) and 1B (spike). We define a crash (or spike) as an occurrence of the stock price
ticking down (or up) at least ten times before ticking up (or down) and the price change exceeding 0.8% of
the initial price, i.e. a fractional change of 0.008. We have checked that our main conclusions are robust to
variations of these definitions. In order to have a standardized measure of the size of a UEE across stocks, we
take the UEE size to be the fractional change between the price at the start of the UEE, and the price at the
last tick in the sequence of price jumps in a given direction. Since both crashes and spikes are typically more
than 30 standard deviations larger than the average price movement either side of an event (see Figs. 1A and
1B), they are unlikely to have arisen by chance since, in that case, their expected number would be essentially
zero whereas we observe 18,520.
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Figure 2 shows that as the UEE duration falls below human res-
ponse times26,27, the number of both crash and spike UEEs increases
very rapidly. The fact that the occurrence of spikes and crashes is
similar (i.e. blue and red curves almost identical in Fig. 1C and in
Fig. 2) suggests UEEs are unlikely to originate from any regulatory
rule that is designed to control market movements in one direction,
e.g. the uptick regulatory rule for crashes16,17. Their rapid subsecond
speed and recovery shown in Figs. 1A and 1B suggests they are also
unlikely to be driven by exogenous news arrival. We have also
checked that using ‘volume time’ instead of clock time, does not
simplify or unify their dynamics. The extensive charts at www.na-
nex.net, of which Figs. 1A and 1B are examples, show that the total
volume traded within each UEE does not differ significantly from
trading volumes during typical few-second market intervals, nor do
the UEEs originate from one large but possibly mistaken trade.

The horizontal green lines in Fig. 1C show that the UEEs started
appearing at different times in the past for individual stock, but then

escalated in the build-up to the 2008 global financial collapse (black
curve). Moreover, these escalation periods tend to culminate around
the 15 September bankruptcy filing of Lehman Brothers. Indeed, the
ten stock with the most UEEs (solid green horizontal lines) are all
major banks with Morgan Stanley (MS) first, followed by Goldman
Sachs (GS). Figure 2 in the SI shows explicitly the escalation of UEEs
in the case of Bank of America (BAC) stock. For each stock shown in
Fig. 1C, the start and end times of the escalation period (i.e. hori-
zontal green line) are determined by examining the local trend in the
arrival rate of the UEEs. In determining these start and end times, we
checked various statistical methods such as LOWESS and found
them all to give very similar escalation periods to those shown in
Fig. 1C. We also find that the occurrence of UEEs is not simply
related to the daily volatility, price or volume (see SI Fig. 2 for the
explicit case of BAC). Figure 1C therefore suggests that there may
indeed be a degree of causality between propagating cascades of
UEEs and subsequent global instability, despite the huge difference

Figure 1 | Ultrafast extreme events (UEEs). (A) Crash. Stock symbol is ABK. Date is 11/04/2009. Number of sequential down ticks is 20. Price change is

20.22. Duration is 25 ms (i.e. 0.025 seconds). The UEE duration is the time difference between the first and last tick in the sequence of jumps in a

given direction. Percentage price change downwards is 14% (i.e. crash size is 0.14 expressed as a fraction). (B) Spike. Stock symbol is SMCI. Date is 10/01/

2010. Number of sequential up ticks is 31. Price change is 1 2.75. Duration is 25 ms (i.e. 0.025 seconds). Percentage price change upwards is 26% (i.e.

spike size is 0.26 expressed as a fraction). Dots in price chart are sized according to volume of trade. (C) Cumulative number of crashes (red) and spikes

(blue) compared to overall stock market index (Standard & Poor’s 500) in black, showing daily close data from 3 Jan 2006 until 3 Feb 2011. Green

horizontal lines show periods of escalation of UEEs. Non-financials are dashed green horizontal lines, financials are solid green. 20 most susceptible stock

(i.e. most UEEs) are shown in ranked order from bottom to top, with Morgan Stanley (MS) having the most UEEs.
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in their respective timescales. Although access to confidential trade
and exchange information is needed to fully test this hypothesis, at
the very least Fig. 1C demonstrates a coupling between extreme
market behaviours below the human response time and slower global
instabilities2,5 above it, and shows how machine and human worlds
can become entwined across timescales from milliseconds to
months. We have also found that UEEs build up around smaller
global instabilities such as the 5/6/10 Flash Crash: although fast on
the daily scale, Flash Crashes are fundamentally different to UEEs in
that Flash Crashes typically last many minutes (?1s) and hence
allow ample time for human involvement. Future work will explore
the connection to existing studies such as Ref. 28 of market dynamics
immediately before and after financial shocks.

