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Preface

This book is written for graduate students and professionals in physics, chemistry and

in particular for those who are interested in crystal and magnetic crystal symmetries. It

is mostly based on the papers written by the author over the last 20 years and the

lectures given at Temple University. The aim of the book is to systematize the wealth

of knowledge on point groups and their extensions which has accumulated over a

century since SchoÈn¯ies and Fedrov discovered the 230 space groups in 1895. Simple,

unambiguous methods of construction for the relevant groups and their representations

introduced in the book may overcome the abstract nature of the group theoretical

methods applied to physical chemical problems.

For example, a uni®ed approach to the point groups and the space groups is

proposed. Firstly, a point group of ®nite order is de®ned by a set of the algebraic

de®ning relations (or presentation) through the generators in Chapter 5. Then, by

incorporating the translational degree of freedom into the presentations of the 32

crystallographic point groups, I have determined the 32 minimum general generator

sets (MGGSs) which generate the 230 space groups in Chapter 13. Their representa-

tions follow from a set of ®ve general expressions of the projective representations of

the point groups given in Chapter 12. It is simply amazing to see that the simple

algebraic de®ning relations of point groups are so very far-reaching.

In almost all other textbooks or monographs on solid-state physics, the space groups

may be tabulated, but without their derivations, as if they were `god-given'. The main

reason could have been the lack of a simple method for the derivations. As a result, the

group theoretical methods have been unnecessarily abstract in an age when students

are very familiar with non-commuting physical quantities in quantum mechanics.

The book is self-suf®cient even though some elementary knowledge of quantum

mechanics is assumed. No previous knowledge of group theory is required. In

providing the basic essentials, introductory examples are given prior to the theorems.

Effort has been made to provide the simplest and easiest but rigorous proofs for any

theorem described in the book. Applications are fully developed. Each chapter

contains something new or different in approach that cannot be found in any other

monograph. For example, even in the basic theory on matrix transformation given in

Chapter 2, I have introduced an involutional transformation into the Dirac theory of

the electron and arrived at the Dirac plane wave solution in one step. This transforma-

tion is used frequently in later chapters. The transformation is further extended to a

new general theory of matrix diagonalization that provides the transformation matrix

as a polynomial of the matrix to be diagonalized. This theory is included for its

usefulness even though it is somewhat mathematical.

Some further typical features of the book are worth mentioning here. In Chapter 5, I

have introduced a faithful representation for a point group using the unit basis vectors of

the coordinate system. This allows one to construct the multiplication table of any point



group, e.g. the octahedral group, with ease. A new uni®ed system of classi®cations for

the improper point groups and anti-unitary (or magnetic) point groups is introduced,

using the fact that both the inversion and the time-reversal operator commute with all

the point operations. This system is quite effective for describing their isomorphisms,

and thereby greatly simpli®es the construction of their matrix representations and co-

representations in its entirety. In Chapter 7, I have introduced a simple correspondence

theorem on the basis functions of a point group G and thereby developed a general

method of constructing the symmetry-adapted linear combinations (SALCs) of equiva-

lent basis functions with respect to G. It is then applied to construct SALCs of

equivalent atomic orbitals and the symmetry coordinates of vibration for molecules and

later for crystals in Chapter 15. This theory requires only knowledge of the elementary

basis functions of the irreducible representation and does not require the matrix

representation. This is in quite a contrast to the conventional projection operator

method. The correspondence theorem is further extended to form the energy band

eigenfunctions of the electron in a solid in Chapter 15. By incorporating the time-

reversal symmetry into point groups, anti-unitary (magnetic) point groups are formed in

Chapter 16. Analogously, 38 assemblies of MGGSs for 1421 anti-unitary space groups

are formed from the 32 MGGSs of space groups in Chapter 17. Their co-representations

are introduced and applied to the selection rules under the anti-unitary groups.

Once a reader is familiar with the basic aspects of the group theoretical methods

given in Chapters 3, 4 and 5, the reader can pick and choose to read any applications

in later chapters using the rest of the book as the built-in references. This is possible

because each chapter is as self-contained as possible and also an effective numbering

system is introduced for referring to the theorems, equations and ®gures given in the

book. Numerous examples of the applications of theorems are given as illustrations. In

some chapters, I introduced a simpli®ed special proof for a theorem to help under-

standing, even though its general proof had been given in an earlier chapter. In

particular, those who are interested in the applications to inorganic chemistry may

directly start from Chapter 7 with minimum knowledge of the group theoretical

methods. One of my colleagues, Professor S. Jansen-Varnum, used the theory of

symmetry-adapted linear combinations based on the correspondence theorem de-

scribed in Chapter 7 of my manuscript for teaching both undergraduate and graduate

courses in inorganic chemistry.
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List of symbols

2 belongs to, e.g. g 2 S means an element g belongs to a set S.

8 for all, e.g. 8 g 2 S means for all g 2 S.� complex conjugate.
� transpose, e.g. A� is the transpose of the matrix A.
y adjoint or Hermitian adjoint, i.e. Ay � A��.

! is mapped onto.

$ one-to-one correspondence.


 direct product.

� direct sum.

\ set-theoretic intersection, e.g., S1 \ S2 is the set common to the two sets

S1 and S2.

f g set of all elements.

H , G H is a subgroup of a group G.

H / G H is an invariant subgroup of a group G.

G1 3 G2 the direct product group of two groups G1 and G2.

F ^ H the semidirect product of two groups F and H, where F is invariant

under H.

F ' H Two groups F and H are isomorphic.



1

Linear transformations

1.1 Vectors

A sequence of n numbers that are complex in general, denoted v � (v1, v2, . . . , vn), is

called a vector in n-dimensional linear vector space V (n) with the components vi;

i � 1, 2, . . . , n. The coordinates of a point with respect to a coordinate system in n-

dimensional space can also be considered as a vector in V (n). Vectors obey the

following rules.

(1) Two vectors v and u are said to be equal if their corresponding components are

equal, i.e. v � u, if vi � ui for all i.

(2) Addition of two vectors v and u is also a vector with components (v� u)i �
vi � ui.

(3) The product cv of a number c with a vector v is a vector whose components are c

times the components of v, i.e. (cv)i � cvi.

A vector is a null vector if all its components vanish.

Vectors of a set v(1), v(2), . . . , v(k) are said to be linearly independent if there exists

no relationship of the form

a1v(1) � a2v(2) � � � � � akv(k) � 0

excluding the trivial case in which all coef®cients a1, a2, . . . , ak are zero. If these

vectors are linearly dependent, there exists a non-zero coef®cient, say a1 6� 0, then v(1)

is expressed in terms of the remaining vectors as follows:

v(1) � ÿ a2

a1

v(2) ÿ a3

a1

v(3) ÿ � � � ÿ ak

a1

v(k)

There exist no more than n vectors in V (n) which are linearly independent; in fact, if

we introduce n linearly independent vectors of the form

e (1) � (1, 0, 0, . . . , 0)

e (2) � (0, 1, 0, . . . , 0)

. . . . . . . . .

e (n) � (0, 0, 0, . . . , 1) (1:1:1)

then an arbitrary vector v � (v1, v2, . . . , vn) is expressed in terms of the set of n

vectors as follows:

v � v1e (1) � v2e (2) � � � � � vne (n)

The set e � fe (1), e (2), . . . , e (n)g is called the natural basis of the n-dimensional

vector space V (n).



Another important elementary concept is the scalar product of two vectors. The

scalar product of two vectors v and u is a number de®ned by

(v, u) � v1u1 � v2u2 � � � � � vnun (1:1:2)

There exists another scalar product called the Hermitian scalar product de®ned by

hv, ui � v�1 u1 � v�2 u2 � � � � � v�n un � (v�, u) (1:1:3)

where v�i denotes the complex conjugate of vi.

Let c be a number. Then the Hermitian scalar product is linear in the second factor

but is `antilinear' in the ®rst factor:

hv, cui � chv, ui, hcv, ui � c�hv, ui (1:1:4)

whereas the simple scalar product is linear in both factors.

When (v, u) � 0 or hv, ui � 0 we say that two vectors v and u are orthogonal under

the ordinary scalar product or the Hermitian scalar product, respectively. A vector that

satis®es (v, v) � 0 but hv, vi 6� 0 is said to be self-orthogonal or isotropic.

Isotropic vectors were introduced by Cartan (1913) to formulate the `spinor algebra.'

Obviously, if hv, vi � 0, then v is a null vector.

1.2 Linear transformations and matrices

Consider a set of n linear equations

y1 � A11x1 � A12x2 � � � � � A1nxn

y2 � A21x1 � A22x2 � � � � � A2nxn

. . . . . . . . .

yn � An1x1 � An2x2 � � � � � Annxn

which may be written in a more compact form

yj �
Xn

i�1

Ajixi; j � 1, 2, . . . , n

The set of equations is said to form a linear transformation in n variables. It may be

regarded as a point transformation that brings a point x to another point y in V (n). The

point transformation is a mapping of the n-dimensional space V (n) into itself and is

completely de®ned by the set of n2 quantities fAjig, which can be any complex

numbers. We therefore associate with the transformation the array of numbers called

an n 3 n matrix,1 denoted A � i Aji i. Then the set of equations is written as follows:

y � Ax (1:2:1)

Two matrices A � i Aji i and B � i Bji i are said to be equal if and only if Aji � Bji

for all j and i.

We de®ne addition of two n 3 n matrices by the rule

(A� B) ji � Aji � Bji

1 An n 3 n matrix is called a square matrix. Hereafter we are primarily concerned with square matrices
unless otherwise speci®ed.
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in accordance with the vector addition z � Ax� Bx � (A� B)x. Then addition is

commutative and associative, for A� B � B� A and A� (B� C) � (A� B)� C.

Now let zk �
P

j Bkj yj be a second transformation by an n 3 n matrix B � i Bkj i.

The effect of two transformations consecutively by A and then by B produces a third

transformation

zk �
X

j

Bkj Aj �
X

ji

Bkj Ajixi; i:e: z � BAx

Therefore we de®ne the product P of two matrices by the rule

Pki �
X

j

Bkj A ji or P � BA

The rule is analogous to the rule for the product of two determinants. If we denote the

determinant of a matrix A by det A, we have

if P � BA, then det P � det B det A (1:2:2)

Note that det B det A � det A det B since determinants are numbers. However, the

matrix product BA need not equal AB in general; e.g. see (1.2.5b). Thus, matrix

multiplication need not be commutative. Multiplication is, however, associative:

A(BC) � (AB)C, so that the product is simply written ABC.

Another important characteristic property of a matrix A is the trace of A de®ned by

the sum of the diagonal elements

tr A �
X

i

Aii

Then, the trace of a product ABC equals the trace of the product BCA, because

tr ABC �
X

ijk

Aij Bjk Cki �
X

ijk

Bjk Cki Aij � tr BCA

That is, the trace of a product of matrices is invariant under a cyclic permutation of the

matrices.

The matrix with unity in each position in the leading diagonal and zero elsewhere is

called the unit matrix, denoted 1 � iäij i, where äij � 0 (i 6� j) and äii � 1. The unit

matrix corresponds to the identity transformation. A matrix of the form D � idiäij i
that has diagonal elements d1, d2, . . . , d n and zero elsewhere is called a diagonal

matrix. It is denoted by

D � diag [d1, d2, . . . , d n] (1:2:3a)

then

det D � d1d2 . . . d n, tr D � d1 � d2 � � � � � d n

Two diagonal matrices always commute and their product gives a diagonal matrix; in

fact, let D9 � diag [d91, d92, . . . , d9n] be another diagonal matrix, then

DD9 � diag [d91d1, d92d2, . . . , d9nd n] � D9D (1:2:3b)

If the determinant of a matrix is not zero, then the matrix is said to be non-singular.

If the coef®cient matrix A of (1.2.1) is non-singular, then the equation (1.2.1) may be
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solved for x; i.e. there exists the inverse transformation from y to x, which may be

written as

x � Aÿ1 y

where Aÿ1 is called the inverse of A and satis®es

Aÿ1 A � AAÿ1 � 1 (1:2:4)

If, however, det A � 0, there exists no inverse of A and the matrix A is said to be

singular. When y � 0, on the other hand, the equation (1.2.1) has non-null solutions

for x, if and only if A is singular; this has an important application in the theory of

matrix diagonalization. Note that, for a product of non-singular matrices, we have

(ABC)ÿ1 � Cÿ1 Bÿ1 Aÿ1.

The product of a number c and a matrix A � i Aij i is a matrix whose elements are c

times the elements of A:

cA � icAij i

Accordingly, a number commutes with any matrix. Note, however, that

det cA � cn det A

where n is the dimensionality of A.

The well-known examples of matrices in two dimensions are the Pauli spin matrices

de®ned by

ó x � 0 1

1 0

� �
, ó y � 0 ÿi

i 0

� �
, ó z � 1 0

0 ÿ1

� �
(1:2:5a)

Their determinants are all equal to ÿ1, and their traces are all zero. They also

anticommute with each other:

ó xó y � ÿó yó x, ó yó z � ÿó zóy, ó zó x � ÿó xó z (1:2:5b)

Their squares are all equal to the unit matrix 1; i.e. the ó i are all involutional satisfying

x2 � 1. Therefore, they form a set of anticommuting matrices satisfying, with

ó x � ó1, ó y � ó2 and ó z � ó3,

[óí, ó ì]� � óíó ì � ó ìóí � 2äíì; í, ì � 1, 2, 3 (1:2:6)

Furthermore, ó1ó2ó3 � i so that ó1ó2 � ió3. A set of matrices that satisfy anti-

commutation relations as given by (1.2.6) is said to form a Clifford algebra.

Now, consider a set G of all non-singular matrices M in n dimensions. Then a

product of two members of G is also a non-singular matrix belonging to G. This

property is called the group property of G or the closure of G. Summarizing the

properties of G discussed in this section, we may conclude that the set G satis®es the

following properties:

1. The group property:2 if M1, M2 2 G then M1 M2 2 G.

2. The associative property for the product: (M1 M2)M3 � M1(M2 M3).

3. Existence of the unit matrix 1: 1M � M1 for any M 2 G.

4. Existence of the inverse Mÿ1 for any M 2 G: Mÿ1 M � MMÿ1 � 1.

2 M 2 G means M belongs to the set G.
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A set of elements that satis®es these four properties is said to form a group. Thus the

set of non-singular n 3 n matrices forms a group called the group of general linear

transformations in n dimensions, denoted GL(n). Full discussion of the axiomatic

system of a group will be given later in Chapter 3. Here, we need the group axiom

simply to characterize a set of matrices.

1.2.1 Functions of a matrix

Let us de®ne powers of a non-singular matrix A by

A0 � 1, A1 � A, An�1 � An A, Aÿn � (Aÿ1)n

where n is an integer. Then, corresponding to a function f (z) of a scalar variable z that

can be expanded in powers of z,

f (z) �
X1

n�ÿ1
cnz n � c0 � c1z� c2z2 � � � � � cÿ1zÿ1 � cÿ2zÿ2 � � � � (1:2:7a)

one can de®ne a function of a matrix A as follows:

f (A) �
X1

n�ÿ1
cn An (1:2:7b)

Such a function f (A) commutes with any other function g(A) of A. An elementary

example of a function of A is the exponential function

f (sA) � exp (sA) � 1� sA� s2 A2=2! � � � � � s n An=n! � � � �
where s is a scalar parameter. One can differentiate the function exp (sA) with respect

to s regarding A as a constant and obtain

f 9(sA) � d[exp (sA)]=ds � A exp (sA)

where f 9(z) is the derivative of f (z) with respect to z. This can be checked by the

expansion.

In the special case of a diagonal matrix D

D � diag [d1, d2, . . . , d n]

the function f (D) of D is simply given by a diagonal matrix with elements f (d1),

f (d2), . . . , f (d n), i.e.

f (D) � diag [ f (d1), f (d2), . . . , f (d n)] (1:2:7c)

This follows simply from the de®nition (1.2.7b). Thus, for example,

exp
d1 0

0 d2

� �� �
� ed1 0

0 ed2

� �
(1:2:7d)

For the Pauli spin ó z de®ned by (1.2.5a), we have

exp (ëó z) � eë 0

0 eÿë

� �
(1:2:7e)

where ë is a constant.
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1.2.2 Special matrices

From a given matrix A � i Aij i one can de®ne a new matrix by complex conjugation

or by transposition of the rows and columns. The complex conjuguate A� and the

transpose A� of A are de®ned by the elements

(A�)ij � A�ij , (A�)ij � Aji (1:2:8a)

where A�ij is the complex conjugate of the element Aij. For a product of matrices we

have

(ABC)� � A�B�C�, (ABC)� � C�B�A�

Note that a transformation of a vector x by a matrix A can be written in the following

two ways: X
j

Aijxj �
X

j

xj A
�
ji

If one combines the above two operations de®ned by (1.2.8a), one obtains the adjoint

or Hermitian conjugate matrix de®ned by

Ay � A�� � A�� (1:2:8b)

These special matrices come in when we describe the transformations of the scalar

products, (v, u) and hv, ui,
(Av, u) � (v, A�u), hAv, ui � hv, Ayui (1:2:9)

which can be veri®ed by writing out the respective scalar product. By assuming

various relationships between a matrix A and its complex conjugate, transpose, adjoint

and inverse, one can obtain special kinds of matrices. For example, if Ay � A, A is

said to be self-adjoint or Hermitian. Further examples will be introduced, however,

later in Section 1.5 along with their transformation properties.

1.2.3 Direct products of matrices

Frequently, we encounter the concept of a direct product P � A
 B of two square

matrices. It is de®ned by their elements as follows: let A � i Aij i and B � i Bks i then

P � A
 B � iAij Bks i

so that the elements of P may be expressed by

Pik, js � Aij Bks;

i, j � 1, 2, . . . , dA; k, s � 1, 2, . . . , dB (1:2:10a)

where the respective dimensionalities dA and dB of A and B need not be the same and

the dimensionality of the direct product P equals dAdB. By de®nition, the product of

two similar direct products P � A
 B and P9 � A9
 B9 is given by

PP9 � AA9
 BB9

where the dimensionalities of A and A9 should be the same and so should those of B

and B9. Note the trace of a direct product A
 B equals the product of the traces of A

and B:
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tr A
 B � (tr A)(tr B)

Moreover, the transpose of a direct product is given by

(A
 B)� � A� 
 B�

The direct product P � A
 B can also be expressed by a super matrix (whose

elements are matrices) as follows:

A
 B �
A11 B A12 B . . . A1n B

A21 B A22 B . . . A2n B

: : . . . :
An1 B An2 B . . . Ann B

2664
3775 (1:2:10b)

where n � dA. For example, for the Pauli spin matrices,

ó x 
 óy � 0 óy

óy 0

� �

1.2.4 Direct sums of matrices

Let A and B be two square matrices, then their direct sum is de®ned by

S � A� B � A 0

0 B

� �
(1:2:11)

It is a generalization of a diagonal matrix: it is a super matrix whose diagonal elements

are square matrices while the remaining elements are null matrices. The respective

dimensionalities dA and dB of A and B need not be the same and the dimensionality of

the direct sum A� B equals d A � dB. For example, when dA � 2 and dB � 3 we have

A� B �

A11 A12 0 0 0

A21 A22 0 0 0

0 0 B11 B12 B13

0 0 B21 B22 B23

0 0 B31 B32 B33

266664
377775

Let S9 � A9� B9 be another direct sum that has a similar shape to that of S of

(1.2.11), then their matrix product is given by

SS9 � (A� B)(A9� B9) � AA9� BB9

Thus, e.g. for a polynomial of SX
cnS n �

X
n

cn(A� B)n �
X

n

cn An

 !
�

X
n

cn Bn

 !
More generally, let f (z) be a function of z de®ned by (1.2.7a), then

f (A� B) � f (A)� f (B) (1:2:12)

i.e. a function of a direct sum A� B equals the direct sum of the functions f (A) and

f (B). This means that a functional notation f may be regarded as a linear operator for

a direct sum. For example,

exp (A� B) � exp A� exp B (1:2:13a)
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so that (1.2.7d) can be rewritten as follows:

exp (d1 � d2) � exp d1 � exp d2 (1:2:13b)

The determinant and trace of a direct sum are given by

det (A� B) � det A det B

tr (A� B) � tr A� tr B (1:2:14)

1.3 Similarity transformations

Let us consider the effect of a change of the coordinate system in V (n) on the linear

transformation y � Ax given by (1.2.1). Let x9 � (x91, x92, . . . , x9n) and y9 �
(y91, y92, . . . , y9n) be the new coordinates of the two points originally de®ned by x and

y respectively. Then, there exists a non-singular matrix S such that

x � Sx9, y � Sy9 (1:3:1)

Substitution of these into y � Ax yields the new transformation

y9 � Sÿ1 ASx9

The matrix de®ned by

A9 � Sÿ1 AS (1:3:2)

is called the transform of the matrix A by the matrix S. Then, A is also the transform

of A9 by Sÿ1. The matrices which are transforms of one another are called equivalent

matrices, while the transformation itself is called the similarity transformation or

equivalent transformation by S.

The equivalent matrices have many properties in common. For example, their

determinants are equal and so are their traces:

det Sÿ1 AS � det Sÿ1 det A det S � det A (1:3:3)

tr Sÿ1 AS � tr ASSÿ1 � tr A (1:3:4)

We say that the determinant and trace of a matrix are invariant under a similarity

transformation. Another important property of the similarity transformation is that

(Sÿ1 AS)n � Sÿ1 AnS (1:3:5)

Suppose that f (A) is a function of A that can be expanded in powers of A. Then we

have

Sÿ1 f (A)S � f (Sÿ1 AS) (1:3:6)

1.3.1 Functions of a matrix (revisited)

Suppose that the matrix A is diagonalized by the similarity transformation

Sÿ1 AS � Ë � diag [ë1, ë2, . . . , ën]

Then we have, from (1.3.6) and (1.2.7c),

Sÿ1 f (A)S � f (Ë) � diag [ f (ë1), f (ë2), . . . , f (ën)]
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so that

f (A) � Sf (Ë)Sÿ1 (1:3:7)

This gives f (A) explicitly as an n 3 n matrix. Even if f (z) cannot be expanded in

powers of z, we may de®ne the function f (A) of the matrix A by (1.3.7), provided that

A can be diagonalized by a similarity transformation. According to this de®nition the

functions like
p

A and ln A become meaningful, even though they cannot be expanded

in powers of A. In the next section we shall discuss the condition for a matrix to be

diagonalized.

1.4 The characteristic equation of a matrix

Let A be an n 3 n matrix that can be diagonalized by a similarity transformation.

Then there exists a non-singular matrix T such that

T ÿ1 AT � Ë � diag [ë1, ë2, . . . , ën] (1:4:1a)

This can be written in the form

AT � TË or
X

j

AkjTji � Tkiëi (1:4:1b)

Let us regard the matrix T as a set of n column vectors and write the matrix elements

in the form T i
j � T ji and de®ne the ith column vector by

t (i) � (T i
1, T i

2, . . . , T i
n); i � 1, 2, . . . , n (1:4:2)

Then we arrive at the eigenvalue problem of the matrix A

At(i) � ëi t
(i); i � 1, 2, . . . , n (1:4:3)

where ëi is called an eigenvalue of A and t (i) is called the eigenvector of A belonging

to the eigenvalue ëi.

Conversely, if the eigenvalue problem (1.4.3) of A is solvable, i.e. if it provides a set

of n linearly independent eigenvectors of A, then one constructs a non-singular matrix

T by

T � [t(1), t(2), . . . , t (n)] (1:4:4)

which diagonalizes the matrix A by (1.4.1a).

The condition for the existence of the non-null eigenvector t(i) of A is that the

coef®cient matrix [ëi 1ÿ A] of (1.4.3) is singular for each ëi. This implies that ëi is a

root of the following nth-order polynomial equation of x:

D(n)(x) � det (x1ÿ A)

� x n � a1x nÿ1 � � � � � an

� (xÿ ë1)(xÿ ë2) . . . (xÿ ën) � 0 (1:4:5)

where det (x1ÿ A) is called the secular determinant of A. The coef®cients a1, a2,

. . . , an are determined by the elements of the matrix A. This equation is called the

characteristic (or secular) equation of the matrix A (even if A cannot be diagonalized),

and its (characteristic) roots provide the eigenvalues of A. For an n 3 n matrix A,
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there exist exactly n characteristic roots, some of which may be repeated. One sees

immediately that equivalent matrices satisfy the same characteristic equation, since

det (x1ÿ Sÿ1 AS) � det [Sÿ1(x1ÿ A)S] � det (x1ÿ A)

This means that all the characteristic roots and hence every coef®cient of the

characteristic equation are invariant under any similarity transformation. Note, in

particular, that two invariants of A that we know already are given by the coef®cients

as follows: using (1.4.1a) and (1.4.5),

tr A �
X

i

ë1 � ÿa1, det A �
Y

i

ëi � (ÿ1)nan

The eigenvectors t(i) and t( j) belonging to different eigenvalues ëi and ë j are linearly

independent. Suppose that t (i) and t( j) are linearly dependent, then there exist non-null

coef®cients such that

ci t
(i) � c j t

( j) � 0

By applying (Aÿ ë j1) to both sides of this equation from the left we obtain

ci(ëi ÿ ë j) � 0, which yields ci � 0 for ëi 6� ë j, and hence c j � 0 also. Thus, if all

eigenvalues of A are different then all eigenvectors of A are linearly independent. This

means that the matrix T de®ned by (1.4.4) with these eigenvectors is non-singular so

that A can be diagonalized by T. On the other hand, if some of the eigenvalues of A

are degenerate, the eigenvalue problem need not provide n linearly independent

eigenvectors to form a non-singular transformation matrix T .

Before establishing the necessary and suf®cient condition for a matrix to be

diagonalized by a similarity transformation we shall show the following fundamental

theorem for a square matrix.

Theorem 1.4.1. Every matrix satis®es its own characteristic equation.

This theorem follows from the very de®nition of the characteristic equation given

by (1.4.5): since x commutes with A, we can substitute x � A into (1.4.5) and obtain

D(n)(A) � det (Aÿ A) � 0, i.e.

D(n)(A) � An � a1 Anÿ1 � � � � � an1 � 0 (1:4:6)

1.4.1 Diagonalizability and projection operators

We shall now discuss the condition for a matrix to be diagonalized by a similarity

transformation. Suppose that the characteristic equation of a matrix A has the form

D(n)(x) �
Yr

i�1

(xÿ ëi)
ni � 0 (1:4:7)

where ë1, ë2, . . . , ër are all distinct roots with degeneracies n1, n2, . . . , nr respec-

tively. If the matrix A is diagonalized by a similarity transformation, i.e. Tÿ1 AT � Ë,

then the diagonal matrix Ë can be written in the form

n1 times n2 times nr times

j j j j j j
Ë � diag [ë1, . . . ë1, ë2, . . . ë2, . . . , ër, . . . ër] (1:4:8)
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Accordingly the diagonal matrix Ë satis®es the following r th-order polynomial

equation which has no multiple root:

p[r](x) �
Yr

i�1

(xÿ ëi) � 0 (1:4:9)

and hence the matrix A also satis®es p[r](A) � 0.

The polynomial equation of the least order satis®ed by the matrix A is called the

reduced characteristic equation of A. The following theorem holds (Littlewood 1950).

Theorem 1.4.2. The condition for a matrix to be diagonalized by a similarity trans-

formation is that the reduced characteristic equation has no multiple root.

We have already shown through (1.4.9) that the condition is necessary. Instead of

giving the suf®ciency proof directly, it is more pro®table to introduce the ` projection

operator' method which provides a general method of constructing a transformation

matrix T (which diagonalizes A) based on the reduced characteristic equation (1.4.9)

which has no multiple root. For this purpose we de®ne a set of matrix operators by

Pí(A) � (1=÷í)
Yr

ó 6�í
(Aÿ ëó 1); ÷í �

Yr

ó 6�í
(ëí ÿ ëó ) 6� 0 (1:4:10)

where í � 1, 2, . . . , r. These are normalized such that Pí(ëì1) � äíì. The operators

satisfy the eigenvalue problem

APí � ëíPí; í � 1, 2, . . . , r (1:4:11)

because (Aÿ ëí1)Pí is proportional to p[r](A), which equals zero from (1.4.9). Each

Pí has ní linearly independent column vectors: this is seen most easily from Jordan's

canonical form3 of Pí, which is a triangular matrix whose diagonal elements are all

zero except for ní unit diagonal elements. Thus we obtain ní linearly independent

eigenvectors belonging to the eigenvalue ëí from the column vectors of Pí. Therefore,

we can construct a non-singular transformation matrix T from a set of n

(� n1 � n2 � � � � � nr) linearly independent column vectors of P1, P2, . . . , Pr. This

provides the suf®ciency proof.

Further algebraic properties of Pí are as follows. The set fPíg satis®es the

orthogonality relations

PíPì � äíìPì; í, ì � 1, 2, . . . , r (1:4:12a)

and also the completeness relation X
í

Pí � 1 (1:4:12b)

These are seen most easily from the diagonalized form of Pí

3 Any square matrix M can be reduced to a triangular form jjMijjj, where Mij � 0 for i . j by a similarity
transformation. It is called Jordan's canonical form, where the diagonal elements are the characteristic
roots of M (Murnaghan 1938).

1.4 Characteristic equation of a matrix 11



T ÿ1 PíT � (1=÷í)
Yr

ó 6�í
(Ëÿ ëó 1)

� diag [0, 0, . . . 0, 1, 1, . . . 1, 0, 0, . . . , 0] (1:4:13)

The operator Pí is called a projection operator: for since it satis®es P2
í � Pí, the

projection of a vector v with Pí de®ned by Pív remains the same for further

projections, i.e. Pí(Pív) � Pív.

The projection operator method of determining the eigenvectors described above is

effective if the dimension of the matrix is not very high (see Section 1.6 exercises).

There exists, however, a more effective general method for the matrix diagonalization

introduced by Kim (1979a, b) which will be discussed later in Section 2.2.

1.5 Unitary transformations and normal matrices

A wide variety of matrices which appear in physics can be diagonalized by unitary

transformations, i.e. similarity transformations with unitary matrices. Suppose that a

transformation U leaves invariant the Hermitian scalar product of two vectors x and y

in V (n), then using (1.2.9) we have

hU x, U yi � hx, U yU yi � hx, yi (1:5:1)

so that the matrix U satis®es

U yU � 1

Such a matrix U is called a unitary matrix. It is non-singular, for jdet U j2 � 1, and the

inverse is given by Uÿ1 � U y so that

U yU � UU y � 1 (1:5:2)

which is written explicitly, in terms of the matrix elements,X
s

U�isU js �
X

s

U�siUsj � äij (1:5:3)

The basic theorem on matrix diagonalization through a unitary transformation may be

stated as follows.

Theorem 1.5.1. The condition for a matrix M to be diagonalized by a unitary

transformation is that M is normal, i.e. it satis®es

M yM � MM y (1:5:4)

where My is the Hermitian conjugate of M .

For simplicity, we shall give here the proof of the theorem for the necessary

condition only and refer the proof for the suf®cient condition to the existing literature;

e.g. Murnaghan (1938). Suppose that M is diagonalized by a unitary transformation,

then we have

U yMU � Ë (1:5:5)

where Ë is a diagonal matrix. Then, by substituting this into the commutation relation

ní times

j j
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ËËy � ËyË (which holds since any two diagonal matrices commute), we arrive at

(1.5.4).

The importance of this theorem is due to the fact that most of the matrices which

appear in physics are normal. For example, a Hermitian matrix H is normal: for since

H y � H

HyH � HH � HH y (1:5:6a)

and a unitary matrix is normal; for by de®nition

U yU � UU y � 1 (1:5:6b)

The unitary transformation greatly simpli®es the matrix diagonalization discussed

in Section 1.4, because it eliminates the necessity of calculating the inverse transfor-

mation matrix, for Uÿ1 � U y. Let us express U in terms of the column vectors in the

form, analogous to (1.4.4),

U � [u(1), u(2), . . . , u(n)] (1:5:7)

Then the unitary transformation (1.5.5) is reduced to the eigenvalue problem, as in

Section 1.4, through MU � UË or through its adjoint M yU � UË�

M u(i) � ëiu
(i) or M yu(i) � ë�i u(i); i � 1, 2, . . . , n (1:5:8)

where the eigenvectors satisfy the orthogonality relations from the unitary condition

hu(i), u( j)i � äij (1:5:9)

Conversely, starting from the eigenvalue problem (1.5.8) of the matrix M one can

construct the unitary matrix U (which diagonalizes M) by (1.5.7). Note that two

eigenvectors belonging to different eigenvalues are orthogonal, for since

ëihu( j), u(i)i � hu( j), M u(i)i � hM yu( j), u(i)i � ë jhu( j), u(i)i
we have hu( j), u(i)i � 0 if ëi 6� ë j. This implies that when we solve the eigenvalue

problem (1.5.8) for a non-degenerate set of the eigenvalues, it is only necessary to

normalize the eigenvectors to obtain the correct column vectors of U . In the case of a

degenerate eigenvalue, however, one has to orthonormalize the corresponding eigen-

vectors according to (1.5.9).

1.5.1 Examples of normal matrices

In addition to Hermitian matrices and unitary matrices we have the following examples

of the normal matrices:

(1) the anti-Hermitian matrix K: Ky � ÿK

(2) the real orthogonal matrix R: R�R � RR� � 1 and R� � R (it is a special case of

the unitary matrix since Ry � R� � Rÿ1)

(3) the real symmetric matrix S: S� � S and S� � S (it is a special case of the

Hermitian matrix since Sy � S) and

(4) the real antisymmetric matrix A: A� � ÿA and A� � A (it is a special case of the

anti-Hermitian matrix, for Ay � A� � ÿA).
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Remark 1. The eigenvalues of a Hermitian matrix are all real whereas those of a

unitary matrix are all unimodular: for from (1.5.5) and its adjoint

U yMU � Ë, U yM yU � Ë�

it follows that if M y � M then Ë � Ë� and if M y � Mÿ1 then Ëÿ1 � Ë� i.e.

ËË� � 1.

Remark 2. A real symmetric matrix S can be diagonalized by a real orthogonal

matrix and so is a unitary symmetric matrix N . This is because their eigenvectors can

be chosen to be real. To see this let Mv � ëv, where v is an eigenvector belonging to

an eigenvalue ë of a matrix M , then by the complex conjugation M�v� � ë�v� we

have, for M � S or N,

Mv� � ëv�

because, on account of Remark 1, M and ë are real for M � S while M� � Mÿ1 and

ë� � ëÿ1 for M � N. Thus the eigenvector v can be replaced by its real and/or

imaginary parts. These special cases are frequently encountered in the theory of matrix

diagonalization in physics.

1.6 Exercises

1. The two-dimensional planar rotation through an angle è is described by a 2 3 2

matrix

R(2)(è) � cos è ÿsin è
sin è cos è

� �
� cos (è)1ÿ ióy sin è (1:6:1a)

with the Pauli spin matrix ó y de®ned by (1.2.5a). Show the following.

(1a) The characteristic equation is given by

x2 ÿ 2 cos (è) x� 1 � 0 (1:6:1b)

(1b) The eigenvalues are eiè and eÿiè.

(1c) By direct matrix multiplication verify that R(2)(è) satis®es (1.6.1b), cf.

Theorem 1.4.1.

(1d) From (1.4.10), the projection operators P1 and P2 of R(2) corresponding to

the eigenvalues ë1 � eÿiè and ë2 � eiè, respectively, are given by

P1 � 1

2

1 ÿi

i 1

� �
, P2 � 1

2

1 i

ÿi 1

� �
(1:6:1c)

(1e) The transformation matrix T which diagonalizes R(2) is given by

T � 1p
2

1 i

i 1

� �
� 1p

2
(1� ió x) (1:6:1d)

of which the ®rst column vector is from P1 while the second column vector

is from P2. Note that T is unitary.

(1f) The diagonalized form of R(2) is given, using (1.2.7e) or (1.2.13b), by

T yR(2)T � eÿiè 0

0 eiè

� �
� eÿièó z (1:6:1e)
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2. Let H be a Hermitian matrix, then K � iH is an anti-Hermitian matrix, while

U � exp (iH) is a unitary matrix. (It will be shown in Section 4.1 that any unitary

matrix of a ®nite order can be always expressed in this exponential form.)

3. Let A be an antisymmetric matrix, then R � exp A is an orthogonal matrix. (It will

be shown that any real orthogonal matrix of a ®nite order can be expressed in this

exponential form. See Section 4.2.)

4. Show that the planar rotation R(2) de®ned by (1.6.1a) can be written in an

exponential form as follows:

R(2) � eW; W � 0 ÿè
è 0

� �
(1:6:2)

Hint. Transform (1.6.1e) back to R(2), using Tó zT
y � óy.

5. The vector product [s 3 x] of two vectors s and x in three dimensions is de®ned by

the components

s2x3 ÿ s3x2, s3x1 ÿ s1x3, s1x2 ÿ s2x1

Show that it can be written in the form

[s 3 x] � ùx (1:6:3a)

where ù is a 3 3 3 antisymmetric matrix de®ned by

ù � ù(s) �
0 ÿs3 s2

s3 0 ÿs1

ÿs2 s1 0

24 35 (1:6:3b)

6. A three-dimensional rotation about a unit vector s through an angle è is given by

R(3)(è) � eèù, è � ès (1:6:4a)

where ù � ù(s) has been de®ned by (1.6.3b). The beauty of this expression is that

it is explicitly given by the rotation angle è and the unit vector s (called the axis-

vector, see Section 4.4).

Solution. An in®nitesimal displacement dx of a vector x 2 V (3) caused by a

counterclockwise rotation about s (viewed from the �s direction) through an

in®nitesimal angle dè is given by

dx � [s 3 x] dè � ùx dè (1:6:4b)

using the identity (1.6.3a) and the geometrical meaning of the vector product.

Integration of the above yields

x � eèùx0 � R(3)(è)x0 (1:6:4c)

where x0 is the initial vector. The antisymmetric matrix ù is called the in®nitesi-

mal rotation about the axis vector s (see Chapter 4).

7. Diagonalize the rotation matrix R(3)(è) de®ned by (1.6.4a) by means of the

projection operator method.

Solution. Since R(3)(è) is a function of the matrix ù given by (1.6.4a), it suf®ces

to diagonalize the in®nitesimal rotation ù. It will be diagonalized by a unitary

transformation since ù is a normal matrix. From the characteristic equation of ù,
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ù3 � ù � ù(ùÿ i)(ù� i) � 0 (1:6:5)

the eigenvalues of ù are 0, i and ÿi. Let the corresponding eigenvectors be u1, u2

and u3, respectively. Then the eigenvector u1 belonging to zero eigenvalue is

obvious: it is given by s since ùs � s 3 s � 0 from (1.6.3a). The eigenvector u2

belonging to the eigenvalue i is given by a non-null column vector of the

projection operator P2 de®ned by

P2 � ÿù(ù� i)=2 (1:6:6)

following (1.4.10). Substitution of (1.6.3b) into this yields

P2 � ÿ 1

2

s2
1 ÿ 1 s1s2 ÿ is3 s1s3 � is2

s2s1 � is3 s2
2 ÿ 1 s2s3 ÿ is1

s3s1 ÿ is2 s3s2 � is1 s2
3 ÿ 1

24 35
which shows that either one of the column vectors may provide the required

eigenvector u2, because any one of them is not null. We take the second column

for u2

u2 � (s1s2 ÿ is3, s2
2 ÿ 1, s2s3 � is1)=[2(1ÿ s2

2)]1=2

with proper normalization. The eigenvector u3 belonging to ÿi is simply given by

u�2 (the complex conjuguate of u2). These three eigenvectors, s, u2 and u�2 , are

orthonormal under the Hermitian scalar product so that from (1.5.7) a unitary

matrix U de®ned by

U � [s, u2, u�2 ] (1:6:7)

diagonalizes ù as well as R(è) � eèù as follows:

U yùU � diag [0, i, ÿi]

U yR(è)U � diag [1, eiè, eÿiè] (1:6:8)
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2

The theory of matrix transformations

We shall introduce a general theory of matrix transformation that connects two

matrices A and B of order n 3 n satisfying the same reduced characteristic equation of

degree r: p(r)(x) � 0, r < n (Kim 1979a,b). According to this theorem, an intertwin-

ing matrix TAB that connects two matrices A and B via ATAB � BTAB is explicitly

given by a polynomial of degree r ÿ 1 in A and B. In the most important special case

in which the reduced characteristic equation of A has no multiple root, this formalism

explicitly provides a transformation matrix that diagonalizes the matrix A. It also

contains the method of the idempotent matrix (or the projection operator method) for

constructing the eigenfunctions of A as a special case. We shall ®rst discuss the

transformation of involutional matrices that satisfy x2 � 1, for its simplicity and for its

wide application. In a ®rst reading only the ®rst section, Section 2.1, may be

recommended.

2.1 Involutional transformations

An involutional matrix is de®ned as a matrix that satis®es a simple quadratic equation

x2 � constant 3 1 (2:1:1)

where 1 is the unit matrix in an appropriate dimension.

The 2 3 2 general solution of this equation is given by a traceless matrix, excluding

the trivial constant matrices,

M � f g

h ÿ f

� �
; M2 � ( f 2 � gh)1 (2:1:2a)

where f , g and h are constants, which are complex in general. The determinant of M

is given by

det M � ÿ( f 2 � gh) (2:1:2b)

Accordingly, if M is unit involutional, i.e. M2 � 1, then it is improper, i.e.

det M � ÿ1. The well-known examples are the Pauli spin matrices

ó1 � 0 1

1 0

� �
, ó2 � 0 ÿi

i 0

� �
, ó3 � 1 0

0 ÿ1

� �
(2:1:3)

Note that they are unit involutional and hence improper.

Further examples are the Dirac ã-matrices and also the Dirac Hamiltonian (Dirac

1947) for the free electron in the momentum representation. The involutional matrix in

any arbitrary dimension has been obtained by Kim (1969) via the matrix representa-

tions of the general homogeneous linear transformations in two dimensions.

It has been recognized that involutional matrices have deep roots in various



problems of mathematical physics. The symmetry operations like inversion, time

reversal and charge conjugation are all involutional satisfying (2.1.1). A convenient

feature of an involutional matrix is that, if an involutional matrix is normalized by

x2 � 1 then its inverse is the same as the original matrix. In an important special case

in which an involutional matrix is Hermitian, it is unitary as well. Such a matrix may

be called an IUH (involutional, unitary and Hermitian) matrix, whereby any two of the

three properties guarantee the third. The well-known examples are the Pauli spin

matrices and Dirac's ã-matrices. The purpose of the present section is to show the

effectiveness of an involutional transformation that converts an involutional matrix A

into another involutional matrix satisfying the same quadratic equation (2.1.1). The

following lemma holds:

Lemma 2.1.1. Let A and B be two involutional matrices of a given order satisfying

A2 � B2 � 1. If their anticommutator is a c-number (6� ÿ2), i.e.

AB� BA � 2c1, c 6� ÿ1

then there exists an involutional transformation that interchanges A and B via

YAY � B or A � YBY ; Y 2 � 1 (2:1:4)

where

Y � (A� B)=(2� 2c)1=2 (2:1:5)

The proof is elementary. From A2 � B2 it follows that the sum A� B is an

intertwining matrix of A and B:

A(A� B) � (A� B)B

Moreover, the matrix A� B is involutional satisfying

(A� B)2 � A2 � AB� BA� B2 � (2� 2c)1

Thus, Y de®ned by (2.1.5) interchanges A and B via (2.1.4).

Corollary 2.1.1. The most general transformation V which connects the involutional

matrices A and B of the lemma via a similarity transformation Vÿ1 AV � B is given

by

V � FAY � YFB (2:1:6)

where FA and FB are the same function of A and B, respectively.

In the special case in which FA � A and FB � B we have, from (2.1.6) and (2.1.5),

V � (1� AB)=(2� 2c)1=2, Vÿ1 � (1� BA)=(2� 2c)1=2, c 6� ÿ1 (2:1:7)
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Remark. If both A and B are IUH matrices, then so is Y ; however, V is unitary but

not involutional in general, for V 2 � AB. In two dimensions, the involutional matrices

A, B and Y are all improper whereas V is proper, being a product of two improper

matrices.

Example 1. The Pauli spin matrices (ó1, ó2 and ó3) anticommute with each other so

that for the lemma the involutional transformation which converts ó1 into ó2 is given

by

Yó1Y � ó2; Y � (ó1 � ó2)=
p

2 (2:1:8a)

while the transformation corresponding to (2.1.7) is given by

V yó1V � ó2; V � (1� ió3)=
p

2 (2:1:8b)

using ó1ó2 � ió3. Since the Pauli spin matrices are IUH matrices, Y is an IUH matrix

and V is unitary. Note also that Y is an improper matrix that transforms ó3 into ÿó3,

whereas V is a proper matrix that leaves ó3 invariant. In fact, V � exp [i(ð=3)ó3],

which describes ÿ908 rotation of the spin vector about the z-axis (see Chapter 10 for

the spinor transformation).

Example 2. Lemma 2.1.1 holds in general for two dimensions, because the anti-

commutator of two involutional matrices in two dimensions is always a c-number. In

fact, let M and M9 be two involutional matrices de®ned by

M � f g

h ÿ f

� �
, M9 � f 9 g9

h9 ÿ f 9

� �
(2:1:9)

then their anticommutator satis®es

MM 9� M9M � [M , M9]� � (2 ff 9� gh9� hg9)1 � 2c1

If M and M9 are normalized by f 2 � gh � f 92 � g9h9 � 1, then they are connected

by

YMY � M9; Y � (M � M9)=(2� 2c)1=2

Vÿ1 MV � M9; V � (1� MM 9)=(2� 2c)1=2

where c 6� ÿ1.

Example 3. Bogoliubov transformation. It describes the diagonalization of an involu-

tional matrix de®ned by

M � s t

ÿt ÿs

� �
; M2 � (s2 ÿ t2)1 (2:1:10)

which is a special case of (2.1.9).

Let us assume that s and t are real and s2 ÿ t2 . 0, then the eigenvalues of M are

given by �å where å � (s2 ÿ t2)1=2. From the lemma, the involutional transformation

which diagonalizes M is given by

YMY � å 0

0 ÿå
� �

; Y � N
s� å t

ÿt ÿsÿ å

� �
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where N � (2ås� 2å2)1=2 with s . 0. This transformation is called the Bogoliubov

transformation, because it occurs for the diagonalization of the Bogoliubov Hamilto-

nian which describes the phonon ®eld in a super-¯uid system (Kim 1979a).

2.2 Application to the Dirac theory of the electron

2.2.1 The Dirac ã-matrices

Let fã1, ã2, . . . , ãdg be a set of matrices that satis®es the anticommutation relations

[ãí, ãì]� � ãíãì � ãìãí � 2äíì;

í, ì � 1, 2, . . . , d
(2:2:1)

where äíì are Kronecker's delta. Such a set of matrices is called a set of Dirac's ã-

matrices. It is said to form the Clifford algebra of the order d. The effectiveness of

Lemma 2.1.1 in describing the transformations of the ã-matrices is obvious from the

fact that any linear combination of the ã-matrices is involutional; in fact, let ãx be a

linear form of a vector x � fx1, x2, . . . , xdg in V (d) de®ned by

ãx � x1ã1 � x2ã2 � � � � � xdãd (2:2:2a)

then it satis®es

(ãx)2 � x2
1 � x2

2 � � � � � x2
d � x2 (2:2:2b)

That is, a set of ã-matrices turns the scalar square x2 of a vector x 2 V (d) into the

square of the linear form ãx of x. In order to apply the ã-matrices to describe the Dirac

theory of the spinning electron we shall ®rst give some examples of the ã-matrices.

2.2.1.1 The Clifford algebra of the order four

We introduce two commuting sets of 4 3 4 matrices by the direct products of the Pauli

spin matrices with the unit matrix 1 in two dimensions as follows:

(i) Ói � 1 3 ó i � ó i 0

0 ó i

� �
; i � 1, 2, 3 (2.2.3a)

(ii) ri � ó i 3 1; i � 1, 2, 3 (2.2.3b)

where

r1 � 0 1

1 0

� �
, r2 � 0 ÿi1

i1 0

� �
, r3 � 1 0

0 ÿ1

� �
Since by de®nition these two sets commute with each other and since each set provides

an anticommuting set of 4 3 4 matrices, a set of the Clifford algebra of the order four

fã1, ã2, ã3, ã4g may be formed by their products as follows:

ãi � r2Ói � ó2 3 ó i � 0 ÿió i

ió i 0

� �
; i � 1, 2, 3

ã4 � r3 (2:2:4)

This set is called the standard representation of the ã-matrices for d � 4. Another set

of four matrices (á1, á2, á3, â) that describes the Dirac Hamiltonian is de®ned by
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ái � r1Ói � ó1 3 ó i � 0 ó i

ó i 0

� �
; i � 1, 2, 3

â � r3 (2:2:5)

This representation is, however, equivalent to the standard representation, because ó1

and ó2 are equivalent under a similarity transformation which leaves ó3 invariant as

was shown by (2.1.8b); in fact, we have T yáiT � ãi and T yâT � ã4 under T de®ned

by

T � [(1� ió3)=
p

2] 3 1 (2:2:6)

2.2.1.2 The Clifford algebra for d � 5

From (ã1, ã2, ã3, ã4) introduced in (2.2.4) we introduce an additional element ã5 by

ã5 � ã1ã2ã3ã4 � ÿr1 (2:2:7)

Then the set fã1, ã2, ã3, ã4, ã5g provides the Clifford algebra for d � 5.

Remark. In general, from a 2n 3 2n matrix representation for the Clifford algebra of

d � 2n, one can form the Clifford algebra of the order d � 1 by incorporating an

additional element ãd�1 de®ned by

ã1ã2 . . . ãd � éãd�1 (2:2:8)

where é equals 1 or i depending on whether n is even or odd. By de®nition, ãd�1

anticommutes with every member of the set fã1, ã2, . . . , ãdg and (ãd�1)2 � 1 so that

the set fã1, ã2, . . . , ãd , ãd�1g forms the Clifford algebra (Brauer and Weyl 1935,

Kim 1980a). In addition to the example fã1, ã2, ã3, ã4, ã5g considered above, there is

another trivial example: the Pauli spin matrices ó1 and ó2 form the Clifford algebra of

d � 2, whereas ó1, ó2 and ó3 satisfy ó2ó2 � ió3 and form the Clifford algebra of the

order 2� 1 � 3.

2.2.2 The Dirac plane waves

The Dirac Hamiltonian (Dirac 1947) for a free particle in the momentum representa-

tion is given, in terms of the four matrices (á1, á2, á3, â), by

H � á . p� mâ; c � " � 1 (2:2:9a)

where p � ( p1, p2, p3) is the momentum and m is the rest mass of the particle, and

we have assumed that the velocity of light c � 1 and Planck's constant " � 1. In view

of (2.2.2), the Hamiltonian H is involutional satisfying

H2 � E2; E � �(m2 � p2)1=2 (2:2:9b)

where p � jpj. The energy E can be positive or negative but its absolute value jEj is

larger than the rest mass m. From (2.1.4), the Hamiltonian H is diagonalized via an

involutional transformation

YE HYE � âE; Y 2
E � 1 (2:2:10)

where

YE � YE( p) � NE(H � âE) � NE[á . p� (E � m)â]
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with the normalization constant NE

Nÿ1
E � E(2� 2m=E)1=2

If we rewrite (2.2.10) in the form

HYE � YEâE

we see that the four column vectors of YE expressed by

YE � [u1, u2, u3, u4] (2:2:11a)

provide the eigenvectors of H, where the íth eigenvector uí belongs to the eigenvalue

åíE such that

HUí � åíEuí; í � 1, 2, 3, 4 (2:2:11b)

with

åí � 1 for í � 1, 2

ÿ1 for í � 3, 4

�
Since the Hamiltonian is Hermitian, YE is an IUH matrix. From the unitary property of

YE, it follows that the set of four column vectors of YE provides a complete set of

orthonormalized eigenvectors of H for the given momentum p of the particle.

Exercise 1. Write down the explicit form of the involutional matrix YE and obtain

the four eigenvectors [u1, u2, u3, u4] of H from the column vectors of YE:

YE � NE

E � m 0 pz px ÿ i py

0 E � m px � i py ÿ pz

pz px ÿ i py ÿ(E � m) 0

px � i py ÿ pz 0 ÿ(E � m)

2664
3775 (2:2:12)

So far, we have considered the involutional transformation which diagonalizes the

Hamiltonian H. According to Lemma 2.1.1, we can transform H into various other

forms. An interesting special case is to transform H into a form Eáp (áp � á . p= p)

that represents a massless particle with a momentum equal to E p= p. In fact, from

Lemma 2.1.1, we have

Yá HYá � Eá p; á2
p � 1 (2:2:13)

where

Yá � (H � Eá p)=[2E(E � p)]1=2

which is again an IUH matrix.

Exercise 2. Transform the Dirac Hamiltonian into the Weyl Hamiltonian of a mass-

less particle de®ned by, with Ó � (Ó1, Ó2, Ó3) of (2.2.3a),

HW � Er3Óp; Óp � Ó . p̂; p̂ � p= p (2:2:14)

where Óp is called the helicity operator.
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Solution. Since áp � r1Óp and since rr commutes with Ó, we arrive at, by a further

transformation of (2.2.13) which brings r1 to r3,

T
y
W HTW � HW; TW � Yá(r1 � r3)=

p
2 (2:2:15)

where TW is a unitary matrix.

2.2.3 The symmetric Dirac plane waves

The Dirac plane waves described by fuíg of (2.2.11) are degenerate since u1 and u2

belong to the energy E while u3 and u4 belong to the energy ÿE. These degeneracies

may be removed by introducing the simultaneous eigenvectors of the Hamiltonian H

and the helicity operator Óp de®ned in (2.2.14), which obviously commutes with the

Dirac Hamiltonian because Óp commutes with fr1, r2, r3g and hence with

áp � r1Óp.

From Lemma 2.1.1, the involutional transformation which diagonalizes the helicity

operator Óp is given by

YsÓpYs � sÓ3 � diag [s, ÿs, s, ÿs] (2:2:16a)

where s (� �1) is inserted for convenience and

Ys � Ys( p̂) � Ns(Óp � sÓ3); Ns � (2� 2s p̂3)ÿ1=2 (2:2:16b)

By de®nition, Ys( p̂) satis®es the following symmetry property:

Ys( p̂) � ÿYÿs(ÿ p̂)

Then a unitary transformation U that diagonalizes H and Óp simultaneously via

U yHU � âE, U yÓpU � sÓ3 (2:2:17a)

is given by the product

U � YEYs (2:2:17b)

because Ys commutes with â � r3 and YE commutes with Óp. The unitary matrix U

de®ned by (2.2.17b) is highly symmetric. To see this we rewrite YE in a form similar

to that of the Hamiltonian itself,

YE � YE( p) � p9áp � m9â, áp � á . p̂ (2:2:18)

where

p9(E) � sgn (E)
1

2
1ÿ m

E

� �� �1=2

, m9(E) � 1

2
1� m

E

� �� �1=2

These two quantities are connected by

p9(ÿE) � ÿsgn (E) m9(E)

Now, we write U in the form

U � YsYsYEYs � Ys(sp9á3 � m9â)

through calculation of YsYEYs. Then U takes the desired symmetric form:
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U � Ns

m9
p̂3 � s p̂ÿ

p̂� ÿ p̂3 ÿ s

� �
sp9

p̂3 � s ÿ p̂ÿ
p̂� p̂3 � s

� �
sp9

p̂3 � s ÿ p̂ÿ
p̂� p̂3 � s

� �
ÿm9

p̂3 � s p̂ÿ
p̂� ÿ p̂3 ÿ s

� �
2664

3775 (2:2:19)

where p̂� � p̂1 � i p̂2, p̂ÿ � p̂1 ÿ i p̂2 and Ns has been de®ned by (2.2.16b). For

further properties of U � YEYs under the parity P � ÿã4, time reversal T � ÿiÓ2 K

and the charge conjugation C � ã2 K, where K is the complex conjugation, see Kim

(1980b). An analogous treatment can be given for the Coulomb Dirac wave (Kim

1980c) and for the representations of the Lorentz group (Kim 1980a).

2.3 Intertwining matrices

Let A be a matrix of order n 3 n that satis®es a polynomial equation of degree r

(< n):

P(r)(x) � x r � c1x rÿ1 � � � � � cr � 0 (2:3:1)

where c1, c2, . . . , cr are constant coef®cients. In terms of these coef®cients we de®ne

a kth degree polynomial of x by

x(k) � x k � c1x kÿ1 � � � � � ck ; k � 0, 1, 2, . . . , r (2:3:2a)

with c0 � 1, then the set satis®es the following recursion formulae:

x(k�1) � xx(k) � ck�1; k � 0, 1, . . . , r ÿ 1 (2:3:2b)

with x(0) � 1. According to this notation, we have x(r) � p(r)(x) � 0 so that

A(r) � p(r)(A) � 0. Let M(n 3 n, p(r)(x)) be a set of n 3 n matrices, every member

of which satis®es P(r)(x) � 0, then the matrix A belongs to the set, i.e.

A 2 M(n 3 n, p(r)(x)) (2:3:3)

When P(r)(x) � 0 is the equation of least degree satis®ed by the matrix A, it is

called the reduced characteristic equation of A. To avoid confusion, the characteristic

polynomial of A de®ned by the secular determinant is denoted by

D(n)(x) � det [x1ÿ A] (2:3:4)

where 1 is the n 3 n unit matrix. The multiplicity of a root ëí of this equation is called

the degeneracy of the eigenvalue ëí of A. With these preparations we state the basic

theorem of matrix transformations introduced by Kim (1979b) as follows.

Theorem 2.3.1. Let A, B 2 M(n 3 n, p(r)(x)) with p(r)(x) of (2.3.1). Then A and B

are connected via

ATAB � TAB B (2:3:5)

with TAB given by

TAB �
Xrÿ1

k�0

Arÿ1ÿk B(k) �
Xrÿ1

k�0

A(k) Brÿ1ÿk (2:3:6)
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where A(k) and B(k) are the kth-degree polynomials de®ned by (2.3.2a). If TAB is non-

singular, then the matrices A and B are equivalent.

Proof. The ®rst equality in (2.3.6) de®nes TAB. To show the second equality we write

out both sides explicitly, using (2.3.2a):

TAB �
Xrÿ1

k�0

Xk

h�0

ch Arÿ1ÿk Bkÿh �
Xrÿ1

s�0

Xs

h�0

ch Asÿh Brÿ1ÿs

where the dummy summation index k of the right-hand side of (2.3.6) is replaced by s

for convenience. Then we change the orders of summations for both sides and obtain a

new equality to be proven:Xrÿ1

h�0

Xrÿ1

k�h

ch Arÿ1ÿk Bkÿh �
Xrÿ1

h�0

Xrÿ1

s�h

ch Asÿh Brÿ1ÿs

which is true, however, simply because the two sides are related by the transformation

of the summation indices via r ÿ 1ÿ k � sÿ h. Next, to show (2.3.5) we use the

recursion formulae (2.3.2b) and the second expression of TAB given in (2.3.6) to obtain

ATAB �
Xrÿ1

k�0

AA(k) Brÿ1ÿk

�
Xrÿ1

k�0

(A(k�1) ÿ ck�1)Brÿ1ÿk

� TAB B� A(r) ÿ B(r)

� TAB B

where we have used A(r) � B(r) and A(0) � B(0) � c0 � 1. Q.E.D.

Note that the above theorem can be generalized by replacing the assumption

A(r) � B(r) � 0 with A(r) � B(r), because only the latter condition is used for the

proof. This generalization may be useful but will not be considered here any further.

It is obvious that, if TAB is non-singular, then the matrices A and B are equivalent.

However, the equivalence of A and B does not guarantee that TAB is non-singular. We

may call TAB the characteristic intertwining matrix of A to B even if TAB is singular. In

general, TAB is different from its reverse TBA unless A and B commute or r � 2: for

r � 2,

TAB � TBA � A� Bÿ (ë1 � ë2)1 (2:3:7a)

where ë1 and ë2 are the characteristic roots of A and also of B. This simple special

case has many important applications; e.g. the idempotent matrices and involutional

matrices satisfying x2 � x and x2 � 1, respectively, belong to this special case.

Another important special case occurs when A and B are general involutional matrices

satisfying x r � 1. In this case, we have x(k) � x k for 0 < k < r ÿ 1, so that, from

(2.3.6),

TAB �
Xrÿ1

k�0

Arÿ1ÿk Bk � Arÿ1 � Arÿ2 B � � � � � Brÿ1 (2:3:7b)
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A more general intertwining matrix VAB that connects A and B via AVAB � VABB is

given by

VAB � FATAB � TABFB (2:3:8a)

where FA and FB are the same function of A and B respectively. This is analogous to

(2.1.6). Thus, for example, for r � 2, we have

VAB � ATAB � ABÿ ë1ë21 (2:3:8b)

which is a slight generalization of (2.1.7).

For later consideration we shall describe the property of the product TABTBA. From

(2.3.5), it follows that the product commutes with A and B, because

ATABTBA � TABBTBA � TABTBAA

and analogously for B. Moreover, if both A and B are Hermitian, then we have

T
y
AB � TBA for the Hermitian conjugate so that TABTBA � TABT

y
AB. Accordingly the

product is also Hermitian and positive semide®nite, i.e. the eigenvalues of TABTBA are

positive or zero.

As has been stated before, if the characteristic transformation matrix TAB is non-

singular, two matrices A and B are equivalent. It is most desirable to give some simple

criteria for the existence of a non-singular characteristic transformation matrix TAB.

We shall establish such a criterion for the most important special case in which B is a

diagonal matrix equivalent to A. However, even if TAB is singular, Theorem 2.3.1 can

provide very signi®cant consequences in some cases. A typical example is the case in

which TAB becomes an idempotent matrix: this occurs when B is a constant matrix

equal to ëí1, where ëí is an eigenvalue of B. We shall ®rst discuss this special case.

2.3.1 Idempotent matrices

Let A, B 2 M(n 3 n, p(r)(x)) and ë1, ë2, . . . , ër be the roots of the polynomial

equation p(r)(x) � 0, some of which could be equal. Let ëí be one of the roots and set

B � ëí1, then from (2.3.6) we obtain

TAB �
Xrÿ1

k�0

Arÿ1ÿkë(k)
í �

Xrÿ1

k�0

A(k)ërÿ1ÿk
í ; B � ëí1 (2:3:9a)

where TAB � TBA with B � ëí1, because a constant matrix commutes with any matrix.

If we compare this with the following identity:

Yr

ó 6�í
(xÿ ëó ) � p(r)(x)=(xÿ ëí) �

Xrÿ1

k�0

x rÿ1ÿkë(k)
í (2:3:9b)

which can be shown by dividing the polynomial p(r)(x) by (xÿ ëí), then we obtain,

using the recursion formulae (2.3.2b),

TA,ëí1 �
Yr

ó 6�í
(Aÿ ëó 1) � Tëí1,A (2:3:9c)

If we assume further that the reduced characteristic equation of A has no multiple root,
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then TAB with B � ëí1 is proportional to the idempotent matrix Pí belonging to the

eigenvalue ëí of A de®ned by (1.4.10), i.e.

T A,ëí1 � ÷íPí; ÷í �
Yr

ó 6�í
(ëí ÿ ëó ); í � 1, 2, . . . , r (2:3:10a)

where the matrices Pí satisfy the orthogonality and completeness relations

PíPì � äíìPì,
Xr

í�1

Pí � 1 (2:3:10b)

given by (1.4.12a) and (1.4.12b). These relations will be used to prove the existence of

a non-singular characteristic transformation matrix TAË that transforms A into a

diagonal matrix Ë equivalent to A.

2.4 Matrix diagonalizations

We shall now develop a general theory of matrix diagonalizations based on Theorem

2.3.1. The condition for a matrix A to be diagonalized by a similarity transformation is

that the reduced characteristic equation of A has no multiple root. This condition may

be expressed by

A 2 M(n 3 n, p[r](x))

where p[r](x) denotes a polynomial of degree r with all distinct roots. With this

preparation, the basic theorem for matrix diagonalizations is stated as follows.

Theorem 2.4.1. Let A 2 M(n 3 n, p[r](x)) and Ë be a diagonal matrix equivalent to

A. Then, there exists at least one diagonal matrix Ë that makes the characteristic

transformation matrices T � TAË and/or T̂ � TËA non-singular, so that

Tÿ1 AT � Ë and=or T̂ AT̂ÿ1 � Ë (2:4:1)1

The proof of this theorem is somewhat involved. Before proceeding with the proof

1 Suppose that

A � 1 0

á ÿ1

� �
then A can be transformed to

Ë � 1 0

0 ÿ1

� �
by TAË � A�Ë but not to

Ë9 � ÿ1 0

0 1

� �
by TAË9, because

T AË9 � A�Ë9 � 0 0

á 0

� �
is singular.
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we shall give some preparations. From (2.3.6), the explicit forms of T and T̂ are given

by

T � TAË �
Xrÿ1

k�0

Arÿ1ÿkË(k) �
Xrÿ1

k�0

A(k)Ërÿ1ÿk

T̂ � TËA �
Xrÿ1

k�0

Ërÿ1ÿk A(k) �
Xrÿ1

k�0

Ë(k) Arÿ1ÿk (2:4:2)

In the special case in which r � 2, we have

T � T̂ � A�Ëÿ (ë1 � ë2)1 (2:4:3)

Hereafter, we shall call T and T̂ the characteristic transformation matrices of A, even

if they are singular. It is obvious from (2.3.5) that the column (row) vectors of T (T̂ )

are eigenvectors of A even if T (T̂ ) is singular, unless they are null vectors.

Now a diagonal matrix Ë equivalent to A is characterized by a sequence of the

whole set of n characteristic roots of A. Let the distinct characteristic roots of A be

ë1, ë2, . . . , ër, and their respective degeneracies be n1, n2, . . . nr. Then n1�
n2 � � � � � nr � n. The matrix elements of Ë may be expressed by

Ëij � ëí� g( j)äij; í � 1, 2, . . . , r; i, j � 1, 2, . . . , n (2:4:4)

where äij is the Kronecker delta and í � g( j) de®nes the sequence of the characteristic

roots on the principal diagonal of Ë. The inverse gÿ1(í) is a multivalued function of í
that gives the ní indices of the columns or the rows belonging to ëí. It is obvious that

the intersection of two sets of indices belonging to two different roots ëí and ëí, is

null,

gÿ1(í) \ gÿ1(í9) � 0, for í 6� í9 (2:4:5)

This simple and obvious property plays an important role in the proof. If a sequence

í � g( j) is such that the equal roots are placed on the consecutive positions, then the

corresponding Ë is called a standard form of Ë.

Now, let us denote the jth column (row) vectors of any matrix M by M : j (M j:).
Then we can state from (2.4.1) that T : j (T̂ j:) belongs to the eigenvalue ëí of A if

j 2 gÿ1(í). Accordingly, from (2.4.2) and (2.3.9a), we have

T : j �
Xrÿ1

k�0

[A(k)]: jë
rÿ1ÿk
í � [T A,ëí1]: j; j � gÿ1(í)

and an analogous expression for T̂ j:. Hence, from (2.3.10a),

T : j � ÷í[Pí]: j, T̂ j: � ÷í[Pí] j:; j 2 gÿ1(í) (2:4:6)

This means that there exists an ní 3 ní submatrix T (í) common to T and T̂ for each

ëí. These relations are the crucial relations for the proof of the existence of a non-

singular T (T̂ ). One has to show that all the n columns (rows) of T : j (T̂ j:) can be made

linearly independent with a proper choice of the sequence í � g( j). Since, as has been

shown in (1.4.13), there exist ní linearly independent column vectors for Pí belonging

to the eigenvalue ëí of A, provided that the reduced characteristic equation has no

multiple root, it is only necessary to show that there exists a sequence í � g( j) for Ë
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such that a set of ní linearly independent vectors for each ëí is provided by the set of

the column vectors f[Pí]: jg speci®ed by j 2 gÿ1(í) (not by any column vectors of Pí).

By assumption, there exists a non-singular matrix G that diagonalizes A. Then G

also diagonalizes Pí, i.e.

Gÿ1 PíG � Dí; í � 1, 2, . . . , r (2:4:7)

where Dí is a diagonal matrix that has ní unit elements and nÿ ní zeros on the

diagonal such that

[Dí]ij � äí,h(i)äij (2:4:8)

with í � h(i), which de®nes the sequence of ëí in the diagonal matrix D � Gÿ1 AG.

Substitution of Pí � GDíGÿ1 into the ®rst of (2.4.6) yields

T : j � ÷í
X

k2hÿ1(í)

G:k[Gÿ1]kj; j 2 gÿ1(í) (2:4:9)

where G:k is the kth column vector of G.

Since G is non-singular, all the column vectors G:k are linearly independent. Hence,

if the ní 3 ní coef®cient matrix Ä(í) of (2.4.9) with elements

Ä(í)
kj � [Gÿ1]kj; k 2 hÿ1(í), j 2 gÿ1(í) (2:4:10)

is non-singular, then the ní column vectors T : j ( j 2 gÿ1(í)) are linearly independent.

Now, det [Ä(í)] is nothing but a minor of det [Gÿ1]. Thus, if we apply the Laplace

theorem on expansion of a determinant to det [Gÿ1] with respect to ní columns given

by hÿ1(í), changing í successively from 1 to r, we must have at least one set of non-

vanishing minors such that Yr

í�1

det [Ä(í)] 6� 0 (2:4:11)

with conditions

hÿ1(í) \ hÿ1(í9) � 0, gÿ1(í) \ gÿ1(í9) � 0, for í 6� í9 (2:4:12)

This means that there exists at least one sequence í � g( j) of ëí for Ë that makes T

non-singular for a given sequence í � h(k).

An analogous proof holds for T̂. In fact, since the row vector T̂i: is given by

T̂i: � ÷í
X

k2hÿ1(í)

Gik[Gÿ1]k :, i 2 gÿ1(í) (2:4:13)

by proceeding as before we can ®nd a set of non-vanishing minors of det [G] that

determines a sequence í � g9(i) of ëí for Ë that makes T̂ non-singular. Q.E.D.

It is to be noted that the proper sequences í � g(i) and í � g9(i) for T and T̂,

respectively, need not be the same except for r � 2 unless there exists a certain

symmetry in A. In most cases, however, one can ®nd such a sequence for which both T

and T̂ are non-singular. The number of ways of de®ning í � g(i) that makes T non-

singular is anything from 1 to n!=(n1!n2! . . . nr!). The minimum number occurs in the

exceptional case in which A is triangular. In this case, the transformation matrices T

and T̂ are also triangular, similar in shape to that of A, and the diagonal elements of T

and T̂ are given by, from (2.3.9c),
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Tss � T̂ss �
Yr

ó 6� g(s)

(Ass ÿ ëó ); s 2 gÿ1(í) (2:4:14)

where g(s) describes the assumed sequence of the characteristic roots in Ë. Thus, to

obtain non-singular T (T̂) one must take Ë equal to the diagonal part of A, i.e.

Ass � ë g(s)

When we have found a proper sequence of ëí in Ë that makes T (T̂ ) non-singular it

is always possible to transform Ë into a standard form whereby the equal roots are

placed in the consecutive positions by a unitary transformation of A and Ë that is

merely a simultaneous renumbering of the columns and the rows of A and Ë.

Hereafter, we shall assume that such a renumbering has been performed so that the

proper Ë takes a standard form unless otherwise speci®ed. It will be shown by the

illustrative examples given in Section 2.7 that a standard sequence is frequently a

proper sequence for a given matrix A without any simultaneous renumbering.

It follows from (2.4.6) that the present method of matrix diagonalization by T is

simpler than the method of the projection operators Pí, because the latter requires

construction of r idempotent projection operators fPí; í � 1, 2, . . . , rg that are

linearly independent.

2.5 Basic properties of the characteristic transformation matrices

We shall discuss the basic properties of the characteristic transformation matrices T

and T̂ which stem from their relations with the idempotent matrices given by (2.4.6).

Then, these properties will be used in the next section to construct a new transforma-

tion matrix U that is more effective than T (T̂ ) in the sense that its inverse is written

down immediately and it becomes unitary when A is Hermitian. Let í � g( j) be any

sequence of ëí in Ë equivalent to the matrix A 2 M(n 3 n, p[r](x)). Then from

(2.4.6) and (2.3.10b) we have

[T̂ T ]ij � 0, for g(i) 6� g( j)

÷íT
(í)
ij , for í � g(i) � g( j)

�
(2:5:1)

where T (í) is an ní 3 ní submatrix common to T and T̂

T
(í)
ij � Tij � T̂ij; i, j 2 gÿ1(í) (2:5:2)

These are remarkable properties of T and T̂ . If we assume that there is a standard form

for Ë, we can express it in the form of a direct sum:

Ë � ë111 � � � � � ër1r (2:5:3)

where 1í is the ní 3 ní unit matrix. Then T̂ T and T̂ AT also take the forms of direct

sums:

T̂ T � ÷1T (1) � ÷2T (2) � � � � � ÷rT (r) (2:5:4)

T̂ AT � ë1÷1T (1) � ë2÷2T (2) � � � � � ër÷rT (r) (2:5:5)

with use of T̂ AT � T̂ TË.

These equations suggest a method by which one can avoid a direct calculation of the

inverse Tÿ1 (T̂ÿ1) for the diagonalization of the matrix A when both T and T̂ are non-

singular. From (2.5.1), we may regard f÷íT
(í)
ij g for a given í as the scalar products of
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two sets of vectors fT̂i:g and fT : jg belonging to ëí of A. Then the mutual

orthogonalization of these two vector sets (like the Schmidt orthogonalization method)

may lead to the desired diagonalization of A, as will be discussed in the next section.

As a preparation we shall ®rst discuss the condition for the common submatrices

T (í) to be non-singular. From (2.5.4), the determinant of T̂ T is given by

det T̂ T �
Yr

í�1

(÷í)ní det T (í) (2:5:6)

Thus, if both T and T̂ are non-singular, then all T (í), í � 1, 2, . . . , r, are non-singular

and vice versa. If one of T (í) is singular, at least one of T and T̂ must be singular.

Hereafter, we shall assume that all T (í) are non-singular unless otherwise speci®ed.

If the matrix A is Hermitian, then T y � T̂ and thus the common matrices T (í) are all

Hermitian. Moreover, T yT is positive de®nite, so that all the submatrices ÷íT (í) are

also positive de®nite from (2.5.4). In fact, from (2.5.1) the following Hermitian form

of ÷íT (í) with respect to a set of complex variables fxi; i 2 gÿ1(í)g for each í is

positive de®nite, because

÷í
X

i, j2 gÿ1(í)

x�i T
(í)
ij xj �

Xn

k�1

����X
i

Tkixi

����2 . 0 (2:5:7a)

where x�i is the complex conjugate of xi. Since the variables xi in (2.5.7a) are arbitrary

as long as the indices i belong to gÿ1(í), any principal submatrices of ÷íT (í) are also

positive de®nite; hence, their eigenvalues are all positive. Thus, their determinants

(called the principal minors of ÷íT (í)) are also positive: the ®rst few of them are

÷íT
(í)
ii �

X
k

jTik j2 . 0; i 2 gÿ1(í)

(÷í)2 det
T

(í)
ii T

(í)
ij

T
(í)
ji T

(í)
jj

" #
. 0; i, j 2 gÿ1(í)

(2:5:7b)

and so on. The ®rst inequality in (2.5.7b) means that the signs of all diagonal elements

of T (í) are given by the sign of ÷í. If any one of the diagonal elements, Tii, is zero,

then T becomes singular since the ith column and row become null. These properties,

which come from (2.5.7a), will provide the condition for T (í) to be diagonalized by

the Gaussian elimination procedure which will be discussed in the next section.

2.6 Construction of a transformation matrix

It follows from (2.5.5) that the complete diagonalizations of the matrix A can be

achieved by diagonalizing each submatrix T (í) of order ní 3 ní. Obviously, the present

formalism can be used for this. However, it is more effective to use the method of

successive elimination since ÷íT
(í)
ij can be regarded as the scalar products of two

vector sets fT̂i:g and fT : jg according to (2.5.4). The method is based on the well-

known Gaussian procedure, which transforms a square matrix T (í) into a triangular

form by using another triangular matrix of the opposite shape. It serves as an effective

algorithm for the Schmidt orthogonalization process.

Let us introduce two non-singular matrices C(í) and C(í) of order ní 3 ní and

diagonalize T (í) via C(í)T (í)C(í). To this end, we put
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S(í) � T (í)C(í), S(í) � C(í)T (í) (2:6:1a)

and require S(í) to be, say, a lower triangular form assuming an upper triangular form

with unit diagonal elements for C(í). Likewise, we require S(í) to be upper triangular

assuming a lower triangular form with unit diagonal elements for C(í). This set of

equations is self-suf®cient to determine unique solutions for each pair of fS(í), C(í)g
and fS(í), C(í)g, if T (í) satis®es the condition that the principal minors of T (í) are non-

vanishing as in (2.5.7b). To see this, let us write out the ®rst equation of (2.6.1a):

S
(í)
ij �

Xj

k�1

T
(í)
ik C

(í)

kj ; i, j 2 gÿ1(í) (2:6:1b)

Then from S
(í)
ij � 0 for i , j and C

(í)

jj � 1 we have

0 �
Xjÿ1

k�1

T
(í)
ik C

(í)

kj � T
(í)
ij ; i , j

which provides a set of jÿ 1 linear equations for C
(í)

kj (k , j) for a given j. This set is

solvable for each j if the determinant of the coef®cient matrix is non-singular: the ®rst

few of them are given by

j � 1: S
(í)
11 � T

(í)
11 6� 0; 1 2 gÿ1(í)

j � 2: S
(í)
11 S

(í)
22 �

T
(í)
11 T

(í)
12

T
(í)
21 T

(í)
22

�����
����� 6� 0; 1, 2 2 gÿ1(í) (2:6:1c)

Here the equalities follow from (2.6.1a), because the determinants of the leading

submatrices of S(í) and T (í) are equal and because the determinant of a triangular

matrix equals the product of the diagonal elements. Note that the above condition

holds for a Hermitian matrix A, as shown by (2.5.7b).

Now, from (2.6.1a) we obtain

C(í)T (í)C(í) � C(í)S(í) � S(í)C(í) (2:6:2)

which is diagonal, since the second equality means that the product of lower triangular

matrices is equal to the product of upper triangular matrices and since a product of

upper (lower) triangular matrices is upper (lower) triangular: thus

[C(í)T (í)C(í)]ij � äijS
(í)
ii � äijS

(í)

ii ; i, j 2 gÿ1(í) (2:6:3)

It is obvious that the above argument holds if we interchange all the upper and lower

triangular forms.

When A is Hermitian, T (í) is also Hermitian so that it is only necessary to construct

one of S(í) and S(í), since from (2.6.1a)

S(í) � [S(í)]y, C(í) � [C(í)]y

Now we de®ne a pair of transformation matrices of order n 3 n by

S � T C, S � CT̂ (2:6:4)

where C and C are the direct sums of C(í) and C(í), respectively:
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C �
Xr

í�1

� C(í), C �
Xr

í�1

� C(í) (2:6:5)

Then S and S coincide with S(í) and S(í) respectively in each degenerate subspace of

ëí and also satisfy the eigenvalue problems, from (2.6.4) and (2.4.1),

AS � SË, S A � ËS (2:6:6a)

because Ë commutes with C and C from the fact that the diagonal matrix Ë is a

constant matrix in each subspace of ëí. Moreover, their product SS is diagonal, from

(2.6.4), (2.5.1) and (2.6.3),

SS � D � diag [d1, d2, . . . , d n] (2:6:6b)

with the diagonal elements

d j � ÷ g( j)S jj; j � 1, 2, . . . , n (2:6:6c)

Consequently Sÿ1 is simply given by Sÿ1 � Dÿ1S. Here, for the existence of Sÿ1, it is

essential that S jj 6� 0 for all j. This condition, however, is guaranteed to hold by the

required condition (2.6.1c) for the Gaussian elimination procedure.

Now, we shall normalize S and arrive at the desired transformation matrix U de®ned

by

U � SDÿ1=2, Uÿ1 � Dÿ1=2S (2:6:7)

where the argument of each normalization coef®cient d
ÿ1=2
j has to be assigned

appropriately once for each d j so that (d
ÿ1=2
j )2 � dÿ1

j . Then equations (2.6.6a) are

combined to one equation

Uÿ1 AU � Ë (2:6:8a)

Since S jj � S jj from (2.6.3), the diagonal elements of U and Uÿ1 are the same and

given by

U jj � [Uÿ1] jj � d
ÿ1=2
j S jj � d

1=2
j =÷ g( j) for all j (2:6:8b)

from (2.6.6c). In the important special case in which the matrix A is Hermitian, the

transformation matrix U becomes unitary because Sy � S and D becomes a positive

de®nite matrix from (2.6.6b). In cases in which there exists no degeneracy for the

eigenvalues of A, we simply have S � T and S � T̂ (because C and C in (2.6.4)

become the unit matrix) so that U � TDÿ1=2 with D � diag [÷1T11, ÷2T22, . . . ,

÷nTnn].

Finally, if the Gaussian elimination procedure is not possible, we simply calculate

Tÿ1 by

T ÿ1 �
Xr

í�1

� [÷íT (í)]ÿ1

 !
T̂ (2:6:9)

from (2.5.4).
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2.7 Illustrative examples

Example 1. Let us diagonalize a 4 3 4 matrix A de®ned by

A �
1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

2664
3775 (2:7:1)

This problem arises when we construct the eigenvectors of the total spin angular

momentum squared S2 for a system of four electrons; see Kim (1979b).

Since A is real and symmetric, it can be diagonalized by a real orthogonal matrix.

From A2 � 4A, the reduced characteristic equation of A is given by

A2 ÿ 4A � 0

which has no multiple roots. The eigenvalues ëí, their degeneracies ní and ÷í of

(2.3.10a) are given by

ëí ní ÷í
í � 1 0 3 ÿ4

í � 2 4 1 4

Choosing the following standard form for the diagonal matrix:

Ë � diag [0, 0, 0, 4] (2:7:2)

we can immediately write down the transformation matrices T and T̂, using (2.4.3),

T � T̂ � A�Ëÿ 41 �

ÿ3 1 1 1

1 ÿ3 1 1

1 1 ÿ3 1

1 1 1 1

266664
377775 (2:7:3)

One can easily see from this result that T is non-singular for any sequence of the

characteristic roots in Ë. The submatrices T (1) and T (2) corresponding to ë1 and ë2 are

shown by the dotted lines in (2.7.3). They are symmetric since A is symmetric. Note

that the signs of the diagonal elements of T coincide with those of ÷1 and ÷2,

respectively, satisfying (2.5.7b). By successive elimination of the elements above the

principal diagonal of T by the linear combinations of the ®rst three columns leaving

the ®rst column intact, we obtain the matrix S de®ned by (2.6.4):

S �
ÿ3 0 0 1

1 ÿ8=3 0 1

1 4=3 ÿ2 1

1 4=3 2 1

2664
3775

Then, by normalizing each column of S directly or using (2.6.7), we obtain the unitary

transformation matrix U
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U �

ÿ 3p
12

0 0
1

2

1p
12

ÿ 2p
6

0
1

2

1p
12

1p
6
ÿ 1p

2

1

2

1p
12

1p
6

1p
2

1

2

26666666666664

37777777777775
(2:7:4)

which is also a real orthogonal matrix as expected since A is real symmetric. For

further application of the present formalism to calculate the vector coupling coef®-

cients for angular momenta, see Kim (1979b).

Example 2. A rotation matrix for rotation about a unit vector s � (s1, s2, s3) through

an angle è is expressed by

R(è) � exp [èù]; ù �
0 ÿs3 s2

s3 0 ÿs1

ÿs2 s1 0

24 35 (2:7:5)

which has been introduced in (1.6.4a). Diagonalization of this matrix has been

discussed in Exercise 7 in the previous chapter on the basis of the projection operator

method. Here we shall diagonalize it using the characteristic transformation matrix as

a comparison. Since it is a function of the matrix ù it is only necessary to diagonalize

the in®nitesimal rotation ù for the diagonalization of R(è). The characteristic equation

of ù is given by

ù3 � ù � 0

which has no multiple root. The characteristic roots ëí and ÷í of (2.3.10a) are

í 1 2 3

ëí 0 i ÿi

÷í 1 ÿ2 ÿ2

Take Ë � diag [0, i, ÿ1], then the characteristic transformation matrix TùË is given,

from (2.4.2), by

TùË � ù2 � ùË(1) �Ë(2)

Since Ë(1) � Ë, Ë(2) � Ë2 � 1, and ù2 � s2 ÿ 1, we have

Tùë �
s2

1 s1s2 ÿ is3 s1s3 ÿ is2

s1s2 s2
2 ÿ 1 s2s3 � is1

s1s3 s3s2 � is1 s2
3 ÿ 1

264
375 (2:7:6)

Note that the signs of the diagonal elements coincide with those of ÷1, ÷2 and ÷3

because s2 � 1.

Since all eigenvalues of ù are distinct, all we need to do is to normalize each

column vector of TùË using s2 � 1 to obtain the required U matrix (which must be

unitary for ù being normal)
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U � [u1, u2, u3] (2:7:7)

where the column vectors are given by

u1 �
s1

s2

s3

24 35, u2 � 1

[2(1ÿ s2
2)]1=2

s1s2 ÿ is3

s2
2 ÿ 1

s3s2 � is1

24 35,

u3 � 1

[2(1ÿ s2
3)]1=2

s1s3 ÿ is2

s2s3 � is1

s2
3 ÿ 1

24 35
From Ë � diag [0, i, ÿi] we obtain

U yR(è)U � diag [1, eiè, eÿiè] (2:7:8)

Exercise. Show that u3 is proportional to u�2 .
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3

Elements of abstract group theory

3.1 Group axioms

A group is a set G on which a multiplication operation with the following properties is

de®ned.

1) If a and b belong to G, their product ab also belongs to G. This property is called

closure or the group property. This property may be expressed as follows:

if a, b 2 G, then ab 2 G

where 2 means `belongs to'.

2) The associative law holds for multiplication:

(ab)c � a(bc)

for every a, b and c in G.

3) There is an identity element e in G such that

ea � ae � a 8 a 2 G

4) For every a 2 G, there is an inverse element aÿ1 2 G such that

aaÿ1 � aÿ1a � e

We de®ne the powers of g 2 G as follows: g0 � e, g1 � g, gn � gnÿ1 g and

gÿn � (gÿ1)n for a positive integer n. When a group element g satis®es g2 � e, it is

called a binary element of G.

In general, a product ab of two elements a, b 2 G may but need not equal ba. If

ab � ba, we say that a and b commute. If all elements in G commute with each other,

the group is said to be Abelian.

Let G � fgig and de®ne aG � fagig. If a 2 G, then aG � G because agi 2 G by

closure and agi 6� ag j means gi 6� g j since aÿ1 exists. Thus, multiplication of G by

an element of G may rearrange the elements but will not change the group G as a

whole (the rearrangement theorem). The number of distinct elements of G is called

the order of G, denoted jGj. If jGj is ®nite, the group is called a ®nite group, otherwise

the group is an in®nite group.

Let G be a ®nite group and let g 2 G. Then a sequence e, g, g2, . . . must return to

the identity after a ®nite number of elements. The smallest number n for which

g n � e is called the order of g. The sequence

hgi � e, g, g2, . . . , gnÿ1 (3:1:1)

is called the period of g. The period hgi forms a cyclic group Cn of order n generated

by the element g.



3.1.1 The criterion for a ®nite group

Let G be a ®nite set of elements on which a multiplication operation is de®ned. If it

satis®es the ®rst two requirements of a group, i.e. closure and the associative law, the

set is a group: let a 2 G and its order by n, then an � e the identity and anÿ1 � aÿ1

the inverse.

A ®nite group G is de®ned by a multiplication table of G that is described by the

n 3 n matrix whose ijth entry is aia j 2 G.

G a1 a2 . . . an

a1 a1a1 a1a2 . . . a1an

a2 a2a1 a2a2 . . . a2an

: : : . . . :
: : : . . . :

an ana1 ana2 . . . anan

Let G be the multiplicative group with elements f1, ÿ1g, then the multiplication table

is given by

G 1 ÿ1

1 1 ÿ1

ÿ1 ÿ1 1

In general, construction of the multiplication table is rather cumbersome unless the

order of the group is small. As will be described later, however, one can de®ne a ®nite

group by means of the group generators and the de®ning relations of the group.

3.1.2 Examples of groups

1. The set of all non-singular n 3 n matrices forms a group called the group of

general linear transformations denoted GL(n).

2. The set of all n 3 n unitary matrices forms a group called the unitary group in n

dimensions, denoted U (n).

3. The set of all real numbers forms a group, with addition as the multiplication. Here

zero serves as the identity. It is Abelian.

4. The set of all non-zero real numbers forms a group under ordinary numerical

multiplication.

5. Let an nth primitive root of unity be ù � exp(2ði=n), then a set of numbers

hùi � 1, ù2, ù3, . . . , ùnÿ1

forms a cyclic group of order n under numerical multiplication

6. A set Z of n integers

0, 1, 2, . . . , nÿ 1

forms a group under addition, modulo n. For example, if n � 5, then

3� 4 � 5� 2 � 2 (mod 5).1 Note that the elements of Z can be put into one-to-

1 x � y (mod 5) reads `x is congruent to y modulo 5' and means `xÿ y is an integral multiple of 5'. Thus if
x � 0 (mod 1), then x is any integer. For simplicity we frequently write x � y (mod 5).
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one correspondence to the elements of the set hùi by making k correspond to ùk .

This correspondence has the property that `products correspond to products', i.e.

k1 � k2 � k3 implies that ùk1ùk2 � ùk3 . Such a pair of groups is said to be

isomorphic.

7. Group Cn, the uniaxial group of order n. The group Cn is a cyclic group of order n

generated by an n-fold rotation cn, which is a rotation about a given axis through

an angle 2ð=n. It is a special case of (3.1.1) and its elements are given by

hcni � e, cn, c2
n, . . . , cnÿ1

n

8. Group C1, the uniaxial rotation group of order in®nity. Let cz(è) be a rotation

about the z-axis through an angle è, then cz(è2)cz(è1) � cz(è2 � è1) and

cz(è� 2ð) � cz(è). The set c1 � fcz(è); ÿð < è,ðg forms a group. Note that

cz(è)ÿ1 � cz(ÿè).

9. Group D1, the dihedral group of order in®nity. This group is formed by augment-

ing (adjoining) the uniaxial group C1 � fcz(è)g with a two-fold rotation (or

binary rotation) 2v about a unit vector v on the x, y plane perpendicular to the z-

axis. To describe the group structure we introduce the following relation (see

Figure 3.1):

cz(è)2v � 2h, h . v � cos (è=2) (3:1:2a)

where 2h is a binary rotation about a unit vector h on the x, y plane that makes an

angle è=2 with the unit vector v. The proof is easily achieved by the stereographic

projection diagram given in Figure 3.1. Note that cz(è) rotates a point in the space

through the angle è whereas it rotates an axis of binary rotation 2v perpendicular

to cz(è) through half the angle è=2 upon simple multiplication according to

(3.1.2a).

33
u

h

v
23

1 o
Cz (θ)

θ/2

θ/2

Figure 3.1. A stereographic projection diagram showing 2h � Cz(è)2v. Consider

a unit sphere centered at a point on the plane of the paper and denote the cross-

section of the sphere in the paper by a dashed circle. A point on the sphere above

(below) the paper is projected onto the paper and denoted by s (3). Place a

binary axis of rotation 2v along a unit vector v on the paper shown in the ®gure.

Then, applying 2v to an initial point 1 above the paper, we arrive at point 2 below

the paper. Then applying Cz(è) on point 2 we arrive at point 3. The resultant

operation which brings point 1 to point 3 is given by a binary rotation 2h, where

h is a unit vector that makes the angle è=2 with the unit vector v.
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The elements of D1 are expressed by

D1 � fcz(è), 2vg
where ÿð < è,ð and 2v represents any binary axis of rotation in the horizontal

plane perpendicular to the z-axis. The group properties of D1 are understood

from (3.1.2a); e.g.

2h2v � cz(è), 2vcz(è)ÿ1 � 2h (3:1:2b)

Exercise. Show from (3.1.2b) that a similarity transformation of 2v by cz(è)

rotates 2v through the angle è, i.e.

cz(è)2vcÿ1
z (è) � 2u (3:1:2c)

where 2u is a binary rotation about the unit vector u that makes an angle è with v
(see Figure 3.1).

10. Group Dn, the dihedral group of order 2n. This group is formed by augmenting

(adjoining) the uniaxial group Cn � hcni with a two-fold axis of rotation uo

perpendicular to cn 2 Cn. Let uk � ck
nuo; k � 0, 1, 2, . . . , nÿ 1, then the group

elements of Dn are given by a total of 2n elements:

e, cn, c2
n, . . . , cnÿ1

n , u0, u1, . . . , unÿ1 (3:1:3)

where, from (3.1.2a), the uk are binary axes of rotation perpendicular to cn and

their adjacent angles are ð=n. See Figure 3.2 for the stereographic projections of

the groups D2 and D3.

11. Group D2 (or the four group). The group D2 has four elements, which may be

expressed by

e, ux, uy, uz (3:1:4)

where ux, uy and uz are binary axes of rotation along the x-, y- and z-axes of the

Cartesian coordinate system, respectively. It is Abelian. This is the only Abelian

group in the dihedral group Dn (n . 1). The multiplication table of D2 can be

constructed using the following properties:

u2
x � e, uxuy � uyux � uz (3:1:5)

and their cyclic permutations on x, y and z. These relations are veri®ed by (3.1.2).

The stereographic projection diagram of D2 is given by Figure 3.2.

3.2 Group generators for a ®nite group

It is to be noted that the four elements of the group D2 are generated by two elements

a � ux and b � uy. From (3.1.5), the generators satisfy the following algebraic

relations:

a2 � b2 � (ab)2 � e (3:2:1)

These are called the de®ning relations of D2, because from them we can construct the

multiplication table of D2. For simplicity, however, we simply derive the multiplicative

properties (3.1.5) from (3.2.1). Firstly, the commutation relation ba � ab is obtained

by multiplying (ab)2 � abab � e by a from the left and by b from the right and using

a2 � b2 � e. Set ux � a, uy � b and uz � ab, then uxuy � uyux � uz. Next, on multi-
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plying uxuy � uz from the left by ux we obtain uy � uxuz, and so on. In this way, we

obtain all the necessary information for constructing the multiplication table; cf. Table

5.3 later.

In general, if all elements of a ®nite group G are generated by a subset of the

elements of G through ®nite products of their powers (including negative powers), the

subset is called the set of group generators of G. If the multiplication table of G is

constructed by means of a set of algebraic relations satis®ed by the generators g1,

g2, . . . ,

g n1

1 gn2

2 . . . � e; n1, n2, . . . are integers (3:2:2)

then the set of relations is called the set of de®ning relations or the presentation of the

group G. Every algebraic relation of the generators is a consequence of these relations.

For example, a cyclic group Cn of order n is de®ned by one generator a and one

relation an � e. According to (3.1.3), the group Dn has two generators a (� cn) and b

(� uo ? cn), which satisfy the de®ning relations

an � b2 � (ab)2 � e (3:2:3)

u0

u1

u2

u21

uy

ux

ux

D2 C2v

D3

uy

Figure 3.2. The stereographic projections for D2, C2v and D3. Here d denotes a

two-fold axis while m denotes a three-fold axis.

3.2 Generators for a ®nite group 41



Every proper point group (except for the uniaxial group Cn) has two generators a and

b and is de®ned by

an � bm � (ab)2 � e; n, m are integers . 1 (3:2:4)

These will be studied in detail later in Chapter 5.

The same group may have different systems of generators. The de®ning relations

will also differ accordingly. The rank of a group G is the minimum number of

generators required. Then we will show in Chapter 5 that any proper point group has

rank 2 except for the uniaxial group of rank 1. A set of de®ning relations of a group is

also called a presentation of the group (Coxeter and Moser 1984).

3.2.1 Examples

1. Group C2v, The group C2v has four elements that are expressed, in the Cartesian

coordinate system, by

e, ux, uy, uz

where ux and uy are re¯ections in the planes perpendicular to the x- and y-axes

respectively. In the stereographic projection diagram (Figure 3.2), the solid lines

are the projections of the intersections of the re¯ection planes with the unit sphere.

Let the generators be a � ux and b � uy, then the de®ning relations are the same

as those of D2 given by (3.2.1), since ux � Iux and uy � Iuy, where I is the

inversion which commutes with any point operation and I2 � e. Now, when two

groups G1 and G2 have the same presentation, there exists a one-to-one corre-

spondence between them that preserves multiplication. In such a case they are said

to be isomorphic and expressed by G1 ' G2. Then, C2v ' D2.

2. Group D3. The group D3 has one three-fold axis of rotation 3z along the z-axis in

the Cartesian coordinate system and three binary axes of rotations u0, u1 and u2 in

the x, y plane with the nearest neighbor angle ð=3 (see Figure 3.2). It has six

elements, e, 3z, 32
z , u0, u1 � 3zu0 and u2 � 3zu1. If we take a � 3z and b � u0 as

the generators, the de®ning relations are

a3 � b2 � (ab)2 � e (3:2:5)

It is not Abelian: from abab � e we have ab � baÿ1 so that ab � ba requires

aÿ1 � a or a2 � e, which is incorrect.

3. Symmetric groups S (or permutation groups). A permutation of n different letters

may by denoted by

P � 1 2 . . . n

m1 m2 . . . mn

� �
(3:2:6)

It displaces the letter originally in position 1 into position m1, the letter in position

2 into position m2, etc. The product P1 P2 of two permutations P1 and P2 is de®ned

as the permutation obtained by carrying out permutation P2 ®rst and then

permutation P1. The set of all permutations forms a group of order n!. It is seen

easily that any permutation can be obtained by a product of transpositions, each of

which interchanges two letters. Thus the set of generators may be given by nÿ 1

transpositions (1 2), (2 3), . . . , (nÿ 1 n). However, this is not the minimal

set of the generators. In fact, all elements of S can be obtained from two group
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elements, (1 2) and the cyclic permutation Cn � (1 2 3 . . . n) which

shifts 1! 2, 2! 3 . . . nÿ 1! n and n! 1. Since Cn(1 2)Cÿ1
n � (2 3),

repeated conjugations by Cn bring (1 2) into any desired adjacent transposition.

It is, however, more convenient to take nÿ 1 adjacent transpositions as the

generators.

4. The quaternion group Q. It has eight elements:

�1, �i, �j, �k (3:2:7)

where 1 is the unit element and the three elements i, j and k are extensions ofpÿ1 and satisfy

i2 � j2 � k2 � ÿ1, ij � ÿji � k (i, j, k cyclic) (3:2:8)

If we take a � i and b � j as the generators, the de®ning relations are given by

a2 � b2 � (ab)2 � e9, e92 � e (3:2:9)

Conversely, from these we can reproduce (3.2.8) with e9 � ÿ1. Multiplying

(ab)2 � abab � ÿ1 by a from the left and by b from the right we obtain

ba � ÿab. Next, we set k � ab and obtain the eight elements of Q which satisfy

(3.2.8). Note that the above set (3.2.9) with e9 � e de®nes the dihedral group D2.

It is interesting to construct a matrix group that is isomorphic to the quaternion

group Q. Let ó0 be a 2 3 2 unit matrix and ó x, ó y and ó z be the Pauli spin

matrices de®ned by

ó0 � 1 0

0 1

� �
, ó x � 0 1

1 0

� �
, ó y � 0 ÿi

i 0

� �
, ó z � 1 0

0 ÿ1

� �
As was shown in (1.2.5b) or by direct matrix multiplication, these satisfy the

following algebraic relations:

ó 2
x � ó 2

y � ó 2
z � ó0, ó xó y � ÿóyó x � ió z (x, y, z cyclic)

Thus, the set of eight elements f�ó0, �ió x, �ió y, �ió zg forms a group. This

group is isomorphic to Q by one-to-one correspondence:

1$ ó0, i$ ÿió x, j$ ÿió y, k $ ÿió z (3:2:10)

Such a matrix group is called a matrix representation of Q.

3.3 Subgroups and coset decompositions

If a subset H of a group G forms a group under original multiplication, then H is

called a subgroup of G. If H is not one of the trivial subgroups, the identity group e

and the group G itself, then H is called a proper subgroup of G. If H is a subgroup of

G that is not G, we write H , G. If there is no subgroup of G that contains H, then H

is called a maximal subgroup of G. Finding all the possible subgroups of a given group

is very important in order to understand the group's structure. Examples of subgroups

are

1. U (n) , GL(n),

2. C1, D1, Cn , Dn,

3. The set Z of integers in the group of real numbers under addition,
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4. The period hxi of an element x of a group G, and

5. The maximal subgroups of the cyclic group C6 are C2 and C3.

3.3.1 The criterion for subgroups

If H is a non-empty subset of a group G, then H is a subgroup of G if and only if

yÿ1x 2 H when x, y 2 H .

Proof. Since H is non-empty, it contains an element x. Taking y � x, we have

xÿ1x � e is in H . If y 2 H , then taking x � e we have yÿ1e � yÿ1 in H . Finally, if x,

y 2 H , then (yÿ1)ÿ1x � yx is in H . Thus, H is a subgroup of G.

This criterion is different from the criterion for a ®nite group given in Section 3.1 in

that the present criterion applies to in®nite groups as well; cf. Rotman (1973).

3.3.1.1 Cosets

Let G be a group and let H � fhig be a subgroup of G. Let q1 be an element of G that

is not contained in H . Then the set of elements

q1 H � fq1 hi; for all hi 2 Hg
is called the left coset of H by q1, and q1 itself is called the left coset representative of

H . Note that q1 hi with any hi 2 H can be chosen to be the coset representative. Then

H may be considered also a coset of H by the identity. If there exists another element

q2 of G that is not contained both in H and in q1 H , one can construct another left

coset q2 H . Then these cosets have no element in common because q1 hi � q2 h j means

that

qÿ1
1 q2 � hi h

ÿ1
j 2 H , i:e: q2 2 q1 H (3:3:1)

The relation qÿ1
1 q2 2 H will be referred to as the condition for q1 and q2 to belong to

the same coset. Continuing this process we obtain the left coset expansion of G:

G � H � q1 H � q2 H � � � � � fqk Hg (3:3:2a)

where � means simply the union of the disjoint sets. Obviously, one can de®ne the

right cosets of H and construct the right coset expansion. A convenient way of doing

this is to take the inverses of all elements of G in (3.3.2a) and arrive at the right coset

expansion given by

G � H � Hqÿ1
1 � � � � � fHqÿ1

k g (3:3:2b)

Thus the left and right cosets of H have equal numbers of elements. Since the order of

each coset equals the order of H and all cosets are disjoint, we conclude that the order

of a group G equals the number of the cosets multiplied by the order jH j of the

subgroup.

3.3.2 Langrange's theorem

Let H be a subgroup of a ®nite group G, then order jH j of the subgroup is a divisor of

the order jGj of the group. The integer jGj=jH j � J equals the number of the cosets of

H in G and is called the index of H in G.

The above basic theorem is merely one of the many outcomes through coset
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expansions of a group by its subgroups. The coset expansion plays an essential role in

constructing the matrix representations of a group G from those of its subgroups.

3.3.2.1 Examples

1. Let H � fe, uxg be a subgroup of D2 given in (3.1.4), then

D2 � H � uyH � H � Huy (3:3:3)

2. Let H � f�1, �ig in the quaternion group Q of (3.2.7), then

Q � H � jH � H � Hj (3:3:4)

In the above two examples, the left and right cosets coincide. Such a co-

incidence occurs whenever H is a so-called invariant subgroup of G, which will

be discussed later in detail.

3. Let H � fe, u0g be a subgroup of the group D3 de®ned in (3.2.5). Then the left

coset decomposition of D3 by H is given by

D3 � H � 3z H � 32
z H

where

3z H � f3z, u1g, 32
z H � f32

z , u2g (3:3:5)

The corresponding right cosets are, using 3ÿ1
z � 32

z ,

H32
z � f32

z , u1g, H3z � f3z, u2g
Thus, the left cosets do not coincide with the right cosets for this example.

3.4 Conjugation and classes

Let x be an element that may but need not be an element of a group G, but

multiplication between x and the elements of G is allowed. Then, a conjugation of an

element g 2 G by x is the similarity transformation of g by x

gx � xgxÿ1 (3:4:1)

The transform gx is called the conjugate of g by x. Note that two successive

conjugations by x and y are given by a single conjugation by yx

(gx) y � yxgxÿ1 yÿ1 � g yx (3:4:2)

In particular, (gx)ÿ1 � (gÿ1)x. One of the most important properties of conjugation by

a ®xed element is that it preserves the multiplication

hxgx � xhxÿ1xgxÿ1 � (hg)x; h, g 2 G (3:4:3)

Consequently the group structure is not affected by a conjugation. A group de®ned by

Gx � fgxg with a ®xed x is called a conjugate group of G � fgg. It is isomorphic to

G via the correspondence gx $ g.

3.4.1 Normalizers

Let H � fhg be a subset of a group G, then the conjugate of H by an element x 2 G

is de®ned by H x � fhxg. If H x � H for an element x 2 G, then the set H is said to be
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invariant under x of G. This does not mean that x commutes with every element of H .

It simply means that x commutes with H as a whole. The subset N of G that leaves H

invariant forms a subgroup of G, because the set N satis®es the criterion of a

subgroup, i.e. if x, y 2 N then yÿ1x � yx 2 N , for

H yx � (H x) y � H y � H

where the last equality follows from H y � H . This subgroup N is called the normal-

izer of the subset H in G, denoted

NG(H) � fx 2 GjH x � Hg (3:4:4)

where the vertical line stands for `with the property'. Obviously, NG(H) < G.

3.4.1.1 Normal subgroups

If H is a subgroup of G and is invariant under all g 2 G, then H is called an invariant

(or normal) subgroup of G, denoted H / G. In this case, the normalizer of H equals

the group G itself. If there is no invariant subgroup of G that contains H(/G), then H

is called a maximal invariant subgroup of G. For a normal subgroup H of G, the left

coset decomposition of G by H coincides with the right coset decomposition.

Obviously, every subgroup of an Abelian group is normal. A halving subgroup

(subgroup of index 2) of a group G is always a normal subgroup of G. To see this, let

H be a halving subgroup of G and let q be an element of G that is not contained in H .

Then the left and right coset decompositions of G by H yield

G � H � qH � H � Hq

Accordingly, qH � Hq or qHqÿ1 � H, i.e. H is a normal subgroup of G; cf. (3.3.3)

and (3.3.4). Note that the normalizer of a normal subgroup of G is the group G itself.

3.4.1.2 Examples

1. The normalizer of a subset H � fi, jg in the quaternion group Q of (3.2.7) is

f�1g. The normalizer of a subgroup H � f�1, �ig in Q is Q itself so that H is a

normal subgroup of Q. Note that jijÿ1 � ÿi. Here H is a halving subgroup of Q.

2. The cyclic groups C2 and C3 are normal subgroups of C6. By de®nition, both C2

and C3 are maximal normal subgroups of C6. Note that C2 is not a subgroup of

C3.

3. The cyclic group Cn is a halving subgroup of the dihedral group Dn so that it is

normal subgroup of Dn.

4. Let Cn � fcm
n ; m � 0, 1, . . . , ng be a uniaxial group contained in a proper point

group P. Then the normalizer of a rotation cm
n (m 6� 0) 2 Cn is the uniaxial group

Cn except for the special case in which m � n=2 and P contains a binary rotation

perpendicular to cn. In this case the normalizer of the binary rotation u � cn=2
n is

the dihedral group Dn, for uÿ1 � u.

5. Let G be the permutation group on n letters. Then the set of even permutations on

n letters forms a subgroup of G, which is a halving subgroup of G.

3.4.2 The centralizer

The set of all elements in G that commute with every element of a subset H of G

forms a subgroup of G called the centralizer of the subset H in G. It is denoted by
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ZG(H) � fgjh g � h: 8 h 2 Hg. In the special case in which H is a single element h

of G, the centralizer ZG(h) equals the normalizer NG(h).

The normalizer and centralizer or a subset H of a group G are often used to ®nd

subgroups of G. In general, G > NG(H) > ZG(H).

3.4.2.1 Examples (continued)

6. The centralizer of a subset f�ig in the quaternion group Q is f�1, �ig, whereas

the normalizer is Q itself.

7. The centralizer of the n-fold axis of rotation cn in Dn (n . 3) is the uniaxial group

Cn (, Dn). The centralizer of c2 in D2 is D2.

3.4.3 The center

The center of a group G is the subgroup consisting of those elements which commute

with every element of G. Thus, it is an Abelian invariant subgroup of G and denoted

by Z(G). By de®nition, the group G is the centralizer of Z(G). For an Abelian group

G, the center is G itself. The center of the dihedral group D2 is D2 itself whereas the

center of D3 is the identity. For the quaternion group Q, the center is C2 � f�1g.

3.4.4 Classes

Let a, b 2 G. If there exists an element x 2 G such that

a � xbxÿ1 (� bx)

we say that a is conjugate to b. Obviously, b is also conjugate to a, since

b � (xÿ1)a(xÿ1)ÿ1. Thus we simply say that a and b are equivalent in G. Let this

equivalence relation be denoted as a � b. If a � b and b � c, then a � c (transitivity).

Thus one can decompose G into sets of conjugate elements, known as conjugacy

classes or simply classes. Then each element of G appears in one and only one class.

The conjugacy class C(h) of an element h of G is the set of all elements of G

conjugate to h. It is formed by

C(h) � fghgÿ1; 8 g 2 Gg (no repetition)

where 8 means for all; i.e. the class C(h) is de®ned by all the different conjugates of h.

The identity e of G forms a class by itself. In an Abelian group, each class consists

of a single element since gagÿ1 � a for all g 2 G. Now, the class C(h) of an element

h in G is formed by the conjugates of h by the coset representatives of the centralizer

ZG(h) of h in G: since ZG(h) leaves h invariant under conjugation, each different

coset representative of the centralizer de®nes a different element in the class C(h).

Thus we arrive at the following theorem.

3.4.4.1 The class order theorem

The order jC(h)j of the class C(h) of an element h in G is given by the index of the

centralizer ZG(h) of h in G:

jC(h)j � jGj=jZG(h)j (3:4:5)

Since jZG(h)j is an integer, the order of a class is a divisor of jGj, i.e.

jZG(h)j � jGj=jC(h)j.
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This theorem is useful for calculating jC(h)j since it is easier to calculate jZG(h)j
than it is to calculate jC(h)j directly; cf. Example 4 in Section 3.4. It has an important

application in analyzing the class structures of point groups. On account of this

theorem we have the following useful relation: let f (g) be any single-valued function

on the group G, then for a given h in GX
g2G

f (ghgÿ1) � jZG(h)j
X

g2C(h)

f (ghgÿ1) (3:4:6)

3.4.4.2 Ambivalent classes

The class C(h) of h in G is said to be ambivalent if it contains hÿ1. In this case every

element of C(h) has its inverse in the class, for (hx)ÿ1 � (hÿ1)x. In a special case,

when h is binary, i.e. h2 � e, all the elements of the class are binary and hence every

element of the class is its own inverse. If we exclude this special case and the class of

the identity, the order of an ambivalent class of a ®nite point group is even, having an

element and its inverse that are distinct.

3.4.4.3 Examples (continued)

8. The quaternion group Q has ®ve classes:

f1g, fÿ1g, f�ig, f�jg, f�kg (3:4:7)

(use jijÿ1 � ÿi). These classes are all ambivalent and their orders satisfy the class

order theorem (3.4.5), e.g. ZQ(1) � Q and ZQ(i) � f�1, �i}, so that

jC(1)j � 8=8 � 1 and jC(i)j � 8=4 � 2.

9. The group D3 has three classes:

feg, fc3, cÿ1
3 g, fu0, u1, u2g (3:4:8)

because, in view of Figure 3.2, uk c3uk � cÿ1
3 and uk�2 � c3uk cÿ1

3 from (3.1.2c).

These classes are all ambivalent.

10. The group D4 has ®ve classes:

feg, fc4, cÿ1
4 g, fc2

4g, fu0, u2g, fu1, u3g
which are all ambivalent.

3.5 Isomorphism and homomorphism

Two groups G � fgig and G � fgig are isomorphic if there exists a one-to-one

correspondence gi $ gi between their elements such that products correspond to

products, gi g j $ gi g j. Such a one-to-one correspondence (or mapping) between two

groups is called isomorphism and is denoted by G ' G. We have already seen that the

groups D2 and C2v are isomorphic. In the abstract point of view, isomorphic groups

are identical because they are represented by the same multiplication table. We have

shown in Section 3.4 that a group G � fgg and its conjugate group Gx � fgxg are

isomorphic, i.e. G ' Gx via the correspondence g $ gx. A group is always iso-

morphic to itself. Such an isomorphism is called automorphism. The automorphism of

a group H � fhg through a conjugation h$ hx � xhxÿ1 by a ®xed element x in H is
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called inner automorphism, whereas if H is invariant under x but x is not contained in

H , then the mapping h$ hx is called outer automorphism.

A more general type of correspondence between two groups is homomorphism.

Here, as opposed to isomorphism, the mapping is not required to be one-to-one. A

group G is homomorphic to a group G if there exists a mapping f : G �
fgig ! G � f f (gi)g that brings G onto G and preserves multiplication, where f (g)

is a single-valued function on the group G that satis®es f (gi g j) � f (gi) 3 f (g j) for

all g in G. Here, mapping G onto G means that every member of G corresponds to at

least one element of G. Since more than one element of G may correspond to an

element of G, the homomorphism f : G ! G may be a many-to-one correspondence

and hence is a directed relation. The larger group is homomorphic to the smaller. The

smaller is called the homomorph of the larger. Homomorphism becomes isomorphism

if the mapping is one-to-one.

In general a homomorphism f : G! G means that g 2 G is a single-valued

function of g 2 G, i.e. g � f (g), where g and g are called the image and preimage

respectively. Since many different g in G can correspond to one element g of G, the

inverse function f ÿ1(g) may be a multivalued function of g 2 G. The set of all

preimages fgg corresponding to a given image g is called the ®ber of the preimages

of g, i.e. fgg � f ÿ1(g) (see Figure 3.3). According to this terminology, for an

isomorphism f , its inverse f ÿ1 is unique.

3.5.1 Examples

1. Let G � GL(n, r) be a group of non-singular n 3 n matrices with real entries.

Then a mapping that brings every element M of G into determinant

M ! det M (3:5:1)

yields a set of real numbers that forms a multiplicative group ZR of non-zero real

numbers. The mapping preserves multiplication since

det (AB) � det A 3 det B

Thus GL(n, r) is homomorphic to ZR.

G 5 {g} G 5 {g}

Figure 3.3. The ®ber of g: fgg 2 Gÿ1(g).
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2. The quaternion group Q is homomorphic to group D2 with the correspondence

f�1g ! e, f�ig ! ux, f�jg ! uy, f�kg ! uz (3:5:2)

which is two-to-one correspondence.

3.5.2 Factor groups

Let N be a normal subgroup of a group G. Then by de®nition N � gNgÿ1 for all

g 2 G, so that Ng � gN . This means that left and right cosets of N coincide. Thus

one can speak of cosets of N without specifying the left or right. Let the cosets of N

be q1 N , q2 N . . . , then the set of all cosets of N forms a group (with the cosets as the

elements): closure is satis®ed:

q1 Nq2 N � q1q2 NN � q1q2 N

and the associative law is satis®ed:

(q1 Nq2 N )q3 N � q1q2q3 N � q1 N (q2 Nq3 N )

Moreover, the unit element is N itself, N (qi N ) � (qi N )N � (qi N ), while the inverse

of qi N is qÿ1
i N . Accordingly, the set of all cosets of N forms a group, called a factor

group of G by N, denoted G=N :

G=N � fqi Ng
Since the elements of a factor group G=N are cosets, its order equals the number of

the cosets of N , i.e. the index of N in G. Thus jG=N j � jGj=jN j.
In terms of the factor group we shall discuss the structure of the homomorphism of

a group G � fgg onto a group G � fgg. For this purpose we introduce the concept of

the kernel. It is de®ned by the subset K of G that is mapped onto the identity e of G; it

is the ®ber of the identity e of G. We have the following theorem.

3.5.2.1 The isomorphism theorem

The kernel K of the homomorphism of G onto G is a normal subgroup of G and the

factor group G=K is isomorphic to G, i.e. G=K ' G.

Proof. Let k1 and k2 be any two elements contained in K. Then the product kÿ1
1 k2 is

also contained in K, because kÿ1
1 k2 ! eÿ1e � e on account of the assumed homo-

morphism which preserves multiplication. Thus K is a subgroup of G. Moreover,

gKgÿ1 ! g e gÿ1 � e so that gKgÿ1 � K for all g 2 G. Thus K is a normal subgroup

of G. This proves the ®rst half of the theorem.

Let G=K � fqi Kg and the homomorphism be qi ! qi 2 G, then qi K ! qie � qi.

If there exists another element p of G that is mapped onto qi, then qÿ1
i p! qÿ1

i qi � e

so that qÿ1
i p 2 K, i.e. p 2 qi K. Since G! G is a homomorphism of G onto G, the

mapping qi K ! qi for all qi K in G=K should exhaust all elements of G. Thus there

exists a one-to-one correspondence between G=K � fqi Kg and G � fqi} via

qi K $ qi that preserves multiplication. In fact, on account of the assumed homo-

morphism, if qi Kq j K � qk K then qiq j � qk . Thus G=K and G are isomorphic

(Q.E.D.).

Let jKj be the order of the kernel K, then the assumed homomorphism G! G

makes jKj-to-one correspondence.
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3.5.2.2 Examples

1. For the homomorphism GL(n, r)! ZR via the mapping M ! det M discussed in

(3.5.1), the kernel K of the homomorphism is the special general linear transfor-

mation group SGL(n, r) (with det M � 1).

2. For the homomorphism Q! D2 discussed in (3.5.2), the kernel is K � f�1g and

the correspondence is two-to-one. We have the isomorphism Q=K ' D2.

3. A space group Ĝ (crystallographic group) is homomorphic to a point group G. The

kernel of the homomorphism is the translational group T which leaves the crystal

lattice invariant so the Ĝ=T ' G (see Chapter 13). The homomorphism is 1-to-

one, because jT j � 1.

3.6 Direct products and semidirect products

Let F � f f ig and H � fh jg be two groups. The direct product of F and H is de®ned

by a set of ordered pairs ( f i, h j)

G � F 3 H �
X

i, j

( f i, h j) (3:6:1)

Then G is a new group under the multiplication ( f 1, h1)( f 2, h2) � ( f 1 f 2, h1 h2). The

number of elements in G equals the product of the orders of F and H . Furthermore,

since

( f , h)( f1, h1)( f , h)ÿ1 � ( ff1 f ÿ1, hh1 hÿ1) (3:6:2)

the number of classes in G equals the product of the numbers of classes in F and in H .

There exists another form of group product, called the semidirect product. Consider

two groups F � f f ig and H � fh jg that satisfy the following conditions:

1. their only common element is the identity e, i.e. F \ H � e,

2. the product between two group elements is de®ned, i.e. f i h j and h j f i are mean-

ingful and de®nite, and

3. F is invariant under H, i.e. h j f i h
ÿ1
j 2 F, for all h j 2 H . Then the set of the

products of their elements denoted

F ^ H �
X

i, j

f i h j (3:6:3)

forms a group called the semidirect product of F and H ; cf. Altmann (1997).

Proof

Identity: e (the only common element)

Closure: f i h j f s ht � f i(h j f s hÿ1
j )hjht 2 F ^ H

The inverse: ( f i h j)
ÿ1 � (hÿ1

j f ÿ1
1 h j)hÿ1

j 2 F ^ H

(Q.E.D.)

Note that the semidirect product symbol ^ is not commutative; by convention, the

invariant group must always be placed ®rst in the product F ^ H . If H is also invariant

under F, the semidirect product F ^ H becomes a direct product F 3 H with
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elements f i h j. This special situation arises most frequently when every element of F

commutes with every element of H .

Examples

1. Cni � Ci 3 Cn, where Ci � fe, Ig is the group of inversion.

2. Dn � Cn ^ U , where U � fe, u0g (see Section 3.1.2, Example 10).
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4

Unitary and orthogonal groups

Two of the most important types of groups that occur in physics are unitary groups and

orthogonal groups. We shall describe these groups as prototype examples of contin-

uous groups in order to facilitate later discussion on the general theory of the

continuous groups as well as of the ®nite groups, and, in particular, of the point

groups.

4.1 The unitary group U(n)

4.1.1 Basic properties

A unitary transformation in n-dimensional vector space V (n) is de®ned by an n 3 n

matrix U that satis®es

U yU � 1 (4:1:1)

which can be written also in the form UU y � 1 for U y � Uÿ1. According to (1.5.1), it

leaves invariant the Hermitian scalar product of two vectors in V (n) over the complex

®eld. The set of n 3 n unitary matrices forms a group under matrix multiplication.

Firstly, the product of two unitary matrices is also a unitary matrix, i.e. if U
y
2U2 � 1

and U
y
2U2 � 1, then (U1U2)yU1U2 � U

y
2U
y
1U1U2 � U

y
2U2 � 1. Moreover, there

exist the unit matrix 1 and the inverse given by U y, and obviously the matrix

multiplication obeys the associative law. It is called the unitary group in n dimensions

and denoted by U (n). The matrix entries are complex so that an n 3 n unitary matrix

is described by 2n2 real continuous parameters under the unitarity condition (4.1.1)

which imposes n2 linearly independent constraints (because the product U yU is

Hermitian). Accordingly, U (n) is an n2-parameter group, i.e. it is described by n2

linear independent real continuous parameters. It is a compact group since its

parameters vary over a continuously ®nite range due to the normalization conditionsXn

j�1

jUijj2 � 1; i � 1, 2, . . . , n

contained in (4.1.1).

The eigenvalues of a unitary matrix have modulus unity. Let Ë be the diagonalized

form of a unitary matrix, then we have ËyË � 1 from (4.1.1) so that every eigenvalue

ë j of a unitary matrix is unimodular satisfying

ë�j ë j � jë jj2 � 1; j � 1, 2, . . . , n

Therefore, any eigenvalue can be expressed by ë j � exp (iá j) with a real parameter á j.

This means that a unitary matrix is periodic with respect to each angular parameter á j.



In particular, the one-dimensional unitary group U (1) is formed by the set feiá;

0 < á < 2ðg.
The determinant of a unitary matrix U has modulus unity, i.e. jdet U j � 1, which

follows by taking the determinants of both sides of U yU � 1. In the special case in

which det U � 1, the matrix U is called a special unitary matrix. The set of all special

unitary matrices in n dimensions also forms a group called the special unitary group

and is denoted as SU (n). It is a subgroup of U (n): SU (n) , U (n), and is a (n2 ÿ 1)-

parameter group due to the additional condition det U � 1.

Example. The general element of SU (2) is described by a 2 3 2 matrix

S(a, b) � a b

ÿb� a�
� �

, jaj2 � jbj2 � 1 (4:1:2)

which is a three-parameter group: let a � a1 � ia2 and b � b1 � ib2, then a2
1 �

a2
2 � b2

1 � b2
2 � 1 so that only three of the real continuous parameters a1, a2, b1 and b2

are independent. From (4.1.2), it follows that a special unitary matrix S is expressed

by the Pauli spin matrices as follows:

S � a1ó0 � ib2ó1 � ib1ó2 � ia2ó3

where ó0 � 1, the 2 3 2 unit matrix. This expression is often very convenient for

describing its transformation properties by those of the Pauli spin matrices. The

parametrization of SU (2) by (a, b) is called the Cayley±Klein parametrization.

4.1.2 The exponential form

Any unitary matrix U can be exponentiated as follows:

U � exp K , Ky � ÿK (4:1:3)

where K is an anti-Hermitian matrix. If U is a special unitary matrix, we have

tr K � 0 (mod 2ði).

To show this, let the eigenvalues of a unitary matrix U be feiá1 , eiá2 , . . . , eiá ng, then

U can be diagonalized by a unitary transformation T to the form

T yUT � eiá1 � eiá2 . . . � eiá n � exp K9;

K9 � [iá1 � iá2 � � � � � ián] (4:1:4)

where we have used (1.2.12) for the second equality. On transforming this diagonalized

form back to the original U , we obtain

U � T (exp K9)T y � exp (TK9T y) � exp K

where K � TK9T y is anti-Hermitian because K9 is anti-Hermitian. This proves (4.1.3).

Next, taking the determinants of both sides of (4.1.4), we obtain

det U � exp (iá1 � iá2 � � � � � ián) � exp (tr K) (4:1:5)

Accordingly, if U is a special unitary matrix, we have det U � 1 by de®nition so that

tr K � 0 (mod 2ði). Q.E.D.

In general, we can set K � K0 � iá1, where K0 is the traceless part of K and á is a

real number. Then, from (4.1.3),
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U � eiáU0, U0 � exp K0 (4:1:6)

where U0 is a special unitary matrix de®ned by the traceless part K0 of K satisfying

det U0 � 1. The set of special unitary matrices in n dimensions forms the special

unitary group SU (n) whereas the set feiá; 0 < á < 2ðg forms the one-dimensional

unitary group U (1). Thus the n-dimensional unitary group U (n) is expressed by a

direct product group

U (n) � U (1) 3 SU (n) (4:1:7)

Previously, it has been shown that U (n) is an n2 parameter group1 so that SU (n) is

an (n2 ÿ 1)-parameter group. For example, SU (2) is a three-parameter group whereas

SU (3) is an eight-parameter group. The exponential form (4.1.3) is also very effective

when we discuss the group generators.

Example. According to (4.1.6), the general element S of SU (2) de®ned by (4.1.2)

can be written in an exponential form as follows:

S(è) � exp [ÿiH(è)] (4:1:8a)

where H is a traceless 2 3 2 Hermitian matrix that may be expressed by

H(è) � 1

2

è3 è1 ÿ iè2

è1 � iè2 ÿè3

� �
(4:1:8b)

Here, è1, è2 and è3 are three real parameters. These may be regarded as three

components of a vector è � (è1, è2, è3) that characterizes a rotation through an angle

è � jèj around the unit vector n � è=è. It is called the rotation vector of the unitary

transformation S. The numerical factor 1
2

in (4.1.8b) is introduced to correlate è to the

rotation vector of an ordinary rotation in three dimensions (cf. (4.3.2a)). The

parametrization of SU (2) by è is called the Euler±Rodrigues parametrization. Its

relation with the Cayley±Klein parametrization introduced previously by (4.1.2) will

be discussed in Section 10.1. In the theory of the spinning electron, an element S(è) of

SU (2) is called a spinor transformation because it describes the transformation of the

spin under a rotation characterized by the rotation vector è � èn. See Chapter 10 for

further detail.

4.2 The orthogonal group O(n, c)

4.2.1 Basic properties

An orthogonal transformation in the n-dimensional vector space V (n) is de®ned by an

n 3 n matrix R that satis®es the orthogonality relation

R�R � 1 (4:2:1a)

which can be written also in the form RR� � 1 for R� � Rÿ1. In terms of the matrix

elements, we haveX
s

Ris Rjs �
X

s

Rsi Rsj � äij; i, j � 1, 2, . . . , n

1 This is most easily seen, through the exponential form (4.1.3), from the number of independent parameters
of the anti-unitary group K , which equals n2.
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It is a transformation that leaves invariant the scalar product of two vectors x and y in

V (n) over the complex ®eld:

(Rx, Ry) � (x, R�Ry) � (x, y)

The set of orthogonal transformations in V (n) over the complex ®eld forms the

orthogonal group, denoted O(n, c). Since the matrix elements are complex, it is an

(n2 ÿ n)-parameter group: 2n2 real continuous parameters with n2 � n orthonormality

conditions imposed by (4.2.1a) (because R�R is a symmetric matrix).

Taking the determinants of the orthogonality relation (4.2.1a), we have (det R)2 � 1

so that

det R � �1 (4:2:1b)

When det R � 1 (ÿ1), R is called proper (improper). The set of proper orthogonal

transformations forms a group called the special orthogonal group, denoted SO(n, c).

It is a subgroup of O(n, c), i.e. SO(n, c) , O(n, c). An orthogonal transformation is

called simply a rotation. Likewise, O(n, c) may be called the rotation group (over the

complex ®eld) whereas SO(n, c) is called the proper rotation group. The rotation

group O(n, r) over the real ®eld is a subgroup of O(n, c). The Lorentz group is a

subgroup of O(4, c); see Kim (1980a).

4.2.2 Improper rotation

The complement of the proper rotation group SO(n, c) in O(n, c) is the set of

improper rotations in V (n); however, it does not form a group because a product of two

improper rotations is a proper rotation. One of the simplest improper rotations is a

re¯ection: a re¯ection mh in a plane perpendicular to a unit vector h in V (n) is de®ned,

in terms of the diadic notation,2 by

mh � 1ÿ 2hh; m2
h � 1 (4:2:2a)

or by the components

(mh)ij � äij ÿ 2hi h j; i, j � 1, 2, . . . , n

The re¯ection mh transforms the vector h to ÿh and leaves invariant a vector p

perpendicular to h;

mh
. h � ÿh, mh

. p � p

for h . h � 1 and h . p � 0. It is involutional, satisfying [mh]2 � 1, so that its

eigenvalues are 1 and ÿ1. Directly from (4.2.2a), the trace is given by

tr mh � nÿ 2 (4:2:2b)

from which the degeneracies of the eigenvalues 1 and ÿ1 are nÿ 1 and 1, respec-

tively; hence, det mh � ÿ1 as expected. In the special case in which h is a natural

basis vector e (1) � (1, 0, . . . , 0) in V (n), we have

m1 � diag [ÿ1, 1, . . . , 1]

2 A diad D � uv means that Dij � uiv j, where u � fuig and v � fv jg are vectors in V (n). By de®nition the
transpose of D is given by D� � vu.
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Let R be a proper rotation and m be a re¯ection in the full rotation group O(n, c).

Then any improper element can be expressed by a rotation±re¯ection: R9 � mR. Thus

the rotation group is decomposed into the cosets of the proper rotation group SO(n, c)

such that

O(n, c) � SO(n, c)� m SO(n, c) (4:2:3a)

i.e. the proper rotation group SO(n, c) is a halving subgroup of the full rotation group

O(n, c). When the dimensionality n is odd, however, it is simpler to de®ne an improper

rotation by a rotation±inversion R � IR, where I is the inversion de®ned by

I � diag [ÿ1, ÿ1, . . . , ÿ1] � ÿ1 (4:2:3b)

which commutes with every element of O(n, c). Since det I � (ÿ1)n, the inversion is

proper (improper) when n is even (odd). Thus, if n is odd, the above decomposition of

O(n, c) is rewritten as

O(n, c) � SO(n, c)� I SO(n, c) (4:2:3c)

This decomposition will be used for the three-dimensional rotation group.

It was Cartan (1913) who recognized the basic importance of the re¯ection as a

fundamental foundation stone of the group of orthogonal transformations O(n, c). His

basic theorem may be stated as follows: `Any proper (improper) rotation R 2 O(n, c)

is given by a product of an even (odd) number (< n) of re¯ections.' Here a re¯ection

means Cartan's re¯ection mh de®ned by (4.2.2a); cf. Kim (1980a).

4.2.3 The real orthogonal group O(n, r)

If we assume that the matrix entries in O(n, c) are real, we arrive at the real

orthogonal group, denoted by O(n, r). It is compact and a subgroup of O(n, c). It is

also a subgroup of the unitary group U (n) because a real orthogonal matrix is a special

case of a unitary matrix. Likewise, the special real orthogonal group SO(n, r) is a

subgroup of SO(n, c) and SU (n). Accordingly, all the theorems on SU (n) and

SO(n, c) hold for SO(n, r), with due modi®cations. The group±subgroup chains are

U (n), O(n, c) . O(n, r) . SO(n, r)

U (n) . SU (n) . SO(n, r)

O(n, c) . SO(n, c) . SO(n, r) (4:2:4)

Here, both O(n, r) and SO(n, r) are [(n2 ÿ n)=2]-parameter groups, because the

numbers of the independent continuous parameters are the same for both. The real

orthogonal group O(n, r) is also called the full (real) rotation group in n dimensions,

because its members are all real and leave invariant the distance between two points in

the real linear vector space V (n)(r). A member of O(n, r) is periodic with respect to

angular parameters, because O(n, r) , U(n). The special real orthogonal group

SO(n, r) is called the proper (real) rotation group.

The eigenvalues of a real orthogonal matrix R 2 O(n, r) are either 1 or ÿ1 or in

pairs feiè j , eÿiè jg with real è j. To see this, let u( j) be an eigenvector belonging to an

eigenvalue ë j of R, then

Ru( j) � ë ju
( j), Ru( j)� � ë�j u( j)� (4:2:5)
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where the second equation is the complex conjugate of the ®rst. Since O(n, r) , U (n),

we can set ë j � eiè j with a real è j, then ë�j � eÿiè j . In the case in which ë�j � ë j we

have ë2
j � 1 so that ë j � 1 or ÿ1. Q.E.D.

4.2.4 Real exponential form

A real proper rotation R (i.e. det R � 1) 2 SO(n, r) can be exponentiated in the form

R � exp A; A� � ÿA (4:2:6)

where A is a real antisymmetric matrix which is traceless by de®nition. This is a

special case of the special unitary matrix U0 given by (4.1.6); cf. Littlewood (1950).

Previously we have shown that SO(n, r) is an [n(nÿ 1)=2]-parameter group; how-

ever, this is most easily seen from the number of the independent parameters of the

real antisymmetric matrix A. Thus SO(2, r) is a one-parameter group whereas

SO(3, r) is a three-parameter group.

Example. From (4.2.6), a plane rotation R(2)(è) 2 SO(2, r) can be expressed by the

following exponential form (see (1.6.2)):

R(2)(è) � cos è ÿsin è
sin è cos è

� �
� exp

0 ÿè
è 0

� �
(4:2:7)

4.3 The rotation group in three dimensions O(3, r)

Since there are many applications for the full rotation group in three dimensions

O(3, r) (� O(3)) we shall discuss its properties in greater detail. According to (4.2.3c),

the rotation group can be decomposed into

O(3, r) � SO(3, r)� I SO(3, r)

where SO(3, r) (� O(�3)) is the proper rotation group (or the special real orthogonal

group) in three dimensions and I is the inversion which commutes with any 3 3 3

matrix. We shall begin with the discussion of the proper rotation group O(�3).

4.3.1 Basic properties of rotation

According to (4.2.6), a real proper rotation in V (3) can be expressed by an antisym-

metric matrix A that may be written in the following form:

R(è) � eA; A �
0 ÿè3 è2

è3 0 ÿè1

ÿè2 è1 0

24 35 (4:3:1)

where (è1, è2, è3) is a set of real parameters that completely determines the rotation

and that may be regarded as a vector è � (è1, è2, è3) whose transformation property

must be determined by that of the rotation R(è): it is an eigenvector of R(è)

belonging to the eigenvalue unity, i.e. R(è)è � è for Aè � 0. Thus, R(è) leaves

invariant a line passing through the coordinate origin O and parallel to è; the line is

called the axis of rotation. The vector è is called the rotation vector: it must be an
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axial vector3 because any rotation (through which è is de®ned) is invariant under the

inversion I , i.e. IR(è)I � R(è).

In the following, we shall show that R(è) describes a rotation about the rotation

vector è counterclockwise (viewed from the �è direction) through an angle è de®ned

by the magnitude è � jèj. Let the unit vector s � è=è along the rotation vector è be

called the axis-vector of the rotation R(è), then it is also axial since è is axial, and the

rotation R(è) is rewritten in the form (cf. (1.6.4c))

R(ès) � eèù; ù � ù(s) �
0 ÿs3 s2

s3 0 ÿs1

ÿs2 s1 0

24 35 (4:3:2a)

where the matrix ù � ù(s) is called the in®nitesimal rotation about s because

@R=@èjè�0 � ù. Let the plane perpendicular to the axis-vector s be called the ù-

plane, then R(è) is a plane rotation that leaves the ù-plane invariant. Let x be a vector

that transforms according to x � eèùx0, then the rate of rotation of x per unit angle is

given by

x9 � ùx � [s 3 x] (4:3:2b)

From the geometric meaning of the vector product, the in®nitesimal displacement of x

under R(ès) occurs counterclockwise about the axis-vector s (viewed from the �s

direction), as shown in Figure 4.1.

xII

x⊥

x

dx

dθ

s

O

Figure 4.1. An in®nitesimal rotation about s in V (3).

3 A vector in V (3) that does not change its sign under the inversion I is called an axial vector whereas an
ordinary vector changes its sign under I and is called a polar vector. A typical example of an axial vector
is given by a vector product [v 3 u] of two vectors of the same parity.
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Let us look into the vectorial nature of the axis-vector s. Let v be a unit vector on

the ù-plane and set u � ùv � [s 3 v], then the set of three unit vectors fs, v, ug
forms a right-handed orthogonal trio so that we can express s and ù in terms of v and

u as follows:

s � [v 3 u], ù � uvÿ vu (4:3:2c)4

These expressions exhibit manifestly the axial nature of the axis-vector s and the

tensorial nature of ù, because two vectors v and u (� ùv) are of the same parity. It has

been shown by Kim (1980a) that a plane rotation belonging to the group O(n, c) is

also expressed by R(è) � exp (èù) with ù � uvÿ vu, where u and v are n-dimen-

sional vectors. This extension has an important application in the representation of the

Lorentz group, which is a subgroup of O(4, c).

4.3.1.1 The characteristic equation of ù
From (4.3.2a), the square of ù is given by

ù2 � ssÿ 1 (4:3:3a)

in the diadic notation. Since ùs � [s 3 s] � 0, we have the following characteristic

equation of ù,

ù3 � ù � 0 (4:3:3b)

From this, it follows that the operators ù and (1� ù2) are orthogonal in the sense that

ù(1� ù2) � 0 and so are (1� ù2) and ÿù2. Here, the last two operators are

projection operators that are mutually dual and satisfy X 2 � X. Thus, for a given

vector x 2 V (3) one can de®ne a set of orthogonal trios by (see Figure 4.1)

x9 � ùx � [s 3 x], xi � (1� ù2)x � s(s . x), x? � ÿù2x (4:3:4)

Here x9 is a vector on the ù-plane and perpendicular to x; xi is the projection of x

onto s and hence is parallel to s while x? (� xÿ xi ) is the projection of x on the ù-

plane, hence perpendicular to s. Suppose that the vector x rotates according to

x � eèùx0, then x9, xi and x? provide the rate, axis and arm of the rotation of x,

respectively (see Figure 4.1). Note that the magnitudes of the rate and arm are equal,

i.e. x2
? � x92 � x90

2, for ù4 � ÿù2. Here x90 � ùx0. These projection operators intro-

duced above play the essential role in determining all the possible lattice types of the

crystal lattices, as will be discussed in Section 13.3.2.

4.3.1.2 The matrix expression of R(è)

Since ù3 � ÿù from the characteristic equation of the in®nitesimal rotation ù, the

expansion of exp (èù) can not contain a term higher than ù2. In fact, using

ù2N�1 � (ÿ1)Nù and ù2N�2 � (ÿ1)Nù2, we arrive at the expansion

R(è) � eèù � 1� ù sin è� ù2(1ÿ cos è) (4:3:5a)

Accordingly, the periodicity of the rotation R(è) with respect to è is described by

R((è� 2ð)s) � R(ès) (4:3:5b)

4 The second expression is obtained via ùr � [s 3 r] � [v 3 u] 3 r � u(v . r)ÿ v(u . r) � (uvÿ vu) . r,
where r is an arbitrary vector.
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Thus, the parameter domain Ù of the rotation group O(�3) is de®ned by a sphere of

radius ð with the cyclic boundary condition

Ù: 0 < jèj < ð; R(ðs) � R(ÿðs) (4:3:6)

where two opposite poles ðs and ÿðs are regarded as one point in Ù. Then there

exists a one-to-one correspondence between the rotation R(è) 2 O(�3) and the rotation

vector è in the parameter domain Ù.

Now, we shall write down the 3 3 3 matrix representation of R(è). Using (4.3.3a),

we rewrite (4.3.5a) in the form

R(ès) � cos è 1� ù sin è� ss(1ÿ cos è) (4:3:7)

In a simple special case in which the axis-vector s is parallel to the z-axis, i.e.

s � (0, 0, 1), Equation (4.3.7) takes the following familiar form:

R(0, 0, è) �
cos è ÿsin è 0

sin è cos è 0

0 0 1

24 35 (4:3:8a)

which is the rotation in the x, y plane through an angle è. In the general case for three

dimensions, we have

R(ès) �
s2

1 � cos è (1ÿ s2
1) (1ÿ cos è)s1s2 ÿ sinè s3 (1ÿ cos è)s1s3 � sin è s2

(1ÿ cos è)s2s1 � sin è s3 s2
2 � cos è (1ÿ s2

2) (1ÿ cos è)s2s3 ÿ sin è s1

(1ÿ cos è)s3s1 ÿ sin è s2 (1ÿ cos è)s3s2 � sinè s1 s2
3 � cos è (1ÿ s2

3)

24 35
(4:3:8b)

which is explicit with respect to the axis-vector s and the rotation angle è; cf. Lomont

(1959).

Next, we consider the inverse problem. Suppose that there is given a 3 3 3 real

orthogonal matrix R, then the problem is to ®nd its rotation vector è. Firstly, the angle

of rotation è is determined by the trace of R

tr R � 1� 2 cos è, 0 < è < ð (4:3:9a)

Secondly, from (4.3.5a), the in®nitesimal rotation ù is determined by

ù � (Rÿ R�)=2 sin è, 0 , è,ð (4:3:9b)

from which the axis-vector s follows via (4.3.2a). When è � ð, ù becomes inde®nite.

In this case, R is a binary rotation given, directly from (4.3.7), by

R(ðs) � R(ÿðs) � 2ssÿ 1 (4:3:10)

which determines s up to the sign. This corresponds simply to the fact that a binary

rotation can be regarded as a rotation through angle ð about s or ÿs.

Exercise. Find the rotation vector è of a real orthogonal matrix de®ned by

R �
0 0 1

1 0 0

0 1 0

24 35 (4:3:11)

From (4.3.9a), we ®nd è � 1208. Then from (4.3.9b) we have
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ù � 1p
3

0 ÿ1 1

1 0 ÿ1

ÿ1 1 0

24 35 (4:3:12)

By comparison of this with (4.3.2a) we obtain s � (1=
p

3, 1=
p

3, 1=
p

3). Thus R

describes 3xyz, the three-fold rotation about the diagonal direction with respect to the

x-, y- and z-axes of the Cartesian coordinate system. For this simple case, the basis-

vector representation 3xyz is obtained directly from the matrix expression (4.3.11)

through Lemma 5.1.1.

4.3.2 The conjugate rotations

The similarity transformation TR(è)T� of a rotation R(è) 2 O(�3) by a proper rotation

T 2 O(�3) is called the conjugate rotation of R(è) by T. It is given by

R9 � TR(è)T� � R(Tè) (4:3:13a)

That is, it simply rotates the rotation vector è by T.

This important relation follows from the fact that the rotation vector è is the

eigenvector of R(è) belonging to the eigenvalue unity, i.e. R(è)è � è. In fact, through

TR(è)T�Tè � Tè, the rotation vector of the conjugate rotation R9 is given by

è9 � Tè, because è9! è as T ! 1. Since the axis-vector s is parallel to è, we have

also

Tù(s)T� � ù(T s) (4:3:13b)5

The above relation (4.3.13a) is truly a life-saving result in the theory of rotation:

instead of working out the similarity transform of R(è), is is necessary only to rotate

the rotation vector è. Two rotation vectors connected by a rotation such that è9 � Tè
are said to be equivalent, and so are their axis-vectors s and s9.

Obviously, Equation (4.3.13a) can be extended to an improper rotation T � IT

belonging to the full rotation group O(3, r) (� O(3)), where I is the inversion. Since

the inversion I commutes with any 3 3 3 matrix we have

T R(è)T� � TR(è)T� � R(Tè) � R(Tè) (4:3:14)

where the last equality holds since the rotation vector is axial, i.e. Iè � è.

The set of all conjugate rotations of a given rotation R(è) 2 O(�3) forms the

conjugate class of R(è) in the rotation group. Their rotation angles are all the same

jèj � jTèj because an orthogonal matrix T leaves the length of a vector invariant.

Conversely, all rotations with the same rotation angle è are in the same class of

SO(3, r), because their rotation vectors è lie on a concentric sphere with the radius è
in the parameter space Ù and any two vectors è1 and è2 on the sphere can be brought

together by a rotation about an axis perpendicular to è1 and è2. Obviously the above

discussion can easily be extended to the full rotation group O(3). We express an

improper rotation by a rotation±inversion R(è) � IR(è), and de®ne the rotation vector

of R(è) by that of the proper part R(è). Then two improper rotations R(è1) and R(è2)

belonging to O(3) are in the same class if their rotation angles jè1j and jè2j are the

same simply because the inversion I commutes with any rotation in O(3).

5 This relation may also be proven on the basis of (4.3.2c): ù(s9) � TùT� � T (uvÿ vu)T� �
(T u)(Tv)ÿ (Tv)(T u), so that s9 � [Tv 3 Tu] � T s.
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Exercise 1. Let R(è) be a plane rotation, then show that

2s R(è)2s � R(è), 2h R(è)2h � R(ÿè) (4:3:15a)

where s i è ? h.

Exercise 2. Previously in (3.1.2a) we have shown the following relation via the

stereographic projection diagram given in Figure 3.1:

2h2v � cz(è); h . v � cos (è=2) (4:3:15b)

Show this relation using the conjugate transformation (4.3.13a).

Hint. 2h � R(è=2)2v R(ÿè=2); v ? è so that

2h2v � R(è=2)2v R(ÿè=2)2v

� R(è=2)R(è=2) � R(è)

Exercise 3. Using the same notations as those in Exercise 2, show that

cz(è)2v � 2vcz(è)� � 2h (4:3:15c)

Exercise 4. Show that two proper rotations R1 � R(è1) and R2 � R(è2) commute if

and only if either their rotation axes are parallel or they are mutually perpendicular

binary rotations, i.e.

è1 i è2 or è1 ? è2 and jè1j � jè2j � ð (4:3:16)

Solution. Let R2 R(è1)R�2 � R(è91) with è91 � R2è1, then R2 R(è1) � R(è91)R2. Thus

R2 commutes with R(è1) if and only if R(è91) � R(è1). From the one-to-one correspon-

dence between R(è) and è in the parameter space Ù de®ned by (4.3.6), we have either

R2è1 � è91 � è1 so that è1 i è2 or R2è1 � è91 � ÿè1 with jè1j � ð so that both R1

and R2 are binary and è1 ? è2. Q.E.D.

4.3.3 The Euler angles

Frequently, a rotation is described by a product of three elementary rotations about the

coordinate axes (z-, y- and z-axes) through angles á, â and ã, respectively. These

angles are called the Euler angles. It may be worthwhile to discuss these angles even

though we seldom use them in this book. To understand the basic structure of the Euler

construction, we shall ®rst rewrite the conjugate transformation introduced by

(4.3.13a) in the form

TR(è) � R(è9)T ; è9 � Tè

Repeated applications of this relation for a product of three successive rotations yield

R(è3)R(è2)R(è1) � R(è92)R(è3)R(è1)

� R(è92)R(è91)R(è3)

� R(è 01)R(è92)R(è3) (4:3:17)
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where

è 01 � R(è92)è91, è91 � R(è3)è1, è92 � R(è3)è2

The above equation (4.3.17) relates a product of three successive rotations about three

rotation vectors, è1, è2 and è3, ®xed in the original coordinate system to a product of

three successive rotations about è3 and the transformed rotation vectors è92 and è 01.

To describe the Euler construction, let ex, e y and ez be three unit vectors along the

x-, y- and z-axes of the Cartesian coordinate system ®xed in space (see Figure 4.2) and

choose the three rotation vectors as follows:

è1 � áez, è2 � âe y, è3 � ãez

with the angles of rotation limited by

ÿð < á,ð, 0 < â < ð, ÿð < ã,ð

Then, (4.3.17) takes the form

R(ãez)R(âe y)R(áez) � R(áe 0z)R(âe9y)R(ãez) � R(á, â, ã) (4:3:18)

where e9z � ez and

e 0z � R(âe9y)ez, e9y � R(ãez)e y

The angles á, â and ã of the three elementary rotations de®ne the Euler angles. The

elementary rotations in the ®rst expression of (4.3.18) are with respect to the z-, y- and

z-axes of the ®xed coordinate system, whereas the elementary rotations in the second

expression are with respect to the ez, e9y and e 0z axes (see Figure 4.2). Here the ®rst

operation R(ãez) transforms e y to e9y, the second operation R(âe9y) transforms ez to e 0z
and the last operation R(áe 0z) describes a rotation about e 0z through an angle á.

x ′

x

y ′

y

z, z ′

z″

α

â

γ

γ

O

Figure 4.2. The Euler angles á, â and ã.
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Depending on the situation, one can use either expression of equation (4.3.18) to

calculate the nett rotation R(á, â, ã). When we describe the motion of a point (x, y, z)

with respect to a ®xed coordinate system as in the present approach, it is obvious that

the ®rst expression of (4.3.18) is more convenient, since each elementary rotation is

referred to the ®xed coordinate system. When we describe the coordinate transforma-

tion of a ®xed point in space, however, the second expression of (4.3.18) is more

convenient, since each elementary transformation is referred to the transformed

coordinate system. On the basis of the ®rst expression of (4.3.18), the explicit form of

the rotation R(á, â, ã) is given by

R(á, â, ã) �
cos ã ÿsin ã 0

sin ã cos ã 0

0 0 1

24 35 cos â 0 sin â
0 1 0

ÿsin â 0 cos â

24 35 cosá ÿsiná 0

siná cosá 0

0 0 1

24 35
�

cos ã cos â cosáÿ sin ã siná ÿcos ã cos â sináÿ sin ã cosá cos ã sin â
sin ã cos â cosá� cos ã siná ÿsin ã cos â siná� cos ã cosá sinã sin â

ÿsin â cosá sin â siná cos â

24 35
(4:3:19)

where each elementary rotation is obtained from (4.3.8b). This representation

R(á, â, ã) for a rotation may be compared with the representation R(ès) given by

(4.3.8b).
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5

The point groups of ®nite order

5.1 Introduction

Any subgroup of the full rotation group in three dimensions O(3, r) (� O(3)) is called

a point group, because all the group elements leave at least one point (the coordinate

origin) in space invariant. Since there are a great deal of applications for the point

groups of ®nite order, we shall discuss their group structures in greater detail. There

exist ®ve types of proper and nine types of improper point groups of ®nite order. A

new system of notations for the latter is introduced by expressing an improper

operation with the inversion or a rotation±inversion. This system is very effective in

describing the isomorphisms between proper and improper point groups, because the

inversion commutes with any point operation.

