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Foreword 

A large part of scientific endeavor is dedicated to the elaboration of microscopic 
models for describing the physical world, in particular in terms of atoms or 
molecules. These models attempt to link the properties, spatial disposition and 
dynamic behavior of atoms to macroscopic physical and chemical properties of 
materials. The diffraction of short wave-length radiation, principally X-rays, by 
crystals allows us to observe the structure of materials on the atomic scale. The 
success of this method justifies the current interest in crystallography. The fields 
of solid state physics, chemistry, mineralogy and materials science use X-ray 
crystallography as a primary investigative tool, and textbooks in all these 
disciplines typically include some description of the technique. Is there thus 
a need for a book dedicated exclusively to crystallography? 

The current work has grown out of an introductory course in X-ray crystallo-
graphy presented to students of physics and materials science at the University of 
Lausanne and the Swiss Institute of Technology at Lausanne. While presenting 
this course, I found that despite — or perhaps because of-  the interdisciplinary 
nature of crystallography, there are few available introductory texts concerning 
the foundations of this discipline. The subject of crystallography has become 
almost synonymous with structure determination. Even those books entitled 
Crystallography predominantly discuss diffraction methods, structure deter-
mination methodology and interpretation of the results in terms of structural 
chemistry. Thus, these books are concerned with the applications of crystallo-
graphy rather than with the foundations of the subject. Fundamental ideas such 
as the Bravais lattices, crystal systems or Bragg's law are frequently presented via 
some simple diagrams with minimal explanation. These are, however, not trivial 
concepts and deserve a more profound discussion. Their incomplete definition 
may lead to imprecise or erroneous interpretation of results obtained from 
crystallographic techniques. 

Today, diffraction equipment is typically available as a self-service facility, at 
the disposition of any researcher who needs it for material identification or 
characterization, as well as for aligning single crystals. The present text intro-
duces the basic ideas that the solid state physicist, the materials scientist, the 
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chemist and the mineralogist will encounter in current experimental methods as 
well as in crystallographic databases. I am convinced that it is important to 
distinguish the idea of the crystal lattice from that of the crystal structure; thus 
we will avoid implying that the structure of brass (CuZn) possesses a centered 
lattice because its description shows an atom at the center of the unit cell. The 
symmetry of a structure should be distinguished from the metric parameters of 
the unit cell; we will thus understand that we cannot determine the crystal 
symmetry or crystal class from powder diffraction data, but only the metric 
parameters of the lattice. The frequently employed derivation of Bragg's law 
which assumes reflection from some poorly defined set of planes is largely 
meaningless; it is essential to understand that this law is not about atoms, but 
concerns translational symmetry alone. Even the idea of atoms deserves some 
clarification; the distribution of electron density in a crystal is approximated by 
the superposition of free atoms and the structure analysis by diffraction methods 
is based on this model. Crystallography is derived to a large extent from 
Euclidean geometry. In order to understand three-dimensional properties, it 
seems to me that visualization is more important than their algebraic dérivation. 
For this reason, particular attention has been paid to the presentation of figures 
and diagrams. 

This book does not, however, pretend to present the state of the art in 
crystallographic research. Apart from a few rudimentary ideas, there is no 
discussion of the fascinating subject of quasi-crystals or aperiodic crystals 
because these are still quite rare materials. Although synchrotron radiation 
is the tool of choice for cutting-edge research, the classical sealed X-ray tube 
is the only source available in most universities and industrial laboratories 
and will certainly remain so. This book is not an introduction to structure 
determination, there being a number of modern texts already available in 
this area. 

The publication of this work was made possible by a grant from the Fonds 
Herbette of the Faculty of Sciences at the University of Lausanne for which 
I express my gratitude. I also thank my crystallographer friends and colleagues 
for their comments and suggestions. The students who have patiently attended 
my courses have contributed much to this book through the questions that they 
have asked concerning some of the more difficult reasoning. Indeed, we often 
assume concepts in developing an argument that are not necessarily trivial. 

TECHNICAL REMARKS 

Most of the figures were produced with the programs MacDraw II (Claris), 
SHAPE and ATOMS (Eric Dowty, Shape Software). The vectors as well as the 
tensors in Chapter 4 are represented by bold letters because a tensor of rank 1 is 
a vector. The norms of vectors are written in italics, 11 a 11 a. The scalar product 
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of two vectors a and b is represented by a • b and the vector product by a x b. The 
components of a vector a are written as a column; in other words a will be left 
multiplied by a matrix M, a' , Ma. The transpose a" is a line vector and 
a' T  = aT M T  . The notation a:b:c represents the ratios of three numbers, i.e. the 
fractions alb and blc. 





CHAPTER 1 

Geometrical Crystallography 

1.1 INTRODUCTION 

Crystallography is the branch of the exact sciences that studies the structure of 
matter on an atomic scale; the determination, classification and interpretation of 
the geometrical structures of solids and, in particular, those of crystals. A crystal 
is a solid whose microscopic structure is characterized by a periodic repetition in 
three dimensions of a motif composed of atoms. In the case of quartz (rock 
crystal), for example, the motif is made up of three silicon atoms and six oxygen 
atoms and occupies a volume of 113 A3  (0.113 nm 3). Thus crystals have ordered 
structures, and the study of order and disorder is a central preoccupation of the 
crystallographer. The periodic structure of crystals at the atomic level affects their 
macroscopic properties; their physical properties (cleavage, hardness, rate of 
growth, electrical and thermal conductivity, index of refraction, elasticity, 
piezoelectricity among others) are orientation dependent. Properties that are not 
direction dependent are termed isotropic; those which are directional are termed 
anisotropic. According to an ancient definition, a crystal is a body which is both 
homogeneous and anisotropic. The polyhedral shapes of crystals follow from an 
unencumbered growth; they express the regularity of the microscopic structures 
and provide a striking example of crystalline anisotropy. 

Crystallography plays an interdisciplinary role between physics, chemistry, 
molecular biology, materials science and mineralogy-petrography. The geo-
metrical foundations of solid state physics, the determination of the microscopic 
structure to atomic resolution of inorganic, organic and macromolecular sub-
stances (interatomic distances, bond angles, stereochemistry), the identification of 
substances and mixtures of substances (rocks and minerals, quality control, for 
example in cement production, analysis of corrosion products, etc.), texture 
analysis in rocks and alloys as well as the alignment and orientation control of 
crystals are all endeavors that call upon crystallography, The principal experi-
mental method used is the diffraction by crystals of X-rays or neutrons with 
wavelengths of about 1 A (100 pm), 

The theory of crystal symmetry and of the periodicity of microscopic structures 
(translational symmetry) was developed during the 18th and 19th centuries from 
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the exact measurements of polyhedral crystal shapes. This theory was confirmed 
by the fundamental X-ray diffraction experiments of M. von Laue, W, Friedrich 
and P, Knipping (1912). Following this work, the theory and techniques for 
structure determination from diffraction data were developed. One can compare 
structure analysis to a microscope with atomic resolution, about 0,5 A (50 pm), 
Since 1960, X-ray crystallography has blossomed with the development of more 
and more powerful computers . Today, more than 9000 crystal structures are 
published each year, along with 2000 new powder diagrams (Chapter 3). Crystal-
lographic data banks and the use of advanced methods of graphical representa-
tion aid in the scientific exploitation of these results, 

Nineteenth-century crystallography may be considered to be the mathematical 
branch of mineralogy. It is based on two empirical laws, the law of constancy of 
angle and the law of rational indices. These laws will be presented in the following 
pages after a discussion of some Mathematical principles fundamental to crystal-
lography, non-unitary coordinate systems and reciprocal coordinates. 

1.2 ANALYTICAL GEOMETRY WITH OBLIQUE BASES 

1.2.1 COORDINATE SYSTEMS 

The coordinate systems chosen in crystallography are generally defined by three 
nonorthogonal base vectors a, b, c of different lengths (a, b, c) .  These non-unitary 
systems introduce some complexity into the expressions used in analytical geometry, 

CONVENTION.  A right-handed coordinate system is chosen; i,e, a, b and c are 
taken in the order of the thumb, index and middle finger of the right hand; a is 
the angle between b and c, i6 is the angle between a and c, y is the angle between 
a and b .  

A general point P is characterized by the coordinates u, v, w, in other words by 
the vector r = ua + vb + we (Fig, 1,1). 

The equation of a plane, as in a unitary system, is hu + kv + 1w = 1 (Fig. 1,2). 
For the coordinates y = w  = 0, we obtain u = 1/h, thus, h is the reciprocal value of 
the segment 0—A in units of a, A being the intersection of the plane with the a axis. 
If a is given in meters, the length of the segment O—A is a/h meters. 

1.2.2 RECIPROCAL COORDINATE SYSTEM 

The normal to the plane hu + kv + 1w = 1 is oriented from the origin towards the 
plane and may be calculated from the vector product (Fig. 1.2): 

N = (sign of hk1)
[( 	

kb el 
 ha  kb) x 
	.  

1 I hk11 th(b 
x c) + k(c x a) + 1(a x NI 



(h bk) x  ( bk ci) 

[12 (ah x kb)ici  

} { d} = d II N II 

Moreover; 
1 

= 	(a b c) 
61hici I 
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r=ua+vb+wc 

Fig. 1.1. Non-unitary base, coordinates of a point 

Fig. 1.2. Equation of a plane in a non -unitary base 

Consider the pyramid whose vertices are the origin 0 and the intersections 
A, B, C of the plane with the axes, Its volume V is equal to one third of the area of 
the triangle formed by three vertices multiplied by the distance of the triangle 
from the fourth vertex. Let d be the distance of the plane from the origin. We thus 
obtain: 



c perpendicular to a* and b*, dimensions of length 
c* perpendicular to a and b, dimensions of  (length) 
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where (a b c) = a .(b x c) = b(c x a) = is the volume of the parallelepiped 
whose edges are a, b, c. 

Thus 
1 (a b c) 

• d lh k 11 	
(1,1) 

The vector r* = I hici I N/(a b c) has the following properties (Fig, 1.3): 
• r* = h a* + k b* + c*; 

a* = (b x c)/(a b c), b* = (c x a)/(a b c), c* = (a x b)/(a b c); 
• r* is normal to the plane hu + kv + lw =  1, oriented from the origin towards the 

plane; 
• the norm of r* is II r* = 1/d. 

The coordinate system a*, b*, c* is the reciprocal of the system a, b, c. If the 
lengths a, b, c are given in meters, then the norms a*, b*, c* have the dimensions 
of (meters) .- 1 . The reciprocal vectors a*, h* and c* are not in general parallel to 
a, b and c, and their norms are not equal to 1/a,  1/b  and 1/c. It is easily seen 
that 

a*-a = b*•b = c*-c = 1; a*•b = a*-c b*•a = b*-c c*•a = c*•b = 0 

Fig. 1.3. Direct and reciprocal axes. The vector 2a* + b* is normal to the plane 
h/k --= 2 which cuts the axes a and b at the points 0.5a and  1 .0b 
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By labeling the base vectors a l , a 2  and a3 , and the corresponding reciprocal 
vectors at, as2' and al', these relationships may be summarized by the following 
expression which defines the reciprocal vectors in terms of the base vectors and 
vice versa: 

ai - 	--- S ii ( = 1 for i = j, and 0 for i j) 	 (1.2) 

The symmetry of equation (1.2) shows that the reciprocal of the coordinate 
system at, al', al' is the system a l , a2 , a 3 ; a = (h* x c*)/(a*b*c*), etc. 

The equation of the plane hid becomes hu + kv + iw = r r* = 1; the projection 
of the vector r on the normal r* to the plane is equal to d. 

Reciprocal quantities may be calculated using formulae which are derived from 
multiple scalar and vector products: 

a* • b* = (b x c)-(c x a)/(a b c) 2  

= [(b-c)(a-c) — c 2(a b)]/(a b c) 2 	 (1.3) 

	

a* x b* = [(b x c) x (c x a)]/(a b c)2  = c-(b c a)/(a b c)2 	 (1.4) 

c(a b c) = 11(b x c) x (c x a)11= abc2  sin a sin /3 sin y* 	 (1.5) 

(a b c)2  = a2 11 b x c11 2  — 	 x (b x c)11 2  
= a2b 2 c2(1 — cos 2  a — cos 2  /3 — cos 2  y + 2 cos a cos fi cosy) 	(1.6) 

(a b c) = abc sin a sinfl sin y* = abc sin a sin /3* sin y 

= abc sin a* sin fi sin y 	 from (1.5) 	 (1.7) 

(a* h* c*) = (a b 	 from (1.4) 	 (1.8) 

= bc sin occasin fl:ab sin y 	 (1.9) 

cos y* = (cos a cos f3—  cos y)(sin a sin fi) 	from (1.3) 	 (1.10) 

cos cc* = (cos f3 cos y — cos a)(sin ,6 sin y) 	from (1.3) 	 (1.11) 

cos fi* = (cos a cos y — cos f3)(sin a sin y) 	from (1.3) 	 (1.12) 

	

a* = (a sinfi sin y*) -l  = (a sin ,6* sin y) 1  from (1.7) 	 (1.13) 

	

h* = (b sin y sin oc*)  1  = (b sin y* sin GC 1  from (1.7) 	 (1.14) 

	

c* = (c sin a sin Mr 1  = (c sin a* sin V' from (1.7) 	 (1.15) 

1.2.3 METRIC TENSOR 

The norm of the vector r=ua+vb+ we is obtained by evaluating term by 
term 1I r11 2 , (ua+vb+wc)2  =ua2  + b2  + w c2  + 2uy a b + 2uw at+ 2vw b•c. 
In matrix notation, this equation becomes: 

a 2  ab  at) (u 
r 11 2  = (u y w) a • b b2  b-c 	= uTMu 	(1.16) 

b-c  e2  



x  w i x  14 1  x  

y 2 	W 2 	U2 	y 2 

h 	k 	1 

k 	1 
b i  X 1 1  X 

h2 r%•2 	l2 

u 1  
u 2  

W 1  

W 2 

h i  li 
1 2  

(1.20) 
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UT  represents the line vector (u  V w), the transpose of the column vector u. M is 
called the metric tensor whose determinant is: 

IMI(a  b c)2 	 (1.17) 

In the same way, the square of the norm of a reciprocal vector is obtained from 
11 r *  11 2 = (ha *  + kb* + lc*) 2  = h 2 a* 2 	k 2 b *2 	12 c *2 	2hk a *.b* 

+ 2h1a*.c* + 2k/b* • c*, which in matrix notation becomes: 

/ a* 2 	asc•b* a* -c* 	h 

11 r * 11 2  = (h k 1) 	a*•b* 	b* 2 	b*-c* 	f  k = 	 (1,18) 
ac * b*.c* 	c* 2  

h T  represents the line vector (h k 1), the transpose of the column vector h. It can 
be shown that the reciprocal metric tensor M* is the inverse of M. 

M* =M 	 (1.19) 

The metric tensor of a unitary system is represented by a unit matiix 
Mij  =  MI; 

The scalar product of two vectors r 1  and r2  is r 1  r2  = ufMu2 , that of two 
reciprocal vectors rt and rt is et •r*2' = thifM*h 2 . The scalar product of 1. 1  and 
r* is r •r*— UTh 2 	1 2 	1 2' 

The vector product of two vectors r 1  and r2  divided by (a b c) gives: 

fr i  x r 2 1/(a b c) = (y 1 w 2  — y 2w 1 )a*+(wo 2  — w 2 u 1 )b*+(u 1 v 2  — u 2 y 1 )c* 

The vector product of two vectors rt and 02  divided by (a* h* c*) gives: 

IrT x rn/(a* b*  c*)  (k 1 1 2  k 2 1 	+ (y1 2  — / 2 h 1 )b +(h i k 2  — h 2 k 1 )c ruvi, 

We describe these relationships by means of the following determinants: 

elhcki 

1.2.4 COVARIANT AND CONTRA VARIANT TRANSFORMATIONS 

On changing from coordinate system a, b, c to a', b', c', the reciprocal vectors as 
well as the coordinates in reciprocal and direct space do not transform in the 
same way. Let us suppose that the transformations are given by the (3 x 3) 
matrices C a , C a., C u  and C h : 

aa' aY 	a* 	/ u' 	 h' 	h 
b' = C. b , 	b*' = 	h* , 	y' 	=C{ 	k' = C h  k 

( 

c' 

( 

cY 	

(

c* ) 

	 ( 	) 

1 



a* \ 
r* = (h k 1) b* ( 

c* f 

h\ 
r • r* = (u y w) k ( 

l 1 

= (h' k' 1') b*' = (hk OCT, C a* b* 

( h 
= (u' y' w')( k' = . (u v w)Cut h  k ) 

 h' 
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The vectors r and r*, as well as their scalar product r r* are invariant with respect 
to the transformation: 

a 	 a' \ 	 a ) 
r = (u w) b )= (u' y' w')( b' = (u w)C;; C a ( b 

c' / 

It thus follows that: 

C a  = C h  = (C 171 :) — 1  , C a*  = C u  = (C )' 	 (1.21) 

The direct base vectors and the reciprocal coordinates h, k, I transform in a 
covariant manner. The reciprocal base vectors and the direct coordinates u, v, 
w transform in a contravariant manner. 

1.3 POLYHEDRAL CRYSTAL SHAPES 

1.3.1 LAW OF CONSTANT DIHEDRAL ANGLES 

This law was proposed by the Dane Nils Steensen (Nicolaus Steno, 1669) for 
crystals of quartz. Generalized by the Italian Domenico Guglielmini (1688) and by 
the Swiss Moritz Anton Cappeller (1723), the definitive form was proposed by the 
Frenchman Romé de l'Isle (1783): 

• the angle between two faces does not change during crystal growth; it is thus 
independent of the distance of the faces from any given point; 

• the interfacial angles corresponding to two different samples of the same crystal 
species are equal (at the same temperature and pressure); 

• under well-defined physical conditions, the interfacial angles are thus charac-
teristic of a crystalline species. 

(We note that the constant angles observed for different examples of the same 
species do not imply that crystals of different species are necessarily characterized 
by different angles.) 

From here we arrive at the Bernhardi principle (1809): The number and 
dimensions of the faces are not characteristic for a crystal; every crystal has its 
own habit. Only the directions and orientations are important, in other words, the 
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Fig. 1.4. The Bernhardi principle: three polyhedra with the same angles of 60 0  
and 90° between the normals to the faces 

directions of the edges and the normals to the faces (Fig. 1.4). (The orientation of 
a plane is characterized by the direction of its normal.) 

We measure the angle between the normals of the faces of a crystal with an 
optical goniometer (theodolite) by observing the reflection of a ray of light from 
the faces. The precision is about 5 seconds of arc. 

1.3.2 THE LAW OF RATIONAL INDICES 

This law expresses the fact that the faces of a crystal do not form an arbitrary 
polyhedron. Formulated by the French abbé and mineralogist René Just Hail)/ 
(1743-1826), as well as by Ch. S. Weiss, F. Neumann and W.H. Miller (first half 
of the 19th century), it is equivalent to the laws of stoichiometry in chemistry. 
We choose a coordinate system adapted to the crystal to describe its shape by 
analytical geometry. In general it will be a non-unitary system. Three non-
coplanar edges are chosen to define the directions of the axes a, b and c. The ratio 
of the lengths a:b:c can be defined by a fourth edge whose direction is, by 
definition, a + b + c. Note that the individual values of a, b and c are of no interest 
as the crystal is entirely defined by the directions of the edges and the orientations 
of the faces. The equation of a face is thus hu + kv + lw = some constant. We can 
make the plane pass through the origin; its equation then becomes 
hu + kv + lw = 0; the ratios h:k:1 define its orientation. By analogy, the direction 
of an edge is defined by the ratios u:v:w. 

In practice, we only measure the orientations of the faces, and not those 
of the edges. We will thus establish our coordinate system with the aid of 
this information (Fig. 1.5). We first choose three faces which form a trihedron 
whose intersections define the directions a, b and c. The choice of a fourth 
face which cuts these three directions establishes the ratio a:b:c. Thus we 
choose four faces, all other faces being referred to the coordinate system thus 
defined. 
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Fig. 1.5.  Thefourfaces defining a coordinatesysternW 0 0],[0 1 Wand [0 0 1] 
represent the axes a, b and c respectively, i.e. a = la + Ob + Oc, etc.; (1 0 0), 
(0 1 0) and (0 0 1) represent the faces parallel to (b,c), (a,c) and (a,b) 
respectively. (1 1 1) is the face whose equation is u+ v+ w=constant, Le. 
h:k:1 —1:1:1 

Relative to this coordinate system, all the other faces and edges satisfy the law 
of rational indices: 

The ratios h:k:1 of all the faces, and u:v:w of all the edges are rational. 

Note that an irrational ratio between two numbers cannot be observed because 
a magnitude of finite precision can always be represented by a rational number. 
The observation of a rational ratio is only meaningful when it concerns a ratio 
between small, coprime integers (i.e. whole numbers with no common factor greater 
than one). 

The coordinates h, k and lfor all of the faces as well as the coordinates u, 1) and 
w for all the edges of a crystal are small, coprime integers. 

These numbers are rarely outside the range + 10. We call h, k, 1 and u,  V, w the 
Miller indices of the faces and the edges. For the faces, the indices are written in 
parentheses, (h k 1), without commas; negative numbers are written k, k , 1 for 
example (1 3 4), (1 1 1). The indices (h k 1) and (h k 1) represent parallel faces 
of the polyhedron (or indeed the opposite sides of the same face). Note that all the 
faces (h k 0) are parallel to c, all the faces (h 0 1) are parallel to b, and all the faces 
(0 k 1) are parallel to a. The coefficients (h k 1) define the reciprocal vectors 
r*. ha* + kb* + lc*. For edges, the indices are written in square brackets, 
[u y w], for example [1 3 4], [1 1 1]. The coefficients Eu  y IA represent the 
direct space vectors r = ua + vb + wc. 
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If we know the indices of two faces (h 1  k i  1 1 ) and (h2  k 2  / 2), we can calculate 
the indices of the edge formed by their intersection Eu y w] by means of equa-
tion (1.20). In an analogous manner, we obtain the indices of a face (h k 
which is parallel to the two edges [u l  y 1  w 1 ]  and [u 2  y2  w2 ]. The intersections 
of (1 1 1) with (1 0 0), (0 1 0) and (0 0 1) are [0 1 1], [1 0 1] and El 1 0] 
respectively. 

1.3.3 ZONE PLANES 

First we described a crystal by its faces and its edges. We then replaced the faces 
by their normals. Analogously we can replace an edge by a plane which contains 
the normals to the faces parallel to the edge. We say that the faces which are 
parallel to the same direction belong to the same zone. If the faces intersect, which 
will depend on the habit of any individual crystal, this direction is parallel to an 
edge. The word zone, or more precisely zone axis, thus designates an existing edge 
or an edge that could exist. The normals of the faces form the zone plane. 

In geometrical crystallography, the crystal is usually described by means of the 
normals to the faces and the zone planes. This description is thus made in 
reciprocal space. The lengths of the segments cut on the a*, b* and c* axes by the 
zone plane Eu  y w] are a*lu,b*Iv and c*/w. This .description is equivalent to that 
given by the faces and edges in direct space. 

1.3.4 STEREOGRAPHIC PROJECTION 

It is useful to have a method of representing the faces of a crystal in two 
dimensions. To this end we frequently use stereographic projection (Fig. 1.6) and 
the Wulff net (Fig. 1.7). 

We imagine that the crystal is placed at the center of a sphere. The points 
s where the face normals r* cut the sphere generate the spherical projection. We 
then project the points on the sphere onto the equatorial plane in the direction of 
the opposite pole P. The point p is thus the image of the face r*. For the lower part 
of the sphere, r'* and s', for example, we use the opposite pole P' in order to obtain 
the projection p'. Stereographic projection conserves the angles; the stereo-
graphic projection of a circle is also a circle. A zone plane defined by several face 
normals r* is projected on a great circle (meridian) which contains the projections 
p of those face normals. 

A net of meridians (great circles) and parallels (small circles) allows us to define 
the coordinates of the points s on the sphere in analogy with terrestrial geogra-
phy. If we project this net stereographically, we obtain the Wulff net. This allows 
us to easily determine the ratios a:b:c as well as the indices of the faces and 
zones starting from the angles between the faces of a crystal measured with a 
goniometer. 
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Fig. 1.6. Stereographic projection 

1.4 PERIODIC SPACE TILING AND CRYSTAL STRUCTURES 

1.4.1 TRANSLATIONAL LATTICE 

Cleavage of crystals, in particular of calcite CaCO 3 , and the law of rational 
indices generated the idea of the periodicity of crystal structures and the theory of 
translational lattices: 

A crystal structure consists of a periodic repeat in three dimensions of some 
motif. 

This theory implies the existence of a microscopic unit of structure (the 
`molécule intégrante' of René Just Haily), which played as fundamental a role 
in the discovery of atoms as the laws of chemical stoichiometry. The X-ray 
diffraction experiment (M. von Laue, 1912; Chapter 3) provided brilliant confir-
mation of its existence. 
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Fig. 1.7. Wulff net with the poles situated in the stereographic plane 

We consider that the two-dimensional periodic structure of Fig. 1.8(a) extends 
to infinity. Let us choose some dot • and all the dots equivalent to this one. We 
call this set of dots • in Fig. 1.8(a) the translational lattice, or simply the lattice. The 
translation of the diagram from one dot • to another dot • is an operation which 
yields an invariance, i.e. this is a symmetry operation. We call these dots • lattice 
points. Other examples of two-dimensional periodic structures are given by 
patterned wallpapers. 

The periodically repeating unit is called a motif In Fig. 1.8(a), the contents of 
one of the parallelograms can be considered to be the motif. It is important to 
distinguish clearly between the terms lattice, motif and structure: 

The periodic structure consists of a motif which is repeated by the lattice 
translations. 

By choosing two non-collinear translations a and b in Fig. 1.8(a), we describe 
the lattice by the translation vectors r = ua + vb, u and y being integers. We call 
this coordinate system the lattice base. The parallelogram (a, b) is the cell (unit 
cell). Analogously, the base a, b, c of a three-dimensional lattice is defined by three 
non-coplanar translations. The cell is hence a parallelepiped. The coordinates x, 
y, z of a point inside this cell are referred to this non-unitary coordinate system. 
The set of all the points equivalent by translation to the point xi, y,  z i  is given by 



• 
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Fig. 1.8. Structure, motif, translational lattice and lattice base 

the vectors: 

= (xi  + u)a + (yi  + v)b + (z i  + w)c 	 (1.22) 

where 0 -. xi , yi, z i  < 1; u, v, w being integers. 

The lattice points do not represent atoms or other physical objects. The lattice 
only describes the periodicity of the structure, i.e. a symmetry property. 
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Figures 1.8(b), 1.8(c) and 1.8(d) all represent the same structure and the same 
translational lattice as Fig. 1.8(a). In Fig. 1.8(c) we have chosen another origin for 
the coordinate system. In Fig. 1.8(b) we have chosen another base a' - 2a + b, 
b' = a + b. The area of the cell in Fig. 1.8(b) is the same as in Fig. 1.8(a): 
a' x b' = a x b. If the determinant of the transformation matrix between the 
systems (a', b') and (a, b) is equal to + 1, the area of the cell remains unchanged. 
Analogously, if the determinant of the transformation matrix between the 
systems (a', b', c') and (a, b, c) in a three-dimensional structure is equal to + 1, the 
volume of the cell remains unchanged. If the determinant is negative, we pass 
from a right-handed coordinate system to a left-handed one or vice versa. This 
determinant is equal to 2 in Fig. 1.8(d) where a" = a + b and b" =  -a + b. The 
corresponding cell has double the area. The coordinates of the lattice points with 
respect to (a", b") are (u; y) and (u + 1/2;  y + 1/2) where u and y are integers, i.e. 
(a" + b")/2 is a translation. 

A cell is primitive or simple if the base is chosen in such a way that the lattice 
points have integral coordinates. The set of equivalent points is thus given by 
equation (1.22). A cell is centered or multiple if there are translations with 
non-integral coordinates and then the cell contains several lattice points. In this 
case it is sufficient to give the fractional coordinates of the translations, e.g. we 
symbolize the set of translations u + 1/2, y +1/2, w +1/2 with u, y and w being 
integers by the notation (1/2, 1/2, 1/2). Table 1,1 shows the symbols which 
represent the set of points equivalent by translation to the point xp  y, zi  for 
a diverse set of multiple cells. 

It is always possible to choose a primitive cell. The discussion of the conditions 
which lead us, in certain cases to choose a multiple cell will be left until later 
(Section 2.6.1, Bravais lattices). For the moment, it is sufficient to indicate that, in 
the presence of rotational or mirror symmetry, we choose the vectors a, b and c to 

Table 1.1. Translations and symbols for multiple cells. Alternatively we write 
(0 0 0, 0 1/2 1/2)+ for an A centered lattice, or (0 0 0, 0 1/2 1/2, 1/2 0 1/2, 

1/2 1/2 0) + for an F centered lattice, etc. 

Translations 
	

Point j 	 Cell 	 Symbol 

(0, 0, 0) + (0, 1/2, 1/2) + 
(0, 0, 0) + (1/2,0,  1/2) + 
(0, 0, 0) + (1/2,  1/2,0)  + 
(0, 0, 0) + (0, 1/2, 1/2) + 

(1/2,0,  1/2) + 
(1/2,  1/2,0)  + 

(0, 0, 0) + (1/2, 1/2, 1/2) 
(0, 0, 0) + (2/3, 1/3, 1/3) 

(1/3,2/3,  2/3) 

xi, yi, zi 	primitive (or simple) cell 	P 
xi , yi, z i 	cell centered on the (b, c) face 	A 
xi, yi , z i 	cell centered on the (a, c)  face 	B 
xi, y»  zi 	cell centered on the  (a, b)  face 	C 

..X» yi , z i 	cell centered on all the faces 	F 
+ 	xi, yi, zi 	body (inner) centered cell 	I 
+ 
+ 	xi, yi, zi 	rhombohedral cell 	 R 
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Fig. 1.9. Wigner—Seitz cells, a periodic space tiling 

follow the elements of symmetry. The resulting cell thus has its own particular 
metrical parameters, but it is not necessarily primitive. 

Note that it is possible to divide up the structure in a variety of ways into unit 
volume elements which contain the motif and which allow us to obtain the 
complete structure by periodic repeats (Fig. 1.9). The only requirement is that 
these repeating volume elements be a space tiling. However, the cell of a lattice is 
always a parallelepiped by definition. 

1.4.2 EDGES, FACES AND LATTICE 

A straight line that passes through two, and hence, an infinite number of lattice 
points is a lattice line. A simple translation vector T = Ua + Vb + Wc (U, V,W 
being Co prime integers) defines the direction of a set of parallel lattice lines 
equivalent by translation. It is easy to see that the greater the separation between 
the lines, the smaller is the norm of the translation 11T11. 

A plane which passes through three lattice points (and hence through an 
infinite number of lattice points) is a lattice plane. Planes equivalent by transl-
ation form a family of regularly spaced lattice planes. The greater the distance 
between the planes, the smaller is the area of the primitive two-dimensional cell 
because all the primitive cells of the lattice have the same volume. Figure 1.10 
shows a family of parallel planes numbered consecutively with plane 0 passing 
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Fig. 1.10. The family of lattice planes (H . K L) — (3 2 1) 

through the origin. The equation of the first plane is Hu + Kv+ Lw =1 where 
u, y, w are the coordinates of the lattice points in the plane and H, K, L are 
the reciprocals of the lengths cut by the plane on a, b, c (in units of a, b, c). Because 
the lengths cut by the nth plane are n times larger than those cut by the first plane, 
the equation of the nth plane is Hu + Ky + Lw = n (n integer). Each lattice point 
( — co <u,  y, w < + co) is found on one of the planes of the family. It thus follows 
that H, K and L are whole numbers. If H, K and L have a common factor in, 
(H, K, L) = m(11 1 ,  K',  L') with H',  K',  L' and m being integers. The equation of the 
first plane then becomes H'u+ Kiv-i- L'w =1/m= integer, hence m = 1. H,K and 
L are thus coprime integers. 

