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Preface

This book is based on a one-semester course for advanced undergraduates
specializing in physical chemistry. I am aware that the mathematical training
of most science majors is more heavily weighted towards analysis – typic-
ally calculus and differential equations – than towards algebra. But it remains
my conviction that the basic ideas and applications of group theory are not
only vital, but not difficult to learn, even though a formal mathematical setting
with emphasis on rigor and completeness is not the place where most chemists
would feel most comfortable in learning them.

The presentation here is short, and limited to those aspects of symmetry and
group theory that are directly useful in interpreting molecular structure and
spectroscopy. Nevertheless I hope that the reader will begin to sense some of
the beauty of the subject. Symmetry is at the heart of our understanding of the
physical laws of nature. If a reader is happy with what appears in this book, I
must count this a success. But if the book motivates a reader to move deeper
into the subject, I shall be gratified.

Cambridge,
January 2004
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Chapter 1

THE RELATIONSHIP BETWEEN GROUP
THEORY AND CHEMISTRY

1.1 Introduction

Group theory is a branch of mathematics that describes the properties of an
abstract model of phenomena that depend on symmetry. Despite its abstract
tone, group theory provides practical techniques for making quantitative and
verifiable predictions about the behavior of atoms, molecules and solids. Once
the basic ideas are clear, these techniques are easy to apply, requiring only
simple arithmetic calculations.

In this introductory treatment of the applications of group theory to chem-
istry, all mathematical tools are introduced and developed as they are needed.
Familiarity is assumed with only the basic ideas of Euclidean geometry, trigo-
nometry and complex numbers.

1.2 Applications of group theory

Group theory has been useful in chemistry in several ways. First, it has
provided simple, qualitative explanations for the behavior of matter. For ex-
ample, why can the states of electrons in any atom be classified, to a good
approximation, by the four quantum numbers n, l, ml and ms? Why, in
their ground states, is BeH2 a linear molecule but H2O bent? Why do cer-
tain transitions not appear in an absorption spectrum? Lengthy computations
can provide correct but uninformative answers to these questions; group the-
ory can provide perspicuous explanations of the factors that determine these
answers.

At a more recondite level, group theory has helped in writing the gram-
mars of the languages we use to describe the physical world. The principles
of quantum mechanics can be stated with conciseness, clarity, and confid-



2 INTRODUCTION TO SYMMETRY AND GROUP THEORY FOR CHEMISTS

ence because the properties of wave functions and linear operators are well-
characterized by mathematics.

Together, qualitative understanding plus formal theory produce predictive
tools. The following questions survey the topics to be treated: How can we
describe, classify and predict

1 . . . the modes of vibration of a molecule?

2 . . . the possible shapes of the wave functions characterizing the electronic
structures of atoms and molecules?

3 . . . the spectroscopic properties of atoms and molecules; that is, their ex-
change of energy with radiation?



Chapter 2

SYMMETRY

2.1 A bridge from geometry to arithmetic

A crucial reason for the importance of group theory in chemistry is that it
provides a quantitative description of the symmetry properties of atoms, mo-
lecules, and solids. It would be incorrect, however, to think that group theory
is only, or even mainly, a theory of geometric symmetry, because group theory
also describes the processes of ordinary arithmetic. Indeed the source of the
power of group theory in dealing with phenomena that depend on symmetry is
its establishment of a link between symmetries and numbers. It is the power
of this analogy, which provides arithmetic representations of geometrical op-
erations, that makes it possible to derive geometric conclusions from simple
numerical calculations.

2.2 Classifying symmetry operations

A fundamental concept in the analysis of the symmetry of an object, such
as a cube or a water molecule, is the idea of a covering operation. A covering
operation is a geometrical transformation of an object that leaves it unchanged
in appearance. For example, the rotation of a water molecule by 180◦ around
an axis bisecting the H–O–H angle has the effect of exchanging the positions
of the two hydrogens, so that the molecule looks the same before and after the
rotation, as shown in Figure 2.1.
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Figure 2.1. Rotation by 180◦ is a symmetry operation of the water molecule.

A test for recognizing a covering operation is that it would go unnoticed by
an observer who was temporarily not looking while the operation was being
performed.

Many covering operations correspond to simple rotations – it is easy, and
most helpful, to try them out with molecular models. In addition, a “mirror re-
flection” of the distribution of matter in the water molecule in a plane passing
through the oxygen atom and perpendicular to the molecule is a covering op-
eration. It is illustrated in Figure 2.2.

Figure 2.2. Reflection in a mirror plane is another symmetry operation of the water
molecule.

The complete list of covering operations of any object is a precise descrip-
tion of its symmetry.

2.3 Full analysis of the symmetry of the water molecule:
Introduction to notation

There is one covering operation that even the most asymmetric object must
have: the operation of leaving it alone. Like multiplying a number by 1, there
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is no effect, but this operation, called the identity, is as important in the study
of symmetry as the number 1 is to multiplication in arithmetic. The identity
operation will be denoted here by the letter E.

The rotation by 180◦ is denoted by the symbol C2 (C is curved, like the orbit
of an atom undergoing rotation, and the subscript 2 indicates that the angle of
rotation is 360◦/2). A rotation by 120◦ = 360◦/3 would be denoted by the
symbol C3, What is the effect of the operation C1?

The mirror symmetry, the reflection in a plane perpendicular to the molecu-
lar plane, is denoted by the symbol σv. All mirror reflections are denoted by
the Greek letter σ: the subscript v indicates that the plane of symmetry would
be vertical if the molecule were drawn on a blackboard in the usual way.

A fourth covering operation of the water molecule is reflection IN the plane
of the molecule. This is also a vertical mirror; it is denoted by the symbol σ′

v.
Table 2.1 summarizes the symmetry operations of the water molecule, and

records the final position of each atom after each operation.

Table 2.1. Symmetries of the water molecule.

Final position of atom
originally located at:

Symmetry operation Symbol H1 O H2

Identity E H1 O H2

Twofold rotation C2 H2 O H1

Reflection in mirror perpendicular σv H2 O H1

to molecular plane

Reflection in molecular plane σ′
v H1 O H2

In the table, the symbols H1, O, and H2 denote fixed locations in space, occu-
pied initially (before the symmetry operation) by hydrogen and oxygen atoms.
It is customary to say, for example, that H1 is carried into H2 by the twofold
rotation C2. This statement means that the hydrogen atom initially at the point
H1 is moved by the operation to the point H2; or, if H1 and H2 denote the
atoms themselves rather than the positions in space, that H1 is moved to the
position originally occupied by H2. H1 is carried into H2 does not mean that
both hydrogen atoms are at the same point in space after the operation.

Table 2.1 shows that σ′
v has the same effect on the water molecule as the

identity and that σv has the same effect as C2. Are all four operations really
needed to describe the symmetry of the water molecule, or would E and C2,
for example, be enough?
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A comparison of the symmetry properties of the water molecule with those
of hydrogen peroxide shows that all four operations are necessary. Although
E and C2 are covering operations of H2O2, as shown in Figure 2.3, H2O2 has
no plane of symmetry. Therefore it is essential to include all four covering
operations in a description of the symmetry of the water molecule, to indicate
that water has a higher symmetry than hydrogen peroxide.

180° 180°

O
O O

Figure 2.3. C2 is a symmetry operation of both water and hydrogen peroxide, but
hydrogen peroxide has no plane of mirror symmetry. The orientation of the symmetry
axis in H2O2 is perpendicular to the O–O bond and bisects the angle between the H–
O–O and O–O–H planes.

Is the set E, C2, σv and σ′
v a complete description of the symmetry of the

water molecule, or do additional covering operations exist? One way to try
to generate additional covering operations is by applying two known covering
operations in succession; for example, C2 followed by σv.

This compound operation must also be a covering operation of the water
molecule – it satisfies the criterion of undetectability by a temporarily distrac-
ted observer. However, it is not a new covering operation, but is equivalent to
σ′

v.
The equivalence of two geometrical operations must be verified on an ad-

equately asymmetric object. For example, E and σ′
v have the same effect on

the water molecule, but they are certainly not the same geometrical manipula-
tion. Figure 2.4a shows that a consideration of the water molecule alone cannot
determine whether the compound operation (C2 followed by σv) is equal to σ′

v

or to E; but that, for the case of a square rendered asymmetric by labeling the
corners (Figure 2.4b), the compound operation (C2 followed by σv) is equival-
ent to σ′

v and unequal to E.
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(a)

O

H1

E

H2

C2 O

H2 H1

O

H2 H1

(vertical axis)

σ'
v

σ
v

(b)

A B

C D

C2

C D

A B

C D

A B

D C

B A
(axis into page)

σ'
v

σ
v

σ
v

σ'
v

Figure 2.4. (a) For the water molecule the compound operation C2 followed by σv has
the same effect as the identity E or σ′

v . (b) For a suitably-labeled square the compound
operation C2 followed by σv has the same effect as σ′

v , but is not equivalent to the
identity E.

Thus the assertion that the compound operation (C2 followed by σv) is equi-
valent to σ′

v means not only that both produce the same result if applied to the
water molecule, but that both produce the same result if applied to any object
whatever, even an operation for which none of the transformations σv, C2 or
(C2 followed by σv) is a covering operation.

Is it possible that consideration of other examples might expose a case in
which (C2 followed by σv) does not give the same result as σ′

v? Rather than
proceeding inductively with additional tests, it will prove more effective to treat
the geometric manipulations as independent entities, without reference to illus-
trative objects on which they operate. The development of numerical repres-
entations of symmetry operations will then provide straightforward arithmetic
tests for equality.
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2.4 Products of covering operations: multiplication tables
It is usual to refer to the compound operation produced by applying two

operations in succession as the product of the two operations. In order to in-
vestigate further whether the products of the known covering operations of the
water molecule produce any new ones, it is helpful to construct a complete
multiplication table, shown in the box. Each entry in the table gives the op-
eration resulting from applying first the operation at the head of the column
containing the entry, and then the operation at the left of the row.

E C2 σv σ′
v

E E C2 σv σ′
v

C2 C2 E σ′
v σv

σv σv σ′
v E C2

σ′
v σ′

v σv C2 E

No new covering operations have been generated – perhaps we have already
found all of them.

2.5 What is a group?
The fact that the product of any two of the four covering operations of the

water molecule is again one of the four can be expressed by the statement that
the set E, C2, σv, and σ′

v is closed under the rule of combination used. This is
one of the defining properties of a group. The set of all covering operations of
an object forms its symmetry group.

Other examples of sets that are closed under some rule of combination are
familiar. Consider the numbers 1 and −1, combining according to the rules of
ordinary multiplication:

1 −1

1 1 −1
−1 −1 1

or the complex numbers 1,−1, i and −i, again under multiplication:

1 −1 i −i

1 1 −1 i −i
−1 −1 1 −i i

i i −i −1 1
−i −i i 1 −1

As an important step towards appreciating the abstract concept of a group, try
to recognize what the set of covering operations of the water molecule and
these numerical examples have in common.
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In many extremely important cases, the analogy between a group of sym-
metry operations and a group of real numbers is more than superficial. For
example, consider the molecule α−chloronaphthalene:

�� ��

�� ��

�� ��

�� ��

��

����

��

1==Cl0-190

The covering operations of this molecule are only the identity E and a reflec-
tion in the plane of the molecule, denoted simply as σ. Compare the multi-
plication table of this group with that of the group formed by 1 and -1 under
multiplication:

E σ

E E σ
σ σ E

1 −1

1 1 −1
−1 −1 1

The two multiplication tables have exactly the same structure. Whenever it
is possible to establish a one-to-one correspondence between the elements of
two groups, in such as way that the product of any two elements in one group
corresponds to the product of corresponding elements in the other group, the
two groups are said to be isomorphic. In this example the correspondence is
E ↔ 1 and σ ↔ −1. Because all properties of a group depend on its mul-
tiplication table, any property of a group is also a property of all isomorphic
groups.

In particular, a group of numbers isomorphic to a symmetry group is an
example of a representation of the symmetry group. Group representations
are of the utmost importance in chemistry because they make it possible to
achieve the effects of geometrical reasoning by means of calculations with the
numerical representations.

Problem 2–1. Is the symmetry group of the water molecule (Box, p.
8) isomorphic with the group formed by 1, i,−1 and −i under multi-
plication?
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Problem 2–2. Consider the symmetry group of an object for which the
only covering operations are the identity and rotations by 120◦ (= C3)
and 240◦ (= C2

3) around the same axis. The multiplication table for this
group is:

E C3 C2
3

E E C3 C2
3

C3 C3 C2
3 E

C2
3 C2

3 E C3

Can you determine all the possible sets of three complex numbers that
satisfy the same multiplication table?



Chapter 3

GROUP THEORY

3.1 Definition of a group
A group consists of a set (of symmetry operations, numbers, etc.) together

with a rule by which any two elements of the set may be combined – which
will be called, generically, multiplication – with the following four properties:

1 Closure: The result of combining any two elements – the product of any
two elements – is another element in the set.

2 Group multiplication satisfies the associative law: a · (b · c) = (a · b) · c for
all elements a, b and c of the group.

3 There exists a unit element, or identity, denoted E, such that E · a = a for
any element of the group.

4 For every element a of the group, the group contains another element called
the inverse, a−1, such that a · a−1 = E. Note that as E·E = E, the inverse of
E is E itself.

Problem 3–1. Verify that the set of covering operations of the wa-
ter molecule is a group, with the definition of the product of two op-
erations as the compound operation resulting from applying them in
succession.
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Problem 3–2. For each of the following: Is it a group? If not, which
condition(s) fail? If the specified set does form a group under the spe-
cified operation, state what the identity element is, and give a formula
for the the inverse of any element.
(a) All integers – positive, negative and zero – under multiplication.
(b) The five integers −2,−1, 0, 1, 2 under addition.
(c) All odd integers under addition.
(d) All odd integers under multiplication.
(e) All even integers under addition.
(f) All even integers under multiplication.
(g) All real numbers under multiplication.
(h) All numbers of the form n1 + n2

√
5 where n1 and n2 are integers

(negative, zero or positive), under multiplication.
(i) The set of all rotations around a single axis; the rule of combination
is successive application.

3.2 Subgroups
A subgroup is a set of elements selected from a parent group that themselves

form group, with the additional condition that the product of two elements
in the subgroup must be the same as the product of the same two elements
considered as members of the larger group. For example, the group formed by
1 and −1 under multiplication is a subgroup of the group formed by 1, i,−1
and −i under multiplication:

1 −1 i −i

1 1 −1 i −i
−1 −1 1 −i i

i i −i −1 1
−i −i i 1 −1

In contrast, although the integers . . . ,−2,−1, 0, 1, 2 . . . form a group
under addition, the group formed by 1 and −1 under multiplication is not a
subgroup even though both 1 and −1 are contained in the set of all integers.

Problem 3–3. Find all subgroups of the symmetry group of the water
molecule, in two ways: (a) For each symmetry element, try to find a
specific conformation of a related molecule, or of any geometric object,
that has all the symmetry elements except the one considered.

continues. . .
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The symmetry group of that molecule or object is a subgroup of the
symmetry group of the water molecule.

(b) Make several copies of the multiplication table of the group. Cross
out all reasonable combinations of rows, and corresponding columns –
this has the effect of deleting certain elements – and determine whether
that which is left forms a group. Note that there is a total of 15 possib-
ilities – see how many you can eliminate without actually trying them.
Make sure that you get the same answer both ways!

3.3 Examples of groups
Elements of the group Rule of combination

1. covering operations of an object Successive application
2. All real numbers Addition
3. All complex numbers Addition
4. All real numbers except 0 Multiplication
5. All complex numbers except (0, 0) Multiplication
6. All integers Addition
7. Even integers Addition
8. The n complex numbers of the form Multiplication

cos 2πk
n

+ i sin 2πk
n

, k = 0, . . . , n − 1
9. All permutations of an Successive application

ordered set of objects

A permutation is a specification of a way to reorder a set. For example, the group of
permutations of two objects contains two elements: the identity, first → first, second
→ second and the exchange, first → second, second → first. This group is isomorphic
to the group formed by 1 and −1 under multiplication.

10. All 2 × 2 arrays of complex

(
a b
c d

)
·
(

a′ b′

c′ d′

)
=

numbers of the form

(
a b
c d

) (
aa′ + bc′ ab′ + bd′

ca′ + dc′ cb′ + dd′

)
such that ad − bc �= 0

11. All 2 × 2 arrays of complex Same as example 10

numbers of the form

(
a b

−b∗ a∗

)
such that aa∗ + bb∗ = 1

12. All possible rotations in Successive application
three-dimensional space
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Problem 3–4. The group of permutations of three objects contains six
elements (written in terms of cardinal rather than as ordinal numbers
to save space):

Initial position Final position
1 → 1 2 3 1 3 2
2 → 2 3 1 3 2 1
3 → 3 1 2 2 1 3

Write the multiplication table for the group of permutations of three
objects.

Problem 3–5. Do you expect the group of permutations of three ob-
jects to be isomorphic to the symmetry group of the water molecule?
Explain your reasoning. Are the groups isomorphic?

Problem 3–6. Find the subgroups of the group of permutations of
three objects.

Problem 3–7. Verify that the 2 × 2 complex arrays of example 10 at
the beginning of this chapter form a group. Hints: (a) The difficulty in
verifying closure is the proof that if the condition ad−bc �= 0 holds for
two 2× 2 arrays, it holds for their product. Show by direct calculation
that (aa′+bc′)(cb′+dd′)−(ab′+bd′)(ca′+dd′) = (ad−bc)(a′d′−b′c′).
(b) Verify the associative law by direct calculation. (c) Verify that the

identity element is
(

1 0
0 1

)
. (d) Verify that if ad − bc = D �= 0, then

the inverse of
(

a b
c d

)
is

(
d/D −b/D
−c/D a/D

)
.

Problem 3–8. For all twelve examples of groups in this section,
determine which groups are subgroups of others, and which groups
are isomorphic to others. Prepare a chart showing diagrammatically
the chains of subgroups, and connect the isomorphs by dotted lines.
(Warning! The relationship between examples 11 and 12 is quite
tricky.)



Chapter 4

POINT GROUPS – THE SYMMETRY GROUPS OF
SMALL MOLECULES

4.1 Introduction

A point group is the symmetry group of an object of finite extent, such as
an atom or molecule. (Infinite lattices, occurring in the theory of crystalline
solids, have translational symmetry in addition.) Specifying the point group to
which a molecule belongs defines its symmetry completely.

There is quite a range of the possible types of symmetry that a molecule
can exhibit. The only covering operation of an asymmetric molecule such as
morphine is the identity: the symmetry group of methane, a molecule of very
high symmetry, contains fourteen covering operations.

This chapter surveys the varieties of symmetry observed in molecules. First,
the different types of covering operations are defined and illustrated. A con-
sideration of possible compatible combinations of symmetry elements leads to
a catalog of the common point groups.

4.2 Axes of rotation: Cn

A molecule has an axis of rotation of degree n, or an n−fold rotation axis,
if rotation by 1

n th of a full turn is a covering operation. If n = 2, the rotation
is by half a turn, or 180◦, as in the case of the C2 axis of the water molecule.
The symbol Cn denotes an n−fold axis.

Axes of rotation are among the most common of molecular symmetry op-
erations. A onefold axis is a rotation by a full turn, equivalent to the identity.
A twofold rotation axis, as in the example of the water molecule, is sometimes
called a dyad. Cyclopropane has a threefold axis perpendicular to the plane
containing the carbon atoms; it also has three twofold axes. Can you visualize
them?
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4.3 Mirror planes: σ

A molecule has a plane of symmetry, or mirror plane, if reflection of all
atoms in the plane is a covering operation.

Any planar molecule has mirror symmetry, because reflection in the mo-
lecular plane leaves the positions of all atoms unaltered. For planar molecules,
mirror reflection in the molecular plane is equal to the identity. A molecule
may have several mirror planes: recall that the water molecule has two – it is
symmetric both with respect to the molecular plane and with respect to a plane
perpendicular to the molecule.

Mirror planes are denoted by the Greek letter σ. Mirror planes in a molecule
that has an axis of rotation are further classified according to the relative ori-
entation of the axis and the mirror plane. Because it is usual to draw molecules
with the principal rotation axis vertical, a mirror plane containing the principal
rotation axis is called a vertical mirror and denoted σv. A mirror plane per-
pendicular to the rotation axis is called a horizontal mirror and denoted σh.

A special type of vertical plane of symmetry occurs if there are two or more
twofold axes perpendicular to the principal axis, and a mirror plane bisects the
angle between two of these twofold axes, as in benzene. Such a plane is called
a diagonal mirror plane, denoted σd.

For example, the symmetry group of benzene contains six dyads perpen-
dicular to the principal C6 axis, and six vertical mirror planes containing the
principal axis. These mirror planes can be divided into two sets of three: those
passing through atoms and those passing between atoms. The product of C6

with any of the mirror reflections is another reflection in the same set. It is
conventional to distinguish these two sets by calling members of one of them
σv and members of the other σd; but the choice of which are the σv and which
are the σd is arbitrary.

Examples of different types of mirror planes are:

a plane of symmetry in the absence of a rotation axis (other than C1), σ :
HOCl, chloronaphthalene.

vertical mirror symmetry planes, σv : water, methane.

horizontal mirror symmetry planes, σh : trans-1,2,−dichloroethylene.

diagonal mirror symmetry planes, σd: benzene, ferrocene in its staggered
conformation.
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Problem 4–1. (a) Locate the four mirror planes of cyclopropane. (b)
How many of the mirror planes of benzene can you find? (c) How
many mirror planes does ethane have in the staggered, eclipsed, and
gauche conformations?

Problem 4–2. Classify all the mirror planes of cyclopropane, benzene,
and the staggered, eclipsed, and gauche conformations of ethane as
vertical, horizontal or diagonal mirrors.

4.4 Stereographic projection diagrams
Stereographic projection diagrams, or stereograms, are a technique for con-

cise depiction of sets of point symmetry operations. Figure 4.1 contains simple
examples of stereographic projection diagrams, in which the symbols ×, ◦,
and ⊗ stand for points in space related by symmetry operations. Figure 4.1a
shows the simplest possible stereogram, illustrating the identity alone; Figure
4.1b illustrates the symmetry group of the water molecule; and Figure 4.1c
illustrates the symmetry group of cyclopropane.

Problem 4–3. In Figure 4.1c, what symmetry operation or combina-
tion of symmetry operations takes the × just above the horizontal line
(just above the 3 o’clock line) into (a) the ◦ closest to the top of the
circle (b) the × closest to the top of the circle, (c) the × next to the ×
in part (b) of this problem.