Following the historical development, we shall introduce a point group by the

symmetry point group of a geometric body such as a regular polyhedron. The

symmetry of a geometric body is de®ned by the set of all symmetry transformations

which brings the body into coincidence with itself. By de®nition, such a set of

transformations forms a group, the symmetry group G of the body. More speci®cally,

let p be a point on the body, then a set of transformations which leaves the point p

invariant forms a subgroup H of G. Thus, the number np of the points which are

equivalent to the point p is given by the index of H in G

np � jGj=jH j or jGj � npjH j (5:1:0)

where jGj and jH j are the orders of the respective groups G and H. Since jH j > 1, the

order jGj of the symmetry group G is characterized by the maximum number of

mutually equivalent points on the body. Equation (5.1.0) can be used to determine the

order of the symmetry group of a geometric body or the number of the equivalent

points np of the body. For example, a regular tetrahedron has four equivalent triangular

faces and the mid-point of each face is invariant under the uniaxial group C3. Hence

its proper symmetry point group, the tetrahedral group T, has the order jT j �
4 3 3 � 12 from (5.1.0). Analogously, jOj � 8 3 3 � 24 for the octahedral group O

and jY j � 20 3 3 � 60 for the icosahedral group Y. There exists no other proper

polyhedral group besides these three groups T, O and Y (Section 5.3). The structure of

the buckyball molecule C60 is interesting: it belongs to the icosahedral group Y and all

60 carbon atoms are on mutually equivalent vertices, but not along any proper axis of

rotation (Section 5.3.6). This is consistent with jY j � 60 in view of (5.1.0) with

jH j � 1.

Guided by the geometric symmetry of a body, we shall arrive at the generators of

the symmetric group G and the set of the algebraic de®ning relations or the

presentation which contains the complete information on G. The truly exciting aspect

is that the number of generators is very much limited (< 3) for any point group G of



®nite order. The algebraic approach based on the presentation is very effective in

determining the subgroup structure and the representations of G and also for its

extensions to the space groups and magnetic space groups.

5.1.1 The uniaxial group Cn

The set of all rotations about a ®xed axis forms a uniaxial group of in®nite order,

denoted C1. It is Abelian. Let us consider a subgroup Cn , C1 of a ®nite order n,

then there exists the minimum rotation about the axis through an angle 2ð=n, which is

called the n-fold axis of rotation and denoted by cn. We say that the axis and axis-

vector of cn are n-fold or of order n. When we discuss the point symmetry of a body,

the minimum angle of rotation about an axis which brings the body into coincidence

with itself determines the order of the axis. Let c4 be an axis of order 4, for example,

then two successive four-fold rotations c2
4 amount to a two-fold rotation: it is a two-

fold rotation c2 about an axis of order 4.

An n-fold axis of rotation cn about an axis-vector s is represented by the orthogonal

transformation R(2ðnÿ1s) de®ned by (4.3.2a). Thus, a uniaxial group Cn of order n

generated by cn is expressed by

Cn � fcm
n � R(2ðmnÿ1s); m � 0, 1, 2, . . . , nÿ 1g (5:1:1a)

It is a cyclic group and is de®ned by one generator a � cn and one de®ning relation

(see (3.2.2))

an � e (5:1:1b)

Since it is Abelian, the number of the classes equals the number of the elements n.

There is no further rotation about this axis besides the elements of Cn. If there is

a rotation R(ès) such that è 6� 2ðm=n for any m, then one can construct a rotation

with an angle (èÿ 2ðm=n) that can be made smaller than the minimum angle

2ð=n.

5.1.2 Multiaxial groups. The equivalence set of axes and axis-vectors

Let P be a proper point group of a ®nite order in general. Then the group has a ®nite

set of distinct rotation axes passing through the coordinate origin O, each of which is

of a ®nite order and de®nes a uniaxial group Cn. These uniaxial groups are all distinct

except for the identity element which they share.

Let R(ès) be a rotation in P through an angle è about an axis-vector s. Then the

conjugate transformation of R(ès) by an element á in P rotates only the axis-vector s,

leaving è ®xed,

áR(ès)áÿ1 � R(èás) (5:1:2)

as has been shown in (4.3.13a). Here the transformed vector s9 � ás should also

represent one of the rotation axes in P. When axis-vectors are mapped onto each

other by a group element of P, they are said to be equivalent in P and so are their

axes of rotation. To a given axis of rotation there correspond two axis-vectors s and

ÿs that are mutual inverses because Rÿ1(ès) � R(ÿès). In the case in which an

axis-vector s is equivalent to its inverse ÿs, i.e. there exists a rotation á in P such
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that ÿs � ás, we say that the corresponding axis is two-sided (otherwise it is one-

sided). Obviously such an element á in P is a binary rotation c2 whose axis is

perpendicular to the axis-vector s. Thus, if the two-sided axis is n-fold, the group P

contains the dihedral group Dn as its subgroup. If one of the axes in an equivalence

set is two-sided, then all its partners in the set are also two-sided (for ás � ÿs

means âáâÿ1(âs) � ÿ(âs), 8â 2 P. The class associated with an equivalence set of

two-sided axes is ambivalent, containing a rotation R(ès) and its inverse

R(ÿès) � R(ès)ÿ1 in the same class. Conversely, if a class of rotations is ambivalent

then the corresponding rotation axes are two-sided except for a class of binary

rotations. A class of binary rotations is always ambivalent because a binary rotation

equals its own inverse, i.e. R(ðs) � R(ÿðs) irrespective of whether the axis is two-

sided.

The de®nition of a two-sided axis can be extended to an improper point group as

well. Here the axis-vector of an improper rotation R(ès) � IR(ès) is de®ned by that of

the proper part R(ès), because the inversion I commutes with any point operation. In

this case, an operation that brings s to ÿs can be a binary rotation c2 or a re¯ection

m � Ic2; in either case, c2 is perpendicular to s, for s being an axial vector.

Wyle (1952) has shown on the basis of the allowed set of axis-vectors for a proper

point group that there exist only ®ve types of proper point groups of ®nite order: the

uniaxial group Cn, dihedral group Dn, tetrahedral group T, octahedral group O and

icosahedral group Y, as will be shown in Section 5.4.

5.1.3 Notations and the multiplication law for point operations

Let us denote by ns an n-fold rotation R(2ðnÿ1s) about an axis-vector s counter-

clockwise (viewed from the �s direction). For example, in the Cartesian coordinate

system, 3xyz, 2x y and 4x denote the three-fold, two-fold and four-fold axes of rotation

about the respective axis-vectors s pointing toward points with the coordinates

(1, 1, 1), (1, ÿ1, 0) and (1, 0, 0), from the coordinate origin.1 Moreover, the inversion

I is denoted by 1 and a rotation±inversion R(2ðnÿ1s) � IR(2ðnÿ1s) by ns. This

notation may be called the axis-vector representation of a rotation. The rotation±

re¯ection axes, which are basic elements in the SchoÈn¯ies notation, are completely

replaced by rotation±inversion axes, see Section 5.5.

The axis-vector representation is very convenient for expressing the elements of

crystallographic point groups. For a typical example, we consider the octahedral group

O which is also the proper symmetry point group of a cube that has eight equivalent

vertices with C3 symmetry. The order jOj of the group O equals 24, as has been shown

via (5.1.0). Corresponding to six faces, eight vertices and 12 edges of a cube, there

exist three four-fold axes c4 joining the opposite faces of the cube, four three-fold axes

c3 joining the opposite vertices and six two-fold axes c2 joining the mid-points of the

opposite edges, see Figure 5.1. These axes are all two-sided. If we take the Cartesian

coordinate axes along the three four-fold axes, then the 24 elements of the octahedral

group O are expressed by

1 By de®nition, 3xyz � 3 yxz, 2x y � 2 yx, etc. for the Cartesian coordinate system, i.e. the permutations of the
subscripts are immaterial for the geometric meaning of the rotation. See Figure 5.1 for the graphical
presentation of the axis-vectors. It is also to be noted that similar systems of notation have been introduced
by Zak et al. (1969) and by Heine (1977).
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C(e): 1

C(c4): 4z, 4x, 4 y, 4z, 4x, 4 y

C(c2
4): 2z, 2x, 2 y

C(c3): 3xyz, 3x yz, 3x yz, 3xyz, 3x y z, 3x y z, 3x yz, 3x yz

C(c2): 2xy, 2 yz, 2zx, 2x y, 2z y, 2zx (5:1:3a)

where ns � nÿ1
s . Each set in (5.1.3a) forms a class, since all faces of a cube are

equivalent and so are all the vertices and all the edges, respectively. This follows also

from the conjugate relation (5.1.2), i.e. ánsáÿ1 � nás, which requires only the

equivalence of the axis-vectors. Thus, in view of Figure 5.1, some typical conjugations

are

3xyz4z3
ÿ1
xyz � 4x, 4z3xyz4

ÿ1
z � 3x yz, 3xyz2xy3ÿ1

xyz � 2 yz (5:1:3b)

Moreover, every class is ambivalent since all rotation axes are two-sided; e.g.

2x y3xyz2x y � 3x y z.

It remains to show that the set of these 24 elements given in (5.1.3a) closes under

multiplication and thus forms a group. This will be proven by constructing the

multiplication table of the group O through a faithful representation of the point group

based on the three unit basis vectors of the Cartesian coordinate system.

5.1.3.1 Basis-vector representations

From the geometric meaning of the axis-vector representation ns of an n-fold rotation,

we shall introduce a faithful representation of rotation by which one can determine the

3 3 3 matrix representation as well as the product of two successive rotations, without

using the general matrix expression given by (4.3.8b). It is based on the natural basis

xyz xyz

xy

xyz

yz

xyz xz xyz

yz
xyz

xyz

y

z

x

O

xyz

xy

Figure 5.1. The graphical presentation of the axis-vectors for the elements of the

octahedral group O and its subgroups. Note that each axis-vector is pointing

toward a vertex, a mid-point of a face or a mid-point of an edge of a cube from

the center of the cube.
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de®ned by the unit vectors along the axes of an assumed coordinate system in the

linear vector space V (n), which was introduced by Equation (1.1.1) in Chapter 1. For

V (3), the natural basis is de®ned by the three unit vectors i, j and k:

i �
1

0

0

24 35, j �
0

1

0

24 35, k �
0

0

1

24 35 (5:1:4a)

The basic lemma is as follows.

Lemma 5.1.1. If a rotation R 2 V (3) transforms a natural basis [i, j, k] of a coordi-

nate system in V (3) into a new basis [i9, j9, k9] such that

Ri � i9, R j � j9, Rk � k9 (5:1:4b)

then the 3 3 3 matrix representation of R is given by

R � [i9, j9, k9] (5:1:5)

that is, the three column vectors of R are given by the transformed basis vectors i9, j9
and k9.

The proof is trivial. By uniting the three equations in (5.1.4b) into one single matrix

formula, we obtain

R[i, j, k] � [Ri, R j, Rk] � [i9, j9, k9] (5:1:6a)

The lemma is proven, since the matrix [i, j, k] is the unit matrix in V (3)

[i, j, k] �
1 0 0

0 1 0

0 0 1

24 35 (5:1:6b)

in view of (5.1.4a). The expression (5.1.5) will be called the basis-vector representa-

tion of the rotation R. Obviously, the rotation±inversion is expressed by R �
[ÿi9, ÿ j9, ÿk9].

The lemma is easily extended to any dimensions, and applies for a rectilinear

coordinate system as well as for an oblique coordinate system such as a rhombic or

hexagonal coordinate system. Moreover, the basis-vector representation is very effec-

tive in calculating the product of two successive rotations, in particular, if the

coordinate system is symmetric with respect to the rotations.

5.1.3.2 Examples

A rotation 3xyz in the Cartesian coordinate system (right-handed) rotates the right-

handed trio i, j, k counterclockwise such that i! j! k! i, i.e.

3xyz i � j, 3xyz j � k, 3xyz k � i (5:1:7a)

Accordingly, from (5.1.5) and (5.1.4a),

3xyz � [ j, k, i] �
0 0 1

1 0 0

0 1 0

24 35 (5:1:7b)

Analogously, some of the typical rotations in the group O are expressed by
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2z � [ÿi, ÿ j, k], 4z � [ j, ÿi, k], 3x yz � [ÿk, ÿi, j]

2zx � [ÿk, ÿ j, ÿi] (5:1:7c)

These are easily formed: 2z is the 1808 rotation about the z-axis, which brings i! ÿi

and j! ÿ j, leaving k invariant; 4z is a 908 rotation about the z-axis such that

i! j! ÿi and leaving k invariant; 3x yz rotates the left-handed trio fÿi, j, kg
counterclockwise such that ÿi! k! j! ÿi, from which there follow i! ÿk,

j! ÿi and k ! j; and, ®nally, 2zx is the two-fold rotation about the diagonal for the

z- and ÿx-axes such that it inverts j to ÿ j and exchanges k and ÿi, thus there follow

i! ÿk, j! ÿ j and k! ÿi. Note also that 2zx � 2zx, being a binary rotation. The

basis-vector representation of the octahedral group O thus formed is presented in

Table 5.1, which will be used to construct the multiplication table of the group O via

the law of multiplication introduced below.

The product of two successive rotations based on the basis-vector representation is

calculated by the multiplication law. Let R � [a, b, c] be a 3 3 3 matrix de®ned by

three column vectors, then

[a, b, c]i � a, [a, b, c] j � b, [a, b, c]k � c (5:1:8)

which is obvious, since i, j and k are the column vectors de®ned by (5.1.4a). For

example, 3xyz i � [ j, k, i]i � j. Thus, products of the elements of the group O are

given by, e.g.,

4z3xyz � [ j, ÿi, k][ j, k, i] � [ÿi, k, j] � 2zy

2x y2zx � [ÿ j, ÿi, ÿk][ÿk, ÿ j, ÿi] � [k, i, j] � 3x y z

2z3xyz � [ÿi, ÿ j, k][ j, k, i] � [ÿ j, k, ÿi] � 3x y z (5:1:9)

Via the law of multiplication given by (5.1.8) and using the basis-vector representa-

tion of the group O given in Table 5.1, we have constructed the multiplication table of

the group O as given by Table 5.6 later. This then proves that the set of point

operations given in (5.1.3a) indeed closes under multiplication and hence forms a

group.

Exercise. Show that the basis-vector representations for 3xyz and 2zx given in Table

5.1 hold also for a rhombic coordinate system, and thereby show that 3xyz2zx � 2z y.

Table 5.1. The basis-vector representation of the octahedral group O based on the

Cartesian coordinate system (here, i � ÿi, for example)

1 � [i, j, k]

2x � [i, j, k], 2 y � [i, j, k], 2z � [i, j, k]

3xyz � [ j, k, i], 3x y z � [ j, k, i], 3x yz � [ j, k, i], 3x yz � [ j, k, i], 3x y z � [k, i, j],

3x yz � [k, i, j], 3x yz � [k, i, j], 3xyz � [k, i, j]

4x � [i, k, j], 4x � [i, k, j], 4 y � [k, j, i], 4 y � [k, j, i], 4z � [ j, i, k], 4z � [ j, i, k]

2z y � [i, k, j], 2zy � [i, k, j], 2zx � [k, j, i], 2zx � [k, j, i], 2x y � [ j, i, k],

2xy � [ j, i, k]
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5.1.3.3 Jones representations

Let r be an arbitrary point in V (3) with the coordinates (x, y, z) with respect to the

natural basis of a coordinate system. Then it is expressed by a column vector

r � xi � y j � zk (5:1:10)

Under a rotation R, the point r is transformed to a new point r9 � (x9, y9, z9)
according to

Rr � xi9� y j9� zk9 � x9i � y9 j � z9k � r9 (5:1:11)

Thus, one may represent the rotation by the coordinates of the transformed point r9

R � (x9, y9, z9) (5:1:12)

which is known as the Jones faithful representation of the rotation R. For example, in

the Cartesian coordinate system we have, from (5.1.10) and (5.1.7a),

3xyz r � x j � yk � zi

so that x9 � z, y9 � x and z9 � y from (5.1.11); hence, the Jones representation of 3xyz

is given by

3xyz � (z, x, y) �
0 0 1

1 0 0

0 1 0

24 35 (5:1:13)

Here, the matrix expression follows if we regard z, x and y in the column vector

(z, x, y) as one-row matrices [0, 0, 1], [1, 0, 0] and [0, 1, 0], respectively. The Jones

representation can also be used to calculate the product of two rotations.2 In Table 5.2,

we have provided the Jones representation for the octahedral group O, which will be

used for the construction of the space groups in Chapter 13.

The Jones representation of a group G generated from an arbitrary initial point

(x, y, z) is a faithful representation and thus describes the maximum set of the

equivalent points with respect to G, cf. (5.1.0).

Table 5.2. The Jones faithful representation of the octahedral group O based on the

Cartesian coordinate system (here, x � ÿx, for example)

1 � (x, y, z)

2x � (x, y, z), 2 y � (x, y, z), 2z � (x, y, z)

3xyz � (z, x, y), 3x y z � (z, x, y), 3x yz � (z, x, y), 3x yz � (z, x, y), 3x y z � (y, z, x),

3x yz � (y, z, x), 3x yz � (y, z, x), 3xyz � (y, z, x)

4x � (x, z, y), 4x � (x, z, y), 4 y � (z, y, x), 4 y � (z, y, x), 4z � (y, x, z), 4z � (y, x, z)

2z y � (x, z, y), 2zy � (x, z, y), 2zx � (z, y, x), 2zx � (z, y, x), 2x y � (y, x, z),

2xy � (y, x, z)

2 Here, the multiplication law is given by x(x9, y9, z9) � x9, y(x9, y9, z9) � y9, z(x9, y9, z9) � z9, for x, y and
z being row vectors; e.g., 4z3xyz � (y, x, z)(z, x, y) � (x, z, y) � 2zy.
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5.2 The dihedral group Dn

The group Dn is the group of proper rotations which leaves a regular dihedral n-gon

invariant. Since the dihedron has two equivalent faces (up and down) and the mid-

point of each face is invariant under the uniaxial group Cn, the order of Dn is given by

jDnj � 2 3 n � 2n according to (5.1.0). There exist an n-fold principal axis cn normal

to the face at the center of the dihedron and n binary axes evenly distributed on the

face. Thus the angle between two adjacent binary axes is ð=n. By de®nition the

principal axis cn is two-sided, whereas binary axes are two-sided only if n is even

because (cn)n=2 � c2 for an even n. When n is odd, there exists only one equivalence

set of binary axes, each of which joins a vertex and the mid-point of the opposite edge

(see D3 in Figure 5.2): there are all one-sided. When n is even, there exist two

equivalence sets of binary axes: each axis in the ®rst set joins two opposite vertices,

whereas each axis in the second equivalence set joins the mid-points of the two

opposite edges: these are all two-sided (see Figure 5.2 for D4).

For any n, there exist three equivalence sets of axis-vectors for the symmetry group

Dn of the regular dihedral n-gon: a set of two axis-vectors normal to the faces, a set of

those pointing to n vertices and a set of those pointing to the mid-points of n edges.

An algebraic construction of Dn is to adjoin a two-fold axis u0 to the uniaxial group

Cn at a right angle to the principal axis of rotation cn of Cn. Then, n two-fold rotations

are generated from u0 through

uk � ck
nu0; k � 0, 1, 2, . . . , nÿ 1 (5:2:1a)

where uk makes an angle ðk=n with u0; see (4.3.15c). Since uk cnuk � cÿ1
n for any k,

the uniaxial group Cn is a normal subgroup of Dn and the coset decomposition of Dn

by Cn yields

Dn � Cn � Cnu0 � Cn ^ C92 (5:2:1b)

which may also be regarded as the semidirect product of Cn and C92 � fe, u0g.
The group Dn is generated by two generators a � cn and b � u0, and the de®ning

relations are given by

an � b2 � (ab)2 � e (5:2:2)

u0

u1

u2

u3

u21

u22

D3

u0

u1

u2

u21

u22

D4

u3

u4

u23

Figure 5.2. Rotation axes of dihedrons. All the binary axes uk 2 D3 are one-

sided, but all uk 2 D4 are two-sided. Note that uÿk � unÿk for cn
n � e.
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In fact, on the basis of these, one constructs the multiplication table, Table 5.3 of Dn

expressed by the generators: The ®rst line of the table is obvious. To understand the

second line, we use ambam � b, which follows from the repeated use of aba � b

(obtained from abab � e and b2 � e). Then, for example, ambal � amÿ l(albal) �
amÿ lb.

The classes of Dn are also easily obtained, if we use Table 5.3. The class of am,

denoted C(am), is obtained through the conjugation bamb � aÿm:

C(e) � feg; C(am) � fam, aÿmg, m � 1, 2, . . . , [n=2] (5:2:3)

where an=2 � aÿn=2 for an even n. Here, [n=2] is the integral part of n=2, i.e. [n=2]

equals (nÿ 1)=2 or n=2 when n is odd or even, respectively. These are all ambivalent

classes, containing an element and its inverse.

The classes of the binary axes of rotation uk 2 Dn depend on the evenness or

oddness of n. This is based on the equivalence relations

auk aÿ1 � uk�2 for any k (5:2:4)

Note that, if k is odd (even), then k � 2 is also odd (even). However, since un � u0

from (5.2.1a) and aíu1aÿí � u2í�1, we have u1 � u0, if and only if n � 2í� 1 (odd).

Thus, when n is odd, there should be only one class of binary rotations of order n

denoted by C(b):

C(b) � fuk ; k � 0, 1, . . . , nÿ 1g (5:2:5)

These binary rotations are all one-sided because there is no binary axis perpendicular

to them. On the other hand, when n is even there should be two classes of order n=2

denoted by C(b) and C(ab):

C(b) � fu2k; k � 0, 1, . . . , n=2ÿ 1g
C(ab) � fu2k�1; k � 0, 1, . . . , n=2ÿ 1g (5:2:6)

These binary axes are all two-sided, for (cn)n=2 � c2 ? uk. Counting the number of

classes given above in addition to the class of identity C(e), we conclude that the total

number of the classes of Dn is (n� 3)=2 when n is odd and n=2� 3 when n is even.

Exercises

1. Show that uk�1uk � nz: the product of two adjacent binary axes of Dn equals the

principal axis of rotation.

2. Show that the group Dn is also de®ned by x2 � y2 � (xy)n � e.

Table 5.3. The multiplication table

of Dn (m and l are integers)

al alb

am am� l am� lb

amb amÿ lb amÿ l
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5.3 Proper polyhedral groups Po

A proper polyhedral group Po is a group of proper rotations that leave a regular

polyhedron invariant. In any regular polyhedron, there exist only three kinds of

characteristic symmetry points under rotation: vertices, the mid-points of the faces and

edges in addition to the center O of the body, which is the ®xed point of all symmetry

operations. All these symmetry points of the same kind are equivalent for a regular

polyhedron. Correspondingly, there exist three and only three equivalence sets of the

axis-vectors of rotation in Po: each axis-vector is pointing toward each symmetry point

of the body from the center O such that there exists a one-to-one correspondence

between an equivalence set of axis-vectors in Po and the corresponding equivalent set

of symmetry points of the regular polyhedron.

There exist only ®ve types of regular polyhedra. This follows simply from the

condition that the sum of apex angles at a vertex in a regular polyhedron is less than

2ð. Let n (. 2) be the number of regular m-gons (m . 2) that meet at any one vertex

of a polyhedron. Then an internal angle of a regular m-gon given by ðÿ 2ð=m must

satisfy the inequality n(ðÿ 2ðm) , 2ð. This is rewritten in the form

1=n� 1=m . 1=2 (5:3:1)

Since the inequality (originally due to Diophantus) is symmetric with respect to n and

m, we may ®rst determine all the possible pairs (n, m) with the condition n > m and

then exchange n and m to obtain the ®nal results. On combining n > m with (5.3.1),

we obtain 2=m . 1=2. Thus, 4 . m . 2, which has only one integral solution, m � 3.

By substituting this back into (5.3.1), we obtain n , 6, which yields n � 3, 4, 5 . 2.

Accordingly, we conclude that one of n and m equals 3 while the other equals 3, 4 or

5; hence, the possible regular polyhedra are the ®ve types given in Table 5.4 and in

Figure 5.3. Their proper symmetry point groups3 are called the tetrahedral group T,

octahedral group O and icosahedral group Y: there exist only three point groups

because two pairs (n, m) and (m, n) belong to the same polyhedral group Po, as will

be shown later. Table 5.4 also contains the orders jPoj of Po, which are obtained

through (5.1.0) or preferably from (5.3.9) given later. Hereafter, a vertex, a regular face

or an edge of a polyhedron characterized by an n-, m- or two-fold symmetry axis of

Table 5.4. Regular polyhedra and the symmetry groups

n m Regular polyhedra

Symmetry

groups Po |Po|

3 3 Tetrahedron T 12

4 3 Octahedron O 24

3 4 Cube O 24

5 3 Icosahedron Y 60

3 5 Dodecahedron Y 60

3 In general, the symmetry point groups of regular polyhedra are improper and given by Tp, Oi and Yi (see
Section 5.5).
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rotation may be conveniently called an n-fold vertex, an m-fold face or a two-fold edge

respectively. The numbers of these characteristic objects are given in Table 5.5.

From the correspondence between the characteristic symmetry points of a poly-

hedron and the axis-vectors of rotation, we see that most of the rotation axes of Po are

two-sided since each of them connects a face to an opposite face, a vertex to an

opposite vertex or an edge to an opposite edge. The only exceptions are the three-fold

axes of the tetrahedral group T, which are one-sided, each of them connecting a three-

fold face to a three-fold vertex. See Figure 5.3.

Cube Octahedron

Dodecahedron Icosahedron

Tetrahedron

Figure 5.3. The ®ve regular polyhedra.

Table 5.5. The characteristics of regular polyhedra

Number of Number of Number of

vertices faces edges

Tetrahedron 4 � 12=3 4 � 12=3 6 � 12=2

Octahedron 6 � 24=4 8 � 24=3 12 � 24=2

Cube 8 � 24=3 6 � 24=4 12 � 24=2

Icosahedron 12 � 60=5 20 � 60=3 30 � 60=2

Dodecahedron 20 � 60=3 12 � 60=5 30 � 60=2
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5.3.1 Proper cubic groups, T and O

5.3.1.1 The tetrahedral group T

It is the proper symmetry point group of the regular tetrahedron. The group has three

mutually perpendicular two-fold axes c2 (two-sided) joining the mid-points of opposite

edges of the tetrahedron and four three-fold axes c3 (one-sided) joining each vertex of

the tetrahedron to the mid-point of the opposite face, see Figure 5.3. Thus, the group T

has 12 elements classi®ed by four classes: feg, f3c2g, f4c3g and f4cÿ1
3 g. We shall

show that all these elements of the group T are generated by two generators. To see

this, let us introduce a Cartesian coordinate system along the three binary axes of T

and introduce the following realizations of the generators (see Figure 5.4):

a � 2z, b � 3xyz (5:3:2a)

then ab � 2z3xyz � 3x y z from Table 5.6, so that (ab)3 � e, which de®nes the mutual

arrangement of the generators. Thus, the generators satisfy the de®ning relations of T

a2 � b3 � (ab)3 � e (5:3:2b)

From these follow all the symmetry properties of T. Firstly, the group T has a normal

subgroup D2 generated by x � a and y � babÿ1, for x2 � y2 � (xy)2 � e. Then,

through the coset decomposition of T by D2

T � D2 � D2c3 � D2cÿ1
3 � D2 ^ C3 (5:3:3a)

all the elements of T are generated by

D2: e, a � 2z, babÿ1 � 2x, bÿ1ab � 2 y

D2b: b � 3xyz, 2zb � 3x y z, 2xb � 3x yz, 2 yb � 3x yz

D2bÿ1: bÿ1 � 3x y z, 2zbÿ1 � 3x yz, 2xbÿ1 � 3xyz, 2 ybÿ1 � 3x yz (5:3:3b)

with use of the multiplication table of the octahedral group O, Table 5.6. This also

shows that the group T is a subgroup of the group O. The above scheme of generating

T by (5.3.3b) becomes very convenient when we construct the space groups in terms of

the generators, see Section 13.9.1.

2z

3xyz

Figure 5.4. The generators of the group T. A regular tetrahedron is cut out from a

cube.
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The class structure of T may be characterized by the generators as follows:

C(e) � feg
C(a) � f2z, 2x, 2 yg
C(b) � f3xyz, 3x yz, 3x y z, 3x yzg � D23xyz

C(bÿ1) � f3x y z, 3xyz, 3x yz, 3x yzg � D23x y z (5:3:4)

where the class C(a) is obtained by the repeated conjugations of a with b, whereas the

class C(b) is obtained by the conjugations of b with 2z, 2x and 2 y. Then, the class

C(bÿ1) is obtained by the inversion of the class C(b), the c3-axis being one-sided.

5.3.1.2 The octahedral group O (revisited)

This group has been discussed in Section 5.1.3 and its multiplication table has been

constructed in Table 5.6. Here, we shall show that this group is also generated by two

generators: a four-fold axis c4 and a three-fold axis c3. To see this, let us introduce the

Cartesian coordinate along the three four-fold axes as in Figure 5.1 and set

a � 4z, b � 3xyz (5:3:5a)

where their axis-vectors are chosen to be one of the closest pairs for the group O.

Since ab � 4z3xyz � 2 yz, as was shown in (5.1.9), the de®ning relations of the group O

are given by

a4 � b3 � (ab)2 � e (5:3:5b)

where the powers 4, 3 and 2 are in accordance with the three kinds of order of rotation

axes in the group O. Now, the subgroup T is generated by a2 � 2z and b � 3xyz as

before, and the remaining elements of O are provided by aT, because the left coset

decomposition of O by T is given by

O � T � aT (5:3:5c)

Note that T is a normal subgroup of O since it is a halving subgroup of O. For the class

structure of O, see (5.1.3a).

Remark. If we had taken a � 4z and b � 3x y z, for example, then ab � 4x so that

(ab)4 � e.

5.3.2 Presentations of polyhedral groups

There exist two generators for a polyhedral group Po. Consider a regular polyhedron

with n-fold vertices and m-fold faces. Then two generators may be de®ned by

a � cn, b � cm (5:3:6a)

where cn and cm are the rotation axes passing through an n-fold vertex and the mid-

point of an m-fold face from the center O of the polyhedron, respectively. If their axis-

vectors are one of the closest pairs and thus connected to one regular face, then their

product de®nes a two-fold axis c2 closest to both axes and passing through the mid-

point of an edge of the face:

c2 � cncm (5:3:6b)
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We shall show this relation through simple geometric considerations. In Figure 5.5,

let cn and cm be such a pair of rotation axes with closest axis-vectors, and let 1 and 2

be two adjacent vertices joined by one edge 1 2 of the face. Then the rotation cm brings

a point p1 near vertex 1 to a point p2 near vertex 2. Next, the rotation cn passing

through the vertex 2 brings the point p2 to a point p3, both of which are near vertex 2.

The resultant displacement of the initial point p1 to the ®nal point p3 by the product

cncm can be brought about by the two-fold rotation c2 perpendicular to the edge 1 2

and passing through its mid-point from the center O of the polyhedron. This proves

(5.3.6b). Note that the axis-vectors of the three rotations in (5.3.6b) are nearest to each

other and ordered clockwise from cm to cn and then to c2. The remaining axes of

rotation for the polyhedron are formed through mutual conjugations like

cmcncÿ1
m � c9n, cmc2cÿ1

m � c92, cncmcÿ1
n � c9m (5:3:7)

which can be visualized through the equivalent transformation ánsáÿ1 � nás, where

á 2 Po.

Now the de®ning relations of Po characterized by a set (n, m) in Table 5.4 and those

of Dn given by (5.2.2) are expressed by the following standard presentation:

an � bm � (ab)2 � e (5:3:8a)

where a � cn, b � cm and ab � c2 are the rotations de®ned by the three closest axis-

vectors of rotation in each group. Thus each group may be expressed by a set of three

integers fn, m, 2g that also refers to the axis orders of three equivalence sets of the

axis-vectors in each group. Then, the abstract group represented by the presentation

fn, m, 2g is invariant under the permutations of the three axis orders n, m and 2.

Firstly, the interchange of the axis orders (n, m) in (5.3.8a) de®nes a group isomorphic

to the original group because (ab)2 � e means (ba)2 � e. This then explains Table 5.4

in that both an octahedron and a cube belong to the same abstract group O whereas an

icosahedral and a dodecahedron belong to the same abstract group Y. Secondly, let

x � ab and y � bÿ1, then we have

x2 � y m � (xy)n � e (5:3:8b)

Cm

Cn

p2

p1

C2
1

p3

2

Cm

Cn C2

Figure 5.5. The geometric proof of the relation cncm � c2 through a dodeca-

hedron.
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Thus, the permutation of fn, m, 2g leaves the group invariant. For example, the

presentation of the tetrahedral group T is also given by

x2 � y3 � (xy)3 � e (5:3:8c)

as in (5.3.2b).

There exist only ®ve kinds of proper point groups P: Cn, Dn, T, O and Y, as was

shown ®rst by Wyle and will be shown in Section 5.4. Combining (5.1.1b) with

(5.3.8a), the presentation of a proper point group P is expressed by

an � bm � (ab) l � e (5:3:8d)

where the set of the axis orders fn, m, lg for the set fa, b, abg is characteristic to P:

T � f3, 3, 2g, O � f4, 3, 2g, Y � f5, 3, 2g, Dn � fn, 2, 2g,
Cn � fn, 0, 0g (5:3:8e)

which may be called the axis-order notation for P. The corresponding short notations

are given by the generators in each standard presentation (5.3.8a):

T � (3, 3), O � (4, 3), Y � (5, 3), Dn � (n, 2), Cn � (n)

(5:3:8f)

These notations may be compared with the international notation of the point groups;

cf. Table 5.7 later.

It is stressed here that the presentation of a proper point group P given by (5.3.8d)

de®nes an abstract group P completely, independently from the geometric interpreta-

tion like (5.3.5a). In fact, by the presentation, we can determine all its subgroups (see

Section 5.3.3) and identify all its group elements via the coset decomposition with

respect to an appropriate subgroup of P. There exists also an algorithm called the

method of coset enumeration by which we can construct the multiplication table of P

solely by the presentation (5.3.8d), see Section 5.7. Moreover, on the basis of the

presentation (5.3.8d), in Chapter 13 we shall construct all the space groups by

adjoining the translational degrees of freedom to the respective point groups. It is

simply surprising that the simple set of algebraic equations (5.3.8d) describes the

whole symmetry properties of the point groups and their extensions. For the presenta-

tions of improper point groups see Section 5.5.

5.3.2.1 The Wyle relation

It has been shown by Wyle (1952) that the inequality (5.3.1) can be replaced by an

equality

1=n� 1=m� 1=2 � 1� 2=jPoj (5:3:9)

where jPoj is the order of the polyhedral group Po of a regular polyhedron. Postponing

its proof to Section 5.4, the orders of the polyhedral groups (including Dn) determined

by (5.3.9) are

jT j � 12, jOj � 24, jY j � 60, jDnj � 2n

which are also presented in Table 5.4. Note that all these orders are even.
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5.3.2.2 One- or two-sidedness of a rotation axis

Let f jg be an equivalence set of axes in a proper point group P. If the set is one-sided,

then this corresponds to there being two equivalence sets of axis-vectors, fs jg and

fÿs jg. If the set of axes f jg is two-sided, then there is only one equivalence set of

axis-vectors fs j, ÿs jg, which is symmetric. Since the equivalence sets of axis-vectors

for one-sided axes must come in as a pair (if they exist), we arrive at the following

rules for the three equivalence sets of axis-vectors in a group fn, m, 2g.
1. Either all three equivalence sets are symmetric (so that the corresponding axes are

all two-sided) or one is symmetric and the other two are mutual inverses.

2. If one of the three orders fn, m, 2g is different from the remaining two, the

corresponding axis is two-sided. Thus, if three orders n, m and 2 are different, then

the corresponding axes are all two-sided.

3. If two members of fn, m, 2g are equal, the corresponding sets are mutual inverses

or both symmetric.

Examples. For O � f4, 3, 2g and Y � f5, 3, 2g, their axes are all two-sided. For

Dn � fn, 2, 2g, the set of n-fold axes is two-sided whereas the remaining two sets

of binary axis-vectors are either mutual inverses or both symmetric, depending on

whether n is odd or even (for cn=2
n � c2 if n is even). For the tetrahedral group

T � f3, 3, 2g, the binary axes are two-sided whereas the three-fold axes are all

one-sided; if the latter were two-sided the group T would contain D3 � f3, 2, 2g as

a subgroup, of which the binary axes are one-sided (which would be a contra-

diction).

5.3.3 Subgroups of proper point groups

The presentation (5.3.8d) of a proper point group P is very effective in ®nding its

subgroups. We give here only the maximal subgroups of each proper point group P:

T . D2, C3; O . D4, D3, T ; Y . D5, D3, T ;

Dn . Cn, C2, Dn=í (Dn=2 if n is even); Cn . Cn=í (5:3:10)

where í (1 , í, n) is an integral devisor of n and those underlined are normal

subgroups.

The dihedral subgroups of T, O and Y are due to the generators with two-sided axes.

The subgroup T of O and Y may be shown as follows. In the presentation of O,

a4 � b3 � (ab)2 � e, we set x � a2 and y � b and obtain the presentation of T given

by x2 � y3 � (xy)3 � e, because xy � a2b � abÿ1aÿ1 using ab � bÿ1aÿ1. Analo-

gously, in the presentation of Y, a5 � b3 � (ab)2 � e, we set x � ba and y � abaÿ1

guided by the geometric interpretation (5.3.7b). Then we again arrive at x2 �
y3 � (xy)3 � e, because xy � ba2baÿ1 � aÿ1baa2 � aÿ2bÿ1a2. Finally, from an �
b2 � (ab)2 � e of Dn it follows that (aí)n=í � b2 � (aíb)2 � e of Dn=í because aíb is

a binary rotation of Dn via aíbaíb � abab � e.

The normal subgroups given in (5.3.10) are mostly halving subgroups of the

respective super-groups except for T . D 2 and Cn . Cn=í; the latter is obvious and

the former follows from the fact that every c2 of T belongs to D2. It is also to be noted

that the icosahedral group Y is the only point group of a ®nite order that does not have

a proper normal subgroup. Such a group is called a simple group. It is a simple matter
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to extend (5.3.10) for the maximal subgroups of an improper point group, as will be

shown in Section 5.5.3.

5.3.4 Theorems on the axis-vectors of proper point groups

The following lemma is basic to the Wyle theorem which determines all the possible

proper point groups. It is also directly related to the characteristic properties of the

regular polyhedra:

Lemma 5.3.1. Let s be an axis-vector of order n (. 1) in a proper point group P, then

the number of distinct axis-vectors in the equivalence set of s with respect to P equals

jPj=n.

Proof. The subgroup of P which leaves the axis-vector s invariant is a uniaxial group

Cn, so that all distinct axis-vectors equivalent to s are given by

fqk sg; k � 1, 2, . . . , jPj=n (5:3:11)

where qk is a coset representative of Cn in P. From this follows the Lemma 5.3.1.

Since there exists a one-to-one correspondence between an equivalence set of

symmetry points of a regular polyhedron and the corresponding equivalence set of

axis-vectors in Po, the numbers of n-fold vertices, m-fold faces and two-fold edges

and also the maximum number of the equivalent points on the regular polyhedron are

given by

jPoj=n, jPoj=m, jPoj=2, jPoj=1 (5:3:12)

Conversely, from these characteristics, we can determine the order jPoj of the group

Po.

Thus, from Table 5.4 and (5.3.12), we have the equivalence characteristics of the

regular polyhedra given by Table 5.5.

Corollary 5.3.2. The number of n-fold axes of rotation cn in an equivalence set for a

proper point group P is given by

N (cn) � jPj=n, if the axes are one-sided

jPj=(2n), if the axes are two-sided

�
(5:3:13)

One minor result that follows from this corollary is that the order jPj of a proper point

group P that has a two-sided axis must be even. It turns out that all P except for a

uniaxial group have a two-sided axis so that their orders are all even (cf. Table 5.4).

Theorem 5.3.3. (The class order theorem.) Let R be a rotation belonging to a uniaxial

group Cn (n 6� 1) in P, then the order of the class C(R) of R in P is given by

jC(R)j � jPj=n, if R is not a ð2

jPj=(2n), if R is a ð2

�
(5:3:14)

where ð2 is a two-sided binary rotation.

Suppose that R � cm
n ; m � 1, 2, . . . , nÿ 1, then the theorem states that the class

order of cm
n equals jPj=n independent of m except when m � n=2 and cn is two-sided,

i.e. R is a ð2.
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Proof. According to the general class order theorem (3.4.5) the class order jC(R)j of

R is given by

jC(R)j � jPj=jZ p(R)j
where Z p(R) is the centralizer of R in P. By assumption and from the condition for

commutation (4.3.16), the centralizer of R equals Cn provided that R is not a binary

rotation ð2 about a two-sided axis. If R � ð2, there exists in P a binary rotation

perpendicular to ð2 that also commutes with ð2 so that Z p(ð2) equals the dihedral

group Dn. Thus follows (5.3.14).

5.3.4.1 Examples

The group structure of each polyhedral group may be understood by considering the

general overview of the proper point groups given below, based on (5.3.13) and

(5.3.14).

D4 � f4, 2, 2g: jD4j � 8. All axes are two-sided so that the binary rotations are all

ð2-type. Thus,

N (c4) � 8=(4 3 2) � 1, N (uí) � 8=(2 3 2) � 2

jC(c4)j � 8=4 � 2, jC(c2
4)j � 8=(2 3 4) � 1, jC(uí)j � 8=(2 3 2) � 2

(5:3:15a)

D3 � f3, 2, 2g: jD3j � 6. The c3-axis is two-sided but the binary axes fuíg are one-

sided. Thus,

N (c3) � 6=(2 3 3) � 1, N (uí) � 6=2 � 3

jC(c3)j � 6=3 � 2, jC(uí)j � 6=2 � 3 (5:3:15b)

T � f3, 3, 2g: jT j � 12. There exist two equivalence sets of the axis-vectors of

order 3 that are one-sided and mutual inverses. The two-fold axes are two-sided and

hence ð2-type. Thus,

N (c3) � 12=3 � 4, N (c2) � 12=(2 3 2) � 3

jC(c3)j � jC(cÿ1
3 )j � 12=3 � 4, jC(c2)j � 12=(2 3 2) � 3 (5:3:15c)

There exist in total four classes including the identity class.

O � f4, 3, 2g: jOj � 24. All axes are two-sided and hence all binary rotations are

ð2-type. Thus,

N (c4) � 24=(2 3 4) � 3, N (c3) � 24=(2 3 3) � 4, N (c2) � 24=(2 3 2) � 6

jC(c4)j � 24=4 � 6, jC(c2
4)j � 24=(2 3 4) � 3

jC(c3)j � 24=3 � 8, jC(c2)j � 24=(2 3 2) � 6 (5:3:15d)

There exists a total of ®ve classes for O, all of which are ambivalent because all axes

are two-sided.

Y � f5, 3, 2g: jY j � 60. All axes are two-sided so that all binary rotations are ð2-

type. Thus,
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N (c5) � 60=(2 3 5) � 6, N (c3) � 60=(2 3 3) � 10, N (c2) � 60=(2 3 2) � 15

jC(c5)j � jC(c2
5)j � 60=5 � 12, jC(c3)j � 60=3 � 20,

jC(c2)j � 60=(2 3 2) � 15 (5:3:15e)

There exists a total of ®ve classes for Y, all of which are ambivalent because every axis

is two-sided.

5.4 The Wyle theorem on proper point groups

We have seen in the previous section that the structure of a proper point group P is

effectively described by equivalence sets of axis-vectors of rotation. Wyle (1952) has

shown on the basis of the allowed set of axis-vectors in a proper point group that the

possible proper point groups of ®nite order are of the following ®ve kinds: Cn, Dn, T,

O and Y. The Wyle theorem summarizes all the ®ndings on the point groups which we

have described so far.

We shall count the total number of the axis-vectors of every non-null rotation in a

proper point group P in the following two ways. Firstly, it is given by 2(jPj ÿ 1) since

there exists a total of jPj ÿ 1 non-null rotations in P and also there exist two axis-

vectors s and ÿs for each non-null rotation. Secondly, from Lemma 5.3.1, the number

of the axis-vectors in the r th equivalence set in P is given by jPj=n(r), where n(r) is the

order of the axis. Since there exist n(r) ÿ 1 non-null rotations about an axis of order

n(r), we arrive at the equalityXH

r�1

(n(r) ÿ 1)jPj=n(r) � 2(jPj ÿ 1) (5:4:1)

where H is the number of distinct equivalence sets of axis-vectors in P excluding the

identity rotation. Note that on the right-hand side (rhs) of (5.4.1) we have twice the

number of non-null rotations in P, whereas, on the left-hand side (lhs) we have every

rotation axis twice through symmetric sets fs j, ÿs jg for two-sided axes and through

fs jg and fÿs jg for one-sided axes.

Equation (5.4.1) was ®rst derived by Wyle (1952) and is suf®cient to determine all

the possible point groups of ®nite order. For later developments, we rewrite the

equation in a more convenient formXH

r�1

(1ÿ 1=n(r)) � 2(1ÿ 1=jPj) (5:4:2)

Excluding the trivial case of the group of the identity, we may assume that

jPj > n(r) > 2. Then the rhs of (5.4.2) is less than 2 whereas each term on the lhs is

larger than or equal to 1=2. Therefore, we cannot have more than three equivalence

sets of axis-vectors in P, i.e. H < 3.

Now, suppose that there exists only one equivalence vector set in P, then (5.4.2)

gives 1=n(1) � ÿ1� 2=jPj, which is impossible to satisfy because the lhs . 0 while

the rhs < 0. Next, for H � 2 we obtain, from (5.4.2),

jPj=n(1) � jPj=n(2) � 2

Since both jPj=n(1) and jPj=n(2) are integers for the indices of the uniaxial subgroups

of order n(1) and n(2) being in P, the only solution for H � 2 is given by
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jPj=n(1) � jPj=n(2) � 1: (5:4:3)

which provides a uniaxial group of order jPj with two axis-vectors s and ÿs that are

mutual inverses.

For the case of three equivalence vector sets one can rewrite (5.4.2) in the form

1=n(1) � 1=n(2) � 1=n(3) � 1� 2=jPj
where n(r) > 2. For this case at least one of the orders n(r) must equal 2, because

otherwise n(r) > 3 for all r so that the lhs < 1, whereas the rhs . 1. For convenience

we set n(1) � n, n(2) � m and n(3) � 2 and obtain

1=n� 1=m� 1=2 � 1� 2=jPj; n, m > 2 (5:4:4)

which is nothing other than the Wyle relation introduced in (5.3.9) without proof. It is

emphasized here that the set fn, m, 2g refers to three different equivalence sets of axis-

vectors of the orders n, m and 2: this point had not been made very clear when we

introduced the equation in (5.3.9). Any solution of this equation for the set fn, m, 2g
gives the possible order of the axis-vectors of rotation in P and thus determines the

presentation (5.3.8a) of P. Once the presentation of P has been given, then, by purely

algebraic manipulation such as the coset enumeration (see Section 5.7), we can deter-

mine the abstract structure of the point group P without any additional information.

Now, if one of n and m equals 2, say m � 2, we have a solution fn, 2, 2g of (5.4.4)

that yields jPj � 2n, where n is an arbitrary integer . 1. The set de®nes the group Dn

through the de®ning relations (5.3.8a). When n, m . 2, we proceed as before in the

case of a polyhedral group based on (5.3.1) (which follows obviously from (5.4.4)) and

obtain three solutions of (5.4.4), f3, 3, 2g, f4, 3, 2g and f5, 3, 2g, which de®ne the

groups T, O and Y, respectively, through the de®ning relations (5.3.8a).

As a conclusion, we state that there exist only ®ve types of proper point groups of

®nite order: Cn, Dn, T, O and Y. It is stressed again that there exist no more than three

equivalence sets of axis-vectors; in fact, with the exception of Cn, every proper point

group has three equivalence sets of axis-vectors, either all three are symmetric (so that

corresponding axes are all two-sided), or one is symmetric and the other two are

mutual inverses.

5.5 Improper point groups

5.5.1 General discussion

An improper rotation in three dimensions is de®ned by a 3 3 3 real orthogonal matrix

R with det R � ÿ1. Thus, an improper rotation can be expressed as the product of the

inversion 1 and a proper rotation z, i.e. z � 1z. Now, an improper point group is a

subgroup of the real orthogonal group which contains improper rotations. It has a

halving subgroup P that is proper. Accordingly, an improper point group is formed by

augmenting a proper point group P with an improper element z � 1z. Thus, an

improper point group is de®ned by

Pz � P� zP (5:5:1)

where z should be compatible with P such that

z2, zhzÿ1 2 P; 8 h 2 P (5:5:2)
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because a halving subgroup of a group is an invariant subgroup. Thanks to the

compatibility condition, there exist at most three kinds of augmentors z for a given

proper point group P, obviously within a multiplicative element belonging to P. Let cn

be the principal axis4 of rotation in P, then the possible augmentors, except for an

arbitrary multiplicative factor h 2 P, are expressed by

i � 1, p � c2n, v � c29 (5:5:3)

where c2n icn ? c92, i.e. c2n is the 2n-fold rotation±inversion with c2n `parallel' to cn

whereas c9 is a re¯ection in a `vertical' plane that contains cn. Correspondingly, we

have at most three kinds of improper point groups for a given proper point group P

expressed by

Pi, Pp, Pv (5:5:4)

For P � Cn, all three augmentors given in (5.5.3) are allowed. For P � Dn, we have

only two alternative augmenting operators, 1 and c2n. Here c92 is excluded5 since it is

equivalent either to 1 or to c2n as an augmentor to Dn, because Dn already contains

binary axes c2 ? cn. Analogously, for P � T we have two alternative augmentors 1

and c4. For P � O or Y we have only one augmentor 1. Note that each augmentor

introduced above is with a rotation axis of even order: the one with a rotation axis of

odd order is reduced to the pure inversion.

Thus, from the ®ve types of the proper point groups Cn, Dn, T, O and Y we obtain

the nine types of improper point groups of ®nite order expressed by

Cni, Cnp, Cnv; Dni, Dnp; Ti, T p; Oi; Yi

(5:5:5)

These provide the complete set of the improper point groups of ®nite order. Extending

n!1, we obtain three improper point groups of in®nite order,

C1i, C1v, D1i (5:5:6)

Obviously, Cnp ! C1i and Dnp ! D1i, in the limit n!1.

The system of notation (5.5.1) for improper point groups was introduced by the

author; see Kim (1983b). As will be shown by (5.5.8a), it is very effective for

describing their isomorphisms with proper point groups, which are essential for the

systematic construction of their matrix representations and their extensions to the

space groups and the magnetic groups. In Table 5.7, the present notation is compared

with the SchoÈn¯ies and the international notations. The author is fully aware of the

confusion which an alternative set of notations might bring in. It is to be noted,

however, that the present notation does not con¯ict with any existing notations and

also that the present notation and the SchoÈn¯ies notation are complementary to each

other since the former is based on inversion and rotation±inversion whereas the

latter is based on re¯ection and rotation±re¯ection. Note that, in the present notation,

the existence of re¯ection planes in Pz can be easily seen from the fact that a

4 The principal axes of Dn, T, O and Y are de®ned to be cn, c2, c4 and c5, respectively.
5 The only allowed re¯ection plane c92 for Dn as an augmentor that satis®es (5.5.2) is that which is either

uk � 1uk , where uk is a binary rotation in Dn, or which bisects the angle between two adjacent binary axes
uk and uk�1 of Dn. For the former we have c9 � uk so that uk uk � 1 and for the latter c92uk � c2n.
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re¯ection is given by the product of the inversion 1 and a binary rotation u, i.e.

m � 1u so that

c92 � mv, c2 � (c2no
)no � mh; c92icn ? c2 (5:5:7)

where mv and mh are vertical and horizontal re¯ection planes, respectively, with

respect to the principal axis of rotation cn.

5.5.2 Presentations of improper point groups

According to the general de®nition (5.5.1), an improper point group Pz is isomorphic

to a proper point group de®ned by Pz � P� zP (z =2 P):

Pz ' Pz (5:5:8a)

via the correspondence z$ z. The isomorphism holds because inversion 1 commutes

with any point operations. Speci®cally,

Cnp ' C2n, Cnv ' Dn, Dnp ' D2n, Tp ' O; n . 1 (5:5:8b)

via the correspondence c2n $ c2n or c9$ c92. When z � e, we have Pi, which is equal

to the direct product of P and the group of inversion Ci:

Pi � P 3 Ci; Ci � fe, 1g (5:5:9)

Hence, the presentation of Pz follows from that of the proper point group Pz by

replacing z in Pz with z if z 6� e, whereas the presentation of Pi follows from those of

Table 5.7. Improper point groups, Pz � P� zP

Present

notation P z Isomorphism

SchoÈn¯ies

notation

International

notation Generators

SO(3)i SO(3) 1 SO(3) 3 Ci SO(3)h 11m 111

C1i C1 1 C1 3 Ci C1h 1=m 11

C1v C1 c92 D1 C1v 1m 12

D1i D1 1 D1 3 Ci D1h 1=mm 121

Cni Cn 1 Cn 3 Ci Cne h, S2no
ne=m, no n1

Cnp Cn c2n C2n Cno h, S2ne
2n 2n

Cnv (n . 1) Cn c92 Dn Cnv ne mm, no m n2

Dni (n . 1) Dn 1 Dn 3 Ci Dne h, Dnod ne=mmm, no m n21

Dnp (n . 1) Dn c2n D2n Dnoh, Dned (2no)m2, (2ne)2m 2n2

Ti T 1 T 3 Ci Th m3 331

T p T c4 O Td 43m 43

Oi O 1 O 3 Ci Oh m3m 431

Yi Y 1 Y 3 Ci Yh 53m 531

(1) c2n � 1c2n, c92 � 1c92; 1 � inversion.

(2) ne (no) is an even (odd) integer.

(3) The two different notations on the ®fth and sixth lines mean the correspondences;

e.g. Cne i $ Cneh $ ne=m and Cnoi $ S2no
$ no.
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P and Ci. Instead of giving the presentations of the improper point groups Pz, we

simply write down their axis order notations analogous to those of the corresponding

proper point groups given by (5.3.8e):

Cnp � f2n, 0, 0g, Cnv � fn, 2, 2g, Dnp � f2n, 2, 2g
Tp � f4, 3, 2g, Pi � fn, m, l; 1g; P � fn, m, lg (5:5:10)

where 2n denotes the rotation±inversion, 2n-fold rotation followed by the inversion,

and the inversion 1 in the group Pi is in the center of the group. The corresponding

short notations by the generators in the standard presentations are given in Table 5.7.

Note that every improper rotation group isomorphic to a proper point group P is

obtained by replacing an even-order generator of P with the improper one in the

standard presentation of P. Thus, there can be no improper point group isomorphic to

a uniaxial group Cn of an odd order, or to the tetrahedral group T or to the icosahedral

group Y, because they have no even-order generator in their standard presentations.

Exercise 1. Write down the elements of an improper point group from the corre-

sponding proper point group, using the isomorphisms (5.5.8b).

1. C2n � fe, c2n, c2
2n, . . . , c2nÿ1

2n g
Cnp � fe, c2n, c2

2n, . . . , c2nÿ1
2n g

2. Dn � fCn; u0, u1, . . . , unÿ1g
Cnv � fCn; u0, u1, . . . , unÿ1g; uk � ck

nu0

3. D2n � fe, c2n, c2
2n, . . . , c2nÿ1

2n , u0, u1, u2, . . . , u2nÿ1g
Dnp � fe, c2n, c2

2n, . . . , c2nÿ1
2n , u0, u1, u2, . . . , u2nÿ1g

uk � ck
2nu0

4. O � fe, 6c4, 8c3, 3c2, 6c92g
Tp � fe, 6c4, 8c3, 3c2, 6c92g

5. P � fRg, Pi � fR, Rg

Exercise 2. Write down the classes of Dnp � f2n, 2, 2g from those of D2n �
f2n, 2, 2g.

C(e) � feg, C(am) � fam, aÿmg; m � 1, 2, . . . , n

C(b) � fu0, u2, . . . , u2nÿ2g
C(ab) � fu1, u3, . . . , u2nÿ1g (5:5:11)

Remark 1. There exist also less obvious isomorphisms for Pi,

Cno i ' C2no
, Dno i ' D2no

, C2i ' D2 (5:5:12)

via the correspondence 1$ c2 2 P. Here no is an odd integer, and c2 is along the

principal axis so that c2 is in the center of each proper point group in (5.5.12), just as 1

is in the center of the corresponding improper point group. The isomorphisms (5.5.12)

are less important than (5.5.8) in the sense that the former cannot be extended to their

so-called double groups (see Chapter 11).

Remark 2. There exist alternative presentations for Cno i and Ti with smaller numbers

of generators. In fact, the group Cno i is a cyclic group of order 2n with the single

5.5 Improper point groups 89



generator s � cno
which satis®es

s2no � e (5:5:13)

For Ti, we set a � c2 and s � c2
3, then the de®ning relations are given by

a2 � s6 � (as2)3 � (as3)2 � e (5:5:14)

where (as3)2 � e means that as3 � s3a, which is required because s3 (� 1) is in the

center of the group Ti. These presentations are, however, not very convenient for

classifying their irreducible representations by the gerade and ungerade characteristics

with respect to the inversion operator 1.

Remark 3. The isomorphism given in (5.5.8b) may obviously be described in terms

of the other notations. For example, the isomorphism Dnp ' D2n is expressed in terms

of SchoÈn¯ies notation as follows:

Dno h ' D2no
, Dne d ' D2ne

(5:5:15)

where no (ne) is an odd (even) integer. The dependence of the isomorphism on the

oddness or evenness of the order of the principal axis is a common characteristic of the

SchoÈn¯ies notation. It is emphasized that the present notation is free from this

dependence. This is one of the reasons that the present notation is suitable for

describing the general structures of the matrix representations of the point groups, as

will be shown explicitly, later, in Chapter 11. The present system of notation will be

extended also to describe the magnetic point groups in Section 16.3.

5.5.3 Subgroups of point groups of ®nite order

Previously in (5.3.10), we presented the maximal subgroups of proper point groups of

®nite order determined by their de®ning relations. This is easily extended to improper

Table 5.8. The maximal subgroups of point groups of ®nite

order

Y . T , D5, D3

Yi . Ti, D5i, D3i, T

O . T , D4, D3

Oi . Ti, D4i, D3i, O, T p

Tp . T , D2p, C3v

T . D2, C3

Ti . D2i, C3i, T

Dn . Cn, C2, Dn=í (Dn=2 is a normal subgroup, if n is even)

Dni . Cni, C2i, Dn=í,i, Dn, Cnv, Dn=2, p

Dnp . Cnp, Dn=í, p, Dn, Cnv, C2v

Cn . Cn=í

Cni . Cn=í,i, Cn, Cn=2, p

Cnp . Cn=í, p, Cn

Cnv . Cn, Cn=í,v (Cn=2 is a normal subgroup, if n is even)
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point groups because the inversion commutes with any point operation. Note also that

one- or two-sidedness of an improper axis of rotation R(è) � 1R(è) is determined by

that of the proper part R(è), as was discussed in Section 5.1.2. For example, analogous

to O � f4, 3, 2g, all axes of T p � f4, 3, 2g are two-sided and its maximal subgroups

are given by D2 p � f4, 2, 2g, C3v � f3, 2, 2g, T � f3, 3, 2g. Moreover, three axes of

Dnp � f2n, 2, 2g are also two-sided and its maximal subgroups are given by

Cnp � f2n, 0, 0g, Dn � fn, 2, 2g, Cnv � fn, 2, 2g, C2v � f2, 2, 2g and Dn=í, p,

where í is an integral divisor of n. For convenience, we have presented the maximal

subgroups of every point group of ®nite order in Table 5.8, where those underlined are

normal subgroups.

5.6 The angular distribution of the axis-vectors of rotation for regular polyhedral

groups

5.6.1 General discussion

For the tetrahedral group T and the octahedral group O, we have expressed their

symmetry elements by the axis-vector representations ns of rotation. To extend this

notation to the icosahedral group Y, it is necessary to determine the angular distribution

of the axis-vectors of rotation. We can achieve this via the relative angular distribution

of the characteristic symmetry points of the regular polyhedron. We shall ®rst calculate

the angular distances for every pair of the nearest characteristic points for a regular

polyhedron in general; then, specializing them to the dodecahedron, we determine the

polar coordinates of the axis-vectors for the icosahedral group Y.

Let us consider a regular polyhedron characterized by a set of n-fold vertices, m-

fold faces and two-fold edges. Let sn, sm and s2 be the axis-vectors of rotation passing

through an n-fold vertex, the mid-point of an m-fold face and the mid-point of a two-

fold edge, respectively, from the center O of the polyhedron. If , and denote

the characteristic points at which these axis-vectors meet with the surface of the unit

sphere centered at O, then a set of the closest three points , and forms a right

spherical triangle on the sphere with the spherical angles ð=n, ð=m and ð=2 (angles

formed by the lines tangential to the sides, see Figure 5.6). Let èPQ be the angular

distance (the arc) between a pair of closest symmetry points P and Q on the unit sphere

of the polyhedron, then we shall show that

cos èn2 � cos (ð=m)=sin (ð=n)

cos èm2 � cos (ð=n)=sin (ð=m)

cos ènm � cos èn2 cos èm2 � cot (ð=n) cot (ð=m) (5:6:1a)

Knowledge of only two of these angular distances is suf®cient to determine the

complete distribution of the characteristic symmetry points of the regular polyhedron.

However, the following additional information helps one to understand the symmetry

structure of the polyhedron:

ènn � 2èn2, èmm � 2èm2

cos è22 � 1ÿ 2 sin2 (ð=n)� 2 cos2 (ð=m) (5:6:1b)

sn sm s2

sn sm s2
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where è pp is the angular distance between a pair of two closest points of the same

kind.

The proof of (5.6.1) will be based on the spherical trigonometry. Let ABC be a

spherical triangle bounded by three arcs a, b and c of great circles of the radius unity

(Figure 5.7). Let A, B and C be the spherical angles formed by lines tangential to the

arcs a, b and c and intersecting at the points A, B and C on the sphere. Then, the

following laws hold:

sin a

sin A
� sin b

sin B
� sin c

sin C
(the law of sines) (5:6:2a)

cos a � cos b cos c� sin b sin c cos A (the law of cosines) (5:6:2b)

and the simultaneous permutations of (a, b, c) and (A, B, C) for the last relation. In

the special case of a right spherical triangle, say B � ð=2, the above laws are greatly

simpli®ed to express the three arcs a, b and c in terms of the spherical angles A and C

as follows:

A

B

Ca

b
c

Figure 5.7. A spherical triangle ABC.

m

n n

2

n n

2

2

π
m π

n

Figure 5.6. The characteristic symmetry points , and on the unit

molecular sphere of the dodecahedron.
sn sm s2
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cos a � cos A=sin C, cos c � cos C=sin A

cos b � cot A cot C (5:6:2c)

From these follow the three relations in (5.6.1a) via the correspondence of the

spherical triangles Ä $ ÄABC with A � ð=m, B � ð=2 and C � ð=n and

a � è2n, b � ènm and c � èm2. The last relation in (5.6.1b) is obtained by applying the

law of cosines (5.6.2b) for the isosceles spherical triangle Ä de®ned in Figure

5.6 with a � è22, b � c � èn2 and A � 2ð=n.

The angular distances among the nearest axis-vectors sn, sm and s2 for the regular

polyhedral groups T, O and Y are calculated via (5.6.1) and presented in Table 5.9.

From these we can calculate all the polar coordinates of the axis-vectors for any

polyhedral group, which will be demonstrated for Y.

Exercise. Verify that è22 � 908, 608 and 368 for T, O and Y, respectively, from their

subgroups, D2 , T , D3 , O, D5 , Y , given in (5.3.10).

5.6.2 The icosahedral group Y

It is the proper symmetry group of a regular dodecahedron (or icosahedron), see Figure

5.3. The set of axis orders of Y is given by f5, 3, 2g, so that its order jY j equals 60

from the Wyle relation (5.3.9). The characteristics of the dodecahedron have been

described in Table 5.5; i.e. it has 12 ®ve-fold faces, 20 three-fold vertices and 30 two-

fold edges. Correspondingly, from (5.3.15e), it contains six c5-axes joining the mid-

points of opposite faces, ten c3-axes joining opposite vertices and 15 c2-axes joining

the mid-points of the opposite edges. These are all two-sided so that the icosahedral

group Y contains the dihedral groups D5, D3 and D2 as its subgroups in addition to the

tetrahedral group given in (5.3.10). It has a total of ®ve classes, all of which are

ambivalent, as given in (5.3.15e). Since the regular dodecahedron has the inversion

symmetry, its symmetry group is Yi so that there exist 15 great planes of re¯ection

passing through the center O of the body and perpendicular to 15 binary axes.

The icosahedral group Y is also de®ned by its coset decomposition with respect to

the subgroup D5:

Y � D5 � v1 D5 � � � � � v5 D5 (5:6:3a)6

sm s2 sn

s2 sn s2

Table 5.9. Angular distances (arcs) of nearest pairs of axis-vectors of rotation for

regular polyhedral groups

Groups (n, m) èn2 èm2 ènm ènn èmm è22

T (3, 3) 54.7368 54.7368 70.5298 109.4718 109.4718 908
O (3, 4) 35.2648 458 54.7368 70.5298 908 608
Y (3, 5) 20.9058 31.7188 37.3778 41.8128 63.4358 368

6 Obviously, Y may be expressed by the coset decomposition with respect to the subgroup T :

Y � T � aT � a2T � a3T � a4T (5:6:3b)

where a � c5 2 D5.
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where the coset representatives ví (í 6� 0) are the binary axes of rotation not contained

in D5 and are mutually equivalent with respect to c5 2 D5, i.e.

ví�1 � cí5v1cÿí5 ; í � 1, 2, 3, 4, 5

If we take c5 2 D5 in the z-direction, then there exist ®ve c2 2 D5 on the horizontal

plane but the coset representatives ví introduced above are not on the horizontal plane.

Accordingly any one of their product vívì represents a rotation that is not contained in

D5, in view of (4.3.15b). One may take these ví to be the closest binary axes to the

c5 2 D5 with the angular distance è52 � 31:7188 given in Table 5.9, then all ®ve of

them are on one ®ve-fold face of the dodecahedron (see Figure 5.9). The above coset

decomposition is very effective when we construct the unirreps of Y by induction from

the unirreps of D5. Note, however, the D5 is not an invariant subgroup of Y, as was

mentioned before.

Now, guided by the symmetry of the dodecahedron, we shall determine the polar
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3

3
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5

5

5
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c2c2

c2
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1.389 Å
1.239 Å

1.433 Å

1.442 Å
18°

18°

(a)

Figure 5.8. (a) The buckyball viewed along a c5-axis. Note the subgroup symme-

try D5i , Yi. (b) The buckyball viewed along a c3-axis; note the subgroup

symmetry D3i , Yi. (c) The buckyball viewed along a c2-axis; note the subgroup

symmetry Ti , Yi. The polar coordinates of a s3 2 T denoted as is given by

W � 54:7368 and j � 458. Note that the horizontal plane is a re¯ection plane.
s3
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coordinates of all the axis-vectors of rotation in Y. Here, it is customary to express the

angular distances in terms of the ratio of the golden section ô de®ned by

ô � 2 cos (ð=5) � (1�p5)=2 � 1:6180

which is a positive root of a quadratic equation ô2 � ô� 1. Then, the angular distances

of the nearest three axis-vectors s2, s3 and s5 given by (5.6.1a) can be expressed in

terms of ô as follows, with n � 3 and m � 5:

cos è32 � ô=
p

3, cos è52 � [(2� ô)=5]1=2, cos è35 � [(3� 4ô)=15]1=2

(5:6:4a)

Their numerical values have already been given in Table 5.9:

è32 � 20:9058, è52 � 31:7188, è35 � 37:3778 (5:6:4b)

with the additional information
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Figure 5.9. The distribution of the axis-vectors on the unit sphere of the

dodecahedron. Note the subgroup D5i , Yi and the sequence of the axis-vectors

[± ± ± ± ± ± ±]2 on the ®ve vertical great circles. The closest

angular distances are è23 � 20:9058, è35 � 37:3778, è52 � 31:7188 and

è22 � 368.

s2 s3 s5 s2 s3 s5
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è32 � è35 � è52 � 908, è22 � 368 (5:6:4c)

The ®rst relation in (5.6.4c) means that the end-to-end angular distance spanned by a

sequence of axis-vectors ± ± ± on a great circle of the unit sphere of the

dodecahedron equals 908 (see Figure 5.8(c)). This is in accordance with the fact that

the group Y has the dihedral group D2 as a subgroup. Moreover, è22 � 368 is the

nearest-neighbor angle between the binary axes of rotations belonging to D5 (see

Figure 5.9). These simple relations greatly simplify the determination of the polar

coordinates of the axis-vectors, as will be explained below.

To determine the polar coordinates of the axis-vectors of rotation in the icosahedral

group Y, it is most convenient to take the z-axis along a highest symmetry axis-vector

s5 as in Figure 5.9. On account of the subgroup symmetry D5i (� D5d) , Yi, there

exist the horizontal great plane which contains ®ve c2-axes equally distributed with the

nearest-neighbor angle è22 � 368 and ®ve vertical great planes of re¯ection perpendi-

cular to these ®ve c2-axes, each of which contains the whole sequence of axis-vectors

[± ± ± ± ± ± ±]2 in accordance with (5.6.4c). See also Figure 5.8(c).

Let us take the x-axis along an axis-vector s2 2 D5 on the horizontal plane. Then the

polar coordinates (W, j) of the ten s2 2 D5 on the horizontal x, y plane are given by

W � ð=2, jí(s2) � íð=5; í � 0, 1, . . . , 9 (5:6:5a)

The coordinates of the axis-vectors on the vertical re¯ection planes are given by

W �
X

èPQ, jí � íð=5� ð=10; í � 0, 1, . . . , 9 (5:6:5b)

where èPQ with P, Q � 2, 3, 5 are given in Table 5.9 and j0 � ð=10 or ÿð=10 is for

either of the partial sequences ± and ± ± in Figure 5.9. These give the

polar coordinate of all axis-vectors s on the positive hemisphere of the unit sphere of

the dodecahedron. Those on the negative hemisphere are given by ÿs on account of

the inversion symmetry Ci , Yi.

5.6.3 Buckminsterfullerene C60 (buckyball)

This celebrated molecule of 60 carbon atoms was discovered by Kroto and Smalley in

1985 (Kroto et al. 1985). It belongs to the icosahedral-inversion group Yi � Y 3 Ci.

The structure may be regarded as a truncated dodecahedron, which may be viewed

along an axis-vector s5, s3 or s2 of Y passing through the mid-points of a ®ve-fold face,

a six-ring face or a two-fold edge as shown in Figure 5.8(a), (b) or (c). All carbon

atoms lie on the vertices, each of which is on a symmetry great plane of re¯ection but

not along any symmetry axis of rotation. It has 60 vertices (one-fold), 12 ®ve-fold

faces and 20 six-ring faces with three-fold symmetry, 30 edges with two-fold

symmetry and 60 edges with no symmetry axis of rotation (one-fold). These equi-

valence characteristics are in accordance with (5.3.12).

All carbon atoms of the molecule are equivalent but there exist two kinds of CÐC

bonds: one of which may be considered as double-bonded and the other as single-

bonded. Only the double bonds have two-fold symmetry about the mid-points. The

average bond lengths are 1.389 AÊ for the double bonds formed by six±six ring fusions

and 1.433 AÊ for the single bonds formed by six±®ve ring fusions. The radius of the

cavity is 3.512 AÊ (the average distance of a tricoordinate carbon from the center of the

s2 s3 s5 s2

s2 s3 s5 s2 s5 s3

s2 s5 s3 s2 s3
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molecule). The polar coordinates of the carbon atoms may be determined by the

following additional angular distances with obvious notations (see Figure 5.8(a)):

èC�C � 22:8118, èCÿC � 23:5448

è5,C � 20:3138, è3,C � 23:6918

where, for example, è5,C is the angular distance between s5 and one of the nearest

carbon atoms.

5.7 Coset enumeration

There exists a mechanical technique by which one can construct the multiplication

table of a ®nite group G starting from the de®ning relations of the group G without

using the geometric interpretation like (5.3.2a). The algorithm is a useful tool with

a wide range of applications (Coxeter and Moser 1984). Let H be a subgroup of

G, then the primary object of coset enumeration is to determine the complete set of

distinct cosets of H in G in terms of the generators of G and thereby identify

every element of G. Let the right coset decomposition of G by H be written as

follows:

G � H1 � H2 � H3 � � � �
where H1 is the subgroup H. Denote these cosets H1, H2, . . . by numerals 1, 2, . . . .

Then coset 1 is the subgroup H itself. The algorithm is such that, as the computation

proceeds, each right coset will be de®ned as a product H k gi, where H k is a previously

de®ned coset and gi is an appropriately chosen generator of G. We shall explain the

further steps of the algorithm through an example.

Consider the tetrahedral group T de®ned by the presentation

a2 � b3 � (ab)3 � e (5:7:1)

Let H � fe, b, b2g be the subgroup of T by which the right coset decomposition of

T will be constructed. For this purpose, we form tables that express the fact that

Hb � bH � H , H k bbb � H k , H k aa � H k and H k ababab � H k for any k on

account of the presentation (5.7.1). For the ®rst few k, the table takes the form

b b b a a a b a b a b

1 1 1 1 1 1 1 1 1

2 2 2 2 2 2

where the ®rst line, for example, expresses the fact that b1 � 1b � 1, 1a � ?, 1aa � 1

and 1ababab � 1; here, 1 denotes the subgroup H de®ned above and 2 is a right coset

of H to be de®ned. The vacant spots in the table indicate that the right cosets of H are

not yet all de®ned. To ®ll the vacant spots in the ®rst line we may de®ne the right

cosets of H by

1, 1a � 2, 2b � 3, 3a � 4 (5:7:2)

and insert them into the ®rst line to obtain
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b b b a a a b a b a b

1 1 1 1 1 2 1 1 2 3 4 2 1 1

which rewards us with 2a � 1 and 4b � 2. By extending the table to k � 2, 3, 4 and

inserting all available information we obtain the following table:

b b b a a a b a b a b

1 1 1 1 1 2 1 1 2 3 4 2 1 1

2 3 4 2 2 1 2 2 1 1 2 3 4 2

3 4 2 3 3 4 3 3 4 2 1 1 2 3

4 2 3 4 4 3 4 4 3 4 3 4 3 4

which closes up completely, rewarding us with the additional information 3b � 4 and

4a � 3. This means that the coset enumeration of H in the group T is completed by

the four right cosets of H given by (5.7.2). This also con®rms that the group T is well

de®ned by the presentation (5.7.1).

Next, we shall construct the multiplication table of the group T using the coset

enumeration given by (5.7.2) and the presentation (5.7.1). For this purpose we shall

denote the coset representative of the coset k by k and choose the coset representatives

as follows: set 1 � e and j � kgi if j � kgi. Then from (5.7.2) we obtain the following

coset representatives:

1 � e, 2 � a, 3 � 2b � ab, 4 � 3a � aba (5:7:3)

Now, we can identify any element of T as a member of a right coset H k � (k, bk,

bÿ1 k) of H, where k � 1, 2, 3, 4. With this identi®cation of the elements, the

multiplication table of T is given below in a reduced form,7 using the de®ning relations

(5.7.1) for T : it is the multiplication table of the coset representatives and the

generators of T or their inverses. The inverses of the coset representatives are also

included in the table, for convenience.

a b bÿ1

e � 1 2 b bÿ1 1ÿ1 � 1

a � 2 1 3 b4 2ÿ1 � 2

ab � 3 4 b4 2 3ÿ1 � bÿ12

aba � 4 3 bÿ12 bÿ13 4ÿ1 � b3

The table reads, for example, 2b � 3, 2bÿ1 � b4.

As an application of the multiplication table, we shall reconstruct the conjugate

classes of the group T. We may identify the conjugates of any element of T by a right

7 Using the de®ning relations (5.7.1) for T we have

2bÿ1 � 2(ab)2a � 2ababa � baba � b4

4b � abab � (ab)ÿ1 � bÿ1aÿ1 � bÿ1a � bÿ12

3ÿ1 � (ab)ÿ1 � bÿ1aÿ1 � bÿ1a � bÿ12

4ÿ1 � aÿ1bÿ1aÿ1 � abÿ1a � 2bÿ1a � b4a � b3

etc.
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coset element of H. Then distinct conjugates of the generator a are computed as

follows:

babÿ1 � bÿ14, bÿ1ab � bÿ13

The conjugates of a by the remaining elements are all redundant. Thus the class of a is

given by

C(a) � fa, bÿ14, bÿ13g � fa, babÿ1, bÿ1abg

Analogously, for the class of b we compute

2b2ÿ1 � 3a � 4, b4bÿ1 � bbÿ13 � 3, b3bÿ1 � b2

and obtain

C(b) � fb, 4, 3, b2g � fb, aba, ab, bag

The class of bÿ1 is given, taking the inverse of C(b), by

C(bÿ1) � fbÿ1, b3, bÿ12, b4g � fbÿ1, bab, bÿ1a, abÿ1g

The classes of the group T thus obtained are in complete agreement with the classes

already given in (5.3.4).

In an analogous manner one can perform the coset enumeration of the octahedral

group O on the basis of the presentation a4 � b3 � (ab)2 � e. We shall give here only

the multiplication table of the group O in the reduced form, choosing the period kal as

the subgroup H:

a aÿ1 b bÿ1

e � 1 a aÿ1 2 3 1ÿ1 � 1

b � 2 aÿ13 5 3 1 2ÿ1 � 3

bÿ1 � 3 4 a2 1 2 3ÿ1 � 2

bÿ1a � 4 a5 3 5 6 4ÿ1 � aÿ12

baÿ1 � 5 2 aÿ14 6 4 5ÿ1 � a3

baÿ1b � 6 aÿ16 aÿ16 4 5 6ÿ1 � 6

One can show that the classes of the group O constructed by the multiplication table

coincide with those given by (5.1.3a).

Finally, for the icosahedral group Y de®ned by a5 � b3 � (ab)2 � e we choose

H � hai. Then the reduced multiplication table is given by
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a aÿ1 b bÿ1

e � 1 a aÿ1 2 a3 1

b � 2 3 a6 a3 1 2ÿ1 � a3

ba � 3 4 2 aÿ1 aÿ12 3ÿ1 � 3

ba2 � 4 5 3 6 8 4ÿ1 � aÿ13

ba3 � 5 a6 4 7 9 5ÿ1 � aÿ23

ba2b � 6 aÿ12 aÿ15 8 4 6ÿ1 � a24

ba3b � 7 8 aÿ111 9 5 7ÿ1 � a9

ba2b2 � 8 aÿ19 7 4 6 8ÿ1 � 9

ba3b2 � 9 10 a8 5 7 9ÿ1 � 8

ba3b2a � 10 11 9 aÿ111 aÿ112 10ÿ1 � aÿ18

ba3b2a2 � 11 a7 10 12 a10 11ÿ1 � aÿ28

ba3b2a2b � 12 aÿ112 a12 a10 11 12ÿ1 � 12

From the multiplication table, we have constructed the classes of the icosahedral group

Y, given as follows, by successive conjugations with the generators and taking the

inverses:

C(e) � e

C(a) � fa, aÿ12, a6, a5, a24, a33, aÿ1, a4, a23, a32, 6, 5g
C(a2) � fa2, 8, a7, a11, a311, a39, a3, 9, a28, a37, a211, aÿ111g
C(b) � fb, a26, a25, a34, aÿ13, 7, 11, a10, a29, aÿ18, a3, a22, aÿ16, aÿ15, 4,

a9, aÿ28, aÿ17, aÿ111, 10g
C(ab) � fa2, a36, a35, aÿ14, 3, a8, a27, a211, a310, aÿ19, 12, a212,

aÿ112, a12, a312g
Their orders, jC(a)j � jC(a2)j � 12, jC(b)j � 20 and jC(ab)j � 15, are in complete

agreement with the results (5.3.15e) obtained by the class order theorem. The

construction of the multiplication table and the classes of a point group through the

method of coset enumeration may be somewhat tedious but is never dif®cult.
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6

Theory of group representations

6.1 Hilbert spaces and linear operators

6.1.1 Hilbert spaces

The concept of `Hilbert space' may be de®ned in several ways. For our purpose, it is

the space of functions f (x) of a real variable x (or a set of real variables

x � (x1, x2, . . .)) that are integrable in the sense that the integral of f �(x) f (x) over the

whole range of x is ®nite, i.e.

h f , f i �
�

f �(x) f (x) dx ,1 (6:1:1)

which is zero only if f (x) � 0. When the integral is not zero, it is always possible to

make h f , f i � 1, in which case f (x) is said to be normalized to unity. A function f (x)

is also called a vector in the Hilbert space, without making any distinction between

functions and vectors in the space.

The (Hermitian) scalar product of two vectors in the Hilbert space is de®ned by

h f , gi �
�

f �(x)g(x) dx (6:1:2)

It is ®nite because of the Schwartz inequality

jh f , gij2 < h f , f ihg, gi (6:1:3)

which follows from the inequality

h( f � ëg), ( f � ëg)i � h f , f i � ëh f , gi � ë�hg, f i � jëj2hg, gi > 0

with ë � ÿh f , gi�=hg, gi. When the scalar product is zero, i.e. h f , gi � 0, the two

vectors or functions are said to be orthogonal.

The number of linearly independent vectors in a given Hilbert space is called the

dimensionality of the space: it is in®nite in general. We are, however, frequently

interested in a subspace of a ®nite dimension, which is also called a Hilbert space. Let

us assume that there exists a set of linearly independent vectors føí(x)g in a Hilbert

space such that any vector f (x) in the space can be expressed by a linear combination

of the set føí(x)g:

f (x) �
X
í

øí(x) f í (6:1:4)

Such a set føí(x)g is called a complete set of vectors (or simply a basis) in the Hilbert

space. The expansion coef®cients f f íg are called the coordinates of f (x) with respect

to the basis føí(x)g. It is assumed further that a Hilbert space is compact, i.e. the limit

of any sequence of vectors in the space, if one exists, belongs to the space.



6.1.1.1 Orthogonalization

If the complete set of vectors føí(x)g is not orthogonal, it may be replaced by an

orthogonal set föíg: let

ø1 � ö1

ø2 � aö1 � ö2

ø3 � bö1 � cö2 � ö3

etc. Then, the linear coef®cients, a, b, c, . . . , are given, from the orthogonality of the

set föíg, by

a � hö1, ø2i=hö1, ö1i
b � hö1, ø3i=hö1, ö1i
c � hö2, ø3i=hö2, ö2i

etc. In a Hilbert space of a ®nite dimension n, the above orthogonalization process

comes to an end after n steps and we obtain a complete orthogonal set of vectors in the

space. This process is called the Schmidt orthogonalization. The process may be

extended to the in®nite dimension through an appropriate limiting process. Hereafter,

we shall assume that there exists a complete set of orthogonal vectors in a Hilbert space

even if the dimensionality is in®nite. If one takes a complete orthogonal and normal-

ized set føí(x)g as a basis of the space, then the scalar product (6.1.2) is given by

h f , gi �
X
í

f �í gí (6:1:5)

where f í and gí are the íth coordinates of f (x) and g(x) with respect to the basis

føí(x)g, respectively.

6.1.2 Linear operators

Let f (x) be an arbitrary vector in a Hilbert space. Then, an operator A in the space is

de®ned to act on the function f (x) and bring it into another function g(x) in the space

such that

g(x) � A f (x) (6:1:6)

Examples of an operator are a constant, variables, differential operators, square root

(
p

) and quantum mechanical operators such as Hamiltonians and angular momenta.

Hereafter we shall limit our discussion to linear operators: a linear operator A is

de®ned to satisfy

A(af (x)� bg(x)) � aAf (x)� bAg(x)

where a and b are arbitrary constants. The product of two operators A and B is de®ned

by

ABf � A(Bf )

Thus a product of operators satis®es the distribution law A(BC) � (AB)C. The inverse

Aÿ1, if it exists, is de®ned to satisfy

Aÿ1 A � AAÿ1 � 1 (6:1:7)
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Through repeated multiplications of A and/or Aÿ1 one de®nes a power of An of A with

an integer n that is positive, negative or zero, with A0 � 1. Thus one can de®ne a

function of A by F(A), if F(x) can be expanded in powers of x.

The above de®nition of the function of an operator may be extended as follows. Let

us assume that there exists a set of the eigenfunctions föíg of an operator A such that

Aöí(x) � aíöí(x); í � 1, 2, . . . (6:1:8a)

where öí(x) is an eigenfunction of A belonging to an eigenvalue aí. If the set of

eigenfunctions provides a complete orthonormalized set in the Hilbert space, then any

function f (x) in the Hilbert space is expanded by the set föí(x)g:
f (x) �

X
í

öí(x) fí (6:1:8b)

In terms of the set föí(x)g, a function F(A) of an operator A may be rede®ned to

satisfy

F(A)öí(x) � F(aí)öí(x) for all í (6:1:8c)

then the action of F(A) on an arbitrary function f (x) in the Hilbert space is given,

from (6.1.8b), by

F(A) f (x) �
X
í

F(aí)öí(x) fí

This de®nition of F(A) does not require that F(x) be expansible in powers of x; instead,

it requires the completeness of the eigenfunctions föíg of the operator A. In quantum

mechanics, one of the basic assumptions is that the set of the eigenfunctions of an

operator which represents a physical observable provides a complete orthonormalized

set in the Hilbert space. Note that the above de®nition of F(A) de®ned by (6.1.8c) is

very much parallel to that of the function of a matrix introduced in Section 1.3.

6.1.2.1 Special operators

Let A be an operator in the Hilbert space. The adjoint operator Ay is de®ned, in terms

of two arbitrary vectors in the Hilbert space, as follows:

hg, Ay f i � hAg, f i (6:1:9)

By de®nition, we have

(AB)y � ByAy

In terms of the adjoint operator, a Hermitian operator H is de®ned to satisfy

Hy � H

i.e. a Hermitian operator is self-adjoint. A unitary operator U is de®ned to satisfy

U yU � 1 or U y � Uÿ1

It leaves a scalar product invariant:

hUg, Uf i � hg, U yUf i � hg, f i
These concepts are very much parallel to those of the corresponding matrices

discussed in Chapter 1.
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An arbitrary operator A is always expressed in terms of two Hermitian operators H1

and H2 as follows:

A � H1 � iH2

where H1 � (A� Ay)=2 and H2 � (Aÿ Ay)=(2i). Accordingly, the adjoint operator

Ay of A is given by

Ay � H1 ÿ iH2

Moreover, a unitary operator U may be expressed, in terms of a Hermitian operator H,

by

U � exp (iH)

6.1.3 The matrix representative of an operator

The properties of operators are very much parallel to those of the matrices discussed

previously in Chapter 1. Here we shall discuss the close correlation between two

concepts by introducing the matrix representative of a given operator. Let føí(x)g be a

basis in a Hilbert space and let A be an operator in the Hilbert space. Then, the

transformed basis fAøíg also belongs to the space,

Aøí(x) �
X
ì

øì(x)M(A)ìí (6:1:10)

where the matrix M(A) � i M(A)ìí i de®ned by the linear coef®cients is called the

matrix representative of the operator A with respect to the basis føí(x)g. The basis

may be expressed by a row vector Ø(x):

Ø(x) � [ø1(x), ø2(x), . . .] (6:1:11)

the components of which are the basis vectors of the space. Then (6.1.10) is rewritten

formally as follows:

AØ(x) � Ø(x)M(A) (6:1:12a)

where the operator A acts on Ø from the left while the matrix representative M(A)

comes in on the right of Ø: explicitly,

A[ø1(x), ø2(x), . . .] � [Aø1(x), Aø2(x), . . .]

� [ø1(x), ø2(x), . . .]

M(A)11 M(A)12 . . .

M(A)21 M(A)22 . . .
: : . . .
: : . . .

2664
3775 (6:1:12b)

This form is very convenient for the actual construction of the matrix representative

M(A) from (6.1.10), which will be used frequently in the future.

A simple example. Let P be a permutation operator which interchanges two basis

functions ø1 and ø2 such that

Pø1 � ø2, Pø2 � ø1
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The matrix representative of P based on [ø1, ø2] is determined via (6.1.12b) as

follows:

P[ø1, ø2] � [ø2, ø1] � [ø1, ø2]
0 1

1 0

� �
From (6.1.12a) it follows that the matrix representative of a product of two operators

A and B in the space is given by the product of the corresponding matrix representa-

tives, i.e.

M(AB) � M(A)M(B) (6:1:13a)

which follows from

ABØ � ØM(AB)

ABØ � A(BØ) � AØM(B) � ØM(A)M(B) (6:1:13b)

Obviously the identity operator 1 is represented by the unit matrix 1. Thus, if there

exists the inverse operator Aÿ1 such that

AAÿ1 � Aÿ1 A � 1

then the matrix representations of these equations yield

M(A)M(Aÿ1) � M(Aÿ1)M(A) � M(1) � 1

so that

M(Aÿ1) � M(A)ÿ1 (6:1:13c)

If the basis Ø � [ø1, ø2, . . .] is orthonormalized, i.e.

hØ , Øi � 1 or høì, øíi � äìí; 8 ì, í (6:1:14a)

where 8 means for all, then, from (6.1.10), the matrix representative M(A) of A is

given directly by the scalar product

hØ , AØi � M(A) or høì, Aøíi � M(A)ìí (6:1:14b)

Accordingly, from the de®nition (6.1.9) of the adjoint operator Ay, its matrix

representative M(Ay) is given by the adjoint matrix M(Ay):

M(Ay) � M(A)y or høì, Ayøíi � M(A)�íì (6:1:15)

Accordingly, if A is Hermitian, then so is the matrix representative:

if Ay � A, then M(A)y � M(A) (6:1:16a)

Moreover, if A is unitary then so is M(A):

if Aÿ1 � Ay, then M(A)ÿ1 � M(A)y (6:1:16b)

because M(A)ÿ1 � M(Aÿ1) � M(Ay) � M(A)y.
Next, we discuss the transformation properties of the matrix representatives. Under

a transformation of the basis by a non-singular matrix S

Ø9 � ØS or ø9í �
X

øìSìí (6:1:17a)
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the matrix representative of A transforms according to

M(A) � Sÿ1 M(A)S (6:1:17b)

which follows from

AØ9 � AØS � ØM(A)S � Ø9Sÿ1 M(A)S � Ø9M(A)

Since Ø is an orthonormalized basis, we have

hØ9, Ø9i � hØS, ØSi � SyS (6:1:18)

so that the transformed basis is also orthonormalized if the transformation matrix S is

unitary, and vice versa. The present section provides a general preparation for the

matrix representations of a group which will be discussed next.

6.2 Matrix representations of a group

6.2.1 Homomorphism conditions

Let G � fgig be a group and let D(G) � fD(gi); 8 gi 2 Gg be a set of non-singular

matrices in a certain dimension n. If the correspondence gi ! D(gi) is such that (cf.

(6.1.13a))

D(gi)D(g j) � D(gi g j) (6:2:1)

for all elements of G, then the set D(G) � fD(gi)g is called a matrix representation

of G. The above condition (6.2.1) is called the homomorphism condition, from which

the set D(G) is also a group: the unit element e of G is represented by the unit matrix

D(e) � 1, for D(gi)D(e) � D(e)D(gi) � D(gi) for all gi 2 G; moreover,

D(gÿ1
i )D(gi) � D(gi)D(gÿ1

i ) � D(e) � 1

so that D(gÿ1
i ) � D(gi)

ÿ1.

The group G � fgig is homomorphic to one of its representations D(G) � fD(gi)g
via the correspondence gi ! D(gi) for all gi 2 G. If the elements of D(G) are all

different, then the group G is isomorphic to D(G) via one-to-one correspondence

gi $ D(gi) for all gi 2 G. In such a case the representation is said to be faithful. As

discussed in Section 3.5, the elements of G represented by the unit matrix form an

invariant subgroup N of G which is called the kernel of the homomorphism:

G! D(G), and there exists an isomorphism between D(G) and the factor group

G=N .

The simplest representation of G is the identity representation which assigns 1 (the

unit matrix in one dimension) to all elements of G. For an Abelian group, one-

dimensional representations are suf®cient to describe all the representations, because

all the elements of the group commute with each other (see (6.6.18) for a rigorous

proof). Before presenting general methods of constructing matrix representations we

shall consider some simple examples.

Example 1. The dihedral group D2. The de®ning relations are

a2 � b2 � (ab)2 � e (6:2:2)

Since it is Abelian we shall seek one-dimensional representations. Let D(a) and D(b)
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be the representatives of the generators a and b, respectively. Then the matrix

representation of (6.2.2) yields, assigning D(e) � 1,

D(a)2 � D(b)2 � D(a)2 D(b)2 � 1 (6:2:3)

The solutions are

D(a) � �1, D(b) � �1

Thus, we obtain four one-dimensional representations A, B1, B2 and B3 of D2, as given

in Table 6.1, with the realization a � 2x, b � 2 y, ab � 2z. There is no other one-

dimensional representation for D2, because there is no other one-dimensional solution

for (6.2.3). The trivial representation A is called the identity representation. These are

all unfaithful representations because the homomorphism G! D(G) is either four-to-

one or two-to-one. For B1, for example, the kernel of the homomorphism is

N � fe, 2zg.

Example 2. The group D2i. It is a direct product group D2 3 Ci, where Ci is the

group of inversion with elements fe, 1g. The representations of Ci are one-dimen-

sional and given by

e 1

Ãg 1 1

Ãu 1 ÿ1

Accordingly, for each unirrep Ã(D2), there exist two unirepps of D2i de®ned through

the direct product representations

Ãg(D2i) � Ã(D2) 3 Ãg(Ci)

Ãu(D2i) � Ã(D2) 3 Ãu(Ci) (6:2:4)

Thus, we have the eight one-dimensional representations presented in Table 6.2.

Example 3. The quaternion group Q. This group has been de®ned by (3.2.8) with a

set of eight elements f�1, �i, �j, �kg. It has been shown also in (3.5.2) that Q is

homomorphic to group D2 with the correspondence

(�1)! e, f�ig ! 2x, f�jg ! 2 y, f�kg ! 2z (6:2:5)

Table 6.1. The irreducible representations of D2

D2 e 2z 2 y 2x Bases

A 1 1 1 1 1, x2, x2, y2, z2, xyz

B1 1 1 ÿ1 ÿ1 z, xy

B2 1 ÿ1 1 ÿ1 y, xz

B3 1 ÿ1 ÿ1 1 x, yz

The notations A, B1, B2 and B3 (Mulliken's symbols) are used

here because two-fold axes are all equivalent.
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Accordingly Q is also homomorphic to a representation of D2. Thus, we obtain four

one-dimensional representations of Q through those of D2 given in Table 6.3. Table

6.3 also contains a two-dimensional spinor representation introduced by (3.2.10),

which is the only faithful representation of Q.

6.2.2 The regular representation

It is one of the most basic representations of any ®nite group G. It is based on the

group property that a product of two elements of G is also an element of G. Let us

order the elements of G by the subscripts such that G � fgi; i � 1, 2, . . . , jGjg and

let g be any arbitrary element of G. Then ggi must be an element, say gj, of G so that

we have

ggi �
XjGj
j�1

gjä(gj, ggi); i � 1, 2, . . . , jGj (6:2:6a)

where ä(gj, ggi) is the Kronecker delta de®ned below. It means that the set of group

elements fgig acts as a basis of the jGj3 jGj matrix representation D(R) of G de®ned

by the coef®cients in the expansion (6.2.6a):

Table 6.2. The irreducible representations of D2i

D2i e 2z 2 y 2x 1 2z 2 y 2x Bases

Ag 1 1 1 1 1 1 1 1 1

B1g 1 1 ÿ1 ÿ1 1 1 ÿ1 ÿ1 xy

B2g 1 ÿ1 1 ÿ1 1 ÿ1 1 ÿ1 zx

B3g 1 ÿ1 ÿ1 1 1 ÿ1 ÿ1 1 yz

Au 1 1 1 1 ÿ1 ÿ1 ÿ1 ÿ1 xyz

B1u 1 1 ÿ1 ÿ1 ÿ1 ÿ1 1 1 z

B2u 1 ÿ1 1 ÿ1 ÿ1 1 ÿ1 1 y

B3u 1 ÿ1 ÿ1 1 ÿ1 1 1 ÿ1 x

Table 6.3. The irreducible representations of the quaternion group Q

Q e i j k e9 i9 j9 k

Ã1 1 1 1 1 1 1 1 1

Ã2 1 1 ÿ1 ÿ1 1 1 ÿ1 ÿ1

Ã3 1 ÿ1 1 ÿ1 1 ÿ1 1 ÿ1

Ã4 1 ÿ1 ÿ1 1 1 ÿ1 ÿ1 1

E
1 0

0 1

� �
0 ÿi

ÿi 0

� �
0 ÿ1

1 0

� � ÿi 0

0 i

� � ÿ1 0

0 ÿ1

� �
0 i

i 0

� �
0 1

ÿ1 0

� �
i 0

0 ÿi

� �
e � 1, e9 � ÿ1; i9 � ÿi and so on.
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D(R)(g) ji � ä(gj, ggi) � ä(gjg
ÿ1
i

, g)

�
1, if g � gjg

ÿ1
i

0, otherwise

(
(6:2:6b)

It is called the regular representation of G, of which every matrix entry is 1 or 0: for a

given g, D(g)ji � 1 occurs only once, for the jth row and ith column at which

g � gjg
ÿ1
i

. Accordingly, from the group table for multiplication between fgjg and

fgÿ1
i g one can immediately write down D(R)(G). It is a real orthogonal representation

of G because D(R)(g)D(R)(g)� � 1.

Example 4. The regular representation D(R) of the dihedral group D2. Let e � g1,

2z � g2, 2 y � g3 and 2x � g4. By de®nition, D(R)(g) ji � 1 when and only when

g � gjg
ÿ1
i

. However, since D2 is Abelian and gj � gÿ1
j for all j, we have

D(R)(g) ji � 1, if and only if g � gjgi � gigj. This means that the representation is

symmetric with respect to (i, j). From the group multiplication table of D2

D2 e 2z 2 y 2x

e e 2z 2 y 2x

2z 2z e 2x 2 y

2 y 2 y 2x e 2z

2x 2x 2 y 2z e

the regular representation of D2 is given by

D(R)(e) �
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

2664
3775, D(R)(2z) �

0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

2664
3775

D(R)(2 y) �
0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

2664
3775, D(R)(2x) �

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

2664
3775 (6:2:7)

The regular representation D(R)(G) of a group G plays a crucial role in the

representation theory because it contains every irreducible representation of G once

and only once, as will be shown later.

6.2.3 Irreducible representations

Let D(G) � fD(g); 8 g 2 Gg be a representation of a group G. Then, from the given

representation, new ones can be produced by the similarity transformation with a given

matrix S:

D(g)9 � Sÿ1 D(g)S, 8 g 2 G (6:2:8)

where 8 means for all. Since a similarity transformation does not affect the multi-

plication properties of the matrices, two representations connected by a similarity

transformation are said to be equivalent. Equivalent representations are regarded as

essentially the same.
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If a representation D(G) can be brought into a direct sum of two or more

representations by a similarity transformation S such that

D9(g) � Sÿ1 D(g)S �
D(1)(g) 0 . . . 0

0 D(2)(g) . . . 0

..

. ..
. ..

.

0 0 . . . D(w)(g)

26664
37775; 8 g 2 G (6:2:9a)

then the representation is said to be reducible; otherwise, it is said to be irreducible. A

one-dimensional representation is irreducible by de®nition. Equation (6.2.9a) may be

expressed in terms of the direct sum notation as follows:

D9(g) � D(1)(g)� D(2)(g) � � � � � D(w)(g), 8 g 2 G (6:2:9b)

Then, from the multiplication law of the direct sums, we see that each matrix in the

sum provides a representation of G. A very simple theorem on the irreducibility

condition for a representation will be developed later in Section 6.6, but here some

examples are in order.

Example 5. The representations of D2 given by Table 6.1 are all irreducible because

they are one-dimensional.

Example 6. Reduce the following representation of D2 given by

D(e) � 1 0

0 1

� �
, D(2z) � 1 0

0 1

� �
, D(2 y) � 0 1

1 0

� �
, D(2x) � 0 1

1 0

� �
(6:2:10a)

utilizing the fact that the representation involves only two matrices:

1 � 1 0

0 1

� �
and ó x � 0 1

1 0

� �
Since the unit matrix 1 commutes with any matrix, it is only necessary to reduce ó x to

ó z � 1 0

0 ÿ1

� �
This is achieved by an involutional transformation introduced in Section 2.1, i.e.

Yó xY � ó z; Y � (ó x � ó z)=
p

2 � 1p
2

1 1

1 ÿ1

� �
(6:2:10b)

Thus, the representation de®ned by (6.2.10a) is reduced, by the involutional transfor-

mation, to the following form

D9(e) � 1 0

0 1

� �
, D9(2z) � 1 0

0 1

� �
, D9(2 y) � 1 0

0 ÿ1

� �
,

D9(2x) � 1 0

0 ÿ1

� �
That is, D9 � A� B1, where A and B1 are the irreducible representations of D2 given

in Table 6.1.
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Example 7. Reduce the regular representation D(R) of D2 given by (6.2.7) using the

fact that D(R) can be rewritten in the following direct product form:

D(R)(e) � 1 3 1, D(R)(2z) � 1 3 ó x, D(R)(2 y) � ó x 3 1,

D(R)(2x) � ó x 3 ó x

where 1 is the 2 3 2 unit matrix.

Since the involutional matrix Y of (6.2.10b) transforms ó x to ó z we can diagonalize

D(R) of D2 by the direct product Y 3 Y (which is also involutional) as follows:

D9(g) � (Y 3 Y )D(R)(g)(Y 3 Y ); 8 g 2 G (6:2:11)

where

D9(e) � 1 3 1, D9(2z) � 1 3 ó z, D9(2 y) � ó z 3 1, D9(2x) � ó z 3 ó z

which are all diagonal matrices because ó z is diagonal. Explicitly,

D9(e) �
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

2664
3775, D9(2z) �

1 0 0 0

0 ÿ1 0 0

0 0 1 0

0 0 0 ÿ1

2664
3775

D9(2 y) �
1 0 0 0

0 1 0 0

0 0 ÿ1 0

0 0 0 ÿ1

2664
3775, D9(2x) �

1 0 0 0

0 ÿ1 0 0

0 0 ÿ1 0

0 0 0 1

2664
3775

By comparison with the irreducible representations of D2 given by Table 6.1, the

regular representation D(R) of D2 is reduced to the following direct sum:

D9 � A� B2 � B1 � B3

which contains every irreducible representation of D2 given in Table 6.1 once and only

once.

6.3 The basis of a group representation

6.3.1 The carrier space of a representation

Let us consider a linear vector space V (n) spanned by a set of n linear independent

vectors fø1(x), ø2(x), . . . , øn(x)g in a Hilbert space. If the space V (n) is invariant

with respect to a group of operators G � fAg, then the transform Aøí(x) also belongs

to V (n) such that

Aøí(x) �
Xn

ó�1

øó (x)Dó í(A); í � 1, 2, . . . , n (6:3:1)

for all A 2 G. It means that the set Ø � [ø1(x), ø2(x), . . . , øn(x)] provides a row

vector basis of a matrix representation D(G) � fD(A); 8 A 2 Gg of the group

G � fAg analogous to (6.1.12a) and thus leads to the homomorphism relations:

D(BA) � D(B)D(A) 8 B, A 2 G (6:3:2)

analogous to (6.1.13a). The linear vector space V (n) spanned by the basis Ø of D(G) is

called the basis space or the carrier space of the representation D(G).
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Since (6.3.1) is a special case of (6.1.10), the properties of the matrix representation

D(G) � fD(A)g follow from those of the matrix representative M(A) of an operator A

discussed in Section 6.1. In particular, if the basis is orthonormal, we have from

(6.3.1), analogous to (6.1.14b),

hØ , AØi � D(A) (6:3:3)

which is unitary if the group G is unitary from (6.1.16b). Moreover, under a trans-

formation of the basis by Ø9 � ØS with a unitary matrix S, the matrix representative

D(A) transforms, analogous to (6.1.17b), according to

D(A) � SyD(A)S; SyS � 1 (6:3:4)

which is again unitary.

Any basis space V (n) of a unitary representation D(G) of a group G contains two

trivial subspaces, the null space consisting of only the vector [0, 0, . . . , 0] and the

entire basis space V (n). If there exists a proper subspace V (m) (0 , m , n) that is

invariant with respect to G, the representation D(G) can be reduced to the following

form by a unitary transformation S:

D(A) � SyD(A)S � D(1)(A) 0

0 D(2)(A)

� �
; 8 R 2 G (6:3:5)

where fD(1)(A)g is an m-dimensional unitary representation of G and D(2)(R) is an

(nÿ m)-dimensional unitary representation of G. This is shown as follows. We choose

an orthonormal basis Ø9 such that

Ø9 � [ø(1)
1 , ø(1)

2 , . . . , ø(1)
m , ø(2)

1 , . . . , ø(2)
nÿm]

where Ø (1) � [ø(1)
1 , . . . , ø(1)

m ] spans the invariant subspace V (m) and Ø (2) � [ø(2)
1 ,

. . . , ø(2)
nÿm] spans the complement of V (m) in V (n), which may but need not be an

invariant subspace of V (m). Then, the representation D(A) based on Ø9 may take the

following form:

D(A) � D(1)(A) M(A)

0 D(2)(A)

� �
; 8 A 2 G (6:3:6)

Since fD(A)g is a unitary representation of the group G, we have D(Aÿ1) � D(A)y for

all A 2 G. This means that the above form (6.3.6) should hold both for D(A) and for

its adjoint D(A)y. This is possible if and only if M(A) � 0 for all A 2 G. Q.E.D.

According to (6.3.5), if V (m) (0 , m , n) is an invariant subspace of V (n) with

respect to G, then so is its complement V (mÿn) of dimensions mÿ n. If the basis space

V (n) of D(G) does not contain any proper invariant subspace, then D(G) is irreducible

and the basis space V (n) is said to be irreducible. Two irreducible basis spaces are said

to be inequivalent, if the corresponding irreducible representations are inequivalent.

The basis functions belonging to two inequivalent basis spaces are linearly indepen-

dent (actually they are orthogonal to each other according to Schur's lemma, which

will be discussed in the next but one section) and cannot be combined to form an

irreducible basis of G. Thus the whole basis space of a unitary group G of a ®nite

order can be classi®ed into a certain number of irreducible basis spaces of G: the

number equals the number of the conjugacy classes of G, as will be shown in the next

section.
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6.3.2 The natural basis of a matrix group

More frequently than not, it is pro®table to introduce a formal basis for a matrix group

G to allow one to understand it as a group of linear transformations. The well-known

examples are the basis [i, j, k] of the rotation group O(3) (� O(3, r)) formed by the

three mutually orthogonal unit vectors in the Cartesian coordinate system and the

formal basis fî1, î2] for the special unitary group SU (2).

Consider the group G � GL(n) of linear transformations in V (n) and let M � i Mij i
be an n 3 n matrix belonging to G and observe the identity

M1 � 1iMij i (6:3:7)

where 1 is the n 3 n unit matrix. Let us express the unit matrix in the form

1 �
1 0 . . . 0

0 1 . . . 0

..

. ..
. � � � ..

.

0 0 1

2664
3775 � [e1, e2, . . . , en] � e (6:3:8)

where e1, e2, . . . , en are the unit column vectors de®ned by

e1 �
1

0

..

.

0

2664
3775, e2 �

0

1

..

.

0

2664
3775, . . . , en �

0

0

..

.

1

2664
3775

Then, the identity (6.3.7) is rewritten in the form

8M[e1, e2, . . . , en] � [e1, e2, . . . , en]M (6:3:9a)

or

8M ej �
X

i

eiMij; 8M 2 GL(n) (6:3:9b)

where the operator 8M is introduced to stress the fact that matrix M is acting on each

basis vector ej as an operator. The basis e � [e1, e2, . . . , en] is called the natural basis

of the matrix group G. Any (column) vector x � (x1, x2, . . . , xn) in V (n) is expressed

by the natural basis as follows:

x � e1x1 � e2x2 � � � � � enxn �
X

i

eixi

Under the matrix transformation M 2 G, the vector x transforms according to

x9 � 8M x �
X

ij

eiMijxj �
X

i

eix9i

where

x9i �
X

j

Mijxj; i � 1, 2, . . . , n

which is the coordinate transformation of x induced by the transformation of the

natural basis e.
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6.3.2.1 Examples

1. The three orthogonal unit vectors [i, j, k] in the Cartesian coordinate system

provide the natural basis for the three-dimensional rotation group O(3) � fRg, i.e.

8R[i, j, k] � [i9, j9, k9] � [i, j, k]R (6:3:10)

From this relation we have shown in Lemma 5.1.1 that the matrix representation

of R is given by R � [i9, j9, k9]. Moreover, by the multiplication law given by

(5.1.8), we have formed the multiplication table for the octahedral group, Table

5.6.

2. The natural basis in V (2) de®ned by two column vectors

î1 � 1

0

� �
, î2 � 0

1

� �
(6:3:11)

provides a basis for the spinor transformation S 2 SU (2). The basis î � [î1, î2] is

referred to as the elementary spinor basis. Let S � iSij i be a 2 3 2 matrix

belonging to SU (2), then 8Sî � îS or

8S[î1, î2] � [ 8Sî1, 8Sî2] � [î1, î2]
S11 S12

S21 S22

� �
(6:3:12)

Note that the elementary spinors î1 and î2 are the eigenvectors of the z-

component ó z 2 SU (2) of the Pauli spin matrix belonging to the eigenvalues 1

and ÿ1, respectively, i.e.

8ó zî1 � î1, 8ó zî2 � ÿî2 (6:3:13)

It will be shown in Section 10.3 that a set of homogeneous monomials of the

elementary spinors î1 and î2 provides a basis of a representation of SU (2).

6.4 Transformation of functions and operators

6.4.1 General discussion

Let f (x) � f (x1, x2, . . . , xn) be a function of a point x � (x1, x2, . . . , xn) in an n-

dimensional con®guration space V (n) and consider the transformation of f (x) under a

real orthogonal transformation (or a rotation) R 2 O(n, r) of the point x:

x9 � Rx or x9i �
X

j

Rijxj; i � 1, 2, . . . , n (6:4:1)

Substitution of x � Rÿ1x9 into f (x) yields a new function f 9 of the new point

x9 2 V (n)

f (x) � f (Rÿ1x9) � f 9(x9) (6:4:2a)

This transformation may also be expressed in terms of a transformation operator 8R
that acts on the function such that

f 9(x9) � f (Rÿ1x9) � 8R f (x9) (6:4:2b)

Here 8R f � f 9 is regarded as the symbol for a function just as f or g is a symbol.

Analogously, if we start from f (x9) we obtain

f (x9) � f (Rx) � 8Rÿ1 f (x) (6:4:2c)
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Since the variable x9 in the functional relation (6.4.2b) is a dummy common variable,

it may be replaced by x as follows:

f 9(x) � f (Rÿ1x) � 8R f (x) (6:4:2d)

However, when it is necessary to distinguish the transformed point x9 from the original

point x, the relation (6.4.2b) or (6.4.2c) is more convenient than (6.4.2d). The

geometric interpretation of (6.4.2d) is interesting: the rotation of a function f (x) of a

point x is brought about by the inverse rotation of the point x. Before going any

further, we give some simple examples of basis transformations.

Example 1. Let r � (x, y, z) be a (column) vector of a point in V (3). Then its

transpose provides an elementary basis r� � [x, y, z], which is a special case of the

row vector basis de®ned by (6.1.11) with ø1 � x, ø2 � y and ø3 � z. Under a rotation

R: r ! r9 � Rr, we have from (6.4.2d)

8Rr� � [Rÿ1 r]� � r�R (6:4:3a)

for R� � Rÿ1. Accordingly, in view of (6.1.12b),

8R[x, y, z] � [ 8Rx, 8Ry, 8Rz] � [x, y, z]R (6:4:3b)

Comparing this with (6.3.10), we conclude that the elementary basis [x, y, z] trans-

forms like the natural basis [i, j, k] under a rotation. Thus, for example, analogous to

(5.1.7a) and (5.1.7c), we have

83xyzx � y, 83xyz y � z, 83xyzz � x (6:4:3c)

84zx � y, 84x y � ÿx, 84zz � z (6:4:3d)

More generally, from (6.4.3b), a function f (x, y, z) of r � (x, y, z) transforms

according to

8R f (x, y, z) � f ( 8Rx, 8Ry, 8Rz)

� f (xR11 � yR21 � zR31, xR12 � yR22 � zR32, xR13 � yR23 � zR33) (6:4:3e)

which is, obviously, in agreement with 8R f (r) � f (Rÿ1 r), if it is expressed by the

coordinates.

Example 2. Consider a function ö(r, r9) of two points r and r9 in the three-

dimensional space that is invariant under a rotation R such that

8Rö(r, r9) � ö(Rÿ1 r, Rÿ1 r9) � ö(r, r9) (6:4:4a)

A simple example of such a function is given by ö(jr ÿ r9j) or ö(r . r9). If we let

r9 � ro
í be a ®xed point in space, then we obtain an invariant (or a scalar) function

öí(r) � ö(r, r0
í) located at ro

í, which transforms under a rotation R according to

8Röí(r) � öí(Rÿ1 r) � ö(Rÿ1 r, ro
í) � ö(r, Rro

í) (6:4:4b)

i.e. the function öí(r) at ro
í is transformed into the function at Rro

í. More speci®cally,

let fro
1, ro

2, ro
3g be a set of three equivalent points under three-fold rotation c3 such that

c3 ro
1 � ro

2, c3 ro
2 � ro

3, c3 ro
3 � ro

1
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then the set of scalar functions fö1(r), ö2(r), ö3(r)g transforms exactly like the set of

equivalent points:

8c3ö1(r) � ö2(r), 8c3ö2(r) � ö3(r), 8c3ö3(r) � ö1(r) (6:4:4c)

See Figure 6.1.

6.4.2 The group of transformation operators

If a set of transformations fRg forms a group G, then the set of corresponding

transformation operators f 8Rg also forms an operator group that is isomorphic to

G � fRg via the correspondence 8R$ R. To show this we shall ®rst prove the

homomorphism relations:

8S 8R � (SR)o; 8 S, R 2 G (6:4:5)

By applying 8S on (6.4.2d) we obtain

8S 8R f (x) � 8S( 8R f )(x) � ( 8R f )(Sÿ1x) � f (Rÿ1Sÿ1x) � f ((SR)ÿ1x) � (SR)o f (x)

which yields (6.4.5) because the function f (x) is an arbitrary function of x. Accord-

ingly, the set f 8Rg forms a group isomorphic to G � fRg via the correspondence
8R$ R. On account of the isomorphism, the operator group may also be expressed by

the same notation G � f 8Rg as G � fRg unless confusion arises.

Remark 1. Let f 9 � 8R f , then it seems natural to write

8S 8R f (x) � 8S f 9(x) � f 9(Sÿ1x) � 8R f (Sÿ1x) (6:4:6)

Now, if we substitute f (Sÿ1x) � 8S f (x) into the last term in (6.4.6), we would obtain
8S 8R f (x) � 8R 8S f (x), which is contradictory unless 8S commutes with 8R. The contra-

diction is avoided by writing f 9(Sÿ1x) � ( 8R f )(Sÿ1x), which clearly indicates where

Rÿ1 should act and also does not allow 8S to come in between 8R and f.

Remark 2. Let f (x) � f (x1, x2, . . . , xn) be a function of a point x � (x1, x2, . . . , xn)

in V (n) as before. In (6.4.1), we have regarded x as a column vector in describing its

transformation x! x9 � Rx under an orthogonal transformation R. Alternatively, we

can equally well regard f (x1, x2, . . . , xn) as a function f (x�) of a row vector

x� � [x1, x2, . . . , xn]. Then we have, analogous to (6.4.3a),

8Rx� � (Rÿ1x)� � x�R (6:4:7)

φ1

φ3

φ2

Figure 6.1. Rotation of a set of equivalent scalar functions under a three-fold

rotation c3.
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which is quite parallel to (6.3.9b). Thus the transformation of f (x�) is given by

8S 8R f (x�) � 8S f (x�R) � f (x�SR) � (SR)o f (x�)

This formalism is quite convenient because one may by-pass the inverse operation

Rÿ1. Hereafter, we may use either de®nition of 8R freely, whichever is more convenient

for the situation.

Further properties of an operator group G � f 8Rg corresponding to a real orthogonal

group G � fR) are the following.

(i) Given two functions f (x) and g(x) and two constants a and b, then we have the

linearity

8R(af (x)� bg(x)) � a 8R f (x)� b 8Rg(x)

because the point transformation x! Rx must apply to every x. For the same

reason

8R[ f (x)g(x)] � 8R f (x) 8Rg(x) (6:4:8a)

If F( f (x), g(x), . . .) is a function of functions f (x), g(x), . . . , then

8RF( f (x), g(x), . . .) � F( 8R f (x), 8Rg(x), . . .) (6:4:8b)

which plays an important role in describing the transformation of a composite

function of functions whose transformation properties are known.

(ii) G � f 8Rg is unitary. To see this, introduce a real orthogonal transformation

R: x! x9 � Rx for the integral variable x of a scalar product (6.1.2). Then from

(6.4.2a)

h f , gi �
�

f (x)� g(x) dx �
�

f 9(x9)� g9(x9) dx9

using dx � dx9 under an orthogonal transformation R. From (6.4.2b), this means

that

h f , gi � h 8R f , 8Rgi � h f , 8Ry 8Rgi
which yields 8RyR � 1 because f and g are arbitrary functions. This can be written

as follows:

8Rh f , gi � h f , gi (6:4:9)

assuming that 8R acts on the integrand.

Example 5. The rotation operator 8R(è) 2 O(�3). The transformation operator corre-

sponding to a proper rotation 8R(è) 2 O(�3) is given by

8R(è) � exp (ÿiè . L), L � 1

i
[r 3 =] (6:4:10)

where L is the angular momentum operator in quantum mechanics and = � (@=@x,

@=@ y, @=@z).

Proof. We shall determine 8R(è) through in®nitesimal rotation. On expanding

R(èn) � exp [èù(n)] given in (4.3.2a) for an in®nitesimal rotation angle è, we obtain
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r9 � eèù(n) r � r � èù(n)r � � � � � r � è[n 3 r] � � � �
to the ®rst order in è. Thus, under the in®nitesimal transformation, a function f (r)

transforms according to

f (r9) � f (r)� è[n 3 r] . = f (r) � � � �
Using the identity

[n 3 r] . = � n . [r 3 =] � i(n . L) � iLn

we obtain

@ f

@è

����
è�0

� iLn f ; Ln � n . L

which yields, upon integration with respect to è,

f (r9) � exp (ièLn) f (r) � 8Rÿ1 f (r)

in view of (6.4.2c). Since f (r) is an arbitrary function we arrive at (6.4.10). The

operator is unitary because the angular momentum operator L is Hermitian.

6.4.3 Transformation of operators under G � f 8Rg
Let Q(x) be an operator that is a function of x in a con®guration space V (n) that brings

an arbitrary function f (x) in a Hilbert space to another function F(x) in the space such

that

F(x) � Q(x) f (x) (6:4:11)

Under a real orthogonal transformation R: x! x9 � Rx we have, from (6.4.2c),

F(x9) � F(Rx) � 8Rÿ1[Q(x) f (x)] � 8Rÿ1Q(x) 8R f (x9)

On the other hand, F(x9) � Q(x9) f (x9) so that

Q(x9) � 8Rÿ1Q(x) 8R (6:4:12)

which describes the transformation law of the operator Q(x) under a rotation R of the

point x in the con®guration space V (n).

Example 1. If the operator Q(x) is a scalar operator, then it is invariant under the

group G � f 8Rg of transformations of x such that Q(x9) � Q(x). Accordingly, from

(6.4.12),

Q(x) � 8Rÿ1Q(x) 8R or 8RQ(x) � Q(x) 8R (6:4:13)

for all 8R 2 G. Conversely, a group of transformations that leaves an operator Q(x)

invariant is called the symmetry group of the operator Q(x). In quantum mechanics,

the symmetry group G of the Hamiltonian of a system plays an essential role in

classifying the energy eigenstates by the complete set of irreducible representations of

G; in particular, because the SchroÈdinger equations are seldom solvable exactly.

Moreover, the selection rule for the transitions between the eigenstates is most

effectively discussed in terms of the irreducible representations of the symmetry group

of the Hamiltonian (see Section 6.8).
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Example 2. Let V(r) be a vector operator in three dimensions V(3) such that, under a

rotation R: r! r9 � Rr, it transforms according to

V (r9) � RV (r)

On the other hand, V(r) is an operator, so it must obey the operator transformation law

(6.4.12). Accordingly,

8Rÿ1V (r) 8R � RV (r)

Substitutions of (6.4.10) and R � exp [èù(n)] into this yield the transformation law of

a vector operator

eÿièLn V eièLn � eèù(n)V (6:4:14)

If we apply this for an in®nitesimal rotation, we obtain the commutation relations

between a vector operator V and the angular momentum operator L. To see this we

expand both sides of this equation with respect to an in®nitesimal angle è up to the

order è2 to obtain

(1� ièLn)V (1ÿ ièLn) � (1� èù(n))V � � � �
which, using ù(n)V � n 3 V , leads to

i[Ln, V ] � n 3 V (6:4:15a)

If we write this out in terms of the vector components of the operators V and L, we

obtain the desired commutation relations

[Lx, Vx] � 0, [Ly, Vx] � ÿiVz, [Lz, Vx] � iVy

[Lx, Vy] � iVz, [Ly, Vy] � 0, [Lz, Vy] � ÿiVx

[Lx, Vz] � ÿiVy, [Ly, Vz] � iVx, [Lz, Vz] � 0

These may be rewritten as

[Lá, Vâ] � iEáâãVã; á, â, ã � 1, 2, 3 (6:4:15b)

where Eáâã is the Levi Civita tensor whose non-null elements are limited to

E123 � E231 � E312 � 1, E231 � E321 � E123 � ÿ1

In the special case in which V � L, the above commutation relations reduce to the

commutation relations for the angular momentum operators (Lx, Ly, Lz):

6.5 Schur's lemma and the orthogonality theorem on irreducible representations

Theorem 6.5.1. Any matrix representation of a ®nite group with non-vanishing

determinants can be transformed into a unitary representation through a similarity

transformation.

Proof. Following Wigner (1962), let D(G) � fD(g)g be a matrix representation of a

®nite group G � fgg, and let Dy(g) be the adjoint of D(g). Then a matrix de®ned by

P �
X
g2G

D(g)Dy(g) (6:5:1)
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is a positive de®nite Hermitian matrix since its quadratic form with any vector ø in the

Hilbert space is positive de®nite:

hø, Pøi �
X

g

hDy(g)ø, Dy(g)øi. 0

Accordingly, one can de®ne its positive square root P1=2, which has a positive

eigenvalue and which commutes with P, being a function of P. A further important

property of P that is essential for the proof is that, for an element s of G, we have

D(s)PDy(s) �
X

g

D(sg)Dy(sg) � P (6:5:2)

which follows from the group property that G � fgg � fsgg for a ®xed element s of

G. Now we shall demonstrate that the representation de®ned by

U (s) � Pÿ1=2 D(s)P1=2; 8 s 2 G

is unitary because

U (s)U y(s) � Pÿ1=2 D(s)P1=2 P1=2 Dy(s)Pÿ1=2

� Pÿ1=2 D(s)PDy(s)Pÿ1=2

� Pÿ1=2 PPÿ1=2

� 1

where (6.5.2) is used for the third equality.

For most cases of practical interest, we are involved with the representations of a

group of unitary transformations G � f 8Rg. In such a case, Theorem 6.5.1 is easily

achieved by choosing an orthonormal basis for the representation in view of (6.3.3).

Theorem 6.5.19. If two unitary representations D(1)(G) � fD(1)(g)g and D(2)(G) �
fD(2)(g)g of the same group G � fgg are equivalent (but not necessarily irreducible),

then they can be transformed to one another by a unitary transformation.

Proof. By assumption, there exists a non-singular matrix M such that

MD(1)(g)Mÿ1 � D(2)(g); 8 g 2 G (6:5:3a)

then

MD(1)(g) � D(2)(g)M , D(1)(g)M y � M yD(2)(g) (6:5:3b)

where the second equation is the adjoint of the ®rst. Combining these two, we have

MD(1) M y � D(2) MMy � MM yD(2)(g)

which means that MMy commutes with D(2)(g) for all g 2 G. Since MM y is a positive

de®nite Hermitian matrix, let Q � (MMy)1=2 be its positive square root; then it is also

Hermitian and commutes with D(2)(g) because Q is a function of MM y. Now, the

required unitary matrix is given by U � Qÿ1 M. Firstly, it is unitary because

UU y � Qÿ1 MMyQÿ1 � Qÿ1Q2Qÿ1 � 1
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Secondly, it transforms D(1)(g) into D(2)(g) for all g 2 G;

UD(1)(g)Uÿ1 � Qÿ1 MD(1)(g)Mÿ1Q � Qÿ1 D(2)(g)Q � D(2)(g)

because Q commutes with D(2)(g). (Q.E.D.)

The importance of these two theorems lies in the fact that they allow us to restrict

both the representations of a ®nite group G and their transformations to be unitary.

Thus, if a unitary representation is reducible, it is reducible by a unitary transformation

to a direct sum of unitary irreducible representations (unirreps in short).

Theorem 6.5.2. Schur's lemma. It is the fundamental theorem on an irreducible

collection of matrices.

Let D(á)(G) � fD(á)(g)g and D(â)(G) � fD(â)(g)g be two irreducible representa-

tions of the same group G � fgg and let their dimensions be n (� dá) and m (� dâ)

respectively. If there exists an n 3 m intertwining matrix M such that

D(á)(g)M � MD(â)(g); 8 g 2 G (6:5:4)

then,

(a) M is either a null matrix or a square non-singular matrix, and

(b) M is a constant matrix when á � â.

If we assume further that D(á)(G) and D(â)(G) are inequivalent unless á � â, we

can combine (a) and (b) to express the matrix M in the following form:

M � äáâë1 (6:5:5)

where äáâ is Kronecker's delta which equals zero for á 6� â and unity for á � â, ë is a

constant that can be any complex number and 1 is the unit matrix of order n 3 n.

The proof of this celebrated theorem is straightforward. From the outset we may

assume that n > m; if n , m we merely take the transpose of (6.5.4) and what follows

applies without change because the group property is not used. For the same reason,

the theorem also holds for any irreducible collection of matrices, which need not

constitute a group.

Let M be expressed as a row vector M � [v1, v2, . . . , vm], where the components

are the n-dimensional column vectors vi of M. Then (6.5.4) is rewritten as

D(á)(g)vi �
Xm

j�1

v j D
(â)
ji (g); 8 g 2 G (6:5:6)

where i � 1, 2, . . . , m. This means that the linear space V (m) spanned by the m

column vectors [v1, v2, . . . , vm] is an invariant subspace of the n-dimensional basis

space V (n) of the irreducible representation D(á)(G). Since D(á)(G) is irreducible, by

assumption, the linear space V (m) is either the null space or the entire basis space V (n)

of D(á)(G). In the ®rst case, M is the null n 3 m matrix. In the second case, M is

square (n � m) and non-singular because the set of n vectors [v1, v2, . . . , vn] spans

the basis space of the irreducible representation D(á)(G). Thus we have proven the ®rst

part (a) of the lemma.

To prove the second part (b), let á � â in (6.5.4), then

D(á)(g)M � MD(á)(g); 8 g 2 G (6:5:7a)
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which may be rewritten in the form

D(á)(g)[M ÿ ë1] � [M ÿ ë1]D(á)(g); 8 g 2 G (6:5:7b)

where ë1 is a constant matrix that commutes with D(á)(g). We choose ë as one of the

characteristic roots of M, then det [M ÿ ë1] � 0, i.e. the matrix [M ÿ ë1] is singular.

This leads to the conclusion that [M ÿ ë1] is a null matrix because the intertwining

matrix can only be either a null matrix or a square non-singular one. Thus we have

M � ë1 for á � â. (Q.E.D.)

From the second half (b) of Theorem 6.5.2 we deduce the following corollary.

Corollary 6.5.2. If there exists a non-constant matrix that commutes with all matrices

of a representation of a group G, then the representation is reducible; if there exists

none, it is irreducible.

This corollary is also called Schur's lemma. It is frequently used to prove the

irreducibility of a given representation.

Theorem 6.5.3. This theorem is the most important of all for practical purposes; it

describes the orthogonality relations of the matrix elements of irreducible representa-

tions in the space of the group elements of a ®nite group G � fgg.
Let D(á)(G) � fD(á)(g)g and D(â)(G) � fD(â)(g)g be two irreducible representa-

tions of the same group G, which are inequivalent unless á � â. Then they satisfy the

orthogonality relations in the group spaceX
g2G

D
(á)
ij (g)D

(â)
j9i9(gÿ1) � (jGj=dá)äáâäii9ä jj9 (6:5:8)

where jGj is the order of the group G and dá is the dimension of the irreducible

representation D(á)(G).

The proof proceeds as follows. Using the group property of the representations, we

®rst introduce an intertwining matrix M that satis®es (6.5.4) via a bilinear form of

D(á)(G) and D(â)(G). Then the orthogonality relations (6.5.8) follow from Schur's

lemma expressed by (6.5.5).

From the group property, any matrix of the form

M �
X
s2G

D(á)(s)XD(â)(sÿ1) (6:5:9)

satis®es (6.5.4), where X is a dá 3 dâ rectangular matrix; in fact, for an element g of

G,

D(á)(g)M �
X
s2G

D(á)(gs)XD(â)(s)ÿ1

�
X

s

D(á)(gs)XD(â)(gs)ÿ1 D(â)(g)

� MD(â)(g)

which is (6.5.4). Here, we have used fgsg � fsg � G for any ®xed element g 2 G.

Now, from Schur's lemma expressed with (6.5.5), we have
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Mii9 �
X

s, t

X
g

D
(á)
is (g)XstD

(â)
ti9 (gÿ1) � äáâäii9ë(X )

where ë is a constant that may depend on the matrix X . Set all the matrix elements

X st � 0 except for one element X jj9 � 1 in the above equation, then

M ii9 �
X

g

D
(á)
ij (g)D

(â)
j9i9(gÿ1) � äáâäii9ë( j, j9) (6:5:10)

where ë( j, j9) is the constant ë(X ) for the above particular choice of X.

To determine the constant ë( j, j9) we set á � â and i � i9 in (6.5.10) and sum over i

to obtain Xdá

i�1

X
g

D
(á)
ij (g)D

(á)
j9i (gÿ1) �

X
g

D
(á)
j9 j (e) � jGjä j9 j � dáë( j, j9)

which yields ë( j, j9) � (jGj=dá)ä jj9. Substitution of this into (6.5.10) gives the desired

orthogonality theorem (6.5.8). If it is assumed further that the two representations are

unitary, then (6.5.8) can be rewritten in the formX
g

D
(á)
ij (g)D

(â)
i9 j9(g)� � (jGj=dá)äáâäii9ä jj9 (6:5:11a)

which will be referred to as the orthogonality relations of the unitary irreducible

representations (unirreps) in the group space G � fgg. Since the right-hand side of

(6.5.11a) is real, the asterisk � on D(â) can be transferred to D(á). Hereafter, every

representation will be assumed to be unitary unless otherwise speci®ed.

If one regards each matrix element D
(á)
ij (g) of the unirrep as a vector in the jGj-

dimensional space of the group elements of G, then the orthogonality relations

(6.5.11a) can be expressed in terms of a Hermitian scalar product in the group space as

follows:

hD(á)
ij , D

(â)
i9j9iG � (jGj=dá)äáâäii9ä jj9; (6:5:11b)

i, j � 1, 2, . . . , dá; i9, j9 � 1, 2, . . . , dâ; á, â � 1, 2, . . . , c

where c is the number of the inequivalent unirreps of G. Thus, the number of the

orthogonal vectors in the group space is given by the sum of the squares of the

dimensions of the unirreps, d2
1 � d2

2 � � � � � d2
c. This sum is at most equal to the order

jGj of G, because the number of orthogonal vectors cannot exceed the dimensionality

of the space. As will be shown later in (6.6.13), the sum is exactly equal to the order

jGj of G

d2
1 � d2

2 � � � � � d2
c � jGj (6:5:12)

which provides the completeness condition for the irreducible representations of G.

From this it follows that the total number of the vectors fD
(á)
ij (g)=(jGj=dá)1=2;

i, j � 1, 2, . . . , dá; á � 1, 2, . . . , cg in the group space of G equals the order jGj of

the group G so that the set forms an orthonormal complete set in the jGj-dimensional

group space of G. As a result, they satisfy the completeness relations written asXc

á�1

Xdá

i, j�1

dáD
(á)
ij (g)�D

(á)
ij (g9) � jGjä gg9; 8 g, g9 2 G (6:5:13)
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This is simply due to the fact that the unitary conditions UU y � U yU � 1 are

expressed by the elements in the following two ways:X
m

UnmU�n9m � änn9,
X

n

U�nmUnm9 � ämm9

one of which is regarded as the set of orthogonality relations for the row (or column)

vectors of U, whereas the other is regarded as the set of their completeness relations.

Exercise 1. For the unirreps of D2, D2i and Q given in Tables 6.1±6.3, verify the

orthogonality relations (6.5.11a), the completeness relations (6.5.13) and the complete-

ness condition (6.5.12). Note that the orthogonality relations are over any two rows of

a table of irreducible representations whereas the completeness relations are over all

the corresponding matrix elements belonging to two elements g and g9 of G.

6.6 The theory of characters

In group theory, the trace of a representative D(g) of g 2 G

÷(g) �
X

i

D(g)ii (6:6:1)

is called the character of g in the representation D(á)(G). The set of all characters

÷(G) � f÷(g); 8 g 2 Gg over all elements of G is called the character of the

representation D(G). The speci®cation of a representation by means of the character

has the advantage that it remains invariant under a similarity transformation.

6.6.1 Orthogonality relations

From the orthogonality relations of unirreps follow the orthogonality relations of their

characters; in fact, we set i � j and i9 � j9 in (6.5.11a) and sum over j and j9 to obtainX
g

÷(á)(g)�÷(â)(g) � jGjäáâ (6:6:2a)

From this it follows that two inequivalent unirreps cannot have the same character;

hence, two irreducible representations with the same character are equivalent. The

above equation is again expressed as a scalar product in the group space as follows:

h÷(á), ÷(â)iG � jGjäáâ (6:6:2b)

Now, the elements of a conjugate class have the same character since their

representations are connected by similarity transformations. Thus the character is a

class function so that we may denote the character of an element belonging to a class

Cr in a representation D(á)(G) by ÷(á)(Cr). Suppose that there exist k classes

C1, C2, . . . , Ck in a group G. Then the character of a representation D(á)(G) is

completely speci®ed by the characters ÷(á)(C1), ÷(á)(C2), . . . , ÷(á)(Ck) of the k

classes. Let jCrj be the order of a class Cr (i.e. the number of elements in Cr). ThenXk

r�1

jCrj � jC1j � jC2j � � � � � jCk j � jGj
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and the orthogonality relations (6.6.2a) are rewritten asXk

r�1

÷(á)(Cr)�÷(â)(Cr)�jCrj � jGjäáâ (6:6:3)

This equation means that the set f÷(á)(Cr)jCrj1=2; á � 1, 2, . . . , cg forms an orthog-

onal vector system in the k-dimensional space of the classes (the class space). Since

the number of the orthogonal vectors c in the class space cannot exceed the

dimensionality of the space k, one obtains c < k. It will be shown later in (6.6.17) that

c equals exactly k:

c � k (6:6:4)

i.e. the total number c of the unirreps of a group G equals the number k of the classes

in G. Thus from (6.6.3) the set of vectors f÷(á)(jCrj=jGj)1=2g forms an orthonorma-

lized complete set in the k-dimensional class space of G, so that there follow the

completeness relations of the charactersXc

á�1

÷(á)(Cr)�÷(á)(Cr9) � (jGj=jCrj)ärr9 (6:6:5)

where r, r9 � 1, 2, . . . , k:

6.6.2 Frequencies and irreducibility criteria

If a unitary representation D(G) � fD(g)g of a ®nite group G � fgg is reducible, it

can be reduced to a direct sum of unirreps by a unitary transformation:

SyD(g)S � D(1)(g)� D(2)(g) � . . . ; 8 g 2 G (6:6:6)

where some of the unirreps may be equivalent. Let us assume that the equivalent

unirreps contained in (6.6.6) are the same and let the number of times that a unirrep

D(á) is contained in a representation D(G) be fá, then the character ÷(g) of g 2 G for

the representation D(G) is given by

÷(g) �
Xc

á�1

fá÷
(á)(g) (6:6:7)

where fá is called the frequency of the unirrep D(á) in a representation D. From the

orthogonality theorem (6.6.2), the frequency is given by

fá � jGjÿ1
X

g

÷(g)�÷(á)(g) � jGjÿ1h÷, ÷(á)iG (6:6:8)

which is a non-negative integer by de®nition. Thus, the scalar product of any two

characters ÷(G) and ÷9(G) in the group space is also a non-negative integer given by

h÷, ÷9iG �
X

g

÷(g)�÷9(g) � jGj
Xc

á�1

fá f 9á > 0 (6:6:9a)

This equation reduces to the following form for the same two characters:X
g

j÷(g)j2 � jGj
Xc

á�1

f 2
á (6:6:9b)
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If the representation D(G) is irreducible, then only one of fá equals unity while the

remaining fá terms should be zero. Accordingly, the irreducibility condition for D(G)

is given by X
g

j÷(g)j2 � jGj (6:6:10)

6.6.2.1 The completeness condition for unirreps

Another important application of (6.6.9b) is to deduce the completeness condition

(6.5.12) for the unirreps of G, which has been introduced without proof. This will be

shown via the regular representation D(R)(G) of a group G de®ned by (6.2.6b). Since

its character ÷(R)(G) is given by

÷(R)(g) �
X

i

ä(gig
ÿ1
i , g) � jGjä(e, g) � jGj, if g � e

0 otherwise

�
(6:6:11)

the frequency f (R)
á of an irreducible representation D(á)(G) contained in D(R)(G) is

given, using (6.6.8), by

f (R)
á � dá (6:6:12)

i.e. the frequency of an irreducible representation D(á)(G) contained in D(R)(G)

equals the dimensionality dá of the irreducible representation. Since dá > 1, every

irreducible representation D(á)(G) of G is contained in D(R)(G) at least once. Applying

(6.6.9b) for ÷(R)(G), we obtain

jGj �
Xc

á�1

d2
á (6:6:13)

which is the completeness condition for the irreducible representations of a group G

(stated previously by (6.5.12) without proof), because c is the total number of the

irreducible representations of G. It will be shown that c equals the number k of the

classes in G.

6.6.2.2 Exercises

1. Show that the irreducible representations of the dihedral group D2 given by Table

6.1 are complete.

2. Show that the representation E of the quaternion group Q given in Table 6.3 is

irreducible.

3. Show that the irreducible representations of Q given in Table 6.3 are complete.

6.6.3 Group functions

Let G � fgg be a group, then a group function is de®ned on G such that a certain real

or complex number ø(g) is assigned to each element g of G. The matrix element

D
(á)
ij (g) for a given set of indices fá, i, jg is an example of a group function. The

character ÷(á)(g) is another example. Since the latter depends only on the conjugate

class of G, it is more proper to call it a class function. A class function ö(g) of g 2 G

is a group function that satis®es

ö(g) � ö(sÿ1 gs); 8 g, s 2 G (6:6:14)
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By de®nition, a group function ø(g) of g 2 G is a vector in the jGj-dimensional

space of the group elements of G. Since the complete set of the unirreps

fD
(á)
ij (g); á � 1, 2, . . . , cg of G spans the complete set of vectors in the jGj-

dimensional group space, any group function ø(g) must be expanded by the set as

follows (Lyubarskii 1960):

ø(g) �
Xc

á�1

Xdá

i, j�1

D
(á)
ij (g)aá

ij; 8 g 2 G (6:6:15)

where the expansion coef®cients can be calculated using the orthogonality relations of

the unirreps.

Analogous expansion holds for a class function ö(g) with respect to the complete

set of the characters f÷(á)(g); á � 1, 2, . . . , cg. Since a class function is also a group

function with the condition (6.6.14), we have, from the expansion (6.6.15),

ö(g) �
X
á,i, j

D
(á)
ij (sÿ1 gs)aá

ij

�
X
á,i, j

X
i9, j9

D
(á)
ii9 (sÿ1)Dá

i9 j9(g)D
(á)
j9 j (s)aáij

for all g, s 2 G. Summation of both sides of this equation over s followed by the use

of the orthogonality relations (6.5.8) leads to the desired expansion of an arbitrary

class function ö(g)

ö(g) �
X
á,i

÷(á)(g)aáii=dá �
Xc

á�1

÷(á)(g)bá (6:6:16)

where the bá terms are the expansion coef®cients. This expansion means that an

arbitrary class function ö(g) of G in the k-dimensional class space is expressed by a

linear combination of c inequivalent vectors f÷(á)(g); á � 1, 2, . . . , cg in the space.

Accordingly, the set of c vectors must be a complete set in the k-dimensional space so

that

c � k (6:6:17)

i.e. the number of inequivalent irreducible representations of a group G equals the

number of classes in G. This has been stated in (6.6.4) without proof.

For an Abelian group G, the number of the classes equals the order jGj. Moreover,

all irreducible representations of an Abelian group are one-dimensional, because the

completeness condition (6.6.13) with c � jGj,
d2

1 � d2
2 � � � � � d2

c � c (6:6:18)

has only one solution, d1 � d2 � � � � � dc � 1.

6.7 Irreducible representations of point groups

There are many ways of forming the unitary irreducible representations (unirreps) of a

point group. In the following, one-dimensional unirreps will be formed by the de®ning

relations of the group whereas the higher dimensional unirreps will be formed by the

method of induction from the unirreps of the subgroups. The general theory of induced
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representations will be developed later in Chapter 8 in full detail. Here we shall

describe its simple application.

6.7.1 The group Cn

Since Cn � fck
n; k � 0, 1, 2, . . . , nÿ 1g is Abelian, all its irreducible representations

are one-dimensional and their number is equal to the order of the group. It has one and

only one generator, a � cn, and the de®ning relation is given by

an � e

Let D be a unirrep of Cn, then it is one-dimensional. Then, from [D(a)]n � 1, we

obtain n and only n solutions given by

D(m)(cn) � exp (ÿi2ðm=n)

which de®nes a total of n one-dimensional unirreps of Cn

Mm � fD(m)(ck
n) � exp (ÿi2ðmk=n); k � 0, 1, . . . , nÿ 1g

m �
0, �1, . . . , �(nÿ 1)=2 for an odd n

0, �1, . . . , � n

2
ÿ 1,

n

2
for an even n

8<: (6:7:1)

for Mm � M m�n. These constitute the complete set of the unirreps of Cn. To introduce

the bases of the representations, let cn � nz (the n-fold rotation axis in the z-direction)

and let è be the polar angle in the x, y plane measured from an appropriate axis (see

Figure 6.2). Then the basis of Mm is given by

öm(è) � exp (imè) 2 Mm (6:7:2)

where öm(è) and öm�n(è) belong to the same unirrep Mm.

6.7.2 The group Dn

The de®ning relations are

an � b2 � (ab)2 � e

θ

2θ
u0

Figure 6.2. The polar angle è in the x, y plane measured from an appropriately

chosen axis u0.
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The direct matrix solutions of these equations are not very convenient in general,

because Dn is not Abelian for n > 3. For one-dimensional representations, however,

the direct matrix solutions are still effective, because the matrix representatives

commute with each other; in fact, one-dimensional representations satisfy

D(a)n � D(b)2 � D(a)2 D(b)2 � 1

which yields

D(a) � 1, if n is odd

�1, if n is even

�
D(b) � �1

With the realizations a � cn � nz and b � u0, where u0 is a binary axis in the x, y

plane, these one-dimensional representations are denoted A1, A2 and B1, B2 and

de®ned by

A1: D(nz) � 1, D(u0) � 1; A2: D(nz) � 1, D(u0) � ÿ1

B1: D(nz) � ÿ1, D(u0) � 1; B2: D(nz) � ÿ1, D(u0) � ÿ1

(6:7:3)

where B1 and B2 occur only for an even n.

To determine the higher dimensional unirreps of Dn, we shall induce them from

those of its subgroup Cn, using the left coset decomposition of Dn with respect to Cn

Dn � Cn � u0Cn; u0 ? nz 2 Cn

We apply the augmentor u0 to the basis öm(è) � eimè of the unirrep Mm(Cn) and

obtain

8u0öm(è) � öm(ÿè) � eÿimè � öÿm(è)

measuring the angle è from the u0-axis (see Figure 6.2). This means that the basis

öm(è) of Mm(Cn) is connected to the basis öÿm(è) of Mÿm(Cn) by the augmentor u0.

Accordingly, the combined set [öm(è), öÿm(è)] provides a basis of a two-dimensional

representation Em of Dn, which is irreducible if Mm 6� Mÿm for the obvious reason

that two bases belonging to inequivalent unirreps of the subgroup Cn cannot be

combined to form a basis of a unirrep of Cn. If Mm � Mÿm, on the other hand, Em

becomes reducible because the augmentor u0 simply transforms a basis function

öm(è) to another basis function öÿm(è) belonging to the same unirrep of Cn.

In any case, it is convenient to introduce the real bases of representation by the

linear combinations

cos (mè) � (eimè � eÿimè)=2

sin (mè) � (eimè ÿ eÿimè)=(2i) (6:7:4a)

Then the representation Em of Dn based on [cos (mè), sin (mè)] is given by

Em(nz) � cos (2ðm=n) ÿsin (2ðm=n)

sin (2ðm=n) cos (2ðm=n)

� �
Em(u0) � 1 0

0 ÿ1

� �
(6:7:4b)

which is irreducible if Mm(Cn) 6� Mÿm(Cn) as discussed above. If Mm(Cn) �
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Mÿm(Cn) we have sin (2ðm=n) � 0 from (6.7.1) so that m � 0 or n=2, of which the

latter is possible only if n is an even integer, for m being an integer; in either case, the

two-dimensional representation becomes a direct sum of two one-dimensional unirreps

given by (6.7.3) as follows:

E0 � A1 � A2, En=2 � B1 � B2 (6:7:4c)

Now, for the general two-dimensional irreducible representation Em, the basis space

spanned by [cos (mè), sin (mè)] is equivalent under m! ÿm so that Em and Eÿm are

equivalent and Em � Em�n. Therefore, the two-dimensional unirreps Em of Dn are

limited, in view of (6.7.1), to

m �
1, 2, . . . , (nÿ 1)=2 for an odd n

1, 2, . . . ,
n

2
ÿ 1, for an even n

(
(6:7:4d)

Once the representations of the generators nz and u0 have been determined, those of

the remaining elements ck
n � nk

z and uq � cq
nu0 of Dn are obtained by direct matrix

multiplications. These are given in Table 6.4. The completeness of these unirreps

follows from the sums of the squares of the dimensions:

12 � 12 � 22(nÿ 1)=2 � 2n � jDnj; for an odd n

12 � 12 � 12 � 12 � 22 n

2
ÿ 1

� �
� 2n � jDnj; for an even n

Note also that the number of the unirreps equals (n� 3)=2 for an odd n and 1
2
n� 3 for

an even n. These are precisely the numbers of the classes of Dn given in Section 5.2,

in accordance with (6.6.17).

6.7.2.1 Exercises

1. From the characters of the representations Em of Dn given in Table 6.4, show that

these are irreducible, satisfying (6.6.10).

2. From Table 6.4 write down the unirreps of the groups D3 and D4 explicitly and obtain

Tables 6.5 and 6.6. Compare these with the character tables given in the Appendix.