The analogy between the equations representing the edges and faces of a crystal 
on the one hand, with lattice lines and lattice planes on the other is the foundation 
of the theory of the periodic nature of crystal structures. This interpretation of the 
law of rational indices was formulated by the French abbé Auguste Bravais 
(1811-1863) as follows: 

The faces of a crystal are parallel to lattice planes with a high density of 
lattice points; the edges are parallel to lattice lines generated by short 
translations. 
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1.4.3 RECIPROCAL LATTICE 

The reciprocal coordinate system was defined above (1.2). If a*, b*, c* are the 
reciprocal base vectors of the vectors a, b, c, the vector r* = Ha* + Kb* + Le* 
(H, K, L being coprime integers) represents the normal to the plane 
Hu + Kv + Lw = 1. Its norm is ii r* 11 = 1/(dHKL ) where dma  is the distance of the 
plane from the origin, and hence the distance between consecutive planes in the 
same family. The reciprocal lattice is the set of vectors 

r* = ha* + kb* + lc* (— co <h,k,1 < + co; h,k,1 being integers) (1.23) 

The relationships between the direct crystal lattice and the reciprocal lattice 
are summarized in Table 1.2 and Fig. 1.11. 

Table 1.2. Relationships between the direct crystal lattice and 
the reciprocal lattice 

abc 	 a* b* c* 

family of lattice planes (HKL) 
with spacing dHKL , (HKL) 	-=> 
being coprime integers 

lattice line t = ua+ yb+ we 
with (u y w) = m(U T/ W); 	<=> 
norm II t  Il  = inicitiKL 

lattice line t* = ha* + kb* + lc* 
with (h k 0 = m(H K L); norm 
II t*  II = 	/ m, dHKL 

family of lattice planes (UT/W) 
with spacing dtvw, (U VW) 
being coprime integers 

Fig. 1.11. Crystal lattice and reciprocal lattice 
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1.5 WHAT IS A CRYSTAL? 

In the preceding pages, we have defined the idea of a crystal by the three-
dimensional periodicity of the atomic distribution; the crystal is thus character-
ized by long-range order. This classical definition of the crystal is of fundamental 
importance and, because of this, is the central theme of the present work. 
However, it does not include all structures which are rigorously ordered, and 
represents only an idealization of real crystals whose order is never perfect. 

1.5.1 QUASI-PERIODIC AND APERIOD1C STRUCTURES 

These are crystal structures which have perfect long-range order but which are 
only approximately periodic, incommensurate crystals on the one hand, and 
quasi-crystals on the other. 

Figure 1.12 shows a simple example of an incommensurate (or modulated) 
structure. The square grid represents a perfect crystal lattice. However, the atoms 
do not occupy the corners of the squares. They are displaced relative to the ideal 
positions according to a plane sinusoidal modulation wave whose wavelength is 
incommensurate with the length of the translation b; AM is an irrational number. 

X 
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a • • 
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•  
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•  

• • • 
Fig. 1.12. Example of an incommensurate structure. The atoms are displaced 
from their (a, b)  lattice  positions by a transverse modulation wave of wavelength 
.1 and amplitude A 
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The resulting structure is not strictly periodic in the b direction. The atomic 
positions of an incommensurate structure made up of several types of atom are 

= ri  + nuyw  + Ai  sin [q .(ri  + nu,w) + (Di] 

ri  + n„w  = (xi  + u)a + ( y i  + v)b + (z i  + w)c 

d 	= 2701 	 (1.24) 

The translations n, = ua + vb + we are those of the periodic structure whose 
atomic positions are ri  + n„,,w  following equation (1.22); q is the wave vector of the 
modulation and A the wavelength; Ai  is the amplitude of the modulation of atom 
j whose polarization may be longitudinal, transverse or oblique with respect to q; 
D. is the phase of the wave with respect to some reference origin. Clearly, the 
modulation wave can be more complex than a sine wave. We can also imagine 
several modulation waves in two, or even three, directions in space. Equation 
(1.24) represents four periodicities, the three of the perfect lattice and that of the 
modulation wave. We can represent this fact by a strictly periodic structure in four 
dimensions, thus describing the corresponding reciprocal lattice by adding a vec-
tor derived from q to the three-dimensional base a*, b*, c*. In the case of several 
modulations, lattices of five or six dimensions are generated. We obtain the 
distribution of the atoms from the intersection of the four-dimensional structure 
with three-dimensional space. The study of incommensurate structures has led to 
the development of crystallography in dimensions higher than three. 

Figure 1.13 shows another type of incommensurate structure called a compos-
ite structure. It is characterized by the interpenetration of two independent 
lattices of different atoms whose dimensions are incommensurate. The com- 

0 	0 	0 

• •	 • O 
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Fig. 1.13. Composite crystal 
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pound Hg 3  „AsF6  is a good example of such a structure. The Hg atoms form 
linear chains whose periodicity is incommensurate with that of the arrangement 
of the AsF 6  octahedra. 

Quasi-crystals have macroscopic symmetries which are incompatible with 
a crystal lattice (Section 2.4.1). The first example was discovered in 1984; when 
the alloy AlMn is rapidly quenched, it forms quasi-crystals of icosahedral 
symmetry (Section 2.5.6). It is generally accepted that the structure of quasi-
crystals is derived from aperiodic space filling by several types of unit cell rather 
than one unique cell. In two-dimensional space, the best-known example is that 
of Penrose tiling. It is made up of two types of rhombus and has fivefold 
symmetry. We assume that the icosahedral structure of AlMn is derived from 
a three-dimensional stacking analogous to Penrose tiling. As is the case for 
incommensurate crystals, quasi-crystals can be described by perfectly periodic 
lattices in spaces of dimension higher than three; in the case of AlMn, we require 
six-dimensional space. 

Quasi-crystals are currently of great scientific interest. Nonetheless, the vast 
majority of all solid bodies are made up of crystals which possess periodic 
structures. For this reason, the following chapters will deal exclusively with three-
dimensional crystallography. 

1.5.2 REAL STRUCTURES, ORDER AND DISORDER 

Exact, perfect order of a periodic or quasi-periodic crystal is never obtained by 
a real atomic arrangement. All real crystals are more or less disordered. We 
describe the disorder by the term structural defect with respect to the idealized 
periodic structure. Many crystal properties (e.g. electrical conductivity and 
mechanical properties) are strongly dependent on the defect structure. 

For certain disorders, we can define an average structure with a perfect 
translational lattice. The most important ubiquitous disorder is due to the 
thermal motion of the atoms. The atoms vibrate about their average positions 
which, themselves, form a perfectly periodic arrangement. Translational symme-
try is thus obtained only for the time-averaged structure. Another type of defect, 
observed most frequently in alloys, is chemical (compositional) disorder. In this 
case, the atomic positions form a periodic system, but they may be occupied by 
different atom types in a more or less random manner. The spatial average of the 
structure thus has translational symmetry. For example, in the copper—gold 
alloys AuCux, the degree of order is extremely variable according to the composi-
tion, x, and the thermal treatment of the material. An incommensurate structure 
also exists in which the occupation of the atomic sites varies in a periodic manner. 

Other types of disorder partially destroy the long-range order and the structure 
approaches that of a liquid. Vacancies and interstitial atoms are point defects. 
Dislocations are linear defects of fundamental importance for the mechanical 
properties of materials. The interface between crystal regions with different 
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orientations (grain boundaries) constitute two-dimensional defects. Certain 
structures are only periodic in two dimensions and more or less disordered in the 
third (e.g. layer stacking in graphite or the micas). Finally, liquid crystals are 
liquids in which the molecules (generally linear organic molecules) are more or 
less aligned and hence exhibit a certain order. 

What is a crystal? The boundary between crystalline and amorphous (or liquid) 
matter is variable and poorly defined. However, translational symmetry, even if 
only imperfectly attained, is fundamental to the determination (Chapter 3), the 
description (Chapter 2) and the theoretical interpretation of solid state structures. 
It represents the principal characteristic of the majority of solids. For this reason, 
this is the general theme of the present work. 





CHAPTER 2 

Symmetry 

2.1 INTRODUCTION 

Man appears to have an innate appreciation of the principles of symmetry. Every 
civilization, from ancient Egypt to classical Greece, from the Arabian empires to 
the American Indians, has produced symmetrical ornaments and friezes, and has 
intuitively discovered the mathematical principles underlying the construction of 
periodic patterns. It was not until the 19th and 20th centuries that group theory 
was rigorously formulated by mathematicians. Today, the fundamental import-
ance of symmetry to the exact sciences is fully appreciated. 

Since the original formulation of the law of symmetry by R.-J. Haüy (1815), the 
study of symmetry has become one of the foundations of crystallography. (For an 
historical overview, see J. J. Burckhardt, Die Symmetrie der  Kris  talle,  Birkhduser, 
Basel, 1988.) The space groups describing the symmetry of periodic structures 
were initially tabulated by P. Niggli (Geometrische Kristallo graphie des Diskon-
tinuums, 1919) in order to meet the needs of crystallographers to apply them 
effectively to the determination of crystal structures by X-ray diffraction (Chapter 
3). This work was followed by other compilations which have been continuously 
improved. The latest edition of the International Tables for Crystallography was 
recently published by the International Union of Crystallography: 

International Tables for Crystallography, Vol. A, Space Group Symmetry, 
edited by Theo Hahn, D. Reidel Publishing Company, Dordrecht (Hol-
land)/Boston (USA), 1992. 

This chapter serves as an introduction to the contents and use of this reference 
book which the reader may consult for further details. Note that the previous 
edition of the International Tables is still to be found in many libraries and 
laboratories: 

International Tables for X-Ray Crystallography, Vol. I, Symmetry Groups, 
edited by Norman F. Henry and Kathleen Lonsdale, The Kynoch Press, 
Birmingham (England), 1952, 1969. 
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2.2 SYMMETRY OPERATIONS 

2.2.1 AFFINE TRANSFORMATIONS 

The invariance of an object or a structure with respect to some operation is called 
symmetry. A geometrical symmetry operation is the mapping of space onto itself. 
It transforms an object into itself without distortion. It is also called an isometry. 

In a wider sense, the terms symmetry and order are synonymous. Everything 
which is invariant or structured conveys the presence of symmetry, as, for 
example, the laws of conservation in physics. Symmetry and the lack of symmetry 
(asymmetry) play a major role in all artistic expression such as architecture, 
painting and music. 

A geometrical symmetry operation can be represented by an affine transform-
ation of the type: 

( x'1 ) 	11 r12 
x'2 	r21 

	

r22 

r i3 	x l 	/ t l  

	

r 23 	X2 ± t2 

X'3 	31 r32 r 33 	x 3 	\t 3  

x'—R x+t 

We designate the operation by the abbreviated symbol (R, t). Figure 2.1 shows 
a polygon and its image obtained from an affine transformation. 

The matrix R transforming x into x' as well as r into r' is independent of the 
choice of origin for the coordinate system, however, it clearly depends on the 

G 

) 

(2.1) 

Fig. 2.1. Example of an affine transformation (R, t). The vector r and its image r' 
are associated with equivalent polygons 
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Fig. 2.2. Repeat of the affine transformation in Fig. 2.1 

choice of the axes x 1  and x2 . The vector t is dependent on the choice of the origin. 
If the point G in Fig. 2.1 is chosen as origin, then the vector t is parallel to x2  (Fig. 
2.2). Successive applications of (R, t) symbolized by (R, t) 2  = (R 2 , Rt + t), 
(R, t) 3  = (R 3 , R 2t + Rt + t), ... , generate a symmetrical structure (Fig. 2.2) which is 
invariant with respect to both (R, t) and its powers (R, t). 

2.2.2 GROUPS 

If a structure is invariant with respect to two symmetry operations (P, t p) and 
(Q, tat), then it is clearly invariant with respect to the successive application of the 
two operations. We call this successive application the product. If we first apply 
(P, tp) and then (Q, to), the vector x is transformed into x" = Qx' + t cl  = QPx + 
Qtp  ± to. The multiplication of the matrices Q and P is thus carried out from  right 
to left. We first apply P and then Q: 

(Q,to)(P, tp) = (QP,  Qt  p  + to) 

(P,tp)(Q, to) = (PQ, Pto  + tp) 	 (2.2) 

In general, the multiplication is not commutative. 
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The identity operation (E, 0) is a symmetry operation that belongs to all possible 
objects. E is the identity represented by a unit matrix and 0 is a vector of zero 
length. 

If (P, tp) is a symmetry operation, then the inverse operation (P, tp) -  1 such that 
(P, t p)(P, tp) -1  = (P, tp) - 1 (P, tp) = (E, 0) is also a symmetry operation. From equa-
tion (21) we can show that: 

(p,  t)- 1 	03-1 , 	ID- lto 	 (2.3) 

The product of symmetry operations is associative: 

f(R, t R)(Q, to) (P, tp) = (R, t R){(Q, tQ)(P, tp)} 

	

(RQP, RQtp  + Rtcl  + tR) 	(2.4) 

These properties are the axioms defining a group. 
The symmetry operations of an object form a group. 

The group made up of the operation (R, t R) and its powers (R, t R)2 , (R, t R) 3, , 
(R, tR)n is a cyclic group. If all the operations of a group commute, 
(R3,  ti)(R i , t i) = (R i, ti) for all pairs (i, j), the group is Abelian. 

The matrices R and the vectors t constitute a representation of the group of the 
symmetry operations linked to the choice of coordinate system and its origin. For 
a given group, there is an infinite number of representations, each corresponding 
to a particular coordinate system. 

2.2.3 ROTATION, ROTOREFLECTION, ROTOINVERSION 

If (R, t) is a symmetry operation, the norms of r and r' in Figs 2.1 and 2.2 are equal. 
By choosing a unitary coordinate system, we obtain from this condition that 
II r/ 

m  2 = rTRTRr  . 
11 r11 2 , thus R TR = E = unit matrix (R T  is the transpose of the 

matrix R). This leads to the result that  R is an orthogonal matrix: 

	

R T  =  R,  1R 1 = + 1, unitary coordinate system. 	(2.5) 

The eigenvalues of the orthogonal matrix R are ei4', e - ' 4', + 1, where 0 is given by 
cos 0 = [trace(R) -T 1 ]/2. We will limit the discussion to 0 = 27tr, r = m/n being 
a rational number. R is related to the matrix U by a similarity transformation 

( 
cos 0 — sin 0 0 

m 
U(0) = sin 0 cos 0 	0 , 0 = — 27r; m and n are coprime integers. 

0 	0 	±1 1 	n 
 

(2.6) 

Thus there must be a matrix X such that U(0) = X - 1 RX. It is easily shown that 
U 2(0) = U(20) and U -1 (0) = 00) = U( — 0). There must also be an integer 
p < n such that pm/n (mod 1) = 1/n, hence U P(0) = U(0'), where (/)' = 27r/n. If U(0) 
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A n  

Fig. 2.3. Rotation, rotoreflection and rotoinversion operations 

is a symmetry operation, then U(4)') is also. We distinguish three types of 
operation as shown in Fig. 2.3. These operations may be represented by the 
following matrices: 

( 	
4) 

(cos 4) — sin 0 0 ) , 
rotation An , matrix similar to 	sin 	cos cf) 	0 

	

0 	0 	+ 1 
(2.7) 

n 

( 
cos 0 — sin 0 0 

rotoreflection S 	 4) „, matrix similar to sin 	cos 4) 	0 , (/) = —
2n 

(2.8) 
0 	0 	—i ) 	

n 

— cos 4) 	sin (/) ( 	
4) 	

0 \ 	
271 rotoinversion I., matrix similar to 	— sin 	-  cos s 4) 	0 , 4) = - (2.9) 

0 	0 	— 1 / 	
n 

A rotation A„ about an axis transforms a left hand into a left hand and a right 
hand into a right hand. It conserves the chirality. It is called an operation of the 
first type. The determinant of any matrix representing an operation of the first 
type is 1 A„ 1 = + 1. 

A rotoreffeetion (improper rotation) S„ about an axis is a rotation by the angle 
44 followed by reflection by the plane perpendicular to the axis. This is neither 
a pure rotation nor a pure reflection, but a combined operation. It transforms 
a left hand into a right hand and vice-versa. This is called an operation of the 
second type. The determinant of any matrix representing an operation of the 
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Table 2.1. Correspondence between roto-
reflections Sn  and rotoinversions 

= S2 = inversion 
1 2  = S 1  = mirror 
I 	' , SW = Sg 
1 4 =s,z1=s/ 
1 5  = SID3  = S 710 

16 = SV = 

1 7  = ST: = 

1 8 = 	3  = S; 

S 1  = 12 = mirror 
S2 = = inversion 
S 3  = 1  = IZ 

S i - 1 13  = 	= 

S5 = l 3  e) 	rio  

S i - 1 i2  = 	= 

S7 = = 

S8 = 3  = I; 

second type is S„1 =  —1.  The rotoreflection S, (4) = 0) is identical to the 
reflection by a symmetry plane, i.e. by a mirror. The rotoreflection S 2  (4) = TO is an 
inversion, i.e. reflection through a point. 

A rotoinversion I n  about an axis is a rotation by the angle followed by an 
inversion through a point on the axis. This is also a combined operation of the 
second type which is neither a pure rotation nor a pure inversion. It is easily seen 
that each rotoinversion is equivalent to a rotoreflection: 1(0) = S(rt + 
SW)) = 1(n + 0). Thus, operations of the second type may be represented by 
either rotoreflections or by rotoinversions. We could limit ourselves to one or 
other of these two representations. However, the two most commonly used 
systems of nomenclature applied to geometrical symmetry do not use the same 
convention. The Schoenflies system is based on rotoreflections, whereas the 
Hermann—Mauguin (or international) system is based on rotoinversions. In 
crystallography we prefer to use the Hermann— Mauguin system. The correspon-
dence between I„ and S n  is shown in Table 2.1. 

If n is a finite number, A: = E (n even or odd), S: =---- I: E (n even), Sn2 n = I n2n = E 

(n odd), E = identity. The groups formed by the operations A„ and 1„ (or S,) and 
their powers are groups offinite order. If an infinitesimal rotation is a symmetry 
operation, i.e. n co, the group is of infinite order (e.g. the symmetry of 
a cylinder). At least one point in space is invariant with respect to all the A„ and 1„ 
(or S„) operations. 

The groups formed by rotations and rotoinversions (or rotoreflections) are 
called point groups. 

It is important to remember to distinguish between a symmetry operation and 
its representation by a matrix. The latter depends on the coordinate system 
adopted. 
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2.2.4 TRANSLATIONS 

A simple translation is represented by the operation (E, T), where E is the 
identity (represented by a unit matrix), and = ua + vb + wc, a vector of the 
translation lattice. Translational symmetry allows us to arrange a large number 
of identical molecules or atoms in such a way that they are all strictly equivalent 
provided that the crystal is infinitely large (or large compared to the shortest 
translations). The atoms or molecules on the surface of a crystal are equivalent to 
each other if they form a two-dimensional translation lattice, i.e. planar faces 
parallel to specific lattice planes in the three-dimensional lattice (Bravais law, 
Section 1.4.2). 

The group formed by all the translations T( — oo u, y, w oo) is of infinite 
order and Abelian. 

The existence of a translation lattice implies long-range order. It is, however, 
not necessary to assume the existence of forces that act over long distances. For 
example, a chain under tension has perfect translational symmetry, but each link 
only interacts with its nearest neighbors (Fig. 2.4). We thus obtain a periodic 
structure by only specifying the orientation of successive links. 

2.3 SYMMETRY ELEMENTS 

Z3.1 FIXED POINT, ROTATION AXIS, MIRROR PLANE 

Figures 2.1 and 2.2 show that the vector t of a symmetry operation (R, t) depends 
on the choice of the origin of the coordinate system. Is there a preferred origin? 

After a displacement of the origin by a vector y, the affine transformation 
x' = Rx + t becomes x' — = R(x — v) + t,, = (Rx + t) — (Rv + t) + t v . The opera-
tion (R, t) thus becomes (R, t,,), the translation being: 

tv  = (R — E)v + t 

A point which is transformed into itself by an affine transformation is called 
a fixed point, x' = Rx + t = x = Ex; hence (R — E)x = — t. We distinguish four 
cases: 

• The matrix (R — E) can be inverted. It has three non-zero eigenvalues and its 
inverse (R — 	exists. By moving the origin of the coordinate system to the 

Fig. 2.4. Chain under tension 
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fixed point, y = x = — (R — Er 't, the translation vector cancels out, ty  = 0, and 
the transformation becomes linear (R, 0). This is the case for all the rotoinver-
sions 1„ represented by matrices like (2.9), with the exception of the reflection by 
a mirror characterized by n = 2 (or for all the rotoreflections S„ with the 
exception of n = 1). Thus the operation 1 1  followed by a translation which 
transforms the point x with coordinates (x 1 , x2 , x 3) into x' with the coordinates 
(1/2 —  x 1 , 1/2 — x 2 , 1/2 — x 3 ) has a fixed point at (1/4, 1/4, 1/4). We call this 
point associated with the operation 1 1  a center of inversion or a center of 
symmetry. Reflection by a plane, 1 2  , S 1 , has no unique fixed point. 

• The matrix (R — E) has one eigenvalue equal to zero and two that are non-zero 
and, hence, cannot be inverted. This is the case for all the rotations An  
represented by matrices like (2.7) except for the identity E characterized by 
n = 1. The eigenvector x 0  corresponding to the zero eigenvalue is the rotation 
axis. It is invariant with respect to R, Rxo  = xo . A shift of the origin of the 
coordinate system along the rotation axis does not alter the translation vector 
t of the affine transformation, whereas a shift perpendicular to the rotation axis 
changes the corresponding components oft.  The origin may be chosen to be on 
the rotation axis. The vector t can then only have one non-zero component 
parallel to the axis, e.g. t = (0,0, t 3) for a rotation axis parallel to x3 . If t = 0, any 
point on the rotation axis is a fixed point. 

• The matrix (R — E) has two eigenvalues equal to zero and one non-zero 
eigenvalue. This is the case for a reflection by a plane, S 1  = 1 2, which is 
represented by matrices like: 

1 0 0 
1 2  = 0 1 	0 , mirror plane perpendicular to x 3 . ( 

0 0  —i l  

The eigenvector corresponding to the non-zero eigenvalue is normal to the 
mirror plane. The affine transformation (1 2 , t) is invariant with respect to a shift 
of the origin of the coordinate system in the plane. If we choose an origin in the 
plane, then the vector t can have two non-zero components parallel to the 
plane. Figure 2.2 gives a two-dimensional example: R represents a reflection 
line which transforms x 1  into — x i , and t is parallel to the line. If t = 0, any 
point on the line is a fixed point. 

• The matrix (R — E) has three eigenvalues equal to zero, thus R = E. The 
operation is a pure translation and clearly has no fixed point or preferred 
origin. 

The ensemble offixed points ( points, lines or  planes) of a symmetry operation 
are called symmetry elements. To the fixed point of I n  or S„, we must add the 
fixed line corresponding to the operation A„ or the plane which is perpendicular 
to it. Rotation axes correspond to the operations A„, centers and rotoinversion 
axes to the operations I„, and mirror planes and rotoreflection axes to the 
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operations S.  A center of symmetry corresponds tol l  and a mirror plane to 1 2 . 
Symmetry elements are useful in order to visualize or to represent graphically 
a symmetry group. 

A group is a set of symmetry operations. A symmetry element is a geome-
trical location. The symbols used to identify symmetry elements are given 
in Table 2.2. We saw that operations of the second type may be represented 
either by rotoreflections or by rotoinversions (Table 2.1). Table 2.3 shows the 
equivalence between the corresponding symmetry elements. In terms of 
elements (and not in terms of operations), the only rotoinversion axes necessary 
for the representation of groups are 4, 8, etc.. However, all the n axes generate 
cyclic groups; consequently it is preferable to use the symbols 3 and -6-  rather 
than the corresponding combination of rotation axes with a center of symmetry 
or a mirror plane. Figure 2.5 gives a graphical representation of some of these 
axes. 

Table 2.2. Symbols for the symmetry 
elements. Note the special symbol m for 
a mirror plane.  1 represents one unique 
point 

Symmetry element Symbol 

Rotation axis 1, 2, 3, ..., x 
Rotoinversion axis  1 , = m,  a,...  , 
Rotoreflection axis 'I = m, 	, 

Table 2.3. Equivalence between rotoinversion and rotoreflection axes 

-= 
= m 

3=  
4 -=_ 4 

-6. 
n = 2rn + 1 

n = 4m + 2 

n = 4m 

center of symmetry 
mirror plane 
combination of a threefold axis and a center of symmetry 
cannot be interpreted as the combination of a rotation axis and 
either a center of symmetry or a mirror plane 
combination of a threefold axis and a mirror plane 
axis of order n and a center of symmetry, equivalent to a 
rotoreflection axis x 2n = 4m + 2 
axis of order 1/2n and a mirror plane equivalent to a 
rotoreflection axis, k, x = 1/2n = 2m + 1 
element of symmetry which cannot be decomposed, equivalent 
to a rotoreflection axis 
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Fig. 2.5. Rotoinversion axes 4, 3 and G. These axes represent cyclic groups. In 
contrast, non-cyclic groups are obtained by combining an even-order axis with 
a center of symmetry or with a perpendicular mirror plane 

2.3.2 GLIDE PLANES AND SCREW AXES 

Let us suppose that R is of finite order, i.e. R" = E. The successive application of 
n (R, t) operations then gives us a pure translation T: (R, t)  = (E, T). Equation (2.2) 
gives: 

n — 1 
(R, t). (R n,  [Rn — 1 ± Rn — 2 + 	1-+.2 + 11 	R Ejt) = ( Rn  ,[ 	R x ]t) = (E, T) 

x=0 

By pre-multiplying or post-multiplying the sum by R and by (R — E), we obtain: 

[

nEl  R x ] = [ nEl  Rx1R = [ Rx] = [ nE1 R] 
x=0 x=0 x=1 x=0 

(R — 	E R' =
[ 

E Rx](R - E) = 0 
x=o 	x=o 

(2.10) 

0 being a matrix where all the terms are zero. On post-multiplying equation (2.10) 
by t, we obtain (R — E)T = 0 where T is an eigenvector of R, and hence of Rx, with 
the eigenvalue + 1. The mean value D of the matrices Rx is an idempotent matrix 
with the properties: 

[ n — 1 	 1 
S) =— 	Rxi: Q = 	=

n
T 

n x o 

The eigenvalues of any idempotent matrix  12 are 0 or + 1. They correspond to the 
zero and non-zero eigenvalues of (R — E). We distinguish the same four cases as 
presented in Section 2.3.1: 

• The matrix (R — E) can be inverted, R has a fixed point and (R — 	exists, 
hence, f = 0 and T = O. All the eigenvalues of f2 are zero. If the origin of the 
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coordinate system is located at the fixed point, the operation is a rotoinversion 
with no translation,  I,  1 3 ,1 4, . . . . , with t = O. 

• For the operation An  corresponding to a rotation axis n where n 0 1, one of the 
eigenvalues of R and SI equals 1. The corresponding eigenvector is parallel to 
the rotation axis. The two other eigenvalues of 0 are zero. If the origin of the 

3 1 4__ 	3  2 4 
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Fig. 2.7. Sixfold screw axes 
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coordinate system is located on the rotation axis, the vector t becomes: 

m 
t = —

n 
T„ Tr  being the translation parallel to the rotation axis. (2.11) 

The symmetry operation corresponding to the operation (R, t) is a screw axis (the 
axis is defined by the set of fixed points of An). Figures 2.6 and 2.7 show the screw 
axes corresponding to different values of n and m as well as their numerical (n m) 
and graphical symbols. 
• For the operation 1 2  = S 1  (corresponding to a mirror plane m), two of the 

eigenvalues of R and Q equal 1. The corresponding eigenvectors are parallel to 
the mirror plane. If the origin of the coordinate system is located in the plane, 
the vector t is reduced to: 

1 
t = -2- Tm , T m  being a translation parallel to the mirror plane. (2.12) 

This symmetry element is a glide plane and is shown in Fig. 2.8 (the plane 
contains all the fixed points of 1 2). 

• R is a unit matrix, R = E = Q, and t --= T is any translation. 

It follows that screw axes and glide planes are the only symmetry elements that 
are composed of a rotation or a rotoinversion and a translation. 

Fig. 2.8. Glide plane 
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Table 2.4. Symbols for symmetry elements without a translation component 

I 2-fold rotation axis 
(operation A2) 
symbol 2 

....›. 	2-fold rotation axis parallel 
to the plane of projection 

3-fold rotation axis 
(operation A 3 ) 
symbol 3 

4-fold rotation axis 
(operation A 4 ) 
symbol 4 

• 	6-fold rotation axis 
(operation A 6 ) 
symbol 6 

identity operation A1 
symbol 1 

mirror plane perpendicular to the 
plane of projection (operation 1 2 ) 
symbol m(=-2) 

or 1--- 

mirror plane parallel 
to the plane of 
projection 

center of symmetry 
0 	(operation 1 1 ) 

symbol T 

4-fold rotoinversion axis 
(operation 14), symbol 4 

3-fold rotoinversion axis, 

A equivalent to the combination of a ' 
3-fold rotation axis and a center of 
symmetry (operation 1 3 ), symbol -§ 

6-fold rotoinversion axis !  
 equivalent to the combination of a 

3-fold rotation axis and a mirror 
plane (operation 1 6 ), symbol -6 

2.3.3 SYMBOLS USED TO REPRESENT SYMMETRY ELEMENTS 

The symbols used to indicate symmetry elements with and without translation 
components are given in Tables 2.4 and 2.5. Remember that we need to 
distinguish symmetry operations from symmetry elements, i.e. the operations of 
rotation (An), rotoinversion (I n) and rotoreflection (Sn) on the one hand, from 
a rotation axis (n), rotoinversion axis ( 1) or rotoreflection axis (n), on the other. 

2.4 SYMMETRY AND THE LATTICE METRIC 

2.4.1 SYMMETRY ELEMENTS COMPATIBLE WITH TRANSLATIONS 

There exist an infinite but enumerable number of point groups formed by the 
operations An  and I n, 1 < n < co. They represent the symmetries of macro- 
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Table 2.5 Symbols for symmetry elements with a translation component 

Screw axes 

2-fold 
symbol 2 1  

3-fold 
symbols 3 1 , 3 2  

4-fold 
symbols 4i'  42 , 43  

6-fold 
symbols 6i,  62 , 63, 64 , 65 

normal to the plane 

to the ---... 	parallel 

of projection 

plane of projection 

*- 

I* 4 ilk it Nilk 
Glide planes 

glide of one half 
translation a: symbol a 

glide of one half 
translation b: symbol b 

glide of one half 
translation C: symbol c 

glide of one half 
translation a+b, or b+C 
or a+C: symbol n 

in F or I centered cells 
glide of one quarter of 
the translation a±b, b±c or 
c±a (F) or a±b±c (I): 
symbol d 

plane perpendicular to 
the plane of projection 

plane parallel to the 
plane of projection 

. 	■I• .■ MO  

glide in the plane 
of projection 

glide normal to the 
plane of projection 

, 	. . . 
glide oblique to the 
plane of projection 

. 	. O.- . 

. 	. 
glide oblique to the 
planes d 

I ill'  

F 
1 ...."  

the 
indicates 
glide 

arrow 
the 

direction 

Notes. The d planes may exist in orthorhombic F, tetragonal I, cubic land cubic F Bravais lattices (Section 2.6.1). In 
the tetragonal, trigonal, hexagonal and cubic systems (Sections 2.5.8 and 2.5.9) we find mirror planes which are not 
parallel to the (100), (010) or (001) planes. The glides for the n and d planes corresponding to these orientations are 
oblique with respect to the a, b, c axes. More detailed information may be found in the International Tables for 
Crystallography. 

scopic objects. In contrast, periodic structures do not allow all these symmetry 
operations, and they are only invariant with respect to a limited number of 
them. 