Having established that the number of UEEs increases dramat-
ically as the timescale drops below one second, and hence drops
below the human reaction time, we now seek to investigate how
the character of the UEEs might also change as the timescale drops
– and in particular, whether the distribution may become more or
less akin to a power-law distribution. Power-law distributions are
ubiquitous in real-world complex systems and are known to provide
a reasonable description for the distribution of stock returns for a
given time increment, from minutes up to weeks13–15. Our statistical
procedure to test a power-law hypothesis for the distribution of UEE
sizes, and hence obtain best-fit power-law parameter values, follows
Clauset et al.’s29 state-of-the-art methodology for obtaining best-fit
parameters for power-law distributions, and for testing the power-
law distribution hypothesis on a given dataset. Following this pro-
cedure, we obtain a best estimate of the power-law exponent a, and a
p-value for the goodness-of-fit, for the distribution of UEE sizes.
Specific details of the implementation, including a step-by-step
recipe and documented programs in a variety of computer languages,
are given in Ref. 29.

Figure 3 shows a plot of the goodness-of-fit p-value, and the cor-
responding power-law exponent a, for the distribution of sizes of
UEEs having durations above a particular threshold. As this duration
threshold decreases, the character of the UEE size distribution exhi-
bits a transition from a power-law above the limit of the human
response time to a non-power-law below it -- specifically, the good-
ness-of-fit p falls from near unity to below 0.1 within a small time-
scale range in Figs. 3B and 3C. This loss of power-law character at
subsecond timescales suggests that a lower limit needs to be placed
on the validity of Mandelbrot’s claim that price-changes exhibit
approximate self-similarity (i.e. approximate fractal behavior and
hence power-law distribution) across all timescales30. It can be seen
that the transition for crashes is smoother than for spikes: this may be
because many market participants are typically ‘long’ the market16

and hence respond to damaging crashes differently from profitable
spikes. Not only is the crash transition onset (650 ms) earlier in
Fig. 3B than for spikes in Fig. 3C, it surprisingly is the same as the
thinking time of a chess grandmaster, even though individual traders
are not likely to be as attentive or quick as a chess grandmaster on a
daily basis26,27. This may be a global online manifestation of the ‘many
eyes’ principle from ecology6 whereby larger groups of animals or
fish may detect imminent danger more rapidly than individuals.

Figures 4 and 5 show further evidence for this transition in UEE
size character as timescales drop below human response times.
Figure 4 shows that the cumulative distribution of UEE sizes for
the example of spikes, exhibits a qualitative difference between
UEEs of duration greater than 1 second, where p 5 0.91 and hence
there is strong support for a power-law distribution, and those less
than 1 second where p , 0.05 and hence a power-law can be rejected.
A similar conclusion holds for crashes. Figure 5 shows the cumulat-
ive distribution of sizes for UEEs in different duration windows, with
the distribution for the duration window 1200–1500 ms showing a
marked change from the trend at lower window values. The follow-
ing quantities that we investigated, also confirm a change in UEE
character in this same transition regime: (1) a Kolmogorov-Smirnov
two-sample test to check the similarity of the different UEE size
distributions within different duration time-windows (see SI
Fig. 5); (2) the standard deviation of the size of UEEs in a given
window of duration (see SI Fig. 6); (3) the average and standard
deviation in the number of price ticks making up the individual
UEEs which lie in a given duration window (see SI Fig. 7); (4) a test
for a lognormal distribution for UEE durations (see SI Fig. 8). Figure
9 of the SI confirms that using different binnings for the UEE dura-
tions does not change our main conclusions.