6.7.3 The group T

From the de®ning relations

a2 � b3 � (ab)3 � e

the one-dimensional representations satisfy

D(a)2 � 1, D(a)3 � 1, D(b)3 � 1

which yields

D(a) � 1, D(b) � 1, ù, ù� (6:7:5)

where ù � exp (ÿ2ði=3) is a cubic root of unity. The three one-dimensional represen-

tations A, A9 and A 0 thus obtained are given in Table 6.7 with the realization a � 2z,

b � 3xyz. To determine the higher dimensional irreducible representations of T,

introduce the left coset decomposition of T by the subgroup D2

T � D2 � bD2 � b2 D2; b � 3xyz
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Then the augmentor 3xyz connects the bases x, y and z of the three one-dimensional

representations B1, B2 and B3 of D2 given in Table 6.1, as was shown by (6.4.3c). Thus

we obtain a three-dimensional representation of T based on [x, y, z], which must be

irreducible because x, y and z are the bases of inequivalent unirreps of the subgroup

D2. Consequently, we obtain a complete set of four unirreps of T as given by Table 6.7,

Table 6.4. The irreducible representations of Dn

Dn ck
n uq � cq

nu0 Bases

A1 1 1 1,cos (nè), z2, x2� y2

A2 1 ÿ1 sin (nè), z

B1 (ÿ1)k (ÿ1)q cos (neè=2)

B2 (ÿ1)k (ÿ1)q�1 sin (neè=2)

Em
cos (2ðmk=n) ÿsin (2ðmk=n)

sin (2ðmk=n) cos (2ðmk=n)

� �
cos (2ðmq=n) sin (2ðmq=n)

sin (2ðmq=n) ÿcos (2ðmq=n)

� �
[cos (mè), sin (mè)]

1. k, q � 0, 1, . . . , (nÿ 1) and

m �
1, 2, . . . , (nÿ 1)=2, when n is odd

1, 2, . . . ,
n

2
ÿ 1, when n is even

(
2. B1 and B2 occur only for an even integer n � ne.

3. The angle è is measured from the u0-axis, which may be chosen parallel to the x- or y-axis of the

coordinate system; for the uq-axis see Figure 6.3.

Table 6.5. The irreducible representations of D3

D3 e 3z 3ÿ1
z u0 u1 uÿ1 Bases

A1 1 1 1 1 1 1 1

A2 1 1 1 ÿ1 ÿ1 ÿ1 z

E
1 0

0 1

� � ÿ 1

2
ÿ
p

3

2p
3

2
ÿ 1

2

264
375 ÿ 1

2

p
3

2

ÿ
p

3

2
ÿ 1

2

264
375 1 0

0 ÿ1

� � ÿ 1

2

p
3

2p
3

2

1

2

264
375 ÿ 1

2
ÿ
p

3

2

ÿ
p

3

2

1

2

264
375 [cos è,

sin è]

Table 6.6. The irreducible representations of D4

D4 e 4z 4ÿ1
z 2z u0 u2 u1 uÿ1 Bases

A1 1 1 1 1 1 1 1 1 1

A2 1 1 1 1 ÿ1 ÿ1 ÿ1 ÿ1 z

B1 1 ÿ1 ÿ1 1 1 1 ÿ1 ÿ1 cos (2è)

B2 1 ÿ1 ÿ1 1 ÿ1 ÿ1 1 1 sin (2è)

E
1 0

0 1

� �
0 ÿ1

1 0

� �
0 1

ÿ1 0

� � ÿ1 0

0 ÿ1

� �
1 0

0 1

� � ÿ1 0

0 1

� �
0 1

1 0

� �
0 ÿ1

ÿ1 0

� �
[cos è,

sin è]
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corresponding to the four classes of the group T. These also satisfy the completeness

condition

12 � 12 � 12 � 32 � 12 � jT j
Table 6.7 contains the representatives of the elements which are required in order for

one to write down the character table of the group T. The representatives of the

remaining elements of T are obtained by using the multiplication table, Table 5.3, or

by the general representations of T given by Table 11.7 later. Note also that the

character of the three-dimensional representation denoted by T (the same symbol as

that of the group T ) satis®es the irreducibility condition

32 � 3(ÿ1)2 � 12 � jT j
The bases u� iv (where u � 3z2 ÿ r2 and v � 31=2(x2 ÿ y2)) of A9 and A 0 in Table

6.7 will be derived later in (8.4.16).

6.7.4 The group O

From the de®ning relations

a4 � b3 � (ab)2 � e

Table 6.7. The irreducible representations of T

T e 2z 3xyz 3ÿ1
xyz Bases

A 1 1 1 1 1, x2 � y2 � z2, xyz

A9 1 1 ù ù� u � iv

A0 1 1 ù� ù u ÿ iv

T

1 0 0

0 1 0

0 0 1

24 35 ÿ1 0 0

0 ÿ1 0

0 0 1

24 35 0 0 1

1 0 0

0 1 0

24 35 0 1 0

0 0 1

1 0 0

24 35 [x, y, z], [yz, zx, xy]

1. u � 3z2 ÿ r2, v � 31=2(x2 ÿ y2); ù � exp (ÿ2ði=3).

2. See Table 11.7 for the general representations of the group T.

u0

u1

u2

u21

uq

qπ/n
π/n

π/n

2π/nO

Figure 6.3. The binary axes of rotation uq in Dn.
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the allowed solutions for one-dimensional representations are D(a) � �1 and

D(b) � 1. Thus we obtain two one-dimensional representations A1 and A2 given in

Table 6.8 with the realization a � 4z, b � 3xyz. The higher dimensional unirreps of

O will be induced from the unirreps of the subgroup T using the left coset de-

composition

O � T � 4zT

We may apply the generators 4z and 3xyz of O to the basis [u, v] obtained from the

linear combinations of the bases u� iv of the subgroup T and obtain the two-

dimensional representation E of O given in Table 6.8. The three-dimensional unirrep

T1 of O is generated by the irreducible basis [x, y, z] of the group T. There exists

one more three-dimensional unirrep de®ned by the direct product T2 � A2 3 T1,

which is irreducible because A2 is one-dimensional and T1 is irreducible. Thus we

obtain the ®ve unirreps of O given by Table 6.8. These form a complete set, because

the number of the classes of O is also equal to ®ve. Table 6.8 also contains the

representatives of 2z and 2 yz � 4z 3 3xyz besides those of the generators because the

characters of the ®ve classes of O may be determined by those of e, 4z, 2z, 3xyz and

2 yz. The completeness of those unirreps of O may also be seen via their dimensions

by

12 � 12 � 22 � 32 � 32 � 24 � jOj
The irreducibility condition for T1 is satis®ed because the character satis®es

32 � 6 3 12 � 3 3 12 � 6 3 12 � 24 � jOj

Table 6.8. The irreducible representations of O

O e 4z 3xyz 2z 2 yz Bases

A1 1 1 1 1 1 1, x2 �
y2 � z2

A2 1 ÿ1 1 1 ÿ1 xyz

E
1 0

0 1

� �
1 0

0 ÿ1

� � ÿ 1

2
ÿ
p

3

2p
3

2
ÿ 1

2

264
375 1 0

0 1

� � ÿ 1

2
ÿ
p

3

2

ÿ
p

3

2

1

2

264
375 [u, v]

T1

1 0 0

0 1 0

0 0 1

24 35 0 ÿ1 0

1 0 0

0 0 1

24 35 0 0 1

1 0 0

0 1 0

24 35 0 ÿ1 0

1 0 0

0 0 1

24 35 ÿ1 0 0

0 0 1

0 1 0

24 35 [x, y, z]

T2

1 0 0

0 1 0

0 0 1

24 35 0 1 0

ÿ1 0 0

0 0 ÿ1

24 35 0 0 1

1 0 0

0 1 0

24 35 0 ÿ1 0

1 0 0

0 0 1

24 35 1 0 0

0 0 ÿ1

0 ÿ1 0

24 35 [yz, zx,

xy]

1. 2 yz � 4z3xyz; u � 2z2 ÿ r2, v � 31=2(x2 ÿ y2).

2. T2 � A2 3 T1

3. See Table 11.6 for the general representations for the group O.
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6.7.5 The improper point groups

The irreducible representations of Cnp, Dnp, Cnv and Tp are determined from those of

the proper point groups through the isomorphism described in Section 5.5.2:

Cnp ' C2n, Dnp ' D2n via c2n $ c2n

Cnv ' Dn via uq $ uq

Tp ' O via 4z $ 4z

Moreover, the irreducible representations of the rotation±inversion groups Pi �
(Cni, Dni, Ti, Oi) are determined by the direct product representations of the proper

point groups P and the group of inversion Ci. See (6.2.4), for example. The character

tables of the crystallographic point group based on the unirreps derived in this section

are given in the Appendix.

6.8 Properties of irreducible bases

Let D(á)(G) � fD(á)(g); g 2 Gg be a dá-dimensional unirrep of a transformation

group G � fRg. Then a basis føá
i ; i � 1, 2, . . . , dág of the unirrep D(á)(G) trans-

forms according to

8Røá
i �

Xdá

j�1

øá
j D

(á)
ji (R); i � 1, 2, . . . , dá (6:8:1a)

for all R 2 G. Then a basis function øá
i is said to belong to the ith row of the unirrep

D(á)(G) and the remaining functions in the basis are called the partner functions of

øá
i . This statement is well de®ned only if D(á)(G) is speci®ed completely (not just up

to a similarity transformation) because once one of its basis functions has been given,

all its partners are completely determined by the unirrep D(á)(G). To see this, we solve

(6.8.1a) for øá
j , using the orthogonality theorem on the unirreps (6.5.11a) in the group

space, and obtain the fundamental equation for the partners of any given basis

function øá
m:

øá
j � (dá=jGj)

X
R2G

D
(á)
jm (R)� 8Røá

m; j � 1, 2, . . . , dá (6:8:1b)

It should be noted, however, that in®nitely many functions may belong to the same row

of the same unirrep. This fact should be kept in mind whenever we talk about the

classi®cation of the basis functions. Frequently, a set of functions that satis®es (6.8.1a)

or (6.8.1b) is called a set of symmetry-adapted functions belonging to the unirrep

D(á)(G).

We shall ®rst discuss the orthogonality of the basis functions using (6.8.1a), and

then discuss how to generate a basis of D(á)(G) from any given function F in the basis

space of G under consideration with a slight extension of (6.8.1b).

6.8.1 The orthogonality of basis functions

Two functions øá
i and øâ

j are orthogonal if they belong to different unirreps or to

different rows of the same unirrep of a group G. From the unitary nature of the

operators 8R of the group, we have

6.8 Properties of irreducible bases 135



høá
i , öâ

j i � h 8Røá
i , 8Röâ

j i
�
X
i9, j9

D
(á)
i9i (R)�D

(â)
j9j (R)høá

i9, ö
â
j9i

then, averaging these over all R 2 G (summing over R and dividing by jGj) we obtain,

using the orthogonal theorem (6.5.11b),

høá
i , öâ

j i � (1=dá)äáâäij

X
i9

høá
i9, ö

á
i9i (6:8:2a)

This implies ®rstly that høá
i , öâ

j i vanishes for á 6� â or i 6� j and secondly that the

diagonal elements høá
i , öá

i i are all equal and hence independent of i. Thus, if one of

the basis functions øá
i is not null, then each of its partners is not null.

Suppose further that there exists a symmetry operator S that is invariant with respect

to G such that 8RS � S 8R for all R 2 G. Then from the unitarity of 8R applied to the

matrix representative M(S) � ihøá
i jSjöâ

j ii of S, we have

høá
i jSjöâ

j i �
X
R2G

h 8Røá
i jSj 8Röâ

j i=jGj

� äáâäijd
ÿ1
á

X
k

høá
k jSjöá

ki (6:8:2b)

analogous to the scalar product (6.8.2a). Thus the matrix representative M(S) for

á � â is a constant matrix. This is consistent with Schur's lemma.

6.8.2 Application to perturbation theory

Consider the symmetry group of G of a Hamiltonian H0 for a quantum mechanical

system. Then, H0 is invariant with respect to the group of transformations G � f 8Rg
such that

8RH0
8Rÿ1 � H0 or 8RH0 � H0

8R; 8 R 2 G (6:8:3a)

Let øÄ
k (k � 1, 2, . . . , dÄ) be a set of degenerate eigenfunctions of H0 belonging to

an energy EÄ,

H0ø
Ä
k � EÄø

Ä
k ; k � 1, 2, . . . , dÄ (6:8:3b)

Then 8RøÄ
k are also eigenfunctions of H0 belonging to the same energy EÄ, because

H0( 8RøÄ
k ) � 8RH0ø

Ä
k � Eá( 8RøÄ

k )

Accordingly, 8RøÄ
k can be expanded by the degenerate set føÄ

k g:
8RøÄ

k �
X

k9

øÄ
k9Äk9k(R); k � 1, 2, . . . , dÄ

for all 8R 2 G. Since G is the symmetry group of the Hamiltonian H0, there is no

symmetry reason that the representation Ä(G) should be reducible; in fact, Ä(G) is

irreducible for almost all cases. If this is not the case we say that it is accidentally

degenerate owing to some hitherto unrecognized symmetries; it is rare but it happens.1

1 A well-known example is the case of the hydrogen atom, in which all the excited energy levels are
accidentally degenerate with respect to the rotation group O(3, r). This degeneracy has been removed by
recognizing that the symmetry group of the hydrogen atom is O(4, r) (. O(3, r)).
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Thus, the degeneracy of an energy level EÄ is determined by the dimensions of the

irreducible representations of the symmetry group G (unless it is accidentally

degenerate). Thus, for example, if the symmetry group H0 is the dihedral group D2,

there would be no degeneracy; if the symmetry group G is Dn (n > 3), the degeneracy

is at most 2 from Table 6.4 of the irreducible representations of Dn.

Now we introduce a perturbation V to the system; then, the Hamiltonian is given by

H � H0 � V . Suppose that the perturbation V is invariant with respect to the

symmetry group G of H0, and also that there exists no accidental degeneracy for the

representation Ä(G), then the matrix representation of the perturbation V based on

føÄ
k g is a constant matrix according to (6.8.2b). Thus there will be a shift in energy

given by høÄ
k jV jøÄ

k i but no splitting. Following Wigner (1962), we state that, `under a

symmetric pertubation, an eigenvalue with an irreducible representation retains its

representation and cannot split.' In this case, the basis føÄ
k g is already a set of correct

linear combinations for the zeroth-order eigenfunctions.

On the other hand, if there exists accidental degeneracy for the energy EÄ, then the

dÄ 3 dÄ representation Ä(G) is reducible such that

Ä(G) �
X
á

� náD(á)(g); 8 g 2 G (6:8:4)

where ná is the number of times a unirrep D(á)(G) is contained in Ä(G) so that

dÄ �
X
á

nádá

Thus, the symmetry perturbation V may lift the accidental degeneracy of the eigen-

value EÄ such that there will be ná eigenvalues corresponding to ná unirreps D(á)(G)

and these eigenvalues may be different. Accordingly, the zeroth-order energy EÄ may

split into a total of NÄ different energies such that

NÄ �
X
á

ná (6:8:5)

To calculate the splittings of the energy due to the perturbation V, let us classify the

zeroth-order eigenfunctions of the energy EÄ in terms of the basis sets of the unirreps

contained in Ä(G). Postponing how to construct these bases from the zeroth-order

eigenfunctions føÄ
k g to the next section, let føá

jr; r � 1, 2, . . . , nág be the ná bases

belonging to the jth row of D(á)(G) constructed from the set føÄ
k g. Then, in view of

(6.8.2b), the matrix elements of the perturbation V are given by

høá
irjV jøâ

jr9i � äáâäijV
(á)
rr9; i, j � 1, 2, . . . , dá; r, r9 � 1, 2, . . . , ná (6:8:6)

Accordingly the secular determinant is factorized into a product of lower order secular

determinants, of which a factor belonging to the unirrep D(á)(G) is given by an

ná 3 ná secular determinant

det jV (á)
rr9 ÿ ÄE(á)1j � 0; r, r9 � 1, 2, . . . , ná (6:8:7)

The ná roots of this equation determine the splitting ÄE(á) of the eigenvalue EÄ. The

correct zeroth-order linear combinations of føÄ
k g are given by the linear combinations

of the subset føá
jr; r � 1, 2, . . . , nág for each á and j and the linear coef®cients are

independent of j.
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If the perturbation V has less symmetry than H0, the energy eigenvalues are

classi®ed by the symmetry group of the total Hamiltonian H � H0 � V , which must

be a subgroup of the symmetry group G of H0.

6.9 Symmetry-adapted functions

6.9.1 Generating operators

The problem is to construct a basis føá
i g of a unirrep D(á)(G) of a transformation

group G � f 8Rg from a given set of functions fF(x)g in the Hilbert space to which the

symmetry operators 8R of G can be applied. Such a set of functions may be referred to

as a set of functions in a basis space of the group G. In the perturbation theory in

quantum mechanics, such a set is provided by the zeroth-order wave functions of the

unperturbed Hamiltonian H0 belonging to an eigenvalue EÄ. In constructing approx-

imate molecular orbitals (MOs) of a molecule from linear combinations of the atomic

orbitals (LCAOs), such a set is provided by a set of equivalent atomic orbits of the

molecule with respect to the symmetry group G of the molecule. There exist two

approaches to the problem: one is based on the generating operators (or projection

operators); the other is based on the correspondence theorem in the basis space of a

point group. We shall discuss the former in this section, postponing the latter to the

next chapter.

To begin with, we simply rewrite the fundamental set of equations (6.8.1b) for a

partner in the following suggestive form:

øá
j � 8P(á)

jmø
á
m; j � 1, 2, . . . , dá (6:9:1a)

where the operator set f 8P(á)
jmg for a given m is de®ned by

8P(á)
jm � (dá=jGj)

X
R2G

D
(á)
jm (R)� 8R; j � 1, 2, . . . , dá (6:9:1b)

Application of this set on a basis function øâ
i 2 D(â)(G) yields, via the orthogonality

relations of the unirreps in the group space,

8P(á)
jmø

â
i � äáâämiø

â
j ; j � 1, 2, . . . , dá (6:9:1c)

that is, the oeprator set f 8P(á)
jmg for a given m transforms a basis function øá

m belonging

to the mth row of D(á)(G) into its partner set, but annihilates all other basis functions

of all unirreps of G.

Now, any given function F in the basis space of G must be expressed by a linear

combination of all basis functions of a complete set of the unirreps of G:

F �
Xc

â�1

Xdâ

i�1

øâ
i (6:9:2)

where c is the total number of all unirreps of G. Here the linear coef®cients are

included in the basis functions and some of the basis functions could be null. It is

stressed here that two different basis functions øá
m and øá

m9 (m9 6� m) in the expansion

need not belong to the same partner set of D(á)(G), because it is quite possible that the

partner set of øá
m is linearly independent from the partner set of øá

m9; for example, they

may differ by a scalar factor.
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On applying the operator set f 8P(á)
im g for a given m on the function F, we obtain a set

of partners føá
j g of øá

m, in view of (6.9.1c) and (6.9.2),

øá
j � 8P(á)

jm F

� (dá=jGj)
X
R2G

D
(á)
jm (R)� 8RF; j � 1, 2, . . . , dá (6:9:3)

The set would be null, if øá
m were not contained in F, in view of (6.9.1c). For this

reason, a proper choice of m has to be made for a given F. Obviously, a different

choice of m, say m9, for a given F may give different bases of D(á)(G) because øá
m and

øá
m9 in the sum (6.9.2) need not belong to the same partner set. With different choices

of F and different m for a given F we may obtain a variety of bases belonging to a

unirrep D(á) of G. The operator set f 8P(á)
jmg may be called the generator set for the

partners of a basis function øá
m.

The structure of the above set of functions given by (6.9.3) is interesting; it is a set

of symmetry-adapted linear combinations (SALCs) of the equivalent functions f 8RF;

8 R 2 Gg. In general, the equivalent set f 8RFg need not be linearly independent. Let

fFs; s � 1, 2, . . . , ng be a set of n linearly independent functions contained in the set

f 8RFg and let Ä(G) be the n 3 n matrix representation of G based on the set fFsg.
Then the frequency ná of D(á)(G) contained in the representation Ä(G) is given by the

frequency rule

ná � 1

jGj
X
R2G

÷(á)(R)�÷(Ä)(R) (6:9:4a)

where ÷(á)(R) and ÷(Ä)(R) are the characters of D(á)(R) and Ä(R), respectively. The

frequencies satisfy X
á

nádá � n, ná < dá (6:9:4b)

The frequency ná gives the number of linearly independent basis sets of D(á)(G)

contained in F.

Equation (6.9.3) gives a general method of constructing a basis of any given

irreducible representation D(á)(G) starting from a function F suitably chosen in the

basis space of G under consideration. For example, in the perturbation theory in

quantum mechanics, F is chosen from the zeroth-order eigenfunctions. With particular

choices of the initial function F, many kinds of irreducible bases will be formed with

proper choices of m. The method is known as the generating operator method. The

method is particularly useful when the equivalent set of functions f 8RFg is given to

begin with. This is the case, for example, when we construct the molecular orbitals

(MOs) from linear combinations of atomic orbitals (LCAOs).

Example 1. Consider a set of free-electron wave functions

F1 � ei2ðx, F2 � ei2ðx, F3 � ei2ð y, F4 � eÿi2ð y (6:9:5)

belonging to an energy E � h2=(2m) of the free electron, where h is Planck's constant

and m is the mass of the electron. The above set of functions fFsg is equivalent with

respect to the point group C4v. The problem is to determine the correct zeroth-order

wave functions by using the SALCs for the point group C4v. This kind of problem

arises in the theory of band energies for an electron in a metal (see Section 15.2).
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From Table 6.9 for the unirreps of C4v and the character of the representation Ä
based on fFsg, the unirreps of C4v contained in Ä are given by

Ä � A1

1
� B1

x2 ÿ y2
� E

[x, y]
(6:9:6)

where we have characterized each unirrep contained in Ä by their elementary bases.

Let us choose F1 in (6.9.5) for F in (6.9.3). Then, using the equivalent set

f 8RF1; 8 R 2 C4vg given in Table 6.9, the symmetry-adapted linear combinations for

C4v are given by, with m � 1 in (6.9.3),

A1: ø1 � 8PA1

11 F1 � 1
4
(F1 � F2 � F3 � F4) � 1

2
[cos (2ðx)� cos (2ðy)]

B1: øx2ÿ y2 � 8PB1

11 F1 � 1
4
(F1 � F2 ÿ F3 ÿ F4) � 1

2
[cos (2ðx)ÿ cos (2ðy)]

E: øE
1 � øx � 8PE

11 F1 � 1
2
(F1 ÿ F2) � i sin (2ðx)

øE
2 � ø y � 8PE

21 F1 � 1
2
(F3 ÿ F4) � i sin (2ðy) (6:9:7a)

Note that the choice m � 2 in (6.9.3) gives the null result for the unirrep E:

8PE
12 F1 � 0; 8PE

22 F1 � 0 (6:9:7b)

This is because F1 � exp (i2ðx) does not contain øE
2 / sin (2ðy).

Note also that ø1 given in (6.9.7a) is an invariant function of C4v belonging to the

identity representation A1, whereas øx2ÿ y2 2 B1 and (øx, ø y) 2 E transform like the

elementary bases x2 ÿ y2 and [x, y], respectively. If we use the fact that the set of

differential opertors (@=@x, @=@ y, @=@z) transforms like the set (x, y, z) under an

orthogonal transformation, then the last two bases may be obtained simply, from the

invariant basis ø1, by

B1: øx2ÿ y2 � (@2
x ÿ @2

y)ø1 � 2ð2[cos (2ðx)� cos (2ðy)] (6:9:8a)

E: øx � @xø1 � ÿð sin (2ðx)

ø y � @ yø1 � ÿð sin (2ðy) (6:9:8b)

where (@x, @ y) � (@=@x, @=@ y):

Table 6.9. The irreducible representations of C4v

C4v e 4z 4ÿ1
z 2z 2x 2 y 2xy 2xy Bases

A1 1 1 1 1 1 1 1 1 1, z

A2 1 1 1 1 ÿ1 ÿ1 ÿ1 ÿ1 xy 3

(x2 ÿ y2)

B1 1 ÿ1 ÿ1 1 1 1 ÿ1 ÿ1 x2 ÿ y2

B2 1 ÿ1 ÿ1 1 ÿ1 ÿ1 1 1 xy

E
1 0

0 1

� �
0 ÿ1

1 0

� �
0 1

ÿ1 0

� � ÿ1 0

0 ÿ1

� � ÿ1 0

0 1

� �
1 0

0 ÿ1

� �
0 ÿ1

ÿ1 0

� �
0 1

0 0

� �
[x, y]

8RF1 F1 F3 F4 F2 F2 F1 F4 F3

÷(Ä) 4 0 0 0 2 2 0 0
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The correspondence between a SALC and the corresponding elementary basis

belonging to the same irreducible representation used above will be discussed further

in the correspondence theorem developed later in Section 7.2.

6.9.2 The projection operators

In the special case in which m � j, Equation (6.9.3) takes the form

øá
m � 8P(á)

mm F (6:9:9)

which also can be used to calculate the basis functions taking m � 1, 2, . . . , dá,

provided that none of them is null. Substitution of this and (6.9.3) into (6.9.1a) leads to

8P(á)
jm

8P(á)
mm � 8P(á)

jm (6:9:10a)

which reduces to the idempotent relation, for j � m (cf. (1.4.12a)),

[ 8P(á)
mm]2 � 8P(á)

mm (6:9:10b)2

Accordingly, the operator 8P(á)
mm is a projection operator that projects out the basis

function øá
m belonging to the mth row of D(á)(G) from an arbitrary function F in the

basis space of G. Its repeated applications do not bring out anything new since it

satis®es the idempotent relation x2 � x. Its eigenvalues are given by the roots of

x2 � x, which are 1 and zero. The corresponding eigenvectors are also easily

determined: we simply specialize (6.9.1c) for j � m to obtain

8P(á)
mmø

â
i � äáâämiø

â
i ; m � 1, 2, . . . , dá; i � 1, 2, . . . , dâ;

á, â � 1, 2, . . . , c (6:9:11)

where the eigenvalue äáâämi equals unity if and only if á � â and m � i. Thus we

have that øá
m is the only eigenvector of 8P(á)

mm belonging to the eigenvalue 1 and all the

remaining basis functions in the basis space of G belong to the zero eigenvalue.

Next, substitution of (6.9.9) into (6.9.11) leads to the orthogonality relations

8P(á)
mm

8P(â)
ii � äáâämi

8R(â)
ii ; m � 1, 2, . . . , dá; i � 1, 2, . . . , dâ;

á, â � 1, 2, . . . , c (6:9:12)

whereas its substitution into (6.9.2) leads to the completeness relationXc

â�1

Xdâ

i�1

8P(á)
ii � 8e (6:9:13)

where 8e is the unit operator of G. These are expected relations for a set of projection

operators. The completeness relation is often called the spectral decomposition of the

unit element. Application of this relation to a given function F in the basis space

brings back the expansion of F given by (6.9.2).

6.9.2.1 Concluding remarks

We have given above two alternative ways of forming a basis føá
j g of a unirrep

D(á)(G) from a given function F in the basis space of G: either by using a set of

2 The generating operator P
(á)
jm is not a projection operator since [P

(á)
jm ]2 � ä jm P

(á)
jm unless j � m.
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generating operators based on (6.9.3) with a proper choice of m; or by using the

projection operators based on (6.9.9) for all m � 1, 2, . . . , dá, where each projection

operator 8R(á)
mm of different m acts on F quite independently from each other. In the

former, it follows from (6.9.1a) that the set føá
j g thus formed is a set of partners

belonging to the unirrep D(á)(G), unless it is null for the choice of m. In the latter,

however, the set føá
mg requires that 8P(á)

mm F 6� 0 for every m; even then, the set thus

formed need not be a set of partners belonging to the unirreps D(á)(G). We may state

that the projection operator method based on (6.9.9) is less effective than the generat-

ing operator method based on (6.9.3). This point is stressed here, because frequently

people seem to prefer the projection operator method over the generating operator

method, probably owing to the beauty of the spectral theorem (6.9.13). See the

following examples.

Example 2. Recalculate the basis [øE
1 , øE

2 ] belonging to the unirrep E of C4v

introduced in Example 1 using the projection operator method.

We choose F1 in (6.9.5) for F in (6.9.9) just like in Example 1. Then, from (6.9.9)

we have, for the unirrep E

8PE
11 F1 � 1

2
(F1 ÿ F2) � i sin (2ðx)

8PE
22 F1 � 2

8
(F1 ÿ F2 � F2 ÿ F1) � 0 (6:9:14a)

The null result is due to the fact that øE
2 is not contained in F1. To obtain a non-null

result for E, we may choose F � F1 � cF3 where c is a scalar factor that is invariant

under rotation. Then

8PE
11[F1 ÿ cF3] � 1

2
(F1 ÿ F2) � i sin (2ðx)

8PE
22[F1 � cF3] � c

2
(F3 ÿ F4) � ci sin (2ðy) (6:9:14b)

These form a partner set of the unirrep E if c � 1, in accordance with (6.9.7a).

Example 3. Consider the group of inversion Ci � fe, Ig, where I is the inversion.

The projection operators are

P(1) � 1
2
(e� I), P(2) � 1

2
(eÿ I)

and the symmetry-adapted functions are given by

8P(1) F(x) � 1
2
(F(x)� F(ÿx)) � Fe(x)

8P(2) F(x) � 1
2
(F(x)ÿ F(ÿx)) � Fo(x) (6:9:15a)

where Fe(x) (Fo(x)) is an even (odd) function of x. A function F(x) is expanded, in

accordance with (6.9.2), to

F(x) � Fe(x)� Fo(x) (6:9:15b)

Exercise. Let 8P(á)
jm
y be the adjoint operator of 8P(á)

jm . Show via the unitarity of the

operator 8R that

8P(á)
jm
y � 8P(á)

jm ; 8P(á)
jm
y 8P(â)

j9m9 � äáâä jj9
8P(á)

mm9
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Using these relations one can also show the orthogonality relations (6.8.2a) for the

irreducible basis functions.

6.9.2.2 The projection operators based on the characters

The method of constructing the irreducible bases via (6.9.3) is useless unless the

representation is known. In the following we shall discuss the method of construction

based on the characters of G. We set j � m in (6.9.1b) and sum over m to obtain

another projection operator:

8P(á) �
X

m

8P(á)
mm � (dá=jGj)

X
R

÷(á)(R)� 8R (6:9:16a)

which depends only on the character ÷(á)(G) of the unirrep D(á)(G). From (6.9.12) and

(6.9.13) these satisfy the projective relations and the completeness relation

8P(á) 8P(â) � äáâ 8P(â),
X
á

8P(á) � 1 (6:9:16b)

These operators are not affected by the similarity transformation of the unirreps,

differently from the previous operators 8P(á)
mm.

The eigenvalue problem (6.9.11) is reduced to

8P(á)øâ
i � äáâø

â
i

which holds for any allowed i. Hence, any linear combination øâ �Piø
â
i satis®es

8P(á)øâ � äáâø
â (6:9:17)

where â � 1, 2, . . . , c. Here again øá is only one eigenvector that belongs to the

eigenvalue unity of 8P(á) whereas all the remaining øâ (â 6� á) belong to the zero

eigenvalue. The function øá which satis®es 8P(á)øá � øá is said to belong to the

unirrep D(á)(G). This fact, like the characters, is independent of the speci®c form of

the representation. Moreover, by summing (6.9.9) over m, we obtain

øá � 8P(á) F (6:9:18)

This is also useful for obtaining the function øá belonging to the unirrep D(á)(G) from

a given function F with knowledge merely of the character ÷(á)(G). A shortcoming of

(6.9.18) is that one has to form at least dá linear independent F in order to obtain a set

of functions that spans the dá-dimensional basis space of D(á), which is a laborious

procedure unless dá � 1. In the special case of the identity representation we have

ø1 � 8P(1) F � (1=jGj)
X

R

8RF (6:9:19)

which is called an invariant function with respect to the group G. It plays the crucial

role in the theory of `selection rules' which will be discussed in the next section. It

also provides an invariant basis for a point group G, from which the remaining SALCs

are constructed via the correspondence theorem, as was exempli®ed by (6.9.8a) and

(6.9.8b).

From the completeness relation of fP(á)g given in (6.9.16b) and (6.9.18), we have

the expansion of any function F in the basis space of G:
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F �
X
á

8P(á) F �
X
á

øá (6:9:20)

corresponding to the expansion (6.9.2).

6.10 Selection rules

In quantum mechanics, we are concerned with the matrix elements of a set of operators

fV ë
lg de®ned by

V
áâë
ijl � høá

i , V ë
lø

â
j i �

�
øá�

i V ë
lø

â
j dx (6:10:1)

where føá
i g and føâ

jg are the eigenfunctions of the Hamiltonian H0 of a quantum

mechanical system. For example, the square of the absolute value of a matrix element

jVáâë
ijl j2 determines the probability of transition between two states øá

i and øâ
j due to

the perturbation V ë
l . In many problems, however, there is no need to calculate these

matrix elements completely: it is often suf®cient to establish selection rules that state

which matrix elements are non-zero and what the linear relations between non-zero

matrix elements are. Here, the projection operator 8P(1) which projects out the invariant

part of a basis function with respect to the symmetry group G � fgg of the system

de®ned in (6.9.19), i.e.

8P(1) � (1=jGj)
X
g2G

8g (6:10:2)

plays the crucial role for this problem.

As a preparation we shall look into the invariance property of an integral de®ned

over the whole space of an n-dimensional con®guration space of x � (x1, x2, . . . , xn)

J �
�

F(x) dx; dx � dx1 dx2 . . . dxn (6:10:3a)

Let G � fgg be a group of transformations of the variable x that preserves the volume

element; for example, G is a group of orthogonal transformations. Then, under a

transformation x! x9 � gx, we have

F(x) � F(gÿ1x9) � 8gF(x9)

with dx � dx9 so that3 we obtain the invariance of the integeral J:

J �
�

8gF(x9) dx9 � 8gJ , 8 g 2 G (6:10:3b)

under the transformation of the integrand F(x) with respect to g 2 G. Since the

integral J is simply a number, 8gJ is meaningful only through the action 8g on the

integrand F(x) of J via the transformation of the integral variable (cf. (6.4.8)).

3 In the case in which the integral J is given by a Hermitian scalar product of two functions Ø(x) and Ö(x),

J �
�
Ø�(x)Ö(x) dx � hØ , Öi

(6.10.3b) means that

J � 8gJ � h8gØ , 8gÖi
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Averaging (6.10.3b) over the group G � fgg we obtain

J � 1

jGj
X
g2G

8gJ �
�

F 1(x) dx (6:10:4a)

where F 1(x) is the invariant part of F(x) with respect to G de®ned by the projection

operator 8P(1) corresponding to the identity representation D(1)(G):

F 1(x) � 8P(1) F(x) � 1

jGj
X

g

8gF(x) (6:10:4b)

Thus we arrive at the following rule.

Rule 1. Let J be an integral de®ned over the whole con®guration space of x:

J �
�

F(x) dx

and let G � fgg be a volume-preserving group of transformations of x. Then, the

integral J is given by the invariant part F 1(x) of the integrand F(x) with respect to G:

J �
�

F 1(x) dx

Thus J is zero, if the invariant part F 1(x) of the integrand is zero.

Example 1. Consider an integral that is invariant under the group of inversion

Ci � fe, Ig, where I is the inversion which brings x to ÿx. For this group the invariant

part of F(x) is given by

F 1(x) � 8P(1) F(x) � 1
2
[F(x)� F(ÿx)] � Fe(x)

which is an even function of x. Thus, if F(x) is an odd function of x, i.e.

F(ÿx) � ÿF(x), then the integral vanishes.

The selection rule 1 for the group of inversion leads to Laporte's rule in molecular

spectroscopy: In the dipole approximation, the probability of transition between two

states øá
i and øâ

j is determined by the absolute square of the following integral:

høá
i jìjøâ

j i �
�
øá�

i ìøâ
j dx

where ì is the dipole moment of the system which changes the sign under inversion.

Accordingly the transitions between even and odd states, i.e. the states with different

parities, are allowed.

Let us extend the above rule to a case in which J is a set of integrals J � fJsg
de®ned by

Js �
�

Fs(x) dx; s � 1, 2, . . . , n

which may be expressed formally as

J �
�

F(x) dx (6:10:5)

where J � [J1, J2, . . . , Jn] and F(x) � [F1(x), F2(x), . . . , Fn(x)] are regarded as
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row vectors. It is assumed that the integrand F(x) transforms according to a

representation Ä(G) of a volume-preserving group G

8gF(x) � F(x)Ä(g); 8 g 2 G

Then the invariant part of F(x) satis®es

F1(x) � 8P(1) F(x) �
X

g

F(x)Ä(g)=jGj �
X

g

F1(x)Ä(g)=jGj (6:10:6a)

where in the last expression use of the projective relation 8P(1) F1(x) � F 1(x) has been

made. Thus we obtain, from (6.10.5),

J � J
X

g

Ä(g)=jGj or Js �
X

t

Jt

X
g

Ä ts(g)=jGj (6:10:6b)

which means that the set of integrals J � fJsg is not linearly independent unless

Ä(G) is the identity representation.

To determine the linearly independent elements in J we introduce a similarity

transformation with a transformation matrix T that reduces Ä(G) to the irreducible

components:

Tÿ1Ä(g)T �
X
ã

� nãD(ã)(g); 8 g 2 G

where nã is the frequency of the irreducible representaion D(ã)(G) contained in Ä(G).

If we take the average of the above equation over g 2 G, all D(ã)(g) with ã 6� 1 vanish

on account of the orthogonality relation, leaving only the n1 identity representation

fD(1)(g) � 1; 8 g 2 Gg, so that

n1

1

jGj
X

g

Tÿ1Ä(g)T � diag [1, . . . 1, 0, . . . 0] (6:10:7)

Accordingly, the linear transform of the integral set de®ned by K � J T �
[K1, K2, . . .] takes the following form, in view of (6.10.6b) and (6.10.7):

K � J T � K
X

g

Tÿ1Ä(g)T=jGj

� [K1, K2, . . . , Kn1
, 0, . . . 0] (6:10:8)

i.e. the non-zero components of K are limited to the following n1 integrals:

K1 � [K1, K2, . . . , K n1
]

corresponding to the n1 identity representations contained in Ä(G). Thus the original

integrals J � fJsg are given by the linear combinations of the linearly independent

non-zero components J � KTÿ1, i.e.

Js �
Xn1

s9�1

Ks9(T
ÿ1)s9s; s � 1, 2, . . . , n (6:10:9)

Here the frequency n1 of the identity representation of G contained in Ä(G) is given

by

j j
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n1 � 1

jGj
X

g

÷(Ä)(g) (6:10:10)

where ÷(Ä)(g) � trÄ(g). Therefore we arrive at the following rule.

Rule 2. If a set of integrals J � fJsg transforms according to a representation

Ä(G) � fÄ(g); 8 g 2 Gg, the maximum number of linearly independent elements in

J equals n1, which is the number of identity representations contained in Ä(G).

Example 2. Let J � fJ1, J2, J3g be a set of integrals de®ned by

Js �
��1
ÿ1

eÿrx2
s dx �

��1
ÿ1

Fs dx; s � 1, 2, 3

where r � (x2
1 � x2

2 � x2
3)1=2 and dx � dx1 dx2 dx3. The set of integrands fF1, F2, F3g

is invariant under the cyclic permutation group C3. The invariant parts of F1, F2 and

F3 are all equal and given by

F1
1 � F1

2 � F1
3 � 1

3
eÿr r2

Accordingly, the integrals Js are all equal and given by

Js � 1
3

��1
ÿ1

eÿr r24ðr2 dr � 64ð

for any s.

Let us now return to the selection rule on the set of matrix elements V � fVáâã
ijl g

de®ned by (6.10.1). The invariance of the set under a group G � fgg is expressed by

V
áâã
ijl � 8gV

áâã
ijl � h8gøá

i , 8gV ë
l
8gÿ1 8gøâ

j i, 8 g 2 G

Let us assume that the sets føá
i g and føâ

jg transform according to the representations

D(á) and D(â) of G, respectively, and the set fV ë
lg regarded as a tensor obeys the

transformation law

8g 8V ë
l
8gÿ1 �

X
l9

8V ë
l9 D

(ë)
l9 l(g); l � 1, 2, . . . , dë (6:10:11)

Then the integral set J � fVáâë
ijl g transforms according to the direct product represen-

tation D(á)(g)� 3 D(â)(g) 3 D(ë)(g) of G. Thus from (6.10.10) the number n1 of linear

independent matrix elements contained in a total of dádâdë integrals is given by

n1 � 1

jGj
X

g

÷(á)(g)�÷(â)(g)÷(ë)(g) (6:10:12)

where ÷(á), ÷(â) and ÷(ë) are the characters of D(á), D(â) and D(ë), respectively.

For most cases of practical interest, the representations D(á) and D(â) are the

unirreps of G, in which case n1 given by (6.10.12) can be interpreted as the number of

the unirreps, D(á), contained in the direct product representation D(á) 3 D(ë) of G.

Thus we have the following.
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Rule 3. If a set of integrals fVáâë
ijl g transforms according to a direct product

representation D(á)(g)� 3 D(â)(g) 3 D(ë)(g) of a group G, then the number of linearly

independent integrals in the set equals the number n1 of the identity irreducible

representations of G contained in the direct product. If D(á)(G) is a unirrep of G, then

the frequency n1 equals the number of times D(á)(G) is contained in the direct product

representation fD(â)(g) 3 D(ë)(g)g of G.

Let us apply the above rule to the selection rules on the electric-dipole transitions

for an atom. An electric dipole ì transforms according to the three-dimensional

representation D(1) of the full rotation group O(3) � O(3, r), whereas the electronic

states of an atom are classi®ed in terms of the (2 j� 1)-dimensional unirreps D( j) of

O(3). Accordingly, the transition moments for transitions between two sets of states

fø j1
m1
g 2 D( j1) and fø j2

m2
g 2 D( j2) are de®ned by

h j1 m1jìj j2 m2i �
�
ø j1

m1
�ìø j2

m2
dô

and these transform according to the direct product representation

D(g) � D( j1)�(g) 3 D( j2)(g) 3 D(1)(g); 8 g 2 O3

Now, according to the vector addition model which will be discussed in Section 10.4.3,

we have

D( j2) 3 D(1) � D( j2�1) � D( j2) � D( j2ÿ1) for j2 6� 0

D(0) 3 D(1) � D(1) for j2 � 0

so that, for j2 6� 0,

h j1 m1jìj j2 m2i � 0 unless j1 � j2 � 1, j2 or j2 ÿ 1

and, for j2 � 0,

h j1jìj0i � 0 unless j1 � 1

Here, the transition between j1 � 0 and j2 � 0 is forbidden.
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7

Construction of symmetry-adapted linear combinations

based on the correspondence theorem

7.1 Introduction

In the eigenvalue problem of a Hamiltonian in quantum mechanics, the eigenfunctions

of the Hamiltonian are classi®ed in terms of the unitary irreducible representations

(unirreps) of the symmetry group G of the Hamiltonian. In constructing approximate

eigenfunctions by LCAO-MOs of a molecule belonging to a certain symmetry group

G, the corresponding problem is to ®nd the irreducible basis sets of G constructed by

the linear combinations of the atomic orbitals belonging to the equivalent atoms of the

molecule. Such a set is called a set of symmetry-adapted linear combinations (SALC)

of the equivalent basis functions or equivalent orbitals. A standard method for such a

problem is the generating operator method introduced in Section 6.9: it generates the

desired basis set from an appropriate basis function. This method is very general and

powerful but it is often extremely laborious to use; Cotton (1990). It is so very formal

that one has little feeling until one arrives at the ®nal result, which often could simply

be obtained by inspection.

For point groups and their extensions, there exists a simple direct method of

constructing the SALC belonging to a unirrep of a symmetry group G. The method

requires knowledge of the basis functions of a space vector r � (x, y, z) in three

dimensions belonging to the unirrep. The basis sets are well known for all point

groups; e.g., those for the point groups Tp and D3p are reproduced in Tables 7.1 and

7.2, respectively, from the Appendix. Note, here, that each basis set is given by a set of

homogeneous polynomials of a certain degree with respect to the Cartesian coordi-

nates x, y and z. Hereafter, such a basis set is called an elementary basis set. As we

shall see, the elementary basis sets de®ned on a set of symmetrically equivalent points

with respect to the group G play the fundamental role in the present work.

For example, let us consider the SALCs of equivalent scalar functions f(öí(r) �
ö(r, r0

í)g de®ned on a set of n equivalent points S(n) � fr0
íg with respect to G: such a

set of equivalent functions has been introduced in (6.4.4b) by an invariant (or scalar)

function ö(r, r9) of two points r and r9 in space with respect to G. Let Ä(n)(G) be the

representation based on the set föí(r)g and let fuá
i (r); i � 1, 2, . . . , dág be an

elementary basis belonging to a unirrep D(á)(G) contained in Ä(n), then the SALCs of

föí(r)g belonging to D(á)(G) are given, as will be shown in the next section, by

øá
i (r) �

X
í

uá
i (r0

í)öí(r); i � 1, 2, . . . , dá (7:1:1)

unless the set is null. The correspondence between the SALC føá
i (r)g and the set

of the linear coef®cients fuá
i (r0

í)g via (7.1.1) is a consequence of the correspon-

dence theorem on basis function introduced by Kim (1981a). According to this

theorem, a D(á)(G) SALC of any given equivalent orbitals can be formed via an



appropriate two-point basis f f ái (r, r9)g of D(á)(G). In fact, from this theorem, we

shall derive a general expression for the SALC of any given equivalent orbitals in

Section 7.3. It is effective for degenerate as well as for non-degenerate irreducible

representations. It requires neither additional symmetry consideration of the equiva-

lent basis functions nor the actual matrix representations of the irreducible represen-

tations. It simply requires knowledge of the elementary basis sets. This is quite a

contrast to the conventional method of using the generating operators or projection

operators.

The correspondence theorem will also be applied for construction of the symmetry

coordinates of vibration for a molecule or a crystal; cf. Kim (1981b). The correspon-

dence theorem is also very effective in constructing the energy band eigenfunctions of

solids, as will be shown in Chapter 14.

7.2 The basic development

7.2.1 Equivalent point space S(n)

Let us consider a ®nite group G of symmetry operations R in the three-dimensional

con®guration space. Let S(n) � fr0
1, r0

2, . . . , r0
ng be a set of n points in the space

generated by the symmetry operations R of G from a single given point in space. The

set S(n) spans an invariant space of G such that any two points r0
ì and r0

í in S(n) are

connected by at least one symmetry operation R 2 G:

r0
ì � Rr0

í or ì � í(R) (7:2:1a)

Table 7.2. The elementary bases of the

unirreps of D3p (� D3h)

A1: 1, x2 � y2, z2 or y3 ÿ 3yx2

A2: x3 ÿ 3xy2 or ~z
B1: (x3 ÿ 3xy2)z or ~zz

B2: z

E1: [~x, ~y] or [yz, ÿxz]

E2: [x, y], [2xy, x2 ÿ y2] or [y~z, ÿx~z]

Table 7.1. The elementary bases of the unirreps of Tp (� Td)

A1: 1, x2 � y2 � z2 or xyz

A2: (x2 ÿ y2)(y2 ÿ z2)(z2 ÿ x2) or ~x~y~z
E: [u, v]

T1: [~x, ~y, ~z] or [x(y2 ÿ z2), y(z2 ÿ x2), z(x2 ÿ y2)]

T2: [x, y, z], [yz, zx, xy] or [x(3x2 ÿ r2), y(3y2 ÿ r2), z(3z2 ÿ r2)]

u � 2z2 ÿ x2 ÿ y2, v � 31=2(x2 ÿ y2) and ~r � [r 3 r9] � [~x, ~y, ~z]; i.e. ~x � yz9ÿ zy9,
~y � zx9ÿ xz9 and ~z � xy9ÿ yx9.
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Since the members of the set S(n) permute among themselves under R of G, the set

provides a representation of G de®ned by

Rr0
í �

X
ó

r0
ó ä(r0

ó , Rr0
í) �

Xn

ó�1

r0
ó Ä

(n)
ó í(R); í � 1, . . . , n

where fÄ(n)(R); 8 R 2 Gg � Ä(n)(G) is an n 3 n matrix representation of G

de®ned by Kronecker's delta,

Ä(n)
ó í(R) � ä(r0

ó , Rr0
í) � 1 if r0

ó � Rr0
í

0 if r0
ó 6� Rr0

í

�
(7:2:1b)

An example of such a set S(n) of n equivalent points is provided by the positions of the

symmetrically equivalent atoms in a polyatomic molecule or a crystal.

The set of operations fRg of G that leaves a point of S(n), say r0
1, invariant forms a

subgroup H of G with the index n � jGj=jH j. Let the coset decomposition of G with

respect to H be

G � R0
1 H � R0

2 H � � � � � R0
n H

where R0
1 � E, the identity element of G. Then the set of the coset representatives of

H in G may be correlated to the set of n equivalent points S(n) by

r0
í � R0

í r0
1; í � 1, 2, . . . , n

Thus, the representation Ä(n)(G) is rewritten as

Ä(n)
ó í(R) � ä(r0

ó , Rr0
í) �

X
h2H

ä(h, R0ÿ1
ó RR0

í)

so that the character is given by

÷(Ä)(R) �
X
í

X
h2H

ä(h, R0ÿ1
í RR0

í) (7:2:2)

where h are elements of H. The representation Ä(n)(G) is called the permutation

representation of G based on S(n). It is also called the permutation representation of G

furnished by the subgroup H. In a special case, in which H is the trivial identity group,

it becomes the regular representation of G.

The permutation representation Ä(n) of G is a real orthogonal representation of G,

for Ä(n)(R)ÿ1 � Ä(n)(R)� (the transpose); hence it is reducible by a unitary transfor-

mation. Let ná be the number of times a unirrep D(á)(G) is contained in Ä(n)(G) and

let ÷(á)(G) and ÷(Ä)(G) be the respective characters. Then ná is given by

ná � 1

jGj
X
R2G

÷(á)(R)÷(Ä)(R)

� 1

jGj
X
í

X
h2H

÷(á)(R0ÿ1
í hR0

í)

� 1

jH j
X
h2H

÷(á)(h) (7:2:3)

where (7.2.2) is used. In a special case, in which D(á) is the identity representation of
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G, we have ÷(á)(h) � 1 for all h 2 H so that ná � 1, i.e. Ä(n)(G) always contains the

identity representation once and only once. In general,X
á

nádá � n; ná < dá (7:2:4)

where dá is the dimensionality of D(á)(G) and gives the possible maximum of ná, as

will be shown shortly. In cases in which ná . 1, it is often pro®table to rede®ne the set

S(n) by means of an intermediate subgroup K (H , K , G), which ensures that

ná � 1 for all D(á)(G) contained in Ä(n)(G), see Kim (1986a).

7.2.2 The correspondence theorem on basis functions

Let D(ã)(G) be a unirrep of a symmetry group G and let f f
ã
k(r, r9); k � 1, 2, . . . , dãg

be a set of basis functions of two points r and r9 in space belonging to D(ã)(G) such

that

f
ã
k(Rÿ1 r, Rÿ1 r9) �

X
j

f
ã
j (r, r9)D

(ã)
jk (R); 8 R 2 G (7:2:5)

Hereafter, such a basis is simply called a two-point basis of a unirrep D(ã)(G). A

simple but important example of a two-point basis is provided by f f
ã
k(r ÿ r9)g, where

f f
ã
k(r)g is an ordinary one-point basis of D(ã)(G). Another example is the set

fuá
i (r9)ö(r, r9)g used in (7.1.1), where ö(r, r9) is a scalar function. If the set

f f
ã
k(r, r0

v)g de®ned on the set of equivalent points S(n) � fr0
íg is linearly independent,

then it provides a set of equivalent basis functions (or equivalent orbitals in short) on

S(n) belonging to the direct product representation Ä(n) 3 D(ã) of G:

f
ã
k(Rÿ1 r, r0

í) �
X

j

f
ã
j (r, Rr0

í)D
(ã)
jk (R)

�
X

j,ì

f
ã
j (r, r0

ì)Ä(n)
ìí (R)D

ã
jk(R) (7:2:6)

Thus, e.g., the set of equivalent scalar orbitals föí(r) � ö(r, r0
í)g in (7.1.1) belongs to

the permutation representation Ä(n)(G). The following simple theorem is basic to the

present method of constructing SALCs.

Theorem 7.2.1 (the correspondence theorem). Let f f
ã
k(r, r9)g be a two-point basis

of a unirrep D(ã)(G). If the corresponding set f f
ã
k(r, r0

í)g on S(n) is linearly inde-

pendent, then its sum over S(n)

øã
k(r) �

Xn

í�1

f
ã
k(r, r0

í); k � 1, 2, . . . , dã (7:2:7)

provides a basis of the unirrep D(ã)(G).

The proof is trivial. If we sum both sides of (7.2.6) over í and map off Ä(n)(R) on

the right-hand side, using
P

íÄ
(n)
ìí (R) � 1, then we obtain the required result

øã
k(Rÿ1 r) �

Xn

j�1

øã
j (r)D

(ã)
jk (R)
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Note that D(ã) is contained in Ä(n) 3 D(ã) at least once because the identity representa-

tion is always contained in Ä(n). The basis of D(ã)(G) de®ned by (7.2.7) may be called

the characteristic SALC corresponding to the two-point basis f f
ã
k(r, r9)g of D(ã)(G).

7.2.2.1 The SALC of equivalent scalar orbitals

According to the correspondence theorem, the SALC belonging to D(á) given by

(7.1.1) is trivially true; because of its basic importance, however, we shall look into it

in some detail. Let ö(r, r9) be a two-point invariant function with respect to G, then

the equivalent scalar orbitals föí(r) � ö(r, r0
í)g de®ned on S(n) belong to the

permutation representation Ä(n)(G), provided that the set is linearly independent. This

set may be called a set of equivalent scalar orbitals. Let D(á)(G) be a unirrep of G

contained in Ä(n)(G) and let fuá
i (r); i � 1, 2, . . . , dág be a basis of D(á)(G). Then the

SALC of föí(r)g belonging to D(á)(G) is given by the characteristic set of the two-

point basis fuá
i (r9)ö(r, r9)g of D(á)(G)

øá
i (r) �

Xn

í�1

uá
i (r0

í)öí(r); i � 1, 1, . . . , dá (7:2:8)

unless the coef®cient set is null. This proves (7.1.1).

It is to be noted that the sets f f
ã
k(r, r9)g and f f

ã
k(r ÿ r9, r9)g belong to the same

unirrep, D(ã)(G). Thus frequently the characteristic set of the former is de®ned by the

characteristic set of the latter:

øã
k(r) �

X
í

f
ã
k(r ÿ r0

í, r0
í) 2 D(ã)(G) (7:2:9)

The further signi®cance of the correspondence theorem will be shown from the fact

that a SALC of any given equivalent orbitals can be given by the characteristic set of

an appropriate two-point basis. This will be achieved by straightforward extension of

(7.2.8), for which, however, it is necessary to discuss the mathematical properties of

the coef®cient matrix in the transformation (7.2.8), in particular, to understand the

non-null condition imposed on the coef®cient set fuái (r0
í)g.

7.2.3 Mathematical properties of bases on S(n)

Let fuá
i (r)g be a basis of a unirrep D(á)(G) contained in Ä(n)(G), then at the equivalent

points r � r0
í 2 S(n), we have

uái (Rÿ1 r0
í) �

Xdá

j�1

uá
j (r0

í)D
(á)
ji (R); 8 R 2 G (7:2:10)

This means that, if the coef®cient matrix iuájí i � iuá
j (r0

í)i of order dá 3 n is not null,

its row vectors denoted uá
j � [uáj (r0

1), . . . , uá
j (r0

n)] provide a basis set in the n-

dimensional space S(n) belonging to the jth row of D(á)(G). Accordingly, if fvâ
jg is

another basis set belonging to a unirrep D(â)(G) contained in Ä(n)(G), then, from the

orthogonality relations on the unirreps of G, we obtainX
R2G

uái (Rÿ1 r0
í)�vâ

j (Rÿ1 r0
í) � (jGj=dá)äáâäij

Xdá

k

uá
k(r0

í)
�vá

k(r0
í); í � 1, 2, . . . , n
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Let H be the subgroup of G which leaves r0
1 invariant, then the set fRÿ1 r0

í; 8 R 2 Gg
for a given r0

í reproduces the set S(n) jH j times when R sweeps through all elements of

G. Thus, we obtain the following orthogonality relations, using jGj=jH j � n:Xn

ó�1

uá
i (r0

ó )�vâ
j (r0

ó ) � (n=dá)äáâäij

Xdá

k�1

uá
k(r0

í)
�vá

k(r0
í); i, j � 1, 2, . . . , dá

(7:2:11)

where � denotes the complex conjugate and the right-hand side (rhs) is independent of

í. The left-hand side (lhs) de®nes a scalar product huá
i , vâ

j in on S(n), while the sum on

the rhs de®nes a scalar product huá(r0
í), vá(r0

í)ic in the dá-dimensional carrier space

of D(á)(R). In the special case in which á � â and i � j, these two kinds of scalar

products are proportional to each other and hence one can de®ne a single scalar

product by

huá, vái � huá
i , vá

i in � (n=dá)huá(r0
í), vá(r0

í)ic (7:2:12)

which is independent of i and í. This has the very signi®cant consequence that the

number of linearly independent basis sets of D(á)(R) in the n-dimensional space S(n)

cannot exceed dá. This then proves the statement that ná < dá given in (7.2.4).

Since the dá 3 n matrix iuái (r0
í)i transforms a basis föí(r)g of the permutation

representation Ä(n)(G) to a basis føá
i (r)g of D(á)(G) according to (7.2.8), it must

transform the n 3 n matrix representation Ä(n)(G) to the dá 3 dá matrix representa-

tion D(á)(G). To see this we rewrite (7.2.10), using Ä(n)
ìí (Rÿ1) � Ä(n)

íì (R), in the formX
ì

Ä(n)
íì (R)uá

i (r0
ì) �

X
j

uá
j (r0

í)D
(á)
ji (R)

then the orthogonality relations (7.2.11) lead to the expected transformationX
íì

Uá
j (r0

í)�Ä(n)
íì (R)Uá

i (r0
ì) � D

(á)
ji (R) (7:2:13)

where

Uá
j (r0

í) � uá
j (r0

í)huá, uáiÿ1=2

If D(á)(G) appears ná times in Ä(n)(G), then there exist ná and only ná linearly

independent basis sets of D(á)(G) on S(n), each of which brings Ä(n)(G) into D(á)(G)

as given by (7.2.13). It can be shown that it is always possible to construct a basis set

of functions of r that reduces to a given basis set on S(n). Thus, one can state that, from

all the basis sets of functions fuá
i (r)g belonging to D(á)(G), one can obtain ná and

only ná linear independent basis sets of vectors on S(n). Thus, if D(á)(G) is not

contained in Ä(n)(G), i.e. ná � 0, then all basis sets of D(á)(G) become null on S(n). In

the most important special case in which ná � 1, all basis sets belonging to D(á)(G)

are reduced to a single basis set of vectors on S(n) (apart from a constant factor), unless

it is null. For convenience, we shall call a basis set fuá
i (r)g proper on S(n) if the set is

not null on S(n) and improper if the set is null on S(n). Then, all the bases belonging to

D(á)(G) =2 Ä(n)(G) are improper whereas a basis belonging to D(á)(G) 2 Ä(n)(G) may

but need not be proper since there exist only ná linearly independent basis sets on S(n)

belonging to D(á)(G). Let us summarize the results obtained thus far in the form of a

theorem.
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Theorem 7.2.2. Let ná be the number of times a unirrep D(á)(G) is contained in the

permutation representation Ä(n)(G), then from all bases of D(á)(G) one can construct

ná and only ná linearly independent bases fuár
i (r0

í); r � 1, 2, . . . , nág of D(á)(G) on

S(n) 2 Ä(n)(G).

By combining this theorem with (7.2.8), we may state that, if D(á)(G) is contained

in Ä(n)(G) ná times, then there exist ná and only ná linearly independent SALCs of

equivalent scalars föí(r)g on S(n), which can be expressed by

øár
i (r) �

X
í

u
ár
i (r0

í)öí(r); r � 1, 2, . . . , ná (7:2:14)

where the coef®cient sets are linearly independent basis vectors on S(n) belonging to

D(á)(G).

7.2.4 Illustrative examples of the SALCs of equivalent scalars

Example 7.2.1. Construct the SALCs of the s-orbitals (s1, s2, s3 and s4) of the four

equivalent H atoms in the methane molecule CH4 2 Tp (� Td).

Place the carbon atom at the center of a cube and the equivalent H atoms on the four

vertices of the cube as shown in Figure 7.1. Introduce a Cartesian coordinate system

with the origin at the central C atom and let each axis be parallel to an edge of the

cube. Then the coordinates of H atoms are given, on a relative scale, by

(x0
í, y0

í, z0
í): (1, 1, 1), (ÿ1, ÿ1, 1), (1, ÿ1, ÿ1), (ÿ1, 1, ÿ1) (7:2:15a)

These four points de®ne a set of four equivalent points S(4) � fr0
íg with respect to the

point group Tp. Note that the relative coordinates given in (7.2.15a) are suf®cient to

determine the SALCs, because an elementary basis that describes the linear coef®-

cients consists of homogeneous polynomials of a certain degree such that they affect

only the normalization constants of the basis vectors on S(n).

From the elementary bases of Tp given in Table 7.1, we see that the non-null

bases on S(4) are 1 2 A1 and [x, y, z] 2 T2. No other irreducible representations are

2

3

1

4

z

y

x

Figure 7.1. The coordinates of equivalent H atoms in the methane molecule

CH4 2 Tp.
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contained in Ä(4) since (7.2.4) is satis®ed by 1� 3 � 4. Thus one may conclude

that

Ä(4) � A1

1
� T2

[x, y, z]
(7:2:15b)

Accordingly, from (7.2.8) the SALCs for A1 and T2 are given by

A1: ø � 1

2

X
í

sí � (s1 � s2 � s3 � s4)=2

T2: øx � 1

2

X
í

x0
ísí � (s1 ÿ s2 � s3 ÿ s4)=2

ø y � 1

2

X
í

y0
ísí � (s1 ÿ s2 ÿ s3 � s4)=2

øz � 1

2

X
í

z0
ísí � (s1 � s2 ÿ s3 ÿ s4)=2 (7:2:15c)

where the linear coef®cients are normalized by setting the sums of their squares equal

to unity. With the normalization, the transformation (7.2.15c) is described by a real

orthogonal matrix given by

L � 1

2

1 1 1 1

1 ÿ1 1 ÿ1

1 ÿ1 ÿ1 1

1 1 ÿ1 ÿ1

2664
3775 (7:2:15d)

Example 7.2.2. The SALCs of the s-orbitals of three equivalent Y atoms surrounding

the central X atom in a planar molecule XY3 2 D3p (� D3h).

Take the coordinate origin at the central X atom and let the z-axis be perpendicular

to the molecular plane. Then the coordinates (x0
í, y0

í) of Y atoms on the molecular

plane de®ne a set of three equivalent points S(3) as follows (see Figure 7.2):

y

(0, 2)

x

(2√3, 21) (√3, 21)

1

23

Figure 7.2. The coordinates of equivalent Yatoms in XY3 2 D3p.
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í � 1, 2, 3

x0
í � 0,

p
3, ÿp3

y0
í � 2, ÿ1, ÿ1 (7:2:16a)

Inspection of Table 7.2 leads to

Ä(3) � A1

1
� E2

[x, y]
(7:2:16b)

i.e. the non-null bases on S(3) are 1 2 A1 and [x, y] 2 E2; therefore, the required

SALCs of the s-orbitals of the equivalent Yatoms are given, from (7.2.8), by

A1: ø1(r) � 1p
3

X
í

sí � 1p
3

(s1 � s2 � s3)

E2: øx(r) � 1p
6

X
í

x0
ísí � 1p

2
(s2 ÿ s3)

ø y(r) � 1p
6

X
í

y0
ísí � 1p

6
(2s1 ÿ s2 ÿ s3) (7:2:16c)

where each set of the linear coef®cients is normalized by setting the sum of their

squares equal to unity.

Note that three elementary bases are given for the unirrep E2 of D3p in Table 7.2.

Instead of [x, y] we could have used [2xy, x2 ÿ y2] to form [øx, ø y] in (7.2.16c); the

result is the same because these two bases are mutually proportional on S(3):

[2xy, x2 ÿ y2]0
í � ÿ2[x, y]0

í (7:2:16d)

in accordance with Theorem 7.2.2. Here [x, y]0
í means [x0

í, y0
í] for example. This

con®rms also that both bases belong to the same matrix representation E2 precisely

(not up to a similarity transformation). The third basis of E2, [y~z, ÿx~z] does not apply

for the present problem; it will be applied for the ð-orbital system (see Example

7.3.2).

Example 7.2.3. The Bloch function and the Wannier function.

As a further application of (7.2.8) we shall discuss the Bloch function and the

Wannier function in solid state physics. Consider a solid composed of N 3 lattice points

located at fr0
íg with the periodic boundary condition. The Bloch function bk(r) may

be de®ned as a basis function belonging to the irreducible representation Ã k(T ) �
fexp (ÿik . t)g of the translation group T � ftg of the solid, where the t are the lattice

vectors and k is a wave vector in the ®rst Brillouin zone of the reciprocal lattice (see

Chapter 14). Obviously, an elementary basis function belonging to Ã k(T ) is given by

exp (ik . r). Now, let ö(r ÿ r0
í) be an atomic s-orbital located at r0

í. Then, from (7.2.8),

a Bloch function belonging to Ã k(T ) is given by

bk(r) � Nÿ3=2
X
í

exp (ik . r0
í)ö(r ÿ r0

í) (7:2:17a)

The above basis function is called the tight-binding approximation for the Bloch

function. Now, the inverse transformation of (7.2.17a) gives the equivalent set of s-

orbitals with respect to the translation group,

7.2 The basic development 157



ö(r ÿ r0
í) � Nÿ3=2

X
k

exp (ÿik . r0
í) bk(r) (7:2:17b)

known as the Wannier function.

7.3 SALCs of equivalent orbitals in general

7.3.1 The general expression of SALCs

Let D(A)(G) be a unitary representation of a symmetry group G that may but need not

be irreducible. The problem is to construct the SALC of any given equivalent orbitals

f f A
s (r, r0

í); s � 1, 2, . . . , d Ag belonging to a direct product representation Ä(n) 3
D(A) of G. We shall achieve this by extending the SALC of equivalent scalar orbitals

given by (7.2.8).

We shall begin with an invariant function ö(r, r9) with respect to G expressed by `a

scalar product' of any two basis sets fgA
s (r, r9)g and f f A

s (r, r9)g in the carrier space

of the unitary representation D(A)(G):

ö(r, r9) �
X

s

g A
s (r, r9)� f A

s (r, r9) (7:3:1)

This is the only invariant function in the bilinear forms of the two basis sets. It is

emphasized here that each basis set may depend only on one vector r or r9. Thus, in a

special case, we have

ö(r, r9) �
X

s

gA
s (r9)� f A

s (r) (7:3:2)

The well-known addition theorem of the Legendre polynomials is a further special

case of this result. For the theory of SALCs, it suf®ces to introduce a two-point

invariant function de®ned by

ö(r, r9) �
X

s

vA
s (r9)� f A

s (r, r9) (7:3:3)

where fvA
s (r9)g is an elementary basis of D(A)(G). Then, the corresponding set of

equivalent scalar functions (or ö-functions) on S(n) � fr0
íg is given by

ö(r, r0
í) �

X
s

vA
s (r0

í)
� f A

s (r, r0
í); í � 1, 2, . . . , n (7:3:4)

unless the set is null. This provides the general expression for a set of equivalent

scalars with respect to G formed by the equivalent orbitals f f A
s (r, r0

í)g. Later, in

Section 7.5, the set (7.3.4) will be applied to the theory of hybrid atomic orbitals.

Now, let D(ã)(G) be a unirrep contained in the direct product representation

Ä(n) 3 D(A) of G, and let fuã
k(r)g be an elementary basis of D(ã)(G) and ö(r, r9) be

the invariant function de®ned by (7.3.3). Then, a two-point basis of D(ã)(G) is de®ned

by

f
ã
k(r, r9) � u

ã
k(r)ö(r, r9) �

X
s

u
ã
k(r9)vA

s (r9)� f A
s (r, r9) (7:3:5a)

and its characteristic SALC de®ned by the correspondence theorem (7.2.7) provides

the D(ã) SALC of the equivalent orbitals f f A
s (r, r0

í)g
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øã
k(r) �

X
í,s

u
ã
k(r0

í)v
A
s (r0

í)
� f A

s (r, r0
í); k � 1, 2, . . . , dá (7:3:5b)

unless the set is null. This set, however, has a very limited applicability as it stands,

because the set is null unless both D(ã)(G) and D(A)(G) are contained in Ä(n)(G)

according to Theorem 7.2.2 (even though D(ã) 2 Ä(n) 3 D(A)). In the following, we

shall remove this dif®culty by introducing an operator basis, which transforms exactly

like an ordinary basis except for the fact that it contains the differential operator

= � (@x, @ y, @ z), which transforms like the Cartesian coordinates (x, y, z) under an

orthogonal transformation. Here @x � @=@x, @ y � @=@ y and @ z � @=@z.

Let f8T
ã
k(r)g be a basis set of linear operators belonging to a unirrep D(ã)(G) such

that

8T
ã
k(Rÿ1 r) �

X
s

8Tã
s (r)D

(ã)
sk (R)

for all R 2 G. Then a two-point basis belonging to D(ã)(G) is de®ned by

(I) f
ã
k(r, r9) �

Xd A

s�1

[8T
ã
k(r9)vA

s (r9)�] f A
s (r, r9) (7:3:6a)

where the operators act only on vA
s (r9)�, and the corresponding characteristic set

øã
k(r) �

Xn

í�1

Xd A

s�1

[8T
ã
k(r9)vA

s (r9)�]r9�r0
í
f A

s (r, r0
í) (7:3:6b)

provides a general expression for the D(ã) SALC of the equivalent orbitals

f f A
s (r, r0

í)g, unless it is null.

An operator basis f8T
ã
k(r)g 2 D(ã)(G) is easily constructed through an appropriate

two-point elementary basis T
ã
k(r, r9) 2 D(ã)(G) by replacing r9 with = � (@x, @ y, @ z),

8T
ã
k(r) � T

ã
k(r, =) (7:3:7)

In (7.3.6a), the polynomial degree of T
ã
k(r, =) with respect to = should be no higher

than the degree of the homogeneous polynomial of the elementary basis fvA
s (r)g. For

most cases, it suf®ces to choose the operator basis linear in = (see (7.3.11)).

To understand the non-null condition imposed on (7.3.6b), let us consider the case

in which D(A)(G) is not contained in Ä(n)(G). Then an elementary basis fvA
s (r)g of

D(A)(G) is null for all r � r0
í 2 S(n), i.e. the r0

í are the roots of the set of polynomial

equations fvA
s (r) � 0g of r. This does not necessarily mean that the r0

í are the roots of

all the derivatives of the polynomials. Thus, if the order of the operator = in 8T
ã
k is less

than or equal to the degree of the polynomials fvA
s (r)g, the coef®cient matrix in

(7.3.6b) need not be null. The crucial point is that we can easily construct such a set of

basis operators that yields a non-null SALC, as will be seen through examples. There

exists also a formal proof for the existence of such an operator, see Kim (1981a).

There are in®nitely many elementary bases for D(ã)(G) and D(A)(G), but there exist

only nA
ã linear independent coef®cient matrices in (7.3.6b), where nA

ã is the number of

times D(ã)(G) is contained in D(A) 3 Ä(n) of G.

An alternative general expression for a two-point basis may be de®ned by
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(II) f
ã
k(r, r9) �

Xd A

s�1

f A
s (r, r9)8T A

s (r9)�vã
k(r9) (7:3:8a)

which may be more convenient than (7.3.6a), if the polynomial degree of 8T A
s (r9) is

lower than that of 8T
ã
k(r9). The corresponding characteristic set is given by

øã
k(r) �

X
s,í

f A
s (r, r0

í)[8T A
s (r9)�vã

k(r9)]r9�r0
í

(7:3:8b)

One may use either the expression I or II, whichever is more convenient. See the

illustrative examples given at the end of this section.

7.3.2 Two-point bases and operator bases

To facilitate the application of the correspondence theorem, we shall give some

examples of two-point bases and the corresponding operator bases frequently encoun-

tered in point groups. The elementary bases to be considered are

1; x, y, z; x2 � y2 � z2

u � 2z2 ÿ x2 ÿ y2, v � p3(x2 ÿ y2)

~x � yz9ÿ zy9, ~y � zy9ÿ xz9, ~z � xy9ÿ yx9

yz, zx, xy

xyz (7:3:9)

where [~x, ~y, ~z] is already a two-point basis. Let fvã
k(r)g be an elementary basis, then,

via the general expression II given by (7.3.8a), a two-point basis corresponding to a

one-point basis fvã
k(r)g is formed by

vã
k(r, r9) � (x@x9 � y@ y9 � z@ z9)v

ã
k(r9) (7:3:10a)

where we have used the fact that xx9� yy9� zz9 is a scalar. Thus, the two-point bases

corresponding to the one-point bases given in (7.3.9) are

[x, y, z]

x2 � y2 � z2 � xx9� yy9� zz9

[u, v] � [2zz9ÿ xx9ÿ yy9,
p

3(xx9ÿ yy9)]

[~x, ~y, ~z] � [yz9ÿ zy9, zx9ÿ xz9, xy9ÿ yx9]

[yz, zx, xy] � [yz9� zy9, zx9� xz9, xy9� yx9]

xyz � x(yz)9� y(zx)9� z(xy)9 (7:3:10b)

where (yz)9 � y9z9 for example. The bases [x, y, z] and [~x, ~y, ~z] are included here

again for convenience of later use. These two-point bases given in (7.3.10b) could

have been written down by inspection from the one-point bases given in (7.3.9) with

proper symmetrizations.

Now, from (7.3.7), the operator bases corresponding to the two point bases in

(7.3.10b) are obtained by replacing r9 with =. These are linear in [@ x, @ y, @ z] and

given by
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(x, y, z) � (@x, @ y, @ z)

x2 � y2 � z2 � x@x � y@ y � z@ z

[u, v] � [2z@ z ÿ x@x ÿ y@ y,
p

3(x@x ÿ y@ y)]

[~x, ~y, ~z] � [y@ z ÿ z@ y, z@x ÿ x@ z, x@ y ÿ y@x]

[yz, zx, xy] � [y@ z � z@ y, z@x � x@ z, x@ y � y@x]

xyz � yz@x � zx@ y � xy@ z (7:3:11)

7.3.3 Notations for equivalent orbitals

Let [ f î(r), fç(r), . . .] be a basis set of functions which transforms like an elementary

basis [î(r), ç(r), . . .] under the symmetry operations of a given group G. Then we

may call f î(r) a î-like orbital, fç(r) a ç-like orbital etc., and write

îí � fî(r ÿ r0
í), çí � fç(r ÿ r0

í), . . . (7:3:12a)

For example, two basis sets [x, y, z] and [yz, zx, xy] belong to the same unirrep T2 of

Tp so that xí may mean

xí � (xÿ x0
í)ö(jr ÿ r0

íj) or (yÿ y0
í)(zÿ z0

í)ö(jr ÿ r0
íj) (7:3:12b)

where r0
í � (x0

í, y0
í, z0

í) and ö(jr ÿ r0
íj) is an appropriate scalar factor. The equivalent

basis f[xí, yí, zí]g thus de®ned may be called a set of p-like equivalent orbitals.

To show the effectiveness of the notation introduced above we apply the correspon-

dence theorem on the two-point bases [2zz9ÿ xx9ÿ yy9, 31=2(xx9ÿ yy9)] given in

(7.3.10b) and obtain the SALC of p-like orbitals f[xí, yí, zí]g
øu(r) �

X
í

(2z0
ízí ÿ x0

íxí ÿ y0
í yí), øv(r) �

X
í

p
3(x0

íxí ÿ y0
í yí) (7:3:13a)

which is a special case of (7.2.9). Note the formal resemblance between the ele-

mentary basis [u, v] and its characteristic SALC [øu, øv]. Such a correspondence

between the bases holds irrespective of the group G to which [u, v] belongs.

Analogously, for the basis of xyz, the corresponding SALC of the p-like orbitals is

given, via (7.3.10b), by

øxyz(r) �
X
í

(yz)0
íxí � (zx)0

í yí � (xy)0
ízí (7:3:13b)

where (yz)0
í � y0

íz0
í etc.

7.3.4 Alternative elementary bases

If we use the general expression (7.3.6a), we can form an alternative basis from a given

elementary basis for a unirrep. We note that a direct product of a unirrep Ãá with the

identity representation Ã1 equals Ãá; i.e. Ãá 3 Ã1 � Ãá. Thus their direct product

basis also belongs to the same unirrep because the basis of Ã1 is an invariant function

of the group. For example, from the elementary bases of Tp given by Table 7.1, we

know that

[r9 3 =] � [y9@ z ÿ z9@ y, z9@x ÿ x9@ z, x9@ y ÿ y9@x] 2 T1, xyz 2 A1
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Thus, applying the operator basis r9 3 = on xyz we obtain an alternative basis of T1

given by

[x9(y2 ÿ z2), y9(z2 ÿ x2), z9(x2 ÿ y2)] 2 T1

which reduces to a one-point basis by r9! r. Moreover, applying [@ x, @ y, @ z] 2 T2 on

xyz 2 A1, we obtain [yz, zx, xy] 2 T2. Also, applying [@9x, @9y, @9z] 2 T2 on [u(r9)u(r)

� v(r9)v(r)] 2 A1, where [u, v] 2 E, we obtain

[x9(3x2 ÿ r2), y9(3y2 ÿ r2), z9(3z2 ÿ r2)] 2 T2

Accordingly, three bases of T2 given in Table 7.1 belong to exactly the same unirrep

T2 of Tp (not up to a similarity transformation).

Analogously, from the elementary bases of D3p given in Table 7.2, we apply

[@9x, @9y] 2 E2 on ~z~z 2 A1, where ~z � xy9ÿ yx9 2 A2, to obtain an alternative basis of

E2 given by

[@x9, @ y9]~z~z / [y~z, ÿx~z] 2 E2 (7:3:14a)

Moreover, since y3 ÿ 3yx2 belongs to the identity representation A1 of D3p according

to Table 7.2, we obtain another basis for E2 given by

[@x, @ y](y3 ÿ 3yx2) / [2xy, x2 ÿ y2] 2 E2 (7:3:14b)

Thus, we may conclude that the three bases [x, y], [z~y, ÿx~z] and [2xy, x2 ÿ y2]

belong to the same unirrep E2 of D3p as given in Table 7.2. Furthermore, applying the

operator basis [y@ z ÿ z@ y, z@x ÿ x@ z] 2 E1 of D3p on x2 � y2 2 A1 we obtain

[yz, ÿzx] 2 E1. Thus [~x, ~y] and [yz, ÿxz] belong to the same unirrep E1 of D3p.

The above method can be extended to a case in which a direct product of two

unirreps Ãá and Ãâ is equivalent to a unirrep Ãã, i.e. Ãá 3 Ãâ ' Ãã. In this case, the

direct product basis of Ãá 3 Ãâ is equivalent to a basis of Ãã but need not be

proportional to the latter. For example, from the character table of D3p, we know that

E2 3 A2 ' E2. Now, from [x, y] 2 E2 and x3 ÿ 3xy2 2 A2, a direct product basis of

E2 3 A2 is given by

[@x, @ y](x3 ÿ 3xy2) � 3[(x2 ÿ y2, ÿ2xy)]

which is equivalent to the basis [2xy, x2 ÿ y2] of E2 given by (7.3.14b) but not

proportional.

7.3.5 Illustrative examples

Using the correspondence theorem we shall work out the SALCs of equivalent orbitals

for typical rigid molecules.

Example 7.3.1. Construct the SALCs of the d-orbitals f[uí, ví]g of four equivalent

Y atoms surrounding the central X atom in a tetrahedral molecule XY4 2 Tp. Here, the

basis [u, v] is de®ned in Table 7.1 and uí � 2z2
í ÿ x2

í ÿ y2
í and ví � 31=2(x2

í ÿ y2
í)

following the notation (7.3.12a) with a p-like orbital [xí, yí, zí].

According to Table 7.1, the elementary basis [u, v] belongs to E of Tp. Hence, the

equivalent orbitals f[uí, ví]g on S(4) belong to E 3 Ä(4), where Ä(4) � A1 � T2 from

(7.2.15b). The irreducible representations contained in the direct product are
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E 3 Ä(4) � E(A1 � T2) � E
[u, v]

� T1

[~x, ~y, ~z]
� T2

[x, y, z]
(7:3:15a)

with use of the character table of Tp given in the Appendix. Note here that the unirreps

E and T1 are not contained in Ä(4). Now, the E SALC is given directly by the

characteristic SALC of [u, v]

øu(r) � 1

2

X
í

uí, øv(r) � 1

2

X
í

ví (7:3:15b)

To form T1 and T2 SALCs of f[uí, ví]g, we use the general expression (7.3.6b)

written in the form

øã
k(r) �

X
í

[8T
ã
k(r9)(u(r9)uí(r)� v(r9)ví(r))]r9�r0

í

then, substituting [r 3 =] 2 T1 and = 2 T2 for [ 8T
ã
k], we obtain, with use of x0

í y0
í � z0

í
from (7.2.15a),

T1: ø~x(r) � ÿ 1

4

X
í

x0
í(
p

3uí � ví), ø~y(r) � 1

4

X
í

y0
í(
p

3uí ÿ ví)

ø~z(r) � 1

2

X
í

z0
íví

T2: øx(r) � 1

4

X
í

x0
í(ÿuí �p3ví), ø y(r) � 1

4

X
í

y0
í(uí �p3ví)

øz(r) � 1

2

X
í

z0
íuí (7:3:15c)

It is interesting to note that, if we use the identities

ÿ1
2
(
p

3u� v) � p3(y2 ÿ x2), 1
2
(
p

3uÿ v) � p3(z2 ÿ x2), v � p3(x2 ÿ y2)

1
2
(ÿu�p3v) � 3x2 ÿ r2, ÿ1

2
(u�p3v) � 3y2 ÿ r2, u � 3z2 ÿ r2

(7:3:15d)

then the above SALCs can be rewritten as

T1: ø~x �
p

3

2

X
í

x0
í(y2 ÿ z2)í, ø~y �

p
3

2

X
í

y0
í(x2 ÿ x2)í,

ø~z �
p

3

2

X
í

z0
í(x

2 ÿ x2)í

T2: øx � 1

2

X
í

x0
í(3x2 ÿ r2)í, ø y � 1

2

X
í

y0
í(3y2 ÿ r2)í,

øz � 1

2

X
í

z0
í(3z2 ÿ r2)í

which can be understood from the alternative bases of T1 and T2 given in Table 7.1.

Note here that (y2 ÿ z2)í � y2
í ÿ z2

í etc.
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Example 7.3.2. Construct the SALCs of p-like orbitals fxí, yí, zíg belonging to

three equivalent Y atoms surrounding the central X atom in a planar molecule

XY3 2 D3p.

According to Table 7.2, z 2 B2 and [x, y] 2 E2, so that fzíg 2 B2 3 Ä(3) and

f[xí, yí]g 2 E2 3 Ä(3). The set of three equivalent points S(3) was de®ned by (7.2.16a)

and Ä(3) � A1 � E2 from (7.2.16b). The decompositions of the direct products yield,

with use of the character table of D3p given in the Appendix,

B2 3 Ä(3) � B2(A1 � E2) � B2

z
� E1

[yz, ÿxz]

E2 3 Ä(3) � E2(A1 � E2) � A1

1

� A2

~z
� 2E2

[x, y], [y~z, ÿx~z]
(7:3:16a)

Let us ®rst construct the equivalent orbitals corresponding to one-dimensional unirreps

A1, A2 and B2 of D3p. From their elementary bases

x9x� y9y 2 A1; ~z � x9yÿ y9x 2 A2; z 2 B2

the equivalent orbitals on S(3) are given by

óí � (x0
íxí � y0

í yí)=2 2 A1 3 Ä(3)

~zí � (x0
í yí ÿ y0

íxí)=2 2 A2 3 Ä(3)

zí 2 B2 3 Ä(3) (7:3:16b)

where fóíg is a set of ó-orbitals (cylindrical with respect to each chemical bond)

while f~zíg and fzíg are sets of ð-orbitals (perpendicular with respect to the chemical

bond). See Figure 7.3. Since the three orbitals óí, ~zí and zí for a given í are mutually

3

3
3

1
2

1 2

1
21

2
1

2

1

2

σν

zν

z~ν

1

1 1

Figure 7.3. The ó, ð9 and ð orbitals for the three equivalent Yatoms surrounding

the central X atom in a planar molecule XY3 2 D3p. Note that óí � r0
í

. rí is

cylindrical with respect to r0
í, whereas ~z0

í � [r0
í 3 rí]z � x0

í yí ÿ y0
íxí is on the

molecular x, y plane and perpendicular to r0
í, and obviously zí is perpendicular

to the x, y plane.
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orthogonal and span the complete space spanned by the p-orbitals xí, yí and zí, all of

the SALCs of the equivalent orbitals fxí, yí, zíg are constructed by those of

fóí, ~zí, zíg. Thus, from the correspondence theorem, the SALCs of p-orbitals for

XY3 2 D3p are given by

A1: ø1 �
X
í

óí=
p

3

A2: ø~z �
X
í

~zí=
p

3

B2: øz �
X
í

zí=
p

3

E1: ø yz �
X
í

y0
ízí=
p

6, øÿxz � ÿ
X
í

x0
ízí=
p

6

2E2: øx �
X
í

x0
íóí=
p

6, ø y �
X
í

y0
íóí=
p

6

ø y~z �
X
í

y0
í~zí=
p

6, øÿx~z � ÿ
X
í

x0
í~zí=
p

6 (7:3:16c)

where the linear coef®cients are normalized by setting the sums of their squares equal

to unity.

An alternative choice for the two bases of E2 would be those corresponding to the

elementary bases [x, y] and [2xy, x2 ÿ y2] from Table 7.2:

E2: øx(r) �
X
í

xí=
p

3, ø y(r) �
X
í

yí=
p

3

ø2xy(r) �
X
í

(x0
íxí � y0

í yí)=
p

6, øx2ÿ y2 (r) �
X
í

(x0
í yí ÿ y0

íxí)=
p

6

(7:3:16d)

The previous bases given for E2 in (7.3.16c) are useful for the theory of chemical

bonding whereas the alternative bases given above are useful in the theory of

molecular vibration: regard (xí, yí) as the displacement vector of the íth atom in the

molecular symmetry plane, then the set [øx, ø y] represents the pure translational

mode in the x- and y-directions, whereas (øx2ÿ y2 , øÿ2xy) represents the internal mode

of vibration (see Section 7.6).

Example 7.3.3. Construct the SALCs of the p-orbitals fxí, yí, zíg belonging to n

equivalent Yatoms surrounding the X atom in a planar molecule XYn 2 Dnh.

This problem is a straightforward extension of Example 7.3.2. Take the coordinate

origin on the central atom X and let the z-axis be perpendicular to the molecular plane.

Then the ó-orbitals and the two kinds of ð-orbitals are

óí � x0
íxí � y0

í yí, ~zí � x0
í yí ÿ y0

íxí, zí

where í � 1, 2, . . . , n. Now let D(á)(G) be a unirrep contained in Ä(n) and let fuá
i (r)g

be a proper basis of D(á)(G) on S(n), then the unirreps of Dnh are characterized by the
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direct product bases uá
i (r)ó , uá

i (r)~z and uá
i (r)z because ó, ~z and z are bases of one-

dimensional unirreps of Dnh. Thus the required SALCs are given by

øáó
i (r) �

X
í

uái (r0
í)óí

øá~z
i (r) �

X
í

uái (r0
í)~zí

øáz
i (r) �

X
í

uái (r0
í)zí (7:3:17)

for every unirrep D(á) contained in Ä(n). There exists a total of 3n basis functions in

(7.3.17), which exhausts all the SALCs that can be constructed from 3n p-orbitals of n

equivalent Yatoms in XYn.

Note that the SALCs given by føáz
i (r)g in (7.3.17) describe the SALCs of the

conjugated ð-bond system of a plane molecule like the benzene molecule.

Exercise. Construct the SALCs of the p-orbitals fzíg of the six carbon atoms in the

benzene molecule C6H62 D6i using føáz
i (r)g given in (7.3.17).

Hint. The coordinates of the six C atoms on the molecular plane may be given by

í � 1 2 3 4 5 6

x0
í � 1 1

2
ÿ1

2
ÿ1 ÿ1

2
1
2

y0
í � 0

p
3

2

p
3

2
0 ÿ

p
3

2
ÿ
p

3

2

Note that z 2 A2u, and that A2u 3 Ä(6) is reduced, via the elementary bases of the

unirreps of D6i given in the Appendix, to

A2u 3 Ä(6) � A2u(A1g � B2u � E1u � E2g)

� A2u

z

� B1g

z(x3 ÿ 3xy2)

� E1g

z[x, y]
� E2u

z[2xy, x2 ÿ y2]
(7:3:18)

where each basis function is proportional to the z-orbital, as it should be. The rest

follows from øáz
i (r) given in (7.3.17).

7.4 The general classi®cation of SALCs

Before actual construction of the SALCs from any given set of equivalent orbitals

f f A
s (r ÿ r0

í)g 2 D(A) 3 Ä(n) on S(n) � fr0
íg, it is always pro®table to decompose the

direct product representation into two parts:

D(A) 3 Ä(n) � Ä(ó )
A � Ä(ð)

A ; Ä(ó )
A � nAÄ

(n) (7:4:1)

where nA is the number of times a unirrep D(A)(G) is contained in Ä(n)(G). The ®rst

part Ä(ó )
A contains nA linearly independent scalar bases för

í(r); r � 1, 2, . . . , nAg of

Ä(n)(G) formed by (7.3.4) with nA linearly independent bases fvAr
s (r0

í); r � 1, 2,

. . . , nAg of D(A) on S(n) from Theorem 7.2.2. The second part Ä(ð)
A contains the rest of

SALCs orthogonal to the ®rst part. In the important special case of equivalent p-
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orbitals, the above classi®cation (7.4.1) reduces to the SALCs of ó- and ð-orbitals; e.g.

see (7.3.17).

Now, returning to (7.4.1), let d A be the dimensionality of D(A), then the dimension-

ality of D(A) 3 Ä(n) is d A 3 n. Thus, if nA � d A, then Ä(ð)
A is null; on the other hand,

if D(A)(R) is not contained in Ä(n)(R), i.e. nA � 0, then Ä(ó )
A is null. Accordingly, we

are left with the case in which d A . nA > 1, in which case D(A) is also contained in

Ä(ð)
A so that D(A) 3 Ä(n) is not simply reducible, even if Ä(n) is simply reducible. To

see this, let nA
A be the frequency of D(A) contained in D(A) 3 Ä(n). Then, using (7.2.2)

we have, analogously to (7.2.3),

nA
A �

1

jGj
X
R2G

÷(A)(R)�÷(A)(R)÷(Ä)(R)

� 1

jH j
X
h2H

j÷(A)(h)j2

>
1

jH j
X
h2H

÷(A)(h) � nA (7:4:2)

Accordingly, nA
A > nA, where the equality holds if and only if the subduced represen-

tation fD(A)(h); h 2 Hg onto H (< G) is the identity representation. Thus, for the

case in which d A . nA > 1, we have nA
A . nA, i.e. the unirrep D(A) is contained in

D(A) 3 Ä(n) more than once even if Ä(n) is simply reducible; in fact, it will be shown

below by construction that nA
A � nA � 1.

For example, consider the SALCs of the p-orbitals of four equivalent Y atoms in

XY4 2 Tp. From Table 7.1, the basis [x, y, z] belongs to T2 of Tp while Ä(4) �
A1 � T2 from (7.2.15b), i.e. Ä(4) is simply reducible. Decomposition of T2 3 Ä(4)

yields, however,

T2 3 Ä(4) � A1 � E � T1 � 2T2 (7:4:3)

which is not simply reducible. From (7.4.1), these irreducible components are

classi®ed into

Ä(ó ) � Ä(4) � A1 � T2, Ä(ð) � E � T1 � T2 (7:4:4)

where both subspaces are simply reducible.

7.4.1 D(A) SALCs from the equivalent orbitals 2 D(A) 3 Ä(n)

Since the unirrep D(A) is contained in D(A) 3 Ä(n) more than once when d A . nA > 1,

it is desirable to give the general expression for the D(A) SALCs of the equivalent

orbitals f f A
s (r, r0

í)g 2 D(A) 3 Ä(n). We shall ®nd it convenient to use the vector

notation for the bases of D(A)(G). Set

f A(r, r9) � [ f A
1 (r, r9), . . . , f A

d A
(r, r9)]

Ar(r) � [A
r
1(r), . . . , A

r
d A

(r)]; r � 1, 2, . . . , nA (7:4:5)

where nA sets fAr(r)g are proper elementary bases on S(n) belonging to D(A)(G) that

are orthonormalized by
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ärr9 � h(Ar(r0
í), Ar9(r0

í)i �
X

s

Ar
s (r0

í)
�Ar9

s (r0
í)

� (d A=n)
X
ì

A
r
j (r0

ì)�A
r9
j (r0

ì)

Here the third equality follows from (7.2.11). These relations are independent of í and

j according to (7.2.12). The parallel and perpendicular components of f A(r, r9) with

respect to Ar(r9) are de®ned by

f Ar
ó (r, r9) � Ar(r9)hAr(r9), f A(r, r9)i; r � 1, . . . , nA

f A
ð (r, r9) � f A(r, r9)ÿ

Xn A

r�1

f Ar
ó (r, r9) (7:4:6a)

The required SALCs belonging to D(A)(G) are given, from the correspondence

theorem, by

øAr
ó (r) �

X
í

f Ar
ó (r, r0

í); r � 1, . . . , nA 2 Ä(ó )
A (G)

øA
ð (r) �

X
í

f A
ð (r, r0

í) 2 Ä(ð)
A (G) (7:4:6b)

These nA � 1 SALCs are mutually orthogonal in the Hilbert space if the overlap

integrals are neglected. It is evident that the second set becomes null when nA � dA

owing to the closure of the orthonormalized set fAr(r0
í)g.

There exists an alternative choice for D(A) SALCs, which disregards the classi®ca-

tion (7.4.1). They are given by

øA(r) �
X
í

f A(r, r0
í)

ør
A(r) � øA(r)ÿ d Aø

Ar
ó (r); r � 1, . . . , nA (7:4:7)

where øAr
ó (r) are de®ned in (7.4.6b). The second SALCs ør

A are obtained from øA(r)

and øAr
ó (r) by the Schmidt orthogonalization method. This choice is important in the

theory of molecular vibration: Suppose that Aí(r) represents a displacement vector

ärí of the íth equivalent atom of a symmetrical molecule, then øA(r) represents the

pure translational modes while ør
A(r) represents the internal modes of the vibration

belonging to D(A) and orthogonal to øA(r) (see Section 7.6).

We shall specialize (7.4.6b) and (7.4.7) for the important special case in which

1 � nA , d A. In this case there exists only one set of proper bases fA(r)g 2 D(A)(G)

on S(n) (apart from the phase factor). Thus the parallel and perpendicular components

of f A(r, r9) with respect to A(r9) are de®ned by

f A
ó (r, r9) � A(r9)hA(r9), f A(r, r9)i

f A
ð (r, r9) � f A(r, r9)ÿ f A

ó (r, r9)

� ÿA(r9) 3 [A(r9) 3 f A(r, r9)] (7:4:8a)

where in the last equality we have used the vector identity ÿa 3 [a 3 c] � cÿ a(a, c)

with (a, a) � 1. This is possible because d A � 2 or 3 for a crystallographic point
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group (see Figure 7.4). Thus (7.4.6b) are simpli®ed to two mutually orthogonal SALCs

belonging to D(A)(G):

øA
ó (r) �

X
í

f A
ó (r, r0

í) 2 Ä(ó )
A

øA
ð (r) �

X
í

f A
ð (r, r0

í) 2 Ä(ð)
A (7:4:8b)

Analogously, (7.4.5) is simpli®ed to two SALCs. These results will be used in the

examples given below.

Example 7.4.1. Construct the SALCs of the p-orbitals f[xí, yí, zí]g on four equiva-

lent Yatoms of a molecule XY4 2 Tp.

The set of four equivalent points S(4) de®ned by the coordinates of Y atoms is

already given in (7.2.15a) and the elementary bases of the irreducible representations

of Tp are given in Table 7.1. Since [x, y, z] 2 T2, we have f[xí, yí, zí]g 2 T2 3 Ä(4).

The unirreps contained in T2 3 Ä(4) � Ä(ó ) � Ä(ð) are classi®ed, via (7.4.4), by

Ä(ó ) � A1

1
� T2

[x, y, z]

Ä(ð) � E
[u, v]

� T1

[~x, ~y, ~z]
� T2

[x, y, z]
(7:4:9a)

(i) The SALCs 2 Ä(ó ). In terms of the ó-orbitals de®ned by

óí � (x0
íxí � y0

í yí � z0
ízí)=

p
3

where x0
í y0

í and z0
í are de®ned by (7.2.15a), the SALCs belonging to A1 and T2

are given by

A1: øó �
X
í

óí=2

T2: øó
x �

X
í

x0
íóí=2, øó

y �
X
í

y0
íóí=2, øó

z �
X
í

z0
íóí=2

(7:4:9b)

fA (r, r′)
fπ

A (r, r′)

fσ
A (r, r′)

A(r′)

Figure 7.4. f A(r, r9) � f A
ó (r, r9)� f A

ð (r, r9).
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(ii) The SALCs 2 Ä(ð):

E: øð
u �

X
í

(2z0
ízí ÿ x0

íxí ÿ y0
í yí)=

p
24

øð
v �

X
í

p
3(x0

íxí ÿ y0
í yí)=

p
24

T1: øð
x �

X
í

(y0
ízí ÿ z0

í yí)=
p

8, øð
y, øð

z

T2: øð
x �

X
í

x0
í(2x0

íxí ÿ y0
í yí ÿ z0

ízí)=
p

24, øð
y, øð

z (7:4:9c)

where the SALCs for E and T1 are formed directly by the correspondence theorem

whereas those for T2 are formed by (7.4.8b); those SALCs not given above

explicitly are easily obtained by the cyclic permutation of (x, y, z) from the ®rst

member of the partners.

The alternative bases of T2 based on (7.4.7) are given by

T2: øx �
X
í

xí=2, ø y, øz

ø9x �
X
í

(y0
ízí � z0

í yí)=
p

8, ø9y, ø9z (7:4:9d)

It should be noted that the bases [øð
x , øð

y, øð
z ] and [ø9x, ø9y, ø9z] of T2 given in

(7.4.9c) and (7.4.9d) respectively are understood from the correspondence theo-

rem with the alternative bases of T2 given in Table 7.1:

[øð
x , øð

y, øð
z ]$ [x(2x2 ÿ y2 ÿ z2), y(2y2 ÿ x2 ÿ z2), z(2z2 ÿ x2 ÿ y2)]

[ø9x, ø9y, ø9x]$ [yz, zx, xy]

7.5 Hybrid atomic orbitals

Let XYn be a molecule belonging to a symmetry group G with a central atom X

surrounded by n equivalent Y atoms located on S(n) � fr0
íg, where the origin of the

coordinate system is at X. It is assumed that the atomic orbitals (AOs) of every atom in

the molecule are classi®ed by the unirreps of the group G. In the LCAO-MO theory, a

given set of equivalent AOs of the Y atoms are linearly combined into the SALCs

belonging to the unirreps of the group G; each irreducible basis thus formed is linearly

combined with the AOs on the central atom X (belonging to the same unirrep) to

describe the ®rst-order approximation to the molecular orbital of the molecule XYn. In

the theory of directed valence, on the other hand, the AOs on the central atom X are

linearly combined to form the equivalent orbitals in the directions of n equivalent Y

atoms. These are called the hybrid AOs of the central atom X, and are to match with

the equivalent orbitals on the surrounding Y atoms to form chemical bonding. Thus,

the present problem of forming hybrid AOs from the AOs on X is inverse to the former

problem of forming LCAO MOs via the SALCs of the equivalent AOs of the

surrounding Yatoms. We shall begin with the following simple case.
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7.5.1 The ó-bonding hybrid AOs

Let XYn 2 G and the AOs on the surrounding Yatoms be equivalent scalar orbitals (or

ó-orbitals) föí(r) � ö(jr ÿ r0
íj)g belonging to the permutation representation

Ä(n)(G). Let fuá
i (r)g be a set of atomic orbitals of the central atom X belonging to a

unirrep D(á) of G, which is contained in Ä(n)(G). Then, via the two-point invariant

function introduced by (7.3.4), we obtain a set of equivalent orbitals belonging to Ä(n)

for the central atom

já
í (r) � já(r, r0

í) �
Xdá

i�1

vá
i (r0

í)�uái (r); í � 1, 2, . . . , n (7:5:1)

where fvá
i (r)g is a basis of D(á)(G) that is proper on S(n). The íth equivalent j-orbital

já
í (r) belonging to the central X atom is to match with the equivalent orbital öí(r) on

the íth Y atom in the molecule. The n equivalent j-orbitals de®ned by (7.5.1) are,

however, not linearly independent in general because it is a set of n linear combina-

tions of dá linearly independent basis functions fuá
i (r)g and dá < n from (7.2.4). To

obtain a linearly independent set, it is necessary to introduce further linear combina-

tions over all the irreducible representations contained in Ä(n)(G). Thus, a linearly

independent set may be written in the form

jí(r) �
X
á

Xná
r�1

Xdá

i�1

cárv
á,r
i (r0

í)�u
á,r
i (r); í � 1, 2, . . . , n (7:5:2)

where the superscript r denotes the different bases belonging to the same unitary

representation and
P

ánádá � n; the coef®cients cár are arbitrary constants as long as

they ensure the linear independence of the set. This set is called a set of ó-bonding

hybrid AOs of the central X atom.

If one requires that the transformation (7.5.2) is unitary, then the constants cár are

determined up to the phase factors. To see this, let us assume that both fuá,r
i (r)g and

fvá,r
i (r)g are n orthonormalized basis sets of functions in the Hilbert space. It is also

assumed that each set is proper and provides an orthogonal set on S(n). Then, we have

the following set of orthonormalized equivalent j-orbitals:

jí(r) �
X
á,r,i

(1=Ná,r
v )vár

i (r0
í)�u

á,r
i (r)

(Ná,r
v )2 �

X
í

jvár
i (r0

í)j2 � n

dá

X
i

jvár
i (r0

ó )j2 (7:5:3)

where we have used (7.2.12). Here there still remains a certain degree of arbitrariness

in choosing vá,r
i (r0

í) for a given set of u
á,r
i (r) and also the arbitrariness in the phases

of the coef®cients. In the theory of directed valence, this arbitrariness is removed by

Pauling's criterion on the maximum bonding strength. The bonding strength of the

íth equivalent orbital jí(r) of X in the direction of r may be de®ned by Rejí(r),

where Re denotes the real part, extending Pauling's de®nition to a complex orbital.

Then, the equivalent orbital with the maximum bonding strength in the direction of

r0
í is given by
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øí(r) �
X
á,r,i

(1=Ná,r
u )u

á,r
i (r0

í)�u
á,r
i (r) (7:5:4)

where Ná,r
u is de®ned analogous to Ná,r

v of (7.5.3) assuming Ná,r
u . 0.

The proof is simple: it follows from the inequality

øí(r0
í)ÿ Rejí(r0

í) � 1

2

X
á,r,i

(1=Ná,r
u )juá,r

i (r0
í)ÿ (Ná,r

u =Ná,r
v )vá,r

i (r0
í)j2 > 0 (7:5:5)

The maximum bonding strength of øí(r) in the direction of r0
í is given by

øí(r0
í) �

1

n

X
á,r

dáNá,r
u (7:5:6)

Example 7.5.1. The ó-bonding hybrid AOs of the central atom X for a molecule

XY4 2 Tp.

From (7.2.15b), we have Ä(4) � A1 � T2, where the unirreps are characterized by

the elementary bases as follows:

A1: 1 or xyz

T2: [x, y, z] or [yz, zx, xy] or [x(3x2 ÿ r2), y(3y2 ÿ r2), z(3z2 ÿ r2)]

(7:5:7a)

From (7.5.4), the required hybrid AOs may be written as

øí(r) � 1
2
(u1 � x0

íux � y0
íu y � z0

íuz), í � 1, 2, 3, 4 (7:5:7b)

where u1 and (ux, u y, uz) are properly normalized bases of the atomic orbitals of X

belonging to A1 and T2, respectively, and S(4) � fr0
íg is de®ned by (7.2.15a). For

example, for the s, px, py and pz orbitals of X we have

u1 � ö, ux � p3xö, u y � p3yö, uz � p3zö (7:5:7c)

where ö � ö(jrj) is the radial part. To achieve the maximum bonding strength, the

phase of ö is chosen such that ö(jr0
íj) . 0. The maximum bonding strength for this

case is given by

øí(r0
í) � 1

2
(1� 3

p
3)ö(jr0

íj) (7:5:7d)

The transformation matrix de®ned by (7.5.7b) is given by

L� � 1

2

1 1 1 1

1 ÿ1 ÿ1 1

1 1 ÿ1 ÿ1

1 ÿ1 1 ÿ1

2664
3775 (7:5:7e)

which is the inverse of L given by (7.2.15d), as expected.

In view of the degrees of the polynomial bases for A1 and T2 given in (7.5.7a), we

may conclude that the set of equivalent orbitals given by (7.5.7b) can be applied for

the sp3-, sd3-, sf 3-, fp3- and f 4-hybrid orbitals. Here s-, p-, d- and f-orbitals refer to the

elementary bases with the polynomial degrees 0, 1, 2 and 3, respectively.

172 Construction of SALCs



Analogously to (7.5.7b), the sp2-hybridized orbitals of the central atom X for a

planar molecule XY3 2 D3p are given by

j9í(r) � 1
2
(u1 � x0

íux � y0
íu y); í � 1, 2, 3 (7:5:8)

where S(3) � fx0
í, y0

íg is de®ned by (7.2.16a). Moreover, the sp-hybridized orbitals of

X for a linear molecule YXY 2 D1i are given by

j 0�(r) � 1p
2

(u1 � ux) (7:5:9)

7.5.2 General hybrid AOs

Consider the general case of XYn 2 G. Let D(ã)(G) be a unirrep of G and let

f f
ã
k(r ÿ r0

í)g be the equivalent orbitals of the surrounding Y atoms belonging to a

direct product representation D(ã) 3 Ä(n) of G and let D(A) be a unirrep of G contained

in D(ã) 3 Ä(n) with the frequency n
ã
A. Let fuAr

s (r); r � 1, 2, . . . , n
ã
Ag be the n

ã
A sets

of the atomic orbitals of the central X atom, each of which transforms according to the

unirrep D(A) of G for a given r. Then the hybrid AOs of the central atom

X 2 D(ã) 3 Ä(n) matching with the equivalent orbitals f f
ã
k(r ÿ r0

í)g of the surrounding

Yatoms may be expressed by

jã
kí(r) �

X
A

XnãA
r�1

cAr

Xd A

s�1

L
ãAr
ks (r0

í)uAr
s (r); L

ãAr
ks (r0

í) � 8T
ãr
k (r9)vAr

s (r9)�jr�r0
í

(7:5:10a)

where k � 1, 2, . . . , dã; í � 1, 2, . . . , n; r � 1, 2, . . . , n
ã
A andX

A

n
ã
Ad A � ndã (7:5:10b)

Previously in the calculation of SALCs by (7.3.6b), we have transformed d A 3 n

equivalent orbitals f f A
s (r ÿ r0

í)g of the surrounding Y atoms belonging to D(A) 3 Ä(n)

of G to their SALCs belonging to D(ã)(G). Here in (7.5.10a) we named the representa-

tions such that we transform a set of the D(A)-bases of the central atom X to the

equivalent orbitals belonging to D(ã) 3 Ä(n) of G. Accordingly, the transformation

matrices L for both cases are essentially similar because in both cases we transform

`D(A)-bases' to `D(ã)-bases'. Thus, the transformation matrix calculated previously for

the SALCs can be used to obtain the corresponding hybrid AOs (see (7.5.13)).

The coef®cients cAr in (7.5.10a) are arbitrary constants insofar as they leave the

hybrid AOs linearly independent. If we require the transformation to be unitary, then

the constants are determined up to the phase factors by

(1=cAr)2 �
Xn

í�1

Xdã

k�1

jLãAr
ks (r0

í)j2 (7:5:11)

Obviously, if the set fuãr
k (r)g is chosen orthonormalized in the Hilbert space, then so

is the set of hybrid AOs fjA
sí(r)g, provided that the transformation is unitary.

In the theory of valence, frequently some of the atomic orbitals fuãr
k (r)g of X are
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not available from energy considerations. In such a case, the hybrid AOs given above

are not linearly independent.

Example 7.5.2. The hybrid AOs of the central X atom for XY4 2 Tp matching with

the p-like orbitals of the equivalent Yatoms.

From Table 7.1, [x, y, z] 2 T2 of Tp and also from (7.4.3) we have

T2 3 Ä(4) � A1

1
� E

[u, v]
� T1

[~x, ~y, ~z]
� 2T2

[x, y, z]
(7:5:12)

Thus, the required hybrid AOs 2 T2 3 Ä(4) are formed from the atomic orbitals of X

belonging to A1, E, T1 and 2T2. From (7.5.10a) and (7.5.11), we give here only the x-

components:

j(5)
xí (r) � 1p

12
x0
í f1 � 1p

48
x0
í(ÿ f u �p3 fv)� 1p

8
(y0

í f~z ÿ z0
í f ~y)

� 1p
12

x0
í(x0

í f x � y0
í f y � z0

í f z)� 1p
24

x0
í(2x0

íhx ÿ y0
íh y ÿ z0

íhz) (7:5:13)

where fx0
í, y0

í, z0
í; í � 1, 2, 3, 4g has been given by (7.2.15a). The y- and z-compo-

nents not given above are obtained by the permutations of x, y and z from the x-

component. The notations of these bases are in accordance with the de®nition

(7.3.12a); e.g. [ f u, fv] is a basis that transforms like the elementary basis [u, v],

whereas the basis [ f ~x, f ~y, f~z] 2 T1 transforms like [~x, ~y, ~z] or [x(y2 ÿ z2), y(z2 ÿ x2),

z(x2 ÿ y2)] given in Table 7.1. The two bases [ f x, f y, f z] and [hx, h y, hz] of T2 are

mutually orthogonal p-like orbitals as de®ned by (7.3.12b) at r0
í � 0. Moreover, each

term on the rhs of (7.5.13) transforms like x0
í as in the ®rst term: the second term is

obtained analogously to øx of (7.3.15c), the third term is based on the fact that [r 3 ~r]

transforms like a vector, the fourth term is analogous to øó
x of (7.4.9b) and the last

term is analogous to øð
x of (7.4.9c). The normalization constants may be checked by

(7.5.11); here it is necessary to write down j5
yí and j5

zí in addition to j5
xí given above

to arrive at the correct normalization constants given in (7.5.13). Finally, we can show

that the ®rst and fourth terms are ó-orbitals whereas the remaining terms are ð-orbitals

according to the classi®cation (7.4.4) and (7.4.8a).

7.6 Symmetry coordinates of molecular vibration based on the correspondence

theorem

In the theory of molecular vibration of a polyatomic molecule belonging to a point

group G, the primary step is to construct the symmetry coordinates of molecular

vibration belonging to an irreducible representation of the group G. These may be

classi®ed by the SALCs of in®nitesimal displacements of the atoms in the molecule.

Since the in®nitesimal displacements of equivalent atoms transform like equivalent p-

orbitals, the problem of ®nding the symmetry coordinates of vibration is reduced to

the problem of constructing the SALCs of equivalent p-orbitals, which has been

discussed fully in the previous sections; cf. Kim (1981b, 1986a).

The symmetry coordinates formed by the SALCs of atomic displacements are called

the external vibrational coordinates of a molecule. There exist also internal vibra-

tional coordinates that describe the relative displacements of atoms in a molecule,
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such as a bond-stretching and a valence angle bending. These are free from the total

displacement, such as translation or rotation of the molecule as a whole. Let N be the

total number of atoms in a rigid molecule, then there exists a total of 3N ÿ 6 (5)

internal vibrational coordinates because there exist three translational degrees of

freedom and three (or two) rotational degrees of freedom for a non-linear (or linear)

molecule. We shall begin with the discussion of the external coordinates.

7.6.1 External symmetry coordinates of vibration

The external coordinates are de®ned by the atomic displacements in the Cartesian

coordinates ®xed on the molecular frame at equilibrium. Let ärí be the Cartesian

displacement of the íth equivalent atom located at r0
í. Then the set färíg transforms

like an equivalent set of vectors or p-orbitals, i.e. it transforms according to the direct

product representation D(1)(R) 3 Ä(n)(R) for all R 2 G, where D(1)(R) is the three-

dimensional representation of orthogonal transformation R 2 G and Ä(n)(R) is the

permutation representation of R 2 G based on the set of n equivalent positions

S(n) � fr0
íg of symmetrically equivalent atoms in the molecule. Let D(ã)(G) be a

unirrep contained in D(1) 3 Ä(n) of G, then a set of external symmetry coordinates

belonging to D(ã)(G) is expressed by

q
ã
k �

Xn

í

u
ã
k(r0

í) . ärí (7:6:1)

where u
ã
k(r0

í) is a vector function at r � r0
í de®ned, from (7.3.6b) or (7.3.8b), by

u
ã
k(r0

í) � 8T
ã
k(r)rjr�r0

í
or =vã

k(r)jr�r0
í

If D(ã) is contained in Ä(n), the operator basis will obviously be an ordinary proper

basis on S(n). These coordinates q
ã
k are nothing other than the general expressions of

the SALCs of equivalent p-orbitals discussed fully in the previous sections; in

particular, the second expression should be compared with (7.3.10a). As we shall see

in the examples discussed below, for most cases, direct use of the correspondence

theorem suf®ces to construct any required SALCs instead of these general expressions

(7.6.1). In any case, the set of the coef®cient vectors fuã
k(r0

í)g describes the mode of

vibration corresponding to the symmetry coordinates q
ã
k of vibration.

Example 7.6.1. Determine the external vibrational symmetry coordinates of an

equilateral triangular molecule X3 2 D3p (� D3h).

Take the coordinate origin at the center of the triangle as in Figure 7.5 and let the

coordinates of three equivalent atoms be given by (7.2.16a). Let us use the following

abbreviations for the atomic displacements:

xí � äxí, yí � äyí, zí � äzí; í � 1, 2, 3 (7:6:2a)

Since the set f[xí, yí, zí]g transforms like an equivalent set of p-orbitals, the problem

is reduced to the problem of constructing the SALCs of equivalent p-orbitals on S(3),

which already has been discussed in Example 7.3.2. We discuss this problem once

more, analogously to Example 7.3.2, but stressing the differences in the physical

interpretation; in particular, in choosing the elementary bases.
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From the elementary bases [x, y] 2 E2 and z 2 B2 given in Table 7.2, the in-plane

modes of motion are classi®ed, using Ä(3) � A1 � E2, by

E2 3 Ä(3) � A1

x2 � y2
� A2

~z
� 2E2

[x, y], [2xy, x2 ÿ y2]
(7:6:2b)

while the out-of-plane modes are classi®ed by

B2 3 Ä(3) � B2

z
� E1

[~x, ~y]
(7:6:2c)

Let us ®rst construct the symmetry coordinates belonging to the one-dimensional

unirreps A1, A2 and B2 of D3p. We obtain, via the correspondence theorem,

A1: qx2� y2 �
X
í

(x0
íxí � y0

í yí)=N

� (2y1 �p3x2 ÿ y2 ÿp3x3 ÿ y3)=
p

12

A2: q~z �
X
í

(x0
í yí ÿ y0

íxí)=N

� (ÿ2x1 �p3y2 � x2 ÿp3y3 � x3)=
p

12

B2: qz �
X
í

zí=N � (z1 � z2 � z3)=
p

3

where we have used the equilibrium coordinates (x0
í, y0

í, z0
í) given in (7.2.16a). From

Figure 7.5, we see that the coordinate qx2� y2 describes the symmetric stretching mode,

whereas q~z describes the pure rotational mode about the z-axis, and the coordinate qz

describes the pure translational mode in the z-direction.

y

x

qx qx qz~

qx2 1 y2 qx2 2 y2qzxy

Figure 7.5. The external symmetry coordinates of an equilateral triangular mol-

ecule belonging to D3p. Each vector at a íth atom is drawn proportional to the

coef®cient vector u
ã
k(r0

í) de®ned in (7.6.1).
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Next, the degenerate symmetry coordinates are

E1: q~x �
X
í

(y0
ízí ÿ z0

í yí)=N � (2z1 ÿ z2 ÿ z3)=
p

6

q~y �
X
í

(z0
íxí ÿ x0

ízí)=N � (ÿz2 � z3)=
p

2

E2: qx �
X
í

xí=N � (x1 � x2 � x3)=
p

3

q y �
X
í

yí=N � (y1 � y2 � y3)=
p

3

E2: q2xy �
X
í

(x0
í yí � y0

íxí)=N

� (2x1 �p3y2 ÿ x2 ÿp3y3 ÿ x3)=
p

12

qx2ÿ y2 �
X
í

(x0
íxí ÿ y0

í yí)=N

� (ÿ2y1 �p3x2 � y2 ÿp3x3 ÿ y3)=
p

12

Analogously to q~z, the basis [q~x, q~y] 2 E1 describes the pure rotational modes about

the x- and y-axes, while [qx, q y] describes the pure translational modes in the

directions of the x- and y-axes, analogously to qz, whereas the set [q2xy, qx2ÿ y2 ] 2 E2

describes the asymmetric stretching (see Figure 7.5).

Thus, out of 9 � 3 3 3 degrees of freedom, there exist only three vibrational degrees

of freedom described by qx2� y2 2 A1 and [q2xy, qx2ÿ y2 ] 2 E2. The remaining degrees

of freedom are three pure translational and three pure rotational coordinates described

by (qx, q y, qz) and (q~x, q~y, q~z), respectively: these six modes belong to the eigenvalue

zero of the Hamiltonian or the zero frequency modes.

Exercise. Construct the external vibrational coordinates of CH4 from the SALCs of

the p-orbitals. Use the SALCs of the [ px, py, pz] orbitals of the four equivalent H

atoms given in Example 7.4.1.

7.6.2 Internal vibrational coordinates

The types of internal vibrational coordinates of a molecule which will be considered

here are

Bond stretchings,

Valence-angle bendings,

Bond-plane angle changes (the angle between a bond and a plane de®ned by two

bonds) or vertex liftings, and

Bond twistings (or torsions).

The accurate de®nitions of these coordinates have been given in the classic work of

Wilson et al. (1955).
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The transformation properties of these internal coordinates are determined by the

following rules of correspondence ®rst introduced by Kim (1981b).

(1) A bond stretching transforms like a scalar function located at the mid-point or the

free end point of the bond.

(2) A valence-angle bending transforms like a scalar function located at a point on the

line which bisects the angle in the plane of two bonds.

(3) A bond-plane angle change is de®ned by a set of three bonds initially in a plane

meeting at the íth equivalent atom: if the plane is perpendicular to the z-axis, then

the change of the angle áí between one bond and the plane of the remaining two

bonds transforms like zí � zÿ z0
í. It can also be regarded as lifting of the vertex

atom.

(4) A bond twisting (or torsion) transforms like a pseudo-scalar with respect to the

symmetry group G located at the mid-point of the bond. Here a pseudo-scalar

means a function of r that is invariant under all proper rotations of G but changes

zν
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its sign under all improper rotations of G, if they are contained in G. Examples of

pseudo-scalar bases with respect to a point group are

xyz~x~y~z 2 Oi, ~x~y~z 2 Tp, z~z 2 Dnh (7:6:3)

where ~x � y9zÿ z9y etc. Note that ~x~y~z changes its sign under 4z 2 Tp even though

it is an even function with respect to the inversion.

The above rules 1±4 may be referred to as the correspondence rule for internal

vibrational coordinates. Each kind of the internal vibration coordinate, say î, intro-

duced above transforms according to a one-dimensional representation, say D(î), of

the symmetry group G of the molecule, being represented by a scalar or a pseudo-

scalar basis, for example. Thus, the set of equivalent internal coordinates

fîí; í � 1, 2, . . . , ng de®ned on a set of equivalent points S(n) � fr0
íg of the

molecule at equilibrium transforms according to a direct product representation

Ä(n) 3 D(î) of G, where Ä(n)(G) is the permutation representation based on S(n).

Since D(î)(G) is one-dimensional, a unirrep contained in Ä(n) 3 D(î) may be

characterized by a direct product D(á) 3 D(î) of G, where D(á) is a unirrep contained

in Ä(n)(G). Thus, a set of internal symmetry coordinates (ISCs) belonging to the

unirrep D(á) 3 D(î) of G is given by the SALC of fîíg:

îái �
Xn

í�1

uái (r0
í)îí; i � 1, 2, . . . , dá (7:6:4)

where fuá
i (r)g is a proper basis of D(á)(G) on S(n). As was shown in Theorem 7.2.2,

there exist linear independent basis vectors fuái (r0
í)g on S(n) as many times as the

number of times D(á)(G) is contained in Ä(n)(G). Also, note that the ISC given by

(7.6.4) is simpler than the external symmetry coordinates given by (7.6.1) because

D(î)(G) is one-dimensional. From (7.6.4) we shall construct the ISCs of typical rigid

molecules as prototype examples.

7.6.3 Illustrative examples

Example 7.6.2. The ISCs of H2O 2 C2v. There exist two OÐH stretches and one

HOH angle bending. Let the coordinate origin be on the O atom and take the x-axis

perpendicular to the molecular symmetry plane (see Figure 7.6(a)). Let the equilibrium

coordinates of two H on the molecular plane be

(y, z) � (1, h), (ÿ1, h) 2 S(2) (7:6:5a)

The irreducible bases of C2v are given by

A1: 1, z A2: xy, ~z

B1: x, ~y B2: y, ~x

from the Appendix, and the unirreps contained in Ä(2) based on S(2) are

Ä(2) � A1

1
� B2

y
(7:6:5b)

According to the rule 1 of correspondence, two OÐH stretches s1 and s2 transform

like scalars located at the free end point of the respective bond. Thus, from (7.6.4), the

required ISCs are given by the SALCs of s1 and s2:
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A1: S1 �
X
í

sí=N � (s1 � s2)=
p

2

B2: S y �
X
í

y0
ísí=N � (s1 ÿ s2)=

p
2

Figure 7.6. (a) The modes of vibration for the H2O molecule belonging to C2v:

S1 is symmetric stretching, S y is asymmetric stretching and è is valence-angle

bending. (b) The vibrational coordinates and the modes of vibration for

COCl2 2 C2v.

θ

Sy [ B2S1 [ B1 θ [ A1

(a) 2 1

z

h h

y
121

s2 s1

S1 [ A1 Sy [ B2 α1 [ A1 αy [ B2 t [ A1 xC [ B1

(b)

s2 s1

Cl Cl

z

θ3

θ1θ2

y

O
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From rule 3, the HOH valence-angle change denoted by è transforms like a scalar so

that its ISC is è itself belonging to A1 (see Figure 7.6(a)):

A1: è

Example 7.6.3. ISCs of

O C
Cl

Cl
2 C2v

Let the coordinate origin be on the C atom and the x-axis be perpendicular to the

molecular plane (see Figure 7.6(b)). There exist two C¾Cl stretches (s1 and s2), one

C¾¾O stretch t, two O¾¾C¾Cl bendings (è1 and è2) and one lifting mode xC for the

central C atom. Proceeding analogously to the case of H2O, we have the following

internal symmetry vibrational coordinates of COCl2 2 C2v:

A1: S1 � (s1 � s2)=
p

2, á1 � (è1 � è2)=
p

2

B2: S y � (s1 ÿ s2)=
p

2, á y � (è1 ÿ è2)=
p

2

A: SCO � t

B1: xC

where xC is the lifting of the carbon atom C in the x-direction from the equilibrium

position xC � 0.

Example 7.6.4. The ISCs of CO2ÿ
3 2 D3p.

It is an equilateral triangular ion with a carbon atom in the center. Place the

coordinate origin at the C atom and take the z-axis perpendicular to the molecular

plane as in Figure 7.7. The coordinates of the three oxygen atoms are given by

(7.2.16a). From (7.2.16b), the permutation representation Ä(3) on S(3) is reduced to

Ä(3) � A1

1
� E2

[x, y]
(7:6:6)

Thus from the rule 1 and (7.6.4), the ISCs of three CO stretching s1, s2 and s3 are

given by

A1: S1 �
X

sí=N � (s1 � s2 � s3)=
p

3

E2: Sx �
X

x0
ísí=N � (s2 ÿ s3)=

p
2

S y �
X

y0
ísí=N � (2s1 ÿ s2 ÿ s3)=

p
6

Likewise, from rule 2, the bending modes of the three OCO angles are given by the

SALCs of the three bond angle changes è1, è2 and è3 as follows:

A1: á1 � (è1 � è2 � è3) � 0

E2: áx � (è2 ÿ è3)=
p

2

á y � (è2 � è3)=
p

2
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Note that á1 � 0 is due to the fact that the sum of the three bond angles OCO equals

2ð. There exists one more ISC, which describes the lifting of the C atom relative to

the three O atoms: it is simply described by the z-coordinate of the C atom

B2: z

Thus we have obtained a total of six ISCs for CO2ÿ
3 , as expected from the number

of internal degrees of freedom 3 3 4ÿ 6 � 6. See Figure 7.7 for the vibrational

modes.

Example 7.6.5. The ISCs of the ammonia molecule NH3 2 C3v.

It is a pyramidal molecule with an equal lateral triangular base. Thus it can be

treated analogously to the case of CO2ÿ
3 . We place three equivalent H atoms on the x,

y coordinate plane in the places of the three O atoms at CO2ÿ
3 . The irreducible bases of

C3v are given by

zαyαx

S1 Sx Sy

θ2 θ3

θ1
s3 s2

s1

y

1 (0, 2)

23

x

(2√3, 21) (√3, 21)

Figure 7.7. The vibrational modes of CO2ÿ
3 2 D3p.
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A1 A2 E

1 ~z [x, y]

and the permutation representation Ä(3) based on the three equivalent H atoms is

decomposed into the unirreps, as in (7.6.6):

Ä(3) � A1

1
� E

[x, y]

Thus, the ISCs of the three stretches (s1, s2 and s3) of N¾H bonds and three bond-

angle changes (è1, è2 and è3) are given by

A1: S1 � (s1 � s2 � s3)=
p

3; á1 � (è1 � è2 � è3)=
p

3

E: Sx � (s2 ÿ s3)=
p

2; áx � (è2 ÿ è3)=
p

2

S y � (2s1 ÿ s2 ÿ s3)=
p

6; á y � (2è1 ÿ è2 ÿ è3)=
p

6

Note here that á1 is not null for NH3 because the three N¾H bonds are not on a plane

(cf. Example 7.6.4). Note also that the lifting mode of CO2ÿ
3 is replaced by the

symmetric bending mode á1 of NH3.

Example 7.6.6. The ISCs of the ethylene molecule CH2¾¾CH2 2 D2i.

Let the coordinate origin be at the center of the molecule and let the z-axis be

perpendicular to the molecular plane, the x-axis parallel to the C¾¾C bond and the y-

axis perpendicular to the C¾¾C bond in the molecular plane, as given in Figure 7.8.

The irreducible bases for D2i are given by

Ag: 1 Au: xyz, z~z

B1g: ~z, xy B1u: z

B2g: ~y, zx B2u: y

B3g: ~x, yz B3u: x (7:6:7)

Let the equilibrium coordinates (x, y) of the four H atoms be

(a, b), (a, ÿb), (ÿa, b), (ÿa, ÿb) (7:6:8a)

and the coordinates of the two C atoms be

(d, 0), (ÿd, 0) (7:6:8b)

Then, it will be shown that the ®nal results of ISCs are independent of these

parameters a, b and d upon normalization.

(i) The four C¾H stretches (s1, s2, s3 and s4). The decomposition of the permutation

representation Ä(4) based on the set of four equivalent points S(4) de®ned by

(7.6.8a) is given by

Ä(4) � Ag

1
� B2u

y

� B1g

xy

� B3u

x

Thus, from (7.6.4), the required ISCs are given by (see Figure 7.8)
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Ag: S1 �
X
í

sí=2 � (s1 � s2 � s3 � s4)=2

B2u: S y �
X
í

y0
ísí=N � (s1 ÿ s2 � s3 ÿ s4)=2

B1g: Sxy �
X
í

(xy)0
ísí=N � (s1 ÿ s2 ÿ s3 � s4)=2

B3u: Sx �
X
í

x0
ísí=N � (s1 � s2 ÿ s3 ÿ s4)=2

1

2

2

1

1211

(2a, b)

(2a, 2b)

(a, b)

(a, 2b)

1

2

3

4

θ4

θ3

θ2

θ1

C C x

i.   C—H stretching

ii.   C—C stretching

iii.   C5CH bending

iv.   Vertex liftings

v.   C5C torsion

ν1

S1

ν9

Sy

ν5

Sxy

ν11

Sx

ν3

t

ν2

α1

ν10

αy

ν6

αxy

ν12

αx

ν7

l1

ν8

lxz

ν4

τxyz

Figure 7.8. Internal vibrational modes of C2H4 2 D2i.
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(ii) One C¾¾C stretching:

Ag: t

(iii) Four C¾¾C¾H bendings: analogously to (i),

Ag: á1 � (è1 � è2 � è3 � è4)=2

B2u: á y � (è1 ÿ è2 � è3 ÿ è4)=2

B1g: áxy � (è1 ÿ è2 ÿ è3 � è4)=2

B3u: áx � (è1 � è2 ÿ è3 ÿ è4)=2

(iv) Two vertex liftings. Let Ä(2) be the permutation representation based on the set

S(2) of two equivalent carbon atoms in H2C¾¾CH2, then

Ä(2) � Ag

1
� B3u

x

A lifting mode transforms like z 2 B1u according to rule 3 so that two equivalent

lifting modes are classi®ed by the unirreps of G as follows:

B3u 3 Ä(2) � B1u
z
� B2g

zx

Accordingly, the ISCs of these two lifting modes are given, using (7.6.4), by

B1u: lz � (z1 � z2)=
p

2

B2g: lxz � (z1 ÿ z2)=
p

2

where z1 and z2 are the z-coordinates of the two carbon atoms relative to the

molecular plane in equilibrium.

(v) The C¾¾C torsion. According to rule 4 and the bases of D2i given by (7.6.7), this

mode transforms like a pseudo-scalar xyz 2 Au. Consequently the torsion is

described by the ISC given by

Au: ôxyz �
X
í

(xy)0
ízí=N � (z1 ÿ z2 ÿ z3 � z4)=2

Note that these z-coordinates are those of four equivalent H atoms. The motion

of the two C atoms does not contribute because y0
í � 0 for them. This is expected

because this mode is the torsion about the C¾¾C bond.

Thus, we have obtained a total of 12 (6 3 3ÿ 6) ISCs for the ethylene molecule, as

shown in Figure 7.8. This example is interesting because it contains all of the kinds of

internal symmetry coordinates which have been considered in the rules for ISCs. The

frequencies í1ÿí12 denoted for the modes of vibration for each ISC are those given by

Herzberg (1951). The ISCs of H2C¾¾CH2 belonging to each unirrep of the symmetry

group D2i in summary are

Ag: S1, t, á1 Au: ôxyz

B2u: S y, á y B2g: lxz

B1g: Sxy, áxy B1u: lz

B3u: Sx, áx
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It is noted here that the torsion and the two lifting modes are not coupled with any

other modes of vibration. The three ISCs belonging to the unirrep Ag are linearly

combined to give a set of normal coordinates that diagonalizes the Hamiltonian and

likewise with the ISCs belonging to B2u, to B1g and to B3u. Since these couplings are

rather small, the ISCs given above are very good approximations to the true normal

modes.

Example 7.6.7. The ISCs of the CH4 molecule 2 Tp.

There exist four C¾H stretches and the six HCH angle bendings. The position

coordinates of the four H atoms with respect to the central C atom have been given by

(7.2.15a) and the permutation representation Ä(4) based on these four equivalent points

S(4) is decomposed into two unirreps A1 and T2 of the symmetry group Tp, as was

shown by (7.2.15b).

(i) ISCs of the four C¾H stretches sí (í � 1ÿ4). According to the rule 1 of

correspondence, sí transforms like a scalar function located at r0
í 2 S(4), so that,

from the general expression (7.6.4), we have

A1: S1 �
X
í

sí

T2: Sx �
X
í

x0
ísí, S y �

X
í

y0
ísí, Sz �

X
í

z0
ísí

(ii) The ISCs of the six valence-angle bendings áíì (í. ì; 1, 2, 3, 4) of HCH angles.

These transform like a set of scalar functions located at the six equivalent points

de®ned, according to rule 1, by

r0
íì � (r0

í � r0
ì)=2; í. ì; 1, 2, 3, 4

Their explicit values are, from (7.2.15a),

r0
12 � (0, 0, 1), r0

13 � (0, 1, 0), r0
14 � (1, 0, 0)

r0
23 � (ÿ1, 0, 0), r0

24 � (0, ÿ1, 0), r0
34 � (0, 0, ÿ1) (7:6:9)

The decomposition of Ä(6) based on the set S(6) of these six points yields

Ä(6) � A1

1
� E

[u, v]
� T2

[x, y, z]

Thus, from (7.6.4), we have

A1: á1 �
X
í.ì

áíì

E: áu �
X
í.ì

u(r0
íì)áíì, áv �

X
í.ì

v(r0
íì)áíì

T2: áx �
X
í.ì

x0
íìáíì, á y �

X
í.ì

y0
íìáíì, áz �

X
í.ì

z0
íìáíì

or explicitly, with use of (7.6.9),

186 Construction of SALCs



A1: á1 � (á12 � á13 � á14 � á23 � á24 � á34)=
p

6 � 0

E: áu � (ÿ2á12 � á13 � á14 � á23 � á24 ÿ 2á34)=
p

8

áv � (ÿá13 � á14 � á23 ÿ á24)=
p

2

T2: áx � (á14 ÿ á23)=
p

2, á y � (á13 ÿ á24)=
p

2,

áz � (á12 ÿ á34)=
p

2

where á1 is a redundant coordinate equal to zero due to the fact that the sum of

the six bond angles HCH is a constant.

Thus we have obtained a total of nine ISCs for CH4 molecule, as expected from the

number of internal degrees of freedom 3 3 5ÿ 6 � 9.
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Subduced and induced representations

Let G be a ®nite group and H be a subgroup of G. Then a representation of the group

G automatically describes a representation of the subgroup H of G. Such a representa-

tion is called a representation of H subduced by a representation of G. Conversely,

from a given representation of a subgroup H of G we can form a representation of the

group G. Such a representation is called a representation of G induced by a

representation of its subgroup H . The problem is to form the irreducible representa-

tions (irreps in short) of G from the irreps of its subgroup H . If the group G is ®nite

and solvable (see Section 8.4.1), the problem of forming the irreps of G may be solved

by a step-by-step procedure from the trivial irrep of the trivial identity subgroup. This

method is possible, for example, for a crystallographic point group. An alternative

approach is via the induced irreps of G from the so-called small representations of the

little groups of the irreps of H . As a preparation, we shall discuss subduced

representations ®rst.

8.1 Subduced representations

Let G � fgg be a group and H � fhg be a subgroup of G. Let Ã(G) � fÃ(g);

g 2 Gg be a representation of G, then it provides a representation of H by

fÃ(h); h 2 Hg. This representation is called the subduced representation of Ã(G)

onto H or the representation of H subduced by the representation Ã(G). It is often

expressed by

Ã#(H) � [Ã(G) # H] (8:1:1)

Even if Ã(G) is irreducible, the subduced representation Ã#(H) need not necessarily

be irreducible. However, if Ã#(H) is irreducible then so is Ã(G), because, if Ã(G) is

reducible, then Ã#(H) must also be reducible. Thus we arrive at the following simple

theorem.

Theorem 8.1.1. Let H be a subgroup of a group G. Then a representation Ã(G) of G

is irreducible, if its subduced representation Ã#(H) onto H is irreducible.

This simple theorem frequently provides an easy proof of the irreducibility of Ã(G).

Moreover, the following theorem also provides an easy proof for the orthogonalities of

the representations of G.

Theorem 8.1.2. Let Ã(G) and Ã9(G) be two representations of G. If there exists a

subgroup H of G such that their subduced representations onto H are orthogonal (i.e.

they contain no irreps of H in common), then the two representations Ã(G) and Ã9(G)

are orthogonal.



Proof. Let the left coset decomposition of G by H be G �Písí H , then a general

element g of G can be expressed as g � síh with h 2 H for some í, so that

Ã(g)ij � Ã(síh)ij �
X

k

Ã(sí)ikÃ(h)kj

and we have an analogous expression for Ã9(g). ThusX
g2G

Ã(g)�ijÃ9(g)i9 j9 �
X
í,k,k9

Ã(sí)
�
ikÃ9(sí)i9k9

X
h2H

Ã(h)�kjÃ9(h)k9 j9

� 0

because the sum over h 2 H vanishes on making the assumption that Ã#(H) and

Ã9#(H) are orthogonal. Note that the converse of Theorem 8.1.2 need not be true, i.e.

Ã(G) and Ã9(G) can be orthogonal even if Ã#(H) and Ã9#(H) are not.

8.2 Induced representations

The problem is to construct a representation of a group from a known representation

of its subgroup. It is the inverse of the process of subduction. Let G � fgg be a ®nite

group and H � fhg be a subgroup of G with the index r � jGj=jH j. Then the left

coset decomposition of G by H may be written as

G �
Xr

i�1

si H , r � jGj=jH j (8:2:1)

where s1 � e is the identity. This means that any element of G belongs to one and only

one coset of H in G. Thus a product gsj 2 G must also belong to some coset of H in

G. This simple fact may be expressed in a formal way as follows (Kim 1986a):

gsj �
Xr

i�1

X
h2H

si hä(h, sÿ1
i gsj); j � 1, 2, . . . , r (8:2:2)

where ä(h, sÿ1
i gsj) is Kronecker's delta de®ned by

ä(h, sÿ1
i gs j) � 1, if gsj � sih

0, otherwise

�
The above relation (8.2.2) is basic to the induced representation of G from a

representation of its subgroup H . To see this, let ã(H) � fã(h); h 2 Hg be a dã 3 dã

matrix representation of H and let ø � [ø1, ø2, . . . , ødã] be a basis of ã(H) such

that

8hø � øã(h) or 8høi �
X

j

ø jã ji(h); 8 h 2 H

Then, operating both sides of (8.2.2) on ø, we arrive at the de®ning relations of the

induced representation of G from ã(H):

8g(8s jø) �
X
i,h

(8siø)ã(h)ä(h, sÿ1
i gsj); 8g 2 G (8:2:3)
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Here it is safe to assume that the set f8siøg is linearly independent, then it de®nes a

basis called the induced basis ø"

ø" � [ø, 8s2ø, . . . , 8srø], r � jGj=jH j (8:2:4a)

which spans an invariant vector space of the dimensionality rdã with respect to G such

that

8gø" � ø"ã"(g), 8 g 2 G (8:2:4b)

Here, the set fã"(g)g � ã"(G) is an rdã 3 rdã matrix representation of G called the

induced representation of G from a representation ã(H) of a subgroup H of G: the

matrix elements are

ã"(g)ij �
X
h2H

ã(h)ä(h, sÿ1
i gsj)

� 8ã(sÿ1
i gsj); i, j � 1, 2, . . . , r � jGj=jH j (8:2:5)

with

8ã(sÿ1
i gsj) � ã(sÿ1

i gsj), if sÿ1
i gsj 2 H

0, otherwise

�
According to this de®nition, if the (i, j)th entry ã"(g)ij is not null, then the remaining

entries in the ith column and jth row are all null. A matrix having only one non-zero

entry in each row and each column is known as a monomial matrix. Then the induced

representation ã"(G) is a super monomial matrix because each non-zero entry is a

matrix ã(sÿ1
i gsj) instead of a pure number.

The induced representation ã"(G) de®ned by (8.2.5) is denoted by

ã"(G) � [ã(H) "G] (8:2:6)

It is completely de®ned by (8.2.5) with the coset decomposition (8.2.1) quite

independently from the induced basis ø" (Lomont 1959). However, it is undoubtedly

easier to understand the structure of the induced representation with use of the induced

basis.

In the special case in which ã(H) is the trivial identity representation, i.e. ã1(h) � 1

for all h 2 H , we have, from (8.2.5),

ã"1(g)ij �
X
h2H

ä(h, sÿ1
i gsj) � 1, if sÿ1

i gsj 2 H

0, otherwise

�
(8:2:7)

which is called the principal induced representation of G relative to H . This

representation is monomial and it is particularly important to understand the structure

of the induced representation ã"1(G), because, if we replace each unit element

ã"1(g)ij � 1 by the matrix ã(sÿ1
i gsj), we obtain the general element ã"(g)ij.

For a further special case, in which H is the trivial subgroup of the identity element

e, the principal induced representation ã"1(G) becomes the regular representation of G

D(R)(g)ij � ä(g, sis
ÿ1
j ) � 1, if g � sis

ÿ1
i

0, otherwise

�
(8:2:8)

Here the si terms are simply the elements of G.
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8.2.1 Transitivity of induction

Let F, G and H be groups such that F . G . H . Let the left coset decompositions of

G by H and of F by G be

G �
X

i

siH , F �
X

j

tjG (8:2:9a)

Then, combining these, we obtain the left coset decomposition of F by H :

F �
X

j,i

tjsiH (8:2:9b)

Since an induced representation of a group from a representation of its subgroup is

completely de®ned by the left coset decomposition of the group via the subgroup, we

have

[ã(H)"G]"F � [ã(H) " F] (8:2:10)

This proves the transitivity of induction.

8.2.2 Characters of induced representations

Let ÷(H) be the character of ã(H), then the character ÷"(G) of the induced representa-

tion ã"(G) is given by

÷"(g) �
X

i

X
h

÷(h)ä(h, sÿ1
i gsi) (8:2:11a)

Let H i � fsi hsÿ1
i ; h 2 Hg be the conjugate group of H with respect to a coset

representative si of H in G, then, Hi is isomorphic to H via the correspondence

sihsÿ1
i $ h. Let an element of Hi be î � sihsÿ1

i , then, one can de®ne a representation

of H i by fãi(î) � ã(sÿ1
i îsi) � ã(h)g from the representation ã(H). Let ÷ i(î) and ÷(h)

be the traces of ãi(î) and ã(h), respectively, then, ÷ i(î) � ÷(sÿ1
i îsi) � ÷(h) so that,

from (8.2.11a), the character of the induced representation ÷"(g) can be rewritten, in

terms of ÷ i(î), as follows:

÷"(g) �
X

i

X
î2Hi

÷ i(î)ä(î, g) (8:2:11b)

This form will be used in formulating the irreducibility condition of ã"(g) in the next

sub-section.

8.2.3 The irreducibility condition for induced representations

Let us discuss the irreducibility condition for the representation ã"(G) of a group G

induced by a representation ã(H) of a subgroup H of G. First of all, the representation

ã(H) itself should be irreducible because ã"(G) is linear in ã(H). Now, according to

the general theorem on the irreducibility condition, the induced representation ã"(G)

is irreducible if and only if its character ÷"(G) satis®es the following condition:X
g2G

j÷"(g)j2 � jGj (8:2:12)
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Substitution of (8.2.11b) into this condition yieldsXr

i, j�1

X
î2H i\H j

÷ i(î)�÷ j(î) � jGj (8:2:13)

where the sum on î is over the intersection Hi \ H j of every two conjugate groups H i

and H j of H in G (see Figure 8.1). An intersection Hi \ H j is a subgroup of G:

®rstly, it is not empty because it contains the identity; secondly, if î1 and î2 are

contained in Hi \ H j, then so is the product, because î1 and î2 are contained in each

of the groups Hi and H j. In special cases in which i � j, we have Hi \ H j � Hi,

which is isomorphic to H .

To simplify the irreducibility condition (8.2.13), we observe that the sums de®ned

by

Qij �
X

î2H i\H j

÷ i(î)�÷ j(î) > 0; i, j � 1, 2 . . . , r (8:2:14)

are non-negative quantities because Qij is a scalar product of two characters in the

group space of Hi \ H j, as was shown in (6.6.9a). Let us calculate the diagonal

elements Qii, where Hi \ Hi � Hi. Since Hi is isomorphic to H via î � sihsÿ1
i $ h,

we may replace the sum over î in Qii by the sum over h, using ÷ i(î) � ÷(h), and

obtain

Qii �
X
h2H

÷(h)�÷(h) � jH j

because ã(H) is assumed to be irreducible. This means that the sum of the diagonal

terms Qii over i in (8.2.13) equals jGj (� rjH j) so that every off-diagonal term Qij

(i 6� j) must vanish, since otherwise each non-zero off-diagonal element Qij (i 6� j)

would contribute a positive number to (8.2.13). Therefore, the irreducibility condition

(8.2.13) for ã"(G) � [ã(H) "G] is reduced to

Qij �
X
î

÷ i(î)�÷ j(î) � 0, for all i 6� j (8:2:15a)

where î 2 Hi \ H j. That is, the induced representation ã"(G) is irreducible if its

subduced representations fã(i)(î)g and fã( j)(î)g onto the intersections Hi \ H j are

mutually orthogonal (contain no irreps in common) for all pairs (i 6� j). Moreover,

since the conjugacy relation is transitive, any conjugate group H j can be regarded as a

conjugate group of Hi (because sjhsÿ1
j
� sjs

ÿ1
i

sihsÿ1
i sis

ÿ1
j ) and, since Hi is isomorphic

to H , the irreducibility condition is further reduced to

H
i  > H

j

H
i

H
j

Figure 8.1. The intersection H i \ H j.
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X
î2H\H j

÷(î)�÷ j(î) � 0; j � 2, . . . , r � jGj=jH j (8:2:15b)

Thus we arrive at the following theorem; cf. Jansen and Boon (1967).

Theorem 8.2.1. Let H , G and G �P js j H . The representation ã"(G) of G induced

by an irrep ã(H) of H is irreducible, if and only if the subduced representations

fã(î)g and fã( j)(î)g onto the intersection fî 2 H \ H jg are orthogonal (contain no

irreps in common) for all j � 2, 3, . . . , r � jGj=jH j.
The irreducibility criterion given above is quite general but rather complicated. If H

is a normal subgroup of G, however, the criterion is considerably simpli®ed because

H j � H . This will be discussed in the next section.

8.3 Induced representations from the irreps of a normal subgroup

8.3.1 Conjugate representations

If H is a normal subgroup of a group G, then any conjugate group H j � sjHsÿ1
j

of H

in G coincides with H , possibly with a different order. Thus one can de®ne a conjugate

representation of a given representation ã(H) with respect to a coset representative sj

of H in G by ã j(H) � fã(sÿ1
j hsj)g, which is irreducible if ã(H) is irreducible. Then,

from (8.2.5), we have

ã"(h)ij � äijã(sÿ1
j hsj), for g � h 2 H

ã"(g)jj � 0, for g =2 H (8:3:1a)

That is, the induced representation ã"(g) from ã(H) becomes a direct sum of the

conjugate representations fã j(h)g for g � h 2 H and off diagonal (i.e. the diagonal

elements are zero) for g =2 H. A conjugate representation ã j(H) may but need not be

equivalent to ã(H), because we should not write ã(sÿ1
j hsj) � ã(sj)

ÿ1ã(h)ã(sj) unless sj

belongs to H . However, the conjugacy relation is transitive like the equivalence

relation. Let ø be a basis of ã(H), then the basis of the conjugate representation ã j(H)

is given by 8sjø from the fundamental relation (8.2.3) or directly from

8h(8s jø) � 8s j(8s
ÿ1
j h8s j)ø � (8sjø)ã(sÿ1

j hsj), 8h 2 H / G (8:3:1b)

The basis 8sjø may be called a conjugate basis of ø 2 ã(H).

Now, let ÷ j(h) � tr ã j(h), then the character ÷"(g) of ã"(g) is rewritten from

(8.3.1a) as

÷"(g) �
Xr

j�1

÷ j(h), if g � h 2 H

0, otherwise

8<: (8:3:1c)

Moreover, since H \ H j � H , the irreducibility condition (8.2.15b) is reduced to the

following simple form:

h÷, ÷ jiH �
X
h2H

÷(h)�÷ j(h) � 0; j � 2, . . . , r (8:3:2)

which means that all the conjugate irreps ã j(H) of H in G are inequivalent to ã(H).

Thus, we have the following theorem.
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Theorem 8.3.1. Let H / G and G �P jsjH, then the representation of G induced by

an irrep ã(H) is irreducible, if and only if all the conjugate irreps ã j(H) of ã(H) with

respect to the coset representatives sj (6� e) of H in G are inequivalent to ã(H).

The above theorem also implies that all the conjugate irreps ã j(H) of H in G are

mutually inequivalent, because any pair of conjugate representations is reduced to a

pair fã(H), ãi(H)g by a further conjugation.

8.3.2 Little groups and orbits

To understand Theorem 8.3.1 given above, a systematic characterization of the

conjugacy relation for the irreps of H seems to be in order. Let ã(H) and ã9(H) be

two irreps of H and let H / G. If there exists an element s in G such that

ã9(H) � ãs(H) � fã(sÿ1 hs); 8 h 2 Hg (� denotes equivalence), then ã(H) and

ã9(H) are said to be mutually conjugate relative to G. The conjugacy relation of irreps

is clearly different from their equivalence relation unless s 2 H ; however, it is

transitive (like the equivalence relations) so that we can classify all the irreps of H by

their conjugacy relation.