A stereogram is to be interpreted as a schematic diagram of an object viewed
down the principal axis. Horizontal mirror planes and equatorial rotation axes
lie in the plane of the diagram. Points in space are designated by × if they lie
above the plane of the diagram and by ◦ if they lie below it.

The first step in constructing a stereogram is to place a × in a position just to
the right of the vertical axis of the diagram, as in Figure 4.1a. The initial point
occupies a general position in space; that is, a point that does not lie on an
axis or plane of symmetry. The diagram is built up by applying each operation
in turn to every point currently plotted, and adding the points generated to
the diagram. For example, the reflection of an × in a horizontal mirror is an
◦, lying directly beneath it; they are written together: ⊗. At the end of this
process, the stererograms will contain all points generated from the original
point by any combination of operations from the group.
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Figure 4.1. Stereographic projection diagrams.

Additional features of the diagram represent symmetry operations them-
selves. The degree of the principal axis is indicated by the number of sides of a
polygon at the center of the diagram, as in Figure 4.1c. (A dyad is symbolized
by the lozenge, as in the center of Figure 4.1b.) The circle circumscribing the
diagram is solid if a σh is present and broken if no σh is present. Solid diamet-
ers indicate the orientation of vertical or diagonal mirrors. Broken diameters
with the dyad symbol at either end indicate the orientations of equatorial two-
fold axes.

Problem 4–4. Construct stereographic projection diagrams for the
symmetry groups of HOCl, cyclopropane, allene, and benzene.



Point groups – the symmetry groups of small molecules 19

4.5 Inversion: i
The operation of inversion of an atom with respect to an origin means that a

line segment is drawn from the atom to the origin, the line segment is extended
by an equal distance, and the atom is moved to the endpoint of the extended
line segment. After inversion, the atom is as far away from the origin as it
was before, but in the opposite direction. A molecule is said to have inversion
symmetry – symbol i – if the operation of inversion of all atoms with respect to
the center of gravity of the molecule is a covering operation. Benzene has in-
version symmetry, as does trans-1,2,-dichloroethylene, but cyclopropane does
not.

Analytically, inversion has the effect of reversing the signs of all coordin-
ates, measured from the origin of the inversion.

Problem 4–5. What conformation of ethane has inversion symmetry?

4.6 Rotatory reflections, or improper rotations, Sn

A twofold rotation around the molecular axis of cis-1,2-dichloroethylene is
not a covering operation, because the rotation exchanges hydrogens and chlor-
ines. However, the compound operation of the twofold rotation followed by a
reflection in a plane perpendicular to the molecular axis – a C2 followed by a
σh — is a covering operation. The combination of an n−fold rotation and a
reflection in a perpendicular plane is called a rotatory-reflection or improper
rotation, symbolized Sn.

Not all rotatory-reflections are unfamiliar operations. An S1 is just a C1 fol-
lowed by a σh – this is equivalent to the mirror reflection alone. S2 is equal to
the inversion, because the rotation reverses the signs of the coordinates meas-
ured along axes (of the coordinate system) perpendicular to the axis (of rota-
tion), and the reflection reverses the sign of the third coordinate.

In drawing stereographic projection diagrams, it is conventional to indicate
improper axes, Sn, by an open polygon at the center, and a proper axis, Cn, by
a filled polygon (see Figure 4.1c).
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I. Groups containing a principal rotation axis

Symbol Symmetry Molecular Examples Macroscopic
Elements Examples

C1 E C-FClBrI, myoglobin a tree

Cn E, Cn (and, necessarily) C2: hydrogen peroxide
C2

n, C3
n . . . Cn−1

n C3: m,m′,m′′-trichloro- three-bladed propellor
triphenyl radical

Cnv E, Cn, σv but not σh, C2v: water, phenanthrene tennis racket
and powers of Cn, plus C3v: chloroform, ammonia
additional σv’s C4v: B5H9 (square pyramid)

Cnh E, Cn, σh, etc.
C1h contains only E and σh; C1h: HOCl, chloronaphthalene a boat,
it is sometimes called Cs C2h: trans-1,2-dichloroethylene human body (external view)

Sn E, Sn, etc.
S1 = C1h E, σ
S2 = Ci E, i Ci: staggered 1,2-dichloro,1,2-difluoroethane
Sn = Cn

S4 E, S4, S
2
4 = C2, S

3
4

S6 E, S6, S
2
6 = C3, S

3
6 = i, S4

6 = C2
3 , S5

6
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Dihedral groups: groups containing n dyads perpendicular to a principal axis
Dn is the symmetry group of a regular n−sided polygon.

D2 = V E,C2(x), C2(y), C2(z) D2: twisted ethylene (neither planar
nor perpendicular)

D3 E, 2C3, 3C2 D3: Co(en)+++
3 (en = H2NCH2CH2NH2)

D4

Dnd Elements of Dn, plus σd, etc.
D2d = Vd E,C2, 2C′

2, 2σd, 2S4 D2d: allene, cyclooctatetraene
D3d: cyclohexane, chair form

. . . D5d: staggered ferrocene

Dnh Elements of Dnd plus σh, etc.
D2h = Vh E, 3C2, i, σv, σh, σd D2h: ethylene, naphthalene
D3h E, 2C3, 3C2

′, 2S3, 3σv, σh D3h: cyclopropane, eclipsed ethane
D6h D6h: benzene
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II. Groups of high symmetry: no principal axis, more than one Cn with n > 2

Symbol Symmetry Molecular Examples Macroscopic
Elements Examples

Td E, 8C3, 3C2, 6σd, 6S4 methane triangular pyramid
Oh E, 8C3, 6C2, 6C4, 3C2(= C2

4), i, 6S4, 8S6, 9σ Fe(CN)−−
6 , cubane regular octahedron

i, 6S4, 8S6, 9σ
Ih E, 12C5, 12C2

5 , 20C3, 15C2, some viruses regular icosahedron
i12S10, 12S3

10, 20S6, 15σ

III. Continuous groups: symmetry groups of linear molecules

Symbol Symmetry Molecular Examples Macroscopic
Elements Examples

C∞v E, 2Cφ, ∞σv heteronuclear diatomics, baseball bat
HF, HCN bowling pin

D∞h E, 2Cφ,∞C′
2, i, 2iCφ,∞iC2′ homonuclear diatomics, dumbbell

N2, CO2

∞σv means that there are an infinite number of vertical mirror planes, at all different
orientations to the principal axis.

∞C′
2 means that there are an infinite number of dyad axes, all perpendicular to the

principal axis but at all different orientations to it.



Chapter 5

INTRODUCTION TO LINEAR ALGEBRA

5.1 Introduction
The fundamental theme of linear algebra is the quantitative representation

of geometric objects and relationships. Table 5.1 lists the most important of
these correspondences between geometry and algebra.

5.2 Systems of coordinates
A coordinate system is a mathematical device for naming positions in space.

From the geometric standpoint, a coordinate system is an artificial construct,
because the structure of an object is defined by the relationships between its
component parts, independent of any external references. Nevertheless a de-
scription of geometric objects by means of a coordinate system is a convenient
way to describe numerically the internal structure of an object and the relation-
ships between different positions and orientations of an object in space.
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Table 5.1. Algebra-geometry dictionary

Algebra Geometry

vector point in space

norm of a vector distance from the origin of coordinates
to the point represented by the vector

inner product of two cosine of the angle between the lines
normalized vectors joining the origin to the points

represented by the two vectors

inner product of two vectors = 0 the lines joining the points to the
origin are perpendicular

matrix a linear transformation changing
the positions and scalings of a
set of points

multiplication of a vector determining the final position of
by a matrix a transformed point

determinant of a matrix under some circumstances,
a measure of the distortion of
lengths and angles introduced
by a transformation

orthogonal matrix transformation that keeps all lengths
and angles constant

5.3 Vectors

In linear algebra, a vector is defined as a sequence of numbers. A vector may

be written either in row form: (x, y, z) or in column form:


 x

y
z


 . Frequently

we shall use a boldface letter, x, to stand for an entire vector: x = (x, y, z).
The geometric interpretation of a vector as a position in space requires ref-

erence to a coordinate system. Any point in three-dimensional space corres-
ponds to a triplet of real numbers, the x, y and z coordinates of the point with
respect to a set of Cartesian axes. Conversely, any vector consisting of three
real numbers specifies a point in space. The position in space associated with
a particular vector will change if a different coordinate system is selected.

A different sense of the word vector in use in physical science is that of a
quantity having magnitude and direction. In the language of classical physics,
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the term radius vector – a “vector” from the origin to the point – is the closest
equivalent of the idea of a vector introduced here.

Problem 5–1. Visualize or construct graphs in two dimensions, of
the geometric interpretations of the 2-vector (3, 4) with respect to two
or more Cartesian coordinate systems. These coordinate systems may
differ with respect to the position of the origin and directions of the
axes; however, the axes must in every case be perpendicular to one
another. Keep the scale the same.
Which of the following are independent of the coordinate system?
(a) The point in space (that is, relative to the walls of the room you are
in) represented by the vector.
(b) The direction (relative to the walls of the room you are in) of the
line joining the origin to the point represented.
(c) The distance from the point represented to the origin.
(d) The length of the projection of the vector along the x−axis.

5.4 Norm or length of a vector
The norm of a vector, ‖ (x, y, z) ‖= √

x2 + y2 + z2, is the distance from a
point to the origin of a system of coordinates, or the length of the radius vector.

Problem 5–2. Multiplication of a vector by a real number is defined
as multiplying each component by the number: cx = c(x, y, z) =
(cx, cy, cz). Show that if c is a real constant,
‖ c(x, y, z) ‖= c ‖ (x, y, z) ‖ .

Problem 5–3. Show that if ‖ (x, y, z) ‖= 0, then x = y = z = 0.

5.5 Angles and inner products
What is the angle between the lines joining each of two points to the origin?

If vectors (x1, y1, z1) and (x2, y2, z2) specify the points, then the cosine of the
angle between the lines joining them to the origin is:

cos θ =
(x1x2 + y1y2 + z1z2)

‖ (x1, y1, z1) ‖ ‖ (x2, y2, z2) ‖
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The expression x1x2+y1y2+z1z2 is called the inner product or dot product
of the vectors (x1, y1, z1) and (x2, y2, z2), and is denoted

(x1, y1, z1) · (x1, y1, z1).

Problem 5–4. (a) Express the norm of a vector in terms of an inner
product. (b) Express the cosine of the angle between two vectors in
terms of inner products.

Problem 5–5. A point on the x−axis is represented by a vector of the
form (X, 0, 0), where X is a real number. (a) Find the general form
of the vectors that represent points of the y− and z−axes. (b) Show
that the inner product of any vector representing a point on the x−axis
with any vector representing a point on the y− or z−axes is zero.

5.6 Generalizations to n dimensions
A useful feature of the algebraic representations of geometric quantities is

the ease with which one can work in dimensions higher than three. Although it
is difficult to visualize the angle between two five-dimensional vectors, there is
no particular problem involved in taking the dot product between two vectors
of the form (x1, x2, x3, x4, x5).

A vector with n components is called an n-vector. Thus (x, y, z) is a 3-
vector, and vectors representing points in the Euclidean plane, (x, y), are 2-
vectors.

5.7 Orthogonality and normality
Two vectors are said to be orthogonal if they are perpendicular. Vectors are

orthogonal if and only if their inner product is zero.
For many applications, the direction in which a vector points is more signi-

ficant than its length. It is often convenient to multiply a vector by a constant
so that its length is equal to 1. Multiplication of a vector by a constant does not
change its direction. The resulting vector of length 1 is said to be normalized.
The normalization constant, N, by which a vector should be multiplied is equal
to the inverse of its norm or length. If (x, y, z) is the original vector, N must
satisfy the equations:

‖ (Nx,Ny,Nz) ‖ = 1, or



Introduction to linear algebra 27

(Nx,Ny,Nz) · (Nz,Ny,Nz) = N2x2 + N2y2 + N2z2

= N2(x2 + y2 + z2)
= N2 ‖ (x, y, z) ‖2 = 1

Therefore multiplication of the components of a vector by

N = 1/ ‖ (x, y, z) ‖
will produce a vector of unit length.

Any vector of the form (x, y, z)/ ‖ (x, y, z) ‖ is normalized.
Normalized vectors are sometimes written with circumflex accent marks (or

“hats”): x̂ = x/ ‖ x ‖ . The “hat” is a reminder that the length of the vector is
1.

Problem 5–6. Draw on a graph the 2–vectors (3, 3) and (2,−2). Ob-
serve that they are perpendicular and verify that their dot product is
zero.

Problem 5–7. Show that the lines joining two points to the origin
are perpendicular if and only if the inner product of the corresponding
vectors is zero?

Problem 5–8. Normalize the vector (3, 4, 12); that is, find the vector
of length 1 with the same direction.

Problem 5–9. What is the norm of the vector (13 3 4 5 12 13 12)?

5.8 Linear transformations and matrices
inxxlinear transformation The most important class of geometrical manip-

ulations is the set of linear transformations, for which the effect on a point is
given by the linear equations:

xf = a11xi + a12yi + a13zi

yf = a21xi + a22yi + a23zi

yf = a31xi + a32yi + a33zi

in which (xi, yi, zi) and (xf , yf , zf ) are vectors representing the initial and
f inal points, and the aij are real numbers characterizing the transformation.
All the covering operations we have dealt with are of this type.
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Matrix notation is a shorthand way of writing such systems of linear equa-
tions, that avoids tedious copying of the symbols xi, yi and zi. The application
of the identity matrix:


 xf

yf

zf


 =


 1 0 0

0 1 0
0 0 1





 xi

yi

zi




is an abbreviation of the system of equations:

xf = 1xi + 0yi + 0zi

yf = 0xi + 1yi + 0zi

zf = 0xi + 0yi + 1zi

In general, the array of numbers:


 a11 a12 a12

a21 a22 a23

a31 a32 a33




is called a matrix. The numbers aij are its elements: the first subscript specifies
the row and the second subscript specifies the column in which the element ap-
pears. A matrix characterizes a linear transformation completely, in a form
containing no explicit reference to particular initial and final points. Thus, in
addition to abbreviating the description of a transformation in terms of a set of
linear equations, matrix form emphasizes that the transformation is a mathem-
atical entity in its own right, independent of the points on which it operates. A
three-by-three matrix expresses a transformation in three-dimensional space.
Matrices of other dimensions express transformations in other dimensions.

Each of the symmetry operations we have defined geometrically can be rep-
resented by a matrix. The elements of the matrices depend on the choice of
coordinate system. Consider a water molecule and a coordinate system so ori-
ented that the three atoms lie in the x–z plane, with the z−axis passing through
the oxygen atom and bisecting the H–O–H angle, as shown in Figure 5.1.
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H H

z
y

xO

Figure 5.1.

Figure 5.1. Coordinate system for the water molecule.

The operation σv, the mirror reflection in the y–z plane, has the effect in
this coordinate system of reversing the sign of the x−coordinate of any point
it operates on. This effect is specified by the equations:

xf = −xi, yf = yi, zf = zi

or by the matrix equation:


xf

yf

zf


 =


−1 0 0

0 1 0
0 0 1





 xi

yi

zi




The identity operation is expressed by the identity matrix:

I =


 1 0 0

0 1 0
0 0 1




There is an identity matrix of every size, for every dimension.

Problem 5–10. Using the same coordinate system, write the sets of lin-
ear equations corresponding to C2 and σ′

v. What are the corresponding
matrices? Make sure that the results are correct even for points that do
not lie on the x–z plane.

Problem 5–11. Make up matrices corresponding to the operations C3,
C2

3 = −C3, and σh. Assume that the axis lies along the z−axis of the
coordinate system. Make up the matrix corresponding to the inversion.
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5.9 Successive transformations; matrix multiplication
Because the successive application of two linear transformations is itself a

linear transformation, it must also correspond to a matrix. The matrix cor-
responding to a compound transformation can be computed directly from the
matrices corresponding to the individual transformations. Let us derive the
formulas; for simplicity we shall work in two dimensions. Given two linear
transformations:

xf = a11xi + a12yi

yf = a21xi + a22yi

and

x′
f = b11x

′
i + b12y

′
i

y′f = b21x
′
i + b22y

′
i

use the final point of the first transformation as the initial point of the second.
That is, let

x′
i = xf = a11xi + a12yi and

y′i = yf = a21xi + a22yi

Then:

x′
f = b11(a11xi + a12yi) + b12(a21xi + a22yi)

y′f = b21(a11xi + a12yi) + b22(a21xi + a22yi)

or:

x′
f = (b11a11 + b12a21)xi + (b11a12 + b12a21)yi

y′f = (b21a11 + b22a21)xi + (b21a12 + b22a22)yi

The last set of equations is in the standard form for a linear transformation.
Its matrix form is:(

x′
f

y′f

)
=

(
b11a11 + b12a21 b11a12 + b12a21

b21a11 + b22a21 b21a12 + b22a22

) (
xi

yi

)
.

The matrix corresponding to the compound transformation is derived from
the individual transformation matrices by the rule of matrix multiplication in-
troduced in the examples of matrix groups (section 3–3), examples 10 and 11.
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In more than two dimensions, the calculation is similar. The general result
is that: if the matrix

C =


 c11 . . . c1n

. . . . . .
cn1 . . . cnn




corresponds to the compound transformation of applying first the matrix

A =


 a11 . . . a1n

. . . . . .
an1 . . . ann




and then the matrix

B =


 b11 . . . b1n

. . . . . .
bnl . . . bnn




we say that C is the product of B and A: C = B × A. The elements of C are
given by the formula:

cik =
n∑

j=1

bijajk

If the rows of B and the columns of A are considered as vectors, then the
element cik is the dot product of the ith row of B with the kth column of A:

C = B × A




...
. . . cik . . . . . .

...

...


 =


 bi1 bi2 . . . bin


 ×




a1k

a2k
...

ank




cik = ( bi1 bi2 . . . bin ) · ( a1k a2k . . . ank )

5.10 The effect on a matrix of a change in coordinate
system

The elements of the matrix that corresponds to a geometrical operation such
as a rotation depend on the coordinate system in which it is expressed. Con-
sider a mirror reflection, in two dimensions, expressed in three different co-
ordinate systems, as shown in Figure 5–2. The mirror itself is in each case
vertical, independent of the orientation of the coordinate system.
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• •
x̂ŷ

(xf , yf ) (xi, yi)

Coordinate system Equations of
mirror reflection

Matrix

xf = yi

yf = xi

(
0 1
1 0

)

xf + yf = xi + yi

xf − yf = −xi + yi

or

• •
ŷ

x̂

(xf , yf ) (xi, yi)
xf = xi

yf = −yi

(
1 0
0 −1

)

• •
(xf , yf ) (xi, yi)

x̂

ŷ
xf = −xi

yf = yi

(−1 0
0 1

)

Figure 5.2. Expression of a reflection in a mirror plane in three different coordinate
systems. Note that the points (xi, yi) and (xf , yf ) don’t change position. Only the
coordinate axes change.

The relationships between the matrices representing the reflection in differ-
ent coordinate systems are expressible in terms of the matrix S that defines
the relationships between the coordinate systems themselves. Suppose (x̂, ŷ)
and (x̂′, ŷ′) are two pairs of normalized vectors oriented along the axes of two
Cartesian coordinate systems related by a linear transformation:

(
x̂′
ŷ′

)
= S

(
x̂
ŷ

)

If the matrix A represents the mirror reflection in the (x̂, ŷ) coordinate system,
then the matrix that represents the reflection in the (x̂′, ŷ′) coordinate system
is the triple matrix product S−1AS, where S−1 is the inverse of S. Such a
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change in representation induced by a change in coordinate system is called a
similarity transformation.

Problem 5–12. Verify that the three sets of equations and matrices in
Figure 5.2 express the same mirror reflection, in the three different co-
ordinate systems. Proceed as follows: First plot and connect the points
of the triangle (1, 1), (5, 1), (3, 4) on standard axes, corresponding to
the top frame of Figure 5.2. Apply the transformation equations and
the matrix from the top frame of Figure 5.2 and plot the result on the
same axes. Do the results look as if the triangle has been subjected to a
mirror reflection? Then determine the coordinates of the initial points
in the other two coordinate systems. Apply the other two sets of trans-
formation equations and matrices, plot, the results with respect to the
other coordinate axes on separate pieces of paper. Verify that if you
hold all three pieces of paper up to a light, and superpose the origins of
the sets of coordinates, the original triangle and its mirror image will
overlay one another but the coordinate axes will not.

5.11 Orthogonal transformations
Although every symmetry operation can be represented by a matrix, many

matrices correspond to linear transformations that do not have the properties of
symmetry operations. For example, every symmetry operation has the property
that the distance between any two points and the angles between any two lines
are not altered by the operation. Such a geometric transformation, that does
not distort any object that it acts on, is called an orthogonal transformation.
A matrix that corresponds to such a transformation is called an orthogonal
matrix.

An algebraic criterion for orthogonality is stated in terms of a relation between
a matrix and its transpose. The transpose of a matrix A is a matrix At such that
the i, jth element of A is equal to the j, ith element of At. For example, the

transpose of
(

1 2
3 4

)
is the matrix

(
1 3
2 4

)
. A matrix is called orthogonal if

AtA = I (the identity matrix).
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Problem 5–13. Verify that if AtA = I , then Ax · Ay = x · y for any
vectors x and y. Why does this imply that the transformation repres-
ented by the matrix A does not alter lengths and angles? (Hint: see
problem 5–4.)

Problem 5–14. Verify that the matrices constructed in problems 5–9
and 5–10 are orthogonal.

5.12 Traces and determinants
Linear transformations that correspond to nonorthogonal matrices distort

lengths or angles. The trace and determinant of a matrix provide partial meas-
ures of the distortions introduced.

The trace of a matrix is defined as the sum of the diagonal elements.

Tr A =
n∑

i=1

aii.

For two-by-two arrays, the determinant is

det
(

a b
c d

)
= ad − bc.

Analogous but more complicated formulas define the determinants of square
matrices of higher dimensions. (A square matrix is a matrix which has the
same number of rows as columns.) It is not possible to define the determinant
of a non-square matrix.

To get an idea of the way that the trace and determinant measure distor-
tions, consider the following examples of matrices that correspond to simple
geometric transformations in two dimensions:



Introduction to linear algebra 35

Table 5.2. Examples of simple transformations in two dimensions.