Discussion
Inspired by Farmer and Skouras’ ecological perspective6, we analyze
our findings in terms of a competitive population of adaptive trading
agents. The model is summarized schematically in Fig. 1 of the SI
while Refs. 31, 40 and 41 provide full details and derivations of the
quoted results below. Each agent possesses several (s . 1) strategies,
but only trades at a given timestep if it has a strategy that has
performed sufficiently well in the recent past. The common informa-
tion fed back to the agents at each timestep is a bit-string encoding
the m most recent price movements31–35. The key quantity is
g~2mz1=N corresponding to the ratio of the number of different
strategies (i.e. strategy pool size which is 2m 1 1 in our model31,33) to
the number of active agents N. For g . 1, there are more strategies
than agents, which is consistent with having many human partici-
pants since individual humans have myriad ways of making deci-
sions, including arbitrary guesswork, hunches and personal biases.
Hence g . 1 is consistent with having many active human traders,
which in turn is consistent with longer timescales (.1 s) since this is
where humans can think and act. The g . 1 output, illustrated in
Fig. 6B (right panel), does indeed reproduce many well-known fea-
tures of longer timescale price increments31. The chance that many

Figure 2 | Number of UEEs as a function of UEE duration. The UEE

duration is the time difference between the first and last tick in the

sequence of jumps in a given direction. UEE crashes are shown as red curve,

UEE spikes as blue curve. Since the clock time between ticks varies, two

UEEs having the same number of ticks do not generally have the same

durations.
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Figure 3 | Empirical transition in size distribution for UEEs with duration above threshold t, as function of t. (A) Scale of times. 650 ms is the time for

chess grandmaster to discern King is in checkmate. Plots show results of the best-fit power-law exponent (black) and goodness-of-fit (blue) to the

distributions for size of (B) crashes, and (C) spikes, as shown in the inset schematic.

Figure 4 | Extent to which the cumulative distribution for UEE spikes
follows a power-law, for the subset having durations greater than 1
second (upper panel) and less than 1 second (lower panel). For durations

more than 1 second, there is strong evidence for a power-law (p-value is

0.912). For durations less than 1 second, a power-law can be rejected. Black

line shows best-fit power-law.

Figure 5 | Cumulative distribution for UEE spikes with durations within
a given millisecond range, having a size which is at least as big as the
value shown on the horizontal axis.
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agents simultaneously use the same strategy and submit the same
buy or sell order, is small if g . 1, hence there are very few extreme
price-changes -- exactly as observed in our data for . 1 s. Reducing
g below 1 corresponds to reducing the strategy pool size below the
number of agents, which is consistent with a market dominated by
specific high-frequency trading algorithms. As the trading timescale
moves into the subsecond regime, the number of pieces of informa-
tion that can be processed by a machine decreases since each piece of
information requires a finite time for manipulation (e.g. storage and
recall), which is consistent with a reduction in m and hence a
decrease in g since g~2mz1=N .

Remarkably, decreasing g continually in our model generates a
visually abrupt transition in the output with frequent extreme price-
changes now appearing (Fig. 6B, left panel), which is exactly what we
observed in the data for , 1 s. g , 1 implies more than one agent per
strategy on average: crowds of agents frequently converge on the same
strategy and hence simultaneously flood the market with the same
type of order, thereby generating the frequent extreme price-change
events. Although it is quite possible that there are other models that
could reproduce a gradual change in the instability as g decreases, the
task of reproducing a visually abrupt transition as observed empir-
ically in Fig. 3 (particularly Fig. 3C) is far harder. In addition, our
model predicts (1) that the extreme event size-distribution in the
ultrafast regime (g , 1) should not have a power law, exactly as we
observe; (2) that recoveries as in Figs. 1A and 1B, can emerge endo-
genously in the regime g , 1 (see Fig. 6C, left panel), again as we
observe; and (3) that extreme events can be diverted by momentarily
increasing the strategy diversity. To achieve this latter effect, agents
simply need to be added with complementary strategies -- shown as
complementary colors in the right panel of Fig. 6C -- thereby partially

cancelling the machine crowd denoted in red. The fact that the actual
model price trajectory can then bypass the potential extreme event
(green dashed line in left panel of Fig. 6C) therefore offers hope of
using small real-time interventions to mitigate systemic risk.

Although the simplicity of our proposed minimal model necessar-
ily ignores many market details, it allows us to derive explicit analytic
formulae for the scale of the fluctuations in each phase, and hence an
indication of the risk, if we make the simplifying assumption that the
number of agents trading each timestep is approximately N (see Refs.
31, 40 and 41 for details). For g . 1, the scale is given by
N

1
2 1{ 2{ mz1ð ÞN
� �1

2 for general s, while for g , 1 it abruptly adopts

a new form with upper bound 3{1
2 2{m

2 N 1{2{2 mz1ð Þ� �1
2 and lower

bound 3{1
2 2{

mz1ð Þ
2 N 1{2{2 mz1ð Þ� �1

2 for s 5 2. This predicted sud-
den increase in the fluctuation scale from being proportional to N

1
2 for

g . 1, to proportional to N for g , 1, is consistent with the observed
appearance of frequent UEEs at short timescales, and specifically the
visually abrupt transition that we observe in Fig. 3.