Let us introduce the concept of the little group Gã of an irrep ã(H) of a normal

subgroup H of G. It is de®ned by the subset of G that leaves ã(H) equivalent under

conjugation; here, the subset is a subgroup of G because the conjugacy relation is

transitive. Since any element of H leaves ã(H) equivalent under conjugation, H is a

subgroup of Gã; in fact, H is an invariant subgroup of Gã because H is an invariant

subgroup of G. Thus,

H / Gã < G (8:3:3)

That is, for a given pair fH / Gg, the possible maximum of Gã equals G while its

possible minimum equals H . At the maximum, all the conjugate irreps of ã(H)

relative to G are equivalent. For example, the identity representation ã1(H) � 1 is

invariant under any conjugation so that its little group is always G. Also, if H is in the

center of G, then the little group of every irrep of H is G. At the minimum Gã (� H),

the conjugate representation of ã(H) with respect to any coset representative ( 6� e) of

H in G is inequivalent to ã(H). Accordingly, from Theorem 8.3.1, the irreducibility

condition for ã"(G) � [ã(H) "G] is given by

Gã � H (8:3:4)

Next, we introduce the concept of an orbit which is closely related to the little group

Gã. An orbit of a normal subgroup H of G is a set of mutually conjugate irreps of H

relative to G which are inequivalent. Then the complete set of irreps of H can be

classi®ed into the orbits of H relative to G. These are disjoint because the conjugacy

relation is transitive. An orbit of H that contains an irrep ã(H) is called the orbit of

ã(H). Obviously, any member of an orbit can be used to identify the orbit. Now, since

the little group Gã is the subgroup of G which leaves ã(H) equivalent under

conjugation, the orbit Oã of ã(H) is formed by the conjugate representations of ã(H)

with respect to the coset representatives of Gã, i.e. let G �Pm pmGã, then the orbit

Oã is given by

Oã � fãm(h) � ã( pÿ1
m hpm); h 2 H ; m � 1, 2, . . . , jOãj � jGj=jGãjg (8:3:5)
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where jOãj is the order of the orbit Oã given by the index of Gã in G. Thus, the

inequality (8.3.3) is rewritten with jOãj as follows:

1 < jOãj � jGj=jGãj < jGj=jH j (8:3:6)

Accordingly, the irreducibility condition for the induced representation ã"(G) given by

(8.3.4) is also characterized by

jOãj � jGj=jH j (8:3:7)

which is the possible maximum order of the orbit jOãj of H in G.

Remark 1. All members of an orbit have the same little group up to isomorphism

because the conjugacy relation is transitive; in fact, the little group of a conjugate irrep

ãm(H) in Oã of (8.3.5) is simply given by Gm
ã � pmGã pÿ1

m . In particular, when Gã is

an invariant subgroup of G, we have Gm
ã � Gã. This is the case, for example, when

Gã � H or G (see Section 8.4).

Remark 2. There is no need to construct the induced representations of G for more

than one member (arbitrarily chosen) per orbit of H in G. The reason for this is that

the representations of G induced by any two members of an orbit Oã of H / G are

equivalent:

[ãi(h) "G] � [ã(h) "G], 8 h 2 H (8:3:8)

because from (8.3.1c) it follows that the characters of both sides of (8.3.8) are equal.

We see that one can therefore speak of a representation of G induced by an orbit of

H . This property of an orbit is easy to understand because all conjugate irreps of H

relative to G participate in forming ã"(G) according to (8.3.1a).

8.3.3 Examples

Example 1. The orbits of the dihedral group D2 relative to the tetrahedral group T .

The group T is formed by augmenting the group D2 with the augmentor a (� 3xyz)

and the index of D2 in T equals 3. Thus, from (8.3.6), the order of an orbit of D2

satis®es 1 < jOãj < 3. The unirreps of D2 are given in Table 8.1 with bases.

To determine the orbits of a group, only outer automorphism of D2 need be

considered. The conjugate elements of D2 for the augmentor a � 3xyz are

aÿ12za � 2 y, aÿ12 ya � 2x, aÿ12xa � 2z (8:3:9)

Table 8.1. The unirreps of D2 with bases

D2 E 2z 2 y 2x Bases

A 1 1 1 1 1, x2, y2, z2, xyz

B1 1 1 ÿ1 ÿ1 z, xy

B2 1 ÿ1 1 ÿ1 y, zx

B3 1 ÿ1 ÿ1 1 x, yz

8.3 Irreps of a normal subgroup 195



so that from Table 8.1 the conjugate unirreps of D2 by a are given by

Aa � A, Ba
1 � B3, Ba

2 � B1, Ba
3 � B2 (8:3:10)

Therefore, the orbits of D2 relative to the group T are

OA � fAg, OB � fB1, B2, B3g (8:3:11a)

Let the little group of a unirrep ã(D2) with respect to the group T be expressed by

T(ã), then we have

T (A) � T , T (B1) � T (B2) � T (B3) � D2 (8:3:11b)

From the irreducibility criterion (8.3.7), the induced representation A" is reducible

because jOAj � 1 (, 3), whereas B
"
1(T ) is irreducible because jOBj � 3, the maxi-

mum. For the orbit OB, it is necessary to construct only B
"
1(T ), B

"
2(T ) or B

"
3(T ) because

they are mutually equivalent from (8.3.8).

An easy way to ®nd the conjugacy relation of the irreps of H / G is to use their

bases of representation: since the basis of a conjugate irrep ã j(H) is given by the

conjugate basis 8sø according to (8.3.1b), the bases of inequivalent irreps of H in an

orbit are connected by a coset representative of H in G. For the above example

D2 / T , the bases of the irreps of D2 are

1 2 A, z 2 B1, Y 2 B2, x 2 B3

Since these are connected by the augmentor a � 3xyz via

8a1 � 1, 8az � x, 8ax � y, 8ay � z

the orbits of D2 with respect to T are those given by (8.3.11a).

Example 2. The orbits of the cyclic group Cn relative to the dihedral group Dn.

The group Dn is formed by augmenting Cn with 2x (? nz 2 Cn) and the index of Cn

in Dn equals 2. The unirreps of Cn and their bases may, from (6.7.1) and (6.7.2), be

expressed by

öm(è) � eimè 2 Mm(Cn); m � 0, 1, 2, . . . , nÿ 1

Since the augmentor 2x connects the bases by 82xöm(è) � öÿm(è), the orbits of Cn

relative to Dn are given by

O0 � fM0g, Om � fMm, Mÿmg, One=2 � fM ne=2g (8:3:12a)

where, from the condition Mm 6� Mÿm, we have

m �
1, 2, . . . , (nÿ 1)=2, for an odd n

1, 2, . . . ,
n

2
ÿ 1, for an even n

(
and M ne=2 occurs only for an even n denoted by ne. From the irreducibility criterion

(8.3.7), the induced representation M"m for every m in (8.3.12a) is irreducible because

jOmj � 2, whereas M
"
0 and M

"
ne=2

are reducible. Let the little group of Mí with respect

to Dn be expressed by Dn(Mí), then

Dn(M0) � Dn, Dn(Mm) � Dn(Mÿm) � Cn, Dn(Mne=2) � Dn (8:3:12b)
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8.4 Irreps of a solvable group by induction

From the irreducibility criterion for an induced representation introduced in the

previous section, we shall develop the methods of constructing the complete set of the

irreps of a group G by induction. At present two general methods are available:

(i) When G is solvable (as will be de®ned below), we can construct all irreps of G via

induction by a step by step procedure starting from the one-dimensional represen-

tations of the Abelian subgroup.

(ii) The complete set of the irreps of G can be constructed using the theorem that the

representation of G induced by an irrep called a small representation of the little

group Gã of an irrep ã(H) is irreducible. Here the dif®culty is to construct the

small representations of Gã, which will be discussed in Section 8.5. However, for

an important special case in which the subgroup H is Abelian, the small

representations can be formed by the projective representations of the factor group

Gã=H (see Theorem 12.4.1 given in Chapter 12).

In the following, we shall describe the method (i) ®rst, then the method (ii), after

introducing some general theorems on the induced and subduced representations.

8.4.1 Solvable groups

As a preparation we state some basic theorems on solvable groups without proofs; see

Lomont (1959).

Theorem. Every ®nite group G of order greater than 1 has a ®nite series of

subgroups, G, H1, . . . , Hs, E such that

G . H1 . H2 . � � � . Hs . E (8:4:1)

where Hi�1 is a maximal (proper) normal subgroup of Hi:
A series given by (8.4.1) is called a composition series of G and the quotient groups

of G=H1, H1=H2, . . . , Hsÿ1=Hs, Hs=E are called the composition quotient groups of

G. The orders of the composition quotient groups jHij=jHi�1j are called the composi-

tion indices, and the integer s� 1 is called the length of the composition series.

Example

O . T . D2 . C2 . E (8:4:2a)

The composition quotient groups are

O=T ' C2, T=D2 ' C3, D2=C2 ' C2, C2=E � C2 (8:4:2b)

Here ' means isomorphism and Cn denotes the cyclic group of order n. The

composition indices are 2, 3, 2 and 2 (all prime) and the length of the composition

series is 4.

De®nition. A solvable (or integrable) group is a group whose composition indices

are all prime numbers (a prime number being a positive integer that is divisible only

by itself and by unity). Since a group of a prime order is cyclic, the composition

quotient groups of a solvable group must be cyclic.
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(1) Every group of order , 60 is solvable.

(2) Every Abelian group is solvable.

(3) Every subgroup of a solvable group is solvable.

(4) Every crystallographic point group is solvable because their orders are less than

60.

(5) The order of the icosahedral group Y equals 60 and hence it is not solvable.

8.4.2 Induced representations for a solvable group

Let G be a group and H be a normal subgroup of G with a prime index p � jGj=jH j.
If we can construct all irreps of G by induction from the irreps of H , then by a step by

step procedure we can construct all irreps of any solvable group starting from the one-

dimensional irreps of an Abelian subgroup (Raghavacharyulu 1961, Miller and Love

1967).

By assumption, the factor group G=H is isomorphic to a cyclic group of a prime

order p (� jGj=jH j) and hence there exists a single augmentor a such that the left

coset decomposition of G by H can be expressed as follows:

G � H � aH � � � � � a pÿ1 H , a p 2 H (8:4:3a)

Let ø be the basis of a unirrep ã(H) of H , then from (8.2.4a), the induced basis ø" is

given by

ø" � [ø, 8aø, . . . , 8a pÿ1ø] (8:4:3b)

Thus, from (8.2.5) and (8.3.1a) the induced representation ã"(G) � [ã(H) "G] is

given by

ã"(h) �
ã(h) 0 . . . 0

0 ã(aÿ1 ha) . . . 0

..

. ..
. ..

.

0 0 . . . ã(aÿ p�1 ha pÿ1)

26664
37775 (8:4:4a)

ã"(a) �

0 0 . . . 0 ã(a p)

1 0 . . . 0 0

0 1 . . . 0 0

..

. ..
. ..

. ..
.

0 0 . . . 1 0

266664
377775 (8:4:4b)

where 1 � ã(e) is the unit matrix of order dã. Here ã"(a) follows from (8.2.5) through

ã"(a)ij �
X

h

ã(h)ä(h, aÿi�1� j); i, j � 0, 1, 2, . . . , pÿ 1

whose non-zero elements occur when ÿi� 1� j � 0 or p, i.e.

ã"(h)i,iÿ1 � ã(e), ã"(a)0, pÿ1 � ã(a p)

where i � 1, 2, . . . , pÿ 1. The remaining representatives ã(aíh) are not given,

because they are easily calculated by matrix multiplication of ã"(a) and ã"(h). Note,

however, that ã"(aíh)ii � 0 unless aíh 2 H , from (8.3.1a).

Now, according to (8.4.4a), every conjugate irrep ãi(H) with respect to ai is on the

diagonal entries of ã"(h): they are either all equivalent (case I) or all inequivalent
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(case II). The reason is that, if ãi(H) � ã(H) for any one i, then it is true for all i

because p is prime.1 Accordingly, the order jOãj of the orbit Oã equals one or the

prime index p (� jGj=jH j):

jOãj � 1, for case I

p � jGj=jH j, for case II

�
(8:4:5)

The previous examples for the orbits given by (8.3.11a) and (8.3.12a) are in

accordance with this result. From the irreducibility criterion (8.3.7), the induced

representation ã"(G) is reducible for case I and irreducible for case II. For the former,

it will be shown that ã"(G) is reducible to p inequivalent irreps D(m)(G)

(m � 0, 1, . . . , pÿ 1) with the dimensionality dã, each of which subduces ã(H) onto

H . Assuming this to be true and for the moment postponing its proof, we shall show

that the complete set of the irreps of G can be formed by the induced representations

of G from the irreps of H , one per orbit of H relative to G.

Let ãá(H) be an irrep belonging to the áth orbit of the order unity (case I), let

ãâ(H) be an irrep belonging to the âth orbit of order p (case II) and let their

dimensionalities be dá and dâ, respectively. Then we form p inequivalent irreps of G

with dimensionality dá by reducing the induced representation ã"á(G) and one induced

irrep ã"â(G) with the dimensionality pdâ from ãâ(H). Now, on summing the squares of

the irreps'dimensions over all orbits of G we obtain

p
X
á

d2
á �

X
â

( pdâ)2 � p
X
á

d2
á � p

X
â

d2
â

 !
� pjH j � jGj

where the second equality follows from the completeness relation of the irreps of H

and from the fact that each irrep of H is contained in one and only one orbit of H . The

above equation is nothing but the completeness relation for the irreps of G. In the

following we shall construct explicitly the irreducible components of ã"(G) for case I

and modify the representation (8.4.4) for case II into a more convenient form.

8.4.3 Case I (reducible)

jOãj � 1 and Gã � G. All conjugate irreps of ã(H) relative to G are equivalent so that

the induced representation ã"(G) given by (8.4.4) is reducible. The irreducible compo-

nents contained in ã"(G) may be called the irreps of G associated with ã(H). There

exist p inequivalent associated irreps of G with the dimensionality equal to that of

ã(H); these will be determined by the equivalence of the conjugate irreps of ã(H) and

the fact that the factor group G=H is a cyclic group of order p.

Let us assume that ã(H) is a unirrep of H , then, from the assumed equivalence

ã(aÿ1 ha) � ã(h) for all h 2 H , there exists a unitary transformation M(a) such that

ã(aÿ1 ha) � M(a)ÿ1ã(h)M(a), 8 h 2 H (8:4:6a)

Then, the transformation matrix M(a) serves as a representative of the augmentor a

provided that it satis®es the boundary condition

M(a) p � ã(a p); a p 2 H (8:4:6b)

1 Suppose that ã1(H) � ã(H), then ã2(H) � ã1(H) � ã(H) and so on, so that ãi(H) � ã(H) for all i.
Suppose that ãi(H) � ã(H), then one can ®nd integers n and m such that mi � np� 1, which leads to
ã1(H) � ã(H).
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To show that this boundary condition holds, we observe, with repeated use of (8.4.6a),

that

ã(a p)ÿ1ã(h)ã(a p) � ã(aÿ p ha p) � M(a)ÿ pã(h)M(a) p

for all h 2 H . Thus, M(a) pã(a p)ÿ1 commutes with the unirrep ã(H) and hence is a

constant, according to Schur's lemma. By including the constant factor into M(a) we

arrive at (8.4.6b). Now, we see that the matrix M(a) is de®ned by (8.4.6a) and (8.4.6b)

up to a phase factor which is a pth root of unity. Thus if M(a) is a matrix solution,

then we obtain a total of p associate representations D(m)(G) of ã(H) de®ned by

D(m)(h) � ã(h), D(m)(a) � ùm M(a); m � 0, 1, 2, . . . , pÿ 1 (8:4:7)

where ù � exp (ÿ2ði= p). These are irreducible from Theorem 8.1.1 because their

subduced representation [D(m)(G) # H] � ã(H) is irreducible; moreover, they are all

inequivalent since their characters are all different and hence they are orthogonal with

respect to each other.

Next, let ø be a basis of ã(H), then, from (8.4.6a) and 8h 8aø � 8aøã(aÿ1 ha), it

follows that 8aøM(a)ÿ1 � ö is also a basis of ã(H), so that

8aø � öM(a) (8:4:8a)

where ö may but need not coincide with ø. In the case in which 8aø is linearly

dependent on ø we can set ö � ø to obtain

8aø � øM(a) (8:4:8b)

i.e. a basis of ã(H) also serves as a basis of the associate irrep D(0) (with m � 0)

de®ned in (8.4.7) for this case. It turns out that this is frequently the case for a higher

dimensional representation ã(H), i.e. dã . 1:
According to (8.4.7), the p associate unirreps fD(m)(G)g of ã(H) are explicit except

for M(a), which has to be determined from (8.4.6) or (8.4.8); see Miller and Love

(1967). For a one-dimensional representation, however, M(a) is given simply by a pth

root of ã(a p) from the boundary condition (8.4.6b) because (8.4.6a) holds indepen-

dently from M(a). For a higher dimensional case it is determined from (8.4.8b) for

most cases of practical importance; see examples given at the end of this section.

8.4.3.1 The induced representation from the identity representation

The identity representation fã1(h) � 1g of H always forms an orbit of its own and

thus belongs to case I for any proper super-group G of H . Since ã1(a p) � 1, we may

take M(a) � 1 from (8.4.6b). Then, from (8.4.7), the p associate unirreps D
(m)
1 (G) of

the identity unirrep ã1(H) are given by

D
(m)
1 (h) � 1, D

(m)
1 (a) � ùm; m � 0, 1, . . . , pÿ 1 (8:4:9a)

where ù � exp (ÿ2ði=p). Let ø1 be a basis of the identity representation ã1(H), then

a basis of D
(m)
1 (G) is given, using the projection operator method introduced in Section

6.9, by

ø(m)
1 �

Xpÿ1

j�0

(ùÿm8a) jø1

� ø1 � ùÿmø2 � � � � � ùÿm( pÿ1)øp (8:4:9b)
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where ø j�1 � 8a jø1, j � 0, 1, . . . , pÿ 1, are bases of the identity representation

ã1(H) according to (8.4.8a) with M(a) � 1. The basis ø1 in (8.4.9b) has to be chosen

appropriately in order to avoid the null result; for example, if 8aø1 � ø1 then (8.4.9b)

yields the null result, for ù being a pth root of unity.

In view of (8.4.9a), the general associate representations D(m)(G) given by (8.4.7)

can be written as the direct product representations of G as follows:

D(m)(G) � D
(m)
1 (G) 3 D(0)(G); m � 0, 1, . . . , pÿ 1 (8:4:10)

where D
(m)
1 (G) are the associate unirreps of the identity representation of G and

D(0)(G) is the unirrep de®ned by (8.4.7) with m � 0.

8.4.4 Case II (irreducible)

jOãj � p and Gã � H . The induced representation ã"(G) from the orbit Oã is

irreducible and given by (8.4.4a) and (8.4.4b). One unsatisfactory feature of (8.4.4a) is

that every one of the conjugate irreps ã j(H) for all j has to be calculated, even though

each of them must be equivalent to one or other irrep of H that is assumed to be

known. To remedy this, we shall transform ã"(g) such that ã"(h) given by (8.4.4a)

becomes a direct sum of the known set of irreps of H . Then it becomes necessary to

calculate only the representative of the augmenting operator a.

Let fã(H), ã1(H), . . . , ãpÿ1(H)g be an orbit of H in G for which the members are

the unirreps of H ordered such that their conjugacy relations are expressed by

ãnÿ1(aÿ1 ha) � ãn(h); n � 1, 2, . . . , p

where ã0(h) � ãp(h) � ã(h). This means that there exists a set of unitary matrices

Nn(a) such that

ãnÿ1(aÿ1 ha) � Nÿ1
n (a)ãn(h)Nn(a) (8:4:11)

Correspondingly, the basis set fø(n)g of fãn(H)g satis®es

8aø(nÿ1) � ø(n) Nn(a); n � 1, 2, . . . , p (8:4:12)

with ø(0) � ø( p) � ø. Now we introduce a new basis of representation for G by

Ø � [ø(0), ø(1), . . . , ø( pÿ1)] (8:4:13)

then it provides a representation Ã(G) de®ned by

Ã(h) �

ã(h) 0 . . . 0

0 ã1(h) . . . 0
: : 0
: : : :
: : : :

0 0 . . . ãpÿ1(h)

26666664

37777775 (8:4:14a)

Ã(a) �

0 0 . . . : Np(a)

N1(a) 0 . . . : 0

0 N2(a) . . . : 0

..

. ..
. ..

.

0 0 . . . Npÿ1(a) 0

2666664

3777775 (8:4:14b)
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where Np(a) is determined by

Np(a)Npÿ1(a) . . . N1(a) � ã(a p) (8:4:15)

because repeated use of (8.4.12) leads to

8a pø(0) � ø( p) Np(a)Npÿ1(a) . . . N1(a)

� ø(0)ã(a p)

with ø(0) � ø( p) � ø and a p 2 H .

In the new representation Ã(G) given by (8.4.14) which is equivalent to ã"(G) of

(8.4.4), we see that the subduced representation Ã#(H) is given by a direct sum of the

original irreps ã(h), ã1(H), . . . , ãpÿ1(H) belonging to the orbit of ã(H). To calculate

Ã(a), however, one has to determine the transformation matrices Nn(a) from (8.4.11)

or (8.4.12). In the special case in which one can take Nn(a) � 1 for n ( 66� p), from

(8.4.15) we have Np(a) � ã(a p) so that (8.4.11) reduces to ãnÿ1(aÿ1 ha) � ãn(h).

Thus, for this case, Ã(G) given by (8.4.14) coincides completely with ã"(G) given by

(8.4.4). This is the case, for example, when ã(H) is one-dimensional.

The following two examples have been discussed already in Section 6.7 via the

de®ning relations of the point groups and inductions from the unirreps of appropriate

subgroups. Here, we shall discuss them again in terms of the general expressions of

induced representations given by (8.4.10) and (8.4.14).

8.4.5 Examples

Example 1. The unirreps of the tetrahedral group T by induction from the unirreps of

the dihedral group D2 (/ T) (cf. Section 6.7.3).

The orbits of D2 relative to T are given by OA � fAg and OB � fB1, B2, B3g from

(8.3.11a). From (8.4.5), the orbit OA belongs to case I whereas OB belongs to case II.

For case I, OA � fAg, there exist three one-dimensional unirreps of T associated

with the identity representation A of D2. These are determined by (8.4.9a) with

ù � exp (ÿ2ði=3). The unirreps thus obtained coincide with A, A9 and A 0 given in

Table 6.7. Here, we shall determine their bases by (8.4.9b). Choosing ø1 � z2 2 A of

D2 given in Table 8.1 and using 8az2 � x2 and 8ax2 � y2 with a � 3xyz, we obtain

A: ø(0)
1 � z2 � x2 � y2

A9: ø(1)
1 � z2 � ù�x2 � ùy2 � (u� iv)=2

A 0: ø(2)
1 � z2 � ùx2 � ù� y2 � (uÿ iv)=2 (8:4:16)

where u � 3z2 ÿ r2 and v � p3(x2 ÿ y2). Note that, if we had chosen ø1 � 1 for the

basis of A(D2), we would have obtained ø(1)
1 � ø(2)

1 � 0, because 8aø1 � ø1 and

1� ù� ù2 � 0. Previously, in Table 6.7, we had written down the bases of A9 and A 0
without derivation.

For case II, OB � fB1, B2, B3g, since the unirreps of D2 are all one-dimensional,

we may take Nn(a) � 1 in (8.4.11). Then the induced representation is determined by

the general expression (8.4.14), i.e. Ã(h) for h 2 D2 is given by the direct sum of B1,

B2, B3 2 D2 via (8.4.14a) while Ã(3xyz) is determined by (8.4.14b) with Nn(a) � 1.

The unirrep thus obtained is the representation T given in Table 6.7. The correspond-

ing basis is given by [x, y, z], from Table 8.1 and (8.4.13).
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Example 2. The unirreps of the octahedral group O by induction from the unirreps of

the tetrahedral group T (/ O) (cf. Section 6.7.4).

The group O is de®ned by augmenting the group T with a � 4z. From the unirreps

of the group T given by Table 6.7, the orbits of T relative to the group O are

O1 � fAg, O2 � fA9, A 0g, O3 � fTg (8:4:17)

because _4z[x, y, z] � [y, ÿx, z] and _4z(u� iv) � (uÿ iv). From (8.4.5) the orbits O1

and O3 belong to case I, whereas the orbit O2 belongs to case II.

For case I, O1 � fAg and O3 � fTg, from the orbit O1, using (8.4.9a) with

ù � �1, we obtain two unirreps A1 and A2 of the group O as given in Table 6.8. For

the orbit O3, the basis ø � [x, y, z] of the representation T satis®es (8.4.8b) so that we

obtain the unirreps T1 given in Table 6.8 with use of the basis. Next, from (8.4.10) we

obtain one more unirrep T2 given by A2 3 T1.

For case II, O2 � fA9, A 0g, where the members of the orbit are one-dimensional

unirreps of the subgroup T . Let E be the two-dimensional induced unirrep of the

group O, then it is determined by the general expression (8.4.14): E(h) for h 2 T

is given by the direct sum of A9 and A 0 of T from (8.4.14a) while E(4z) is given

by (8.4.14b) with Nn(a) � 1. The corresponding basis is given by [u� iv, uÿ iv]

from (8.4.12). Previously, in Table 6.8 we have presented the unirrep E based on

[u, v].

Exercise. Write down the two-dimensional unirreps E of the group O using (8.4.14)

based on [u� iv, uÿ iv].

8.5 General theorems on induced and subduced representations and construction of

unirreps via small representations

In the previous sections we have described how to construct the irreps of a solvable

group through induction from the irreps of a subgroup with a prime index and applied

it for the construction of the irreps of the point groups. Here in this section we shall

introduce the concept of `the small representations of the little groups' from which

irreps of the group can be induced. We shall ®rst introduce some of the basic theorems

which describe the relations between induced representations and subduced represen-

tations in general.

8.5.1 Induction and subduction

We begin with the following basic theorem which connects induced and subduced

representations.

Theorem 8.5.1. The Frobenius reciprocity theorem. Let H be a subgroup of a group

G and let ã(h) and Ã(G) be their respective irreps. Then the frequency Fã"Ã of Ã(G)

contained in the induced representation ã"(G) from ã(H) equals the frequency fÃ#ã of

ã(H) contained in the subduced representation Ã#(H) from Ã(G), i.e. if

ã"(G) �
X
Ã

� Fã"ÃÃ(G), Ã#(H) �
X
ã

� fÃ#ãã(H)
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then

Fã"Ã � fÃ#ã (8:5:1)

Proof. Let H � fhg, G � fgg and G �PisiH and let ÷ã(h) and ÷Ã (g) be the

characters of ã(h) and Ã(g), respectively. Then Fã"Ã is given, using (8.2.11a), by

Fã"Ã � jGjÿ1
X

g,i

÷Ã (g)�÷ã(sÿ1
i gsi) (8:5:2)

where g is limited by sÿ1
i gsi � h 2 H so that

÷Ã (g) � ÷Ã (sihsÿ1
i ) � ÷Ã (h) ({ si 2 G) (8:5:3)

Substitution of this into (8.5.2) yields

fã"Ã � jGjÿ1
X

h,i

÷Ã (h)�÷ã(h) � jH jÿ1
X

h

÷Ã (h)�÷ã(h) � fÃ#ã (8:5:4)

Note that ÷Ã (h) � trÃ#(h). Q.E.D.

Example 1. For D2 / T, from (8.4.16) and Table 6.7,

A"(T ) � A(T )� A9(T ) � A 0(T )

while

A#(D2) � A9#(D2) � A 0#(D2) � A(D2)

Thus, for example, A"(T ) induced by A(D2) contains A(T ) exactly as often as A#(D2)

subduced by A(T ) contains A(D2); namely once for this case.

Example 2. For T / O, from (8.4.17) and Table 6.8,

A9"(O) � A 0"(O) � E(O); E#(T ) � A9(T )� A 0(T )

We shall next consider induction of ã(H) followed by subduction, i.e. [ã"(G)]#(H).

It does not return to the original representation ã(H) because induction of a

representation ã(H) increases the original dimensionality to the index (� jGj=jH j)
times, whereas subduction does not change the dimensionality. Hereafter, we assume

that H is a normal subgroup of G and fully utilize the concepts of the little groups and

the orbits introduced in Section 8.3.

Theorem 8.5.2. Let H / G and ã(H) be an irrep of H and let Gã be the little group

of ã(H) relative to G. Let Oã(H) be the direct sum of the conjugate irreps of ã(H) in

the orbit Oã. Then the subduced induced representation [ã"(G)]#(H) is equivalent to a

multiple of Oã(H):

[ã"(G)]#(H) � fãOã(H); fã � jGãj=jH j (8:5:5)

Here fãOã(H) should be regarded as a direct sum of Oã matrices.

Proof. It is only necessary to show that the characters of both sides of (8.5.5) are

equal. From H / Gã < G and H / G we express the left coset decomposition of G by

H , via G �Pm pmGã and Gã �
P

nqnH, in the form
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G �
X

m

X
n

pmqnH

Let ÷ã(h) � tr ã(h). Then the character of the left-hand side (lhs) of (8.5.5) is given,

from (8.3.1c), by

tr [ã"(G)]#(h) �
X
nm

÷ã(qÿ1
n pÿ1

m hpmqn)

� (jGãj=jH j)
X

m

÷ã( pÿ1
m hpm)

because qn (2 Gã) leaves ã(H) equivalent under conjugation. The last expression of

the above equation is nothing but the character of the right-hand side (rhs) of

(8.5.5). Q.E.D.

In the special case of the induced representation ã"(Gã) of the little group Gã from

ã(H), we have Oã � ã(H) so that we have the following corollary.

Corollary 8.5.2

[ã"(Gã)]#(H) � fãã(H); fã � jGãj=jH j (8:5:6)

The corollary is interesting because an induced representation of the little group Gã

from an irrep ã(H) subduces only a multiple of ã(H) itself onto H . It will be seen that

this simple result leads to a general method of inducing the irreps of G through the

small representations of Gã, which will be introduced below.

8.5.2 Small representations of a little group

Let Gã be the little group of an irrep ã(H) relative to G. Then any irrep of Gã which

subduces a multiple of ã(H) is called a small representation of the little group Gã. It

will be shown that the induced representation of G from a small representation of Gã

is irreducible and that the complete set of the irreps of G can be constructed by

induction from the small representations of the Gã. From the de®nition of the small

representation2 and Corollary 8.5.2, one can expect that any irrep of Gã contained in

the induced representation ã"(Gã) is a small representation of Gã. The amazing thing

is that the inverse of this statement is also true due to the Frobenius reciprocity

theorem; in fact, we have the following theorem.

Theorem 8.5.3. Any irrep of the little group Gã contained in the induced representa-

tion ã"(Gã) is a small representation of Gã. Conversely, any small representation of Gã

is always contained in the induced representation ã"(Gã).

Proof. Let Ëi
ã be an irrep of the little group Gã contained in the induced ã"(Gã).

Then

ã"(Gã) �
X

i

� Fi
ãË

i
ã(Gã) (8:5:7)

2 Some authors call a small representation of Gã de®ned above `an allowed or permitted small representa-
tion' of Gã, reserving `a small representation of Gã ' for any irrep of Gã. We feel that any irrep of Gã can
simply be referred to as `an irrep' of Gã without causing any confusion.
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where Fi
ã is the frequency of Ëi

ã contained in ã"(Gã). Since ã"(Gã) subduces only a

multiple of ã(H), as shown by (8.5.6), an irrep Ëi
ã(Gã) contained in ã"(Gã) must also

subduce some multiple of ã(H), because all submatrices Ëi
ã(Gã) contained in ã"(Gã)

are on the diagonal of the rhs of (8.5.7) and thus each submatrix subduces indepen-

dently of each other. This proves the ®rst half of the theorem. Therefore, we may set

Ëi#
ã (H) � f i

ãã(H), f i
ã � jËi

ã(Gã)j=jã(H)j (8:5:8)

where jM j denotes the dimensionality of a matrix M . The crucial part of the second

half of the proof is based on the Frobenius reciprocity theorem, i.e. any small

representation Ëi
ã(Gã) that subduces a multiple of ã(H) must be contained in ã" (Gã),

because f i
ã � Fi

ã: Q:E:D:
The dimensionalities of the two sides of (8.5.7) must be equal, so that we have the

following relations:

jã"(Gã)j � jã(H)j jGãj=jH j �
X

i

jËi
ã(Gã)j2=jã(H)j (8:5:9)

where we have used Fi
ã � f i

ã � jËi
ã(Gã)j=jã(H)j. The above relation may be rewritten

as X
i

jËi
ã(Gã)j2=jGãj � jã(H)j2=jH j (8:5:10a)

or X
i

j f i
ãj2 � fã; fã � jGãj=jH j (8:5:10b)

where fã is the order of the factor group Gã=H and the summation over i is for all the

small representations of Gã.

The above relation may be called the completeness condition for the small

representations of Gã. Note that the rhs of (8.5.10a) is smaller than 1 becauseX
ã

jã(H)j2 � jH j (8:5:11)

so that the lhs of (8.5.10a) must also be smaller than 1. This means that only a small

number of the irreps of Gã are the small representations of Gã, because jGãj equals

the sum of the squares of the dimensions of all irreps of Gã. The following simple

example may illustrate the theorems introduced above.

Example. When ã(H) is a one-dimensional representation, (8.5.10a) reduces to the

form X
i

jËi
ã(Gã)j2 � jGãj=jH j

8.5.3 Induced representations from small representations

The following theorem is basic to the method of constructing the irreps of G by

induction from the small representations of the little group.
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Theorem 8.5.4. Let H / G and let Ëi
ã(Gã) be a small representation of the little

group Gã of an irrep ã(H) relative to G. Then, we have the following.

(i) The induced representation Ëi"
ã (G) � [Ëi

ã(Gã) "G] of G from a small representa-

tion Ëi
ã(Gã) is irreducible.

(ii) The set of all induced representations fËi"
ã (G)g from the irreps of H (one per

orbit of H relative to G) provides the complete set of the irreps of G.

Proof. Since Gã need not be a normal subgroup of G, the irreducibility of the

induced representations Ëi"
ã (G) should be proven by application of the general

irreducibility criterion given by Theorem 8.2.3. Let the left coset decomposition of G

with respect to Gã be
P

m pmGã with p1 � 1 and let æ be a general element of the

intersection Gã \ Gm
ã , where Gm

ã � pmGã pÿ1
m is a conjugate group of Gã. Then the

irreducibility condition for the induced representation Ëi"
ã (G) is that the two represen-

tations fËi
ã(æ)g and fËi

ã( pÿ1
m æpm)g subduced onto the intersection Gã \ Gm

ã are

orthogonal (contain no irreps in common) for all m (6� 1). To show this we note ®rst

that H is a common normal subgroup of all the intersections, i.e. H / (Gã \ Gm
ã ) for

all m (see Figure 8.2), because H / Gm
ã for any m is obtained by the conjugations of

the two sides of H / Gã with respect to pm and Hm � H . Therefore, from Theorem

8.1.2 the proof will be given by the orthogonality of the further subduced representa-

tions fËi
ã( pÿ1

m hpm)g via æ! h onto H . Now the conjugate representations satisfy,

from (8.5.8),

Ëi
ã( pÿ1

m hpm) � f i
ãã( pÿ1

m hpm); m � 1, 2, . . . , jOãj; 8 h 2 H (8:5:12)

where pÿ1
m hpm 2 H . Here the set of the conjugate irreps on the rhs of (8.5.12) forms

the orbit Oã of ã(H) in G according to (8.3.5) and hence they are inequivalent and

orthogonal. Therefore, the conjugate representations fËi
ã( pÿ1

m hpm)g on the lhs of

(8.5.12) must also be mutually orthogonal. This proves the ®rst half of the theorem.

Next, for the proof of the completeness of the irreps fËi"
ã (G)g, it is necessary only

to show that the squares of their dimensions satisfy the general completeness condition

of the irreps of the group G:

jGjÿ1
X
ã

9
X

i

jËi"
ã (G)j2 � 1 (8:5:13)

where the sum over i is for all the small representations of Gã whereas the sum over ã
is for the irreps of H , one per orbit Oã of H relative to G. By the de®nition of an

induced representation, the dimensionality jËi"
ã (G)j is given by

jËi"
ã (G)j � jËi

ã(Gã)jjOãj, jOãj � jGj=jGãj (8:5:14a)

H
Gγ

Gγ
m

Figure 8.2. The intersection Gã \ Gm
ã .
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Substitution of this into the lhs of (8.5.13) and use of the completeness condition of

the small representations, (8.5.10a), lead toX
ã

9
1

jGãj
X

i

jËi
ã(Gã)j2jOãj � 1

jH j
X
ã

9jã(H)j2jOãj � 1 (8:5:14b)

where the last equality follows because the sum over ã, one each orbit Oã of H ,

multiplied by jOãj describes the completeness relation of the irreps of H . Q.E.D.

Since the totality of the induced representations fËi"
ã (G)g forms the complete set of

the irreps of G we have the following corollary.

Corollary 8.5.4. Any irrep of G is equivalent to one of the induced irreps Ëi"
ã (G)

from a small representation Ëi
ã(Gã).

The following theorem is an extension of Theorem 8.5.2.

Theorem 8.5.5 (Clifford's theorem). Let H / G and Ã(G) be an irrep of G, then its

subduced representation Ã#(H) onto H is equivalent to a multiple of the direct sum

Oã(H) of the irreps in a certain orbit Oã(H) of H in G.

Summary. In this section a method of constructing all the irrep of a group G from

those of a normal subgroup H of G through the small representations of the little

groups has been discussed. It proceeds as follows.

1) Construct all the irreps ã(H) of H .

2) Group the irreps into different orbits of the ã(H) relative to G and select arbitrarily

one member from each orbit.

3) Determine the respective little group Gã for each selected irrep ã(H) of H .

4) Find the small representations fËi
ã(Gã)g of the little group Gã by reducing the

induced representation ã"(Gã).

5) The irreps of G are constructed by the induced irreps [Ëi
ã(Gã) "G] from the small

representations Ëi
ã(Gã) of Gã.

6) The set of all irreps of G thus formed is complete.

It is noted here that the most dif®cult step of the above procedure is step 4 involving

the reduction of ã"(Gã). Since Gã is in between H and G, i.e. H / Gã < G, the most

favorable case occurs when H � Gã, in which case ã(H) "G is already irreducible. In

the other extreme case in which Gã � G (which occurs, for example, for the identity

representation of H), the concept of the little group does not help at all. In the special

case in which H is in the center of G, however, the dif®culty involved in step 4 is

removed by application of the theory of projective (or ray) representations: the small

representations of the little group Gã are constructed by the projective irreps of a

group (called the little co-group) that is isomorphic to the factor group Gã=H . This

case will be discussed in Chapter 14 and applied for constructing the unirreps of the

wave vector space groups.
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9

Elements of continuous groups

9.1 Introduction

An in®nite group is a group that contains an in®nite number of elements. The group

axioms still hold for in®nite groups. Among in®nite groups, there are two categories:

discrete and continuous ones. If the number of elements of a group is denumerably

in®nite, the group is said to be discrete, whereas if the number of elements is non-

denumerably in®nite, it is called a continuous group. For example, the whole set of

rational numbers forms an in®nite group that is discrete, whereas the whole set of real

positive numbers is a continuous group. A continuous group G is a set of group

elements that can be characterized by a set of continuous real parameters in a certain

region called the parameter domain (or space) Ù such that there exists a one-to-one

correspondence between group elements in G and points (the parameter sets) in the

parameter domain Ù. For example, an element of the rotation group SO(3, r) �
fR(è)g is characterized by a set of three real parameters è � (è1, è2, è3) in the

parameter sphere Ù of the radius ð, i.e. 0 < jèj < ð with the cyclic boundary

condition (see Equation (4.3.6)). In a continuous group G, the nearness of group

elements is characterized by the nearness of their parameters in Ù. Thus the

neighborhood of a group element is characterized by the neighborhood of the

corresponding parameter set. The parameter domain may be ®nite or in®nite. A

continuous group G is said to be compact if the parameter space is closed, i.e. the

limiting point of any sequence of points in the space is contained in the space; in this

case, the parameter space should be ®nite.

A group whose elements can be expressed by a ®nite number of continuous

parameters is a ®nite continuous group. In an h-parameter continuous group G, any

group element T is expressed by a function of h real parameters a � (a1, a2, . . . , ah):

T � g(a) � g(a1, a2, . . . , ah) (9:1:1)

The set of parameters should be necessary and suf®cient to characterize all elements of

the group. The parameter set of the identity may be denoted by e � (e1, e2, . . . , eh).

Then

g(e)g(a) � g(a)g(e) � g(a)

Let the parameter sets of the group elements T, S and their product ST be a, b and c,

respectively, i.e. T � g(a), S � g(b) and ST � g(c), then

g(b)g(a) � g(c) (9:1:2a)

so that the parameter set c is given by a function of the parameter sets a and b:

c � ö(b, a) (9:1:2b)



Likewise, let Tÿ1 � g(a), then a is given by a function of a:

a � ö(a) (9:1:3)

If these functions ö and ö are piecewise continuously differentiable with respect to the

parameters, then the continuous group G is called a Lie group. For most cases,

however, it is suf®cient to assume that the group elements are continuous functions of

the group parameters, although we occasionally make use of the concept of continuous

differentiability of functions of the group parameters.

Example 1. The special real orthogonal group in two dimensions SO(2, r) is a one-

parameter compact Lie group de®ned by

R(è) � cos è ÿsin è
sin è cos è

� �
, 0 < è < 2ð (9:1:4a)

with a real parameter è, where two boundary points è � 0 and 2ð are regarded as one

point in the parameter domain Ù, i.e. è� 2ð � è (mod 2ð), corresponding to the

periodicity R(è� 2ð) � R(è). With this convention, we can de®ne any function (even

an aperiodic one) of è in the range ÿ1, è,1 without è leaving the parameter

space Ù for the group.

Example 2. The group of one-dimensional transformation de®ned by

x! x9 � ax, 0 , a < 1 (9:1:4b)

is a non-compact Lie group because the range of the parameter a is ®nite but open at

a � 0.

9.1.1 Mixed continuous groups

A group is said to be connected if an arbitrary element of the group can be obtained

continuously from the identity E. This means that there exists a continuous manifold

T(t) of elements via a continuous path variable t (0 < t < 1) such that the manifold

begins at T (0) � E and ends at T (1) � T . For example, the rotation group

SO(3, r) � fR(è)g is clearly connected, i.e. every element R(è) is connected to the

unit element E through a path variable t such that T (t) � R(tè).

The full rotation group O(3, r) is not connected, because it is not possible to pass

continuously from the orthogonal matrices of determinant �1 to those of determinant

ÿ1; therefore, the group O(3, r) has two disjoint pieces. Such a group G is called a

mixed continuous group. Here, the piece that is connected to the identity element

forms a subgroup H of G. Let T and S be two elements of this subspace, then the

product ST can be obtained from the identity in a continuous manner through a path

T(t)S(t). The same holds for the inverse Tÿ1 through T (t)ÿ1. Moreover, the subgroup

H with elements connected to the identity forms an invariant subgroup of the mixed

continuous group G. If T can be reached continuously from the identity, then so can

X ÿ1TX for any element X of G along the path Xÿ1T (t)X because Xÿ1T (0)X � E.

The cosets of this invariant subgroup H are the other disjoint pieces. Let the coset

decomposition be

G � H � X 1 H � X 2 H � � � � (9:1:5)
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where a coset representative X í is simply any member of the corresponding disjoint

piece Xí H . Let faig be the set of continuous real parameters of H, then each disjoint

piece X í H is described by the same set of continuous parameters faig but with an

additional parameter corresponding to Xí. The order of the factor group G=H equals

the number of disjoint pieces of the parameter space.

Example 3. For O(3, r), the coset decomposition by the invariant subgroup SO(3, r)

is given by

O(3, r) � SO(3, r)� I SO(3, r) (9:1:6)

where I is the inversion de®ned as the unit matrix multiplied by ÿ1. The order of the

factor group O(3, r)=SO(3, r) equals 2. The two disjoint pieces SO(3, r) and

I SO(3, r) are described by the same continuous parameter set fè1, è2, è3g but are

characterized by the different signs of the determinants of the group elements.

9.2 The Hurwitz integral

In the representation theory of a ®nite group G � fTg, the following rearrangement

theorem has been essential (Wigner 1962):X
T2G

F(T ) �
X
T2G

F(ST ) (9:2:1)

where F(T ) is any function of the group elements T 2 G and S is a ®xed element of

G. For example, the orthogonality theorem of the irreducible representations of the

group G is based on the sum X
T

D(á)(T )X D(â)(Tÿ1)

For a Lie group such a sum must be replaced by an integral; this requires one to

introduce a measure of integration that is common to both sides of (9.2.1). Through a

measure for the number of group elements in an extension of the parameter space, we

may introduce the density distribution of the group elements in the parameter space.

Obviously, the concept of the `absolute number of group elements' in an extension is

meaningless on account of the continuous distribution of group elements. However,

their ratio is meaningful through the one-to-one correspondence such as that between

the left-hand side and the right-hand side of (9.2.1). Hereafter, the number of group

elements should be understood in this relative sense.

Suppose that the parameter a of the element T draws an extension Va in the

parameter space, then the parameters c of the product ST also draws an extension Vc

via c � ö(b, a) for a ®xed b (see Figure 9.1). Since there exists a one-to-one

correspondence between the group elements T in the extension Va and ST in the

extension Vc for a given S, we may assign an equal measure to `the numbers' of the

group elements in both extensions such that, for all T and a given S,

NT � NST (9:2:2a)

where NT and NST are the assigned measures for the numbers of the elements in Va

and Vc, respectively. This equation determines only the ratio of the measures but is

suf®cient to determine the relative density distribution of group elements in the
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parameter space. Let the in®nitesimal measures of both sides of (9.2.2a) be expressed

in the differential forms

dNT � dNST (9:2:2b)

and the corresponding in®nitesimal extensions located at a and c be da � da1 da2 . . .
and dc � dc1 dc2 . . . , respectively. Then we set, for a given b,

r(a) da � r(c) dc, c � ö(b, a) (9:2:3)

where r(a) and r(c) are the relative densities of the group elements in in®nitesimal

extensions da at a and dc at c, respectively. Via the in®nitesimal measure, the sum on

the left-hand side of (9.2.1) may be expressed by the integral�
G

F(T ) dNT �
�

[G]

F[T (a)]r(a) da (9:2:4)

where the left-hand side is simply an abbreviation of the right-hand side and the

integration is extended over the whole parameter space [G] of G. It is called the

Hurwitz integral or the invariant integral in the parameter space. In terms of the

Hurwitz integral, the rearrangement theorem (9.2.1) is given, for a ®xed S, by�
F(T ) dT �

�
F(ST ) dT (9:2:5)

where dT stands for the in®nitesimal measure dNT following the notation introduced

by Wigner (1962).

Next, we shall determine the relative density function r in the parameter space from

(9.2.3). Since the in®nitesimal extensions dc � dc1 dc2 . . . dch and da � da1 da2 . . .
dah are related by

dc � J
@c

@a

� �
da

where J [@c=@a] is the Jacobian de®ned by

J
@c

@a

� �
� @(c1, c2, . . . , ch)

@(a1, a2, . . . , ah)
� det

�������� @ci

@a j

��������
we obtain, from (9.2.3),

r(c) � r(a)=J [@c=@a] (9:2:6)

a

c
c 5 φ(b, a)

Va

Vc

Figure 9.1. The parameter spaces Va and Vc connected by c � ö(b, a) for a ®xed b.
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which determines only the ratio of densities as expected. Thus, one may assign an

arbitrary constant r0 for the density in the neighborhood of the identity element

E � g(e) and obtain

r(c) � r0=J [@c=@e], c � ö(b, e) � b (9:2:7a)

where r0 may be determined by the normalization�
G

dNT �
�

[G]

r(c) dc � 1 (9:2:7b)

provided that the integral converges.

Now, according to (9.2.7a) the density function r(c) is calculated via the Jacobian

J [@c=@e], for which it is necessary only to consider the product relation g(c) �
g(b)g(a) with the parameter a in the vicinity of the identity parameter e; therefore, we

set a � e� E and then

g(c) � g(b)g(e� E) (9:2:8a)

where E is an in®nitesimal deviation from the identity parameter e. This equation may

be solved to the ®rst order in E to obtain the corresponding functional relation for the

parameters

c � ö(b, e� E) (9:2:8b)

The required Jacobian is given by @c=@e � @c=@EjE�0 for the given b, so that we have,

from (9.2.7a),

r(b) � r0=J [@c=@e] (9:2:8c)

Example 1. The density function for the group SO(2, r) � fR(è)g de®ned by

(9.1.4a). This is a one-parameter group with an additive parameter è such that

R(è1)R(è2) � R(è1 � è2). Thus, from R(è9) � R(è)R(E) � R(è� E), where R(E) is the

in®nitesimal transformation, we have

è9 � è� E (9:2:9)

corresponding to (9.2.8b). Accordingly dè9=dE � 1, so that from (9.2.8c) we arrive at a

constant result: r(è) � r0. Through the normalization�ð
ÿð

r(è) dè � 2ðr0 � 1

we obtain r(è) � 1=(2ð).

Example 2. The density function for the one-dimensional transformation de®ned by

x9 � ax, 0 , a < 1

Here the group elements are the parameter a itself, i.e. g(a) � a, and the identity

element is given by a � 1. Thus the product relation (9.2.8a) takes c � b(1� E) so that

dc=dE � b � c(E � 0). Accordingly, from (9.2.7a), it follows that r(c) � r0=c, which

cannot be normalized because its integration over c diverges logarithmically at c! 0.
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Example 3. The density function for SO(3, r). From the group element R(è) �
exp (èù) given by (4.3.2a), the in®nitesimal rotation R(EE) is given by

R(EE) � 1� Eù �
1 ÿE3 E2

E3 1 ÿE1

ÿE2 E1 1

24 35
which is correct to the ®rst order in the magnitude of the in®nitesimal parameter

E � jEEj. Since all the rotation axes are equivalent, the density function r(è) should

depend only on the rotational angle è � jèj, so that calculation of R(è9) � R(è)R(EE)
may be carried out with è � (0, 0, è) for R(è). Since

R(00è) �
cos è ÿsin è 0

sin è cos è 0

0 0 1

24 35
we obtain, from R(è9) � R(è)R(E),

R(è9) �
cos èÿ E3 sin è ÿsin èÿ E3 cos è E2 cos è� E1 sin è
sin è� E3 cos è cos èÿ E3 sin è E2 sin èÿ E1 cos è

ÿE2 E1 1

24 35 (9:2:10a)

By equating the traces of the two sides, we obtain cos è9 � cos èÿ E3 sin è which

yields, to the ®rst order in E,

è9 � è� E3 (9:2:10b)

The axis vector n9 of è9 is determined from (4.3.9b), i.e.

ù(n9) � (R(è9)ÿ R(è9)�)=(2 sin è9)

which yields, to the ®rst order in E,

n91 � 1
2
E2 � E1(1� cos è)=(2 sin è)

n92 � 1
2
E1 � E2(1� cos è)=(2 sin è)

n93 � 1

On substituting these into è9i � (è� E3)n9i; i � 1, 2, 3, we obtain the required Jaco-

bian:

J � @(è91, è92, è93)

@(E1, E2, E3)
�

è(1� cos è)

2 sin è
ÿ 1

2
è 0

1

2
è

è(1� cos è)

2 sin è
0

0 0 1

�����������

�����������
� è2=[4 sin2 (è=2)]

Therefore, from (9.2.8c),

r(è) � 4r0 sin2 (è=2)=è2 � sin2 (è=2)=(2ð2è2) (9:2:11)

where r0 � 1=(8ð2) is obtained via the normalization�
dR �

�ð
0

r(è)4ðè2 dè � 1
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9.2.1 Orthogonality relations

The actual calculation of the density function r(c) for the Hurwitz integral is often

quite laborious if it is done directly from (9.2.7a). For many purposes, in particular, for

the derivation of the orthogonality relations for Lie groups, the knowledge of the

existence of the invariant integral is all that is needed.

Proceeding in exactly the same way as for ®nite groups, it follows from (9.2.5) that

every representation can be transformed into a unitary representation, provided that�
D(T )ìó D(T )�íô dT

converges where dT � dNT . This is always the case for a compact Lie group. We may

state without proof that the integral
�
r(a) da always converges for a compact Lie

group (see Examples 1 and 2). Then, the orthogonal relations of the unirreps for a

compact Lie group may be expressed in the form�
D(á)(T )�íìD(â)(T )í9ì9 dT � (1=dá)äáâäíí9äìì9

�
dT (9:2:12)

and correspondingly �
÷(á)(T )�÷(â)(T ) dT � äáâ

�
dT (9:2:13)

for the characters. For explicit examples, see the orthogonality relations for the

unirreps of the special unitary group SU (2) and the rotation group SO(3, r) given by

(10.3.12a) and (10.3.13), respectively.

9.3 Group generators and Lie algebra

It is convenient to choose the continuous parameters of a Lie group G such that the

parameters of the identity element E are at the origin of the parameter space, i.e.

E � g(0, 0, . . . , 0). Then an element near the identity may be written, due to the

analytic properties of the Lie group, as

g(E1, E2, . . . , Eh) � g(0, . . . , 0)�
X

j

E j I j (9:3:1)

to the ®rst order in the in®nitesimal parameters E j. The operator Ij is called an

in®nitesimal generator of the Lie group and determined from (9.3.1) by

Ij � lim
E j!0

[g(0, . . . , E j, . . . , 0)ÿ g(0, . . . , 0)]=E j

All the properties of the Lie group can be derived from the in®nitesimal generators

I1, I2, . . . , I h of the group G which are de®ned near the identity element of the

group.

By the successive application of the in®nitesimal transformations, one can arrive at

an element of the group that is a ®nite distance away from the identity. Let us express

the parameters by a j � NE j, where N is a large positive integer so that a j is a ®nite

quantity. Then we may obtain the element corresponding to the set of ®nite parameters

fa jg as follows:
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g(a1, a2, . . . , ah) � [g(E1, E2, . . . , Eh)]N

� E �
X

j

E j I j

 !N

� E �
X

j

(a j Ij)=N

" #N

Allowing N to tend to in®nity and using

lim
N!1

(1� x=N )N � ex

we obtain, in the vicinity of the identity E,

g(a1, a2, . . . , ah) � E exp
X

j

a j Ij

 !
� E exp (a . I) (9:3:2)

where a � faig and I � fIjg. This is an exact result. It means that all the elements of

the Lie group belonging to a closed parameter space containing the identity can be

obtained by giving various values to the parameters a j of the parameter space; at least,

in the vicinity of the identity. The following basic theorem holds.

Theorem 9.3.1. Let fI1, I2, . . . , Ihg be the set of generators of an h-parameter Lie

group G, then the generator set satis®es

[Ik , Il] �
Xh

m�1

C m
kl Im; k, l � 1, 2, . . . , h (9:3:3)

where [Ik , Il] � Ik Il ÿ Il Ik is the commutator of the generators Ik and Il while C m
kl

are constants called the structure constants of the Lie group G.

According to the theorem, the generator set fIkg forms a vector space such that the

commutator of each pair of vectors belongs to the space. Such a vector space is called

a Lie algebra. Thus, we can state that the set of the generators fIkg of a Lie group

forms the Lie algebra of the Lie group. The study of Lie algebras is of fundamental

importance in the study of Lie groups. Indeed, in many respects, physicists are more

interested in the algebraic structure than they are in the group structure.

The proof of the theorem is straightforward; see Wybourne (1974). For suf®ciently

small values of the parameters a � (a1, a2, . . . , ah), we may represent an element

g(a) of G lying close to the identity by the Taylor expansion (9.3.2) as follows:

g(a) � g(0) exp (a . I)

� g(0)� (a . I)� 1
2
(a . I)2 � � � � (9:3:4a)

Then the inverse g(a)ÿ1 is given by

g(a)ÿ1 � g(0)ÿ (a . I)� 1
2
(a . I)2 � � � � (9:3:4b)

De®ne the commutator of two group elements g(b) and g(c) by

g(b)ÿ1 g(c)ÿ1 g(b)g(c). Then, from (9.3.4a) and (9.3.4b), the commutator is given, to

the second order in b and c, by
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g(b)ÿ1 g(c)ÿ1 g(b)g(c) � g(0)� [(b . I), (c . I)] � � � � (9:3:5)

where

[(b . I), (c . I)] �
X

bk cl[Ik , Il]

Now, the commutator (9.3.5) itself must be a group element, say g(a), lying close to

g(0); hence, we have

g(a) � g(0)�
X

bk cl[Ik , Il] � � � �

Comparing this with (9.3.4a), we conclude that the parameter set a � famg must be

bi-linear with respect to the parameter sets b and c

am �
X

k, l

cm
klbk cl; m � 1, 2, . . . , h (9:3:6)

so that

[Ik , Il] �
X

m

cm
kl Im

which is the required result (9.3.3).

The important properties of the structure constants are the following.

1. They are antisymmetric with respect to their lower indices

cm
kl � ÿcm

lk (9:3:7)

2. From the Jacobi identity de®ned by the in®nitesimal generators

[[Ik , Il], Im]� [[Il, Im], Ik]� [[Im, Ik], Il] � 0 (9:3:8)

the structure constants must satisfy

cn
klc

p
mn � cn

lmc
p
kn � cn

mk c
p
ln � 0 (9:3:9)

Example 1. The Euclidean group in one dimension E(1) is de®ned by the transfor-

mation

x! x9 � ax� b

where a and b are real parameters. The matrix representation of this group is expressed

by the transformation T :

x9
1

� �
� a b

0 1

� �
x

1

� �
� T

x

1

� �
So that the in®nitesimal generators of the Euclidean group E(1) are de®ned by

I a � @T

@a

����
(00)

� 1 0

0 0

� �

I b � @T

@b

����
(00)

� 0 1

0 0

� �
These satisfy the commutation relations
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[I a, I b] � I b

which de®nes the Lie algebra e(1) corresponding to the Euclidean group E(1). It is

customary to denote the Lie algebra corresponding to a Lie group by the lower case of

the lie group symbol.

Example 2. The Lie algebra so(3, r) of the proper rotation group SO(3, r). The

general element of the proper rotation group is given by (4.3.2a), i.e.

R(è) � eèù; èù �
0 ÿè3 è2

è3 0 ÿè1

ÿè2 è1 0

24 35 (9:3:10)

The in®nitesimal generators of R(è) with respect to the parameters fè jg are de®ned by

Ij � @R(è)

@è j

����
(000)

; j � 1, 2, 3

which yield

I1 �
0 0 0

0 0 ÿ1

0 1 0

24 35, I2 �
0 0 1

0 0 0

ÿ1 0 0

24 35, I3 �
0 ÿ1 0

1 0 0

0 0 0

24 35 (9:3:11)

These satisfy the commutation relations

[I1, I2] � I3, [I2, I3] � I1, [I3, I1] � I2 (9:3:12a)

and form the Lie algebra so(3, r) of the rotation group SO(3, r). From (9.3.10) and

(9.3.11) we have èù � è . I so that R(è) is rewritten in the form

R(è) � exp (è . I) (9:3:12b)

as expected from the general expression (9.3.2).

Exercise. Prove, from (9.3.10) and (9.3.12b), that the in®nitesimal rotation about a

unit vector n given by ù(n) � n . I satis®es the following commutation relation:

[ù(n), ù(n9)] � (n 3 n9) . I

Example 3. The su(3) algebra of the group SU (3). From (4.1.3), the element of

SU (3) is given by

U � exp (ÿiH); H �
a7 a1 ÿ ia2 a3 ÿ ia4

a1 � ia2 ÿa7 � a8 a5 ÿ ia6

a3 � ia4 a5 � ia6 ÿa8

24 35
where H is a traceless Hermitian matrix expressed by the eight real parameters

a1, . . . , a8. The generators of SU (3) are de®ned by

I i � @H

@ai

����
0

; i � 1, 2, . . . , 8

which yield
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I1 �
0 1 0

1 0 0

0 0 0

24 35, I2 �
0 ÿi 0

i 0 0

0 0 0

24 35, I3 �
0 0 1

0 0 0

1 0 0

24 35
I4 �

0 0 ÿi

0 0 0

i 0 0

24 35, I5 �
0 0 0

0 0 1

0 1 0

24 35, I6 �
0 0 0

0 0 ÿi

0 i 0

24 35
I7 �

1 0 0

0 ÿ1 0

0 0 0

24 35, I8 �
0 0 0

0 1 0

0 0 ÿ1

24 35
These form the Lie algebra su(3) of the Lie group SU (3). The only generators of

SU (3) which commute with each other are the diagonal matrices I7 and I8. The

minimum number of mutually commuting generators of a Lie group is called its rank.

Then, the rank of SU (3) equals 2. Determine the structure constants of SU (3) as an

exercise.

9.4 The connectedness of a continuous group and the multivalued representations

A continuous connected group G may further be simply connected or multiply

connected. A parameter space Ù of G is said to be m-fold connected if there exist m

distinct paths connecting any given two points of the space that cannot be brought into

each other by continuous deformation without going out of the parameter space. A

group manifold G is said to be m-fold connected if its parameter space Ù is m-fold

connected. If a group is m-fold connected, we may expect that some of the matrix

representations will be multivalued (m-valued at most) because each distinct path may

result in different value for the representation when a point of the parameter space Ù
returns to the initial point after the completion of each distinct path. Thus, it is

necessary to examine the connectivity of a continuous group in order to determine the

multivaluedness of the representations.

To understand the relation between the multivalued representations of a group G

and its connectedness we shall consider a special group manifold G � fg(á, ö)g,
where ö is the only cyclic parameter and á is the set of the remaining parameters such

that

g(á, ö� ô) � g(á, ö)

where ô is the period of ö. Then the parameter space Ù of G is de®ned such that two

points with the parameter sets (á, ö� ô) and (á, ö) are regarded as one point in the

parameter space in order to ensure the one-to-one correspondence between the group

manifold G � fg(á, ö)g and its parameter space Ù. Thus in®nitely many parameter

sets fá, ö� lôg with arbitrary integers l correspond to one point of the parameter

space Ù and hence to one group element. Now, a representation of a continuous group

is assumed to be a continuous function of the parameters of the group. Accordingly,

for the group manifold G � fg(á, ö)g introduced above, any one of its representa-

tions D � D(á, ö) is also a continuous function of the parameters, in particular, of the

cyclic parameter. This, however, does not necessarily mean that the representation

D(á, ö) has the same periodicity with respect to ö as the periodicity of g(á, ö). Thus,

if D(á, ö� ô) 6� D(á, ö), then the representation is not single-valued. Suppose that
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the periodicity of D(á, ö) with respect to ö is such that D(á, ö� nô) � D(á, ö) for

which n is the smallest integer. Then the representation D(á� ö) is n-valued, i.e. n

different representatives

D(á, ö), D(á, ö� ô), . . . , D(á, ö� (nÿ 1)ô) (9:4:1)

correspond to the same group element g(á, ö). Here, the possible maximum number

of n is determined by the connectedness of the group manifold; in fact, for an m-

connected group G we have 1 < n < m because by assumption there exist only m

distinct closed curves (passing through any given point in the parameter space Ù)

which cannot be brought together by continuous variation of the parameters. For

example, it will be shown in Example 2 that SO(3, r) is doubly connected due to the

cyclic boundary condition R(ðs) � R(ÿðs) given by (4.3.6). Accordingly, its repre-

sentations will be either single-valued or double-valued.

These multivalued representations cannot simply be neglected since they are essential

in describing the symmetry properties of many physical problems. One can state,

however, that, for any m-connected group G � fgg, there exists a simply connected

group G9 � fg9g that is homomorphic to G with m-to-one correspondence. The kernel

of the homomorphism is a discrete invariant subgroup N (/G9) of order m so that the

factor group G9=N is isomorphic to G. The group G9 is called `the universal covering

group' of G. On account of the homomorphism, every representation of G (be it single-

valued or multivalued) is a representation of G9 that has to be a single-valued one because

G9 is simply connected. Accordingly, to ®nd all the irreducible representations of G it is

necessary only to study the vector representations of G9. Here a vector representation

means a single-valued representation. This is truly a life-saving conclusion.

To understand the concept of the universal covering group more clearly, let us

return to the group G � fg(á, ö)g with one cyclic parameter ö and let G9 �
fg9(á, ö)g be the universal covering group of G. Then the m-to-1 homomorphism

between G9 and G is described by the m-to-1 correspondence

g9(á, ö), g9(á, ö� ô), . . . , g9(á, ö� (mÿ 1)ô)! g(á, ö) (9:4:2)

Note that m different points ö, ö� ô, . . . , ö� (mÿ 1)ô in the parameter space Ù9 of

G9 correspond to one point ö in Ù of G. Thus a single-valued representation fD(g9)g
of G9 becomes a multivalued representation of G; at most m-valued because some of

the D(g9) of g9(á, ö� lô) 2 G9 may coincide for different values of l. For example,

in the next chapter, it will be shown that the universal covering group of the proper

rotation group SO(3, r) is the special unitary group SU (2). Thus the vector irreps of

SU (2) exhaust all the possible irreps of SO(3, r) which may be either single-valued or

double-valued.

It should be noted here that the dif®culty of describing the orthogonality theorems

on the multivalued irreducible representations of a group G is easily removed in terms

of the corresponding single-valued irreducible representations of the covering group

G9 of G (see Chapter 10). This dif®culty is also removed when a multivalued

representation of G is regarded as a projective representation of G with the factor

system which depends on the distinctive paths, because the projective unirreps obey

the same orthogonality relations as do the ordinary unirreps (see Chapter 12).

Example 1. The one-dimensional unitary group U (1) � fg(ö)g. The general ele-

ment of the group U (1) is given by
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g(ö) � exp (iö), 0 < ö < 2ð (� 0) (9:4:3a)

with one cyclic parameter, ö. It is isomorphic to the two-dimensional rotation group

SO(2, r) de®ned by (9.1.4a). The group manifold consists of points on the unit circle

in the complex plane and the parameter space Ù is the circle itself described by the

phase angle ö. On account of the periodicity g(ö� 2ð) � g(ö), the two points ö � 0

and 2ð are regarded as the same point in Ù; i.e. ö� 2ð � ö (mod 2ð). Owing to this

condition, the parameter space is in®nitely connected. To see this we introduce a path

variable t that varies from 0 to 1 and describes a closed curve ö � ö(t) in the

parameter space Ù such that g[ö(0)] � g[ö(1)]. Then the path ö � 2ðt is a single

loop around the unit circle, which cannot be deformed to a single point, say ö � 0, by

a continuous deformation because ö � 0 and ö � 2ð represent the same point in Ù
which cannot be separated. Analogously, the path ö � 2ðlt with an integer l is a

closed curve of l loops in Ù which cannot be deformed to ö � 2ðl9t if l9 6� l. Thus

the one-dimensional unitary group U (1) is in®nitely connected.

A unitary representation of the unitary group U (1) is given by

D(k)(ö) � exp (ikö) (9:4:3b)

where k is a real number. When k is an integer, D(k)(ö) is a single-valued representa-

tion of U (1). When k is a rational number q=n, where there is no common denom-

inator of the two integers q and n, D(k)(ö) is n-valued because we have n different

values for the identity element of U (1):

D(k)(2sð) � exp (i2ðsq=n); s � 0, 1, . . . , nÿ 1

Finally, when k is irrational, D(k)(ö) is in®nitely many-valued. This is consistent with

the in®nite connectedness of U (1).

The universal covering group U 9(1) of U (1) is given by the group of real numbers

x:

U 9(1) � fx; ÿ1, x ,1g (9:4:4)

with addition as the law of multiplication: the homomorphism x! eiö is described by

x � ö� 2lð, 0 < ö < 2ð (� 0)

where l is any integer (positive, negative or zero); ÿ1, l ,1. The kernel of the

homomorphism is N � f2lð; ÿ1, l ,1g. The unitary representation D(k)(x) �
exp (ikx) of U(1)9 is a single-valued function of a point x in the parameter space

Ù9: ÿ1, x ,1, whereas D(k)(ö) � exp (ikö) is a single-valued or multivalued

function of a point ö in the parameter space Ù: ö� 2ð � ö (mod 2ð), depending on

the value of k, as discussed above (Hamermesh 1962).

Example 2. The connectedness of SO(3, r). Previously, in Section 4.3, we have

discussed the one-to-one correspondence between a proper rotation R(è) in V (3) and a

rotation vector è in the parameter sphere Ù de®ned by

Ù: 0 < jèj < ð, è � èn (9:4:5)

where two opposite poles ðn and ÿðn are regarded as one point in Ù corresponding

to the cyclic boundary condition R(ðn) � R(ÿðn). From this condition, we shall

show that the parameter space Ù of SO(3, r) is doubly connected.
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In the parameter space Ù de®ned by (9.4.5), we may consider two kinds of paths

that connect two points 1 and 2 in Ù (see Figure 9.3). The path (a) connects 1 and 2

directly, whereas the path (b) connects them after one antipodal jump from x to x9. The

points x and x9 are the same point in Ù so that the path 1! x � x9! 2 is a

continuous one. It can be seen that the path (b) cannot be made to coincide with the

path (a) by a continuous distortion, because, as we move the point x on the surface, its

antipodal point x9 also moves and remains always diametrically opposite to x. Note

further that a path (c) that has two antipodal jumps (1! x � x9! y � y9! 2 in

Figure 9.3) can be brought into coincidence with the path (a) by a continuous

distortion, which moves y9 (� y) to x (� x9) on the surface and removes them from

the surface completely. In such a case, paths (a) and (c) are said to be homotopic or to

belong to the same homotopy class. In general, all paths that connect 1 to 2 with an

even number of antipodal jumps belong to one homotopy class whereas those with an

odd number of jumps belong to the other homotopy class.

1 2 1 2

1 2 1 2 21

x
x ′

x

x ′

y ′

y

x
y ′

(a) (b)

(c)

Figure 9.3. The double-connectedness of the parameter space of SO(3, r).

p(x2)

p(x1)

p(x2)

p(x1)

Figure 9.2. (a) A simply connected space. (b) A multiply connected space

(schematic).
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Thus one may conclude that the parameter space Ù of SO(3, r) is doubly connected.

Accordingly, from the general discussion given in this section, we may expect that

there exist single-valued as well as double-valued irreps for SO(3, r). These will be

determined from the vector irreps of the universal covering group, which will be

shown to be SU (2) in the next chapter.
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The representations of the rotation group

As has been shown in Section 9.4, the parameter space of the proper rotation group

SO(3, r) is doubly connected so that there exist single-valued as well as double-valued

representations for SO(3, r). In this chapter, it will be shown that the special unitary

group SU (2) is simply connected and homomorphic to SO(3, r) with two-to-one

correspondence. Accordingly, the representations of SU (2) are single-valued, but these

provide all the single- and double-valued representations of SO(3, r). In particular,

SU (2) itself provides a 2 3 2 matrix representation of SO(3, r) that is double-valued.1

As was mentioned at the end of Section 4.1, an element of SU (2) is called a spinor

transformation, because of the role it plays in the theory of the spinning electron.

Moreover, the double-valued unirreps of SO(3, r) given by the unirreps of SU (2) are

called the spinor representations of SO(3, r). We shall begin with a discussion on the

special unitary group SU (2).

10.1 The structure of SU(2)

10.1.1 The generators of SU(2)

Previously, in Section 4.1, we have shown that an element of the special unitary group

in n dimensions SU (n) is expressed by a matrix of the form U0 � exp K0, where K0 is

an anti-Hermitian traceless matrix. Thus, we may write a general element of S of

SU (2) in the form

S(è) � exp [ÿiH(è)] (10:1:1a)

where H(è) is a 2 3 2 traceless Hermitian matrix that can be expressed by

H(è) � 1

2

è3 è1 ÿ iè2

è1 � iè2 ÿè3

� �
(10:1:1b)

with three real parameters è1, è2 and è3. These may be regarded as three components

of a vector è � (è1, è2, è3) that will be called the rotation vector of the spinor

transformation S analogous to the case of a rotation R(è) 2 SO(3, r). The numerical

factor 1
2

in (10.1.1b) is introduced to correlate è to the rotation vector of a rotation

R(è) 2 SO(3, r).

In terms of the Pauli spin vector ó with the components

ó1 � 0 1

1 0

� �
, ó2 � 0 ÿi

i 0

� �
, ó3 � 1 0

0 ÿ1

� �

1 If a group A is homomorphic to a group B with m-to-one correspondence, the group A itself provides an
m-valued representation of the group B while the group B itself provides a single-valued representation of
the group A.



the matrix H(è) of (10.1.1b) can be expressed by the scalar product (è . ó) as follows:

H(è) � 1
2
(è1ó1 � è2ó2 � è3ó3)

� 1
2
(è . ó)

� 1
2
èón; ón � (ó . n) (10:1:2)

where è � jèj is the magnitude of è and n � è=è, the axis-vector of è. Since the Pauli

spin matrices óv are unit involutional satisfying ó 2
í � 1 (í � 1, 2, 3) and also anti-

commute with each other, the spin component ón in the direction of a unit vector n is

also unit involutional, satisfying ó 2
n � 1. From (10.1.1a) and (10.1.2) the general

element of SU (2) is written in the form

S(è) � exp ÿ 1

2
(è . ó)

� �
� exp ÿ 1

2
èón

� �
(10:1:3a)

It follows then that two successive transformations S(è1 n) and S(è2 n) about a given

axis-vector n are additive for the rotation angles:

S(è1 n)S(è2 n) � S((è1 � è2)n) (10:1:3b)

which is quite analogous to the rotations R(è) 2 SO(3, r).

The in®nitesimal generator of S(è), with respect to each component of the rotation

vector è, is de®ned by

ôí � @S(è)

@èí

����
(0:0:0)

� ÿ 1

2
óí; í � 1, 2, 3 (10:1:4a)

These anticommute with each other analogously to the Pauli spin matrices and satisfy

the commutation relations

[ô1, ô2] � ô3, [ô2, ô3] � ô1, [ô3, ô1] � ô2 (10:1:4b)2

The set (ô1, ô2, ô3) de®nes the Lie algebra su(2) which is identical to the so(3, r)

algebra de®ned by (9.3.12a), i.e.

[I1, I2] � I3, [I2, I3] � I1, [I3, I1] � I2 (10:1:4c)

In terms of ô � (ô1, ô2, ô3), the spinor transformation S(è) is rewritten in the

exponential form

S(è) � exp (è . ô) � exp (èôn) (10:1:5)

which is quite analogous to (9.3.12b) for R(è) 2 SO(3, r). From (10.1.4b) and

(10.1.4c), there exists a one-to-one correspondence between the in®nitesimal genera-

tors of SU (2) and those of SO(3, r) under the commutation relations via

ôí $ Ií (í � 1, 2, 3) (10:1:6)

Such a correspondence is called the local isomorphism between two groups, since it

does not necessarily mean that two groups themselves are isomorphic. Actually, it will

be shown later that SU (2) is homomorphic to SO(3, r) via the two-to-one correspon-

dence �S(è)! R(è).

To proceed further we shall calculate the matrix elements of S(è) explicitly. On

expanding the last expression of S(è) given by (10.1.3a) and using ó 2
n � 1, we ®nd that

2 In terms of the vector product notation, (10.1.4b) is expressed by ô 3 ô � ô.
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S(è) �
X1
N�0

(ÿ1)N

(2N )!

1

2
è

� �2N

� (ÿ1)N

(2N � 1)!

1

2
è

� �2N�1

(ÿión)

" #

� ó0 cos
è

2

� �
ÿ ión sin

è

2

� �
(10:1:7a)

where ó0 is the unit matrix in two dimensions. Explicitly,

S(è) �
cos

è

2

� �
ÿ inz sin

è

2

� �
ÿ(inx � ny) sin

è

2

� �
(ÿinx � ny) sin

è

2

� �
cos

è

2

� �
� inz sin

è

2

� �
26664

37775 (10:1:7b)

which may be written in the form

S(è) � S(a, b) � a b

ÿb� a�
� �

; jaj2 � jbj2 � 1 (10:1:7c)

where

a � cos
è

2

� �
ÿ inz sin

è

2

� �
, b � ÿ(inx � ny) sin

è

2

� �
(10:1:7d)

The expression (10.1.7b) is called the Euler±Rodrigues parametrizations of S(è)

whereas the expression (10.1.7c) is called the Cayley±Kline parametrization of S(è).

Note that è is a set of three real independent parameters whereas the set (a, b) is

complex and is not independent because of the normalization condition jaj2 �
jbj2 � 1.

Example. Let cz(è) � R(èez) be a rotation about the z-axis through an angle è and

u0 � R(ðex) be the binary rotation about the x-axis, then a rotation uâ de®ned by

uâ � cz(â)u0 � R(ðhâ); hâ � (cos (â=2), sin (â=2), 0)

is a binary rotation about the unit vector hâ in the x, y plane which makes an angle

â=2 with the x-axis. The corresponding spinor transformations with the rotation

vectors èez and ðhâ are given, from (10.1.7b) and (10.1.7c) by

�cz(è) � S(èez) � eÿiè=2 0

0 eiè=2

� �
� S(eÿiè=2, 0) (10:1:7e)

�uâ � S(ðhâ) � 0 ÿieÿiâ=2

ÿieiâ=2 0

� �
� S(0, ÿieÿiâ=2) (10:1:7f)

Note that �uâ � �cz(â)�u0 � ÿió . hâ, where �u0 � ÿióx. These two spinor transforma-

tions will describe all elements of the spinor groups corresponding to the point groups

C1, Cn, D1 and Dn.

10.1.2 The parameter space Ù9 of SU(2)

From (10.1.7a), we observe that

S(2ðn) � ÿ1, S(4ðn) � S(è � 0) � 1 (10:1:8a)

for any given axis-vector n. Thus, S(è) changes its sign when è makes a complete 2ð
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revolution about an axis-vector n, quite on the contrary to R(è), which is unchanged

after a 2ð rotation, i.e. R(2ðn) � 1. From the periodicity of S(è), the parameter space

Ù9 of SU (2) may be de®ned by

Ù9: 0 < jèj < 2ð (10:1:8b)

where whole surface points 2ðn are regarded as one point in Ù9 because of the

boundary condition S(2ðn) � ÿ1. Then there exists one-to-one correspondence be-

tween S(è) 2 SU (2) and è 2 Ù9:

S(è)$ è 2 Ù9 (10:1:8c)

In fact, for a given spinor transformation S(è), its rotation vector è 2 Ù9 is uniquely

determined, from (10.1.7a) and (10.1.7b), by

tr S(è) � 2 cos
è

2

� �
, (Sy ÿ S)

�
2i sin

è

2

� �� �
� ón (10:1:8d)

except on the surface of Ù9, where è � 2ð and n is inde®nite.

10.1.2.1 The connectedness of SU(2)

One may trivially establish that the parameter space Ù9 of SU (2) de®ned by (10.1.8b)

is simply connected, quite on the contrary to the parameter space Ù of SO(3, r), which

is doubly connected, as was shown in Section 9.4. To see this, let us consider two kinds

of paths that connect two points 1 and 2 in Ù9 (see Figure 10.1) as in the case of

SO(3, r). The path (a) connects two points 1 and 2 directly, whereas the path (b)

connects them after one jump from a surface point x of the parameter sphere to another

surface point x9. Since all points of the surface are regarded as the same point, the path

1! x � x9! 2 is a continuous one in Ù9. Now, the path (b) can be made to coincide

with the path (a) by a continuum distortion because one can move the point x to the

point x9 and remove them together as one point from the surface. Thus SU (2) is simply

connected, in contrast to the double-connectedness of SO(3, r): the difference is due to

the boundary condition that S(2ðn) � ÿ1 for SU (2) whereas R(ÿðn) � R(ðn) for

SO(3, r).

Since SU (2) is simply connected, its representations are all single-valued ordinary

representations or vector representations in short. Now, on account of the pseudo-

periodicity S(2ðn) � ÿ1, one can express the whole set of SU (2) by a set f�S(è)g,
where è is the rotation vector in the parameter domain Ù (0 < jèj < ð) of SO(3, r).
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Then there exists a two-to-one correspondence between SU (2) � f�S(è)g and

SO(3, r) � fR(è)g via

�S(è)! R(è); è 2 Ù (10:1:9)

Note that the two-to-one correspondence �S(ðn)! R(ðn) holds on the surface of Ù
as well. In the next section it will be shown that this correspondence leads to their two-

to-one homomorphism.

10.1.3 Spinors

A spinor in V (2) is a two-component vector ø � (ø1, ø2) that transforms according to

a spinor transformation

ø9 � S8(è)ø; S(è) 2 SU (2) (10:1:10)

under a rotation characterized by the rotation vector è � èn. Since S(2ðn) � ÿ1, the

spinor ø does change sign when one applies a complete revolution 2ð. The elementary

spinors î1 and î2 introduced by (6.3.11) provide the natural basis î � [î1, î2] of

SU (2), as was shown by (6.3.12). In terms of the two elementary spinors, the general

spinor ø in V (2) is expressed by ø � ø1î1 � ø2î2: it may also depend on the spatial

coordinates, as will be discussed in Section 10.4. In quantum mechanics, a spinor

describes a spin state of the electron; e.g. î1 and î2 are the eigenvectors of the z-

component of the spin sz � ó z=2 belonging to the eigenvalues 1
2

and ÿ1
2
, respectively.

According to Dirac (1974), `spinors, like tensors, are geometric objects embodied in

a space and have components that transform linearly under transformations of the

coordinates of the space. Spinors differ from tensors in that they change signs when

one applies a complete revolution about an axis, while tensors are unchanged.'

Remark 1. For the sake of comparison with the existing literature, we shall give the

parameterization of S(è) by the Euler angles á, â and ã. Let [ex, e y, ez] be a Cartesian

basis, then, analogously to (4.3.18), we have

S(è) � S(á, â, ã) � S(ãez)S(âe y)S(áez) (10:1:11a)

Using (10.1.7b) for each factor on the right-hand side, the Cayley±Kline parameters

are given by

a � eÿi(ã�á)=2 cos
â

2

� �
, b � ÿeÿi(ãÿá)=2 sin

â

2

� �
(10:1:11b)

This parametrization will be used very seldom in this book.

10.1.4 Quaternions

When è � ð we have, from (10.1.7a),

S(ðn) � ÿión (10:1:12a)

which may be interpreted as the p (pseudo)-binary rotation about the axis-vector n: it

satis®es (ÿió n)2 � ÿ1, where 1 is the 2 3 2 unit matrix. The p-binary rotations about

the x-, y- and z-axes are expressed by

�2x � ÿióx, �2 y � ÿió y, �2z � ÿióz
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Then, these satisfy the following algebraic relations:

�22
x � ÿ1, �2x

�2 y � �2z � ÿ�2 y
�2x (x, y, z cyclic) (10:1:12b)

that is, �2x and �2 y anticommute; whereas the ordinary binary rotations 2x and 2 y

commute. From (10.1.12b), it follows that the set of eight elements

D92 � f�1, ��2x, ��2 y, ��2zg (10:1:13)

forms a group called the quaternion group or the double group of the four-group D2,

since D92 is homomorphic to D2.

Extending the axis-vector notation of the N-fold rotation Nn � R((2ð=N )n) to the

spinor transformation we write, from (10.1.7a),

�Nn � S
2ð

N
n

� �
� cos

ð

N

� �
1� sin

ð

N

� �
(nx

�2x � ny
�2 y � nz

�2z)

� q01� qx
�2x � q y

�2 y � qz
�2z (10:1:14)

where q0, qx, q y and qz are real coef®cients normalized by

q2
0 � q2

x � q2
y � q2

z � 1

Hereafter, the spinor transformation �Nn may be conveniently called the �N -fold rotation

about the axis-vector n; e.g.

�3xyz � (1� �2x � �2 y � �2z)=2, �4x � (1� �2x)=
p

2, �2xy � (�2x � �2 y)=
p

2

(10:1:15)

Note that there exists a simple correlation between an axis-vector symbol and the

corresponding set of the quaternion coef®cients fq0, q1, q2, q3g for an element of a

cubic group. From this correlation, one can easily write down all elements of the

spinor group O9 corresponding to the octahedral group O and construct the multi-

plication table of O9; see Table 11.2 later.

Historically, Hamilton is the one who introduced a quantity called a quaternion Q as

an extension of a complex number. It is nothing but a spinor transformation multiplied

by a non-zero real number q: Q � qS(è). Then a product of two quaternions is also a

quaternion.

10.2 The homomorphism between SU(2) and SO(3, r)

We shall begin with the following lemma (Kim 1981c).

Lemma 10.2.1. Under a similarity transformation by S(á) 2 SU (2), the generator set

ô � [ô1, ô2, ô3] of SU (2) de®ned by (10.1.4a) transforms like a basis of the rotation

R(á) 2 SO(3, r):

S(á)ôìS(á)ÿ1 �
X
ó

ôó Ró ì(á); ì � 1, 2, 3 (10:2:1)

where S(á) � exp (áôn), R(á) � exp [áù(n)] and ù(n) is the in®nitesimal rotation

about the unit vector n � á=á de®ned by (4.3.2a).

The proof is based on the in®nitesimal transformations. Let á be an in®nitesimal

angle, then
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S(á) � (1� áôn), R(á) � (1� áù) (10:2:2)

Thus, to the ®rst order in á, we have for the left-hand side of (10.2.1)

(1� áôn)ôì(1ÿ áôn) � ôì � á[ôn, ôì] �
X
ó

ôó (1� áù)ó ì

with use of

[ôn, ôì] � [ô 3 n]ì �
X
ó

ôó ùó ì (10:2:3)

The case for a ®nite á given by (10.2.1) can be built up by successive in®nitesimal

transformations.

Exercise. The Dirac representation of the in®nitesimal rotation ù̂ � ù̂(n) is de®ned

by ù̂ �Píìôíùíìôì. Then, ù̂ � ôn so that S(è) � exp (èù̂), which is analogous to

R(è) � exp (èù) (Dirac 1974).

Now we are ready to show two basic theorems on SU (2) that lead to the

homomorphism between SU (2) and SO(3, r). Each of these two theorems has an

important signi®cance in its own right.

Theorem 10.2.1. The conjugation of S(è) by S(á) 2 SU (2) simply rotates the

rotation vector è by R(á) 2 SO(3, r):

S(á)S(è)S(á)ÿ1 � S[R(á)è] (10:2:4)

which is quite analogous to the conjugate rotation of R(è) by R(á) 2 SO(3, r):

R(á)R(è)R(á)ÿ1 � R[R(á)è]

Proof. Since S(è) � exp (ô . è), the similarity transformation of the scalar product

(ô . è) with respect to S(á) will provide the proof. Using Lemma 10.2.1, we have

S(á)(ô . è)S(á)ÿ1 �
X
ó,ì

ôó R(á)ó ìèì

� ô . R(á)è

from which follows the required result (10.2.4).

This theorem implies that two spinor transformations S(è) and S(è9) are equivalent

with respect to SU (2) if and only if their rotation vectors è and è9 in the parameter

domain Ù9 are equivalent with respect to SO(3, r). Thus spinor transformations with

the same rotation angle are in the same class of SU (2), quite analogously to SO(3, r).

Now, when we describe SU (2) by f�S(è); 0 < jèj < ðg, the classes of S(è) and

ÿS(è) are different except when jèj � ð. This follows from their characters:

tr [�S(è)] � �2 cos
è

2

� �
, 0 < jèj < ð (10:2:5)

which are different unless è � ð. When è � ð, we have ÿS(ðn) � S(ÿðn) so that

the classes of S(ðn) and ÿS(ðn) are combined into a single class of SU (2), because
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ðn and ÿðn are equivalent with respect to SO(3, r). (This is true for a subgroup of

SU (2), if and only if ðn is two-sided.)

Exercise. Let S(ðv) � �2v be a �2-fold rotation about a unit vector v and S(á) be a

spinor transformation about a rotation vector á perpendicular to v. Show that

S(á)�2v � �2vS(á)y � �2h, h � R(á=2)v

This is analogous to (4.3.15c):

R(á)2v � 2v R(á)� � 2h

where 2v is an ordinary two-fold rotation about the unit vector v in three dimensions.

This means that a simple multiplication of �2v by S(á) from the left rotates the axis

vector v through an angle á=2 that is half the angle rotated by the conjugation with

S(á). For the proof show that �2h
�2yv � S(á), analogously to (4.3.15b).

Theorem 10.2.2. The group SU (2) � f�S(è)g is homomorphic to SO(3, r) �
fR(è)g via the two-to-one correspondence in the parameter space Ù of SO(3, r):

�S(è)! R(è), è 2 Ù (10:2:6a)

that is, it preserves multiplication such that for è1, è2, è3 2 Ù

S(è1)S(è2) � �S(è3), if R(è1)R(è2) � R(è3) (10:2:6b)

where the � signs depend on è1 and è2.

Proof. Let Si � S(èi) and Ri � R(èi). Then, substitution of S1S2Sÿ1
3 into S(á) of

(10.2.1) yields

(S1S2Sÿ1
3 )ôì(S1S2Sÿ1

3 )ÿ1 �
X
ó

ôó (R1 R2 Rÿ1
3 )ó ì; ì � 1, 2, 3 (10:2:7)

Thus if R1 R2 � R3, then S1S2Sÿ1
3 commutes with the complete set of the generators

fôìg of SU (2) and hence is a constant. Now, let S1S2Sÿ1
3 � k, then, from det S j � 1,

we obtain k2 � 1, for S j being a special unitary matrix in two dimensions. Accord-

ingly k � �1 so that S1S2 � �S3, which proves (10.2.6b).

To understand the homomorphism relation (10.2.6b) consider rotations about a

given axis of rotation: then the rotation angles are additive for two successive rotations,

i.e. R(è1)R(è2) � R(è1 � è2) and S(è1)S(è2) � S(è1 � è2). Now, let

R(è1)R(è2) � R(è3), where ÿð, è1, è2, è3 < ð, then we have è1 � è2 � è3 or

è1 � è2 � è3 � 2ð, so that

S(è1)S(è2) � S(è3), if è1 � è2 � è3

ÿS(è3), if è1 � è2 � è3 � 2ð

�
which explains the homomorphism relation for this simple case.

The homomorphism (10.2.6a) means that SO(3, r) is a three-dimensional represen-

tation of SU (2) whereas SU (2) is a two-dimensional double-valued representation of

SO(3, r). Thus, SU (2) may be called the double rotation group or the basic spinor

representation of SO(3, r). From the single connectedness of SU(2) and the homo-

morphism (10.2.6a), we can state that SU (2) is a universal covering group of SO(3, r)

in the sense that all representations (single- or double-valued) of SO(3, r) are provided
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by the vector representations of SU (2). SU (2) is often called a central extension of

SO(3, r), since the kernel N of the homomorphism, N � f�S(è � 0) � �1g, is in the

center of SU (2). Further generalization of this concept will be discussed in the theory

of projective representations in Chapter 12.

The concept of the double group can easily be extended to a proper point group P

that is a subgroup of SO(3, r). Let P � fR(èi); èi 2 Ùg be a point group and let

P9 � f�S(èi)g be the corresponding set of elements of the order jP9j � 2jPj in SU(2).

Then, from Theorem 10.2.2, P9 also forms a group homomorphic to P and is called

the double group of P. Thus, the single- and double-valued representations of P are

provided by the vector representations of P9 (see Chapter 11 for further detail).

Remark. From (4.3.10) and (10.1.12a), a binary rotation R(ðn) and the correspond-

ing p-binary rotation S(ðn) are given by

R(ðn) � 2nnÿ 1, S(ðn) � ÿión (10:2:8)

These show explicitly that R(ðn) � R(ÿðn) whereas S(ÿðn) � ÿS(ðn) 6� S(ðn),

exhibiting the two-to-one correspondence between f�S(ðn)g and fR(ðn)g on the

surface of Ù.

10.3 The unirreps D( j)(è) of the rotation group

As discussed in Section 10.1, the parameter space Ù9: 0 < jèj < 2ð of SU(2) is singly

connected and thus its representations are vector representations. In this section, we

shall ®rst construct the unirreps of SU(2) from the monomials of the two elementary

spinors î1 and î2 and discuss their irreducibilities and completeness. Then we classify

these unirreps as the single- and double-valued unirreps of the rotation group SO(3, r),

and discuss their orthogonality relations.

According to (6.3.12), the natural basis [î1, î2] of the spinor transformation S(a, b)

is described by the two elementary spinors:

î1 � 1

0

� �
, î2 � 0

1

� �
Under an element S(a, b) 2 SU (2) given by (10.1.7c), the basis transforms according

to

[î91, î92] � S8[î1, î2] � [î1, î2]
a b

ÿb� a�
� �

i.e.

î91 � S8î1 � aî1 ÿ b�î2

î92 � S8î2 � bî1 � a�î2 (10:3:1a)

where S8 � S(a, b) is regarded as an operator acting on the basis vectors.

To construct the irreducible representations of SU (2), we introduce a complete set

of homogeneous monomials of degree 2 j de®ned by the direct products of the

elementary spinors î1 and î2 as follows:
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ö j
m(î1, î2) � î j�m

1 î jÿm
2 =[( j� m)!( jÿ m)!]1=2; m � j, jÿ 1, . . . , ÿ j;

j � 0, 1
2
, 1, . . . (10:3:1b)

where j is an integer or half integer but j� m are integers. The numerical factors in

(10.3.1b) are introduced in order to achieve the greatest symmetry for the resulting

representations. Since the monomial set for a given j is closed under the linear

transformation (10.3.1a), it will provide a (2 j� 1) 3 (2 j� 1) matrix representation

D( j)(è) � D( j)(S(è)) of SU (2) de®ned by

S8ö( j)
m (î1, î2) � ö( j)

m (S8î1, S8î2)

� (aî1 ÿ b�î2) j�m(bî1 � a�î2) jÿm=[( j� m)!( jÿ m)!]1=2

�
Xÿ j

m9� j

ö( j)
m9(î1, î2)D( j)[S(è)]m9m (10:3:2)

To calculate the explicit form of the representation D( j), it is most convenient to

express the binomial expansion in (10.3.2) in the following form:

(aî1 ÿ b�î2) j�m(bî1 � a�î2) jÿm �
X

t

�
j� m

t

�
(aî1) t(ÿb�î2) j�mÿ t

X
k

�
jÿ m

k

�
(bî1) jÿmÿk(a�î2)k

Then, comparing this with (10.3.2), we have m9 � t ÿ mÿ k and obtain

D( j)(è)m9m � D( j)[S(è)]m9m � D( j)[S(a, b)]m9m

� am9�m(ÿb�) jÿm9b jÿm
X

k

[( j� m9)!( jÿ m9)!( j� m)!( jÿ m)!]1=2

(m9� m� k)!( jÿ m9ÿ k)!( jÿ mÿ k)!k!
ÿ
���� a

b

����2
 !k

;

m9, m � j, jÿ 1, . . . , ÿ j (10:3:3)3

where the limit of summation over k is automatically determined by the condition

1=(ÿN )! � 0, which holds for any positive integer N. The representation D( j) is called

an integral (half integral) representation of SU(2) when j is an integer (half integer).

Note that D(1=2)[S(è)] equals the spinor transformation S(è) itself, for ö1=2 � [î1, î2].

The symmetry properties of the representation D( j)(S) � D( j)(è) are the following.

10.3.1 The homogeneity of D( j)(S)

Since the basis of the representation is a set of 2 j-degree homogeneous monomials,

D( j)(S) must be a 2 j-degree homogeneous function of S such that D( j)(ëS) �
ë2 j D( j)(S) for an arbitrary constant ë: this can be seen by replacing S8 with ëS8 in

(10.3.2). In the special case in which ë � ÿ1, we have

D( j)(ÿS) � (ÿ1)2 j D( j)(S) (10:3:4a)

3 The present representation de®ned by (10.3.2)±(10.3.3) is different from the conventional representation
based on the point transformation introduced by (6.3.2) (cf. Wigner (1962)). Two representations are
mutually complex conjugate (inverse transpose); see also Kim (1969).
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Now, through the homomorphism �S(è)! R(è) given in (10.2.6a), a representation

of SO(3, r) is de®ned by

D( j)[R(è)] � D( j)[�S(è)] � (�)2 j D( j)[S(è)] � (�)2 j D( j)(è) (10:3:4b)

where è 2 Ù of SO(3, r). It is a single-valued (vector) representation of SO(3, r) for

an integral j but a double-valued (spinor) representation of SO(3, r) for a half integral

j. Moreover, from the representation of the homomorphism relation (10.2.6b), we have

D( j)(è1)D( j)(è2) � (�1)2 j D( j)(è3), if R(è1)R(è2) � R(è3) (10:3:4c)

where the � signs depend on è1 and è2. This inconvenient feature of a double-valued

factor (�) in the representations will be effectively controlled if we regard D( j)(è) as a

projective unirrep of SO(3, r) belonging to a factor system, as will be discussed in the

next chapter.

10.3.2 The unitarity of D( j)(S)

It is to be noted from (10.3.3) that the matrix D( j)(S) is transposed by the interchange

m > m9 or by b > ÿb�, which transposes the matrix S. Thus,

D( j)(S)� � D( j)(S�) (10:3:5a)

where � denotes the transpose. Combining this with an obvious complex conjugate

symmetry Dj(S)� � D( j)(S�), we obtain

D( j)(S)y � D( j)(Sy) � D( j)(Sÿ1) � D( j)(S)ÿ1 (10:3:5b)4

which means that D( j)(S) is a unitary representation of SU(2). Here the last equality

follows from the fact that D( j)(S) is a representation of SU(2).

10.3.3 The irreducibility of D( j)(è)

To show this, we shall ®rst consider two special cases of D( j)(S). Firstly, let

è � (0, 0, è), then a � eÿiè=2 and b � 0 from (10.1.7e) so that (10.3.2) leads to a

diagonal matrix

D( j)(0, 0, è)m9m � äm9meÿimè (10:3:6)

Secondly, on setting m9 � j in (10.3.3), the jth row of D( j)(è) is given by

D( j)(è) jm � [(2 j)!=( j� m)!( jÿ m)!]1=2a j�mb jÿm (10:3:7)

Now, according to Schur's lemma, the representation fD( j)(è)g is irreducible, if a

matrix that commutes with all elements of the representation is a constant matrix. To

show this, let W be a matrix that commutes with D( j)(è), i.e.

WD( j)(è)ÿ D( j)(è)W � 0 (10:3:8a)

4 An alternative proof for the unitarity of the transformation D( j)(S) follows from the invariance of the
bilinear form (Unsoeld's theorem)Xj

m�ÿ j

ö( j)
m
yö( j)

m � (î
y
1î1 � î

y
2î2)2 j=(2 j)! � 22 j=(2 j)! (10:3:59)

For further symmetry properties of D( j)(S) see the original work of Kim (1969).
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For the special case in which è � (0, 0, è), D( j) is diagonal, as is given by (10.3.6), so

that the (m9, m)th element of the above equation reduces to

(eÿimè ÿ eim9è)W m9m � 0

which means that W is diagonal, i.e. W m9m � 0 for m9 6� m. Let W � iW m9äm9m i, then

(10.3.8a) takes the form

(wm9 ÿ wm)D( j)(è)m9m � 0 (10:3:8b)

Here, we set m9 � j and use (10.3.7) to obtain, for a ®xed j,

(w j ÿ wm)(a=b)m � 0, for all m

which gives wm � w j for all m and the given j. Thus, any matrix W that commutes

with the representation fD( j)(è)g is a constant matrix; therefore, the representation is

irreducible.

10.3.4 The completeness of the unirreps fD( j)(è); j � 0, 1
2
, 1, . . .g

This will be based on the characters of the unirreps. Since the characters depend only

on the magnitude è of the rotation vector, we may set è � (0, 0, è) in D( j)(è) and

obtain a diagonal matrix as given by (10.3.6). Accordingly, the character ÷( j)(è) of

D( j)(è) is given by

÷( j)(è) � tr D( j)(è) �
Xj

m�ÿ j

eÿimè � sin j� 1

2

� �
è

� ��
sin

è

2

� �
(10:3:9)

where 0 < è < 2ð. From this it follows that the group SU(2) has no irreducible

representation other than fD( j); j � 0, 1
2
, 1, 3

2
, . . .g. Suppose that there exists such a

representation and let f (è) be its character, then, after multiplication by a density

function, it must be orthogonal to all ÷( j)(è) and therefore to

÷(0)(è) � 1, ÷1=2(è) � 2 cos 1
2
è

ÿ �
÷( j)(è)ÿ ÷( jÿ1)(è) � 2 cos ( jè), with j � 1, 3

2
, . . .

However, such a function f (è) must vanish in the region 0 < è < 2ð according to

Fourier's theorem, because if we let è=2 � ö and l � 2 j then fcos ( jè)g � cos (lö);

l � 0, 1, 2, . . .g forms a complete set of functions in the interval 0 < ö < ð.

10.3.5 Orthogonality relations of D( j)(è)

Before formulation of the orthogonality relations of the unirreps D( j)(è) of SU(2), it

may be worthwhile to verify the orthogonality relations of the characters ÷( j)(è) given

by (10.3.9) via direct integration. As will be shown shortly in (10.3.14), the Hurwitz

density function for SU(2) is given by

r9(è) � sin2 (è=2)=(4ð2è2), 0 < è < 2ð (10:3:10)

which is half of r(è) of SO(3, r) given by (9.2.11). From this and (10.3.9), the

orthogonality relations for the characters ÷( j)(è) are shown explicitly as follows:
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�2ð

0

÷( j)(è)�÷( j9)(è)r9(è)4ðè2 dè � 1

ð

�2ð

0

sin j� 1

2

� �
è

� �
sin j9� 1

2

� �
è

� �
dè � ä jj9

(10:3:11)

Now, let è � (è, W, j), where W and j are the polar angles of è, and let

D( j)(è) � D( j)(è, W, j). Then, with use of the density function r9(è) given by

(10.3.10), the orthogonality relations of the unirreps D( j)(è) of SU(2) are expressed as

follows:

1

4ð2

�2ð

è�0

sin2 è

2

� �
dè

�ð
W�0

sin W dW
�2ð

j�0

D( j)
íì(è, W, j)�D

( j9)
í9ì9(è, W, j) dj �

(2 j� 1)ÿ1ä jj9äíí9äìì9 (10:3:12a)

These integrals are over the parameter domain Ù9 � (0 < jèj < 2ð) of SU(2). If we

use the two-to-one correspondence �S(è)! R(è) for è 2 Ù � (0 < jèj < ð), the

integration domain Ù9 can be reduced to the parameter domain Ù of SO(3, r); in fact,

using the homogeneity relation D( j)(ÿS(è)) � (ÿ1)2 j D( j)(S(è)), the integral

(10.3.12a) is reduced to

lhs of (10:3:12a) � [1� (ÿ1)2 j�2 j9]

�ð
è�0

I
jj9
íí9,ìì9(è) dè (10:3:12b)

where I(è) is de®ned by the integrand of (10.3.12a). Note that the numerical factor

f ( j, j9) � [1� (ÿ1)2 j�2 j9] is due to the representation of the kernel N � fE, E9g of

the two-to-one homomorphism SU (2)! SO(3, r). If one of j and j9 is an integer and

the other is a half integer, then f ( j, j9) � 0 so that both sides of (10.3.12a) are

identically zero: 0 � 0. On the other hand, if both j and j9 are either integers or half

integers, we have f ( j, j9) � 2, so that the orthogonality relations (10.3.12a) reduce to

the integrals over the parameter domain Ù of SO(3, r):

1

2ð2

�ð
0

sin2 è

2

� �
dè

�ð
0

sin W dW
�2ð

0

D( j)(è, W, j)�íìD( j9)(è, W, j)í9ì9 dj �

(2 j� 1)ÿ1ä jj9äíì9äìì9 (10:3:13)

Here, the Hurwitz density function is that of SO(3, r) given by (9.2.11). Accordingly,

these may be regarded as the orthogonality relations for the unirreps of SO(3, r) �
fR(è)g in the parameter space Ù: 0 < jèj < ð. They are identical in form for the

vector unirreps and for the double-valued spinor unirreps of SO(3, r). However, they

do not apply for relations between vector and spinor unirreps.

10.3.6 The Hurwitz density function for SU(2)

According to (9.2.8a), the density function r9(è) for SU(2) is calculated from a product

S(è9) � S(è)S(EE) in SU(2), where EE � (E1, E2, E3) is an in®nitesimal rotation vector.

Since all rotation axes in the parameter domain Ù9 are equivalent, r9(è) should depend

only on the angle of rotation è. Thus the product S(è9) may be calculated through

S(è9) � S(0, 0, è)S(EE). Using (10.1.7b) we obtain

S(è9) � (1ÿ iE3=2)eÿiè=2 ÿ1
2
(iE1 � E2)eÿiè=2

1
2
(ÿiE1 � E2)eiè=2 (1� iE3=2)eiè=2

� �
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which is correct to the ®rst order in E � jEEj. From the traces of both sides, we have

2 cos (è9=2) � 2 cos (è=2)ÿ E3 sin (è=2)

with è9 � jè9j. This gives, to the ®rst order in E,

è9 � è� E3

The axis-vector n9 of the new rotation vector è9 is determined by applying (10.1.8d)

on S(è9), i.e.

(ó, n9) � (S(è9)y ÿ S(è9))=[2i sin (è9=2)]

From è9 and n9 thus determined, the three components of the rotation vector è9 � è9n9
are given by

è91 � (è=2)[E1 cot (è=2)ÿ E2]

è92 � (è=2)[E2 cot (è=2)� E1]

è93 � è� E3

Thus, the required Jacobian is given by

@(è91, è92, è93)

@(E1, E2, E3)
�

(è=2) cot (è=2) ÿè=2 0

è=2 (è=2) cot (è=2) 0

0 0 1

��������
��������

� è2=[4 sin2 (è=2)]

which is the same as the Jacobian for SO(3, r) given by (9.2.11). Finally, from

(9.2.8c), the density function of SU(2) is given by

r9(è) � 4r90 sin2 (è=2)=è2

Since the parameter space Ù9 � (0 < jèj < 2ð) for SU(2) is given by a sphere of

radius 2ð, upon normalization via�
dR �

�2ð

0

r9(è)4ðè2 dè � 16ð2r90 � 1

we obtain

r9(è) � sin2 (è=2)=[4ð2è2]; 0 < è < 2ð (10:3:14)

which is half of the density function r(è) of SO(3, r) given by (9.2.11). This is

understood since the radius of the parameter sphere Ù9 of SU(2) is twice that of the

parameter sphere Ù of SO(3, r).

10.4 The generalized spinors and the angular momentum eigenfunctions

10.4.1 The generalized spinors

A two-component spinor ø(r) that depends on the space coordinate r can be expressed

by a linear combination of the elementary spinors î1 and î2 as follows:

ø(r) � ø1(r)

ø2(r)

� �
� î1ø1(r)� î2ø2(r) (10:4:1)
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where ø1(r) and ø2(r) are simply functions of the space point r. A general rotation

characterized by a rotation vector è affects the position vector r as well as the spinor

basis [î1, î2]. Therefore, the general spinor transformation may be expressed by

ø(r)! ø9(r9) � S8(è)ø(Rÿ1 r9) � S8(è)R8(è)ø(r9) (10:4:2)

where r9 � R(è)r. Here the product of two operations S8 and R8 is an element of the

direct product group SU (2) 3 SO(3, r) and their order is irrelevant: they commute

with each other because S8 acts on the spinor basis [î1, î2] whereas R8 acts on the

coef®cients ø1(r) and ø2(r).

The general spinor transformation given above may be expressed in the form

ø9(r) � U8J (è)ø(r) (10:4:3a)

with the total rotation operator U8J (è) de®ned by

U8J (è) � S8(è)R8(è) � exp (ÿiJ . è); J � L� S (10:4:3b)

where J is the total angular momentum operator in quantum mechanics de®ned by the

orbital angular momentum L � (1=i)r 3 = and the spin angular momentum s � 1=2ó,

using R8(è) � exp (ÿiL . è) from (6.4.10) and S8(è) � exp (ÿis . è).

The in®nitesimal generators of U8J (è) 2 SU (2) 3 SO(3, r) with respect to each

component of the rotation vector è are given by ÿiJ � (ÿiJ1, ÿiJ2, ÿiJ3) and their

commutation relations are

[ÿiJ1, ÿiJ2] � ÿiJ3 (1, 2, 3 cyclic) (10:4:4)

which follow from those of L and S.

Since there exists the one-to-one correspondence

U8J (è) � exp (ÿiJ . è)$ S8(è) � exp (ÿió . è=2) (10:4:5)

we can construct all unirreps of SU(2) either through fS8(è)g based on pure spinor

bases or through fU8J (è)g based on angular momentum eigenfunctions that diagonalize

J2 and Jz. These two approaches will provide identical results if we use the phase

convention due to Condon and Shortley (1935), which will be de®ned in the next

section. This means also that we can describe the transformation of the general angular

momentum eigenfunctions under a rotation by the unirreps of SU(2) using the pure

spinor basis. This is one more reason that SU(2) is referred to simply as the rotation

group.

10.4.2 The transformation of the total angular momentum eigenfunctions under the

general rotation U8J

On account of the commutation relations for the total angular momentum operator J

given by (10.4.4), there exists a set of simultaneous eigenfunctions that diagonalizes

J 2 and Jz:

J 2ø( j, m) � j( j� 1)ø( j, m)

Jzø( j, m) � mø( j, m) (10:4:6a)

where m � j, jÿ 1, . . . , ÿ j for a given j that is an integer or a half integer. It is well
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established that the above set of eigenfunctions fø( j, m)g is determined by the set of

equations

Jzø( j, m) � mø( j, m)

J�ø( j, m) � eiä[( j� m)( j� m� 1)]1=2ø( j, m� 1);

m � j, jÿ 1, . . . , ÿ j; j � 0, 1
2
, 1, 3

2
, . . . (10:4:6b)

where J� � Jx � iJy are the ladder operators and ä is an arbitrary real number. We set

ä � 0 following the Condon±Shortley convention. From (10.4.6b), the matrix repre-

sentation of J � (Jx, Jy, Jz) is completely determined by the set of the eigenfunctions

fø( j, m)g with the convention that ä � 0. Accordingly, we can introduce a representa-

tion of the general rotation U8J � exp (ÿiJ . è) 2 SU (2) 3 SO(3, r) based on the set

fø( j, m)g as follows:

U8Jø( j, m) � exp (ÿiJ . è)ø( j, m)

�
X

m9

ø( j, m9)D( j)(è)m9m (10:4:7)

On account of the one-to-one correspondence (10.4.5), the representation D( j) also

provides the representation of SU(2). In the following, we shall show that this

representation D( j)(è) is identical to the unirrep D( j)(è) de®ned by (10.3.3) from the

pure spinor basis ö( j, m) � ö j
m(î1, î2). If this is the case, we can describe the

transformation of angular momentum eigenvectors in quantum mechanics by the

representation theory of SU (2). The following theorem holds (Kim 1983b).

Theorem 10.4.1. Under the general rotation UJ (è) � exp (ÿiJ . è), a set of 2 j� 1

total angular momentum eigenfunctions fø( j, m)g for a system of any number of

electrons transforms according to the unirrep D( j)(è) of SU(2) de®ned by (10.3.2)

provided that the set fø( j, m)g satis®es the phase convention due to Condon and

Shortley.

Proof. Since any set of angular momentum eigenfunctions that satis®es (10.4.6a) or

(10.4.6b) with the Condon±Shortley convention de®nes the same representation D( j)

de®ned by (10.4.7), all that is necessary is to construct a special set of angular

momentum eigenfunctions that can easily be shown to transform according to the

unirrep D( j) of SU(2). For this purpose, we introduce a set of pure spin angular

momentum eigenfunctions fÖ( j, m)g that satis®es (10.4.6b): for a system of 2 j

electrons, it is given by a set of symmetrized spinors

Ö( j, m) �

[(2 j)!( j� m)!( jÿ m)!]ÿ1=2
X

P

Pî1(1)î1(2) . . . î1( j� m)î2( j� m� 1) . . . î2(2 j)

(10:4:8)

where î1 and î2 are the elementary spinors which transform according to (10.3.1a)

and the summation is over (2 j)! permutations P of the 2 j electrons 1, 2, . . . , 2 j.

Here the Condon±Shortley convention amounts to the positive sign convention for
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the square root in (10.4.8). Now, let s(n) (� ó(n)=2) be the spin of the nth electron

and S be the total spin angular momentum of 2 j electrons. Then direct application of

Sz �
P

nsz(n) and of the ladder operators S� �
P

ns�(n) to Ö( j, m) with use of

s�(n)î1(n) � 0, s�(n)î2(n) � î1(n), sÿ(n)î1(n) � î2(n) and sÿ(n)î2(n) � 0, leads

to

S8zÖ( j, m) � mÖ( j, m)

S8�Ö( j, m) � [( j� m)( j� m� 1)]1=2Ö( j, m� 1)

m � j, jÿ 1, . . ., ÿ j; j � 0, 1
2
, 1, . . . (10:4:9)

which veri®es that the set fÖ( j, m)g indeed satis®es (10.4.6b) and hence (10.4.6a)

with J � S, in the pure spinor space. Comparison of the basis fÖ( j, m)g with the

basis fö( j, m)g of the unirrep D( j)(è) of SU(2) de®ned by (10.3.1b) shows that the

transformation of the set fÖ( j, m)g under

U8s � exp (ÿiS . è) � eÿis(1).èeÿis(2).è . . . eÿis(2 j).è

is exactly the same as the transformation of fö( j, m)g under S8(è) � exp (ÿis . è) since

each factor both in Ö( j, m) and in Ö( j, m) transforms according to (10.3.1a). Q.E.D.

10.4.3 The vector addition model

Consider two electronic systems characterized by the angular momentum quantum

numbers ( j1, m1) and ( j2, m2), respectively. Then the allowed set of the quantum

numbers ( j, m) for the resultant angular momentum of the coupled system is given by

m � m1 � m2 � j, jÿ 1, . . ., ÿ j

j � j1 � j2, j1 � j2 ÿ 1, . . . , j j1 ÿ j2j (10:4:10)

This rule is called the vector addition model or the triangular rule: it can be

understood by regarding a quantum number as a vector; e.g. j � ( j, m). It is of basic

importance for spectroscopy. The two systems to be combined need not consist of

single electrons, but could themselves be composite systems. It applies even to the

composition of the total electronic quantum number and the nuclear spin, etc. In the

following, we shall give the group theoretical proof of the vector addition model.

Theorem 10.4.2. Let D( j1) and D( j2) be two unirreps of the rotation group SU (2), then

the direct product representation D( j1) 3 D( j2) is simply reducible as follows:

D( j1) 3 D( j2) � D( j1� j2) � D( j1� j2ÿ1) � � � � � D(j j1ÿ j2j) (10:4:11a)

Proof. From their characters ÷( j1) and ÷( j2) given by (10.3.9), we have

÷( j1)÷( j2) �
Xj2

m2�ÿ j2

eÿim2è
Xj1

m1�ÿ j1

eÿim1è

Set m � m1 � m2, and assume j1 > j2 without loss of generality. Then
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÷( j1)÷( j2) �
Xj2

m2�ÿ j2

Xj1�m2

m�ÿ j1�m2

eÿimè

�
Xj2

m2�ÿ j2

Xj1�m2

m�ÿ j1ÿm2

eÿimè �
Xj2

m2�ÿ j2

÷( j1�m2)

� ÷( j1� j2) � ÷( j1� j2ÿ1) � � � � � ÷( j1ÿ j2) (10:4:11b)

Here, in the second step, the lower limit (only the lower limit) of the sum over m is

changed from ÿ j1 � m2 to ÿ j1 ÿ m2: this is allowed because each exp (ÿimè) term in

the sum depends only on m while m2 takes positive as well as negative values with

equal frequencies. It changes the summation domain for (m2, m) from a parallelogram

to a trapezoid (see Figure 10.2) in such a way that it simply rearranges the terms

exp (ÿimè) in the sum.

10.4.4 The Clebsch±Gordan coef®cients

Let fø j1
m1
g and fø j2

m2
g be the bases (or the angular momentum eigenfunctions)

belonging to the unirreps D( j1) and D( j2), respectively. From Theorem 10.4.2, it follows

that the set of resultant angular momentum eigenfunctions fø j
mg 2 D( j) formed by the

linear combinations of the direct product basis functions fø j1
m1
ø j2

m2
g for a given pair

f j1, j2g is expressed by

m

j1 2 j2

j1 1 j2

j 1
 1

 m 2

2j2 j2 m2

2j1 1 j2

2j 1
 1

 m 2

2j1  2 m
2 2j1 2 j22j1 2 j2

2j1 1 j2

Figure 10.2. Change of the summation domain of (m2, m) from a parallelogram

to a trapezoid.
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ø j
m �

X
m1�m2�m

C j
m1 m2

ø j1
m1
ø j2

m2
(10:4:12a)

where the allowed values of j and m are

j � j1 � j2, j1 � j2 ÿ 1, . . . , j j1 ÿ j2j; m � j, jÿ 1, . . . , ÿ j

This is called the Clebsch±Gordan (CG) series. The CG coef®cients fC j
m1,m2
g for a

given m can be chosen to be an orthogonal matrix in which j occurs as the column

index and m1 or m2 as the row index for a given m. Thus the series is converted into

ø j1

m1
ø j2

m2
�
X

j

C j
m1,m2

ø j
m; (m1 � m2 � m) (10:4:12b)

In the following, we shall discuss how to calculate CG coef®cients.

The problem of constructing the eigenfunctions of the resulting angular momentum

by coupling two angular momentum eigenfunctions is equivalent to the problem of

constructing the spinor invariant with respect to SU(2), which corresponds to the

eigenfunction with zero resulting angular momentum formed by the linear combina-

tions of the spinor basis functions belonging to the direct product representation

D( j1) 3 D( j2) 3 D( j3) of SU(2). As a preparation, we shall discuss the spinor invariants,

for which the notions of covariance and contravariance play the fundamental roles

(van der Waerden 1974).

10.4.4.1 Covariance

Let u � [u1, u2] and v � [v1, v2] be two different bases in a two-dimensional vector

space V (2) (e.g. belonging to two different systems). Suppose that these vectors are

covariant, i.e. they are transformed by the same linear transformation T such that

[u91, u92] � [u1, u2]T , [v91, v92] � [v1, v2]T

then, by uniting these equations into a single matrix equation

u91 u92
v91 v92

� �
� u1 u2

v2 v2

� �
T

and taking the determinants of both sides of this equation, we arrive at an invariance

under T:

u91v92 ÿ u92v91 � u1v2 ÿ u2v1 (10:4:13)

provided that det T � 1. Thus, if two bases u and v are covariant with respect to each

other, the determinant u1v2 ÿ u2v1 is invariant under all linear transformations

belonging to the special linear group SL(2). In cases in which u and v are spinor bases,

the invariant is called a spinor invariant, for SU(2) being a subgroup of SL(2).

10.4.4.2 Contravariance

Let x � [x1, x2, . . . , xn] and y � [y1, y2, . . . , yn] be two linearly independent vectors

in the n-dimensional linear space V (n). These are said to be contravariant with respect

to each other if their simple scalar product

(x, y) � x1 y1 � x2 y2 � � � � � xnyn

is invariant under the linear transformations x9 � xA and y9 � yB in V (n). The

invariance requires
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(x9, y9) � (xA, yB) � (x, AB� y) � (x, y)

where B� is the transpose of B. Hence

AB� � 1 or B � A�ÿ1 � A# (10:4:14)

The transpose±inverse A�ÿ1 of a matrix A is called the contravariant matrix of A and

denoted by A#.

For example, for an orthogonal matrix R, the contravariant matrix is R itself, i.e.

R# � R. For a unitary matrix U , the contravariant matrix is the complex conjugate,

i.e. U # � U�. This is consistent with the fact that a simple scalar product (x, y) is

invariant under an orthogonal transformation whereas a Hermitian scalar product

hx, yi � (x�, y) is invariant under a unitary transformation.

Following van der Waerden (1974), we shall ®rst discuss the spinor invariants of a

two-spin system, for its simple extension leads to the invariants of the three-spin

system. Let u � [u1, u2] and v � [v1, v2] be two elementary spinor bases (e.g.

belonging to different systems) which transform according to SU(2). Then, from

(10.4.13), we have the monomial invariants under SU(2)

G j � (u1v2 ÿ u2v1)2 j=(2 j)!; j � 0, 1
2
, 1, . . .

Expansion of this yields

G j �
X

m

u
j�m
1 u

jÿm
2

[( j� m)!( jÿ m)!]1=2

(ÿ1) jÿmv jÿm
1 v j�m

2

[( jÿ m)!( j� m)!]1=2

�
X

m

ö j
m(u)~ö j

m(v) (10:4:15)

where ö j
m(u) is the monomial basis of the unirrep D( j)(S) of SU(2) de®ned by

(10.3.1b), i.e.

ö j
m(u) � u

j�m
1 u

jÿm
2 =[( j� m)!( jÿ m)!]1=2 (10:4:16a)

while ~ö j
m(v) is a basis of the contravariant representation D( j)(S)� de®ned by the

monomial basis ö j
m(u) 2 D( j)(S) as follows:

~ö j
m � (ÿ1) jÿmö j

ÿm 2 D( j)(S)� (10:4:16b)

This is so because the invariant G j is a simple scalar product of two vectors ö j
m(u) and

~ö j
m(v) in the (2 j� 1)-dimensional space. It follows from (10.4.16b) that

D
( j)
m9m(S)� � (ÿ1)m9ÿm D

( j)
ÿm9,ÿm(S) (10:4:16c)

which shows the well-known fact that the complex conjugate representation D( j)(S)�
is equivalent to the original representation D( j)(S) (cf. Equation (16.5.5c)).

For a three-spin system, let u � [u1, u2], v � [v1, v2] and w � [w1, w2] be their

elementary spinor bases, then the three determinants

ä1 � v1w2 ÿ v2w1, ä2 � w1u2 ÿ w2u1, ä3 � u1v2 ÿ u2v1 (10:4:17a)

are invariant under S 2 SU (2) and so are their monomials:

Fk � äk1

2 äk2

2 äk3

3 =(k1!k2!k2!) (10:4:17b)

where k � fk1, k2, k3g is a set of any non-negative integers. Next, we shall convert
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this invariant into a linear combination of the products of three monomial bases

ö j1
m1

(u), ö j2
m2

(v) and ö j3
m3

(w). For this purpose, we expand Fk via the binomial theorem

Fk �
X

í1,í2,í3

(ÿ1)í1�í2�í3

�
k1

í1

��
k2

í2

��
k3

í3

�
3 uk3ÿí3�í2

1 uk2ÿí2�í3

2 vk1ÿí1�í3

1 vk3ÿí3�í1

2 wk2ÿí2�í1

1 wk1ÿí1�í2

2 (10:4:18)

and set

k3 ÿ í3 � í2 � j1 � m1, k1 ÿ í1 � í3 � j2 � m2, k2 ÿ í2 � í1 � j3 � m3

k2 ÿ í2 � í3 � j1 ÿ m1, k3 ÿ í3 � í1 � j2 ÿ m2, k1 ÿ í1 � í2 � j3 ÿ m3

(10:4:19a)

then k1 � k2 � k3 � j1 � j2 � j3, so that

k1 � j2 � j3 ÿ j1 > 0, k2 � j1 � j3 ÿ j2 > 0, k3 � j1 � j2 ÿ j3 > 0;

m1 � m2 � m3 � 0 (10:4:19b)

These recon®rm the triangular rule or the vector addition model for the quantum

numbers f ji, mig. Now, we change the summation variables (í1, í2, í3) of (10.4.18) to

(m1, m2, í � í3g, expressing í1 and í2 by

í1 � j3 ÿ j1 ÿ m2 � í, í2 � j3 ÿ j2 � m1 � í (10:4:20)

with use of the ®rst two equations of (10.4.19a) and (10.4.19b). Then Fk is rewritten in

the desired form

Fk �
X
m1,m2

B j3
m1,m2

ö j1

m1
(u)ö j2

m2
(v)ö j3

m3
(w) (10:4:21)

where m3 � ÿm1 ÿ m2 and the summation over í is absorbed in the linear coef®cients

B, as will be shown in (10.4.23b).

Now, since Fk is a spinor invariant, the coef®cients of ö j3
m3

(w) in (10.4.21) must

form a basis ~ö j3
m3

(u, v) of the complex conjugate representation D(i)�. Thus, from

(10.4.16b), we obtain

ö j3ÿm3
(u, v) � á( j3)(ÿ1) j3ÿm3

X
m1�m2�ÿm3

B j3

m1 m2
ö j1

m1
(u)ö j2

m2
(v) (10:4:22)

where we have introduced a numerical factor á( j3) for the given j3 which will be

chosen to make the transformation orthogonal. Now we rewrite the above in the form

of (10.4.12a), identifying j � j3 and m � ÿm3:

ö j
m(u, v) �

X
m1�m2�m

C j
m1,m2

ö j1
m1

(u)ö j2

m2
(v) (10:4:23a)

Since the basis vectors are all orthonormalized, the CG coef®cients for a given m form

a unitary matrix in which j occurs as the column index and m1 or m2 as the row index.

Let C j
m1,m2

� á jc
j
m1,m2

with á j � á( j), then c j
m1,m2

are given by
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c j
m1,m2

� (ÿ1) j3�m(ÿ1)k1 B j
m1,m2

�
X
í

(ÿ1)í
[( j1 � m2)!( j1 ÿ m1)!( j2 � m2)!( j2 ÿ m2)!]1=2

( j2 � m2 ÿ í)!( jÿ j1 ÿ m2 � í)!( j1 ÿ m1 ÿ í)!

3
[( j� m)!( jÿ m)!]1=2

( jÿ j2 � m1 � í)!í!( j1 � j2 ÿ jÿ í)!
; (m � m1 � m2) (10:4:23b)

where the limits of summation are determined by the relation that 1=(ÿN )! � 0 for a

positive integer N. Thus, for example, if j1 � j2 � j then there remains only one term

with í � 0 in the sum. Since c j
m1,m2

are real, we choose á j real. Then the unitary

matrix iá jc
j
mÿm2,m2

i becomes an orthogonal matrix if á j is determined by the

condition

á2
j

X
m2

(c j
mÿm2,m2

)2 � 1

The calculation of á j from this relation is elementary but rather involved (see

Hamermesch (1962)). We simply write down the result

á j � (2 j� 1)k1!k2!k3!

( j� j1 � j2 � 1)!

� �1=2

. 0 (10:4:23c)

where ki � j1 � j2 � j3 ÿ 2 ji; i � 1, 2, 3 as de®ned by (10.4.19b). This result can be

obtained painlessly if we use the Schwinger representation or the Bargmann represen-

tation of the spin states (see Biedenharn and Van Dam (1965)). The transformation

matrix is related to Dirac's bracket symbol by

h j1 m1 j2 m2j jmi � á jc
j
mÿm2,m2

In Table 10.1 we have given the Clebsch±Gordan coef®cients C j
mÿm2,m2

� á jc
j
mÿm2,m2

for j2 � 1=2; cf. Wigner (1962).

10.4.5 The angular momentum eigenfunctions for one electron

When J equals the orbital angular momentum L, the eigenfunctions de®ned by

(10.4.6a) are described by a set of lth-order spherical harmonics fYl,m(W, j);

m � 0, �1, . . . , �lg, where W and j are the polar angles of the spatial coordinates r

Table 10.1. The Clebsch±Gordan coef®cients for

j2 � 1
2
; C j

mÿm2,m2
� á jc

j
mÿm2,m2

j2 � 1
2

m2 � 1
2

m2 � ÿ1
2

j � j1 � 1
2

j1 � m� 1
2

2 j1 � 1

 !1
2

j1 ÿ m� 1
2

2 j1 � 1

 !1
2

j � j1 ÿ 1
2

ÿ j1 ÿ m� 1
2

2 j1 � 1

 !1
2

j1 � m� 1
2

2 j1 � 1

 !1
2
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of the electron (see Wigner (1962)). Their parities are determined by l, i.e. under the

inversion I which brings r to ÿr (or W and j to ðÿ W and ð� j, respectively) we

have

IYl,m(W, j) � (ÿ1) lYl,m(W, j); m � 0, �1, . . . , �l (10:4:24)

Using Table 10.1, we may write down the eigenfunction ø( j, m; l, 1
2
) by coupling a

spherical harmonic Y1(W, j) and the elementary spinor [î1, î2] as follows:

ø l � 1

2
, m; l,

1

2

� �
� 1

2
� m

2l � 1

� �1=2

Yl,mÿ1=2î1 � 1

2
ÿ m

2l � 1

� �1=2

Yl,m�1=2î2

ø l ÿ 1

2
, m; l,

1

2

� �
� ÿ 1

2
ÿ m

2l � 1

� �1=2

Yl,mÿ1=2î1 � 1

2
� m

2l � 1

� �1=2

Yl,m�1=2î2

(10:4:25)

Since these are linear with respect to î1 and î2, they change the sign after a 2ð
rotation; however, their parities are determined solely by l:

Iø l � 1
2
, m; l, 1

2

ÿ � � (ÿ1) lø l � 1
2
, m; l, 1

2

ÿ �
(10:4:26a)

Note that I does not act on î1 and î2 simply because these are independent of the

spatial coordinates.

Now, for a given half integral j, we have l � j� 1=2, which is either even or odd,

so that the eigenfunction ø( j, m) may be further classi®ed by its parity, i.e. øg( j, m)

and øu( j, m), where g (u) stands for gerade (ungerade) such that

Iøg( j, m) � øg( j, m), Iøu( j, m) � ÿøu( j, m) (10:4:26b)

that is, øg( j, m) stands for a wave vector with an even spatial part whereas øu( j, m)

stands for a wave vector with an odd spatial part. These spinors øg( j, m) and øu( j, m)

provide the basis functions for the direct product group SU (2) 3 O(3, r), where

O(3, r) is the full rotation group de®ned by SO(3, r) 3 Ci, where Ci is the group of

inversion. The gerade and ungerade eigenfunctions for the ®rst few l are easily written

down from (10.4.25): for l � 0 and j � 1
2

øg
1
2
, 1

2

ÿ � � î1, øg
1
2
, ÿ1

2

ÿ � � î2 (10:4:27a)

for l � 1 and j � 1
2

øu(1
2
, 1

2
) � ÿY1,0î1 �p2Y1,1î2

ÿ �
=
p

3

øu
1
2
, ÿ1

2

ÿ � � ÿp2Y1,ÿ1î1 � Y1,0î2

ÿ �
=
p

3 (10:4:27b)
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11

Single- and double-valued representations of point

groups

On account of the homomorphism between SU (2) � f�S(è)g and SO(3, r) � fR(è)g,
there exist homomorphisms between their subgroups. In fact, one can de®ne a proper

double point group P9 < SU (2) that is homomorphic to an ordinary proper point

group P < SO(3, r) via a two-to-one correspondence. Since P9 is a subgroup of

SU(2), its unirreps of P9 may be obtained by reducing the subduced representations of

the unirreps fD( j)g of SU(2) onto P9 (Kim 1981d). Then a unirrep of P9 provides a

single-valued (vector) unirrep or a double-valued (spinor) unirrep of P, analogously to

(10.3.4b). The complication involved with the double-valued representations of the

point groups shall be controlled by regarding them as `projective representations' of P

(Brown 1970, Altmann 1979, Kim 1981b). The discussion developed here may serve

as a prototype example for more general discussions on the projective representations

of a group in general, which will be discussed in Chapter 12.

11.1 The double-valued representations of point groups expressed by the projective

representations

11.1.1 The projective set of a point group

Let P � fR(èi)g < SO(3, r) be a proper point group, then its double group is de®ned

by P9 � f�S(èi)g < SU (2) with the same set of rotation vectors fèig as those in the

parameter space Ù of SO(3, r) (0 < jèij < ð). According to Theorem 10.2.2, the

double group P9 thus de®ned is homomorphic to P through the homomorphism

relations (10.2.6b), i.e.

S(è1)S(è2) � �S(è3), if R(è1)R(è2) � R(è3) (11:1:1)

where the � signs depend on S(è1) and S(è2). The question of when to take the � and

when the ÿ sign arises. To answer this question, we form a subset �P , P9 of the order

j�Pj � jPj whose elements are chosen from P9 by arbitrarily assigning one of �S(èi) to

each R(èi) of P. Then the set �P is in one-to-one correspondence with P. Let Si be an

element of �P corresponding to an element Ri 2 P, then the homomorphism relation is

described by

S1S2 � f (S1, S2)S3, if R1 R2 � R3 (11:1:2)

where f (S1, S2) is a numerical factor de®ned by

f (S1, S2) � 1, if S1S2 2 �P
ÿ1, if S1S2 =2 �P

�
The set of jPj2 numerical factors f f (S1, S2)g is called the factor system and the set �P
is called a projective set of P belonging to the factor system. By the one-to-one



correspondence �P$ P, the double group P9 becomes a projective representation of P

belonging to the factor system f f (S1, S2)g. For simplicity, we assume that �P contains

the unit element E � S(è � 0) of P9, then f (E, E) � 1; in which case, the system is

called the standard factor system.

Obviously there are many ways of choosing a projective set �P of P from the double

group P9. However, it is most desirable to choose the set �P which preserves the class

structure of P, i.e. if R1 � R2 in P, then S1 � S2 in �P. (Here � denotes the equivalence

relative to the respective group.) On account of Theorem 10.2.1, one of the simplest

projective sets which preserves the class structure of a given point group P � fR(èi)g,
namely �P � fS(èi)g, may be given by the following one-to-one correspondence:

R(èi)$ S(èi); 0 < jèij < ð (11:1:3)

through the common rotation vectors with due caution when choosing equivalent

axis-vectors for equivalent binary rotations if they are one-sided.1 For a two-sided

binary rotation R(ðn), utilizing the freedom of choosing either �n or ÿn as the axis-

vector, we may choose the rotation vectors on the positive hemisphere; a domain

de®ned by

ðnz . 0 or ðnz � 0, ðnx > 0 or ðnz � ðnx � 0, ðny � ð

(11:1:4)

This convention is due to Altmann (1979). It can be applied to the point groups

SO(3, r), T, O, Y and Dn with an even n, but not with an odd n, for which any binary

axis is one-sided. The conventions (11.1.3) and (11.1.4) for choosing the projective set
�P for a point group P can easily be extended to an improper point group because the

inversion operator I commutes with any point operation so that, if è1 � è2, then

IR(è1) � IR(è2).

11.1.2 The orthogonality relations for projective unirreps

Any unirrep of a double point group P9 � f�S(èi)g can be obtained by reducing the

subduced representation from a unirrep D( j) of SU(2) de®ned by (10.3.2), since P9 is a

subgroup of SU(2). Let a unirrep of P9 thus obtained be denoted D(á, j), where we have

introduced an additional superscript j to describe the homogeneity property

D(á, j)(ÿS) � (ÿ1)2 j D(á, j)(S) (11:1:5)

in accordance with the homogeneity relation (10.3.4a) of D( j). Then, the homomorph-

ism relation (11.1.2) is expressed in terms of D(á, j) as follows:

D(á, j)(S1)D(á, j)(S2) � [ f (S1, S2)]2 j D(á, j)(S3) (11:1:6)

where Si � S(èi). Since f (S1, S2) � �1 from (11.1.2), we have

[ f (S1, S2)]2 j � 1; j � integer

f (S1, S2); j � half integer

�
Thus, through the one-to-one correspondence S(èi)$ R(èi), the set fD(á, j)(Si) �
P(á, j)(S(èi))g provides a projective representation of P � fR(èi)g < SO(3, r) belong-

1 For one-sided binary rotations, the equivalence R(ðn1) � R(ðn2) leads to S(ðn1) � S(ðn2) by the choice
ðn1 � ðn2, which, however, is automatically satis®ed if the binary rotations are two-sided.
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ing to a factor system f[ f (S1, S2)]2 jg: the set becomes a vector representation of P for

an integral j, whereas for a half-integral j, it is a projective representation of P

belonging to the factor system f f (S1, S2)g de®ned by (11.1.2). For simplicity the

former case is referred to as an integral representation of P whereas the latter case is

referred to as a half-integral representation, analogously to (10.3.4b). Needless to say,

the set fD(á, j)(Si), D(á, j)(ÿSi)g provides a vector representation of the double group

P9 � f�Sig for any value of j.

The orthogonality relations of the projective unirreps of a point group P �
fRig, SO(3, r) follow from those of the vector unirreps of its double group

P9 � f�Sig. Using D(á, j)(ÿSi) � (ÿ1)2 j D(á, j)(Si), they may be expressed as

[1� (ÿ1)(2 j�2 j9)]
X

i

D(á, j)
íì (S(èi))

�D
(á9, j9)
í9ì9 (S(èi)) � (jP9j=dá)ä jj9äáá9äíí9äìì9 (11:1:7)

where èi 2 Ù; jP9j � 2jPj is the order of P9 and dá is the dimensionality of D(á, j). If

one of j and j9 is an integer and the other is a half integer, then [1� (ÿ1)2 j�2 j9] � 0

and ä jj9 � 0 so that both sides of (11.1.7) are identically zero: 0 � 0. This corresponds

to the case in which two projective unirreps of P � fRig belong to the different factor

systems. On the other hand, if both unirreps belong to the same factor system (i.e. both

j and j9 are integers or half integers), we have [1� (ÿ1)2 j�2 j9] � 2 so that the

orthogonality relations (11.1.7) take the formX
i

D(á, j)
íì (èi)

�D
(á9, j9)
í9ì9 (èi) � (jPj=dá)äáá9äíí9äìì9 (11:1:8)

which are identical in form to the case of the vector unirreps of the point group

P � fR(èi)g < SO(3, r) given by (6.5.11a). These correspond to the orthogonality

relations for the single- and double-valued representations of SO(3, r) given by

(10.3.13).

Remark 1. For later use, we shall introduce the concept of the one- or two-sidedness

of a spinor transformation. This is possible because of Theorem 10.2.1. A spinor

transformation S(è) 2 P9 is said to be two-sided (one-sided) with respect to P9 if the

corresponding axis of rotation R(è) is two-sided (one-sided) with respect to the

homomorph P. Thus, if S(è) is two-sided with respect to P9, then there exists a `binary'

element S(ðn) in P9 such that

S(ðn)S(è)S(ðn)ÿ1 � S(ÿè) � S(è)ÿ1 (11:1:9)

where n ? è. This means that the class of S(è) in P9 is ambivalent if and only if S(è)

is two-sided with respect to P9. An analogous statement holds for the point group P

with the exception that the class of a binary rotation R(ðh) is always ambivalent in P,

even if h is one-sided.

Remark 2. Before ending this section, we shall draw an interesting conclusion for

the projective unirreps of a point group P that contains binary rotations that are two-

sided. Let S(ðh) be the spinor representation of a two-sided binary rotation R(ðh),

then, from (11.1.9), there exists another binary axis-vector n perpendicular to h such

that

S(ðn)S(ðh)S(ðn)ÿ1 � ÿS(ðh) (11:1:10)
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Let fD(á, j)(S)g be a unirrep of P9. Then, from the representation of the above equation

we have, using (11.1.5),

tr D(á, j)[S(ðh)] � (ÿ1)2 j tr D(á, j)[S(ðh)]

Accordingly, if j is a half integer we have

tr D(á, j)[S(ðh)] � 0 (11:1:11)

This holds for any half-integral representation in any dimensionality. Now, a one-

dimensional representative of any element of P � fR(èi)g cannot be zero, contra-

dicting (11.1.11). This apparent contradiction is resolved if and only if a point group

with two-sided binary rotations does not have any one-dimensional half-integral

representation. This explains the fact that there exists no one-dimensional half-integral

representation for the groups SO(3, r), Y, T, O and Dn with an even n. It will be

shown, however, that there exist one-dimensional half-integral irreps for Dn with an

odd n. See Table 11.5 later.

11.2 The structures of double point groups

11.2.1 De®ning relations of double point groups

In terms of the projective set �P � fS(èi)g of a point group P � fR(èi)g, its double

group P9 � f�S(èi)g is expressed by

P9 � �P� E9�P, E92 � E (11:2:1)

where E9 � S(2ðn) � ÿ1 is the spinor transformation for the 2ð rotation and E is the

unit element. The kernel N � fE, E9g of the homomorphism between P9 and P is in

the center of P9 so that P9 is called the central extension of P by N. In view of

(11.2.1), the set of de®ning relations (or presentation) of the double group P9 simply

follow from those of P. All that is necessary is to introduce 2ð rotation E9 as a second-

order operator in the center of P9. Thus we have the following presentations of double

point groups:

C9n: An � E9, E92 � E

D9n: An � B2 � (AB)2 � E9, E92 � E

T 9: A3 � B3 � (AB)2 � E9, E92 � E

O9: A4 � B3 � (AB)2 � E9, E92 � E

Y 9: A5 � B3 � (AB)2 � E9, E92 � E (11:2:2)

where A and B are generators of the respective double group P9, E9 is the 2ð rotation

and E is the identity. From the de®ning relations (11.2.2), the 2ð rotation E9 commutes

with any element of the respective group, because it equals some power of each

generator. From E92 � E, it follows that the possible matrix representatives of E9 are

D(E9) � �1 in an appropriate dimensionality, where D(E9) � 1 identi®es a vector

representation of P whereas D(E9) � ÿ1 identi®es a projective or double-valued

(spinor) representation of P. For example, the three-dimensional representation

fR(èi) � D(1)(èi)g of P belongs to the former whereas the two-dimensional spinor

representation P9 � f�S(èi) � �D(1
2
)(èi)g of P � fR(èi)g belongs to the latter.
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An improper double point group is isomorphic either to a proper double point group

P9 or to a direct product group P9 3 Ci, where Ci is the ordinary group of inversion

de®ned by fE, Ig, in which I is the inversion. The presentations for those belonging to

the former case are

C9np (' C92n): (A)2n � E, E92 � E

C9nv (' D92n): An � (B)2 � (AB)2 � E9, E92 � E

D9np (' D92n): (A)2n � B2 � (AB)2 � E9, E92 � E

T 9p (' O9): (A)4 � B3 � (AB)2 � E9, E92 � E (11:2:3)

where A � IA and B � IB are improper elements. There can be no improper point

group isomorphic to Cn with an odd n, or to T and Y, because their canonical

generators are all of odd orders whereas the inversion I is of even order (cf. Equation

(5.5.10)). The double group of a direct product group Pi � P 3 Ci is de®ned by

P9i; P9, I2 � E (11:2:4)

where P9 stands for the de®ning relations for a proper double point group and I is in

the center of P9i. For example, O9i is de®ned by

A4 � B3 � (AB)2 � E9, I2 � [I , A] � [I , B] � E92 � E (11:2:5)

where [I , A] � IAIAÿ1 is the commutator. These de®ning relations are quite effective

for ®nding all projective representations of P9 or all space groups with the point co-

group P9.

11.2.2 The structure of the double dihedral group D9n

From the de®ning relations of D9n given in (11.2.2), we can form the multiplication

table of D9n. Proceeding in a way analogous to that for the multiplication table of Dn

(Table 5.3), we have Table 11.1 for the double group D9n.

Let us ®rst summarize the structure of the group Dn described in Section 5.2 for

comparison. Let cn � R((2ð=n)ez) be the n-fold axis of rotation about the z-axis and

let u0 � R(ðex) be the binary rotation about the x-axis. Then the elements of the group

Dn are given by

ck
n � R

2ðk

n
ez

� �
, uq � cq

nu0 � R(ðhq); k, q � 0, 1, . . . , nÿ 1 (11:2:6)

where uq is a binary rotation about the unit vector hq � (cos (ð=n), sin (ðq=n), 0) on

the x, y plane that makes an angle (ðq=n) with the x-axis.

Table 11.1. The multiplication

table of the double group D9n

Al Al B

Ak Ak� l Ak� l B

Ak B Akÿ l B Akÿ l E9
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Now for the double group D9n, there exists a total of 4n elements in the double

group. These are given by, using (10.1.7e) and (10.1.7f),

�ck
n � S

2ðk

n
ez

� �
� eÿiðk=n 0

0 eiðk=n

� �
� S(eÿiðk=n, 0)

�uq � S(ðhq) � 0 ÿieÿiðq=n

ÿieiðq=n 0

� �
� S(0, ÿieÿiðq=n) (11:2:7)

where k, q � 0, 1, . . . , 2nÿ 1. Here, for convenience, the rotation vectors are ex-

pressed in the parameter domain Ù9 (0 < jèj < 2ð) of SU (2). Note that �uq given

above follows also from �uq � �cq
n�u0:

The symmetry properties of the elements of D9n, from �cn
n � ÿ1, are

�ck�n
n � ÿ�ck

n, �uq�n � ÿ�uq � �uÿ1
q (11:2:8a)

The conjugacy relations are

�uq�ck
n�uÿ1

q � �cÿk
n , �ck

n�uq�cÿk
n � �uq�2k (11:2:8b)

Thus, �ck
n is always two-sided whereas �uq is two-sided only if n is even (consistently

with the case of Dn). Therefore, from (11.1.9), the class of �ck
n is always ambivalent

whereas the class of �uq is ambivalent if and only if n is even. The class structure of D9n
is given by

fEg, fE9g, f�ck
n, �cÿk

n g; k � 1, 2, . . . , nÿ 1

f�uq; q � eveng, f�uq; q � oddg; q � 0, 1, 2, . . . , 2nÿ 1 (11:2:8c)

There exist altogether n� 3 classes for D9n. An analogous class structure holds for the

dihedral group Dn with an even n but not with an odd n, as was shown in Section 5.2.

From (11.2.8a), the class structure of D9n may be expressed in terms of �S(è) with è
in the parameter domain Ù(0 < jèj < ð). For example, the classes of D93 and D94 are

given by

D93: fEg, fE9g, f�3z, �3ÿ1
z g, fÿ�3z, ÿ�3ÿ1

z g, f�u0, �u2, �uÿ2g, fÿ�u0, ÿ�u2, ÿ�uÿ2g
D94: fEg, fE9g, f�4z, �4ÿ1

z g, fÿ�4z, ÿ�4ÿ1
z g, f�2z, ÿ�2zg, f�u0, �u2, ÿ�u0, ÿ�u2g,

f�u1, �uÿ1, ÿ�u1, ÿ�uÿ1g
As has been discussed in (10.2.5), S(è) and ÿS(è) are not equivalent unless they

correspond to two-sided binary rotations.

Now, a projective set �Dn of Dn that preserves the class structure of Dn may be

de®ned by

f�ck
n � S(eÿiðk=n, 0), �uq � S(0, ÿieÿiðq=n)g (11:2:9)

with

k, q � 0, �1, . . . , � n

2
ÿ 1

� �
,

n

2
for an even n

2k, q � 0, �2, . . . , �(nÿ 1) for an odd n

where we have used the positive hemisphere convention (11.1.4) for an even n and the

simple equivalence convention (11.1.3) for an odd n.
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Exercise. Write down the projective sets of D3 and D4 based on (11.2.9), following

(11.1.3) and (11.1.4), respectively.

11.2.3 The structure of the double octahedral group O9

From the elements of the octahedral group O given in (5.1.3a), the projective set �O of

O which preserves the class structure is given by

fEg, f�4x, �4x, �4 y, �4 y, �4z, �4zg
f�3xyz, �3x yz, �3x yz, �3xyz, �3x y z, �3x y z, �3x yz, �3x yzg
f�2x, �2 y, �2zg, f�2xy, �2xz, �2 yz, �2x y, �2xz, �2 yzg (11:2:10)

where use of the positive hemisphere convention (11.1.4) for the binary rotations has

been made because all axis-vectors of O are two-sided. These axis-vectors have been

graphically presented in Figure 5.1. The 2 3 2 matrix representations of all elements

are easily written down in terms of the Euler±Rodrigues parametrization using

(10.1.7b) or the Cayley±Klein parameters given in Table 11.3 later.

The multiplication table for the projective set �O can be easily constructed by the

direct matrix multiplication of the group elements of O9 because they are 2 3 2

matrices. The multiplication table thus obtained is given in Table 11.2, which is a

generalization of the multiplication table, Table 5.6, for the group O. There exists,

however, an alternative method of constructing the multiplication table that is based on

the quaternion expression (10.1.14) of the axis-vector symbol �N n, i.e.

�Nn � S
2ð

N
n

� �
� cos

ð

N

� �
1� sin

ð

N

� �
(nx

�2x � ny
�2 y � nz

�2z) (11:2:11a)

where the elementary quaternions satisfy the algebraic relations

�22
x � ÿ1, �2x

�2 y � ÿ�2 y
�2x � �2z (x, y, z cyclic) (11:2:11b)

The typical elements of the double group O9 are

�3xyz � (1� �2x � �2 y � �2z)=2

�4x � (1� �2x)=
p

2, �2xy � (�2x � �2 y)=
p

2 (11:2:12a)

Observe the simple correlation between an axis-vector symbol and the coef®cients of

the unit quaternions. Analogously to these three expressions, we can write down the

quaternion expressions for all elements of the double group O9; for example,

�3xyz � (1� �2x � �2 y ÿ �2z)=2

�4x � (1ÿ �2x)=
p

2, �2x y � (�2x ÿ �2 y)=
p

2

etc. From these expressions, we can calculate the product of two elements using the

algebraic relations (11.2.11b), e.g.

�3xyz
�2xy � (1� �2x � �2 y � �29z)(�2x � �2 y)=2

p
2

� ÿ(1ÿ �2 y)=
p

2 � ÿ�4 y (11:2:12b)

The same result is obtained from the multiplication table, Table 11.2. For later use, in
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Table 11.3, we shall give the Cayley±Klein (CK) parameter sets for all elements

belonging to the projective set �O of the octahedral group O: these are obtained from

the correlations given by (11.2.12a) or by using (10.1.7d) given in the form

a � cos (ð=N )ÿ inz sin (ð=N ), b � (ÿny ÿ inx) sin (ð=N )

For example, the CK parameters (a, b) for typical elements are

�3xyz: (1ÿ i
z
, ÿ 1

y
ÿ i

x
)=2, �4x: (1, ÿ i

x
)=
p

2, �2xy: (0, ÿ 1
y
ÿ i

x
)=
p

2

Here again observe the simple correlation between an axis-vector symbol and the

corresponding parameter set via z! ÿi, y! ÿ1 and x! ÿi, analogously to

(11.2.12a).