In a periodic structure we find series of symmetry elements, i.e. series of 
rotation and rotoinversion axes as shown in Fig. 2.9. 
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Fig. 2.9. Symmetry of the chain under tension from Fig. 2.4 where T is the 
translation. We can distinguish two types (or classes) of mirror, m and m'. In each 
class the lines are equivalent by translation 

If x is some vector in a periodic structure which has translations 
T = ua + vb + wc, — co < u, v, w < + cc,  the extremities of all the vectors x + T 
are points which are equivalent by translation. Let (R, t) be a symmetry operation 
which transforms x into x', Rx + t = x'. It also transforms x + T into 
x' + RT: R(x + T) + t = x' + RT. It thus follows that RT = T' is also a translation 
of the lattice. 

The lattice must be invariant with respect to the rotations An  and to the 
rotoinversions I n . 

We have shown that R is represented by an orthogonal matrix if we choose 
a unitary coordinate system. The matrices (2.7), (2.8) and (2.9) are examples of 
orthogonal matrices. Alternatively, we can choose the axes of our coordinate 
system to be a lattice base a, b, c, i.e. three primitive non-coplanar translations. 
The coordinates of the lattice points u, v, w are then integers and all the terms in 
the corresponding representation of R are thus also integers. Let us indicate the 
orthogonal representation by the matrix U, and the representation with integers 
by the matrix N. The matrices U and N are related by a similarity transformation 
because they represent the same operation. Hence, there must exist a matrix 
X such that N = X l UX. The matrix X transforms the coordinate system of the 
lattice to a unitary system. Moreover, U is similar to one of the matrices (2.7), (2.8) 
or (2.9). We know that similar matrices have the same trace. It thus follows that: 

trace(U) = + (2 cos 0 + 1) = integer, and hence 
cos 0 = cos (2n/n) = 1/2N, n and N being integers. 

The only allowed values of n are thus n = 1, 2, 3, 4, 6. Periodic structures can 
only be invariant with respect to the rotation axes 1, 2, 3, 4, 6 and with respect 
to the rotoinversion axes 1, 2 = m, 3, 4, 6 (or to the corresponding rotoreflec-
Hon axes). 
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This important theorem refers to two- and three-dimensional structures. It 
expresses the fact that tiling of the Euclidean plane by regular polygons can be 
achieved only with the triangle, the square and the hexagon. A four-dimensional 
periodic structure can allow other symmetry operations. 

2.4.2 METRIC IMPOSED BY THE SYMMETRY 

Figure 2.10 shows that the presence of rotation or rotoinversion axes implies 
a characteristic metric for the lattice. Twofold axes do not impose any special 
metric; reflection lines are only compatible with a rectangular or diamond lattice; 
fourfold axes are only compatible with a square (tetragonal) lattice; threefold and 
sixfold axes are only compatible with a triangular (hexagonal) lattice. 

Let T be a translation of the lattice, S 1  a reflection by a mirror plane and T' the 
translation equivalent to T by the reflection S i  (Fig. 2.11). The translations T — T' 
and T + T' are thus respectively perpendicular and parallel to the plane. In 
a similar manner we can show that 

All rotation and rotoinversion (or rotoreflection) axes which are symmetry 
elements of the lattice are parallel to translations and perpendicular to lattice 
planes. 

(a) a, b, y 

(d) a=b,  'y=90°  

MEN 
MEIN 

MN 
(b) a, b, T=90° 

(e) a=b, 7=120° 

Fig. 2.10. Tiling of two-dimensional Euclidean planes; (a) arbitrary lattice, 
twofold axes 2; (b) rectangles, reflection lines m; (c) diamonds, rectangular 
centered cell, reflection lines m and glide lines g; (d) squares, fourfold axes 4; 
(e) triangles, threefold axes 3; (f) hexagons, sixfold axes 6, sametype of cell as (e) 
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Fig. 2.11. Reflection plane and translation 

It thus follows that any symmetry element, except a center of symmetry T, 
generates mutually perpendicular translations. 

2.4.3 POINT GROUPS AND SPACE GROUPS 

The groups formed by rotations and rotoinversions are called point groups 
(Section 2.2.3): 

Point groups describe the symmetry of objects offinite dimensions. 

Groups made up entirely or in part by translations are of infinite order; these 
groups may also contain rotations and reflections with or without a translation 
component as well as rotoinversions. In the Euclidean plane they are called plane 
groups and in three-dimensional space, space groups: 

Space groups describe the symmetry of periodic structures. 

What is the relation between the space group which describes the symmetry of 
a crystal structure at the atomic level and the point group which describes the 
symmetry of the corresponding macroscopic crystal? By analogy with the 
Bernhardi principle (Section 1.3.1), a crystal is characterized by its properties in 
different directions, for example rate of growth, thermal and electrical conductiv-
ity, elasticity and piezoelectricity. Let us consider the periodic structure shown in 
Fig. 2.12. Clearly, the macroscopic properties in the directions of the two large 
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g 	g' 	g 

'molecules' 
	

periodic structure 	macroscopic crystal 

Fig. 2.12. Symmetry of a periodic structure and of the macroscopic crystal 

arrows are identical because they make the same angles with the arrows in the 
bricks. The symmetry of the structure is characterized by the series of glide lines 
g and g'. In contrast, the macroscopic crystal has a mirror plane m. In all cases, 
a series of rotation or rotoinversion axes in the periodic structure appear as 
a single rotation or rotoinversion axis in the macroscopic crystal. 

We can express this idea in a more formal manner by using the idea of the 
factor group. Let a be a group of order m composed of the operations gk, 
1 < k m, and S a subgroup of order s. The set g i S obtained by pre-multi-
plying all the operations of S with an operation g i  of a is a left coset of S: g i S 
is identical to S if g i  is included in S; g iS has no operation in common with S if 
g i  is not included in S. The set S g i  is a right coset of S. An invariant subgroup N 
of order n is defined by g i- 1N g i  = N for any operation g i, thus g iN = N g i . 
N subdivides N into m/n cosets, and each operation g k  belongs to a single 
coset of N. The cosets of N form a group of order q = m/n called the factor  group 
of N, Q = G/ N. N corresponds to the identity operation of Q; q is the index 
of N in a.. 

The group of translations T is an invariant Abelian subgroup of the space 
group E , the similarity transfrmation of a translation with any other operation of 
the group being a translation. Each of the operations of E belongs to one of the 
q cosets of T , q being the index of T in E . T contains all the operations (E, T) 
(Section 2.2.4). According to equation (2.2), (R, t)(E, T) = (R, RT + t) = (R, t') be-
cause RT is a lattice translation. The kth coset of T thus contains all the 
operations (R k, t 1 ), (R k,  t 2),...,  with the same rotation or rotoinversion Rk and 
different translations. There are as many cosets as there are operations Rk. 

The point group p is isomorphic with the factor group of the group of 
translations, P = E /T . It contains the operations R 1  = E, R2, 	R k, 	, R. 
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These considerations are illustrated in the structure in Fig. 2.12. The plane group 
is composed of two cosets: the operations (E, T) which generate from any given 
brick (for example, with an arrow pointing to the right) all the bricks with the 
same orientation, and the operations (1 2 , t + T) which generate all the bricks with 
the other orientation (with the arrows pointing to the left; t is a half translation 
parallel to g). The point group contains the operations E  and 12,  i.e. it is generated 
by a mirror plane m. 

Point groups that are compatible with a crystal lattice are called crystal classes 
and are thus made up of the operations Ai, A2, A 3 , A4, A 6 ,1 1 ,1 2 ,1 3,1 4, 1 6  and 
their powers. 

2.5 CRYSTAL CLASSES AND SYSTEMS 

2.5.1 NOTION OF CLASS 

The word class is used to characterize diverse groupings of objects according to 
the properties they have in common. An equivalence class is made up of like ( or 
conjugate)  operations. Let a be a group of order m made up of the operations 
gk, 1--.Ç. k <m. The equivalence class of the operation gx  contains all the oper-
ations gk- 1  g xgk , 1 < k < m. The cosets of an invariant subgroup introduced 
above (Section 2.4.3) are an alternative scheme for dividing the operations of 
into classes. Thus the word class is generally used for collections of objects of 
a certain type: an equivalence class is composed of like operations which perform 
equivalent transformations; the cosets discussed in Section 2.4.3 collect the bricks 
of Fig. 2.12 into two different classes; the crystal classes classify crystals according 
to their macroscopic symmetry; the Laue classes group together certain crystal 
classes (Sections 2.5.4, 2.5.5 and 2.5.7). Symmetry elements are likewise grouped 
into classes. For example, in Fig. 2.12, the glide lines g form one class and the lines 
g' form another. Some classes, as, for example, the crystal classes, are also groups. 

2.5.2 GROUP GENERATORS 

All the crystallographic groups can be *  generated from a limited number of 
symmetry operations. A cyclic group, for example, is generated by a single 
operation. Instead of generating a group from the symmetry operations, it may 
equally well be generated from the symmetry elements. Figures 2.13 and 2.14 
demonstrate the most useful generators. 

Two mirror planes whose intersection forms the angle 0 generate a rotation 
axis of period 20. Figure 2.13(a) shows two mirror planes that intersect at an 
angle of 45 0  and thus create a 90° rotation. Multiple application of these two 
reflections yields a fourfold rotation axis and four mirror planes which belong to 
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(a) 

(b) 

2 

 

Fig. 2.13. Combination of two mirror planes (a), two twofold axes (b), and a 
mirror plane with a twofold axis (c). In the stereographic projections, the symbol 
• represents a face above the plane of projection and o a face below the plane 
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Fig. 2.14. A mirror plane, a twofold axis and a center of symmetry 

two different equivalence classes. For any n, two planes forming an angle 0 = n/n 
generate an axis n and a total of n mirror planes which belong to two classes if n is 
even, and to the same class if n is odd. 

Two twofold axes which intersect at an angle 0 generate an axis of period 20 
normal to the plane of the twofold axes. Figure 2.13(b) shows two twofold axes 
which form an angle of 45° and create a 90° rotation. Multiple application of these 
two 180° rotations results in a fourfold axis and a total of four twofold axes which 
belong to two different equivalence classes. For any n, two twofold axes which 
intersect at an angle 0 = n/n generate an axis n and a total of n twofold axes which 
belong to two classes if n is even, and a single class if n is odd. 

A mirror plane and a twofold axis whose intersection forms the angle 0 gener-
ate a rotoreflection of period 20 (or a corresponding rotoinversion). Fig-
ure 2.13(c) shows a mirror plane and a twofold rotation axis which make an angle 
of 45° and which create a 90° rotoreflection axis. Multiple application of these 
two operations yields a 4 axis, two mirror planes and two twofold axes. 

A mirror plane and a twofold (or any even order) axis perpendicular to the 
plane generates an inversion center (Fig. 214 or Fig. 2.13(c) with 0 = 90°). Two of 
these three elements generate the smallest non-cyclic (but Abelian) group: this is 
a group of order 4 which comprises the operations E, A2, l 1 , and 1 2 . 

2.5.3 GENERATION OF POINT GROUPS 

We will first derive the four types of point group that are composed uniquely of 
rotations (operations of the first type). These groups describe chiral objects or 
enantiomorphs. An enantiomorph and its mirror image are not superimposable. 
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In the same way, a left hand is not superimposable on a right hand, and for any 
right-handed screw there exists an equivalent left-handed screw. 
From the considerations in the preceding pages (Section 2.5.2) we derive two 
types of rotation groups: 

• cyclic groups characterized by an axis p of order p; 
• groups characterized by an axis p of order p perpendicular to p twofold 

axes such as the example shown in Fig. 2.13(b) (remember that these twofold 
axes form two equivalence classes if p is even, and a single class if p is 
odd). 
We can derive the other rotation groups in the following manner. Two rotation 

axes p and q of order p and q which intersect at some angle generate more 
rotation axes. Around p we obtain p axes of order q: q,  q', q", ... ,  q  which 
belong to the same equivalence class; around q we obtain q axes of order p: 
p, p', p", ... , p (' -1)  which belong to the same equivalence class. In addition we 
find twofold axes which bisect the angles formed by axes of the same class. Figure 
2.15 shows the stereographic projection of the combination of a fourfold ( p = 4) 
and a threefold ( p = 3) axis. The axes thus generated create additional axes for 
which the poles of the spherical projection (Section 1.3.4) form regular spherical 
polygons. If the resulting group is of finite order, the sphere is tiled by a finite 
number of polygons of the same type (squares or triangles in Fig. 2.15). The 
surface area of a regular polygon of order p may be calculated by spherical 

Fig. 2.15. Afourfold axis 4 and a threefold axis 3 generate the axes 3', 3", 3", 4', 4", 
etc. They also generate twofold axes 
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trigonometry: 

Spolygon p(2n/ p + 27E/ q — n); surface of the sphere Ssphere 

Tiling by a finite number of spherical polygons gives P = S - sphere/Spolygon =- 
integer from which we obtain the allowed values for p and q: 

P = 4q/(2q + 2p — pq) > 0 and integer, tiling by p-gons 
Q = 4p/(2p + 2q pq)> 0 and integer, tiling by q-gons 

A twofold axis and another axis of order p > 2 which intersect at an angle 
different from 90°, generate an axis of order q>  2. Hence, we need to consider 
only the solutions to these equations for integers p and  q>  2 (perpendicular 
intersections having been discussed above): 

p = 3, q = 3: P = Q  =4 	tetrahedron 
p = 3, q  = 4:  P = 8, Q = 6 	octahedron and cube 
p = 3, q = 5: P = 20, Q = 12 icosahedron and dodecahedron 

These are the rotations which form the symmetry groups of the regular or 
Platonic solids. 

Finally, the continuous rotation group of infinite order describes the symmetry 
of a sphere (in the mathematics literature it is referred to as SO 3). 

Starting from the pure rotation groups, we can obtain others by the addition of 
mirror planes parallel or perpendicular to the rotation axes in such a way as to 
generate no additional axes. In this manner we can construct all the point groups. 
In the following we will describe in detail those which are compatible with 
a translation lattice, i.e. the crystal classes. 

The literature contains two different nomenclatures to describe point 
groups. The older and traditional nomenclature uses the Schoenflies notation. 
Its use is widespread, but it is poorly adapted to express the relation between 
crystal classes and space groups. This notation uses rotation axes and rotoreflec-
tion axes as symmetry elements. One can hope that it will be progressively 
abandoned in favor of the Hermann—Mauguin (or international) notation. This 
system allows us to characterize both crystal classes and space groups in 
a coherent manner. It is currently used for all work on crystal structures. This 
notation uses rotation axes and  rotoin  version  axes as symmetry elements. We will 
present the conventional symbols for both of these notations, but in the dis-
cussion we will only use the international symbols. Initially we will only introduce 
the symbols without any deeper discussion. The complete details (Section 2.5.9) 
will only be presented after we have introduced the crystal systems. In Fig. 2.17 we 
find three-dimensional representations of the symmetry elements and examples 
of polyhedral crystals, and, in Fig. 2.20 , the corresponding stereographic 
projections. 
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2.5.4 THE 32 CRYSTAL CLASSES: AXIAL GROUPS 

Among the symmetry elements of an axial group there is never more than one axis 
of order greater than two. These groups are listed in Table 2.6 which may be 
complemented by the following remarks: 

• Groups of the type 2n.-`, and A m are only defined for x even. The symmetry 
element R with x = 4n + 2 (x == 2, 6, 10, ...) is equivalent to a rotation axis of 
order 2n + 1 normal to a mirror plane m (Table 2.3). Hence k.c, with x odd 
represents a cyclic group within the R groups. In the same way, A m with x odd 
is found in the Rm groups. 

• The xm groups contain the operations corresponding to an x axis and x mirror 
planes m parallel to the axis (Fig. 2.13(a)). These mirror planes are all 
equivalent (i.e. they all belong to the same equivalence class) if x is odd, and 
they form two classes if x is even (Fig. 2.16). The international symbols 
nnm2,3nn,4mm,6mm list the different classes of symmetry elements. The 
symbol for the rotation axis x is written first except when x — 2 (Section 2.5.9). 

• The x2 groups have the same structure as the xm groups (Section 2.5.11). They 
are made up of the operations corresponding to an x axis and x twofold axes 
perpendicular to this axis (Fig. 2.13(b)). These twofold axes are all equivalent if 
x is odd but they form two classes if x is even. Because these groups do not 
contain any mirror operations, they describe chiral objects. 

• The Rm and R2 groups have the same structure as the xm groups. An example 
is shown in Fig. 2.13(c). If x is odd, the twofold axes are normal to the mirror 
planes; if x is even, the twofold axes are oblique with respect to the mirror planes. 
4m2 and 62m are alternative symbols for 42m and 6m2 (Section 2.5.9). 

Table 2.6. The seven types of axial crystal classes 

Type of 	Group generated by 
	

Order of 
	

International symbols 
group 	 group 
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two classes 	one class 
	two classes 

	
two classes 

Fig. 2.16. Equivalence classes for the mirror planes in mm2, 3m, 4mm, fimm 

• A mirror plane normal to an even order axis generates a center of symmetry 
(Fig. 2.14). The groups A, 	77,,, 	A, —m4 m2 4, r6 m2 m2 and 3-A are thus 
centrosymmetric. The abbreviated symbols for these groups (2/m, 4/m, 6/m, 
mmm, 4/mmm, 6/mmm and 3m) are perhaps better adapted for word 
processing systems. 

• The types x,  5i. and x/m contain all the groups characterized by one single 
symmetry direction. The other groups contain more than one symmetry 
direction. 

2.5.5 THE 23 CRYSTAL CLASSES: TETRAHEDRAL AND 
OCTAHEDRAL GROUPS 

The five regular polyhedra or platonic solids (Fig. 2.18) have been known since 
antiquity and played an important role in Aristotelian and medieval philosophy. 
Among other things, they were used to symbolize the elements of the alchemists 
(Table 2.7). The faces of a regular polyhedron are regular polygons. There is only 
one type of vertex, only one type of edge and only one type of face (semi-regular or 
Archimedian polyhedra have more than one type of regular face, e.g. triangles 
and squares). 

Table 2.7. Characteristics of regular polyhedra 

Polyhedron Alchemy Number of faces 
with (x) edges 

Number of vertices 
with (x) edges 

Number of 
edges 

Tetrahedron Fire 4 (3) 4 (3) 6 

Octahedron Air 8 (3) 6 (4) 12 
Cube Earth 6 (4) 8 (3) 12 

Icosahedron Water 20 (3) 12 (5) 30 
Dodecahedron Ether 12 (5) 20 (3) 30 
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If we replace the vertices of an octahedron with faces and the faces with vertices, 
we obtain a cube. Starting from a cube, we can obtain an octahedron in the same 
way. The technical term for this relationship is dual, thus the cube and the 
octahedron are dual polyhedra. In the same way, the dodecahedron and the 
icosahedron are dual polyhedra, whereas the tetrahedron is its own dual. It thus 
follows that these five regular polyhedra represent three types of symmetry, 
tetrahedral, octahedral and icosahedral (Table 2.7). The icosahedral groups 
contain fivefold axes and are, hence, not crystallographic. 

The symmetry elements of the tetrahedral and octahedral groups are oriented 
with respect to the characteristic directions for a cube (Fig. 2.17): 

• edges 	 3 directions 
• body diagonals 4 directions 
• face diagonals 	6 directions 

A tetrahedron or an octahedron may, indeed, be easily drawn inside a cube. We 
derived above (Section 2.5.3) the two chiral groups, one tetrahedral and one 
octahedral. By adding mirror planes perpendicular or parallel to the rotation 
axes or in bisecting positions, we generate the non-chiral groups. We thus obtain 
the five groups shown in Table 2.8. 

For the two centrosymmetric groups A3 and ','T,3T.„ we normally use the 
abbreviated symbols m3 and m3m. We should note that all five groups are 
characterized by threefold axes which coincide with the body diagonals of the 
cube. 

2.5.6 NON-CRYSTALLOGRAPHIC POINT GROUPS 

The listing of the non-crystallographic point groups is perfectly analogous to that 
of the crystal classes: 

• type X: 
• type g: 
• type x/m: 
• type xm: 
• type x2: 
• type 
• type ,!+, 
• icosahedral: 
• spherical: 

5, 7, 8, 9, 10,...,09 
5, 7, 8, 9, 10,... 
8/m, 10/m, ..., co/m (x even) 
5m, 7m, 8mnn, 9m, 10mnn, , corn 
52,72,822,92,10 22,..., co 2 

10m2,... 
m m rrif m m mf " m m m (x even) 
235, A35 (Fig. 2.19) 
co oo, mm 

The spherical groups are better known by the symbols co co SO3  (group 
containing all rotations of three-dimensional Euclidean space, represented by 
all the orthogonal three-dimensional matrices with determinant + 1) and 

03  (group represented by all the orthogonal three-dimensional 
matrices). 



50 	 CRYSTALLOGRAPHY 

Table 2.8 The five tetrahedral and octahedral (cubic) groups 

Symbol Edges Body diagonals Face diagonals 

23 

43m 
432 

iii 

2 
2 

4 
4 
4 

3 
3 
3 
3 
3 

2 
2  

Comments 

chiral, tetrahedral 
23 plus inversion 
symmetry of the tetrahedron 
chiral, octahedral 
symmetry of the octahedron 

The five groups of infinite order which posses a unique rotation axis may be 
represented by the following objects (Fig. 2.21): 

• oo: 	cone of revolution turning around its axis 
• co/m: cylinder of revolution turning around its axis, axial vector  (e.g. 

magnetic field) 
• corn: cone of revolution, polar vector (e.g. electric field) 
• co 2: 	cylindrical screw of infinite length 

co 2. • cylinder of revolution m m. 

2.5.7 THE 11 LAUE CLASSES 

Among all the symmetry elements, the center of symmetry plays a special 
role. All the properties of a centrosymmetric crystal are represented by even 
functions, which is a significant mathematical advantage. However, the 
experimental determination of a center of symmetry is not always easy. 
Many anisotropic properties are centrosymmetric even when the crystal is 
not (e.g. thermal and electrical conductivity, linear elasticity, Section 4.4.2). 
In the majority of cases, the diffraction of X-rays produces centrosymmetric 
diffractograms, independent of the symmetry of the crystal (Friedel's law, 
Section 3.7.3). 

A Laue class comprises all the crystal classes (point groups) that cannot be 
distinguished by methods that are insensitive to the presence of a center of 
symmetry. The groups belonging to the same Laue group are hence primarily 
distinguished by the presence or absence of inversion. Figures 2.17 and 2.20 show 
this classification by use of separate boxes for different Laue groups. The Laue 
classes are identified by the symbols of the corresponding centrosymmetric 
groups: 

T,,  mmm, 3, -1m, 4/nn, 4/m m m, 6/nn, 6/m m m, mj, m3nn 

The Laue classes represent a classification of the crystal classes. The other 
significations of the word class were discussed in Section 2.5.1. 
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Fig.2.17. (Contd) 
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Fig. 2.17. (Contd) 

Fig. 2.18. The five Platonic solids 

Fig. 2.19. Polyhedra with 60 and 120 faces 
which have non-crystallographic ico-
sahedral symmetry 
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do 	 doiM corn 
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mm  

Fig. 2.21. The five groups of infinite order which contain a unique rotation axis 

2.5.8 THE SEVEN CRYSTAL SYSTEMS 

The crystal systems represent another classification of the crystal classes 
(Figs. 2.17 and 2.20). In Sections 2.4.1 and 2.4.2 we discussed the relations 
which exist between the symmetry elements and the translation lattice. In 
particular we showed that (a) the presence of rotation or rotoinversion axes 
implies a specific lattice metric, and (b) rotation and rotoinversion axes are 
parallel to translations and perpendicular to lattice planes. If, for example, 
a crystal belongs to the crystal class 2, we can choose a lattice base a, b, c 
with two right angles; by choosing b parallel to the twofold axis, and a and 
c parallel to two translations belonging to the lattice plane normal to b, we 
obtain a = y = 900 . Thus, in general, the class 2 does not allow us to choose 
a coordinate system with a higher symmetry, hence, this is the base with maximal 
symmetry. For a crystal of class m we can choose an analogous base with 
b perpendicular, and a and c parallel to the mirror plane. The types of metric with 
maximal symmetry which follow from the other crystal classes can be easily 
derived. 

A crystal system comprises all the crystal classes which allow the choice of the 

same type of base with maximal symmetry. 

For each crystal system there is a corresponding characteristic or canonical 

lattice base (i.e. a coordinate system a, b, c). The unit cell of the crystal structure 
resulting from such a choice may be primitive or multiple (Section 1.4.1). 

In the above examples, it is the presence of a twofold axis or of a mirror plane 
which allows the choice of a base with two right angles. However, a crystal with 
such a metric will not necessarily possess one of these symmetries. Such a metric, 
due not to the symmetry but to chance, will only exist at a given temperature and 
pressure, whereas the metric which follows from the symmetry is not a function of 
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Table 2.9. The seven crystal systems 

Name 
	

Definition 
	

Type of metric 

Triclinic 	 classes 1 or 

Monoclinic 	 one unique twofold 
direction 2 or 2 a-  m 

Orthorhombic 	 three perpendicular twofold 
directions 

Tetragonal 	 one unique fourfold 
direction 4 or 4 

Trigonal 	 one unique threefold 
direction 3 or 3 

Hexagonal 
	

one unique sixfold 
direction 6 or 6 

Cubic 
	

four threefold directions 
3 .or (cube diagonals) 

a, b, c,  c,  fl, y any value 

a, b, c, fi any value 
a = y = 90° 

a, b, c any value 
= fl = y = 900  

a = b, c 
= (3= y = 90° 

a = b, c 
= fl = 90°, = 120° 

(or a = b = c, a = f3= y) 

a = b, c 
pc = fl = 90°, 7 = 120' 

a=  b = c 
Œ = fi = y =90° 

the ambient conditions. It is important to distinguish between a metric imposed by 
the symmetry and that due to chance: 

The crystal systems are a classifi cation of the symmetry groups. They are not 
a classification of the different types of metric. The metric is determined by the 
symmetry but the metric does not determine the symmetry. 

Table 2.9 describing the seven crystal systems is complemented by the following 
remarks: 

• 2/m ( A) defines a unique direction of twofold symmetry because the normal to 
the mirror plane (axis 2) coincides with the twofold axis 2; 2/m allows the same 
type of metric as m or 2. 

• It is traditional to identify the unique direction of the twofold axis 2 or the 
normal to m in the monoclinic system with b. The angle  f3 can hence take any 
value, whereas a ----- y = 90°. In the other non-cubic crystal systems, c is always 
chosen to be parallel to the unique axis (threefold, fourfold or sixfold). It would 
be logical to abandon the tradition for the monoclinic system and also identify 
the unique direction with c. In this case y would be the monoclinic angle and 
a =  f3  = 90°. Clearly we could also choose a parallel to the unique axis. It is easy 
to identify the choice of a particular author by whether the angle f3 or y or a has 
been chosen as the monoclinic angle. The traditional choice is found the most 
frequently in the literature. 
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Fig. 2.22. Compressed and stretched rhombohedra 

• We use the same type of coordinate system for both the trigonal and hexagonal 
crystal systems: a — b, c, a — 13  = 90°, y = 120°. We choose c to be parallel to the 
threefold or sixfold axis. However, the trigonal system also allows us to use 
rhombohedral axes, a = b = c, a = 	y. In this case the axes a, b and c are 
equivalent due to the threefold axis, but they are neither parallel nor perpen-
dicular to any symmetry element. In the case of the hexagonal system, such 
a choice would be disadvantageous. The literature contains some confusion 
concerning the terms trigonal and rhombohedral. In particular, the trigonal 
system is often called rhombohedral. The International Union of Crystallogra-
phy recommends the following terminology: 

The term trigonal refers to a crystal system (defined by the presence of 
a unique 3 or  axis);  the term rhombohedral refers to a choice of coordinate 
system a, b, c as well as a Bravais lattice ( Section 2.6.1). 

The polyhedron that we obtain on stretching or compressing a cube along 
a body diagonal (Fig. 2.22) is called a rhombohedron. The terms rhombohedral 
and orthorhombic must not be confused. 

• In the hexagonal system, the angle y is, by definition, equal to 1200  and not to 60°. 
• In the cubic system, the vectors a, b, c are parallel to the edges of a cube 

(symmetry axes 2, 4 or 4). 

2.5.9 INTERNATIONAL SYMBOLS FOR THE POINT GROUPS 

The international symbols list all the unique symmetry elements, i.e. the different 
classes of symmetry elements. The symmetry elements are indicated by the 
symbols 1, 2, 3, 4, 6, m, 3, 4, 6, Tia, , and A (or 2/m, 4/m and 6/m). The center of 
symmetry is not explicitly indicated because we know that it is implied by the 
symbols 1, 3, A-, and A. The symmetry elements are parallel to specific directions 
in space which are defined relative to the canonical coordinate system a, b, c of the 



tetragonal 
	

hexagonal 

SYMMETRY 	 59 

Table 2.10. Order of the symbols for the symmetry elements which make up the 
symbol of a point group 

System 1st place 2nd place 3rd place 

triclinic 
monoclinic 
orthorhombic 

1 or 
a 
a 

tetragonal a, b a + b, a — b 
trigonal a, b, a +b 2a+b,a+2b, —a+b 
hexagonal a, b, a + b 2a+b,a+2b, —a+b 

unique axis sides of an n-gon diagonals between sides 

cubic a, b, c a+b+c a + b, b + c, c + a 
edges of the cube four body diagonals six face diagonals 

orthorhombic 	trigonal 

Fig. 2.23. Order of the symbols for the symmetry elements (to be compared with 
Fig. 2.16) 

crystal system to which the group belongs. We consider the orientation of 
a mirror plane to be determined by the direction of its normal. The international 
symbol for a point group is made up of one to three symbols which represent the 
symmetry elements. The symbols for the symmetry elements are arranged in an 
order which is specific to the crystal system to which the group belongs. This 
order is defined in Table 2.10 and in Fig. 2.23. Table 2.11 shows the distribution of 
the crystal classes among the crystal systems. 

If necessary, the symbols may be augmented by the addition of axes of order 
1 to indicate a specific orientation of the symmetry elements with respect to the 
coordinate system. Hence the symbol 121 designates the group 2 with the b axis 
parallel to the twofold axis, i.e. the traditional choice of coordinate system for the 
monoclinic class: there are no symmetry elements parallel to a or to c. The symbol 
112 designates the same group 2 with c parallel to the twofold axis. The symbol 
m  11  designates the group m with a normal to the mirror plane. The symbol 3m 1 
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Table2.11. Distribution of the international symbols among the crystal 
systems 

triclinic 	monoclinic 	trigonal 	tetragonal 	hexagonal 
x 	 1 	 2 	 3 	4 	 6 
k 	 i 	 m 	 3 	4 	 6 
x/m 	 2/m 	 4/m 	6/m 

orthorhombic 
x2 	 222 	32 	422 	622 
xm 	 mm2 	3m 	4mm 	6mm 
Rm 	 Sm 	42m 	6m2 
x/mmm 	 mmm 	 4/mmm 	6/mmm 

cubic 	23 	m3 	43m 	432 	mm  

indicates that the axes a, b and a + b are normal to the mirror planes (as is shown 
in Fig. 2.20); in contrast, the symbol 31m indicates that the mirror planes are 
parallel to these axes. In a similar manner we can make the distinction between 
321 and 312, and between 3 m 1  and S1 M. Finally, Fig. 2.20 shows the stereo-
graphic projections of 42m and 6m2; the reader is invited to determine the 
orientation of the vectors a, b, c for the symbols 4m2 and 62m. 