Operation Matrix Trace Deter- Lengths Angles
minant Preserved

Identity

(
1 0
0 1

)
2 1 Yes Yes

Rotation by 45◦
( 1√

2

1√
2

− 1√
2

1√
2

) √
2 1 Yes Yes

Rotation by θ

(
cos θ sin θ

− sin θ cos θ

)
2 cos θ 1 Yes Yes

Mirror reflection

(
1 0
0 −1

)
0 −1 Yes Yes

Inversion

(
−1 0

0 −1

)
−2 1 Yes Yes

Uniform expansion :
x → 5x, y ← 5y

(
5 0
0 5

)
10 25 No Yes

Uniform shrinkage :
x → 1

2
x, y ← 1

2
y

(
1
2

0
0 1

2

)
1 1

4
No Yes

Shrinkage of x, expansion
of y : x → 1

4
x, y = 4y

(
1
2

0
0 4

)
4 1

4
1 No No

Expansion of x, inversion
and expansion of y :
x → 6x; y → −4y

(
6 0
0 −4

)
2 −24 No No

What conclusions do these examples suggest? First, note that only the first
six examples are orthogonal transformations. The determinant of each of these
matrices is +1 or −1. Every matrix that represents an orthogonal transforma-
tion must have determinant ±1. However, one example shows that the determ-
inant of a nonorthogonal transformation can be 1. (Which example?)

The trace is a much less reliable measure of distortion. Only in the special
case of shrinkages of all axes or expansions of all axes does the deviation of the
trace from 2 measure the distortion of lengths introduced by the transformation.

The importance of the trace and determinant lies in their independence of
the coordinate system in which the matrix is expressed. Recalling that a change
in coordinate system leads to a change in the matrix representation of a trans-
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formation by a similarity transformation, the independence of trace and de-
terminant on coordinate system is expressed by the equations:

Tr (S−1AS) = Tr A

det (S−1AS) = detA

where S is an orthogonal matrix. Thus the trace and determinant provide nu-
merical characteristics of a transformation independent of any coordinate sys-
tem.

Problem 5–15. Compute the traces and determinants of the following
matrices:

A =
(

1 0
0 1

)
, B =

(
3 0
0 3

)
, C =

(
5 4
4 5

)
,

D =
(

1 1
1 1

)
, E =

(
1 0
0 −1

)
.

Problem 5–16. Verify the information in the rightmost four columns
of Table 5.2.

Problem 5–17. Show that: Tr (A × B) =
∑

i,j aijbji = Tr (B ×
A). Conclude that Tr(S−1AS) = TrA, by writing Tr (S−1AS) as
Tr [(S−1A)S], then interchanging the order of the factors, and using
the associative law for matrix multiplication.

Problem 5–18. In Problem 3–7 it was shown for two-dimensional
matrices that det(AB) = detB detA. For two-dimensional matrices,
prove that det(S−1AS) = detS−1 detAdet S. Show that detS−1 =
1/(det S), whenever detS �= 0. Conclude that det (S−1AS) = detA
whenever detS �= 0. Prove this in another way, by noting that det(A×
B) = det (B ×A), and using the fact that det I = 1. (I is the identity
matrix.)

5.13 Matrix representation of symmetry groups
We are now ready for the main conclusion of this chapter: If all elements

of a symmetry group are represented by orthogonal matrices in a consistent
coordinate system, the matrices will form a group under the operation of matrix
multiplication that is isomorphic to the symmetry group. The set of matrices is
said to be a representation of the group.
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Problem 5–19. Assemble a set of matrices corresponding to the ele-
ments of C2v: E,C2, σv, σ

′
v. Verify that under matrix multiplication

they form a group isomorphic to C2v.

Problem 5–20. Make sure you understand the definitions of the fol-
lowing terms, introduced in this chapter:

(a) 3-vector
(b) norm of a vector
(c) dot product of two vectors
(d) orthogonality of vectors
(e) normalization of vectors
(f) matrix form of equations of linear transformation
(g) matrix multiplication
(h) transpose of a matrix
(i) orthogonal transformation
(j) orthogonal matrix
(k) similarity transformation
(l) trace of a matrix
(m) determinant of a 2 × 2 matrix
(n) invariance of trace and determinant under a similarity

transformation (change of coordinate system)
(o) matrix representation of a symmetry group
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Chapter 6

GROUP REPRESENTATIONS AND CHARACTER
TABLES

6.1 Introduction

In order to apply group-theoretical descriptions of symmetry, it is necessary
to determine what restrictions the symmetry of an atom or molecule imposes
on its physical properties. For example, how are the symmetries of normal
modes of vibration of a molecule related to, and derivable from, the full mo-
lecular symmetry? How are the shapes of electronic wave functions of atoms
and molecules related to, and derivable from, the symmetry of the nuclear
framework?

By the symmetry of a normal mode of vibration, we mean the symmetry
of the nuclear framework under the distortion introduced by the vibration.
Pictorially, the symmetry of the normal mode is equal to the symmetry of the
pattern of arrows drawn to indicate the directions of the nuclear displacements.
The normal modes of vibration of water are the symmetric and antisymmetric
stretches, and the angle bend, shown in Figure 6–1.

O

H HH H

symmetric
stretch
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O

H H

antisymmetric
stretch

O

H H

angle
bend

Figure 6.1. Normal modes of vibration of the water molecule.

Although the symmetric stretch and the bend have the full symmetry of the
molecule, the antisymmetric stretch does not: the only covering operations of
this mode are E and σ′

v. The symmetry group of each normal mode is either
the entire symmetry group of the undistorted molecule, or a subgroup.

The electronic states of a diatomic molecule such as H2 are approximately
equal to linear combinations of atomic orbitals. For example, the ground state
is approximately proportional to the sum of 1s orbitals from the two atoms:
1sA + 1sB. An excited state is approximately proportional to the difference:
1sA − 1sB. Although these LCAO (Linear Combination of Atomic Orbitals)
wave functions are not quantitatively correct representations of the true wave
functions, their shape, and hence their symmetry, is correct.

The ground state has the full molecular symmetry, but the excited state does
not. The symmetry group of the nuclear framework, D∞h, has the elements:
E,Cφ (a rotation by φ for any angle φ), σv’s at any orientation, the inversion
i, Sφ for any angle φ, and C2 axes at any orientation in the plane perpendic-
ular to the molecular axis. The symmetry group of the excited state to which
1sA − 1sB is an approximation contains the elements E, all the Cφ’s, and all
the σv’s; but not the inversion, the Sφ’s or the equatorial C2’s. The symmetry
group of the excited state is therefore C∞v, the symmetry group of a hetero-
nuclear diatomic molecule, and a subgroup of the original group D∞h. Again,
the possible symmetries of the states correspond either to the full symmetry of
the nuclear framework or to a subgroup.

These examples suggest the correct result: The possible symmetry types,
either for normal modes or electronic wave functions, that are compatible with
an overall molecular symmetry, correspond to the full molecular symmetry
group or its subgroups. Each normal mode, or electronic state, can be classified
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as a symmetry species, according to the group that describes its symmetry.
Therefore it will be useful to prepare, for each molecular symmetry group, a
roster of subgroups.

Another fact suggested by the examples is that not every subgroup of the
original group need have an associated normal mode or electronic state. Thus
there were two normal modes of water with full C2v symmetry and none having
C2 symmetry. It will be useful to have computational tools for predicting which
symmetry species will correspond to normal modes or electronic states, and
how many; and which symmetry species will not occur.

It has turned out that the most concise description of the symmetry species
compatible with a molecular point group, that still includes enough information
for useful predictions, is the group character table. The character table of a
group is a list of the traces of sets of matrices that form groups isomorphic to
the group or to one of its subgroups.

6.2 Group representations

A representation of a symmetry group is a set of square matrices, all of
the same dimension, corresponding to the elements of the group, such that
multiplication of the matrices is consistent with the multiplication table of the
group. That is, the product of matrices corresponding to two elements of the
group corresponds to that element of the group equal to the product of the two
group elements in the group itself. Representations can be of any dimension;
1 × 1 arrays are of course just ordinary numbers.

Problems 3–2 and 5–18 contain examples of representations.

If each group element corresponds to a different matrix, the representation is
said to be faithful. A faithful representation is a matrix group that is isomorphic
to the group being represented.

If the same matrix corresponds to more than one group element, the repres-
entation, the representation is called unfaithful. Unfaithful representations of
any group are available by assigning the number 1 to every element, or by as-
signing the identity matrix of some dimension to every element. (But the num-
ber 1 is a faithful representation of the group C1.) The collection of matrices
occurring in an unfaithful representation of a group, if taken each only once,
forms a group isomorphic to a subgroup of the original group. Thus to any
unfaithful representation of a group there corresponds a faithful representation
of a subgroup.

Examples of group representations:
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Group Operation Representation
1. C1 E ↔ 1

2. C2 E ↔ 1
C2 ↔ −1

3. C2 E ↔
(

1 0
0 1

)

C2 ↔
(

1 0
0 −1

)

4. C3 E ↔ 1
C3 ↔ 1
C2

3 ↔ 1

5. C3 E ↔ 1
C3 ↔ ω1 or ω2

C2
3 ↔ ω2 or ω1

where ω1 = − 1
2

+ i
√

3
2

, ω2 = − 1
2
− i

√
3

2
.

6. C3 E ↔
(

1 0
0 1

)

C3 ↔
(

cos 2π
3

sin 2π
3

− sin 2π
3

cos 2π
3

)

C2
3 ↔

(
cos 2π

3
− sin 2π

3

sin 2π
3

cos 2π
3

)

7. C2v E ↔
(

1 0 0
0 1 0
0 0 1

)

C2 ↔
(−1 0 0

0 −1 0
0 0 −1

)

σv ↔
(−1 0 0

0 1 0
0 0 1

)

σ′
v ↔

(
1 0 0
0 −1 0
0 0 1

)

8. C2v E ↔ 1 or 1 or 1
C2 ↔ −1 −1 1
σv ↔ −1 1 1
σ′

v ↔ 1 −1 1
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Note that the three representations in example 8 are derived from the matrices
in example 7 by copying off the corresponding diagonal elements.

Problem 6–1. Show that if a set of matrices A,B, . . . represents a
group, then applying the same similarity transformation to all elements
of the group: A′ = S−1AS, B′ = S−1BS, . . . produces another
representation of the same group.

It is reasonable to hope to assemble a complete set of representations to
provide a full and non-redundant description of the symmetry species compat-
ible with a point group? The problem is that there are far too many repres-
entations of any group. On the one hand, matrices in representations derived
from expressing symmetry operations in terms of coordinates – as in problem
5–18 – depend on the coordinate system. Thus there are an infinite number of
matrix representations of C2v equivalent to example 7, derivable in different
coordinate systems. These add no new information, but it is not necessarily
easy to recognize that they are related. Even in the cases of representations not
derived from geometric models via coordinate systems, an infinite number of
other representations are derivable by similarity transformations.

Secondly, there are too many representations available by repeating or com-
bining representations in block form. Thus, the representation in Figure 6.2 is
different from any of the representations of C3 in examples 4, 5 or 6, but it
contains no new information:

E ↔




1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1




continues. . .
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C3 ↔




1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 ω1 0 0 0 0
0 0 0 cos 2π

3
sin 2π

3
0 0

0 0 0 − sin 2π
3

cos 2π
3

0 0
0 0 0 0 0 cos 2π

3
sin 2π

3

0 0 0 0 0 − sin 2π
3

cos 2π
3




C2
3 ↔




1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 ω2 0 0 0 0
0 0 0 cos 2π

3
− sin 2π

3
0 0

0 0 0 sin 2π
3

cos 2π
3

0 0
0 0 0 0 0 cos 2π

3
− sin 2π

3

0 0 0 0 0 sin 2π
3

cos 2π
3




Figure 6.2. A reducible representation of C3. Recall that

ω1 = − 1
2

+ i
√

3
2

, ω2 = − 1
2
− i

√
3

2
.

Matrices such as these for which all elements are zero except for clusters,
or blocks, of elements around the diagonal, are said to be in block form. In
a set of matrices, all in block form with the same distribution of blocks of
non-zero elements, the blocks can be thought of as independent submatrices.
Multiplication of two such matrices preserves the block form, and the value
of any element in a block of the product depends only on the elements in the
corresponding blocks of the factors.

In the case of the representation of C3 in Figure 6.2, it is obvious that the
matrices are merely combinations of of simpler representations. But if the three
matrices were subjected to a similarity transformation, they would no longer be
in block form, and it would not be obvious that the representation is composite.
Applying the reverse similarity transformation would put the matrices back
into block form. If there exists a similarity transformation such that applying it
to each matrix in a representation puts every matrix into congruent block form,
the representation is said to be reducible. If no such similarity transformation
exists, the representation is said to be irreducible.

The set of irreducible representations forms the complete catalog of the
symmetry species compatible with a symmetry group. For a finite group, the
number of irreducible representations is no greater than the number of ele-
ments of the group. Groups with infinite numbers of elements, such as C∞v

and D∞h have infinite numbers of irreducible representations.
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Problem 6–2. Of the eight examples of representations listed in this
section, which are faithful? For each unfaithful representation, which
subgroup of the original group does it faithfully represent?

Problem 6–3. Of the eight examples of representations listed at the
beginning of this section, which are obviously reducible, and which
are obviously irreducible?

Problem 6–4. (a) Multiply the two matrices that represent C3 and
C2

3 . What element of the group does the result represent? (b) If you
noticed that C2

3 ·C3 = C3
3 = E, how could you have avoided the work

of calculating the matrix product in part (a)?

Problem 6–5. Consider the symmetry group C1h, with elements E
and σ. Choosing a two-dimensional coordinate system such that the
x−axis is in the mirror plane and the y−axis is perpendicular to it
gives the following representation of C1h :

E =
x → x
y → y

↔
(

1 0
0 1

)

σ =
x → x
y → −y

↔
(

1 0
0 −1

)

This representation is in block form, and is obviously reducible.
Consider another coordinate system, rotated in the x− y plane by 45◦.
Verify that in this new coordinate system the formulas giving the effect
of σ are x → −y and y → −x. Find the matrix relating the two co-
ordinate systems and verify that a similarity transformation applied to
the matrices of this new representation produces the old representation.
How does this demonstrate the reducibility of the new representation?
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Problem 6–6. A n × n matrix A in block form containing two blocks
of size m and k = n − m satisfies the condition Aij = 0 whenever
i > m and j ≤ m, or i < m and j ≥ m. Show that if both A and B
are two n × n matrices in this block form, then C = A × B has the
same property.

6.3 Character tables
To tabulate the properties of symmetry species, it would be useful to work

with quantities that are independent of the coordinate system, such as the traces
or determinants of the matrices of a representation. But because all symmetry
operations are orthogonal transformations, the determinants are all ±1. The
determinants of the matrices of the representations, although independent of
the coordinate system, do not contain enough information.

The traces, however, are convenient and adequate representatives of the
symmetry species. The character table of a group is a listing of the traces
of the matrices forming the sets of irreducible representations of the group.

For example, the character table of C2v appears in reference books as follows:1

C2v E C2 σv σ′
v

A1 1 1 1 1
A2 1 1 −1 −1
B1 1 −1 1 −1
B2 1 −1 −1 1

The top line identifies the group and contains headings for the columns as-
sociated with each covering operation. The symbols A1, A2, B1 and B2 are the
names of the four symmetry species corresponding to the irreducible represent-
ations. The lines of numbers to the right of the symmetry species designations
are the traces of the matrices of the representations. In this case, the characters
themselves represent the group, albeit unfaithfully. This is not always true.

The symbols for the symmetry species contain a coded description of their
symmetry properties:
(a) The letter specifies the dimensionality of the representation:

A or B one-dimensional
E two-dimensional
F or T three-dimensional

(b) For one-dimensional representations, A implies that an object or pattern
transforming according to that symmetry species is symmetric with respect to
the principal axis of rotation, as in the ground state of H+

2 ∼ 1sA + 1sB . B
implies that the object goes into its negative upon rotation.
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(c) If the group contains the inversion, symmetry species may be symmetric or
antisymmetic under i. The letters g, for gerade (= even), and u, for ungerade
(= odd), appear as subscripts in the symmetry species symbol.
(d) Subscripts 1 or 2 imply, respectively, symmetry or antisymmetry with re-
spect to a subsidiary symmetry element such as a mirror plane or an equatorial
dyad axis.
(e) ′ and ′′ imply symmetry and antisymmetry with respect to a plane of sym-
metry.

For C2v, the representation A1 is symmetric with respect to every operation.
Such a one-dimensional representation, in which every element is assigned the
number 1, occurs for every group, and is called the totally symmetric represent-
ation. Two representations are symmetric with respect to C2; each is denoted
A. Two are symmetric with respect to σv, and are given a subscript 1; the rep-
resentations antisymmetric with respect to σv bear the subscript 2. Because
this suffices to give each symmetry species a unique symbol, ′ and ′′ need not
be used in this case.

Because the trace of amatrix is independent of the coordinate system,matrices
representing operations that have the same effect in different coordinate sys-
tems must have the same trace. It is possible to use this fact to abbreviate
the character tables. For example, consider the long and short versions of the
character table of C3v :

Long version: C3v E C3 C2
3 σv σ′

v σ′′
v

A1 1 1 1 1 1 1
A2 1 1 1 −1 −1 −1
E 2 −1 −1 0 0 0

Short version: C3v E 2C3 3σv

A1 1 1 1
A2 1 1 −1
E 2 −1 0

The coefficient of the symmetry element, in the top line, tells how many
different equivalent operations of this type occur. However, not all symmetry
elements of the same type are always equivalent. Thus, in the symmetry group
of benzene, the thirteen C2 operations fall into three distinct classes: the one
dyad perpendicular to the molecular plane, the six that pass through opposite
atoms in the ring, and the six that pass in between the atoms, through the
centers of the bonds. Each of these operations is equivalent only to the others
within the same class.

Consider for example the abbreviated form of the character table of D3h:
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D3h E σh 2C3 2S3 3C′
2 3σv

A′
1 1 1 1 1 1 1

A′
2 1 1 1 1 −1 1

A′′
1 1 −1 1 −1 1 −1

A′′
2 1 −1 1 −1 −1 1

E′ 2 2 −1 −1 0 0
E′′ 2 −2 −1 1 0 0

In this table all one-dimensional representations are symmetrical with respect
to C3, the principal axis, so all are designated A. Subscripts 1 and 2 refer to
the operations C ′

2, and ′ and ′′ refer to σh.
Note that because the identity operation must always be represented by the

identity matrix, the trace of the matrix representing the identity is equal to the
dimensionality of the representation.

Problem 6–7. Analyze the symbols for the symmetry species of D3h,
making sure you understand the components of the symbol and the
transformation properties.

Problem 6–8. Cyclopropane, C3H3, has D3h symmetry. What is the
symmetry species of a molecular orbital approximately equal to 2sA +
2sB + 2sC? (2sA is a 1s orbital centered on atom A, etc.) What is the
symmetry species of a molecular orbital of the form 2pπA + 2pπB +
2pπC?

6.4 Properties of character tables
There are certain general properties of character tables that will be useful in

applications. The number of representations of a given dimension is usually
determined by two rules:
(a) The number of irreducible representations is equal to the number of classes
– the number of sets of equivalent elements – of the group.
(b) The sum of the squares of the dimensions of the irreducible representations
is equal to the total number of elements in the group (for groups with finite
numbers of elements, not C∞v or D∞h).

An extremely useful mode of calculation with characters arises from consid-
ering the characters of any representation as a vector. Thus the four character
vectors of C2v are:

A1 = (1, 1, 1, 1)
A2 = (1, 1, −1, −1)
B1 = (1, −1, 1, −1)
B2 = (1, −1, 1, −1)
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Then if Γ is the character vector of any irreducible representation of any group:
(c) Γ · Γ = the number of elements of the group (Finite groups),
and for any two character vectors Γ1 and Γ2 :
(d) Γ1 · Γ2 = 0. (Finite and infinite groups.)

These rules apply to the long forms of the character tables, so that in apply-
ing them using the abbreviated forms, due account must be taken of the number
of elements in each class.

The mutual orthogonality of the character vectors is reminiscent of the axes
of a Cartesian coordinate system, and suggests the valuable idea that the char-
acter vectors of a group form a basis for the symmetry. Any vector can be
resolved into components of different symmetry types. The projection of any
vector onto any symmetry species is calculable. So we have returned to the
geometrical point of view!

Problem 6–9. Verify rules (a), (b), (c) and (d) for the character sys-
tems of C2v, C3, and D3h, using the character tables in the preceding
section.

6.5 Calculations with character tables
Analysis of symmetry
One application of character tables is the identification of the symmetry species
of given objects. For example, what is the symmetry species of a displacement
∆z in the positive z direction in the symmetry group C2v, assuming that the
C2 axis is along z?

All four operations take the displacement vector ∆z into itself:

E∆z = 1∆z

C2∆z = 1∆z

σv∆z = 1∆z

σ′
v∆z = 1∆z

The four numbers on the right-hand sides of these equations, (1, 1, 1, 1), are
the character vector for the totally-symmetric representation A1. Accordingly,
we say that ∆z transforms as A1 in C2v .

Bases for representations
If a set of objects is such that operation on any of them by any element of
a group produces a linear combination of the same set of elements, then the
operations can be expressed in terms of a set of matrices that represent the
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group. Such a set of objects is said to form a basis for the representation. Thus
∆z forms a basis for the representation A1 of C2v.

Displacements along x and y form a basis for a two-dimensional represent-
ation of D3h :

E

(
∆x
∆y

)
=

(
1 0
0 1

)(
∆x
∆y

)
χ(E) = 2

σh

(
∆x
∆y

)
=

(
1 0
0 1

)(
∆x
∆y

)
χ(σh) = 2

(Note that σh alters only z if the C3 axis is taken along the z−axis).

C3

(
∆x
∆y

)
=

(
cos 2π

3
sin 2π

3

− sin 2π
3

cos 2π
3

)(
∆x
∆y

)
χ(C3) = 2 cos 2π

3
= −1

S3

(
∆x
∆y

)
= C3

(
∆x
∆y

)
χ(S3) = −1

One possible axis for the C ′
2 operations is the x−axis itself – the others are

120◦ away. For this choice,

C ′
2

(
∆x
∆y

)
=

(
1 0
0 1

) (
∆x
∆y

)
χ(C ′

2) = 0

A possible orientation of σv is in the x–z plane:

σv

(
∆x
∆y

)
=

(
1 0
0 −1

) (
∆x
∆y

)
χ(σv) = 0

This character vector, Γ = ( 2, 2, −1 −1, 0, 0 ) , identifies E′ as the
symmetry species of the pair (x, y).