Finally, we observe that the 48 CK parameter sets f�(aí, bí)g for O9 obtained from

Table 11.3 are the roots of the following polynomial equations, on account of the ®xed

condition jaj2 � jbj2 � 1:

a8 � 1 or b8 � 1 or a4 � b4 � �1
4

(11:2:13)

The set of these equations is called the subgroup condition for O9 imposed on the CK

parameters, because the 48 roots f�(aí, bí)g of the set completely reproduce the CK

parameters of all elements of the double point group O9. The 16 roots of a4 � b4 � ÿ1
4

de®ne the eight three-fold rotations in O9, and those of the ®rst two equations in

(11.2.13) together with the ®xed condition de®ne the double group D94 whereas the 16

roots of the remaining equations a4 � b4 � 1
4

provide the parameter sets for the

remaining �4-fold and �2-fold rotations in O9. In the next section, using this subgroup

condition, we shall form the general unirreps of O9 expressed by the CK parameter set

Table 11.3. The Cayley±Klein parameter sets f(aí, bí)g for the elements fS(aí, bí)g
belonging to the projective set �O of the octahedral group O

1. �1: (1, 0) 2. �2x: (0, ÿi)

3. �2 y: (0, ÿ1) 4. �2z: (ÿi, 0)

5. �3xyz: (1ÿ i, ÿ1ÿ i)=2 6. �3x y z: (1� i, 1ÿ i)=2

7. �3x yz: (1� i, ÿ1� i)=2 8. �3x yz: (1ÿ i, 1� i)=2

9. �3x y z: (1� i, 1� i)=2 10. �3x yz: (1ÿ i, ÿ1� i)=2

11. �3x yz: (1ÿ i, 1ÿ i)=2 12. �3xyz: (1� i, ÿ1ÿ i)=2

13. �4x: (1, i)=
p

2 14. �4x: (1, ÿi)=
p

2

15. �4 y: (1, 1)=
p

2 16. 4 y: (1, ÿ1)=
p

2

17. 4z: (1� i, 0)=
p

2 18. �4z: (1ÿ i, 0)=
p

2

19. �2z y: (ÿi, 1)=
p

2 20. �2zy: (ÿi, ÿ1)=
p

2

21. �2zx: (ÿi, i)=
p

2 22. �2zx: (ÿi, ÿi)=
p

2

23. �2x y: (0, 1ÿ i)=
p

2 24. �2xy: (0, ÿ1ÿ i)=
p

2

The number í (� 1ÿ24) assigned to each element S(aí, bí) is the same as that given

in Table 11.2. The Cayley±Klein parameters for the elements belonging to the

projective set �T of the tetrahedral group T are given under í � 1ÿ12.
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(a, b), which will provide the explicit matrix representations of O9 with the parameter

sets f�(aí, bí)g for O9 given by Table 11.3.

11.2.3.1 The class structure of the double group O9
There are in total eight classes for the double group O9 compared with ®ve classes for

the point group O given by (5.1.3a). They may be expressed as follows:

fEg, fE9g, f6�c4g, fÿ6�c4g, f8�c3g, fÿ8�c3g, f3�c2
4, ÿ3�c2

4g, f6�c2, ÿ6�c2g (11:2:14)

with obvious abbreviations; cf. (11.2.10). These elements are all two-sided so that

every class is ambivalent, according to (11.1.9).

11.3 The unirreps of double point groups expressed by the projective unirreps of

point groups

Previously in Section 10.3 we have expressed the complete set of the unirreps

fD( j)[S(a, b)]g of SU(2) via the Cayley±Klein (CK) parametrization of the group

elements. Since a proper double point group P9 � fS(aí, bí)g is a subgroup of

SU (2) � fS(a, b)g, simple substitution of the CK parameters of P9 � fS(aí, bí)g into

the de®ning equation (10.3.2) of D( j)[S(a, b)] may lead to the complete set of the

unirreps of the double group P9. Following Section 11.1, these will be determined as

the projective unirreps of its homomorph P through the projective set �P of P formed

by the convention (11.1.3) or (11.1.4).

11.3.1 The uniaxial group C1

Let cz(è) � R(èez) be a rotation about the z-axis through an angle è, then the group

C1 may be de®ned by fR(èez); ÿð, è < ðg. Via the convention (11.1.3), its

projective set is de®ned by �C1 � fS(èez)g with the elements

�cz(è) � S(èez) � eÿiè=2 0

0 eiè=2

� �
� S(eÿiè=2, 0)

so that the projective set is characterized by the Cayley±Klein parameters

(a � eÿiè=2, b � 0); ÿð, è < ð (11:3:1)

On substituting this into the de®ning equation (10.3.2) for the unirrep D( j)(a, b), we

immediately obtain one-dimensional projective unirreps of C1; via c1(è)$ �cz(è):

M m(è) � a2m � eÿimè; m � 0, �1
2
, �1, . . . (11:3:2)

with the bases ö( j, m) de®ned by (10.3.1b), i.e.

ö( j, m) � î j�m
1 î jÿm

2 [( j� m)!( jÿ m)!]ÿ1=2, j > jmj
From (11.1.6), the projective unirrep M m(è) belongs to the factor system

[ f (S1, S2)]2m: it is an integral (or half-integral) representation of C1, if m is an integer

(or half integer). It is needless to say that the set fM m(è)g given by (11.3.2) provides a

complete set of the unirreps of the double group C91 � fS(èez); ÿ2ð, è < 2ðg,
because it is a complete set of functions of è=2, feÿi2mè=2; 2m � 0, 1, 2, . . .g in the

domain ÿð < è=2 < ð, according to Fourier's theorem.

11.3 Unirreps of double point groups 257



11.3.2 The group Cn

The uniaxial group of the order n is a subgroup of C1 and is de®ned by Cn �
fR((2ðk=n)ez); k � 0, 1, . . . , nÿ 1g. The projective set of Cn is given by �Cn �
fS((2ðk=n)ez)g with the CK parameters

(ak � exp (ÿiðk=n), b � 0); k � 0, 1, . . . , nÿ 1 (11:3:3a)

Thus, substitution of èk � 2ðk=n into è of (11.3.2) provides a total of 2n projective

unirreps of Cn:

M m(èk) � exp (ÿ2iðmk=n); m � 0, � 1

2
, �1, . . . , � nÿ 1

2
,

n

2
(11:3:3b)

Since M m � M m�n, the bases of the unirrep M m are given by ö( j, m) and

ö( j, m� n). The unirrep M m(èk) belongs to the same factor system [ f (S1, S2)]2m as

that for C1. The set fM m(èk)g given by (11.3.3b) also provides a complete set of

unirreps of the double group

C9n � S
2ðk

n
ez

� �
; k � 0, 1, . . . , 2nÿ 1

� �
because it is one-dimensional and the total number of the unirreps equals the order 2n

of the double group C9n.

11.3.3 The group D1

This group is de®ned by adjoining the uniaxial group C1 � fcz(è)g with the binary

rotation u0 � R(ðex) about the x-axis. Accordingly, the elements of the group D1 are

given by

cz(è) � R(èez), uâ � cz(â)u0 � R(ðhâ); ÿð, è, â < ð (11:3:4)

where uâ is a binary rotation about the unit vector hâ � (cos (â=2), sin (â=2), 0) in the

x, y plane which makes an angle â=2 with the x-axis. Since these binary rotations are

all two-sided, their rotation vectors ðhâ are placed on the positive hemisphere in

accordance with the convention (11.1.4). The projective set �D1 of D1 is de®ned by

the elements

�cz(è) � S(èez) � S(a, 0), �uâ � S(ðhâ) � S(0, b) (11:3:5)

where the Cayley±Klein parameters are given, from (10.1.7e) and (10.1.7f), by

(a � eÿiè=2, 0), (0, b � ÿieÿiâ=2); ÿð, è, â < ð

If we substitute these CK parameter sets (a, 0) and (0, b) into the de®ning equation

(10.3.2) of the unirrep D( j) of SU(2) we see that the (2 j� 1)-dimensional representa-

tion D( j) spanned by the spinor basis fö( j, m)g is reduced to a set of two-dimensional

spaces spanned by [ö( j, m), ö( j, ÿm)] with m � j, jÿ 1, . . . , 1 (or 1
2
) and a one-

dimensional space spanned by ö( j, 0) when j is an integer.

Firstly, the one-dimensional representation based on ö( j, 0) with an integral j is

given by

M
( j)
0 [S(a, 0)] � 1, M

( j)
0 [S(0, b)] � (ÿ1) j (11:3:6a)
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which gives two inequivalent unirreps: one with an even j and the other with an odd j.

Secondly, the 2 3 2 representations are given by

M
( j)

m [S(a, 0)] � a2m 0

0 a�2m

� �
M

( j)

m [S(0, b)] � (ÿi)2 j 0 (ib)2m

(ib)�2m 0

� �
(11:3:6b)

These are irreducible due to Schur's lemma because any 2 3 2 matrix W that

commutes with both of these matrices is a constant matrix. Firstly, W is diagonal

because it commutes with a diagonal matrix with all different diagonal elements.

Secondly, a diagonal matrix that commutes with an off-diagonal matrix is a constant

matrix. Now, the traces of these representatives are given by

tr M
( j)

m [S(a, 0)] � 2 cos (mè)

tr M
( j)

m [S(0, b)] � 0 (11:3:6c)

Since these are independent both of j and of the sign of m, the inequivalent 2 3 2

representations may be classi®ed solely by positive values of m, i.e.

m � 1
2
, 1, 3

2
, . . . (11:3:6d)

In fact, we have the following equivalence relations for the representations:

ó x M
( j)

m ó x � M
( j)

ÿm, ó z M
( j)

m ó z � M
( jÿ1)

m (11:3:6e)

where ó x and ó z are the Pauli spin matrices. Thus the numerical factor (ÿ1)2 j in

M
( j)

m [S(0, b)] can be reduced to (ÿi)2m; however, we shall keep the factor (ÿi)2 j as it

is, because it identi®es the basis [ö( j, m), ö( j, ÿm)] of the representation M
( j)

m .

For the 2 3 2 representations it is more convenient to introduce the new basis

[ö�( j, m), öÿ( j, m)] de®ned by

ö�( j, m) � 2ÿ1=2(ö( j, m)� ö( j, ÿm))

öÿ( j, m) � ÿi2ÿ1=2(ö( j, m)ÿ ö( j, ÿm)) (11:3:7)

Then, the corresponding representation of D1 takes the form

Em[cz(è)] � cos (mè) ÿsin (mè)

sin (mè) cos (mè)

� �
Em[uâ] � (ÿi)2 j cos (mâ) sin (mâ)

sin (mâ) ÿcos (mâ)

� �
; ÿð, è, â < ð (11:3:8)

via �D1 $ D1, where m � 1
2
, 1, . . . :

The ®nal results for the integral and half-integral unirreps of D1 are given in Table

11.4. Note that, if the parameter domain is extended to ÿ2ð, è, â < 2ð, then Table

11.4 becomes the unirreps for the double group D91, as it should. According to

(11.1.6), the one-dimensional unirreps given by (11.3.6a) are vector unirreps. When m

is an integer, the two-dimensional unirrep Em is a vector unirrep of D1, but when m is

a half integer it is a projective unirrep belonging to the factor system f (S1, S2) de®ned

by (11.1.2).
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11.3.4 The group Dn

If we compare the projective set �Dn de®ned by (11.2.9) with the projective set �D1
de®ned by (11.3.5), we see that �Dn is obtained from �D1 by the substitutions

è! 2ðk=n, â! 2ðq=n (11:3:9)

with k and q given in (11.2.9). Thus, the same substitutions will provide the projective

unirreps of Dn from those of D1 given by Table 11.4. Firstly, the one-dimensional

unirreps A1 and A2 hold for Dn without modi®cation. Secondly, the two-dimensional

unirrep Em of Dn takes the form

Em(ck
n) � cos (2ðmk=n) ÿsin (2ðmk=n)

sin (2ðmk=n) cos (2ðmk=n)

� �
Em(uq) � (ÿi)2 j cos (2ðmq=n) sin (2ðmq=n)

sin (2ðmq=n) ÿcos (2ðmq=n)

� �
(11:3:10a)

Since these satisfy the symmetry relations Em � Eÿm � Enÿm for ó z Emó z � Eÿm,

the inequivalent unirreps Em are limited to

m � 1
2
, 1, . . . , 1

2
(nÿ 1), n=2 (11:3:10b)

which are irreducible except for m � n=2. When m � n=2, En=2 splits into two one-

dimensional representations denoted B1 and B2, given in Table 11.5.

In Table 11.5, A1 and A2 are vector unirreps, whereas B1 and B2 are vector

(projective) unirreps if n is even (odd). The two-dimensional unirrep Em is a vector (or

double-valued) unirrep if m is an integer (or a half integer) in accordance with the

factor system [ f (S1, S2)]2m from (11.1.6).

Note that the notations B1, B2 and Em could be different from Mulliken's notation,

which does not exist for a double group. The present notation Em for a 2 3 2

representation seems most satisfactory because the suf®x m of Em distinguishes the

integral and half-integral representations of Dn.

There exists a total of n� 3 unirreps for the double group D9n, of which four are

one-dimensional and nÿ 1 are two-dimensional, satisfying the completeness condi-

tion

12 � 12 � 12 � 12 � (nÿ 1)22 � 4n (11:3:11)

Table 11.4. The irreducible (vector and projective) representation of D1

D1 cz(è) uâ Bases

A1 1 1 ö( je, 0)

A2 1 ÿ1 ö( jo, 0)

Em
cos (mè) ÿsin (mè)

sin (mè) cos (mè)

� �
(ÿi)2 j cos (mâ) sin (mâ)

sin (mâ) ÿcos (mâ)

� �
[ö�( j, m), öÿ( j, m)]

1. m � 1, 2, . . . , for vector representations; m � 1
2
, 3

2
, . . . , for double-valued repre-

sentations.

2. ÿð, è, â,ð.

3. je ( jo) for A1 (A2) is an even (odd) integer.
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The completeness is also seen from the fact that the number n� 3 of inequivalent

unirreps equals the number of the conjugate classes of the double group D9n given in

(11.2.8c).

11.3.5 The group O

We shall construct the unirreps of the double group O9 directly subducing the unirreps

fD( j)g of SU (2) de®ned by (10.3.2), if necessary using the subgroup condition

(11.2.13). The ®nal results will be presented as the projective unirreps of the group O.

Firstly, the identity unirrep D(0) of SU (2) subduces the identity unirrep A1 of O9.
Another one-dimensional representation, A2, is obtained by showing that the one-

dimensional space spanned by öÿ(3, 2) is invariant with respect to O9 via the subgroup

condition. Next, the spinor transformation S(a, b) of SU (2) with the basis [ö(1
2
, 1

2
),

ö(1
2
, ÿ1

2
)] simply subduces a 2 3 2 unirrep of O9 denoted E1=2 in Table 11.6; its

explicit representation is given by fS(aí, bí)g with CK parameter sets given by Table

11.3. The 3 3 3 representation D(1) of SU (2) based on [ö(1, 1), ö(1, 0), ö(1, ÿ1)]

also subduces a unirrep of O9. This is then transformed into the unirrep denoted T1 in

Table 11.6 using the subgroup condition (11.2.13). The transformed basis is given by

[ÿiöÿ(1, 1), iö�(1, 1), ö(1, 0)] for O9 or by [x, y, z] for O due to the correspondence

theorem for the relationship between spinor bases and the angular momentum eigen-

functions given by Theorem 10.4.1. Next, the 2 3 2 unirrep E and 3 3 3 representation

Table 11.5. The irreducible (vector and projective) representations of Dn

Dn ck
n uq Bases

A1 1 1 ö( je, 0),

ö�( je, n),

öÿ( jo, n)

A2 1 ÿ1 ö( jo, 0),

ö�( jo, n),

öÿ( je, n)

B1 (ÿ1)k (ÿ1)q�1iè(n) ö�( je, n=2),

öÿ( jo, n=2)

B2 (ÿ1)k (ÿ1)qiè(n) ö�( jo, n=2),

öÿ( je, n=2)

Em
cos (2ðmk=n) ÿsin (2ðmk=n)

sin (2ðmk=n) cos (2ðmk=n)

� �
(ÿi)2 j cos (2ðmq=n) sin (2ðmq=n)

sin (2ðmq=n) ÿcos (2ðmq=n)

� �
[ö�( j, m),

öÿ( j, m)]

1. è(n) � 1 for an odd n, è(n) � 2 for an even n; je ( jo) is a j with an even (odd) integral part.

2. k, q � 0, �1, . . . , �(n=2ÿ 1), n=2 for an even n; 2k, q � 0, �2, . . . , �(nÿ 1) for an odd n.

3. m � 1
2
, 1, . . . , (nÿ 1)=2.

4. ö( j, m) and ö( j, m� n) belong to the same representation for m 6� 0.

5. Note that B1 and B2 given here are B2 and B1, respectively, de®ned originally in Table 11, J.

Math. Phys. 22, 2101 (1981), S. K. Kim; this change is to accommodate Mulliken's notation for

the vector representations.
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T2 in Table 11.6 are obtained by reducing the ®ve-dimensional space spanned by the

basis [ö(2, m); m � 2, 1, 0, ÿ1, ÿ2] into two- and three-dimensional invariant sub-

spaces by means of the subgroup condition (11.2.13). The remaining 2 3 2 representa-

tion E91=2 and 4 3 4 representation Q are obtained by the representation of direct

products:

E91=2 � A2 3 S(a, b)

Q � E 3 S(a, b) � D(3=2) (11:3:12)

There are in total eight unirreps for O9, corresponding to the eight classes of O9
given by (11.2.14). The set also satis®es the completeness condition

12 � 12 � 22 � 32 � 32 � 22 � 22 � 42 � 48 � jO9j (11:3:13)

Note that A1, A2, E, T1 and T2 are vector unirreps of O because the corresponding

values of j are all integers whereas the remaining unirreps, E1=2, E91=2 and Q, are

projective unirreps of O belonging to half-integral j values. In Table 11.6, we have

given only the most elementary basis sets for each irreducible representation. If

necessary, additional basis sets can easily be obtained by the projection operator

methods discussed in Chapter 6.

Remark. The unirreps of any double point group can be formed by reducing the

unirreps fD( j)g of SU (2) via its subgroup condition. For the group C91, the subgroup

condition is simply given, from (11.3.1), by

b � 0 (11:3:14a)

which is the same as jaj � 1 because of the ®xed condition jaj2 � jbj2 � 1. For the

group C9n the subgroup condition is given, from (11.3.3a), by

a2n � 1 (11:3:14b)

since its 2nth roots fak � eiðk=n, k � 0, 1, . . . , 2nÿ 1g determine the elements of

C9n � f(ak , 0)g. From (11.3.5), the subgroup condition of D91 is given by

ab � 0 (11:3:15a)

whose solutions (a, 0) and (0, b) completely de®ne all elements of D91. Then from

(11.2.9), the subgroup condition for D9n is given

a2n � 1 or (ib)2n � 1 (11:3:15b)

The subgroup condition for O9 has been given by (11.2.13) and the subgroup condi-

tion for T9 will be discussed in the next sub-section. Originally, the general unirreps

for the point groups given above were derived from these subgroup conditions (Kim

1981d).

11.3.6 The tetrahedral group T

This group is a subgroup of O and its double group T9 is characterized by the subgroup

condition

a4 � 1 or b4 � 1 or a4 � b4 � ÿ1
4

(11:3:16)

imposed on the CK parameters of S(a, b) 2 SU (2). Note that the ®rst two equations
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de®ne the group D92 whereas the remaining equations de®ne the three-fold rotations

just like in O9. These parameter sets f(aí, bí)g are given in Table 11.3 with í � 1ÿ12.

The irreducible representations of T given in Table 11.7 are obtained by reducing

those of O given in Table 11.6. In fact, by using the subgroup conditions (11.3.16) one

can easily show that

A1, A2 ! A, E ! A9� A 0, T1, T2 ! T

Q � E 3 E1=2 ! A9 3 E1=2 � A 0 3 E1=2 (11:3:17)

Here we shall show only the reduction E! A9� A 0 since then the rest will be

established accordingly. Firstly, the two-dimensional unirrep E of O9 is simpli®ed to

E9 given, using (11.3.16), by

E! (a4 � b4)1ÿ 2
p

3ia2b2ó y � E9

Secondly, E9 is diagonalized to the following form:

YE9Y � (a4 � b4)1ÿ 2
p

3ia2b2ó z

using (2.1.4) with an involutional transformation Y that diagonalizes ó y to ó z:

Y � (óy � ó z)=
p

2 � 1p
2

1 ÿi

i ÿ1

� �
; Y 2 � 1

Accordingly, the transformed basis is given by

[ö(2, 0), ö�(2, 2)]Y � 2ÿ1=2[ö(2, 0)� iö�(2, 2), ÿiö(2, 0)ÿ ö�(2, 2)] (11:3:18)

which is equivalent to a basis [u� iv, uÿ iv] for T 2 SO(3, r) where u � 3z2 ÿ r2

and v � 31=2(x2 ÿ y2):
The unirreps of the double group T9 given by Table 11.7 provide a complete set,

because

12 � 12 � 12 � 32 � 22 � 22 � 22 � 24 � jT 9j

Table 11.7. The irreducible (vector and projective) representations of T

T E, 3S(ðn), 8S((2ð/3)n) Bases

Ã1, A 1 1 or öÿ(3, 2) or xyz

Ã2, A9 a4 � b4 ÿ i2(3)1=2a2b2 2ÿ1=2[ö(2, 0)� iö(2, 2)] or 2ÿ1=2(u� iv)

Ã3, A0 a4 � b4 � i2(3)1=2a2b2 2ÿ1=2[ö(2, 0)ÿ iö�(2, 2)] or 2ÿ1=2(uÿ iv)

Ã4, T T1 of O [ÿiöÿ(1, 1), iö�(1, 1), ö(1, 0)] or

[iö�(2, 1), ÿiöÿ(2, 1), öÿ(2, 2)] or [x, y, z]

or [yz, zx, xy]

Ã5, E1=2 S(a, b) [ö(1
2
, 1

2
), ö(1

2
, ÿ1

2
)]

Ã6, E91=2 A9 3 S(a, b)

Ã7, E 01=2 A0 3 S(a, b)

1. u � 3z2 ÿ r2, v � 31=2(x2 ÿ y2):
2. The ®rst four unirreps are vector unirreps whereas the remaining unirreps are

projective unirreps. Ã1 � Ã7 are the notations used by Koster et al. (1963).

3. The parameter sets for fS(aí, bí)g 2 �T are given by í � 1ÿ12 in Table 11.3.
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Concluding remark. We have constructed the vector and projective unirreps of C1,

Cn, D1, Dn, T and O by reducing the general unirreps D( j) of SU (2) through the

Cayley±Klein parametrization. The representations thus obtained are general unirreps

in the sense that they hold for any element of the respective double group, being

characterized by the general CK parameters of the group. The present results are easily

extended to improper point groups because an improper point group is isomorphic to a

proper point group or a rotation±inversion group; cf. Table 5.7 or the character tables

for the crystallographic point groups given in the Appendix.
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Projective representations

In the previous chapter, we have seen that the double-valued representations of a point

group have been described very effectively as the projective or ray representations of

the point group. In this chapter, we shall discuss the general structure of the projective

unirreps of a ®nite group G and show that they can be constructed from the vector

unirreps of the so-called representation group of G. Then, introducing the basic

theorem that the representation group of a proper double point group P9 is P9 itself

(Kim 1983a), we shall form all the projective unirreps of the double point groups

through the vector representations of their representation groups. These will be applied

to form the unirreps of the wave vector space groups in Chapter 14. For the projective

representations of in®nite point groups see Kim (1984c).

12.1 Basic concepts

Let G � fgg be a ®nite group. Then, extending a vector representation, we de®ne a

projective representation of G by a set of non-singular square matrices �D(G) �
f�D(g); g 2 Gg de®ned on G that satis®es

�D(g) �D(s) � ë(g, s) �D(gs); 8 g, s 2 G (12:1:1)

where ë(g, s) is a non-zero complex number that depends on g and s. The set of jGj2
numerical factors fë(g, s)g is called a factor system of the group G, whereas the set
�D(G) is called a projective representation of G belonging to the factor system

fë(g, s)g. A vector representation of G is a projective representation belonging to the

trivial unit factor system

ë(g, s) � 1, for all g, s 2 G

Obviously, the identity representation of any group G necessarily belongs to the trivial

unit factor system. In a case in which the projective representation is unitary, i.e.
�D(g)y � �D(g)ÿ1 for all g 2 G, the factor system is unimodular, jë(g, s)j � 1, from

the de®ning relations (12.1.1). Not every set of jGj2 numbers is acceptable for a factor

system of G; the necessary and suf®cient condition for a factor system is given by the

following theorem.

Theorem 12.1.1. Let G be a ®nite group, then a set of jGj2 numbers fë(g, s)g
provides a factor system of G, if and only if the set satis®es

ë(g, s)ë(gs, t) � ë(g, st)ë(s, t) (12:1:2)

for all g, s, t 2 G.

This condition will be referred to as the associativity condition for a factor system



of the group of G. It is independent of any particular factor system, so it is a property

of the group G.

Proof. Suppose that fë(g, s)g is a factor system of G and let �D(G) � f�D(g)g be a

projective representation belonging to the system. From the associative law of a matrix

representation, we have

( �D(g) �D(s)) �D(t) � �D(g)( �D(s) �D(t)); 8 g, s, t 2 G

Then repeated applications of (12.1.1) to both sides of this equation lead to the

condition (12.1.2): note that ë(gs, t) is the projective factor for the product D(gs)D(t).

Conversely, for every system of jGj2 non-vanishing constants fë(g, s)g that satis®es

the condition (12.1.2), there exists a projective representation of G with this system as

the factor system. To prove this we order the elements of G by the subscripts such that

G � fgí; í � 1, 2, . . . , jGjg as for the regular representation D(R)(G) introduced in

Section 6.2.2. Then a required representation is given by the projective regular

representation of G de®ned by the jGj3 jGj matrix system:

�D(R)(g)íì � ë(g, gì)ä(gí, ggì); 8 g 2 G; í, ì � 1, 2, . . . , jGj (12:1:3)

where ä(gí, ggì) is Kronecker's delta; in fact, straightforward substitution of (12.1.3)

into the left-hand side of (12.1.1) leads to the right-hand side of (12.1.1):X
ì

�D(R)(g)íì �D(R)(s)ìk �
X
ì

ë(g, gì)ä(gí, ggì)ë(s, gk)ä(gì, sgk)

� ë(g, sgk)ë(s, gk)ä(gí, gsgk)

� ë(g, s)ë(gs, gk)ä(gí, gsgk)

� ë(g, s) �D(R)(gs)ík

where we have used, in the second step, the property of the delta function and in the

third step the condition (12.1.2) backward with t � gk, and then the last step follows

from the de®nition (12.1.3) of �D(R)(gs). Q.E.D.

Remark 1. The projective regular representation �D(R)(G) of G with a factor system

de®ned by (12.1.3) plays the role that the ordinary regular representation D(R)(G) of G

plays in the theory of vector representations (see (12.2.4)).

Remark 2. In general, a factor system fë(g, s)g is not symmetric with respect to the

elements g and s. As a result, even if g and s commute, their projective representatives

need not commute unless the factor system is symmetric, i.e. ë(g, s) � ë(s, g),

because gs � sg leads to

�D(g) �D(s)ÿ �D(s) �D(g) � [ë(g, s)ÿ ë(s, g)] �D(gs)

For example, consider the projective representations of the dihedral group D2

(which is Abelian) based on the spinor representation de®ned by the Pauli matrices as

follows:

�D(e) � ó0, �D(2x) � ÿió x, �D(2 y) � ÿió y, �D(2z) � ÿió z (12:1:4)

where ó0 is the 2 3 2 unit matrix. From the properties of the Pauli matrices; e.g.
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ó xóy � ÿóyó x � ó z, we obtain the factor system given by Table 12.1. From Table

12.1, we see that ë(2x, 2 y) is not symmetric, i.e. ë(2x, 2 y) � ÿë(2 y, 2x) � 1. This is

consistent with the fact that the projective representatives �D(2x) and �D(2 y) do not

commute even though 2x and 2 y commute.

Remark 3. The following particular factors are symmetric:

ë(g, e) � ë(e, g) � ë(e, e)

ë(g, gÿ1) � ë(gÿ1, g) (12:1:5)

where e is the identity element and g is any element of G. The relation

ë(g, e) � ë(e, e) follows if we set s � t � e in the associative condition (12.1.2).

Analogously, we have ë(e, g) � ë(e, e). The last relation in (12.1.5) follows if we set

s � gÿ1 and t � g in (12.1.2) and use ë(e, g) � ë(g, e).

From (12.1.5), it follows that the representative �D(e) of the identity element of G

commutes with any representative �D(g) and that �D(g) commutes with �D(gÿ1) for any

g 2 G. Here �D(gÿ1) should not be confused with the matrix �D(g)ÿ1, which is the

inverse of �D(g), because

�D(gÿ1) � ë(gÿ1, g) �D(e) �D(g)ÿ1

where ë(gÿ1, g) � ë(g, gÿ1). This relation will become slightly simpli®ed if we

introduce the standard factor system for which �D(e) � 1; see (12.2.3).

12.2 Projective equivalence

The terms equivalence and irreducibility have the same meanings for projective

representations as they do for vector representations. Let �D(G) and �D9(G) be two

projective representations of a group G. Then, if there exists a non-singular matrix T

such that �D9(g) � T �D(g)Tÿ1 for all g 2 G, then they are equivalent. Two equivalent

projective representations belong to the same factor system, since (12.1.1) is invariant

under a similarity transformation.

A projective representation �D(G) is reducible if it is equivalent to a direct sum of

projective representations of lower dimensions. It is irreducible otherwise.

Next we shall introduce the concept of projective equivalence: two representations
�D(G) and �D9(G) of a group G are projective-equivalent (or p-equivalent) if there

Table 12.1. The factor system fë(g, s)g
for �D2 based on the spinor representation

s

g e 2x 2 y 2z

e 1 1 1 1

2x 1 ÿ1 1 ÿ1

2 y 1 ÿ1 ÿ1 1

2z 1 1 ÿ1 ÿ1
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exists a non-vanishing function ì(g) on G � fgg and a non-singular matrix T such

that

�D9(g) � T �D(g)Tÿ1=ì(g), 8 g 2 G (12:2:1)

where ì(g) (6� 0) is a single-valued function of G and is called the gauge factor. It

should be noted that the set fì(g); g 2 Gg is not required to form a representation of

G so that ì(g)ì(s) may not be equal to ì(gs). The special case of (12.2.1),

D9(g) � D(g)=ì(g), is called the gauge transformation. The ordinary equivalence is

p-equivalence with the trivial gauge factor ì(g) � 1. To determine the factor system

for the p-equivalent representation �D9(G), we divide both sides of (12.1.1) by ì(g)ì(s)

to obtain

�D(g)

ì(g)

�D(s)

ì(s)
� ë(g, s)

ì(gs)

ì(g)ì(s)

�D(gs)

ì(gs)
(12:2:2a)

which implies that the factor system of �D9(g) � T �D(g)Tÿ1=ì(g) is given by

ë9(g, s) � ë(g, s)ì(gs)=[ì(g)ì(s)] (12:2:2b)

Two factor systems, fë9(g, s)g and fë(g, s)g, related by (12.2.2b) are said to be

mutually p-equivalent or gauge equivalent. In general, two p-equivalent factor systems

are different unless fì(g)g is a vector representation of G so that ì(gs) � ì(g)ì(s)

for all g, s 2 G.

By de®nition, p-equivalence is transitive, as is the ordinary equivalence. A set of all

p-equivalent factor systems is called a p-equivalence (gauge equivalence) class of

factor systems. By de®nition, factor systems belonging to different p-equivalence

classes are not related by a gauge transformation: they are different types or p-

inequivalent. The word `class' becomes more meaningful when we establish that the

whole set of factor systems of a group also forms a group.

It is to be noted that a one-dimensional projective representation of any group G is

necessarily p-equivalent to the identity representation. To see this, let �D(G) be a one-

dimensional projective representation satisfying (12.2.2a). If we let the representative
�D(g) itself be the gauge factor ì(g) in (12.2.2a), then we arrive at the identity

representation belonging to the unit factor system, ë(g, s) � 1.

12.2.1 Standard factor systems

In a projective representation, the representative �D(e) of the identity element e 2 G is

not necessarily equal to the unit matrix 1, since by de®nition

�D(e) �D(e) � ë(e, e) �D(e) (12:2:3a)

so that

�D(e) � ë(e, e)1

This unsatisfactory feature is easily modi®ed: divide both sides of the de®ning

equation (12.1.1) by [ë(e, e)]2 and introduce a gauge transform �D9(g) � �D(g)=ë(e, e)

for all g 2 G, then we have

�D9(g) �D9(s) � ë9(g, s) �D9(gs) (12:2:3b)

where ë9(g, s) � ë(g, s)=ë(e, e), which satis®es ë9(e, e) � 1. A factor system
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fë(g, s)g is called a standard factor system, if ë(e, e) � 1, in which case �D(e) � 1

from (12.2.3a). For a standard factor system we have from (12.1.5)

ë(g, e) � ë(e, g) � ë(e, e) � 1 (12:2:3c)

Hereafter, every factor system is assumed to be standardized unless otherwise

speci®ed. A projective representation belonging to a standard factor system may be

called a standard projective representation.

Exercise. Show that the character �÷(R) of a standard projective regular representation
�D(R)(G) of a group G is independent of the factor system and equal to the character

÷(R) of the ordinary regular representation of G given by (6.6.11).

Solution. From the trace of �D(R)(G) de®ned by (12.1.3), its character is given by

�÷(R)(g) �
X
ì

ë(g, gì)ä(gì, ggì)

�
jGj, if g � e

0, if g 6� e

(
(12:2:4)

where we have used
P

ìë(e, gì) �Pì1 � jGj, because ë(e, gì) � 1 from

(12.2.3c). Q.E.D.

12.2.2 Normalized factor systems

Let fë0(g, s)g be a factor system of a ®nite group G. If all members of the factor

system are jGjth roots of unity, i.e.

[ë0(g, s)]jGj � 1; 8 g, s 2 G (12:2:5)

then the factor system is called a normalized factor system. By de®nition, every

member of it is of modulus unity: jë0(g, s)j � 1.

Theorem 12.2.1. Every factor system of a ®nite group G is p-equivalent to a normal-

ized factor system.

Proof. Let �D(G) � f�D(g)g be a projective representation of G belonging to a given

factor system fë(g, s)g, then taking the determinants of both sides of the de®ning

equation (12.1.1) and denoting Ä g � det �D(g), we obtain

Ä gÄs � [ë(g, s)]dÄ gs (12:2:6a)

where d is the dimensionality of �D(G). For the projective regular representation
�D(R)(G) belonging to the factor system fë(g, s)g, we have d � jGj so that (12.2.6a)

becomes

Ä(R)
g Ä(R)

s � [ë(g, s)]jGjÄ(R)
gs

Thus we arrive at a normalized factor system

ë0(g, s) � ë(g, s)[Ä(R)
gs =(Ä(R)

g Ä(R)
s )]1=jGj (12:2:6b)

which is p-equivalent to fë(g, s)g. Q.E.D.
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In principle, there exists an in®nite number of factor systems fë(g, s)g which satisfy

the associativity condition (12.1.2). From Theorem 12.2.1, however, these can be

classi®ed into a ®nite number of p-equivalence classes for a ®nite group G owing to

the following corollary.

Corollary 12.2.1. There exists only a ®nite number of p-equivalence classes of factor

systems for a ®nite group G.

Proof. From Theorem 12.2.1, the number of p-equivalence classes is given by the

number of p-equivalent normalized factor systems, whose elements are jGjth roots of

unity. Since the numbers of jGjth roots of unity equals jGj, the number of possible

distributions of these jGj roots on jGj2 factors of a factor system equals

jGj3 jGj 3 � � � 3 jGj � jGjjGj2

which must be an upper bound of the number of p-equivalence classes of the factor

systems for the ®nite group G. Q.E.D.

12.2.3 Groups of factor systems and multiplicators

We shall begin with the following theorem.

Theorem 12.2.2. Let ffë(g, s)gg be the whole set of factor systems of a ®nite group

G, then the set forms a group F under the multiplication law

fë(g, s)gfë9(g, s)g � fë(g, s)ë9(g, s)g (12:2:7)

for every pair of elements g and s in G. It is Abelian and called the group of factor

systems of G.

Proof. If F is a group, then it is Abelian because the factor systems commute under

the multiplication law (12.2.7) from the fact that each factor is simply a number. Now,

the product of two factor systems de®ned by (12.2.7) also provides a factor system,

since it satis®es the associativity condition (12.1.1) from the fact that each factor

system satis®es the condition. The identity element of F is given by the unit factor

system fë(g, s) � 1g and the inverse fë(g, s)gÿ1 is given by fë(g, s)ÿ1g. Accord-

ingly, F forms a group which is Abelian. Q.E.D.

Let us look into the structure of the group of factor systems F of G. From

Corollary 12.2.1, the number of p-equivalence classes of factor systems is ®nite for a

®nite group G. Suppose that there exist m distinctive p-equivalence classes of factor

systems fKí; í � 0, 1, . . . , mÿ 1g for G. Then from (12.2.2b) and Theorem 12.2.1,

the elements of Kí are given by a p-equivalence set of factor systems

Kí � fë(í)
0 (g, s)ì(gs)=ì(g)ì(s)g; 8 g, s 2 G (12:2:8)

where fë(í)
0 (g, s)g is a normalized factor system belonging to Kí. Let K0 be the unit

class containing the unit factor system fë(0)
0 (g, s) � 1g, then its elements are given by

the trivial factor systems

K0 � fì(gs)=ì(g)ì(s)g
which forms an invariant subgroup of F because F is Abelian. Moreover, from
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(12.2.8) each class of factor systems Kí is a coset of K0 in F with the coset

representative fë(í)
0 (g, s)g. Thus the set of p-equivalence classes fKíg forms the factor

group of F by K0:

M � F=K0 (12:2:9)

which is called the multiplicator of G. Since F is Abelian, the multiplicator M is also

Abelian and the order jM j equals the number m of the distinctive p-equivalence

classes of factor systems in G. Thus, we obtain the following theorem.

Theorem 12.2.3. The set of all p-equivalence classes of factor systems of a ®nite

group G forms an Abelian group of ®nite order called the multiplicator M of G.

In Section 12.4, we shall introduce the concept of a `representation group' G9 of G,

which is a group of minimum order whose vector irreps provide all the projective

irreps of G. It will be shown that the order jG9j of the representation group G9 of G is

given by

jG9j � jM j3 jGj
where jM j is the order of the multiplicator M.

12.2.4 Examples of projective representations

Example 12.2.1. Every projective representation of a cyclic group Cn is p-equivalent

to a vector representation. The proof will be based on the de®ning relation of the group

Cn, since then we shall be concerned with only the representative of the group

generator. Let a be the generator of Cn, then the de®ning relation of Cn is given by

an � e (12:2:10a)

Let f�D(ak); k � 1, 2, . . . , ng be a standard projective representation of Cn, then
�D(e) � 1 so that

[ �D(a)]n � á1

where á is a constant that depends on the factor system. If we introduce a gauge

transformation

D(a) � �D(a)=á1=n (12:2:10b)

then D(a) satis®es [D(a)]n � 1, which is identical in form with the de®ning relation of

the group Cn. Thus we can de®ne a vector representation of Cn by, in terms of D(a),

D(ak) � [D(a)]k; k � 1, 2, . . . , n (12:2:10c)

Accordingly, it follows from (12.2.10b) that any projective representation �D(Cn) of Cn

is p-equivalent to a vector representation D(Cn). This means that there exists only the

unit class of factor systems K0 for a cyclic group and hence the multiplicator of Cn is

K0 itself.

Remark. Previously, in (11.3.3b), we have introduced the projective irreps of Cn by

the double-valued (spinor) representations:

Mm(ck
n) � eÿi2ðmk=n; m � 1

2
, 3

2
, . . . , nÿ 1

2
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where the m are all half integers. Let m � m0 � 1
2
, where m0 is an integer, then we

have

Mm0�1=2(ck
n) � Mm0

(ck
n) eÿiðk=n (12:2:11)

i.e. the projective representation Mm0�1=2(Cn) is p-equivalent to the vector representa-

tion Mm0
(Cn) � fMm0

(ck
n)g. This does not mean that the double-valued representations

are useless, because they are essential for describing the transformation of spinors. At

the beginning of this section, we have shown also that a one-dimensional projective

representation of a ®nite group is p-equivalent to the identity representation.

Example 12.2.2. The projective representations of the dihedral group Dn. This

provides a prototype example of projective representations.

The de®ning relations of Dn are

an � b2 � (ab)2 � e (12:2:12a)

Let �D(G) be a standard projective representation of G � Dn. Through simple gauge

transformations, as introduced in Example 1, we may assume that �D(G) satis®es

�D(a)n � �D(b)2 � 1, [ �D(a) �D(b)]2 � á1 (12:2:12b)

where á is a constant that depends on the factor system of Dn. If we rewrite the last

equation in the form �D(a) � á�D(b) �D(a)ÿ1 �D(b), then its nth power yields án � 1 so

that á is given by the nth roots of unity:

á � exp (�i2ðm=n); m � 0, 1, . . . , nÿ 1 (12:2:12c)

By a further gauge transformation, for a given m,

A � �D(a) eÿiðm=n, B � �D(b) eÿiðm=2

Equation (12.2.12b) is simpli®ed to

An � B2 � (AB)2 � ã1; ã � eÿiðm � �1 (12:2:13)

If we introduce E9 � ã1 as an abstract group element of order 2 satisfying

E92 � 1 � E, then the above set of equations de®nes the double group D9n of Dn,

where E9 is in the center of D9n. Thus, the projective irreps of Dn are provided by the

vector irreps of the double group D9n, as was discussed in Chapter 11.

To see the possibility of mapping off ã in (12.2.13), we introduce a further gauge

transformation x � A=î, y � B=ç with gauge factors î and ç. Then we obtain, for

ã � ÿ1,

x nî n � y2ç2 � (xy)2î2ç2 � ÿ1

These are reduced to the form of the de®ning relations of Dn

x n � y2 � (xy)2 � 1 (12:2:14a)

if and only if

î n � ÿî2 � ÿ1, ç2 � ÿ1 (12:2:14b)

There are two cases.

(i) When n is odd, the set has solutions î � ÿ1, ç � �i so that ã � ÿ1 is mapped

off by the gauge transformation. This means that there exists only the unit class

K0 of p-equivalence factor systems for Dn with an odd n. Thus the projective
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representations for Dn given by the spinor representations in Section 11.3 are p-

equivalent to vector representations for an odd n.

(ii) When n is even, it is impossible to map off ã � ÿ1 by a gauge transformation.

This means that there exist two p-equivalence classes of factor systems for Dn

characterized by ã � 1 and ÿ1, respectively. These classes may be denoted by

K(ã � 1) and K(ã � ÿ1), then the multiplicator M of Dn is de®ned by the set

fK(1), K(ÿ1)g with the group property

K(1)2 � K(1), K(1)K(ÿ1) � K(ÿ1), K(ÿ1)2 � K(1) (12:2:15)

It is an Abelian group of order 2 with K(1) as the identity. Moreover, the Abelian

subgroup H9 � fE, E9g in the center of D9n is isomorphic to the multiplicator

M � fK(1), K(ÿ1)g of Dn via the correspondence

E$ K(1), E9$ K(ÿ1) (12:2:16)

This is a special case of the general relationship between a group G and the so-

called representation group G9 of G, as will be discussed later in Section 12.4.

Also, note that the order of the group D9n satis®es jD9nj � jM j3 jDnj, where

jM j � 2 for this case.

12.3 The orthogonality theorem on projective irreps

Theorem 12.3.1. Every projective representation of a ®nite group G is equivalent to a

unitary projective representation belonging to the same factor system.

Proof. Let �D(G) be a projective representation of G belonging to a normalized factor

system fë(g, s)g. Then, a positive de®nite Hermitian matrix P de®ned by

P �
X
S2G

�D(s) �D(s)y

satis®es �D(g)P �D(g)y � P for all g 2 G. Thus it follows, as in Theorem 6.5.1 for a

vector representation, that the similarity transform de®ned by

�U (g) � Pÿ1=2 �D(g)P1=2, 8 g 2 G

satis®es the unitary condition �U (g) �U (g)y � 1 and hence provides the required unitary

projective representation belonging to the factor system fë(g, s)g.

Exercise. The projective regular representation �D(R)(G) belonging to a normalized

factor system is unitary. Use the complex conjugate of (12.1.3) with jë0(g, gì)j � 1.

Theorem 12.3.2. (The orthogonality theorem.) Let �D(á)(G) and �D(â)(G) be two

projective unirreps of G belonging to a normalized factor system, then the following

orthogonality relations hold:X
g

�D(á)
ij (g) �D(â)

i9 j9(g)� � (jGj=dá)äáâäii9ä jj9 (12:3:1)

where dá is the dimensionality of �D(á)(G). These are identical in form to the

orthogonality relations for vector unirreps given by (6.5.11a).
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Proof. Exactly like in Theorem 6.5.3 on vector unirreps, we de®ne a rectangular

matrix, analogous to (6.5.9),

M �
X
s2G

�D(á)(s)X �D(â)(s)y (12:3:2a)

where X is a dá 3 dâ rectangular matrix. Then

�D(á)(g)M � M �D(â)(g), 8 g 2 G (12:3:2b)

To show this, note ®rst that

�D(á)(g)M �
X
s2G

ë(g, s) �D(á)(gs)X �D(â)(s)y (12:3:2c)

where �D(â)(s)y is expressed, from the adjoint of (12.1.1) and the unitarity of �D(â)(g),

by

�D(â)(s)y � ë(g, s)� �D(â)(gs)y �D(â)(g) (12:3:2d)

Substitution of this into (12.3.2c) leads to (12.3.2b) with the use of jë(g, s)j � 1. Then,

by applying Schur's lemma (6.5.5) to (12.3.2b), we arrive at the orthogonality relations

(12.3.1).

Since the orthogonality relations for projective unirreps of G are independent of the

factor system as long as they belong to the same factor system, all algebraic properties

derived from the orthogonality relations are the same for projective or vector unirreps:

(i) The orthogonality relations for the characters areX
g2G

�÷(á)(g)��÷(â)(g) � jGjäáâ (12:3:3)

(ii) The frequency fá of a projective unirrep �D(á)(G) contained in a projective

representation �D(G) is given by

fá �
X

g

�÷�(g)�÷(á)(g)=jGj (12:3:4)

where �÷(g) is the trace of �D(g). Hence the sum of the absolute square j�÷(g)j2 is

given by X
g

j�÷(g)j2 � jGj
X
á

f 2
á (12:3:5)

so that the irreducibility criterion for �D(G) is given byX
g

j�÷(g)j2 � jGj (12:3:6)

(iii) Finally, the completeness condition for a set of projective unirreps f�D(á)(G)g
belonging to a factor system is given byX

á

(dá)2 � jGj (12:3:7)

where dá is the dimensionality of the projective unirrep �D(á)(G).
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The completeness condition given in (iii) can be shown exactly in the same way as

for vector unirreps, using the fact that the character of a projective regular representa-

tion �D(R)(G) equals the character of the ordinary regular representation D(R)(G) given

by (12.2.4); assuming, of course, that these projective representations are standard.

Remark. For many aspects, the parallelism between projective and vector unirreps of

a group G is remarkable, but some of their algebraic properties can be very different;

for example, the elements of a group G belonging to the same conjugacy class of G

need not have the same character in projective representations: suppose that tstÿ1 � g,

where g, s, t 2 G, then the characters for two equivalent elements s and g need not be

the same, because they are related by

�÷(s) � ë(t, s)ë(ts, tÿ1)ë(tÿ1, t)ÿ1�÷(g) (12:3:8)

where the representation is assumed to be standard. Since equivalent elements of a

group G need not have the same characters for a projective representation, the number

of irreducible projective representations of G has nothing to do with the number of the

conjugacy classes of G.

12.4 Covering groups and representation groups

12.4.1 Covering groups

Let G be a group and G9 be another group that is homomorphic to G. If the kernel of

the homomorphism H9 is in the center of G9, then G9 is called a covering group of G

extended by the subgroup H9 in the center of G9. Obviously, H9 is Abelian, being in

the center of G9, and there exists an isomorphism G9=H9 ' G. A covering group G9
of G is also called a central extension of G by a subgroup H9 in the center of G9.

Example. The double group G9 of a point group G is a covering group of G with the

kernel H9 � fE, E9g, where E is the identity and E9 is the `2ð rotation.' See also

Example 12.2.2.

Theorem 12.4.1. Let G be a group and G9 be a covering group of G extended by a

subgroup H9 in the center of G9. Then a vector irrep D(G9) of G9 provides a projective

irrep of G belonging to a factor system de®ned by the irrep D(H9) of H9 subduced by

D(G9). This theorem is the most basic for the projective representations.

Proof. Let G � fgrg and let the left coset decomposition of G9 by H9 � fh9g be

G9 �Pr g9r H9. Then, on account of the isomorphism G9=H9 ' G, there exists the

one-to-one correspondence

g9r $ gr; r � 1, 2, . . . , jGj (12:4:1)

and the homomorphism relation

g9r g9s � h9r,s g9rs when gr gs � g rs 2 G (12:4:2)

between G9 and G, where h9r,s 2 H9 depends on g r and gs. The set of coset

representatives fg9rg is called a projective set of the group G. Its choice may affect the

factor system through h9r,s in (12.4.2).
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Let D(G9) � fD(g9r h9); g9r h9 2 G9g be a vector unirrep of G9, then the representa-

tion of the homomorphism relation (12.4.2) by D(G9) gives

D(g9r)D(g9s) � D(h9r,s)D(g9rs) (12:4:3)

where D#(H9) � fD(h9); h9 2 H9g is the subduced representation of D(G9) onto the

subgroup H9. According to the Clifford theorem, Theorem 8.5.5, the subduced

representation D#(H9) is equivalent to a multiple of the direct sum of the irreps in a

certain orbit of H9 relative to G9. Since H9 is Abelian, every one of its vector irreps is

one-dimensional so that every orbit of an irrep of H9 is the irrep itself. Thus D(h9) is

expressed by

D(h9) � ã(h9)1, 8 h9 2 H9 (12:4:4)

where ã(H9) is a one-dimensional vector irrep of the Abelian subgroup H9 and 1 is

the unit matrix with the dimensionality equal to that of D(G9) (cf. Equation (8.5.6)).

When (12.4.4) holds, the irrep D(G9) is said to be associated with the irrep ã(H9):
apparently there may exist more than one associated irrep of G9 for a given irrep

ã(H9) in general (see Section 8.4.3, case I).

Now, in view of the one-to-one correspondence (12.4.1), Equations (12.4.3) and

(12.4.4) imply that a matrix system de®ned by

�D(g r) � D(g9r), 8 g r 2 G (12:4:5a)

is a projective representation of G satisfying

�D(gr) �D(gs) � ë(ã)(g r, gs) �D(gr gs) (12:4:5b)

with the factor system

ë(ã)(gr, gs) � ã(h9r,s), 8 gr, gs 2 G (12:4:5c)

which is standard, if the identity element g91 � e9 of G9 corresponds to g1 � e of G,

since then h91,1 � e9.
Finally, from (12.4.4) and (12.4.5a), we have

D(g9r h9) � ã(h9) �D(g r), 8 g9r h9 2 G9 (12:4:6)

where ã(h9) is one-dimensional, so that �D(G) � f�D(gr)g is irreducible since D(G9) �
fD(g9r h9)g has been assumed irreducible. Furthermore, the orthogonality relations of

the projective unirreps �D(G) given by (12.3.1) follow also from those of the unirreps

D(G9), since the one-dimensional unirrep ã(H 9) is unimodular, i.e. jã(H9)j � 1.

Example. As was mentioned before, the double group G9 of a point group G is a

covering group of G with the kernel H9 � fE, E9g. According to Theorem 12.4.1, the

factor system for a double-valued representation of the point group G is determined by

the representation of H9.

Exercise. Show directly from the de®ning relations (12.4.5c) for the factor system

fë(ã)(g r, gs)g that it satis®es the associativity condition (12.1.2).

Hint. From (g9r g9s)g9t � g9r(g9s g9t) one obtains

h9r,s h9rs, t � h9r,st h9s, t (12:4:7)

whose representation by ã(H9) provides the proof.
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12.4.2 Representation groups

Let G be a group and G9 be a covering group of G such that all projective irreps of G

can be formed from the vector irreps of G9. Then such a covering group G9 is called a

universal covering group of G. A universal covering group of the minimal order is

called a representation group of G.

Example 1. The representation group of the rotation group SO(3, r) is the spinor

group SU(2).

Example 2. The double group D9n of the dihedral group Dn is a universal covering

group of Dn. It is also a representation group of Dn for an even n but not for an odd n.

For the latter, the representation group is Dn itself, as was shown in Example 12.2.2.

In the following, we shall show that, for a representation group G9 of G, the kernel

H9 of the homomorphism G9! G is isomorphic to the multiplicator M of G so that

jG9j � jM j3 jGj. As a preparation we introduce the following lemma.

Lemma 12.4.2. Let H � fhí; í � 1, 2, . . . , jH jg be an Abelian group of a ®nite

order jH j. Then the set of vector irreps fã(í)(H); í � 1, 2, . . . , jH jg of H forms a

group isomorphic to H.

Proof. First we note that every vector irrep of an Abelian group H is one-

dimensional, so that the number of the inequivalent irreps of H equals the order jH j of

H. Moreover, the set of irreps of H forms a group because a product of one-

dimensional irreps of H is also a one-dimensional irrep of H. To show the isomorph-

ism between fã(í)(H)g and H � fhíg, note that every Abelian group H of a ®nite

order can be expressed by a direct product of cyclic groups. Thus, it is suf®cient for

the proof for one to establish the isomorphism between a cyclic group Cn and the

group of its irreps. Let Cn � fam; m � 1, 2, . . . , ng. From an � 1, the generator a is

represented by one of the nth roots of unity fùí; í � 1, 2, . . . , ng, where

ù � exp (ÿ2ði=n). Thus, each root ùí characterizes a representation of the group Cn,

so that the isomorphism between Cn and the group of its irreps is established via the

one-to-one correspondence

aí $ ùí; í � 1, 2, . . . , n (12:4:8)

because ùíùì � ù(í�ì) corresponding to aíaì � aí�ì.

Theorem 12.4.3. Let G be a ®nite group and G9 be a representation group of G

extended by a subgroup H9 in the center of G9. Then H9 is isomorphic to the

multiplicator M of G and hence jG9j � jM j3 jGj.

Proof. From Lemma 12.4.2, the set of irreps fã(í)(H9); í � 1, 2, . . . , jH9jg of H 9
forms a group isomorphic to the Abelian group H9. Accordingly, the set of factor

systems fë(í)g de®ned by the irreps fã(í)g of H9 via (12.4.5c) must also form a group

isomorphic to H9, i.e.

fë(í)g ' H9 (12:4:9)

Now, by de®nition a representation group G9 is a universal covering group of minimal
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order, so that the factor systems de®ned by the inequivalent irreps of H9 must be all p-

inequivalent.1 Thus, the group of the factor systems fë(í)g is isomorphic to the group

of p-equivalence classes of factor systems, that is, the multiplicator M of

G: fë(í)g ' M . Accordingly, from (12.4.9) we have the desired isomorphism

M ' H9 (12:4:10)

If a covering group G9 of G contains a representation group of G as a proper

subgroup, some of the projective representations of G formed by the vector irreps of

G9 must be p-equivalent. Such a covering group is still a universal covering group of

G. If a covering group of G does not contain a representation group of G as a

subgroup, then its vector irreps do not provide all the projective irreps of G. Such a

covering group is not a universal covering group. In the special case in which the

representation group G9 of G coincides with the group G itself, every projective irrep

of G is p-equivalent to some vector irrep of G. This convenient situation actually

occurs for all the proper double point groups, as will be shown in the next section; this

is seldom the case for the ordinary point groups; see Bir and Pikus (1974).

12.5 Representation groups of double point groups

What are all the possible projective unirreps of a point group G? This question shall be

answered by considering the projective representations of the double group G9 of G,

on account of the theorem that every projective representation of a proper double point

group P9 is p-equivalent to a vector representation of P9, i.e. the representation group

of P9 is P9 itself (Kim 1983a). Hence, it is only necessary to form the representation

groups P 0i of the rotation±inversion double point groups P9i � P9 3 Ci. Any other

improper double point group C9nv, C9np, D9np or T 9p is isomorphic to a proper double

point group, so that the representation group is again the group itself. We shall ®rst

prove the basic theorem on the representation groups of proper double point groups

and then construct the representation groups P 0i, postponing their representations to

the next section.

12.5.1 Representation groups of double proper point groups P9

Theorem 12.5.1. Let P9 be the double group of a proper point group P, then the

representation group of P9 is P9 itself.

Proof. The theorem is true for a uniaxial double group C9n since it can be shown for

the uniaxial group Cn as in Example 12.2.1. Excluding this case, the de®ning relations

of a proper double point group P9 are given by

An � Bm � (AB)2 � E9, E92 � E (12:5:1)

where A and B are the generators of P9; E9 is the 2ð rotation and E is the identity. The

sets of the orders (n, m) of the generators are (n, 2) for a dihedral double group D9n;

and (3, 3), (4, 3) and (5, 3) for the tetrahedral T 9, octahedral O9 and icosahedral double

1 Note here that two factor systems de®ned by two inequivalent irreps of H9 are not necessarily p-
inequivalent: we have seen in Example 12.2.2 that the factor systems of Dn de®ned by á � 1 and á � ÿ1
are p-inequivalent for an even n but p-equivalent for an odd n. For the latter case, by a further gauge
transformation, we have reduced H9 to the trivial group of identity.
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groups Y 9, respectively. Let jPj be the order of a proper point group P, then it is

determined by the orders n and m of the generators by the Wyle relation given by

(5.4.4), i.e.

1

n
� 1

m
ÿ 1

2
� 2

jPj (� 1=ô) (12:5:2)

where ô � jPj=2 is an integer that plays a crucial role in the proof.

Let �D(P9) � f�D(g); g 2 P9g be a standard projective representation of P9. Then

the projective representation of the de®ning relations (12.5.1) yields

ë1
�D(A)n � ë2

�D(B)m � ë3[ �D(A) �D(B)]2 � ë4
�D(E9), ë5

�D(E9)2 � �D(E)

(12:5:3a)

where ë1 through ë5 are numerical factors that depend on the assumed factor system.

The theorem is proven if these factors are mapped off by a gauge transformation of
�D(P). Firstly, by the gauge transformation

a � �D(A)=ì(A), b � �D(B)=ì(B), e9 � �D(E9)=ì(E9), e � �D(E)

with appropriate gauge factors ì(A), ì(B) and ì(E9), we reduce (12.5.3a) to the form

an � bm � e9, (ab)2 � áe9, e92 � e (12:5:3b)

where á is a constant parameter, which will be shown to be a ôth root of unity given by

áô � 1; á � exp [ÿ2ðik=ô]; k � 0, 2, . . . , ôÿ 1 (12:5:4)

Proof of this relation is based on the self-consistency of (12.5.3b). It is elementary but

somewhat involved. Let us postpone this proof and proceed with the rest of the proof

assuming that áô � 1.

Introduce a further gauge transformation

x � eiðk=na, y � eiðk=mb, e � eiðk e9 (12:5:5)

Then substitution of these into (12.5.3b) leads to

x n � y m � (xy)2 � e, e2 � e (12:5:6)

with use of the Wyle relation (12.5.2). Since the de®ning relations (12.5.1) and

(12.5.6) are identical in form, we may conclude that any projective representation of

the group P9 is p-equivalent to a vector representation of P9. This proves the basic

theorem 12.5.1.

It should be noted that an analogous theorem need not hold for an ordinary proper

point group P in general, because the proof requires a gauge transformation

e � (ÿ1)k e9 in (12.5.5). For example, the representation group of the dihedral group

Dn is Dn itself when n is odd, but it is the double point group D9n when n is even, as

was shown in Example 12.2.2.

Proof of áô � 1: This relation has been given in (12.5.4) without proof. For

convenience, it will be proven individually for the double dihedral groups D9n and for

double polyhedral groups T 9, O9 and Y 9.

1. For D9n, the de®ning relations (12.5.3b) take the form

an � b2 � e9, (ab)2 � áe9, e92 � e (12:5:7a)
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Rewrite the third equation in the form a � áe9baÿ1b. Then its nth power yields

án � 1

This proves áô � 1 for Dn because ô � n for this case.

2. For a polyhedral group, the de®ning relations (12.5.3) take the form

an � b3 � e9, (ab)2 � áe9, e92 � e (12:5:7b)

Rewrite the third equation in the following two forms:

aba � áb2, bab � áanÿ1 (12:5:7c)

which are further rewritten as

b � áanÿ1b2anÿ1, a � áb2anÿ1b2 (12:5:7d)

Substituting the second equation of (12.5.7d) into the ®rst equation and refactoriz-

ing it with use of an � b3 � e9, we obtain

b � á2nÿ1e9b2(anÿ1b)nÿ2anÿ2(banÿ1)nÿ2b2 (12:5:7e)2

Then, by writing out this equation explicitly for each polyhedral group and using

(12.5.7e), we arrive at áô � 1, i.e.

á6 � 1 for T 9 with n � 3 (12:5:7f)

á12 � 1 for O9 with n � 4 (12:5:7g)

á30 � 1 for Y 9 with n � 5 (12:5:7h)

For example, for O9 we have n � 4 so that (12.5.7e) takes the following explicit

form:

b � á7e9b2a3ba3ba2ba3ba3b2

Then, using aba � áb2 and a4 � b3 � e9 we arrive at b � á12b, which yields

(12.5.7g). The proof of (12.5.7f) is trivial. For the proof of (12.5.7h) we may use

either aba � áb2 or bab � áa4.

12.5.2 Representation groups of double rotation±inverse groups P9i

Let Pi � P 3 Ci be a rotation±inversion group, then its double group is de®ned by

P9i � P9 3 Ci, so that its de®ning relations are given by

an � bm � (ab)2 � e9, 1a � a1, 1b � b1, (1)2 � e92 � e

where 1 is the inversion and the generator b is absent for C9ni. Let �D(P9i) be a projective

representation of P9i and set

A � �D(a), B � �D(b), I � �D(1), E9 � �D(e9), E � �D(e)

Then, from Theorem 12.5.1, these may be assumed to satisfy

An � Bm � (AB)2 � E9, IA � âAI , IB � ãBI , I2 � E92 � E

(12:5:8a)

2 One may not rewrite (12.5.7e) in the form

b � á2nÿ1e9b2(anÿ1babanÿ1)nÿ2b2

which may be a convenient form for the proof of (12.5.7f) but not for (12.5.7g) and (12.5.7h).
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where â and ã are constant parameters to be determined. Express the inversion I in the

forms I � âAIAÿ1 � ãBIBÿ1 then from I2 � E we have â2 � ã2 � 1. Moreover, the

similarity transformation of An � Bm � (AB)2 � E9 by I leads, with use of IAI � âA

and IBI � ãB, to

ân E9 � ãm E9 � â2ã2 E9 � IE9I

Since â2 � ã2 � 1, we have ân � ãm � 1 and IE9I � E9.
Accordingly, E9 commutes with every element in (12.5.8a) so that it is a constant

matrix. From E92 � E, we have E9 � �1 in an appropriate dimensionality: when

E9 � 1 the representation is integral and when E9 � ÿ1 the representation is half

integral, just like for an ordinary double point group. Furthermore, from ân � ãm � 1

and â2 � ã2 � 1, we conclude that

â � �1, if n is even

1, if n is odd

�
ã � �1, if m is even

1, if m is odd

�
(12:5:8b)

Since these binary parameters cannot be mapped off by a further gauge transforma-

tion, the set of equations given by (12.5.8a) provides the general de®ning relations for

the representation group of the double rotation±inversion group P9i, regarding â and ã
as abstract group elements in the center of the group.

For the special cases of the groups T 9i and Y 9i, the orders n and m in (12.5.8b) are

odd so that â � ã � 1. This means that the representation groups of these two groups

are the groups themselves. The representation groups of the remaining groups C92r,i,

D9ni and O9i, where r is an integer, are given by

C 02r,i: A2r � E9, IAI � âA, I2 � E92 � E (12:5:9a)3

D 0n,i: An � B2 � (AB)2 � E9, IAI � âA, IBI � ãB,

I2 � E92 � E (â � 1 for an odd n) (12:5:9b)

O 0i: A4 � B3 � (AB)2 � E9, IAI � âA, IBI � B, I2 � E92 � E

(12:5:9c)

Here, â2 � ã2 � 1. These binary parameters â and ã are regarded as abstract group

elements of order 2 satisfying á2 � â2 � E. Then these elements and the 2ð rotation

E9 are in the centers of the respective representation groups.

It should be noted here that the representation group P 0i of each P9i given in

(12.5.9a)±(12.5.9c) is a central extension of each P9i by an Abelian subgroup Hâ �
fE, âg, Hã � fE, ãg or Hâ 3 Hã in the center of P 0i. According to Theorem 12.4.1,

every irrep of these subgroups in the center de®nes a factor system of P9i, which is

characterized by â � �1 and/or ã � �1; hence there exist only two p-equivalence

classes of factor systems denoted by K(â � �1) for C92r,i and O9i, and K(ã � �1) for

D92r�1,i, whereas there are four classes K(â � �1, ã � �1) of factor systems for D92r,i.

3 Here we have excluded the possible representation group of C92r�1,i;

A2r�1 � E9, IAI � âA, IE9I � âE9, I2 � E92 � E

with â � �1, because it does not seem to have any useful application, and also because the representation
group of the point group C2r�1,i is the group itself.
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12.6 Projective unirreps of double rotation±inversion point groups P9i

The unirreps of the proper double point groups P9 have already been given in Section

11.3. Accordingly, it is necessary only to form the vector unirreps of the representation

group P 0i de®ned by (12.5.9). Let us characterize a representation group P 0i of the

double group P9i in the form

G � Hz � H � zH (12:6:1)

where z is the augmentor to the halving subgroup H � fhg of G such that

z2, zÿ1 hz 2 H , 8 h 2 H

If we compare (12.6.1) with (12.5.9), we see that the halving subgroup H stands for

P9 3 Hâ, P9 3 Hã or P9 3 Hâ 3 Hã whereas the augmentor z stands for the

inversion I. All the unirreps of H are given by the direct products of the unirreps of P9,
Hâ and Hã. For example, a unirrep of P9 3 Hâ is given by Ã(P9) 3 Ãâ where Ã(P9)
is a unirrep of P9 given in Section 11.3 and Ãâ is a one-dimensional unirrep of

Hâ � fE, âg with â � �1. Thus, explicitly we have

Ã(P9) 3 Ãâ(â) � âÃ(P9) (12:6:2)

Now, we can construct all the vector unirreps of Hz through induction from the

unirreps of the halving subgroup H. For convenience, we shall directly construct the

induced unirreps for this simple special case of (12.6.1), instead of applying the

general results on the induced representation given in Section 8.4.

Let fÃ (í)(H)g be a complete set of the vector unirreps of the halving subgroup

H � fhg of Hz and let øí be a basis row vector of dimensionality dí belonging to the

íth irrep Ã (í)(H) such that

8høí � øíÃ (í)(h), 8 h 2 H (12:6:3a)

Then, 8zøí belongs to the conjugate unirrep Ã (í)(zÿ1 hz) because

8h(8zøí) � 8z(zÿ1 hz)0øí � (8zøí)Ã (í)(zÿ1 hz) (12:6:3b)

Now the conjugate unirrep Ã (í)(zÿ1 hz) must be equivalent to one of the unirreps of H,

say Ã (í)(H), so there exists a unitary transformation N (z) such that

Ã (í)(zÿ1 hz) � N (z)ÿ1Ã (í)(h)N (z), 8 h 2 H (12:6:4a)

Let öí be a basis of Ã (í)(H), then we have

8zøí � öíN (z) (12:6:4b)

because substitution of (12.6.4a) into (12.6.3b) shows that 8zøíN (z)ÿ1 belongs to

Ã (í)(H). Moreover, on applying 8z once more to (12.6.4b) and using z2 2 H , we obtain

8zöí � øíÃ (í)(z2)N (z)ÿ1 (12:6:4c)

Thus the augmentor z connects two bases øí and öí of H, so that the set [øí, öí]

provides a basis of a representation D(í,í)(Hz) de®ned by

D(í,í)(h) � Ã (í)(h) 0

0 Ã (í)(h)

� �
; 8 h 2 H

12.6 Projective unirreps of P9i 283



D(í,í)(z) � 0 Ã (í)(z2)N (z)ÿ1

N (z) 0

� �
(12:6:5)

This representation is irreducible if í 6� í, because the augmentor z connects bases

belonging to two different unirreps (case II in Section 8.4) and is reducible if í � í
(case I in Section 8.4). For the latter case, we observe, by replacing h in (12.6.4a) with

zÿ1 hz, using í � í, that

Ã (í)(zÿ2)Ã (í)(h)Ã (í)(z2) � N (z)ÿ2Ã (í)(h)N (z)2

which means that Ã (í)(z2)=N (z)2 � ù commutes with an irrep Ã (í)(H) of H so that it

is a constant. The constant ù has modulus unity because the matrices involved are

unitary. Thus, by adjusting the phase factor of N (z) in (12.6.4b), we may set

Ã (í)(z2) � N (z)2 and see that the representation D(í,í)(Hz) de®ned by (12.6.5) is

reducible; in fact, the two reduced unirreps of Hz are given by

D(í�)(h) � Ã (í)(h), D(í�)(z) � �N (z) (12:6:6)

via the bases de®ned by

ø(í�) � øí � öí � øí � 8zøíN (z)ÿ1

Here �N (z) serve as the representatives of z. A proper choice of øí has to be made in

order to avoid a null result for the bases.

The completeness of the induced unirreps for Hz thus obtained is easily established

by calculating the sum of the squares of the dimensions of the induced unirreps

provided that we use every unirrep of H once and once only in constructing the

induced unirreps.

For the present case of the representation group P 0i, we have z � I and I2 � E so

that the unirreps of P 0i given above are slightly simpli®ed: for í 6� í, (12.6.5) becomes

D(í,í)(h) � Ã (í)(h) 0

0 Ã (í)(h)

� �
, D(í,í)(I) � 0 N (I)ÿ1

N (I) 0

� �
(12:6:7)

with the basis [øí, öí], where öí � 8IøíN (I)ÿ1; for í � í, the two reduced represen-

tations (12.6.6) become

D(í�)(h) � Ã (í)(h), D(í�)(I) � �N (I) (12:6:8)

with the bases øí� � øí � öí, where öí � 8IøíN (I) for N (I)2 � Ã (í)(I2) � 1.

These representations given by (12.6.7) and (12.6.8) are explicit in terms of the

vector unirreps of P9 except for the transformation matrix N (I) which is to be

determined from (12.6.4a). This equation takes the following forms for the generators

A and B of P9:

Ã (í)(IAI) � âÃ (í)(A) � N (I)ÿ1Ã (í)(A)N (I)

Ã (í)(IBI) � ãÃ (í)(B) � N (I)ÿ1Ã (í)(B)N (I) (12:6:9)

using IAI � âA and IBI � ãB given in (12.5.9) and also (12.6.2). Since A or fA, Bg
is the complete set of the generators of the respective double group P9, this set of

equations (12.6.9) is suf®cient to determine the conjugate set (Ã (í), Ã (í)) as well as the

transformation matrix N (I) for a set of given values of â and ã. Thus we can classify
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all unirreps of P9 into the conjugate sets of orbits f(Ã (í), Ã (í))g of H with respect to

the group Hi and determine the projective unirreps of P9i for a given class of the factor

systems K(á, â) de®ned by the values of á and â.

The following comments will be helpful for determining the transformation matrix

N (I) from (12.6.9) for a given Ã (í)(H). When the representation Ã (í)(H) is one-

dimensional we may take N (I) � 1. When Ã (í)(H) is two-dimensional, it may be

expressed in terms of the Pauli spin matrices ó x, ó y and ó z in a form similar to the

quaternion (10.1.14),

Ã (í) � c0ó0 � cxó x � c yóy � czó z; c2
0 ÿ c2

x ÿ c2
y ÿ c2

z � �1 (12:6:99)

where c0 through cz are constants and ó0 is the unit matrix. Then, using the

anticommutation relations ó ió jó i � ÿó j (i 6� j; 1, 2, 3), we can easily determine the

conjugate set (Ã (ö), Ã (í)) as well as the transformation matrix N (I) from (12.6.9) (see

the examples for the projective unirreps of Dni given below). The higher dimensional

case (. 2) will be shown explicitly for the double group O9i.
The projective representations of P9i thus constructed for each class of factor

systems K(â, ã) will be denoted as

�D(Ã (í), Ã (í); N (I)) � D(í,í) of (12:6:7)

�D(Ã (í); �N (I)) � D(í�) of (12:6:8) (12:6:10a)

and Ã (í�) are the vector irreps of the double group P9i belonging to the unit class

K0 � K(1, 1) with � (ÿ) denoting the gerade (ungerade) representation. In terms of

the basis øí of Ã (í)(P9), the bases of the projective representations are given by

[øí, 8IøíN (I)ÿ1] 2 �D(Ã (í), Ã (í); N (I))

øí � 8IøíN (I) 2 �D(Ã (í); �N (I)) (12:6:10b)

In the following, we shall construct all projective unirreps of the improper double

point groups C92r,i, D9ni and O9i, using the complete sets of the vector unirreps of the

double proper point groups given in Section 11.3.

12.6.1 The projective unirreps of C92r,i

According to the complete set of vector unirreps of C9n given by (11.3.3b), there exist

2n (� 4r) one-dimensional representations for C92r. The unitary representatives of the

generator A � c2r of C92r are given by

Mm(c2r) � eÿiðm=r; m � 0, �1
2
, �1, . . . , �(r ÿ 1

2
), r (12:6:11a)

According to the de®ning relation (12.5.9a), there exist only two classes of factor

systems, K(â � 1) and K(â � ÿ1). Since the class K(â � 1) corresponds to the

vector representation of C92r, it is necessary only to construct the projective representa-

tions belonging to the factor system K(â � ÿ1). From the fact that the representations

Mm are one-dimensional, we may set N (I) � 1 in (12.6.9) and obtain, for â � ÿ1,

ÿMm(c2r) � M mÿr(c2r); m � 1
2
, 1, . . . , r ÿ 1

2
, r

which provide the conjugate pairs f(Mm, M mÿr)g that completely exhaust the whole
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set of unirreps given by (12.6.11a). Thus, from (12.6.7) we obtain 2r two-dimensional

projective unirreps of C92r,i belonging to the class K(â � ÿ1) expressed by

�D(Mm, M mÿr; 1); m � 1
2
, 1, . . . , r ÿ 1

2
, r (12:6:11b)

where m and mÿ r are both integers (including zero) or half integers for r being an

integer. The proof for completeness of this set will be given later in (12.6.13a).

12.6.2 The projective unirreps of D9n,i

According to (12.5.9b), there exist two or four classes of factor systems for D9ni

depending on whether n is odd or even. From the complete set of vector irreps of D9n,

given in Table 11.5, the representatives of the generators A � cn and B � u0 are as

given in Table 12.2, in which two-dimensional representatives are expressed by the

Pauli matrices following (12.6.99).
We shall construct the projective unirreps of D92r,i belonging to the class of factor

systems K(â � ÿ1, ã � 1) as a prototype example. For this purpose, it is best to form

a table of construction that contains Ã (í)(AI ) � âÃ (í)(A) and Ã (í)(BI ) � ãÃ (í)(B) as

given by Table 12.3. Here AI � IAI and BI � IBI . By comparing these with the

vector unirreps of D92r given in Table 12.2 we determine Ã (í)(H) as well as N (I) from

Table 12.2. The vector unirreps of D9n
with respect to the generators

Ã (í)(h) Ã (í)(cn) Ã (í)(u0)

A1(h) 1 1

A2(h) 1 ÿ1

B1(h) ÿ1 1

B2(h) ÿ1 ÿ1

Em(h) cmó0 ÿ ismó y (ÿi)2 jó z

cm � cos (2ðm=n), sm � sin (2ðm=n);

m � 1
2
, 1, . . . , (nÿ 1)=2.

Table 12.3. The construction of projective unirreps of D92r,i 2 K(â � ÿ1, ã � 1)

based on Equation (12.6.9)

Ã (í)(hI ) ÿÃ (í)(cn) Ã (í)(u0) N (I)ÿ1Ã (í)(h)N (I) �D(í,ì) or �D(í�)

A1(hI ) ÿ1 1 B1(h) �D(A1, B1; 1)

A2(hI ) ÿ1 ÿ1 B2(h) �D(A2, B2; 1)

Em(hI ) ÿcm � ismóy (ÿi)2 jó z ó z Erÿmó z

�D(Er=2; �ó z)
�D(Em, Erÿm; ó z)

�

1. cm � cos (ðm=r), sm � sin (ðm=r); m � 1
2
, 1, . . . , 1

2
(r ÿ 1).

2. crÿm � ÿcm, srÿm � sm; cr=2 � 0, sr=2 � 1.
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(12.6.9). Analogously, the complete set of the projective unirreps of D9ni belonging to

the four classes of factor systems K(1, 1), K(1, ÿ1), K(ÿ1, 1) and K(ÿ1, ÿ1) is

formed and summarized in Table 12.4.

Exercise. Construct the projective unirreps of D9ni belonging to the class of factor

systems K(1, ÿ1) through a table of construction similar to Table 12.3.

12.6.3 The projective unirreps of O9i

From (12.5.9c) there exist two classes of factor systems K(â � 1) and K(â � ÿ1) for

this group. From the complete set of vector unirreps of O9i given in Table 11.6, the

representatives of the generators A � 4z and B � 3xyz are those given in Table 12.5.

We shall construct the projective unirreps of O9i again through the table of construction

given in Table 12.6 for the class of factor systems K(ÿ1).

The projective unirreps of C92r,i, D9ni and O9i thus formed are summarized in Table

12.4, which was ®rst obtained by Kim (1983a). From Table 12.4, we have the

completeness conditions (12.3.7) for the projective unirreps belonging to each class of

factor systems of C92r,i, D9ni and O9i given as follows. For K(â � ÿ1) of C92r,i

22 3 2r � 8r � jC92r,ij (12:6:12a)

For K(â � 1, ã � ÿ1) of D9ni:

22 � 22 � 2(nÿ 1) 3 22 � 8n � jD9n,ij (12:6:12b)

Table 12.4. Projective unirreps �D(Ã (í), Ã (í); N (I)) or �D(Ã (í); �N (I)) or the double

point groups C92r,i, D9ni and O9i via the unirreps of the respective proper double point

groups

C92r,i 2 K(â):

K(1); M�m; m � 0, �1
2
, �1, . . . , �(r ÿ 1

2
), r

K(ÿ1); �D(Mm, M mÿr; 1); m � 1
2

. . . , r ÿ 1
2
, r

D9n,i 2 K(â, ã):

K(1, 1); A�1 , A�2 , B�1 , B�2 , E�m; m � 1
2
, 1, . . . , (nÿ 1)=2

K(1, ÿ1); �D(A1, A2; 1), �D(B1, B2; 1), �D(Em; �óy); m � 1
2
, 1, . . . , (nÿ 1)=2

K(ÿ1, 1); �D(A1, B1; 1), �D(A2, B2; 1), �D(Er=2; �ó z), �D(Em9, Erÿm9; ó z);

m9 � 1
2
, 1, . . . , 1

2
(r ÿ 1); n � 2r

K(ÿ1, ÿ1); �D(A1, B2; 1), �D(A2, B1; 1), �D(Er=2; �ó x), �D(Em9, Erÿm9; ó x);

m9 � 1
2
, 1, . . . , 1

2
(r ÿ 1); n � 2r

O9i 2 K(â):

K(1); A�1 , A�2 , E�, T�1 , T�2 , E�1=2, E9�1=2, Q�

K(ÿ1); �D(A1, A2; 1), �D(E; �óy), �D(T1, T2; 1), �D(E1=2, E91=2; 1), �D(Q; �ó0 3 ó y)

For the notations �D(Ã (í), Ã (í); N (I)) and �D(Ã (í); �N (I)) see Equation (12.6.10a).
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For K(â � ÿ1, ã � �1) of D92r,i:

22 � 22 � 2 3 22 � (r ÿ 1)42 � 16r � jD92r,ij (12:6:12c)

For K(â � ÿ1) of O9i:

22 � 2 3 22 � 62 � 42 � 2 3 42 � 96 � jO9ij (12:6:12d)

Concluding remark. From Table 12.4 and the unirreps of the proper point groups

given in Chapter 6, we can construct all the unirreps of any space group of wave vector

ĝ(k). This will be discussed, however, in Chapter 14 after the formation of the space

groups in Chapter 13.

Table 12.5. The vector unirreps of O9

Ã (í)(h) Ã (í)(4z) Ã (í)(3xyz)

A1 1 1

A2 ÿ1 1

E ó z ÿ1
2
(1� i31=2óy)

T1

0 ÿ1 0

1 0 0

0 0 1

24 35 0 0 1

1 0 0

0 1 0

24 35
T2 � T1 3 A2 ÿT1(4z) T1(3xyz)

E1=2 2ÿ1=2(1ÿ ió z)
1
2
(1ÿ ió x ÿ ióy ÿ ió z) � ó xyz

E91=2 � E1=2 3 A2 ÿ2ÿ1=2(1ÿ ió z) ó xyz

Q � E1=2 3 E 2ÿ1=2(1ÿ ió z)
 ó z ÿó xyz 
 (1� i31=2óy)=2

Table 12.6. Construction of the projective unirreps of O9i for K(â � ÿ1)

Ã (í)(hI ) ÿÃ (í)(4z) Ã (í)(3xyz) N (I)ÿ1Ã (í)(h)N(I) D(í,ì) or D(í�)

A1(hI ) ÿ1 1 A2(h) �D(A1, A2; 1)

E(hI ) ÿó z ÿ1
2
(1� i31=2óy) óy E(h)óy

�D(E; �óy)

T1(hI ) ÿT1(4z) T1(3xyz) T2(h) �D(T1, T2; 1)

E1=2(hI ) ÿ2ÿ1=2(1ÿ ió z) ó xyz E91=2(h) �D(E1=2, E91=2; 1)

Q(hI ) ÿ2ÿ1=2(1ÿ ió z)
 ó z ÿó xyz 
 (1� i31=2óy)=2 ÓyQ(h)Óy
�D(Q; �Óy)

Note that Óy � ó0 
 óy.
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13

The 230 space groups

13.1 The Euclidean group in three dimensions1 E(3)

A linear transformation that leaves invariant the distance between two points jx1 ÿ x2j
in the three-dimensional vector space V (3) is called a Euclidean transformation in three

dimensions. It is described by an inhomogeneous orthogonal transformation of a vector

x in V (3):

x9 � Rx� v (13:1:1)

where R is a 3 3 3 real orthogonal matrix and v is a vector in V (3). Following Seitz,

we may denote the above transformation by

x9 � fRjvgx (13:1:2)

The product of two Euclidean transformations and the inverse of a Euclidean trans-

formation are also Euclidean transformations:

fR9jv9gfRjvg � fR9Rjv9� R9vg
fRjvgÿ1 � fRÿ1jÿRÿ1vg (13:1:3)

where the latter follows from fR9v9g with R9 � Rÿ1 and v9� Rÿ1v � 0. Thus, the set

of all Euclidean transformations in V (3) forms a group called the Euclidean group E(3)

with the identity fEj0g. We shall study E(3) here to prepare for some of the general

properties of space groups, which are subgroups of E(3) because any element of a

space group of a crystal must leave the distance between two points in the crystal

invariant.

The translation group T in V (3) is a subgroup of E(3) with the elements fEjtg, where

t 2 V (3): it is an Abelian group since

fEjt9gfEjtg � fEjt � t9g � fEjtgfEjt9g
Also, this means that a translation group T can be considered as a group of vectors ftg
whose law of multiplication is the vector addition. It is an invariant subgroup of E(3)

because

fRjvgfEjtgfRjvgÿ1 � fEjRtg (13:1:4)

and Rt 2 V (3). It is to be noted, however, that fEjtg does not commute with fRjvg
unless R is an identity operation.

According to (13.1.3), the rotational part fRg of E(3) also forms a group, which is

the full rotation group O(3) � O(3, r) in three dimensions: it is a subgroup of E(3).

Accordingly, E(3) may be regarded as the semi-direct product of T and O(3):

E(3) � T ^ O(3) (13:1:5)

1 Some readers may prefer to read the next section 13.2 ®rst, using this section as a reference.



We shall next consider a similarity transformation of an element ffRjvgg of E(3)

caused by an inhomogeneous coordinate transformation Ë � [U js] that describes a

shift of the coordinate origin O to O9 by a vector s (see Figure 13.1) followed by a

rotation U of the coordinate system. Under the coordinate transformation Ë, a vector x

in V (3) transforms according to

x9 � Uÿ1(xÿ s) � Ëÿ1x (13:1:6)

where Ëÿ1 � [Uÿ1jÿUÿ1s] is the inverse of the inhomogeneous linear transformation

Ë. Here, the square bracket notation, [U js], is introduced because the curly bracket

notation, fU jsg, is reserved for a group element2 of E(3). Under the coordinate

transformation Ë, an element fRjvg 2 E(3) transforms according to

fR9jv9g � Ëÿ1fRjvgË (13:1:7)

where

R9 � Uÿ1 RU

Uv9 � vÿ (E ÿ R)s

with use of (13.1.3). Here, R and R9 are referred to the coordinate origins O and O9
respectively. In the special case of a pure shift [ejs] of the coordinate origin, we have

v9 � vÿ [E ÿ R]s (13:1:8)

where R9 and R differ only in the locations of their operations. The similarity

transformation (13.1.7) plays the essential role in establishing the equivalence of two

space groups under a coordinate transformation.

As a simple application of the transformation (13.1.8), we shall consider the inverse

problem of ®nding a shift [ejs] of the coordinate origin that brings a given element

fRjvg to another element fRjv9g. In the special case in which v9 � 0, it becomes the

problem of reducing fRjvg to a pure rotation (proper or improper) fRj0g by a shift of

the coordinate origin. For this purpose we rewrite (13.1.8) in the form

[E ÿ R]s � vÿ v9 (13:1:9)

If this equation is soluble for s, then the transformation of fRjvg to fRjv9g is possible

by the shift [Ejs]. Obviously, the equation is soluble for any given vÿ v9 if the matrix

[E ÿ R] is non-singular, i.e. if R does not have the eigenvalue unity. It is well known

that, when R is a proper rotation p, the eigenvalues are 1, eiè and eÿiè, where è is the

2 Here Ë � [U js] could be a group element of E(3) simply being an inhomogeneous orthogonal transforma-
tion; however, it need not be an element of a subgroup (e.g. a space group) of E(3).

O

x
s

O′ x ′ 5 x 2 s

Figure 13.1. A shift s of the coordinate origin.
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angle of rotation. Accordingly, when R � p, the matrix [E ÿ p] is always singular,

whereas when R is a rotation±inversion p � ÿ p that includes the pure inversion 1, the

matrix [E ÿ p] is always non-singular except when p is a binary rotation, for which

è � ð. In this case, p � m is a pure re¯ection, and its eigenvalues are ÿ1, 1 and 1 so

that [E ÿ m] is again singular. Accordingly, if R � p (6� m), Equation (13.1.9) always

has a general solution s � [E ÿ p]ÿ1(vÿ v9) for any given vÿ v9. This means that

fp 6� mjvg can be reduced to the pure rotation±inversion fpj0g at the coordinate

origin O9, which is shifted from O by s � [E ÿ p]ÿ1v.

On the other hand, when R � p ( 6� E) or m, the equation (13.1.9) does not have a

general solution but may have a special solution provided that vÿ v9 satis®es a certain

condition. To see this, let ø be a vector that is parallel to the axis of rotation p or the

re¯ection plane m such that Rø � ø, where R � p or m. Then ø is orthogonal to the

left-hand side of (13.1.9), i.e. the following scalar product is zero:

(ø, [E ÿ R]s) � ([E ÿ R�]ø, s) � 0

because ø � R�ø from Rø � ø, where R� is the transpose of R. Accordingly, the

right-hand side vÿ v9 of (13.1.9) must also be perpendicular to ø:

[E ÿ R]s � (vÿ v9) ? ø (13:1:10)

This means that (13.1.9) has a special solution for s if and only if vÿ v9 is

perpendicular to ø; see the algebraic solution (13.1.13). Conversely, under a given

shift [Ejs], only the perpendicular component v? of v with respect to ø can change

while the parallel component remains unchanged, i.e. v9i � vi : For R � p, an invariant

element f pjvig with respect to a shift is called a screw axis, whereas for R � m, the

invariant element fmjvig is called a glide re¯ection. These may be denoted

Sp � fpjvig, gm � fmjvig (13:1:11)

These cannot be reduced to the pure rotation f pj0g or the pure re¯ection fmj0g by a

shift of the point operation unless vi � 0 to begin with. See Figure 13.2.

Next, we shall determine the shift s which brings fRjv?g for R � p or m at the

origin O to the pure rotation fR9j0g at O9. Here R and R9 differ only in their locations.

The transformation fRjv?g is a plane transformation because it leaves every point

lying in the plane perpendicular to R (R � p or m) in the same plane. The required

shift s is obtained by solving Equation (13.1.10) with vÿ v9 � v?, i.e.

[E ÿ R]s � v? (13:1:12)

For R � m, the solution is given by s � v?=2, because mv? � ÿv?. For R � p, the

algebraic solution is given as follows. Let us take a coordinate system such that the z-

axis is parallel to the axis of p and the x-axis is parallel to v?. Then p � R(èez) and

v? � (v0, 0, 0), where è is the angle of rotation p and v0 is the x-component of v?.

Then, (13.1.12) takes the form

1ÿ cos è sin è
ÿsin è 1ÿ cos è

� �
sx

sy

� �
� v0

0

� �
; sz � 0

which gives the following solution for the required shift s with components

sx � 1
2
v0, sy � 1

2
v0 cot (è=2), sz � 0 (13:1:13)
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The graphical solution for (13.1.12) is also given in Figure 13.3. Let O and O9 be

the points at which the axes of p and p9 cut the x, y plane. Draw the vector v? from O

along the x-axis and then draw two straight lines, one from O and the other from the

end point of v?, making angles ö � (ðÿ è)=2 and ðÿ ö relative to the x-axis,

respectively, as in Figure 13.1. The point of intersection of these two lines is O9 and

the shift is given by s � ~OO9. Note that O9 is the ®xed point of the plane rotation

fpjv?g. Note also that sy � 1
2
v0 tanö.

From the above analysis, the elements of E(3) can be classi®ed into pure proper

rotations ( pj0) and pure rotation±inversions f pj0g, screw displacements Sp � fpjv?g
and glide re¯ections gm � fmjv?g by an appropriate shift of the point of each

operation. Even though these concepts may help one to understand the geometric

structure of the group, we shall not be concerned with these classi®cations when we

construct the space groups (each of which is a subgroup of E(3)), because it is highly

desirable to keep the point of every operation in the group at one ®xed coordinate

origin.

Figure 13.2. (a) The screw displacement Sp � fpjvig. (b) The glide re¯ection

gm � fmjvig.
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Figure 13.3. Graphical solution for the ®xed point of the plane rotation

fpjv?g: ö � (ðÿ è)=2.
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13.2 Introduction to space groups

The atomic structure of an ideal crystal in three dimensions may be considered as a

periodic collection of sets of atoms (or ions or molecules) that is in®nite in extent.

Two points in such a crystal are said to be equivalent if all physical geometric

properties are identical. Let us consider symmetry operations that take every point of

the crystal into an equivalent point. Then the set of all these operations forms a

group called the space group of the crystal, denoted by Ĝ. It is a subgroup of the

Euclidean group E(3), since the symmetry elements of Ĝ must leave the distance

between two points in the crystal invariant. By purely mathematical reasoning based

on the de®nition of space groups, a total of 230 space groups was constructed by

Fedrov in 1895 and somewhat later by SchoÈn¯ies.

We shall ®rst discuss the translational periodicity which is the fundamental

symmetry property of a crystal. It is characterized by a translation group

T � ffEjtgg (or a group of vectors T � ftg under addition) that is a subgroup of

the space group Ĝ of the crystal. It is discrete since the distance between atoms in a

crystal cannot be arbitrarily small. That it is an invariant subgroup of Ĝ can be

shown as in (13.1.4). By de®nition, an element of T brings an arbitrarily chosen point

O of a crystal to an equivalent point in the crystal. The set of all equivalent points

brought by the elements of T from O forms a point lattice called the Bravais lattice

of the crystal, which may be regarded as a graphical representation of the group of

discrete vectors T � ftg. The end of a vector t is called a lattice point and t itself is

called a lattice vector. Since the initial point O is chosen arbitrarily with respect to

the crystal frame, it is meaningless to talk about the absolute position of the Bravais

lattice relative to the given crystal (until the rotational symmetry of the crystal has

been referred to a certain symmetry point of the crystal). In Figure 13.4, one ®nds a

graphical representation of the Bravais lattice T of a two-dimensional crystal

composed of two kinds of atoms, A and B. Any parallel shift of the point lattice T by

an arbitrary vector s gives an equivalent representation of T; in fact,

[Ejs]ÿ1fEjtg[Ejs] � fEjtg 2 T

Let us consider the symmetry point group K � fRg of a Bravais lattice T � ftg
with respect to a lattice point, then

A B A

AA

A A

AA

B

BB

B B

BB

Figure 13.4. A Bravais lattice of a two-dimensional crystal.
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Rt 2 T ; 8 R 2 K, 8 t 2 T (13:2:1)

which is called the compatibility condition for compatibility between a Bravais lattice

T and its point group K. In fact, from (13.2.1), it will be shown that the allowed

rotation axes cn for a Bravais lattice are limited to the following ®ve kinds (see

(13.3.3b) for the proof):

c1, c2, c3, c4, c6 (13:2:2)

Moreover, the inversion symmetry is always contained in K because if t 2 T then

ÿt 2 T . Furthermore, if a Bravais lattice contains an n-fold axis of rotation

cn (n . 2), then it also contains a two-fold rotation c92 perpendicular to cn (see Lemma

3 in Section 13.3), i.e. cn is two-sided. This means that a Bravais lattice with the

principal axis cn (n . 2) has the point symmetry Dni (n . 2). When n � 2, there may

but need not exist c92 perpendicular to c2: it turns out that both cases are possible, as

will be shown by construction. Thus one may deduce that a possible point symmetry K

of a Bravais lattice is one of the following seven groups:

Ci, C2i, D2i, D3i, D4i, D6i, Oi (13:2:3)

where the group Oi arises naturally when the three two-fold axes of D2i become

equivalent.

The Bravais lattices with the same point symmetry group K are said to belong to the

same crystal system. From (13.2.3), there exists a total of seven crystal systems: their

names and symbols are

1. triclinic, T (Ci),

2. monoclinic, M (C2i),

3. orthorhombic, O (D2i),

4. hexagonal, H (D6i),

5. rhombohedral, RH (D3i) (or trigonal),

6. tetragonal, Q (D4i) and

7. cubic, C (Oi).

Bravais lattices belonging to a crystal system are further classi®ed by the lattice

types L. Two lattices with the same point symmetry K are of the same type if they can

be brought into each other by a continuous transformation of the lattices without

lowering the point symmetry. It will be shown later that there exists a total of 14

Bravais lattice types L for the seven crystal systems. Thus, there exists one or more

lattice types compatible to a given point group K.

Let us next consider the directional symmetry of a crystal. Two directions in a

crystal are equivalent if they contain the identical sequence of the equivalent points.

The set of point operations fRg which brings every direction of a crystal into an

equivalent one forms a point group G � fRg, which is called the crystallographic

point group of the crystal, also known as the crystal class. Since a directional

symmetry element of a crystal must be also a directional symmetry element of its

Bravais lattice T, the group G is a subgroup of the symmetry group K of the Bravais

lattice T of the crystal. Thus from the seven symmetry group K given by (13.2.3), one

can write down a total of 32 possible crystal classes by the subgroups of all K, as will

be given in (13.5.1). The translational symmetry of a crystal is averaged out in the

macroscopic dimension, whereas the directional symmetry remains unchanged in the

macro-dimension.
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The crystallographic point group G of a crystal may but need not be a subgroup of

the space group Ĝ of the crystal, since it is not required that G should transform every

point of the crystal into an equivalent one: it may need a further adjustment by a

parallel displacement tR to bring the crystal into coincidence with itself (like in the

case of a screw displacement or a glide re¯ection). Thus a general element of a space

group Ĝ may be expressed, using the Seitz notation, by

Ĝ � ffRjtRgg, 8 R 2 G (13:2:4)

where the rotational part fRg of Ĝ forms the crystal class G and the translational part

tR is given by

t R � vR � t, 8 t 2 T

Here, vR is the minimum translation characteristic to R, and is not a lattice translation

unless it is null. Note, however, that vE � 0 for the identity element E.

According to (13.2.4) there exists a homomorphism between Ĝ and G via the

correspondence fRjvR � tg ! R. Since the kernel of the homomorphism is the

translation group T � ftg, the factor group Ĝ=T is isomorphic to G, i.e.

Ĝ=T ' G (13:2:5)

This isomorphism plays the essential role for constructing space groups belonging to a

crystal class G.

In the actual description of a space group Ĝ, a suitable choice of the coordinate

origin (which shall be also the lattice origin) should be made on an appropriate

symmetry point in the given crystal in order to minimize the non-lattice translations in

the description of the space group Ĝ. In the special case in which a space group Ĝ

does not contain a non-lattice translation, an element of Ĝ is expressed in the form

fRjtg, where t 2 T . Since T is an invariant subgroup of Ĝ, one may express Ĝ in the

form of a semi-direct product:

Ĝ � T ^ G (13:2:6)

Such a space group is called a symmorphic space group. The majority of the space

groups are, however, non-symmorphic: this is different from the Euclidean group E(3),

for which (13.1.5) always holds because there exists no minimum translation.

As a summary, we may state that there exist altogether seven crystal systems K, 14

lattice types L, 32 classes G, and 230 space groups Ĝ for crystals. These will be

determined explicitly in the following sections in the order given. In particular, the

space groups will be constructed through the isomorphism Ĝ=T ' G with use of their

algebraic de®ning relations following the method developed by Kim (1986b).

13.3 The general structure of Bravais lattices

13.3.1 Primitive bases

For a given Bravais lattice or a translation group T � ftg, there exists a set of three

linearly independent basis vectors [a1, a2, a3] such that every lattice vector t can be

de®ned by

t � n1a1 � n2a2 � n3a3 (13:3:1a)
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where n1, n2 and n3 are integers (positive, negative or zero). Such a set of basis vectors

[a1, a2, a3] is called a primitive basis of the Bravais lattice T. The numerical

speci®cation of a primitive basis is given by the lengths of the basis vectors ja1j, ja2j
and ja3j, and their mutual angles a1^a2, a2^a3 and a3^a1; it is called the set of lattice

parameters. The spatial orientation of the lattice T as a whole is immaterial for the

congruence of two lattices. On account of the point symmetry of T, these parameters

need not be totally independent so that it will be necessary to specify only the

minimum number of these parameters for each lattice type.

By de®nition, each primitive basis vector ai is a primitive lattice vector (the shortest

lattice vector in its direction). Each face [ai, a j] formed by two basis vectors ai and a j

in a primitive basis is primitive in the sense that there is no lattice point on the face

except at the vertices. The parallelepiped formed by three basis vectors [a1, a2, a3] of

a primitive basis is called a primitive unit cell of T in the sense that it contains no

lattice point inside or on the faces except at the vertices. From these properties, it is a

simple matter to form a primitive basis for a given lattice T. Let a1 be a primitive

lattice vector in any given direction, and let a2 be another primitive lattice vector that

is not parallel to a1 but has the minimal projection on the line perpendicular to a1.

Then, the face [a1, a2] is primitive. Finally, let a3 be a primitive lattice vector not on

the plane of a1 and a2 but with the minimal height from the plane. Then the set

[a1, a2, a3] forms a primitive unit cell.

Let (aix, aiy, aiz) be the components of a basis vector ai with respect to an

appropriate coordinate system, then one can introduce a matrix expression A for the

primitive basis by

A � [a1, a2, a3] �
a1x a2x a3x

a1 y a2 y a3 y

a1z a2z a3z

24 35 (13:3:1b)

where the column vectors of A are de®ned by the basis vectors following the notation

introduced in (5.1.5). In terms of the basis matrix A, the lattice translation de®ned by

(13.1.3) is rewritten as

t � An, n � (n1, n2, n3) (13:3:1c)

where n is the column vector with components n1, n2 and n3. The sum of two lattice

vectors An and Am is A(n� m). The translation group T is, therefore, completely

speci®ed by the matrix A.

The choice of a primitive basis of a given lattice T is to some degree quite arbitrary;

however, the volume V0 of the primitive unit cell is independent of the choice and

gives the minimum volume of a cell formed by any three lattice vectors that are non-

coplanar. To see this, let a set of three lattice vectors be t i �
P

ja j Mji (i � 1, 2, 3)

where M � i Mji i is a matrix with integral elements. Then we can write

T � AM (13:3:2a)

where T � [t1, t2, t3] is a matrix de®ned by the lattice vectors that is analogous to

A � [a1, a2, a3]. Thus, via the absolute values of the determinants of both sides of

(13.3.2a), the cell volume V � jdet T j is related to the primitive cell volume

V0 � jdet Aj by

V � V0jdet M j (13:3:2b)
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Since det M is an integer, the minimum value of V must be given by V0, which

corresponds to det M � �1. In the special case in which [t1, t2, t3] forms another

primitive basis of T, one should have det M � �1 because both primitive cell volumes

must be minimal. A matrix with integral elements and with the determinant equal to

�1 is called a unimodular integral matrix. Then a matrix M that connects two

primitive bases of a lattice T is a unimodular integral matrix.

Now let R be an element of the symmetry group K of T, then R must satisfy the

compatibility condition (13.2.1). On combining this with (13.3.1a) we obtain

Rai �
X

j

a j M(R) ji, R 2 K; i � 1, 2, 3 (13:3:3a)

where the transformation matrix M(R) is a unimodular integral matrix, because both

the set [Ra1, Ra2, Ra3] and the set [a1, a2, a3] are primitive bases of T. Accordingly,

the trace of the matrix M(R) must also be an integer. Moreover, since M(R) is

equivalent to the three-dimensional rotation matrix R in the Cartesian coordinate

system,3 we have

tr M(R) � �(1� 2 cos è) � an integer (13:3:3b)

where è is the angle of the rotation R; the � sign is for a proper rotation and the ÿ
sign is for a rotation±inversion; cf. (4.3.9a). From (13.3.3b) and the property of the

cosine function, the allowed è is limited to 2ð=n with n � 1, 2, 3, 4 or 6. Thus the

rotation axes cn allowed for K are

c1, c2, c3, c4, c6 (13:3:3c)

which was given previously in (13.2.2) without proof. As was mentioned in the

introduction, from (13.3.3c) and Lemma 3 given below, we may arrive at the seven

crystal systems given by (13.2.3).

The primitive basis [a1, a2, a3] of a Bravais lattice T introduced above does not

seem to have any direct correlation to the symmetry group K of the lattice T in any

obvious way. To remedy this, we shall look into the relations between the point

symmetry K and the lattice vectors of T. The following three simple lemmas hold.

Lemma 1. Let T be a Bravais lattice belonging to a symmetry group K. The K

contains an inversion symmetry 1 with respect to a lattice point of T.

Lemma 2.4 If K contains an n-fold axis of rotation cn (n . 1), then the lattice T has a

lattice vector perpendicular to cn and also a lattice vector parallel to cn.

Lemma 3. If K contains a rotation axis cn (n . 2), it also contains a two-fold axis of

rotation c92 that is perpendicular to cn (i.e. cn is two-sided) and parallel to one of the

shortest lattice vectors perpendicular to cn.

3 In the matrix notation A of the basis, Equation (13.3.3a) is written as RA � AM(R), so that
Aÿ1 RA � M(R).

4 A simple proof of Lemma 2 is the following. Let t be any lattice vector of T that is not parallel or
perpendicular to cn. Then, the lattice vector de®ned by t? � cn t ÿ t is perpendicular to cn, while a lattice
operation

Hn � E � cn � c2
n � � � � � cnÿ1

n

applied to the vector t produces a lattice vector t i � Hn t parallel to cn, for cn t i � t i from cnHn � Hn; see
Figure 13.5. Note that Hn is a projection operator satisfying H2

n � nHn.
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Lemma 1 is obvious since, if t 2 T , then ÿt 2 T , on account of the inversion

symmetry of T. Thus, there exists no enantiomorphism (left- and right-handed

symmetry) for the Bravais lattice of a crystal, even if it exists for the crystal. Lemma 2

allows us to introduce basis vectors perpendicular to and parallel to a symmetry axis

of T. Lemma 3 is interesting: the mere assumption of cn (n . 2) for T leads to the

Dni (n . 2) symmetry for T. These lemmas will be proven through construction of the

general algebraic expression for the Bravais lattice types ®rst introduced by Kim

(1985) via the projection operator method applied to the lattice vectors of T.

13.3.2 The projection operators for a Bravais lattice

According to (4.3.5a), an n-fold axis of rotation cn is expressed, in terms of the

in®nitesimal rotation ù about the n-fold axis, by

cn � exp [(2ð=n)ù]

� E � ù sin (2ð=n)� ù2[1ÿ cos (2ð=n)] (13:3:4a)

where E is the unit matrix and ù satis®es ù3 � ÿù. As was shown in Section 4.3, we

have two projection operators, ÿù2 and its dual (1� ù2), both of which satisfy

x2 � x, and are mutually orthogonal. Following Kim (1985), we shall derive the

general expression for all the possible lattice types of the Bravais lattices by means of

these projection operators. Let r be an arbitrary vector in the three-dimensional vector

space V (3). Then from (4.3.4) the projections of r perpendicular to and parallel to the

axis of rotation cn are given by

r? � ÿù2 r, ri � (1� ù2)r (13:3:4b)

These projection operators themselves are not symmetry elements of the Bravais

lattice T but we can form symmetry operations of T that are proportional to them.

Firstly, the one proportional to ÿù2 is de®ned, from (13.3.4a), by

cn

t||

t cnt

Figure 13.5. A lattice vector t i parallel to an axis of rotation cn.
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Pn � 2E ÿ cn ÿ cÿ1
n � ÿ pnù

2, pn � 2[1ÿ cos (2ð=n)] (13:3:5a)

where Pn is a symmetry operation of T in the sense that it brings a lattice vector of T to

another lattice vector of T. By de®nition, Pn is involutional, satisfying

P2
n � pnPn (13:3:5b)

where the constant coef®cient pn has been de®ned in (13.3.5a). It depends on n and

takes integral values, corresponding to n � 6, 4, 3, 2 and 1 allowed for crystal systems

K,

p6 � 1, p4 � 2, p3 � 3, p2 � 4, p1 � 0 (13:3:6)

Secondly, the symmetry operations of T , which is proportional to (1� ù2), are de®ned

by the dual of Pn

Qn � pnE ÿ Pn � pn(1� ù2) (13:3:7a)

which is also involutional and orthogonal to Pn

Q2
n � pnQn, PnQn � 0 (13:3:7b)

Now, let t be an arbitrary lattice vector of T that is not perpendicular or parallel to

the rotation axis cn, then the operations of Pn and Qn on t give us the lattice vectors

t? � Pn t, t i � Qn t (13:3:8a)

where t? (t i ) is perpendicular (parallel) to the axis cn in view of (13.3.4b). This proves

that Lemma 2 holds once again. Moreover, from the involutional properties of Pn and

Qn, we obtain

Pn t? � pn t?, Qn t i � pn t i , Pn t i � Qn t? � 0 (13:3:8b)

which characterizes t? (t i ) as an eigenvector of Pn (Qn) belonging to the eigenvalue

pn. According to (13.3.6), these eigenvalues pn are all prime for n . 2. When n � 2,

we have cÿ1
2 � c2 so that from (13.3.5a) and (13.3.7a) the projection operators are

reduced to

P2=2 � E ÿ c2, Q2=2 � E � c2 (13:3:9a)

which are still symmetry operations of T. These satisfy x2 � 2x and also the

characteristic relations

(P2=2)t? � 2t?, (Q2=2)t i � 2t i , P2 t i � Q2 t? � 0 (13:3:9b)

with the eigenvalues equal to a prime number, namely 2.

The characteristic equations of Pn and Qn given by (13.3.8b) and (13.3.9b) play the

crucial role when we construct the general expression for Bravais lattices. It is also to

be noted that the integral value of pn given by (13.3.6) determines the number of

lattice types belonging to the crystal class Dni (n . 1), as will be shown in (13.3.16a).

13.3.3 Algebraic expressions for the Bravais lattices

To arrive at the general classi®cation of the lattice types and also prove Lemma 3, we

shall introduce a basis that is closely related to the symmetry axes of the Bravais

lattice T. Let cn be the principal axis of rotation for the symmetry group K of the

Bravais lattice T and let [e1, e2, e3] be a set of non-coplanar lattice vectors, each of
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which is a primitive lattice vector. Using Lemma 2, let e3 be parallel to the principal

axis cn and e1 and e2 be on the ù plane of cn (which is perpendicular to cn). The latter

will be speci®ed further in terms of the symmetry of T. The basis de®ned by

[e1, e2, e3] is called a conventional lattice basis of T and the parallelepiped de®ned by

the three basis vectors is called the Bravais parallelepiped (BP) of T.

In general, a BP thus de®ned need not be primitive so that the whole structure of T

is described by a set of lattice points inside or on each BP, if there are any, in addition

to the sublattice T (c) � ftcg of T de®ned by

tc � q1e1 � q2e2 � q3e3; q1, q2, q3 � integers (13:3:10a)

which is obviously an invariant subgroup of the translation group T. In other words,

the Bravais lattice T is described by the conventional sublattice T (c) decorated by

lattice points inside or on each BP, if there are any. Thus a general translation t of T is

described by

t � xe1 � ye2 � ze3 (mod tc 2 T (c)) (13:3:10b)

where the conventional coordinates x, y and z are rational numbers (mod 1). An

allowed set of these points f(x, y, z)g for T de®nes a lattice type belonging to the

crystal system K, because two different sets of rational numbers cannot be transformed

into each other by a continuous transformation without lowering the point symmetry

K. However, two sets connected by permutation or inversion of the coordinates

f(x, y, z)g belong to the same type. Hereafter, a set of the lattice points de®ned by

f(x, y, z)g is referred to as a set of equivalent points of a BP: it provides the coset

representatives of T (c) in T. Since T (c) is an invariant subgroup of T, the set forms a

factor group T=T (c):

f(x, y, z)g 2 T=T (c) (13:3:10c)

which may be called the group of the BP under addition as the group multiplication.

Thus, if (x1, y1, z1) and (x2, y2, z2) 2 T=T (c), then (x1� x2, y1 �y2, z1 �z2) 2 T=T (c).

See Section 13.4.

To determine the possible set f(x, y, z)g compatible with a given crystal system K,

we ®rst consider a BP with the principal axis of rotation cn with n . 2 in view of

Lemma 3 (which is to be proved). Let e1 be one of the shortest lattice vectors on the ù
plane of cn and let e2 � cne1. Then the face [e1, e2] of the BP is primitive, because if

there were a lattice vector e9 inside the face, then at least one of the four vectors e9,
e1 ÿ e9, e2 ÿ e9, e1 � e2 ÿ e9 would be shorter than the vector e1 (see Figure 13.6).

Next, we operate with cn on t given by (13.3.10b) and subtract it from t to obtain

t ÿ cn t � (x� y)e1 � [ pnyÿ (x� y)]e2 (mod tc 2 T (c)) (13:3:11)

e2

e1

e ′

Figure 13.6. A primitive base [e1, e2] where e2 � cne1; n . 2.
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where use has been made of cne1 � e2, cne3 � e3 and cne2 � 2e2 ÿ e1 ÿ pne2, which

follows from cn � 2E ÿ cÿ1
n ÿ Pn from (13.3.5a). Since the left-hand side of (13.3.11)

is a lattice vector and [e1, e2] is a primitive face, (13.3.11) implies that x� y and pny

are integers; hence we may set y � m= pn and x � ÿm=pn, whereupon (13.3.10b) can

be rewritten as

t � ÿ(m=pn)e1 � (m=pn)e2 � ze3 (mod tc 2 T (c)) (13:3:12)

where the allowed values of m are integers bounded only by 0 < m , pn, for pn being

a prime. Note that this equation is invariant under the exchange of e1 and ÿe2, so that

there exists a re¯ection plane c92 in T that is perpendicular to the diagonal lattice vector

e1 � e2 (see Figure 13.7). Combining this with the inversion symmetry 1 of T, we

conclude that there exists a two-fold axis of rotation c92 along the diagonal e1 � e2 and

hence along e1 and e2 given by cÿ1
n c92 and cnc92, respectively. This proves Lemma 3

since e1 is one of the shortest lattice vectors of T on the ù(cn) plane.

Next, the z-component in (13.3.12) is characterized as follows. By application of the

projection operator Qn of (13.3.7a) to both sides of (13.3.12) and using (13.3.8b), we

obtain

Qn t � zpne3 (mod tc 2 T (c)) (13:3:13)

Since Qn t is a lattice vector and e3 is the shortest in its own direction, the coef®cient

zpn must be an integer, say m9. Substitution of this result into (13.3.12) yields

t � ÿ(m=pn)e1 � (m= pn)e2 � (m9=pn)e3 (mod tc 2 T (c)) (13:3:14)

where 0 , m, m9 , pn. This equation describes the general structure of a possible

lattice type belonging to the crystal system Dni (n . 2).

Before actual construction of the lattice types, we give here some general discussion

based on (13.3.14). By de®nition, the third basis vector which forms a primitive unit

cell with e1 and e2 is given by a lattice vector t with the smallest z-component in

(13.3.14) compatible with a given value of m. Thus, when m � 0, we have m9 � 0 so

that a primitive basis [a1, a2, a3] is given by

a1 � e1, a2 � e2, a3 � e3 (13:3:15)

which de®nes a primitive BP. When m . 0, m9 cannot be zero because the face [e1, e2]

e2

c ′2

2m/pn

m/pn

e1

c ′2

e 1
 1

 e 2

Figure 13.7. A re¯ection plane perpendicular to a diagonal lattice vector e1 � e2.
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is primitive. Thus the third primitive basic vector a0
3, which forms a primitive basis

with e1 and e2, is given by

a0
3 � ÿ(m=pn)e1 � (m=pn)e2 � (1=pn)e3, 0 , m , pn (13:3:16a)

The notation a3 will be reserved for a more symmetric choice of the primitive basis.

Since each allowed integral value of m bounded by 0 , m , pn de®nes a primitive unit

cell [e1, e2, a0
3], the numerical value of pn determines the number of lattice types

belonging to Dni (n . 2), some of which, however, could be equivalent, as will be

discussed below. Since pn . 1 in (13.3.16a), the vector a0
3 is inside the BP, so that there

may exist one or more extra equivalent points in the BP given by

ìa0
3 � (ÿìm=pn, ìm= pn, ì=pn) (mod tc 2 T (c)) (13:3:16b)

where ì is an integer bounded by 1 < ì, pn.

When n � 2, the above argument fails since c2e1 � ÿe1. Accordingly, there may

but need not exist c92 perpendicular to c2; in fact, either case is possible, as will be

shown in the next section by construction. Thus, we arrive at the crystal systems D2i,

Oi and C2v; here, the system Oi arrives naturally when the three conventional lattice

vectors of the D2i system become equivalent. Furthermore, from the reduced projec-

tion operators P2=2 and Q2=2 introduced in (13.3.9a), we may proceed as in the case

of n . 2 with an appropriate choice of the conventional basis [e1, e2, e3] and arrive at

the general structure of possible lattice types described by

t � (m1=2)e1 � (m2=2)e2 � (m3=2)e3 (mod tc 2 T (c)) (13:3:17)

where 0 < m1, m2, m3 , 2 with a certain constraint characteristic to each system,

which will be discussed in the next section for each crystal system; see Sections 13.4.4

and 13.4.6. As a conclusion, we may state that all the Bravais lattice types are

described either by the general expression (13.3.14) for n . 2 or by (13.3.17) for

n � 2 (Kim 1985).

13.4 The 14 Bravais lattice types

We shall ®rst construct the lattice types belonging to the crystal systems Dni (n . 2)

based on (13.3.14) and then those of the remaining systems through showing that

(13.3.17) holds. The lattice types for the cubic system will be formed from those of

the orthorhombic system.

13.4.1 The hexagonal system H (D6i)

Since p6 � 1 from (13.3.6), we have m � m9 � 0 from 0 , m, m9 , p6 � 1 in

(13.3.14). Thus there exists only one lattice type that is primitive so that the primitive

basis is de®ned by (13.3.15). It is customary to take

a2 � c3a1 (13:4:1a)

instead of a2 � c6a1 without violating the symmetry because cÿ1
3 a1 is parallel to c6a1.

Then, the basis set [a1, a2] de®nes a hexagonal coordinate system (see Figure 13.8(e)).

The lattice type is denoted by PH. From the D6i symmetry, we have

ja1j � ja2j, a1 ^ a2 � 1208, a3 ? [a1, a2] (13:4:1b)
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Thus, we need only two lattice parameters, ja1j and ja3j, to describe any lattice

belonging to the lattice type PH.

13.4.2 The tetragonal system Q (D4i)

From 0 < m , p4 � 2, we have m � 0, 1. When m � 0, the BP is primitive and the

basis is given by (13.3.15). It is denoted by PQ. From the D4i symmetry, the primitive

basis vectors a1, a2 and a3 are perpendicular with respect to each other and

ja1j � ja2j. Thus any lattice belonging to the PQ type is determined by two lattice

parameters, ja1j and ja3j.
When m � 1, from (13.3.16a), a primitive basis may be de®ned by

a0
1 � e1, a0

2 � e2, a0
3 � (1

2
, 1

2
, 1

2
)

Thus the BP has only one extra lattice point, given by a0
3, which is at the center of the

BP so that it is called the body-centered BP and denoted IQ. A more symmetric choice

of the primitive basis of IQ is given, by drawing three basis vectors from three vertices

of the BP to the center of the BP (see Figure 13.8(d)), by

ai � dI ÿ ei; i � 1, 2, 3 (13:4:2a)

where dI � (e1 � e2 � e3)=2 � a1 � a2 � a3 (� a0
3). Thus the primitive basis A �

[a1, a2, a3] is given by

A � [(ÿe1 � e2 � e3)=2, (e1 ÿ e2 � e3)=2, (e1 � e2 ÿ e3)=2] (13:4:2b)

Thus, the matrix form of A with respect to the conventional basis is given by

A �
ÿ1

2
1
2

1
2

1
2
ÿ1

2
1
2

1
2

1
2
ÿ1

2

2664
3775 (13:4:2c)

The three basis vectors are all half of the diagonal lattice vectors of the BP and hence

equal in their lengths, so that the primitive unit cell formed by [a1, a2, a3] is rhombic;

in fact, from the orthogonality of the conventional basis vectors, we have

a2
i � (e2

1 � e2
2 � e2

3)=4 � d2
I ; i � 1, 2, 3 (13:4:2d)

Moreover, the edge angles are determined by the scalar products

ai
. a j � 1

2
e2

k ÿ d2
I (i, j, k � 1, 2, 3 cyclic permutations) (13:4:2e)

These satisfyX
i. j

ai
. a j � ÿd2

I ; i:e:
X
i. j

cos (ai ^ a j) � ÿ1 (13:4:2f)

Finally, from the matrix expression of A and (13.3.1c), the general coordinates of the

lattice vector t with respect to the conventional basis are given by

t � An � ((ÿn1 � n2 � n3)=2, (n1 ÿ n2 � n3)=2, (n1 � n2 ÿ n3)=2) (13:4:2g)

Since the sum of any two coordinates is an integer, the three coordinates are either all

integers or all half integers; the latter are those of the lattice points at the center of the
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a3

a2

a1

a1 ' a2 ' a3 ' a1

(a) Primitive BP [ D2i

e3

e2

e1

a3

a2

a1 5 e1, a2 5 (e2 1 e3)/2, a3 5 (e2 2 e3)/2

|a1| ± |a2| 5 |a3|

(b) Base-centered BP, A 5 (0, ½, ½) [ D2i

F

e3

e2

e1
a3

a2
a1

a1 5 (e2 1 e3)/2, a2 5 (e3 1 e1)/2, a3 5 (e1 1 e2)/2
dF 5 (e1 1 e2 1 e3)/2 5 (a1 1 a2 1 e3)/2

ai 2 aj 5 dF
2 2 ak

2 (i, j, k ±; 1, 2, 3 cyclic)

(c) Face-centered BP [ D2i

Figure 13.8. Graphical representations of BPs.
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c 92

c3

a3

a2

a1

2. The rhombohedral lattice R

e2

a1 a3

a2

0 e1

h (o) 5 2/3
h (x) 5 1/3

1. The double-centred hexagonal lattice R* projected on the plane ' c3

a3 5 23e1 1 13e2 1 13e3;  a1 5 3za3,  a2 5 3za1

a1

a2

a3

c 92

o  23

x  13 5 22
3

3. The projection of R on the plane ' c3

|a1| 5 |a2| 5 |a3|, a1^a2 5 a2^a3 5 a3^a1 5 arbitrary

(f) Rhombohedral BP [ Dei

a3

a2

a1

a3 ' [a1, a2]

a1^a2 5 120°

(e) Hexagonal BP [ D6i

a2

a1

a3

e3

e2

e1

dI

a1 5 dI 2 e1, a2 5 dI 2 e2, a3 5 dI 2 e3

dI 5 (e1 1 e2 1 e3)/2 5 (a1 1 a2 1 a3)
|a1| 5 |a1| 5 |a1| 5 |dI|

cos (ai^aj) 5 21Σ
i.j

(d) Body-centered BP [ D2i
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BPs. These relations, (13.4.2b)±(13.4.2g), hold also for all the remaining body-

centered lattices belonging to the orthorhombic and cubic systems.

Now, for IQ, we have je1j � je2j so that a2^a3 � a3^a1 from (13.4.2e). A lattice

belonging to IQ is determined again by two lattice parameters,5 the length of an edge

of the rhombohedron and one angular parameter, say ja1j and a1^a2. The remaining

angle (a2^a3 � a3^a1) is determined by (13.4.2f).

13.4.3 The rhombohedral system RH (D3i)

When n � 3, we have p3 � 3 so that m � 0, 1, 2 from 0 < m , p3. Since e2 � c3e1,

when m � 0 in (13.3.16a), we have a primitive BP that coincides with the hexagonal

lattice type PH belonging to the class D6i de®ned by (13.4.1b). This is interesting

because the mere assumption of a c3-axis for a Bravais lattice T may lead to a point

symmetry D6i for the lattice. The physical signi®cance of this result will be discussed

again later (see also Section 13.5). Next, when m � 1, from (13.3.16b), we have two

extra equivalent points inside the BP corresponding to ì � 1 and 2:

a0
3 � (2

3
, 1

3
, 1

3
), 2a0

3 � (1
3
, 2

3
, 2

3
) (mod tc 2 T (c)) (13:4:3a)

The BP is called the double-centered hexagonal BP. The group property (13.3.10c) is

satis®ed by these equivalent points of the BP, as one can see from a0
3 � 2a0

3 � (0, 0, 0)

(mod tc 2 T (c)). Thirdly, when m � 2, we have, from (13.3.16b) with ì � 1 and 2,

a0
39 � (1

3
, 2

3
, 1

3
), 2a0

39 � (2
3
, 1

3
, 2

3
)

which is, however, equivalent to (13.4.3a) under exchange of e1 and e2. The above

double-centered lattice may be described by a more symmetric primitive basis

[a1, a2, a3] generated from a0
3 by

a3 � a0
3, a1 � c3a3, a2 � c3a1 (13:4:3b)

Explicitly, with c3 � 3z and then using the Jones representation 3z � (ÿy, xÿ y, z) in

the hexagonal coordinate system given in (13.8.1b), we have

a3 � (2
3
, 1

3
, 1

3
), a1 � (ÿ1

3
, 1

3
, 1

3
), a2 � (ÿ1

3
, ÿ2

3
, 1

3
)

Then,

ja1j � ja2j � ja3j, a1 ^ a2 � a2 ^ a3 � a3 ^ a1

Thus, the primitive unit cell is a rhombohedron with equal angular parameters (see

Figure 13.8(f)). The lattice is called the rhombohedral lattice and is denoted by R. The

minimum set of the lattice parameters for R may be given by the length of one edge

and one angular parameter, say ja1j and a1^a2.

What we have shown above is that a Bravais lattice with a c3 symmetry may belong

either to the hexagonal lattice type PH 2 D6i or to the rhombohedral lattice type

R 2 D3i. This applies for any crystal belonging to the crystal classes C3, C3v, C3i, D3

and D3i. In this regard, it should be noted that a hexagonal lattice cannot be

transformed into a rhombohedral lattice by an in®nitesimal transformation because

there is a ®nite difference between their lattice parameters.

5 Note that the numbers of lattice parameters for any lattices belonging to a given crystal system are all the
same.
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Exercise. From (13.4.3b) show that a2
i � (3e2

1 � e2
3)=9 for all i and that ai

. a j �
(ÿ3

2
e2

1 � e2
3)=9 for all pairs (i, j).

Next, we shall construct the Bravais lattice types belonging to the crystal systems

D2i, Oi, C2i and Ci using the reduced projection operators introduced by (13.3.9a).

13.4.4 The orthorhombic system O (D2i)

We choose all three conventional basis vectors in the directions of the three orthogonal

two-fold axes (2x, 2 y, 2z) of D2i. Let e3 i 2z and then, by applying the reduced

projection operator Q2=2 � E � 2z to (13.3.10b), we obtain

t � 2z t � 2ze3 (mod tc 2 T (c)) (13:4:4a)

which yields that 2z is an integer. Analogously, we can show that 2x and 2y are also

integers. Thus, the possible lattice vectors are given by

t � (m1=2, m2=2, m3=2) (mod tc 2 T (c)) (13:4:4b)

where mi � 0 or 1 for all i with the condition that m1 � m2 � m3 6� 1, because each

basis vector is the shortest in its own direction. From the group requirement (13.3.10c)

for a set of equivalent points of a BP, we obtain the four and only four lattice types

given below.

(i) The primitive lattice P0: there are no extra equivalent points of the BP besides

(0, 0, 0). The primitive basis is given by ai � ei for all i. A lattice of P0 is

completely determined by ja1j, ja2j and ja3j.
(ii) The base-centered lattice A0: only one base A de®ned by the face [e2, e3] is

centered by a lattice point so that the equivalent points of the BP are (0, 0, 0)

and (0, 1
2
, 1

2
). The primitive basis may be de®ned by (see Figure 13.8(b))

a1 � e1, a2 � (e2 � e3)=2, a3 � (e2 ÿ e3)=2 (13:4:4c)

These satisfy, from the orthogonality of the conventional basis vectors,

ja2j � ja3j, a1 ? [a2, a3]

The minimum set of lattice parameters may be given by ja1j, ja2j and a2^a3. The

base-centered lattices B0 with the equivalent base point (1
2
, 0, 1

2
) and C0 with

(1
2
, 1

2
, 0) may be de®ned analogously to A0, but these are equivalent to A0 under

permutations of [e1, e2, e3].

(iii) The body-centered lattice I0: the equivalent points of the BP are (0, 0, 0),

(1
2
, 1

2
, 1

2
) (see Figure 13.8(d)). If one de®nes the primitive basis I0 by (13.4.2b)

analogously to IQ of the tetragonal system, the basis vectors satisfy all the

relations (13.4.2c)±(13.4.2f) as in the case of IQ. The only difference from IQ is

that all three angles, ai^a j; i . j, are different for I0. The primitive unit cell is

again rhombic and the lattice parameters may be determined by one edge length

ja1j and two angular parameters a1^a2 and a2^a3 (cf. IQ).

(iv) The face-centered lattice F0: the equivalent points of the BP are (0, 0, 0),

(0, 1
2
, 1

2
), (1

2
, 0, 1

2
) and (0, 1

2
, 1

2
). A symmetric set of the primitive basic vectors

A � [a1, a2, a3] is de®ned by the three face-centered lattice points as follows

(see Figure 13.8(c)):
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A � [(e2 � e3)=2, (e3 � e1)=2, (e1 � e2)=2] (13:4:4d)

Thus, the matrix form of A with respect to the conventional basis is given by

A �
0 1

2
1
2

1
2

0 1
2

1
2

1
2

0

264
375 (13:4:4e)

If we rewrite (13.4.4d) in the form

ai � dF ÿ ei=2; i � 1, 2, 3; dF � (e1 � e2 � e3)=2 � (a1 � a2 � a3)=2

where dF is a half of the diagonal of the BP, then, from the orthogonality of the

conventional lattice vectors, it follows that

a2
i � d2

F ÿ e2
i =4; i � 1, 2, 3

ai
. a j � e2

k=4 � d2
F ÿ a2

k ; (i, j, k � 1, 2, 3 cyclic permutations)

(13:4:4f)

where d2
F � (e2

1 � e2
2 � e2

3)=4 � (a2
1 � a2

2 � a2
3)=2. The minimum set of lattice

parameters is given by ja1j, ja2j and ja3j, because all the angular parameters

ai^a j are completely determined by them through (13.4.4f). Finally, from the

matrix expression of A and (13.3.1a), the general coordinates of the lattice

vector t with respect to the conventional basis are given by

t � An � ((n2 � n3)=2, (n3 � n1)=2, (n1 � n2)=2) (13:4:4g)

Since the sum of three coordinates is an integer, either all three coordinates are

integers or only one of them is an integer and the remaining two are half

integers; the latter are due to the face-centered lattice points of the BP, cf.

(13.4.2g). These relations (13.4.4d)±(13.4.4g) hold also for the face-centered

lattice of the cubic system.

13.4.5 The cubic system C (Oi)

When the conventional lattice vectors of the orthorhombic system O become equal in

length, the Bravais lattice becomes invariant under the point group Oi; in this case, the

system is called the cubic system. It has only three types of BP: primitive Pc, face-

centered Fc and the body-centered cubic Ic. There is no base-centered BP in the cubic

system due to the 3xyz symmetry which permutes e1, e2 and e3. The primitive basis

vectors for the types Pc, Fc and Ic are chosen analogously to those as for the

orthorhombic system O. Every cubic lattice is, however, determined by only one

parameter: the length of a primitive basis vector, because the primitive unit cell is

rhombic and the angular parameters of all pairs (i, j) for each lattice type are equal

and ®xed by

Pc: ai ^ a j � 908

Fc: ai ^ a j � 608, since ai
. aj � a2

k=2 from (13:4:4f)

Ic: ai ^ a j � 1098289 (the tetrahedral angle) since cos (ai ^ a j) � ÿ1
3

from (13:4:2f)

(13:4:5)
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13.4.6 The monoclinic system M (C2i)

The base [e1, e2] perpendicular to the c2-axis (ie3) can always be chosen to be

primitive. On applying Q2=2 � E � 2z and P2=2 � E ÿ 2z to (13.3.10b) we obtain,

respectively,

t � 2z t � 2ze3 (mod tc 2 T (c))

t ÿ 2z t � 2xe1 � 2ye2 (mod tc 2 T (c))

where 2z is an integer, for e3 being primitive. Likewise, 2x and 2y are integers for the

face [e1, e2] being primitive. Accordingly, the possible lattice points of the BP are

given by

t � (m1=2, m2=2, m3=2) (mod tc 2 T (c))

where mi � 0 or 1 for all i excluding m1 � m2 � m3 � 1, as will be shown below.

From the group requirement (13.3.10c), the possible lattice types are the following.

(i) The primitive lattice PM: with ai � ei for all i, we have a3 ? [a1, a2]. The lattice

parameters are determined by ja1j, ja2j, ja3j and ai^a j.

(ii) The base-centered lattice AM or BM: the CM lattice type is not possible because

the C base [e1, e2] is chosen to be primitive. The primitive basis for AM is de®ned

by

a1 � e1, a2 � (e2 � e3)=2, a3 � (e2 ÿ e3)=2 (13:4:6a)

which is analogous to A0 of the D2i system. Using e3 ? [e1, e2], we have

a2
2 � a2

3 � (e2
2 � e2

3)=4, a2
. a3 � (e2

2 ÿ e2
3)=4

a1
. a2 � a1

. a3 � (e1
. e2)=2 (13:4:6b)

The lattice parameters are determined by ja1j, ja2j and a1^a2 and a2^a3.

Note that the body-centered BP with a lattice point (1
2
, 1

2
, 1

2
) in the center of the

BP de®ned by [e1, e2, e3] is reduced to the base-centered lattice AM with a new

basis [e1, e1 � e2, e3]. (See Figure 13.9.)

e3

e1

e2

Figure 13.9. The body-centered BP of the monoclinic system is reduced to a

base-centered BP.

13.4 The 14 Bravais lattice types 309



T
ab

le
1
3
.1

.
C

h
a
ra

ct
er

is
ti

cs
o
f

th
e

1
4

ty
p
es

o
f

B
ra

va
is

la
tt

ic
e

C
ry

st
al

sy
st

em
s

C
o
n
v
en

ti
o
n
al

la
tt

ic
e

b
as

is
[e

1
,

e 2
,

e 3
]

T
y
p
es

P
o
in

ts
o
f

B
P

eq
u
iv

al
en

t
to

(0
,

0
,
0
)

P
ri

m
it

iv
e

b
as

is
[a

1
,

a
2
,

a
3
];

d
�

(e
1
�

e 2
�

e 3
)=

2

C
h
ar

ac
te

ri
st

ic
s

o
f

a
1
,

a
2
,

a
3
;

d
I
�

a
1
�

a
2
�

a
3

d
F
�

(a
1
�

a
2
�

a
3
)=

2
C

h
ar

ac
te

ri
st

ic
la

tt
ic

e
p
ar

am
et

er
s

T
ri

cl
in

ic
T

(C
i)

P
T

[e
1
,

e 2
,

e 3
]

ja i
j,a

i^
a

j;
i
6�

j;
1
,

2
,

3

M
o
n
o
cl

in
ic

M
(C

2
i)

A
ll
je i
jd

if
fe

re
n
t;

e 3
?

[e
1
,

e 2
]

P
M

A
M

(0
,

1 2
,

1 2
)

[e
1
,

e 2
,

e 3
]

[e
1
,

(e
2
�

e 3
)=

2
]

a
3
?

[a
1
,

a
2
]

ja 2
j�
ja 3
j,a

1
^

a
2
�

a
1
^

a
3
6�

9
0
8

ja 1
j,j

a
2
j,j

a
3
j;a

1
^

a
2

ja 1
j,j

a
2
j;a

1
^

a
2
,

a
2
^

a
3

O
rt

h
o
rh

o
m

b
ic

O
(D

2
i)

A
ll
je i
jd

if
fe

re
n
t;

al
l

e
i^

e
j
�

9
0
8

P
0

A
0

I 0 F
0

(0
,

1 2
,

1 2
)

(1 2
,

1 2
,

1 2
)

(0
,

1 2
,

1 2
)

(1 2
,

0
,

1 2
)

(1 2
,

1 2
,

0
)

[e
1
,

e 2
,

e 3
]

[e
1
,

(e
2
�

e 3
)=

2
]

a
i
�

d
ÿ

e
i

a
i
�

d
ÿ

e
i=

2

ja 2
j�
ja 3
j,a

1
^

a
2
�

a
1
^

a
3
6�

9
0
8

ja 1
j�
ja 2
j�
ja 3
j�
jd I
j

X i.
j

co
s

(a
i^

a
j)
�
ÿ1

a
i
.

a
j
�

d
2 F
ÿ

a
2 k

(i
,

j,
k
�

cy
cl

ic
1
,

2
,

3
)

d
2 F
�

(a
2 1
�

a
2 2
�

a
2 3
)=

4

ja 1
j,j

a
2
j,j

a
3
j

ja 1
j,j

a
2
j;a

2
^

a
3

ja 1
j;

a
1
^

a
2
,

a
2
^

a
3

ja 1
j,j

a
2
j,j

a
3
j

T
et

ra
g
o
n

al
Q

(D
4

i)
je 1
j�
je 2
j6�
je 3
j

al
l

e
i^

e
j
�

9
0
8

P
Q I Q

(1 2
,

1 2
,

1 2
)

[e
1
,

e 2
,

e 3
]

a
i
�

d
ÿ

e
i

ja 1
j�
ja 2
j6�
ja 3
ja

ll
a

i^
a

j
�

9
0
8

ja 1
j�
ja 2
j�
ja 3
j�
jd

I
j

a
1
^
a

3
�

a
2
^
a

3
,
X i.

j

co
s

(a
i^

a
j)
�
ÿ1

ja 1
j,j

a
3
a
j

ja 1
j,

a
1
^

a
3

H
ex

ag
o
n
al

H
(D

6
i)

R
h
o
m

b
o
h
ed

ra
l

R
(D

3
i)

je 1
j�
je 2
j

e 3
?

[e
1
,

e 2
]

e 1
^

e 2
�

1
2
0

8

P
H R

(2 3
,

1 3
,

1 3
)

(1 3
,

2 3
,

2 3
)

[e
1
,

e 2
,

e 3
]

a
3

a
1
�

3
z
a

3
,

a
2
�

3
2 z
a

3

ja 1
j�
ja 2
j,

a
3
?

a
1
,

a
2
;

a
1
^

a
2
�

1
2
0

8
a

1
^

a
2
�

a
2
^

a
3
�

a
3
^

a
1

ja 1
j,j

a
2
j

ja 1
j,a

1
^

a
2

C
u
b
ic

C
(O

i)
je 1
j�
je 2
j�
je 3
j

al
l

e
i^

e
j
�

9
0
8

P
C I C F
C

(1 2
,

1 2
,

1 2
)

(0
,

1 2
,

1 2
)

(1 2
,

0
,

1 2
),

(1 2
,

1 2
,

0
)

[e
1
,

e 2
,

e 3
]

a
i
�

d
ÿ

e
i

a
i
�

d
ÿ

e
i=

2

A
ll

a
i^

a
j
�

9
0

8
A

ll
a

i^
a

j
�

1
0
8

82
7
9

A
ll

a
i^

a
j
�

6
0

8
ja 1
j�
ja 2
j�
ja 3
j

A
ll

b
o
d
y
-c

en
te

re
d

la
tt

ic
es

I O
,

I Q
an

d
I C

,
al

l
la

tt
ic

es
o
f

th
e

cu
b
ic

sy
st

em
P

C
,

F
C

an
d

I C
,

an
d

th
e

rh
o
m

b
o
h
ed

ra
l

la
tt

ic
e

R
h
av

e
th

e
rh

o
m

b
ic

p
ri

m
it

iv
e

u
n
it

ce
ll

s;
i.

e.
ja 1
j�
ja 2
j�
ja 3
j.



13.4.7 The triclinic system T (Ci)

The BP is always chosen to be primitive since there is no restriction on the lattice

parameters. Thus, all six parameters are required in order to de®ne a lattice belonging

to this system.

We have constructed a total of 14 Bravais lattice types, which exhausts all the

possible lattice types. These are summarized in Table 13.1 and expressed graphically

in Figure 13.8.

13.4.8 Remarks

Remark 1. In Table 13.1, the lattice types are characterized by the conventional

lattice bases [e1, e2, e3] as well as by the primitive bases [a1, a2, a3]. Note that the

order of the minimum set of the lattice parameters is the same for any lattice type

belonging to a particular crystal system: six for triclinic, four for monoclinic, three for

orthorhombic, two for the tetragonal, rhombohedral and hexagonal systems, and only

one for the cubic system.

Also it should be noted from Table 13.1 that six out of 14 Bravais lattice types are

described by rhombic primitive unit cells: all body-centered lattices and all cubic

lattices, as well as the rhombohedral lattice R, have the rhombic primitive unit cell, i.e.

ja1j � ja2j � ja3j. They differ, however, in their three angular parameters; none of

them are the same for I0, two of them are the same for IQ and all three of them are the

same for R. For the cubic system, all three angular parameters for each lattice type are

not only the same but also take a speci®c value: 908 for Pc, 1098289 for Ic and 608 for

Fc.

Remark 2. The volume V of a Bravais parallelepiped BP is given by V � NV0, where

N is the number of equivalent points of the BP and V0 is the primitive unit cell volume.

Thus

VP � V0, VB � VI � 2V0, VF � 4V0

where VP, VB, VI and VF are the volumes of BPs belonging to the primitive, base-

centered, body-centered and face-centered lattices, respectively.

Remark 3. The interrelations between the lattice types based on a rectangular base

and a rhombic base. Previously, the cubic system has been introduced as a special case

of the orthorhombic system O. Obviously, it can be introduced as a special case of the

tetragonal system Q as well; in this system, however, there exist only two lattice types,

PQ and IQ, whereas in the cubic system there exist three lattice types, Pc, Ic and Fc.

The apparent discrepancy is resolved by introducing a transformation that brings a

rectangular base of a BP to a rhombic base.

We shall begin with the orthorhombic system O ®rst. Let [e1, e2] be the rectangular

base of a Bravais lattice belonging to the system O. If we introduce a rhombic base

[e91, e92] de®ned by

e91 � e1 � e2, e92 � e1 ÿ e2 (13:4:7)

where je91j � je92j, then the lattice types based on the rectangular base transform to

those based on the rhombic base as follows:
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PRec
0 ! CRhomb

0 , CRec
0 ! PRhomb

0 , IRec
0 ! FRhomb

0 , FRec
0 ! IRhomb

0

(13:4:8)

that is, the primitive lattice PRec
0 based on [e1, e2] is transformed to the base-centered

lattice CRhomb
0 based on [e91, e92] and so on. These transformations may be easily

understood from the two-dimensional projections of the lattice types given in Figure

13.10.

Obviously, the above transformation (13.4.7) can be applied to the tetragonal

system. In this case, both bases [e1, e2] and [e91, e92] are square, so that

PQ � CQ, IQ � FQ (13:4:9)

That is, the lattice type PQ can be regarded as CQ whereas IQ can be regarded as FQ.

This is not the case for the cubic system, because the transformation (13.4.7) applied

for the cubic system lowers the cubic symmetry to the tetragonal symmetry due to the

fact that je91j � je92j � p2je1j 6� je3j. Accordingly, Ic and Fc types are distinct in the

cubic system.

Now, application of the deformation je3j ! je1j � je2j to the lattice types PQ and

IQ brings out the following lattice types of the cubic system:

PQ ! PC, IQ ! IC

whereas application of the deformation je3j ! je91j � je92j to the lattice type FQ brings

out FC of the cubic system

FQ ! FC

This dissolves the discrepancy mentioned at the beginning of Remark 3. Hereafter, the

lattice types of the orthorhombic system will be referred to the rectangular base unless

otherwise speci®ed.

e1

e2
e91

PRec
°    5 C °

Rhomb IRec
°    5 F °

Rhomb

PRec
°    5 C °

Rhomb IRec
°    5 F °

Rhomb.

1

½

0







heights of lattice points

Figure 13.10. Two-dimensional projections of the lattice types of the ortho-

rhombic system: thin lines denote the rectangular bases and thick lines denote

the rhombic lattices.
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Remark 4. The hierarchy of the crystal systems (Lyubarskii 1960). One says that a

crystal system B is subordinate to a crystal system A (this is denoted by A) B) if

1. the symmetry point group B is a subgroup of the symmetry group A, and

2. each lattice type belonging to A can be converted into a lattice type of B by an

in®nitesimal continuous transformation of the basis vectors of A.

From Table 13.1, which contains all the information necessary for the in®nitesimal

transformations between lattices, we have the following subordination relations be-

tween crystal systems:

I: Oi ) D4i ) D2i

II: Oi ) D3i

III: D6i ) D2i

IV: D6i . D3i

9>>=>>;) C2i ) Ci (13:4:10)

It is to be noted here that, if A . B, then A) B except for the case in which A � D6i

and B � D3i, which appears in chain IV. This exception is due to the fact that there are

®nite differences between their angular parameters for the hexagonal system PH 2 D6i:

a1^a2 � 1208 and a2^a3 � a3^a1 � 908; whereas all angles are the same, a1^a2 �
a2^a3 � a3^a1, for the rhombohedral system R 2 D3i, according to Table 13.1.

Exercise. Using Table 13.1, describe the in®nitesimal transformations required for

the subordinate chain II.

13.5 The 32 crystal classes and the lattice types

So far, we have discussed the Bravais lattices, their point symmetry and the lattice

types compatible with the symmetry. Here, we shall discuss the crystal class G which

describes the directional symmetry of a crystal and then determine the possible lattice

types L allowed for the crystal belonging to a crystal class G. Hereafter, the lattice

types L compatible with a crystal class G may be denoted fL; Gg. As was mentioned

in Section 13.2, a crystal class G of a crystal is a subgroup of the crystal system K

which is the symmetry group of the Bravais lattice T of the crystal. Thus from the

subgroups of the seven crystal systems K given in (13.2.3), we obtain a total of 32

crystal classes:

C1, Ci; C2, Cs, C2i; D2, C2v, D2i;

C4, C2 p, C4i, C4v, D2p, D4, D4i; C3, C3i, D3, C3v, D3i;

C6, C3 p, C6i, C6v, D3p, D6, D6i; T , Ti, Tp, O, Oi (13:5:1)

These are written roughly in increasing order of the orders of principal axes except for

the cubic system. Since a particular point group G can be a subgroup of many

symmetry groups K, we may assign a crystal class G to the system K of the lowest

symmetry for which G < K holds; thus, we obtain the distribution of the crystal

classes among the crystal systems given in Table 13.2.

The assignment of the crystal classes G into the crystal systems K given by Table

13.2 leads us to the possible lattice types L allowed for a crystal belonging to a crystal

class G. To see this, we note that the crystal classes G assigned to a crystal system K

have a set of common characteristic axes of rotation, given in the third column of
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Table 13.2. Here, we have disregarded the difference between cn and cn because of the

inherent inversion symmetry of any Bravais lattice. Since these characteristic axes

determine the allowed lattice types of K as shown in Section 13.4, the required lattice

types compatible with a class G are given by the lattice types belonging to the K to

which G is assigned. For example, any crystal class belonging to the tetragonal system

has a four-fold axis c4 (or c4) as the principal axis of rotation. From Lemmas 1±3, this

means that the point symmetry of the Bravais lattice is the D4i symmetry and the

allowed lattice types are PQ and IQ, as given in Table 13.1. In particular, a crystal with

the principal axis of rotation c3 (or c3) is allowed to have either the hexagonal lattice

PH or the rhombohedral lattice R, as has been discussed in Section 13.4.3.

If the Bravais lattice of a crystal has a higher symmetry than that required by the

directional symmetry group G of the crystal, it would be unstable because an

in®nitesimal deformation would lower the symmetry of the Bravais lattice to the

lowest level permitted by the crystal class on account of the subordination relations

(13.4.10). This also explains the exceptional case of the D3i system, because it is not

subordinate to the D6i system.

By combining Tables 13.1 and 13.2, we can directly correlate the lattice types L to a

crystal class G and determine the allowed set of lattice types fL; Gg for a crystal

belonging to a crystal class G.

In the next section, the 230 space groups are classi®ed by the crystal system K ®rst,

then by the crystal class G and then by the lattice type fL; Gg compatible with G.

Finally, each space group is de®ned by a set of the characteristic translations vR for

every rotation R 2 G compatible with fL; Gg.
Before completing this section, we simply note here that a crystal class G belonging

to a crystal system K is an invariant subgroup of K:

G / K (13:5:2)

The physical signi®cance of this relation will be discussed later in connection with the

equivalence criteria of space groups.

Table 13.2. The distribution of the crystal classes among the crystal systems

Crystal system Crystal classes

Characteristic

axes of rotation

Cubic, C Oi, O, Tp, Ti, T 2x, 3xyz

Hexagonal, H D6i, D6, D3p, C6v, C3p, C6 6z

Rhombohedral, RH D3i, D3, C3v, C3i, C3 3z

Tetragonal, Q D4i, D4, D2p, C4v, C4i, C2p, C4 4z

Orthorhombic, O D2i, D2, C2v 2z, 2x

Monoclinic, M C2i, Cs, C2 2z

Triclinic, T Ci, C1 1

1. In the third column we have disregarded the differences between cn and cn because

of the inherent inversion symmetry of any Bravais lattice.

2. A crystal with a direction group assigned to the rhombohedral system RH may have

either the hexagonal lattice type or the rhombohedral lattice type.
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13.6 The 32 minimal general generator sets for the 230 space groups

13.6.1 Introduction

The present method of constructing the 230 space groups is based on the homomorph-

ism between a space group Ĝ � ffRjtRgg and its crystal class G � fRg via the

correspondence fRjtRg ! R. The kernel of the homomorphism is the invariant

subgroup T � ffEjtgg of Ĝ so that the factor group Ĝ=T is isomorphic to G:

Ĝ=T ' G (13:6:1)

Accordingly, the generator sets of both groups must satisfy the same set of abstract

de®ning relations (or presentation, see Chapters 5 and 11). This is one of the most

important basic properties of space groups; since through the presentations of 32 point

groups, we can determine all the possible generator sets of the factor groups and hence

obtain the 230 space groups.

We shall ®rst describe the one-to-one correspondence for the isomorphism between

Ĝ=T and G. For this purpose, let (RjvR) be a coset representative of T in Ĝ de®ned by

(RjvR) � fRjvRg (mod t 2 T ); 8 R 2 G (13:6:2a)

where vR is either zero or a non-lattice translation that is the minimum translational

part associated with the rotation R. Then the set f(RjvR)g provides a faithful represen-

tation of Ĝ=T with the multiplication law

(R1jv1)(R2jv2) � (R3jv3) (13:6:2b)

where

R1 R2 � R3, v1 � R1v2 � v3 (mod t 2 T )

Hereafter, we mean by Ĝ=T the group f(RjvR)g with this multiplication law. Then the

isomorphism (13.6.1) is described by the one-to-one correspondence (RjvR)$ R.