More detailed investigation of the properties of UEEs, and the
potential implications for financial market instability, will require
access to confidential exchange data that was not available in the
present study. However a remarkable new study by Cliff and
Cartlidge36 provides some additional support for our findings. In
controlled lab experiments, they found that when machines operate
on similar timescales to humans36 (longer than 1 s), the ‘lab market’
exhibited an efficient phase (c.f. few extreme price-change events in
our case). By contrast, when the machines operated on a timescale
faster than the human response time36 (100 milliseconds) then the
market exhibited an inefficient phase (c.f. many extreme price-
change events in our case).

Figure 6 | Theoretical transition. (A) Timescales from Fig. 3A. (B) Our model’s price output for the two regimes, using same vertical price scale. g is ratio

of number of strategies to number of agents (g~2mz1=N).g , 1 implies more agents than strategies, hence frequent, large and abrupt price-changes

as observed empirically for timescales , 1 s. g . 1 implies less agents than strategies, hence large changes are rare. (C) Large change with recovery from

our model, similar to Fig. 1A on expanded timescale. Right panel shows schematic of our model: Machines in g , 1 regime unintentionally use same

red strategy and hence form a crowd. Adding agents with different strategies (blue and green, schematic) prevents UEE (green dashed line indicates

modified price trajectory).
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While our crowd model offers a plausible explanation of the
observed transition in Fig. 3, we stress that our purpose in this paper
was not to explain the details of the price changes during individual
UEEs, nor was it to unravel the underlying market microstructure
that might provoke or exacerbate such UEEs. A recent preprint by
Golub et al.37 claims that a majority of all UEEs carry the label of ISO
(Inter-market Sweep Order37). However this claim does not affect the
validity of our findings. Moreover, Ref. 37 does not uncover or
explain the visually abrupt transition that we observe in Fig. 3, nor
does it invalidate our own crowd model explanation. Irrespective of
the underlying order identities, every UEE is the result of a sudden
excess buy or sell demand in the market, and our model provides a
simple explanation for how sudden excess buy or sell demands are
generated, not how they get fulfilled. Indeed it is a common feature of
our model output that a large imbalance of buy or sell demand can
suddenly appear, producing a UEE as observed empirically. We also
note that Golub et al.37 make several strong assumptions in their
attempts to label the UEEs, each of which requires more detailed
investigation since the resulting identifications are neither unique
nor unequivocal. Whether the visually abrupt transition in Fig. 3 is
a strict phase transition in the statistical physics sense, also does not
affect the validity of our results. The extent to which UEEs were
provoked by regulatory and institutional changes around 2006, is a
fascinating question whose answer depends on a deeper understand-
ing of the market microstructure along the lines started by Golub et
al.37. It may be that ISOs are particularly problematic, but this is still
unclear because of the assumptions made in Ref. 37. Once this has
been resolved, it should be possible to make definite policy recom-
mendations based on our findings, as well as expanding the study to
connect to systemic risk38 and derivative operations39.

Methods
The power-law analysis that we use to obtain our main result in Fig. 3, follows the
state-of-the-art testing procedure laid out by Clauset et al.29. Our accompanying
crowd model considers a simple yet archetypal model of a complex system based on a
population of agents competing for a limited resource with bounded rationality. This
model has previously been shown to reproduce the main stylized facts of financial
markets31. Its dynamics are based on the realistic notion that it is better to be a buyer
when there is an excess of sellers or vice versa when in a financial market comprising
agents (humans or machines) with short-term, high-frequency trading goals. The
formulae given above for the scale of the fluctuations in each phase, are derived
explicitly in Ref. 40, and also Refs. 31 and 41.

1. Vespignani, A. Predicting the behaviour of techno-social systems. Science 325,
425–428 (2009).

2. Easley, D., Lopez de Prado, M. & O’Hara, M. The volume clock: Insights into the
high-frequency paradigm. Journal of Portfolio Management 39, 19–29 (2012).