With a little practice, such identification of symmetry species will become
easy. For example, in the case just considered, as soon as it is recognized
that all the operations take x and y into linear combinations of themselves, the
inference is immediate that the representation is two-dimensional. The only
two-dimensional representations are E′ and E′′. To select the correct one, we
need check only a single operation for which the characters in E′ and E′′ are
different – σh or S3. σh is the easier to check. Since x and y are symmetric
under σh, χ(σh) = 2 and the symmetry species is E′.

Similar analysis assigns a symmetry species to rotations about the three
coordinate axes: Rx, Ry and Rz. These may be visualized as directed loops
around the axes. A symmetry operation that reverses the sense of the rota-
tion is said to take the rotation into its negative. Thus in C2v, ERx = +Rx,
C2Rx = −Rx, and σvRx = −Rx and σ′

vRx = +Rx. Remember that the
molecular plane is the y–z plane. The character vector is ( 1 −1 −1 1 ) ;
therefore Rx transforms according to symmetry species B2.
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The symmetry species of translations and rotations are used so frequently
that they are generally included in the character tables.

Problem 6–10. Verify that displacements along x and y transform ac-
cording to symmetry species B1 and B2, respectively, in C2v, provided
that the molecular plane is taken to be the y − z plane.

Problem 6–11. Verify that Ry and Rz transform according to sym-
metry species B1 and A2, respectively, in C2v.

Problem 6–12. According to which symmetry species do x, y, z,
Rx, Ry and Rz transform in D3h, if the principal axis is along the
z−axis?

Notes
1 Character tables for point groups are available on the Web.

See: http://www.mpip-mainz.mpg.de/∼gelessus/group.html
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Chapter 7

MOLECULAR VIBRATIONS

7.1 Introduction

Molecular vibrations provide important information about molecular struc-
tures and energetics.

Vibrational frequencies give insight into the nature of the forces responsible
for chemical binding. Typical force constants for stretching of chemical bonds
are in the range 5 − 20 × 10−8 newton/Ångstrom.

The energy that a molecule can take up in vibrational motion contributes to
the heat capacity and other thermodynamic properties. The specific heats of
crystalline solids, predominantly vibrational in origin, are of great historical
importance. The law of Dulong and Petit, dating from 1819, stated that the
specific heats of solids approximates 6 cal/deg·mole. First, this law provided a
means of estimating atomic weights of metals. Next, the successful explanation
of this law was an important test of the classic kinetic theory, and the law of
equipartition of energy. Then, the deviations from the law observed at low
temperature gave important clues to the quantum-mechanical nature of matter
– the theory of specific heats of solids by Einstein (1907) and Debye (1912)
are also landmarks in the history of physics.

The excitation of molecular vibrations by light produces the phenomena
of infrared and Raman spectra. Measurements of these spectra have become
standard techniques for analysis of chemical structures; and, through the meas-
urements of force constants, for calculation of the thermodynamic properties
of molecules.
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Problem 7–1. Consider the following table of force constants:

Molecule Force constant for bond stretching

H2 5.3 ×10−8 newton/Å
O2 11.7
N2 22.7
HCl 4.9
CO 18.8
Cl2 3.3

What general conclusions can you draw with respect to the dependence
of force constant on (a) the type of bonding: ionic or covalent, and (b)
the number of pairs of electrons participating in a bond; that is, single,
double, or triple bonding?

Problem 7–2. What type of bond is found in the carbon monoxide
molecule, CO? This molecule is very slightly polar; but, surprisingly,
the negative end of the molecule is the carbon atom. (Why is this
surprising?) Compare the force constant of CO with that of a molecule
with a typical double bond, O2, and with that of a molecule with a
typical triple bond, N2. Suggest a reasonable qualitative description of
the electronic structure of CO that explains these observations.

7.2 Classical description of molecular vibrations

The dynamical problem to be solved in describing molecular vibrations is
analogous to the calculation of the motion of a set of masses connected by
springs. The equations of motion can be stated, according to classical mech-
anics, by applying Newton’s second law to a set of atoms acted on by forces
acting counter to displacements from a set of equilibrium positions.

The force on any atom depends on the positions of all the atoms. When
the atoms are all at their equilibrium positions, all displacements are zero, and
all forces vanish. If the restoring forces are strong relative to available ener-
gies, all displacements will remain small, and the following approximations
are justified:

(a) The contributions to the force on each atom may be regarded as a sum of
independent contributions from individual components of individual displace-
ments, ignoring the effect of one displacement on the forces associated with
any other.
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For example, for water, the x−component of the force on the oxygen atom
FO

x , is the sum of 9 independent contributions from each component of the
displacement of each of the three atoms. In general, if there are N atoms in a
molecule, each force component is a sum of 3N terms.
(b) The magnitude of the components of the restoring forces are approximately
linearly proportional to the displacements of the atom exerting the restoring
force.

A typical contribution to the restoring force – for example, the contribu-
tion to the x−component of the force on the oxygen atom, arising from the
y−component of the displacement of one of the hydrogen atoms – then takes
the form: −FO,H1

x,y yH1. (To avoid proliferation of symbols, here x, y, and z
rather than ∆x, ∆y, and ∆z represent the displacements of an atom from its
equilibrium position.) The largest terms are of course expected to be those of
involving displacements of the atom itself, such as −FO,O

z,z zO, the z−compo-
nent of the force on the oxygen atom arising from the z−displacement of the
oxygen atom.

If the atoms are numbered from 1 to N, the x-components of the force on
the ith atom is:

F i
x = −

∑
j

(F ij
xxxj + F ij

xyyj + F ij
xzzj)

Problem 7-3. Write analogous expressions for F i
y and F i

z , the y and z

components of the force on the ith atom.

To achieve a still more abbreviated notation, let us write (xi, yi, zi) = (xi
1,

xi
2, xi

3). Then we can replace the three terms in x, y, and z with a summation
over components i from 1 to 3 :

F i
x = F i

1 = −
N∑

k=1

3∑
j=1

F ij
1kx

j
k

or, in general:

F i
� = −

N∑
k=1

3∑
j=1

F ij
�kxj

k

This equation is sufficiently complex that it is worth stating in words: The �th

component of the restoring force on the ith atom is a sum, over the components
k of the displacements of the atoms j, of terms proportional to the displacement
xj

k. The proportionality constant is F ij
�k.
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Finally, these equations can be written in matrix form: F = −Fx, in which
the force vector F = (F 1

x , F 1
y , F 1

z , F 2
x , F 2

y , F 2
z , . . . FN

x , FN
y , FN

z ), and the dis-
placement vector x = (x1, y1, z1, x2, y2, z2, . . . xN , yN , zN ) or (x1

1, y
1
1 , z

1
1 ,

x2
1, y

2
1 , z2

1 , . . . xN
1 , yN

1 , zN
1 ), and the elements of F are the force constants F ij

�k .

As a consequence of Newton’s third law, F ij
�k = F ji

k�, so that the matrix F is
symmetric.

Problem 7–3. Get a large piece of paper and write out the force equa-
tion for H2O, in the form of two nine-vectors and a nine-by-nine mat-
rix. Which values in this matrix are expected to be the smallest?

Problem 7–4. For CO2, structure O=C=O, consider the independent
force constants expressing the proportionalities of the components of
restoring forces to displacements along the molecular axis, taken to
be z: FOO

zz , FCC
zz , FOC

zz , and FOO′
zz . Estimate the relative magnitudes

of these numbers and arrange them in expected order from largest to
smallest.

Applying Newton’s second law to this force field:

miẍ
i
� = F�

miẍ
i
� = −

3∑
k=1

N∑
j=1

F ij
�kx�

k

or, in matrix form:
mẍ = −FX

in which the vector mẍ has components of the form miẍ
i
�. This is a system of

coupled linear differential equations.
A clue to the kinds of solutions to expect from this type of system of equa-

tions is available from the simple case of a single equation in the same form:
mẍ = −Fx. The function x(t) = X cos ωt is a solution, because ẋ =
ωX sin ωt and ẍ = −ω2X cos ωt = −ω2X. Substituting this in the diffe-
rential equation produces:

−mω2X = −FX or (F − mω2)X = 0

There can be a solution with non-zero amplitude (that is, X �= 0), only if ω
is equal to

√
F/m. The system can execute periodic motions only for a unique

frequency.
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7.3 Eigenvalue problems
Returning to the full system of equations, we expect the modes of molecular

vibration to appear as periodic solutions of the form:

xi
� = Xi

� cos ωt

where the Xi
� are constants specifying the relative amplitudes of the atomic

displacements. Substituting xi
� = Xi

� cos ωt, and ẍi
� = −ω2Xi

� cos ωt, the
system of equations that must be satisfied is:

−ω2miX
i
� = −

3∑
k=1

N∑
j=1

F ij
�kXj

k or

3∑
k=1

N∑
j=1

[F ij
�k − ω2mjδij ]X

j
k = 0 or, in matrix form,

(F − ω2M)X = 0

in which M is a diagonal matrix, Mij = miδij = mi if i = j and 0 if i �= j.
This form of equation is called a secular equation.
For every choice of ω, this is a system of linear equations to be solved for

the Xj
k. Although Xj

k = 0 for all j and k will always satisfy the system of
equations, for some values of ω there may be additional, non-trivial solutions.

Problem 7–5. Consider the two-dimensional system of equations:

ax + by = 0
cx + dy = 0

or, in matrix form: (
a b
c d

) (
x
y

)
=

(
0
0

)

Prove that if det
(

a b
c d

)
= ad − bc �= 0, then the only solution of

the system of equations is the trivial one: x = y = 0. [Hint: Multiply
the first equation by c and the second by a, and subtract them; verify
the result: (bc − ad)y = 0. This implies that if y �= 0, bc − ad = 0.
Hence, there can be a solution of the simultaneous equations for which
y �= 0 only if bd − ac = 0. Show analogously that (ad − bc)x = 0.]
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Problem 7–6. Consider the same question from the point of view of

matrix algebra. If the inverse of
(

a b
c d

)
exists, multiply both sides

of the equation by the inverse, and conclude that for any solution,(
x
y

)
=

(
a b
c d

)−1 (
0
0

)
. Evaluate x and y, and conclude again that

if
(

a b
c d

)
has an inverse, x = y = 0 is the only solution.

Why is this criterion for the existence of a non-trivial solution equival-
ent to the one in Problem 7–5?

In general, a matrix equation in the form A · x = 0 will have solutions
other than x = 0 only if det A = 0. In the case of vibrations, there will be
non-trivial solutions only if det(F − ω2M) = 0. This is an example of an
eigenvalue problem.

Problem 7–7. Find the eigenvalues of the matrix
(

a b
c d

)
:

These are by definition the numbers ω that satisfy the equation

det
(

a − ω b
c d − ω

)
= 0. How many of them are there? What are

the conditions on the matrix elements a, b, c and d to ensure that all the
eigenvalues are real numbers?

For any real value of ω for which det(F − ω2M) = 0, there will be a
solution of (F−ω2M)X = 0 for which X �= 0. This solution will consist of a
set of amplitudes Xi

�, such that there exists a motion of the nuclei of frequency
ω. The displacements of any atom at any time are Xi

� cos ωt. If ω = 0, the
motion will be non-periodic – a combination of translation and rotation. If
ω �= 0, the motion will be periodic – a vibration. Any such motion is called a
normal mode of vibration of the system.

A normal mode is to be thought of as a collective motion of the system of
nuclei, much as a choreographed passage in a ballet is a collective motion of
the corps.

The important characteristics of normal modes that make them so useful in
describing vibrational motions are:
(a) Excitation of any normal mode is independent of the excitation of other
normal modes. That is, provided the mathematical assumptions of low energy
are valid, energy will not be transferred from one mode to another.



Molecular vibrations 59

(b) A molecule has only a finite number of normal modes of vibration. For a
linear molecule with N atoms there are 3N −5; for a non-linear molecule there
are 3N −6. Any vibrational motion may validly be regarded as a superposition
of the normal modes of vibration.
(c) The displacements defining any normal mode must transform according to
one of the irreducible representations of the symmetry group of the molecule
with the nuclei in the equilibrium position.

The simplest illustration of molecular vibration is a homonuclear diatomic
molecule, which can vibrate in only one direction – parallel to its internuclear
axis. If the coordinates of the nuclei are x1 and x2; the force matrix equation
relating restoring forces to displacements is:(

F 1
x

F 2
x

)
=

(−k k
k −k

) (
x1

x2

)

in which k is the force constant for bond stretching. The equations of motion
are: (

mẍ1

mẍ2

)
=

(−k k
k −k

) (
x1

x2

)
where m is the mass of either nucleus. These equations will have non-trivial
solutions of the form xi = Xi cos ωt, i = 1, 2; only if:

(−k − mω2 k
k −k − mω2

) (
x1

x2

)
=

(
0
0

)
,

which requires that:

det
(−k − mω2 k

k −k − mω2

)
= 0

The value of the determinant is (−k − mω2)2 − k2. It will be zero only if
−k − mω2 = ±k; or ω = 0, ω =

√
2k/m.

Let us solve for the amplitudes in each of these cases:
(a) ω = 0 (−k +k

+k −k

) (
x1

x2

)
= 0

This is equivalent to k(x1 − x2) = 0, implying that the displacements x1 =
x2 = any real constant. The physical interpretation of this result is that there
is a mode of motion that is non-periodic, because ω = 0; and in which both
nuclei move in tandem, since x1 − x2 = a constant. This is a translation
parallel to the internuclear axis. Of course in reality there are also translational
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motions in the two directions perpendicular to the molecular axis; these, and
rotations, are other possible motions of the molecule. We did not put them into
the equations (no y or z), so they do not come out of the equations.
(b) ω2 = 2k/m,−k − mω2 = +k

(
+k +k
+k +k

) (
x1

x2

)
= 0

This is equivalent to +k(x1 + x2) = 0, or x1 = −x2. This is a periodic
motion, of frequency

√
2k/m, in which the displacements of the atoms are

exactly out of phase. This is the vibration.
The solution of the eigenvalue equation has automatically given us the de-

sired decomposition of the motion of this simple system.

Problem 7–8. Consider the case of a heteronuclear diatomic molecule
constrained to move in one dimension. Let the masses of the nuclei be
denoted by m and M, and the force constant by k. Set up and solve the
secular equation: determine that the allowed modes of motion are the
overall translation and vibration. Determine the vibrational frequency
in terms of m,M and k.

7.4 Determination of the symmetries of the normal modes
Any displacement of the atoms in a molecule can be described in terms of

displacements in Cartesian coordinate systems centered at each atom. Thus,
for water we may imagine three sets of axes, originating at the equilibrium
positions of each of the three atoms, as shown in Figure 7.1.

zO

yO

xOO

H1

zH1

yH1
xH1 H2

zH2

yH2
xH2

Figure 7.1. Coordinate systems fixed on each atom of the water molecule.



Molecular vibrations 61

Then the vector (xH1 , yH1 , zH1) specifies the displacement of one of the hy-
drogen atoms, and (xO, yO, zO) and (xH2 , yH2 , zH2) the displacements of the
other atoms. We may combine these three 3-component vectors into one 9-
component vector:

(xH1 , yH1, zH1 , xO, yO, zO, xH2 , yH2, zH2)

to describe the displacement of all three atoms at once.
Since any general displacement is a superposition of translational, rotational

and vibrational displacements it is possible to redescribe the motion of the mo-
lecule in terms of overall translations and rotations, and the normal modes of
vibration. Using the character tables, it is possible to decompose the sym-
metry of the general displacement into the symmetries of the different types of
motion.

Consider the effect of the operations of C2v on the vector of displacements.
The identity, of course, has no effect on any displacement: Exi = xi. The ro-
tation C2 leaves unchanged only the component zO. Its full effect is as follows:

C2xH1 = −xH2 C2xO = −xO C2xH2 = −xH1

C2yH1 = −yH2 C2yO = −yO C2yH2 = −yH1

C2zH1 = zH2 C2zO = zO C2zH2 = zH1

These results may be summarized in matrix form:

C2




xH1

yH1

zH1

xO

yO

zO

xH2

yH2

zH2




=




0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 1
0 0 0 −1 0 0 0 0 0
0 0 0 0 −1 0 0 0 0
0 0 0 0 0 1 0 0 0

−1 0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0







xH1

yH1

zH1

xO

yO

zO

xH2

yH2

zH2




Problem 7–9. Verify the effect of C2 on the displacements. Determine
the matrices specifying the effects of σv and σ′

v on the displacements.

This procedure generates a representation of the group C2v, called Γtot,
for which the vector of displacements forms the basis. The character of the
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operation C2 in Γtot is the trace of the matrix representing C2; it has the value
−1.

Because the traces contain sufficient information to decompose Γtot into
irreducible representations, it is necessary to compute only the diagonal ele-
ments of the matrices of the representation. If a particular atom changes posi-
tion under a symmetry operation, its displacements can contribute no diagonal
elements to the matrix; therefore, for that symmetry operation, such an atom
may be ignored. For example, the displacements of the hydrogen atoms in wa-
ter do not contribute to the character of C2 in Γtot. The displacement of H1

means that the elements (1, 1), (2, 2) and (3, 3) of the matrix are zero.
This suggests a simple rule for the calculation of the characters of the

matrices in Γtot : Each displacement that is taken into itself contributes +1 to
the character of the operation; each displacement that is taken into its negative
contributes−1; and all displacements of atoms that change position contri-
bute 0.

Problem 7–10. Verify that this rule correctly predicts that χ(E) = 9
and χ(C2) = −1. Compute χ(σv) and χ(σ′

v).

Problem 7–11. Will this rule always work? If not, under what circum-
stances will it be valid? Can you suggest a more general rule that will
always work?

The character vector of Γtot is ( 9 −1 1 3 ) . Γtot is not an irreducible
representation of C2v, but it can be resolved into irreducible components, using
the character vectors of the irreducible representations as a basis. The number
of times a particular irreducible representation is contained in Γtot is equal to
the dot product of Γtot = ( 9 −1 1 3 ) with the character vector of the
irreducible representation, divided by the number of elements of the group.
This statement is a consequence of the orthogonality relations for characters,
stated in section 6–4, which originally suggested the metaphor of treating the
characters of the irreducible representations as vectors.

Applying the orthogonality relations:

1
4
(Γtot · A1) =

1
4
(9 × 1 + −1 × 1 + 1 × 1 + 3 × 1) = 3

1
4
(Γtot · A2) =

1
4
(9 × 1 + −1 × 1 + 1 ×−1 + 3 ×−1) = 1
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Problem 7–12. Verify that 1
4(Γtot ·B1) = 2, and that 1

4(Γtot ·B2) = 3.

The resolution of the reducible representation Γtot into its irreducible com-
ponents is:

Γtot = 3A1 + A2 + 2B1 + 3B2

Any displacement of the nuclei in the water molecule is a superposition of
motions of the symmetry species comprising Γtot.

Subtracting the symmetries of the translational and rotational motions leaves
the symmetries of the normal modes of vibration. For C2v, the symmetries of

translations and rotations are: Tx Ty Tz Rx Ry Rz

B1 B2 A1 B2 B1 A2
(see section 6.5)

Therefore, removing these from Γtot:

Γvibration = 2A1 + B2.

The conclusion is that the three normal modes of vibration of the water mo-
lecule are of symmetry species A1,A1 and B2.

Problem 7–13. Determine the symmetry species of the normal modes
of vibration of the cyclopropilium cation, C3H+

3 . This molecule is
planar and has D3h symmetry.

Problem 7–14. Determine the symmetry species of the normal modes
of cyclopropane.

7.5 Use of internal coordinates
The set of displacements used to generate the reducible representation Γtot

is not the only possible basis. A particular type of coordinate that simplifies
the calculation of normal modes is a set of internal coordinates.

Whereas the coordinates used in the previous section describe displacements
of nuclei relative to axes fixed in space, internal coordinates describe displace-
ments of nuclei relative to one another.

For the water molecule, a reasonable set of internal coordinates would be the
lengths of the O–H bonds – let us call them r1 and r2 – and the H–O–H angle,
θ. Displacements of these coordinates form a basis for a reducible representa-
tion of C2v that is composed of symmetry species of vibrational motions only.

To compute the character vector of the representation generated, apply the
same rule that was used to compute the characters of Γtot. Under E, all three
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displacements in internal coordinates are unchanged, so that χ(E) = 3. C2

leaves the angle bend unchanged, contributing 1 to the character, but takes the
displacement associated with r1 into that associated with r2, and vice versa.
Therefore χ(C2) = 1. Similarly, χ(σv) = 1 and χ(σ′

v) = 3.
The character vector Γvibrational = (3 1 1 3) may now be reduced as before,

giving Γvibrational = 2A1 + B2 as expected.

Problem 7–15. Verify for the displacements that χ(σv) = 1 and that
χ(σ′

v) = 3

Problem 7–16. Verify by decomposing Γvibrational = (3 1 1 3) that
Γvibrational = 2A1 + B2.

Problem 7–17. Compute the symmetry species of the normal modes
of vibration of CH3 (symmetry group D3h) using internal coordinates.

Problem 7–18. Set up and solve the secular equation for the normal
modes of water in internal coordinates.



Chapter 8

ELECTRONIC STRUCTURE OF
ATOMS AND MOLECULES

8.1 The quantum-mechanical background
In the quantum-mechanical description of atoms and molecules, electrons

have characteristics of waves as well as particles. In the familiar case of the hy-
drogen atom, the orbitals 1s, 2s, 2p, . . . describe the different possible “stand-
ing wave” patterns of electron distribution, for a single electron moving in the
potential field of a proton. The motion of the electrons in any atom or molecule
is described as fully as possibly by a set of wave functions associated with the
ground and excited states.

The hydrogen atom orbitals are functions of three variables; the coordinates
of the electron. Their physical interpretation is that the square of the amplitude
of the wave function at any point is proportional to the probability of finding a
particle at that point. Mathematically, the electron density distribution is equal
to the square of the absolute value of the wave function:

ρ(x, y, z) = |ψ(x, y, z)|2

In this way the notion of a delocalized electron or electron cloud follows nat-
urally from the wave-like characterization of the electron.

In addition to their spatial coordinates, electrons are characterized by a spin,
described by a coordinate s, which can have two discrete values, usually called
“up” and “down.” Wave functions for a system containing more than one elec-
tron are analogous functions of the coordinates of all the electrons:

ψ(x1, y1, z1, s1, x2, y2, z2, s2 . . . xn, yn, zn, sn).