For the centrosymmetric groups „+„ 	-3*„ 	and A31,- we use 
the condensed symbols mmm, 4/mm m, 6/mmm,  3m , riA and nr&n. In each of 
these symbols we make no mention of the twofold axes (or the fourfold axes in the 
case of  mm)  but only indicate the mirror planes which are perpendicular to 
them. The symmetry elements given in the condensed symbols imply the existence 
of these twofold (or fourfold) axes. 

The international symbol allows us to deduce the crystal system to which the 
designated group belongs: 

• triclinic: 1 or 
• monoclinic: one single symbol 2 or m, no axis of higher order 
• orthorhombic: three symbols 2 or m, no axis of higher order 
• trigonal: the symbol begins with 3 or 3 
• tetragonal: the symbol begins with 4 or 4. 
• hexagonal: the symbol begins with 6 or 6 
• cubic: the symbol 3 or  3 occupies the second place 

2.5.10 SCHOENFLIES SYMBOLS 

The non-cubic chiral groups which only contain rotations are identified by the 
letters C and D, C x  is a cyclic group of order x, and D x  is a dihedral group 
generated by an axis of order x and x twofold axes perpendicular to it. The other 
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Table 2.12. Distribution of the Schoenflies symbols among the crystal systems. 
This table is origanized in the same way as for the international symbols 

(Table 2.11) 

triclinic 	monoclinic 	trigonal 	tetragonal 	hexagonal 
C x  (x) 	 C 1 	 C2 	 C 3 	 C 4 	 C 6  
Sx  (R) 	 Ci 	C s 	 C3i 	 S4 

Cxh (X/M ) 	 C 2h 	 C4h 	C36, C66 

orthorhombic 
Dx  (x2) 	 D2 	 D4 	D4 	 D6 
Cxv  (XM) 	 C2v 	 C 	C6v 
Dxd (krn) 	 D3d 	D2d 	 1 
Dx6  (X/MMM) 	 D2h 	 D4h 	D 3h, D66  

cubic 
	

Th 
	 Td 	 O 	 O h 

non-cubic groups are obtained by adding mirror planes to the chiral groups. 
These planes are indicated in the Schoenflies symbols by the letters h (horizontal, 
perpendicular to the principal axis), y (vertical, parallel to the principal axis) or 
d (diagonal between the twofold axes of a dihedral group). If a group contains 
both a horizontal mirror plane and vertical mirror planes, the symbol h is used. In 
contrast to the international notation, that of Schoenflies uses rotoreflection axes 
which are, in principle, indicated by S.. However, most of the rotoreflection axes 
are equivalent to the combination of a rotation axis and a horizontal mirror 
plane, or to a rotation axis and a center of symmetry. In these cases we use the 
symbols Cs  (s stands for Spiegel, mirror in German), C 3h  (h for a horizontal plane), 
CI  and C31 (i for inversion) instead of S i  (m), S3 (6), S2 (4) and S6 (j). By analogy 
with 6 C 3h, 6m2 becomes D 3 h. The chiral cubic groups are designated T (tet-
rahedral)and 0 (octahedral). To indicate the other cubic groups we add the letters 
h and d. The Schoenflies symbols for the crystal classes are given in Table 2.12. 

2.5.11 ABSTRACT GROUPS 

The abstract group of a point group is obtained by setting aside the geometrical 
significance of the symmetry operations. The abstract group is thus isomorphic 
with the point group, i.e. both have the same multiplication table. The abstract 
cyclic group of order 4, for example, is composed of the objects R, R2, R3, 134  = E 
(we do not use the term element for these objects to avoid any confusion with the 
symmetry elements). It is isomorphic with the groups 4 and 4, Point groups are the 
physical realizations of the abstract groups. The 32 crystal classes are isomorphic 
with the 18 abstract groups in Table 2.13. 

Symmetry operations may be represented by matrices. If a three-dimensional 
coordinate system is chosen, then the relation between the coordinates of 
equivalent points is given by 3 x 3 matrices whose determinants are equal to + 1. 
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Table 2.13. The eighteen abstract groups. The parentheses { } 
contain the isomorphic crystal classes 

Order Cyclic Abelian non-cyclic Non-Abelian 

1 
2 
3 

{1} 
{1, 2, m} 

{3 } 
4 {4, 4} {2/m, 222, mm2} 
6 {3,6, 6} {32, 3m} 
8 {4/m},{mmm} {422, 4mm, 42m} 

12 {6/m} {3m, 622, 6mm, 6m2 }  
{23} 

16 {4/mmrn} 
24 {6/mmm} 

{m3}, {43m, 432} 
48 {mm}  

Each of these matrices is equivalent to an orthogonal matrix (Section 2.2.3). The 
set of matrices describing the symmetry operations of a point group is a matrix 
group which is isomorphic with the point group; the matrix group represents the 
point group. Two representations of a group based on two different coordinate 
systems are equivalent. Let R1,  R2 ,.  . . ,  R the matrices for the coordinate 
system a, b, c, and 13'1 ,  Ri,..  . , R'n  the matrices for the system a', b', c'; in addition, 
let T be the matrix which transforms the coordinates of a point (x, y, z) in the 
system a, b, c into the coordinates (x',  y', z') in the system a', b', c'. The relation 
between the matrices 13 1  and R i  is thus: 

1:1 = TR iT' 	 (2.14) 

The crystal classes are those point groups which are compatible with a lattice 
(Section 2.4.3). For each crystal class, there is a lattice type which is invariant with 
respect to all the symmetry elements of that class. A three-dimensional crystal 
class is thus a point group which can be represented by 3 x 3 matrices whose 
elements are all integers (Section 2.4.1). The representations of two different 
crystal classes cannot be changed from one into the other by a change in 
coordinate system by application of equation (2.14). 

2.6 CLASSIFICATION OF LATTICES 

2.6.1 THE 14 BRAVAIS LATTICES 

The Bravais lattices (or Bravais classes) represent a classification of the translation 
lattices according to the symmetry imposed metric. They were originally derived by 
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Fig. 2.24. Primitive and centered rectangular lattices 

the Abbé MA. Bravais (Journal de l'École polytechnique, Paris, 1850). In Section 
2.4.2 we saw that the symmetry imposes a particular metric on the lattice. Figure 
2,10 shows the regular tilings that correspond to the Euclidean plane, This 
observation leads us to choose the usual (or canonical) coordinate system 
corresponding to the crystal system (Section 2.5.8). However, if we choose such 
a lattice base, we do not necessarily obtain a primitive cell. We can illustrate this 
fact by the use of two-dimensional lattices. 

In Fig. 2,24, m represents a mirror line. Let T be a primitive translation and T' 
the mirror image of T. (A translation T is primitive if 1/2T is not a translation.) 
T + T' and T — T' are perpendicular and define a rectangular cell. If T + T' and 
T — T' are primitive translations, the rectangular cell is centered because there is 
a lattice point in the middle. We would thus choose the diamond (T, T') as the 
primitive cell. In contrast, if 1/2(T + T') and 1/2(T — T') are translations, we then 
obtain a rectangular primitive cell. These two rectangular planar lattices, primi-
tive, on the one hand and centered or diamond, on the other, are representative of 
two types of lattice that it is important to differentiate. It is impossible to find 
a primitive diamond-shaped cell for the first, or a primitive rectangular cell for the 
second. These considerations lead us to an operational definition for the Bravais 
lattices (or classes). A Bravais lattice is characterized by: 

• the metric of the cell (see crystal systems, Section 2.5.8) 
• the type of cell (primitive P, multiple A, B, C, F, I, R as shown in Table 1.1, 

Section 1.4.1). 

The Bravais class of a lattice is given by the metric and the type of the smallest 
cell that can be obtained by choosing a canonical basis in accord with the 
crystal system. 
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It must be noted that the metric is imposed by the symmetry of the crystal. 
A triclinic lattice at a given temperature and pressure could have a monoclinic 
metric by coincidence but still not be monoclinic. 

Let us remember that there are five two-dimensional Bravais lattices 
(Fig. 2.10, Section 2.4.2): oblique p, rectangular p and c, square p and hexa-
gonal p. In two dimensions we symbolize the cell type by lower-case letters 
p (primitive) and c (centered). In contrast, we use the upper-case letters P, A, 
B, C, F, I, R for the fourteen three-dimensional lattices (Fig. 2.25). Figure 2.26 
shows that the oblique c lattice belongs to the same Bravais class as the 
oblique p lattice. The two lattices have the same type of metric and a change 
in coordinate system transforms one into the other. The square c and p 
lattices belong to the same Bravais class for the same reason. In contrast, 
the rectangular c lattice cannot be transformed into a rectangular p lattice 
(Fig. 2.24). 

The conventional unit cells for the fourteen three-dimensional Bravais lattices 
are shown in Fig. 2.25. Each of these cells represents one lattice class. Some 
important supplementary information is presented in Section 1.4.1 to which may be 
added the following comments: 

• Monoclinic lattices. Figure 2.25 shows the normal orientation where the unique 
direction is b (international symbol 1 2/m 1, Section 2.5.8 and 2.5.9). All the 
(h 0 1) lattice planes are rectangular. In the C lattice, one of the rectangular 
planes is centered and, hence, of the diamond type. The A, C, I and F monoclinic 
lattices all belong to the Bravais class represented by C because a change of 
base without changing the type of metric will transform any one into another. 
The transformation a' — — c, c' — a changes A into C; a" = a + c, c" = c changes 
I into C; a"  = a, c' = 1/2(a + c) changes F into C.The B lattice is equivalent to 
the P lattice. In the case of the alternative orientation where the unique axis is 
c (international symbol 1 1 21m), it is traditional to represent the two 
monoclinic Bravais classes by P and B. 

• Orthorhombic lattices. The A and B lattices are clearly equivalent to the 
C lattice. 

• Tetragonal lattices. C is equivalent to P (Fig. 2.26), and F is equivalent to I. The 
existence of A or B lattices is forbidden by the fourfold axis. 

• Hexagonal or rhombohedral lattices. These lattices cannot be unequivocally 
related to corresponding crystal systems. 

The hexagonal P lattice is compatible with all the trigonal or hexagonal 
groups. 
Figure 2.25 shows the unit cell for this lattice inscribed in a hexagonal prism. 
Note that this prism does not represent the unit cell, this latter always being 
a parallelepiped. We have already noted elsewhere that the hexagonal angle is 
defined to be 120° and not 60°. 
The R lattice is only compatible with the trigonal groups. 



monoclinic P 	monoclinic C triclinic P 

cubic F 

SYMMETRY 	 65 

orthorhombic P orthorhombic C orthorhombic F 	orthorhombic I 

tetragonal P 	tetragonal I 
120 ,  

hexagonal P 	rhombohedral R 

cubic P cubic I 
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oblique c 	oblique p 

a=h,  y=90°  

square c 

a' =1, ', y' .900  

square p 
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Fig. 2.26. Equivalence of the c and p oblique lattices and the c and p square 
lattices 

• z h= 0 
• 

z h= 2/3 

Fig. 2.27. The hexagonal and rhombohedral bases for an R lattice 

Figure 2.27 shows a projection down the threefold axis. We can choose 
a hexagonal cell centered at (i, i) and (, -23 , i) with translations ah , bh , c h  (ch  
following the threefold axis), or else a primitive rhombohedral cell (Fig. 2.22) 
with symmetry equivalent translations: 

1 

' 	
I. 	1 	 1 

= — 
n 

(LaL + “ h  + Ch), Fir  - 	 a h  + bh  + Ch), Cr  - 	ah  2bh  + ch). (2.15) 
3 	 3 	 3 

In practice, we often choose the centered hexagonal cell a h , bh , ch  because the 
axes are then oriented with respect to the directions of highest symmetry. 

The fact that the hexagonal P lattice is compatible with two different crystal 
systems has been the cause of frequent misunderstandings in the literature. Thus 
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the trigonal crystal system has been called rhombohedral by certain authors, 
whereas others have tried to combine the trigonal and hexagonal crystal systems 
into one single hexagonal system. It is important to follow the usage recommen-
ded by the International Union of Crystallography: 

• the 32 crystal classes are divided into seven crystal systems which are 
called triclinic, monoclinic, orthorhombic, tetragonal, trigonal, hexagonal and 
cubic; 

• the fourteen Bravais lattices (or classes) are divided into seven Bravais systems 
which are called triclinic, monoclinic, orthorhombic, tetragonal, rhombohedral, 
hexagonal and cubic; 

• we can define six crystalfamilies which unite crystal classes and Bravais lattices: 
triclinic, monoclinic, orthorhombic, tetragonal, hexagonal and cubic. 

The term trigonal identifies a set of symmetry groups. The term rhombohedral 
identifies a type of lattice. 

2.6.2 HOLOHEDRY AND MEROHEDRY 

Each Bravais system has its corresponding minimum and maximum symmetry. 
Thus the Bravais lattice must be monoclinic (P or C) if the crystal has only one 
mirror plane or one twofold axis (crystal classes m or 2). However, the monoclinic 
unit cell will also allow the symmetry 2/m. Thus the symmetry of the contents of 
the unit cell (the motif) may be less than that of the empty cell. In this case we 
speak of merohedry. The formation of twins is relatively frequent for merohedral 
crystals. A twin (Fig. 2.28) is an interpenetration or aggregation of several crystals 
of the same species whose relative orientations follow well-defined laws. These 
orientations are related by symmetry operations which do not belong to the 
crystal class of the untwinned crystal, either by a rotation about a translation 

single crystal twin 

Fig. 2.28. Merohedral interpenetration twin of pyrite, FeS 2 , class m3 
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Table 2.14. Holohedral and merohedral classification of the crystal classes 

Bravais 	Holohedral 
system 	groups 

Merohedral groups 

Hemihedral 	Tetartohedral Ogdohedral 

triclinic 	 i 	 1 
monoclinic 	2/m 	 2, m 
orthorhombic 	mmm 	222, mm2 
tetragonal 	4/mmm 	422, 4mm, 42m, 4/m 	4,4  
rhombohedral 	3m 	32, 3m, 3 	 3 
hexagonal 	6/mmm 	622, 6mm, 6m2, 6/m 	6, 6 

Sm 
 

32,3m,  3 	3 
cubic 	 mm 	432, 43m, m3 	23 

[u y w] or by reflection by a lattice plane (h k  1).  The symmetry of the twin is 
generally higher than that of the untwinned crystal. 

The maximum symmetry of a Bravais system is called holohedry. Holohedry is 
identical to the point group of the empty cell. A merohedral group whose order is 
one half that of the holohedral group is called hemihedraL Likewise, it is called 
tetartohedral if its order is one fourth, or ogdohedral if its order is one eighth that 
of the holohedral group. Table 2.14 gives the holohedral and merohedral 
classifications of the crystal classes. 

The trigonal groups are both holohedral or merohedral rhombohedral 
groups, and merohedral hexagonal groups. Indeed, the trigonal groups are 
subgroups of both m3 m and 6/m mm . The trigonal deformation of a cubic 
structure (elongation or compression along a body diagonal of the cube) gives an 
R lattice. The trigonal distortion of a hexagonal structure gives a P hexagonal 
lattice. 

2.7 SYMMETRY OF PERIODIC STRUCTURES 

2.7.1 THE 17 PLANE GROUPS 

In this section we will describe the two-dimensional space groups, or plane 
groups, which will serve as an introduction to the 230 space groups. The 
symmetry elements in the Euclidean plane are: 

• the rotation points 1, 2, 3, 4, 6 
• the mirror line m 
• the translations 
• the glide line symbolized with the letter g. 
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With these symmetry elements we find: 

• ten crystal classes: 1, 2, 3, 4, 6, m, 2nnm, 3m, 4nnm, 6mm. The international 
symbols are interpreted in the same way as those for the three-dimensional 
groups (Table 2.10 and Fig. 2.23), except that the first place is always reserved 
to indicate the order of the rotation point. 

• four crystal systems: oblique, rectangular, square, hexagonal 
• five Bravais lattices: oblique p, rectangular p and c, square p, hexagonal p 
• seventeen plane groups 

The two-dimensional Bravais systems are identical to the crystal systems. In 
two-dimensional space we do not find the trigonal—hexagonal—rhombohedral 
complications described above. Graphical representations of the 17 plane groups 
are presented in Fig. 2.29. The graphical symbols are explained in Tables 2.4 and 
2.5 (Section 2.3.3). The arrows indicate the equivalent positions in the unit cell. 
We encounter the symmetry of periodic patterns in our daily lives. Those 
interested are invited to identify the symmetry groups of patterns on wallpapers, 
wrapping papers, wall tilings, pavings of city streets and squares, bed sheets, 
tablecloths and window curtains. 

Let us remember that in a periodic structure we find series of symmetry elements 
(Section 2.4.1). Thus, a symmetry element is repeated with the periodicity of the 
lattice. In addition, we obtain several classes of symmetry elements, i.e. in-
equivalent series of elements. Figure 2.9 showed two equivalence classes of 
reflection lines m and m' in a periodic one-dimensional pattern. The product of 
a reflection by a line m and a primitive translation is a reflection by a line m'. In 
general, we find the following equivalence classes: 

• half-way between two twofold points which are equivalent by translation, we 
find a twofold point belonging to another class. Thus the group p2 has four 
classes of twofold points; 

• in the middle of a triangle formed by three threefold points which are 
equivalent by translation, we find another threefold point of another class. 
Thus the group p3 has three classes of threefold points; 

• in the middle of a square formed by four fourfold points which are equivalent 
by translation, we find another fourfold point of another class. Thus the group 
p4 has two classes of fourfold points. Half-way between two fourfold points 
which are equivalent by translation, we find a twofold point because a fourfold 
point is equally a twofold point; 

• we only find one class of sixfold points in the group p6, but this group also 
includes a class of threefold points and a class of twofold points; 

• half-way between two reflection lines equivalent by translation in a rectangular 
p lattice we find a reflection line of another class. The group pm thus includes 
two classes of reflection lines; 
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• half-way between two glide lines equivalent by translation in a rectangular 
p lattice we find a glide line of another class. The group pg thus includes two 
classes of glide lines; 

• half-way between two reflection lines equivalent by translation in a rectangular 
c lattice (diamond lattice) we find a glide line. The group cm thus includes a class 
of reflection lines and a class of glide lines. 

We identify the plane groups by the international symbols whose interpretation 
is quite straightforward: 

• first place 
letter p or c to characterize the type of unit cell. 

• second place 
modified international symbol of the corresponding crystal class. The letter 
m in the symbol is replaced by the letter g if we find a series of glide lines instead 
of reflection lines in the direction implied by the symbol. 

The symbol for the crystal class may be derived from the symbol for a plane 
group by removing all references to translations (see Section 2.4.3 for the relation 
between a plane group and the crystal class); 

symbol for the plane group 

- 

symbol for the crystal class 
lattice type (p or c) 	remove the symbol 
1, 2, 3, 4, 6 	

- 	

1, 2, 3, 4, 6 

Note that the symbol for the plane group contains the complete information 
concerning the crystal system and the Bravais lattice. 

By systematically replacing the rotation points and the reflection lines of the 
ten crystal classes by series of reflection points, by series of reflection lines and by 
series of glide lines, and taking into account the metric of the Bravais lattices, we 
can list all the plane groups. From the crystal classes 1, 2, 3, 4 and 6, we obtain 
the groups pl, p2, p3, p4 and p6. The groups pm, pg and cm belong to the class 
m. cg is an alternative (but not employed) symbol for cm because this group 
contains a succession of glide lines as well as reflection lines. The plane groups 
which belong to 2mnn are obtained by replacing zero, one or two m lines by g. 
The symbol p2mg indicates that the a and b axes are perpendicular to the series 
of lines m and g respectively. The symbol p2gm designates the same group with 
a and b interchanged. c2nng, c2gm and c2gg are alternative (but unemployed) 
symbols for c2mnn. In order to derive the plane groups of 4nnm, it is useful to 
remember that a square is a special case of a diamond. We find the same succession 
of lines m and g parallel to the diagonals of the square as in the group c2m m. For 
this reason, the symbols p4mg and p4gg are alternative symbols for p4mnn and 
p4gm respectively. The unit cell of the hexagonal system is also a special case of 
a diamond and all reflection lines alternate with glide lines. It is necessary to 
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distinguish between p3 m 1 and p31rn. In p3m 1, the reflection lines are perpen-
dicular to the shortest translations of the lattice. In p31 m, the reflection lines are 
perpendicular to the long diagonal of the unit cell and its equivalent translations. 

2.7.2 EQUIVALENT POSITIONS 

A set of points that is equivalent with respect to a symmetry group is called an 
orbit. The polyhedra of Fig. 2.17 represent orbits of point groups. The arrows in 
Fig. 2.29 represent the orbits of plane groups. For the majority of groups, there 
are several types of orbit that we refer to as general positions and special positions. 
We will illustrate this important point with the aid of the plane group p2mg (Fig, 
2.30). 

General positions 

If an object is placed in the rectangular unit cell, the symmetry operations of the 
group p2mg generate an infinite number of like objects. In a general position 
(x, y) we find four of these objects per unit cell with the coordinates x, y; — x, y; 
1/2 x, y; 1/2 + x, — y. We say that the multiplicity is 4. Each of these four 
coordinates indicates the position of an object as well as those which are equivalent 
to it by translation. Each of these four sets of points which are equivalent by 
translation is generated by the symmetry operations of one of the cosets of the 
invariant subgroup of the translations T (Section 2.4.3). Note that the object itself 
may be asymmetric, point group 1. 

Special positions 

If x = 1/4, the coordinates x, y and 1/2 — x, y are identical. They represent a point 
on the reflection line. The orbit only includes two objects per unit cell, but these 
are invariant with respect to reflection. The multiplicity is thus 2, but the site 
symmetry is m. The two periods (.) in the symbol .m.' mark the positions in the 
international symbol of the plane group (Section 2,7.1) which refer to the rotation 
point and the directions a and h; .m. indicates that the reflection line is 
perpendicular to a. 

There are two other special positions located on the twofold points with 
a multiplicity of 2 and site symmetry 2..; thus, an object which occupies this 
position must be invariant with respect to a twofold rotation. Figure 2.30 shows 
that the point symmetry of the object can be higher but not lower than the site 
symmetry. The object placed at (0,0) has the symmetry 2, whereas the symmetry 
2nnm of the object placed at (0, 1/2) is higher than the site symmetry (mirror 
planes parallel and perpendicular to the axis of the dumbbell). 

The letters a, b, c, d in Fig. 2.30 are called Wyckoff symbols. Although they have 
no special significance, they serve as a rapid reference for the different sites. 
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Fig. 2.30. Orbits for p2mg, general and special positions 

All the general and special positions for all of the plane groups are listed in the 
International Tables for Crystallography. 

2.7.3 THE 230 SPACE GROUPS 

The discussion of the plane groups presented in Sections 2.7.1 and 2.7.2 contains 
all of the ideas necessary to understand space groups. The transition from the 
Euclidean plane to three-dimensional space requires no new concepts. However, 
because of the large number of space groups, we will look at only a limited 
number of examples. The International Tables for Crystallography assemble all 
the information for these groups. It is thus important to know how to use this 
compilation correctly and efficiently. 



74 	 CRYSTALLOGRAPHY 

We recall that a rotation axis in the crystal class corresponds to a series of 
rotation axes or screw axes in the space group; a mirror plane in the crystal 
class corresponds to a series of mirror planes or glide planes in the space group 
(Section 2.4.3): 

crystal class 
2 
3 
4 
6 

space group 
2, 2 1  
3, 3 1 , 32 
4, 4 1 , 42 , 43  
6, 6 1 , 62 , 63 , 64, 65  

nn 	—> nn, a, b, c, n, d 

A description of these symmetry elements and their symbols may be found in 
Figs. 2.6-2.8 and in Tables 2.4 and 2.5. This correspondence allows us to 
characterize space groups with symbols analogous to those used for the plane 
groups (Section 2.7.1). The international symbol for a space group is composed of: 

• one of the letters P, A, B, C, F, I or R to indicate the type of unit cell 
• the modified international symbol of the crystal class. 

As examples, let us list some of the space groups of the crystal class nnnnnn: 
Pnnmm, Pmma, Pbcnn, Pbca, Pnnnn, Ccca, Fmmm, lbca, etc. By remember-
ing the way in which the international symbol for the crystal class is formed 
(Section 2.5.9), we can easily interpret the symbols for the corresponding space 
groups. Because nn nn nn belongs to the orthorhombic system, the first m is 
a mirror plane normal to a, the second m is normal to b, and the third m is normal 
to c. For example, the unit cell of the group Pbca is primitive; normal to a we find 
mirror planes with a glide component 1/2b;  normal to b we find mirror planes 
with a glide component 1/2c; normal to c we find mirror planes with a glide 
component 1/2a. In fact we can derive all the space groups from mmm by 
systematically replacing the first m by m, b, c or n, the second m by m, a, c or n, 
and the third m by m, a, b or n. Clearly we cannot find a plane a normal to a, nor 
a plane b normal to b, nor a plane c normal to c. (The d glides are always parallel 
to centered lattice planes and, in the orthorhombic system, we only encounter 
them for F unit cells. An in-depth knowledge of the geometrical properties of these 
planes is not essential for the everyday use of the International Tables.) We derive 
the group lbca from Pbca by adding the translation (1/2, 1/2, 1/2). Note that the 
different symbols obtained by the above procedure may refer to the same group. 
For example, Pnnmb and Pnnma symbolize the same group but with respect to 
a different coordinate system. The transformation required to pass from Pnnnnb 
to Pmma is a' b, b' = —a, c' = c. The International Tables also list these 
alternative symbols. Some other examples of space groups are P2 1/c, P2,2 1 2 1 , 
P2 1 2 1 2, 14c2, 142d, 1331c, P63/rncm, Pn3n, etc. 

From these symbols it is easy to derive the crystal class, the Bravais lattice, and 
the crystal system by removing all reference to translations: 
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The crystal class is obtained by removing the letter which indicates the type of 
unit cell and by replacing any screw axes by the corresponding rotation axes as 
well as the letters a, b, c, n, d by m. 

For example, the crystal class for 14c2  is 4m2, an alternative symbol for 42m. The 
crystal system is tetragonal and the Bravais lattice is tetragonal I. 

In the majority of cases, the international symbol contains all the information 
necessary to derive all the properties of the group and, in particular, all the 
orbits (general and special positions). Let us take the group Pnma as an example. 
The corresponding pages taken from the International Tables are reproduced 
below. By replacing n and a with m, we obtain the symbol mmnn of the crystal 
class; the crystal system is thus orthorhombic and the unit cell is rectangular and 
primitive. Let us place a plane n perpendicular to a and passing through x = 0 
(the reader is invited to complement these explanations by making a sketch). This 
transforms a general point x, y, z into 5c-, 1/2 + y, 1/2 + z (reflection followed by 
a translation of 1/2b + 1/2c). Now let us put a plane m perpendicular to h and 
passing through y = O. This transforms the two points above into x, 9, z and , 
1/2 — y, 1/2 + z. Finally, let us put a plane a perpendicular to c and passing 
through z = O. This last transforms the four points into 1/2 + x, y, 2; 1/2 — x, 
1/2 + y, 1/2 — z; 1/2 + x,  9, 2 and 1/2 — x, 1/2 — y, 1/2 — z. These eight points and 
their equivalents by translation constitute a general orbit of multiplicity 8. The 
complete symbol for the crystal class is T-, A A-. The group thus includes twofold 
axes and centers of symmetry. We can find the corresponding series of centers of 
symmetry, twofold axes and/or screw axes with the help of a sketch. Finally, we 
displace the origin to one of the centers of symmetry (there are eight equivalence 
classes). Thus we find the coordinates as listed in the International Tables. We can 
also obtain this information directly from algebraic operations on the coordi-
nates derived above. Thus, the operation which transforms x, y, z into 1/2 — x, 
1/2 — y, 1/2 — z is a center of symmetry at the fixed point 1/4, 1/4, 1/4. 

For the group P42 1 c, the orbits can be generated by placing a twofold screw 
axis 2 1  parallel to the a axis and a mirror plane m at 45° along the diagonal of the 
square face of a tetragonal unit cell. By successive application of the correspond-
ing symmetry elements, we can construct an orbit for P42 1 c starting from 
a general point and generate the coordinates given in the International Tables, the 
relevant pages for P42 i c being reproduced below. Note that the orbits of the 
groups belonging to 42m cannot be generated from a 4 axis in combination with 
a mirror plane or a twofold axis as these symmetry elements do not necessarily 
intersect, and their positions are not known a priori. 

Volume A of the International Tables contains a complete description of all 
space groups. A number of examples are given on the following pages. The reader 
is referred to the explanations given in the International Tables for additional 
information. 



Cs4: Schoen'lies symbol 

Patterson symmetry: Section 3.9.2 

b unique: corresponds to Ci el 

, 4 CC 	k.., s 	m 	Monoclinic 

No. 9 	Cl  cl 	Patterson symmetry Cl 2/m 1 

UNIQUE AXIS b, CELL CHOICE I 

4 projections of the unit cell: down 
b, a, c (symmetry elements), and 
down b  (genera] orbit) 

ap  : projection of a 

cp  : projection of c 

O  0 general position 

0 generated from 0 by an 
operation of the second type 

+,—: coordinate along the 
projection axis; here 
1 12+y, I/2—y 

Origin of the coordinate 
system 

I a. 
	• 

	o 
1 
1 

d 

Origin on glide plane c 

Asymetrie unit 01; (34,y4; 

Numbering ( ) of the operations 
and positions of the planes c, n 

identity, planes c at y =0, 1/2 

translation, planes n at y = 1/4, 3/4 

Symmetry operations 

For (0, 0, 0)+ set 

(1) 1 	(2) c x, 0, z 

For 	0)+ set 

( 1) t(, ,13)  (2) n 	0, 	x, -14 , z 
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2.7.4 EXAMPLES OF SOME PAGES FROM THE 
INTERNATIONAL TABLES 

For the majority of applications, it is sufficient to understand the space group 
symbol, the crystal class and the crystal system, the corresponding diagrams, the 
equivalent positions and the conditions for observing reflection of X-rays. 
Examples are presented in Figs 2.31-2.34. 