In actual calculation, the translational part vR is expressed by the conventional

coordinates (xR, yR, zR) de®ned by

vR � xRe1 � yRe2 � zRe3 � (xR, yR, zR) (mod t 2 T ) (13:6:3)

where [e1, e2, e3] is the conventional lattice basis of a lattice belonging to fL; Gg (a

lattice type L compatible to a crystal class G). In general, the translational parameters

xR, yR and zR are rational numbers (mod 1) on account of the discrete nature of the

space groups.

To determine all the space groups belonging to a crystal class G from the de®ning

relations, we assume a set of realizations for the generators of Ĝ=T in terms of (RjvR)

with an undetermined translational part vR � (xR, yR, zR): Then substitution of these

into the de®ning relations leads to a set of linear equations for xR, yR and zR (mod 1).

The solutions of these linear equations for the translational parameters xR, yR and zR

with respect to each allowed lattice type L of the class G lead to the generators of the

space groups belonging to L. In general, one has more than one solution because of

mod t 2 T in the de®nition (RjvR). Some of the solutions, however, could be equiva-

lent under the lattice transformation Ë � [U js] introduced in (13.1.7) which leaves

invariant the lattice type L of the class G. After we have removed these redundant

solutions, we obtain the generator sets of the space groups belonging to the set

fL; Gg. The generator set for a factor group Ĝ=T thus obtained may be called the
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minimal general generator set (MGGS) belonging to the crystal class G: it contains a

set of parameters that describes the translational parts of the space groups Ĝ

homomorphic to the crystal class G; e.g. see (13.6.10).

To ascertain the inequivalence of the space groups thus formed, we shall introduce a

general equivalence criterion in Section 13.7. We shall then construct the MGGSs of

the classes belonging to the cubic and rhombohedral systems as the representative

examples in the present approach in Sections 13.9 and 13.10, respectively. The 32

minimal general generator sets (one per crystal class) for all of the 230 space groups

have been constructed by Kim (1986b) and will be presented in Table 13.3 later.

To show the simplicity of the method, however, it seems worthwhile to discuss the

construction of the space groups belonging to the class D4 through its MGGS as a

prototype example, without going through the comprehensive argument concerning

their inequivalence. This example will prepare us for introducing the equivalence

criteria for the space groups under lattice transformations.

13.6.2 The space groups of the class D4

The de®ning relations for D4 are

A4 � B2 � (AB)2 � E (13:6:4)

The corresponding generators for the factor group D̂4=T may be expressed by

A � (4zjî, ç, c), B � (2xja, â, ã), E � (ej0, 0, 0) (13:6:5)

where (î, ç, c) and (a, â, ã) are the sets of the translational parameters based on the

conventional lattice basis of the tetragonal system given in Table 13.1. Before

determining these translational parameters, we shall ®rst map off some of the

parameters by shifting the origin of the lattice. According to (13.1.8), under a shift

[ejs] an element (RjvR) of Ĝ=T is transformed to (Rjv9R), where

v9R � vR ÿ (eÿ R)s (13:6:6)

so that, using the Jones representations 4z � (y, x, z), 2x � (x, y, z) given in Table

11.2, the generators A and B are transformed to

A! (4zjîÿ s1 ÿ s2, ç� s1 ÿ s2, c)

B! (2xja, âÿ 2s2, ãÿ 2s3) (13:6:7)

where s � (s1, s2, s3). Note that a shift of the origin cannot affect the translational

components c and a because they are in the invariant eigenvector spaces of 4z and 2x,

respectively (cf. Equation (13.1.10)). Now we take s such that

îÿ s1 ÿ s2 � 0, ç� s1 ÿ s2 � 0, ãÿ 2s3 � 0

and set âÿ 2s2 � b; then, the generators are simpli®ed to

A � (4zj0, 0, c), B � (2xja, b, 0) (13:6:8a)

The remaining parameters a, b and c will be determined for each lattice type of the

class from the de®ning relations, which state that the following products are all equal

to the unit element E � (ej0, 0, 0):

A4 � (ej0, 0, 4c), B2 � (ej2a, 0, 0)

(AB)2 � (ejaÿ b, aÿ b, 0) (13:6:8b)
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Now according to Tables 13.1 and 13.2, there exist only two lattice types for the class

D4: the primitive lattice P and the body-centered lattice I.

(i) For the P lattice, from (13.6.4) and (13.6.8b), we have

4c � 0, 2a � 0, aÿ b � 0 (mod 1)

which6 yield

c � 0, 1
4
, 1

2
, 3

4
, a � b � 0, 1

2
(13:6:9a)

The space groups with the parameter set (c, a) de®ned by (13.6.9a) are all

inequivalent under any shift [ejs], because the parameters c and a are in the

invariant eigenvector spaces of 4z and 2x, respectively. This is suf®cient to

ascertain the inequivalence of these space groups for the class D4 according to the

general criterion for equivalence of space groups which will be introduced in the

next section.

(ii) For the I lattice, the parameter sets for all the P lattices given by (13.6.9a) are

further reduced to two sets

c � 0, 1
4
, a � b � 0 (13:6:9b)

due to the equivalences c � c� 1
2

and a � a� 1
2

for the I lattice, since, under a

shift of the origin of the lattice [ej1
2
, 0, 1

4
], we obtain the following transformations

of the generators, using (13.6.6),

(4zj0, 0, c)! (4zj12, 1
2
, c) � (4zj0, 0, c� 1

2
)

(2xja, a, 0)! (2xja, a, 1
2
) � (2xja� 1

2
, a� 1

2
, 0)

where the last equalities follow from the equivalence (1
2
, 1

2
, 1

2
) � (0, 0, 0) for the I

lattice. The two sets of solutions given by (13.6.9) are inequivalent because c is in

the invariant eigenvector space of 4z.

Summarizing, we obtain a total of ten space groups belonging to the D4 class

expressed by the minimum general generator set (MGGS)

(4zj0, 0, c), (2xja, a, 0) with L(c, a) (13:6:10)

with the lattice type L and the set of translational parameters (c, a) given by

89: P(0, 0), 90: P(0, 1
2
), 91: P(1

4
, 0), 92: P(1

4
, 1

2
), 93: P(1

2
, 0),

94: P(1
2
, 1

2
), 95: P(3

4
, 0), 96: P(3

4
, 1

2
), 97: I(0, 0), 98: I(1

4
, 0)

Here, the numbers 89±98 are the space group numbers given in the ITXC.7 For

example, from (13.6.10), the generators of the space group number 98 are given by

I(4zj0, 0, 1
4
), (2xj0, 0, 0)

where I denotes the body-centered Bravais lattice of the tetragonal system de®ned in

Table 13.1.

6 For example, x � y (mod 5) reads `x is congruent to y modulo 5' and means `xÿ y is divisible by 5'.
Thus, nx � 0 (mod 1) with a given integer n means that x � m=n (mod 1), where m is an integer bound by
0 < m , n.

7 ITXC denotes International Tables for X-ray Crystallography (Kynoch, Birmingham, UK, 1965), Vol. 1 by
N. F. M. Henry and K. Lonsdale.
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From the MGGS given by (13.6.10), we can easily write down the general elements

of the factor group D̂4=T using the right coset decomposition of D̂4:

D̂4 � Ĉ4 � Ĉ42̂x

where Ĉ4 denotes the space group generated by 4̂z � (4zj0, 0, c) whereas 2̂x �
(2xja, a, 0). Thus, the general elements of D̂4=T are

Ĉ4: (ej0, 0, 0), (4zj0, 0, c), (2zj0, 0, 2c), (4ÿ1
z j0, 0, ÿc)

Ĉ42̂x: (2xja, a, 0), (2xyjÿa, a, c), (2 yjÿa, ÿa, 2c),

(2x yja, ÿa, ÿc) (13:6:11)

where we have used the Jones representations of the point operations given in Table

11.2. From the parameters c and a given in L(c, a) of (13.6.10), we can reproduce all

the elements of each one of the ten space groups numbers 89±98 given in the ITXC.

There are many convenient features for the MGGS of a crystal class:

(1) The number of the generators for every crystal class (or the rank) is less than or

equal to three, which is the maximum number for the generators of a point group.

(2) The MGGS for a crystal class provides all the necessary and suf®cient information

for determining all the (vector or projective) irreducible representations of the

space groups belonging to the class (see Chapter 14).

(3) The number of translational parameters required for each class is limited (, 5);

e.g. only one parameter is required for the octahedral class O (see Table 13.3

later).

(4) The symmetry properties exhibited by a MGGS under lattice tranformations help

identify the space groups.

(5) The set of space groups expressed by a MGGS is very effective in describing the

group±subgroup relations between the space groups with the same lattice types

(see Section 13.11).

Above all, the present method of constructing 32 MGGS provides the simplest

algebraic method so far of obtaining the 230 space groups without the help of a

computer. This is partly due to the algebraic equivalence criteria for the space groups

which will be described in the next section. Furthermore, the MGGSs of the crystal

classes lead to similar compact expressions for the extended space groups such as

magnetic space groups. This gives us control over the large number of the magnetic

space groups (a total of 1421) and helps us to understand the group structure (see

Chapter 17).

13.7 Equivalence criteria for space groups

As we have seen in (13.6.9b), it may happen that some of the space groups determined

by the present method are equivalent under a lattice transformation Ë � [U js], which

leaves the lattice type fL; Gg compatible with the class G invariant. Let the coordinate

system be based on the lattice vectors, then the transformation matrix U is a

unimodular integral matrix. When the space group has enantiomorphism, U should be

a proper unimodular matrix, i.e. det U � 1. Further restrictions on U will be discussed

below.
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Let fRjjv jg and fR9jjv9jg be a pair of solutions obtained from the presentation of

Ĝ=T for a given fL; Gg. Then, the pair is equivalent, if and only if there exists a

lattice transformation Ë � [U js] that connects the pair by

Ëÿ1(Rjjv j)Ë � (R9jjv9j) (13:7:1)

where, in view of (13.1.7),

(eÿ Rj)s � v j ÿ Uv9j (mod t 2 T )

R9j � Uÿ1 RjU ; j � 1, 2, . . . , r (13:7:2)

Here the set fR1, R2, . . . , Rrg is a generator set of G, and r < 3 because the maximum

number of the generators of a point group is three. Since r < 3, the set of equations

has more unknowns (three for U and three for s) than the number of equations; yet, it

need not have a solution on account of the unimodular condition imposed on U. Thus,

we may restate the problem in a more convenient form for calculation: the pair is

equivalent if and only if the set of r equations (13.7.2) has a solution s for any (proper)

unimodular matrix U that de®nes an automorphism of G that leaves the lattice type L

invariant.

The solvability of the set of equations (13.7.2) for s for a given U and T is trivial. As

was discussed for Equation (13.1.9), if one of the operators Rj is a pure rotation cn or a

re¯ection m, it has at least one eigenvector ø j belonging to the characteristic value 1.

Then the jth equation in (13.7.2) has a solution s j (up to ø j) if and only if the right-

hand side of the ®rst equation in (13.7.2) is perpendicular to ø j. On the other hand, if

Rj 6� cn and m, the corresponding equation has a de®nite solution s j for any U. Now

the set (13.7.2) has a solution for the given U and T, if all s j exist and are independent

of j.

The crucial part of the problem is to ®nd the allowed set of the unimodular matrices

fUg which leaves invariant the class G and the lattice type fL; Gg compatible with G,

unless we resort to trial and error. The collection of all 3 3 3 unimodular integral

matrices forms a group, which we denote by GL(3, Z). Then the allowed set fUg is a

normalizer N (G) of the class G in GL(3, Z), which leaves fL; Gg invariant. Thus,

from knowledge of symmetry group K of a crystal system that leaves a crystal class G

invariant as given by (13.5.2), we obtain the following normalizer N (G) (.G) for the

required sets fUg (ignoring enantiomorphism for the moment):

Oi . O, Tp, Ti, T , D2i, D2

D6i . D6, D3p, C6v, C6i, C6, C3p

D3i . D3, C3v, C3i, C3

D4i . D4, D2p, C4v, C4i, C4, C2p, C2v

M . C2i, C2, Cs

TR . Ci, C1 (13:7:3)

When enantiomorphism exists, the normalizers Oi and Dni given above should be

replaced by their proper subgroups O and Dn (n . 2), respectively. The sets M and TR

will be de®ned later. It should be noted that the normalizer D3i given above for the

rhombohedral system is for the rhombohedral lattice. When the lattice is hexagonal,
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the normalizer for D3i, D3, C3v and C3 is D6i. This does not create any complication

in the actual construction of their space groups, since the inequivalence of the allowed

solutions for these classes is simply due to the difference in the translational vector

component in the invariant eigenvector space of 3z, the z-component (see the discus-

sion of the rhombohedral system in Section 13.10). The sets M and TR are in®nite

groups, which will be given later by their generators. Note that some classes of the

orthorhombic system are included in the cubic system whereas the others are included

in the tetragonal system.

To see the justi®cation of the allowed set given by (13.7.3) for fUg, we consider, for

example, the ®rst set Oi with respect to the space groups belonging to fL; D2ig, the

lattice type L of the crystal class D2i. The conventional basis vectors for the ortho-

rhombic system are mutually orthogonal and differ in their lengths. However, when we

discuss the equivalent transformation de®ned by (13.7.1), the three binary axes of

rotation of D2i (or D2) are regarded as equivalent under their permutation because a

permutation of the basis vectors of the orthorhombic system does not change the

lattice type fL; D2ig. (This is consistent with the traditional geometric congruence in

classi®cation of their space groups.) Thus, the set of the unimodular transformation

matrices fUg for this case is described by the set of rotations belonging to the point

group Oi, since Oi leaves D2i invariant and describes all permutations of the set of

translational parts fvRg � f(�xR, �yR, �zR)g. In an analogous manner, the case of

the class D2 is justi®ed. It is also noted that Oi is not a normalizer of C2v but D4i is,

because the principal axis of rotation c2 for C2v is pointing in a ®xed direction, say the

z-axis. The set fUg given by (13.7.3) may be referred to as the symmetry groups of

the lattice types belonging to the crystal class G.

In the actual calculation, it is suf®cient to consider only the coset representatives of

G in N (G) for the matrix U in (13.7.3), because the inner automorphism of Ĝ does not

affect Ĝ. Moreover, when there is no enantiomorphism, a proper n-fold rotation cn can

be replaced by the rotation±inversion cn and vice versa. Consequently, the relevant set

of the unimodular transformation fUg for every crystal class may be given by one of

the following generator sets, up to a multiplicative factor of an element of the

respective class:

feg: Oi, O, Tp, D6i, D6, C6v, D3i, D3, C3v, D4, D4i, C4v, D2p

fe, c92g: C6i, C6, C3p, C3i, C4, C2p

fe, 4zg: Ti, T , C2v

fe, (x, y), (x, z)g8: D2i, D2

M � fe, (x, y), (xÿ y, y, z)g: C2i, C2, Cs

TR � fe, (x, y), (x, z), (xÿ y, y, z)g: Ci, C1 (13:7:4)

Here c92 ? cn, (x, y) denotes the interchange of the x- and y-axes, and (xÿ y, y, z)

denotes a linear transformation written in terms of the Jones notation. The coordinate

systems are based on the conventional lattice vectors. The last set for TR is academic

and has no practical use in the present work.

8 It is to be noted that, for the space groups of the last seven classes D2i through C1, there exists no
enantiomorphic element because their translational parts vR will be shown to be binary, i.e. 2vR 2 T . The
same remark applies for Ti and C2v, so that their relevant set f4zg may be replaced by f(x, y)g.
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A striking aspect of the relevant set fUg given by (13.7.4) is that it is simpler for a

crystal class with higher symmetry. In particular, mere shifts [ejs] of the lattice origin

will be suf®cient to determine the equivalence or inequivalence for the classes with the

relevant set feg in (13.7.4). In general, it is simpler to construct the MGGS of a class

with higher symmetry for the present method; this is quite a contrast to the traditional

methods based on the solvability of the space groups. From the above criterion, one

sees immediately that the space groups of the class D4 given by (13.6.10) are

inequivalent, since the translational parts of those belonging to each lattice type are

different in each invariant eigenvector space of 4z or 2x. In a special case in which one

of the pair of solutions (Rjjv j) and (R9jjv9j) has null translation; say v9j � 0 for all j so

that Uv9j � 0 in (13.7.2), a mere shift is again suf®cient to establish their equivalence

or inequivalence.9

13.8 Notations and de®ning relations

13.8.1 Notations

As in the International Tables for X-ray Crystallography (ITXC), we shall use the

following notations for the lattice type L: primitive P, base-centered A, B or C, face-

centered F, body-centered I, and rhombohedral R. When the lattice R is regarded as

the double-centered hexagonal lattice, it is denoted by R�. The coordinate systems will

be based on the conventional lattice vectors. Note, however, that the rhombohedral

coordinates are used for the R lattice whereas hexagonal coordinates are used for the

R� lattice.

Next, we shall introduce the notations for the pure point operations in terms of the

Jones faithful representations, which conveniently replace their three-dimensional

matrix representations (see Section 5.1.3). These are given here to the extent that is

needed for the multiplications of the group generators and for the lattice transforma-

tions.

(i) For Cartesian coordinates:

2x � (x, y, z), 2 y � (x, y, z), 2z � (x, y, z)

2xy � (y, x, z), 2x y � (y, x, z)

3xyz � (z, x, y), 3x y z � (y, z, x)

4z � (y, x, z), 1 � (x, y, z), mz � 2x

mxy � 2xy, n � 1n (13:8:1a)

See also Table 5.2.

9 We have stated that, when Rj is a proper rotation P or a re¯ection m for an element (Rjjv j) of Ĝ, the
translational component of v j in the invariant vector space ø j of Rj cannot be changed by a mere shift
[ejs] of the lattice's origin. This statement can be slightly extended, i.e. it holds even under a lattice
transformation [U js] provided that U commutes with Rj and Uø j � ø j. This follows again from the fact
that the left-hand side of the ®rst equation in (13.7.2) is perpendicular to ø j so that

0 � (ø j, (eÿ Rj)s) � (ø j, (v j ÿ Uv9j)) � (ø j, (v j ÿ v9j))

where U is an orthogonal matrix. For example, the translational parameter c in (2zja, b, c) is invariant
under [4zjs] with any shift s.
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(ii) For hexagonal coordinates:

2z � (x, y, z), 3z � (y, xÿ y, z), 6z � (xÿ y, x, z)

u0 � (xÿ y, y, z), u1 � (x, xÿ y, z)

1 � (x, y, z), m0 � u0, m1 � u1 (13:8:1b)

Here uí is a binary rotation in the x, y plane about an axis that makes an angle

íð=6 with the x-axis.

(iii) For rhombohedral coordinates:

3xyz � (z, x, y), uzx � (z, y, x), 1 � (x, y, z) (13:8:1c)

Here the coordinate system is taken such that the ®rst two operators 3xyz and uz,x

correspond to the operators 3z and u0 in the hexagonal coordinates for the R�
lattice, respectively (see Figure 13.8(f)).

13.8.2 De®ning relations of the crystal classes

For the sake of generality and also to prepare for the double-valued representations of

the space groups, we shall base our argument on the double space groups from the

outset (cf. Chapter 11). This means that the rotational part R of an element fRjtRg of a

space group Ĝ should be regarded as a direct product operation

R! R(è) 3 S(è) 2 G 3 G9 (13:8:2)

where R(è) is an ordinary rotation in the point group G and S(è) � exp (ÿiè . ó=2) is

a spinor transformation belonging to the double group G9, both of which are de®ned

by the same set of rotation vectors è chosen properly according to (11.1.3) and

(11.1.4). Since only the rotational part R(è) acts on the translational part t R, the

generalization to the double space groups does not require any more effort than that

required for the ordinary space groups. It is necessary only to interpret the rotational

part of a space group Ĝ � fRjtRg via (13.8.2), then the space group becomes its

projective set belonging to the factor system de®ned by (11.1.2). Hereafter, we mean

by a point group or space group the respective double group, unless speci®ed

otherwise. Since there exists a one-to-one correspondence between a space group and

its projective set representing the double group via the interpretation (13.8.2), we may

use the same notation Ĝ � ffRjtRgg for a space group and its projective set. Thus, for

example, the factor groups for D̂4=T de®ned by (13.6.11) may well be regarded as the

projective sets representing the corresponding double groups.

A point group is isomorphic either to a proper point group P or to a rotation

inversion group Pi � P 3 Ci, where Ci is the group of inversion. The presentation of

P has been given in (11.2.2) by

An � Bm � (AB) l � E9, E92 � E (13:8:3a)

where A and B are abstract generators, E9 corresponds to the 2ð rotation that

commutes with all the elements, and E is the identity. The set of integers fn, m, lg is

given by fn, 0, 0g for a cyclic group Cn, by fn, 2, 2g for Dn, by f3, 3, 2g for T, and

by f4, 3, 2g for O. The presentation of Pi is given by

X 2 P; I2 � [X , I] � E (13:8:3b)

where [X , I] � XIX ÿ1 Iÿ1 is the commutator.
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Now, through the isomorphism Ĝ=T ' G the presentation of a space group Ĝ=T is

also given by (13.8.3); here, the realization of an operator is given by (RjvR) for Ĝ=T

instead of R of G. In particular, E9 and E for Ĝ=T are

E9 � (e9j0), E � (ej0)

where e9 and e stand for the 2ð rotation and the identity for G, respectively. The

realization of inversion translation for Ĝ=T is expressed by I � (1jvi), where 1 is the

pure inversion.

Let us discuss the commutator in (13.8.3b) in some detail. Let X 1 �
(R1jv1) 2 P̂=T , then

[X 1, I] � (ej2v1 � R1vi ÿ vi) (13:8:4)

In a special case in which v1 is binary (i.e. 2v1 is a primitive translation of T ) or, more

generally, if v1 and R1vi ÿ vi are linearly independent, we have

R1vi � vi (mod t 2 T ) (13:8:5)

which characterizes vi (mod t 2 T ) as an invariant eigenvector of R1. Such a char-

acterization of vi for a generator R1 of P frequently reduces the labor involved in

determining vi from the commutators with the remaining generators of P.

For further illustration of the present approach, we shall explicitly construct the

MGGSs for the classes belonging to the cubic system and the rhombohedral system in

the next sections. The cubic system is chosen because it is of the highest symmetry,

whereas the rhombohedral system is chosen because its space groups are described by

the primitive hexagonal lattice or by the rhombohedral lattice (see Table 13.1). A

complete listing of the 32 MGGSs of the 230 space groups is given in Table 13.3. For

the complete derivation see Kim (1986b).

13.9 The space groups of the cubic system

The characteristic generator of the cubic system is B � (3xyzja, b, c). However, this

generator can always be transformed into the pure rotation (3xyzj0) by a shift of the

origin of the lattice. Firstly, using (13.8.1a) we have

B3 � (e9ja� b� c, a� b� c, a� b� c) � (e9j0)

so that a� b� c � 0 (mod 1) for any lattice of type P, F or I; here, the condition for

the I lattice is obtained by beginning with B � (3xyzja� 1
2
, b� 1

2
, c� 1

2
): Secondly,

under a shift [ejs] we have, using (13.6.6),

B! (3xyzjaÿ s1 � s3, bÿ s2 � s1, cÿ s3 � s2)

which is reduced to (3xyzj0) with s1 � 0, s2 � b and s3 � ÿa. It is also to be noted that

(3xyzj0) is invariant under a shift [ejá, á, á] in the diagonal (1.1.1) direction of the

coordinate system, which is in the invariant eigenvector space of 3xyz. Now, from

(13.7.4), the relevant set of the unimodular transformations fUg is given by fe, 4zg
for the classes T and Ti and by feg for the classes O, Tp and Oi. It turns out also for

the class T that one needs only a shift in order to ascertain the inequivalence of the

solutions, since there are only one or two solutions for each lattice type of the class.
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Table 13.3. The 32 minimal general generator sets of the 230 space groups

A. The cubic system

}T . (2zjc, 0, c), (3xyzj0) with L(c): 195. P(0), 196. F(0), 197. I(0), 198. P(1
2
), 199. I(1

2
).

}Ti (� Th). (2zjc� a, a, c), (3xyzj0), (ij0) with L(c, a): 200. P(0, 0), 201. P(0, 1
2
),

202. F(0, 0), 203. F(0, 1
4
), 204. I(0, 0), 205. P(1

2
, 0), 206. I(1

2
, 0).

}O. (4zj0, ÿc, c), (3xyzj0) with L(c): 207. P(0), 208. P(1
2
), 209. F(0), 210. F(1

4
),

211. I(0), 212. P(3
4
), 213. P(1

4
), 214. I(1

4
).

}Tp (� Td). (4zjc, ÿc, c), (3xyzj0) with L(c): 215. P(0), 216. F(0), 217. I(0),

218. P(1
2
), 219. F(1

2
), 220. I(1

4
).

}Oi (� Oh). (4zjÿa, ÿc, c), (3xyzj0), (ij0) with L(a, c): 221. P(0, 0), 222. P(1
2
, 0),

223. P(1
2
, 1

2
), 224. P(0, 1

2
), 225. F(0, 0), 226. F(1

2
, 0), 227. F(1

2
, 1

4
), 228. F(0, 1

4
),

229. I(0, 0), 230. I(1
4
, 1

4
).

B. The hexagonal system

}C6. P(6zj0, 0, c) with c: 168. 0, 169. 1
6
, 170. 5

6
, 171. 1

3
, 172. 2

3
, 173. 1

2
.

}C3p (� C3h). 174. P(6zj0).

}C6i (� C6h). P(6zj0, 0, c), (ij0) with c: 175. 0, 176. 1
2
.

}D6. P(6zj0, 0, c), (u0j0) with c: 177. 0, 178. 1
6
, 179. 5

6
, 180. 1

3
, 181. 2

3
, 182. 1

2
.

}C6v. P(6zj0, 0, c), (m0j0, 0, c9) with (c, c9): 183. (0, 0), 184. (0, 1
2
), 185. (1

2
, 1

2
),

186. (1
2
, 0).

}D3p (� D3h). P(6zj0, 0, 0), (m0j0, 0, c) or (u0j0, 0, c) with (m; c) or (u; c):

187. (m; 0), 188. (m; 1
2
), 189. (u; 0), 190. (u; 1

2
).

}D6i (� D6h). P(6zj0, 0, c), (u0j0, 0, c9), (ij0) with (c, c9): 191. (0, 0), 192. (0, 1
2
),

193. (1
2
, 1

2
), 194. (1

2
, 0).

C. The rhombohedral system

}C3. (3zj0, 0, c) with L(c): 143. P(0), 144. P(1
3
), 145. P(2

3
), 146. R�(0).

}C3i. (3zj0), (ij0) with L: 147. P, 148. R�.
}D3. (3zj0, 0, c), (uíj0) with L(uí; c): 149. P(u1; 0), 150. P(u0; 0), 151. P(u1; 1

3
),

152. P(u0; 1
3
), 153. P(u1; 2

3
), 154. P(u0; 2

3
), 155. R�(u0; 0).

}C3v. (3zj0), (míj0, 0, c) with L(mí; c): 156. P(m0; 0), 157. P(m1; 0), 158. P(m0; 1
2
),

159. P(m1; 1
2
), 160. R�(m0; 0), 161. R�(m0; 1

2
).

}D3i (� D3d). (3zj0), (uíj0), (ij0, 0, c) with L(uí; c): 162. P(u1; 0), 163. P(u1; 1
2
),

164. P(u0; 0), 165. P(u0; 1
2
), 166. R�0 (u0; 0), 167. R�0 (u0; 1

2
).

D. The tetragonal system

}C4. (4zj0, 0, c) with L(c): 75. P(0), 76. P(1
4
), 77. P(1

2
), 78. P(3

4
), 79. I(0), 80. I(1

4
).

}C2p (� S4):(4zj0) with L: 81. P, 82. I .

}C4i (� C4h). (4z, a, b, c) (ij0) with L(a, b, c): 83. P(0, 0, 0), 84. P(0, 0, 1
2
),

85. P(1
2
, 0, 0), 86. P(1

2
, 0, 1

2
), 87. I(0, 0, 0), 88. I(1

4
, 1

4
, 1

4
).

}D4. (4zj0, 0, c), (2xja, a, 0) with L(c, a): 89. P(0, 0), 90. P(0, 1
2
), 91. P(1

4
, 0),

92. P(1
4
, 1

2
), 93. P(1

2
, 0), 94. P(1

2
, 1

2
), 95. P(3

4
, 0), 96. P(3

4
, 1

2
), 97. I(0, 0), 98. I(1

4
, 0).

}C4v. (4zj0, 0, c), (mxja� 2c, a, c9) with L(c, a, c9): 99. P(0, 0, 0), 100. P(0, 1
2
, 0),

101. P(1
2
, 0, 1

2
), 102. P(1

2
, 1

2
, 1

2
), 103. P(0, 0, 1

2
), 104. P(0, 1

2
, 1

2
), 105. P(1

2
, 0, 0),

106. P(1
2
, 1

2
, 0), 107. I(0, 0, 0), 108. I(0, 0, 1

2
), 109. I(1

4
, 0, 0), 110. I(1

4
, 1

2
, 0).
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}D2p (� D2d). (4xj0), (2z or mxja� 2c, a, c) with L(2 or m; a, c): 111. P(2; 0, 0),

112. P(2; 0, 1
2
), 113. P(2; 1

2
, 0), 114. P(2; 1

2
, 1

2
), 115. P(m; 0, 0), 116. P(m; 0, 1

2
),

117. P(m; 1
2
, 0), 118. P(m; 1

2
, 1

2
), 119. I(m; 0, 0), 120. I(m; 0, 1

2
), 121. I(2; 0, 0),

122. I(2; 1
2
, 1

4
).

}D4i (� D4h). (4zj0, 0, c), (2xja, a, 0), (ijá, á� 2c, ã) or (4zjá� c, c, c),

(2xja, a� á� 2c, ã), (ij0) with L(c, a; á, ã):

(á, ã)

L (c, a) (0, 0) (0, 1
2
) (1

2
, 0) (1

2
, 1

2
)

P (0, 0) 123 124 125 126

(0, 1
2
) 127 128 129 130

(1
2
, 0) 131 132 133 134

(1
2
, 1

2
) 135 136 137 138

I (0, 0) 139 140

(1
4
, 0) 142 141

E. The orthorhombic system

}D2. (2zjc, 0, c), (2xja, a, 0) with L(c, a): 16. P(0, 0), 17. P(1
2
, 0), 18. P(0, 1

2
),

19. P(1
2
, 1

2
), 20. C(1

2
, 0), 21. C(0, 0), 22. F(0, 0), 23. I(0, 0), 24. I(1

2
, 1

2
).

}C2v. (2zja9, b, c� c9), (mxj0, b, c), (m yja9, 0, c9) with L(b, c; a9, c9):

(a9, c9)

L (b, c) (0, 0) (0, 1
2
) (1

2
, 0) (1

2
, 1

2
)

P (0, 0) 25 26 28 31

(0, 1
2
) 27 29 30

(1
2
, 0) 32 33

(1
2
, 1

2
) 34

C (0, 0) 35 36

(0, 1
2
) 37

A (0, 0) 38 40

(0, 1
2
) 39 41

I (0, 0) 44 46

(0, 1
2
) 45

F b � c � a9 � c9 � d; 42. d � 0, 43. d � 1
4
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13.9.1 The class T

A2 � B3 � E9, (AB)3 � E. Adjusting the origin of the lattice, one may set

A � (2zja, 0, c), B � (3xyzj0) (13:9:1a)

where a and c are parameters to be determined for each lattice type from the de®ning

relations and the products

A2 � (e9j0, 0, 2c), (AB)3 � (ejaÿ c, ÿa� c, ÿa� c) (13:9:1b)

Table 13.3 (cont.)

}D2i (� D2h). (2zjc, 0, c), (2xja, a, 0), (ijá, â, ã) or (2zjc� á, â, c), (2xja, a� â, ã),

(ij0) with L(c, a; á, â, ã):

L (c, a) (á, â, ã)

P (0, 0) 47. (0, 0, 0) 48. (1
2
, 1

2
, 1

2
) 49. (0, 0, 1

2
) 50. (1

2
, 1

2
, 0)

(1
2
, 0) 51. (1

2
, 0, 0) 52. (0, 1

2
, 0) 53. (0, 0, 0) 54. (1

2
, 1

2
, 0)

(0, 1
2
) 55. (0, 0, 0) 56. (1

2
, 1

2
, 1

2
) 57. (0, 1

2
, 0) 58. (0, 0, 1

2
)

59. (1
2
, 1

2
, 0) 60. (0, 1

2
, 1

2
)

(1
2
, 1

2
) 61. (0, 0, 0) 62. (0, 0, 1

2
)

C (0, 0) 65. (0, 0, 0) 66. (0, 0, 1
2
) 67. (0, 1

2
, 0) 68. (0, 1

2
, 1

2
)

(1
2
, 0) 63. (0, 1

2
, 0) 64. (0, 0, 0)

F (0, 0) 69. (0, 0, 0) 70. (1
4
, 1

4
, 1

4
)

I (0, 0) 71. (0, 0, 0) 72. (0, 0, 1
2
)

(1
2
, 1

2
) 73. (0, 0, 0) 74. (0, 0, 1

2
)

F. The monoclinic system

}C2. (2zj0, 0, c) with L(c): 3. P(0), 4. P(1
2
), 5. B(0).

}(C1p) (� Cs). (mzj0, b, 0) with L(b): 6. P(0), 7. P(1
2
), 8. B(0), 9. B(1

2
).

}(C2i) (� C2h). (2zj0, b, c), (ij0) with L(b, c): 10. P(0, 0), 11. P(0, 1
2
), 12. B(0, 0),

13. P(1
2
, 0), 14. P(1

2
, 1

2
), 15. B(1

2
, 0).

G. The triclinic system

}C1. 1. P(e9j0). }Ci. 2. P(e9j0), (ij0)

1. L(a, . . .) means the lattice type L with the parameters a, . . . .

2. The number assigned to each space group is in accordance with The International

Tables for X-ray Crystallography (1965) Volume 1.

3. The crystal classes are expressed in the present notation as well as in the SchoÈn¯ies

notation.

4. The inversion is expressed by i instead of 1 for simplicity.
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(i) For the P lattice, the allowed values of the parameters are

c � a � 0, 1
2

(13:9:1c)

which de®ne two space groups with the generators

(2zja, 0, a), (3xyzj0); a � 0, 1
2

(13:9:1d)

These are inequivalent because a shift cannot affect the translational component a

in the invariant eigenvector space of 2z.

(ii) For the F lattice, the above solutions (13.9.1d) are reduced to one solution with

the parameter

c � a � 0 (13:9:1e)

(iii) For the I lattice, directly from (13.9.1b) we obtain

2c � 0, aÿ c � 0, 1
2

(mod 1)

which yield a, c � 0, 1
2
. Since, however, c � c� 1

2
under [ej1

4
, 1

4
, 1

4
], we may set

a � c to obtain (13.9.1d) again for the I lattice.

The ®ve space groups obtained above for the class T are summarized by the

following MGGS,

(2zja, 0, a), (3xyzj0) with L(a): (13:9:1f)

195: P(0), 196: F(0), 197: I(0), 198: P(1
2
), 199: I(1

2
)

These are also listed in Table 13.3, which contains all 32 MGGSs of the 230 space

groups.

From (13.9.1f), one can easily write down the general elements of the space groups

belonging to the class T using the right coset decomposition

T̂ � D̂2 � D̂23̂xyz � D̂23̂x y z

where 3̂xyz � (3xyzj0). From 2̂z � (2zja, 0, a), the elements of D̂2 are obtained by

2̂x � 3̂xyz2̂z3̂
ÿ1
xyz, 2̂ y � 3̂xyz2̂x3̂ÿ1

xyz, then the rest follows from the multiplication tables

Tables 5.6 or 11.2:

D̂2: (ej0) (2zja, 0, a) (2xja, a, 0) (2 yj0, a, a)

D̂23̂xyz: (3xyzj0) (3x y zja, 0, a) (3x yzja, a, 0) (3x yzj0, a, a)

D̂23̂x y z: (3x y zj0) (3x yzja, 0, a) (3xyzja, a, 0) (3x yzj0, a, a) (13:9:1g)

The set reproduces all the elements of the seven space groups belonging to the class T

given in the ITXC with use of MGGS (13.9.1f). The above set may be regarded either

as an ordinary space group as it stands or as the projective set of the space group with

the interpretation (13.8.2), in view of (11.1.3).

13.9.2 The class Ti (�Th)

A, B 2 T ; I2 � [A, I] � [B, I] � E. The space groups of this class may be con-

structed by augmenting those of the class T with the inversion translation I. Using

(13.8.5) with R1 � 3xyz, we may set vi � (á, á, á). Then
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A � (2zja, 0, a), B � (3xyzj0), I � (1já, á, á) (13:9:2a)

where a � 0, 1
2

for the class T. From the commutators

[A, I] � (ejÿ2á, ÿ2á, 0), [B, I] � (ej0) (13:9:2b)

obtained by (13.8.4), we determine the parameter á for each lattice type. Here the

augmentation does not affect the original parameter a. By the shift [ejá=2, á=2, á=2]

of the coordinate origin to the center of the inversion, we transform the generator set

(13.9.2a) into the form

(2zja� á, á, a), (3xyzj0), (1j0) (13:9:2c)

The shift does not affect the commutators because they are equal to the identity

element.

(i) For the P lattice, from (13.9.1d) we have a � 0, 1
2

and from (13.9.2b) we

have á � 0, 1
2
. These provide the ordered pair (a, á) with the four sets of

parameters

(0, 0), (0, 1
2
), (1

2
, 0) � (1

2
, 1

2
) (13:9:2d)

of which the last two sets are equivalent. To see this we write down explicitly the

generators of the corresponding four space groups

(2zj0, 0, 0), (2zj12, 1
2
, 0), (2zj12, 0, 1

2
), (2zj0, 1

2
, 1

2
) (13:9:2e)

in addition to the common generators (3xyzj0) and (1j0). Note that the ®rst two

sets are inequivalent to the last two sets because the translational parts are

different in the invariant eigenvector space of 2z, which commutes with 4z in the

relevant set f4zg of Ti. Secondly, the ®rst two sets are mutually inequivalent

because (2zj12, 1
2
, 0) cannot be brought into coincidence with (2zj0, 0, 0) by

[2zj12, 1
2
, 1

2
], the only shift which leaves the common generators (3xyzj0) and (1j0)

invariant. Finally, the last two sets are equivalent because, under the lattice

transformation10 [2x yj0], we have

(2zj12, 0, 1
2
)! (2zj0, 1

2
, 1

2
), (3xyzj0)! (3x y zj0)

while (1j0) remains the same. Thus, there exist three independent solutions given

by the parameter sets (a, á) � (0, 0), (0, 1
2
), (1

2
, 0):

(ii) For the F lattice, from (13.9.1e), (13.9.2b) and (13.9.2c) we obtain

a � 0, á � 0, 1
4

(13:9:2f)

which yield two independent solutions.

(iii) For the I lattice, from the result for the I lattice of the class T and (13.9.2b), we

have a, á � 0, 1
2
; however, since á � á� 1

2
for the I lattice from (13.9.2a), we

obtain two independent solutions characterized by

a � 0, 1
2
, á � 0 (13:9:2g)

10 Note that 2x y � e92 y4z is used in the place of the relevant transformation U � 4z given in (13.7.4). Also
note that inversion of the basis vectors leaves the space group invariant.
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The seven space groups obtained above for the class Ti are summarized by the

MGGS

(2zja� á, á, a), (3xyzj0), (1j0) with L(a, á): (13:9:2h)

200: P(0, 0), 201: P(0, 1
2
), 202: F(0, 0), 203: F(0, 1

4
),

204: I(0, 0), 205: P(1
2
, 0), 206: I(1

2
, 0)

Note that the MGGS of the class Ti given above reduces to the MGGS of the class T

given by (13.9.1f) with á � 0 and deleting (1j0). Thus, every space group of the class

T is a subgroup of a space group of the class Ti.

Exercise. Write down the general space group elements of T̂i from the MGGS

(13.9.2h).

13.9.3 The class O

A4 � B3 � (AB)2 � E9. Let

A � (4zj0, b, c), B � (3xyzj0) (13:9:3a)

Then

A4 � (e9j0, 0, 4c), (AB)2 � (e9j0, b� c, b� c) (13:9:3b)

(i) For the P lattice, the allowed values of the parameters are

ÿb � c � 0, 1
4
, 1

2
, 3

4
(13:9:3c)

which yield four independent solutions.

(ii) For F and I lattices, under the shift of the lattice origin by [ej1
4
, 1

4
, 1

4
], we have

(4zj0, b, c)! (4zj12, b, c), which yields the equivalences b � b� 1
2

and c � c� 1
2

for the F lattice and (b, c) � (b� 1
2
, c� 1

2
) for the I lattice. Thus, from (13.9.3b)

we obtain

ÿb � c � 0, 1
4

(13:9:3d)

which provides two independent solutions each for both lattices.

The MGGS for the eight space groups belonging to the class O is given by

(4zj0, ÿc, c), (3xyzj0) with L(c): (13:9:3e)

207: P(0), 208: P(1
2
), 209: F(0), 210: F(1

4
),

211: I(0), 212: P(3
4
), 213: P(1

4
), 214: I(1

4
)

From the MGGS (13.9.3e), one can write down the space group elements of Ô=T

using

Ô � T̂ � 4̂z T̂ ; 4̂z � (4zj0, ÿc, c)

Starting from (4zj0, ÿc, c)2 � (2zjc, ÿc, 2c), we ®rst construct the space group T̂ as

in (13.9.1g) and then, by augmenting it with 4̂z, we obtain the space group Ô, using the

multiplication tables Table 5.6 or Table 11.2:
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D̂2: (ejv1), (2zjv2), (2xjv3), (2 yjv4)

D̂23̂xyz: (3xyzjv1), (3x yzjv2), (3x yzjv3), (3x yzjv4)

D̂23̂xyz: (3x y zjv1), (3x yzjv2), (3xyzjv3), (3x yzjv4)

4̂z T̂ : (4zjv91), (4zjv92), (2xyjv93), (2x yjv94)

(2 yzjv91), (4xjv92), (4xjv93), (2z yjv94)

(4yjv91), (2zxjv92), (4yjv93), (2zxjv94)

where

v1 � (0, 0, 0), v2 � (c, ÿc, 2c), v3 � (2c, c, ÿc), v4 � (ÿc, 2c, c)

v91 � (0, ÿc, c), v92 � (c, 0, 3c), v93 � (ÿc, c, 0), v94 � (ÿ2c, ÿ2c, 2c)

Note that v9i � 4̂zvi for i � 1, . . . , 4.

13.9.4 The class Tp (�Td)

A4 � B3 � (AB)2 � E9. Let

A � (4zja, 0, c), B � (3xyzj0) (13:9:4a)

Then

A4 � (e9j0), (AB)2 � (e9j2a, ÿc, c) (13:9:4b)

(i) For the P lattice, the allowed values of the parameters are

a � 0, 1
2
, c � 0 (13:9:4c)

which yield two independent solutions of (13.9.4a).

(ii) For the F lattice, we may set one of the parameters a or c of A equal to zero since

both of them are binary11 from (13.9.4b) and since (4zja, 0, c) � (4zja� 1
2
,

0, c� 1
2
). Thus we obtain again two independent solutions given by (13.9.4c) for

the F lattice.

(iii) For the I lattice, from (13.9.4b) we obtain

a � c � 0 or 2a � c � 1
2

(13:9:4d)

which give two independent solutions of (13.9.4a). See below.

It is interesting to note that all these six space groups obtained above for Tp can be

expressed in the following form with one parameter a:

(4zja, ÿa, a), (3xyzj0) (13:9:4e)

This follows since, under a shift [eja=2, a=2, a=2], we have

(4zja, 0, c)! (4zja, ÿa, cÿ a) � (4zja, ÿa, a)

using c � 2a, which holds for all three lattice types.

11 A lattice parameter a is binary if a � 0, 1
2
.
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The MGGS for the Tp class is given by

(4zja, ÿa, a), (3xyzj0) with L(a): (13:9:4f)

215: P(0), 216: F(0), 217: I(0), 218: P(1
2
),

219: F(1
2
), 220: I(1

4
)

13.9.5 The class Oi (�Oh)

A, B 2 O, I2 � [A, I] � [B, I] � E. By augmenting the class O with I we set

A � (4zj0, ÿc, c), B � (3xyzj0), (1já, á, á) (13:9:5a)

Then, the required commutators are, using (13.8.4),

[A, I] � (ej ÿ 2á, ÿ2c, 2c), [B, I] � (ej0, 0, 0) (13:9:5b)

Since [A, I] depends on c, some of the previous values f0, 1
2
, 1

4
, 3

4
g of c given by

(13.9.3c) for the class O may not be allowed for the class Oi, being incompatible with

the inversion symmetry I.

Before calculating the parameters, we ®rst shift the origin of the lattice to the center

of symmetry by [ejá=2, á=2, á=2] and obtain

(4zj ÿá, ÿc, c), (3xyzj0), (1j0) (13:9:5c)

Obviously, the shift leaves the commutators given by (13.9.5b) invariant, because they

are equal to the identity element E.

(i) For the P lattice, from (13.9.5b), the allowed values of the parameters are

c, á � 0, 1
2

(13:9:5d)

which yield four independent solutions of (13.9.5a) from the inequivalence

criteria with (13.7.4), because they are invariant under the shift [ej1
2
, 1

2
, 1

2
] which is

the only one that leaves (3xyzj0) and (1j0) invariant.

(ii) For the F lattice, from (13.9.5b) we obtain

c � 0, 1
4
, á � 0, 1

2
(13:9:5e)

which provide four independent solutions of (13.9.5a).

(iii) For the I lattice, from (13.9.5a) we have á � á� 1
2

and hence c � c� 1
2

from

(13.9.5c). Thus, from (13.9.5b), we obtain the two sets of parameters

c � á � 0, 1
4

(13:9:5f)

which yield two independent solutions of (13.9.5a).

The ten space groups determined above for the class Oi are de®ned by the MGGS

(4zj ÿá, ÿc, c), (3xyzj0), (1j0) with L(á, c): (13:9:5g)

221: P(0, 0), 222: P(1
2
, 0), 223: P(1

2
, 1

2
), 224: P(0, 1

2
),

225: F(0, 0), 226: F(1
2
, 0), 227: F(1

2
, 1

4
), 228: F(0, 1

4
),

229: I(0, 0), 230: I(1
4
, 1

4
)

These are tabulated in Table 13.3.

13.9 The cubic system 331



In terms of the above MGGS one can write down the general space group elements

of Ôi=T as follows, analogously to the case of Ô=T :

D̂2: (ej0), (2zjv2), (2xjv3), (2 yjv4)

D̂23̂xyz: (3xyzj0), (3x y zjv2), (3x yzjv3), (3x yzjv4),

D̂23̂xyz: (3x y zj0), (3x yzjv2), (3xyzjv3), (3x yzjv4)

4̂z T̂ : (4zjv91), (4zjv92), (2xyjv93), (2x yjv94)

(2 yzjv91), (4xjv92), (4xjv93), (2z yjv94)

(4 yjv91), (2zxjv92), (4 yjv93), (2zxjv94)

ÔÎ : ffR|vRgg
where R � R1 for all R 2 0 and vR is the characteristic translation of each R given by

(0, 0, 0) or

v2 � (cÿ á, ÿcÿ á, 2c), v3 � (2c, cÿ á, ÿcÿ á),

v4 � (ÿcÿ á, 2c, cÿ á), v91 � (ÿá, ÿc, c), v92 � (c, ÿá, ÿc),

v93 � (ÿc, c, ÿá), v94 � (ÿ2cÿ á, ÿ2cÿ á, 2cÿ á)

13.10 The space groups of the rhombohedral system

The hexagonal coordinate system is used for the primitive hexagonal lattice P and for

the double-centered hexagonal lattice R�, whereas the rhombohedral coordinate

system is used when the latter is regarded as the rhombohedral lattice R de®ned by

(13.4.3b). On account of the difference between the coordinate systems of P and R

lattices we shall discuss their space groups separately. Then we simply write down the

results for the R� lattice from those for the R lattice. It is to be noted that there are two

types of realizations for the binary generators of the classes D3, C3v and D3i with the

hexagonal P lattice (but not with the rhombohedral R (or R�) lattice), because each

one of these classes has only one equivalence set of binary axes, which must coincide

with one of two equivalence sets of binary axes of the Bravais lattice 2 D6i (cf. Section

5.2). See Figure 13.11. The MGGSs of this system have been given in Table 13.3.

y

xu0

u1

π/6

Figure 13.11. Two types of realizations of the binary generators u0 and u1 for the

classes D3, C3v and D3i.
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13.10.1 The class C3

A3 � E9.

(i) For the P lattice

A � (3zj0, 0, c); c � 0, 1
3
, 2

3
(13:10:1a)

(ii) For the R lattice

A � (3xyzj0) (13:10:1b)

and for the R� lattice

A � (3zj0) (13:10:1c)

Note that 3z in the hexagonal coordinate system corresponds to 3xyz in the rhombo-

hedral coordinate system, as was discussed for (13.8.1c).

13.10.2 The class C3i

A3 � E9, I2 � [A, I] � E:

(i) For the P lattice, the class C3i can be generated by a single generator 3z. We may

set

B � (3zj0) (13:10:2a)

because there exists no invariant eigenvector for 3z. In terms of B, the generators

A and I are given by

A � E9B4 � (3zj0), I � E9B3 � (1j0) (13:10:2b)

(ii) For the R lattice, in terms of the rhombohedral coordinates and using (13.8.5) with

R1 � 3xyz, we obtain only one space group characterized by

A � (3xyzj0), I � (1j0) (13:10:2c)

which may be rewritten for the R� lattice as follows:

(3zj0), (1j0) (13:10:2d)

13.10.3 The class D3

A3 � B2 � (AB)2 � E9.

(i) For the P lattice, there exist two types of realizations for the binary generator B,

corresponding to two equivalence sets of binary axes for the hexagonal P lattice

2 D6i. We set

A � (3zj0, 0, c), Bí � (uíja, b, 0), í � 0, 1 (13:10:3a)

where u0 i x and u1 ? y with the x- and y-axes forming a hexagonal coordinate

system (see Figure 13.11). Here, u1 � c6u0 so that either u0 or u1 belongs to D3

but not both, because c6 of the hexagonal P lattice is not contained in D3.

For the AB0 type we have, using (13.8.1b),

A3 � (e9j0, 0, 3c), B2
0 � (e9j2aÿ b, 0, 0)
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(AB0)3 � (e9jaÿ 2b, aÿ 2b, 0) (13:10:3b)

which yield

b � 2a, c, a � 0, 1
3
, 2

3
(13:10:3c)

For each given value of c, however, we have a � 0 since (u0ja, 2a, 0) �
(u0j0, 0, 0) via [ejÿa, a, 0], which leaves (3zj0, 0, c) invariant. Thus we are left

with only three inequivalent sets of the parameters for AB0 type:

a � b � 0, c � 0, 1
3
, 2

3
(13:10:3d)

For the AB1 type, we have

B2
1 � (e9j2a, a, 0), (AB1)2 � (e9jaÿ b, 2aÿ 2b, 0) (13:10:3e)

which immediately yield the same parameters sets as those given by (13.10.3d).

Thus, there exist altogether six independent space groups belonging to the P

lattice given by

(3zj0, 0, c), (uíj0); í � 0, 1, c � 0, 1
3
, 2

3
(13:10:3f)

(ii) For the R lattice, since the Bravais lattice does not have c6 symmetry, in contrast

to the P hexagonal lattice, we need to consider only one type of binary axis of

rotation as a generator besides the three-fold axis. In terms of the rhombohedral

coordinates, using the correspondence uzx $ u0 as was stated for (13.8.1c), we set

A � (3xyzj0), B � (uzxja, b, c) (13:10:3g)

Then, using (13.8.1c), we obtain

B2 � (e9jaÿ c, 0, ÿa� c), (AB)2 � (e9j0, aÿ b, ÿa� b) (13:10:3h)

which yield a � b � c. Consequently, we can reduce (13.10.3g), via

[eja=2, a=2, a=2], to the form

(3xyzj0), (uzxj0) (13:10:3i)

which may be rewritten for the R� lattice as follows:

(3zj0), (u0j0) (13:10:3j)

13.10.4 The class C3v

A3 � B2 � (AB)2 � E9.

(i) For the P lattice, on replacing the binary rotations uí of D3 by the re¯ection

mí � uí we arrive at the class C3v. We set

A � (3zj0, 0, c), Bí � (míja9, b9, c9), í � 0, 1 (13:10:4a)

Then, for the AB0 type we have

A3 � (e9j0, 0, 3c)

B2
0 � (e9jb9, 2b9, 2c9)

(AB0)2 � (e9jÿa9, a9, 2c� 2c9) (13:10:4b)
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which yield the two inequivalent sets of parameters

c � a9 � b9 � 0, c9 � 0, 1
2

(13:10:4c)

For the AB1 type

B2
1 � (e9j0, 2b9ÿ a9, 2c9), (AB1)2 � (e9jÿa9ÿ b9, 0, 2c� 2c9) (13:10:4d)

which yield

ÿa9 � b9 � 0, 1
3
, 2

3
, c � 0, c9 � 0, 1

2

However, (m1jÿb9, b9, c9) � (m1j0, 0, c9) under a shift [ejb9, ÿb9, 0] that leaves

(3zj0) invariant so that we have again the same parameter sets for AB1 as given

by (13.10.4c). Thus, we obtain altogether four independent solutions for the P

lattice

(3zj0), (míj0, 0, c9); í � 0, 1, c9 � 0, 1
2

(13:10:4e)

(ii) For the R lattice, let

A � (3xyzj0), B � (mzxja, b, c) (13:10:4f)

Then, from

B2 � (e9ja� c, 2b, a� c), (AB)2 � (e9j2c, a� b, a� b) (13:10:4g)

we obtain two inequivalent sets of the parameters

a � b � c � 0, 1
2

(13:10:4h)

which de®ne two independent solutions of (13.10.4f). These may be rewritten for

the R� lattice as follows

(3zj0), (m0j0, 0, c); c � 0, 1
2

(13:10:4i)

13.10.5 The class D3i (�D3d)

A, B 2 D3, I2 � [A, I] � [B, I] � E.

(i) For the P lattice, on augmenting the class D3 we may set, using (13.10.3f) and

(13.8.5) with R1 � 3z,

A � (3zj0, 0, c); Bí � (uíj0), í � 0, 1; I � (1j0, 0, ã) (13:10:5a)

where the previous values f0, 1
3
, 2

3
g of c for the class D3 and the new parameter ã

are to be speci®ed further by the commutators

[A, I] � (ej0, 0, 2c), [Bí, I] � (ej0, 0, ÿ2ã) (13:10:5b)

obtained from (13.8.4). Since the commutator [A, I] depends on the parameter c,

some of the previous values f0, 1
3
, 2

3
g of c for the class D3 may not be allowed. In

fact, the allowed values of parameters are

c � 0, ã � 0, 1
2

(13:10:5c)

Thus we obtain two independent solutions each for both types,

(3zj0), (uíj0), (1j0, 0, ã); í � 0, 1, ã � 0, 1
2

(13:10:5d)
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(ii) For the R lattice, from (13.10.3i) we may set

A � (3xyzj0), B � (uzxj0), I � (1já, á, á) (13:10:5e)

Then, from (13.8.4),

[A, I] � (ej0), [B, I] � (ejÿ2á, ÿ2á, ÿ2á) (13:10:5f)

which yield two independent solutions for the R lattice characterized by

á � 0, 1
2

(13:10:5g)

The solutions may be rewritten for the R� lattice as follows:

(3zj0), (u0j0), (1j0, 0, á); á � 0, 1
2

(13:10:5h)

The MGGSs thus obtained for the rhombohedral system are contained in Table

13.3.

13.11 The hierarchy of space groups in a crystal system

Previously, we have discussed the symmetry hierarchy of crystal systems. In this

section, we shall discuss the group±subgroup relations between the space groups with

the same lattice type but belonging to different crystal classes within a crystal system.

This will be discussed in terms of the 32 MGGSs for the 230 space groups given in

Table 13.3.

Let Gr and Gs be point groups representing two crystal classes belonging to a crystal

system and let Gr be a supergroup of Gs, i.e. Gr . Gs. Then a space group belonging

to Gr is always a supergroup of a certain space group belonging to Gs, because by

eliminating some of the generators of Gr we obtain Gs on account of the solvability of

the 32 point groups. The converse is true for most cases but not always. The reason is

that some of the space groups belonging to Gs may not have any supergroup belonging

to Gr, because the translational part of the former in a certain case may not be allowed

to the space groups belonging to Gr due to the additional symmetry requirements for

Gr. Let Ĝr � fĜ(i)
r g and Ĝs � fĜ( j)

r g be the sets of space groups belonging to the

classes Gr and Gs, respectively. Then a space group Ĝs
( j) without any superspace group

in Ĝr is said to be non-subordinate to Ĝr. If every member of the set fĜ( j)
s g is a

subgroup of some member of the set fĜ(i)
r g, then we say that Ĝs is subordinate to Ĝr

and denoted by Ĝs , Ĝr. For example, the group±subgroup relations between two

classes Oi and O are given as follows. From Table 13.3 there exist ten space groups

(numbers 221±30) for the class Oi and eight space groups (numbers 207±14) for the

class O. From the MGGS of the class Oi

Oi: (4zjÿa, ÿc, c), (3xyzj0), (1j0) with L(c, a)

we eliminate (1j0) and set a � 0 (or eliminate a by a shift [ejÿa=2, ÿa=2, ÿa=2])

and arrive at the MGGS of the class O given by

O: (4zj0, ÿc, c), (3xyzj0) with L(c)

with some exceptions, because the parameters c � 1
4
, ÿ1

4
allowed for the P lattice of

the class O are not allowed for the P lattice of the class Oi. Thus, the following two

space groups of the class O
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212: P(4zj0, 1
4
, ÿ1

4
), (3xyzj0)

213: P(4zj0, ÿ1
4
, 1

4
), (3xyzj0) (13:11:1)

are not subgroups of any space group of the class Oi. This implies that these two

groups are not compatible with the inversion symmetry of Oi. Note that the above two

space groups numbers 212 and 213 are mutually antipodal whereas such enantio-

morphism is obviously absent for the space groups of the class Oi. From Table 13.3, it

follows that the remaining space groups of the class O are subgroups of one or more

space groups of the class Oi:

221, 222 . 207; 223, 224 . 208;

225, 226 . 202; 227, 228 . 210;

229 . 211; 230 . 214 (13:11:2)

In an analogous manner we can show that the space group

205: P(2zj12, 0, 1
2
), (3xyzj0) 2 T̂i

is not subordinate to Ôi. These space groups numbers 212, 213 and 205 are the only

space groups without supergroups in the cubic system (except for Ôi itself, obviously).

Since these are subordinate to no space groups, they may be called ancestorial space

groups. In the following, we shall give all the non-subordinate space groups, based on

Table 13.3.

13.11.1 The cubic system

Ôi . Ô (Except numbers 212, 213 2 Ô)

Ôi . T̂i (Except number 205 2 T̂i)

Ôi . T̂p.

Ô, T̂p, T̂i . T̂

Here, note that all non-subordinate space groups are with P lattices. This statement

holds for the remaining systems, too. It can be shown that the subordinate relations of

space groups are transitive, i.e. if A . B and B . C then A . C.

13.11.2 The hexagonal system

D̂6i . D̂6 (Except numbers 178, 179, 180, 181 2 D̂6)

D̂6i, Ĉ6i, Ĉ6v . Ĉ6 (Except numbers 169, 170, 171, 172 2 Ĉ6)

D̂6i . D̂3p, Ĉ6i, Ĉ6v

D̂6 . Ĉ6

D̂3p, Ĉ6i . Ĉ3p

13.11.3 The rhombohedral system

D̂3i . D̂3 (Except numbers 151, 152, 153, 154 2 D̂3)

D̂3i, Ĉ3i, Ĉ3v . Ĉ3 (Except numbers 144, 145 2 Ĉ3)

D̂3i . Ĉ3i, Ĉ3v

D̂3 . Ĉ3
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Note that the space groups with the rhombohedral lattice are all subordinate to some

supergroups. For a hexagonal lattice, we can also consider the subordinate relations

with the space groups belonging to the hexagonal system; the non-subordinate space

groups are again limited to those given above. Note also that D̂6 . D̂3 and Ĉ6 . Ĉ3 for

the hexagonal lattice.

13.11.4 The tetragonal system

D̂4i . D̂4 (Except numbers 91, 92, 95, 96 2 D̂4)

D̂4i . Ĉ4i (Except numbers 84, 86 2 Ĉ4i)

D̂4i, Ĉ4i, Ĉ4v . Ĉ4 (Except numbers 76, 78 2 Ĉ4)

D̂4i . Ĉ4v, D̂2p; D̂2p . Ĉ2p; D̂4 . Ĉ4

Altogether there exists a total of 25 space groups that are non-subordinate (exclud-

ing the holohedral space groups). Some of their general features are

1) all non-subordinate space groups have P lattices and

2) all space groups belonging to the crystal systems with symmetry less than or equal

to that of the orthorhombic system are subordinate.

Also, note that Ĉn is always subordinate to D̂n, but not completely subordinate to

Ĉni or Ĉnv for the P lattice. The subordination relations between a proper rotation P

and the corresponding rotation±inversion group Pi can easily be understood from the

fact that non-subordination occurs when the translational parts are not equivalent

under inversion. The subordination relations among space groups within a crystal

system or between different crystal systems provide valuable information on structural

phase transitions in solid state physics.

13.12 Concluding remarks

Using the de®ning relations of point groups, we have discussed a method of construct-

ing the 230 space groups through the 32 minimal general generator sets (MGGSs)

introduced by Kim (1986b). The algebraic equivalence criteria of the space groups

with respect to the lattice transformation [U js] are completed by introducing the

relevant set (13.7.4) of the unimodular matrices fUg for each crystal class. Since the

order of each relevant set is one or two, it greatly reduces the labor involved in

removing redundant solutions in order to arrive at the independent space groups.

According to relevant sets (13.7.4), mere shifts [ejs] of the lattice origin are necessary

and suf®cient to determine the equivalence or inequivalence for almost all classes of

high symmetry (with minor exceptions). In fact, it is simpler to construct the space

groups belonging to a class with higher symmetry with the present method, quite in

contrast to the traditional methods based on the solvability of the space groups. The

symmetry properties of MGGSs with respect to lattice transformations play the

essential role in identifying a space group and also in constructing extended space

groups like the magnetic space groups.

As one can see from the total results given in Table 13.3, the number of the

translational parameters of a MGGS is very limited: the maximum numbers for each

crystal system are two for cubic, one for hexagonal, rhombohedral and monoclinic,

four for tetragonal, ®ve for orthorhombic, and zero for the triclinic system. Obviously
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these numbers roughly measure the number of independent space groups belonging to

the crystal system.

The present method is easily extended to construct the magnetic space groups.

In terms of MGGSs of the space groups belonging to each crystal class, one can

construct similar general expressions for the magnetic space groups, as will be shown

in Chapter 17.
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14

Representations of the space groups

We shall begin with the unirreps of the translation group T which is an Abelian

invariant subgroup of the space group Ĝ of a crystal under consideration. Since T is

Abelian, its unirreps are one-dimensional. On the basis of this simple fact, we shall

analyze the reciprocal lattice structure of the crystal and then construct the unirreps of

the space group Ĝ, following the general theory of induced representations introduced

in Chapter 8 and the theory of projective representations introduced in Chapter 12. We

shall present a more or less self-contained treatment of the representations of the space

groups. The representation theory developed here will be applied to the theory of

energy bands of the electron in a solid and the symmetry coordinates of vibration of a

crystal in the next chapter.

14.1 The unirreps of translation groups

We shall begin with a general discussion of the translation group T � ffejtgg in three

dimensions, where fejtg is the Seitz notation for a pure translation introduced in

Chapter 13. Since T is Abelian, there exists a complete set of simultaneous eigenfunc-

tions of all elements of T. Let j(r) be a function of the space variable r which is an

eigenfunction of T such that

fejtg8j(r) � j(r ÿ t) � ô(t)j(r) (14:1:1)

for any element fejtg of T, then ô(t) is an eigenvalue of the element fejtg which

provides the representative of the element in T. To solve the eigenvalue problem, let us

describe the translation of j(r) in terms of the differential operator = � (@=@x,

@=@ y, @=@z) using Taylor's theorem as follows:

j(r ÿ t) � eÿ t.=j(r) � ô(t)j(r) (14:1:2)

Since the translation operator exp (ÿt . =) is an analytic function of the operator =, the

problem is reduced to the eigenvalue problem of the in®nitesimal operator =:

=j(r) � ikj(r) (14:1:3)

where we have introduced an imaginary eigenvalue ik with a real vector k in order to

make j(r) be a basis of a unitary representation of T. The solution of (14.1.3) may be

expressed by

j(k)(r) � eik.r (14:1:4a)

so that, from (14.1.1), the representation of T � ffejtgg is given by

ôk(t) � eÿik. t; 8 t 2 T (14:1:4b)

which is indeed unitary since ô�k (t)ôk(t) � 1 for any k. Here, the vector k identi®es the



unirrep ôk(t) of T and is called a wave vector on account of the oscillatory nature of

the basis function exp (ik . r). In quantum mechanics, j(k)(r) is the momentum

eigenfunction belonging to an eigenvalue "k of a particle. The set fj(k)(r);

ÿ1, kx, ky, kz ,1g is an orthonormal complete set satisfying��1
ÿ1

j(k)(r)�j(k9)(r) d3 r � (2ð)3ä(k ÿ k9) (14:1:5)

where ä(k ÿ k9) is the Dirac delta function.

For a discrete translation group T of the Bravais lattice of a crystal, the general

element tn � fejt ng is described by a primitive basis [a1, a2, a3] of T as follows:

tn � n1a1 � n2a2 � n3a3, nj � � integers or zero (14:1:6a)

Thus, from (14.1.4b), the unirrep of a discrete translation group T � ffejt ngg is given

by

ôk(tn) � exp (ÿik . tn), 8 tn � fejtng 2 T (14:1:6b)

On account of the discrete nature of T, the wave vector k is no longer determined

uniquely by the representation ôk(tn). To see this, let us introduce the so-called

reciprocal lattice basis [b1, b2, b3] which is orthogonal to the primitive basis [a1, a2,

a3] such that

bi
. a j � 2ðäij (i, j � 1, 2, 3) (14:1:7)

This set of equations for fbig has a unique solution given by the vector products as

follows:

b1 � 2ð[a2 3 a3]=V0, b2 � 2ð[a3 3 a1]=V0, b3 � 2ð[a1 3 a2]=V0

(14:1:8)

where V0 � a1
. [a2 3 a3] is the primitive cell volume of the lattice T. These basis

vectors b1, b2, b3 are ordinary polar vectors obeying the ordinary vector transforma-

tion law, if one takes into consideration the change in sign of the cell volume under

inversion. The two bases [a1, a2, a3] and [b1, b2, b3] are said to be mutually dual in

the sense that they are mutually reciprocal.

The vector space spanned by the basis [b1, b2, b3] is called the reciprocal space of

the lattice T. In particular, a set of vectors spanned by

g l � l1b1 � l2b2 � l3b3, li � � integers or zero (14:1:9)

is called the reciprocal lattice T 9 of T. These two lattices are mutually dual, satisfying

g l
. tn � 2ð(l1 n1 � l2 n2 � l3 n3) � 2ð 3 integer (14:1:10)

so that exp (ig l
. t n) � 1. Accordingly, if two wave vectors k and k9 differ by a

reciprocal lattice vector g l,

k9 � k � g l, g l 2 T 9 (14:1:11)

then two representations ôk9(T ) and ôk(T ) are equal:

ôk9(tn) � ôk(tn), 8 tn � fejtng 2 T (14:1:12)

Conversely, from (14.1.12), (14.1.11) follows via (14.1.10). Two wave vectors k9 and k

that differ by a reciprocal lattice vector g l are said to be equivalent with respect to the

reciprocal lattice T 9 and denoted by k9 � k.
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It is always pro®table to make the translation group T ®nite without modifying the

physics. For this purpose, we introduce the Born±von Karman cyclic boundary

condition for the Bravais lattice with a period Nja j along the direction of each

primitive basis vector a j ( j � 1, 2, 3), where Nj is a large number of the order of

Avogadro's number. Then the order of T becomes ®nite and equal to jT j � N1 N2 N3.

The cyclic boundary condition imposes the following conditions for the representation:

ôk(fejNja jg) � exp (ÿiNj k . a j) � 1; j � 1, 2, 3 (14:1:13)

so that the allowed wave vectors must satisfy

Nj k . a j � 2ðhj, hj � � an integer or zero

To solve this set of equations for the wave vector k, we express k as a linear

combination of b1, b2 and b3 , and then using (14.1.7) we obtain a total of N1 N2 N3

wave vectors k de®ned by

k � h1

N1

b1 � h2

N2

b2 � h3

N3

b3; �hj � 1, 2, . . . , Nj ( j � 1, 2, 3) (14:1:14)

These wave vectors may be regarded as `continuously' distributed over a primitive unit

cell in the reciprocal lattice, because the Nj are assumed to be very large numbers.

Moreover, these are all inequivalent with respect to T 9 for, since they are all in a

primitive unit cell of the reciprocal lattice T 9, no two of them can differ by a reciprocal

lattice vector g l 2 T 9. Now, the unirreps ôk(T ) of the translation group T satisfy the

orthogonality relationsX
ôn

ô�k (tn)ôk9(tn) �
Y3

j�1

XN j

n j�1

exp [2ði(hj ÿ h9j)nj=Nj] � N1 N2 N3äkk9 (14:1:15a)

via (14.1.14), on account of Fourier's theorem. The set of all unirreps fôk(T )g with k

over the primitive unit cell of the reciprocal lattice is complete because the set satis®es

the completeness condition X
k

jôk(T )j2 � N1 N2 N3 � jT j (14:1:15b)

where jôk(T )j � 1, the dimensionality of the unirrep ôk(T ).

14.2 The reciprocal lattices

14.2.1 General discussion

The vector space spanned by the reciprocal basis [b1, b2, b3] is called the reciprocal

space of the direct lattice T. Then a wave vector k de®ned by (14.1.14) is a vector in

the reciprocal space. To discuss the symmetry properties of the reciprocal space, let us

introduce the matrices of the basis vectors for the direct lattice T as well as for the

reciprocal lattice T 9, as in (13.3.1b):

A � [a1, a2, a3], B � [b1, b2, b3] (14:2:1a)

where the column vectors of the matrices are given by the respective basis vectors

following the notation introduced by (5.1.5). Then, the de®ning relation (14.1.7) of the

reciprocal basis is expressed in the matrix form
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B�A � 2ð1 (14:2:1b)

where B� is the transpose of the matrix B. The matrix solution of this equation for the

matrix B is given by

B � 2ðA#; A# � A�ÿ1 (14:2:1c)

where A# is called the contragredient matrix of A: it obeys the product law

(A1 A2)# � A1
# A2

#. In the special case of an orthogonal matrix R we have R# � R.

If the matrix A is symmetric, we have B � 2ðAÿ1, which is also symmetric. This is

the case for the cubic system.

From (14.2.1c) or (14.2.1b), we shall ®rst show that the symmetry point group of

the reciprocal lattice T 9 coincides with the symmetry point group K of the direct

lattice T. If a rotation R belongs to the symmetry point group K of T � ft ng, the

transformed basis fRa jg is also a primitive basis of T so that fRbig must also be a

primitive basis of the reciprocal lattice T 9 of T, because

RB � 2ð(RA)#

that is RB represents the reciprocal lattice vector of the transformed primitive basis

RA 2 T . Secondly, the primitive cell volume V 90 of T 9 is given by the primitive cell

volume V0 of T as follows:

V 90 � (2ð)3=V0 (14:2:2)

This is shown by taking the determinants of both sides of (14.2.1b) and using V0 �
det A and V 90 � det B. Thirdly, the direct lattice T and reciprocal lattice T 9 de®ned by

(14.1.6a) and (14.1.9), respectively, are expressed by

t n � An, g l � Bl (14:2:3a)

where n � (n1, n2, n3) and l � (l1, l2, l3) are column vectors. Thus, their scalar

product yields

g l
. tn � (Bl) . An � l . B�An � 2ðl . n (14:2:3b)

which is (14.1.10).

Since a lattice T and its reciprocal lattice T 9 belong to the same crystal system K,

the allowed lattice types for T are the same as those of T. This does not necessarily

mean that the lattice type of a speci®c lattice T 9 is the same as that of the

corresponding T, unless only one lattice type is allowed for the crystal system K. For

example, there exist three lattice types for the cubic system: simple cubic Pc, face-

centered cubic Fc and body-centered cubic Ic lattices. As will be shown later, the

reciprocal lattice P9c of Pc is also Pc whereas the reciprocal lattice F9c of Fc is Ic, and

conversely that of I9c is Fc, because T and T 9 are mutually dual.

In an actual determination of the reciprocal lattice T 9 of a given lattice T, it is always

convenient to introduce a Cartesian basis [e0
1, e0

2, e0
3] for the given lattice T. It may be

taken parallel to the conventional lattice basis [e1, e2, e3] given in Table 13.1, if the

latter is an orthogonal set. Then, through the Cartesian components of the primitive

basis [a1, a2, a3] of T, those of the reciprocal lattice basis [b1, b2, b3] of T 9 are

determined by (14.1.8) or (14.2.1c). Thus, a reciprocal lattice vector g l 2 T 9 may be

expressed in terms of the Cartesian basis as follows:

g l � Bl � 2ðaÿ1[l0
1e0

1 � l0
2e0

2 � l0
3e0

3] � 2ðaÿ1 l0 (14:2:4)
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where a is an appropriate lattice parameter of T. The relation between the reciprocal

lattice indices l � (l1, l2, l3) and Cartesian indices l0 � [l0
1, l0

2, l0
3] depends on the

lattice type T. Here and hereafter the Cartesian indices are expressed by square

brackets [. . .] whereas the reciprocal lattice indices are expressed by round brackets

(. . .). In the following, the method of constructing the reciprocal lattices will be

exempli®ed for the cubic system.

14.2.2 Reciprocal lattices of the cubic system

From Table 13.1, we may set the Cartesian basis [e0
1, e0

2, e0
3] proportional to the

conventional basis [e1, e2, e3] of the cubic system such that

ei � ae0
i (i � 1, 2, 3) (14:2:5)

where a is the lattice spacing of a cubic crystal. Then the primitive lattice basis A of

each lattice type, the reciprocal lattice basis B and the Cartesian indices l0 of a

reciprocal lattice vector g l are given in terms of the Cartesian basis as follows.

(i) For the simple cubic lattice Pc, the primitive basis is expressed by A �
[a1, a2, a3] � a1, where 1 is the unit matrix, so that the matrix B is given by

B � 2ðAÿ1 � 2ðaÿ11, which de®nes also a simple cubic lattice P9c with the

lattice spacing 2ðaÿ1. Thus, the reciprocal lattice vector g l 2 P9c is given by

g l � Bl � 2ðaÿ1 l (14:2:6)

(ii) For the face-centered cubic lattice Fc, from (13.4.4e) and (14.2.1c), the primitive

bases are expressed by

A � (a=2)

0 1 1

1 0 1

1 1 0

24 35, B � 2ðaÿ1
ÿ1 1 1

1 ÿ1 1

1 1 ÿ1

24 35 (14:2:7a)

where B de®nes a body-centered cubic lattice, i.e. F9c � Ic with the lattice

spacing 4ðaÿ1, cf. Equation (13.4.2c). From (14.2.4), the reciprocal lattice

vectors are given by g l � Bl � 2ðaÿ1 l0 with the Cartesian indices

l0 � [ÿl1 � l2 � l3, l1 ÿ l2 � l3, l1 � l2 ÿ l3] (14:2:7b)

where the sum of any two components of l0 is even so that the three components

are all odd or even, including zero, cf. Equation (13.4.2g).

(iii) For a body-centered lattice Ic, the primitive bases are expressed, from (13.4.2c)

and (14.2.1c), by

A � (a=2)

ÿ1 1 1

1 ÿ1 1

1 1 ÿ1

24 35, B � 2ðaÿ1
0 1 1

1 0 1

1 1 0

24 35 (14:2:8a)

where B describes the face-centered cubic lattice (i.e. I9c � Fc) with the lattice

spacing 4ðaÿ1. The reciprocal lattice vector is given by g l � 2ðaÿ1 l0 with the

Cartesian indices

l0 � [l2 � l3, l3 � l1, l1 � l2] (14:2:8b)

where the sum of the three components l0
1, l0

2 and l0
3 is even so that they are all

even or only two of them are odd (cf. 13.4.4g).
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For a complete list of the correspondences between the types of the crystal lattices

and their reciprocal lattices, see e.g. Bir and Pikus (1974).

14.2.3 The Miller indices

Let us consider the geometric structure of a direct lattice T relative to its reciprocal T 9
based on the dual relation (14.1.10). For this purpose, we note that the equation of a

plane perpendicular to a unit vector u is de®ned by

u . x � d (14:2:9)

where x is a point on the plane and d is the normal distance to the plane from the

coordinate origin O (see Figure 14.1). If we compare (14.1.10) with (14.2.9), we may

arrive at the conclusion that the whole direct lattice T � ft ng can be described as a

series of parallel lattice planes perpendicular to any given reciprocal lattice vector g l

in T 9. To see this more clearly we introduce a primitive lattice vector gm in the

reciprocal lattice T 9 de®ned by

gm � m1b1 � m2b2 � m3b3 � (m1, m2, m3) (14:2:10)

where (m1, m2, m3) is a set of integers without a common integral devisor (i.e. they

are mutually prime) and is called a set of the Miller indices. The primitive lattice

vector gm itself may also be called the Miller vector. In terms of gm, (14.1.10) is

rewritten as

gm
. t n � 2ð p, p � m1 n1 � m2 n2 � m3 n3 (14:2:11a)

where p may take the value 0 or any positive or negative integer, 0, �1, �2, . . . ,

because the Miller indices are mutually prime. Now, let um � (gm=jgmj) be the unit

vector parallel to gm, then (14.2.11a) is rewritten in the standard form of the equation

of a lattice plane perpendicular to um

um
. tn � pdm, dm � 2ð=jgmj (14:2:11b)

with the normal distance pdm from the lattice origin O. Since p changes by unity, dm

is the interplanar distance. Therefore, the set of equations with p � 0, �1, �2, . . .
describes the whole set of lattice points ft ng of T as a series of parallel lattice planes

perpendicular to a given primitive lattice vector gm in T 9. It is customary to refer to a

lattice plane perpendicular to the Miller vector gm as the (m1, m2, m3) plane.

x

u
d

O

Figure 14.1. A plane perpendicular to a unit vector u with the normal distance d

described by u . x � d.
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The geometric construction of the (m1, m2, m3) plane nearest to the lattice origin O

is interesting. The plane is characterized by (14.2.11a) with p � 1 so that a general

point x �Pixiai on a continuous plane de®ned by um
. x � dm is characterized by

m1x1 � m2x2 � m3x3 � 1 (14:2:12)

Here the xi are not necessarily integers, being on the continuous plane. At the point

where the plane intersects with the primitive basis vector a1, we have x2 � x3 � 0 so

that x1 � 1=m1 from (14.2.12). Likewise, the points of the intersections of the plane

with a2 and a3 are a2=m2 and a3=m3, respectively. Accordingly, the (m1, m2, m3)

plane nearest to the origin O can be drawn in terms of the intersections fa1=m1,

a2=m2, a3=m3g as shown in Figure 14.2.

14.2.4 The density of lattice points on a plane

Let r be the lattice density de®ned by the average number of lattice points per unit

volume of a given lattice T and let rm be the plane density de®ned by the average

number of lattice points per unit area of the lattice plane perpendicular to Miller's

vector gm. Then we have, from (14.2.11b),

rm � rdm � 2ðr=jgmj (14:2:13a)

where dm is the interplanar distance in the direction of gm and

jgmj � 2ðaÿ1(m02
1 � m02

2 � m02
3 )1=2 (14:2:13b)

in terms of the Cartesian indices of gm introduced by (14.2.4). Thus, the density rm on

a plane (m1, m2, m3) is higher if the Miller vector jgmj is smaller. For example, for a

simple cubic crystal we have mj � m0
j so that the (100) plane has a higher plane

density of lattice points than does the (111) plane by a factor of
p

3. For a face-

centered cubic crystal, the (100) and (111) planes have the same density of lattice

points because jgfcc
100j � jgfcc

111j � 2ðaÿ1
p

3, from (14.2.7b). The lattice planes with the

smaller gm play the dominant role, for example, for the diffraction of X-rays by a

crystal.

a3

a2

a1

a
1/m

1

a2
/m2

a 3
/m 3

C

O

A

B

Figure 14.2. Construction of the (m1, m2, m3) Miller plane nearest to O:

OA � a1=m1, OB � a2=m2 and OC � a3=m3.
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14.3 Brillouin zones

14.3.1 General construction of Brillouin zones

Previously, in (14.1.14), the domain of wave vectors k (or k-space) has been de®ned

by a primitive unit cell of the reciprocal lattice T 9 under consideration. This is,

however, not always convenient because the choice of a primitive unit cell is quite

arbitrary and thus it need not be invariant under the symmetry group of the lattice. We

shall introduce a symmetrized unit cell of T 9 that is centered by a lattice point of T 9
and is invariant under the symmetry point group K of the lattice and has the volume

equal to the volume of the primitive unit cell of T 9. The domain of k-space thus

de®ned is known as the ®rst Brillouin zone or simply the Brillouin zone1 of the

Bravais lattice T: it need not be a parallelepiped in general but a certain polyhedron

centered by a lattice point of T 9.
More explicitly, the Brillouin zone (abbreviated as B-zone) of a Bravais lattice T is

de®ned as follows. Choose a lattice point of T 9 as the origin and then, for a given

primitive lattice vector gm (or Miller vector) from the origin O, draw a plane that is

perpendicular to gm and bisects gm (see Figure 14.3). By de®nition a point X on the

plane thus formed satis®es an equation of the plane de®ned by

X . um � jgmj=2, um � gm=jgmj (14:3:1)

where jgmj=2 is the perpendicular distance to the plane from the coordinate origin O.

By varying gm over the Miller indices (m1, m2, m3), we obtain an analytic expression

for the B-zone. The polyhedron bounded by the planes nearest to O de®nes the ®rst

Brillouin zone. Analogously second, third and higher Brillouin zones are de®ned by

perpendicular bisecting planes of reciprocal lattice vectors g l. The wave vectors in the

higher zones are, however, equivalent to the wave vectors in the ®rst Brillouin zone

with respect to T 9. The ®rst zone plays a central role in subsequent discussions,

because all basis functions of the translation group T can be classi®ed in terms of the

wave vectors in the ®rst Brillouin zone. Hereafter, the Brillouin zone means the ®rst B-

zone unless speci®ed otherwise.

x

x9
g m91

2

1
2 g

m

Figure 14.3. Construction of the Brillouin zone.

1 It is customary that the Brillouin zone is referred to the direct lattice T rather than to the reciprocal lattice
T 9, even though it is de®ned in the reciprocal lattice space.
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The B-zone thus de®ned is invariant under the point group K because the reciprocal

lattice vectors gm, which de®ne the B-zone, permute among themselves under the

symmetry operations of the lattice T 9 at the lattice point O in the center of the B-zone.

The volume of the B-zone thus de®ned equals the primitive unit cell volume of T 9
because the whole reciprocal lattice T 9 is completely ®lled by the B-zones drawn one

for each lattice point in T 9.
Moreover, a face of the B-zone perpendicular to gm is parallel to the whole set of

parallel lattice planes of T perpendicular to gm. As an example, the Bravais paral-

lelepiped and the B-zone of the hexagonal lattice PH are shown by their projections on

the plane perpendicular to the principal axis of rotation 6z of the lattice in Figure 14.4.

Note that each face of the B-zone is parallel to a set of the lattice planes of the

hexagonal lattice. Furthermore, from the de®ning equation (14.3.1), the smaller gm are

required for the ®rst Brillouin zone. Accordingly, the faces of B-zone are parallel to

those lattice planes of T with higher lattice point densities. For example, for the cubic

system, the Miller indices for the faces of the B-zone are given by �(m1, m2, m3) with

mi � 1 or 0, excluding (0, 0, 0), as will be shown in Section 14.3.3. Thus the number

of faces of a B-zone for the cubic system is less than or equal to 14 � 2(23 ÿ 1) (cf.

Equation (14.3.7a)).

It is of interest to note that the equation of the plane (14.3.1) corresponds to the

condition for the Bragg re¯ection of X-rays, in the ®rst order, at a set of planes

perpendicular to gm. To see this let us identify the vector X as the wave vector k of the

X-ray beam with jkj � 2ð=ë, where ë is the wave length and let the angle between k

and the unit vector um be 1
2
ðÿ è. Then (14.3.1) is reduced to

(2ð=ë) sin è � jgmj=2 (14:3:2)

This may be rewritten by (14.2.11b) in the familiar form

2dm sin è � ë

14.3.2 The wave vector point groups

The symmetry group of a wave vector k in the Brillouin zone (B-zone) is de®ned by

the subgroup of the symmetry group K of the lattice T that leaves k equivalent with

respect to the reciprocal lattice T 9 of T. Such a point group is called the wave vector

a2

a1

b2'a1

b1'a2

O

(a) (b)

Figure 14.4. For the hexagonal lattice PH projected onto the x, y plane: (a) the

direct lattice T and (b) the Brillouin zone. The vectors a1 and a2 are the primitive

basic vectors in the direct lattice T, whereas b1 and b2 are those of the reciprocal

lattice T 9. The unit of the length is not drawn to scale.
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point group of a given k and denoted K k. Let R be a rotation belonging to K k, then by

de®nition

Rk � k � g l, g l 2 T 9 (14:3:3)

When k is an interior point of the B-zone, we have Rk � k for all R 2 K k, because

two wave vectors inside the B-zone cannot differ by a reciprocal lattice vector. By

de®nition K k < K and K k coincides with K at the lattice origin where k � 0.

In the following, we shall construct the Brillouin zones for the cubic system and

discuss the wave vector point group K k at the points of high symmetry in the B-zone.

For this purpose, it is always pro®table to introduce the Cartesian coordinates of the

wave vector k by

k � 2ðaÿ1[îe0
1 � çe0

2 � æe0
3] � 2ðaÿ1[î, ç, æ] (14:3:4)

analogous to (14.2.4). For a wave vector k inside the B-zone and perpendicular to a

zone boundary that bisects a Miller vector gm, we have from (14.2.13b)

jkj < jgmj=2 � 2ðaÿ1[m02
1 � m02

2 � m02
3 ]1=2=2 (14:3:5)

14.3.3 The Brillouin zones of the cubic system

(i) For the simple cubic lattice Pc, the Cartesian indices m0 � [m0
1, m0

2, m0
3] of a

Miller vector gm are the same as the Miller indices m � (m1, m2, m3), from

(14.2.6). There exist six smallest non-zero gm � 2ðaÿ1 m with m given by

�[100], �[010], �[001] (14:3:6a)

each of which is parallel to the coordinate axis x, y or z. Each face of the B-zone

is perpendicular to one of these so that the B-zone is simple cubic, as shown in

Figure 14.5. From (14.3.5) the perpendicular distance of each zone boundary

from the zone center O equals 1
2

in the unit of 2ðaÿ1. The Cartesian coordinates

[î, ç, æ] of k at some high symmetry points and their point symmetries K k are

Ã � [000], R � [1
2

1
2

1
2
] 2 Oz

i ; X � [001
2
], m � [1

2
1
2
0] 2 Dz

4i

Ä � [00æ], T � [1
2

1
2
æ] 2 Cz

4v; Ë � [îîî] 2 C
xyz
3v

Ó � [îî0] 2 C
xy
2v; S � [î1

2
î] 2 Cxz

2v; Z � [î1
2
0] 2 Cx

2v (14:3:6b)

Λ

[100]

[001]

[010]

kz

X R

S

ZM
ky

Σ

T
∆

Γ

kx

Figure 14.5. The Brillouin zone of the simple cubic lattice with the symmetry

points. The Miller vector gm perpendicular to each zone boundary is denoted by

the Cartesian indices [m0
1, m0

2, m0
3].
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These notations for the symmetry points are due to Bouchaert, Smoluchowski

and Wigner (Bouchaert et al. 1936). Their symmetry point groups K k given

above may be de®ned by their generators as follows:

Dz
4i � f4z, 2x, 1g, Cz

4v � f4z, 2xg, C
xyz
3v � f3xyz, 2x yg

C
xy
2v � f2xy, 2zg, Cxz

2v � f2xz, 2 yg, Cx
2v � f2x, 2zg (14:3:6c)

The superscript for each K k denotes the direction of the principal axis of the

point group.

(ii) For the face-centered cubic lattice Fc, construction of the B-zone requires a set of

14 Miller vectors gm � Bm with the indices m � (m1 m2 m3):

�(100), �(010), �(001), �(111), �(011), �(101), �(110) (14:3:7a)

Note that each Miller index is equal either to zero or to unity, as was mentioned

before. The corresponding Cartesian indices [m0
1, m0

2, m0
3] of gm � 2ðm0 are

given, via (14.2.7b), by

�[111], �[111], �[111], �[111]; �[200], �[020], �[002] (14:3:7b)

The 14 faces of the B-zone formed by these indices via (14.3.1) are presented in

Figure 14.6. According to the matrix B given in (14.2.7a), the reciprocal lattice

type is the body-centered cubic Ic with the primitive basis de®ned by the

Cartesian indices [111], [111] and [111]. Note that there exist two types of faces:

six regular hexagonal faces and four square faces. The former are perpendicular

to three-fold axes c3 whereas the latter are perpendicular to four-fold axes c4.

From (14.3.5) their perpendicular distances from the origin O are 31=2=2 and 1,

respectively, in the unit of 2ðaÿ1. The Cartesian coordinates [î, ç, æ] of the wave

vectors k at the high symmetry points and their point symmetries K k are

X � [001] 2 Dz
4i; Ä � [00æ] 2 Cz

4v; L � [1
2

1
2

1
2
] 2 D

xyz
3i

W � [1
2
01] 2 Dx

2p; Ó � [îî0] 2 C
xy
2v; K � [3

4
3
4
0] 2 C

xy
2v (14:3:7c)

kz

ky

kx

K

U
L

W

X

∆

Λ

ΣΓ

[111]

[020]

[200]

[111]

[002]

[111]

Figure 14.6. The Brillouin zone of the face-centered cubic lattice with the

symmetry points. Each face is characterized by the Cartesian indices

[m0
1, m0

2, m0
3] of gm.
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where jæj, 1. The generators of the point groups are

D
xyz
3i � f3xyz, 2x y, 1g, Dx

2p � f4x, 2 yzg (14:3:7d)

The remaining point groups in (14.3.7c) have been de®ned already in (14.3.6c). It

should be noted that the symmetry point groups of the interior points of the B-zones

are the same for all Bravais lattice types of a given crystal system K, because an

interior point k is invariant with respect to the wave vector point group K k.

Remark. The wave vector point groups K k given in (14.3.7c) are easily shown by

applying the generators of K k to the wave vector k using the Jones representations

given in (13.8.1). Here are two examples.

1. L 2 D
xyz
3i is shown, using 3xyz � (z, x, y) and 2x y � (y, x, z), by

Lÿ 3xyz L � [000], Lÿ 2x y L � [111] � b1 � b2 � b3

Lÿ 1L � [111] � b1 � b2 � b2 (14:3:7e)

where B � [b1, b2, b3] is the primitive basis for the reciprocal lattice F9c given in

(14.2.7a).

2. Analogously, W 2 Dx
2p is shown, using 4x � (x, z, y), by

W ÿ 4xW � [111] � b2, W ÿ 2 yzW � [111] � b2 (14:3:7f)

(iii) For the body-centered cubic lattice Ic, construction of the B-zone requires the

following 12 Miller vectors gm � Bm 2 I9c with the indices m � (m1, m2, m3):

�(100), �(010), �(001), �(011), �(101), �(110) (14:3:8a)

The corresponding Cartesian indices [m0
1, m0

2, m0
3] of gm � 2ðm0 are given,

from (14.2.8b), by

�[011], �[101], �[110], �[011], �[101], �[110] (14:3:8b)

The Brillouin zone formed via (14.3.1) is presented in Figure 14.7. According to

kx

kz

ky

H

P

D

NG
Γ Σ

Λ

∆

[110]

[101]

[011]

[110]

[0
11][101]

Figure 14.7. The Brillouin zone of the body-centered cubic lattice with the sym-

metry points. Each face is denoted by the Cartesian indices [m0
1, m0

2, m0
3] of gm.
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(14.2.8a) the reciprocal lattice is Fc with the primitive basis de®ned by the

Cartesian indices [011], [101] and [110]. There exists only one type of face that is

rhombic. Each face is perpendicular to a two-fold axis of rotation and the

perpendicular distance from the origin O equals 2ðaÿ1=
p

2 via (14.3.5). The

[î, ç, æ] coordinates of the wave vectors k at the symmetry points denoted in

Figure 14.7 are given, together with their symmetry groups, by

H � [001] 2 Oi; N � [1
2

1
2
0] 2 D

xy
2i ; P � [1

2
1
2

1
2
] 2 T z

p;

D � [1
2

1
2
æ] 2 Cz

2v (14:3:8c)

where D
xy
2i � f2xy, 2z, 1g, Cz

2v � f2z, 2x yg. The symmetry of P 2 T z
p can be

shown just like for W 2 Dx
2p in (14.3.7f).

The Brillouin zones for the cubic system described above are relatively simple due

to the fact that only one lattice parameter is required in order to describe any lattice

type belonging to the cubic system. As was shown in Table 13.1, one requires more

than one lattice parameter in order to describe the lattices of the remaining crystal

systems. As a result there may exist more than one type of Brillouin zone for a given

Bravais lattice, depending on the relative magnitude of the lattice parameters. For

example, for the tetragonal system, the Cartesian components of the Miller vector gm

for the body-centered lattice are given by

gm � 2ðaÿ1[m2 � m3, m3 � m1, (m1 � m2)a=c] (14:3:9)

where a and c are the lattice parameters. Thus the perpendicular distance jgmj=2

depend on the ratio a=c. For the complete list of the Brillouin zones for all crystal

systems see, e.g., Zak et al. (1969).

14.4 The small representations of wave vector space groups

Let Ĝ be a space group and T be its translation group and let ôk(T ) be a unirrep of T

that is one-dimensional. Let Ĝk be the little group of ôk(T ) which is the subgroup of

Ĝ that leaves ôk(T) invariant under conjugation. According to the general theorems

on induced representations discussed in Chapter 8, the complete set of the unirreps of

the space group Ĝ can be constructed by induction from the small representations of

the little group Ĝk: here a small representation of Ĝk is de®ned by any unirrep of Ĝk

that subduces a multiple of the unirrep ôk(T ). We shall ®rst discuss the little group Gk

and then show that the small representations of Ĝk can be constructed by the projective

representations of the point co-group Gk de®ned by the rotational part of Ĝk. More

often than not we are interested in the small representations of Ĝk in physics rather

than the representations of Ĝ; for example in describing the energy band structure of a

solid.

14.4.1 The wave vector space groups Ĝk

The little group Ĝk of ôk(T ) de®ned above is also called the group of the wave vector

k in the sense that its point co-group Gk leaves the vector k equivalent with respect to

the reciprocal lattice T 9. To see this, let A � fájag be a general element of a space

group Ĝ, where a is a translation associated with the rotation á. Then the conjugate

transform of tn � fejt ng 2 T by A is given by
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Aÿ1 tnA � fájagÿ1fejtngfájag � fejáÿ1 tng (14:4:1)

Note that only the rotational part á of A affects the translation. Thus, the conjugate

representation of ôk(T ) by A is given by

ôk(Aÿ1 tnA) � exp (ÿiák . tn) � ôák(tn) (14:4:2a)

Since by de®nition Ĝk � ffâjbgg is the subgroup of the space group Ĝ that leaves

ôk(T) invariant under conjugation, we have

ôâk(tn) � ôk(tn), 8 tn 2 T (14:4:2b)

This means that the point co-group Gk � fâg of the wave vector group Ĝk leaves k

equivalent with respect to the reciprocal lattice T 9 of T.

Obviously Gk is a subgroup of the point co-group (or the crystal class) G of the

space group Ĝ, and it is also a subgroup of the wave vector point group K k of the

crystal lattice discussed in the previous section. Moreover, if Gk is known then the

corresponding wave vector space group Ĝk is determined by simply adding the

translation parts of the corresponding elements in the space group Ĝ because Ĝk is a

subgroup of the space group Ĝ. For the same reason, the translation group T of Ĝk is

the same as that of the space group Ĝ and it is an Abelian invariant subgroup of Ĝk.

There exists an isomorphism

Ĝk=T ' Gk (14:4:3)

corresponding to Ĝ=T ' G. From this and also with the fact that the unirreps ôk(T ) of

T are one-dimensional we shall show that the small representations of Ĝk can be

constructed by the projective representations of the point co-group Gk.

As a preparation, we ®rst discuss the induced representations of Ĝk from the

unirreps fôk(T )g of T. Let the left coset decomposition of Ĝk by T be

Ĝk �
X
âë2Gk

fâëjbëgT �
X

BëT (14:4:4)

where Bë � fâëjbëg; ë � 1, 2, . . . , jGkj. Then the induced representation of

Ĝk � fB � fâjbgg from ôk(T ) is given, from the general de®nition (8.2.5), by

Ëk(B)ëë9 � ô"k(B)ëë9 �
X
t n92T

ôk(tn9)ä(t n9, Bÿ1
ë BBë9)

8 B 2 Ĝk; ë, ë9 � 1, 2, . . . , jGkj (14:4:5)

It subduces a multiple of ôk(T ) onto T

Ëk(tn)ëë9 � ôk(tn)äëë9 (14:4:6a)

Formally, it is expressed by

Ë#k(T ) � Ëk(T ) � 1k 3 ôk(T ) � fkôk(T ) (14:4:6b)

which is a constant matrix for a given k because ôk(T ) is one-dimensional. The

dimensionality equals fk � jĜk=T j � jGkj. This is consistent with Corollary 8.5.2.

According to Theorem 8.5.3, any unirrep of Ĝk contained in the induced representa-

tion Ëk(Ĝk) � ô"k(Ĝk) is a small representation and conversely any small representa-

tion of Ĝk is always contained in the induced representation ô"k(Ĝk). Here, we give a

direct veri®cation of the theorem once more for the present simple special case as an
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illustration. Let Ë(i)
k (Ĝk) be a unirrep of Ĝk contained in Ëk(Ĝk) with a frequency Fi

k,

i.e.

ô"k(B) � Ëk(B) �
X

i

� Fi
kË

(i)
k (B); 8 B 2 Ĝk (14:4:7a)

Since from (14.4.6b) the left-hand side of this equation subduces a multiple of ôk(T ),

each submatrix Ë(i)
k on the right-hand side must also subduce some multiple of ôk(T ):

Ë(i)#
k (T ) � 1i

k 3 ôk(T ) � f i
kôk(T ), f i

k � jË(i)
k j (14:4:7b)

This means that the unirrep Ë(i)
k (Ĝk) is indeed a small representation of Ĝk. Now, from

the Frobenius reciprocity theorem (Theorem 8.5.1), the two frequencies Fi
k and f i

k are

equal:

Fi
k � f i

k (14:4:8)

The theorem is proven since if Fi
k 6� 0 then f i

k 6� 0 and vice versa, i.e. if there is a

small representation that satis®es (14.4.7b) then it is contained in ô"k(Ĝk). Q.E.D.

By equating the dimensions of the two sides of (14.4.7a) and using Fi
k � jË(i)

k j we

obtain the completeness relations for the small representations of Ĝk:X
i

jË(i)
k (Ĝk)j2 � jËkj � jĜkj=jT j � jGkj (14:4:9)

which is a special case of (8.5.10a) because jã(H)j � 1 for the present case.

14.4.2 Small representations of Ĝk via the projective representations of Gk

In general, it is not a simple matter to reduce the induced representation Ëk(Ĝk) to

obtain the small representations Ë(i)
k (Ĝk) contained in it. For a wave vector group Ĝk,

however, there is a very effective way of constructing a small representation Ë(i)
k (Ĝk)

by regarding it as a projective unirrep of the point co-group Gk, using the fact that

ôk(T ) is one-dimensional. To see this, let us write down the multiplication law for the

coset representatives fâëjbëg of T in Ĝk:

fâ1jb1gfâ2jb2g � fejt(1, 2)gfâ3jb3g (14:4:10)2

where â1â2 � â3 and t(1, 2) is a lattice vector de®ned by

t(1, 2) � â1b2 � b1 ÿ b3 2 T

It is a lattice vector because a pure translation belonging to Ĝk must be a lattice

translation. The representations of both sides of (14.4.10) via the small representation

Ë(i)
k (Ĝk) lead to

Ë(i)
k (fâëjb1g)Ë(i)

k (fâ2jb2g) � eÿik. t(1,2)Ë(i)
k (fâ3jb3g) (14:4:11)

where a numerical factor exp [ÿik . t(1, 2)] comes in because the small representation

Ë(i)
k subduces a constant matrix ôk(T )1i

k, as shown by (14.4.7b). Now in view of the

isomorphism Ĝk=T ' Gk we may set

2 When we were constructing the space group in Chapter 13, we introduced a coset representative
(âëjbë) � (âëjbë) (mod tn 2 T ). This quantity is, however, not useful for the present purpose of construct-
ing the irrep of Ĝk.
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Ë(i)
k (fâëjbëg) � �Ë(i)

k (âë), 8 âë 2 Gk (14:4:12)

then Equation (14.4.11) takes the form

�Ë(i)
k (â1) �Ë(i)

k (â2) � ëk(â1, â2) �Ë(i)
k (â3) (14:4:13a)

where ëk(â1, â2) is a numerical factor de®ned by

ëk(â1, â2) � exp [ÿik . t(1, 2)], t(1, 2) 2 T (14:4:13b)

This implies that a small representation fË(i)
k (fâëjbëg)g of the coset representative of

T in Ĝk can be regarded as a projective representation f�Ë(i)
k (âë)g of the point co-group

Gk belonging to the factor system de®ned by (14.4.13b). The projective representation
�Ë(i)

k (Gk) de®ned by (14.4.12) is irreducible since the small representation Ë(i)
k (Ĝk) is

irreducible. It should be noted that the notation �Ë(i)
k (âë) can be deceiving: it still

depends on bë (which is ®xed for a given âë), as one can see from the left-hand side of

(14.4.12); see also (14.4.17b) given below.

Remark. The above equations (14.4.11) and (14.4.13a) are analogous to (12.4.3) and

(12.4.5b), respectively. However, the wave vector group Ĝk is not a covering group of

Gk simply because the translation group T is not in the center of Ĝk, as one can see

from (14.4.1). The reason that the vector unirrep Ë(i)
k (Ĝk) provides a projective

representation �Ëk(Gk) are that T is an Abelian invariant subgroup of Ĝk and that a

small representation of Ĝk subduces an integral multiple of a one-dimensional

representation ôk(T) that provides the factor system (cf. Equation (12.4.3)).

Now substitution of (14.4.12) into the completeness relation (14.4.9) for the small

representations of Ĝk yields X
i

j�Ë(i)
k (Gk)j2 � jGkj (14:4:14)

which is nothing but the completeness condition (12.3.7) for the projective unirreps of

Gk belonging to a factor system. This means that construction of the small representa-

tions of Ĝk requires the complete set of the projective unirreps of the point group Gk

with the factor system de®ned by (14.4.13). The latter has already been constructed in

Chapter 12 for all crystallographic point groups and presented in Table 12.4.

Once a projective unirrep �Ë(i)
k (Gk) has been determined, the corresponding small

representations Ë(i)
k (Ĝk) are given, via (14.4.12), by

Ë(i)
k (fâëjbë � tng) � eÿik. t n �Ë(i)

k (âë); 8 âë 2 Gk (14:4:15)

Moreover, if we assume that the representation is unitary, as usual, we have the

following orthogonality relations:X
âë2Gk

Ë(i)
k (fâëjbëg)�rsË

(i9)
k (fâëjbëg)r9s9 �

X
âë2Gk

�Ë(i)
k (âë)

�
rs

�Ë(i9)
k (âë)r9s9

� (jGkj=di)äii9ärr9äss9 (14:4:16)

Here the summation over the lattice translations t n 2 T has been eliminated by the

complex conjugation. Note also that the above orthogonality relations hold for the

projective unirreps belonging to the same factor system (cf. Theorem 12.3.2).

In the important special case in which the wave vector k is invariant with respect to

Gk, i.e.
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âëk � k 8 âë 2 Gk (14:4:17a)

the factor system (14.4.13b) becomes a trivial factor system because

ëk(â1, â2) � eÿik.(b1�b2ÿb3) � eik.b3=eik.b1 eik.b2

so that, from (14.4.13a), the projective unirrep �Ë(i)
k (Gk) becomes p-equivalent to a

vector unirrep _Ë(i)
k (Gk) of Gk given by

Ë(i)
k (fâëjbëg) � �Ë(i)

k (âë) � eÿik.bë _Ë(i)
k (âë); 8 âë 2 Gk (14:4:17b)

The condition (14.4.17a) holds for every interior point of the Brillouin zone, but does

not hold for the high-symmetry points on the surface in general, with some exceptions

(see Section 15.4). Note also that (14.4.17b) holds for every symmorphic space group

simply because bë � 0 for all âë 2 Gk, even if k is not invariant with respect to Gk.

Finally, we shall determine the number of the small representations of Ĝk contained

in the induced representation Ëk(Ĝk) � ô"k(Ĝk) from ôk(T ). Let the corresponding

projective representation �Ëk(Gk) of Gk be, analogously to (14.4.12),

Ëk(fâëjbëg) � �Ëk(âë), 8 âë 2 Gk (14:4:17c)

Since both �Ëi
k(Gk) and �Ëk(Gk) belong to the same factor system fëk(â1, â2)g de®ned

by (14.4.13b), the number of times ni
k that a unirrep �Ëi

k(Gk) is contained in �Ëk(Gk) is

given, in terms of their characters, by

ni
k �

1

jGkj
X
âë2Gk

�÷(i)
k (âë)

��÷k(âë) (14:4:17d)

In the special case in which the wave vector k is invariant with respect to Gk we have,

analogously to (14.4.17b),

Ëk(fâëjbëg) � �Ëk(âë) � eÿik.bë _Ëk(âë) (14:4:17e)

where f _Ëk(âë)g is a vector representation of the point group Gk � fâëg. As a result

the frequency ni
k takes the form

ni
k �

1

jGkj
X
âë

_÷(i)
k (âë)

� _÷k(âë) (14:4:17f)

where _÷(i)
k (âë) and _÷k(âë) are the characters of the vector representations _Ë(i)

k (âë) and
_Ëk(âë) of the point group Gk. The former is well known for every point group but the

latter is to be calculated from Ëk(fâëjbëg) by (14.4.17e) as follows:

_÷k(âë) � eik.bë trËk(fâëjbëg) (14:4:17g)

which may still depend on bë; e.g. see (15.2.2e).

14.4.3 Examples of the small representations of Ĝk

We shall discuss how to determine the small representations of a wave vector space

group Ĝk from the projective unirreps of the corresponding point group Gk. It is

necessary only to ®nd the appropriate gauge transformation which makes the gen-

erators of Ĝk satisfy the de®ning relations of the corresponding representation group

given in (12.5.9). Let us illustrate the procedure through two typical examples of Ĝk

in the following; cf. Kim (1983a).
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Example 1. O2
i (number 222) at R(k � (ð, ð, ð)) of the Brillouin zone de®ned in

(14.3.6b); see Miller and Love (1967) and Zak et al. (1969). The wave vector space

group Ôi(k) has the following generator set, from Table 13.3:

P: f4zj1200g, f3xyzj000g, f1j000g (14:4:18a)

From (12.5.9c), the representation group of the point group Oi is de®ned by

A4 � B3 � (AB)2 � E9, IAI � âA, IBI � B, I2 � E92 � E

(14:4:18b)

where â (� �1) is the parameter which determines the p-equivalence class K(â) of

factor systems for the projective unirreps of the point group Oi. We ®nd that the one-

to-one correspondence

A$ f4zj1200g, B$ f3xyzj000g, I $ f1j000g, E9$ fe9j000g
(14:4:18c)

satis®es the de®ning relations (14.4.18b) with â � ÿ1. To see this, let us calculate IAI

using the correspondence (14.4.18c) and obtain

IAI � f4zj ÿ 1
2
00g � fej ÿ 100gA

then, from (14.4.13b), the representative of the lattice translation fej ÿ 100g 2 T

determines â with k � (ð, ð, ð) as follows:

â � ôk(fej ÿ 100g) � exp (ði) � ÿ1

The projective unirreps �Ë(i)
k of Oi belonging to the class of the factor system

K(â � ÿ1) are given, according to Table 12.4, by

K(ÿ1); �D(A1, A2; 1), �D(E; �óy), �D(T1, T2; 1), �D(E1
2
, E91

2
; 1), �D(Q; �ó0 3 ó y)

The corresponding bases can also be written down in terms of the bases of the unirreps

of the halving subgroup using (12.6.10b).

Example 2. D̂4
6i (number 194) at k � (0, 0, ð) of the Brillouin zone; see Miller and

Love (1967). The generators of the wave vector group D̂6i(k) are given, according to

Table 13.3, by

P: f6zj001
2
g, fu0j000g, f1j000g (14:4:19a)

and the representation group of the point group D6i is de®ned, from (12.5.9b), by

A6 � B2 � (AB)2 � E9, IA � âAI , IB � ãBI , I2 � E92 � E

(14:4:19b)

where â (� �1) and ã (� �1) determine the p-equivalence class K(â, ã) of factor

systems for the projective unirreps of D6i. We ®nd that the one-to-one correspon-

dences

A$ f6zj001
2
g, B$ ifu0j000g, I $ f1j000g, E9$ ÿfe9j000g

(14:4:19c)

satisfy the de®ning relations (14.3.19b) with â � ÿ1 and ã � 1. The negative sign for

the correspondence E9$ ÿfe9j000g in (14.4.19c) means that the integral (or half-
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integral) representations of the space group D̂6i are given by the half-integral (or

integral) projective representations of the point group D6i.

The projective unirreps of D6i belonging to the class of factor systems K(ÿ1, 1) are

given, according to Table 12.4, by

�D(A, B1; 1), �D(A2, B2; 1), �D(E1, E2; ó z), �D(E1=2, E5=2; ó z), �D(E3=2; �ó z)

(14:4:19d)

of which the ®rst three describe the half-integral representations of the wave vector

group D̂6i(k) corresponding to D(fe9j000g) � ÿ1 and �D(E9) � 1 whereas the remain-

ing three representations are the integral representations of D̂6i(k) corresponding to

D(fe9j000g) � 1 and �D(E9) � ÿ1. This kind of exchange between integral and half-

integral representations occurs quite frequently (Miller and Love 1967, Zak et al.

1969).

14.5 The unirreps of the space groups

Following Theorem 8.5.4 on the induced representations, we shall construct the

complete set of the unirreps of a space group Ĝ by induction from the small

representations of the wave vector space groups Ĝk. Let the induced representation of

Ĝ from a small representation Ë(i)
k (Gk) be

Ã (i)
k (Ĝ) � Ë(i)"

k (Ĝ) � [Ë(i)
k (Ĝk)"Ĝ]

and let the left coset decomposition of Ĝ by Ĝk be

Ĝ �
Xs

í�1

fáíjaígĜk �
Xs

í�1

AíĜk (14:5:1)

where Aí � fáíjaíg and s � jĜj=jĜkj � jGj=jGkj is the index of Gk in G. The

induced representation Ã (i)
k (Ĝ) of Ĝ � fAg is given, from the general de®nition

(8.2.5), by

Ã (i)
k (A)íì � Ë(i)"

k (A)íì �
X
B2Ĝk

Ë(i)
k (B)ä(B, Aÿ1

í AAì)

8 A 2 Ĝ; í, ì � 1, 2, . . . , s (14:5:2)

where the sum is over all elements B � fâëjbë � t ng of Ĝk.

The representations of Ĝ induced from the small representations of Ĝk given above

are irreducible according to Theorem 8.5.4. Here we shall give a direct simple proof

available for this case.

From Theorem 8.2.3 on the general irreducibility criterion for induced representa-

tions and Theorem 8.1.2 on subduced representations, the induced representation

Ë(i)"
k (Ĝ) is irreducible if the conjugate representations of the subduced representation

Ë(i)#
k (T ) are orthogonal with respect to the coset representatives Aí of Ĝk in Ĝ. From

(14.4.7b) and (14.4.2a), the conjugate representations are given by

Ë(i)
k (Aÿ1

í tnAí) � 1i
kôkí(tn); í � 1, 2, . . . , s � jGj=jGkj (14:5:3)

where kí � áík and 1i
k is the unit matrix of the order jË(i)

k j. These are obviously
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orthogonal over T � ftng for different values of í from the orthogonality relations

(14.1.15a) for fôk(T )g. Q.E.D.

To understand the structure of the unirrep Ã (i)
k (Ĝ) � Ë(i)"

k (Ĝ) given by (14.5.2) we

shall calculate its subduced representation onto T in the following exercise.

Exercise. Show that the subduced representation of Ã (i)
k (Ĝ) onto T is given by

Ã (i)#
k (T ) � Ã (i)

k (T ) � 1i
k 3 Ok

where j1i
kj � jË(i)

k j and Ok is the direct sum of the unirreps in the orbit of ôk(T )

relative to Ĝ. (This is a special case of the Clifford theorem, Theorem 8.5.5.)

Solution. From (14.5.2) and (14.5.3) we have

Ã (i)
k (tn)íì � Ë(i)

k (Aÿ1
í tnAí)äíì

� 1i
k 3 exp (ÿikí . tn) äíì; í, ì � 1, 2, . . . , s � jGj=jGkj

If we rewrite these in a matrix form, we obtain the required result:

Ã (i)
k (tn) � 1i

k 3 diag (eÿik1
. t n , eÿik2

. t n , . . . , eÿiks
. t n )

� 1i
k 3 Ok (14:5:4)

14.5.1 The irreducible star

To describe the completeness of the induced unirreps fÃ (i)
k (Ĝ)g of a space group Ĝ,

one additional concept is useful. In view of (14.5.1), the left coset decomposition of

the point co-group G � fág by Gk � fâg is given by

G �
Xs

í�1

áíGk; s � jGj=jGkj (14:5:5a)

Since Gk is the subgroup of G which leaves k equivalent with respect to the reciprocal

lattice T 9, the set of wave vectors that are inequivalent with respect to T 9 is given by

S(k) � fk1, k2, . . . , ksg; jS(k)j � s � jGj=jGkj (14:5:5b)

where kí � áík with k1 � k. The set is called the irreducible star of the wave vector

k. There exists a one-to-one correspondence between the star S(k) and the orbit

fôkí(T )g of an unirrep ôk(T) of T relative to Ĝ. Moreover, the star S(k) characterizes

every unirrep Ã (i)
k (Ĝ) of Ĝ induced by a unirrep Ë(i)

k (Ĝk) of Ĝk, as one can see from

its subduced form Ã (i)
k (T ) given by (14.5.4).

An irreducible star S(k) is invariant under the point co-group G � fág because

ákí � ááík � áìâk � kì 2 S(k) for some áì 2 G and some â 2 Gk. The irreduci-

ble star S(k) may also be regarded as the star of any member kí of the star because

from k � áÿ1
í kí follows kì � áìáÿ1

í kí for every kì. Moreover, the point group Gkí

of kí 2 S(k) is isomorphic to Gk via the conjugation

Gkí � áíGká
ÿ1
í (14:5:6)

because if âk � k then áíâáÿ1
í kí � áíâk � kí for all â 2 Gk. Hence one can speak

of the little group of an irreducible star up to an isomorphism. Thus it is only necessary
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to construct one complete set of the small representations of the little group cor-

responding to one wave vector chosen arbitrarily from a given star. This conclusion is

easily understood from the fact that all the conjugate representations of ôk(T ) by the

coset representatives Aí have already been incorporated in de®ning the induced

representation Ã (i)
k (Ĝ) � [Ë(i)

k (Ĝk)"Ĝ], as one can see from (14.5.4).

Suppose that there exists a wave vector k9 that is not contained in the star of k, then

one can construct another star S(k9) � fk9ìg of k9 by the coset representatives fá9ìg of

Gk9 in G (�Pìá9ìGk9).

In this way we can group all of the k in the Brillouin zone into irreducible stars that

are disjoint with respect to G in the same way as we classify all the unirreps of T into

disjoint orbits of T relative to Ĝ. Let jS(k)j be the order of a star S(k) thenX
(k)

jS(k)j � jT j (14:5:7)

where the summation over (k) means summation over one wave vector per irreducible

star. This is so because each member of a star de®nes an inequivalent unirrep ôkí(T )

and also the total number of the unirreps of T equals the order jT j of T, as shown in

(14.1.15b).

Finally, we shall give here a direct proof that the induced unirreps Ã (i)
k (Ĝ) �

[Ë(i)
k (Ĝk)"Ĝ] of the small group Ĝ by the small representations of Ĝk are complete

(cf. Theorem 8.5.4). From the general theorem on the completeness condition it is

necessary only to show that the dimensionalities jÃ (i)
k (Ĝ)j satisfyX

(k)

X
i

jÃ (i)
k (Ĝ)j2 � jĜj (14:5:8)

where i is over all small representations of the wave vector group Ĝk and (k) is over

the wave vector k, one per irreducible star S(k). From (14.5.2) the dimensionality

jÃ (i)
k (Ĝ)j is given by

jÃ (i)
k (Ĝ)j � jË(i)

k j jS(k)j, jS(k)j � jĜj=jĜkj (14:5:9)

On substituting this into the left-hand side of (14.5.8) and using the completeness

condition (14.4.9) for the small representations Ë(i)
k (Gk), we haveX

(k)i

jÃ (i)
k (Ĝ)j2 �

X
(k)

jS(k)j2jĜkj=jT j � jĜj
X
(k)

jS(k)j=jT j � jĜj

where we have used jĜkj jS(k)j � jĜj and (14.5.7). This proves the completeness

condition (14.5.8).

14.5.2 A summary of the induced representations of the space groups

It is worthwhile to summarize the method of constructing the unirreps Ã (i)
k (Ĝ) �

Ë(i)"
k (Ĝ) of a space group Ĝ by induction from the small representations Ë(i)

k (Ĝk) of

the wave vector group Ĝk of a unirrep ôk(T ) of the translation group T.

1. Let ôk(T ) be a unirrep of T characterized by a wave vector k.

2. Group the wave vectors in the Brillouin zone into different irreducible stars, and

arbitrarily select one wave vector k from each star.
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3. Determine the wave vector space group Ĝk for each selected wave vector k from

the point co-group Gk and the space group Ĝ.

4. Find all the small representations Ë(i)
k of the wave vector space group Ĝk via the

projective unirreps of the point group Gk ' Ĝk=T .

5. Construct the unirreps of Ĝ by the induced representations Ã (i)
k (Ĝ) �

[Ë(i)
k (Ĝk) " Ĝ] from Ë(i)

k (Ĝk).

6. The set of all Ã (i)
k (Ĝ) thus constructed provides the complete set of the unirreps of

Ĝ.
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15

Applications of unirreps of space groups to energy

bands and vibrational modes of crystals

In the previous chapter (Chapter 14), we have shown that a unirrep of a wave vector

space group Ĝk can be constructed by a projective unirrep of the point co-group Gk

through Table 12.4. With this in mind, we shall describe the band energy eigenfunction

of the electron in a solid and the symmetry coordinates of vibration of a crystal.

15.1 Energy bands and the eigenfunctions of an electron in a crystal

The energy spectrum of an electron in a crystal is described by the SchroÈdinger

equation

Hø � Eø (15:1:1)

with the Hamiltonian H de®ned by

H � ÿ "2

2m
=2 � V (r)

where V (r) is a periodic potential that is invariant with respect to the crystal symmetry

described by the space group Ĝ of the crystal. Accordingly, the energy eigenstates can

be classi®ed by the unirreps of the space group Ĝ. Let T � ffejt ngg be the trans-

lational symmetry of the crystal. Since T is Abelian and its element commutes with

the Hamiltonian H , there exist the simultaneous eigenfunctions for every element of T

and H . These will be classi®ed ®rst by the small representations of the wave vector

space group Ĝk. Then the overall symmetry of the energy eigenstates is described by

the unirreps of Ĝ induced by the small representations of the wave vector group Ĝk as

described in Section 14.5.

Let øk(r) be a simultaneous eigenfunction of fejt ng 2 T and the Hamiltonian H

such that

fejtngøk(r) � eÿik. t nøk(r)

Høk(r) � E(k)øk(r) (15:1:2a)

where k is a wave vector in the ®rst Brillouin zone. The eigenfunction øk(r) is known

as the Bloch function belonging to the wave vector k. Since the set of eigenvalues

fexp (ÿik . tn)g de®nes a unirrep ôk(T ), the Bloch function is also the eigenfunction

simultaneously belonging to the unirrep ôk(T ) and the energy E(k). The energy E(k)

as a function of a `continuous' variable k describes a band structure of the energy and

there exist many such bands for a Hamiltonian with a periodic potential V (r). The

wave function øk(r) may also depend on many discrete indices of the quantum

numbers due to further symmetry of the Hamiltonian. We, however, assume that we



are on one particular energy band so that the energy eigenvalues depend only on the

wave vector k.

Remark. A wave function belonging to the unirrep ôk(T ) must have the following

form, in view of (14.1.4a):

øk(r) � eik.ruk(r) (15:1:2b)

where uk(r) is periodic with respect to the lattice translations fejt ng 2 T , i.e.

uk(r) � uk(r � t n). On substituting the above expression into the SchroÈdinger equa-

tion we obtain the differential equation for uk(r)

ÿ "2

2m
(=� ik)2 � V (r)

� �
uk(r) � E(k)uk(r) (15:1:2c)

which needs to be solved for one unit cell of the crystal with the periodic boundary

condition. Since k is a coef®cient in the differential equation, the eigenvalue E(k)

must be a continuous function of k. Note that the label k of E(k) is determined by the

label k of the unirrep ôk(T ); cf. Peierls (1955). Hereafter, however, we shall ®nd it

more convenient to discuss the symmetry properties of the energy E(k) as well as its

wave function øk in terms of (15.1.2a) instead of (15.1.2c).

Let us ®rst discuss the transformation of the basic equations (15.1.2a) under a

general element A � fájag of the space group Ĝ of the crystal. We have

fejtng�[ 8Aøk] � eiák.t n [ 8Aøk]

H[ 8Aøk] � E(k)[ 8Aøk] (15:1:3)

which are obtained by applying the following commutation relations (cf. 14.4.1) to

øk:

fejt ngfájag � fájagfejáÿ1 tng
Hfájag � fájagH (15:1:4)

Since the eigenvector 8Aøk belongs to the wave vector ák, the energy eigenvalue as a

function of the wave vector k must satisfy the following symmetry relation, in

comparison of (15.1.3) with (15.1.2a):

E(ák) � E(k), 8á 2 G (15:1:5a)

where G is the point co-group of Ĝ. This equation means that the band energy E(k) as

a function of the wave vector k possesses the full point symmetry G of the crystal

itself. If there is no other symmetry for the Hamiltonian H besides the space group

symmetry Ĝ, the whole set of the degenerate eigenfunctions belonging to E(k) is

given, from an eigenfunction øk, by,

ffájag�øk; 8 fájag 2 Ĝ=Tg (15:1:5b)

Here we have excluded the lattice translations fejt ng 2 T from the operations since

they simply change the phase factors of the eigenfunctions, as one can see from

(15.1.3).

We shall classify these eigenfunctions (15.1.5b) belonging to E(k) ®rst by the small

representations of the wave vector space group Ĝk that leaves the unirrep ôk(T)

invariant and then by those unirreps of the space group Ĝ which are induced by the

15.1 Energy bands 363



small representations of Ĝk. For this purpose, we introduce the left coset decomposi-

tion of Ĝ relative to T in two steps, in view of T / Ĝk , Ĝ,

Ĝk �
Xt

ë�1

fâëjbëgT , t � jĜkj=jT j (15:1:6a)

Ĝ �
Xs

í�1

fáíjaígĜk, s � jS(k)j � jĜj=jĜkj (15:1:6b)

as in (14.4.4) and (14.5.1), respectively. Then the set of the Bloch functions belonging

to the wave vector k is given by a set of the equivalent Bloch functions with respect to

Ĝk

ffâëjbëg�øk; 8 fâëjbëg 2 Ĝk=Tg (15:1:7a)

which exhausts all the solutions of the SchroÈdinger equation (15.1.2a) for a given wave

vector k. Let d be the number of linearly independent functions contained in the set,

then

d < jĜkj=jT j � jGkj (15:1:7b)

where Gk is the point co-group of Ĝk. The set provides a basis for a d-dimensional

representation Ä(d)
k (Ĝk) of the wave vector space group Ĝk. In the special case in

which d � jGkj, the representation Ä(d)
k becomes equivalent to the induced representa-

tion Ëk(Ĝk) from ôk(T ) introduced in (14.4.5).

Let Ë(i)
k (Ĝk) be a unirrep contained in Ä(d)

k (Ĝk), then it is a small representation of

Ĝk because the representation Ä(d)
k (Ĝk) subduces an integral multiple of ôk(T ) onto T

in view of (15.1.3). Then, using the isomorphism Ĝk=T ' Gk, we introduce their

projective representations �Ë(i)
k (Gk) and �Ä(d)

k (Gk) of the point group Gk by

�Ë(i)
k (âë) � Ë(i)

k (fâëjbëg), �Ä(d)
k (âë) � Ä(d)

k (fâëjbëg) (15:1:8)

both of which belong to the same factor system (14.4.13b), analogously to (14.4.12)

and (14.4.17c), respectively. In Section 14.4.3, we have shown how to determine the

projective unirrep �Ë(i)
k (Gk) by the unirreps of the representation group G9k. The

number of times that a small representation Ë(i)
k of Ĝk is contained in Ä(d)

k is

determined by the frequency rule (14.4.17d) or (14.4.17f).

Next, we shall discuss how to form a basis of the projective unirrep �Ë(i)
k (Gk) (or the

band eigenfunction in short) by the symmetry-adapted linear combinations (SALCs)

of the equivalent Bloch functions given in (15.1.7a). Since �Ë(i)
k (Gk) is de®ned by the

unirrep Ë(i)
k (Ĝk), the required SALCs are formed by (6.9.3), using the generating

operator method, as follows:

øk,i
j � (j�Ë(i)

k j=jGkj)
X
âë2Gk

�Ë(i)
k (âë)

�
jpfâëjbëg�øk(r); j � 1, 2, . . . , j�Ë(i)

k j (15:1:9a)

where j�Ë(i)
k j is the dimension of the representation �Ë(i)

k , øk is an appropriate Bloch

function in (15.1.7a) and the column number p of the unirrep �Ë(i)
k (âë) jp should be

chosen appropriately to obtain non-null bases for the unirreps contained in �Ä(d)
k (Gk).

Note here that the phase factors due to the lattice translations fejt ng 2 T are cancelled

out in the complex conjugation in (15.1.9a). Obviously, if âëk � k for all âë 2 Gk,
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Equation (15.1.9a) is simpli®ed with use of (14.4.17b), i.e. �Ë(i)
k (âë) � _Ë(i)(âë)eÿik.bë

where f _Ë(i)(âë)g is a vector unirrep of Gk. Moreover, for the special case of the

identity representation, for which _Ë(1)(âë) � 1 for all âë 2 Gk, the basis SALC is

given by

øk,1 � (1=jGkj)
X
âë2Gk

eik.bëfâëjbëg0øk(r) (15:1:9b)

which is nothing other than the weighted sum of the equivalent functions given in

(15.1.7a). In the actual calculation of the basis SALCs in the free-electron approxima-

tion introduced in the next section, we shall use the correspondence theorem intro-

duced in Chapter 7 together with the invariant basis given above.

Finally, let fÃ (i)
k (Ĝ)g be the induced unirreps of the space group Ĝ from the small

representation fË(i)
k (Ĝk)g de®ned by

Ã (i)
k (Ĝ) � [Ë(i)

k (Ĝk) " Ĝ] (15:1:10a)

Then its basis is given, in view of (15.1.6b), by

økí,i
j � fáíjaígøk,i

j ; í � 1, 2, . . . , jS(k)j (15:1:10b)

which still belongs to E(k) from (15.1.3). The degenerate eigenfunctions given by

(15.1.5b) are then described by these induced bases. If there exists no accidental

degeneracy, i.e. Ä(d)
k contains only one small representation of Ĝk (this is true in

general for a realistic periodic potential V (r)), then the total degeneracy of E(k) is

given by the dimensionality of the unirrep Ã (i)
k (Ĝ), which is determined by two factors,

in view of (15.1.10b):

jÃ (i)
k (Ĝ)j � jË(i)

k j . jS(k)j (15:1:11)

The ®rst factor arises from the band degeneracy at the point k due to the symmetry

with respect to the wave vector group Ĝk given by (15.1.9a), whereas the second factor

is due to the equivalence under fáíjaíg 2 Ĝ of the wave vectors k corresponding to

different points in the star of the wave vector k. Equation (15.1.11) is identical to

(14.5.9) given in the previous section, as it should be.

15.2 Energy bands and the eigenfunctions for the free-electron model in a crystal

In the previous section, we have classi®ed the energy band eigenfunctions of an

electron in a crystal in terms of the small representations of the wave vector space

groups. To exemplify the classi®cation, we shall determine the possible energy bands

and their eigenfunctions given by the symmetry-adapted wave functions in the free-

electron approximation. `This is far from a trivial calculation,' as stated by Jones

(1975): it gives deep insight into the possible band structure of an actual crystal

belonging to the same space group. There may occur accidental degeneracies in the

free-electron approximation, which, however, may be removed by introducing a

realistic periodic potential of the crystal as a perturbation. Here the symmetry-adapted

free-electron wave functions provide the correct zeroth-order linear combinations for

the perturbation. We shall see that the correspondence theorem on the basis functions

introduced in Chapter 7 greatly simpli®es the construction of the symmetry-adapted

Bloch functions.
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In the free-electron approximation, the Hamiltonian of the system is given by

H (0) � ÿ["2=(2m)]=2

so that a simultaneous eigenfunction of the translation group T and the Hamiltonian

H (0) is described by an elementary Bloch function belonging to a wave vector, say k1,

in the extended zone scheme and the energy E such that

ø(r) � eik1
.r 2 E � ["2=(2m)]jk1j2

In general, the wave vector k1 need not be in the ®rst Brillouin zone, but is related to a

wave vector k in the ®rst Brillouin zone by

k1 � k ÿ g1

where g1 is a reciprocal lattice vector. Thus the energy and its eigenfunction are

expressed as

øk
1 (r) � eik1

.r � ei(kÿ g1).r 2 E(k) � ["2=(2m)](k ÿ g1)2 (15:2:1a)

Here the factor exp (ÿig1
. r) corresponds to uk(r) in (15.1.2b), being periodic with

respect to the lattice translation fejt ng 2 T .

Under a symmetry operation fâëjbëg 2 Ĝk, the free-electron wave function trans-

forms according to

fâëjbëg0øk
1 (r) � exp [iâëk1

. (r ÿ bë)] (15:2:1b)

Since the translational part bë introduces only a phase factor, the linearly independent

set of Bloch functions equivalent with respect to Ĝk is expressed by

�Ä(d)
k (Gk): føk

l (r) � exp (ik l
. r); l � 1, 2, . . . , dg 2 E(k) (15:2:1c)

where k l � âëk1 � k ÿ g l with some reciprocal lattice vector g l. Here fk lg is a

linearly independent equivalent set of wave vectors with respect to the point group Gk

whereas the set of reciprocal lattice vectors fg lg is linearly independent but need not

be given by fâë g1g unless k is invariant under Gk. Obviously, the set of Bloch

functions given by (15.2.1c) belongs to the same common energy E(k), which may be

rewritten as

E(k) � ["2=(2m)](k ÿ g l)
2; l � 1, 2, . . . , d (15:2:1d)

This expression de®nes the band energy of an electron as a quadratic function of k;

e.g. see Figure 15.1. Conversely, from this expression, we can determine the allowed

energies E(k) for a given k with a compatible set of linearly independent reciprocal

lattice vectors fg lg for each band, which then lead to the linearly independent set of

the equivalent wave functions (15.2.1c), with due caution for the rare case of band

energy crossing, see Figure 15.1. This gives a convenient way of ®nding the linear

independent set (15.2.1c) belonging to an allowed energy E(k).

The equivalent basis set (15.2.1c) provides a d 3 d matrix representation Ä(d)
k (Ĝk)

that also de®nes the projective representation �Ä(d)
k (Gk) in accordance with (15.1.8); in

fact, from

fâëjbëg�øk
l (r) � exp [iâëk l

. (r ÿ bë)] �
X

l9

øk
l9(r)Ä(d)

k (âëjbë) l9 l
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we have

�Ä(d)
k (âë) l9 l � Ä(d)

k (fâëjbëg) l9 l

� exp (ÿik l9
. bë)ä(k l9 ÿ âëk l) (15:2:2a)

which is a weighted permutation representation of Gk based on the equivalent set of

wave vectors fk lg.
In the special case in which âëk � k for all âë 2 Gk, the projective representation

is p-equivalent to a vector representation _Ä(d)
k (Gk). In fact, from (14.4.17e) the

representation Ä(d)
k can be expressed in the following three ways:

Ä(d)
k (fâëjbëg) � �Ä(d)

k (âë) � eÿik.bë _Ä(d)
k (âë); 8 âë 2 Gk (15:2:2b)

Accordingly, from (15.2.2a) with âëk � k,

_Ä(d)
k (âë) l9 l � exp (�ig l9

. bë) ä(g l9 ÿ âë g l) (15:2:2b9)

which is a weighted permutation representation of Gk based on the equivalent set of

the reciprocal lattice vectors fg lg.
In the case of a symmorphic space group we have, from (15.2.2a) with bë � 0,

_Ä(d)
k (âë) l9 l � �Ä(d)

k (âë) l9 l � ä(k l9 l ÿ âëk l) (15:2:2c)

which is an ordinary permutation representation of Gk based on fk lg, as expected.

Finally, the number of times a small representation Ë(i)
k is contained in Ä(d)

k is

determined by the frequency rule (14.4.17d) or (14.4.17f). The required character

�÷(d)
k (Gk) of the projective representation �Ä(d)

k (Gk) is given, from (15.2.2a), by

�÷(d)
k (âë) � ÷(d)

k (fâëjbëg) �
X

l

exp (ÿik l
. bë)ä(k l ÿ âëk l) (15:2:2d)
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Figure 15.1. Free-electron energy bands along the z-axis of the Brillouin zone of

the simple cubic lattice.
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or the character _÷(d)
k (Gk) of the vector representation _Ä(d)

k (Gk) is given, from

(15.2.2b9), by

_÷(d)
k (âë) �

X
l

exp (ÿig l
. bë)ä(g l ÿ âë g l), if âëk � kX

l

ä(k l ÿ âëk l), if Gk is symmorphic

8>><>>: (15:2:2e)

Note that the character may still depend on the non-lattice translation bë. When a set

of equivalent Bloch functions is given explicitly, it becomes a trivial matter to

calculate these characters directly from the given equivalent set of vectors fk lg or

fg lg with the respective phase factor.

With the general preparation given above, we shall now determine the band

energies, and the corresponding SALCs of the Bloch functions at the high-symmetry

points in the Brillouin zone in the free-electron approximation; ®rst for a simple cubic

crystal belonging to a symmorphic space group and then for the diamond crystal

belonging to a non-symmorphic space group.

15.2.1 The notations for a small representation of Ĝk

When k is invariant with respect to the point co-group Gk, it has been shown by

(14.4.17b) that a small representation Ë(i)
k of Ĝk can be expressed in the following

three ways:

Ë(i)
k (fâëjbëg) � �Ë(i)

k (âë) � eÿik.bë _Ë(i)
k (âë); 8 âë 2 Gk

where f _Ë(i)
k (âë)g is a unirrep of the point group Gk that is independent of fbëg.

Accordingly, a small representation of Ĝk may be expressed by the familiar notation

of a unirrep of the point group Gk with some indication of the k-dependence. For

example, a small representation of a cubic space group Ôi corresponding to the

identity representation A1g of Oi may be denoted by

Ak
1g(fâëjbë � tng) � eÿik.(bë� t n) A1g(âë) (15:2:2f)

if âëk � k for all âë 2 Oi, which is also applicable for a unirrep of a symmorphic

space group. For a general case, an analogous notation will be used for the respective

halving subgroup which is symmorphic, then the projective unirrep of Gk correspond-

ing to a small representation of Ĝk is described through the unirreps of the halving

subgroup given in Table 12.4.

15.2.2 Example 1. A simple cubic lattice

Consider a crystal belonging to the space group O1
i (number 221, Pm3m), which is a

symmorphic space group with a simple cubic lattice. The Brillouin zone of the simple

cubic lattice has been given in Figure 14.5. The wave vector groups at the high-

symmetry points along the z-axis are, from (14.3.6b),

Ã � [000] 2 Ôi, Ä � [00æ] 2 Ĉz
4v, X � [001

2
] 2 Dz

4i (15:2:3a)
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where 0 , æ, 1
2
. In terms of the Cartesian coordinates of the wave vector k in the

Brillouin zone de®ned by (14.3.4), i.e.

k � 2ðaÿ1[îe0
1 � çe0

2 � æe0
3] � 2ðaÿ1[î, ç, æ]

the energy E(k) along the z-axis is given, in the unit of "2=(2m) and with the lattice

spacing a � 1, by

E(k) � (k ÿ g l)
2 � l2

1 � l2
2 � (æÿ l3)2; 0 < æ < 1

2
(15:2:3b)

where l1, l2 and l3 are integers compatible with a given E(k) in accordance with

(15.2.1d). The corresponding set of the Bloch functions is given, from (15.2.1c) with

k1 � k ÿ g l � k ÿ 2ðl, by

_Ä(d)
k (Gk): fexp [2ði(ÿl1xÿ l2 y� (æÿ l3)z)]; 8 l 2 E(k)g (15:2:3c)

which belongs to the permutation representation _Ä(d)
k (Gk) of the point co-group Gk as

given by (15.2.2c). The energy levels E(k) given by (15.2.3b) are presented graphi-

cally in Figure 15.1.

At the lowest energy EÃ � 0, which occurs at æ � 0 with l � 0, the Bloch function

is given by

øÃ � 1 2 AÃ
1g of Ôi (15:2:4a)

where the notation AÃ
1g denotes the small representation of Ôi corresponding to the

identity representation A1g of the point group Oi in accordance with (15.2.2f).

Starting from this point moving along Ä(0 , æ, 1
2
) in the B-zone we have, still in

the ®rst band with l � 0,

EÄ � æ2, øÄ � exp (�2ðiæz) 2 AÄ
1 of Ĉz

4v

At the end point X(æ � 1
2
) 2 D̂4i of the ®rst zone, we have, from (15.2.3b) and

(15.2.3c) with l � [0, 0, 0], [0, 0, 1],

Ex � 1
4
, øx � feiðz, eÿiðzg 2 D̂4i (15:2:4b)

This set of two equivalent Bloch functions closes under the point group D4i as

expected and thus provides a permutation representation _Ä(2) of D4i in accordance

with (15.2.2c). Using (15.2.2e) for the symmorphic group and the frequency rule

(14.4.17d), we conclude that it contains two unirreps:

_Ä(2) � A1g

1
� A2u

z

Here, 1 and z are the elementary bases of A1g and A2u of D4i, respectively (see the

character table in the Appendix). The symmetry-adapted bases for the wave vector

group D̂4i are given by

Ax
1g: ø1 � cos (ðz)

Ax
2u: øz � sin (ðz) (15:2:4c)

where the superscript x (k � 2ð(001
2
)) denotes the k-dependence of the unirreps for

the translational degree of freedom.

Note that ø1 in (15.2.4c) is a totally symmetric function with respect to the point

group D4i, whereas øz transforms like z under D4i. The former is obtained by
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summing up the members of the equivalent set of functions following (15.1.9b)

whereas the latter is obtained by operating on ø1 with @=@z. This is based on the

simple correspondence theorem which states that the differential operators @=@x,

@=@ y and @=@z obey the same transformation law as do the Cartesian coordinates x, y

and z under a rotation but are invariant under translation. This simple correspondence

theorem will be used to simplify the construction of SALCs in the present chapter.

For the second band given in Figure 15.1 along Ä(1
2

. æ. 0) 2 Ĉ4v, the energy and

the corresponding Bloch function with l � [0, 0, 1] are described by

EÄ � (1ÿ æ)2, øÄ � exp [ÿ2ði(1ÿ æ)z] 2 AÄ
1 of Ĉ4v

At the end point Ã(æ � 0) 2 Ôi of this band, with l � [0, 0, �1], [0, �1, 0] [�1, 0, 0]

we have

EÃ � 1, fe�2ðiz, e�2ði y, e�2ðixg 2 Ôi (15:2:5a)

The permutation representation _Ä(6) of the point group Oi based on these functions or

the equivalent set of six vectors flg contains the following unirreps of Oi:

_Ä(6)
Ã � A1g

1

� Eg

[u, v]

� T1u

[x, y, z]

(15:2:5b)

The corresponding symmetry-adapted functions for the space group Ôi are given by

AÃ
1g: ø1 � cos (2ðz)� cos (2ðy)� cos (2ðx)

EÃ
g : øu � 2 cos (2ðz)ÿ cos (2ðy)ÿ cos (2ðx)

øv � p3[cos (2ðx)ÿ cos (2ðy)]

TÃ
1u: øx � sin (2ðx), ø y � sin (2ðy), øz � sin (2ðz) (15:2:5c)

where ø1(r) is a totally symmetric function with respect to Oi obtained by simply

summing up all the equivalent Bloch functions in (15.2.5a). The remaining bases are

obtained by use of the correspondence theorem as follows:

øu � u(=)ø1, øv � v(=)ø1; øx � @xø
1

etc., where

u(=) � 2@2
z ÿ @2

x ÿ @2
y, v(=) � p3(@2

x ÿ @2
y)

On the third band along Ä(0 , æ, 1
2
) 2 Ĉ4v, the energy and the corresponding

Bloch functions are described by l � [�1, 0, 0], [0, �1, 0], i.e.

EÄ � 1� æ2, fei2ð(æz�x), ei2ð(æz� y)g 2 Ĉ4v (15:2:6a)

The representation _Ä(4)
Ä of C4v based on the equivalent set of the wave vectors

f[�1, 0, æ], [0, �1, æ]g contains the following unirreps:

_Ä(4)
Ä � A1

1

� B1

x2 ÿ y2

� E

[x, y]

Starting from the totally symmetric function and using the correspondence theorem,

the basis functions for the unirreps are given by

AÄ
1 : ø1 � exp (i2ðæz) [cos (2ðx)� cos (2ðy)]
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BÄ
1 : øx2ÿ y2 � exp (i2ðæz) [cos (2ðx)ÿ cos (2ðy)]

EÄ: øx � exp (i2ðæz) sin (2ðx), ø y � exp (i2ðæz) sin (2ðy) (15:2:6b)

As one can see from Figure 15.1, there exists one more band along Ä, which stems

from EÃ � 1:

EÄ � (1� æ)2, øÄ � exp [2ði(æÿ 1)z] 2 AÄ
1 of Ĉ4v

The relations of compatibility between the states along the symmetry axis Ä 2 C4v

and the states at both ends Ã 2 Oi and X 2 D4i are exhibited in Figure 15.1. These are

easily understood from the compatibility tables for the corresponding point groups

given by Koster et al. (1963):

fA1g, Eg, T1u of Oig $ fA1, A1 � B1, A1 � E of C4vg
fA1g, A2u of D4ig $ fA1, A1 of C4vg (15:2:7)

The energy bands and their eigenfunctions in the free-electron approximation

provide the starting point for the further re®nements of the theory with a realistic

potential, as has been discussed by Jones (1975). As the potential energy V (r) changes

slowly from a constant value to the actual potential for a real crystal, the energy bands

shown in Figure 15.1 change accordingly. In particular, the bands with the different

symmetry types will separate so that there remains only the essential degeneracy due

to the unirreps of the wave vector groups.

15.2.3 Example 2. The diamond crystal

It is a face-centered cubic crystal belonging to the space group O7
i (number 227, fd3m).

From Table 13.3 of the space groups, the space group Ôi (� O7
i ) may be expressed by

the left coset decomposition relative to the halving subgroup T̂p which is symmorphic:

Ôi � T̂p � f1j14 1
4

1
4
gT̂p (15:2:8)

with the lattice spacing a � 1. To compare this with the case of the symmorphic space

group O1
i discussed in Example 1, we again consider the energy bands along the z-axis

of the Brillouin zone given in Figure 14.6. The wave vector groups at the high-

symmetry points are, from (14.3.7c),

Ã � [000] 2 Ôi, Ä � [00æ] 2 Ĉz
4v, X � [001] 2 D̂z

4i (15:2:9)

where 0 , æ, 1 and the subgroups of Ôi are de®ned by

Ĉz
4v � Ĉz

2v � f4zj14 1
4

1
4
gĈz

2v, Cz
2v � f2z, 2x yg

D̂z
4i � D̂z

2p � [1j1
4

1
4

1
4
gD̂z

2p, Dz
2p � f4z, 2xg (15:2:10)

Here the halving subgroups are all symmorphic.

In terms of the Cartesian coordinates of the wave vector k � 2ð[0, 0, æ] and the

Cartesian indices of the reciprocal lattice vector g l, the free-electron energy (in the

unit "2=(2m)) along the z-axis and the corresponding set of the equivalent Bloch

functions are given, from (15.2.1d) and (15.2.1c), by

E(k) � l02
1 � l02

2 � (l0
3 ÿ æ)2

�Ä(d)
k (Gk): fexp [ÿ2ði(l0

1x� l0
2 y� (l0

3 ÿ æ)z)]; 8 l0 2 E(k)g (15:2:11)
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Here l0
1, l0

2 and l0
3 are either all odd or all even integers, including zero, according to

(14.2.7b). The energy bands described by (15.2.11) are presented graphically in Figure

15.2. The SALCs of the Bloch functions belonging to the unirreps contained in

Ä(d)
k (Ĝk) will be constructed by applying the correspondence theorem to the invariant

function of Gk. Since the symmetry points Ã and Ä are inside the B-zone, the

projective representation Ä̂(d)
k (Gk) is p-equivalent to the vector representation of Gk

given by (15.2.2b). Thus, the number ni
k of times a small representation of Ĝk is

contained in the equivalent representation Ä(d)
k is determined by (14.4.17f), using the

character given by (15.2.2e) and the character table of the point co-group Gk. The

symmetry point X, however, is located on a face of the B-zone and is not invariant

with respect to D4i so that the unirreps of the space groups D̂4i will be determined by

the projective unirreps of the point group D4i following the method developed in

Section 14.4. The present approach should be compared with the classical work of

Jones (1975) on the same subject.

15.2.3.1 The unirreps and the bases at Ã(k � 0) 2 Ôi

Since k � 0, we have Ä(d)
k (fâëjbëg) � �Ä(d)

k � _Ä(d)
k (âë) from (15.2.2b).

(i) At the lowest energy state EÃ � 0, the Bloch function is given by

ø � 1 2 AÃ
1g of Ôi (15:2:12a)

(ii) The next higher energy at Ã is given by EÃ � 3 from (15.2.11) with l0 �
f[�1, �1, �1]g, so that there exist eight Bloch functions:

_Ä(8)
Ã : fexp [2ði(�x � y � z)]g 2 Ôi(Ã) (15:2:12b)

A
1 , B

1 , E
4 1

 (2 2
 æ) 2

B 2

(2
 2

 æ)
2

A 1
, B 2

, E

2 1 (1 1 æ)2

A 2
, B 2

, E

4 1 æ2

A
1, B

2, E
2 1 (1 2 æ) 2

(2 2 æ) 2

B
2
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æ2

6

5

2

1

10 æ

D (A1, B1; 1)
D (A2, B1; 1)
D (E; σx)
D (E; 2σx)







D (A1, B2; 1)
D (E; σx)





D (A1, B2; 1)

X [ D
^
4i∆ [ C

^
4vΓ [ O

^
i

A1g

3

4

A1g, A2u
T2g, A1u





A2u, Eu, T2g

E(k)

Figure 15.2. Free-electron energy band along the z-axis of the Brillouin zone of

the face-centered cubic lattice.
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The representation1 of Ôi(Ã) based on these contains the following small

representations of the wave vector group, from the frequency rule (14.4.17f),

_Ä(8)
Ã � A1g

1

� A2u

xyz

� T2g

[yz, zx, xy]

� T1u

[x, y, z]

(15:2:12c)

where the elementary bases are those of the point co-group Oi. The symmetry-

adapted basis functions for Ôi are

AÃ
1g: ø1 � cos (2ðx) cos (2ðy) cos (2ðz)� sin (2ðx) sin (2ðy) sin (2ðz)

AÃ
2u: øxyz � cos (2ðx) cos (2ðy) cos (2ðz)ÿ sin (2ðx) sin (2ðy) sin (2ðz)

TÃ
1u: øx � ÿsin (2ðx) cos (2ðy) cos (2ðz)� cos (2ðx) sin (2ðy) sin (2ðz)

ø y � ÿcos (2ðx) sin (2ðy) cos (2ðz)� sin (2ðx) cos (2ðy) sin (2ðz)

øz � ÿcos (2ðx) cos (2ðy) sin (2ðz)� sin (2ðx) sin (2ðy) cos (2ðz)

TÃ
2g: ø yz � cos (2ðx) sin (2ðy) sin (2ðz)� sin (2ðx) cos (2ðy) cos (2ðz)

øzx � sin (2ðx) cos (2ðy) sin (2ðz)� cos (2ðx) sin (2ðy) cos (2ðz)

øxy � sin (2ðx) sin (2ðy) cos (2ðz)� cos (2ðx) cos (2ðy) sin (2ðz)

Here the totally symmetric basis ø1 2 AÃ
1g of Ôi is obtained by (15.1.9b), which

takes the form, for the present case,

ø1 � [(ej0)� � (1j1
4

1
4

1
4
)�]
X
âë2Tp

8âë exp[2ði(x� y� z)]

The remaining bases are constructed via the correspondence theorem (@x, @ y, @z)

$ (x, y, z); e.g. øxyz / @x @ y @zø1.