The equation that must be solved to determine a wave function is the Schrö-
dinger equation:

Hψ = Eψ
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Here ψ is the wave function, E is the value of the energy; and H is the
Hamiltonian operator. The Hamiltonian is the sum of the quantum-mechanical
expressions for the kinetic and potential energies of the system.

The mathematical notion of an operator may be unfamiliar: it is a rule for
modifying a function. A comparison of the ideas of operator and function may
be useful: Whereas a function acts to take an argument, called the independent
variable, as input, and produces a value, called the dependent variable; an oper-
ator takes a function as input and produces a function as output. Multiplication
of a function by a constant, taking a square or square root, differentiation or in-
tegration, are examples of operators. Table 8.1 contains examples of functions
and operators.

Table 8.1. Comparison of functions and operators

Function Input (a number) Output (a number)
square 3 9

1 1
−5 25

multiply by 4 3 12
1 4

−5 −20

Operator Input (a function) Output (a function)
square f(x) = x g(x) = x2

f(x) = 3x g(x) = 9x2

f(x) = x2 g(x) = x4

f(x) = x − 2 g(x) = x2 − 4x + 4
multiply by 4 f(x) = x g(x) = 4x

f(x) = 3x g(x) = 12x
f(x) = x2 g(x) = 4x2

f(x) = x − 2 g(x) = 4x − 8
differentiate f(x) = x g(x) = 1

f(x) = 3x g(x) = 3
f(x) = x2 g(x) = 2x
f(x) = x − 2 g(x) = 1

An operator L is called linear if for any two functions f1 and f2, and any
number a,

L(f1 + f2) = Lf1 + Lf2 and L(af) = a(Lf)

A fundamental principle of quantum mechanics states that any physically ob-
servable quantity corresponds to a linear operator.
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Problem 8–1. Which of the operators in Table 8.1 are linear?

The expression Hψ in the Schrödinger equation is the function resulting
from the application of the operator H to the function ψ. A verbal statement
of the Schrödinger equation is: the function resulting from the application of
H to ψ must be the same as the function resulting from multiplying ψ by a
constant E . Usually both the function ψ and the number E are unknown, and
the Schrödinger equation is solved for both simultaneously.

The Hamiltonian for the electrons in an atom or molecule is the sum of
terms in kinetic and potential energies: H = T + V. The kinetic energy operator
for a particle of mass m is T = − h2

8π2m∇2, in which the Laplacian operator

∇2 = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 .
T is called a differential operator. The potential energy operator V contains

expressions for the Coulomb forces among and between the nuclei and elec-
trons. For the hydrogen atom, containing only one pair of particles, V= −e2/r,
in which e is the absolute value of the charge of the electron and r the distance
from electron to proton. The effect of V on a function ψ is simply to multiply
ψ by −e2/r. V is called a multiplicative operator.

The Schrödinger equation for the hydrogen atom is:

− h2

8π2m

[
∂2ψ

∂x2
+

∂2ψ

∂y2
+

∂2ψ

∂z2

]
− e2

r
ψ = Eψ

Note that, in the absence of a magnetic field, the terms in the Schrödinger equa-
tion depend only on the spatial coordinates of the electron, not on the spin. This
is a second-order partial differential equation. Inasmuch as it describes a set
of wave patterns, one might suspect that meaningful solutions might exist only
for certain allowed values of E , corresponding to “resonant frequencies.” It is
this property of the Schrödinger equations for atomic and molecular electrons
that leads to the correct prediction of discrete values of allowed energy levels
observed in atomic and molecular spectroscopy.

A characteristic of such an equation is that it has solutions only for certain
values of a parameter, just as in the case of the matrix equations for determining
vibrational frequencies (see section 7.3). A value for E for which a solution to
the Schrödinger equation exists is called an eigenvalue, and the solution ψ is
called an eigenfunction.
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Problem 8–2. The wave function corresponding to the ground state
of the hydrogen atom is proportional to e−r. Verify that ψ = e−r is
a solution of the Schrödinger equation for the hydrogen atom. Find
the value of E , equal to the binding energy of the hydrogen atom, in
terms of m,h and e. Hint: it will be easier to evaluate ∇2 in spherical
polar coordinates: r, θ, φ. Because e−r has no angular variation, use
the formula ∇2ψ = 1

r2
∂
∂r (r2 ∂ψ

∂r ) (+ terms that are zero if ∂ψ
∂θ = ∂ψ

∂φ =
0).

Problem 8–3. A hydrogen-like ion is an atomic ion containing only
one electron, for example, He+, Li2+ . . . Write down the Schrödinger
equation for a general hydrogen-like ion, of nuclear charge Z. Com-
pare with the Schrödinger equation for the hydrogen atom itself, and
try to guess a wave function ψZ and energy EZ that are solutions.
Choose a form of ψZ that reduces to e−r when Z = 1. How should the
binding energy in this series depend on Z?

The Schrödinger equations for many-electron systems are generalizations
of the one-electron problem. The wave function is a function of the space and
spin coordinates of all the electrons:

ψ(x1, y1, z1, s1, x2, y2, z2, s2 . . . xN , yN , zN , sN ).

The kinetic energy operator T is the sum of the kinetic energies of the indi-
vidual electrons:

T =
∑

i

− h2

8π2m
∇2

i =
∑

i

− h2

8π2m

(
∂2ψ

∂x2
i

+
∂2ψ

∂y2
i

+
∂2ψ

∂z2
i

)

The result of the operation of T on ψ is the sum of 3n terms of the form
− h2

8π2m
∂2ψ
∂x2

i
. The potential energy V will be a sum of the Coulomb potentials

over all pairs of particles.
The hydrogen molecule, H2, has two nuclei, A and B, and two electrons,

referred to as 1 and 2. The potential energy is the sum of the repulsion between
the two nuclei, the attractions of the electrons to the nuclei and the repulsion
between electrons:

V =
e2

RAB
− e2

r1A
− e2

r1B
− e2

r2A
− e2

r2B
+

e2

r12

A general molecular system contains n electrons, indexed by i = 1, 2 . . . n;
and M nuclei indexed by A = 1 . . . M. Let ZA denote the atomic number of
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nucleus A, and RAB , riA and rij the distances from the nucleus A to nucleus B,
from electron i to nucleus A, and from electron i to electron j, respectively. For
example, riA =

√
(xi − XA)2 + (yi − YA)2 + (zi − ZA)2. Note that symbols

referring to nuclei are capitalized, and those referring to electrons are lower
case.

The Hamiltonian operator for the electrons of the system, assuming fixed
nuclei, is:

H = T + V

= −∑n

i=1
h2

8π2m

(
∂2

∂x2
i

+ ∂2

∂y2
i

+ ∂2

∂z2
i

)
+

M∑
A=1

M∑
B=1

A<B

ZAZBe2

RAB
−

M∑
A=1

n∑
i=1

ZAe2

riA
+

n∑
i=1

n∑
j=1

i<j

e2

rij

The conditions A < B and i < j are imposed on the summations so that each
pair of particles will be counted only once.

In the absence of a magnetic field, the spin does not appear explicitly. We
shall see that electron spin constrains the solutions of the many-electron Schrö-
dinger equation as a condition on the symmetry of the wave function with
respect to exchange of electrons.

Problem 8–4. What is the Schrödinger equation for the Helium atom?

Problem 8–5. Is the wave function ψ(r1, r2) = e−2r1−2r2 a solution
of the Schrödinger equation for Helium?

Problem 8–6. What is the Schrödinger equation for Beryllium Hy-
dride, BeH2?

8.2 Symmetry properties of wave functions
The importance of symmetry in the study of the electronic structure of atoms

and molecules depends on the fact that wave functions must transform accord-
ing to one of the symmetry species of the symmetry group of the molecule.
Stated precisely, the eigenfunctions of a Hamiltonian form bases for irredu-
cible representations of the symmetry group of the Hamiltonian. This principle
allows wave functions to be classified according to symmetry species; it assists
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in constructing eigenfunctions of a Hamiltonian; and it aids in the prediction
and analysis of spectra.

The application of any symmetry operation to the nuclear framework of
an atom or molecule does not alter the Hamiltonian, because a symmetry op-
eration produces an identical distribution of the positive charges that create
the potential in which the electrons move. Thus any covering operation of
the nuclear framework of an atom or molecule corresponds to an element of
the symmetry group of the Hamiltonian. Applying any covering operation of
the Hamiltonian to both the Hamiltonian and to an eigenfunction corresponds
merely to changing the indices of identical particles, the nuclei, and thus must
maintain the validity of the Schrödinger equation:

If Hψ = Eψ, (SH)(Sψ) = E(Sψ)

But if S is a symmetry operation of the nuclei, then

SH = H,

and
H(Sψ) = E(Sψ),

showing that Sψ is also an eigenfunction of H, with the same eigenfunction E .
Thus, given an eigenfunction of an atomic or molecular Hamiltonian, the

operations of the symmetry group of the nuclei generate additional eigenfunc-
tions of H with the same eigenvalue. Of course, there are no guarantees that
there will be as many independent eigenfunctions as there are elements of the
group. On one hand, if the eigenfunctions have some of the same symmetry
elements as the Hamiltonian, these common symmetry operations will gen-
erate no new eigenfunctions. On the other hand, if there is more than one
eigenfunction with a given eigenvalue, it will be impossible to generate all
possible eigenfunctions with the same eigenvalue by a finite number of sym-
metry operations. For even if there are only two independent eigenfunctions
ψ1 and ψ2 with the eigenvalue E , then, because H is a linear operator, all linear
combinations of the form a1ψ1 + a2ψ2 are also eigenfunctions, with the same
eigenvalue:

H(a1ψ1 + a2ψ2) = E(a1ψ1 + a2ψ2)

Problem 8–7. Show that the preceding equation follows from the
properties of linear operators.

For the symmetry groups of nonlinear molecules, it should be expected
that for any eigenvalue E , there are only a small finite number of linearly
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independent eigenfunctions ϕ1, ϕ2 . . . ϕn. That is, for every function ψ such
that Hψ = Eψ, it should be possible to express ψ as a linear combination:
ψ = a1ϕ1 + a2ϕ2 . . . + anϕn for some set of constants a1, . . . an. Thus there
is a good analogy between these basis functions and coordinate axes. Like
coordinate axes, the choice of basis functions ϕ1, . . . ϕn is not unique.

The statement that ϕ1, . . . ϕn forms a complete set of linear independent
eigenfunctions of H with eigenvalue E is equivalent to the following formulas:

Hϕi = Eϕi for i = 1, . . . n. (The ϕi are eigenfunctions of H with eigen-
value E .)

If Hψ = Eψ,ψ = a1ϕ1 + a2ϕ2 . . . + anϕn (any eigenfunction with the
same eigenvalue is a linear combination of the ϕj or, the set is complete).

ϕi �= a1ϕ1 + a2ϕ2 . . . + ai−1ϕi−1 + ai+1ϕi+1 + . . . + anϕn. (None of the
ϕi can be represented as a linear combination of the others; or, the set is
linearly independent.)

Such a set of eigenfunctions must form the basis for a representation of the
symmetry group of the Hamiltonian, because for every symmetry operation S,
Hϕi = Eϕi implies that H(Sϕi) = E(Sϕi) and hence that the transformed
wave function Sϕi must be a linear combination of the basic set of eigenfunc-
tions ϕ1, . . . ϕn.

This representation will almost always be irreducible. The most famous of
the exceptional cases is the hydrogen atom: One linearly independent set of
eigenfunctions corresponding to the eigenvalue R/4 (R is the Rydberg con-
stant) is the set of four orbitals corresponding to the states 2s, 2p−1, 2p0 and
2p1; but these form a basis for a reducible representation of the obvious sym-
metry group of the hydrogen atom. The representation that they generate is
reducible to the sum of a one-dimensional representation for which the 2s or-
bital is a basis, and a three-dimensional one for which the 2p orbitals form a
basis.

The reason that these eigenfunctions form a basis for a reducible represent-
ation is that there is no operation of the apparent symmetry group of the hydro-
gen atom that transforms a 2p orbital into a 2s orbital. However it was pointed
out in 1935 by Fock and Bargmann, independently, that the true symmetry
group of the Hamiltonian of the hydrogen atom is not the group corresponding
to the spherical symmetry of the potential, but a larger group. The eigenfunc-
tions of the hydrogen atom form bases for irreducible representations of the
larger group.

8.3 Molecular wave functions
Although computer technology and programming are now sufficiently ad-

vanced that the wave functions and properties of atoms and small molecules
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can be calculated to an accuracy adequate for detailed comparison with ex-
periments, it is nevertheless worthwhile to consider some of the more import-
ant types of approximate molecular wave functions. The degree of success
of these approximations provides a diagnostic probe of the essential features
of the chemical bond. Also, approximate wave functions suggest simplifying
concepts, in many cases adequate to describe and predict the major qualitative
features of molecular electronic structure and spectra.

8.3.1 Properties of the exact wave functions

The wave functions describing the electronic states of a many-electron atom
or molecule are functions of all the coordinates of all the electrons:

ψ(x1, y1, z1, s1, x2, y2, z2, s2 . . . xn, yn, zn, sn).

Wave functions for ground and excited states satisfy the Schrödinger equation:
Hψi = Eiψi. The square of the absolute value of ψ gives the probability of
finding electrons at any point specified by the arguments xi, yi, zi.

The form of the wave function is restricted by the indistinguishability of
different electrons. For example, consider two two-electron wave functions:

ψA(x1, y1, z1, s1, x2, y2, z2, s2) and

ψB(x1, y1, z1, s1, x2, y2, z2, s2) = ψA(x2, y2, z2, s2, x1, y1, z1, s1)

ψB is related to ψA by exchange of the space and spin coordinates of both
electrons. If ψA describes a state of two electrons, then ψB must describe
the same physical state, because the electrons cannot be individually labeled.
(Old physicists’ adage: “You can’t paint electrons red.”) But if both ψA and
ψB describe the same physical state then |ψA|2 = |ψB|2. Note that it is not
necessary for ψA to be equal to ψB, because any physically observable property
of the system will be independent of the sign of ψ. The wave function itself
cannot be measured.

It is a characteristic of electrons, that ψA = −ψB. Any wave function
for electrons must be antisymmetric with respect to an exchange of any two
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electrons. This is the point at which the electron spin enters the symmetry-
constrained properties of solutions of the Schrödinger equation.

Problem 8–8. Verify that any wave function for two particles.
ψ(r1, r2) can be written as a term symmetric with respect to exchange
of particles and a term antisymmetric with respect to exchange of
particles, as follows:

ψ(r1, r2) =
1
2

[ψ(r1, r2) + ψ(r2, r1)] +
1
2

[ψ(r1, r2) − ψ(r2, r1)]

symmetric antisymmetric

Problem 8–9. If a two-particle wave function has the form of a product
ψ(r1, r2) = φ(r1)φ(r2), show that the antisymmetric component of ψ
may be written as the determinant of a matrix the elements of which
are functions:

det
∣∣∣∣ φ1(r1) φ1(r2)
φ2(r1) φ2(r2)

∣∣∣∣
Problem 8–10. Show that any real functions f(x, y) and g(x, y) satis-
fying the equation |f(x, y)|2 = |g(x, y)|2 form a basis for a represent-
ation of the permutation group of two objects.

Problem 8–11. Generalize the preceding problem to three variables.

8.3.2 The Hartree-Fock approximation
The Hartree-Fock or self-consistent-field approximation is a simplification

useful in the treatment of systems containing more than one electron. It is
motivated partly by the fact that the results of Hartree-Fock calculations are
the most precise that still allow the notion of an orbital, or a state of a single
electron. The results of a Hartree-Fock calculation are interpretable in terms
of individual probability distributions for each electron, distinguished by char-
acteristic sizes, shapes and symmetry properties. This pictorial analysis of
atomic and molecular wave functions makes possible the understanding and
prediction of structures, spectra and reactivities.

Computationally, the simplification introduced by the Hartree-Fock approxi-
mation concerns the expression for the component of the potential energy res-
ulting from the repulsion between electrons. These terms in the Hamiltonian
depend on the instantaneous positions of all the electrons, because the energy
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of repulsion between two electrons is inversely proportional to the distance
between them.

However, keeping track of the positions of all the electrons all the time is a
complicated task. The electron-electron repulsion terms in the potential field
in which any electron is moving are constantly changing, because the electrons
are in motion relative to one another.

It is simpler to consider the electric field produced by the distribution of
an electron in an orbital; or, in effect, a time-averaged potential. Adopting
this point of view, each electron moves as if in a static potential produced by
the nucleus and the time-averaged distibutions of the other electrons. As each
electron moves in the field of the other electrons, it creates by its own distri-
bution a field affecting the motions of each of the others. Thus the motions of
all the electrons are coupled delicately: the term self-consistent field indicates
the requirement that all the individual electron distributions must produce the
proper potentials for one another’s motion.

How accurate are the energies determined by means of the Hartree-Fock
approximation? The error, the difference between the Hartree-Fock energy
and the exact energy, is called the correlation energy, because it arises from
neglect of the instantaneous relative motions, or correlation, of the electrons.
Correlation energies for atoms are found to be less than 1.5% of total ener-
gies. Although this sounds pretty good (though nowhere near the precision of
spectroscopic data), it is unfortunately the case that molecular binding energies
are also of about this magnitude – so that unless there is good cancellation of
the correlation error when subtracting the computed energies of the consitutent
atoms from the computed energy of the molecule, the binding energy predicted
from Hartree-Fock calculations may be disappointing.

Consider the Nitrogen molecule, N2. The computed Hartree-Fock energies
of atom and diatomic molecule are −54.50 a.u. and −108.99 a.u. respectively,
predicting a binding energy of 108.99−2×54.40 = 0.19 a.u. (The atomic unit
of energy, or a.u., sometimes called the Hartree, is defined as half the binding
energy of the hydrogen atom. 1 a.u. = 27.210 e.v. = 2625.5 kJ/mole.) In fact,
the experimental energies of atomic and molecular Nitrogen are −54.61 a.u.
and −109.58 a.u., and the experimental binding energy is 0.36 a.u. A more
radical case is the Fluorine molecule, in which the correlation error in the atom
is so great that the Hartree-Fock approximation does not even predict a stable
molecule! (The experimental binding energy of F2 is 158.78 kJ/mole.)

Note that the final step in computing molecular binding energies involves
calculating a small difference between two large numbers, an operation that
necessitates great precision in the total energies.

A solution of the equations arising in the Hartree-Fock approximation takes
the form of a set of spin-orbitals – each consisting of a function of coordinates
x, y, and z describing the spatial distribution of a single electron and an in-
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dicator of the orientation of the electron spin, usually called “up” and “down.”
In the restricted Hartree-Fock approximation, in which each orbital is doubly
occupied, the spin-orbitals occur in pairs, both of which have the same spatial
part but one of which has spin “up” and the other spin “down.” It is the Pauli
exclusion principle, a consequence of the necessary antisymmetry of the wave
function to electron exchange, that precludes occupancy of the identical spin-
orbital by more than one electron, and the laws governing the quantization of
angular momentum that restrict the electron spin to have no more than two
possible orientations.

The overall many-electron wave function is formed from the Hartree-Fock
orbitals as an antisymmetrized product. If the individual spin orbitals are
ϕ1(r, s), ϕ2(r, s), . . . ϕn(r, s), the overall wave function ψ(r1, s1, r2, s2 . . .
rn, sn) is the component of the product ϕ1(r1, s1)ϕ2(r2, s2) . . . ϕn(rn, sn)
that is antisymmetric with respect to interchange of any pair of electrons.

8.3.3 The Linear Combination of Atomic Orbitals (LCAO)
approximation

Several lines of evidence suggest that the states of electrons in molecules
are closely related to the states of electron in the free atoms from which the
molecules are constructed. First, typical molecular binding energies are a very
small fraction of the total binding energies of atoms, so that the formation of
a chemical bond should be regarded as a small perturbation of the structure of
an atom. For example, the binding energy of the N2 molecule relative to two
Nitrogen atoms is less than 0.5% of the total binding energy, 109.58 atomic
units, relative to the fully ionized state of the two separated atoms.

Additional experimental evidence for the preservation of electronic states
upon formation of molecules is the insensitivity of X-ray spectra to the chem-
ical environment of an atom, implying that the ionization potentials of inner
electrons are relatively unaffected by bonding. Indeed, Moseley’s classic ex-
periments on the relationship between X-ray frequencies and atomic number
were carried out on atoms in a variety of states of chemical combination.

These facts should not be surprising. The potential field in which electrons
move is largest in the immediate vicinity of the nuclei – but in the immediate
vicinity of any nucleus the portion of the potential arising from that nucleus is
much larger than the contributions from the other nuclei. In other words, in the
regions of high potential the potential is approximately equal to the potential
in a free atom.

These considerations suggest that it might be useful to approximate mo-
lecular orbitals as sums of atomic orbitals. Thus for the hydrogen molecule
ion H+

2 , a one-electron system, one could consider a wave function – based
on the exact orbitals for the separated atoms – of the form e−rA + e−rB , in
which rA and rB are the distances from any point in space to the two nuclei,
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as illustrated in Figure 8.1. Recall that e−rA and e−rB are the exact solutions
for each of the free atoms. Therefore, the wave function e−rA + e−rB should
be asymptotically correct at very large internuclear separations RAB → ∞.

   e     -

H H

r r

A B

A B

Figure 8.1. The hydrogen molecule ion, H+
2 .

8.4 Expectation values and the variation theorem
Although these approximate wave functions look promising, it is not clear

how to test them quantitatively. The Schrödinger equation Hψ = Eψ tells us
only that the measurement of the energy of a system in a state described by an
eigenfunction ψ will give the corresponding eigenvalue E as the result.

If a system is in a state described by a wave function ψ(x1, y1, z1, s1 . . . xn,
yn, zn, sn) that is not an eigenfunction of the Hamiltonian, measurements of
the energy will give variable results. An expression for the average, or expect-
ation value, of the energy measurements is the integral:

∫
ψ∗Hψ dx1 dy1 dz1 . . . dxn dyn dzn∫
ψ∗ψ dx1 dy1 dz1 . . . dxn dyn dzn

in which ψ∗ is the complex conjugate of ψ, and ψ∗Hψ is the function produced
by multiplying ψ∗ by the function resulting from applying H to ψ. A standard
abbreviation for such integrals is:

(f, g) =
∫

f∗g dV

In this notation, the expectation value of the energy is:

(ψ,Hψ)
(ψ,ψ)
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Problem 8–12. Verify that if ψ is an eigenfunction of H with eigen-
value E , then the expectation value of the energy is equal to E . The
expression (f, g) is called the inner product of f and g. It has a num-
ber of properties analogous to those of the dot product of two vectors.
These are illustrated in Table 8.2.