Comments: 

Fig. 2.31. Group Cc, explanation of the symbols in the International Tables 



CONTINUED 	 No. 9 	 Cc 

Generators selected 
(1); t(1,0,0); t(0,1,0); t(0,0,1); 	0); (2) 

Positions 	Coordinates 
	

Reflection 
conditions 

Multiplicity 
Wyckoff letter 

Site symmetry 	(0, 0, 0)+ 1 1 
0>+ 
	

General: 

4 a 1 	(1) x, y, z 	(2) x, )7, 	hkl: h+k=2n 

h01: h, 1=2n 

Okl: k=2n 

hk0: h+k=2n 

0k0: k=2n 

h00: h=2n 

001: 1.2n 

Symmetry of special projections 

Along [001] c 11m 

a = a b' =  b 
P' 

Origin at 0,0,z 

Along [100] plgl 	Along [010] pl 

a' = -2b,  b  = c 	a' =b' = 2 ' 	2 
Origin at x,0,0 	Origin at 0,y,0 

Maximal non-isomorphic subgroups 
I 	[2]C1(P1) 
lia 	[2]P lc l(Pc 
	

l;2 
[2]Plnl (Pc) 
	

1; 2+(-1i, 	0) 

IIb none 

Maximal isomorphic subgroups of lowest index 

IIc 	[3]C1 c 1(b'=3b)(Cc); [3 ]C lc 1(e=3c)(Cc); 

[3]C 1 c 1(a'.--3a or a'=3a,c'=-a+c or 
a'=3a,c 1 =a+c)(Cc) 

Minimal non-isomorphic supergroups 
I 	[2]C2/c; [2]Cmc2 ; [2]Ccc2; [2]Ama2; 

[2]Aba2; [2]Fdd2; [2]lba2; [2]Ima2; 
[3]P3c 1 ; [3]P31 c; [3]R3c 

11 	[2]F  1m 1 (Cm); [2]Cl mi (2e=c)(Cm); 
[2]P 1 c 1(2a'=a,2b'=b)(Pc) 
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identity, 4 translations, 
glide plane 

Positions: fig, 2.30 
reflection conditions: 
systematic absences 

(Section 3.8) 

(0,0.0)+,( 1 12,1 12,0 )+; 
translations, see Section 1,4.1 
4 equivalent points per cell 

x,y,z; x,-y,z+112; 

x+112,y+112,z; 

x+112,112-y,z+1/2 

(see projection of the 
cell); (1), (2) identify the 
symmetry operations 

plane groups and translations 
of the projections down 
c, a and b 

subgroups of maximal 
order: I same translations, 
II same crystal class, (a same 
base; b, c larger cell); 

[1... o...  = [index of the 
subgroup] 

full international symbol 
and lattice base (conventional 
international symbol) 

Supergroups of minimal 
order: same code as above. 
See International Tables 
for more detailed information 
if necessary 

Fig. 2.31. (Contd) 
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Origin at Ï on 12 1 1 

Asymmetric unit 	0<xS1; 0SySI; OzS 1 

Symmetry operations 

( 1) 1 
	

(2) 2 (0 , 1) 1,0,z 
	(3) 2 (0,1,0) 0,y ,0 	(4) 2 (1 ,0,0)  x,*,  1 

(5)  1 0,0,0 
	

(6) a x,y,t 
	

(7) nt x,f,z 	 (8) n(0,1,1) i,y,z 

Fig. 2.32. Space group Pnma, copied (with permission) from the International 
Tables 
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CONTINUED  

Generators selected 

Positions 

Wyckoff letter. 
Site symmet ry 

(I); 	t (1,0,0); 	t (0,1,0); 	1(0,0,1);  

Coordinates 

8 d 1 (1) x,y,z 
(5) ..r,y,t 

(2) / -1- 1,9.z÷i 
(6) x÷i,y,t+4 

(3) X,y+1,Z 
(7) x,y+i,z 

4 c .m. x,1,z I,I.Z 	x+1,1.z+i 

4 b  Ï 0,0,1 1,0,0 	0,1,1 1,1,0 

4 a  Ï 0,0,0 1,0, 1 	0,3,0 1,1, 1  

79 

Pnrna 

Reflection conditions 

General: 

0k!:  k +1 = 2n 
hk0: h =2n 
h00: h =2n 
0k0: k 2n 
00!:  1 =2n 

Special: as above, plus 

no extra conditions 

hkl h+1,k =2n 

hk1 : h +I ,k =2n 

Along [010] p 2g g 
= c 	1) 1 = a 

Origin at 0,y,0 

No. 62 

(2); (3); 	(5) 

(4) x+3,51+},f+3 
(8) X-1-1,y+1,z +1 

Symmetry of special projections 

Along [001] p 2g m 	 Along 1100] c 2m m 
a'=ia 	b i =b 	 a 1 =b 	b'=c 
Origin at 0.0,z 	 Origin at x,1,1 

Maximal non-isomorphic subgroups 

1 	[2 ]1'2 1 2 1 2 1 	 1;2;3;4 
[2 JP 1 1 2 1/a (P 2 1/c) 	l;2;5;6  
[2]P 1 2 1 /m 1(P 2 1 /m ) 	1; 3; 5; 7 
[2 JP 2 1/n 1 1 (P 2 1 /c) 	1; 4; 5; 8 
[2]Pn m 2 1 (Pm n2 1 ) 	1;2;7;8 
[2]1)  n 2 1 a (Pn a 2 1 ) 	1; 3;6; 8 
[2]P2 1 m a (Pm c 2 1 ) 	1;4;6; 7 

lia  none 

Jib  none 

Maximal isomorphic subgroups of lowest index 
IIc [3]Pn m a (a' = 3a) ; [3]P n m a O s  = 3b); [3]1) n m a (c 1 = 3c) 

Minimal non-isomorphic supergroups 
1 	none 
11 	[2]Amma(Cmcm);[2]Bbmm(Cmcm);[2]Ccmb(Cmca)[2]Imma;[2]Pnmm(2a 1 = a)(Pmmn); 

[2]Pc m a (2W = b)(Pb a m ); 121P b m a (2c'=  c)(P bc ) 

Fig. 2.32. (Contd) 
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2.7.5 CLASSIFICATION OF CRYSTALS ACCORDING 
TO THEIR SYMMETRY 

Concepts such as space group, crystal class, Laue class, crystal system, Bravais 
lattice, Bravais system and crystal family allow us to classify crystals according to 
a characteristic property that is relatively easy to establish experimentally, 
namely symmetry. Every crystal has its particular translation lattice with its 
specific metric at a given temperature and pressure. Thus every crystal has its own 
symmetry group. When the specific metric of a crystal species is disregarded, its 
symmetry corresponds to one of the 230 space groups. For this reason, space 
groups are more accurately refered to as space group types ( International Tables, 

P 21 C 	Dd 
	 4 2m 	 Tetragonal 

No. 114 	 P421 c 	 Patterson symmetry P 4/nt m nt 

0-  

0+ 

3+0 01- 

-0 

1 -0 
01+ 

0- +0 

G
0+ 

- 

+0 

-0 

+0 

-0 

0+ 

0-  

0+ 

Origin at 41 n 

Asymmetric unit 
	

iCix<3; 0<y<3; 0 < z I 

Symmetry operations 

(1) 1 	 (2) 2 0,0,z 
(5) 2(0,3.,0) t,y,I 	(6) 2(f,0,0) x,i, I 

Fig. 2.33. Space group P42 1 c, copied 
Tables 

(with permission) from the International 

(3) 4. 0,0,z; 0,0.0 (4) 4- 	0,0,z; 0,0,0 
(7) 	c x+1,X,z (8) n(1,I.1) 	x,x,z 
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CONTINUED 
	 No. 114 

	
P42,c 

Generators selected (I); 	1(1,0,0); 	(0,1,0); 	1(0,0,1), (2); (3); (5) 

Positions 

Multiplicity, 
	 Coordinates 	 Reflection conditions 

Wyckal letter. 
Site symmetry 

General: 

8 	e 	1 	(1) x, y ,z 	 (2) .Z,5, ,z 	( 3) Y.f.t 	(4) 5,x,f 
	

hhl : 1 =2n 
(5) f -Fi.y+1,f+i 	(6) x+14+ 	(7) 	 (8) yi- },x+},z+} 

	
001:  1 2n 
h00: h = 2n 

4 	d 	2.. 	0,i,z 	i3O,Z 

4 	c 	2 . . 	0,0,z 	0,0,Z 

2 	b 4 . 	0,0,i 	, },0 

2 a 4 	0,0,0 

Symmetry of special projections 

Along [001] p 4g m 
2 1 =2 	 b 
Origin at 0,0,z 

Maximal non-isomorphic subgroups 

I 	[2]P411(P4) 	1;2;3;4 
[2]P22 1 1(P2 1  2,2) 	1;2;5;6 
[2]13  2 lc(Ccc 2) 	1;2;7;8 

lia  none 

III) none 

Along [100] p 2m g 
b l =c 

Origin at x,1,1. 

Special: as above, plus 

hk1 : 1 =2n 
hk0: h+ k=2n 

hk1 : h+k+1 =2n 

hkl h+k +1 =2n 

hk1 : h+ k +1 =2n 

Along [110] p 1m 1 
a' = i(—a+b) 	1) 1 = fc 
Origin at x,x,0 

Maximal isomorphic subgroups of lowest index 

IIc 	[3 ]P4 2 1 c (c.'-= 3c);  [9]P4 2,c(a' --. 32.  b' 3b)  

Minimal non-isomorphic supergroups 

I 	[2]/3  4/m nc; [2]P 4/nc c:[2]P 4,./m bc; [2 ]P 421n m c 

Il 	[2]14 2m; [2]C 2c(P 4c 2 );[2]P 4 2,m(2e= c) 

Fig. 2.33. (Contd) 

vol. A, p. 718). These space group types are subdivided into crystal classes and 
crystal systems according to their macroscopic symmetries, on the one hand, and 
into Bravais lattices (classes) and Bravais systems according to their lattice type, 
on the other. The crystal families represent the most basic classification. A simpli-
fied and traditional (but less satisfactory) classification only uses space groups, 
Bravais lattices, crystal classes and crystal systems (Fig. 2.35). 
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Origin at centre ( ) at jc 

	

Asymmetric unit 	0<x < ; 0<y < 4; 0 	x . (1+y)/2; y<min(1-x,(1 +x)/2) 

	

Vertices 	0,0,0 	1,0,0 	4,3,0 	1,3,0 	0,1,0 
0,0, 	3.0, 	4,3,Y 	3.3,5  

Fig. 2.34. Space group R3c, copied (with permission) from the International 
Tables 
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CONTINUED 
	 No. 167 

	
R c 

Symmetry operations 

For (0,0,0)+ set 

(1) 1 
(4) 2 
(7) 1 0,0,0 

(10) c x,i,z 

For (LLD+ set 

:(LL) 
(4) 2(L LO) ,0) 
(7) 1 Li 

(10)  g(,- , 1)  

For (i,i,i)+ set 

( 1 ) t(i.1,1) 
(4) 2(, },0) 
(7) I LLi 

(10) g( -1,1,1) x+1.i.z 

Generators selected (1); 

Positions 

	

(2) 3 	0.0,z 
(5) 2 x,0,: 
(8) I .  0,0,z; 0,0,0 

(11) c x,2x,z 

(2) 3 . (0,0,i) i,4.z 
(5) 2(1,0.0) 

	

(8) j* 	1,-1,v, 1,-1,i 
(11) g(i.i.!) x,2x-hz 

3 (0,0,1) 0.1,z 
2 x. i 

	

j . 	4.1,z; 
g(1,1,i) x.2x,z 

	

1(1,0,0); 	1(0,1,0); 	1(0,0,1); 

Coordinates  

(3) 3-  0,0,z 
(6) 2 0.y, 
(9) .1-  0,0,z; 0,0,0 

(12) c 2x,x,z 

(3) 3- (0,0,1) LO,z 
(6) 2 },y,T51 
(9) 3- Li,z; 

(12) g(1,i, 1) 2x.x,z 

(3) 3- (0,0,1) 	,z 
(6) 2(0,1,0) 
(9) 3- 	,z; 

(12) g(i,i,i) 2x-1,x,z 

:(1,i,i); 	(2); 	(4); 	(7) 

Reflection conditions 

(0,0,0)+ 	(1,1,1)+ 
Wyckoff letter, 
Site symmetry 

36 	f 	I 	(I) x,y,z 
(4) y,x 
(7)  1,9,1 

(10) 9,1,z +I 

General: 

hkil : 	+ k +1 	3n 
hki0 : -h +k =3n 
hh2111: 1 = 3n 
hh01 h + 1 =3n, 1 =2n 
0001 : 1 = 6n 
!IWO = h =3n 

Special: as above, plus 

(2) 9,x -y,z 
(5) x-y,9, 1+ I 
(8) y,i+),, ,f 

(11) f+y,y,z+i 

(3) f+y,i,z 
(6)1,1+y,f-I-I 
(9) x-y,x,f 

(12) x,x-y,z+I 

x,x,1 	 no extra conditions 18 

18 

12 
	

3. 	0,0,z 	0,0,Z+ 

6 	. 	0,0,0 	0,0,1 

6 a  32 	0,0,I 	0,0,1 

Symmetry of special projections 

Along [001] p 6m m 
i(2a+b) 	b'= i(-a+b) 

Origin at 0,0,z 

.2 	x,0,1 	0,x,1 
	

1,1,1 	1,0,1 	0,1,1 

d I 	1.0,0 	0,1,0 	1.1,0 	0,1,1 	1,0,1 

0,0,z 	0,0,z+1 

1.1,1 hki1 

hkil 

hkil 

hkil 

Along [100]  p 2  
a' = i(2a+4b+e) 
	

b' =1(-a-2b + c) 
Origin at x,0,0 

Along [210] p 2g m 
ai= fb 	b i = c 
Origin at x, x,0 

Fig. 2.34. (Contd) 



lattice 

V 

An infinite number of 

crystal structures 

230 space groups 

(types of space groups) 
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macroscopic 
symmetry 

32 crystal classes 

(point groups) 

14 Bravais lattices 

(Bravais class) 

Y 
11 Laue classes 

6 crystal families 

Fig. 2.35. Classification of crystals 

2.8 CRYSTAL STRUCTURES 

We will see (Chapter 3) that the lattice constants of a crystal a, b, c, a, #, y may be 
determined by X-ray diffraction methods. These methods also allow us to obtain 
information about the space group of the crystal (Laue class from intensities, 
systematic absences). If we know the chemical stoichiometry of the material and 
its density, we can easily calculate the number of atoms per unit cell. Let M be the 
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molecular (or formula) weight of the substance: 

M = E M A ;MA= atomic weight in grams 
formula unit 

With A ---- 6.022 x 1023  mole ' being Avagadro's number, 1/, e11  the volume of the 
unit cell in crn 3  = 1024  A 3 , and Z the number of molecules or formula units in the 
unit cell, we can calculate the density d in g cm  

Z M 	dAV Cen  

	

d = 	 Z = 	; Z being integer 	 (2.16) 
AV„ ll ' 	M 

In general we find the following information in the literature concerning crystal 
structures: 

• symmetry (space group, possibly crystal class and crystal system) 
• lattice constants, number of molecules or formula units in the unit cell 
• coordinates of the unique atoms (inequivalent by symmetry). 

As an example, let us consider this information for the structure of Fe 3 C, an 
important constituent of steel: 

• space group Pnma 
• a = 5.08, b = 6.73, c = 4,51 A ;  z = 4 
• 4 Fe at c: x — 0.040 	 z = 0.667 

8 Fe at d: x = 0.183 y ---- 0.065 z = 0.167 

	

4 C at c: x = 0.36 	 z = 0.47 

From the symbol Pnma, we deduce that the crystal class is mmm and that the 
crystal system is orthorhombic. The cell angles are thus a = p = 7 = 90°. Because 
Z = 4, the unit cell contains 12 atoms of Fe and 4 of C. From the International 
Tables we learn that the multiplicity of a general position (Wyckoff symbol d) is 8. 
There are three special positions a, b and c with a multiplicity of 4: 

multiplicity 
Wyckoff symbol 	 coordinates 
site symmetry 

x, y, z; -I + x, 1 — y, -I — z;.,- + y, 2;  
1 	1 	1 , y, f; 4 - ,x,1 4- y, 4 + z; 	x, -2  — y, z; 	f + X, y,-2  — z. 

	

X, -14, z; 	,-1, 2, 	 4 - x,-34 ,- + z ;  1 + x,1,1 -- Z. 

	

0, 0, -1; 	0,1, ;,-; 	 1, 0, 0;  

	

0,0,0; 	0,-1,0; 	 -12,01,-; 	11 1  
-f, -2 ,  1. 

We know a priori that the 12 iron atoms must occupy position d and one of the 
positions c, b or a, or else three positions of multiplicity 4, The four carbon atoms 
must occupy a or b or c. The data presented above represent the result of 
a structural analysis. The iron atoms occupy d and c, and the carbon atoms also 
occupy c, but with different coordinates than for iron. The point symmetry of site 

8 d 1 

4 c m 
4 b 1 
4 a 1 
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• c 
Ø o  

z coordinates: 

1: z= T1
2 

3: z = 
12 

5: z = 
12 

Fig. 2.36. Projection of the carbonate ions COq -  of the calcite structure between 
z= 0 and z= 1/2 onto the a/b plane 

c is  ni.  An equivalent position is represented by the corresponding first coordi-
nates given in the International Tables, With the help of the Tables we obtain the 
coordinates of all the equivalent points of the positions d and c, including the 
coordinate y = 1/4 of the point representing position c. Thus we possess all the 
necessary information to make a drawing of the structure of Fe 3C and to 
calculate the interatomic distances and bond angles. 

As another example, let us look at the data for the structure of calcite, CaCO 3 , 
the principal constituent of limestone: 

• space group Ilk 
• a  =  4.990; c = 17.002 A ;  Z ---- 6; 
• 6 Ca at b 

6 C at a 
18 0 at e; x = 0.257 

Figure 2,36 shows a projection of the structure down c. 

2.9 MILLER—BRAVAIS INDICES FOR HEXAGONAL 
COORDINATE SYSTEMS 

The Miller indices of faces equivalent by the symmetry operations of the crystal 
class are derived by application of equation (1.21) of paragraph 1.2.4. In the 



SYMMETRY 	 87 

majority of cases we can obtain them by inspection. The following examples may 
easily by verified with the aid of the stereograms in Fig. 2.20: 

class 222: (hk1),(11-0, (Fla),  (k1); 
class 4: (hk1),(Tchl),(E0),(kE1); 
class 23: (hk1),(hkr),(EkT),(Ekl),(klh),(klh),(Elli),(klh),(1hk),(1Ek),(ThE),(lhk); the 

threefold axis parallel to [1111 permutes the indices. 

A complication arises from the action of a threefold axis in a hexagonal 
coordinate system. In this case, the indices of equivalent faces are not ob-
tained simply by permutations and sign changes of (hkl). To circumvent this 
problem, we use four indices (hkil) defined with respect to the vectors 
a l  , a 2 , a 3  perpendicular to the threefold axis (Fig. 2.37), and c parallel to the 
threefold axis. For h, k > 0, the length cut by the plane on a 3  is negative, hence 
we obtain: 

i=—(h+k);h+k+i--,-- 0 	 (2.17) 

Because the threefold axis permutes the vectors a l , a 2  and a 3 , we obtain the 
following recipe to obtain the indices of equivalent faces generated by a threefold 
axis: 

• we add a fourth index i = — (h + k) to the usual indices hkl; 
• the equivalent faces hkil, ihkl, kihl are obtained from the cyclic permutation of 

hki; 
• because the fourth index is clearly redundant, we then eliminate it from all 

further calculations; 
• thus the usual indices for the three faces are hkl, — (h + k)hl, k — (h + k)l. 

 

1 

similar triangles 

1/1h 1 : 1/1k I = (1/Ih  I-  1/1i  I):  1/1i I 

Fig. 2.37. Indices (hkil) with respect to a hexagonal coordinate system: (325/), 
(532/), (2530. 
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The same recipe cannot be applied for the indices [uvw] of translations (zones, 
edges). A method which defines four indices [uvww] has been published (L. 
Weber, Z. Kristallogr. 57, 200-203, 1922); however, it is not well known and little 
used. We would discourage the use of four indices for translations. We recall 
(Section 1.2.4) that (hkl) and [uvw] do not transform in the same way, the first 
being covariant and the latter contravariant. Accordingly, a threefold axis 
produces the equivalent indices [uvw], [F(u — v)w], [(y — u)aw]. 



CHAPTER 3 

Diffraction of X-Rays by Crystals 

3.1 INTRODUCTION 

3.1.1 X-RAY MICROSCOPE 

The study of very small objects and those at a great distance made possible by the 
development of the microscope and the telescope has played a crucial role in the 
progress of the exact sciences. The atomistic theories of the 19th century naturally 
raised the problem of the construction of a microscope which would allow the 
direct observation of the constituent atoms of matter. We know that the re-
solving power of an optical system is limited by the wavelength of the radiation 
used. Two points which are separated by less than approximately 0.362 cannot be 
resolved in the image produced by a microscope,  2 being the wavelength of the 
radiation (A.J.C. Wilson, Acta Crystallogr. A35, 122-130, 1979), By analogy, it is 
difficult to measure a distance which is much smaller than the smallest division of 
a ruler. 

In a solid, the interatomic distances are of the order of an Angström 
(1 A = 10 - 10 m  = 100 pm). For example, the interatomic distance for a C—H 
bond is 1.08 A, for a single C—C bond the distance is 1.54 A, and for a metal—
oxygen bond it is about 2 A, Thus, in order to distinguish two neighboring atoms, 
a microscope must use radiation with a wavelength of the order of 1 A. The image 
obtained with such a microscope obviously depends on the interaction of 
radiation with matter. 

X-rays are electromagnetic waves just like visible light. They interact with the 
electrons contained in all matter. Consequently, the image obtained with an 
'X-ray microscope' reveals the distribution of the electrons, a distribution whose 
maxima correspond to the atomic positions. In crystallography we use X-rays 
with wavelengths of the order of 0.5 to 2 A. 

According to the wave theory of elementary particles, a particle of mass 
m moving with a velocity y has a wavelength 2  = hlmv, where h is Planck's 
constant. 'Thermal' (neither 'hot' nor 'cold') neutrons have a wavelength of about 
1  A. Neutrons interact with matter in two different ways. On the one hand, they 
interact with atomic nuclei, thus the image produced by a 'neutron microscope' 
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reveals the distribution of the nuclei. On the other land, neutrons interact with 
unpaired electrons and permit the determination of the magnetic structure (spin 
distribution). A beam of electrons interacts with the electrostatic potential of 
a material, hence with the distribution of both nuclei and electrons. This is the 
principle of the electron microscope. 

According to Abbe, the formation of the image of an object by means of one or 
more lenses takes place in two steps, diffraction of the radiation by the object 
followed by recombination of the diffracted radiation by means of a lens (Fig. 3.1). 
For example, a periodic lattice made up of lines of separation d illuminated by 
a plane wave with the wave vector perpendicular to the lattice plane will emit 
diffracted beams concentrated in specific directions given by the equation 
(Section 313) 

d sin On  = n2 (n being integer) 	 (3.1) 

The objective L 1  in Fig. 3.1 transforms the plane waves diffracted by the lattice 
into spherical waves whose centers are located in the focal plane common to the 
two lenses. The eyepiece L 2  transforms these spherical waves back into plane 

fringes of order n 	fringes of order n 
image i 

Fig. 3.1. Microscope made up of two lenses. The objective L. 1  and the eyepiece L2  
have a focal plane in common. The focal distances are f1  and f2 . The object o and 
its image i are found in the focal planes of the two lenses 

object o 
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waves which interfere with an angle of 20'n . The resulting intensity maxima in the 
plane of the image are separated by the distance dr/n = 2/sin O'n = ad/n, 
a sin 0/sin 0' R.,- 0/0', a ratio commonly referred to as the magnification. In order 
to reconstruct the exact image of an object, the interference of an infinite number 
of diffracted beams is necessary. For n--* oc, hence 0, we obtain a perfect 
image. However, the lattice is already visible in an image formed by the first order 
alone, n = 1, Thus it is sufficient that A < d for a rudimentary image of the lattice 
to be formed. 

There are no known lenses for neutrons or X-rays. The index of refraction for 
X-rays in matter is of the order of 1-10', and for neutrons 1-10'. Hence 
a neutron or X-ray microscope analogous to the optical microscope does not 
exist. In order to reconstruct an image it is necessary to proceed via two steps. In 
a first step we measure the radiation diffracted by the sample. Due to their 
symmetry properties and in particular to the periodicity of their structures, the 
diffraction patterns produced by crystals are especially simple. In fact, only 
crystals allow the detailed study of the structure of matter on the atomic scale. In 
a second step we simulate the function of the lenses by numerical calculations 
with the aid of a computer. Whereas a lens recombines the diffracted waves, each 
wave being characterized by an amplitude and a phase, the diffraction pattern 
from a crystal only gives us intensities proportional to the squares of the 
amplitudes of the diffracted waves. This loss of information is the origin of the 
phase problem. In other words, the phases of the diffracted waves are unknown. 
The reconstruction of the image can only be carried out with the aid of models 
which allow us to recreate the missing information. Thus we define a priori 
the type of image that we wish to obtain. In particular, we suppose that the 
sample is made up of atoms whose form is known from quantum mechanical 
calculations. There have been impressive advances in the experimental determi-
nation of phases, but this technique is not yet a practical solution to the phase 
problem. 

In this book, we will concentrate mainly on the diffi.action of X-rays by crystals 
and the determination of symmetry properties. The solution to the phase 
problem and structure determination will only be touched upon to illustrate 
some general principles (there is an abundant literature on this subject already). 
We will study only elastic diffraction, the diffracted waves having the same 
wavelength as the primary radiation. The interaction of radiation with thermal 
vibrations produces inelastic scattering. In the determination of crystal struc-
tures, this effect is considered as a parasite which limits the precision of the 
measurements. However, it is very important in neutron scattering and consti-
tutes the principal method which allows the study of thermal vibrations of 
crystals (phonon waves). Those interested in the electron microscope are referred 
to the specialized literature in this domain. However, it is worth noting that the 
basic geometrical theory, in particular Bragg's law (Section 3.4.2) and the Ewald 
construction (Section 3.4.3), is applicable for all three types of radiation. 
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3.1.2 INTERFERENCE OF PLANE WAVES 

A plane wave (Fig. 3.2) is described by the displacement or electric field 4/ at the 
position r and at time t 

t) A cos(k o • r wt + 4)') 	 (3.2) 

A cos 2n (so • r — vt + 4)) 

where A is the amplitude, 1( 0  the wave vector with 111( 0 11= 2n/2,  2 the wavelength, 
1/2, y the frequency, co = 2ny, and cl) the phase at the origin 0 (r 0 and 

t 0). In books on solid state physics, we generally find the quantities 1(0  and co. 
Crystallographers prefer to use so  and V. This convention complicates equation 
(3.2), on the other hand, it eliminates the factor 2.7 from the Laue equations 
(Section 3.4.1). Using the relation cos (x + y) = cos x  cosy  — sin x sin y, the super-
position of two plane waves with the same wavelength, frequency and direction of 
propagation gives: 

+ tP 2 = A1 cos 2n(s0 •r vt + 01) + A2 cos 271(s0 -r vt + 02) 

A cos 2n (so  • r — vt + 4)), 	 (3.3) 

A 2  = A 21 +  A + 221 1 24 2  cos 270 1  — 4) 2 ) 	 (3.4) 

A 1  sin 27r4), + A 2  sin 27 4) 2  
(3.5) tan 20 — 

A 1  cos 20 + A2 cos 2.7r4) 2  

These equations represent the sum of two vectors of length A 1  and A2, and of 
phase 27r4) 1  and 202 , A ----- A 1  + A2 (Fig. 3.3). 

peaks of the wave 

direction of 
propagation 

k () 

X--1110- 

o s o 

14- 

Fig. 3.2. Definition of a plane wave 
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2'02  

2$ 1  

Fig. 3.3. Sum of two vectors in the complex plane 

If r and i represent the real and imaginary axes of the complex plane, we see that 
a plane wave is represented more elegantly by the complex function 

tp(r, t) =___ Ae2Rics o .,- vi + 	 (3.6) 

Thus the vectors in Fig. 3.3 are represented by 
Ae2nio A l e 21"1 + A 2e 27"z. 	 (3.7) 

3.1.3 THE OPTICAL GRATING 

Consider a plane wave whose direction of propagation is perpendicular to a wall 
containing two small holes (Fig. 3.4). According to Huygens' principle, these holes 
subsequently become sources of spherical waves which then interfere. At a dis-
tance which is large with respect to 2 and to d, the spherical wave in the direction 
of observation s can be treated as a plane wave (Fraunhofer's approximation). 
The path difference A between the two waves and in the direction s is the 
projection of d onto s: 

A= d sinû=1ds 

By setting the phase of equal to zero, it follows from equation (3.7) that the 
resultant becomes 

=__ 	== A(e2.io e2
) 

 (3.8) A(1 + e2 1"). 
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So 

 

s o 

A=X.d.s.--dsin0 

Fig. 14. Interference of two waves transmitted by two holes separated by 
a distance d= 1101. so  and s are the wave vectors of the incident and diffracted 
waves, 11s011 = MO= 1/,1, .1 is the wavelength and A is the path difference of the 
waves in the direction s. The figure is constructed in such a way that ,1= 0.4d; the 
s i  are the directions of the diffraction maxima 

The intensity / is proportional to the square of the amplitude A, 

W 2 = 4A 2  cos 2 (n d -s) = 4A 2  cos 2
d

sin 0 . 	(3.9) 

The intensity is constant for all directions s which lie on a cone whose axis is d. By 
placing a screen perpendicular to s o, we observe diffuse bands of intensity. 

For a wall containing N regularly spaced holes (considered as point sources) 
located at 0, d, 2d, 3d, (N — 1)d, we can calculate the diffraction pattern in an 
analogous manner. It is necessary to evaluate the sum of N plane waves with 
phase shifts of s-d, 2s- d, (N 1)s- d. By using the formula for the sum of 
a geometrical progression, the resultant becomes 

N1 1 	e 2niNs.d — 

	

E 	A  E e 2Rins.d =  A 	 (3.10) — 1 	e 2nisql 

	

n= 1 	n= 0 

1 2  = 	= A2 
1 COS 2nNs- d 

A2 
sin 2  nNs. d 

= A 24,(s d), (3.11) 
1 cos 2ns-d 	sin 2 irsd 

	

- 	
sin2 nNs.d 	d 

Jir(sd) 	
2 
	, s d = -; sin O. 	 (3. 12) 
sin n s. d 

.1 12,, is the interference function of a one-dimensional crystal with N unit cells, the 
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lattice repeat being d. It is a periodic function, 

J N2 (s.d) = ./ N2 (s•d + n), n being integer 

.1 1 , (sin 0)— 4,(sin 0'), sin O' = sin 0 + n —
2 

< 1 
d 

(3.13) 

With the aid of Hopital's rule, lim [Ø(x)/i(x)] = lirn [4Y(x)/1//(x)] if lirn [0(x)] or 
lim [0(x)] = 0 or oo, we can show that JIii  has principal maxima (3.1) of amplitude 

sin 2  Nx 
= N lirn 

sin 2Nx 
--, N 2  lim 

cos 2Nx 
lim  	= N 2 . 

sin 2  x 	x., 0  sin 2x 	 cos 2x x-+ 0 	 x -.. 0 

J 	N 2  for s.d = n, d sin 0 -, nA, n integer: principal maxima. (3.14) 

We find the minima by setting .1 1;, = 0, 

JN2  = 0 for s.d = m/N, m 0 nN, m and n being integers: minima. (3.15) 

There are thus N — 1 minima between two principal maxima. This implies 
N — 2 secondary maxima. Figure 3.5 shows JN2  for N --,-- 11. 

JN2  is constant for any direction s situated on a cone of axis d. Figure 3.6 
illustrates that for N = 6 we can construct the minima and maxima of JN2  in the 
complex plane (Fig. 3.3) by adding N vectors of equal length representing the 
waves from N holes. The angle indicates the phase difference of (360s.d)° between 
two waves originating from two neighboring holes. 

The scattering of radiation by a periodic structure is called diffraction. 

80- 

_ 
40 

0 
	IMP.- X 

0 	0.2 	0.4 	0.6 	0.8 	1.0 

Fig. 3.5. Interference function A i  (x), N.-- s.d 
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2nd minimum, x= 1/3, 2 revolutions, J 0  

1 

—›-r 2nd secondary maximum, x 5/12, 
2.5 revolutions, J = 1.03634 
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1st minimum, x ,  1/6, 1 revolution, J = 0 

1st secondary maximum, x.--1/4, 
1.5 revolutions, J=  1.43507 

3rd minimum, x=  1/3, 3 revolutions, J= 0  

Fig. 3.6. Vector diagrams (Fig. 3.3) showing the function J. sin 7c6 x/sinnxas the 
sum of six vectors. The other secondary minima and maxima are obtained by 
reflection with respect to the axis r 
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In reality, we observe that the intensities vary with sin O. This is due to the fact 
that holes in the wall have a finite size and are not point sources. We will 
demonstrate in Section 3.4.1 (equation (3.36) and (3.37)) the following fundamen-
tal theorem: 

The d iffraction pattern of a periodic structure is the product of the diffraction 
pattern of a single unit cell and the function 42  characteristic of the periodicity. 

symmetry: periodicity 
invariant to translation 

bijective 
mapping  position of the 

interference maxima 

  

 

unique 

phase problem 

 

structural motif 

 

intensities of the 
interference maxima 

 

  

Figure 3.8 illustrates this theorem. Figure 3.7 shows the diffraction patterns 
produced by two or three circular holes. It is easy to determine the repeat distance 
d of the lattice by looking for the maxima of  J.  The determination of the size and 

• 

• 
• • • 

0i0 
Fig. 3.7. Diffraction patterns obtained from circular holes (G. Harburn, C. A. 
Taylor & T. R. Welbury, An Atlas of Optical Transforms. London: Bell, 1975) 
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a) N = 2 

b) N . 3 

c) N , 7 

, 

r‘ 
/ 

e 
r 

r 
r 

r 

-4 -3 -2  -1 0 

' 

1 	2 	3 	4 
S 

Fig. 3.8. Curves showing the intensity  I(S)  --- Asin 0IÂ) of the light diffracted by 
a linear optical grating made up of N identical circular holes.  I(S)  = IF(S)1 2 14S)1 2 . 
The dotted line shows the intensity IF(S)I 2  due to the diffraction by a single hole; 
the separation of its maxima and minima is a function of the size of the hole. The 
positions of the maxima of 14(S)I 2  depend on the repeat distance of the grating 
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shape of the hole, and hence the complete structure, is more difficult because we 
are faced with the phase problem. 