(iii) For EÃ � 4 (the next higher energy at Ã), the equivalent set of Bloch functions is

given by a total of six Bloch functions, with l0 � f[�2, 0, 0], [0, �2, 0],

[0, 0, �2]g,
_Ä(6)
Ã : fe�i4ðz, e�i4ðx, e�i4ð yg 2 Ôi(Ã) (15:2:13a)

The representation of Ôi(Ã) based on these contains the following unirreps, from

(15.2.2e) and the frequency rule (14.4.17f):

_Ä(6)
Ã � A2u

xyz
� Eu

[u, v]xyz

� T2g

[x, y, z]xyz
(15:2:13b)2

1 For convenience, we may give here the character of _Ä(8)
Ã (Oi):

e 8 3 3xyz 3 3 2z 6 3 4z 6 3 2x y (1j1
4

1
4

1
4
)Tp

8 2 0 0 4 0

There is no contribution from the elements which involve non-lattice translations for this example.
2 From (15.2.2e), the character of _Ä(6)

Ã (Oi) is given by

e 8 3 3xyz 3 3 2z 6 3 4z 6 3 2x y Î 8 3 Î3xyz 3 3 Î2z 6 3 Î4z 6 3 Î2x y

6 0 2 0 2 0 0 ÿ 4 ÿ 2 0

with Î � (1j1
4

1
4

1
4
).
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Their bases are

AÃ
2u: øxyz � cos (4ðx)� cos (4ðy)� cos (4ðz)

EÃ
u : u(=)øxyz / 2 cos (4ðz)ÿ cos (4ðy)ÿ cos (4ðx)

v(=)øxyz / p3[cos (4ðx)ÿ cos (4ðy)]

TÃ
2g: [@x, @ y, @ z]øxyz / [sin (ðx), sin (ðy), sin (ðz)]

Here, the øxyz 2 AÃ
2u of Ôi(Ã) is obtained from (15.1.9a), which takes the form

øxyz � (fej0g� ÿ f11
4

1
4

1
4
g�)

X
âë2Tp

8âëei4ðz

The remaining bases are obtained by application of the correspondence theorem to

øxyz following the elementary bases given in (15.2.13b).

15.2.3.2 The unirreps and the bases along Ä(k � 2ð[00æ]) 2 Ĉz
4v

The generators of the factor group Ĉ4v=T have been given by (15.2.10). Since the

symmetry point Ä is inside the Brillouin zone, a projective representation of Ĉz
4v(Ä) is

expressed by the corresponding vector representation given by (15.2.2b). The ®rst few

bands given in Figure 15.2 will be described below.

(i) For EÄ � æ2 with l0 � [0, 0, 0], the Bloch function is given, from (15.2.11), by

ø � e2ðiæz 2 AÄ
1 of Ĉ4v(Ä) (15:2:14a)

Note that �AÄ
1 (âë) � AÄ

1 (fâëjbëg) � exp (ÿik . bë] in accordance with (15.2.2b).

(ii) For EÄ � (2ÿ æ)2 with l0 � [0, 0, 2],

ø � e2ði(æÿ2)z 2 BÄ
2 of Ĉ4v(Ä)

(iii) For EÄ � 2� (1ÿ æ)2 with l0 � f[�1, �1, 1]g, there exist four equivalent

Bloch functions given, from (15.2.11), by

Ä̂(4)
Ä : fexp [2ði(�x � y� (æÿ 1)z)]g 2 C4v(Ä) (15:2:14b)

The unirreps of C4v contained in the representation _Ä(4)
Ä based on these are

given, using (15.2.2e) or directly from the basis, by

_Ä(4)
Ä � A1

1
� B2

xy
� E

[x, y]
(15:2:14c)

As usual, the totally symmetric basis is obtained by (15.1.9b), which takes the

form

ø1 � [e� (4zj14 1
4

1
4
)�eiðæ=2]

X
âë2C2v

8âë exp f2ði[x� y� (æÿ 1)z]g

whereas the remaining bases are determined by the correspondence theorem.

The results are

AÄ
1 : ø1 � fcos [2ð(x� y)]� i cos [2ð(xÿ y)]g exp [2ði(æÿ 1)z]

BÄ
2 : øxy � fcos [2ð(x� y)]ÿ i cos [2ð(xÿ y)]g exp [2ði(æÿ 1)z]
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EÄ: øx � fsin [2ð(x� y)]� i sin [2ð(xÿ y)]g exp [2ði(æÿ 1)z]

ø y � fsin [2ð(x� y)]ÿ i sin [2ð(xÿ y)]g exp [2ði(æÿ 1)z] (15:2:14d)

Since the basis functions are complex, if the time-reversal symmetry of the

crystal is taken into consideration the dimensions of these representations will

be doubled in their co-representations.

(iv) For EÄ � 2� (1� æ)2 with l0 � f[�1, �1, ÿ1]g, it can be shown that the band

eigenfunctions are classi®ed by AÄ
1 , BÄ

2 and EÄ of CÄ
4v analogous to (15.2.14c).

From (15.1.9b) the totally symmetric basis ø1 2 AÄ
1 is given by

AÄ
1 : ø1 � [cos (x� y)ÿ i cos (xÿ y)] exp [2ði(æ� 1)z]

while @x@ yø1 and (@xø1, @ yø1) provide the bases of BÄ
2 and EÄ, respectively.

15.2.3.3 The unirreps and the bases at X (k � 2ð[0, 0, 1]) 2 D̂z
4i

The point X is on a face of the Brillouin zone and is not invariant with respect to the

point co-group Dz
4i. Thus the small representations of D̂z

4i will be determined by the

projective unirreps of the point group D4i via the vector unirreps of the halving

subgroup D2 p as discussed in Section 14.4. The generators of D̂4i=T are given, from

(15.2.10), by

a � f4zj0g, b � f2xj0g, Î � f1j1
4
, 1

4
, 1

4
g

These satisfy the de®ning relations

a4 � b2 � (ab)2 � e9, aÎ � ÿ Î a, bÎ � ÿ Î b (15:2:15a)

Comparing these with (12.5.9b), the class of factor systems for D4i is K(â � ÿ1,

ã � ÿ1) and the required projective unirreps are given, from Table 12.4, by

�D(A1, B2; 1), �D(A2, B1; 1), �D(E; ÿó x), �D(E; ó z) (15:2:15b)

where A1, A2, B1, B2 and E are the unirreps of the symmorphic halving subgroup

D̂2 p. The unirreps of the wave vector space group D̂z
4i and their bases are expressed,

using (12.6.10), by

X 1 � D(A1, B2; 1)x: [øA1 , Î�øA1 ]

X 2 � D(A2, B1; 1)x: [øA2 , Î�øA2 ]

X3 � D(E; ÿó x)x: øE ÿ Î�øEó x � øEÿ

X 4 � D(E; ó x)x: øE � Î�øEó x � øE� (15:2:16)

where the superscript x (k � 2ð[0, 0, 1]) denotes the k-dependence of the representa-

tion while øA1 , øA2 and øE are the basis functions belonging to the unirreps Ax
1, Ax

2

and Ex of D̂2p, respectively. As usual, from (15.2.11) we ®nd the set of equivalent

Bloch functions belonging to Ä(d)
k (D̂4i) at X . Then, the number of times any small

representation of D̂4i is contained in Ä(d)
k may be found by application of the frequency

rule (14.4.17d). However, it is more convenient to ®nd the unirreps of D̂2p contained in

the subduced representation Ä(d)
k
#(D̂2p) and their bases because D̂2p is symmorphic.

Then from these follow the unirreps of D̂4i contained in Ä(d)
k (D̂4i) as well as their bases

via (15.2.16). We may need the following elementary bases of the point group D2p:
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A1,

1

A2,
z(x2 ÿ y2)

B1,
x2 ÿ y2

B2;
z or xy

E
[x, y]

(15:2:169)

(i) For energy Ex � 1, we have l0 � [0, 0, 0], [0, 0, 2] and the corresponding

equivalent Bloch functions for D̂z
4i are given, from (15.2.11), by

Ä(2)
x : fexp (i2ðz), exp (ÿi2ðz)g 2 D̂z

4i (15:2:17a)

The unirreps of D2 p contained in the vector representation _Ä(2)
x
#(D2 p) based on

these are

_Ä(2)
x
#(D2 p) � A1

1

� B2

z

This means that only one unirrep X 1 of D̂z
4i de®ned in (15.2.16) is contained in

Ä(2)
x of D̂z

4i. Thus we obtain

X 1 � D(A1, B2; 1)x: [cos (2ðz), sin (2ðz)] (15:2:17b)

where cos (ðz) is the totally symmetric function with respect to D2p and its

partner is obtained by Î� cos (2ðz), from (15.2.16). Note that the simple applica-

tion of the correspondence theorem by @ z cos (2ðz) � ÿ2ð sin (2ðz) does not

give the correct linear coef®cient for the partner.

(ii) For Ex � 2, we have l0 � f[�1, �1, 1]}. The corresponding Bloch functions are

given by

Ä(4)
x : fe�i2ð(x� y), e�i2ð(xÿ y)g 2 D̂z

4i (15:2:18a)

The vector representation _Ä(4)
x
#(D2 p) based on these contains the following

unirreps:

_Ä(4)#(D2 p) � A1

1
� B2

xy
� E

[x, y]
(15:2:18b)

Thus, from (15.2.16), the required small representations of D̂4i are given by X 1

and either X 3 or X 4. Now, the totally symmetric wave function belonging to A1 of

D2 p formed by (15.1.9b) is given by

ø1 � cos (2ðx) cos (2ðy) 2 Ax
1 of D2 p

from which the bases of the small representations of D̂z
4i contained in �Ä(4)

x are

given, using (15.2.16), by

X 1 �D(A1, B2; 1)x: [cos (2ðx) cos (2ðy), sin (2ðx) sin (2ðy)]

X 4 �D(E; ó x)x: [sin (2ðx) cos (2ðy), cos (2ðx) sin (2ðy)] � øE� (15:2:18c)

where the basis of X1 is obtained as in (15.2.17b), whereas the basis of X 4 is

obtained as follows. Firstly, the basis øE of E 2 D̂2 p is given by

øE � [@xø
1, @ yø

1] � [sin (2ðx) cos (2ðy), cos (2ðx) sin (2ðy)]

Then operating Î � f1j1
4
, 1

4
, 1

4
g on øE and using the Pauli spin matrix ó x we have

Î�øEó x � [sin (2ðx) cos (2ðy), cos (2ðx) sin (2ðy)]

which is equal to the original øE. Accordingly, we have
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øE � Î�øEó x � øE� 2 D(E; ó x)x

øE ÿ Î�øEó x � 0

The last equation means that D(E; ÿó x) is not contained in Ä(4)
x .

(iii) For Ex � 5, we have l� � f[�2, 0, 0], [�2, 0, 2], [0, �2, 0], [0, �2, 2]g from

(15.2.11). The corresponding eight Bloch functions for D̂z
4i are

Ä(8)
x : fexp [2ði(�2x� z)], exp [2ði(�2y� z)]g 2 D̂z

4i

The unirreps contained in the representation _Ä(8) of the halving subgroup D2 p

based on these Bloch functions are

_Ä(8)
x
#(D2 p) � A1

1
� A2

z(x2 ÿ y2)
� B1

x2 ÿ y2
� B2

z
� 2E

[x, y]
(15:2:19)

which contain all the vector unirreps of D2p according to (15.2.169). From the

totally symmetric Bloch function with respect to D2p

ø1 � [cos (4ðx)� cos (4ðy)] cos (2ðz) 2 A1 of D2p

the symmetry adapted functions belonging to the unirreps of D̂z
4i are given, using

(15.2.16) together with the correspondence theorem, by

X 1 � D(A1, B2; 1)x: [cos (4ðx)� cos (4ðy)][cos (2ðz), ÿsin (2ðz)]

X 2 � D(A2, B1; 1)x: [cos (4ðx)ÿ cos (4ðy)][sin (2ðz), ÿcos (2ðz)]

X 4 � D(E; ó x)x: [sin (4ðx) cos (2ðz)� sin (4ðy) sin (2ðz),

sin (4ðx) sin (2ðz)� sin (4ðy) cos (2ðz)]

X 3 � D(E; ÿó x)x: [sin (4ðx) cos (2ðz)ÿ sin (4ðy) sin (2ðz),

ÿ sin (4ðx) sin (2ðz)� sin (4ðy) cos (2ðz)]

The relations of compatibility between the states at Ã 2 Ôi and at Ä 2 Ĉ4v

exhibited in Figure 15.2 are easily understood in terms of the relations of

compatibility between the corresponding point groups Oi and C4v given by

Koster et al. (1963):

Oi: A1g, A2u, T2g, T1u, A2u, Eu, T2g

C4v: A1, B2, B2 � E, A1 � E, B2, A2 � B2, B2 � E

The compatibilities between the states at Ä 2 Ĉ4v and X 2 D̂4i are obvious from

Figure 15.2.

15.3 Symmetry coordinates of vibration of a crystal

15.3.1 General discussion

The normal coordinates of vibration of a molecule or crystal are formed by the

symmetry adapted linear combinations (SALCs) of the atomic displacements from

their equilibrium positions in the molecule or crystal (see Chapter 7). Here the linear

coef®cients de®ne the corresponding normal mode of vibrations. In the case of a

crystal, the symmetry coordinates are characterized by the SALCs of Fourier trans-
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forms of the atomic displacements on account of the translational periodicity of the

crystal.

Let rn
s � r0

s � t n be the equilibrium position of the sth atom in the nth primitive

unit cell of the Bravais lattice T of the crystal and let u(rn
s ) � (ux(rn

s ), u y(rn
s ), uz(rn

s ))

be the atomic displacement from the equilibrium position rn
s . In the classical theory,

the circular frequencies of vibration ù of the crystal and the normal coordinates of

vibration belonging to each ù are determined by the following eigenvalue problem:

ù2 M su(rn
s ) �

X
s9,n9

Ö(rn
s ÿ rn9

s9 ) . (rn9
s9 ); s � 1, 2, . . . , d; n � 1, 2, . . . , N

(15:3:1)

where d is the number of atoms in a primitive unit cell, N is the number of primitive

unit cells in the crystal, M s is the mass of the sth atom in a unit cell, and the force

constants Ö(rn
s ÿ rn9

s9 ) are 3 3 3 tensors given by the second-order derivative of the

potential energy with respect to the displacements at the equilibrium positions. Note

that Ö(rn
s ÿ rn9

s9 ) � Ö(rn9
s9 ÿ rn

s ). Since Ö are translational invariants, the set of equa-

tions (15.3.1) will be simpli®ed by introducing the Fourier transforms

uk
s � (M s=N )1=2

XN

n

eik.r n
s u(rn

s )

Fk
ss9 � (M s M s9=N )1=2

XN

n,n9

eik.(r n
sÿr n9

s9
)Ö(rn

s ÿ rn9
s9 ) (15:3:2)

where k is a wave vector in the Brillouin zone of the Bravais lattice T of the crystal. In

fact, in terms of these, the eigenvalue problem (15.3.1) is reduced to a d-dimensional

problem:

ù2uk
s �

X
s9

F k
ss9

. uk
s9; s � 1, 2, . . . , d (15:3:3)

The force constants Ö(rn
s ÿ rn9

s9 ) de®ned by the equilibrium positions of the atoms

are invariant under all symmetry operations of the space groups Ĝ of the crystal such

that

Ö(grn
s ÿ grn9

s9 ) � Ö(rn
s ÿ rn9

s9 ), 8 g 2 Ĝ

However, the set of Fourier transforms fF kg is invariant under the wave vector space

group Ĝk (< Ĝ) which leaves the wave vector k equivalent (with respect to the

reciprocal lattice T 9). Accordingly, we can classify the eigenvectors of F k by the bases

of the unirreps of Ĝk corresponding to the respective eigenvalue ù2 as in the cases of

the SchroÈdinger equation. The irreducible bases formed by the SALCs of

fuk
s ; s � 1, 2, . . . , dg are called the symmetry coordinates of vibration. For later use

one may introduce the following notation for the spatial components of each Fourier

transform:

uk
s � (xk

s , yk
s , zk

s ); s � 1, 2, . . . , d (15:3:4)

As usual we shall ®rst determine the representation of Ĝk based on the set fuk
s g.

Then the symmetry coordinates of vibration will be formed by the SALCs of the set

belonging to the unirreps contained in the representation. Let A � fájag be a general
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element of the space group Ĝ. Under the operation A, the displacement vector

u(rn
s ) � fu j(rn

s ); j � 1, 2, 3g transforms according to

8Au j(rn
s ) �

X3

i�1

ui(Arn
s )D

(1)
ij (á); j � 1, 2, 3 (15:3:5a)

where D(1)(á) is the 3 3 3 rotation matrix which describes the vector transformation in

the three-dimensional space. This means that, under the space group Ĝ, the set

fu(rn
s )g transforms like a set of the spatial derivatives of scalar functions

f=ö(r ÿ rn
s )g where fö(r ÿ rn

s )g is a set of equivalent scalars de®ned on the set of

equivalent points frn
s g with respect to Ĝ; in fact, under A � fájag 2 Ĝ we have

8A@ jö(r ÿ rn
s ) �

X3

i�1

@ iö(r ÿ Arn
s )D

(1)
ij (á) (15:3:5b)

Moreover, if we introduce the Fourier transform of the set fö(r ÿ rn
s )g by

ök
s (r) � 1p

N

X
n

eik.r n
s ö(r ÿ rn

s ); s � 1, 2, . . . , d (15:3:6)

Then both Fourier transforms fuk
s g and f=ök

s (r)g obey the same transformation law

under the wave vector space group Ĝk with the correspondence

(xk
s , yk

s , zk
s )$ (@xö

k
s , @ yö

k
s , @ zö

k
s ) (15:3:7)

The characterization of the transformation of the set fuk
s g by the set f=ök

s (r)g is

convenient and effective, simply because fök
s (r)g is a set of functions of the con-

tinuous space variable r, whereas the set fuk
s g lacks such a variable. We may

determine the transformation properties of the set fuk
s g under the group Ĝk through

those of f=ök
s (r)g and thus apply the correspondence theorem on the basis functions

developed in Chapter 7 to the present problem of constructing the symmetry

coordinates of vibration of a solid.

The set of functions fök
s (r); s � 1, 2, . . . , dg de®ned by (15.3.6) may be called a

set of equivalent Bloch functions since it belongs to the unirrep ôk(T ) of the translation

group T � ffejtngg of the crystal:

fejtng0ök
s (r) � eÿik. t nök

s (r); s � 1, 2, . . . , d (15:3:8)

as was shown in (7.2.17a) by the correspondence theorem. Since the differential

operator is invariant under translation, via the correspondence (15.3.7), the set fuk
s g is

also a set of the Bloch functions belonging to ôk(T ) and also to the eigenvalue ù2 of

F k given by (15.3.3). This is analogous to the case of an energy eigenfunction øk that

satis®es (15.1.2a). The present approach should be compared with the classical work

of Bir and Pikus (1974) on the same subject.

15.3.2 The small representations of the wave vector groups Ĝk based on the

equivalent Bloch functions

First, we shall discuss the transformation of the equivalent Bloch functions fök
s (r);

s � 1, 2, . . . , dg under the wave vector group Ĝk. Let us assume that the set is linearly

independent and let B � fâjbg be a general element of Ĝk, then observe that the set

of equivalent scalar functions fö(r ÿ rn
s )g transforms according to
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8Bö(r ÿ rn
s ) � ö(r ÿ Brn

s )

� ö(r ÿ ât n ÿ Br0
s) (15:3:9)

for Brn
s � â(t n � r0

s)� b � ât n � Br0
s. Thus, the set of the Bloch functions (15.3.6)

transforms as follows:

8Bök
s (r) � 1p

N

X
n

eik.( t n�r0
s)ö(r ÿ âtn ÿ Br0

s)

� 1p
N

eik.(r0
sÿBr0

s)
X

n

eik.( t n�Br0
s)ö(r ÿ âtn ÿ Br0

s)

� 1p
N

eik.(1ÿB)r0
s

X
n9

eik.( t n9�Br0
s)ö(r ÿ tn9 ÿ Br0

s)

where we have set t n9 � âtn and used the equivalence âk � k with respect to the

reciprocal lattice T 9. Now, we may set Br0
s � r0

s9 (mod t n 2 T ) for some s9 because

B � fâjbg is a symmetry element of the crystal. Then we arrive at the following

representation of Ĝk based on the equivalent Bloch functions:

8Bök
s (r) �

Xd

s9�1

ök
s9(r)Ä(d)

k (B)s9s; 8 B 2 Ĝk (15:3:10a)

where s � 1, 2, . . . , d and

Ä(d)
k (B)s9s � exp [ik . (1ÿ B)r0

s]ä(r0
s9 � Br0

s)

ä(r0
s9 � Br0

s) � 1, if r0
s9 � Br0

s (mod t n 2 T )

0, otherwise

�
(15:3:10b)

which is a weighted permutation representation of Ĝk. Its character ÷(d)
k (Ĝk) is given

by

÷(d)
k (B) �

Xm

s�1

eik.(1ÿB)r0
sä(r0

s � Br0
s) (15:3:11)

where every atom in a primitive unit cell contributes to the character quite indepen-

dently from each other.

Next, we note that a unirrep contained in Ä(d)
k (Ĝk) is a small representation of Ĝk

because the representation subduces a multiple of the unirrep ôk(T) of T , as one can

see from (15.3.8) or directly from the representation Ä(d)
k (Ĝk) given by (15.3.10b):

Ä(d)
k (fejtng)s9s � exp (ÿik . t n)äs9s

Accordingly, a unirrep Ä(i)
k (Ĝk) contained in Ä(d)

k (Ĝk) is also a small representation of

Ĝk. An analogous statement holds also for the direct product representation Ëk �
D(1) 3 Ä(d)

k because D(1)(e) � 1, the 3 3 3 unit matrix.

Now let Bë � fâëjbëg be a coset representative of T in Ĝk, then from the

isomorphism Ĝk=T ' Gk, we arrive at the projective representation of Gk given,

following (14.4.17c), by

Ä(d)
k (fâëjbëg) � �Ä(d)

k (âë), 8 âë 2 Gk (15:3:12)
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which belongs to the factor system de®ned by (14.4.13b). Therefore, we can use all the

results obtained in Section 14.4 on the projective representations for the present case.

In the special case in which the wave vector k is invariant under the wave vector

point group Gk � fâëg, we have

exp [ik . (1ÿ Bë)r0
s] � exp [ik . (r0

s ÿ âë r0
s ÿ bë)] � exp (ik . bë)

Accordingly, from (15.3.10b) and (15.2.2b), the vector representation _Ä(d)
k (Gk) corre-

sponding to Ä(d)
k (Ĝk) is given by

_Ä(d)
k (âë)s9s � ä(r0

s9 � Bë r0
s), 8 âë 2 Gk (15:3:13a)

which may still depend on bë through Bë. The character of this vector representation is

given by

_÷(d)
k (âë) �

Xd

s�1

ä(r0
s � Bë r0

s) (15:3:13b)

i.e. only those atoms which remain equivalent with respect to T under Bë � fâëjbëg
contribute to the character. The number of times a vector unirrep _Ä(i)

k (Gk) is contained

in _Ä(d)(Gk) is given by their characters obtained by the frequency rule (14.4.17f), as

usual.

If the wave vector group Ĝk is symmorphic, the projective representation �Ä(d)
k (Gk)

de®ned by (15.3.12) becomes a vector representation and is given, from (15.3.10b),

by

�Ä(d)
k (âë)s9s � _Ä(d)

k (âë)s9s � exp [ik . (1ÿ âë)r0
s]ä(r0

s9 � âë r0
s); 8 âë 2 Gk

(15:3:13c)

which is not a special case of (15.3.13a) unless k is invariant with respect to Gk. By

direct matrix multiplication one can easily verify that this representation is indeed a

vector representation of Gk.

Finally, we shall discuss how to determine the unirreps (small representations) of

Ĝk contained in the direct product Äk � D(1) 3 Ä(d)
k . One way is to reduce each factor

of the direct product separately into its irreducible components:

D(1) �
X

i

�D
(1)
i , Ä(d)

k �
X

j

�Ä( j)
k

Then, we have the following decomposition:

D(1) 3 Ä(d)
k �

X
i, j

�D
(1)
i 3 Ä( j)

k (15:3:14)

Now, the basis of the irreducible component D
(1)
i is described by the SALCs of the

operators @x, @ y and @ z whereas the basis of Ä( j)
k is given by the SALCs of the

equivalent Bloch functions fök
s ; s � 1, 2, . . . , dg. Thus the basis of the direct

product D
(1)
i 3 Ä( j)

k is given by the direct product of the two SALCs. The direct

product representation D
(1)
i 3 Ä( j)

k is irreducible if one of the factors is one-

dimensional; otherwise, the basis of the unirreps contained in D
(1)
i 3 Ä( j)

k is con-

structed with the help of the coupling ef®cients. Thus, via the correspondence

(15.3.7), the symmetry coordinates of vibration are given by the SALCs of the
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displacement vectors (xk
s , yk

s , zk
s ) belonging to the unirreps contained in D(1) 3 Ä(d)

k .

These will be worked out explicitly for the diamond crystal in the next section; cf.

Bir and Pikus (1974).

15.4 The symmetry coordinates of vibration for the diamond crystal

15.4.1 General discussion

The diamond structure belongs to the space group O7
i (number 227) de®ned by

Ôi � T̂p � f1j14 1
4

1
4
gT̂p (15:4:1a)

with the lattice spacing a � 1, where T̂p is the symmorphic halving subgroup (cf.

Equation (15.2.8)). The distribution of the carbon atoms in the crystal is presented by

the two-dimensional projection in Figure 15.3. The primitive unit cell of this crystal

contains two carbon atoms at the sites given by the Cartesian coordinates

r0
1 � (0, 0, 0), r0

2 � (1
4
, 1

4
, 1

4
)

We shall determine the symmetry coordinates of vibration for the crystal at the

following symmetry points in the Brillouin zone of the f.c.c. lattice given in Figure

14.6:

Ã � [000], Ä � [00æ], X � [001], Ë � [æææ], L � [1
2

1
2

1
2
]

Ó � [îî0], K � [3
4

3
4
0] (15:4:1b)

where 0 , î, 1 and 0 , æ, 1; X , L and K are surface points and the remaining

points are interior points of the B-zone.

First, we shall determine the weighted permutation representation Ä(2)
k (Ĝk) intro-

duced in (15.3.10b) from the equivalent Bloch functions [ök
1(r), ök

2 (r)] of two atoms

½½

½

½

¼

¼

¾

¾

0

00

0

0

a1

a2

a3

Figure 15.3. The atomic structure of the diamond crystal with the lattice spacing

a � 1. The Cartesian coordinates of the particles 1 and 2 are (000) and (1
4

1
4

1
4
),

respectively. A fractional number in a circle denotes the z-coordinate of the

particle in the circle. The primitive basis vectors are given by a1 � (0, 1
2
, 1

2
),

a2 � (1
2
, 0, 1

2
) and a3 � (1

2
, 1

2
, 0).
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located at r0
1 � (0, 0, 0) and r0

2 � (1
4
, 1

4
, 1

4
), respectively, in a primitive unit cell

following (15.3.10a). For this purpose, we observe that the inversion f1jôg with the

non-lattice translation ô � (1
4
, 1

4
, 1

4
) exchanges two positions:

f1jôgr0
1 � r0

2, f1jôgr0
2 � r0

1 (15:4:2a)

whereas a point operation á 2 Tp leaves r0
1 invariant but r0

2 equivalent with respect to

the face-centered cubic lattice Fc,

ár0
1 � r0

1, ár0
2 � r0

2; á 2 Tp (15:4:2b)

which may be checked by the generators 4z and 3xyz of Tp. On combining these we

obtain

fájôgr0
1 � r0

2, fájôgr0
2 � r0

1 (15:4:2c)

where á � 1 3 á; á 2 Tp.

Now, a wave vector group Ĝk is either symmorphic or non-symmorphic.

(i) If it is symmorphic, Gk must be a subgroup of Tp; hence, from (15.3.13c) and

(15.4.2b), the representation _Ä(2)
k (Gk) is diagonal. Thus, for â 2 Gk < Tp, we

have two one-dimensional representations _Ä9k(â) and _Ä 0k(â) with the respective

bases, from (15.3.10a) and (15.3.13c),

ök
1 (r) 2 _Ä9k(â) � 1

ök
2 (r) 2 _Ä 0k(â) � exp [ik . (1ÿ â)r0

2] (15:4:3)

The latter, _Ä 0k(â), is tabulated for all â 2 Tp in Table 15.1 at the high-

symmetry points given in (15.4.1b): it takes either 1 or ÿ1; cf. Bir and Pikus

(1974).

(ii) If Ĝk is non-symmorphic, it must have the following group structure, in view of

(15.4.1a):

Ĝk � Ĥ k � qĤ k, q � fájôg (15:4:4)

where Ĥ k � ffhjt ngg is a subgroup of T̂p and á � 1 3 á(á 2 Tp). Since Ĥ k is

symmorphic, the subduced representation Ä(2)
k
#( Ĥ k) onto Ĥ k is again diagonal,

as given by (15.4.3), whereas the representative of the augmentor q is off-

diagonal in view of (15.4.2c). Thus, from (15.3.10), we have the following basic

representation of a non-symmorphic space group Ĝk (, Ôi):

8B[ök
1 , ök

2 ] � [ök
1 , ök

2 ]Ä(2)
k (B), 8 B 2 Ĝk (15:4:5a)

where

Ä(2)
k (h) �

1 0

0 exp [ik . (1ÿ h)r0
2)]

" #
, 8 h 2 H k

Ä(2)
k (q) �

0 eik.(1ÿq)r0
2

eÿik.r0
2 0

24 35 (15:4:5b)
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(iii) In the important special case in which the wave vector k is invariant under Gk,

from (15.2.2b) the vector representation _Ä(2)
k (Gk) corresponding to (15.4.5b)

takes the form

_Ä(2)
k (h) � 1 0

0 1

� �
, _Ä(2)

k (á) � 0 1

1 0

� �
(15:4:6a)

which is reduced to two one-dimensional unirreps of Gk

_Ä(�)
k (h) � 1,

_Ä
(�)

k (á) � �1 (15:4:6b)

with the respective bases

ök
� � (ök

1 � ök
2 ) 2 _Ä(�)

k , ök
ÿ � (ök

1 ÿ ök
2 ) 2 _Ä(ÿ)

k (15:4:6c)

Table 15.1. The phase factor exp [ik . (1ÿ â)r0
2] for â 2 Gk < Tp;

r0
2 � (1

4
1
4

1
4
) (fa1 � (01

2
1
2
), a2 � (1

2
01

2
), a3 � (1

2
1
2
0)g is the primitive basis of the face-

centred cubic lattice with lattice spacing a � 1)

exp [ik . (1ÿ â)r0
2]; k � 2ð[î, ì, æ]

á 2 Tp exp [ik . (1ÿ á)r0
2]

Ã
[000]

X

[001]

Ä
[00æ]

Ë
(îîî)

L

(1
2

1
2

1
2
)

Ó � [îî0)

K � [3
4

3
4
0)

e � (xyz) 1 1 1 1 1 1 1

2x � (xy z) exp (ik . a1) 1 ÿ1

2 y � (xyz) exp (ik . a2) 1 ÿ1

2z � (x yz) exp (ik . a3) 1 1

4x � (xzy) exp (ik . a2) 1

4 y � (z yx) exp (ik . a3) 1

4z � (yx z) exp (ik . a1) 1 ÿ1

4x � (x zy) exp (ik . a3) 1

4 y � (zy x) exp (ik . a1) 1

4z � (yxz) exp (ik . a2) 1 ÿ1

3xyz � (zxy) 1 1 1 1

3x y z � (z xy) exp (ik . a3) 1

3x yz � (zx y) exp (ik . a1) 1

3x yz � (zxy) exp (ik . a2) 1

3x y z � (yzx) 1 1 1 1

3x yz � (yzx) exp (ik . a2) 1

3x yz � (y zx) exp (ik . a3) 1

3xyz � (yz x) exp (ik . a1) 1

2 yz � (xzy) 1 1 1 1

2 yz � (xz y) exp (ik . a1) 1

2xz � (zyx) 1 1 1 1

2xz � (zyx) exp (ik . a2) 1

2x y � (yxz) 1 1 1 1 1 1

2xy � (y xz) exp (ik . a3) 1 1 1
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This special case applies for all interior points of the Brillouin zone and for some

surface points, as in the case of the symmetry point K (see below).

In the above, for when Ĝk is symmorphic or k is invariant under Gk, we have shown

that the unirreps Ä( j)
k contained in the weighted permutation representation Ä(2)

k (Ĝk)

given in (15.3.10b) become one-dimensional; hence, the direct product representations

D
(1)
i 3 Ä( j)

k contained in the direct product representation D(1) 3 Ä(2)
k of Ĝk are all

irreducible. A similar simpli®cation for Ĝk on a surface point of the Brillouin zone

will be achieved by subducing D(1) 3 Ä(2)
k onto the halving subgroup of Ĝk which is

symmorphic.

15.4.2 Construction of the symmetry coordinates of vibration

The general discussion given above will now be applied to construct the symmetry

coordinates of vibration of the diamond crystal at each symmetry point in the Brillouin

zone given in (15.4.1b).

1. At Ã(k � 0) 2 Ôi, since Ã is an interior point with k � 0, we have �Ä(2)
Ã (Oi) �

_Ä(2)
Ã (Oi), which is reduced to two one-dimensional vector unirreps, according to

(15.4.6b):

_Ä(�)
Ã (h) � 1, _Ä(�)

Ã (1) � �1 2 Oi (15:4:7a)

where h 2 Tp. From the character table of the point group Oi, these unirreps are

identi®ed as A1g and A2u, respectively. Their bases are, from (15.4.6c),

öÃ
� � (öÃ

1 � öÃ
2 ) 2 AÃ

1g; 1

öÃ
ÿ � (öÃ

1 ÿ öÃ
2 ) 2 AÃ

2u; xyz (15:4:7b)

Here 1 and xyz are the elementary bases of the point co-group Oi. See (15.2.2f) for

the notation of the unirreps.

From the character table of the point group Oi, the elementary basis [x, y, z]

belongs to D(1) � T1u 2 Oi. Hence, the direct products T1u 3 _Ä(�)
Ã are irreducible

and given by

T1u 3 AÃ
1g � TÃ

1u, T1u 3 AÃ
2u � TÃ

2g 2 Ôi

Correspondingly, the normal coordinates at Ã 2 Ôi which transform according to

these direct products are given by the direct product bases

TÃ
1u: [@x, @ y, @ z]ö

Ã
� � [xÃ1 � xÃ2 , yÃ1 � yÃ2 , zÃ1 � zÃ2 ]

TÃ
2g: [@x, @ y, @ z]ö

Ã
ÿ � [xÃ1 ÿ xÃ2 , yÃ1 ÿ yÃ2 , zÃ1 ÿ zÃ2 ] (15:4:7c)

using the correspondence given by (15.3.7). Note that the ®rst symmetry coordi-

nates in (15.4.7c) transform like the components of a polar vector and thus belong

to the acoustical mode whereas the second coordinates belong to the optical mode.

Since k � 0 at Ã, from the de®nition (15.3.2), the Fourier transforms (xÃs , yÃs , zÃs )

are proportional to the displacement of the center of mass of the sth atoms in the

unit cells of the crystal:
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uÃ
s � (M s=N )1=2

X
n

u(r(n)
s )

2. At Ä (k � 2ð[0, 0, æ]) 2 Ĉz
4v, the wave vector group has been de®ned by (15.2.10).

Since the point Ä is again inside the Brillouin zone, the representation Ä(2)
Ä (Ĉ4v) is

reduced to one-dimensional vector unirreps, according to (15.4.6b),

_Ä(�)
Ä (h) � 1, _Ä(�)

Ä (4z) � �1 2 C2v; h 2 C2v � f2z, 2x yg
From the character table of C4v, these unirreps Ä(�)

Ä and Ä(ÿ)
Ä are identi®ed as the

unirreps AÄ
1 and BÄ

2 , respectively, and their bases are classi®ed, from (15.4.6c), by

öÄ
� � öÄ

1 � öÄ
2 2 AÄ

1 of Ĉ4v; 1

öÄ
ÿ � öÄ

1 ÿ öÄ
2 2 BÄ

2 of Ĉ4v; xy (15:4:8)

following the notation introduced by (15.2.2f). Now, the reduction of the represen-

tation D(1) with respect to Cz
4v is given by

D(1) � A1

z
� E 2 C4v

[x, y]

Thus, the direct products D(1) 3 fA1, B2} are reduced to

A1 3 AÄ
1 � AÄ

1 , A1 3 BÄ
2 � BÄ

2 , E 3 AÄ
1 � EÄ, E 3 BÄ

2 � EÄ 2 C4v

so that the symmetry coordinates of vibration at Ä belonging to the unirreps of Ĉ4v

are given by

AÄ
1 : @ zö

Ä
� � (zÄ1 � zÄ2 )

BÄ
2 : @ zö

Ä
ÿ � (zÄ1 ÿ zÄ2 )

2EÄ: [@x, @ y]öÄ
� � (xÄ1 � xÄ2 , yÄ1 � yÄ2 )

[@ y, @x]öÄ
ÿ � (yÄ1 ÿ yÄ2 , xÄ1 ÿ xÄ2 )

These two bases of EÄ are mutually orthogonal but belong to exactly the same

matrix representation3 (not up to a similarity transformation).

3. At X (k � 2ð[0, 0, 1]) 2 D̂z
4i � D̂z

2p � Î D̂z
2p. Previously, in (15.2.15a), we have

shown that the representation of D̂z
4i at X is described by the projective unirreps of

Dz
4i belonging to the class of the factor system K(ÿ1, �1). Since the projective

unirreps of Dz
4i are described by (15.2.16) in terms of the unirreps of the

symmorphic halving subgroup D̂z
2 p � f4z, 2x}, we ®rst classify the bases öx

1 and

öx
2 by the unirreps of the subgroup Dz

2p and obtain, from (15.4.3),

öx
1 2 _Ä9 � A1

1
, öx

2 2 _Ä 0 � B2 2 D2p
xy

(15:4:9a)

using Table 15.1 and the character table of Dz
2p, Next, the reduction of D(1) with

respect to D2p yields

D(1) � B2

z
� E 2 D2p

[x, ÿy]

3 From the correspondence theorem developed in Chapter 7 we have [x, y] � [@ y, @x]xy � [@ y, @x]öÄ
ÿ,

where xy 2 B2 of C4v. Here, A � B means that `A and B belong to the same matrix representation.'
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Therefore, the direct product D(1) 3 fA1, B2g is reduced to

B2 3 A1 � B2, B2 3 B2 � A1, E 3 A1 � E, E 3 B2 � E 2 D2p

The corresponding direct product bases for D̂2 p are

A1: @ zö
x
2 � zx

2, B2: @ zö
x
1 � zx

1

2E: [@x, ÿ@ y]öx
1 � [xx

1, ÿyx
1] � øE

1

[@ y, ÿ@x]öx
2 � [yx

2, ÿxx
2] � øE

2 (15:4:9b)4

where both bases of E belong to the same unirrep based on the elementary bases

[x, ÿy]. Accordingly, from (15.2.16), the bases of the unirreps of the wave vector

group D̂z
4i compatible with the above unirreps of D̂2p are given, with the use of

(1jô)öx
2 � iöx

1 obtained from (15.4.5), by

X 1 � D(A1, B2; 1)x: [zx
2, ÿizx

1]

X 3 � D(E; ÿó x)x: [xx
1 � iyx

2, ÿyx
1 ÿ ixx

2]

X 4 � D(E; ó x)x: [xx
1 ÿ iyx

2, ÿyx
1 � ixx

2] (15:4:9c)

4. At Ë (k � 2ð[î, î, î]) 2 Ĉ
xyz
3v , the wave vector group is symmorphic and de®ned in

(14.3.6c) by the generators f3xyz, 2x yg and also Ë is an interior point of the B-zone.

Moreover, all elements of C3v leave both points r0
1 and r0

2 in their places so that,

from (15.4.3), we have _Ä9ë � _Ä 0ë � 1. Thus, from the character table of C3v, we

have

öË
1 , öË

2 2 AË
1 of Ĉ

xyz
3v

The decomposition of the 3 3 3 representation D(1) with respect to C
xyz
3v is given

by

D(1) � A1

z9

� E

[x9, y9]

where x9, y9 and z9 are the new coordinates de®ned below in (15.4.11), of which z9
is pointing diagonally with respect to the original coordinates. Thus the direct

product D(1) 3 A1 is reduced to

A1 3 A1 � A1, E 3 A1 � E 2 C3v

so that the SALCs belonging to the unirreps of Ĉ
xyz
3v are given by

2AË
1 : @ z9ö

Ë
1 � z91 � (x1 � y1 � z1)Ë=

p
3

@ z9ö
Ë
2 � z92 � (x2 � y2 � z2)Ë=

p
3

2EÄ: [@x9, @ y9]ö
Ë
1 � [x91, y91]Ë � [(x1 ÿ y1)=

p
2, (x1 � y1 ÿ 2z1)=

p
6]Ë

[@x9, @ y9]ö
Ë
2 � [z92, y92]Ë � [(x2 ÿ y2)=

p
2, (x2 � y2 ÿ 2z2)=

p
6]Ë (15:4:10)

4 [@ y, ÿ@x]xy ' [x, ÿy], where xy 2 B2 of D2p.
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where x9, y9 and z9 are de®ned by

z9 � (x� y� z)=
p

3, y9 � (x� yÿ 2z)=
p

6, x9 � (xÿ y)=
p

2 (15:4:11)

due to the fact that the principal axis of C
xyz
3v is pointing diagonally with respect to

the x, y and z coordinate axes.5 These degenerate bases are orthogonal if their

overlap integrals are neglected.

5. At L (k � 2ð[1
2
, 1

2
, 1

2
]) 2 D̂

xyz
3i , the wave vector group is de®ned by

D̂
xyz
3i � Ĉ

xyz
3v � f1jôgĈxyz

3v , C
xyz
3v � f3xyz, 2x yg

The point L is a surface point of the Brillouin zone, as shown by Figure 14.6. It is

not invariant under D3i because 1k � ÿk. However, the generators of the halving

subgroup Ĉ
xyz
3v commute with the augmentor Î � f1jô} so that the projective

representations of D3i become the vector representations belonging to the class

K(1, 1), as one can see from (12.5.9b). Thus, for fâëjbëg 2 D̂3i

Ä(2)
L (fâëjbëg) � �Ä(2)

L (âë) � _Ä(2)
L (âë), 8 âë 2 D3i (15:4:12)

which may be compared with (14.4.17b). From (15.4.5) and hr0
2 � r0

2 for all

h 2 C3v, the representation is given, with h � 1h (h 2 C3v), by

_Ä(2)
L (h 2 C3v) � 1 0

0 1

� �
, _Ä(2)

L (h) � 0 exp (3
4
ði)

exp (ÿ3
4
ði) 0

� �
which indeed forms a vector representation of D3i. Since _Ä(2)

L (h) is involutional,

unitary and Hermitian (IUH) and also anti-commutes with the Pauli spin ó z, it is

diagonalized by an involutional transformation, from Lemma 2.1.1,

Y _Ä(2)
L (h)Y � 1 0

0 1

� �
, Y _Ä(2)

L (h)Y � 1 0

0 ÿ1

� �
with Y � 2ÿ1=2[ _Ä(2)(h)� ó z]. Thus, the representation is reduced to two one-

dimensional representations de®ned by

_Ä(�)
L (h) � 1, _Ä(�)

L (h) � �1; 8 h 2 C2v

These are characterized by the unirreps of D3i as follows:

_Ä(�)
l 2 AL

1g, _Ä(ÿ)
L 2 AL

2u

via the character table. The corresponding bases are determined by

[ök
1 , ök

2 ]Y � [øL
�, øL

ÿ]

where

øL
� � öL

1 � röL
2 2 AL

1g of D̂z9
3i; 1, z92

øL
ÿ � rÿ1öL

1 ÿ öL
2 � öL

1 ÿ röL
2 2 AL

2u of D̂z9
3i; z9

Here r � exp (ÿ3ði=4) and z9 has been de®ned in (15.4.11). The same result could

have been obtained by the projection operator method using (15.1.9a).

5 Note that k9 � (i � j � k)=
p

3, j9 � (i � j ÿ 2k)=
p

6 and i9 � (i ÿ j)=
p

2. Thus e.g. z9 � r . k9 �
r . (i � j � k)=

p
3 � (x� y� z)=

p
3.
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Now the reduction of the 3 3 3 representation D(1) is given by

D(1) � A2u

z9

� Eu 2 Dz9
3i

[x9, y9]

Then, the direct products D(1) 3 _Ä(�)
L are reduced to

A2u 3 AL
1g � AL

2u, A2u 3 AL
2u � AL

1g, Eu 3 AL
1g � EL

u , Eu 3 AL
2u � EL

g

so that their bases give the following symmetry coordinates of vibration belonging

to D̂z9
3i at L:

AL
1g: @ z9ø

L
ÿ � (z91 ÿ rz92)L (r � exp (ÿ3ði=4))

AL
2u: @ z9ø

L
� � (z91 � rz91)L

EL
g : [@ y9, ÿ@x9]ø

L
ÿ � [y91 ÿ ry92, ÿx91 � rx92]L

EL
u : [@x9, @ y9]ø

L
� � [x91 � rx92, y91 � ry92]L

where x9, y9 and z9 are de®ned by (15.4.11), and [y9, ÿx9] z9 2 Eg of D3i.

6. Finally, we consider Ó (k � 2ð[î, î, 0]) and K (k � 2ð[3
4
, 3

4
, 0]) 2 Ĉ

xy
2v, C

xy
2v �

f2xy, 2zg from (14.3.6c). In view of (15.4.1a) and Table 15.1, the elements of

Ĉ
xy
2v=T are

fej0g, f2x yj0g, f2xyjôg, f2zjôg; ô � (1
4
, 1

4
, 1

4
)

Since the point group C2v is isomorphic to the proper point group D2, the projective

unirreps of C2v are p-equivalent to the vector unirreps of C2v (Theorem 12.5.1).

Moreover, both points Ë and K are invariant with respect to the point group C
xy
2v so

that the unirreps are described by the vector unirreps _Ä(�)
k given by (15.4.6b), i.e.

through the correspondence 2z9 $ f2xyjôg, 2 y9 $ f2zjôg, we have

ök
� 2 _Ä(�)

k � Ak
1 of Ĉ2v; 1

ök
ÿ 2 _Ä(ÿ) � Bk

2 of Ĉ2v; y9

using the character table of C2v. Here k stands for Ó or K. The reduction of D(1) for

Cz9
2v is given by

D(1) � A1

z9
� B1

x9
� B2

y9

where

x9 � (xÿ y)=
p

2, y9 � z, z9 � (x� y)=
p

2 (15:4:13a)

Thus, from the unirreps contained in the direct products D(1) 3 _Ä(�)
k for C2v

A1 3 Ak
1 � Ak

1 , A1 3 Bk
2 � Bk

2

B1 3 Ak
1 � Bk

1 , B1 3 Bk
2 � Ak

2

B2 3 Ak
1 � Bk

2 , B2 3 Bk
2 � Ak

1 (15:4:13b)

we obtain the following symmetry coordinates of vibration at Ó or K:
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2Ak
1 : @ z9ö� � (z91 � z92)k � (x1 � y1 � x2 � y2)k=

p
2

@ y9öÿ � (y91 ÿ y92)k � (z1 ÿ z2)k

Ak
2 : @x9öÿ � (x91 ÿ x92)k � (x1 ÿ y1 ÿ x2 � y2)k=

p
2

Bk
1 : @x9ö� � (x91 � x92)k � (x1 ÿ y1 � x2 ÿ y2)k=

p
2

2Bk
2 : @ y9ö� � (y91 � y92)k � (z1 � z2)k

@ z9öÿ � (z91 ÿ z92)k � (x1 � y1 ÿ x2 ÿ y2)k=
p

2

where k stands for Ó and K.

Concluding remarks. In this chapter, it has been demonstrated through examples that

the energy band eigenfunctions for the electron in a crystal and also the vibrational

coordinates of a crystal can be calculated with ease, by using the correspondence

theorem on the SALCs developed in Chapter 7 and the projective representations of

the point groups given in Table 12.4.
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16

Time reversal, anti-unitary point groups and their

co-representations

16.1 Time-reversal symmetry, classical

16.1.1 General introduction

We shall begin with the time-reversal symmetry of Newton's equation of motion for a

point mass in a conservative ®eld of force. For simplicity, we consider one-dimensional

motion because the dimensionality of the space is irrelevant to the discussion. For a

particle with unit mass in a force ®eld f (x), the equation of motion is given by

d2x

dt2
� f (x) (16:1:1a)

where x is the position coordinate and t is the time. Since the equation is described by

the second-order derivative of x with respect to time, it is invariant under time reversal

t! ô � ÿt

d2x=dô2 � f (x) (16:1:1b)

Therefore, if x(t) � x(x0, v0; t) is a possible solution of the equation of motion, where

x0 and v0 are the initial position and velocity, respectively, then the time-reversed

motion de®ned by

xô(t) � x(x0, v0; ÿt) � x(ÿt) (16:1:1c)

is also a solution of the equation of motion. Thus, if x(t) describes the forward motion,

then xô(t) � x(ÿt) describes the corresponding reverse motion, as time t proceeds in

the positive direction (see Example 1).

Let the velocity of the forward motion be

v(t) � dx(t)=dt � v(x0, v0; t)

then the velocity of the reverse motion is given, via direct differentiation of (16.1.1c)

with respect to t, by

vô(t) � dxô(t)=dt � ÿv(x0, v0; ÿt) � ÿv(ÿt)

In particular, at t � 0 we have

xô(0) � x(0), vô(0) � ÿv(0) (16:1:2)

which de®ne the initial condition for the reverse motion. Since the initial condition

determines the solution of the equation of motion completely, the reverse motion is

expressed in the following two ways:

xô(t) � x(x0, v0; ÿt) � x(x0, ÿv0; t) (16:1:3a)

Accordingly, the velocity of the reverse motion is also expressed in the following two

ways:



vô(t) � ÿv(x0, v0; ÿt) � v(x0, ÿv0; t) (16:1:3b)

See (16.1.5b) for the formal proof.

Example 1. The motion of a falling body with unit mass in the gravitational ®eld

f (x) � ÿg is described by Newton's equation of motion �x � ÿg, which has the

solution

x(t) � x0 � v0 t ÿ 1
2
gt2

v(t) � v0 ÿ gt

where x0 and v0 are the initial position and velocity of the body. The reverse motion is

described by

xô(t) � x(ÿt) � x0 ÿ v0 t ÿ 1
2
gt2

vô(t) � dxô=dt � ÿv0 ÿ gt

These are indeed, in accordance with (16.1.3a) and (16.1.3b), respectively.

In general, there are two kinds of physical quantities under time reversal or time

inversion: the position-like quantities and the velocity-like quantities. The position

coordinates and the kinetic energy are of the ®rst kind: the reversal of the direction of

motion has no effect on these quantities. The velocity, linear momentum and angular

momentum (and the spin in quantum mechanics) are of the second kind: these change

their signs upon reversal of the direction of motion. Those of the ®rst kind are said to

be even with respect to time reversal, whereas those of the second kind are odd with

respect to time reversal. Physical quantities that are even (odd) functions of momenta

are obviously even (odd) with respect to time reversal. Naturally, there are physical

quantities that are not of either kind. In such a case the quantity can be separated into

the even and odd parts (see (16.2.13)). For the time being we shall not be concerned

with quantities of this nature. Thus, for example, for a physical quantity Q � Q(x, p)

expressed by a function of the position x and the momentum p of a particle we assume

Qô � Q(x, ÿ p) � åQQ(x, p) (16:1:3c)

where åQ � 1 (ÿ1) if Q is even (or odd) with respect to p.

Let us discuss the temporal development of a physical quantity Q � Q(x, p), where

x and p are the conjugate pair of the position and momentum of a particle. Firstly, the

pair obeys Hamilton's equation of motion

_x � @H=@ p, _p � ÿ@H=@x

where H � H(x, p) is the Hamiltonian of the system de®ned by H � p2=2� V (x)

with the potential of the force V (x). Thus, the equation of motion of the physical

quantity Q � Q(x, p) is described by

dQ

dt
� _x

@Q

@x
� _p

@Q

@ p

� @H

@ p

@Q

@x
ÿ @H

@x

@Q

@ p
� iLQ (16:1:4)

where L(x, p) is the Liouville operator de®ned by
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iL(x, p) � @H

@ p

@

@x
ÿ @H

@x

@

@ p

Since H(x, p) is an even function of p, the Liouville operator L(x, p) is an odd

function of p. Thus the equation of motion is invariant under t! ÿt, p! ÿp, i.e.

the classical equation of motion is invariant under time reversal t! ÿt provided that

velocity-like quantities are reversed simultaneously. The content of this statement is

called the principle of dynamical reversibility.

Let x(t) and p(t) be the temporal developments of the position and momentum of

the system, respectively, then the motion of a physical quantity Q � Q(x, p) is

described by Q(t) � Q(x(t), p(t)) whereas the time-reversed motion of Qô(t) is

described by

Qô(t) � Q(xô(t), pô(t)) � Q(x(ÿt), ÿ p(ÿt)) � åQQ(x(ÿt), p(ÿt)) � åQQ(ÿt)

(16:1:5a)

where we have used (16.1.3c) for the third equality. Let fx0, p0g be the initial

condition for the forward motion, then the initial condition fxô0, pô
0g for the reverse

motion is given by

xô0 � x0, pô
0 � ÿ p0

Since the initial condition completely determines the temporal development of the

system via the equation of motion, if Q(t) � Q(x0, p0; t) then Qô(t) � Q(x0, ÿ p0; t).

Combining this with (16.1.5a) we see that the time-reversed quantity Qô(t) is described

in the following two ways:

Qô(t) � Q(x0, ÿ p0; t) � åQQ(x0, p0; ÿt) (16:1:5b)1

It is stressed here again that the only difference between Q(t) and Qô(t) occurs in their

initial conditions.

16.1.2 The time correlation function

Let Q(t) be the ensemble average of Q(t) de®ned by

Q(t) �
�
r(x0, p0)Q(x0, p0; t) dx0 d p0

where r(x0, p0) is the ensemble density over the phase space. If p0 and ÿ p0 are

equally probable in the ensemble, i.e. r(x0, ÿp0) � r(x0, p0), then we have

Q(t) �
�
r(x0, p0)Q(t0, ÿ p0, t) dx0 d p0 � åQQ(ÿt)

1 The formal proof of this basic relation based on the Liouville equation of motion is as follows: From the
formal solution of (16.1.4)

Q(t) � exp [iL(x0, p0)t] Q(x0, p0)

we have

Qô(t) � Q(x0, ÿ p0; t) � exp [iL(x0, ÿ p0)t]Q(x0, ÿp0)

� exp [ÿiL(x0, p0)t] åQQ(x0, p0) � åQQ(x0, p0; ÿt)

where in the third equality we have used the fact that L(x, p) is an odd function of p and also that
Q(x0, ÿp0) � åQQ(x0, p0).
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with use of (16.1.5b) in the second equality. Accordingly, we have the time-reversal

symmetry

Q(t) � åQQ(ÿt) (16:1:6a)

i.e. the ensemble average is either even or odd with respect to time. Let us apply this

relation to the time correlation function Q(t) � A(t)B(0) for the correlation between

two physical quantities A and B. Then, from (16.1.6a) with åQ � åAåB, we have

A(t)B(0) � åAåB A(ÿt)B(0) (16:1:6b)

where åQ � åAåB comes in because the even±oddness of Q depends on those of A and

B. This relation (16.1.6b) plays the crucial role in deriving Onsager's reciprocal

relations (Onsager 1931) for transport coef®cients.

In particular, when t! 0, from (16.1.6a)

Q(�0) � åQQ(ÿ0)

Thus, if Q is position-like (åQ � 1), the two averages converge to the same limit,

whereas when Q is velocity-like (åQ � ÿ1) the two averages differ in their signs (see

Figure 16.1 for v(t) and v(t)ô).

16.1.3 Onsager's reciprocity relation for transport coef®cients

For example, the ¯ow J � (J1, J2, J3) of electricity in a metal under an electric ®eld

E � (E1, E2, E3) is described by

J i �
X3

j�1

ó ij E j; i � 1, 2, 3

where ó ij is called the electric conductivity tensor. It has been ®rmly established by

experiments that the conductivity tensor is symmetric:

ó ij � ó ji; i, j � 1, 2, 3

even if the metal is completely asymmetric. This is a typical example of Onsager's

reciprocity relation (Onsager 1931) for transport coef®cients originating from the

time-reversal symmetry. In the following we shall prove the reciprocity relation for

transport coef®cients in general.

xτ(t )
x(t )

X

x0

t

vτ(t )

v0

t

v (t )

2v0

{
}

Figure 16.1. The forward and reverse motion of a falling body with x0 . 0,

v0 . 0.
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Consider a small subsystem surrounded by a large bath in equilibrium. Let

(a1, a2, . . . , an) be the deviations from the equilibrium state variables of the subsys-

tem (like the energy, the volume and the number of molecules of each species), then

the deviation of the entropy S of the subsystem from the maximum equilibrium value

is given by

ÄS � ÄS(a1, a2, . . .) � 1

2

X
i, j

@2S

@ai @aj

aiaj

� ÿ 1

2

X
ij

gijaiaj < 0, gij � gji (16:1:7)

According to the statistical mechanical principle, the probability distribution of the

¯uctuations (a1, a2, . . . , an) is described by

P / expÄS � exp ÿ 1

2

X
ij

gijaiaj

 !
The driving force for the ith ¯uctuation is de®ned by

Xi � @ÄS=@ai � ÿ
X

j

gijaj (16:1:8)

We shall ®rst establish that the force Xi and the ¯uctuation aj are not correlated unless

i � j, i.e.

aixj � ÿäij � ÿ1, if i � j

0, only if i 6� j

�
(16:1:9)

where the correlation ai X j is de®ned by

ai X j �
�

ai

@ÄS

@aj

P dô

Here dô � da1 da2 . . . dan. The proof is trivial, from ÄS � ln P� constant, we have

aj X j �
�

ai

@ln P

@aj

P dô

�
�

ai @P=@aj dô

� ai P

����
�1

ÿ1

ÿäij

�
P dô � ÿäij

which is the required proof.

Next consider the ¯ow2 of the ith variable ai de®ned by the time derivative _ai. Since

it must be a function of the ¯uctuations (a1, a2, . . . , an), it must also be a function of

the forces (X 1, X2, . . . , X n), through (16.1.8),

_ai � _ai(a1, a2, . . . , an) � _ai(X 1, X 2, . . . , X n)

2 For example, let Q �Piei ri be the electric moment of the subsystem, where ei and ri are the electric
charge and position of the ith particle. Then the electric ¯ow is de®ned by _Q �Pi ei _ri.
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In the region of the linear approximation we have

_ai �
X

j

Lij X j (16:1:10)

Following Onsager we shall show that the following reciprocity relation holds:

Lij � Lji (16:1:11)

Proof. Firstly, Lij is expressed by the correlation

_aiak �
X

j

Lij X jak � ÿLik (16:1:12)

where use of (16.1.9) for the second equality has been made. Now, from the time-

reversal symmetry (16.1.6b) we have

ai(t)ak(0) � ai(ÿt)ak(0) � ai(0)ak(t) � ak(t)ai(0)

where we have assumed that the state variables ai are all even with respect to time

reversal and commute with each other, being classical quantities. By differentiation

of the above relation with respect to time t we have

_ai(t)ak � _ak(t)ai(0)

Now, on letting t! 0, we obtain

_aiak � _ak ai

i.e.

Lik � Lki (16:1:13)

which are Onsager's reciprocity relations. Q.E.D.

16.2 Time-reversal symmetry, quantum mechanical

16.2.1 General introduction

Analogously to classical mechanics, the principle of the dynamical reversibility holds

also for quantum mechanics. Consider an isolated conservative system, the Hamilto-

nian of which is independent of time. We shall base the argument on the coordinate

representation of quantum mechanical quantities because the time reversal has no

effect on the position variables. Let Ø(x, t) be the wave function which represents a

state of the system at time t. Then, it satis®es the SchroÈdinger equation

i
@

@ t
Ø(x, t) � HØ(x, t) (16:2:1a)

This equation is not invariant under time reversal t! ÿt alone, being a ®rst-

order differential equation in time. First, we consider the simple SchroÈdinger

theory which does not involve the spin. Then the Hamiltonian H is real3 so

3 In general, the Hamiltonian which involves the spin is not real. For example, spin±orbit coupling in an
atom is given by

H9so � CS . L, C � a real constant (16:2:1c)

where S and L are the spin and orbital angular momentum operators of the atom, respectively.
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that the equation becomes invariant under t! ÿt together with complex con-

jugation:

i
@

@ t
Ø�(x, ÿt) � HØ�(x, ÿt) (16:2:1b)

Thus if Ø(x, t) is a possible solution of the SchroÈdinger equation, then the `time-

reversed state' de®ned by Øô(x, t) � Ø�(x, ÿt) also provides a possible solution of

the SchroÈdinger equation; in fact, both solutions exhibit the same temporal develop-

ment, given by

Ø(x, t) � eÿiH tø(x), Øô(x, t) � Ø�(x, ÿt) � eÿiH tø�(x) (16:2:2a)

the only difference being in their initial states Ø(x, 0) � ø(x) and Øô(x, 0) � ø�(x),

analogously to classical mechanics.

To see the meaning of complex conjugations, consider a special case of the

momentum eigenfunction ø(x) � eikx belonging to the momentum eigenvalue "k.

Then ø�(x) � eÿikx describes the state with the reverse momentum ÿ"k. In general, a

state function ø(x) is formed by a superposition of momentum eigenfunctions, such

that

ø(x) �
�

a(k)eikxdk, øô(x) � ø(x)� �
�

a(k)�eÿikxdk

where complex conjugation of ø(x) reverses all momentum states in ø(x). Moreover,

the probability density W ô(x, t) described by Øô(x, t) at a time t equals the probability

density W (x, ÿt) described by Ø�(x, ÿt) at the earlier time ÿt:

W ô(x, t) � Øô�(x, t)Øô(x, t) � Ø(x, ÿt)Ø�(x, ÿt) � W (x, ÿt)

Therefore, we may conclude that the time-reversed state of Ø(x, t) is described by

Øô(x, t) � Ø�(x, ÿt) at least in the simple SchroÈdinger theory which does not

involve the spin. In particular, at the instant of time reversal, t � 0, we have

øô(x) � ø�(x) (16:2:2b)

To arrive at the dynamical reversibility in quantum mechanics which involves the

spin we again classify the physical quantities into the position-like and velocity-like

quantities analogous to the classical counterparts, if they exist. The position coordi-

nates x and the Hamiltonian H are of the ®rst kind whereas linear and angular

momenta including the spins are of the second kind. Following Wigner (1962), let us

introduce the time-reversal operator è which brings a physical quantity A to its time-

reversed operator Aô such that

Aô � èAèÿ1 � åA A (16:2:3)

where åA � 1 if A is position-like and åA � ÿ1 if A is velocity-like. Since any

quantum mechanical observable is a function of positional coordinates, linear momen-

ta and the spins, it is necessary and suf®cient to determine è by the following three

requirements:

èrèÿ1 � r, è p̂èÿ1 � ÿ p̂, èsèÿ1 � ÿs (16:2:4)

where r � (x, y, z) and p̂ � (ÿi @=@x, ÿi @=@ y, ÿi @=@z) are the position and the
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momentum of a particle, respectively, and s � (1
2
ó x, 1

2
ó y, 1

2
ó z) is the spin vector de®ned

by the Pauli matrices

óx � 0 1

1 0

� �
, óy � 0 ÿi

i 0

� �
, ó z � 1 0

0 ÿ1

� �
Firstly, the ®rst two requirements in (16.2.4) are satis®ed by

è � K0

where K0 is the complex conjugation operator. This operator is satisfactory for the

simple SchroÈdinger theory which does not involve spin. However, è � K0 does not

satisfy the third condition, because ó x and ó z are real but ó y is imaginary so that

s�x � sx, s�y � ÿs y, s�z � sz

Hence the Hamiltonian which involves the spin need not be invariant under complex

conjugation (see for example H9so de®ned by (16.2.1c)). To satisfy all three conditions

we may, following Wigner (1962), set

è � K0U (16:2:5a)

where U is a non-singular unitary matrix, which is assumed to be independent of the

position coordinates and thus commutes with the position coordinates and momenta;

hence, it is determined by the third requirement in (16.2.4):

Uó xUÿ1 � ÿó x, Uó yUÿ1 � ó y, Uó zUÿ1 � ÿó z

The simplest solution for U which anticommutes with ó x and ó z and commutes with

óy is given by

U � ÿió y � 0 ÿ1

1 0

� �
where the phase factor ÿi is introduced for convenience to make U real so that it

commutes with K0. The matrix U is real and unitary. The ®nal expression for the time-

reversal operator è which satis®es all three requirements in (16.2.4) is given by

è � ÿió y K0 (16:2:5b)

So far, we have discussed a one-electron system. For a system of n electrons, è may

be de®ned by the direct product

è � UK0; U � (ÿió y)1(ÿióy)2 . . . (ÿióy)n (16:2:5c)

For simplicity we shall con®ne the discussion to the one-electron problem, the exten-

sion to many-electron problems being straightforward.

In general, the Hamiltonian H of an isolated conservative system is expressed by

the position coordinates, momenta and spins, and it is even with respect to time

reversal such that

H(x, ÿ p̂x, ÿsx, . . .) � H(x, p̂x, sx, . . .)

Accordingly,

èHèÿ1 � H or èH � Hè (16:2:6a)

If this is the case, the SchroÈdinger equation (16.2.1a) is invariant under time reversal

t! ÿt followed by the application of the operator è � ÿió y K0:
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i
@

@ t
èØ(x, ÿt) � HèØ(x, ÿt) (16:2:6b)

Thus we may de®ne the time-reversed state of Ø(x, t) by

Øô(x, t) � èØ(x, ÿt) � eÿiH tèø(x)

where ø(x) � Ø(x, 0). At t � 0, the time-reversed state is given by

Øô(x, 0) � èø(x) � øô(x) (16:2:7)

If føng is a complete set of the energy eigenfunctions, then so is the set fèøng, i.e. if

Høn � Enøn then H(èøn) � En(èøn) for any energy eigenstate øn. Thus, the time-

reversal symmetry of the Hamiltonian doubles the degeneracy of the energy level En,

if øn and èøn are linearly independent. The doubling of the degeneracy will be

discussed extensively later on in Section 16.4.

In the simplest special case of elementary spinors î1 and î2 de®ned by

î1 � 1

0

� �
, î2 � 0

1

� �
(16:2:8a)

where î1 is the spin-up state and î2 is the spin-down state, we have

èî1 � î2, èî2 � ÿî1 (16:2:8b)

This result coincides with the phase convention ®rst introduced by Kramers and later

by Wigner and then by Condon and Shortley. The set fî1, î2 � èî1g is often called

the set of Kramers' conjugate spinors.

So far, we have shown the dynamical reversibility (16.2.6b) for a conservative

system. However, we can extend the principle further to a system that is not in a

conservative force ®eld. Suppose that the system is in a constant external magnetic

®eld H. Then (16.2.6a) should be replaced by

èH(ÿH)èÿ1 � H(H) (16:2:9)

because a magnetic ®eld H is a velocity-like quantity, its direction is reversed when

the direction of the electric current which produces the magnetic ®eld is reversed. Note

that è does not act on the ®eld H. For example, when a spin is placed in the magnetic

®eld H, the Hamiltonian H(H) contains a term

H9(H) � ÿì0s . H

where ì0s is the magnetic moment of the spin s. Obviously, the term H9(H) satis®es

(16.2.9). To see the effect of the dynamical reversibility for such a case, consider the

eigenvalue problem of H(H):

H(H)øn(H) � En(H)øn(H)

Application of è to both sides followed by H ! ÿH yields

H(H)[èøn(ÿH)] � En(ÿH)[èøn(ÿH)]

Thus, if øn(H) is an eigenfunction of H(H) belonging to an eigenvalue En(H), then

èøn(ÿH) is also an eigenfunction of H(H) belonging to an eigenvalue En9(H) of

some quantum number n9 such that

En9(H) � En(ÿH), øn9(H) � èøn(ÿH)

Accordingly, the time-reversal operator è couples two different wave functions øn9(H)
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and øn(ÿH) belonging to the same energy En9(H) � En(ÿH). Thus the time-reversal

symmetry doubles the degeneracy of the energy, if øn(H) and èøn(H) are linearly

independent.

Example. For H9(H) � ÿì0sz H, we have

H9(H)î1 � ÿ1
2
ì0 Hî1 � E1(H)î1, H9(H)î2 � �1

2
ì0 Hî2 � E2(H)î2

where

E2(H) � 1
2
ì0 H � E1(ÿH), î2 � èî1

16.2.2 The properties of the time-reversal operator è

(i) If we apply the time-reversal operator è twice on any operator A, then the

operator must return to the original operator, i.e. è2 Aèÿ2 � A. Thus è2 must

commute with any operator and hence must be a constant; in fact, it equals `2ð
rotation e9 belonging to SU (2)':

è2 � e9 2 SU (2) (16:2:10)

This is so because K2
0 � 1 and ÿió y is an element of SU (2) that is interpreted as

the spinor representation of the two-fold rotation 2y about the y-axis. Note that

the 2ð rotation e9 has the eigenvalue 1 for an integral representation and has the

eigenvalue ÿ1 for a half-integral representation of the group SU (2).

(ii) When è acts on a linear combination of two wave functions (or spinors) ø and j,

we have

è(aø� bj) � a�èø� b�èj (16:2:11)

where a� and b� are the complex conjugates of the constant coef®cients. An

operator of this kind is said to be antilinear. It is also anti-unitary in the sense

that

hø, ji � hèø, èji� (16:2:12)

where hø, ji is a scalar product of two wave vectors. This follows from

hø, ji � hK0ø, K0ji� � hUK0ø, UK0ji�

U being a unitary operator. From (16.2.12) we may state that the time-reversal

operator è leaves invariant the probability of transition between any two states ø
and j

jhø, jij � jhèø, èjij
Hereafter, (16.2.12) may be referred to as the time-reversal symmetry of a scalar

product.

(iii) When an operator V is neither even nor odd we can separate V into even and odd

parts. To see this, let us introduce an operator O de®ned by

V ô � èVèÿ1 � OV

then O is an antilinear operator but is involutional, satisfying O2V � V . As a

result, its eigenvalues are �1 and ÿ1,
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OV� � V�, OVÿ � ÿVÿ

with the eigenvectors V� � 1
2
(1� O)V projected out from V. Since V �

V� � Vÿ, any operator can be separated into even and odd parts under time

reversal. Hereafter, every operator is assumed to be either even or odd under è
such that

V ô � èVèÿ1 � åvV , åv � �1 (16:2:13)

in accordance with (16.2.3). Thus the time-reversal symmetry of the Heisenberg

operator V (t) � exp (iHt)V exp (ÿiHt) is described by

V ô(t) � èV (t)èÿ1 � exp (ÿiHt)èVèÿ1 exp (iHt)

� åV V (ÿt) (16:2:14)

which corresponds to the classical result (16.1.5a).

16.2.3 The time-reversal symmetry of matrix elements of a physical quantity

Let us de®ne a matrix element of an operator V relative to two wave functions (or

spinors) by

V12 � hø1, Vø2i �
�
ø�1 Vø2 dô

Then, from (16.2.12) and (16.2.13), there follows the time-reversal symmetry

V12 � hèø1, èVèÿ1èø2i� � åV høô
1, Vøô

2i�

� åV høô
2, V yøô

1i (16:2:15)

where V y is the Hermitian conjugate of V. This relation imposes a condition on the

selection rule of the matrix element of the operator V (cf. Section 17.8). For example,

when ø2 � èø1 � øô
1 we have øô

2 � e9ø1 so that, for a Hermitian operator V,

V12 � åV e9hø1, Vø2i � åV e9V12

Accordingly,

V12 � 0 if åV e9 � ÿ1

Thus, for an even operator V, the matrix element between Kramers conjugate spinors

(î1, èî1) vanishes, whereas for an odd operator V, the matrix element between a

complex conjugate pair (ø, ø�) of wave functions vanishes in the simple SchroÈdinger

theory which does not involve the spin. The selection rule under time-reversal

symmetry will be discussed using (16.2.15) in Section 17.8.

In the special case in which ø1 � ø2 � ø, from Equation (16.2.14) the time-

reversal symmetry of the expectation value of the Heisenberg operator V (t) is

described by

hø, V (t)øi � høô, V ô(t)øôi� � åV høô, V (ÿt)øôi (16:2:16)

where V is assumed Hermitian. Let us apply this result for the canonical ensemble

average of the operator V (t)
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hhV (t)ii � tr r(H) V (t)

�
X

n

r(En)høn, V (t)øni

where føng is the complete set of the energy eigenfunctions and the canonical

distribution is described by

r(En) � exp (ÿâEn)

�X
n9

exp (ÿâEn9)

From (16.2.16) we have

høn, V (t)øni � åV høô
n, V (ÿt)øô

ni
Since føô

ng forms a complete set of energy eigenfunctions, we have the time-reversal

symmetry

hhV (t)ii � åV hhV (ÿt)ii (16:2:17)

which corresponds to the classical result (16.1.6a).

Example. We shall show using the time-reversal symmetry that the electric conduc-

tance tensor óìí (ì, í � 1, 2, 3) is a symmetric tensor. Let Q be the electric moment

of a conducting medium de®ned by

Q �
X

i

ei ri

where ei and ri are the charge and the position of the ith particle in the medium. Then

the perturbation of the Hamiltonian due to the electric ®eld E(t) introduced adiabati-

cally at t � ÿ1 on the medium is given by

H1(t) � ÿQ . E(t); E(t) � E0 cos (ùt) exp (Et)

where E is an in®nitesimal positive quantity such that E(t)! 0 as t! ÿ1. Accord-

ing to the theory of linear response in statistical mechanics (Kubo 1957), the average

electric ¯ow

_Q �
X

i

ei _ri

in the ìth direction caused by the íth component of the electric ®eld is given by

J ì(t) � hh _Qì(t)ii � i

� t

ÿ1
tr r[ _Qì(t ÿ t9), Qí] Eí(t9) dt9

where [ _Qì, Qí] is the commutator. This is so, since the non-commuting part of the

commutator up to time t contributes to the ¯ow at time t. The ¯ow may be written in

the form

J ì(t) � Re óìí(ù) E0
íe

iù t; ì, í � 1, 2, 3

where ó ìí(ù) is the frequency-dependent conductance tensor de®ned by

ó ìí(ù) � i

�1
0

tr r[ _Qì(t), Qí] exp (ÿiùt) dt (16:2:18)

Now, we shall show that ó ìí(ù) is a symmetric tensor
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ó ìí(ù) � óíì(ù); í, ì � 1, 2, 3 (16:2:19)

which is a special case of Onsager's reciprocity relation of transport coef®cients

applied to electrical conduction. For this purpose, let us introduce the so-called

response function de®ned by

öìí(t) � i tr r[ _Qì(t), Qí]; ì, í � 1, 2, 3 (16:2:20)

Then the conductance tensor de®ned by (16.2.18) is expressed by the half-interval

Fourier transform of the response function

ó ìí(ù) �
�1

0

öìí(t) exp (ÿiùt) dt (16:2:21)

The properties of the response function are as follows.

(i) The response function is real, because the operator V (t)ìí � i[ _Qì(t), Qí] is

Hermitian.

(ii) It is invariant under translation in time, i.e.

öìí(t) � i tr r[ _Qì(t � t9), Qí(t9)]

which follows from the invariance of the trace under a similarity transformation

by exp (iHt9).
(iii) It is an even function of time and symmetric with respect to í and ì: because Qí

as well as i _Qì � ÿ[H, Qì] are even with respect to time reversal so that, from

(16.2.17),

öìí(t) � öìí(ÿt) � öíì(t) (16:2:22)

where the last equality follows from the translational invariance of the correlation

trr[Qì, Qí] in time, i.e. trr[ _Qì, Qí]� tr r[Qì, _Qí] � 0.

From (16.2.21) and (16.2.22) we obtain the required reciprocity relation (16.2.19) of

the conductance tensor óìí(ù).

16.3 Anti-unitary point groups

16.3.1 General discussion

For convenience, we mean by the rotation group its double group SU (2) or more

generally the direct product group SO(3, r) 3 SU (2). Let us denote it by Gs and its

improper group by Gsi, which is the direct product of Gs and the group of inversion

Ci. We may extend the improper group Gsi by augmenting it with the time-reversal

operator è � ÿió y K0 such that

Ge
si � Gsi � èGsi

This is possible because è2 � e9 2 Gs and è commutes with any element of Gsi. Since

è is anti-unitary, whereas an element of Gsi is unitary, any element contained in the

coset èGsi is anti-unitary. Hereafter the ordinary point group which is a subgroup of

Gsi may be called a unitary point group whereas a subgroup of Ge
si that contains both

unitary and anti-unitary elements is called an anti-unitary point group.

Since a product of two anti-unitary operators is unitary whereas the product of an

anti-unitary operator and a unitary operator is anti-unitary, an anti-unitary point group
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always has a halving subgroup that is unitary. Accordingly, any anti-unitary point

group is formed by augmenting a unitary point group H with an anti-unitary operator

a as follows:

H z � H � aH , a � èz (16:3:1a)

where z is an element of Gsi that is not contained in H. This notation H z for an anti-

unitary point group was ®rst introduced by Kim (1983c). According to this notation,

two groups H z and H z9 are identical if z9 2 zH because z is a coset representative of

H that is de®ned up to a multiplicative factor h 2 H. Moreover, the halving subgroup

H is an invariant subgroup of H z so that the augmentor has to satisfy the compatibility

condition

z2, zÿ1 hz 2 H ; 8 h 2 H (16:3:1b)

On account of this condition, only a very limited number (< 6) of z is allowed for a

given H, obviously up to a multiplicative factor h 2 H. As in the case of improper

point groups, the maximal set of possible z for a given H occurs when H � Cn (a

uniaxial group). We choose the following set of augmentors z for Cn together with

their representative symbols:

z � e,
e,

1,
i,

c2n,
q,

c2n,
p,

c92,
u,

c92
v

(16:3:2a)

where e is the identity operator, i � 1 is the inversion; q � c2n is the 2n-fold rotation

axis parallel to the principal axis cn and p � q is the rotation±inversion; u � c92 is a

binary rotation perpendicular to cn and v � u. Thus we arrive at six anti-unitary point

groups denoted by

Cz
n; Ce

n, Ci
n, Cq

n, C p
n , Cu

n, Cv
n (16:3:2b)

For a point group H with higher symmetry than Cn, only a subset of the maximal set

fzg given by (16.3.2a) suf®ces. Thus, for a dihedral group Dn, there exist only four

types of anti-unitary groups denoted by

De
n, Di

n, Dq
n, D p

n (16:3:3a)

Here we have excluded Du
n and Dv

n because they are expressed by

Du
n � De

n or Dq
n, Dv

n � Di
n or D p

n (16:3:3b)

The reason is as follows. Since Dn already contains a binary rotation u0 ? cn 2 Dn,

the allowed u in Du
n is given by u0 or c2nu0 on account of the compatibility condition

(16.3.1b). This explains the ®rst relation in (16.3.3b). The second relation follows

analogously, since the allowed v in Dv
n is given by u0 or c2nu0. For the tetrahedral

group T we have

T e, T i, T q, T p (16:3:3c)

where q � 4z i 2z 2 T and p � 4z. For H � O or Y we have only two anti-unitary

groups for each:

Oe, Oi; Y e, Y i (16:3:3d)

For an improper halving subgroup H � Px � P� xP, where P is a proper point

group, the augmentor x is given by 1, p � q or v � u. For this case, the allowed set of
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z for H z is even more limited because the augmentor z has an arbitrary multiplicative

element of H so that

Pz
x � Pzx

x (16:3:4a)

Accordingly, when H � Cni, for example, we have only three anti-unitary groups:

Ce
ni, C

q
ni, Cu

ni (16:3:4b)

Analogously, for H � Cnp or Cnv we have

Ce
np, Ci

np, Cu
np; Ce

nv, Ci
nv, Cq

nv, C p
nv (16:3:4c)

For H � Dni or Dnp,

De
ni, D

q
ni; De

np, Di
np (16:3:4d)

Here Du
np is excluded, for example, because

Du
np � De

np or Di
np (16:3:4e)

analogously to (16.3.3b). Finally, for H � Ti, Tp, Oi and Yi we have

T e
i , T

q
i ; T e

p, T i
p; Oe

i ; Y e
i (16:3:4f)

All anti-unitary point groups are formed in this way and presented in Table 16.1,

excluding 13 types of groups H e (called the gray groups) because H e occurs for every

point group H. The table is described by the present system of symbols, and also by

the symbols of Shubnikov et al. (1964) and the international symbols. Note that Table

16.1 classi®es all of the anti-unitary groups into 31� 13 � 44 general types.

Now we shall describe the isomorphisms between the improper and proper anti-

unitary point groups. The present system of symbols is very effective for this. Making

the one-to-one correspondences

è$ è, c2n $ c2n, c92 $ c92 (16:3:5)

where è � 1è, we obtain the following isomorphisms:

H i ' H e, H p ' H q, Hv ' H u, Pz
i ' Pz 3 Ci (16:3:6a)

Cz
np ' Cz

2n, Cz
nv ' Dz

n, Dz
np ' Dz

2n, T z
p ' Oz (16:3:6b)

where z stands for an operator compatible with the corresponding halving subgroup H.

On account of these isomorphisms, the group structures of all of the anti-unitary point

groups are described by the following three types:

Pe, Pu, Pq (16:3:7)

and their direct products with Ci. Here P is a proper point group. These isomorphisms

are described explicitly for every type of the anti-unitary groups in the ®fth column of

Table 16.1 except for the 13 types of the gray groups. Obviously, these isomorphisms

greatly reduce the labor of constructing the representations of the anti-unitary point

groups.4

4 We have excluded in (16.3.6) the possible isomorphism between an anti-unitary group H z and a unitary
group Hz � H � zH , because their `matrix representations' are different due to the antilinear nature of èz;
see Section 16.4.
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For a graphical representation of H z we may follow Shubnikov et al. (1964) and

regard the time-reversal operator è as an operator that changes color from black to

white and white to black, provided that è2 � e. Then an anti-unitary point group may

be described by the symmetry of a system consisting of white and black balls. For

Table 16.1. The anti-unitary point groups

No. H z Shubnikov International

Iso-

morphism G � Hz

1 Gi
s 1=1 . m 11m9 Ge

s Gsi

2 Ci
1 1 : m 1=m9 Ce

1 C1i

3 Cu
1 1 : 2 129 Cu

1 D1
4 Cv

1 1 . m 1m9 Cu
1 C1v

5 Cu
1i m1 : m 1=mm9 Cu

1 3 Ci D1i

6 Ci
1v m .1 : m 1=m9m De

1 D1i

7 Di
1 m .1 : m 1=m9m9 De

1 D1i

8 Ci
n 2no, ne: m n9o, ne=m9 Ce

n Cni

9 Cq
n 2n (2n)9 Cq

n C2n

10 C p
n 2ne, no (2n)9 Cq

n Cnp

11 Cu
n n : 2 ne2929, no29 Cu

n Dn

12 Cv
n n . m ne m9m9, no m9 Cu

n Cnv

13 C
q
ni 2ne : m, 2no : m (2ne)9=m, (2no)9=m9 Cq

n 3 Ci C2ni

14 Cu
ni m . ne : m, 2no

. m ne=mm9m9, no m9 Cu
n 3 Ci Dni

15 Ci
np 2ne : m, 2no : m (2ne)9=m9, (2no)9=m Ce

2n C2ni

16 Cu
np 2ne

. m, m . no : m 2ne29m9, 2no m929 Cu
2n Dnp

17 Ci
nv m . ne : m, 2no

. m ne=m9mm, no9m De
n Dni

18 Cq
nv 2n . m (2n)9m9m Dq

n C2nv

19 C p
nv 2ne

. m, m . no : m 2n9e29m, 2n9o m29 Dq
n Dnp

20 Di
n m . ne : m, 2no

. m ne=m9m9m9, no9m9 De
n Dni

21 Dq
n 2n : 2 (2n)9292 Dq

n D2n

22 D p
n 2ne

. m, m . no : m 2ne92m9, 2no9m92 Dq
n Dnp

23 D
q
ni m . 2ne : m, m . 2no : m (2ne)9=mm9m, (2no)9=m9m9m Dq

n 3 Ci D2ni

24 Di
np m . 2ne : m, m . 2no : m (2ne)9=m9m9m, (2no)9=mm9m De

2n D2ni

25 T i 6=2 m93 T e Ti

26 T q 3=4 49329 T q O

27 T p 3=4 493m9 T q Tp

28 T
q
i 6=4 m3m9 T q 3 Ci Oi

29 T i
p 6=4 m93m Oe Oi

30 Oi 6=4 m93m9 Oe Oi

31 Y i 3=10 593m9 Y e Yi

1. The gray groups H e are not listed.

2. ne(no) denotes even (odd) n; thus, equivalence of the notations means that, e.g,

Ci
no
$ 2no, Ci

ne
$ ne : m for No. 8.

3. n . 1 for Nos. 17±24.

4. G � H � zH � Hz is de®ned in (16.3.8b).
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example, such systems belonging to T i
p and D

q
2i are presented in Figure 16.2. In this

description, H z with z 6� e is called a black and white group whereas H e is called a

gray group. Table 16.1 contains a total of 31 types of black and white groups. Note

that the time-reversal operator è is an operation that reverses the direction of a

magnetic moment, because è anticommutes with the spin, as given in (16.2.4). Thus,

for example, the point symmetry of a paramagnetic crystal in the absence of an

external magnetic ®eld is described by a gray point group H e, because all spins are

randomly oriented. In general, the symmetry point group of a spin system is called a

magnetic point group. It is either a unitary point group or an anti-unitary point group

that leaves the spin system invariant. See the next section for the symmetry point

groups of ferromagnetic crystals.

Remark. Let G be a unitary point group and let H be a halving subgroup of G. Then

an anti-unitary point group formed by G is expressed in the so-called SchoÈn¯ies

notation as follows:

G(H) � H � è(G ÿ H) (16:3:8a)

This system of notation cannot express the gray groups H e. Otherwise, this notation is

equivalent to the present one. Let the left coset decomposition of G with respect to H

be

G � H � zH � Hz, z =2 H (16:3:8b)

then we arrive at G(H) � H z since G ÿ H � zH . For the sake of comparison, we

have listed G � Hz in the last column of Table 16.1. As one can see from Table 16.1,

the classi®cation of the anti-unitary point groups by the SchoÈn¯ies notation G(H) or

by the notation of Shubnikov et al. or the international notations is not quite effective

for describing their isomorphisms.

16.3.2 The classi®cation of ferromagnetics and ferroelectrics

As an application of magnetic point groups we shall discuss the point symmetries of

ferromagnetic and ferroelectric solids.

16.3.2.1 Ferromagnetic crystals

A ferromagnetic crystal is characterized by an orderly distribution of magnetic

moments (spins) of atoms or ions in the crystal in the absence of any external magnetic

Tp
i D2i

q

Figure 16.2. The graphical presentations of the anti-unitary groups T i
p and D

q
2i.
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®eld. It possesses a resultant magnetic moment that is a pseudovector (or axial vector)

belonging to the symmetry group Cu
1i: it has a cylindrical symmetry c1 about the

magnetic moment and, being a spin vector is invariant under the inversion; moreover,

it is invariant under an anti-unitary operation èu (where u is a binary rotation

perpendicular to c1) because each one of è and u inverts the direction of the spin.

Thus ferromagnetism is possible for those crystals in which the class of magnetic

symmetry is one of the subgroups of the symmetry group Cu
1i. Since Cu

1i � Cv
1i, the

subgroups of ®nite orders are

Cu
1i . Cu

ni, Cu
np, Cu

n, Cv
n, Cni, Cnp, Cn

where Cnp comes in because it is a subgroup of C2ni (� Cnp � 1Cnp). Note that the

®rst four types of the subgroups are anti-unitary whereas the last three types are

unitary. Since the allowed n-fold axes for a crystal class are with n � 1, 2, 3, 4 and 6,

we obtain Table 16.2 that contains 31 magnetic crystal classes. Note that we have only

n � 1, 2, 3 for Cnp and Cu
np for the obvious reason that p � 2n. These classes are

classi®ed by the six crystal systems in Table 16.2. Corresponding to these point

groups, there exists a total of 275 magnetic space groups that will be discussed in the

next chapter.

16.3.2.2 Ferroelectric crystals

Analogously to a ferromagnetic crystal, a ferroelectric crystal is characterized by a

spontaneous resultant electric moment that is a polar vector (i.e. an ordinary vector).

An electric moment vector belongs to an anti-unitary group Ce
1v: it is invariant under

time reversal, being a position-like quantity, and also under the vertical re¯ection plane

v which contains the symmetry axis c1 of the moment. Thus the symmetry group of a

ferroelectric crystal is one of the subgroups of Ce
1v. Since Ce

1v � Cv
1v, the required

subgroups of ®nite orders are

Ce
1v . Ce

nv, Ce
n, Cq

nv, Cq
n, Cv

n, Cnv, Cn

In Table 16.2, we have classi®ed a total of 31 ferroelectric crystal classes by the six

Table 16.2. The crystal classes for ferromagnetic and ferroelectric crystals

Crystal classes

Crystal systems Ferromagnetic , Cu
1i � Cv

1i Ferroelectric , Ce
1v � Cv

1v

Triclinic C1, Ci C1, Ce
1

Monoclinic C2, C1p, C2i, Cu
1, Cv

1, Cu
i C2, Cv, Ce

2, Ce
v, C

q
1, Cv

1

Orthorhombic Cu
2, Cv

2, Cu
1p, Cu

2i C2v, Ce
2v, C

q
1v, Cv

2

Tetragonal C4, C2 p, C4i, Cu
4, Cv

4, Cu
2p, Cu

4i C4, C4v, Ce
4, Ce

4v, C
q
2, C

q
2v, Cv

4

Rhombohedral C3, C3i, Cu
3, Cv

3, Cu
3i C3, C3v, Ce

3, Ce
3v, Cv

3

Hexagonal C6, C3p, C6i, Cu
6, Cv

6, Cu
3p, Cu

6i C6, C6v, Ce
6, Ce

6v, C
q
3, C

q
3v, Cv

6

Cu
1i . Cu

ni, Cu
up, Cu

n, Cni, Cnp, Cn

Ce
1v . Ce

nv, Ce
n, Cq

nv, Cq
n, Cv

n, Cnv, Cn
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crystal systems. Correspondingly, there exists a total of 275 anti-unitary space groups

analogous to those for the ferromagnetic crystals.

16.4 The co-representations of anti-unitary point groups

16.4.1 General discussion

Following Wigner (1962), we shall discuss the so-called co-representations of an anti-

unitary point group H z. Let ø � [ø1, ø2, . . . , ød] be a row vector basis that closes

under an anti-unitary group H z such that, under an element g of H z, it transforms

according to

8gø � øS(g), 8 g 2 H z (16:4:1)

where S(g) is a d 3 d matrix representative of the element g 2 H z. Let h be a unitary

element belonging to H and a be an anti-unitary element belonging to èzH . Then their

matrix representatives satisfy

S(ah) � S(a)S(h)� (16:4:2)

where s(h)� is the complex conjugate of S(h). This follows from (16.4.1) and the fact

that a is an anti-unitary operator:

8a8hø � 8a(øS(h)) � (8aø)S�(h) � øS(a)S�(h)

In an analogous manner we can show that

S(h1 h2) � S(h1)S(h2), S(ha) � S(h)S(a)

S(ah) � S(a)S(h)�, S(a1a2) � S(a1)S(a2)� (16:4:3)

where h1 and h2 are unitary operators belonging to H whereas a1 and a2 are anti-

unitary operators belonging to èzH . Accordingly, a matrix system S(H z) � fS(g);

8 g 2 H zg introduced by (16.4.1) is not a representation of H z in the usual sense on

account of the complex conjugate sign in (16.4.3). The matrix system S(H z) may be

called a co-representation of H z to remind one of the complex conjugate sign in

(16.4.3).

A matrix S(g) of the co-representation will be unitary if the basis vectors øi are

mutually orthonormal. This follows from the anti-unitarity of a:

haøi, aø ji � høi, øji� � äij

Accordingly, we have S(g)ÿ1 � S(g)y for all g 2 H z; hence, from (16.4.3)

S(hÿ1) � S(h)y, S(aÿ1) � [S(a)�]ÿ1 � S(a)� (16:4:4)

for all h 2 H and all a 2 èzH . In the special case in which a � è, we have èÿ1 � e9è
so that

S(è)� � S(e9)S(è) � �S(è) (16:4:5)

where S(e9) � � (ÿ) for an integral (half-integral) representation. Thus S(è) is

symmetric (antisymmetric) for an integral (half-integral) representation; for example,

see (16.5.5).
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Next, we shall discuss the unitary transformation of the co-representation. Let ø9
be a new basis that is related to the original basis ø by a unitary matrix T such

that

ø9 � øT (16:4:6)

then the new co-representation S9 based on ø9 satis®es

S(h)9 � T ÿ1S(h)T

S(a)9 � T ÿ1S(a)T� (16:4:7)

of which the ®rst one is obvious whereas the second one follows from

8aø9 � (8aø)T� � øS(a)T� � ø9Tÿ1S(a)T� � ø9S(a)9

In general, two co-representations S and S9 are called equivalent if they can be

transformed into each other by a unitary transformation as de®ned by (16.4.7). A co-

representation S(H z) is called irreducible if it cannot be brought into a reduced form

by a unitary transformation (16.4.7).

In the special case in which T (� ù1) is a constant unitary matrix, we have from

(16.4.7)

S(h)9 � S(h), S(a)9 � ù�2S(a) (16:4:8)

where Tÿ1T� � ù�2. Accordingly, two co-representations of H z are equivalent if

their S(h) are the same while their S(a) are different by a common phase factor.

16.4.2 Three types of co-unirreps

The basic theory of unitary irreducible co-representations (co-unirreps) of an anti-

unitary point group has been worked out by Wigner (1962). We shall reconstruct the

co-unirreps in a form that is more transparent and better suited for constructing the co-

unirreps of the anti-unitary space groups following the approach developed by Kim

(1983c). Since the de®ning relation of H z is given by the left coset decomposition

with respect to the halving subgroup H, the co-unirreps may be constructed by induced

representation from the unirreps of H. However, since the coset representative èz is

anti-unitary, a certain modi®cation of the ordinary theory of induced representation in

order to obtain the co-unirreps of H z is inevitable.

Let us assume that there is given a complete set of unirreps fÄ(v)(H)g for the

halving subgroup H. Let øí � [øí
1, øí

2, . . . , øí
dí

] be a basis of a dí-dimensional

unirrep Ä(í)(H). Then the basis 8aøí induced by the anti-unitary augmentor a � èz

also provides a basis of a representation of the halving subgroup H:

8h(8aøí) � 8a(aÿ1 ha)0øí � (8aøí)Ä(í)(aÿ1 ha)�, 8 h 2 H (16:4:9)

because aÿ1 ha 2 H from the compatibility condition. The matrix representation of H

thus induced must be equivalent to a member of the assumed set fÄ(í)(H)g of the

unirreps of H, say, the íth unirrep Ä(í)(H). This means that there exists a unitary

matrix N (a) such that

Ä(í)(aÿ1 ha)� � N (a)ÿ1Ä(í)(h)N (a), 8 h 2 H (16:4:10a)
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Substitution of this into (16.4.9) yields that (8aøí)N (a)ÿ1 � öí is a basis of the unirrep

Ä(í)(H), so that

8aøí � öíN (a) (16:4:10b)

Here öí need not be linearly dependent on øí even if í � í. The relation between two

unirreps Ä(í)(H) and Ä(í)(H) is reciprocal; in fact, if we repeat the above argument

again starting from öí 2 Ä(í)(H), we obtain

Ä(í)(aÿ1 ha)� � N (a)ÿ1Ä(í)(h)N (a) (16:4:11a)

8aöí � øíN (a) (16:4:11b)

Now, by applying the augmentor a once more to (16.4.10b) and (16.4.11b), we obtain

N (a)N (a)� � Ä(í)(a2), N (a)N (a)� � Ä(í)(a2) (16:4:11c)

so that N (a) � Ä(v)(a2)N (a)�, where N (a)� is the transpose of N (a).

Since the augmentor a connects two bases øí and öí of H, if they are linearly

independent, the combined basis row vector de®ned by Ø (í,í) � [øí, öí] provides a

basis of a 2dí-dimensional co-representation S(í,í) of H z given by

S(í,í)(h) �
Ä(í)(h) 0

0 Ä(í)(h)

" #

S(í,í)(a) �
0 N (a)

N (a) 0

" #
(16:4:12)

which is unitary because N (a) and N (a) as well as Ä(í)(H) and Ä(í)(H) are all unitary.

The co-representation should be compared with the induced representation D(í,í) of

the unitary group Hz given by (12.6.5). In the special case of a gray group H e, we

have a � è and Ä(í)(è2 � e9) � �1 so that N (è) � �N (è)�; hence, S(í,í)(è) given by

(16.4.12) is indeed symmetric or antisymmetric in accordance with (16.4.5).

There exist three types of co-unirreps for H z that can be obtained from the general

co-representation S(í,í)(H z) given above. It is convenient to discuss the third type

®rst.

16.4.2.1 Type c

í 6� í, i.e. Ä(í)(H) and Ä(í)(H) are inequivalent so that S(í,í)(H z) given by (16.4.12) is

irredicible5 because the augmentor a connects the bases øí and öí belonging to

inequivalent unirreps Ä(í)(H) and Ä(í)(H) of the halving subgroup H, respectively.

The dimensionality of the co-unirrep S(í,í)(H z) is 2dí.

5 The formal proof is that, since S(í,í)(H) is already in a reduced form, if S(í,í)(H z) is reducible, S(í,í)(a)
must be reduced through Tÿ1S(í,í)(a)T� with a matrix T that commutes with S(í,í)(h) for all h 2 H . From
Schur's lemma such a matrix T must be of the form

T1 0

0 T2

� �
However, a diagonal block matrix T cannot reduce the off-diagonal block matrix S(í,í)(a) because
Tÿ1S(í,í)(a)T� remains of off-diagonal block form, as one can see by direct matrix multiplication. See
Section 16.8 for the irreducibility criteria for a co-representation.

16.4 Co-representations 411



Next, when í � í we have, from (16.4.10a) and (16.4.11a),

N (a)ÿ1Ä(í)(h)N (a) � N (a)ÿ1Ä(í)(h)N (a), 8 h 2 H (16:4:13a)

and from (16.4.11c)

N (a)N (a)� � N (a)N (a)� � Ä(í)(a2) (16:4:13b)

Thus, from (16.4.13a), N (a)N (a)ÿ1 commutes with the unirrep Ä(í)(h) for all h 2 H

so that N (a)N (a)ÿ1 � ù1 is a constant unitary matrix. On substituting N (a) � ùN (a)

into (16.4.13b), we obtain ù2 � 1 and N (a)N (a)� � ùÄ(í)(a2). Thus there exist two

cases for í � í corresponding to ù � �1, i.e.

N (a) � �N (a), N (a)N (a)� � �Ä(í)(a2) (16:4:14)

where � (ÿ) sign is for type a (b), as will be de®ned below.

16.4.2.2 Type b

í � í,

N (a) � ÿN (a), N (a)N (a)� � ÿÄ(í)(a2) (16:4:15a)

The general expression S(í,í)(H z) given by (16.4.12) is simpli®ed to the following

direct product expressions, with the basis Ö(í,í) � [øí, öí]:

S(í,í)(h) �
Ä(í)(h) 0

0 Ä(í)(h)

" #
� 12 3 Ä(í)(h)

S(í,í)(a) �
0 ÿN (a)

N (a) 0

" #
� è 3 N (a)� (16:4:15b)

where we have used ÿió y � èK0. This 2dí-dimensional co-representation is also

irreducible under any similarity transformation de®ned by (16.4.7). Since S(í,í)(H) is

already reduced, it suf®ces to show that S(í,í)(a) is irreducible under the similarity

transformation by a matrix of the form T � U 3 1 where U is a 2 3 2 unitary matrix

and 1 is the dí-dimensional unit matrix. We set U � ùU0, where ù is the phase factor

and U0 is a special unitary matrix that always commutes with the time-reversal

operator è, then

Tÿ1S(í,í)(a)T� � [Uÿ1èU�] 3 N (a)� � ù�2S(í,í)(a) (16:4:16)

which proves the irreducibility, in view of (16.4.8). See Section 16.8 for a simpler

proof based on the general criteria for irreducibility of a co-representation.

16.4.2.3 Type a

í � í,

N (a) � N (a), N (a)N (a)� � Ä(í)(a2) (16:4:17a)

The general expression (16.4.12) is simpli®ed to

S(í,í)(h) � 12 3 Ä(í)(h), S(í,í)(a) � ó x 3 N (a)
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where ó x is the Pauli spin matrix in the x-direction. Since ó x is involutional, it is

reduced to ó z by an involutional matrix Y � (ó x � ó z)=
p

2 that is real too (Lemma

2.1.1). Thus, by use of a transformation matrix T � Y 3 1, the co-representation

S(í,í)(H z) is reduced to Sí� and Síÿ de®ned by

S(í�)(h) � Ä(í)(h), S(í�)(a) � �N (a) (16:4:17b)

These two co-unirreps are, however, equivalent since the only difference is in the phase

factors of S(í,�)(a). Thus either one of them provides the required co-unirrep. The

corresponding bases are given by

Ø (í�) � øí � öí, öí � (aøí)N (a)ÿ1

Let Øí � Øí�, then we have, from (16.4.17b),

hØí � ØíÄ(í)(h), aØí � ØíN (a) (16:4:17c)

That is, there exists a basis Øí of a unirrep Ä(í)(H) that also provides a basis of the

anti-unitary group H z. Conversely, if there exists such a basis, we have í � í and

N (a)N (a)� � Ä(í)(a2) so that the co-unirrep is of type a. Thus, the existence of such a

basis provides the criterion for type a.

Remark 1. The physical signi®cance of the anti-unitary operator a is as follows. Let

H � fhg be the unitary symmetry group of the Hamiltonian H of a physical system.

Then the degeneracy of an energy level Eí is given by the dimensionality dí of the

unirrep Ä(í)(H). If H is also invariant under an anti-unitary operator a, then its

degeneracy doubles for types b and c. These would have been regarded as accidental

degeneracies, had the anti-unitary symmetry a � èz not been recognized.

Remark 2. The three types of the co-unirreps given above are explicit in terms of the

unirreps Ä(í) and Ä(í) of the unitary halving subgroup H and the transformation matrix

N (a). In general, N (a) is determined from (16.4.10a) or (16.4.10b). In particular, the

latter is convenient when the bases of the unitary halving subgroup H are all known,

as in the case of the point groups discussed in Chapters 10 and 11. In the important

special case in which Ä(í)(H) is one-dimensional, we have Äí(h) � Ä(í)(aÿ1 ha)� from

(16.4.10a) because one-dimensional matrices always commute. In this case we may

take N (a) � 1. This choice simpli®es S(í,í)(a) given by (16.4.12) with N (a) �
Ä(í)(a2), and also öí � 8aøí from (16.4.10b).

Remark 3. When í � í and N (a) � 1, the criterion (16.4.14) is simpli®ed to

Ä(í)(a2) � �1 for type a

ÿ1 for type b

�
(16:4:18)

In particular, when a � è, we have Ä(í)(a2 � e9) � 1 (ÿ1) so that the co-unirrep

induced by an integral (half-integral) representation belongs to type a (b).

16.5 Construction of the co-unirreps of anti-unitary point groups

We shall now explicitly construct all the co-unirreps of each anti-unitary point group

H z by induction from the unirreps of the respective halving subgroup H using the
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general expressions given in the previous section. We introduce the following notations

for the three types of co-unirreps:

S(Ä(í), N (a)) for S(í�) of (16:4:17b) 2 type a

S(Ä(í), Ä(í); N (a)) for S(í,í) of (16:4:15b) 2 type b

S(Ä(í), Ä(í); N (a)) for S(í,í) of (16:4:12) 2 type c (16:5:1)6

On account of the isomorphism (16.3.6), it is necessary to construct only the co-

unirreps of the following 12 types of proper anti-unitary point groups, excluding Y e

for convenience:

Ge
s ; Ce

1, Cu
1; Ce

n, Cu
n, Cq

n; De
1; De

n, Dq
n; T e, T q; Oe

(16:5:2)

Now, following Kim (1983c), we shall construct their co-unirreps explicitly, begin-

ning with the gray group Ge
s .

16.5.1 Ge
s

Following the notation given in Chapter 10, the basis of the (2 j� 1)-dimensional

unirrep D( j) of Gs � SU (2) is given by a row-vector basis Ö( j) � [ö( j, j), ö( j,

jÿ 1), . . . , ö( j, ÿ j)], where

ö( j, m) � ö(î1, î2; j, m) � î j�m
1 î jÿm

2 =[( j� m)!( jÿ m)!]1=2;

m � j, jÿ 1, . . . , ÿ j (16:5:3)

for a given j (� 0, 1
2
, 1, . . .). Here, î1 and î2 are the elementary spinors. From the

transformations èî1 � î2 and èî2 � ÿî1 we have

8èö( j, m) � ö(èî1, èî2; j, m) � (ÿ1) jÿmö( j, ÿm); m � j, jÿ 1, . . . , ÿ j

(16:5:4a)7

This means that the basis Ö( j) of the unirrep D( j)(Gs) of the halving subgroup Gs

satis®es (16.4.17c) with the transformation matrix N (è) given by

N ( j)(è)nm � (ÿ1) jÿmä(n, ÿm); n, m � j, jÿ 1, . . . , ÿ j (16:5:4b)

for all j (� 0, 1
2
, 1, . . .). Thus all the co-unirreps of Ge

s are of type a and may be

expressed, following the notation (16.5.1), by

S(D( j); N ( j)(è)) (16:5:5a)

6 The use of the notation S for the induced co-unirreps for H z here is to avoid the confusion with the
notation D for the induced unirreps of the unitary group Hz introduced in (12.6.5) and (12.6.10a),

D(í,í) � D(Ã (í), Ã (í); N ), D(í�) � D(Ã (v); �N )

Here D(í,í) has a similar structure to that of S(í,í) except for N (z) in the place of N (a)� in S(í,í), and D(í,í)

is always reduced to two inequivalent unirreps D(í�) and D(íÿ) (see Equation 12.6.6)), whereas S(í,í)

cannot be reduced.
7 In the SchoÈdinger theory which does not involve spins, (16.5.4a) is equivalent to the well-known property

of spherical harmonics Y (l, m),

Y (l, m)� � (ÿ1) lÿmY (l, ÿm)
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The explicit form of N ( j)(è) is given, from (16.5.4b), by

N ( j)(è) �
0 . . . 0 1

0 . . . ÿ1 0

..

. ..
. ..

.

�1 . . . 0 0

2664
3775 (16:5:5b)

where the anti-diagonal elements alternate between �1 and ÿ1. This was ®rst obtained

by Wigner. The matrix is symmetric if j is an integer and antisymmetric if j is half

integer. This is consistent with (16.4.5).

Since è commutes with any element of Gs, we have, from (16.4.10a) with í � í and

identifying Ä(í)(H) with D( j)(Gs),

D( j)(h)� � N (è)ÿ1 D( j)(h)N (è), 8 h 2 Gs

i.e. the complex conjugate representation D(j)(Gs)
� is equivalent to the representation

D( j)(Gs). Their matrix elements satisfy, via (16.5.4b),

D( j)(h)�m9m � (ÿ1)mÿm9 D( j)(h)ÿm9,ÿm (16:5:5c)

which is consistent with the previous result (10.4.16c).

16.5.2 Ce
n, Cq

n and Cu
n

As was given by (11.3.3b), there exist 2n one-dimensional representations fMmg for

Cn:

Mm(ck
n) � exp [ÿ2ðimk=n]; k � 0, 1, . . . , nÿ 1 (16:5:6a)

where m is an integer or half integer limited by ÿn=2 , m < n=2 because Mm �
Mm�n. The basis of Mm is ö( j, m) given by (16.5.3). Since Mm is one-dimensional,

one may take N (è) � 1.

For Ce
n, we observe that a � è transforms the basis ö( j, m) of Mm into the basis

(ÿ1) jÿmö( j, ÿm) 2 Mÿm, as shown in (16.5.4a). When m 6� 0 or n=2, we have

Mm 6� Mÿm so that the co-unirreps of Ce
n are of type c, given by

S(Mm, Mÿm; 1); m � 1
2
, 1, . . . , 1

2
(nÿ 1) (16:5:6b)

When m � 0 or n=2, on the other hand, the two bases ö( j, m) and ö( j, ÿm) belong to

the same unirrep Mm of Cn so that the corresponding co-unirreps must belong to type

a or b. We set N (è) � 1, the representations Mm(Cn) being one-dimensional, then the

types are determined by the criteria (16.4.18). Now, since Mm(e9) � (ÿ1)2m from

(16.5.6a) with k � n, we have

S(M0; 1), S(Mn=2; 1)n�even, S(Mn=2, Mn=2; 1)n�odd (16:5:6c)

following the notation introduced in (16.5.1). These results, (16.5.6b) and (16.5.6c),

are presented in Table 16.3.

For Cq
n, we set q � c2n � exp fÿi[ð=(2n)]ó zg 2 SU (2), then, using ó zî1 � î1 and

ó zî2 � ÿî2, we obtain

[èc2n]�ö( j, m) � (ÿ1) jÿm exp (ÿiðm=n)ö( j, ÿm) (16:5:7a)

Thus we obtain S(Mm, Mÿm, 1) since Mm 6� Mÿm except for m � 0, n=2. From
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Table 16.3. The co-unirreps of anti-unitary point groups

1. C1: M0, M�m; m � 1
2
, 1, . . . , 1

Ce
1: S(M0, 1), S(Mm, Mÿm; 1)

Cu
1: S(M0; 1), S(M�m; 1)

2. Cn: M0, Mn=2, M�m; m � 1
2
, 1, . . . , 1

2
(nÿ 1); Mm � Mm�n

Ce
n: S(M0; 1), S(Mn=2; 1)n�even, S(Mn=2, Mn=2; 1)n�odd, S(Mm, Mÿm; 1)

Cu
n: S(M0; 1), S(Mn=2; 1), S(M�m; 1)

Cq
n: S(M0; 1), S(Mn=2, Mn=2; 1)n�even, S(Mn=2; 1)n�odd, S(Mm, Mÿm; 1)

3. D1: A1, A2, Em; m � 1
2
, 1, . . . , 1

De
1: S(A1; 1), D(A2; 1), S(Em; Ym)

4. Dn: A1, A2, B1, B2, Em; m � 1
2
, 1, . . . , 1

2
(nÿ 1)

De
n: S(A1; 1), S(A2; 1), S(B1; 1)n�even, S(B2; 1)n�even, S(B1, B2; 1)n�odd,

S(Em; Ym)

Dq
n: S(A1; 1), S(A2; 1), S(B1, B2; 1)n�even, S(B1; 1)n�odd, S(B2; 1)n�odd,

S(Em; Z(n)
m )

5. T : A, A9, A 0, T , E1=2, E91=2 � A9 3 E1=2, E 01=2 � A 0 3 E1=2

T e: S(A; 1), S(A9, A 0; 1), S(T ; 13), S(E1=2; óy), S(E91=2, E 01=2; ó y)

T q: S(A, 1), S(A9, 1), S(A 0, 1), S(T ; i4z i), S(E1=2; Z), S(E91=2; Z), S(E 01=2; Z)

6. O: A1, A2, E, T1, T2, E1=2, E91=2 � A2 3 E1=2, Q � E 3 E1=2

Oe: S(A1; 1), S(A2; 1), S(E; 12), S(T1; 13), S(T2; 13), S(E1=2; ó y), S(E91=2; ó y),

S(Q; 12 3 ó y)

1. All unirreps of the proper point groups given in 1±6 are de®ned in Chapter 11.

2. The transformation matrices Ym and Z(n)
m are de®ned by (16.5.11a) and (16.5.11b),

respectively:

Ym � 12, for an integral m

ó y, for a half -integral m

�
Z(n)

m � Ym
cos (ðm=n) ÿsin (ðm=n)

sin (ðm=n) cos (ðm=n)

� �
3. The transformation matrix i4z i is the representation of 4z based on [x, y, z] or

[i, j, k] and Z is de®ned by (16.5.11b):

i4z i � [ j, ÿi, k] �
0 ÿ1 0

1 0 0

0 0 1

24 35, Z � Z
(2)

1=2
� i2ÿ1=2 ÿ1 ÿ1

1 ÿ1

� �
4. All co-unirreps of Ge

s, Cu
1, Cu

n, De
1, T q and Oe belong to type a.

5. There exist only two co-unirreps belonging to type b: S(Mn=2, Mn=2; 1)n�odd of Ce
n

and S(Mn=2, Mn=2; 1)n�even of Cq
n .
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Mm[(èc2n)2] � (ÿ1)2m exp (ÿi2ðm=n), which equals 1 for m � 0 and (ÿ1)n�1 for

m � n=2, we obtain via the criteria (16.4.18)

S(M0; 1), S(Mn=2, Mn=2; 1)n�even, S(Mn=2; 1)n�odd (16:5:7b)

as given in Table 16.3.

For Cu
n, we may take u parallel to the x-axis, then u � c92 � ÿió x and èc92 �

óyó x K0 � ÿió z K0 so that

[èc92]�ö( j, m) � iÿ2mö( j, m) (16:5:8)

This means that every basis ö( j, m) of Cn provides a basis of Cu
n. Thus, from

(16.4.17c), all co-unirreps of Cu
n belong to type a as given in Table 16.3.

By extending the above results for Ce
n and Cu

n to Ce
1 and Cu

1 by putting n!1,

we obtain

Ce
1: S(M0, 1), S(M m, Mÿm; 1)

Cu
1: S(M0; 1), S(M�m; 1)

as given in Table 16.3.

16.5.3 De
n and Dq

n

As was given in Table 11.5, there exist four one-dimensional unirreps A1, A2, B1 and

B2 and nÿ 1 two-dimensional unirreps Em, m � 1
2
, 1, . . . , 1

2
(nÿ 1), for Dn. For

convenience we shall rede®ne the spinor bases ö�( j, m) of Dn introduced in Table

11.5 with an extra common phase factor i j�m (which does not affect the unirreps of

Dn) as follows:

ö�( j, m) � 2ÿ1=2[ö( j, m)� ö( j, ÿm)]i j�m

öÿ( j, m) � 2ÿ1=2[ö( j, m)ÿ ö( j, ÿm)]i j�mÿ1 (16:5:9a)

Under the time reversal è, these transform according to

8èö�( j, m) � ö�( j, m) for an integral m

�iö�( j, m) for a half -integral m

�
(16:5:9b)

The extra factor i j�m was introduced in (16.5.9a) to eliminate an extra phase factor

(ÿ1) j�m that would appear in (16.5.9b) otherwise.

Now, we shall ®rst show that the bases of two-dimensional unirreps Em of Dn

de®ned by

Ö( j, m) � [ö�( j, m), öÿ( j, m)]; m � 1
2
, 1, . . . , 1

2
(nÿ 1) (16:5:10)

also provide the bases of De
n and Dq

n; hence they induce the type a co-unirreps

according to (16.4.17c). Firstly, under è 2 De
n, the basis transforms according to, from

(16.5.9b),

8èÖ( j, m) � Ö( j, m)Ym; Ym � 12 for an integral m

óy for a half -integral m

�
(16:5:11a)

where the transformation matrix N (è) is given by Ym, which is symmetric (antisym-

metric) when m is integral (half integral). Secondly, under èc2n 2 Dq
n we have

(èc2n)�Ö( j, m) � Ö( j, m)Z(n)
m
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where the transformation matrix N (èc2n) is given by

Z(n)
m � Ym Em(c2n) � Ym

cos (ðm=n) ÿsin (ðm=n)

sin (ðm=n) cos (ðm=n)

� �
(16:5:11b)

Here Em(c2n) is simply the matrix representative of c2n icn 2 Dn. Thus we arrive at

the type a co-unirreps given by

S(Em; Ym) 2 De
n, S(Em; Z(n)

m ) 2 Dq
n

where the allowed values of m are de®ned in (16.5.10).

Next, we see that (16.5.11a) and (16.5.11b) hold also for m � n=2 and n. Firstly, for

the unirreps B1 and B2 of Dn with the respective bases ö�( je, n=2) and öÿ( je, n=2)

given by Table 11.5, the transformation matrices for the combined basis Ö( je, n=2)

are given, consistently with (16.5.11a) and (16.5.11b) with m � n=2, by

Yn=2 � 12 for an even n

óy for an odd n

�
, Z

(n)

n=2
� ÿió y for an even n

ÿi12 for an odd n

�
(16:5:12a)

where 12 is diagonal but ó y is off-diagonal and antisymmetric. The diagonal trans-

formation matrices lead to type a co-unirreps of De
n and Dq

n, whereas the off-diagonal

matrices lead to type c co-unirreps of De
n and Dq

n induced from B1 and B2 of Dn as

given in Table 16.3. Secondly, for the unirreps A1 and A2 of Dn with the bases

ö�( je, n) and öÿ( je, n) given by Table 11.5, the transformation matrices for Ö( je, n)

are given, consistently with (16.5.11a) and (16.5.11b) with m � n, by

Ym � 12, Z(n)
n � ÿ12 (16:5:12b)

both of which are diagonal. Thus we have S(A1; 1) and S(A2; 1) for both De
n and Dq

n

as given in Table 16.3. It should be noted that in general the identity representation of

any point group H induces the type a co-unirreps S(A; 1) for any anti-unitary group

H z.

16.5.4 The cubic groups

According to Table 11.7 the unirreps A9 and A 0 of the tetragonal group T are mutually

complex conjugate with the respective bases ö(2, 0)� iö�(2, 2) and ö(2, 0) ÿ
iö�(2, 2), which are connected by the time-reversal operator è as follows:

8è[ö(2, 0)� iö�(2, 2)] � [ö(2, 0)ÿ iö�(2, 2)]

Thus, we obtain S(A9, A 0; 1) for T e. Here, ö(2, 0) and ö�(2, 2) are the original spinor

bases de®ned in Table 11.7. These bases are invariant under è4z so that we obtain two

co-unirreps S(A9; 1) and S(A 0; 1) for T q.

Next, the basis ÖT � [öÿ(1, 1), ÿö�(1, 1), iö(1, 0)] or [x, y, z] of the unirrep T of

the group T is invariant under è. Accordingly, under è4z 2 T q we obtain

(è4z)
�ÖT � ÖT i4z i

where i4z i is the 3 3 3 matrix of the rotation 4z given in the footnote of Table 16.3.

Thus we obtain the co-unirreps S(T ; 13) for T e while S(T ; i4zi) for T q. Next, for the

unirrep E1=2 of T we have used the basis Ö(1
2
, 1

2
) de®ned by (16.5.10) so that the

transformation matrices are given by N (è) � Y1=2 � ó y from (16.5.11a) and
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N (è4z) � Z
(2)

1=2
� Z from (16.5.11b), where Z is given in the footnote of Table 16.3.

Accordingly we arrive at

S(E1=2; ó y) 2 T e, S(E1=2; Z) 2 T q

Analogously, we have determined the remaining co-unirreps of T e and T q and also

those of Oe given in Table 16.3. All the co-unirreps of Ge
s , Cu

1, De
1, T q and Oe are of

type a according to Table 16.3. This table has been extended further to the projective

co-unirreps of the magnetic point groups of in®nite order by Kim (1984c).

16.6 Complex conjugate representations

Let Ä(í)(H) � fÄ(í)(h); h 2 Hg be a unirrep of a unitary group H, then the complex

conjugate set Ä(í)(H)� � fÄ(í)(h)�g also provides a unirrep of H, because, if

Ä(í)(h1)Ä(í)(h2) � Ä(í)(h1 h2) then Ä(í)(h1)�Ä(í)(h2)� � Ä(í)(h1 h2)�. There exist

three cases for Ä(í)(H).

1. Ä(í)(H) is real or can be brought to real form by a unitary transformation.

2. Ä(í)(H) is equivalent to Ä(í)(H)� but cannot be brought to real form.

3. Ä(í)(H) is not equivalent to Ä(í)(H)�.
For the ®rst two cases their characters ÷(í)(H) are real but for the third case the

character is complex (not real).

For example, a one-dimensional complex representation of any group belongs to

case 3 for the obvious reason that a one-dimensional representation is invariant under

any similarity transformation. According to (10.3.9), the character of every unirrep of

SU (2) is real and hence a unirrep of SU (2) belongs either to case 1 or to case 2. The

same is true for a unirrep of any group G of which every class is ambivalent, i.e. every

element g and its inverse gÿ1 are in the same class, since then their characters are all

real from ÷(g) � ÷(gÿ1) � ÷(g)�.
The above classi®cation of the unirreps fÄ(í)(H)g of a point group H by their

complex conjugation is closely correlated to the types of the co-unirreps of the gray

group H e. Firstly, from (16.4.9) with a � è, we have

8h(8èøí) � (8èøí)Ä(í)(h)�; 8 h 2 H (16:6:1)

which is also understood from the fact that è commutes with any unitary operator

h 2 Gsi. Thus, if øí is a basis of Ä(í)(H), then the basis of Ä(í)(H)� is given by the

time-reversed basis 8èøí. Secondly, from (16.4.10a) with a � è, we have

Ä(í)(h)� � N (è)ÿ1Ä(í)(h)N (è); 8 h 2 H (16:6:2)

so that ÷(í)(H)� � ÷(í)(H), i.e. the complex conjugate unirrep Ä(í)(H)� is equivalent

to a unirrep Ä(í)(H) contained in the assumed complete set of the unirreps of H. From

this, we can determine the three cases of the unirreps Ä(í)(H) by the three types of co-

unirreps of H e induced from Ä(í)(H), since the latter have been completely worked

out for the point groups, as given in Table 16.3.

It is obvious that either í 6� í or í � í in (16.6.2).

(i) When í 6� í, we have ÷(í)� � ÷(í) 6� ÷(í) so that the character of Ä(í)(H) cannot

be real. Accordingly, Ä(í)(H) belongs to case 3, whereas the co-unirrep of H e
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induced by Ä(í)(H) is of type c. This means that there exists the correspondence

case 3 $ type c (16:6:3)

Thus, the co-unirrep of H e can be given simply by S(Ä(í), Ä(í)�; 1) with the basis

[øí, èøí] from (16.6.1) instead of S(Ä(í), Ä(í); N (è)). Obviously, these two co-

unirreps are equivalent. For example, the unirreps M�m (m � 1
2
, 1, . . . , 1

2
(nÿ 1))

of the uniaxial group Cn are complex and thus belong to case 3 (the character is

also complex, being one-dimensional) whereas the corresponding co-unirreps are

of type c and are given by S(Mm, Mÿm; 1)c as presented in Table 16.3. Here

Mÿm � M�m.

(ii) When í � í, we have, from (16.6.2),

Ä(í)(h)� � N (è)ÿ1Ä(í)(h)N (è); 8 h 2 H (16:6:4a)

Hence Ä(í)(H) belongs to case 1 or to case 2 and the character is real. Now, from

the type criteria (16.4.14) with a � è and è2 � e9, the transformation matrix N (è)

satis®es

N (è)N (è)� � �Ä(í)(e9) (16:6:4b)

where the � sign stands for type a and the ÿ sign stands for type b. Moreover,

from Ä(í)(e9) � �1, we have N (è)N (è)� � �1 for both types. Since N (è) is

unitary, if N (è)N (è)� � 1 we have N (è) � N (è)�, i.e. N (è) is symmetric,

whereas, if N (è)N (è)� � ÿ1, we have N (è) � ÿN (è)�, i.e. N (è) is antisym-

metric. Now, the case criterion is closely correlated to the type criterion because,

if N (è) is symmetric (antisymmetric), then Ä(í)(H) belongs to case 1 (case 2)

according to the following basic theorem (Wigner 1962).

Theorem 16.6.1. When a unirrep Ä(H) is equivalent to Ä�(H), through a unitary

matrix N such that Ä�(h) � Nÿ1Ä(h)N for all h 2 H , then Ä(H) can be brought to

real form by a unitary matrix U if and only if the matrix N is symmetric.

Proof. Suppose that Ä(H) is brought to a real representation Ä(H) by a unitary

matrix U such that Ä(h) � UÄ(h)U y for all h 2 H , then substitution of this relation

into the assumed relation Ä�(h) � Nÿ1Ä(h)N yields

U�Ä(h)U� � Nÿ1UÄ(h)U yN ; 8 h 2 H

from which it follows that U yNU� commutes with the unirrep Ä(H) so that

U yNU� � c1, a constant matrix from Schur's lemma. Thus, we can write

N � cUU�

which means that N is indeed a symmetric matrix. Conversely, if the unitary matrix N

is symmetric then Ä(h) can be made real by a unitary transformation. To see this we

use the lemma that a unitary symmetric matrix N can be diagonalized by a real

orthogonal matrix R (see Section 1.5, Remark 2) such that

RNR� � Ë, RR� � 1

where Ë is a diagonal matrix, whose diagonal elements are of modulus unity, because

N is unitary. Now, by the similarity transformation of the assumed relation

Ä�(h) � Nÿ1Ä(h)N with R we obtain
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RÄ�(h)R� � Ë�RÄ(h)R�Ë, Ë�Ë � 1

Next, we write the diagonal matrix Ë as the square of another diagonal matrix Ë1 such

that Ë � Ë2
1. Then the modulus of the diagonal elements of Ë1 is also unity so that

Ëÿ1
1 � Ë�1 . Then the above equation is rewritten as

Ë1 RÄ�(h)R�Ë�1 � Ë�1 RÄ(h)R�Ë1 � Ã(h); 8 h 2 H

where the ®rst and second expressions of Ã(h) are mutually complex conjugate so that

Ã(h) is real. This means that the representation fÄ(h)g is transformed into a real

representation fÃ(h)g by a unitary matrix Ë�1 R. Q.E.D.

On combining this theorem with the type criteria given by (16.6.4b), we have the

following correlations between the case criteria for a unirrep Ä(í)(H) with a real

character and the type criteria of the co-unirrep of H e induced from Ä(í)(H).

(iia) If Ä(í)(H) is an integral unirrep,

case 1$ type a; case 2$ type b (16:6:5)

(iib) If Ä(í)(H) is a half-integral unirrep,

case 2$ type a; case 1$ type b (16:6:6)

Remark 1. The second correspondence in (16.6.5) is academic for a point group

because all integral co-unirreps of a gray point group H e are of type a according to

Table 16.3. Thus, we may conclude that an integral unirrep of a point group with a real

character belongs to case 1, i.e. it is always transformed to real form by a symmetric

unitary matrix.

Remark 2. Analogously to the above, the second correspondence in (16.6.6) is almost

academic because a type b half-integral co-unirrep of H e occurs once and only once

according to Table 16.3: it is given by S(Mn=2, Mn=2; 1)n�odd of Ce
n, where

Mn=2(ck
n) � (ÿ1)k is real and hence belongs to case 1. Except for this case, a half-

integral unirrep Ä(í)(H) with a real character belongs to case 2, corresponding to the

type a co-unirrep of H e. For such a case the dimensionality dí of Ä(í)(H) must

be even, since, from N (è)� � ÿN (è), the determinant satis®es det N (è) �
(ÿ1)dí det N (è) so that dí is even since it is null otherwise.

Example 1. According to (10.3.9), the characters of the unirreps of Gs � SU (2) are

all real and the co-unirreps of the gray group Ge
s belong to type a according to

(16.5.5a). Therefore, from (16.6.5) and (16.6.6), all integral unirreps of Gs belong to

case 1 whereas all half-integral unirrreps of Gs belong to case 2. This means that the

ordinary single-valued unirreps of the three-dimensional rotation group can be made

real whereas its double-valued unirreps are complex and cannot be made real.

Example 2. According to Table 16.3, all two-dimensional unirreps Em of Dn form

type a co-unirreps S(Em; Ym) of De
n so that the characters of Em are all real from

(16.6.4a). When m is an integer, Em belongs to case 1 from (16.6.5), whereas, when m

is a half integer, Em belongs to case 2 from (16.6.6). For the latter case, Em should be

complex and cannot be transformed to real form. These are explicitly veri®ed by the

table of the representations of Dn given by Table 11.5.
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Example 3. All co-unirreps of Oe are of type a so that their characters are all real.

The integral unirreps belong to case 1 whereas the half-integral unirreps belong to case

2. The dimensionalities of their representations are all even for the latter.

Example 4. There exist three half-integral unirreps E1=2, E91=2 and E 01=2 for the group

T , all in two dimensions: E1=2 forms a type a co-unirrep S(E1=2; ó y) of T e whereas

E91=2 and E 01=2 form a type c co-unirrep S(E91=2, E 01=2; óy) of T e. Thus E1=2 belongs to

case 2 whereas E91=2 and E 01=2 as a pair belong to case 3. Since E 01=2 is equivalent to

E9�1=2, the type c co-unirrep can be expressed also by S(E1=2, E9�1=2; 1).

16.7 The orthogonality theorem on the co-unirreps

To extend the orthogonality theorem on the unirreps of a unitary group to the co-

unirreps of an anti-unitary group, we shall ®rst extend Schur's lemma to an anti-unitary

group. It will be shown that only the second half, B, of Theorem 6.5.2 on Schur's

lemma has to be modi®ed (Dimmock 1963, Kim 1984b). Let an anti-unitary group H z

be written as

H z � H � a0 H , a0 � èz

where è is the time-reversal operator. Then an anti-unitary operator a belongs to

a0 H .

Theorem 16.7.1. (Schur's lemma on anti-unitary groups.) Let S(á)(H z) and S(â)(H z)

be two co-unirreps of H z with the dimensionalities dá and dâ, respectively. If there

exists a dá 3 dâ intertwining matrix M such that

S(á)(h)M � MS(â)(h); 8 h 2 H

S(á)(a)M� � MS(â)(a); 8 a 2 a0 H (16:7:1)

then we have

A9. M is either a null matrix or a square non-singular matrix.

B9. M is a real constant matrix when á � â, provided that M is Hermitian.

This theorem differs from Schur's lemma given by Theorem 6.5.2 on the appearance

of M� in (16.7.1) and the Hermiticity condition of M in B9. We shall give here the

proof only for the second half, B9, because the ®rst half, A9, proceeds exactly as A in

the case of a unitary group. Let us assume that A9 has been proven. Then to prove B9
we may set á � â in (16.7.1) and obtain

S(á)(h)M � MS(á)(h); 8 h 2 H

S(á)(a)M� � MS(á)(a); 8 a 2 a0 H (16:7:2)

Now, let c1 be a real constant matrix of the dimensionality dá, then it commutes with

any dá 3 dá matrix so that

S(á)(h)[M ÿ c1] � [M ÿ c1]S(á)(h)

S(á)(a)[M ÿ c1]� � [M ÿ c1]S(á)(a) (16:7:3)

which have the form of (16.7.2) with M replaced by [M ÿ c1]. Let M be Hermitian
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and c be one of its eigenvalues, then [M ÿ c1] is a singular matrix that must be the

null matrix from the ®rst half A9 of the theorem. Thus M � c1. Q.E.D.

Theorem 16.7.2 (The orthogonality theorem). Let S(á) and S(â) be two co-unirreps of

H z that are assumed to be inequivalent when á 6� â. Then, for á 6� â, we haveX
h2H

S(á)(h)ìíS(â)(h)�ì9í9 � 0

X
a2a0 H

S(á)(a)ìíS(â)(a)�ì9í9 � 0 (16:7:4)

where ì, í � 1, 2, . . . , dá; ì9, í9 � 1, 2, . . . , dâ. For á � â we haveX
h2H

S(á)(h)ìíS(á)(h)�ì9í9 �
X

a2a0 H

S(á)(a)ìí9S
(á)(a)�ì9í � (2jH j=dá)äìì9äíí9 (16:7:5)

where jH j is the order of H. Note that the indices í and í9 in the second sum in

(16.7.5) are interchanged relative to those of the ®rst sum.

Proof. Analogously to (6.5.9), an intertwining matrix for S(á) and S(â) that satis®es

(16.7.1) is given by

M (á,â) �
X

h

S(á)(h)XS(â)(h)y �
X

a

S(á)(a)X�S(â)(a)y (16:7:6)

where X is an arbitrary dá 3 dâ matrix: this is veri®ed by making a simple substitution

of M � M (á,â) into (16.7.1). When á 6� â, S(á) and S(â) are inequivalent by assump-

tion so that M (á,â) must be a null matrix from Theorem 16.7.1. Now we set X íí9 � 1

for a particular element of X in (16.7.6) and the remaining elements equal to zero to

obtain X
h

S(á)(h)ìíS(â)(h)�ì9í9 �
X

a

S(á)(a)ìíS(â)(a)�ì9í9 � 0 (16:7:7a)

Next, we set Xíí9 � i and all other elements zero to obtainX
h

S(á)(h)ìíS(â)(h)�ì9í9 ÿ
X

a

S(á)(a)ìíS(â)(a)�ì9í9 � 0 (16:7:7b)

By adding and subtracting these two equations we obtain (16.7.4), the ®rst half of

Theorem 16.7.2.

When á � â, the matrix M (á,á) de®ned by (16.7.6) is a constant matrix according to

Theorem 16.7.1, since M (á,á) is made Hermitian by taking X to be Hermitian. Thus,

we set Xíí9 � Xí9í � 1 and the remaining elements zero in (16.7.6) with á � â and

obtain X
h

fS(á)(h)ìíS(á)(h)�ì9í9 � S(á)(h)ìí9S
(á)(h)�ì9íg

�
X

h

fS(á)(a)ìíS(á)(a)�ì9í9 � S(á)(a)ìí9S
(á)(a)�ì9íg � c(í, í9)äìì9 (16:7:8)

where c(í, í9) is a constant independent of ì, ì9 but may depend on í and í9 on
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account of the particular choice Xíí9 � 1. To determine c(í, í9), we set ì � ì9 in

(16.7.8) and sum up both sides of the equations over ì and obtain, via the unitarity of

the matrix S(á),

c(í, í9) � äíí94jH j=dá

Analogous to (16.7.8), we may set X íí9 � ÿXí9í � i and the remaining elements of X

zero in (16.7.6) with á � â and obtainX
h

fS(á)(h)ìíSá(h)�ì9í9 ÿ S(á)(h)ìí9S
(á)(h)�ì9íg

�
X

a

fÿS(á)(a)ìíS(á)(a)�ì9í9 � S(á)(a)ìí9S
(á)(a)�ì9íg � c9(í, í9)dìì9 (16:7:9)

In this case c9(í, í9) � 0: this follows if we set ì � ì9 in (16.7.9) and sum up the

equations over ì. Now, by combining (16.7.8) and (16.7.9), we obtain the second half

of the orthogonality theorem given by (16.7.5).

16.8 Orthogonality relations for the characters, the irreducibility condition and the

type criteria for co-unirreps

16.8.1 Orthogonality relations for the characters of co-unirreps

The character of a co-unirrep is de®ned by its trace as usual. We set ì9 � ì and í9 � í
in the orthogonality relations of co-unirreps given by (16.7.4) and (16.7.5), and then

sum them over ì and í to obtainX
h

k(á)(h)k(â)(h)� � 0; á 6� â (16:8:1a)

X
a

k(á)(a)k(â)(a)� � 0; á 6� â (16:8:1b)

X
h

jk(á)(h)j2 �
X

a

k(á)(a2) � 2jH j (16:8:1c)

where k(á) and k(â) are the characters of co-unirreps S(á) and S(â) of H z, respectively.

Since a2 belong to H, the ®rst and third equations depend only on the elements

belonging to the unitary halving subgroup H of H z. It will be shown below that the

last relation (16.8.1c) provides the necessary and suf®cient condition for the co-

representation S(á)(H z) to be irreducible.

16.8.2 Irreducibility criteria for co-unirreps

Let S be a unitary co-representation of H z and k be its character. Let fá be the number

of times a co-unirrep S(á) appears in the reduced form of S. Then

k(h) �
X
á

fák(á)(h); 8 h 2 H

k(a) �
X
á

fák(á)(a); 8 a 2 a0 H (16:8:2)
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where fá is a positive integer or zero and may be expressed, using the orthogonality

relations, in the following two ways:

fá �
X

h

k(h)k(á)(h)�
�X

h

jk(á)(h)j2

�
X

a

k(a)k(á)(a)�
�X

a

jk(á)(a)j2 (16:8:3)

In view of (16.8.1c), let us de®ne a sum Z(S) by

Z(S) � 1

2jH j
X

h

jk(h)j2 �
X

a

k(a2)

 !
(16:8:4)

which depends on the co-representation S(H z) through its character k. Then substitut-

ing the ®rst relation of (16.8.2) into k(h) and k(a2) in Z(S), and then using (16.8.1a)

and (16.8.1c), we obtain

Z(S) � 1

2jH j
X
á

( f 2
á ÿ fá)

X
h

jk(á)(h)j2
 !

� 2jH j fá
" #

>
X
á

fá > 1

where the inequalities follow from f 2
á > fá because fá is a positive integer or zero

and also from the fact that at least one of fá must be unity. Now the co-unirrep S(H z)

is irreducible if and only if only one of fá equals unity and the remaining fá are equal

to zero. Thus the irreducibility condition of S(H z) is given by

Z(S) � 1 (the minimum value of Z(S)) (16:8:5)

or explicitly X
h

jk(h)j2 �
X

a

k(a2) � 2jH j

which coincides with (16.8.1c).

This irreducibility condition (16.8.5) for a co-unirrep S(H z) is a simple extension of

the ordinary irreducibility condition for a unitary representation. The above criterion

was ®rst obtained by Kim (1984b) and has been generalized further to a projective co-

representation. The condition is convenient since it requires only knowledge of the

characters of the halving subgroup H.

16.8.3 The type criterion for a co-unirrep

By the irreducibility condition (16.8.5), we shall recon®rm the irreducibility of the

three types of co-unirrep of H z de®ned by (16.5.1) and then deduce the well-known

type criterion ®rst introduced by Dimmock and Wheeler (1962). Let us ®rst calculate

the sum Z(S) de®ned by (16.8.4) for each of the three types of co-unirreps S(í�), S(í,í)

and S(í,í) given in (16.5.1). Using the orthogonality relations of characters ÷(í)(H)

(� k(í)(H)) of the unirreps of the halving subgroup H, we obtain
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type a: Z(S(í�)) � 1

2
� 1

2jH j
X

a

÷(í)(a2) (16:8:6a)

type b: Z(S(í,í)) � 2� 1

jH j
X

a

÷(í)(a2) (16:8:6b)

type c: Z(S(í,í)) � 1� 1

2jH j
X

a

[÷(í)(a2)� ÷(í)(a2)�] (16:8:6c)

where we have used ÷(í)(a2) � ÷(í)(a2)� obtained from (16.4.10a). Thus, from the

irreducibility condition Z(S) � 1, we obtain the following irreducibility conditions for

the three types:

type a:
X

a

÷(í)(a2) � jH j (16:8:7a)

type b:
X

a

÷(í)(a2) � ÿjH j (16:8:7b)

type c:
X

a

[÷(í)(a2)� ÷(í)(a2)�] � 0 (16:8:7c)

To prove these we shall ®rst rewrite Ä(í)(a2), for a � a0 h, in the form

Ä(í)((a0 h)2) � Ä(í)(a2
0aÿ1

0 ha0 h)

� Ä(í)(a2
0)Ä(í)(aÿ1

0 ha0)Ä(í)(h)

� Ä(í)(a2
0)N (a0)�ÿ1Ä(í)(h)�N (a0)�Ä(í)(h) (16:8:8)

where (16.4.10a) has been used for the third equality. Then, for type c for which

í 6� í, the orthogonality relations between the unirreps Ä(í)(H) and Ä(í)(H) lead toX
h

Ä(í)((a0 h)2) � 0

so that its trace yields X
h

÷(í)((a0 h)2) � 0 (16:8:9a)

from which (16.8.7c) follows. Next, for types a and b, we have í � í and

Ä(í)(a2
0) � �N (a0)N (a0)� so that (16.8.8) is simpli®ed to

Ä(í)((a0 h)2) � �N (a0)Ä(í)(h)�N (a0)�Ä(í)(h) (16:8:9b)

where the � (ÿ) sign is for type a (b). Now, using the orthogonality relations for the

unirrep Ä(í)(H), and the fact that N (a0) is a dí 3 dí unitary matrix, we obtainX
h

Ä(í)((a0 h)2) � �(jH j=dí)1

where 1 is the dí 3 dí unit matrix. Then, the traces of both sides of this equation lead

to (16.8.7a) or (16.8.7b).
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We may rewrite (16.8.7a)±(16.8.7c), in view of (16.8.9a), in the form

1

jH j
X
h2H

÷(í)((a0 h)2) �
1; type a

ÿ1; type b

0; type c

8<: (16:8:10)

These provide the irreducibility conditions for the three types of co-unirreps as well as

for their type criteria. This criterion is convenient because it depends only on the

characters of the unirreps of the halving subgroup H of H z. The above criterion has

been extended also to any projective co-unirreps by Kim (1984b).
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17

Anti-unitary space groups and their co-representations

17.1 Introduction

An anti-unitary space group is formed by augmenting a unitary space group with an

anti-unitary element, analogously to the anti-unitary point group. Belov, Neronova and

Smirnova (Belov et al. 1955) provided a listing of all 1651 magnetic space groups (or

Shubnikov groups), which include the 230 unitary space groups and 1421 anti-unitary

space groups. They also provided the method of deriving them through geometric

consideration. Extensive reviews on the subject have been published by Opechowski

and Guccione (1965) and by Bradley and Cracknell (1972).

Here we shall construct the anti-unitary space groups via the algebraic method

introduced by Kim (1986c). Since we have already constructed a total of 230 unitary

space groups through 32 minimal general generator sets (MGGSs) in Chapter 13, we

can construct 1421 anti-unitary space groups through 38 MGGSs by augmenting the

32 MGGSs of the unitary space groups with anti-unitary operators. It requires a minor

amount of additional work on the space groups, because the time-reversal operator è
commutes with any operator of the space groups.

For a given space group Ĝ there exist two kinds of anti-unitary space groups

denoted by Ĝe and Ĥ z, respectively. The ®rst kind Ĝe is formed by augmenting Ĝ by a

time-reversal translation operator è̂ � (èjvè) (where vè is the minimum translation

characteristic to è), i.e.

Ĝe � Ĝ � è̂Ĝ (17:1:1)

The factor group of the ®rst kind Ĝe=T with respect to the translation group T of Ĝ is

isomorphic to the gray point group Ge discussed in the previous chapter. Here the so-

called magnetic Bravais lattices are introduced by decorating the Bravais lattice of a

space group Ĝ with the time-reversal translation operator è̂. Next, when Ĝ has a

halving subgroup Ĥ such that Ĝ � Ĥ � ẑ Ĥ , where ẑ � (zjvz) is a coset representative

of Ĥ in Ĝ, by augmenting Ĥ with the anti-unitary operator èẑ we form the second

kind Ĥ z, as follows:

Ĥ z � Ĥ � èẑ Ĥ ; z =2 H (17:1:2)

Obviously there is an isomorphism between the factor group Ĥ z=T and the anti-

unitary point group H z introduced in the previous chapter.

All anti-unitary space groups of the second kind Ĥ z from a given space group Ĝ are

formed via the coset decompositions of Ĝ with respect to all the possible halving

subgroups Ĥ of Ĝ. These will be formed via simple algebraic lemmas on how to form

the halving subgroups H of the point co-group G of Ĝ. In cases in which G does not

have a halving subgroup there is no anti-unitary space group of the second kind which

is formed from the space group Ĝ. This is the case, for example, for the space groups

Ĉn with an odd n, and for the space groups T̂ of the tetrahedral group T . By de®nition,



however, there exists at least one anti-unitary space group Ĝe of the ®rst kind for a

given space group Ĝ. It should be noted that Ĝ is a halving subgroup of Ĝe as well as

Ĥ is a halving subgroup of Ĥ z. Consequently, every anti-unitary space group can be

expressed by Ĥ z, where Ĥ is a halving subgroup of Ĥ z: it includes Ĝe as a special

case in which Ĥ � Ĝ and z 2 H . This extended view of the notation Ĥ z is convenient

and becomes important when we construct the co-unirreps of the anti-unitary space

groups in Section 17.7. Unless stated otherwise we shall use the same notations as in

Chapter 13 and we mean by a point group or space group the respective double group

de®ned through (13.8.2).

Analogously to anti-unitary point groups, if we regard the time-reversal operator è
as an operator that changes color from white to black and from black to white, then an

anti-unitary space group may describe the symmetry of a system of black and white

balls. This is possible except for the gray space groups, for which the augmentor is the

pure time-reversal operator è̂ � (èj000). Excluding this case, all the anti-unitary space

groups are also called black±white space groups and may be classi®ed further into the

®rst and second kinds.

Now, consider a magnetic crystal, which is a crystal formed by atoms or ions with

non-vanishing magnetic moments. For simplicity, the system may be called a spin

system even though there may be an orbital contribution to the magnetic moment.

Now a spin is an axial vector under a point operation and reverses its direction under

time reversal. The magnetic space group of a magnetic crystal is the symmetry group

of the crystal which leaves the spin arrangement invariant: it could be anti-unitary as

well as unitary. For example, a paramagnetic crystal in the absence of an external

magnetic ®eld will be invariant under a gray space group because all spins are

randomly oriented. If the temperature of a paramagnetic crystal is lowered, it is

possible that some long-range magnetic order will set in below a certain temperature

such that the crystal may become antiferromagnetic, ferromagnetic or ferrimagnetic.

These are described by the anti-unitary groups of the ®rst or the second kind. The ®rst

kind Ĝe with an anti-unitary translation è̂ � (èjvè 6� 0) must necessarily be antiferro-

magnetic because there exist equal numbers of spins s and reversed spins ÿs separated

by the pure translation vè 6� 0 (see Figure 17.1). An anti-unitary space group of the

second kind Ĥ z is antiferromagnetic if the anti-unitary operator èz of the augmenting

operator (èzjvz) reverses the direction of spin (i.e. the point operation z leaves the spin

invariant) since then a spin s is cancelled by ÿs separated by vz (6� 0). Thus, for

example, magnetic space groups belonging to the magnetic classes H i, Cq
n, C p

n and

C
q
ni (or their subgroups) may be antiferromagnetic. In particular, for the last three

types, all spins are aligned along the axis of rotation cn, half of which are parallel and

the remaining half are antiparallel. On the other hand, if the point operation z reverses

the spin, then èz will leave the spin invariant so that the corresponding space group Ĥ z

may describe a ferromagnetic crystal. In fact, as discussed in Section 16.3.2, the point

group of a ferromagnetic crystal is one of 31 subgroups of Cu
1i � Cv

1i that leaves the

spin invariant. To these there correspond 275 magnetic space groups, some of which

are unitary and some of which are anti-unitary. Note, however, that these 275 magnetic

space groups are not necessarily all ferromagnetic. Their separate moments may

cancel out to be antiferromagnetic by interlocking of ferromagnetic spin arrangements,

for example, in the directions perpendicular to the principal axis of rotation. If the

separate moments only partially cancel, the resulting structure will be ferrimagnetic.

See Opechowski and Guccione (1965) for further detail.
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17.2 Anti-unitary space groups of the ®rst kind

Let Ĝ be a space group and T be its translation subgroup. Then Ĝ is completely

de®ned by T and a set of the coset representatives f(RjvR)g of T in Ĝ, where vR is the

minimum translation characteristic to the rotation R de®ned in (13.6.2a). Then an anti-

unitary space group of the ®rst kind is de®ned by augmenting Ĝ with a time-reversal

translation operator è̂ as follows:

Ĝe � Ĝ � è̂Ĝ; è̂ � (èjvè) (17:2:1)

where è is the time-reversal operator and vè is the minimum translation characteristic

to è. The time-reversal operator è commutes with any rotational part of Ĝ and leaves

any translational part invariant, because a translational part behaves like a position-like

quantity that is even under time reversal. As a result, the factor group Ĝe=T is

isomorphic to the gray point group Ge.

Since Ĝ is an invariant subgroup of Ĝe, being a halving subgroup, the augmenting

operator è must satisfy the compatibility condition

è̂2, è̂ÿ1 R̂è̂ 2 Ĝ; 8 R̂ 2 Ĝ (17:2:2)

Since

è̂2 � (e9j2vè) � (e9j000) (17:2:3a)

è̂ÿ1 R̂è̂ � (RjvR � Rvè ÿ vè) � (RjvR) (17:2:3b)

we have

2vè � 0 (mod t 2 T ) (17:2:4a)

Rvè � vè (mod t 2 T ); 8 R 2 G (17:2:4b)

That is, the characteristic translation vè of è is a binary translation belonging to the

invariant eigenvector space of all R 2 G (mod t 2 T ).