Table 8.2. Analogies between inner product of two vectors and inner product of two functions.

Property Vectors Functions

1. Definition �v · �w =
∑

i
viwi (f, g) =

∫
f∗g dV

2. Linearity upon multipli- c�v · d�w = (cd)�v · �w (cf, dg) = cd(f, g)
cation by real numbers c, d

3. nonnegativity of self �v · �v =‖ �v ‖2≥ 0 (f, f) =
∫
|f |2 dV ≥ 0

inner product

Problem 8–13. This analogy between inner products of functions and
of vectors can be pursued further. Suggest reasonable definitions for
(a) the norm of a function, ‖ f ‖, (b) a normalized function, and (c)
the cosine of the angle between two functions.

The inner product of two orbitals is sometimes called the overlap, the name
suggesting the extent to which the orbitals occupy the same region of space;
it provides a measure of how closely two functions resemble each other. In
particular:

1 The overlap of any normalized wave function with itself is 1.

2 There is a relationship between the overlap of two normalized functions
and their mean-squared difference:∫

|f − g|2 dV = 2
(

1 −
∫

f∗g dV

)2

or, in vector notation:

‖ f − g ‖2= 2 [1 − (f, g)]2

3 The overlap of any two normalized wave functions is less than or equal to
1, with equality holding only if the functions are identical.
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Problem 8–14. Prove these three properties of orbital overlap.

If the correct wave function and energy are known, there are two ways to assess
an approximate wave function:

1 Calculate the difference between the expectation value of the energy given
by the approximate wave function and the known true energy, or

2 Calculate the overlap between the approximate wave function and the known
true wave function.

If the correct energy values and wave functions are not known, it is not possible
to measure the error of an approximate wave function, with respect to energy
or to overlap.

However, an important result known as the variation theorem ensures that
the expectation value of the energy computed with any wave function must be
greater than the lowest eigenvalue of the Hamiltonian. For example, the lowest
eigenvalue of the Hamiltonian of the hydrogen atom is −1

2 atomic units. The
variation theorem states that for any normalized function ψ whatsoever, the
expectation value (ψ,Hψ) must be ≥ −1

2 . That is, the expectation value of
the energy computed with any trial wave function cannot be less than the true
ground-state energy.

The conclusions are that: if we are presented with a Hamiltonian for which
we do not know the eigenfunctions, and we calculate expectation values of the
energy with two or more approximate wave functions, we can be sure that the
lowest calculated expectation value is closest to the true energy. We cannot
estimate how far above the true value the results are. Nor can we be sure
that the approximate wave function giving the lowest expectation value of the
energy has the highest overlap with the true ground state eigenfunction.

Problem 8–15. A normalized hydrogenic 1s orbital for a one-electron
atom or ion of nuclear charge Z has the form:

ψZ =

√
Z3

π
e−Zr

continues. . .
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Verify that ψZ is normalized. The volume integral transformed into
spherical coordinates is:

∫
ψ∗

Z(x, y, z) ψZ(x, y, z) dx dy dz =

2π∫
0

dφ
π∫
0

cos θdθ
∞∫
0

ψ∗
Z(r)ψZ(r)r2dr

Note that because ψZ is independent of the angles θ and φ, the integral
can be factored into three independent integrals.

Problem 8–16. The 1s function with Z = 1.0 is an eigenfunction of
the Hydrogen atom Hamiltonian H = T − 1/r, (expressed in atomic
units.)
To get some idea of the use of trial wave functions and the variation
principle, evaluate the expectation value of the energy using the Hy-
drogen atom Hamiltonian, and normalized 1s orbitals with variable Z.
That is, evaluate:

E(Z) = (ψZ ,

[
T − 1

r

]
ψZ),

in which ψZ =
√

Z3

π e−Zr. Draw a graph of E(Z) for values of Z
between 0.25 and 4.0. Next, evaluate as a function of Z the overlap

of ψZ with the correct 1s wave function for Hydrogen,
√

1
πe−r. Draw

a graph of the overlap for values of Z between 0.25 and 4.0. What
general conclusions can you draw?
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Problem 8–17. To show that the general conclusions suggested in the
previous example are false, consider the case of the one-dimensional
harmonic oscillator, for which H = T + V = T + 1

2kx2. The energy
levels of the one-dimensional harmonic oscillator with frequency ν are:

En = (n +
1
2
)hν

Denote by ϕn the eigenfunction corresponding to the nth level:
Hϕn =

[
(n + 1

2)hν
]
ϕn. The eigenfunctions are orthonormal; that

is, (ϕi, ϕi) = 1 for all i, and (ϕi, ϕj) = 0 for i �= j.
Show that for any real number L, no matter how large, and for any real
number ε, no matter how small, it is possible to choose numbers a, b,
and n so that the trial function ψ = aϕ0 + bϕn has these properties:

1 ϕ is normalized.

2 The overlap of ψ with the true ground state eigenfunction ϕ0 is
greater than or equal to 1− ε2; that is, the spatial distribution of the
trial wave function is a very good approximation to the true wave
function, and

3 The expectation value of the energy calculated with ψ is greater
than or equal to L.

Problem 8–18. Suppose ψ1 and ψ2 are functions of a single variable,
defined by:
ψ1 = 1 if −1

2 ≤ x ≤ 1
2 and 0 otherwise, and

ψ2 = 1 if −1
4 ≤ x ≤ 11

4 and 0 otherwise.
Sketch graphs of ψ1 and ψ2. Are ψ1 and ψ2 normalized? What is the
overlap (ψ1, ψ2)? What is the relationship between the overlap integral
and the length of the segment of the real line for which both ψ1 and ψ2

are nonzero? This illustrates the origin and use of the term overlap in
the context of molecular orbital theory.

The variation theorem has been an extremely powerful tool in quantum
chemistry. One important technique made possible by the variation theorem
is the expression of a wave function in terms of variables, the values of which
are selected by minimizing the expectation value of the energy.
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For example, the Hamiltonian for Be3+ is H = T − 4/r. If we assume

a normalized wave function of the form ψZ =
√

Z3

π e−Zr, the expectation

value of the energy, in atomic units, is: E(Z) = 1
2Z2 − 4Z. To find the best

approximation to the energy available from this class of trial wave functions,
we simply take the minimum value of E(Z); namely, E = −8 a.u. In this case,

the corresponding wave function
√

64
π e−4r, is the eigenfunction, and the −8

a.u. is the correct energy. In most practical cases, of course, the wave function
corresponding to the minimum expectation value of the energy will not be an
exact solution.

A standard type of variable used in the definition of an orbital is a set of
linear expansion coefficients. Given the basis functions ϕ1, ϕ2, . . . ϕn, a gen-
eral trial function ψ = a1ϕ1 + a2ϕ2 + . . . + anϕn contains the coefficients
a1, . . . an to be determined by minimizing the expectation value of the energy.
The equation that determines the values of these coefficients is a secular equa-
tion, identical in form to the equation used to determine normal frequencies
and normal modes of vibration. In the electronic structure case, determination
of the energy levels associated with the linear combinations of a set of basis
functions ϕ1, . . . ϕn requires solution of the secular equation

det(Hij − ESij) = 0

in which Hij = (ϕi,Hϕj) and Sij = (ϕi, ϕj).
The lowest root of this secular equation is greater than or equal to the true

ground state energy. If the set of basis functions ϕi, . . . ϕj is general enough,
it can be a good approximation to the ground state energy, and the other eigen-
values approximations to the energies of excited states of the system.

Consider for example the LCAO approximation to the ground state of H+
2 .

Take as basis functions normalized 1s orbitals centered on either nucleus:

ϕ1 =
√

1
π

e−rA , ϕ2 =
√

1
π

e−rB

Here rA and rB are the distances from any point in space to the positions of
nuclei A and B.

The molecular wave function ψ is a linear combination ψ = aϕ1+bϕ2, with
coefficients a and b to be determined. Because the calculations are independent
of the spin coordinates, we omit them. To set up the secular equation we must
evaluate the matrix elements Hij and Sij. Because ϕ1 and ϕ2 are normalized,
S11 = (ϕ1, ϕ1) = 1 = S22. Because the basis functions are really two copies
of the same function – only centered at different positions in space – some of
the matrix elements are equal: H11 = H22, H12 = H21, S11 = S22(= 1), and
S12 = S21.

The form of the secular equation is then:
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det
(

H11 − E H12 − ES12

H12 − ES12 H11 − E
)

= 0

Expanding the determinant gives a quadratic equation for E , with the solutions:

E+ =
H11 + H12

1 − S12
, E− =

H11 − H12

1 + S12

If H12 < 0 and S12 > 0, E+ is lower than E−. E+ represents the best approxi-
mation to the ground state energy available from wave functions of the form
aϕ1 + bϕ2.

Because H11 represents the binding energy of an isolated Hydrogen atom,
the predicted binding energy is E+ − H11.

Problem 8–19. Verify the solution of the secular equation.

Problem 8–20. At the equilibrium internuclear distance, 2.0 a.u.,
H11 = 0.9726a.u., H12 = −0.6993a.u., S12 = 0.5865a.u. What
is the estimated binding energy in atomic units of H+

2 , in this simple
LCAO approximation? What percentage of the total binding energy
is predicted? The energy of a Hydrogen atom is −1

2 a.u. The actual
dissociation energy of H+

2 is 0.6 a.u.



Chapter 9

SYMMETRY PROPERTIES OF MOLECULAR
ORBITALS; CORRELATION DIAGRAMS

9.1 Diatomic molecules

Correlation diagrams (not to be confused with correlation energies) are a
technique for predicting the symmetries and relative energies of orbitals in
a molecule, by means of a comparison with atomic states. In two limiting
cases, the separated atoms (R = ∞) and the united atom (R = 0), atomic
orbitals accurately represent molecular orbitals. Correlation diagrams provide
a scheme for interpolating between these two limiting cases.

For example, the LCAO molecular orbitals for H2 are proportional to sums
and differences of atomic orbitals: 1sA + 1sB and 1sA − 1sB.

Although these orbitals are not exact molecular orbitals, they have the proper
symmetry. Therefore it is appropriate to regard them as qualitative represent-
atives of the true molecular orbitals, particularly in predictions of phenomena
in which symmetry properties play an important role.

If we imagine the nuclei to be forced together to R = 0, the wave function
1sA + 1sB will approach, as a limit, a charge distribution around the united
atom that has neither radial nor angular nodal planes. This limiting charge dis-
tribution has the same symmetry as the 1s orbital on the united atom, Helium.
On the other hand, the combination 1sA − 1sB has a nodal plane perpendicu-
lar to the molecular axis at all internuclear separations. Hence its limit in the
united atom has the symmetry properties of a 2p orbital. A simple correlation
diagram for this case is:
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Figure 9.1. Energy level diagram for hydrogen molecule, H2, and separated atoms H
(R = ∞) and He (R = 0). R = the Rydberg constant = 13.6057 eV = 0.5 a.u.
(atomic unit of energy). ∗Value from ionization potential of He (1s 2p 1P). ‡Value from
ionization potential of H2. The experimental ionization potentials are quite precise; but
for systems containing more than one electron their interpretation in terms of orbital
energies is an approximation.

The correlation diagram is in effect a graph with internuclear distance R
increasing from 0 to ∞ as abscissa, and energy as ordinate. Using experimental
values, we can calibrate the graph at R = 0, R = the equilibrium internuclear
distance, and R = ∞.

The diagram suggests, albeit in a crude way, that the 1sA + 1sB molecular
orbital should be bonding, and the 1sA − 1sB should be antibonding. This
leads to the prediction that diatomic molecules containing 2 electrons should
be more tightly bound than those containing 1 or 3 electrons, and that examples
such as He−He should not be stably bound.
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Problem 9–1. The bond order of a diatomic molecule is defined as
1
2 [number of electrons in binding orbitals – number of electrons in an-
tibonding orbitals]. Show that the following values are correct:

Number of electrons 1 2 3 4
Bond order 1

2
1 1

2
0

Relate this to the comment, preceding this problem, about the relative
stability of H+

2 , H2, He+
2 , He2.

In fact, the measured dissociation energies of appropriate examples of homo-
nuclear diatomic molecules and molecular ions are: H+

2 , 2.648 e.v.; H2, 4.476
e.v.; He+

2 , 3.1 e.v.; He2, only slight attraction in the ground electronic state
(binding of van der Waals type, at internuclear separations large compared
with typical chemical binding energies.)

Although the correlation diagram does not provide good quantitative values
for binding energies, it does accurately reveal the spatial symmetries of the
wave functions. Because the orbital 1sA + 1sB is symmetric with respect to
inversion and the orbital 1sA − 1sB is antisymmetric, the ground states of H+

2
and H2 are expected to be spatially symmetric and that of He+

2 is expected to
be antisymmetric. This is observed.

To extend the correlation diagram to second-row diatomics (Figure 9.2), let
us consider the possible symmetry species associated with the symmetry group
of homonuclear diatomics, D∞h.

D∞h E 2Cφ C′
2 i 2iCφ iC′

2

A1g(Σ+
g ) 1 1 1 −1 −1 −1

A1u(Σ−
u ) 1 1 1 1 1 1

A2g(Σ−
g ) 1 1 −1 1 1 −1

A2u(Σ+
u ) 1 1 −1 −1 −1 −1

E1g(Πg) 2 2 cos φ 0 2 2 cos φ 0
E1u(Πu) 2 2 cos φ 0 −2 −2 cos φ 0
E2g(Πg) 2 2 cos 2φ 0 2 2 cos 2φ 0
E2u(Πu) 2 2 cos 2φ 0 −2 −2 cos 2φ 0

. . . an infinite number of additional
representations exist

In this character table, we have included the spectroscopic symbol for the
symmetry type. A molecular orbital, in distinction to a full many-electron wave
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function, will be identified by a lower case symmetry species. Thus 1sA +1sB

is denoted a1.

Problem 9–2. What is the symmetry species of 1sA + 1sB? What is
the symmetry species of 2pπA + 2pπB?

To generate the correlation diagram, let us assemble the states of the united
and separated atoms, and connect them according to the rules:

1 The connected states must have the same symmetry in D∞h over the whole
range of internuclear distances. (Recall that angular momentum states s, p,
d, . . . refer to the symmetries of atomic states.)

2 States of the same symmetry will not cross. If it appeared that two such
states would cross, at the apparent crossing point a secular equation similar
to the one appearing at the end of the previous chapter would split them,
raising the energy of one orbital and lowering that of the other, prevent-
ing the crossing. In fact the secular equation involving the two orbitals in
question would be a part of the full secular equation of the system.

2p

2s

1s

2p

3s

3p

3d

2s

1s

Figure 9.2. Correlation diagram for second-row diatomic molecules. The column on
the left shows orbitals for the united atom, those on the right those of the separated
atoms.
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Problem 9–3. Predict the electron configurations, and the possible
symmetry species of the ground states of the second-row diatomics:
Li2, Be2, B2, C2, N2, O2, F2, Ne2.

Problem 9–4. Compute the bond order for these molecules.

9.2 Triatomic molecule – Walsh diagrams
Triatomic molecules are the simplest cases in which there arises a question

of predicting the shape. Some triatomic molecules, such as BeH2, are linear
in the ground state; whereas others, such as H2O, are bent. A correlation tech-
nique developed by Walsh permits predictions of whether triatomic molecules
and ions should be bent or linear. In this case correlation is made, not between
states differing in bond length as in the diatomic case, but between states dif-
fering in bond angle. The Walsh diagrams relate molecular orbitals for the
linear – D∞h – and bent – C2v – geometries.

Walsh analyzed the symmetry species of LCAO molecular orbitals in the
linear and bent geometries, and determined how the energies of individual or-
bitals vary with bond angle. Assuming that orbital energies are approximately
additive, this information suffices in most cases to determine the variation with
bond angle of the energy of a full electronic configuration. A comparison of
the energies of bent and linear structures leads to a prediction of which should
be observed.

Walsh diagrams give rules only for the qualitative decision: bent or linear?
If a molecule is bent, determination of the exact value of the bond angle re-
quires a detailed calculation.

9.3 Molecular orbitals for the bent AH2 molecule (C2v)

We shall continue to use the standard coordinate system, in which the mo-
lecule lies in the yz plane.

The valence orbitals from which the MO’s are to be constructed are:

An s orbital on the central atom: sA

Three p orbitals on the central atom: pA
x , pA

y , pA
z

1s orbitals on either Hydrogen: s1, s2

It is important to appreciate pictorially where the positive and negative parts
of the p orbitals are, and which Hydrogen is number 1 and which number 2; as
shown in Figure 9.3.
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pz

py

+

+

S1 S2

S1 S2

_

_

Figure 9.3. Orbital geometry and nomenclature for a bent triatomic molecule. Solid
contours indicate regions where the wave function is positive; broken contours indicate
regions where the wave function is negative.

To find the symmetry species of the molecular orbitals, we shall construct
the representation generated by the six valence orbitals, and reduce it into ir-
reducible components. In the following table, each entry gives the result of
applying the operation heading the column, to the orbital at the left of the row.

E C2 σv σ′
v Symmetry Species

sA sA sA sA sA a1

pA
x pA

x −pA
x pA

x −pA
x b1

pA
y pA

y −pA
y −pA

y pA
y b2

pA
z pA

z pA
z pA

z pA
z a1

s1

s2
s1 s2 s2 s1

s2 s1 s1 s2

}
a1 + b2

Γ 6 0 2 4

Reduction of Γ using the C2v character table shows that:

Γ = 3A1 + B1 + 2B2

in accordance with the last column.
The molecular orbitals of lowest energy that can be formed from these basis

orbitals can be described at least roughly as:

ϕ1, a bonding orbital, symmetry a1: ϕ1 = 1
2
(sA − pA

z ) + s1 + s2

ϕ2, a bonding orbital, symmetry b2: ϕ2 = pA
y − s1 + s2

ϕ3, a non-bonding orbital, symmetry a1: ϕ3 = 1
2
(sA + pA

z )
ϕ4, a non-bonding orbital, symmetry b1: ϕ4 = pA

x
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Problem 9–5. Verify the entries in the table on p. 88.

Problem 9–6. Verify the reduction Γ = 3A1 + B1 + 2B2 (p. 88).

Problem 9–7. In his original paper, Walsh started with the following
basis:
An s orbital on the central atom: sA

A p orbital on the central atom, oriented perpendicular to the molecular
plane.
Two p orbitals, oriented along the bond directions:

p1 =
1√
2
(py + pz) and p2 =

1√
2
(py − pz)

The sum and difference of the hydrogen 1s orbitals:

s1 + s2 and s1 − s2

Construct the analog of Figure 9.3 for Walsh’s basis set. Show that the
representation generated by the new basis has the same components
upon reduction as the old representation.

Problem 9–8. Sketch the shapes of the four molecular orbitals ϕ1, ϕ2,
ϕ3, ϕ4.

Problem 9–9. What other molecular orbitals could be formed from the
basis orbitals? Why are they expected to have higher energies?

Problem 9–10. How, qualitatively, might the exact Hartree-Fock or-
bitals for a bent AH2 molecule differ these simple LCAO molecular
orbitals?

Problem 9–11. Verify the assignments of symmetry species of the
basis orbitals.

Problem 9–12. Sketch the shapes of these orbitals.

9.4 Molecular orbitals for the linear AH2 molecule (D∞h)

In order to be consistent with the bent case, let us call the molecular axis the
y axis. The valence orbitals then have the following symmetry species:
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s1 a1g

pA
x , pA

z e1u

pA
y a2u

s1 + s2 a1g

s1 − s2 a2u

The molecular orbitals of lowest energy that can be formed from these basis
orbitals correspond to sums of basis orbitals of the same symmetry species,
containing no nodal planes between the atoms. These are:

ψ1, a bonding orbital, symmetry a1g

ψ1 = sA + s1 + s2

ψ2, a bonding orbital, symmetry a2u

ψ2 = pA
y − s1 + s2

ψ3, a two-fold degenerate non-bonding orbital, symmetry e1u

ψ3 = (pA
x , pA

z )

9.5 Correlation of orbitals between bent and linear
geometries

If we imagine a continuous deformation of the nuclear framework from the
bent to the linear geometry, we expect that the orbitals will change continu-
ously also.

Orbital ϕ1 of the bent molecule will go into orbital ψ1 of the linear molecule.
Notice that this orbital can contain an admixture of pA

z in the bent case, but not
in the linear case.

Orbital ϕ2 of the bent molecule will go into ψ2 of the linear molecule.
Orbital ϕ3 and ϕ4 of the bent case will go into the doubly-degenerate orbital

ψ3 of the linear case.
Symmetry alone cannot predict the correct order and angular variation of the

energy levels. Walsh was able to complete the analysis by a treatment in simple
physical terms of the variation of the energies of the orbitals with bond angle.
He based his derivations of the energy variations on elementary spectroscopic
inferences, and on the principle that the value of the interelectronic repulsion
energy in an orbital is reduced if the regions of interacting electron density
move apart.

Figure 9.4 shows Walsh’s diagram expressing the orbital correlation and
suggesting the variation in orbital energy with bond angle.
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Figure 9.4. Walsh diagram showing correlation of orbitals between bent and linear
triatomic molecules, and suggesting variation in orbital energy with bond angle.

The decrease in energy of ϕ1 and ϕ2 in going over to ψ1 and ψ2 respectively,
is a result of the reduction of the repulsion energy between the electrons in the
internuclear regions, as the molecule becomes more nearly linear.

The increase in energy of ϕ3 in going over to ψ3 can be traced to the excit-
ation energy required to change from s character of ϕ3 to fully p character of
ψ3.

The independence of orbital energy for ϕ4 → ψ4 is explicable by the fact the
px orbital is always perpendicular to the molecular plane, so that its interaction
with the rest of the molecule does not depend on bond angle.

The conclusions to be drawn from the correlation diagram in Figure 9–4
are: Molecules with 1–4 valence electrons should in their ground states have
electrons occupying only orbitals having energies that decrease with increasing
bond angle, and hence should be linear. Molecules with 5–8 valence electrons
have electrons occupying the ϕ3 − ψ3 orbital, the energy of which increases
steeply with angle, and hence they should be bent.
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Problem 9–13. Verify the correlations of orbitals for C2v and D∞h

geometries.

Problem 9–14. Which of the following molecules should be linear in
their ground states? Which would change geometry – linear → bent,
or bent → linear – in going to the first excited state?

BeH2, HgH2, NH2, CH2, H2O.