3.2 SCATTERING OF X-RAYS BY AN ELECTRON 

3.2.1 CLASSICAL ELECTRON ACCORDING TO THOMPSON 

The interaction of electromagnetic waves, particularly X-rays, with the electrons 
of matter produces two effects: 

• The absorption of radiation which induces changes in the electronic energy 
levels (Section 3.6). 

• The scattering of radiation, i.e. its diffusion in different directions, which has 
two components, one coherent with the incident radiation (Thompson scatter-
ing) and the other incoherent with a longer wavelength (Compton scattering). 
The term coherent indicates a precise relation between the phases of the 
incident and scattered wave. The coherent scattering by a periodic structure, 
hence by a crystal, is called diffraction. This may be elastic or inelastic 
(Section 3.1.1). 

The theory of coherent scattering by a classical free electron was developed by 
J. J. Thompson in 1898. The electron is considered to be a classical free particle of 
charge — e and of mass m accelerated by the oscillating electric field of the 

Fig. 3.9. Scattering of a polarized electromagnetic wave of amplitude E0  and 
intensity /0  by a free electron of charge -e and mass m. The accelerated electron 
emits a secondary wave E(0) of intensity I(0) 
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radiation. Consequently, it emits secondary radiation similar to that of an 
antenna (Fig. 3.9). The results obtained from the classical theory are essentially 
the same as those obtained from quantum mechanics. 

At the point P, the wave scattered by a free electron is polarized in the plane 
E0/s. Its amplitude is proportional to the component of the acceleration of the 
electron perpendicular to s, 

1 1 	e2  
11 E(0) 11==  1 E0

r 4nEo mc
2 sin 0, 	 (3.16) 

c being the speed of light and co, the dielectric constant for a vacuum (SI units). 
E(0)11 is independent of the wavelength. We call the scattering length 

e 2/4nc0mc 2  = de ,  2.818 x 10 -  ' 5 m the classical diameter of the electron. This 
formula for de  is obtained by considering that the electron is a conducting sphere 
of diameter de  carrying a charge of — e which is uniformly distributed over its 
surface, and that its electrostatic energy e 2/4ncode  is equal to the energy mc 2 . The 
amplitude 11E(0)11  is maximal in any direction of observation s perpendicular to 
E0. It is zero in the direction of E0 . 

3.2.2 POLARIZATION FACTOR 

Figure 3.10 shows the case of a primary wave s o  with polarization E0  which is 
oblique with respect to the plane (so, s). The amplitude E of the wave scattered in 
the direction s is given by the angle and by equation (3.16). We then express (/) in 
terms of the angles p. and 20. The amplitude of the component of E0  perpendicular 
to the plane (so , s) is 11 E0  E0 II cos p. E0  perpendicular to s and the 

Fig. 3.10. Derivation of the polarization factor. The plane  E 0  /E0  p is normal to so ; 
the plane Ep/E n  is normal to E, E0 , s are coplaner; 20 is the angle between s and so ; 

it is the angle of polarization 
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scattered amplitude II E. ll is thus 

1 1 	e 2 	1 1 	e 2  
IlEn11 = 11 E0,.11 r 47ze0 mc2 = 11E011 r 4neo mc

2 COS p 

The component of E0  parallel to the plane (s o , s), of amplitude 
II Eo,p II = II Eo II sin p, makes an angle of  7t/2 — 20 with s, 20 being the angle 
between s and s0 . The amplitude 1lEp ll is thus 

1 1 	e2  

	

cos 20 = 11E011 1 1 
	e2  

II Epll = 11E0,p 11 4 	 2  sin p cos 20. 
r nE0  mc 2 	 r 4nE mc o 

The total scattered amplitude is 

1 1 	e 2  
11 EG1)11 = II En + Epll = Il Eoll r 4ne0  mc2 

{COS 2  p + sin 2  p cos 2  20 } 112  (3.17) 

We can derive equation (3.17) equally well by using spherical trigonometry: 
cos 4) = sin p sin 20, hence sin2  4) = 1 — sin 2  p sin 2  20 = cos 2  p + sin2  pcos2  20. 

The intensity of the radiation is proportional to the square of the amplitude, 
hence 

1 (  1  ) 2 e2 2 
sin2 0, 1(4))  --= I° 	z1. r 2  7ce0 	mc2  

and 
1 (

4ne 

 1 )2 (

mc2  e

2 )2 
I( p, 0) = I 0    Icos2  p + sin 2  p cos 2  201. 	(3.18) 

r o 

A non-polarized beam consists of a series of incoherent waves whose polariz-
ation angles p are uniformly distributed. The sum of a large number of incoherent 
waves may be obtained by the addition of the squares of their amplitudes, i.e. of 
their intensities. By introducing the expectation values of cos 2  p and sin 2  p, 
<cos2  p> = < sin2  p>  = 1/2 into equation (3.18), we obtain the scattering of 
a nonpolarized beam 

( 	) 	 d 
e2 2 1 + cos2 20 

= /0  ( .̀ ')
2

. 	(3.19) P /e = /0 
r 
i2 

4n 
1 

 Eo 
2 
 mc 2 	2 	r 

The expression P = (1 + cos 2  20)12 is called the polarization factor. For a par-
tially polarized primary beam, the expectation values < cos 2  p>  and < sin 2  p> are 
different from 1/2. 20 is the angle between s0  and s, i.e. between the direction of the 
primary beam and that of the scattered beam or the direction of observation. It 
must be noted that the scattered beams are partially polarized. When the angle 
20 = 900 , the polarization is total. This corresponds to Brewster's Law: the 
reflection from a mirror is totally polarized if the refracted and reflected beams 
are perpendicular. According to Snell's law of refraction, half of the angle between 
the incident and reflected beams is given by cot 0 = n where n is the index of 
refraction. For X-rays, n ---- I and hence 20 = 90 0 . Any reflection of light from 
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a nonmetallic surface, by snow, a lake, a road, or that part of the sky far from the 
sun, is partially polarized. 

By convention, we express all the intensities scattered by a crystal in units of 
scattering due to a classical electron, Ie . 

In the following discussion, we will suppose that all the experimentally measured 
intensities have been corrected for the effects of polarization. 

It is clear that the electrons in matter are not completely free as they are bound 
to atoms. Their behavior parallels that of the forced oscillation of a pendulum 
which depends on the natural frequency and that of the applied force. The 
majority of electrons, in particular those of the light atoms or the exterior shells of 
heavy atoms, behave almost like free electrons when they interact with X-rays, 
their interaction energies with the nuclei, and hence their natural frequencies, 
being much lower than the frequency of the radiation. 

The binding energy of the electrons in the interior shells of the heavy atoms is 
close to, or superior to, that of the radiation. The amplitude and the phase of the 
scattered X-ray are thus modified. The scattering power becomes a complex 
quantity. This phenomenon is called anomalous dispersion. It is particularly 
important if the frequency of the iadiation is close to a natural frequency of the 
electron, i.e. an absorption edge of the atom (Section 3.6.2). We then observe the 
effects of resonance. By choosing the wavelength, and hence the frequency, of the 
X-rays to be far from an absorption edge of any atom in the crystal, we can neglect 
anomalous dispersion to a first approximation. 

In the case of visible light, the frequency is less than or close to the natural 
frequency of the majority of the electrons. The scattering power of the electrons is 
thus a function of the wavelength, and hence of the color (Rayleigh scattering), 
whereas, for quasi-free electrons, it is constant. 

3.3 SCATTERING OF X-RAYS BY MATTER 

3.3.1 FOURIER TRANSFORM, THE PHASE PROBLEM 

The distribution of electrons in matter in the crystalline, amorphous, gaseous or 
liquid states is described by the electron density function p(r) whose value is given 
in units of electrons per unit volume [e A - 3] or [e nm - 3]. The number of 
electrons contained in a volume element d 3r is p(r)d 3r. This function has 
pronounced maxima at the centers of atoms and broad minima between them. 
The function also represents the X-ray scattering power per unit volume, the 
amplitude of the radiation scattered by the volume d 3r being proportional to the 
number of classical electrons that it contains. 

As shown in Fig. 3.11, the path difference between the wave A scattered by the 
volume element at the origin and the wave B scattered by the volume element at 
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Fig. 3.11. Electron density p(r) and scattering of X-rays 

the end of the vector r is A =  2r-(s  — so). The wave B is expressed, according to 
equation (3.7), as 

p(r)e .27tir • (s — s,) d3 r.  

The total wave scattered by the sample in the direction s (Fig. 3.12) is thus given 
by 

	

G(S) = f p(r)e'd 3r = 	 (3.20) 

S = s — so , II 	= 2 sin OR. 	 (3.21) 

G(S) is the Fourier transform of p(r). The inverse transformation 0 -1  allows us to 
calculate p(r) from G(S): 

p(r) f G(S)e 27rir  d'S = 0 [G(S)]. 	 (3.22) 

The sum of all the waves given by G(S) rigorously represent the density p(r). The 
limit of resolution of a microscope (Section 3.1.1) is due to the fact that certain 
vectors S are experimentally inaccessible because the maximum value of II S II is 
2/.1 (3.21) (Fig. 3.12). G(S) is a complex quantity, 

G(S) = I  G(S)  I e 2'41(s) , 	 (3.23) 

where I G(S) I is the amplitude and OS) is the phase of the wave. If p(r) is a real 
function, G( — S) is the complex conjugate of G(S), G( — S) = G*(S). 

The diffracted intensity is proportional to the square of the amplitude: 

/(S) 	I G(S)I2. 
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Fig. 3.12. Definition of the vector S s — so . llso ll llsll ---- 1R, 11511 = 2 sin OR. This 
figure should be compared with Bragg's law (Section 3.4.2) 

This relationship indicates the origin of the phase problem (Section 3.1.1) whose 
solution is one of the important tasks in X-ray crystallography: there exist an 
infinite number of functions p(r) which give rise to the same function /(S). If p(r) is 
given, we can always calculate the corresponding function IG(S)I . The passage 
from 1G(S) I to p(r), i.e. the solution of the phase problem, is only possible on the 
basis of models; the most important will be developed in Sections 3.3.3 and 3.4.1. 

3.3.2 PRIMARY AND SECONDARY EXTINCTION 

The discussion in Section 3.3.1 is based on the following approximations: 

• Because of the effects of anomalous dispersion for certain electrons (Section 
3.2.2), the scattering power is only approximately given by the electron density 
function p(r). Equation (3.20) is still correct if p(r) is replaced by a complex 
function that describes the distribution of scattering power. 

• Part of the primary radiation is not diffracted, but absorbed by the sample 
(Section 3.6.2). This effect may be taken into account if the exact form of the 
sample is known. 

• The theory presented in Section 3.3.1 is called the kinematic theory of scatter-
ing. Diffraction by a three-dimensional body is, however, more complex than 
suggested by Fig. 3.11. On the one hand, the primary radiation is attenuated by 
diffraction and the secondary beams may be rediffracted. Hence, the different 
volume elements do not all receive the same primary intensity; for this reason, 
the kinematic theory does not obey the law of conservation of energy. On the 
other hand, the interference between the primary wave and the divers diffracted 
waves has been neglected. All these effects generally lead to diffracted inten-
sities that are weaker than those predicted by the kinematic theory. These 
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phenomena are referred to as extinction. We distinguish primary extinction 
which is composed of the coherent effects due to the interference of the diverse 
waves, and secondary extinction comprised of the incoherent effects described 
by the addition of intensities. The diffracted intensities are usually weak in 
comparison to the intensity of the primary beam because the classical diameter 
of the electron e 2/47ze 0mc 2  is small. The kinematic theory becomes more 
applicable as IG(S)1 2  and the volume of the crystal become smaller. It has had 
notable success in the majority of the applications of X-ray crystallography. 
The exact theory was developed for perfect crystals with no defects and with 
simple shapes. It is known under the name of dynamic theory. The diffraction of 
X-rays by the vast majority of crystals follows neither of these theories exactly, 
but in general it obeys the kinematic theory better than the dynamic theory. In 
the case of routine structure determinations, the effects of extinction are often 
neglected. 

• Taking into account the effects of these approximations, the diffracted intensity 
is given by 

I(S) = Kg(0)AyIG(S)1 2, 	 (3.24) 

where K is a constant which includes the factor (e 2/4nc0mc 2) 2  and the volume 
of the crystal, g(0) is a function independent of the structure of the material 
which incorporates the polarization factor (Section 3.2.2 and equation (3.19)), 
A is the absorption factor (A 1), and y is the extinction factor (y 1). The 
theory concerning the evaluation of this latter factor is both laborious and 
imprecise. 

In neutron diffraction, the function which describes the scattering power is 
given partly by the distribution of the nuclei and partly by the distribution of 
unpaired electrons. As is the case for X-ray diffraction, the kinematic theory is 
a useful approximation. 

For a beam of electrons, the scattering power of matter is very high. For this rea-
son the kinematic approximation is not very appropriate for electron diffraction. 

3.3.3 ATOMISTIC MODEL: THE FORM FACTOR 

This model, conceived for the solution of the phase problem, makes the assump-
tion that matter is composed of independent atoms. The electron density 
distribution of a free atom at rest may be calculated by quantum mechanical 
methods. For atoms which contain partially filled shells and which are non-
spherical, we calculate the spherical average. Hence, in this model, all atoms have 
spherical symmetry. 

We allow that (Fig. 3.13) 
atoms 

p(r) = E p„,(r — 	 (3.25) 
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Fig. 3.13. Structure composed of atoms. Each circle represents an atomic 
electron density p m(R). The vector rm  represents the coordinates of the mth atom 
with respect to the origin 

i.e. that the distribution p(r) is approximately equal to the superposition of the 
atomic distributions p m(R) centered on the points rm . For a spherical atom, 
p„,(R)= p m(R). p m (R) may be approximately represented by a sum of Gaussians, 
p„,(R) z -',Eg  K m ,g  exp [ — am ,gR 2]; hence the atomic electron densities overlap. 

We neglect the effect of chemical bonding on the electron density distribution. 
Experience has shown that this is an excellent approximation which allows us to 
account for the scattered or diffracted intensities to within a few percent. The 
Fourier transform of a structure composed of atoms is 

G(S) = E pm 	m  (r — r)e f 	 2.irsd3r  = E  fme 2,rirm.s 

m 	 in 

, 
(3.26) 

fm(S)= f 
atom in 

 p m(R)e 2'seR = (1)[p m] 	 (3.27) 

As the atom is spherical, we can use spherical coordinates and integrate over the 
angular coordinates, and obtain for equation (3.27) 

co 

fm(11S  M)  = fm(S) = f 4nR 2  pm(R) 
sin 2nRS 

2n 
	dR

RS 	, 	(3.28) 
J o 

with S=11S11 = 2 sin OR (3.21). fm (sin 012) is the atomic scattering factor or form 
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factor. It is the Fourier transform of the atomic electron density distribution. This 
factor describes the scattering power of an atom. Taking into account ano-
malous dispersion (Section 3.2.2), the form factor  becomes  f 0  --=f + Af' + irAf". 

The form factors for all atoms, both neutral and ionic, are tabulated in the 
International Tables for Crystallography (vol. C., pp. 477-503). The corrections 
tif' and Af" for the most important wavelengths may be found in the same 
volume (pp. 219-222). 

The atomic form factor has the following properties (Fig. 3.14): 

• It is a function of sin OR. 
• Its value is given in units of classical electrons. 
• f„,(0) is equal to the number of electrons belonging to the atom or ion; all three 

species F',  Ne and Na possess 10 electrons. 
• The decrease in f„,(sin 0/A) is directly correlated with the diffuseness of the 

electron density distribution p.(R). The nuclear charge of Na is equal to 11 
electrons, that of F is equal to 9 electrons. Because of this fact, the concentra-
tion of electrons in the atomic core is higher for the ion Na than for the ion 
F -1 ; correspondingly the decrease in f is less rapid for Na  1  than for F'. 

• The form factor of a neutral atom only differs from that of its ions at low values 
of sin  0/2. This difference is due to the presence or absence of a valence electron 
which has a diffuse distribution and whose Fourier transform decreases 

0.0 	0.1 	0.2 	0.3 	0.4 
	

0.5 	0.6 

sin(0)/X 

Fig. 3.14. Form factors for the atoms Na, Ne and F, and for the ions Na + 1  and F -1 . 
For the meaning of < u2  > = U,50, see Section 3.3.4, equation (3.34) 
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rapidly. In general, chemical bonds between atoms are composed of diffuse 
electron density. For this reason, their contribution to the scattered waves is 
small (but nonetheless observable in precise measurements). 

3.3.4 ATOMISTIC MODEL: THERMAL VIBRATIONS IN A CRYSTAL 

The atomic form factor is the Fourier transform of the electron density of an atom 
at rest. However, because of thermal effects, atoms in a crystal oscillate about 
their mean positions with frequencies of the order of 10 12  to 10' 4  Hz. The 
instantaneous structure, during periods of time less than 10 - 14  sec, no longer has 
translation symmetry. Only the time average of a crystal structure, characterized 
by the average electron density < p >„ is periodic and allows the observation of 
diffraction patterns characteristic of a crystal (Section 3.4). In the following we 
calculate the Fourier transform of the average electron density of an atom subject 
to thermal vibrations while neglecting the effect of fluctuations of the electron 
density about its average. 

Let P(A)d 3 A be the probability that the center of the atom m, at some given 
moment, be found in the volume element d'A at the tip of the vector A(Fig. 3.15). 
The contribution of the displaced atom to the average electron density is 

P(A)pm(R — A)d 3 A, 

Pm(R) being the electron density of the atom at rest. The average electron density 
of the atom is obtained by integrating over all the displacements A, 

< p m(R)> = P(A)P m(R — A)d 3A = P * p m(R). 	(3.29) 

The integral (3.29) is called the convolution product of the functions P(A) and 
p m(R), written as Porn = p m * P. 

The form factor for the average atom [fm], is the Fourier transform of <pm  >,. It 
is a fundamental theorem that the Fourier transform of a convolution product is 

Fig. 3.15. The atom at the average 
position Xis displaced to position X' 
with the probability P(A)d3  A 
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the product of the Fourier transforms of each of the functions, 

Umit = 0[Pm*Pi = 0[P.i0[Pi =  

T(S)=J p(A)e 27ziesd3 A  op" (3.30) 

The distribution function  P(A)  may describe not only the dynamic displace-
ments of the atom due to thermal vibrations, but also static displacements. In this 
latter case a disordered atom can occupy different sites at random which are 
themselves periodic. The average structure is then a spatial average taken over 
a large number of unit cells. For this reason T(S) is called the displacement factor, 
thus avoiding the use of the more traditional term of temperature factor. 

P(A) can in principle be any function that fulfills the conditions for the existence 
of the Fourier integral. It can be shown that P(A) is a Gaussian distribution if the 
vibrations of the atoms are harmonic: 

p(A) (270 - 3/21v — 1/2 e  — (A TV —1 ,6)/2 
	

(3.31) 

where V is the variance-covariance matrix whose terms are the expectation values 
Vii  =  <A4>. By choosing the eigenvectors of V associated with the eigenvalues 
V as the coordinate system, equation (3.31) becomes 

P(A) = (2n) -  312(V1  V2  V3) 1/2
e  — (64/V, + 	+6./V 3)/2 .  

We know that the Fourier transform of a Gaussian is a Gaussian, 

T(S) = e - 2.2sTvs 	e  -27r2(V 1 1 S 2, +11 22S 22 +11 3 ,S 23 -1- 2V,,S,S 2 +2/1 13S I S, 21723S2S3). 	(3.32) 

The expression (3.32) for T is called the Debye  Wailer factor. The mean square 
displacement U parallel to S is 

U
<(S- A) 2  >,  STVS 

= 
s 	I1S11 2  

With (3.21), expression (3.32) becomes 

T(S) = e 

In the crystal lattice coordinate system (Sections 1.4.1 and 14), A = 
A 1  a l  + A 2a 2  + A3 a 3, and S = h + h2e2c + h3 a Hence equation (3.32) may be 
written as 

3 3 

T(h 1 h2 h3)= exp -EEfiii  h i  hi } , where f31i  = 2n2 Vii. 

The flii  are dimensionless numbers (as is the case for the atomic coordinates x i). 
The interpretation of the results of a structure determination is made easier if we 
choose another coordinate system based on the reciprocal lattice, e il` = 	ar 
The e i* are unit vectors but, in general, they are not mutually perpendicular. 

87r2 Us(sin0/A) 2 .  
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Hence equation (3.32) may be written as 
33  

T(hi h2h3 ) = exp {—  2m2  E E ui;  di  di  hi hi  
ii 

(3.33) 

where the Uii  have dimensions of A 2 . 
Finally, a function P whose amplitude is independent of the direction of A is 

called isotropic. In this case V11  = V22  = V33  = U V12  = V13  = V2 3  = 0. Thus 
equation (3.32) becomes 

T(sin OR)= e -87r 2Uis°(sin01'.1)2. 	 (3.34) 

At ambient temperature, the values for U iso  are typically of the order of 0.01 
to 0.10 A 2 . For the carbon atoms in diamond, Ll iso 'zd 0.002 A 2  is particularly 
small. For Na and Cl in the structure of NaC1, we find Uiso  0.02 A 2 . Figure 
3.14 shows that the thermal motion reduces the form factor and hence the 
intensities diffracted at high 0 angles. It can be shown that, at a sufficiently high 
temperature, U iso  is a linear function of the temperature if the vibrations are 
harmonic. 

Fig. 3.16. Molecule of C60  at a temperature of 200 K. The integral of the Gaussian 
P(A) (3.31) over the volume of an ellipsoid is equal to 0.5 
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The tensors V obtained during a structure determination are represented by 
ellipsoids (Chapter 4) 

X IV -1X = constant. 

Figure 3.16 shows an example. 

3.4 DIFFRACTION BY A PERIODIC STRUCTURE 

3.4.1 LAUE EQUATIONS 

In a crystal, the time average of the electron density <p(r)>, is periodic (Section 1.4), 

= p(r + ua + vb +  we);  u, v, w being integers 

r = x a + yb + zc; 0 ,‹.. x,y,z < 1. 

The vectors a, b, c form the lattice base. Thus the Fourier transform (3.20) 
becomes 

	

G(S) = E I 	< p(r) >t e27rirSd3r e2ni(ua + vb+ wc).S 

cells 	1 cell 

= F(S) E e2niu"  E e2nivIrS r e 27iwc•S 

Let the crystal have the form of a parallelepiped with M cells in the a direction, 
N cells in the b direction and P cells in the c direction. We can evaluate the sums of 
the geometric progressions by using equation (3.10): 

M— 1 
1 e2niva•S 	sin nMa -S elti(M — 1)a•S 	

J 
 r ...ni(M — 1)a•S 

U sin na-S 	 M 

The phase 1 (M — 1)a .S is dependent on the choice of origin. If we displace the 
origin to the center of the crystal, for M odd, we obtain 

+ of - 1)/2 	 + (M — 1)/2 	 sin nMa-S 	
. E 	e2'iva•S _ 	E 	cos 27zu a -S = 	• 	= J m(aS). 	(3.35)  

- - of - 1)/2 	 —(M— 1)/2 	 sin naS  

The intensity of the diffracted wave is proportional to 1G(S)1 2 . By using equations 
(3.26), (3.27) and (3.30), we obtain 

I '7-z.,- 1G(S)1 2  =1F(S)1 2Jii(a  

J 	

1 cell 
F(S) = 	<p(r)>,e 2 nirs er r-z-.: E [Lj te'irm 	(3.37) 's.  

	

1 cell 	 atoms 

The form factor [L,], contains the effect of thermal vibrations. The Fourier 
transform of the electron density distribution of one cell F(S) is called the 
structure factor. The functions J 2  of equations (3.12) and (3.36) are characteristic 

u --= 0 

(3.36) 
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of the periodicity. Equation (3.37) represents the theorem cited in Section 3.1.2: 
the diffraction pattern of a periodic structure is the product of the diffraction pattern 
of a single cell with the function J2  characteristic of the periodicity. The number of 
cells MNP being very large, the intensity / is zero almost everywhere (Fig. 3.5) 
except when the three functions J2  are simultaneously maximal. This is the case 
for the vectors S which satisfy the Laue equations: 

a -S = h 

b-S = k 	h, k,1 being integers. 	 (3.38) 

c-S = / 

We can find the vector S satisfying equation (3.38) by remembering the 
definition of the reciprocal lattice (Section 1.4.3): 

r* = ha* + k h* + /c*; 	h, k,1 being integers 

a-a* = b-b* = cc * = 1 
a -b* = a - c* = b- a* = b-c* = c- a* = c-b* = 0 

From this we deduce that 

S = s — so  = r* 	 (3.39) 

The Fourier transform of a periodic function is zero except at the reciprocal 
lattice points where it is proportional to that of a single cell. The scattering of 
radiation according to equation (3.39),  Le. the scattering by a crystal, is called 
diffraction. 

In solid state physics, one often refers to the wave vector k = 2ns (Section 3.1.2), 
hence 11k11 = 2n/ 2; thus equation (3.39) becomes 

K = k — ko  = R* = 27r(h a* + k h* + lc*). 

The momentum of a photon is given by p = (h/2n)k, p = (h/2), h--b&ing 
Planck's constant. The change in momentum during diffraction is thus propor-
tional to a vector of the reciprocal lattice: 

Ap = (h/270R* =  h r*.  

The energy of the photon remains unchanged, i.e. the diffraction is elastic. The 
Fourier transform of a crystal is obtained by introducing equation (3.39) into 
(3.35). This operation requires a deeper study of the behavior of JN2  when N is 
large, a function which is composed of a set of sharp peaks (Fig. 3.5). The 
distribution 6 is a mathematical representation of an infinitely sharp peak. 6 may 
be considered to be the limit of a Gaussian function 

0(x) = lim  , 	
1 	 f+ 	1 

e — x2/ 	
9 

 2a2. 
co 

dx = 1; 
.\./27Ea 	 2na 

6(x) = 0 for x 0; 6(0) = ; 6(x)dx =1. 
+00 
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By analogy, the three-dimensional distribution 6 3  may be represented by the 
limit of a Gaussian function with spherical symmetry: 

1  

6 3(0 =  53(r)  =--- 
ŒO o ( 27r ci)3 

e - r2/2œ2  =  r2 = II 
r  11 2 =7 x 2 + y2 + z2;  

+ co 

	

6 3(0= 0 for r * 0; 6 3(0) = oo; f 6 3(r)d 3r = 
f 	

4nr26 3(r)dr = 1. 
-09 

We will show in the following that each principal maximum in the periodic 
function JN  converges with increasing N towards a 6 distribution. Indeed, the 
width of the maximum is proportional to 1/N, whereas the integral of the 
maximum tends to 1: 

c+112, 
JN(x)dx 	

+112 sin nNx 
dx = + 

1/2 +(N— 1)/2 

= E cos 2nnx dx = f 1/2 dx = 1, 
J - 1/2 	 — 1/2 sin nx 	- 1/2 —(N— 1)/2 	 1/2 

by using equation (3.35). Alternatively, by using the approximation for N »1 

lim 	
sin nNx 

dx 	lim = 
max 

fNx sin n 	 + c° sin nNx 
dx =

1 
dx 	1 = 

N—■ co /max 	sin nx 	N—• co 7EX 	n 	- co 	x 

we see that JN (x) tends towards a regularly spaced set of 6 distributions: 

sin nNx ' 
lim  . 	= E 6(x — n), n being integer. 

- CC) 

In a similar manner we can show that the function J m(a•S)JN(b•S)Jp(c•S) for 
a crystal is a sum of three-dimensional distributions 6 3  centered at the reciprocal 
lattice points r* — ha* +  k b*  + lc*. For a position close to a reciprocal lattice 
point, S = r* + e 1 a* + e 2b* + E 3c*, we have a.S ---- h + e l ; b.S = k + c2 ; C'S =---- 1+ E3 . 

The volume element of reciprocal space is given by d3S = [del a* x de2b*]de3c* = 
(de 1 de2 de3)/V, V — [a x b]c being the volume of the unit cell. If the number of cells 
MNP is large, the integral over a principal maximum becomes 

sin nMg, sin nNe 2  sin nPe3 
dEidE2de3 lim 	J mJ NJ pd3S = —

1 
lim 

M,N,P—■ oo /max 	 VM,N,P— ■ co fmax sin nE l  sin ne 2  sin ne3  

1 
— 

 
V .  

It follows that the Fourier transform of a periodic structure is 

lim G(S) = —
1 E F(S)6(a • S — h)6(b•S — k)6(c•S — 

M,N,P-1 co 	V h,k,I 

1 
Gcrystalk 13)

iv\ 
  ="--- Ti  E F(S)5 3(S - r*). 

v  h,k,l 
(3.40) 

N , co  sin nx 

0, 
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We will now show that the function 42  also tends towards a sum of 6 distribu-
tions. The integral over a principal maximum is obtained from equation (3.35): 

dx = 
r + 1/2 

J N2  (x)dx = 
j - 1/2 

	

–1/2  sin27tx 

+ 1/2 +(N-1) f  

f +1/2 N-1 N-1 
E E e .27rom_ox dx  

–1/2 rn --.0 n=0 

+1 / 2  sin2  nNx f 

E (N ml)  cos 27tnx dx = 1 
–1/2  –(N-1) 

Or alternatively, for  N»  1, by the approximation 

	

r
2 

sin 2  7rN x 
dx = 

2 
i
f 	
	2 
sin2  nNx 

dx N. 
j max sin n 	n  JO x 	 x2 

 

This result can be accounted for by the fact that the principal maxima of J N2  have 
a value of N 2  and a width of 1/N. Hence, for N large, .1k converges towards 

+ CO 

JN2  (X) N E 6(x — n), n being integer. 

The integral over a principal maximum of the three-dimensional function 
JL(a.S)Jfv(b.S)4(c.S) is 

fmax 

1 MN P A 

	

J2 1 2,1 3Q  = _ 	te 	te T ye  

	

M' N' P"' v 	 NV-'2/' Pk 3)dede 2 de 3 = v 	—v2 1  
r  max 

A = MN PV being the volume of the crystal. Hence, for the intensity of the beam 
diffracted by a crystal, we obtain 

A 
/crystal 	Gcrystal(S)1 2  = 	L I F(S) I 20 3(S — r*). 

h,k,l 

3.4.2 BRAGG'S LAW 

The fundamental equation (3.39), S = s s o  = r*, which describes the elastic 
diffraction by crystals, may be represented by two geometrical constructions. 
Bragg's law is a construction in physical space; the Ewald construction is carried 
out in reciprocal space. These two representations are equivalent and facilitate 
the visualization of the diverse methods of diffraction. 