P0 Pc PC PI

I0 Ic (5 IC)

Figure 17.1. The black and white Bravais parallelepipeds of the tetragonal system.

Here the time-reversal operator è is regarded as an operator which changes the

color black to white and white to black, following Belov et al. (1955).
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All the possible augmenting operators (èjvè) are formed from (17.2.4a) and

(17.2.4b) by determining the translational parameters of vè � (î, ç, æ) for each lattice

type L of the crystal class G. An immediate conclusion from the ®rst condition

(17.2.4a) is that these parameters are all binary, i.e. they are limited to

î, ç, æ � 0, 1
2

(mod t 2 T ) (17:2:5)

for any lattice type L. For further speci®cation of these parameters by the second

condition (17.2.4b), it suf®ces to limit the rotations R to being the generators of G and

also the orders of the generators to being higher than two, because a binary operation

simply reproduces (17.2.5). Thus we are left with one characteristic generator Rc for

each crystal class G introduced in Table 13.2. We may assume further that Rc is

proper; the improper generator Rc leads to the same restriction on the parameters,

because (17.2.4b) means that Rcvè � �vè (mod t 2 T ) from 2vè 2 T . According to

Table 13.2, such a generator Rc of a crystal class G is characteristic of the crystal

system K to which the class G belongs. Accordingly, Rc is a property of the crystal

system K common to all classes belonging to the system. As a result, the condition

(17.2.4b) plays no role for the orthorhombic and monoclinic systems, because their

generators are all binary.

Obviously, it is possible that some of the Ĝe thus obtained may be equivalent under

a lattice transformation Ë � [U js] that leaves invariant the halving subgroup Ĝ of Ĝe.

Since, from (13.1.7),

Ë(èjvè)Ëÿ1 � (èjUvè) (17:2:6a)

the condition for equivalence of two operations (èjvè) and (èjv9è) under Ë is given by

v9è � Uvè (mod t 2 T ) (17:2:6b)

which is independent of the shift s. The set of unimodular transformations fUg9 which

establishes the equivalence of Ĝe must leave Ĝ invariant under [U js], so that it is a

subset of the relevant set fUg given by (13.7.4) that establishes the equivalence of Ĝ.

Since the equivalence condition (17.2.6b) for Ĝe is independent of the shift, the

condition imposes no constraint on the crystal classes of high symmetry, for which the

relevant lattice transformation Ë is a pure shift [ejs] according to (13.7.4). In fact, as

will be shown below, the equivalence condition (17.2.6b) becomes a constraint only

for those crystal classes belonging to the orthorhombic and monoclinic systems.

For actual construction of Ĝe we may regard it as a semi-direct product of two

groups. To see this we rewrite (17.2.1) in the form Ĝe � (T � è̂T )Ĝ=T , using

T ĜTÿ1 � Ĝ; then we obtain the following semi-direct product:

Ĝe � T e ^ Ĝ=T ; T e � T � è̂T (17:2:7a)

where T e is an invariant subgroup of Ĝe and may be called the magnetic Bravais

lattice (denoted ML). It is a Bravais lattice decorated with è̂ � (èjî, ç, æ); see e.g.

Figure 17.1. It plays the role of the Bravais lattice for Ĝe that the Bravais lattice T

plays for Ĝ; in fact, there exists the isomorphism

Ĝe=T e ' Ĝ=T ' G (17:2:7b)

where G is the point co-group of Ĝ. Since the unitary space group Ĝ=T is known, the

construction of Ĝe requires only the possible magnetic Bravais lattices ML compatible

with each given space group Ĝ.
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Let L be a lattice type that is allowed for the crystal class G of a space group Ĝ.

Then a magnetic Bravais lattice ML may be expressed by L and è̂ jointly as Lè̂ �
L(èjî, ç, æ). Then all the possible ML are expressed, in view of (17.2.5), by

L0 � L(èj0, 0, 0), La � L(èj1
2
, 0, 0), Lb � L(èj0, 1

2
, 0)

Lc � L(èj0, 0, 1
2
), LA � L(èj0, 1

2
, 1

2
), LB � L(èj1

2
, 0, 1

2
)

LC � L(èj1
2
, 1

2
, 0), LI � L(èj1

2
, 1

2
, 1

2
) (17:2:8a)

There exists a total of 48 ML since L may take any one of the six conventional lattice

types (P, A, B, C, F and I) introduced in Section 13.4. Obviously, some of them may

be equal or equivalent or may not be allowed for a certain crystal system. According to

(17.2.8a), each allowed Lx introduces an additional set of equivalent points with the

time inversion è into the conventional unit cell of the Bravais lattice L of G. The above

notations are in accordance with those introduced by Belov et al. (1955) for the black

and white lattices de®ned by ®gures. They introduced 36 topologically independent

ML through geometric consideration. Following Kim (1986c), we shall construct them

algebraically through further restriction of the above set (17.2.8a) by (17.2.4b) with

the characteristic generator Rc for each crystal system and removing possible redun-

dancy through equivalence (17.2.6b).

Before explicit construction of the ML for each crystal system, we shall ®rst remove

the ML that are redundant due to the inherent symmetry of the lattice type L described

by

L(èjvè) � L(èjvè � tL) (mod t 2 T ) (17:2:8b)

where tL is an equivalent point of the Bravais parallelepiped of the lattice type L.

Thus, for example, there exists a maximum of four types of ML for the A base-

centered lattice:

A0 � AA, Aa � AI , Ab � Ac, AB � AC (17:2:9a)

Simultaneous cyclic permutations of fA, B, Cg and (a, b, c) on (17.2.9a) yield

B0 � BB, Bb � BI , Bc � Ba, BC � BA (17:2:9b)

C0 � CC , Cc � CI , Ca � Cb, CA � CB (17:2:9c)

Analogously, there exist two types of the face-centered lattice F:

F0 � FA � FB � FC, FI � Fa � Fb � Fc (17:2:9d)

and four types of the body-centered lattice I :

I0 � II , Ia � IA, Ib � IB, Ic � IC (17:2:9e)

Further restrictions imposed by (17.2.4b) and (17.2.6b) on the allowed ML will be

discussed for each lattice type L beginning with the simplest case of the cubic system.

17.2.1 The cubic system

The characteristic proper point operation Rc for this system is 3xyz according to Table

13.2. Using the Jones representation 3xyz � (z, x, y) given in Section 13.8.1, we have,

from (17.2.4b) with R � Rc and vè � (î, ç, æ),

3xyzvè ÿ vè � (æÿ î, îÿ ç, çÿ æ) � (0, 0, 0)
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which yields

î � ç � æ � 0, 1
2

Thus for the lattice types of this system, L � P, F and I, we obtain ®ve independent

ML:

fP0, PIg, fF0, FIg, I0 (17:2:10)1

17.2.2 The hexagonal system

Using Rc � 6z � (xÿ y, x, z) in the hexagonal coordinate system for R in (17.2.4b),

we obtain

î � ç � 0, æ � 0, 1
2

Thus, for L � P, which is the only lattice type of this system, we obtain two ML:

P0, Pc (17:2:11)

17.2.3 The rhombohedral system

With Rc � 3xyz � (z, x, y) in the rhombohedral coordinate system for R of (17.2.4b),

we obtain

R0, RI (17:2:12a)

as in the case of the cubic system. These may be reexpressed by

R�0 , R�c (17:2:12b)

in the hexagonal coordinates for the double-centered hexagonal lattice R�. See

(13.8.1c). For the primitive hexagonal lattice P of the system, we obtain again two ML

just like in (17.2.11):

P0, Pc (17:2:12c)

17.2.4 The tetragonal system

With Rc � 4z � (y, x, z) for R of (17.2.4b), we obtain

î � ç � 0, 1
2
, æ � 0, 1

2

which yield

fP0, Pc, PC , PIg, fI0, Icg (17:2:13)

These magnetic Bravais lattices are presented in Figure 17.1 by the black and white

Bravais parallelepipeds.

17.2.5 The orthorhombic system

Since there is no characteristic Rc of order higher than two for this system, all the

parameter sets given by (17.2.5) are allowed with possible redundancies depending on

1 Belov et al. (1955) used Fs for FI.
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the symmetry of the space group Ĝ, due to the equivalence condition (17.2.6b). Since

the relevant set fUg9 is a subset of the set fUg given by (13.7.4), which establishes

the equivalence of Ĝ, we need to consider only the permutations of the x-, y- and z-

axes followed by appropriate shifts for this system.

As a preparation, let us look into the symmetry property of the space groups

belonging to the class D2 as a typical example for removing the Ĝe which are

redundant. According to Table 13.3 of the space groups, the MGGS of the class D2 is

given by

(2zjc, 0, c)(2xja, a, 0)(2yjcÿ a, ÿa, c) with L(c, a):

16: P(0, 0), 17: P(1
2
, 0), 18: P(0, 1

2
), 19: P(1

2
, 1

2
)

20: C(1
2
, 0), 21: C(0, 0), 22: F(0, 0), 23: I(0, 0), 24: I(1

2
, 1

2
)

(17:2:14)

The MGGS is invariant under a lattice transformation [(x, y)jc=2, c=2, c=2], where

(x, y) denotes the interchanges of the x- and y-axes. Moreover, the MGGS is invariant

under the cyclic permutation (x, y, z) of the three axes, provided that a � c except for

the C lattice. Thus the space groups numbers 16, 19 and 22±4 are invariant under

(x, y, z) whereas the remaining space groups, numbers 17, 18, 20 and 21, are

symmetric under [(x, y)jc=2, c=2, c=2].

Analogously, the symmetry of MGGS 2 D2i can be treated, because it is de®ned by

augmenting D̂2(a, c) with the inversion (ijá, â, ã) according to Table 13.3: the space

groups with a � c and á � â � c are invariant under the cyclic permutation (x, y, z)

whereas the remaining space groups are invariant under [(x, yjc=2, c=2, c=2)] or

inequivalent with respect to the x-, y- and z-axes.

Finally, the MGSS 2 C2v is de®ned by

(mxj0, b, c), (myja9, 0, c9) 2 C2v

It is invariant under the interchange (x, y) if (b, c) � (a9, c9), but is inequivalent with

respect to the x-, y- and z-axes, otherwise.

We are now ready to construct Ĝe for this system.

(i) If the three axes of the coordinate system are inequivalent for a given Ĝ, we have

the following independent sets of ML corresponding to L � P, C, A, F and I,

from (17.2.8a)±(17.2.9e):

M(8P) � fP0, Pa, Pb, Pc, PA, PB, PC , PIg
M(C) � fC0, Cb, CI , CBg
M(A) � fA0, Ab, AI , ABg
M(F) � fF0, FIg

M(4I) � fI0, Ia, Ib, Icg

(17:2:15a)

Note that the lattice type B is not included here, simply because it does not appear

for the orthorhombic system in Table 13.3 of the 32 MGGSs.

(ii) If Ĝ is invariant under Ë � [(x, y)js], where (x, y) denotes the interchange of the

x- and y-axes, we may characterize the independent parameters of vè by

î < ç � 0, 1
2

æ � 0, 1
2

(17:2:15b)
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Then we obtain, for L � P, I , C and F,

M(6P) � fP0, Pb, Pc, PA, PC , PIg
M(3I) � fI0, Ib, Icg, M(C), M(F) (17:2:15c)

where the interchange (x, y) does not affect M(C) and M(F) given in (17.2.15a),

whereas L � A does not come in because it is not invariant under (x, y).

(iii) If Ĝ is invariant under Ë � [(x, y, z)js], where (x, y, z) denotes the cyclic

permutations of the x-, y- and z-axes, we may set

î < ç < æ � 0, 1
2

(17:2:15d)

because two of the three parameters are always equal for each ML from (17.2.8a).

Thus, the independent ML for L � P, I and F are given by

M(4P) � fP0, Pc, PA, PIg
M(2I) � fI0, Icg, M(F) (17:2:15e)

The symmetry does not affect M(F) of (17.2.15a), and is absent for L � C and

A.

17.2.6 The monoclinic system

Let the binary axis of rotation be parallel to the z-axis. Then the angle between the x-

and y-axes is arbitrary. As in the previous Section 17.2.5, the possible redundancy of

Ĝe may be removed by the lattice transformation (17.2.6b) with U : (x, y, z)!
(y, x, z) or (x� y, y, z). If the x- and y-axes are inequivalent for Ĝ, we have, for

L � P and B,

M(6P) � fP0, Pa, Pb, Pc, PA, PBg
M(B) � fB0, Bb, Bcg (17:2:16a)

Note here the equivalence relations Pc ' Pb, PI ' PA and Bc ' Bb under the transfor-

mation (x� y, y, z). If Ĝ is invariant under [(x, y)js] we have only four ML, given by

M(4P) � fP0, Pa, Pc, PAg (17:2:16b)

Note that Pb ' Pa and PB ' PA under the interchange (x, y) whereas the B lattice is

not invariant under (x, y).

17.2.7 The triclinic system

Since all three angles of the coordinate system are arbitrary, we have only the two ML

given by

M(P) � fP0, Psg (17:2:17)

where Ps � P(èj0, 0, 1
2
), taking the z-axis in the direction of (î, ç, æ).

Thus we have constructed altogether 48 ML, of which only 36 are for the holohedral

space groups, in agreement with the result of Belov et al. (1955). In Table 17.1 we

have presented the anti-unitary space groups of the ®rst kind Ĝe in terms of the ML

and MGGS of each crystal class. It contains also the magnetic space groups of the

second kind Ĥ z, which will be discussed in the next section.
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Table 17.1. The 38 assemblies of the general generator sets for the 1421 anti-unitary

space groups

A. The cubic system

L � P, F, I; ML � fPO, PIg, fFO, FIg, IO

T (195±9): ML(2zjc, 0, c)(3xyzj0)

Ti (200±6): ML (2zjc� a, a, c)(3xyzj0)(ij0); Lf23i9g
O (207±14): ML(4zj0, ÿc, c)(3xyzj0); Lf493g
T p (215±20): ML(4zjc, ÿc, c)(3xyzj0); Lf493g
Oi (221±30): ML(4zja, ÿc, c)(3xyzj0)(ij0); L. f43i9g, f43ig, f493ig

B. The hexagonal system

L � P; ML � fPO, Pcg
C6 (168±73): ML(6zj0, 0, c); Pf69g
C3p (174): ML(6zj0); Pf69g
C6i (175±6): ML(6zj0, 0, c)(ij0); P. f69ig, f6i9g, f6i9g
D6 (177±82): ML(6zj0, 0, c)(u0j0)(u1j0, 0, c)y; P. f69u0g, f69u1g, f6u90g
C6v (183±6): ML(6zj0, 0, c)(m0j0, 0, c9)(m1j0, 0, c� c9)y; P. f69m0g, f69m1g,

f6m90g
D3p (187±8): ML(6zj0)(m0j0, 0, c)(u1j0, 0, c)y; P. f69m0g, f69u1g, f6m90g

(189±90): ML(6zj0)(u0j0, 0, c)(m1j0, 0, c)y; P. f69u0g, f69m1g, f6u90g
D6i (191±4): ML(6zj0, 0, c)(u0j0, 0, c9)(u1j0, 0, c� c9)y(ij0); P. f69u0ig, f69u1ig,

f6u90ig, f6u0i9g, f6u0i9g, f6u0i9g, f6u1i9g

C. The rhombohedral system

L � P, R�; ML � fP0, Pcg, fR�0 , R�c g
C3 (143±6): ML(3zj0, 0, c)

C3i (147±8): ML(3zj0)(ij0); Lf3i9g
D3 (149±55): ML(3zj0, 0, c)(uíj0); Lf3u9íg
C3v (156±61): ML(3zj0)(míj0, 0, c); Lf3m9íg
D3i (162±7): ML(3zj0)(uíj0, 0, c)(míj0, 0, c)y(ij0); L. f3u9íg, f3uíi9g, f3míi9g

D. The tetragonal system

L � P, I; ML � fP0, Pc, PC, PIg, fI0, Icg
C4 (75±80): ML(4zj0, 0, c); Lf49g
C2p (81±2): ML(4zj0); Lf49g
C4i (83±8): ML(4zja, b, c)(ij0); L. f49ig, f4i9g, f4i9g
D4 (89±98): ML(4zj0, 0, c)(2xja, a, 0)(2xyja, a, c)y; L. f492xg, f492xyg, f429xg
C4v (99±110): ML(4zj0, 0, c)(mxja� 2c, a, c9)(mxyja, a� 2c, c� c9)y; L. f49mxg,

f49mxyg, f4m9xg
D2p (111±14,

121±2):

ML(4zj0)(2xja� 2c, a, c)(mxyja, a� 2c, ÿc)y; L. f492g, f49mg,
f429g

(115±20): ML(4zj0)(mxja� 2c, a, c)(2xyja, a� 2c, ÿc)y; L. f49mg, f492g,
f4m9g

D4i (123±42): ML(4zjá� c, c, c)(2xja, a� 2c� á, ã)(2xyjaÿ c, a� c, c� ã)y(ij0);

L. f492xig, f492xyig, f429xig, f42xi9g, f42xi9g, f42xi9g, f42xyi9g

436 Anti-unitary space groups



E. The orthorhombic system

L � P, C, A, F, I;

M(4P) � fP0, Pc, PA, PIg, M(6P) � fP0, Pb, Pc, PA, Pc, PIg,
M(8P) � fP0, Pa, Pb, Pc, PA, PB, PC, PIg
M(C) � fC0, Cb, CI, CBg
M(A) � fA0, Ab, AI, ABg
M(F) � fF0, FIg
M(2I) � fI0, Icg, M(3I) � fI0, Ib, Icg, M(4I) � fI0, Ia, Ib, Icg

D2 (16, 19; 22; 23±4): M(4P; F; 2I)(2zjc, 0, c)(2xjc, c, 0); L(P; F; I)f229g
(17±18; 20±1): M(6P; C)(2zjc, 0, c)(2xja, a, 0); L(P, C). f292g, f229g

C2v (25, 27, 32, 34; 35,

37; 42±3; 44±5):

M(6P; C; F; 3I)(2zjb, b, 0)(mxj0, b, c); L(P; C; F; I).

f29mg, f2m9g
(26, 28±31, 33; 36;

38±41; 46):

M(8P; C; A; 4I)(2zja9, b, c� c9)(mxj0, b, c)(myja9, 0, c9)y;
L(P; C; A; I), f29mxg, f29myg, f2m9xg

D2i (47±8, 61; 69±70;

71, 73):

M(4P; F; 2I)(2zjc� á, á, c)(2xjc, c� á, á)(ij0);

L(P; F; I). f292ig, f22i9g, f22i9g
(49±50, 55±6, 58±

9; 65±8; 72, 74):

M(6P; C; 3I)(2zjc� á, â, c)(2xja, a� â, ã)(ij0);

L(P; C; I). f292ig, f229ig, f22i9g, f22i9g, f22i9g
(51±4, 57, 60, 62;

63±4):

M(8P; C)(2zjc� á, â, c)(2xja, a� â, ã)(2yja� c� á, a,

c� ã)y(ij0); L(P; C). f29z2xig, f2z29xig, f29z2y ig, f2z2xi9g,
f2z2xi9g, f2z2y i9g

F. The monoclinic system

L � P, B; M(4P) � fP0, Pa, Pc, PAg, M(6P) � fP0, Pa, Pb, Pc, PA, PBg,
M(B) � fB0, Bb, Bcg
C2 (3±4; 5): M(4P; B)(2zj0, 0, c); L(P; B)f29g
Cs (6; 7; 8±9): M(4P; 6P; B)(mzj0, b, 0); L(P; P; B)fm9g
C2i (10±11; 12, 15;

13±14):

M(4P; B; 6P)(2zj0, b, c)(ij0); L(P; B; P). f29ig, f2i9g, f2i9g

G. The triclinic system

L � P; M(P) � fP0, Psg
C1(1): M(P)(ej0)

Ci(2): M(P)(ej0)(ij0); Pfei9g

1. The translational parameters a, b, . . . , ã are given in Table 13.3.

2. The numbers in the parentheses after the class symbols are the space group

numbers.

3. The superscript { denotes auxiliary generators needed to describe Ĥ z.

4. Abbreviations of the symbols are used whenever no confusion exists.

5. In G, e � 2ð rotation.
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17.3 Anti-unitary space groups of the second kind

Let Ĥ be a halving subgroup of a space group Ĝ, then the coset decomposition of Ĝ

with respect to Ĥ yields

Ĝ � Ĥ � ẑ Ĥ � Ĥz; ẑ � (zjvz) =2 Ĥ (17:3:1)

where the coset representative ẑ is a generator of Ĝ. To each coset decomposition of Ĝ

de®ned by a pair fẑ, Ĥg, there corresponds an anti-unitary space group of the second

kind de®ned by

Ĥ z � Ĥ � ẑ9 Ĥ , ẑ9 � èẑ (17:3:2)

Since the halving subgroup Ĥ is an invariant subgroup of Ĝ, the pair fẑ, Ĥg must

satisfy the following compatibility conditions expressed by their angular parts:

z2, zHzÿ1 2 H (17:3:3)

Since H is the halving subgroup of the point co-group G of Ĝ corresponding to Ĥ of

Ĝ, from the isomorphism between the factor group Ĝ=T and the point co-group G, all

the possible compatible pairs fẑ, Ĥg of Ĝ are determined by the compatible pairs

fz, Hg of G, which satisfy (17.3.3) and thus de®ne the coset decompositions of G,

G � H � zH .

As was shown by (13.8.3a), the abstract generators of Ĝ=T and G are characterized

by the same de®ning relations

An � Bm � (AB) l � E9, I2 � E, E92 � E (17:3:4)

where the set of orders fn, m, lg is characteristic to G: fn, 0, 0g for Cn, fn, 2, 2g for

Dn, f3, 3, 2g for T , f4, 3, 2g for O and f5, 3, 2g for Y. Here an element with an odd

(even) order with respect to the 2ð rotation E9 is simply called an odd (even) element.

When there exist two generators A, B (6� I) for G, the above de®ning relations can be

written in the following standard form:

An � Bm � (AB)2 � E9 (17:3:5a)2

A generator set fA, Bg that satis®es this standard form is called a canonical set of

generators of G.

Now, from the compatibility condition (17.3.3) and the de®ning relations of G, we

obtain the following lemmas, which play the essential role in determining all the pos-

sible compatible pairs fz, Hg of G which identify the compatible pairs fẑ, Ĥg of Ĝ.

Lemma 1. An odd generator of G is not acceptable for z. The generator of a cyclic

group of an even order and the inversion operator I of any G are always acceptable for

z.

Lemma 2. If there exist two generators A, B ( 6� I) for G, choose them such that

(AB)2 � E9. Then, an even one, say A, is acceptable for z. The corresponding halving

subgroup H is generated by A2, B and I (if I is contained in G).

2 We may de®ne two generators of G by á � Aÿ1, â � AB; then from (17.3.5a) we have

án � â2 � (áâ)m

Accordingly, the set (á, â) cannot be a canonical generator set of G unless m � 2.
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Proof for Lemma 1. Let A be an odd generator of G such that A2r�1 � E9, where r is

an integer, then A � E9(A2)ÿr. Now, if A were acceptable for z, then A2 2 H from the

compatibility condition (17.3.3) so that A 2 H . This is contradictory because z should

not be contained in H . The remaining statement in Lemma 1 is trivially true.

Proof for Lemma 2. From (AB)2 � E9 we have ABAÿ1 � E9Bÿ1 Aÿ2 2 H because H

is de®ned by A2, B and I (if I is contained in G). This means that A is acceptable for z

satisfying the compatibility condition (17.3.3). To show that the generating set of H

forms a group, let n � 2r be the order of A. Then, from (17.3.5a), the generator set

fá � A2, B, Ig of H satis®es, from ABÿ1 Aÿ1 � E9áB,

ár � Bm � (E9áB)m � E9 (17:3:5b)

which can be shown to de®ne one of the point groups de®ned by (17.3.5a). For

example, for a dihedral group D2r, we have m � 2 so that the halving subgroup H is

the dihedral group Dr. If G is the octahedral group O, we have r � 2 and m � 3 so

that the halving subgroup H is the tetrahedral group T .

From the lemmas, it follows that, if a canonical set of generators of a point group G

does not have an even generator, then there is no halving subgroup for G. Thus the

tetrahedral group T and the icosahedral group Y have no halving subgroup. Obviously,

the uniaxial group Cn with an odd n has no halving subgroup. Consequently, there is

no anti-unitary space group of the second kind formed from T̂ and Ĉn with an odd n.

Except for these cases, every space group has one or more halving subgroups.

Hereafter we may take a generator set of G to be canonical whenever there exist two

generators A, B (6� I) for G, unless stated otherwise.

Now, according to (17.3.4) the generator set of a space group Ĝ with a given lattice

type L can be expressed as one of the following ®ve kinds:

LfAg, LfIg, LfA, Ig, LfA, Bg, LfA, B, Ig (17:3:6)

Here A and B are not the inversion I . The corresponding anti-unitary groups of the

second kind Ĥ z are immediately constructed by using the lemmas. In the special case

of LfA, Bg belonging to the class T , there exists no Ĥ z since both generators are odd.

Now, for the even dihedral crystal systems (orthorhombic, tetragonal and hexagonal),

both generators A and B are even. In such a case, we obtain the following seven Ĥ z

for the most general space group LfA, B, Ig:
L: fA9, B, Ig, fA9, (AB), Ig, fA, B9, Ig, fA, B, I9g, fA, B, I9g, fA, B, I9g,
fA, (AB), I 9g (17:3:7)3

provided that A, B and AB are all inequivalent under the lattice transformation which

leaves the space group LfA, B, Ig invariant. Here X 9 � èX and X � XI, and, for

simplicity, the lattice type L is not repeated. If one only of the generators A or B is

even, say A, then one obtains the following Ĥ z from LfA, B, Ig:
L: fA9, B, Ig, fA, B, I9g, fA, B, I9g

This case is applicable to the classes D3i and Oi. Thus, we have exhausted all the

possible anti-unitary space groups of the second kind Ĥ z arising from a given space

3 Note that LfA, (AB)9g � LfA, B9g because Aÿ1(AB)9 � B9.
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group Ĝ since the remaining cases of (17.3.6) may be regarded as special cases of

LfA, B, Ig.
The completeness of the set of anti-unitary groups given by (17.3.7) for a space

group LfA, B, Ig can be seen also from the fact that these sets are equal to the

following sets, in the order written:

L: fA9, B, Ig, fA9, B9, Ig, fA, B9, Ig, fA, B, I9g, fA, B9, I9g, fA9, B, I9g,
fA9, B9, I 9g (17:3:8)

which are obtained by distributing the è in every possible way to the given set

fA, B, Ig. In fact, these expressions given by (17.3.8) for Ĥ z provide the basis for

constructing the magnetic space groups expressed in terms of the international

notation of the space groups, as has been carried out by Belov et al. (1955). We prefer

the expressions given by (17.3.7), since these are directly related to their irreducible

co-representations (co-irreps) which will be determined through the projective co-

irreps of their point co-groups Ĥ z.

Some of the magnetic space groups Ĥ z thus formed may be redundant, if some of

the generators are equivalent under the lattice transformations Ë � [U js] which leave

the space group Ĝ (� Hz) invariant. For example, for a space group LfA, Bg, we have

three Ĥ z given by

LfA9, Bg, LfA9, ABg, LfA, B9g (17:3:9)

provided that A, B and AB are all inequivalent under the lattice transformations Ë. If,

for example, A and B are equivalent, then LfA9, Bg and LfA, B9g are equivalent.

Likewise if A and AB are equivalent, then LfA9, ABg and LfA, B9g are also equiva-

lent for LfA, B9g � LfA, (AB)9g. This kind of situation occurs, however, only for the

orthorhombic system D2i, for which the orders of the generators are all equal and even.

For example, consider the space groups numbers 20 and 21 belonging to the class D2

de®ned in (17.2.14) with a � 0:

C: (2zjc0c), (2xj000), (2yjc0c); c � 0, 1
2

Here, (2xj000) and (2yjc0c) are equivalent under [(x, y)jc=2, c=2, c=2] as was stated

in regard to (17.2.14). Following (17.3.9) we may form three Ĥ z expressed, using

obvious abbreviation of the generators, by

Cf29z, 2xg � Cf29z, 2yg, Cf2z, 29xg
of which the ®rst two groups are equivalent, whereas the third group is inequivalent,

because, for a C lattice, the x- and y-axes are equivalent but the z- and x-axes are

inequivalent.

It should be noted that one assembly of Ĥ z given by (17.3.7) corresponds to one

minimal general generator set (MGGS) of a crystal class except for the classes D3p

and D2p and all three classes D2, C2v and D2i of the orthorhombic system. For the

former two classes, this is because there are two inequivalent realizations for the

generator set of the space group Ĝ itself. For the latter three classes, this is due to the

possible equivalence of some or all of the three binary axes of Ĝ, as discussed in

Section 17.2.5. Thus, two or three assemblies of Ĥ z correspond to a crystal class for

these cases.

All the magnetic space groups of the second kind Ĥ z thus determined are also given
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in Table 17.1 together with those of the ®rst kind Ĝe constructed in Section 17.2 (Kim

1983c). Here, for convenience, we have expressed a space group LfA, Bg or

LfA, B, Ig by

LfA, B, (AB)yg or LfA, B, (AB)y, Ig (17:3:10)

with an auxiliary generator (AB), in cases in which the product (AB) is needed to

describe Ĥ z (the superscript dagger on (AB)y simply means that (AB) is an auxiliary

generator).

17.3.1 Illustrative examples

On account of the compact nature of Table 17.1, it seems worthwhile to give some

illustrative examples for its use. For each example, we ®rst write down a space group

Ĝ in terms of its generators from Table 13.3. Then we give the corresponding anti-

unitary space groups Ĝe and Ĥ z from Table 17.1. These are reexpressed in terms of

the notations introduced by Belov, Neronova and Smirnova (BNS) for comparison.

Example 1. Number 230. I(4zj14, ÿ1
4
, 1

4
), (3xyzj0), (ij0) 2 Oi. Since L � I , we have

ML � I0 from Table 17.1. Then, from the line Oi (221±30) we obtain

I0f43ig; If43i9g, If43i9g, If493ig (17:3:11a)

where 4, 3 and i are obvious abbreviations for the generators given for space group

number 230. The ®rst group I0f43ig given above is of the ®rst kind and the remaining

three groups are of the second kind. These correspond, in the order given, to

Ia39d; Ia93d9, Ia93d, Ia3d9 (17:3:11b)

in the BNS notation, respectively.

Example 2. Number 70. F(2zj14, 1
4
, 0), (2xj0, 1

4
, 1

4
), (ij0) 2 D2i. Since L � F, from

Table 17.1, we have M(F) � fF0, FIg and then, from number 70 of D2i,

F0f22ig, FIf22ig; Ff292ig, Ff22i9g, Ff22i9g (17:3:12a)

where the ®rst two groups are of the ®rst kind and the remaining groups are of the

second kind. These correspond to

Fddd19, Fsddd; Fd9d9d, Fd9d9d9, Fd9dd (17:3:12b)

in the notation of BNS.

These illustrative examples show that the present table is much more explicit than

are those given by BNS.

17.3.2 Concluding remarks

Using the general generator sets of the space group Ĝ given in Table 13.3 and the

de®ning relations of the point groups, we have rigorously constructed all the generator

sets of the anti-unitary space groups with ease. These are presented in Table 17.1. It

describes all the generators of the 1421 anti-unitary space groups by a mere 38

assemblies of general expressions with the translational parameters that are predeter-

mined for the space groups Ĝ. In almost all cases, one assembly corresponds to one
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crystal class. The exceptions occur only for the ®ve classes D3p, D2p, D2, C2v and D2i,

for which two or three assemblies of the generators sets are required to describe the

Ĥ z for each class.

As will be shown in the next section, the generator sets given in Table 17.1 are

essential and suf®cient for constructing all the irreducible co-representations (co-

irreps) through the isomorphisms Ĝe=T ' Ge and Ĥ z=T ' H z from the projective

co-irreps of the gray point groups Ge and the magnetic point groups H z, respectively.

These general generator sets given in Table 17.1 are also very convenient for

discussing their symmetry properties, as we have discussed for those of the space

groups Ĝ. Undoubtedly, the present compact presentation of the magnetic space

groups gives us control over their large number and thus helps us to study the

symmetry properties of the magnetically ordered crystalline solids even more system-

atically.

17.4 The type criteria for the co-unirreps of anti-unitary space groups and anti-

unitary wave vector groups

By using the type criteria for the co-unirreps of an anti-unitary point group introduced

in Section 16.8, we shall discuss the type criteria for those of anti-unitary space

groups. For convenience in the discussion, we may use the notation Ĥ z for any anti-

unitary space group for which Ĥ is the halving subgroup of Ĥ z such that

Ĥ z � Ĥ � â Ĥ ; â � (èzjva) (17:4:1)

with the compatibility condition

â2, âĥâÿ1 2 Ĥ ; 8 ĥ 2 Ĥ

Here, in (17.4.1), z � e and va � vè for the ®rst kind, whereas z =2 H and va � vz for

the second kind. For either kind, the translation group of Ĥ is the same as the

translation group T of Ĥ z.

As a preparation, we shall ®rst construct the unirreps of a space group Ĥ by

induction from the unirreps of the wave vector space groups Ĥ k contained in Ĥ . Let

the left coset decomposition of Ĥ by Ĥ k be expressed by

Ĥ �
X

j

ĥ j Ĥ k; Ĥ k � fq̂g (17:4:2)

where ĥ j is a coset representative of Ĥ k in Ĥ . Let Ä(í)
k ( Ĥ k) be a small representation

of Ĥ k that subduces ôk(T ) onto the translation group T . Then, as was given by

(14.5.2), we can induce a unirrep of Ĥ from the small representation Ä(í)
k as follows:

D
(í)
k (ĥ) ji �

X
q̂2 Ĥ k

Ä(í)
k (q̂)ä(q̂, ĥÿ1

j ĥ ĥi); j, i � 1, 2, . . . , jH j=jH kj (17:4:3a)

for all ĥ 2 Ĥ . A co-unirrep of Ĥ z is obtained by a further induction of D
(í)
k ( Ĥ) with

the anti-unitary operator â as in Section 16.4.2. As a result, a co-unirrep of Ĥ z is

obtained by successive inductions from Ä(í)
k as follows:

S( Ĥ z) � [D
(í)
k ( Ĥ) "� Ĥ z] � [[Ä(í)

k ( Ĥ k) " Ĥ] "� Ĥ z] (17:4:3b)

where "� denotes the induction by an anti-unitary operator â � (èzjva). The type of
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the co-unirrep thus formed is determined by the characters of the unirrep D
(í)
k ( Ĥ) of

the halving subgroup Ĥ via the type criteria (16.8.10). This is so because the criteria

are applicable to any anti-unitary group of ®nite order.

Let the characters of the two representations in (17.4.3a) be denoted by ÷D( ĥ) �
tr D

(í)
k ( ĥ) and ÷Ä(q̂) � trÄ(í)

k (q̂), then we have

÷D(ĥ) �
X

j

X
q̂2 Ĥ k

÷Ä(q̂)ä(q̂, ĥÿ1
j ĥ ĥ j) �

X
j

8÷Ä(ĥÿ1
j ĥ ĥ j) (17:4:4)

where

8÷Ä(ĥÿ1
j ĥ ĥ j) � ÷Ä(ĥÿ1

j ĥ ĥ j); if ĥÿ1
j ĥ ĥ j 2 Ĥ k

0; otherwise

�
Now, from (16.8.10), the type criteria for the co-unirreps of Ĥ z induced from the

unirrep D
(í)
k ( Ĥ) take the form

Î(í)
k �

1

j Ĥ j
X
ĥ2 Ĥ

÷D[(âĥ)2] � 1

j Ĥ j
X
ĥ2 Ĥ

X
j

8÷Ä[( ĥÿ1
j â ĥ ĥ j)

2]

�
1 for type a

ÿ1 for type b

0 for type c

8>><>>: (17:4:5)

To simplify these relations we shall carry out the double summations in (17.4.5). We

note ®rst that, as ĥ sweeps through all elements of Ĥ , the element ĥÿ1
j â ĥ ĥ j for any

given h j sweeps through all anti-unitary elements belonging to â Ĥ , because

ĥÿ1
j â ĥ ĥ j � ââÿ1 ĥÿ1

j â ĥ ĥ j 2 â Ĥ via the condition for compatibility between â and Ĥ .

Thus,

Î(í)
k �

1

j Ĥkj
X
ĥ2 Ĥ

8÷Ä[(âĥ)2] (17:4:6)

This expression will be simpli®ed further by summing over the lattice translation

t 2 T , Ĥ . We write

ĥ � fejtgfhjvhg � fejtgh; h � fhjvhg 2 Ĥ=T

where vh is the minimum translation characteristic to h 2 H . If we use âfejtgâÿ1 �
fejztg � fejt9g, where t9 � zt 2 T , we have

(âĥ)2 � (fejt9gâh)2 � fejt9� zht9g(âh)2

On substituting this into (17.4.6) and replacing t9 by t, we obtain

Î(í)
k �

1

j Ĥ kj
X

h2 Ĥ=T

X
t2T

8÷Ä[(âh)2]eÿi(k�hÿ1 zÿ1 k). t

� 1

jH kj
X

h2 Ĥ=T

8÷Ä[(âh)2]ä(zhk � ÿk) (17:4:7)

where jH kj is the order of the point co-group H k of Ĥ k and the Kronecker delta is

de®ned by
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ä(zhk � ÿk) � 1, if zhk � ÿk

0, otherwise

�
(17:4:8)

Here � means the equivalence with respect to the reciprocal lattice T 9 of T . There are

two cases.

(i) There exists no element h in the point co-group H of Ĥ that satis®es zhk � ÿk.

In this case, we have Î(í)
k � 0 so that the co-unirreps of Ĥ z induced by D

(í)
k ( Ĥ)

are of type c.

(ii) There exists at least one element h in H that satis®es zhk � ÿk, then (zh)2 k � k,

which means that (zh)2 belongs to H k. Accordingly, (âh)2 2 Ĥ k so that
8÷Ä[(âĥ)2] � ÷Ä[(âh)2] in (17.4.7). Thus we have

Î(í)
k �

1

jH kj
X

h2 Ĥ=T

trÄ(í)
k [(âh)2]ä(zhk � ÿk)

�
1 for type a

ÿ1 for type b

0 for type c

8>><>>: (17:4:9)

which gives the type criteria for a co-unirrep of Ĥ z induced by the unirrep

D
(í)
k ( Ĥ). Note that case (i) is obviously included in (17.4.9).

Since z contains an arbitrary multiplicative factor that is an element of Ĥ , we may

rede®ne z in (17.4.1) for case (ii) such that zk � ÿk; e.g., Ĥ e � Ĥ i, if Î 2 Ĥ . Then

a � èz leaves the unirrep ôk(T ) � fexp (ÿik . t)g invariant because èz(ik) � ik.

Accordingly, for case (ii), we can de®ne an anti-unitary wave vector space group Ĥ z
k

by

Ĥ z
k � Ĥ k � â Ĥ k; â � (èzjva) (17:4:10)

Obviously, the augmentor â is compatible with Ĥ k because we have, from zk � ÿk,

z2, zqzÿ1 2 H k; 8 q 2 H k

Consequently, the type criteria (17.4.9) for case (ii) are rewritten

Î(í)
k �

1

jH kj
X

h2 Ĥ k=T

trÄ(í)
k ((âh)2)

�
1 for type a

ÿ1 for type b

0 for type c

8>><>>: (17:4:11)

This means that the type criteria (17.4.9) for the co-unirrep of Ĥ z induced by the

unirrep D
(í)
k ( Ĥ) can also be regarded as the type criteria for the co-unirrep of the anti-

unitary wave vector group Ĥ z
k induced by the small representation Ä(í)

k ( Ĥ k). Conse-

quently, both are of the same type. Here, D
(í)
k ( Ĥ) is the induced unirrep of Ĥ from the

small representation Ä(í)
k ( Ĥ k) de®ned by (17.4.3a).

Now, the anti-unitary wave vector group Ĥ z
k is a subgroup of Ĥ z such that the left

coset decomposition of Ĥ z by Ĥ z
k is given by
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Ĥ z �
X

j

ĥ j Ĥ z
k (17:4:12)

with the same set of coset representatives fĥ jg as in (17.4.2). To see this we rewrite

(17.4.1) in the form

Ĥ z � Ĥ � Ĥ â

which is allowed because a halving subgroup Ĥ is always an invariant subgroup. Then

substitution of (17.4.2) into this leads to (17.4.12) on account of (17.4.10). The

decomposition (17.4.12) is not possible for case (i), simply because there exists no

anti-unitary wave vector group for case (i).

Corresponding to two alternative schemes of the coset decompositions of Ĥ z given

by (17.4.1) and (17.4.2) or by (17.4.10) and (17.4.12), there exist two alternative ways

of inducing the co-unirreps of a given anti-unitary space group Ĥ z from a given small

representation Ä(í)
k ( Ĥ k). The ®rst way is through (17.4.3b), which has been discussed

already. When there exists an anti-unitary wave vector group Ĥ z
k for a given wave

vector k (case (ii)), we may induce the co-unirreps of Ĥ z via the co-unirreps of Ĥ z
k as

follows:

S9( Ĥ z) � [[Ä(í)
k ( Ĥ k) "� Ĥ z

k] " Ĥ z] (17:4:13)

These two induced co-unirreps S( Ĥ z) and S9( Ĥ z) are not only of the same type but

also equivalent to each other, as can be shown by their characters. In the analysis of

the energy band structure of a solid, the second way is more useful even though it is

limited to case (ii). In the later sections we shall construct the co-unirreps of the anti-

unitary wave vector group Ĥ z
k via the projective unirreps of the magnetic point co-

group Ĥ z
k, quite analogously to the small representations of Ĝk obtained via the

projective unirreps of the wave vector point group Gk.

Example. Let Ce
i be an anti-unitary point group of the inversion group Ci � fE, Ig.

An anti-unitary wave vector group that leaves a unirrep ôk(T ) with an arbitrary k is

given by Ei � E � èIE, where E is the identity group, which obviously leaves any

wave vector k invariant. The coset decomposition of Ce
i by Ei is given by

Ce
i � Ci

i � Ei � iEi (17:4:14)

Compare this with the coset decomposition Ci � E � iE. This gives a simple example

of (17.4.12) based on an anti-unitary point group.

17.5 The representation groups of anti-unitary point groups

In Section 14.4.2, we have shown that the representations of a wave vector space group

Ĝk can be formed via the projective unirreps of the point co-group Ĝk. Analogously,

the co-representations of an anti-unitary wave vector space group Ĥ z
k can be formed

via the projective co-representations of the corresponding anti-unitary point group Ĥ z
k

(Kim 1984a). According to Section 12.4, a projective representation of a group is p-

equivalent to a vector representation of its representation group. Since an analogous

theorem also holds for co-representations of an anti-unitary group, we shall ®rst

construct the representation groups of anti-unitary point groups H z extending those of
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Table 17.2. The representation groups of the unitary and anti-unitary point groups (of

®nite order)

1. C9n: x n � e9, e92 � e

2. Ce
n9: C9n; xa � ax, a2 � ôe9 ô2 � e

(ô � 1, if n is odd)

3. Cq
n9: C9n; xa � ax, a2 � ôe9x; ô2 � e

(ô � 1, if n is even)

4. Cu
n9: C9n; xax � îa, a2 � ôe; î2 � ô2 � e

(î � 1, if n is odd)

5. C9ni: x n � e9, e92 � e, xI � âIx, I2 � e; â2 � e

(â � 1, if n is odd)

6. Ce
ni9 : C9ni(â); xa � ax, Ia � æaI , a2 � ôe9; æ2 � ô2 � e

(â � ô � 1, if n is odd)

7. C
q
ni9 : C9ni(â � 1); xa � ax, Ia � æaI , a2 � ôe9x; æ2 � ô2 � e

(ô � 1, if n is even)

8. Cu
ni9 : C9ni(â); xax � îa, Ia � æaI , a2 � ôe; î2 � æ2 � ô2 � e

(â � î � 1, if n is odd)

9. D9n: x n � y2 � (xy)2 � e9, e92 � e

10. De
29r: D92r; xa � îax, ya � çay, a2 � ôe9; î2 � ç2 � ô2 � e

11. De
29r�1: D92r�1; xa � ax, ya � ay, a2 � ôe9; ô2 � e

12. D
q
29r: D92r; xa � ax, ya � ayx, a2 � ôe9x; ô2 � e

13. D
q
29r�1: D92r�1; xa � ax, ya � çayx, a2 � ôe9x; ç2 � ô2 � e

14. D9ni: x n � y2 � (xy)2 � e9, e92 � e, xI � âIx, yI � ãIy, I2 � e;

â2 � ã2 � e (â � 1, if n is odd)

15. De
29r,i: D92r,i (â, ã); xa � îax, ya � çay, Ia � æaI , a2 � ôe9;

î2 � ç2 � æ2 � ô2 � e

16. De
29r�1,i: D92r�1,i(ã); xa � ax, ya � ay, Ia � æaI , a2 � ôe9; æ2 � ô2 � e

17. D
q
29r,i: D92r,i(â � 1, ã); xa � ax, ya � ayx, Ia � æaI , a2 � ôe9x; æ2 � ô2 � e

18. D
q
29r�i,i: D92r�i,i(ã); xa � ax, ya � çayx, Ia � æaI , a2 � ôe9x; ç2 � æ2 � ô2 � e

19. T 9: x2 � y3 � e9, (xy)3 � e, e92 � e

20. T e9: T 9; xa � ax, ya � ay, a2 � ôe9; ô2 � e

21. T q9: T 9; xa � ax, yay � ax, a2 � ôe9x; ô2 � e

22. T 9i: T 9; Ix � xI , Iy � yI , I2 � e

23. T e
i 9: T 9i; xa � ax, ya � ay, Ia � æaI , a2 � ôe9; æ2 � ô2 � e

24. T
q
i 9: T 9i; xa � ax, ya � axyÿ1, Ia � æaI , a2 � ôe9x; æ2 � ô2 � e

25. O9: x4 � y3 � (xy)2 � e9, e92 � e

26. Oe9: O9; xa � îax, ya � ay, a2 � ôe9; î2 � ô2 � e

27. O9i: x4 � y3 � (xy)2 � e9, e92 � e, xI � âI x, yI � I y, I2 � e; â2 � e

28. Oe
i 9: O9i(â); xa � îax, ya � ay, Ia � æaI , a2 � ôe9; î2 � æ2 � ô2 � e

29. Y 9: x5 � y3 � (xy)2 � e9, e92 � e

30. Y e9: Y 9; xa � ax, ya � ay, a2 � ôe9; ô2 � e

31. Y 9i: Y 9i; I x � xI , I y � yI , I2 � e

32. Y e
i 9: Y 9i; xa � ax, ya � ay, Ia � æaI , a2 � ôe9; æ2 � ô2 � e

1. e is the identity element, e9 is 2ð rotation, I is the inversion.

2. The second-order elements â, ã, î, ç, æ, ô and e9 are all in the center of the

respective H z9.
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the unitary point groups introduced in Section 12.5. Then, through their co-unirreps,

we shall show how to construct the co-unirreps of the anti-unitary wave vector space

groups Ĥ z
k in the next section.

On account of the isomorphism for anti-unitary point groups discussed in Section

16.3, it is suf®cient to construct the representation groups of the following three kinds

of anti-unitary point groups:

H e, H q, H u (17:5:1)

where H is a proper rotation group P or a rotation±inversion group Pi � P 3 Ci.

Hereafter the representation group of H z shall be denoted by H z9. In general

Pz
i ' Pz 3 Ci. However, Pz

i 9 need not be equivalent to Pz9 3 Ci because the inversion

I need not commute with a � èz in the representation group. For convenience, we

have presented a total of 22 kinds of H z, in Table 17.2, postponing their constructions.

These are described by the de®ning relations in terms of the abstract group generators,

which are common to all groups isomorphic to each other. Also included in Table 17.2

are the representation groups of the unitary groups determined in Section 12.5. Thus,

Table 17.2 provides all the representation groups of all ®nite point groups (unitary or

anti-unitary) through isomorphism.

Construction of the representation groups H z9 of H z is as straightforward as it was

in the case of those of the unitary point group G given in Section 12.5. The only

difference is that there exists an anti-unitary operator a � èz for H z. We shall begin

with the most general projective representation of the most general anti-unitary point

group Pz
i , which may be expressed by the de®ning relations with three unitary

generators x, y and I and an anti-unitary generator a � èz as follows:

x n � y m � (xy) l � e9, I2 � e92 � e (17:5:2a)

IxI � âx, IyI � ãy (17:5:2b)

aÿ1xa � îxz, aÿ1 ya � çyz, aÿ1 Ia � æI , a2 � ôe9z2 (17:5:2c)

where the 2ð rotation e9 is in the center of the whole group and X z � zÿ1 Xz is the

conjugate operator of X by z; â, ã, î, ç, æ and ô are the projective factors with

modulus unity whose values de®ne the class of factor systems for a projective co-

representation of the point group. These values are determined self-consistently by the

gauge transformations of the generators or by the mutual conjugations of the

generators, in particular, with respect to the anti-unitary generator a. These will be

shown to satisfy the same quadratic equation

x2 � 1

analogously to the case of the unitary groups given in (12.5.8b).

The representation group Pz
i 9 is then de®ned by the de®ning relations (17.5.2a)±

(17.5.2c) with the original generators of Pz
i and the projective factors â, ã, î, ç, æ and

ô regarded as abstract generators of order two in the center of the group.

We shall ®rst discuss some of the general properties of the projective factors.

Previously, in (12.5.8b), we have shown that the projective factors â and ã for the

rotation inversion groups Pi satisfy

â2 � ã2 � 1 (17:5:2d)

where â � 1 if n is odd and ã � 1 if m is odd. Some of the negative roots may not be
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allowed on account of the compatibility condition with respect to the anti-unitary

augmentor a � èz for Pi. Now, by the similarity transformation of (17.5.2a) with the

anti-unitary operator a, we obtain, using (17.5.2c),

î n � çm � (îç) l � 1, æ2 � 1 (17:5:3a)

Next, by the conjugation of a2 � ôe9z2 with a, we obtain aÿ1z2a � ô2z2, so that

ô2 � 1 for H e9 or H u9; ô2 � î for H q9 (17:5:3b)

because z2 � e for H e9, z2 � e9 for H u9 and z2 � x for H q9. Eventually we will

establish that ô2 � 1 for every H z9. Furthermore, by the conjugation of aÿ1 Ia � æI

with a, we obtain aÿ2 Ia2 � I , which leads to xÿ1 Ix � I with z2 � x for P
q
i 9, so that,

from (17.5.2b),

â � 1 for P
q
i 9 (17:5:3c)

which holds even if n is even; cf. (17.5.2d). With the general preparation given above

we shall give a further speci®cation of the projective factors for each type of the

representation groups:

(i) Ce
n9: x n � e9, e92 � e, aÿ1xa � îx and a2 � ôe9, where î � 1 and ô2 � 1 (ô � 1

when n is odd).

Proof. From (17.5.3a) and (17.5.3b) we have î n � ô2 � 1. To show that î � 1, we

rewrite aÿ1xa � îx in the form aÿ1î1=2xa � î1=2x and then introduce a gauge

transformation, using î n=2 � �1,

î1=2x! x, î n=2e9! e9, îÿn=2ô! ô

which maps off î from Ce
n9 as follows:

x n � e9, e92 � e, aÿ1xa � x, a2 � ôe9

Next, for an odd n, we can also map off ô by a further gauge transformation, x! ôx,

ôe9! e9, because ôn � ô for an odd n.

(ii) Cq
n9: x n � e9, e92 � e, aÿ1xa � x and a2 � ôe9x, where ô2 � 1 (ô � 1 when n is

even).

Proof. Here î � 1 is shown as in (i) so that ô2 � 1 from (17.5.3b). When n is even, ô
is mapped off by a gauge transformation ôx! x.

(iii) Cu
n9: x n � e9, e92 � e, aÿ1xa � îxÿ1 and a2 � ôe, where î2 � ô2 � 1 (î � 1

when n is odd).

Proof. From (17.5.3a) and (17.5.3b) we have î n � ô2 � 1. Moreover, the similarity

transformation of aÿ1xa � îxÿ1 by a yields î2 � 1, so that î � 1 for an odd n.

(iv) De
n9: x n � y2 � (xy)2 � e9, e92 � e, aÿ1xa � îx, aÿ1 ya � çy and a2 � ôe9,

where î2 � ç2 � ô2 � 1 (î � ç � 1 when n is odd).

Proof. From (17.5.3a) and (17.5.3b) we have

î n � î2 � ç2 � ô2 � 1
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which immediately yields î � 1 for an odd n. To show that ç � 1 for an odd n, we

map off ç � ÿ1 � i2 via aÿ1iya � iy and the gauge transformation iy! y, ÿx! x,

ÿe9! e9, ÿô! ô.

(v) Dq
n9: x n � y2 � (xy)2 � e9, e92 � e, aÿ1xa � x, aÿ1 ya � çyx and a2 � ôe9x,

where ç2 � ô2 � 1 (ç � 1 when n is even).

Proof. The proof follows from (17.5.3a) and (17.5.3b) except that ç � 1 for an even

n; this is shown by mapping off ç � ÿ1 by a gauge transformation, ÿy! y, ÿx! x

and ÿô! ô.

(vi) Pe9 (P � T , O, Y ): x n � y3 � (xy)2 � e9, e92 � e, aÿ1xa � îx, aÿ1 ya � çy

and a2 � ôe9, where î2 � ç � 1 (î � 1 when n is odd) and ô2 � 1.

Proof. From (17.5.3a) and (17.5.3b) we have

ç � î2, î6ÿn � 1; ô2 � 1

For O, for which n � 4, we have î2 � 1 so that ç � 1. For Y , for which n � 5, we

have î � 1 and hence ç � 1. For T, for which n � 3, we have î3 � ç3 � (îç)2 � 1

directly from (17.5.3a), so that some of the de®ning relations are rewritten as

aÿ1î2xa � î2x, aÿ1ç2 ya � ç2 y

Accordingly, the gauge transformation î2x! x, ç2 y! y maps off the parameters î
and ç in the de®ning relations completely.

(vii) T q9: x2 � y3 � e9, (xy)3 � e, e92 � e, aÿ1xa � îx, aÿ1 ya � çxyÿ1 and a2 �
ôe9x, where î � ç � ô2 � 1. Here, we have taken x � 2z and y � 3xyz for

convenience of the group representation so that q � 4z.

Proof. From (17.5.3a) we obtain î � ç3 � 1 so that ô2 � 1 from (17.5.3b). Then the

similarity transformation4 of aÿ1 ya � çxyÿ1 by a yields

xÿ1 yx( aÿ2 ya2 � ç�xç� yxÿ1 � ç�2xyxÿ1

Since xÿ1 yx � xyxÿ1 from x2 � e9, we obtain ç2 � 1, which yields ç � 1 together

with ç3 � 1.

(viii) Pz
i 9(â, ã; î, ç, æ; ô): here the parameters are determined from those of P9i(â, ã)

and of Pz9(î, ç; ô); also æ2 � 1, from (17.5.3a), and â � 1 for P
q
i 9, from

(17.5.3c). Note that Pz
i 9 6' Pz9 3 Ci unless â � ã � æ � 1.

The representation groups of the anti-unitary point groups thus determined have

been presented in Table 17.2, which was written down ®rst by Kim (1984a) without

proof. In the next section, we shall determine all the co-unirreps of these representa-

tion groups which provide all the projective co-unirreps of the anti-unitary point

groups. From these we will determine the co-unirreps of the anti-unitary wave vector

space groups.

4 yz � xyÿ1 is obtained from Table 11.2.
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17.6 The projective co-unirreps of anti-unitary point groups

By construction, every projective unirrep of a group G is given by a vector unirrep of

the representation group G9 up to p-equivalence. An analogous theorem also holds for

the projective co-unirreps of an anti-unitary group H z. Each coef®cient set fáig in a

representation group H z9 given by Table 17.2 de®nes a class of factor systems for the

anti-unitary point groups H z of ®nite orders. Thus, the number of p-equivalence

classes (or the order of the multiplicator) for a given H z equals 2í, where í is the

number of the binary coef®cients in H z9. According to Table 17.2, the maximum

number of classes for a given H z equals 64 (� 26), which occurs for De
29r,i, whereas the

minimum number equals unity, which occurs for Ce
29r�1 and C

q
29r. According to the

present classi®cation, there exist in total 180 p-equivalence classes for all H z and 13

p-inequivalence classes for the unitary point groups.

We shall construct the co-unirreps of the representation groups H z9 listed in Table

17.2 (the icosahedral groups are excluded) using the modi®ed theory of co-representa-

tions introduced in Section 16.4. For convenience, we reproduce here some of the

basic results of the theory with some modi®cations for the notations of the co-

unirreps.

Let H9 be the unitary halving subgroup of H z9 such that

H z9 � H9� aH 9; a � èz

and let fÄ(í)(H9)g be a complete set of the unirreps of H9. Then, from (16.4.10a),

there exists a unitary transformation matrix N (a) such that

Ä(í)(aÿ1 h9a)� � N (a)ÿ1Ä(í)(h9)N (a); 8 h9 2 H9 (17:6:1)

From this, it has been shown in Section 16.4.2 that there exist three types of co-

unirreps for H z9.
For type a, í � í and N (a)N (a)� � Ä(í)(a2). There exist two equivalent co-

unirreps:

S(í�)(h9) � Ä(í)(h9), S(í�)(a) � �N (a) (17:6:2a)

Either one of them provides the required co-unirrep.

For type b, í � í and N (a)N (a)� � ÿÄ(í)(a2). The co-unirrep is

S(í,í)(h9) � Ä(í)(h9) 0

0 Ä(í)(h9)

� �
S(í,í)(a) � 0 ÿN (a)

N (a) 0

� �
(17:6:2b)

For type c, í 6� í. The co-unirrep is

S(í,í)(h9) � Ä(í)(h9) 0

0 Ä(í)(h9)

� �
S(í,í)(a) � 0 Ä(í)(a2)N (a)�

N (a) 0

� �
(17:6:2c)

where N (a)� is the transpose of N (a). These three types of co-unirreps are denoted by

the following notations.
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S(Ä(í); N (a)) for S(í�) of (17:6:2a) 2 type a

S(Ä(í), Ä(í); N (a)) for S(í,í) of (17:6:2b) 2 type b

S(Ä(í), Ä(í); N (a)) for S(í,í) of (17:6:2c) 2 type c (17:6:3)

The co-unirreps of H z9 given by (17.6.2) are completely explicit in terms of the

unirreps Ä(í)(H9) of H9 except for the transformation matrix N (a). When Ä(í) is one-

dimensional, one can take N (a) � 1. In such a trivial case we shall delete N from

(17.6.3). For a higher-dimensional case, one determines N (a) from (17.6.1) for each

class of factor systems by using the de®ning relations of the group generators given in

Table 17.2. Let us illustrate how to determine N (a) for the representation group H z9 of

the most general anti-unitary point group de®ned by (17.5.2). It has ten generators,

fx, y, I ; â, ã; î, ç, æ; a, ôg, and its halving subgroup H9 of H z9 is de®ned by a direct

product group,

H9 � P9i(x, y, I ; â, ã) 3 Cî 3 Cç 3 Cæ (17:6:4)

where P9i is the representation group of a rotation±inversion group Pi and Cá � fe, ág
is a group of order 2 with á � î, ç or æ. Thus all the unirreps of H9 follow from the

unirreps of the group P9i given in Table 12.4 for each allowed set (â, ã) and the one-

dimensional representations of Cî, Cç and Cæ. Now, from (17.6.1) and (17.5.2c), the

transformation matrix N (a) is determined by the set of simultaneous equations

îÄ(í)(xz)� � N (a)ÿ1Ä(í)(x)N (a)

çÄ(í)(yz)� � N (a)ÿ1Ä(í)(y)N (a)

æÄ(í)(I)� � N (a)ÿ1Ä(í)(I)N (a) (17:6:5)

for a class of factor systems de®ned by an allowed set of values of î, ç and æ given in

Table 17.2. Obviously, this is the most complicated case; usually there are fewer

generators in a point group. Calculation of N (a) from (17.6.5) is straightforward, as

will be exempli®ed later. For almost all H z9, the transformation matrices are expressed

by the unit matrix 1d with appropriate dimensionality d, by the Pauli spin matrices

(ó x, ó y and ó z) or by their direct products except for a few cases in which the anti-

unitary operator a involves the operator q (� c2n) (see, for example, Table 17.3 (12)).

Since the coef®cients î, ç and æ in (17.6.5) are �1, frequently the anticommutation

relations ó jó ió j � ÿó i (i 6� j) of the spin matrices play the crucial role for determin-

ing N (a), see Examples 2 and 3 below.

Finally, from a2 � ôe9z2, we have

Ä(í)(a2) � ôÄ(í)(e9)Ä(í)(z2) (17:6:6a)

where ô � �1 and Ä(í)(e9) � 1 (ÿ1) for an integral (half-integral) unirrep of H9. Note

that the coef®cient ô is the only coef®cient which is not involved in the determination

of the transformation matrix N (a). As a result, when í � í, the sign change of ô
(� �1) simply interchanges the type a and type b co-unirreps, because, according to

the type criteria given in (17.6.2a) and (17.6.2b), we have

Ä(í)(a2) � ôÄ(í)(e9)Ä(í)(z2) � �N (a)N (a)� (17:6:6b)

where the � (ÿ) sign is for type a (b). The change of sign does not affect type c. This

fact will be utilized later to simplify the tabulation of the projective co-unirreps.
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Table 17.3. The projective unirreps and co-unirreps of the unitary and anti-unitary

point groups (of ®nite order)

1. Cn(K0)

K0: Mm; m � m0, ÿ1
2
n , m0 < 1

2
n

2. Ce
n(K; ô � 1, if n is odd)

K: S(M0), S(M ne=2), S(M no=2, M no=2), S(Mm, Mÿm);

m � m� � 1
2
, 1, . . . , 1

2
(nÿ 1)

3. Cq
n(K; ô � 1, if n is even)

K: S(M0), S(Mno=2), S(Mne=2, Mne=2), S(Mm, Mÿm); m � m�

4. Cu
n(Kt; t � fîg; î � 1 if n is odd)

K1: S(Mm); m � m0

K2(n � 2r): S(Mm, M mÿr); m � m9 � 1
2
, 1, . . . , r

5. Cni(K0
s ; s � fâg; â � 1, if n is odd)

K0
1: Cn(K0) 3 Ci; M�m; m � m0

K0
2(n � 2r): Dm � D(Mm, M mÿr); m � m9

6. Ce
ni(Kst; s � fâg, t � fæg; â � ô � 1, if n is odd)

K11: Ce
n(K) 3 Ci

K12: S(M�m, Mÿÿm); m � m0

K21(n � 2r): S(Dr; 12), S(Dre=2; ó x), S(Dro=2, Dro=2; ó x),

S(Dm, Drÿm; ó x); m � my � 1
2
, 1, . . . , 1

2
(r ÿ 1)

K22(n � 2r): S(Dr; ó z), S(Dre=2, Dre=2; ó y), S(Dro=2; ó y)

S(Dm, Drÿm; ó y); m � my

7. C
q
ni(Kt; t � fæg; ô � 1, if n is even)

K1: Cq
n(K) 3 Ci

K2: S(M�m, Mÿÿm); m � m0

8. Cu
ni(Kst; s � fâg, t � fî, æg; î � 1, if n is odd)

K11: Cu
n(K1) 3 Ci

K12: S(M�m, Mÿm); m � m0

K13(n � 2r): Cu
2r(K2) 3 Ci

K14(n � 2r): S(M�m, Mÿmÿr); m � m0, ÿr , m0 < r

K21(n � 2r): S(Dm; 12); m � m9 � 1
2
, 1, . . . , r

K22(n � 2r): S(Dm; ó z); m � m9
K23(n � 2r): S(Dm; ó x); m � m9
K24(n � 2r): S(Dm, Dm; ó y); m � m9

9. Dn(K0)

K0: A1, A2, B1, B2, Em; m � m� � 1
2
, 1, . . . , 1

2
(nÿ 1)
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10. De
2r(Kt; t � fî, çg)

K1: S(A1), S(A2), S(B1), S(B2), S(Em; 12; ó y); m � m� � 1
2
, 1, . . . , r ÿ 1

2

K2: S(A1, A2), S(B1, B2), S(Em, Em; ó y, 12); m � m�
K3: S(A1, B1), S(A2, B2), S(Ere=2; ó z), S(Ero=2, Ero=2; ó x),

S(Em, Erÿm; ó z, ó x); m � my � 1
2
, 1, . . . , 1

2
(r ÿ 1)

K4: S(A1, B2), S(A2, B1), S(Ere=2; ó x), S(Ero=2, Ero=2; ó z),

S(Em, Erÿm; ó x, ó z); m � my

11. De
2r�1(K)

K1: S(A1), S(A2), S(B1, B2), S(Em; 12, óy); m � m9 � 1
2
, 1, . . . , r

12. D
q
2r(K)

K: S(A1), S(A2), S(B1, B2), S(Em; Rm, ó y Rm); m � m� � 1
2
, 1, . . . , r ÿ 1

2

13. D
q
2r�1(Kt; t � fçg)

K1: S(A1), S(A2), S(B1), S(B2), S(Em; Rm, ó y Rm); m � m9
K2: S(A1, A2), S(B1, B2), S(Em, Em; ó y Rm, Rm); m � m9

14. Dni(K0
s ; s � fâ, ãg; â � 1, if n is odd)

K0
1: Dn(K0) 3 Ci; A�1 , A�2 , B�1 , B�2 , B�m; m � m� � 1

2
, 1, . . . , 1

2
(nÿ 1)

K0
2: DA � D(A1, A2), DB � D(B1, B2), D� y

m � D(Em; �ó y); m � m�
K0

3(n � 2r): D11 � D(A1, B1), D22 � D(A2, B2), D�z
r=2 � D(Er=2; �ó z),

Dz
m,rÿm � D(Em, Erÿm; ó z); m � my � 1

2
, 1, . . . , 1

2
(r ÿ 1)

K0
4(n � 2r): D12 � D(A1, B2), D21 � D(A2, B1), D�x

r=2 � D(Er=2; �ó x);

Dx
m,rÿm � D(Em, Erÿm; ó x�; m � my

15. De
2r,i(Kst; s � fâ, ãg, t � fî, ç, æg)

K11: De
2r(K1) 3 Ci

K12: S(A�1 , Aÿ1 ), S(A�2 , Aÿ2 ), S(B�1 , Bÿ1 ), S(B�2 , Bÿ2 ),

S(E�m, Eÿm; 12, ó y); m � m� � 1
2
, 1, . . . , r ÿ 1

2

K13: De
2r(K2) 3 Ci

K14: S(A�1 , A�2 ), S(B�1 , B�2 ), S(E�m, Eÿm; óy, 12); m � m�
K15: De

2r(K3) 3 Ci

K16: S(A�1 , B�1 ), S(A�2 , B�2 ), S(E�m, Eÿrÿm; ó z, ó x); m � m�
K17: De

2r(K4) 3 Ci

K18: S(A�1 , B�2 ), S(A�2 , B�1 ), S(E�m, Eÿrÿm; ó x, ó z); m � m�
K21: S(DA; 12), S(DB; 12), S(D� y

m , Dÿ y
m ; 12, ó y); m � m�

K22: S(DA; ó z), S(DB; ó z), S(D� y
m ; 12, ó y); m � m�

K23: S(DA; ó x), S(DB; ó x), S(D� y
m , Dÿ y

m ; ó y, 12); m � m�
K24: S(DA, DA; ó y), S(DB, DB; ó y), S(D� y

m , D� y
m ; óy, 12); m � m�

K25: S(DA, DB; ó x), S(D
� y

re=2
; ó z), S(D

� y

ro=2
, D
� y

ro=2
; ó x),

S(D� y
m , D� y

rÿm; ó z, ó x); m � my � 1
2
, 1, . . . , 1

2
(r ÿ 1)

K26: S(DA, DB; ó y), S(D� y
m , Dÿ y

rÿm; ó z, ó x); m � m�
K27: S(DA, DB; 12), S(D

� y

re=2
; ó x), S(D

� y

ro=2
, D
� y

ro=2
; ó z),

S(D� y
m , D� y

rÿm; ó x, ó z); m � my

K28: S(DA, DB; ó z), S(D� y
m , Dÿ y

rÿm; ó x, ó z); m � m�
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Table 17.3. (cont.)

K31: S(D11; 12), S(D22; 12), S(D�z
re=2; 12), S(D�z

ro=2
, Dÿz

ro=2; ó y),

S(Dz
m,rÿm; 14, ó z 3 óy); m � my � 1

2
, 1, . . . , 1

2
(r ÿ 1)

K32: S(D11; 12), S(D22; ó z), S(D�z
re=2

, Dÿz
re=2; 12), S(D�z

ro=2; óy),

S(Dz
m,rÿm; ó z 3 12, 12 3 ó y); m � my,

K33: S(D11, D22; 12), S(D�z
re=2

, Dÿz
re=2; ó y), S(D�z

ro=2, D�z
ro=2; 12),

S(Dz
m,rÿm, Dz

m,rÿm; ó z 3 óy, 14); m � my

K34: S(D11, D22; ó z), S(D�z
re=2, D�z

re=2; óy), S(D�z
ro=2

, Dÿz
ro=2; 12),

S(Dz
m,rÿm, Dz

m,rÿm; 12 3 ó y, ó z 3 12); m � my

K35: S(D11; ó x), S(D22; ó x), S(D�z
re=2; ó z), S(D�z

ro=2
, Dÿz

ro=2; ó x),

S(Dm,rÿm; ó x 3 ó z, ó y 3 ó x); m � my

K36: S(D11, D11; ó y), S(D22, D22; ó y), S(D�z
re=2

, Dÿz
re=2; ó z),

S(D�z
ro=2, D�z

r0=2; ó x), S(Dz
m,rÿm, Dz

m,rÿm; ó y 3 ó z, ó x 3 ó z); m � my

K37: S(D11, D22; ó x), S(D�z
re=2

, Dÿz
re=2; ó x), S(D�z

ro=2, D�z
r0=2; ó z),

S(Dz
m,rÿm, Dz

m,rÿm; óy 3 ó x, ó x 3 ó z); m � my

K38: S(D11, D22; ó y), S(D�z
re=2; ó x), S(D�z

ro=2
, Dÿz

ro=2; ó z),

S(Dz
m,rÿm; ó x 3 ó x, ó y 3 ó z); m � my

K41: S(D12; 12), S(D21; 12), S(D�x
re=2; 12), S(D�x

ro=2
, Dÿx

ro=2; ó y),

S(Dx
m,rÿm; 14, ó z 3 óy); m � my

K42: S(D12; ó z), S(D21; ó z), S(D�x
re=2

, S(Dÿx
re=2; 12), S(D�x

ro=2; ó y),

S(Dx
m,rÿm; ó z 3 12, 12 3 ó y); m � my

K43: S(D12, D21; 12), S(D�x
re=2

, Dÿx
re=2; ó y), S(D�x

ro=2; 12),

S(Dx
m,rÿm, Dx

m,rÿm; ó z 3 ó y, 14); m � my

K44: S(D12, D21; ó z), S(D�x
re=2, D�x

re=2; óy), S(D�x
ro=2

, Dÿx
ro=2; 12),

S(Dx
m,rÿm, Dx

m,rÿm; 12 3 óy, ó z 3 12); m � my

K45: S(D12, D21; ó x), S(D�x
re=2

, Dÿx
re=2; ó z), S(D�x

ro=2, D�x
ro=2; ó x),

S(Dx
m,rÿm, Dx

m,rÿm; ó y 3 ó z, ó x 3 ó x); m � my

K46: S(D12, D21; ó y), S(D�x
re=2; ó z), S(D�x

ro=2
, Dÿx

ro=2; ó x),

S(Dx
m,rÿm; ó x 3 ó z, ó y 3 ó x); m � my

K47: S(D12; 12), S(D21; ó x), S(D�x
re=2; ó x), S(D�x

ro=2
, Dÿx

ro=2; ó z),

S(Dx
m,rÿm; ó x 3 ó x, ó y 3 ó x); m � my

K48: S(D12, D12; ó y), S(D21, D21; ó y), S(D�x
re=2

, Dÿx
re=2; ó x),

S(D�x
ro=2, D�x

ro=2; ó z), S(Dx
m,rÿm, Dx

m,rÿm; óy 3 ó x, ó x 3 ó z); m � my

16. De
2r�1,i(Kst; s � fãg, t � fæg)

K11: De
2r�1(K1) 3 Ci

K12: S(A�1 , Aÿ1 ), S(A�2 , Aÿ2 ), S(B�1 , B�2 ), S(E�m, Eÿm; 12, ó y); m � m9 � 1
2
, 1, . . . , r

K21: S(DA, 12), S(DB, DB; ó x), S(D� y
m , Dÿ y

m ; 12, ó y); m � m9
K22: S(DA; ó z), S(DB; ó y), S(D� y

m ; 12, ó y); m � m9

17. D
q
2r,i(Kst; s � fãg, t � fæg)

K11: D
q
2r(K) 3 Ci

K12: S(A�1 , Aÿ1 ), S(A�2 , Aÿ2 ), S(B�1 , B�2 ), S(E�m, Eÿm; Rm, ó y Rm); m � m� � 1
2
, 1,

. . . , r ÿ 1
2

K21: S(DA; 12), S(DB, DB; ó x), S(D� y
m , Dÿ y

m ; Rm, ó y Rm); m � m�
K22: S(DA; ó z), S(DB; ó y), S(D� y

m ; Rm, ó y Rm); m � m�
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18. D
q
2r�1,i(Kst; s � fãg, t � fç, æg)

K11: D
q
2r�1(K1) 3 Ci

K12: S(A�1 , Aÿ1 ), (A�2 , Aÿ2 ), S(B�1 , Bÿ1 ), (B�2 , Bÿ2 ),

S(E�m, Eÿm; óy Rm); m � m9 � 1
2
, 1, . . . , r

K13: D
q
2r�1(K2) 3 Ci

K14: S(A�1 , A
�
2 ), S(B�1 , B

�
2 ), S(E�m, Eÿm; óy Rm, Rm); m � m9

K21: S(DA; 12), S(DB; 12), S(D� y
m , Dÿ y

m ; Rm, ó y Rm); m � m9
K22: S(DA; ó z), S(DB; ó z), S(D� y

m ; Rm, ó y Rm); m � m9
K23: S(DA; ó x), S(DB; ó x), S(D� y

m , Dÿ y
m ; ó y Rm, Rm); m � m9

K24: S(DA, DA; ó y), S(DB, DB; ó y), S(D� y
m , D� y

m ; óy Rm, Rm); m � m9

19. T (K0)

K0: A, A9, A 0, T , E1=2, E91=2 � E1=2 3 A9, E 01=2 � E1=2 3 A 0

20. T e(K)

K: S(A), S(A9, A 0), S(T ; 13), S(E1=2; óy), S(E91=2, E 01=2; ó y)

21. T q(K)

K: S(A), S(A9), S(A 0), S(T ; 4z), S(E1=2; Z), S(E91=2; Z), S(E 01=2; Z)

22. Ti(K0)

K0: T (K0) 3 Ci; A�, A9�, A 0�, T�, E�1=2, E9�
1=2, E 0�

1=2

23. T e
i (Kt; t � fçg)

K1: T e(K) 3 Ci

K2: S(A�, Aÿ), S(A9�, A 0�), S(T�, Tÿ; 13), S(E�
1=2

, Eÿ1=2; ó y),

S(E9�
1=2, E 0�

1=2
; ó y)

24. T
q
i (Kt; t � fçg)

K1: T q 3 Ci

K2: S(A�, Aÿ), S(A9�, A9ÿ), S(A 0�, A 0ÿ), S(T�, Tÿ; 4z),

S(E�
1=2

, Eÿ1=2; Z), S(E9�
1=2

, E9ÿ
1=2; Z), S(E 0�

1=2
, E 0ÿ

1=2; Z)

25. O(K0)

K0: A1, A2, E, T1, T2, E1=2, E91=2 � E1=2 3 A2, Q � E1=2 3 E

26. Oe(Kt; t � fîg)
K1: S(A1), S(A2), S(E; 12), S(T1; 13), S(T2; 13), S(E1=2; ó y),

S(E91=2; óy), S(Q; óy 3 12)

K2: S(A1, A2), S(E, E; óy), S(T1, T2; 13), S(E1=2, E91=2; ó y),

S(Q, Q; óy 3 ó y)

27. Oi(K0
s ; s � fâg)

K0
1: O(K0) 3 Ci; A�1 , A�2 , E�, T�1 , T�2 , E�1=2, E9�1=2, Q�

K0
2: DA � D(A1, A2), D

� y
E � D(E; �ó y), DT � D(T1, T2; 13),

D1=2,1=2 � D(E1=2, E91=2; 12), D
� y
Q � D(Q; �12 3 ó y)
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Table 17.3. (cont.)

28. Oe
i (Kst; s � fâg, t � fî, æg)

K11: Oe(K1) 3 Ci

K12: S(A�1 , Aÿ1 ), S(A�2 , Aÿ2 ), S(E�, Eÿ; 12), S(T�1 , Tÿ1 ; 13),

S(T�2 , Tÿ2 ; 13), S(E�
1=2

, Eÿ1=2; ó y), S(E9�1=2, E9ÿ1=2; óy),

S(Q�, Qÿ; ó y 3 12)

K13: Oe(K2) 3 Ci

K14: S(A�1 , A�2 ), S(E�, Eÿ; ó y), S(T�1 , T�2 ; 13),

S(E�1=2, E9�
1=2

; óy), S(Q�, Qÿ; ó y 3 ó y)

K21: S(DA; 12), S(D
� y
E , D

ÿ y
E ; 12), S(DT ; 16), S(D1=2,1=2; 12 3 ó y),

S(D
� y
Q , D

ÿ y
Q ; óy 3 12)

K22: S(DA; ó z), S(D
� y
E ; 12), S(DT ; ó z 3 13),

S(D1=2,1=2; ó z 3 ó y), S(D
� y
Q ; ó y 3 12)

K23: S(DA; ó x), S(D
� y
E , D

ÿ y
E ; óy), S(DT ; ó x 3 13),

S(D1=2,1=2; ó x 3 ó y), S(D
� y
Q , D

ÿ y
Q ; ó y 3 ó y)

K24: S(DA, DA; ó y), S(D
� y
E , D

� y
E ; óy), S(DT , DT ; ó y 3 13),

S(D1=2,1=2, D1=2,1=2; óy 3 óy), S(D
� y
Q , D

� y
Q ; ó y 3 ó y)

1. All unirreps given for the ordinary unitary point groups are de®ned in Chapter 11.

All co-unirreps given in this table are for ô � 1.

2. m0, m�, m9 and my are integers or half integers de®ned by ÿ1
2
n ,

m0 < 1
2
n; m� � 1

2
, 1, . . . , 1

2
(nÿ 1); m9 � 1

2
, 1, . . . , r; my � 1

2
, 1, . . . , 1

2
(r ÿ 1) for a

given integer n or r.

3. n0 (ne) and ro (re) are odd (even) integers.

4. When two transformation matrices are given for a set of co-unirreps such as in

S(Em; 12, ó y) with m � m� for K1 of De
2r in (10), the ®rst one is for every integral

m and the second one is for every half-integral m.

5. In (14) D� y
m � D(Em; �ó y) means D� y

m � D(Em; ó y) and Dÿ y
m � D(Em; ÿó y).

S(A�1 , A�2 ) means S(A�1 , Aÿ1 ) and S(Aÿ1 , A�2 ); the (�) in the remaining notations

should be understood similarly.

6. The transformation matrix Rm in (12), (13), (17) and (18) is de®ned by

Rm �
cos (ðm=n) ÿsin (ðm=n)

sin (ðm=n) cos (ðm=n)

� �
7. The transformation matrix Z in (21) and (24) is de®ned by Z � 2ÿ1=2(ó y ÿ i12) if

the basis of E1=2 is [ö�(1
2
, 1

2
), öÿ(1

2
, 1

2
)], and Z � i2ÿ1=2(ó x ÿ óy) if the basis is

[ö(1
2
, 1

2
), ö(1

2
, ÿ1

2
)]. The rotation matrix 4z in (21) and (24) is de®ned, in terms of the

basis-vector notation given in Table 5.1, by

4z � [ j, ÿi, k] �
0 ÿ1 0

1 0 0

0 0 1

24 35
8. The above table differs from Table II given by the author in J. Math. Phys. 25, 189

(1984) for those related to the unirreps B1 and B2 of the group Dn due to the

exchange of their de®nitions in Table 11.5 from Table II.
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The projective co-unirreps of H z given by the vector co-unirreps of H z9 thus

determined are given in Table 17.3 together with the projective unirreps of the unitary

point groups determined previously in Table 12.4. These are classi®ed by the classes

of factor systems speci®ed by the representation of the coef®cient set fáig in the

representation groups. It is to be noted, however, that only those co-unirreps belonging

to the classes (90 of them) with ô � 1 are given in Table 17.3. Let us call two classes

mutually dual if they differ only in the coef®cient ô. Then the co-unirreps belonging to

the class K9 with ô � ÿ1 are obtained from those of its dual K with ô � 1 by

interchanging type a and type b, and leaving type c unchanged. In general, a class K

and its dual K9 are p-inequivalent. In cases for which K � K9 (p-equivalent), we have

set ô � 1 by mapping off ô � ÿ1, e.g. see Ce
29r�1 in Table 17.2 (2).

Since several coef®cients ái are involved in specifying a class of factor systems, it

is necessary to introduce a convenient system of notation for expressing a class. For

example, according to Table 17.2 (15), the representation group De
29r,i has a set of six

coef®cients fâ, ã; î, ç, æ; ôg, where the subset s � fâ, ãg characterizes the unitary

representation group D92r,i, whereas the subset t � fî, ç, æg characterizes the conjuga-

tions of the generators x, y and I by a, and ®nally ô characterizes a2. As one can see

from Tables 17.2 and 17.3, this is the most complicated case. Usually fewer coef®-

cients are contained in each subset s or t and often there exists only one subset s or t

or none besides ô. In the extreme cases even ô is ®xed to unity. In any case, each subset

s or t may be identi®ed by a number such that, for a one-member subset fá1g
1 � f1g, 2 � fÿ1g (17:6:7a)

for a two-member subset fá1, á2g
1 � f1, 1g, 2 � f1, ÿ1g, 3 � fÿ1, 1g, 4 � fÿ1, ÿ1g (17:6:7b)

and for a three-member subset fá1, á2, á3g
1 � f1, 1, 1g, 2 � f1, 1, ÿ1g, 3 � f1, ÿ1, 1g, 4 � f1, ÿ1, ÿ1g
5 � fÿ1, 1, 1g, 6 � fÿ1, 1, ÿ1g, 7 � fÿ1, ÿ1, 1g, 8 � fÿ1, ÿ1, ÿ1g

(17:6:7c)

There exists no subset with more than three members. Now, a class speci®ed by the

subsets s and t and ô � 1 is denoted by Kst and its dual with ô � ÿ1 is denoted by K9st.

Analogously, a class involved with one subset t is denoted by Kt, a class with no subset

besides ô is denoted by K and their duals are denoted by K9t and K9, respectively.

Finally, the classes of the unitary point groups are denoted by K0
s or K0. Obviously, no

dual can exist for the unitary classes. Table 17.3 contains a total of 90 classes of factor

systems for anti-unitary point groups H z and a total of 13 classes of factor systems for

the unitary point groups.

It is worthwhile to illustrate Table 17.3 through an example, postponing its con-

struction. According to Table 17.3(10), the group De
2r has a total of eight classes of

factor systems given by Kt and K9t, where t � fî, çg. The co-unirreps belonging to

one of them, say K2 (î � 1, ç � ÿ1; ô � 1), are given by

S(A1, A2), S(B1, B2), S(Em, Em; ó y, 12); m � m� � 1
2
, . . . , r ÿ 1

2
(17:6:8)

in terms of the notation introduced by (17.6.3). The class structure (or the type

distribution of the class) may conveniently be denoted by
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K2 � (c2
2brÿ1

4 jbr
4) 2 De

2r (17:6:9)

where c and b denote the types of the co-unirreps, their subscripts denote the

dimensions of representation, their superscripts denote the numbers of the respective

types, and, ®nally, the left-hand half of the bracket contains the integral co-unirreps for

which Ä(í)(e9) � 1, and the right-hand half contains the half-integral co-unirreps for

which Ä(í)(e9) � ÿ1. It should also be noted that the last 2r ÿ 1 co-unirreps

S(Em, Em; ó y, 12) given in (17.6.8) contain two transformation matrices ó y and 12; in

such a case, the ®rst one óy is for every integral m and the second one 12 is for every

half-integral m. One can immediately write down the co-unirreps belonging to the dual

class K92 from (17.6.8) as follows by changing type b to type a:

S(A1, A2), S(B1, B2), S(Em; ó y, 12); m � m� (17:6:10)

keeping in mind that Ä(í)(a2) � ÿÄ(í)(e9). The type distribution is given by

(c2
2arÿ1

2 jar
2).

Let us comment on the dimensions of the projective co-representations of H z.

According to Table 17.3, one-dimensional projective co-unirreps of H z occur only for

the vector co-representations. Excluding these trivial cases, the dimensions of the

projective co-unirreps are all even and limited to 2, 4, 6, 8 and 12. The highest

dimension 12 occurs for Oe
i . For the projective unirreps of the ordinary unitary groups,

the dimensions are limited to 1, 4 and 6 except for the trivial cases of the vector

unirreps, for which the dimensions are limited to 1, 2 and 3 (the icosahedral group is

excluded). In the following, we shall illustrate the method of constructing Table 17.3

through a few typical examples.

17.6.1 Examples for the construction of the projective co-unirreps of H z

Example 1. For the projective co-unirreps of Ce
n 2 K(ô � 1), the de®ning relations

taken from Table 17.2(2) are

x n � e9, xa � x, a2 � e9

where xa � aÿ1xa. The unirreps of Cn are

Mm(x) � exp (ÿ2ðim=n), ÿn=2 , m < n=2 (17:6:11a)

where m is an integer or a half integer. Since the representation is one-dimensional,

we may take N (a) � 1 in (17.6.1) and obtain

Mm(x)� � exp (2ðim=n) � Mÿm(x) (17:6:11b)

Here Mm 6� Mÿm, unless m � 0 or n=2, so that, from (17.6.3), we arrive at type c co-

unirreps given, with N (a) � 1, by

S(Mm, Mÿm); m � 1
2
, 1, . . . , 1

2
(nÿ 1) (17:6:11c)

When m � 0 or n=2, we have Mm � Mÿm so that we obtain either type a or type b co-

unirreps, from (17.6.6b) with ô � 1:

S(M0), S(M ne=2), S(M no=2, M no=2) (17:6:11d)

where ne (no) is an even (odd) n. These provide all the projective co-unirreps of

Ce
n 2 K(ô � 1) as presented in Table 17.3(2). Their type distributions for n > 2 are

fa2
1, c

n=2ÿ1
2 jcn=2

2 gn�even, fa1, c
(nÿ1)=2
2 jb2, c

(nÿ1)=2
2 gn�odd
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For the dual K9(ô � ÿ1) we have

fb2
2c

n=2ÿ1
2 jcn=2

2 gn�even, fb2, c
(nÿ1)=2
2 ja1, c

(nÿ1)=2
2 gn�odd

Here, K9 � K (p-equivalent) for an odd n consistent with Table 17.2(2), where we

have set ô � 1. Note, however, that one has p-equivalence between the integral and

half-integral representations due to the change in sign of ô.

Example 2. For the projective co-unirreps of Ce
2r,i 2 K22(â � ÿ1; æ � ÿ1; ô � 1)

from Table 17.2(5, 6) we have

x2r � e9, x I � ÿx, xa � x, I a � ÿI , a2 � e9

which implies that î � 1 and ç � ÿ1. Firstly, the projective unirreps �D(Mm,

M mÿr; 1) of the double point group C92r,i for K0
2(â � ÿ1) given in Table 12.4 are

reexpressed by

Dm(x) � exp (ÿimð=r)ó z, Dm(I) � ó x; m � 1
2
, 1, . . . , r (17:6:12a)

where ó z and ó x are the Pauli spin matrices. Since

Dm(x)� � ÿDrÿm(x), Dm(I)� � Drÿm(I) (17:6:12b)

from (17.6.5) with î � 1 and æ � ÿ1, we obtain N (a) � ó y. Thus, from (17.6.3) we

arrive at the type c co-unirreps of Ce
29r,i:

S(Dm, Drÿm; ó y); m � 1
2
, 1, . . . , 1

2
(r ÿ 1)

excluding m � r or 1
2
r. When m � r we have, from (17.6.12a),

Dr(x) � ÿó z, Dr(I) � ó x

Since these are real, we obtain N (a) � ó z via (17.6.5). Thus, from the type criteria

(17.6.6b) with ô � 1, we arrive at a type a co-unirrep given by

S(Dr; ó z)

Analogously, for m � r=2 we have Dr=2(x) � ÿió z, Dr=2(I) � ó x so that via (17.6.5)

we obtain N (a) � óy. Thus, from the type criteria (17.6.6b), we arrive at

S(Dre=2, Dre=2; ó y), S(Dro=2; óy)

where re (ro) is an even (odd) r. These provide the projective co-unirreps of

Ce
2r,i 2 K22 given in Table 17.3(6). Their type distributions are

fa2, b4, c
1
2
rÿ1

4 jc1
2
r

4 gr�even, fa2, c
(rÿ1)=2
4 ja2c

(rÿ1)=2
4 gr�odd

Example 3. For D
q
2r, the de®ning relations are, from Table 17.2(12),

D92r; xa � x, ya � yx, a2 � ôe9x; ô2 � 1 (17:6:13)

which imply that î � ç � 1. There exist only one class K(ô � 1) and its dual

K9(ô � ÿ1). Firstly, from Table 11.5, the unirreps of D2r are given by
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x � nz y � 2x

A1 1 1

A2 1 ÿ1

B1 ÿ1 1

B2 ÿ1 ÿ1

Em cm ÿ ióysm (ÿi)2mó z; m � 1
2
, 1, . . . , r ÿ 1

2

where cm � cos (2ðm=n) and sm � sin (2ðm=n). Note that Em(x) is real whereas

Em(y) is real for an integral m, but imaginary for a half-integral m.

From the unirreps of D2r given above we shall form the projective co-unirreps of

D
q
2r through the table of construction given below for the class K (ô � 1), from

(17.6.5) and (17.6.13):

h 2 D2r x y

ha x yx

A1(ha)� 1 1! A1(h); S(A1)

A2(ha)� 1 ÿ1! A2(h); S(A2)

B1(ha)� ÿ1 ÿ1! B2(h); S(B1, B2)

Em(ha)� cm ÿ ióysm �(ÿi)2mó z Em(x)

Em(h) cm ÿ ióysm (ÿi)2mó z; S(Em; Rm, ó y Rm)

Here the � (ÿ) sign is for an integral (half-integral) m. Only the last co-unirrep

S(Em; Rm, ó yRm) may require some explanation: Em(ha)� is equivalent to Em(h) via

(17.6.5) with N (a) � Rm for an integral m and óy Rm for a half-integral m, where Rm

is de®ned by

Rm � cm=2 ÿ ió ysm=2, Rÿ1
m � cm=2 � ió ysm=2

which is real and commutes with óy and hence with Em(x), and satis®es

Rÿ1
m ó z Rm � ó z Em(x), (óy Rm)ÿ1ó z(óy Rm) � ÿó z Em(x); R2

m � Em(x)

Since Em(a2) � Em(e9x) � N (a)N (a)� for an integral as well as for a half-integral m,

we obtain a type a co-unirrep for either case from (17.6.6b):

S(Em; Rm) for an integral m

S(Em; ó y Rm) for a half-integral m

These are combined into one formula S(Em; Rm, ó y Rm) as given in Table 17.3(12).

The type distribution for the class K(ô � 1) is given by

fa2
1, c2, arÿ1

2 jar
2g

17.7 The co-unirreps of anti-unitary wave vector space groups

As in the case of a unitary space group, the co-unirreps of an anti-unitary space group

of wave vector Ĥ z
k can be regarded as the projective co-unirreps of the corresponding

anti-unitary point group belonging to a certain factor system. The present results given

in Tables 17.2 and 17.3 specialized for the crystallographic point groups provide all

the co-unirreps of any Ĥ z
k. It is necessary only to determine the appropriate gauge

transformations which connect the generators of Ĥ z
k with those of the corresponding
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representation group H z9 given in Table 17.2. In order to utilize the isomorphisms

between the anti-unitary point groups and limit the discussion to the three types H e,

H q and H u given in (17.5.1), it is necessary to classify the crystallographic anti-

unitary groups in terms of the present system of notations H z. For convenience, we

have expressed their international symbols in terms of the present system in Table

17.4. This table is a special case of the more comprehensive one given by Table 16.1.

To illustrate the procedure of obtaining the co-unirreps of Ĥ z
k from Tables 17.2,

17.3 and 17.4, we shall use some typical examples taken from the tables of irreducible

co-representations of magnetic space groups given by Miller and Love 1967 (ML). We

shall follow the notations used by them for the magnetic space groups as well as for

the special points of the Brillouin zone. In using their tables, caution should be

exercised, since the generator sets of Ĥ z
k given by ML are in general not in agreement

with those given in Table 17.2. It is also to be noted that ML have given the matrix co-

representations explicitly for the generators only whereas the present general expres-

sions given in Table 17.3 provide the co-representations for all the unitary elements

and the anti-unitary augmenting operator a in terms of the unirreps of the point groups

given in section 10 of Table 17.3.

Example 1. Group (76) 9; P491. From Table 17.4, the point co-group 49 of this space

group is identi®ed to be C
q
2. It is an anti-unitary space group of the second kind Ĉ

q
2

Table 17.4. The crystallographic anti-unitary point groups (the gray groups are not

listed)

No. International Present No. International Present No. International Present

1 19 Ci
1 21 4m9m9 Cv

4 41 692929 D
q
3

2 29 C
q
1 (Cu

1) 22 4929m C
p
2v 42 62929 Cu

6

3 m9 C
p
1 (Cv

1) 23 492m9 D
p
2 43 69m9m C

q
3v

4 2=m9 Ci
2 24 429m9 Cu

2p 44 6m9m9 Cv
6

5 29=m9 Cu
i (C

q
i ) 25 4=m9mm Ci

4v 45 69m92 D
p
3

6 29=m Ci
1p 26 49=mm9m D

q
2i 46 69m29 C

p
3v

7 22929 Cu
2 27 49=m9m9m Di

2p 47 6m929 Cu
3p

8 m9m92 Cv
2 28 4=mm9m9 Cu

4i 48 6=m9mm Ci
6v

9 m9m29 Cu
1p 29 4=m9m9m9 Di

4 49 69=mm9m Di
3p

10 m9mm Ci
2v 30 39 Ci

3 50 69=m9m9m D
q
3i

11 m9m9m Cu
2i 31 329 Cu

3 51 6=mm9m9 Cu
6i

12 m9m9m9 Di
2 32 3m9 Cv

3 52 6=m9m9m9 Di
6

13 49 C
q
2 33 39m Ci

3v 53 m93 T i

14 49 C
p
2 34 39m9 Di

3 54 49329 T q

15 49=m C
q
2i 35 3m9 Cu

3i 55 493m9 T p

16 4=m9 Ci
4 36 69 C

q
3 56 m93m T i

p

17 49=m9 Ci
2p 37 69 C

p
3 57 m3m9 T

q
i

18 49292 D
q
2 38 69=m Ci

3p 58 m93m9 Oi

19 42929 Cu
4 39 6=m9 Ci

6

20 49m9m C
q
2v 40 69=m9 C

q
3i
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formed from the unitary space group Ĉ4 (number 76); P41 and de®ned by the

generator P(49zj001
4
) according to Tables 17.1 and 13.3. For convenience, we may

express the generator set of Ĉ
q
2 as follows:

Pf2zj001
2
g, fè4zj001

4
g (17:7:1a)

which includes the generator f2zj001
2
g of the halving subgroup Ĉ2. The de®ning

relations of the representation group C
q
29 are given, from Table 17.2(3), by

x2 � e9, xa � ax, a2 � e9x, ô � 1 (17:7:1b)

where a � è4z and x � 2z belong to C
q
2. This is one of the most simple cases in which

there exists only one class of factor system K (� K9). The projective co-unirreps of

C
q
2 2 K are given, from Table 17.3(3), by

S(M0), S(M1, M1), S(M1=2, Mÿ1=2) (17:7:1c)

with the type distribution (a1b2jc2).

Now, let us consider the wave vector group Ĉ
q
2(k) at each of the high-symmetry

points GM � (000), M � (1
2

1
2
0), A � (1

2
1
2

1
2
) and Z � (001

2
) of the Brillouin zone of the

primitive tetragonal lattice PQ. Then the generators of Ĉ
q
2(k) given by (17.7.1a) satisfy

the de®ning relations (17.7.1b) via the following one-to-one correspondences:

fè4zj001
4
g $ a, f2zj001

2
g $ x, fE9j000g $ e9 at GM or M

fè4zj001
4
g $ a, f2zj001

2
g $ ÿx, fE9j000g $ ÿe9 at A or Z

Through these correspondences, the co-unirreps of Ĉ
q
2 are determined by the projec-

tive co-unirreps of C
q
2 given by (17.7.1c). Here E9 is the 2ð rotation for the space

group Ĉ
q
2 whereas e9 is the 2ð rotation for the point group C

q
2. The correspondence

fE9j000g � ÿe9 means that the integral and half-integral representations are inter-

changed between Ĉ
q
2 and C

q
2. The type distribution of the co-unirreps at GM and at M

is given by (a1b2jc2) whereas that at A and at Z is given by (c2ja1b2) due to the

correspondence fE9j000g $ ÿe9. These results are equivalent to those given by ML.

On account of the isomorphism Ĉ
q
2 ' Ĉ

p
2 , a similar treatment may be given for Ĉ

p
2 (k).

Example 2. Group (194) 166; P693=mm9c: From Table 17.4 the magnetic point co-

group is Di
3p, which is isomorphic to the gray group De

6 according to (16.3.6a). It is an

anti-unitary space group of the second kind D̂i
3p isomorphic to the unitary space group

D̂6i. Let us consider the wave vector space group D̂i
3p(k) at A � (001

2
) in the Brillouin

zone. From the space group tables (Tables 13.3 and 17.1), the generators of D̂i
3p are

P: f6zj001
2
g, f2xj000g, fè1j000g (17:7:2a)

These satisfy the de®ning relations of Di
39

p
(' De

69g given in Table 17.2(10):

x6 � y2 � (xy)2 � e9, e92 � e; xa � îax, ya � çay, a2 � ôe9

via the correspondences

f6zj001
2
g $ ix, f2xj000g, $ iy, fè1j000g $ a, fEj000g $ ÿe9

(17:7:2b)

with the projective factors

(î, ç) � (1, ÿ1), ô � ÿ1 (17:7:2c)
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which identi®es K92 (the dual of K2) as the class of the factor systems for the projective

representations of Di
3p. Thus, from K2 given in Table 17.3(10) the projective co-

unirreps of Di
3p belonging to K92 are given by

S(A1, A2), S(B1, B2), S(E1; 12), S(E2; 12), S(E1=2; óy), S(E3=2; ó y), S(E5=2; óy)

(17:7:2d)

with the type distribution (c2
2a2

2ja3
2). From (17.7.2b) and (17.7.2d) follow all the co-

unirreps of D̂i
3p(k) at A with the type distribution (a3

2jc2
2a2

2) since fE9j000g � ÿe9.
Analogous treatments may be given for the magnetic space groups belonging to De

3p,

Di
6, Ci

6v and Ce
6v, all of which are isomorphic to each other.

Example 3. Group (222) 99; Pm39m: The corresponding anti-unitary point co-group

is a gray group Oe
i so that it is an anti-unitary space group of the ®rst kind. The

generators of Ôe
i are, from Tables 17.1 and 13.3,

P0f4zj1200g, f3xyzj000g, f1j000g (17:7:3a)

where P0 denotes P(èj000). Let us consider the wave vector space group Ôe
i (k) at

R � (1
2

1
2

1
2
). The unirreps of the space group (222) at R had previously been discussed

in (14.4.18a). The generators of Ôe
i given above satisfy the de®ning relations of Oe

i 9
given in Table 17.2(28) via the one-to-one correspondences

f4zj1200g $ x, f3xyzj000g $ y, f1j000g $ I , fèj000g $ a,

fE9j000g $ e9 (17:7:3b)

with the projective factors

â � ÿ1, (î, æ) � (1, 1), ô � 1 (17:7:3c)

Thus, the co-unirreps belonging to the class K21 of Oe
i given in Table 17.3(28) provide

all the co-unirreps of Ôe
i (k) with the correspondence (17.7.3b) without any gauge

factors. The type distribution is given by (a2c4a6ja4c8), which is in agreement with

that given by ML.

17.7.1 Concluding remarks

We have described the representation groups of all ®nite point groups by those of ten

unitary and 22 anti-unitary point groups in Table 17.2. These are given in terms of the

abstract group generators which are common to all point groups that are isomorphic to

each other. Then, by means of the modi®ed theory of induced representations intro-

duced in Section 16.4, we have presented in Table 17.3 the general expressions of all

p-inequivalent projective co-unirreps of all the anti-unitary point groups in terms of

the unirreps of the proper point groups previously determined in Chapter 11.

The present results are more than suf®cient to ®nd all the unirreps or co-unirreps of

any space group (unitary or anti-unitary) of a wave vector through simple gauge

transformations. Here it is essential to identify the point groups corresponding to

respective space groups in terms of the present system of notations H z. Table 17.4

identi®es the international notations of the crystallographic magnetic point groups in

terms of the present system of notations H z. As one can see from Table 17.4, it is

hardly possible to recognize their isomorphism from the international symbols. The
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present work has been extended further to the projective co-unirreps of the magnetic

point groups of in®nite order by Kim (1984c).

17.8 Selection rules under an anti-unitary group

17.8.1 General discussion

In Section 6.10 we discussed the selection rules for a quantum mechanical system that

is invariant under a unitary group. If the Hamiltonian H0 of the system is invariant

under an anti-unitary symmetry group H z, the invariance of the transition moment

under the unitary as well as under the anti-unitary operations belonging to H z should

be discussed, provided that the group is a volume-preserving one. Accordingly, the

eigenfunctions of H0 should be classi®ed by the co-unirreps of the anti-unitary group

H z. Let S(í) be a co-unirrep of H z induced from a unirrep Ä(í) of the halving subgroup

H : here, S(í) stands for S(í�), S(í,í) or S(í,í) de®ned in (17.6.3). Let Öí � fÖí
i g and

Öì � fÖì
j g be two sets of the eigenfunctions of H0 belonging to the co-unirrep S(í)

and S(ì), respectively. Then the set of transition moments for transitions between two

sets of states due to a set of perturbations V � fVlg imposed on the system is de®ned

by

Míì � hÖí, VÖìi � fM
íì
ijl g; M

íì
ijl � hÖí

i , VlÖ
ì
j i (17:8:1)

The absolute square jMíì
ijl j2 determines the probability of transition between two

eigenstates Öí
i and Öì

j .

Each transition moment is a constant, being a de®nite integral, and is invariant

under a unitary operation h 2 H and an anti-unitary operation a � a0 h � èzh ex-

pressed as follows:

Míì � hhÖí, (hV hÿ1)hÖìi � hMíì (17:8:2a)

Míì � haÖì, (aV aÿ1)aÖíi � aMíì (17:8:2b)

in view of (16.2.15), assuming V to be Hermitian. Here the operators h and a are

introduced to denote the invariance of Míì under h and a, both of which act on the

integrands. The crucial aspect of the operator a is that it is linear even though a is anti-

unitary, i.e.

a(cMíì) � caMíì (17:8:3)

where c is an arbitrary complex constant. The operators h and a satisfy the ordinary

group property

ah � ah, ha � ha, a1a2 � a1a2 (17:8:4)

where a1 � a0 h1 and a2 � a0 h2 for h1, h2 2 H . Thus the set fh, a0 h; 8 h 2 Hg
forms a unitary group isomorphic to the anti-unitary group H z via the one-to-one

correspondences h$ h and a$ a. Since this group is formed by augmenting the

unitary group H � fhg with a, it may be denoted by Ha and may be referred to as the

unitary group associated with the anti-unitary group H z. It is the group which

describes the invariance of Míì under H z. When z =2 H , there exists another unitary

group Hz de®ned by

Hz � H � zH (17:8:5)
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which is also isomorphic to Ha. This group is needed to describe the transformation of

the set of the perturbation operators V � fVlg.
Under a symmetry operation of H z, the basis functions in the integrand transform

according to the co-unirreps of H z, whereas the perturbation is assumed to transform

according to a unirrep D(ë) of Hz in addition to its time-reversal symmetry. However,

the set of transition moments fM
íì
ijl g as a whole provides a basis of a representation of

a unitary group Ha that must be a unitary representation. Since each transition moment

is a constant, it is non-zero if and only if the invariant part of the integrand with

respect to H z is non-zero. Under the selection rules, we discuss what the linear

relations between transition moments are, which moments differ from zero and how

many linearly independent non-zero elements there are. We have established three

selection rules in Section 6.10 under a unitary symmetry group. These rules hold with

little modi®cation under the anti-unitary group H z, the reason being that the matrix

system Míì transforms according to a representation of the unitary group Ha �
fh, ag.

In the following, we shall determine the representation of Ha based on the set Míì

in terms of the co-unirreps S(í) and S(ì) of H z and a unirrep D(ë) of H z that describes

the symmetry of the perturbation V . Then we calculate the number of linearly

independent non-zero moments in the set.

17.8.2 Transitions between states belonging to different co-unirreps

When í 6� ì, the two states Öí and Öì introduced in the set of transition moments

(17.8.1) belong to different energy levels except for the case of accidental degeneracy.

We discuss this case ®rst and then specialize it to the case in which í � ì.

The invariance of the set Míì � fM
íì
ijl g under Ha has been described by (17.8.2a)

and (17.8.2b): the basis functions Öí and Öì in the integrands transform according to

the co-unirreps S(í) and S(ì) of H z, whereas the perturbation V � fVlg transforms

according to a unirrep D(ë) of Hz besides the time-reversal symmetry such that

aVla
ÿ1 � åvzhVl(zh)ÿ1 � åv

X
l9

Vl9 D
(ë)
l9 l(zh) (17:8:6)

where we have used èVlèÿ1 � åvVl with åv � 1 (ÿ1) from (16.2.13). Thus we have,

from (17.8.2a) and (17.8.2b),

hM
íì
ijl �

X
i9, j9, l9

M
íì
i9 j9 l9S

(í)
i9i (h)�S

(ì)
j9 j (h)D

(ë)
l9 l(h)

�
X
i9, j9, l9

M
íì
i9 j9 l9 P

(íì)
i9 j9 l9,ijl(h)

aM
íì
ijl �

X
i9, j9, l9

M
ìí
j9,i9, l9åvS

(ì)
j9 j (a)�S

(í)
i9i (a)D

(ë)
l9 l(zh)

�
X
i9, j9, l9

M
ìí
j9i9 l9 P

(ìí)
j9i9 l9,ijl(a) (17:8:7)

where a � èzh for all h 2 H . Note that the set Míì � fM
íì
ijl g closes under h 2 H
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whereas it is transformed to M ìí under a. Consequently, the combined row vector

basis [Míì, M ìí] provides a representation D(Ha) de®ned by

D(h) � P(íì)(h) 0

0 P(ìí)(h)

" #
(17:8:8a)

D(a) �
0 P(íì)(a)

P(ìí)(a) 0

" #
(17:8:8b)

where P(íì) and P(ìí) are de®ned in (17.8.7).

To understand the algebraic properties of this representation D(Ha) introduced

above, we may rewrite the set of matrices P(íì)(h) and P(íì)(a) de®ned in (17.8.7)

formally as follows:

P(íì)(h) � S(í)(h)� 3 S(ì)(h) 3 D(ë)(h) (17:8:9a)

P(ìí)(a) � åv[S(ì)(a)� ~3 S(í)(a)] 3 D(ë)(zh) (17:8:9b)

where A 3 B denotes an ordinary direct product whereas A ~3 B denotes a twisted

direct product of matrices A and B de®ned by their matrix elements

Aab Bcd � [A 3 B]ac,bd � [A ~3 B]ac,db (17:8:9c)

The latter differs from the ordinary direct product in that the second set of subscripts is

interchanged from that of the direct product. The dimensions of A and B are

independent from each other for an ordinary direct product, but may be required to be

equal for some properties of the twisted direct product; e.g. for the trace of A ~3 B

(see below).

To facilitate the matrix manipulation of the representation D(Ha), we shall give here

some of the algebraic properties of the twisted direct product de®ned by (17.8.9c) in

comparison with those of the ordinary direct product:

(1) tr A 3 B � tr A tr B, but

tr (A ~3 B) � tr AB (17:8:10a)

(2) (A 3 B)(C 3 D) � AC 3 BD, but

(A 3 B)(C ~3 D) � (AC) ~3 (BD)

(A ~3 B)(C 3 D) � (AD) ~3 (BC)

(A ~3 B)(C ~3 D) � (AD) 3 (BC) (17:8:10b)

(3) For the Hermitian adjoint, (A 3 B)y � By 3 Ay and analogously

(A ~3 B)y � (By ~3 Ay) (17:8:10c)

(4) If A and B are unitary, then both A 3 B and A ~3 B are unitary.

Here it has been assumed that the dimensions of matrices are the same as those

involved in the ordinary matrix multiplication. By means of the algebraic properties of

A ~3 B given above we can show that

P(íì)(h)P(íì)(a) � P(íì)(ha)

P(ìí)(a)P(íì)(h) � P(ìí)(ah) (17:8:11)
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which will lead us to the proof that the representation of Ha de®ned by (17.8.8) is

indeed a unitary representation even though the matrix system P(íì) is de®ned by the

co-unirreps of H z.

Now, according to selection rule 2 given in Section 6.10, the number n1 of the

linearly independent non-zero elements in the basis set fMíì, M ìíg for given í and ì
(6� í) equals the number of the identity representations contained in the representation

D(Ha). This number n1 is given by the sum of the characters of the representation over

the group elements of Ha. Since D(a) are off-diagonal from (17.8.8b), their traces are

zero so that we have, from (17.8.8a) and (17.8.9a),

n
(íì)
1 � 1

2jH j
X
h2H

tr [P(íì)(h)� P(ìí)(h)]

� 1

jH j
X
h2H

Re[kk(í)(h)�kk(ì)(h)]÷(ë)(h) (17:8:12)

where Re denotes the real part and kk(í)(h) � tr S(í)(h) and ÷(ë)(h) � tr D(ë)(h). Note

here that the anti-unitary elements a � a0 h do not contribute to the above sum directly

but do affect the result indirectly through the types of the co-unirreps S(í) and S(ì),

because, from (17.6.2),

kk(í)(h) �
÷(í)(h), for type a

2÷(í)(h), for type b

÷(í)(h)� ÷(í)(h), for type c

8><>:
where ÷(í)(h) � trÄ(í)(h) and ÷(í)(h) � trÄ(í)(h) for all h 2 H and analogous rela-

tions for kk(ì).

Identi®cation of the non-zero elements requires the reduction of the representation

D(Ha) de®ned by (17.8.8) by an appropriate similarity transformation as was

discussed in Section 6.10. We shall not go into this reduction because it requires

further explicit speci®cation of the matrix system Míì for a given speci®c problem.

17.8.3 Transitions between states belonging to the same co-unirrep

When í � ì in (17.8.1), the system of transition matrices becomes

Míí
ijl � hÖí

i , VlÖ
í
ji (17:8:13)

The set closes under Ha, as can be seen from (17.8.7). For convenience, we may

reproduce here the transformation properties of the basis Öí under the three types of

the co-unirreps S(í) to the extent we need for the transformation of Míí. From

(16.4.12)±(16.4.17), we have

Öí �
[øí, öí] 2 S(í,í) (í 6� í) for type c

[øí, öí] 2 S(í,í) for type b

øí � öí 2 S(í�) for type a

8<: (17:8:14)

where øí and öí are the bases of the unirreps Ä(í) and Ä(í) of the halving subgroup

H , respectively. These are connected by an anti-unitary operator a � a0 h as follows.

From (16.4.10b) and (16.4.11b),

aøí � öíN (a), aöí � øí N (a) (17:8:15a)
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where the transformation matrices N (a) and N (a) are further related, from (16.4.11c),

by

N (a)N (a)� � Ä(í)(a2), N (a)N (a)� � Ä(í)(a2) (17:8:15b)

where N (a) � N (a) for type a and N (a) � ÿN (a) for type b from (16.4.14). First we

consider the type c co-unirreps because the remaining cases can be treated as special

cases of them.

17.8.3.1 Type c co-unirreps with í 6� í
The matrix system (17.8.13) takes the form, using (17.8.14) for type c,

Míí �
høí, Vøíi høí, Vöíi
höí, Vøíi höí, Vöíi

" #

�
V (11) V (12)

V (21) V (22)

" #
(17:8:16)

In view of (17.8.15a) and (17.8.2b), we see that each set of the off-diagonal elements

V (12) � fV (12)
ijl g and V (21) � fV (21)

ijl g spans an invariant subspace under Ha, while the

sets of diagonal elements V (11) � fV (11)
ijl g and V (22) � fV (22)

ijl g are combined to form

another invariant subspace of Ha. In the following we shall discuss the selection rules

for each invariant subspace separately.

In the off-diagonal subspaces for type c, the invariant subspace

V (12) � høí, Vöíi; øí � føí
i g, öí � föí

i g (17:8:17a)

provides a unitary representation D(12) of Ha de®ned, using (17.8.15a), by

D(12)(h) � Ä(í)(h)� 3 Ä(í)(h) 3 D(ë)(h)

D(12)(a0 h) � åv(N (a0 h)� ~3 N (a0 h)) 3 D(ë)(zh) (17:8:17b)

for all h 2 H . It is a trivial matter to con®rm that the matrix system D(12) de®ned by

(17.8.17b) is indeed a matrix representation of Ha, if we use the algebraic properties

(17.8.10b) of the twisted direct products and the transformation properties (17.8.15).

Accordingly, the number of linearly independent matrix elements contained in the set

V (12) � fV (12)
ijl g is given by the character of D(12)(Ha) as follows:

n
(12)
1 � 1

2jH j
X
h2H

ftr D(12)(h)� tr D(12)(a0 h)g

� 1

2jH j
X
h2H

f÷(í)(h)�÷(í)(h)÷(ë)(h)� åv÷
(í)((a0 h)2)�÷(ë)(zh)g (17:8:17c)

where ÷(í) � trÄ(í), ÷(ë) � tr D(ë) and use of (17.8.10a) and (17.8.15b) has been made.

The second invariant off-diagonal space in (17.8.16) is spanned by the matrix

system

V (21) � höí, Vøíi (17:8:18a)

It provides a representation D(21)(Ha) that can be obtained from D(12)(Ha) by the
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simultaneous interchanges í$ í and N (a)$ N (a). Accordingly, the number of

linearly independent matrix elements contained in the set fV (21)
ijl g is given from n

(12)
1 of

(17.8.17c), by

n
(21)
1 � 1

2jH j
X
h2H

f÷(í)(h)�÷(í)(h)÷(ë)(h)� åv÷
(í)((a0 h)2)÷(ë)(zh)g (17:8:18b)

where5 we have used ÷(í)(a2)� � ÷(í)(a2).

Since the numbers n
(12)
1 and n

(21)
2 are real, their sum can be expressed by n

(12)�
1 �

n
(21)
2 so that

n
(12)
1 � n

(21)
1 � 1

jH j
X

h

f÷(í)(h)÷(í)(h)�Re÷
(ë)(h)� åv÷

(í)((a0 h)2)Re÷
(ë)(zh)g (17:8:20)

where Re denotes the real part. In the special case in which the character ÷(ë) of

D(ë)(Hz) is real, we have n
(12)
1 � n

(21)
1 .

The diagonal subspace for type c is spanned by the diagonal elements in (17.8.16):

V (11) � høí, Vøíi, V (22) � höí, Vöíi (17:8:21)

The representation of Ha based on [V (11), V (22)] is given, with use of (17.8.15a), by

D(11�22)(h) � D(í)(h) 0

0 D(í)(h)

� �
D(11�22)(a) � 0 D(í)(a)

D(í)(a) 0

� �
(17:8:22)

where

D(í)(h) � Ä(í)(h)� 3 Ä(í)(h) 3 D(ë)(h)

D(í)(h) � Ä(í)(h)� 3 Ä(í)(h) 3 D(ë)(h)

D(í)(a) � åv[N (a)� ~3 N (a)] 3 D(ë)(zh)

D(í)(a) � åv[N (a)� ~3 N (a)] 3 D(ë)(zh) (17:8:23a)

Here a � a0 h � èzh.

The number of linearly independent matrix elements contained in the set fV (11),

V (22)g is then given by

n
(11�22)
1 � 1

2jH j
X

h

fj÷(í)(h)j2 � j÷(í)(h)j2g÷(ë)(h) (17:8:23b)

which is independent of the anti-unitary operator a, because S(11�12)(a) is off-diagonal.

However, the existence of the ÷(í)(h) terms is a consequence of the anti-unitary

operator a 2 H z.

5 From (16.4.10a), Ä(í)(aÿ1 ha)� � N (a)ÿ1Ä(í)(h)N (a) and (ah)2 � hÿ1(ha)2 h � a(ha)2aÿ1 we obtain the
following identities:

÷(í)(aÿ1 ha)� � ÷(í)(h), ÷(í)(ahaÿ1) � ÷(í)(h)�
÷(í)((ah)2) � ÷(í)((ha)2) � ÷(í)((ah)2)� � ÷(í)((ha)2)� (17:8:19)
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17.8.3.2 For a type b co-unirrep

This case will be treated by specializing the case of type c in Section 17.8.3.1 with the

condition that í � í and N (a) � ÿN (a) for type b from (17.8.15b).

In the off-diagonal subspaces for type b, the invariant spaces are

V (12) � høí, Vöíi, V (21) � höí, Vøíi (17:8:24a)

Note that V (21) � V (12)�. Thus, from (17.8.17b) with N (a) � ÿN (a), the matrix

representations of Ha for both cases are given by

D(12)(h) � D(21)(h)�

� Ä(í)(h)� 3 Ä(í)(h) 3 D(ë)(h) (� D(í)(h))

D(12)(a) � D(21)(a)�

� ÿåv[N (a)� ~3 N (a)] 3 D(ë)(zh) (� ÿD(í)(a)) (17:8:24b)

The numbers of linearly independent matrix elements for both cases of the off-

diagonal space are given by

n
(12)
1 � n

(21)
1 � 1

2jH j
X

h

fj÷(í)(h)j2÷(ë)(h)� åv÷
(í)((a0 h)2)÷(ë)(zh)g (17:8:24c)

where we have used (17.8.10a) and (17.8.15b).

In the diagonal subspace for type b, we have, from (17.8.23b) with í � í,

n
(11�22)
1 � 1

jH j
X

h

j÷(í)(h)j2÷(ë)(h) (17:8:24d)

which is completely free from the anti-unitary operator a 2 H z.

17.8.3.3 For type a co-unirreps

The matrix system V (íí) is de®ned by

V (íí) � høí, Vøíi (17:8:25a)

which may be regarded as a special case of V (12) with öí � øí in (17.8.17a). In this

case, we have N (a) � N (a), so that the matrix representation of Ha based on V (íí) is

given, analogously to (17.8.23a), by

D(í)(h) � Ä(í)(h)� 3 Ä(í)(h) 3 D(ë)(h)

D(í)(a) � åv[N (a)� ~3 N (a)] 3 D(ë)(zh) (17:8:25b)

The number of linearly independent matrix elements contained in fV íí
ijlg is given by

n
(íí)
1 � 1

2jH j
X

h

f÷(í)(h)j2÷(ë)(h)� åv÷
(í)((a0 h)2)÷(ë)(zh)g (17:8:25c)

17.8.4 Selection rules under a gray point group

The results obtained above for an anti-unitary group can be easily specialized to Hè
associated with a gray group H e. Since è commutes with every element h 2 H , we

have ÷(í)(h)� � ÷(í)(h), from (17.8.19). For transitions between states belonging to
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different co-unirreps, the general result for n1 given by (17.8.12) holds without

modi®cation because it is independent of the anti-unitary operator a. Thus the

transitions between the states belonging to the same co-unirreps will be discussed

here.

17.8.4.1 For type c co-unirreps

From (17.8.17c), (17.8.18b) and (17.8.23b) we have

n
(22)
1 � 1

2jH j
X

h

f[÷(í)(h)�]2 � åv÷
(í)(e9h2)�g÷(ë)(h)

n
(21)
1 � 1

2jH j
X

h

f[÷(í)(h)]2 � åv÷
(í)(e9h2)g÷(ë)(h)

n
(11�22)
1 � 1

jH j
X

h

j÷(í)(h)j2÷(ë)(h) (17:8:26a)

17.8.4.2 For type b co-unirreps

We have í � í so that ÷(í)(h) � ÷(í)(h)� � real. The above results (17.7.26a) are

simpli®ed to

n
(12)
1 � n

(21)
1 � 1

2jH j
X

h

f[÷(í)(h)]2 � åv÷
(í)(e9h2)g÷(ë)(h)

n
(11�22)
1 � 1

jH j
X

h

j÷(í)(h)j2÷(ë)(h) (17:8:26b)

17.8.4.3 For type a co-unirreps

We have from (17.8.25c)

n1 � 1

2jH j
X

h

f[÷(í)(h)]2 � åv÷
(í)(e9h2)g÷(ë)(h) (17:8:26c)

where ÷(í)(h) is again real as in the case of a type b unirrep. Note that n1 equals

n
(12)
1 � n

(21)
1 for a type b co-unirrep.

The results of the present section can be applied to the selection rules for anti-

unitary space groups.
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Appendix

Character tables of the crystal point groups

1. Notation for point groups. A proper point group P of ®nite order is de®ned by two

generators a and b and their product ab that satisfy a set of de®ning relations for

the group P

an � bm � (ab) l � e (A1)

where n, m and l are the orders of the respective elements. Let the symbol n stand

for an n-fold rotation, then the set fa, b, abg characteristic to each P may be

expressed by the set of their axis orders fn, m, lg as follows:

Cn � fn, 0, 0g, Dn � fn, 2, 2g, T � f2, 3, 3g, O � f4, 3, 2g
Y � f5, 3, 2g

where the ®rst generator a is referred to as the principal axis of rotation for each P.

Let 1 be the inversion, then an improper rotation is expressed by n � 1n, which is

the n-fold rotation followed by the inversion. According to Section 5.5, an

improper point group is isomorphic to a proper point group P or a rotation±

inversion group Pi � P 3 Ci, which is the direct product of a proper point group

P and the group of inversion Ci � f1, 1g. Those improper point groups iso-

morphic to P are

Cnp � f2n, 0, 0g, Cnv � fn, 2, 2g, Dnp � f2n, 2, 2g
Tp � f4, 3, 2g

See Table 5.7 for the SchoÈn¯ies notation for these improper point groups. Since

the inversion 1 commutes with any rotation, we have the isomorphisms ('):

Cnp ' C2n, Cnv ' Dn, Dnp ' D2n, Tp ' 0

2. A unitary irreducible representation (unirrep) D(Pi) of a rotation±inversion group

Pi � P 3 Ci is given by the direct product unirrep D(Pi) � D(P) 3 D(Ci), where

D(P) and D(Ci) are the unirreps of the groups P and Ci. Since there exist two

unirreps for Ci classi®ed by Dg(1) � 1 and Du(1) � ÿ1, each unirrep D(P) gives

rise to two unirreps Dg(Pi) and Du(Pi) de®ned by

Pi p 2 P p � 1 p Bases

Dg D( p) D( p) Even functions

Du D( p) ÿD( p) Odd functions

Thus the character table of each Pi is easily constructed if the character table of

the corresponding P is given. Accordingly, we shall not give the character table of



any Pi explicitly but simply write down the elementary bases of each unirrep of

Pi.

3. Let ø1 and ø2 be bases of the unirreps D1 and D2 of a group G, respectively, then a

basis of the direct product representation D1 3 D2 is given by the direct product

bases ø1 3 ø2. If one of the unirreps D1 and D2 is one-dimensional, then the

direct product D1 3 D2 is also a unirrep of G. In particular, let ø0 be a basis of

the identity representation D0, then the direct product basis ø1 3 ø0 provides an

alternative basis for the unirrep D1 � D1 3 D0. This method will be used

extensively to correlate the elementary basis functions listed in the character table

of each point group. To facilitate the construction of the set of symmetry-adapted

linear combinations (SALCs) based on the correspondence theorem on basis

functions belonging to a unirrep developed in Chapter 7, we have listed more than

one elementary basis set for each unirrep in the character tables given below.

4. Let ø(x, y, z) be a basis of a unirrep D(P) of a proper point group, then ø(~x, ~y, ~z)

also belongs to D(P): here ~x, ~y and ~z are the components of a vector product of

two vectors r � (x, y, z) and r9 � (x9, y9, z9) given by

r 3 r9 � [~x, ~y, ~z] � [yz9ÿ zy9, zx9ÿ xz9, xy9ÿ yx9]

which becomes the in®nitesimal rotation if r9 � = � (@ x, @ y, @ z). An analogous

statement holds, with some modi®cation, for an improper point group isomorphic

to a proper point group P. For example, see the character tables of the groups D6,

C6v and D3p.

5. The same set of notations is used for the unirreps of the groups which are mutually

isomorphic. As a result, the present system of notation may have some minor

differences from the notations of other authors; cf. Heine (1977) and Koster et al.

(1963).

6. The symbols A and B are used for one-dimensional representations, E is used for a

two-dimensional unirrep, and T for a three-dimensional one. More speci®cally, let

÷(a) and ÷(b) be the characters of the generators a and b of a point group de®ned

by (A1). Then the symbol A stands for a unirrep with ÷(a) � 1 while B stands for

one with ÷(a) � ÿ1. Subscript 1 or 2 is attached to A and B for ÷(b) � 1 or

÷(b) � ÿ1.

7. The vector unirreps of the point groups are constructed from the elementary spatial

bases in Chapter 6. Let a double point group be de®ned by the de®ning relations

an � bm � (ab) l � e9, e92 � e (A2)

where e9 is the 2ð rotation. Then the integral and half-integral unirreps of the

double point groups are constructed in Chapter 11 via the spinor bases: the former

provide the single-valued (vector) unirreps of the point groups whereas the latter

provide the double-valued unirreps of the point groups. These can be regarded as

the projective unirreps belonging to the factor systems de®ned by the representa-

tion of 2ð rotation: D(e9) � �1, where �1 is for the vector unirreps and ÿ1 is for

the double-valued unirreps. The characters of these two types of unirreps and their

bases are tabulated for the crystal point groups. In each table, the two types of

unirreps are separated by a broken line. Each class of a point group is represented

by one typical element in the class, possibly a generator of the group, while the

order of each class is denoted by the symbol # at the beginning of the table.
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8. The unirreps of the uniaxial group Cn � fck
n; k � 0, 1, . . . , nÿ 1g are given by

(11.3.3b):

Mm(ck
n) � exp (ÿi2ðmk=n); m � 0, � 1

2
, �1, . . . , � nÿ 1

2
,

n

2
(A3)

with the spinor bases

ö( j, m) � á j�mâ jÿm[( j� m)!( jÿ m)!]ÿ1=2; j . jmj
where á � î1 and â � î2 in (10.3.1b). The product rule M m1 3 M m2 � M m1�m2

helps one to ®nd new bases via

ö( j1, m1)ö( j1, m2) / ö( j1 � j2, m1 � m2) (A4)

According to Theorem 10.4.1, when j is an integer, the spinor basis fö(l, m)g
can be replaced by a point basis frlYl,m(W, j)g, where fYl,mg are the spherical

harmonics. Thus we have the correspondences under proper rotations

ö(l, m)$ (ÿ1)m Pm
l (z)(x� iy)m

ö(l, ÿm)$ Pm
l (z)(xÿ iy)m (A5)

where Pm
l (z) is an even (odd) polynomial of z of the degree l ÿ jmj. When j is a

half integer l � 1
2
, the basis can be expressed linearly in the elementary spinor

basis á or â as follows, from (A4),

ö(l � 1
2
, m� 1

2
) / ö(l, m)á or ö(l, m� 1)â (A6)

where ö(l, m) and ö(l, m� 1) are expressed by the spatial variables. For a mixed

basis like (A6), a rotation characterized by a given rotation vector è is de®ned by

the direct product S(è) 3 R(è) of the spinor transformation S(è) and the spatial

rotation R(è). The correspondences (A5) fail under the inversion, because it acts

only on the spatial variables.

9. The unirreps of the group Dn are described in Table 11.5, with the bases

ö�( j, m) � 2ÿ1=2[ö( j, m)� ö( j, ÿm)]

öÿ( j, m) � ÿi2ÿ1=2[ö( j, m)ÿ ö( j, ÿm)] (A7)

When j is an integer l, we have, in view of (A5), the following correspondences:

ö�(l, m)$ Pm
l (z) Re (yÿ ix)m

öÿ(l, m)$ Pm
l (z) Im (yÿ ix)m (A8)

where Re and Im are the real and imaginary parts, respectively.

Remark. The unirreps of Dn given by Table 11.5 have been determined assuming

that u0 � 2x. In a case in which we take u0 � 2 y as for D2, D3 and D6 in the

character tables given below, the basis ö( j, m) in Table 11.5 should be replaced by

iÿmö( j, m) to leave the unirreps unchanged. Accordingly, the correspondences

(A8) should be modi®ed by

ö�(l, m)$ Pm
l (z) Re (x� iy)m

öÿ(l, m)$ Pm
l (z) Im (x� iy)m (A9)

Through the correspondences (A8) and (A9), all the point bases given in the
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character tables of Dn are obtained from the spinor bases given in Table 11.5.

These are in accordance with Table 6.4 for the vector unirreps of Dn.

For convenience of tabulation, the half-integral unirrep Em of Dn is de®ned by

the spinor basis [á2m, â2m] for u0 � 2x or [á2m, i2mâ2m] for u0 � 2 y: these are

equivalent to the basis [ö�(jmj, m), öÿ(jmj, ÿm)] given in Table 11.5.

10. The character tables for the group T and O are from Tables 11.7 and 11.6,

respectively.

The group Ci

# 1 1

Ci E 1 Bases for Ci � f1, 0, 0g

M0g 1 1 1, x2, y2, z2, ~x, ~y, ~z
M0u 1 ÿ1 x, y, z

M1
2
g 1 1 á, â

M1
2
u 1 ÿ1 zá, zâ

1. ~x � yz9ÿ zy9, ~y � zx9ÿ xz9, ~z � xy9ÿ yx9.
2. á / ö(1

2
, 1

2
), â / ö(1

2
, ÿ1

2
).

The groups C2 ' Cm

# 1 1

C2 E 2z

Bases for Bases for
Cm E 2z C2 � f2, 0, 0g Cm � f2, 0, 0g

M0 1 1 1, z, ~z, z2 1, x, y, ~z, z2

M1 � M�1 1 ÿ1 x, y, ~x, ~y z, ~x, ~y

M1
2

1 ÿi á, M0 3 M1
2
, M1 3 M�1

2

M�1
2

1 i â, M0 3 M�1
2

, M1 3 M1
2

M� is the complex conjugate representation of M.

The bases of the unirreps for the group C2i � C2 3 Ci

M0g: 1, ~z, z2 M0u: z

M1g: ~x, ~y M1u: x, y

M1
2
g: á M1

2
u: zá, xâ, yâ

M�1
2
g
: â M�1

2
u
: zâ, xá, yá
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The groups D2 ' C2v

# 1 1 1 1

D2 E 2z 2 y 2x

Bases for Bases for
C2v E 2z 2 y 2x D2 � f2, 2, 2g C2v � f2, 2, 2g

A, A1 1 1 1 1 1, x2, y2, z2, xyz 1, z, x2, y2, z2

B1, A2 1 1 ÿ1 ÿ1 z, xy, ~z xy, ~z, xyz
B2, B1 1 ÿ1 1 ÿ1 y, zx, ~y zx, ~y, x
B3, B2 1 ÿ1 ÿ1 1 x, yz, ~x yz, ~x, y

E1
2

2 0 0 0 [á, iâ]

1. Here A, B1, B2 and B3 are used for D2 because of the complete equivalence of the

three two-fold axes. This is an exception to the general rule.

2. A1, A2, B1 and B2 are in accordance with the unirreps of Dn given in Tables 6.4 and

11.5 for n � 2 with u0 � 2 y.

The bases of the unirreps for the group D2i � D2 3 Ci

Ag: 1, x2, y2, z2 Au: xyz, z~z
B1g: xy, ~z B1u: z

B2g: zx, ~y B2u: y

B3g: yz, ~x B3u: x

E1
2
g: [á, iâ] E1

2
u: z[á, ÿiâ], x[â, iá], y[â, ÿiá]

The groups C4 ' C2p

# 1 1 1 1

C4 E 4z 2z 43
z

Bases for Bases for
C2p E 4z 2z 43

z C4 � f4, 0, 0g C2p � f4, 0, 0g

M0 1 1 1 1 1, z, ~z, z2, x2 � y2 1, ~z, z2, x2 � y2, xyz
M2 � M�2 1 ÿ1 1 ÿ1 x2 ÿ y2, xy, xyz z, x2 ÿ y2, xy
M1 1 ÿi ÿ1 i x � iy, ~x � i~x x ÿ iy, ~x � i~y
M�1 1 i ÿ1 ÿi x ÿ iy, ~x ÿ i~y x � iy, ~x ÿ i~y

M1
2

1 ù ÿi ù3 á, M1 3 M�1
2

M�1
2

1 ÿù3 i ÿù â, M�1 3 M1
2

M3
2

1 ù3 i ù á3, M1 3 M1
2
, M2 3 M�1

2

M�3
2

1 ÿù ÿi ÿù3 â3, M�1 3 M�1
2

, M2 3 M1
2

ù � exp (ÿið/4).
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The bases of the unirreps for the group C4i � C4 3 Ci

M0g: 1, ~z, z2, x2 � y2 M0u: z

M2g: x2 ÿ y2, xy M2u: xyz

M1g: (x� iy)z, ~x� i~y M1u: x� iy

M�1g: (xÿ iy)z, ~xÿ i~y M�1u: xÿ iy

M1
2
g: á M1

2
u: zá, (x� iy)â

M�1g: â M�1
2
u
: zâ, (xÿ iy)á

M3
2
g: xyâ M3

2
u: zá3, (x� iy)á

M�3
2
g
: xyá M�3

2
u
: zâ3, (xÿ iy)â

The groups D4 ' C4v ' D2 p

# 1 2 2 2 1

D4 E 4z 2x 2xy 2z

C4v E 4z 2x 2xy 2z

Bases for Bases for Bases for
D2p E 4z 2x 2xy 2z D4 � f4, 2, 2g C4v � f4, 2, 2g D2p � f4, 2, 2g

A1 1 1 1 1 1 1, z2, x2 � y2 1, z, z2, x2 � y2 1, z2, x2 � y2,
xyz

A2 1 1 ÿ1 ÿ1 1 z, ~z, xy(x2 ÿ y2) ~z, xy(x2 ÿ y2) ~z, z(x2 ÿ y2)
B1 1 ÿ1 1 ÿ1 1 x2 ÿ y2, xyz x2 ÿ y2 x2 ÿ y2

B2 1 ÿ1 ÿ1 1 1 xy, (x2 ÿ y2)z xy, xyz z, xy
E 2 0 0 0 ÿ2 [x, y], [~x, ~y],

[yz, ÿxz]
[y, ÿx], [~x, ~y],
[yz, ÿxz]

[x, ÿy], [~x, ~y],
[yz, ÿxz]

E1
2

2
p

2 0 0 0 [á, â]

E3
2

2 ÿp2 0 0 0 [á3, â3]

[~x, ~y](x2 � y2) / [yz, ÿxz]; ~x � y@ z ÿ z@ y, ~y � z@x ÿ x@ z.

[~x, ~y]z2 / [yz, ÿxz].

Elementary bases of the unirreps for the group D4i � D4 3 Ci

A1g: 1, z2, x2 � y2 A1u: ~zz, (x2 ÿ y2)xyz

A2g: ~z A2u: z

B1g: x2 ÿ y2 B1u: xyz

B2g: xy B2u: (x2 ÿ y2)z

Eg: [~x, ~y], [yz, ÿxz] Eu: [x, y]

E1
2
g: [á, â] E1

2
u: z[á, ÿâ], [(x� iy)â, (xÿ iy)á]

E3
2
g: xy[â, á], (x2 ÿ y2)[â, ÿá] E3

2
u: z[á3, ÿâ3], [(x� iy)á, ÿ(xÿ iy)â]
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The group C3

# 1 1 1

C3 E 3z 32
z Bases for C3 � f3, 0, 0g

M0 1 1 1 1, z, ~z, z2, x2 � y2, cos (3è), sin (3è)

M1 1 ù ù2 x� iy, ~x� i~y, (xÿ iy)2

M�1 1 ù2 ù xÿ iy, ~xÿ i~y, (x� iy)2

M1
2

1 ÿù2 ù á, M1 3 M�1
2

M�1
2

1 ÿù ù2 â, M�1 3 M1
2

M3
2
� M�3

2

1 ÿ1 1 á3, â3, M1 3 M1
2
, M�1 3 M�1

2

ù � exp (ÿ2ði=3); cos (3è) � x3 ÿ 3xy2, sin (3è) � y3 ÿ 3yx2.

The bases of the unirreps for the group C3i � C3 3 Ci

M0g: 1, z2, ~z2 M0u: z

M1g: (xÿ iy)2, ~x� i~y M1u: x� iy

M�1g: (x� iy)2, ~xÿ i~y M�1u: xÿ iy

M 1
2
g: á M 1

2
u: zá, (x� iy)â

M�1
2
g
: â M�1

2
u
: zâ, (xÿ iy)á

M 3
2
g: á3, â3, (~x� i~y)á M 3

2
u: zá3, zâ3, (x� iy)á, (xÿ iy)â

The groups D3 ' C3v

# 1 2 3

D3 E 3z 2y

Bases for Bases for
C3v E 3z 2x D3 � f3, 2, 2g C3v � f3, 2, 2g
A1 1 1 1 1, z2, x2 � y2, y3 ÿ 3yx2 1, z, z2, x2 � y2, y3 ÿ 3yx2

A2 1 1 ÿ1 z, ~z, x3 ÿ 3xy2 ~z, x3 ÿ 3xy2

E 2 ÿ1 0 [x, y], [~x, ~y], [yz, ÿxz],
[2xy, x2 ÿ y2]

[x, y], [~y, ÿ~x], [xz, yz],
[2xy, x2 ÿ y2]

E1
2

2 1 0 [á, iâ] [á, â]

B1 1 ÿ1 ÿi á3 � iâ3 á3 ÿ â3

B2 1 ÿ1 i á3 ÿ iâ3 á3 � â3

1. From Tables 6.4 and 11.5 with u0 � 2 y for D2.

2. [@x, @ y](y3 ÿ 3yx2) / [2xy, x2 ÿ y2].

3. [~y, ÿ~x]z / [x, y].
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The bases of the unirreps for the group D3i � D3 3 Ci

A1g: 1, z2, x2 � y2 A1u: z~z, y3 ÿ 3yx2

A2g: ~z A2u: z, x3 ÿ 3xy2

Eg: [~x, ~y], [yz, ÿxz], [2xy, x2 ÿ y2] Eu: [x, y]

E1
2
g: [á, iâ] E1

2
u: z[á, ÿiâ], [(x� iy)â, i(xÿ iy)á]

B1g: z[(x� iy)á� i(xÿ iy)â] B1u: z(á3 ÿ iâ3), (x� iy)áÿ i(xÿ iy)â
B2g: z[(x� iy)áÿ i(xÿ iy)â] B2u: z(á3 � iâ3), (x� iy)á� i(xÿ iy)â

The groups C6 ' C3p

# 1 1 1 1 1 1

C6 E 6z 3z 2z 32
z 65

z

Bases for Bases for

C3p E 6z 3z 2z 32
z 65

z C6 � f6, 0, 0g C3p � f6, 0, 0g
M0 1 1 1 1 1 1 1, z, z2, ~z 1, z2, ~z, cos (3è),

sin (3è)

M3 � M�3 1 ÿ1 1 ÿ1 1 ÿ1 cos (3è), sin (3è) z

M1 1 ÿù2 ù ÿ1 ù2 ÿù x� iy, (x� iy)z (x� iy)z

M�1 1 ÿù ù2 ÿ1 ù ÿù2 xÿ iy, (xÿ iy)z (xÿ iy)z

M2 1 ù ù2 1 ù ù2 (x� iy)2 (x� iy)2, xÿ iy

M�2 1 ù2 ù 1 ù2 ù (xÿ iy)2 (xÿ iy)2, x� iy

M1
2

1 r r2 ÿi r4 r5 á, M1 3 M�1
2

M�1
2

1 ÿr5 ÿr4 i ÿr2 ÿr â, M�1 3 M1
2

M3
2

1 ÿi ÿ1 i 1 ÿi á3, M1 3 M 1
2

M�3
2

1 i ÿ1 ÿi 1 i â3, M�1 3 M�1
2

M5
2

1 r5 ÿr4 ÿi ÿr2 r á5, M2 3 M 1
2
, M3 3 M�1

2

M�5
2

1 ÿr r2 i r4 ÿr5 â5, M�2 3 M�1
2

, M�3 3 M 1
2

1. ù � exp (ÿ2ði=3); cos (3è) � x3 ÿ 3xy2, sin (3è) � y3 ÿ 3yx2.

2. r � exp (ÿði=6); r4 � ù.

The bases of the unirreps for the group C6i � C6 3 Ci

M0g: 1, z2, ~z M0u: z

M3g: z(x3 ÿ 3xyz), z(y3 ÿ 3yz2) M3u: x3 ÿ 3xy2, y3 ÿ 3yx2

M1g: (x� iy)z M1u: (x� iy)

M�1g: (xÿ iy)z M�1u: (xÿ iy)

M2g: (x� iy)2 M2u: (x� iy)2z

M�2g: (xÿ iy)2 M�2u: (xÿ iy)2z

M1
2
g: á M 1

2
u: zá, (x� iy)â

M�1
2
g
: â M�1

2
u
: zâ, (xÿ iy)á

M3
2
g: z(x� iy)á M 3

2
u: zá3, (x� iy)á

M�3
2
g
: z(xÿ iy)â M�3

2
u
: zâ3, (xÿ iy)â

M5
2
g: (x� iy)2á M 5

2
u: zá5, (x3 ÿ 3xy2)â

M�5
2
g
: (xÿ iy)2â M�5

2
u
: zâ5, (x3 ÿ 3xy2)á
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The groups D6 ' C6v ' D3p

# 1 2 3 3 1 2

D6 E 6z 2 y 2x 2z 3z

C6v E 6z 2x 2 y 2z 3z

Bases for Bases for Bases for
D3p E 6z 2 y 2x 2z 3z D6 � f6, 2, 2g C6v � f6, 2, 2g D3p � [6, 2, 2]

A1 1 1 1 1 1 1 1, z2, x2 � y2 1, z, z2,
x2 � y2

1, z2, x2 � y2,
y3 ÿ 3yx2

A2 1 1 ÿ1 ÿ1 1 1 z, ~z ~z ~z, x3 ÿ 3xy2

B1 1 ÿ1 1 ÿ1 ÿ1 1 y3 ÿ 3yx2,
(x3 ÿ 3xy2)z

y3 ÿ 3yx2 z~z

B2 1 ÿ1 ÿ1 1 ÿ1 1 x3 ÿ 3xy2,
(y3 ÿ 3yx2)z

x3 ÿ 3xy2 z

E1 2 1 0 0 ÿ2 ÿ1 [x, y], [~x, ~y],
[yz, ÿxz],
[y~z, ÿx~z]

[x, y], [~y, ÿ~x],
[xz, yz],
[y~z, ÿx~z]

[~x, ~y],
[yz, ÿxz]

E2 2 ÿ1 0 0 2 ÿ1 [2xy, x2 ÿ y2] [2xy, x2 ÿ y2] [x, y],
[2xy, x2 ÿ y2],
[y~z, ÿx~z]

E1
2

2
p

3 0 0 0 1 [á, iâ] [á, â] [á, iâ]

E3
2

2 0 0 0 0 ÿ2 [á3, ÿiâ3] [á3, â3] [á3, ÿiâ3]

E5
2

2 ÿp3 0 0 0 1 [á5, iâ5] [á5, â5] [á5, iâ5]

1. From Tables 6.4 and 11.5 with u0 � 2 y for D6.

2. [@x, @ y](y3 ÿ 3yx2) / [2xy, x2 ÿ y2]; [~x, ~y](x2 � y2) / [yz, ÿxz].

3. [@9x, @9y]~z~z / [y~z, ÿx~z]; ~z � xy9ÿ yx9.

The bases of the unirreps for the group D6i � D6 3 Ci

A1g: 1, z2 A1u: z~z
A2g: ~z A2u: z

B1g: (x3 ÿ 3xy2)z B1u: y3 ÿ 3yx2

B2g: (y3 ÿ 3yx2)z B2u: x3 ÿ 3xy2

E1g: [~x, ~y], [yz, ÿxz] E1u: [x, y]

E2g: [2xy, x2 ÿ y2] E2u: [2xy, x2 ÿ y2]z

E1
2
g: [á, iâ] E1

2
u: z[á, ÿiâ], [(x� iy)â, i(xÿ iy)á]

E3
2
g: z[(x� iy)á, ÿi(xÿ iy)â] E3

2
u: z[á3, iâ3], [(x� iy)á, i(xÿ iy)â]

E5
2
g: [(x� iy)2á, ÿi(xÿ iy)2â] E5

2
u: z[á5, ÿiâ5], (x3 ÿ 3xy2)[â, iá],

(y3 ÿ 3yx2)[â, ÿiá]
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The group T

# 1 3 4 4

T E 2x 3xyz 32
xyz Bases for T � f2, 3, 3g

A 1 1 1 1 1, xyz, x2 � y2 � z2

A9 1 1 ù ù2 u� iv
A0 1 1 ù2 ù uÿ iv
T 3 ÿ1 0 0 [x, y, z], [yz, zx, xy], [~x, ~y, ~z]

E1
2

2 0 1 ÿ1 [á, â]

E91
2

2 0 ù ÿù2 A9 3 E1
2

E 01
2

2 0 ù2 ÿù A 0 3 E1
2

ù � exp (ÿ2ði=3); u � 2z2 ÿ x2 ÿ y2, v � 3
1
2(x2 ÿ y2).

The bases of the unirreps for the group Ti � T 3 Ci

Ag: 1, x2 � y2 � z2 Au: xyz

A9g: u� iv A9u: (u� iv)xyz

A 0g: uÿ iv A 0u: (u� iv)xyz

Tg: [yz, zx, xy], [~x, ~y, ~z] Tu: [x, y, z]

E1
2
g: [á, â] E1

2
u: xyz[á, â]

E91
2
g: (u� iv)[á, â] E91

2
u: xyz(u� iv)[á, â]

E 01
2
g: (uÿ iv)[á, â] E 01

2
u: xyz(uÿ iv)[á, â]

The groups O ' Tp

# 1 6 8 6 3

O E 4z 3xyz 2xy 2z

Bases for Bases for
Tp (�Td) E 4z 3xyz 2xy 2z O � f4, 3, 2g Tp � f4, 3, 2g
A1 1 1 1 1 1 1, x2 � y2 � z2 1, xyz
A2 1 ÿ1 1 ÿ1 1 xyz, ~x~y~z ~x~y~z,

(y2 ÿ z2)(z2 ÿ x2)(x2 ÿ y2)
E 2 0 ÿ1 0 2 [u, v] [u, v]
T1 3 1 0 ÿ1 ÿ1 [x, y, z],

[~x, ~y, ~z]
[~x, ~y, ~z],
[x(y2 ÿ z2), y(z2 ÿ x2),
z(x2 ÿ y2)]

A2 3 T1 � T2 3 ÿ1 0 1 ÿ1 [yz, zx, xy],
[~x, ~y, ~z]xyz

[x, y, z], [yz, zx, xy]

E1
2

2
p

2 1 0 0 [á, â]

E91
2

2 ÿp2 1 0 0 A2 3 E1
2

Q 4 0 1 0 0 E 3 E1
2

1. u � 2z2 ÿ x2 ÿ y2, v � 31=2(x2 ÿ y2).

2. [~x, ~y, ~z]xyz � [x(y2 ÿ z2), y(z2 ÿ x2), z(x2 ÿ y2)].

3. [@x, @ y, @ z]xyz � [yz, zx, xy].
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The bases of the unirreps for the group Oi � O 3 Ci

A1g: 1, x2 � y2 � z2 A1u: xyz~x~y~z
A2g: ~x~y~z(x2 ÿ y2)(y2 ÿ z2)(z2 ÿ x2) A2u: xyz

Eg: [u, v] Eu: [v, ÿu]xyz

T1g: [~x, ~y, ~z] T1u: [x, y, z]

T2g: [yz, zx, xy] T2u: [x(y2 ÿ z2), y(z2 ÿ x2), z(x2 ÿ y2)]

E1
2
g: [á, â] E1

2
u: A1u 3 E1

2
g

E91
2
g: A2g 3 E1

2
g E91

2
u: A2u 3 E1

2
g

Qg: Eg 3 E1
2
g Qu: Eu 3 E1

2
g
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