3. Easley, D., Lopez de Prado, M. & O’Hara, M. Flow toxicity and liquidity in a high-
frequency world. Review of Financial Studies 25, 1457–1493 (2012).

4. Preis, T., Kenett, D. Y., Stanley, H. E., Helbing, D. & Ben-Jacob, E. Quantifying the
behavior of stock correlations under market stress. Sci. Rep. 2, 752 (2012).

5. Rime, D., Sarno, L. & Sojli, E. Exchange rate forecasting, order flow and
macroeconomic information. Journal of International Economics 80, 72–88 (2010).

6. Farmer, J. D. & Skouras, S. An Ecological Perspective on the Future of Computer
Trading. U.K. Government Foresight Project (2011). Available at http://
www.bis.gov.uk/assets/foresight/docs/computer-trading/11-1225-dr6-
ecological-perspective-on-future-of-computer-trading. Last visited: 17-2-2013.

7. Preis, T., Schneider, J. J. & Stanley, H. E. Switching processes in financial markets.
Proceedings of the National Academy of Sciences 108, 7674–7678 (2011).

8. Haldane, A. The race to zero. Speech given at: International Economic Association
Sixteenth World Congress, Beijing, China, 8 July 2011.Available at http://
www.bankofengland.co.uk/publications/speeches/2011/speech509.pdf. Last
visited: 17-2-2013.

9. De Luca, M., Szostek, C., Cartlidge, J. & Cliff, D. Studies on Interactions between
Human Traders and Algorithmic Trading Systems. U.K. Government Foresight
Project (2011). Available at http://www.bis.gov.uk/assets/bispartners/foresight/
docs/computer-trading/11-1232-dr13-studies-of-interactions-between-human-
traders-and-algorithmic-trading-systems. Last visited: 17-2-2013.

10. Schweitzer, F. et al. Economic networks: The new challenges. Science 325, 422–425
(2009).

11. Caldarelli, G., Battiston, S., Garlaschelli, D. & Catanzaro, M. Emergence of
complexity in financial networks. Lecture Notes in Physics 650, 399–423 (2004).

12. Oltvai, Z. N. & Barabási, A. L. Life’s complexity pyramid. Science 298, 763–764
(2002).

13. Mantegna, R. N. & Stanley, H. E. Scaling behavior in the dynamics of an economic
index. Nature 376, 46–49 (1995).

14. Gabaix, X., Gopikrishnan, P., Plerou, V. & Stanley, H. E. A theory of power-law
distributions in financial market fluctuations. Nature 423, 267–270 (2003).

15. Lux, T. & Marchesi, M. Scaling and criticality in a stochastic multi-agent model of
a financial market. Nature 397, 498–500 (1999).

16. Perez, E. The Speed Traders: An Insider’s Look at the New High-Frequency Trading
Phenomenon That is Transforming the Investing World (McGraw-Hill, New York,
2011).

17. U.S. Securities and Exchange Commission. Findings Regarding the Market Events
of May 6, 2010. Available at http://www.sec.gov/news/studies/2010/
marketevents-report.pdf. Last visited: 17-2-2013.

18. Pappalardo, J. New transatlantic cable built to shave 5 milliseconds off stock
traders (2011). Available at: http://www.popularmechanics.com/technology/
engineering/infrastructure/a-transatlantic-cable-to-shave-5-milliseconds-off-
stock-trades. Last visited: 17-2-2013.

19. Conway, B. Wall Street’s need for trading speed: The nanosecond age. The Wall
Street Journal. JUN 14, (2011). Available at: http://blogs.wsj.com/marketbeat/
2011/06/14/wall-streets-need-for-trading-speed-the-nanosecond-age/. Last
visited: 17-2-2013.

20. Taleb, N. N. The Black Swan: The Impact of the Highly Improbable (Random
House Trade, New York, 2010). 2nd Edition.

21. Sornette, D. Dragon-kings, black swans and the prediction of crises. Available at
http://arxiv.org/abs/0907.4290 (2009).