Let us recall the properties of the reciprocal lattice that are summarized in 
Table 1.2 of Section 1.4.3. The lattice line of the reciprocal lattice, 
r* = ha* + kb* + lc*, with (h,  k, I) = n(H, K, L) and H, K, L being coprime inte-
gers, is perpendicular to the planes (HKL) of the crystal lattice. The norm of r* is 

r*  = n/dHKL , where d is the distance between the lattice planes. 
Let dhk , = dmajn where n is the largest common factor of h, k, 1. Figure 3.12 

shows that the vector S = r kl — rn*H,n1C,piL is the bisector of the angle between — so 



S .-- s — so  = IA! 

--- 	--... 
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Fig. 3.17. Bragg's law, reflection by lattice planes 

and s, and that its norm is 11S11 . 2 sin 0/2. Hence 2 sin 0/2I = ni data. =- lidhki 
which leads to Bragg's law: 

Diffraction of order h, k, 1 = n(H, K, L) may be interpreted as a reflection of the 
incident radiation from the lattice planes (HKL). 

2dHlu. sin 0  — mi 	(H, K, L being coprime integers) 

2dhki  sin 0 = 2 	(h, k, 1= nH, nK, nL) 	 (3.42) 

Figure 3.17 shows the conventional interpretation of Bragg's law. The beams 
reflected by consecutive lattice planes belonging to the series (HKL), forming an 
angle 0 with them, will reinforce if they are in phase, i.e. if A l  — A 2  = nA, n being 
integer. By trigonometry we obtain 

A 1  ,-- dmalsin 0; A2  = A 1  cos 20 

A i  — A2  = 2dHKL sin 0 = nil 

2(dillajn) sin 0 = 2dhia  sin 0 = A 

As above, the letters H, K, L are coprime integers, and (h, k, 1) = n(H, K, L). 
Hence, the nth-order reflection from the series (HKL) can be interpreted as the 
first-order reflection from the planes (nH nK nL), d main apart. Physically, the 
series (nH nK nL) with n * 1 does not exist as some of its planes do not contain 
lattice points. Indeed, (nH nK nL) is the series (HKL) with additional empty 
planes interleaved. In practice, it is more convenient to refer to the reflection (222) 
than to the second order of the reflection (111). 

It is very important to realize that Bragg's law refers to the planes of the 
translation lattice and not to planes formed by the atoms. It follows from the 
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Fig. 3.18. Bragg's law, reflection by planes of atoms 

Laue equations and, hence, exclusively from the periodicity of the crystal 
structure. 

Reflection of radiation by planes of atoms furnishes an image which is less 
abstract than reflection by lattice planes. However, the distribution of the atoms 
represents both the structural motif as well as the periodicity of the structure. 
Parallel to the series of lattice planes (HKL), we find planes formed by different 
atomic species. Figure 3.18 shows the reflection of radiation by such planes. The 
amplitude is dependent on the atomic species. Beams coming from planes which 
are equivalent by translation must be in phase, hence Bragg's law. The interfer-
ence of beams reflected by different types of plane gives rise to the structure factor 
(3.37). The scattering factors [L,(S)], represent the amplitude of the reflected 
waves, whereas the products rin .S = 1...r:id  represent their phases. 

3.4.3 EWALD CONSTRUCTION 

The Ewald construction obtains the direction of a diffracted wave by the intersec-
tion of two loci. The first of these loci is the Ewald sphere: the relationships 
S = s — so,  IsM = II 5o1  1/A (equation (3.21), Fig. 3.12) show that S is a secant 
joining two points on the surface of a sphere of radius 1R. The second locus is 
defined by equation (3.39): the vector S coincides with the vector r* of the 
reciprocal lattice. The construction goes through the following steps (Fig. 3.19): 

• sketch the reciprocal lattice; 
• draw the vector s o  representing the incident beam such that its point coincides 

with the lattice point (000); 
• draw a sphere of radius 1/A, the Ewald sphere, around the point M which is at 

the origin of so  and which passes through the point (000); 
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• any reciprocal lattice point which lies on the surface of the sphere satisfies the 
Laue equations. The vector s, representing the reflected beam, joins M and the 
lattice point lying on the sphere. It is evident that the Laue equations are 
always satisfied for h ,-- k ---- l ---- 0, S = O. 

According to Bragg's law, a series of lattice planes (HKL) can only reflect 
a beam of monochromatic (i.e. single wavelength ) ) X-rays for certain angles; 
On  — arcsin(n/1/2d HKL); the reflection is selective. It follows from this that the 
crystal must be carefully oriented with respect to the primary beam to obtain 
any desired reflection. This may also be deduced from the Ewald construction. 
We see that, in general, the lattice point (hkl) is not situated on the Ewald sphere. 
In order to satisfy this condition, the crystal must either be turned to the desired 
position or else the wavelength must be changed (and hence the radius of the 
sphere). 

A crystal placed in a random orientation in a beam of monochromatic X-rays 
will not necessarily produce a diffracted beam. 

Fig. 3.19. The Ewald construction. The circle represents the intersection of the 
Ewald sphere and a plane of the reciprocal lattice passing through the origin and 
containing the lattice points (hid) with hU + kV+ IW. 0 (U, V, Wbeing coprime 
integers). The primitive translation of the direct lattice [UVW] is normal to this 
plane (Section 1.4.3). The reader can imagine other planes of this series which 
obeythe relation hU + kV+ IW-- n, n o 0, above and below the plane of the figure 
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a4.4 ONE- AND  TWO-DIMENSIONAL  STRUCTURES 

In the following we will discuss the Laue equations in a somewhat different 
manner. This will allow us to compare the diffraction by three-dimensional 
crystals with that by one- and two-dimensional lattices. 

According to the Laue equation a•S h, the projection of S onto a is,équal to 
h/a. The locus of all the vectors S which satisfy this equation is a series (of planes 
perpendicular to a and separated by 1/a. These planes make up the reciprocal 
space of a one-dimensional crystal. Their intersections with the Ewald sphere of 
radius 1/A (Fig. 3.20) define the directions s of the diffracted beams. This results in 
a series of coaxial cones around the a axis. The angle between the incident wave s o  
and a is ao . The half-opening angles a of the cones are obtained from the Laue 
equation, 

as = h + a•so  

cos cc = hA/a + cos ao 	 (3.43) 

The diffraction by a two-dimensional crystal is determined by two Laue 
equations which must be simultaneously satisfied. The locus of all the vectors S is 

Fig, 3,20. Diffraction by a one-dimensional crystal satisfying a single Laue 
equation. When recorded on a flat screen parallel to a, the diffracted beams form 
a series of hyperbolic lines 
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given by the lines of intersection of two series of planes, one perpendicular to 
a with an interval of 1/a and the other perpendicular to b with an interval of 1/b 
(Fig. 3.21). The directions s of the diffracted beams are the intersections of two 
series of coaxial cones around a and around b. The cosines of the half-opening 
angles of these cones are cos a =-- hilla + cos ao  and cos /3 , Urn + cos fl o . If we 
place a planar screen parallel to a and b, we observe a lattice of points formed by 
the intersections of two series of hyperbolic lines (Fig. 3.22). 

The locus of all the vectors S which simultaneously satisfy three Laue equa-
tions (the case of a three-dimensional crystal) is a set of points formed by the 
intersection of three series of planes perpendicular to a, b and c with the intervals 
1/a, 1/b and 1/c respectively. It is easy to see that this set of points is the reciprocal 
lattice in agreement with equation (3.39). The directions of the vectors s are the 
intersections of three series of cones. However, three cones do not in general 
intersect in a single straight line. It thus follows that the three Laue equations are 
not generally satisfied at the same time, except for h ,--- k =-- I ,-- 0 corresponding to 
s ,-- so . Indeed, the direction of a diffracted beam is defined by two angles, e.g. by 
the angles a between a and s, and /3 between b and s. In order to determine these 
angles for a given triplet of integers h, k, 1, we have available three Laue equations 
which have, in general, no solution. A randomly oriented three-dimensional crystal 
only diffracts monochromatic X-rays fortuitously. 

Fig. 3.21. Locus of the vector S satisfying two Laue equations 
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Fig. 3.22. Diffraction by a two-dimensional crystal 

3.5 EXPERIMENTAL DIFFRACTION METHODS 

In the following we will discuss three methods for satisfying Bragg's law in 
a systematic manner. For other methods, we refer the reader to the specialized 
literature. 

3.5.1 LAUE METHOD 

The name of the Laue method derives from the first X-ray diffraction experiment 
based on the ideas of M. von Laue and carried out with a crystal of chemical 
composition CuSO 4.5H 20 by W. Friedrich and P. Knipping (Munich, 1912). We 
use a polychromatic beam possessing a continuous wavelength spectrum, e.g. the 
radiation emitted by an X-ray tube (Section 3.6). The direction of the incident 
beam with respect to the crystal remains fixed during the experiment. The angle of 
incidence 0 of the beam at a lattice plane (HKL) depends on the orientation of the 
crystal. The plane selects the wavelengths that satisfy Bragg's law (3.42), 
2dHKL  sin 0 = n2 (H, K, L being coprime integers). If the first order n = 1 diffracts 
a wave of wavelength 2, the reflected beam may equally contain 2/2, 213, ... 
corresponding to the orders n 2, 3,... The intensities of the diffracted beams 
depend on the structure factors (Section 3.7) of the planes (hk1) nK nL) as 
well as the spectral composition of the incident radiation (Section 3.6). 
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Fig. 3.23. Representation of the Laue method with the aid of the Ewald 
construction. For each wavelength between ylrnin  and .1,ax, there is an Ewald 
sphere 

Figure 3.23 illustrates the Laue method with the aid of the Ewald construction. 
All the reciprocal lattice points situated between the spheres of radius 1/2.,,,a. and 
1/2„, ; „ are in a reflecting position for any intermediate wavelength between A... 
and A min . The reflection (100) of Fig. 3.23 contains the orders n ---- 4, 5, 6, 7, 8, 9; the 
reflection (1 1 0) contains only two wavelengths. By turning the crystal by a small 
amount, the lattice point  220  leaves the sphere and (1  TO) becomes monochro-
matic. 

By making a small modification to the Ewald construction, we obtain a more 
informative representation of the Laue method. By multiplying all the dimen-
sions of the construction by the wavelength 2, we obtain a lattice 
2 (ha* + kb* + k*) and a sphere of radius 1. Thus, for polychromatic radiation, we 
obtain a superposition of lattices of variable dimensions intersected by a single 
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sphere of radius 1. The lattice point (000) is common tp/  all the lattices. In fact, 
each lattice row passing through the origin becomes a c ntinuous line. We obtain 
a reflection each time that one of these lines cuts th sphere (Fig. 3.24). This 
construction clearly shows that the reflections due tz) points of a lattice line 
passing through the origin are necessarily superimposed. 

The reflections derived from a reciprocal lattice plane passing through the 
origin (000) form a cone whose axis is normal to the plane (Fig. 3.25). This 
normal is a translation [U VW] of the crystal lattice (U, V, W being coprime 
integers). The indices of the lattice points (hkl) of the plane satisfy the eq-
uation hU + kV +1W =0. Hence the lattice planes (hkl) belong to the zone 
[UVW] (Section 1.3.3). The surface of the cone contains the primary beam. 

Fig. 3.24. Laue method represented by the intersection of a sphere of radius 1 
with a set of lattices /1(ha* + kb* + /el. The orientation and the dimensions of the 
reciprocal lattice are identical to those of Fig. 3.23. The small circles represent the 
beams due to Ka and K13 (Section 3.6). If the X-rays are produced using a tungsten 
(W) tube, we observe essentially only the continuous spectrum represented by 
the diffuse lines because the Ka and K/3 lines are not excited due to their high 
energies 
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Fig. 3.25. The reflections from a reciprocal lattice plane passing through the 
origin form a cone whose axis is the translation [UM] perpendicular to the 
plane. Remember that the corresponding nets of the direct lattice are all parallel 
to [UVI/V] 

Figure 3.26 shows the origin of the cone by a construction in direct space. The 
incident and reflected beams make equal angles y with a straight line contained 
in the reflecting plane. From this we can deduce that the reflections of a beam 
of light, produced by a mirror that rotates about an in-plane axis, form a 
cone. 

The Laue method is mainly used for the orientation and alignment of crystals 
with respect to a chosen direction. In a frequently used experimental arrange-
ment, a flat photographic film is placed perpendicular to the primary beam (Fig. 
3.27). The intersection of a plane with a cone is a conic section. Hence, the 
reflections belonging to a zone are found on ellipses, hyperbolas or parabolas on 
the film. If the crystal is placed between the X-ray source and the film, the X-rays 
pass through the crystal and a transmission Laue pattern is obtained. The 
hyperbolas or ellipses of the zones pass through the image of the primary beam. If 
the film is placed between the source of X-rays and the crystal, we obtain a pattern 
by back reflection. All the zones give rise to hyperbolas. This last method is used 
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Fig. 3.26. Representation of the cone from Fig. 3.25 in direct space. The beams 
reflected by the three planes are located on a cone whose axis is the intersection 
of the planes. The angles formed by the primary and reflected beams with the 
axis are all equal. In contrast, the angles  90°O between the beams and the 
normals of the faces are not equal 

for aligning large crystals. From the Laue patterns, the spatial orientation of the 
translations [ U VW] of the zones as well as the indices of the reflections can be 
obtained, 

The Laue method also allows the determination of the symmetry of the crystal, 
excepting only the presence or absence of a center of symmetry. According to 
Friedel's law, the intensities of the reflections (hkl) and (rikr) are equal (Section 
3,7,3). The symmetry of the diffractogram allows us to distinguish between the 11 
Laue classes corresponding to the 11 crystallographic point groups which posses 
a center of symmetry (Section 2,5,7): (1, I), (2, m, 2/m), (mm2, 222, mmm), 
(4, 4, 4/m), (4mm, 422, 42m, 4/m mm), (3, -3), (3m 1  32, -3- m), (6, -6, 6/m), (6mm, 
622, -6m2, 6/mm m), (23, rri), (43m, 432, m3m). 

An important new application of the Laue method has been developed since 
synchrotrons dedicated to the production of high-intensity X-rays have become 
available (Section 3.6.3). It is used to rapidly obtain diffractograms of macro-
molecular structures. 
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Fig. 3.27. Experimental arrangement with a flat film: transmission and back 
reflection 

3.5.2 ROTATING CRYSTAL METHOD 

If we employ a monochromatic beam of X-rays, Bragg's law is obeyed only for 
certain orientations of the crystal. There exist a number of methods designed to 
photograph reciprocal space by movements, more or less complicated, of the 
crystal. In general, the simpler the method, the more complicated is the interpre-
tation of the diffractogram. 

In the rotating crystal method, a single crystal is used with dimensions of the 
order of 0.1 to 0.5 mm (smaller than the diameter of the primary beam). The 
importance of undesired phenomena such as absorption of the beam and 
extinction (Section 3.3.2) increases with the size of the crystal. The crystal executes 
a rotation about a lattice line [UV W] of the translation lattice. Hence, the crystal 
must be precisely aligned. The planes of the reciprocal lattice whose lattice points 
hkl satisfy the equation 

hU + kV + 1W = n (n being integer; U, V, W being coprime integers) 

are perpendicular to the axis [U V W]. Hence, for [UV W] = [001], the consecu-
tive planes hk0, hkl, hk2, . etc.; hkl, hla ... etc. are separated by 1/c. During the 
rotation of the crystal about [UV W ], the lattice points move in their respective 
planes (Fig. 3.28). The directions of the reflected beams, corresponding to one 
plane of the reciprocal lattice, form a cone (compare also with Fig. 3.20). 
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Fig. 3.28. Rotating crystal method, reciprocal space 

The primary beam s o  is usually chosen to be perpendicular to the rotation axis. 
Let this be the c axis, [001]. It is easy, with the help of one of the Laue equations 
(3.38), to calculate the half-opening angles y 1  of the cones, 1 being the Miller index 
characterizing the layer (Fig. 3.29): 

c.so  = 0, c.S = 	— so) = c —
1

cos y 1 = 1, 

1 
cos y t = 	 (3.44) 

We observe the reflections by means of a cylindrical photographic film coaxial 
with the axis of rotation. 

The distance H 1  between the layer line 1 = 0 and the layer line 1 1 produced 
by the intersection of the cones with the cylinder of radius R is 

H 1  = R tan(90 — 7 1 )= R cot y 	 (3.45) 

Equations (3.44) and (3.45) allow us to calculate the period c. The other lattice 
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Fig. 3.29. Rotating crystal method, experimental setup 

constants, a and b, as well as the indices h and k of the spots forming the layer lines 
are obtained by a method analogous to that used for the interpretation of powder 
patterns (Section 3.5.3). 

3.5.3 POWDER METHOD 

This method (Fig. 3.30) was invented by P. Debye and P. Scherrer, and indepen-
dently by A. W. Hull. Its importance is derived from its simplicity and from the 
moderate cost of the equipment, as well as from the difficulties often encountered 
in the preparation of single crystals. 

The radiation used is monochromatic. The sample is composed of a large 
number of microcrystals of sizes of the order of 0.01 to 0.001 mm. For each lattice 
plane hkl, the sample contains some microcrystals in a reflecting position. The 
angle between the reciprocal vector r:kt  and so  is 90° — 0 (Fig. 3.17). The normals 
of the hkl planes of all the crystals that are simultaneously in a reflecting position 
form a cone around so . The diffracted beams also form a cone of half-opening 
angle 20 because the angle between s o  and s is 20. Hence, the powder sample emits 
radiation in the form of coaxial cones. The same result can be obtained from the 
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Fig. 3.30. Powder pattern 

Ewald construction. The total of the reciprocal lattices of all the single crystals 
form concentric spheres around the lattice point (000) whose intersections with 
the Ewald sphere make up the above mentioned cones. 

A Debye—Scherrer camera consists of a metal cylinder provided with a photo-
graphic film. The primary beam is perpendicular to its axis. The distance between 
two symmetrical lines, produced by the intersection of a cone with the cylinder, is 
40R,  O being the Bragg angle (in radians) and R the radius of the camera. The 
interval dhla  is derived from Bragg's law. The powder method gives us only the 
norms of the reciprocal vectors. The set of norms corresponds to the projection of 
the reciprocal lattice onto a straight line. 

The search for a base a, b, c and the indices hkl for each line corresponds to the 
reconstruction of a three-dimensional lattice from its one-dimensional projec-
tion. According to Bragg's law, for each line we obtain an equation of the type 

r *  11 2  = 
(2 sin 0)2 _ h2 a* 2 k2 b*2 + 120,2 + 2hka*.b* + 2h1a*.c* + 2k1b*  C.  

(3.46) 

The components of the reciprocal metric tensor are the same in each equation 
whereas the indices hkl are integers characteristic of individual lines. Theoreti- 
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cally this system of diophantine equations (equations in whole numbers) has 
a solution. Finding the solution in practice poses some problems due to the 
limited precision of the experimental values of the 61  angles. Several computer 
programs are now available to find a solution to equation (3.46), even for 
substances with low symmetry. 

Every crystal system corresponds to one type of metric (Section 2.5.8) and 
consequently to one particular form of equation (3.46). Thus, the solution of the 
diophantine equations allows us to determine the lattice metric. However, this is 
not quite enough to establish the crystal system as the symmetry elements are not 
observed. 

For a cubic crystal, equation (3.46) reduces to 

sin 	
= 4a2 (h2 k2 12) 

	

(3.47) 

The number s = h2  + k2  + 12  is integer and can take all positive values except 
s = (7 + 8n)41". The planes which are equivalent by the symmetry mjnn reflect at 
the same B angle. The 48 symmetry operations of this group are represented by all 
sign combinations and all permutations of the indices hkl. For example, the line 
with s = 1 contains the six reflections 100, 010, 001, 100, 010, 001; the line with 
s = 2 contains twelve reflections, 110, 101, 011, 110, 101, 011, 110, 1-01, 011, 110, 
IOI, 011. The number of reflections which superimpose in the same line is called 
the multiplicity. 

The solution to the diophantine equations for the cubic system (3.47) is easily 
found with the aid of a pocket calculator. The equations for tetragonal, hexagonal 
and rhombohdral lattices can also be solved with quite modest means. The lower 
the symmetry, the more lines there are in the powder pattern. In the triclinic 
system, for example, the planes 100, 010, 001 are not equivalent and they produce 
three different lines. 

The powder method is also used for identifying substances. The ICDD (Interna-
tional Center for Diffraction Data) data bank contains all the diffractograms 
published in the scientific literature and provides the computer software and the 
bibliographic data to compare them with that of an unknown substance. 

3.6 PHYSICS OF X-RAYS 

3.6.1 PRODUCTION OF X-RAYS 

The classical apparatus used to generate X-rays is made up of a high-voltage 
generator and an X-ray tube (Fig. 3.31). The X-ray tube comprises an electron 
gun and a metal block placed in a high-vacuum chamber. The gun is a tungsten 
filament heated by an electric current, which provides electrons by thermal 
evaporation. A high voltage of 40 to 60 kV applied between the gun (cathode) and 
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Fig. 3.31. Schematic diagram of an X-ray tube 

the metal block (anode) accelerates the electrons. The anode is made from a metal 
which allows efficient cooling. The X-rays produced by the bombardment of the 
anode leave the tube through beryllium windows. The emission spectrum is the 
superposition of a certain number of intense lines characteristic of the anode 
material, and a continuous background. 

The composition of the continuous spectrum, or white radiation, is independent 
of the metal forming the anode. Figure 3.32 shows the intensity I as a function of 
the wavelength yl for different values of the voltage V. The lower limit of the 
wavelength A min , or the upper limit of the frequency vrna„, corresponds to the 
transformation of the kinetic energy of an electron of charge -e into a single 
photon: 

hc  
eV = hv = 	 

'min  

where e is the charge on the electron, h is Plank's constant and c is the speed of 
light (Duane—Hunt rule). The Laue method discussed above uses the continuous 
spectrum. 

The characteristic spectrum depends on the metal forming the anode (Fig. 3.33 
for Mo and Cu). It is due to electronic transitions analogous to the atomic spectra 
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Fig. 3.32. Spectral composition of white radiation according to G. H. Stout and 
L. H. Jensen, in X-ray Structure Determination 
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Fig. 3.33. Characteristic spectra according to G. H. Stout and L. H. Jensen, in 
X-ray Structure Determination 

of the alkali metals (Na, K). Some atoms of the anode are ionized by the photons 
of the continuous spectrum which are energetic enough to expel a core electron. 
In order to study this phenomenon, we will first review the quantum numbers and 
the spectroscopic symbols which characterize atomic orbitals: 

• the principal quantum number n = 1, 2, 3, ... indicates the electron shell K, L, 
M, . . .; 
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• the orbital angular momentum quantum number / has the values 0, 1, 2, ... 
corresponding to orbitals of the type s, p, d,... respectively; 0 1 -..5n — 1; 

• the magnetic quantum number m 1  takes the values — 	m i  t; thus there is 
one s state, three p states, five d states, etc.; 

• the spin of the electron s has the value of 1/2, and the corresponding magnetic 
quantum number m, can take two values, + 1/2 or — 1/2; 

• the total angular momentum quantum number j for an electron is given by 
j , 1 + s,j = 1/2 for an s state, 1/2 or 3/2 for a p state, 3/2 or 5/2 for a d state, etc. 

The core levels of Cu and Mo are all filled and all their electrons are paired. The 
ionized atom formed by the expulsion of an s electron from a core level is in the 
S 112  state because it contains an unpaired s electron with j 1/2 (1S 112  or 2S 112  for 
the K or L levels). If it is a p electron that is expelled, we obtain the terms P1 12  or 
P 312; the orbital angular momentum quantum number of the unpaired electron is 
= 1, that of the total angular momentum is j = 1/2 or 3/2. It is clear that an 

electron hole created in the K level by ionization will be filled by an electron from 
a higher level. The transitions L K and M —> K are designated by Ka and Kfl 
respectively. It is known from atomic physics that the change in quantum 
numbers during an optical transition (absorption or emission of a photon) obey 
the selection rules 

A/ = + 1; Aj = 0 or + 1. 	 (3.49) 

The electronic transition that fills the hole in the K level (1= 0) creates a hole in 
a p orbital (1= 1) and thus a state P112  or P 312 . Hence all the characteristic K lines 
are doublets S 1/2  -4 P112  or S 1/2  -+ P3 1 2. The new holes created in the M or L levels 
will be filled by the transitions P1 1 2 S 1 2 P112  D312, P312  S1/2 , P312  -4 D 3/2  or 
P312  D 512 . This cascade of transitions never creates a 25 1/2  state in the L shell. 
The occurrence of this state is due to direct ionization by the photons of the white 
radiation. The Ka and Kfl lines in Fig. 3.33 are in fact doublets Koc 1 /Koc 2  and 
10 1/K$2. A corresponding splitting of the Bragg reflections is often observed 
at high 0 angles due to the presence of Ka, and Koc 2 . In contrast, the energies 
of K J% and 102  are very close. The L series contains a number of lines at 
longer wavelength. The ratio of the intensities I(Ka 1 )/I(Ka 2) is approximately 
2:1. Figure 3.34 shows an energy level scheme of all the transitions respons-
ible for the characteristic spectra. The intensity of the Ka doublet is given by the 
equation 

k(V V o) , V /V 0  < 4 	 (3.50) 

where V is the high voltage applied to the tube, 170  the minimum voltage to 
excite Ka, k a constant and n has a value between 1.5 and 2. 170  may be calcu-
lated by relation (3.48) using the K absorption edge of the atom for il.„,; „ 
which corresponds to the energy necessary to ionize the K level (Section 3.6.3, 
Table 3.1). 
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Fig. 3.34. Energy level diagram for transitions that emit X-rays 

3.6.2 MONOCHROMATIZATION OF X-RAYS, ABSORPTION 

An approximately monochromatic beam may be obtained by isolating the most 
intense doublet Ka 1 /Koc 2 . Isolation of the single Ka l  line is accompanied by a loss 
of intensity which is often unacceptable. 

There are two methods available to obtain monochromatic X-rays. The 
simplest method exploits the  absorption rulesfor X -rays by matter by using filters. 
The absorption of radiation by a solid obeys the equation 

I = Ioe -41, 	 (3.51) 

where t is the distance traveled by the radiation in the solid and ,u the linear 
absorption coefficient. This coefficient is characteristic of the chemical element 
absorbing the radiation. It is a function of the wavelength il and is composed of 
continuous zones p1(23  separated by abrupt discontinuities. These discontinui-
ties are called absorption edges. Figure 3.35 shows the absorption i42) and the 
emission I(A) curves together for one element. The first discontinuity is the 
K edge. It corresponds to the energy necessary to ionize the K level by displacing 
a 1s electron into the energy continuum above the characteristic energy levels of 
the atom (the ionized atom is in the 1S 1/  2 state). We see that the Ka and 10 lines 
appear to the right of the K edge at longer wavelengths because they correspond 
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Fig. 3.35. Absorption itt and emission / of X-rays according to G. H. Stout and 
L. H. Jensen in X-ray Structure Determination 

to the difference in energy between the L and K, and M and K levels. These levels 
are occupied in all of the non-excited atoms. It thus follows that 

the characteristic emission spectrum of an element is only weakly absorbed by 
the same element. 

The L absorption is made up of three edges corresponding to three states, 2S 1 2, 

 2P112  and 2P312 . Figure 3.36 shows the energy level scheme corresponding to 
Fig. 3.35. 

Monochromatization by a /I filter results from the preferential absorption of 
the K 11 line. For the fi filter, we choose an element whose K absorption edge lies 
between the Ka and Kfi lines of the element used for the anode. The element 
which lies to the left of the latter in the periodic table fulfills this requirement. 
Figure 3.37 shows the effect of a Nb filter on the radiation from Mo. Table 3.1 lists 
the most important radiations. In addition, the elements that are two or three 
places to the left of the emitting element strongly absorb the Ka line. Thus, the 
K edge of Co is found at 1.60811 A and that of Fe at 1.74334 A. For this reason, it 
is not a wise choice to use CuKa radiation to study alloys of Co and Fe. The 
radiation is mainly absorbed rather than diffracted. The atoms in the sample 
responsible for the absorption then emit their own characteristic X-radiation 
which covers the Bragg reflections with an important background. 

A better monochromatization is obtained by using a crystal monochromator 
rather than a filter. This crystal is aligned in such a way that it obeys Bragg's law 
and efficiently reflects the Ka 1 /Koc 2  line. It is important that the structure factor 
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Fig. 3.36. Energy level diagram for emission and absorption. Klim  and Lhm  
represent the minimum ionization energies for the K and L levels. For the 
multiplets of the emission lines, consult Fig. 3.34 

100 

Mo 

0,5 	 1 ,0 
	

1,5 	X [A ] 

Fig. 3.37. Emission spectrum obtained with the use of a fi filter (G. H. Stout and 
L. H. Jensen, X-ray Structure Determination) 

(and hence the intensity) of the reflection (Section 3.7) be large. The reflection 
(002) of graphite is used most commonly for single crystal diffractometers and the 
(101) reflection of quartz for powder diffractometers. With a good quartz 
monochromator, the Ka, and Koz 2  lines may be separated at the price of a loss in 
intensity. This method has two major inconveniences: 
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Table 3.1. Wavelengths (A) and fl filters 

anode  
element 

2(Koc 2) ,i(Kcx 1 ) À(K) A(K fi 1 ) A 	filter 
K edge 

). K edge 
of filter 

Fe 
Cu 

Mo 

Ag 

1.93991 

1.54433 

0.713543 

0.563775 

1.93597 

1.54051 

0.70926 

0.559363 

1.93728 

1.54178 

0.71069 

0.56083 

1.75653 

1.39217 

0.63225 

0.497069 

	

1.74334 	Mn 

	

1.38043 	Ni 
{ Nb 

0.61977 Zr 

{ Pd 
0.48582 

Rh 

1.89636 

1.48802 

0.65291 
0.68877 

0.50915 
0.53378 

Source: International Tables for Crystollography, vol. C, pp. 177-179. 
Intensities: 1 (a 2): /(2 1 ) 0.5;  10: 1(a i ) between 0.167 (Fe) and 0.290 (Ag). 

• The alignment of a crystal monochromator is more difficult than the use of 
a j8 filter. 

• A crystal which reflects the wavelength A can also reflect the harmonics 2/2,2/3,  
etc. (Section 3.5.1). By applying a voltage of 50 kV to the tube, from equation 
(3.48) we obtain Amin  = 0.248 A. The wavelengths of the harmonics are thus 
present in the white radiation (for CuKa, 2/2, . , 2/6). However, their inten-
sities are much lower than those of the Ka lines. They can be eliminated with 
the aid of an electronic discriminator if the intensities are measured with 
a counter. The reflection (111) of Si or Ge is also used. For these materials, the 
structure factor F(222) is almost zero, whereas F(111) is large. Hence, the 
reflection 111 does not contain the harmonic 2/2. 

Crystal monochromators are also used to obtain monochromatic neutrons as 
well as to analyze the spectrum of electromagnetic radiation or neutron beams of 
unknown spectral composition. 

3.6.3 SYCHROTRON RADIATION 

The X-ray tube is a very widespread source of radiation in university and industrial 
research laboratories. However, the intensity of its radiation is limited mainly by 
the ability to remove heat from the anode. For most applications, suitable 
intensities are obtained only for the characteristic Ka and K ie lines of a few metallic 
elements with a high thermal conductivity. The choice of wavelengths is thus rather 
limited. It is possible to produce more intense beams with rotating anodes. 
However, the purchase and maintenance of such a machine is much more 
expensive than the utilization of a classical tube with a stationary anode. 