Problem 9–15. Could the same predictions be made from a simple
electron repulsion argument? If n pairs of electrons must be accom-
modated in the valence-shell molecular orbitals, then assume simply
that they will be as far apart as possible. Up to four electrons will push
each other as far apart as possible, to create linear geometry; more
than four must be distributed more densely, so that the angle between
the substituents will be less that 180◦. Does this simple hypothesis ex-
plain everything that Walsh’s rules do? Is there any advantage to using
Walsh’s correlation diagram analysis?



Chapter 10

SPECTROSCOPY AND SELECTION RULES

10.1 Introduction
There are several incentives for determining conditions under which quantit-

ies of the form (φ1,Oψ2) are equal to zero. Here ψ1 and ψ2 are wave functions
and O is an operator. In the LCAO (linear combination of atomic orbitals) ap-
proximation to molecular orbitals, two basis functions ψ1 and ψ2 do not “mix,”
if (ψ1,Hψ2) = (ψ1, ψ2) = 0. Thus a criterion for the vanishing of the mat-
rix elements H12 and S12 can simplify the interpretation and calculation of
molecular orbitals.

A number of spectroscopic phenomena also depend on the values of matrix
elements. For example, the intensity of a particular line in an absorption or
emission spectrum is proportional to the square of a matrix element of the
electric dipole operator: (ψ1, er ψ2).

Transitions for which (ψ1, er ψ2) = 0 are called forbidden transitions.

10.2 The relationship between symmetry properties and
the vanishing of matrix elements

An elementary example illustrates the role of symmetry in determining when
a matrix element must be equal to zero. Consider the one-dimensional integral:

I =
∫ ∞

−∞
(cos x) x (cos 2x) dx

To prove that I = 0, divide the region of integration into two parts: x ≥ 0 and
x ≤ 0. Then:

I = I− + I+ =
∫ 0

−∞
(cos x) x (cos 2x) dx +

∫ ∞

0
(cos x) x (cos 2x) dx

Rewriting I− by inverting the limits and transforming the variables x → −x :
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I− =
∫ ∞

0
cos(−x)(−x) cos(−2x) dx

= −
∫ ∞

0
(cos x) x (cos 2x) dx

because cos(−x) = cos x. But this shows that

I− = −I+,

and hence that
I = I− + I+ = 0.

Problem 10–1. Show that if f and g are any two functions such that
f(−x) = f(x), g(−x) = g(x), then Ifg =

∫ ∞
−∞ f(x)·x·g(x) dx = 0.

Functions such that f(−x) = f(x) are called even functions.

Problem 10–2. Show that if f and g are any two functions such
that f(−x) = −f(x), g(−x) = −g(x), then Ifg =

∫ ∞
−∞ f(x) · x ·

g(x) dx = 0. Functions such that f(−x) = −f(x) are called odd
functions.

Problem 10–3. The 1s and 2s states of the Hydrogen atom are both
spherically symmetric. Show that the transition 1s → 2s is forbidden.

In more complicated cases, the derivation of selection rules from symmetry
requires more formal application of group theory. The fundamental problem is
to derive the symmetry properties of a product from the symmetry properties
of the factors. For only if the product contains a totally symmetric component
can the matrix element have a non-zero value.

10.3 The direct-product representation
If f and g are functions of known symmetry, what is the symmetry of the

product f · g? The function f · g is defined as f · g(x) = f(x) · g(x).
It is easy to determine the symmetry of the product if the symmetry species

of f and g are both one-dimensional. If f and g both transform according
to one-dimensional representations Γf and Γg of a symmetry group, the group
operation A takes f into Γf (A)·f = χf (A)·f, and g into Γg(A)·g = χg(A)·g.
The product f · g is transformed into χf (A) · χg(A) · f · g. The product f · g
is a basis for another one-dimensional representation of the group, Γfg, the
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characters of which are the products of those of the representations Γf and Γg.
That is:

χfg(A) = χf (A) · χg(A)

The representation Γfg is the direct product of the representations Γf and Γg.

Problem 10–4. If f transforms as A2 in C2v and g transforms as B1,
what is the symmetry species in C2v of the product f · g?

To verify that the product formula for characters holds even for functions
that transform according to representations of higher dimensions, suppose that
the functions f1, f2 . . . fn and g1, g2 . . . gn form bases for n− and m−dimen-
sional representations of a group. Thus under any group operation A, each fi is
transformed into a linear combination of all the fk, k = 1, . . . n; and similarly
each gj is transformed into a linear combination of all the gl, l = 1, . . . n.

A · fi =
n∑

k=1

[Γf (A)]ik fk

A · gj =
m∑

�=1

[Γg(A)]j� g�

Combining these equations, the product figj will be transformed into a linear
combination of the m × n functions fkg�, k = 1, . . . n; � = 1, . . . m.

Afigj = Afi · Agj =
n∑

k=1,n

m∑
�=1

[Γf (A)]ik [Γg(A)]j� fkgl

The set of products fkg� forms a basis for a representation called the direct
product of the representations Γf and Γg.

Γfg = Γf ⊗ Γg

Note that if Γf is n−dimensional and Γg is m−dimensional, Γfg is m × n−
dimensional.

The diagonal elements in a direct-product matrix Γfg are those giving the
coefficient of a particular term figj in the linear combination expressing A(figj).
This element of Γfg(A) is equal to

[Γf (A)]ii [Γg(A)]jj .
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The trace of the direct product matrix is:

∑
ij

[Γf (A)]ii [Γg(A)]jj

equal to:

χfg(A) = χf (A) · χg(A).

The direct product representation is usually reducible, unless both compo-
nent representations are one-dimensional. For instance, in a group such as
D3h, in which no irreducible representation has dimension higher than two,
the direct product of E1 and E2 will be four-dimensional, and thus it must be
reducible.

Problem 10–5. In a homonuclear diatomic molecule, taking the mo-
lecular axis as z, the pair of LCAO–MO’s ψ1 = 2pxA + 2pxB and
ψ2 = 2pyA + 2pyB forms a basis for a degenerate irreducible rep-
resentation of D∞h, as does the pair ψ3 = 2pxA − 2pxB and ψ4 =
2pxA − 2pxB . Identify the symmetry species of these wave functions.
Write down the four-by-four matrices for the direct product represent-
ation by examining the effect of the group elements on the products
ψ1ψ3, ψ1ψ4, ψ2ψ3, and ψ2ψ4. Verify that the characters of the direct
product representation are the products of the characters of the indi-
vidual representations.

Extension of this analysis to the product of three factors, in order to treat
objects of the form (φi, Oψj), in which O is a linear operator, gives the result
that:

Γ(ψi,Oψj) = Γψi ⊗ ΓO ⊗ Γψj

Γ(ψi,Oψj) = Γψi ⊗ ΓO ⊗ Γψj

χ(ψi,Oψj) = χψi · χO · χψj

For example, in C2v, if ψi has symmetry species A2 and ψj has sym-
metry species B2; then, recalling that x has symmetry species B1 also; the
product ψixψj transforms according to a representation Γ with characters:

E C2 σv σ′
v

1 1 −1 −1
Thus Γ(ψ1,xψ2) = ΓA2 ⊗ ΓB1 ⊗ ΓB1 = ΓA2
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Problem 10–6. In D3h, if ψi has symmetry species E′, ψj has sym-
metry species E′′, and z has symmetry species A′′

2, what is the set
of characters corresponding to the direct product representation for
(ψi, zψj)? Of what irreducible representations is it composed?

In order to apply the direct product representation to the derivation of selec-
tion rules, recognize that a matrix element of the form (ψi,Oψj) will be equal
to zero for symmetry reasons if there is even one symmetry operation that takes
the integrand into its negative. The argument follows exactly the course of that
of section 10.2. Thus the matrix element will vanish unless the direct product
representation is totally symmetric (A1), or contains A1 upon reduction.

The main applications of this result are:
(1) Simplification of secular equations. Because the Hamiltonian is totally
symmetric – that is, for a molecule of C2v symmetry such as H2O, of sym-
metry species A1 – the matrix elements Hij = (ψi,Hψj) as well as the overlap
integrals Sij = (ψi, ψj) will be equal to zero unless the direct product repres-
entation Γψi

⊗ Γψj
contains A1. This is the basis for the assertion that “states

of different symmetry do not mix.”
(2) Selection rules. A transition between states ψi and ψj associated with light
absorption or emission will be forbidden if (ψi, er ψj) = 0.

10.4 Selection rules in spectroscopy
For light to induce a transition between energy levels of an atom or mo-

lecule, it is necessary that the frequency of the light and the energy difference
between the levels satisfy, at least approximately, the Planck relationship:

∆E = hν

But even if the light is of the proper frequency, the intrinsic probabilities of
transitions are highly variable. The experimentally observed intensity of a
transition is proportional to the square of a matrix element:

|(ψ0, er ψ1)|2

Thus the intensity depends on the detailed size, shape and symmetry of the
wave functions, and can even be zero in the case of a forbidden transition.

The mechanism by which light causes an atom or molecule to undergo a
transition can be described in terms of the eigenfunctions of a Hamiltonian. If
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ψ0 and ψ1 are eigenfunctions of a Hamiltonian H, an atom or molecule in state
ψ0 or ψ1 would remain in that state indefinitely, if undisturbed.

The effect of the light is to alter the Hamiltonian, by addition of an additional
potential term, V. In general, ψ0 and ψ1 will no longer be eigenfunctions of the
new Hamiltonian H+V. However, it the term V is very small – that is, the light
is just “tickling” the molecule – the states ψ0 and ψ1 may still be approximate
eigenfunctions. A reasonable expression for the molecular wave function is
a linear combination of the form aψ0 + bψ1, with a and b determined by a
secular equation. If ψ0 and ψ1 mix only slightly, the perturbed state can be
characterized as a superposition of ψ0 with a small amount of ψ1. That is,
the population of atoms or molecules under illumination may be regarded as
predominantly in the state ψ0, with a small admixture of the state ψ1.

The predominant term in the perturbing potential V is of the form er, equal
to the electric dipole moment operator. This is the origin of the selection rule
that: if (ψ0, er ψ1) = 0, the perturbed secular equation will not mix the states
ψ0 and ψ1, so that the transition ψ0 → ψ1 will not occur.

Within this basic general framework, molecules exhibit a variety of spectro-
scopic phenomena. Energies of transitions between electronic states are typic-
ally in the range 10−19−10−17 joule/molecule. These transitions are observed
in absorption and emission spectra in the visible and ultraviolet region. They
are also responsible for the phenomena of circular dichroism and optical ro-
tatory dispersion, (see section 10.4) in which the interaction between light and
a molecule alters the state of polarization of the light. Energies of transition
between vibrational energy levels are typically of order of magnitude 10−20

joule/molecule. These transitions are observed in infrared absorption and Ra-
man spectra.

10.4.1 Electronic transitions
The measure of the intensity of an electronic absorption or emission spec-

trum is the oscillator strength, a dimensionless quantity:

fij =
8π2mc

3he2
|(ψi, er ψj)|2

The electric dipole operator er is a vector, with components (ex, ey, ez). Thus
if

(ψi, xψj) = (ψi, yψj) = (ψi, zψj) = 0,

the transition is forbidden, and will not appear in the spectrum. If only one
or two components are non-zero, the transition will be allowed, but only for
light of proper polarization. For example, if (ψi, xψj) = 0 but (ψi, yψj) �= 0
and (ψi, zψj) �= 0, we would say that the transition is polarized along y and z
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axes. Directions of polarizations are detectable in spectra of oriented samples.

An optically active transition is one that causes the plane of polarization of
a light wave to rotate upon passage through a sample. The rotational strength
of a transition will be zero if the following quantity is zero:

(ψi, er ψj) · (ψj ,µ ψi)

in which the vector µ is the magnetic dipole moment operator. The compon-
ents of µ have the same symmetry properties as the rotations Rx, Ry and Rz;
so that the selection rule for optical activity states that a transition will be op-
tically inactive if:

(ψi, xψj) · (ψj , Rxψi) = 0
(ψi, yψj) · (ψj , Ryψi) = 0
(ψi, zψj) · (ψj , Rzψi) = 0

Problem 10–7. Formaldehyde, CH2O, has C2v symmetry. The ground
state has symmetry species A1, and low-lying excited states have sym-
metry species A2, B2, and A1. To which excited states are transitions
allowed? What are the directions of polarization of the allowed trans-
itions?

Problem 10–8. Pyrimidine:

has C2v symmetry. The ground state has symmetry species A1, and
low-lying excited states have symmetry species A2, B1 and B2. Are
any of the transitions from ground states to excited states optically act-
ive?

Problem 10–9. Consider two pyrimidine molecules, located in space
so that the planes of both molecules are parallel to the y − z plane,
such that a translation along the x−axis by 3.4 Å and a rotation by 36◦
around the x−axis will bring the two into coincidence. (This geometry
is an extremely rough model for part of one strand of a DNA double
helix). continues. . .
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(a) Verify that the symmetry group of the combined molecules is C2.
Label the two molecules A and B, and denote the eigenfunctions of the
two in isolation by ψ0(A), ψ0(B), ψ1(A), ψ1(B), etc. Then if the wave
functions of A and B do not overlap, and the interaction is very weak,
approximate ground and excited state wave functions for the combined
system of potential spectroscopic importance are:
Ground state: ψ0(A) · ψ0(B)
Excited states: ψ0(A) · ψi(B) ± ψi(A) · ψ0(B), i = 1, 2, 3,
where ψ1, ψ2, and ψ3, are the low-lying excited states of symmetry
species A2, B2 and A1 (see previous problem).
(b) What are the symmetry species of these states in C2? Do any trans-
itions forbidden in the monomer become allowed in the dimer?
(c) Which transitions in the dimer are optically active?

Problem 10–10. (a) Can a transition that is forbidden for absorption
be optically active? (b) Can a transition for which (ψi, er ψj) �= 0 and
(ψj ,µ ψi) �= 0 be optically inactive? Explain your answers.

Problem 10–11. If a molecule has a center of symmetry or a plane
of symmetry, no electronic transition can be optically active. Verify
this for the groups C1h, S2 = Ci, and D2h, by considering the various
combinations of symmetry species for ground and excited states. Can
you see why the statement will always be true? Can you prove it?

10.4.2 Vibrational transitions

Infrared and Raman spectra arise from transitions between energy levels in
which the vibrational energy of the molecule is changing. Infrared spectra
correspond to absorption of light, coupled with excitation of normal modes
of vibration, with no change in electronic state. Raman spectra arise from
transitions involving both electronic and vibrational energy: absorption of light
coupled with electronic excitation is followed by emission of a photon with a
frequency change corresponding to gain or loss of energy to vibrational modes.

A normal mode of vibration is said to be “infrared active” if the fundamental
transition, in which the mode is excited by one quantum of vibrational energy,
is allowed. Initial and final states are described by vibrational wave functions,
of which the ground state wave function has A1 symmetry and the excited state
has the same symmetry as the normal mode. Thus the fundamental transition
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to a mode of symmetry species Γ will be allowed if any of the following direct
products contains the totally symmetric representation A1 :

A1 ⊗ x ⊗ Γ A1 ⊗ y ⊗ Γ A1 ⊗ z ⊗ Γ

The Raman effect depends on a change in the polarizability of the molecule,
upon deformation by a vibration.

The polarizability of a molecule measures the dipole moment induced by
an electric field (induced in response to an applied electric field). In a typical
process of scattering of light by a molecule, a periodically varying electric field
in the light wave induces a periodically varying dipole moment in a molecule.
Usually the induced dipole moment has the same frequency, and therefore the
scattered radiation, emitted by this oscillating dipole, has this frequency too.
But if there is a change in the polarizability upon vibrational distortion, then
the induced dipole moment has a component that varies with the vibrational
frequency. The periodic variation of the induced dipole will include “beat”
frequencies in which the frequency of the emitted light differs from the exciting
frequencies by a multiple of the vibrational frequency. This gives rise to the
Raman effect.

The polarizability tensor of a molecule related the components of the in-
duced dipole moment of the molecule to the components of the electric field
doing the inducing. It therefore has 9 components, αxx, αxy, etc., only 6 of
which are independent. The theory of the Raman effect shows that a vibra-
tional transition, from the totally symmetric ground state to an excited state of
symmetry species Γ, will be Raman active if at least one of the following direct
products contains the totally symmetric representation:

A1 ⊗ x2 ⊗ Γ
A1 ⊗ y2 ⊗ Γ
A1 ⊗ z2 ⊗ Γ
A1 ⊗ xy ⊗ Γ
A1 ⊗ xz ⊗ Γ
A1 ⊗ yz ⊗ Γ

Problem 10–12. Which normal modes of H2O are infrared active?
Which are Raman active?

Problem 10–13. Which normal modes of CH3 are infrared active?
Which are Raman active?
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Problem 10–14. If a molecule has a center of symmetry, no vibrational
mode can be active in both the infrared and Raman. Verify this for the
groups D2h and D∞h, by considering all possible symmetry species
of the normal modes. Can you see why the statement will always be
true? Can you prove it?



Chapter 11

MOLECULAR ORBITAL THEORY OF
PLANAR CONJUGATED MOLECULES

11.1 Introduction

These simple molecular orbital pictures provide useful descriptions of the
structures and spectroscopic properties of planar conjugated molecules such as
benzene and naphthalene, and heterocyclic species such as pyridine. Heats of
combustion or hydrogenation reflect the resonance stabilization of the ground
states of these systems. Spectroscopic properties in the visible and near-ultra-
violet depend on the nature and distribution of low-lying excited electronic
states. The success of the simple molecular orbital description in rationalizing
these experimental data speaks for the importance of symmetry in determining
the basic characteristics of the molecular energy levels.

In this section we shall first treat the simple molecular orbital description of
pyridine. Each molecular energy level corresponds to a configuration, specified
by the occupancy of individual molecular orbitals. Each molecular orbital has
the symmetry species of an irreducible representation of the symmetry group,
C2v. The spatial symmetry of the overall molecular wave function is the direct
product of the symmetry species of the occupied orbitals.

The distribution of the molecular orbitals can be derived from the patterns
of symmetry of the atomic orbitals from which the molecular orbitals are con-
structed. The orbitals occupied by valence electrons form a basis for a repres-
entation of the symmetry group of the molecule. Linear combination of these
basis orbitals into molecular orbitals of definite symmetry species is equivalent
to reduction of this representation. Therefore analysis of the character vector
of the valence-orbital representation reveals the numbers of molecular orbitals
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of each symmetry. A sum of basis orbitals of a proper symmetry type is called
a symmetry-adapted linear combination.

We shall introduce the technique of projection operators to determine the
appropriate expansion coefficients for symmetry-adapted molecular orbitals.
Projection by operators is a generalization of the resolution of an ordinary 3–
vector into x, y and z components. The result of applying symmetry projection
operators to a function is the expression of this function as a sum of compon-
ents each of which transforms according to an irreducible representation of the
appropriate symmetry group.

11.2 The LCAO–MO description of pyridine
Pyridine, symmetry group C2v, has six electrons in a 2pπ system delocal-

ized around the ring, and two lone-pair electrons in an orbital localized at the
Nitrogen atom. The 1s electrons, as well as the electrons in orbitals describ-
ing the σ bonds, need not be considered explicitly in describing the resonance
stabilization and low-lying excited states of pyridine. The simple molecular
orbital description has the following characteristic assumptions:
(1) The electronic wave functions are adequately described as antisymmetrized
products of symmetry-adapted linear combinations of atomic orbitals.
(2) Excitations are adequately described in terms of altered orbital occupan-
cies.

Problem 11–1. Consider three levels of approximation: (a) Exact
many-electron wave function, (b) Hartree-Fock wave function, (includ-
ing all electrons), (c) Simple LCAO–MO valence electron wave func-
tion. For each of the following molecular properties, would you expect
the Hartree-Fock approximation to give a correct prediction (to within
∼ 1% in the cases of quantitative predictions)? Would you expect the
LCAO–MO approximation to give a correct prediction?

1. Symmetry of the ground state wave function.
2. Energy of the ground state.
3. Excitation energies to excited states.
4. Possible symmetries of excited states.
5. The relative energies of excited states identified by assignments of

orbital occupancies.
6. Allowed or forbidden character of transitions.
7. Polarization of transitions.
8. Oscillator strength of transitions.
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The molecular orbitals for pyridine will be illustrated by the following type
of contour diagram:

3

2

5

4

1

6

N

Figure 11.1. Typical contour diagram for a molecular orbital of pyridine,
viewed perpendicular to the molecular plane.

This molecular orbital, designated π3, has a positive value above carbon atoms
5 and 6, indicated by the solid contour; negative value above carbon atoms 3
and 2, indicated by the dashed contour, and has a nodal plane including atom 4
and the nitrogen atom. The contours are those that might be drawn in a plane
parallel to the molecular plane, 1 Å above it.

Figure 11.2 shows a side view of the molecular orbital, with contours drawn
in a plane perpendicular to the molecular plane and perpendicular to the C2

axis.

N

Figure 11.2. Typical contour diagram for a molecular orbital of pyridine,
viewed parallel to the molecular plane.

The operations of C2v have the following effects on the orbital:

Eπ3 = π3

C2π3 = π3

σvπ3 = −π3

σ′
vπ3 = −π3
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Thus π3 transforms according to symmetry species a2.

Problem 11–2. Each atomic pπ orbital is antisymmetric with respect to
reflection in the molecular plane. What limitations does this fact place
on the possible symmetry species, in C2v , of the molecular orbitals
describing the π system?

The full complement of ground and low-lying pyridine molecular orbitals is
as follows:

N

NN

N

N

N n

E

N

π4* π5* π6*

π1 π2 π3

Figure 11.3. Molecular orbitals for pyridine.

The orbitals are numbered in order of increasing energy, as determined from
a secular equation. π1 is the ground state; the others are excited states. An-
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tibonding orbitals are flagged with an asterisk. Note that the lone-pair orbital
n is neither bonding nor antibonding, but non-bonding.

Problem 11–3. Verify the transformation properties and symmetry
species of the pyridine molecular orbitals.

Problem 11–4. Determine and sketch the nodal structure of the pyrid-
ine molecular orbitals.

Problem 11–5. Denoting the pπ orbital on the ith atom by pi, π3 is
proportional to the linear combination p4 + p5 − p2 − p3. What linear
combinations correspond to the other π orbitals?

Problem 11–6. The following rules are a generally reliable guide to
relative order of energy levels:

1 There are an equal number of bonding and antibonding orbitals.

2 The larger the number of nodal planes, the higher the energy.

3 The electronegativity of Nitrogen is greater than that of Carbon;
therefore a molecular orbital that includes the Nitrogen p orbital is
lower in energy than the analogous orbital in benzene.