22. Johansen, A. & Sornette, D. Large stock market price drawdowns are outliers.
Journal of Risk 4, 69–110 (2001).

23. Helbing, D., Farkas, I. & Vicsek, T. Simulating dynamical features of escape panic.
Nature 407, 487–490 (2000).

24. Bouchaud, J. P. & Potters, M. Theory of Financial Risk and Derivative Pricing
(Cambridge University Press, 2003).

25. Cont, R. Frontiers in Quantitative Finance: Credit Risk and Volatility Modeling
(Wiley, New York, 2008).

26. Liukkonen, T. N. & Unit, K. Human reaction times as a response to delays in
control systems – Notes in vehicular context (2009). Available at http://
www.measurepolis.fi/alma/ALMA%20Human%20Reaction%20Times%20as
%20a%20Response%20to%20Delays%20in%20Control%20Systems.pdf. Last
visited: 17-2-2013.

27. Saariluoma, P. Chess Players’ Thinking: A Cognitive Psychological Approach
(Routledge, New York, 1995), p. 43.

28. Petersen, A. M., Wang, F., Havlin, S. & Stanley, H. E. Market dynamics
immediately before and after financial shocks: Quantifying the Omori,
productivity, and Bath laws. Physical Review E 82, 036114–036125 (2010).

29. Clauset, A., Shalizi, C. R. & Newman, M. E. Power-law distributions in empirical
data. SIAM Rev. 51, 661–703 (2009).

30. Mandelbrot, B. The Misbehaviour of Markets: A Fractal View of Market
Turbulence (Basic Books, New York, 2004).

31. Johnson, N. F., Jefferies, P. & Hui, P. M. Financial Market Complexity (Oxford
University Press, 2003), Chap. 4.

32. Arthur, W. B. Complexity and the economy. Science 284, 107–109 (1999).
33. Challet, D., Marsili, M. & Zhang, Y. C. Minority Games: Interacting Agents in

Financial Markets (Oxford University Press, Oxford, 2005).
34. Johnson, N. F., Smith, D. M. D. & Hui, P. M. Multi-Agent Complex Systems and

Many-Body Physics. Europhysics Letters 74, 923–927 (2006).
35. Satinover, J. & Sornette, D. Cycles, determinism and persistence in agent-based

games and financial time-series (2008). Available at http://arxiv.org/abs/
0805.0428. Last visited: 17-2-2013.

36. Cartlidge, J., Szostek, C., Luca, M. D. & Cliff, D. Too fast - too furious: Faster
financial – market trading agents can give less efficient markets. In 4th Int. Conf.
Agents & Art. Intell 2, 126–135 (2012). Available at http://www.cs.bris.ac.uk/
,cszjpc/docs/cartlidge-icaart-2012.pdf. Last visited: 17-2-2013.

37. Golub, A., Keane, J. & Poon, S. High Frequency Trading and Mini Flash Crashes,
e-print arXiv:1211.6667v1 (2013) at http://arxiv.org/abs/1211.6667. Last visited:
20-5-2013.

38. Battiston, S., Puliga, M., Kaushik, R., Tasca, P. & Caldarelli, G. DebtRank: Too
Central to Fail? Financial Networks, the FED and Systemic Risk. Scientific Reports
2, 541–545 (2012).

39. Battiston, S., Caldarelli, G., Georg, C. P., May, R. & Stiglitz, J. Complex Derivatives.
Nature Physics 9, 123 (2013).

40. Johnson, N. F. & Hui, P. M. Crowd-Anticrowd Theory of Collective Dynamics in
Competitive, Multi-Agent Populations and Networks. E-print arXiv:cond-mat/
0306516v1 available at http://arxiv.org/abs/cond-mat/0306516. Last accessed 07-
31-2013.

41. Smith, D. M. D., Hui, P. M. & Johnson, N. F. Multi-Agent Complex Systems and
Many-Body Physics. Europhysics Letters 74, 923–927 (2006).

Acknowledgments
NJ (Neil Johnson) gratefully acknowledges support for this research from The MITRE
Corporation and the Office of Naval Research (ONR) under grant N000141110451. The