Are these rules sufficient to determine the relative energies of the mo-
lecular orbitals?

Problem 11–7. Verify the symmetry species of the first excited state,
and the polarization of the transition to it from the ground state.

Problem 11–8. Predict the symmetry species of other low-lying ex-
cited states of pyridine, determine whether transitions to or from the
ground state are allowed or forbidden, and determine the polarizations
of the allowed transitions.

11.3 Distribution of molecular orbitals
among symmetry species

The determination of molecular orbitals in terms of symmetry-adapted lin-
ear combinations of atomic orbitals is analogous to the determination of nor-
mal vibrational modes by forming symmetry-adapted linear combinations of
displacements. Both calculations are in reality the reduction of a representa-
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tion generated by a known basis. In the vibrational case the representation Γtot

is generated by a vector of displacements. In the molecular orbital case, the
representation ΓAO is generated by a set of atomic orbitals.

The characters of the representation ΓAO generated by the six pπ orbitals
and the non-bonding orbital of pyridine are:

χ(E) = 7
χ(C2) = −1
χ(σv) = 3
χ(σ′

v) = −5

It is then easy to compute that ΓAO = A1 + 2A2 + 4B1.

Problem 11–9. Show that

E(p2) = p2

C2(p2) = −p5

σv(p2) = p5

σ′
v(p2) = −p2

Problem 11–10. Verify that ΓAO = ( 7 −1 3 −5 ) .

Problem 11–11. Verify that ΓAO = A1 + 2A2 + 4B1, and show that
it corresponds to the molecular orbitals shown in Figure 11.3.

11.4 The Hückel approximation
The Hückel approximation is defined by a set of simplications to the form

of the Hamiltonian in the LCAO–MO description of planar conjugated mo-
lecules. Although the Hückel approximations are quite severe, nevertheless
they produce results that rationalize qualitatively the resonance energies and
spectra of these molecules.

In the Hückel approximation for hydrocarbons, matrix elements of the Hamilto-
nian in a basis of p atomic orbitals (φi = a pz orbital on atom i) are expressed
in terms of two parameters α and β :
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Hii = α

Hij = β if orbitals i and j are centered on neighboring carbon atoms, else
Hij = 0.

Sii = 1 (This is merely the normalization condition.)

Sij = 0, even in the case of orbitals on nearest-neighbor atoms

Note that α and β are negative numbers.
For example, the Hückel approximation to the secular equation for benzene

is:

det




α − E β 0 0 0 β
β α − E β 0 0 0
0 β α − E β 0 0
0 0 β α − E β 0
0 0 0 β α − E β
β 0 0 0 β α − E




= 0

Problem 11–12. Write the Hückel approximation to the secular equa-
tion for naphthalene.

Problem 11–13. Write down and solve the Hückel approximation to
the secular equation for the π system of ethylene. Noting that the en-
ergy of two electrons on non-interacting carbon atoms is 2α, show that
the binding energy of the two π electrons is −2β.

Solution of the secular equation for benzene gives the following energy
levels and eigenfunctions:

Level Energy Molecular orbital
E6 α − 2β 1√

6
(ψ1 − ψ2 + ψ3 − ψ4 + ψ5 − ψ6)

E5 α − β 1
2
(ψ1 − ψ2 + ψ4 − ψ5)

E4 α − β 1√
12

(ψ1 + ψ2 − 2ψ3 + ψ4 + ψ5 − 2ψ6)

E3 α + β 1
2
(ψ1 + ψ2 − ψ4 − ψ5)

E2 α + β 1√
12

(ψ1 − ψ2 − 2ψ3 − ψ4 + ψ5 + 2ψ6)

E1 α + 2β 1√
6
(ψ1 + ψ2 + ψ3 + ψ4 + ψ5 + ψ6)

There are six electrons in the π system, filling the first three orbitals. The
total energy of the configuration is:

2E1 + 2E2 + 2E3 = (α + 2β) + 2(α + β) + 2(α + β)
= 6α + 8β
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The corresponding energy of three ethylene molecules is 3 [2(α + β)] = 6α +
6β. Therefore the resonance stabilization energy of benzene is 2β.

Problem 11–14. Verify that these molecular orbitals for benzene are
eigenfunctions of the Hückel Hamiltonian, with the given eigenvalues.

Problem 11–15. Verify that the molecular orbitals are orthogonal,
within the framework of the Hückel approximation.

Problem 11–16. Why do the results of the last two problems guar-
antee that the Hamiltonian, expressed in terms of the given molecular
orbitals, will be diagonal?

Problem 11–17. What is the resonance stabilization energy of cyc-
lobutadiene, according to Hückel theory? Express your answer in
terms of β.

11.5 Projection operators
Projection operators are a technique for constructing linear combinations

of basis functions that transform according to irreducible representations of
a group. Projection operators can be used to form molecular orbitals from a
basis set of atomic orbitals, or to form normal modes of vibration from a basis
of displacement vectors. With projection operators we can revisit a number of
topics considered previously but which can now be treated in a uniform way.

Decomposition of a function into its components of different symmetry
types by means of projection operators is analogous to decomposition of an
ordinary 3–vector into its components along x, y, and z axes. The projection
along the x–axis of a general vector v = (X,Y,Z) is vx = Xx̂, in which x̂
is a unit vector in the x direction. Note that the result of applying a projection
operator to a vector is a vector, not a scalar. The equation could be written in
terms of an inner product: vx = x̂(x̂ ·v). Generalization of this formula defines
a vector projection operator Px such that Px operating on any vector v gives
the x−component of v as the result:

Pxv = x̂(x̂ · v)
Px = x̂(x̂·

These vector projection operators are simple in form and function because the
components of the vector appear explicitly in the notation for a vector.
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Problem 11–18. What are the operators for projection of a vector
along the y and z directions?

Problem 11–19. Define the operator for projection of a 3–vector along
a direction in the x − y plane pointing at an angle of 45◦ between the
x and y axes. What is the projection along this direction of the vector
(15, 20, 25)?

Problem 11–20. What is the projection operator that selects from a
3–vector the component lying in the x − y plane?

Vector projection operators act by cancelling out all components of a vec-
tor except the one it is designed to select. The decomposition of a function
in an analogous way requires expression of the function as a sum of compon-
ents each of a proper symmetry species. For example, it is possible to write
any function of three variables as a sum of components that are symmetric or
antisymmetric with respect to inversion:

F (x, y, z) =
1
2

[F (x, y, z) + F (−x,−y,−z)]

+
1
2

[F (x, y, z) − F (−x,−y,−z)]

The even component of F is F+ = 1
2

[F (x, y, z) + F (−x,−y,−z)] .
The odd component of F is F− = 1

2
[F (x, y, z) − F (−x,−y,−z)] .

Problem 11–21. Verify that F+(x, y, z) = F+(−x,−y,−z) and that
F−(x, y, z) = −F−(−x,−y,−z).

Problem 11–22. What are the even and odd components of the func-
tion F (x, y, z) = x2 + y2z + xz2.

We can define a projection operator to select the even or odd component of
F (x, y, z), using symmetry operators. Define the effect of a spatial symmetry
operator on a function by letting the operator transform the variables in the
argument of the function and then evaluating the function. Recall, for example,

that the effect of a C2 around the z axis on a vector


 x

y
z


 is: C2


 x

y
z


 =
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−x
−y
z


 . Then the effect on a function F of a rotation by 180◦ around the

z−axis is:

C2 [F (x, y, z)] = F [C2(x, y, z)] = F (−x,−y, z).

In this notation, F (−x,−y,−z) is simply the inversion of F (x, y, z) :

iF (x, y, z) = F (−x,−y,−z)

Problem 11–23. If F (x, y, z) = x2 + y2z + xz2, write the results of
applying the operators of the group C2v on F, using the usual coordin-
ate system, in which the axis of rotation is along z, σv refers to the x–z
plane and σ′

v refers to the y − z plane.

The projection operator that selects the even component of a function F is:

P+F (x, y, z) =
1
2

[F (x, y, z) + F (−x,−y,−z)]

=
1
2

[F (x, y, z) + iF (x, y, z)]

that is:

P+ =
1
2

[E + i ]

Similarly, the projection operator that selects the odd component of F is:

P− =
1
2

[E − i ]

Separating the even and odd components of the function F, by means of the
projection operators P+ and P− produces functions that transform according
to irreducible representations Ag and Au of the group Ci, which consists of
symmetry elements E and i. An analogous technique could be used to con-
struct functions symmetric and antisymmetric with respect to a mirror plane or
a dyad.
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Problem 11–24. Write the function of problem 11-22, F (x, y, z) =
x2+y2z+xz2 as the sum of two functions symmetric and antisymmet-
ric with respect to σv (reflection in the x–z plane). Write a projection
operator that would project out the component of a function symmetric
with respect to σv.

It is no accident that the coefficients of the operators E and i in the projec-
tion operators are the same as the character vectors in the table of irreducible
representations of Ci :

Ci E i
Ag +1 +1 PAg = P+ = 1

2
[+1 E +1 i]

Au +1 −1 PAu = P− = 1
2

[+1 E −1 i]

The characters of the target representation define the form of the projection
operator. The normalizing factor 1

2 is the reciprocal of the number of elements
in the group. To verify that, in C2v, any function of the form:

PA2F (x, y, z) =
1
4

[
F + C2F − σvF − σ′

vF
]

does indeed transform as A2, refer to the group multiplication table:

E(PA2F ) =
1
4

[
EF + EC2F − EσvF − σ′

vF
]

=
1
4

[
F + C2F − σvF − σ′

vF
]

= PA2F

C2(PA2F ) =
1
4

[
C2F + C2

2F − C2σvF − σ′
vF

]
=

1
4

[
C2F + EF − σ′

vF − σvF
]

= PA2F

σv(PA2F ) =
1
4

[
σvF + σvC2F − σ2

vF − σvσ
′
vF

]
=

1
4

[σvF + σvF − EF − C2F ]

= −PA2F
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σ′
v(PA2F ) =

1
4

[
σ′

vF + σ′
vC2F − σ′

vσvF − σ′2
v F

]
=

1
4

[
σ′

vF + σvF − C2F − EF
]

= −PA2F

This example suggests the general definition of the character projection op-
erator, PΓ, to project out that component of a function which transforms ac-
cording to irreducible representation Γ : (The group operations are denoted by
Oj , j = 1, . . . h. h is the number of elements of the group.)

PΓ =
1
h

h∑
j=1

χΓ(Oj)Oj

Problem 11–25. Project out the irreducible representations in C2v of
the function of problem 11–22. Verify that they transform properly.

Problem 11–26. From the vector of general displacements of the three
atoms of the water molecule, project out the unique normal mode of
B2 symmetry.

11.6 General properties of projection operators
Let us look more closely at the analogy between vector projection operat-

ors and character projection operators, and list some of the more important
properties that they share.

A vector projection operator acts upon a vector to produce the component
of the vector in a specified direction:

Pxv = x̂(x̂ · v)

A character projection operator acts upon a function to produce the com-
ponent of the function of a specified symmetry type:

PΓF =
1
h

h∑
j=1

χΓ(Oj)OjF

The elements of the analogy are the correspondences between the character
vector χΓ(Oj), j = 1, . . . h, and the basis vector x̂, and between the sum
1
h

∑h
j=1 χΓ(Oj)OjF and the dot product x̂ · v =

∑
i xivi.



Molecular orbital theory ofplanar conjugated molecules 115

The following important properties of projection operators are most easily
visualized in terms of vectors, but are true for the character projection operators
as well:
(1) After projection of a component of a vector, reapplication of the same pro-
jection operator has no effect.

For example: Px̂(X, Y, Z) = (X, 0, 0)
P2

x̂(X, Y, Z) = Px̂(X, 0, 0) = (X, 0, 0)

In general: Px̂v = x̂(v · x̂)
Px̂(Px̂v) = (v · x̂)Px̂

= (v · x̂)(x̂ · x̂)x̂ = x̂(v · x̂)

The corresponding fact for character projection operators is that

P2
Γ = PΓ.

Problem 11–27. Referring to problem 11–25, reapply the character
projection operator PB2 to the component of symmetry species B2 and
verify that this operation has no effect.

(2) If v̂ and ŵ are orthogonal, then projection along v̂ followed by projection
along ŵ produces zero.

For example: Px̂(X, Y, Z) = (X, 0, 0)
PŷPx̂(X, Y, Z) = Pŷ(X, 0, 0) = (0, 0, 0)

or: Px̂Pŷ = 0

The corresponding fact for character projections is that PΓ1 · PΓ2 = 0.

Problem 11–28. Prove the statement PΓ1 · PΓ2 = 0 from the ortho-
gonality properties of the character vectors.

Wave functions that satisfy the Pauli principle
Wave functions for electrons must change sign upon interchange of the elec-

trons:
Ψ(1, 2) = −Ψ(2, 1)

(Here arguments 1 and 2 stand for the space and spin coordinates of the two
electrons.) If the two-electron wave function Ψ(1, 2) is constructed from products
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of one-electron wave functions: ψA(1)ψB(2) and ψA(2)ψB(1), we can form
symmetric and antisymmetric linear combinations:

Symmetric: ψA(1)ψB(2) + φA(2)ψB(1)
Antisymmetric: ψA(1)ψB(2) − ψA(2)ψB(1)

We can express the formulation of these combination in terms of a projec-
tion operator: Let P12 = the permutation operator, defined by P12Ψ(1, 2) =
Ψ(2, 1). The the operators that project out symmetric and antisymmetric states
are:

Psymmetric =
1
2

[1 + P12]

Pantisymmetric =
1
2

[1 − P12]

Problem 11–29. (a) Let Ψ+(1, 2) = PsymmetricψA(1)ψB(2). Verify
that Ψ+(2, 1) = Ψ+(1, 2).
(b) Let Ψ−(1, 2) = PantisymmetricψA(1)ψB(2). Verify that
Ψ−(2, 1) = −Ψ−(1, 2).

Problem 11–30. Show that PantisymmetricψA(1)ψB(2) can be written

as the determinant of the matrix:
(

ψA(1) ψB(1)
ψA(2) ψB(2)

)

General applications of projection operators

We have now developed the analogy between the decomposition of a vec-
tor into components along coordinate axes, and the decomposition of a set of
objects into symmetry-adapted combinations.

In the derivation of normal modes of vibration we started with a set of dis-
placements of individual atoms. By determining the reducible representa-
tion Γtot and decomposing it, we calculated the number of normal modes
of each symmetry species. We could determine what these modes are by
solving a secular equation. We could alternatively have used projection
operators to determine the symmetry-adapted combinations.

In the derivation of molecular orbitals we started with individual pπ orbitals
and created symmetry-adapted linear combinations by solving a secular
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equation. Again, we could have decomposed Γtot to determine the number
of different types of symmetry species and used projection operators to
generate them. At worst, it would be necessary to solve a secular equation
to find the eigenfunctions that are combinations of projected combinations
of the same symmetry species.

Projection operators produce wave functions antisymmetric upon electron
exchange required to satisfy the Pauli principle.

With the power of computers that are currently available, it is not necessary
to split the secular equation “by hand” just to reduce it to manageable pro-
portions. It is worth realizing however, that both approaches – solving a large
secular equation, and projecting out symmetry-adapted linear combinations –
are both doing very similar things. Each, in its own way, finds combinations
of the starting set of objects that are orthogonal, partly but not necessarily ex-
clusively by virtue of having different symmetries.
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Conclusion

Symmetry is the natural language of the fundamental laws of physics. Group
theory is its grammar.

In this book we have emphasized the applications of group theory to calcula-
tions of properties of molecules, focusing on developing a working knowledge
of useful tools for analysis and prediction of structures and spectra.

For readers who wish to pursue the subject, and to learn about a greater
variety of applications, here are some of the books that I have enjoyed reading,
and can recommend:

I. Stewart and M. Golubitsky, Fearful Symmetry. (Oxford, Blackwell Publish-
ers, 1992).

A popular but serious treatment of the concept of symmetry and its implications, applied
to many topics, some of them from everyday life, such as the possible geometries of
quilting patterns, and the analysis of the gaits of animals.

H. Weyl, Symmetry (Princeton, NJ, Princeton University Press, 1983).

A discussion of symmetry in nature, art, science and mathematics, coupled with a non-
technical discussion of the mathematics of symmetry. Originally prepared as a set of
public lectures at the end of a distinguished career by a master. Still an interesting read.

I. Hargittai & M. Hargittai, Symmetry through the Eyes of a Chemist (New
York, VCH Publishers, 1987).

The personal touch. Biographical portrayals of the experience of discovery, recorded as
far as possible in interviews with participating scientists and their colleagues (but not
omitting a few “must-haves” such as Kepler and Pasteur). Topics involve some aspect
of symmetry in chemistry and biology, physics to a much lesser degree. The emphasis
is: How did the discovery come to be made? The point of view is that a scientific
discovery is an act by a human being, working in a particular intellectual climate and
in the context of an institutional framework.

I. Hargittai, Ed., Symmetry: Unifying Human Understanding. (New York, Per-
gamon Press, 1986).
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A collection of sixty-five articles, encompassing all aspects of symmetry from chem-
istry and physics to art, literature and dance. Were any argument required to demon-
strate the pervasive nature of symmetry not only in the laws governing the physical
world but also human endeavor, this book would be a clincher.

E.M. Loebl (ed.), Group Theory and its Applications, Vol. II. (New York,
Academic Press, 1971).

Part of a three-volume set covering applications of group theory to physics. The articles
by McIntosh and by Wulfman are well worth reading. They contain relatively short
and self-contained presentations of material about symmetries of atomic and molecular
systems that is difficult to find elsewhere in comparably accessible form.

F.J. Budden, The Fascination of Groups, (Cambridge, U.K., Cambridge Uni-
versity Press, 1972).

An introduction to the mathematics of group theory for the non-mathematician. If you
want to learn formal group theory but are uncomfortable with much of the mathematical
literature, this book deserves your consideration. It does not treat matrix representations
of groups or character tables in any significant detail, however.

The following references are to three classic originals – first published in
the 1930’s – and a standard modern treatment. The older books are primarily
concerned with the electronic structure of atoms. Tinkham’s book includes
treatment of molecules and solids.

H. Weyl, The Theory of Groups and Quantum Mechanics (tr. H.P. Robertson)
(New York, Dover Publications, 1984)

E. P. Wigner, Group theory and its Application to the Quantum Mechanics of
Atomic Spectra (tr. J.J. Griffin) (New York, Academic Press, 1959).

B. L. van der Waerden Group theory and quantum mechanics (Berlin-New
York, Springer-Verlag, 1974).

M. Tinkham, Group Theory and Quantum Mechanics. (New York, McGraw-
Hill Book Co., 1964).
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Antisymmetrized product, 104
Associative law, 11
Axis of rotation, 46
Bargmann V., 71
Basis, 50
Block form, 43
Bonding orbital, 107
Character table, 39, 46, 49
Character vector, 113
Character, 108
Circular dichroism, 98
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Complete set of eigenfunctions, 71
Correlation diagram, 83, 85
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Covering operation, 3, 16, 27
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Diagonal mirror, 16
Direct product representation, 94
Direct product, 94, 101
Dot product, 26
Dulong and Petit, 53
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Eigenfunction, 70, 97
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Electronic transition, 98, 100
Emission spectrum, 98
Exchange of electrons, 69
Excited state, 40
Expectation value, 76, 78
Faithful representation, 41
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Forbidden transition, 93, 97–98, 107
Gerade (even), 47
Group multiplication, 113

Group representation, 39, 41
Hamiltonian, 66, 69, 97, 108
Hartree-Fock approximation, 73–74
Heat of hydrogenation, 103
Heat of combustion, 103
Horizontal mirror, 16
Hückel approximation, 108
Hydrogen peroxide, 6
Identity, 5, 11, 27
Improper rotation, 19
Infrared active transition, 100
Infrared spectra, 53, 98, 100
Inner product, 26
Internal coordinates, 63
Inverse, 11
Inversion, 19
Irreducible representation, 44, 46, 62, 69, 110, 113
Isomorphic, 9
LCAO (Linear Combination of Atomic Orbitals),

40, 75, 81, 83, 93, 104, 108
Linear combination, 71
Linear Combination of Atomic Orbitals (LCAO),

40, 75, 81, 83, 93, 104, 108
Linear operator, 66
Linear transformation, 27
Magnetic dipole moment operator, 99
Matrix element, 93
Matrix multiplication, 29
Matrix representation, 35
Matrix, 27
Mirror plane, 16, 47
Mirror reflection, 4
Mirror symmetry, 16
Molecular binding energy, 75
Molecular orbital, 86, 89–90, 103, 105, 107, 116
Molecular vibrations, 53
Multiplication table, 8
Non-bonding orbital, 107–108
Norm, 25
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Normal mode of vibration, 58, 110, 116
Normalization constant, 26
Normalized, 26
Optical activity, 98–99
Optical rotatory dispersion, 98
Orbital, 73
Orthogonal matrix, 33
Orthogonal transformation, 33
Orthogonal, 26
Oscillator strength, 98
Overlap, 77
Pauli principle, 115
Permutation, 13
Planck relationship, 97
Plane of symmetry, 16
Point group, 15
Polarizability, 101
Polarization, 107
Projection operator, 104, 110–111, 115
Raman spectra, 53, 98, 100
Reducible representation, 44
Reflection, 5
Representation, 9, 47, 50
Resonance stabilization, 103, 108
Rotation axis, 15
Rotation, 5
Rotatory-reflection, 19
Schrödinger equation, 67, 69–70, 73, 76
Secular equation, 81, 98, 116–117

Selection rule, 93, 97, 99
Self-consistent field approximation, 73
Separated atoms, 83
Similarity transformation, 33, 36, 43
Specific heats of solids, 53
Spectroscopy, 93, 97
Spin-orbitals, 74
Stereograms, 17
Stereographic projection diagrams, 17
Subgroup, 12, 40
Symmetry group, 8, 15
Symmetry species, 41, 43, 86, 88, 94, 101,

106–107, 115–117
Symmetry-adapted linear combination, 104, 107,

116
Totally symmetric representation, 47, 101
Trace, 34, 36, 46, 62
Transpose, 33
Unfaithful representation, 41
Ungerade (odd), 47
Unit element, 11
United atoms, 83
Variation theorem, 76, 78, 80
Vertical mirror, 16
Walsh diagrams, 87, 91
Water, 6, 55
Wave function, 40
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