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 3 : 2627 | DOI: 10.1038/srep02627 6

http://www.bis.gov.uk/assets/foresight/docs/computer-trading/11-1225-dr6-ecological-perspective-on-future-of-computer-trading
http://www.bis.gov.uk/assets/foresight/docs/computer-trading/11-1225-dr6-ecological-perspective-on-future-of-computer-trading
http://www.bis.gov.uk/assets/foresight/docs/computer-trading/11-1225-dr6-ecological-perspective-on-future-of-computer-trading
http://www.bankofengland.co.uk/publications/speeches/2011/speech509.pdf
http://www.bankofengland.co.uk/publications/speeches/2011/speech509.pdf
http://www.bis.gov.uk/assets/bispartners/foresight/docs/computer-trading/11-1232-dr13-studies-of-interactions-between-human-traders-and-algorithmic-trading-systems
http://www.bis.gov.uk/assets/bispartners/foresight/docs/computer-trading/11-1232-dr13-studies-of-interactions-between-human-traders-and-algorithmic-trading-systems
http://www.bis.gov.uk/assets/bispartners/foresight/docs/computer-trading/11-1232-dr13-studies-of-interactions-between-human-traders-and-algorithmic-trading-systems
http://www.sec.gov/news/studies/2010/marketevents-report.pdf
http://www.sec.gov/news/studies/2010/marketevents-report.pdf
http://www.popularmechanics.com/technology/engineering/infrastructure/a-transatlantic-cable-to-shave-5-milliseconds-off-stock-trades
http://www.popularmechanics.com/technology/engineering/infrastructure/a-transatlantic-cable-to-shave-5-milliseconds-off-stock-trades
http://www.popularmechanics.com/technology/engineering/infrastructure/a-transatlantic-cable-to-shave-5-milliseconds-off-stock-trades
http://blogs.wsj.com/marketbeat/2011/06/14/wall-streets-need-for-trading-speed-the-nanosecond-age/Last
http://blogs.wsj.com/marketbeat/2011/06/14/wall-streets-need-for-trading-speed-the-nanosecond-age/Last
http://arxiv.org/abs/0907.4290
http://www.measurepolis.fi/alma/ALMA%20Human%20Reaction%20Times%20as%20a%20Response%20to%20Delays%20in%20Control%20Systems.pdf
http://www.measurepolis.fi/alma/ALMA%20Human%20Reaction%20Times%20as%20a%20Response%20to%20Delays%20in%20Control%20Systems.pdf
http://www.measurepolis.fi/alma/ALMA%20Human%20Reaction%20Times%20as%20a%20Response%20to%20Delays%20in%20Control%20Systems.pdf
http://arxiv.org/abs/0805.0428
http://arxiv.org/abs/0805.0428
http://www.cs.bris.ac.uk
http://arxiv.org/abs/1211.6667
http://arxiv.org/abs/cond-mat/0306516


views and conclusions contained in this paper are those of the authors and should not be
interpreted as representing the official policies, either expressed or implied, of the above
named organizations, to include the U.S. government. We thank Amith Ravindar, Joel
Malerba, Zhenyuan Zhao, Pak Ming Hui, Spencer Carran, David Smith, Michael Hart and
Paul Jefferies for discussions surrounding this topic and help with assembling datafiles and
parts of figures.

Author contributions
All authors participated in discussions of the research, its findings, and the content of the
manuscript. NJ (Neil Johnson), GZ and BT wrote the manuscript. NJ (Neil Johnson), EH
and BT designed the research. NJ (Neil Johnson) GZ, EH, HQ, NJ and BT analysed the
empirical data. GZ, HQ and JM did the numerical calculations while NJ (Neil Johnson)
completed the analytical derivations.

Additional information
Supplementary information accompanies this paper at http://www.nature.com/
scientificreports

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Johnson, N. et al. Abrupt rise of new machine ecology beyond
human response time. Sci. Rep. 3, 2627; DOI:10.1038/srep02627 (2013).

This work is licensed under a Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported license. To view a copy of this license,

visit http://creativecommons.org/licenses/by-nc-nd/3.0

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 3 : 2627 | DOI: 10.1038/srep02627 7

http://www.nature.com/scientificreports
http://www.nature.com/scientificreports
http://creativecommons.org/licenses/by-nc-nd/3.0

	Title
	Figure 1 Ultrafast extreme events (UEEs).
	Figure 2 Number of UEEs as a function of UEE duration.
	Figure 3 Empirical transition in size distribution for UEEs with duration above threshold &tgr;, as function of &tgr;.
	Figure 4 Extent to which the cumulative distribution for UEE spikes follows a power-law, for the subset having durations greater than 1 second (upper panel) and less than 1 second (lower panel).
	Figure 5 Cumulative distribution for UEE spikes with durations within a given millisecond range, having a size which is at least as big as the valueshown on the horizontal axis.
	References