The X-rays produced by a synchrotron do not suffer from the above limita-
tions. The electrons or positrons which circulate with relativistic velocities in 
a storage ring emit very intense radiation which is strongly polarized in the plane 
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of the ring. With crystal monochromators, it is possible to isolate a desired 
wavelength from the wide range of energies produced. In particular, a perfect 
crystal of silicon behaves as a very narrow band-pass filter. The first synchrotrons 
were built to meet the needs of high-energy physics and the X-rays produced were 
considered to be a nuisance and a loss of energy. Today, synchrotrons are 
constructed which are optimized for the production of radiation. In the region of 
X-rays (useful wavelengths between 0.4 and 5 A), there are already several 
installations in service. The most advanced synchrotron in this domain, the 
European Synchrotron Radiation Facility (ESRF) in Grenoble (France), puts 
X-rays of an unprecedented intensity at the disposition of researchers. Several 
beam lines are dedicated to diffraction experiments. These X-rays are of high 
intensity, finely focused and extremely monochromatic, and allow new cutting 
edge experiments. 

The synchrotrons have initiated a revolution in research in the domain of solid 
and liquid materials. However, they have not replaced the classical X-ray tube 
which still remains an essential tool for all the previously existing applications. 

3.7 INTENSITIES OF DIFFRACTED BEAMS 

3. 7. 1 STRUCTURE FACTOR 

Let us recapitulate the fundamental theorem of diffraction. A crystal structure is 
characterized by: 

• a translation lattice (periodicity), 
• a motif (contents of the unit cell). 

These properties are expressed in the diffractogram (Section 3.1.3 and 3.4.1) by: 

• constructive and discrete interference according to Bragg's law, 
• the intensities of the diffracted rays. 

According to equations (3.36), (3.37) and (3.41), the intensity of a Bragg 
reflection is proportional to the square of the absolute value of the structure 
factor I F(S)I 2 . The Laue equations (3.38) and (3.39) allow us to replace S with hkl: 
S = r* , ha* ± kb* + /c*, hence F(S) = F(hk1). The integrated intensity is meas-
ured by turning the crystal through the reflecting position, for example by varying 
the Bragg angle from 0 hki - 60 to 0 hki ± 60, and integrating over the intensity 
profile of the radiation reflected by the crystal. In a powder pattern, integration is 
over the intensity profile of the line hkl. According to the theory presented in 
Section 3.7.2, the integrated intensity of the reflection hkl is given by: 

1(hk1) = Kg(0)Ay1F(hk1)1 2 	 (3.52) 
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where K is a constant which includes the scattering power of a classical electron 
(e 2/47rg0mc 2) 2  (Section 3.2.1) and the intensity of the primary beam; A is the 
absorption factor; y is the extinction coefficient (Section 3.3.2); g(0)= L(0)P(0) 
and P(0) is the polarization factor according to equation (3.19); if the primary 
beam is not polarized, P(0) = (1 + cos2  20)12; the Lorentz factor L(0) represents 
the speed at which the reciprocal lattice point hkl passes through the Ewald 
sphere (Section 3.7.2); and I F(hk1)1 is the structure amplitude equal to the absolute 
value of the structure factor. 

As a general rule, the measurements yield relative intensities, i.e. integrated 
intensities with an arbitrary scale K, because it is difficult to know what part of 
the intensity of the primary beam passes through the crystal. The constant K is 
thus an unknown. The function g(0) is analytic and its values can be easily 
calculated. The calculation of the absorption factor A is carried out with 
a computer and, today, poses no major problem. The theory of extinction is still 
poorly understood, but the factor y is often close to 1. Thus, from the intensity 
measurements, structure amplitudes I F(//k0I are obtained on a relative scale, 
typically with a precision of the order of 1-5%. The values of I F(hk1)1 represent 
the experimental information about the distribution of the atoms in the unit cell. 
A discussion of this information forms the subject of this section. However, we 
will discuss neither the theory nor the practice of structure determination by 
diffraction. 

The scalar product of S = r* = ha* + kb* + lc* and r xa + yb + zc in 
relation (3.37) is equal to r S = hx + ky + lz; the volume element crr is equal to 
the product [dxa x dyb]dzc = V„H dxdydz. Consequently, relation  (3.37) be-
comes 

"1 f 
F(S)= F(hkl) = V cell 	dx 	dy 	dz < p(xyz)> e 2ni(hx+ ky + lz) (3.53) 

J o 	o 	o 

1 cell 

	

F(hkl)=  V Efmle 
2 ni(hx,,,,, + ky,„+ 
	

[fm], = fm(sin 0/),)T(hkl). 	(3.54) 
atoms 

Equation (3.53) is valid for all periodic electron density distributions < p(xyz)> E . 
Equation (3.54) is valid for the atomistic model (Section 3.3) and can be used to 
calculate the structure factor if the atomic coordinates and the thermal displace-
ments are known. Remembering that the structure factor represents a wave, it is, 
in general, a complex number: 

1 cell 	 1 cell 

F(hkl) = 	[frni t  cos 27r(hx,r + kyrn  + lz,n)+  i 	[Mi sin 27t(hx,,+ ky rn + 
atoms 	 atoms 

= A + iB. 	 (3.55) 
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The structure amplitude is given by 

1 cell 	 2 

I Rhk1)1 2  = 	+ B2  =[ 	[f.] , cos 27r(hx„, + ky„, + 1;01 + 
atoms 

[ 1 cell 

atoms 

2 

[f.], sin 27r(hx. + ky. + lz.)1 . 	 (3.56) 

Equation (3.56) expresses the observations I F(hk/ )1 2  as a function of the 
atomic coordinates x n„ y„„ Zm  In order to determine an unknown structure, 
a number of intensities are measured, N 1,  which is much greater than the number 
of symmetrically inequivalent atoms, NA , N1 Z 100 NA . The parameters to deter-
mine are the three coordinates x„,,, z n, and one or several thermal displacement 
parameters for each atom according to equations (3.33) and (3.34). The solution 
to the phase problem in terms of the atomistic model is thus equivalent to the 
solution of the  N 1  equations (3.56). A classical method to obtain this goal, the 
Patterson function, will be described in Section 3.9.2. On the other hand, there 
exist today very powerful algorithms, called direct methods, for solving this 
problem algebraically. In a first approximation, we account for the thermal 
displacements (Section 3.3.4) with a single global factor U iso  according to 
equation (3.34) that is applied to all the atoms. Once the atomic coordinates are 
approximately known, all the parameters are adjusted, including the Uii  in 
equation (3.33), by the method of least squares which minimizes the function 

E w [i Fobserved I — I Fcalculated U 2  or E vv El Fobserved1 2  I Fcalculated 1 2 ] 2 where w is the 
hkl 	 hkl 
weight attributed to the observation hkl. 

3.7 .2 INTEGRATED INTENSITY, LORENTZ FACTOR 

We will give here a brief overview of the calculation of the intensity of a Bragg 
reflection according to kinematic theory. We suppose (Fig. 3.38) that a crystal of 
volume A rotates with an angular velocity co through the reflecting position.The 
axis of rotation is contained in the reflecting plane hkl. These conditions are 
satisfied for all the reflections in the equatorial layer, n = 0, in the rotating crystal 
method (Section 3.5.2). The intensity of the primary beam received by the crystal 
is Io  photons per unit time and area. A photon counter or a photographic film 
placed at a distance r from the crystal receives all of the photons E reflected from 
the plane during the rotation. If the incident wave is polarized, the amplitude of 
the wave scattered in the direction of the vector s is: 

1 	e2 1 
(S) = 47r 	

E0 m 2  r 
 G(S) sin 0, S = s — so, 

according to equations (3.16) and (3.20), where 0 is the angle between the 
direction of polarization of the incident wave and s. For a non-polarized 



Ewald sphere 
of radius 1.0 
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incident wave, the scattered intensity in the direction of s is hence /(s) = i e  I G(S)I 2 . 
I e  is the number of photons scattered by a classical electron and contains 
the polarization factor P (3.19). We can calculate E by integrating over the 
angular coordinates SI of the interference function »(a •S)J 2(b .S)./ 2 (c • S) using 
equation (3.36): 

0+60 	 I E 
 = if03 	

d0 f 	/d(surface) = 1. 2  I F(hk1)1 2  
- 60 	1 ref I 	 vn angles 

44.1 1;1 4, da (3.57) 

The term v„ is a function of co and 0 and represents the rate of passage of 
a reciprocal lattice point through the Ewald sphere (Fig. 3.38). Because the 
integrations are carried out over the angular coordinates, we calculate v„ with the 
aid of the modified Ewald construction (Section 3.5.1): the radius of the sphere is 
equal to 1 and the dimensions of the reciprocal lattice are multiplied by 2. 

By turning the crystal with an angular velocity co, the reciprocal lattice point 
hkl moves with a speed v = ylr*  w. . Its rate of passage through the sphere is equal to 
the projection of v onto the direction of the diffracted beam s, v„ = v cos  O.  The 
norm of Ar* is 2 sin 0, hence, v„ = 2 sin 0co cos 0 = co sin 20. The larger the value of 
v„, the smaller becomes the integrated intensity. The quotient L(0) = co/v„ is called 

tation of the crystal centered 
the Bragg angle 0 

Fig. 3.38. Lorentz factor corresponding to a rotation of the crystal about an axis 
lying in the reflecting plane and centered at the Bragg angle for the reflection hkl 



1 
L(0) = 	. 

sin 2  0 cos 0 
(3.60) 
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the Lorentz factor. For the experimental arrangement in Fig. 3.38 

1 
L(0) = 

sin 20 
	 (3.58) 

The Lorentz factor L(0) is contained in the term g(0) of equation (3.52). The 
lower the rate of passage of the point through the sphere, the higher is the 
integrated intensity. The point (000) always lies on the sphere, independent of the 
position of the crystal. Consequently, L(0) = co. If the rotation axis does not lie in 
the reflecting plane, we obtain a speed v which is lower than that in equation 
(3.58). Hence L(0) depends on the experimental technique used. For the rotating 
crystal method (Section 3.5.2), with the rotation axis parallel to c and the primary 
beam perpendicular to c, the result for the nth layer is: 

L(0) (sin 2  20—  C 2 ) - 1/2 ,  c 	 (3.59) 

The expression for the powder method (Section 3.5.3) is: 

According to equation (3.41), the integral over a reciprocal lattice point 
becomes 

/angles 

By inserting 
Eco  

1 0  

JMJNPa 	= 
j 

equations (3.19), 
( 	1 	\ 2 	e2 	)2 

J12,4 ,1 
max 

(3.58) and (3.61) 

1 + cos 2  20 

;t 3  

into 

F(hkl) 

Ji2444,d3(S) ,  (3.61) 

(3.62) 

V 2  max 	 cell 

(3.57), we obtain 
2  

= KL(0)P(0)1F(hkl)1 2  
z1.7rE o ) 	mc 2 	2 sin 20 

( 

Vceii  

for the kinematic integrated intensity. 
As indicated in equation (3.52), we obtain a better agreement with the 

observations by adding to this expression a correction for the absorption of the 
primary beam as well as a correction for extinction. 

3.7.3 FR1EDEL'S  LAW  

The structure factor of the reflection hkl is equal to the complex conjugate F*(hkl) 
of F(hk1). The structure amplitudes of the reflections hkl and hkrare thus equal: 

1F(hk/)1 2  =1F(hk/)1 2 	 (3.63) 

Equation (3.63) represents Friedel's law: the intensities of the reflections hkl 
and UT are equal, even if the crystal is non-centrosymmetric. These reflections 
are produced on opposite sides of the same lattice plane. 
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It thus follows that X-ray diffraction, and in particular the Laue method (Section 
3.5.1), only allows us to classify crystals according to the 11 Laue classes (Section 
2.5.7) and not according to the 32 crystal classes. 

However, Friedel's law is based on an approximate argument. Consequently 
it is not strictly valid. When deriving equation (3.63), we assumed the form 
factors [fm], to be real quantities. This is only approximately so. Anomalous 
dispersion (Section 3.2.2) introduces an imaginary component into the form 
factors which is important if the wavelength of the X-ray is close to an absorp-
tion edge of certain atoms present in the structure. In this case, the structure 
factors do not obey Friedel's law. This effect is exploited in macromole-
cular crystallography. It also serves to determine the absolute configuration 
of a structure, e.g. to make the distinction between a right-handed and a left-
handed helix. However, Friedel's law is, in general, an excellent approxi-
mation and it agrees well with the observations made with the methods of 
Section 3.5. 

If the structure is centrosymmetric, and if the origin of the coordinate system is 
placed on a center of symmetry, then the structure factor is a real number. In this 
case, the electron density is an even function < p(r)>, = <p(—  r».  An atom 
located at x, y, z is accompanied by an equivalent atom at ., y, 5 and the 
imaginary part in equation (3.55) cancels: 

1 cell 

Fcentro(hkl) = E [Li], cos 2Tc(hx n, + ky nr  + lzn,) = + IF centro(hk1)1 . (3.64) 
atoms 

The presence of a center of symmetry is of particular importance in structure 
determination. The solution to the phase problem, in this case, consists only of 
the determination of the signs of the structure factors. On the other hand, the 
phases for a non-centrosymmetric structure can take any of the values between 
0 and 2n. However, it is often difficult to detect unambiguously the presence or 
absence of a center of symmetry. 

3.8 SPACE GROUP DETERMINATION 

3.8.1 DETERMINATION OF THE CRYSTAL SYSTEM 
AND OF THE LAUE CLASS 

The symmetry of the diffractogram from a single crystal in principle allows us to 
classify the crystal according to one of the 11 Laue classes (Section 2.5.7 and 3.7.3). 
For a crystal belonging to the Laue class 4/m, the reflections hkl,  khi,  hkl, khl,Tikl, 
khi,  hkl,  khi  are equivalent and hence have the same intensity. The Laue class 4/m 
is composed of the crystal classes  4,4 and 4/m. The symmetry of a Laue 
photograph taken with the fourfold axis oriented parallel to the incident X-ray 
beam is tetragonal, plane group 4. 
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For a crystal belonging to the Laue class 4/mmm (crystal classes 4mm, 422, 
42m and 4/m m m), we observe, in addition to the symmetry 4/m, the equivalence 
of the reflections hkl and khi.  Consequently, in general there are 16 equivalent 
reflections (h k, h 0 0, k 0, 1 0). A Laue photograph oriented in the same 
way as above has the plane symmetry 4mm. 

In the case of the powder method, all the symmetry equivalent reflections 
superimpose because they all have the same spacing dim  (Section 3.5.3). Thus, this 
method does not allow us to observe the Laue symmetry, only the metric of the 
unit cell. For the same reason, the rotation method is also poorly adapted for the 
determination of the symmetry. There are other diffraction methods, which are 
not described in this work, by which all the reflections may be individually 
observed without superposition from which it is also possible to determine the 
Laue class of a crystal and consequently the crystal system. Is it possible to obtain 
other information about the symmetry and, in particular, the Bravais class and 
the space group? 

In the majority of diffractograms, certain reflections are absent due to structure 
amplitudes which are weak or zero. 

An absence is systematic if the indices of the reflections concerned satisfy 
certain parity rules. Systematic absences indicate the presence of translations, 
glide planes and screw axes, i.e. symmetry elements without a fixed point 
(Section 2.3). 

We distinguish three types of systematic absences: integral, zonal and serial. An 
integral absence concerns all the reflections hkl. A zonal absence is satisfied only 
by a reciprocal lattice plane passing through the origin, e.g. the reflections hk0. 
A serial absence is satisfied only by a reciprocal lattice line which passes through 
the origin, e.g. the reflections h00. 

3.8.2 INTEGRAL ABSENCES, CENTERED CELLS 

All the rules for systematic absences may be derived from the expression for the 
structure factor (3.54). Let us derive the rule for a C centered cell. The vector 
(a + b)/2 is a lattice translation (Section 1.4.1). An atom of type m in position x, y, 
z is accompanied by an identical atom in position + x, + y, z. The contribution 
of these two atoms to the structure factor of the reflection hkl is 

Thus we conclude that the intensities for all the reflections with h + k odd are 
zero. In an analogous manner we can derive rules of integral systematic absences 
characteristic for each of the lattice types I, A, B, C, F, R (Table 3.2). A P lattice 
generates no systematic absences. 

Efote 2 	1 _L ni(hx ky+ lz) 	eni(h+k)} ;  
-1- 	I  

1 ± eni(h+k) {2 for h + k even 
0 for h + k odd 



b glide plane, (100) 	ib 
1 c glide plane, (100) 	2c 

n glide plane, (100) 	/(b + c) 
d glide plane, (100) 	1(b + c) 

a glide plane, (010) 	la 
c glide plane, (010) 	ic 
n glide plane, (010) 	i(a+ c) 
d glide plane, (010) 	1(a + c) 

a glide plane, (001) 	la 
b glide plane, (001) 	lb 
n glide plane, (001) 	1(a + b) 
d glide plane, (001) 	1(a + b) 

c glide plane, (110) 
n glide plane, (110) 
d glide plane, (1TO) 
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Table 3.2. Integral and zonal systematic absences 

Reflections 	Conditions for 	Type of lattice or 	Translations 
observation 	symmetry element 

hk1 

Oki 

h01 

hk0 

hhi 

h+k+1=2n 
h+k= 2n 
h+1=2n 
k+I=2n 

h,k,1 all even} 
or all odd 

—h+k+1=3n 
h—k+1=3n 

k=2n 
/ = 2n 
k+1= 2n 
k+1=4n 

h= 2n 
/ = 2n 
h+1= 2n 
h+1=4n 

h= 2n 
k= 2n 
h+k= 2n 
h+k= 4n 

/ = 2n 
2h+  1=2n 
2h+ i=4n 

I lattice 
C lattice 
B lattice 
A lattice 

F lattice 

R lattice (inverse) 
R lattice (obverrse) 

i(a+b+c) 
1(a + b) 
Ra + c) 
i(b + c) 

i(a+ b), (a + c),A(b + c) 

i(2a + b + c),(a +2b+ 2c) 
i(a + 2b + c), i(2a + b + 2c) 

It is instructive to note that the origin of these rules lies in the choice of 
coordinate system and that they may be derived without using structure factors. 
Any centered cell may be transformed into a primitive cell which, in general, 
does not convey the symmetry of the motif and which may thus be unsatis-
factory from this point of view (Sections 1.4.1 and 2.6.1). Thus the transfor-
mation a' = (a — b)/2, b' = (a + b)/2 transforms a C cell into a diamond-shaped 
primitive cell. The indices hkl transform in a covariant manner (Section 1.2.4), 
h' = (h — k)/2, k' = (h + k)/2. As h' and k' must be integers according to the Laue 
equations, then h + k must be an even number. The indices with h + k odd do 
not correspond to a reciprocal lattice vector (Fig. 3.39). 



• 
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0-000 

• 

• • • • • 
rectangular C lattice  

b* 
• a*ri; 	• • 

• • 	• a*' 	b*' • • 
a 4_411  

corresponding reciprocal lattice 

Fig. 3.39. Transformation of a rectangular C lattice into a primitive P lattice 

3.8.3 ZONAL ABSENCES, GLIDE PLANES 

Let us suppose that there is a glide plane a perpendicular to c and passing through 
the origin (Section 2.3.3; Table 2.5). Thus, an atom of type m in position x, y, z is 
accompanied by an equivalent atom in position + x, y, — z (or + x, y, — z for 
a plane a located at c/4). The contribution of these two atoms to the structure 
factor is 

Ef  ile2nichx+ky+ lz) 	e 2ni(hx+ ky —  lz)enihi .  

For 1 = 0, we obtain: 

Efnjt  e 2ni(hx + ky)
{1 	 1 + enih = 

{2 for h even 
0 for h odd 

We conclude from this result that the intensities of all the reflections hk0 are zero 
for h odd. For each type and orientation of glide plane, there exist characteristic 
zonal absences (Table 3.2). 

The origin of the zonal absences lies in the periodicity of the projection of the 
structure onto the glide plane. The Fourier transform of the projection of the 
electron density down c onto the plane (001) is the set of structure factors F(hk0): 

F(hk0) = Vcell 	dx 	dy 	dz < p(xyz)>,e 2ni(hx + ky + Oz) 
0 	0 	o 

according to equation (3.53) 
1 

"ll 	dx dy 
J ° 	j o 

d(cz)< p(xyz)>, e 2ni(hx + ky) .  

1 	1 

F(hk0) = Sab 	dX 	dy pïxy)>t e 2ni(hx kY) 
• 
	 (3.65) 

0 	0 

Sab is the area of the cell [a x b] and < p'(xy)>, is the projection of < p(xyz)>,. If 
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(001) is an a glide plane, this projection is invariant with respect to the translation 
a' = a/2: < p'(xy)>, = <p'(4 + x, y)>,. It thus follows that h' = h/2 is an integer for 
all the reflections hk0. 

A zonal absence indicates that a projection of the structure onto a plane has 
a different periodicity from that of the three-dimensional structure. It is in 
general due to the presence of a glide plane. 

3.8.4 SERIAL ABSENCES, SCREW AXES 

Let us suppose that a 2, screw axis exists parallel to c and passing through the 
origin. An atom of type m in position x, y, z is accompanied by an equivalent atom 
in position — x, — y,  4  + z. (An axis which does not pass through the origin 
generates an equivalent atom at p — x, q — y , 4  + z with (p, =  (0,4)  or  (4,0)  or 
(4, 4) according to the position of the axis.) The contribution of these two atoms to 
the structure factor is: 

[f ] t [e2ni(hx + ky + lz) 	e 2iri( - hx - ky + lz) enil] 

For h = k  = 0, we obtain: 

[fm] te 2niiz{ 	eira } ;  

From this we conclude that the intensities of all the 001 reflections are zero if 1 is 
odd. Each type and each orientation of screw axis has a corresponding character-
istic serial absence (Table 3.3). 

The origin of the serial absences lies in the projection of the structure onto the 
screw axis. By analogy with equation (3.65) we find that 

F(00/) = c f dz< p"(z)>,e2 nnz 
o 

(3.66) 

<p"(z)>, being the projection of < p(xyz)>, onto the c axis. If the direction of 
c coincides with a 2, or a 42  or a 63  screw axis, the projection is invariant with 
respect to the translation c' = c/2. Consequently, l' = 1/2 is an integer for all the 00 1  
reflections. 

A serial absence indicates that the period of the projection of the structure onto 
a line is afraction of the period of the three-dimensional structure ( I /2,  1/3,  1/4 
or  1/6).  In general, this is due to the presence of a screw axis. 

3.8.5 ROTATIONS AND ROTOIN  VERSIONS 

1 + 	= 
{2  for I even 

0 for 1 odd 

The presence of symmetry elements without a translation component, i.e. rota- 
tion axes x and rotoinversion axes )-<, cannot be detected by systematic absences. 
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1, 
4" 
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IC 
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Table 3.3. Serial systematic absences 

Reflections 	Conditions for 	Symmetry element; 	Translations 
observation 	 orientation 

h00 	 h = 2n 	2 1 ,42  screw axes; [100] 
h = 4n 	41 , 43  screw axes; [100] 

0k0 	 k = 2n 	2 1 ,42  screw axes; [010] 
k = 4n 	41 , 43  screw axes; [010] 

00/ 	 1 = 2n 	2 1 ,42, 63  screw axes; [001] 
1 = 3n 	31. 32, 62, 64  screw axes; [001] 
1 = 4n 	41 ,43  screw axes; [001] 
1 = 6n 	61 , 65  screw axes; [001] 

hh0 	 h = 2n 	2 1  screw axis; [110] 

This is particularly regrettable for a center of symmetry. In principle we can find 
the Laue class and the crystal system by means of the distribution of intensities in 
reciprocal space. In certain cases, symmetry elements with a translational compo-
nent generate a center of symmetry and the corresponding space group is 
unambiguously indicated by the systematic absences. In other cases, it is not 
possible to deduce the space group unambiguously using diffraction methods 
alone (Section 3.8.7). 

3.8.6 FORMAL DERIVATION OF THE SYSTEMATIC ABSENCES 

Let the space group be composed of the symmetry operations (As, ts), where As  
represents a rotation or rotoinversion, and ts  a translation vector (Section 2.2.1). 
It is sufficient to consider the coordinates given in the International Tables which 
have ts  vectors with components 0...5 ts ,, t52 , t53  < 1. The set of matrices As  
(1 -.5 s..._ S) represent the point group of order S. The atoms of type m occupy the 
equivalent positions rm., = Asrm  + t, and the structure factor of the reflection 
Ii  = (h 1 h 2h 3 ) T  is 

inequiv.atoms 	[symmetries 	 inequiv  .atoms  
F(11) = 	 u E 	m], 	E exp(2nihTrms)] --, 	1 	[fm],Cm(h), 

s 
Cm(h) = 1 exp [2nih T(Asr„, + t8)]. 

s= i 

The vectors t, h and r are column vectors; their transposes t T,hT,rT  are line 
vectors. The structure factor for the equivalent plane hi  — A.Th (Section 1.2.4) is 
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calculated as follows: 

Cm (hi)= 	exp [2711 hiTr,ns] = 	exp [2711 h TAirms] 
s= 1 	 s= 1 

= exp[— 27tihTti] 
s= 

= exp — 2rtihTtil 	exp E2ni h T {Ai(Asr,n  + t5)± 
s = 1 

= exp — 2711 hTt3] E exp [2711 h T(Ass„, + ts,)] = exp — 27tihT  t ,n (h). 
= 

F(API) = exp[— 2711 h Tt1]F(h) 
	

(3.67) 

Hence, the structure factors for different lattice planes are distinguished by their 
phases. 

For hi  = ATh = h, we obtain either exp [ — 27cih Tti] = 1, or F(h) = 0. 

F(h) 0: h Tti  = N integer; 

hTti  N integer: F(h) = 0. 	 (3.68) 

A simple program based on equation (3.68) allows the facile identification of the 
systematic absences. 

3.8.7 EXAMPLES 

The systematic absences for each space group are given in the International 
Tables for Crystallography, Volume A: Space Group Symmetry. We will discuss 
here the examples from Section 2.7.3. 

Pnma: There are no integral systematic absences. Hence, the lattice is of type P. 
The condition Okl: k +1= 2n indicates the presence of an n glide plane perpen-
dicular to a; the condition hk0: h = 2n indicates the presence of an a glide plane 
perpendicular to c. The plane m perpendicular to b does not produce any 
systematic absence. The absences concerning h00, 0k0 and 00/, which indicate the 
presence of screw axes, are special cases of the rules concerning Okl and hk0. The 
group Pn2 1 a is characterized by the same absences. The space group Pnma is 
obtained by adding a center of symmetry to the group Pn2 1 a. The group Pn2 1 a is 
found in the International Tables under the name Pna2 1 . This symbol is obtained 
by the transformation c' = b; b' = — c. 

P42 1 c: This group is characterized unambiguously by the systematic absences 
indicating the presence of the symmetry elements which generate 2, and  C.  The 
symmetry being tetragonal, the condition hhl: 1= 2n implies hhl: 1 = 2n (c); the 

- E exp [271 1 h T  (Airms  + ti)] 
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condition h00; h = 2n implies  0k0: k = 2n (2 1 ). The absence 00/ is a special case of 
the condition hhl. 

R3c: The R lattice is indicated by the integral absence — h + k + 1 = 3n. The 
zonal absence hh01: 1 = 2n indicates the presence of one of the three equivalent 
c glide planes parallel to the threefold axis. The absences due to the other two 
c glide planes are generated by rotations of + 120°: hOhl: 1 = 2n and Okkl: 1 = 2n. 
The other absences cited in the International Tables are special cases of the 
conditions due to the c glide planes. The group R3c is characterized by the same 
absences. By adding a center of symmetry to the group R3c, we obtain R3c. The 
Miller—Bravais indices hkil with four numbers are discussed in Section 2.9. The 
corresponding indices with three numbers are hhl, hOl and Okl. 

Cc: The group is characterized by the integral absences hkl: h + k = 2n (C) and 
h01: 1 -- 2n (c). The other absences are special cases of these. The group C2/c is 
obtained by adding a center of symmetry to Cc and is characterized by the same 
systematic absences. 

3.9 COMMENTS ON THE SOLUTION OF THE PHASE PROBLEM 

3.9.1 FOURIER SERIES 

With equations (3.55) and (3.56), the structure factors and structure amplitudes 
can be calculated if the atomic coordinates are known. With the inverse Fourier 
transform, the electron density <p(xyz)>, is obtained starting from the structure 
factors. With the help of equations (3.22) and (3.40), we obtain the Fourier series 

<p(xyz)> 	
1

, = 	 E 	1 	1 F(hkl)e- 2 ITi(hx + ky + lz). 	(3.69) 
Vcell  h= — oo k= — co I= — oo 

According to equation (3.55), F(hk1) = A(hk1) + iB(hk1) and  F(i1)= A(hk1) — 
iB(hk1), hence: 

half recip. space 

< p(xyz)>, —  T 	71  [ F(00 0) + 2 E E E A(hk1) cos 27t(hx + ky + lz) 
v cell 	 h 	k 	I 

half recip. space 

± 2 E E E B(hk1) sin 27c(hx + ky + lz)]. 	(3 .70) 
h 	k 	1 

For a centrosymmetric crystal, (Section 3.7.3), B(hk1) = 0. In principle, one of 
the sums in equation (3.70) extends from 0 to + co and the two others from — co 
to ±  cc. In practice, all the sums are limited to the number of measured 
intensities. This limitation of the Fourier series corresponds to the resolu-
tion limit of an optical microscope (Section 3.1.1). The structure factor 



co 	co 	co of 	1 	1 
dx dy dze -  

	

J o 	J o 

 vcell  E 	E 	E KO' k' 1') 
h' = — oo k' = — oo l' = — oo 

= KeliK(hk1) = F(hk1). 
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F(000) = A(000) is equal to the number of electrons in the unit cell; B(000)  =0.  
Alternatively, equation (3.69) may be derived by employing the periodicity of the 
electron density, <p(xyz)>, = < p(x + u, y + v, z + w)>„ u, v, w being integers. The 
function <p(xyz)>, is continuous. It has continuous derivatives because it repre-
sents the thermally averaged electron density and not the static electron density 
(Section 3.3.4). A continuous and periodic function can be represented by 
a Fourier series, 

< p(xyz)>, = E 	E 	E K(hkl) e - 2ni(hx + ky + lz) .  
h = — oo k = — ot) 1 = — oo 

By introducing this expression into equation (3.53), we obtain equation (3.69): 

The sums (3.70) may be calculated by efficient computer programs if the 
structurefactors F(hk1) are available. But, remember, experimentally we measure 
only the structure amplitudes I F(hk1)1. How much structural information is 
contained in the structure amplitudes alone? 

3.9.2 PATTERSON FUNCTION 

According to the standard model which allows the resolution of the phase 
problem, the structure is composed of independent atoms. We will show in the 
following that the structure amplitudes give us information about the distances 
between the atoms. The square of a structure amplitude is given by 
I F(h1(1)1 2  = F(hk1)F (hk1), 

	

[ 1 cell 	 1 rltv_i  cell 

I F(hk1)1 2 _ 	E [f i te2ni(hx
m 

+ ky
m + 

lzm) 

	

atoms 	 i L 

a 

 oms 
I I L Ef i te - 2/tiox„+ ky„ + lzn ) 

, E E [ Lill fnle2 ni[h(x,, —  x n ) + k(Y,, —  Y,) +1(z„, —  zn)] 

mn  

= E [fm]  + E E [fm],[fn], cos 27r[h(x,,, — x n) + k(y m  — y„) + 1(Z„, — z,,)] 
nom 

(3.71) 

Equation (3.71) is similar to equation (3.64) which represents the structure 
factor for a centrosymmetric crystal. Equation (3.71) can be interpreted as the 
structure factor for a fictive squared structure. The squared structure is cen-
trosymmetric. It is made up of atoms with a scattering power [MI fj, at the 
positions rn, — rn  = (xm  — xn)a + (ym  — y„)b + (zm  — z„)c. These coordinates repre-
sent the interatomic vectors of the real structure. An atom with the scattering 
power E [fni] is found at the origin which represents all the zero vectors. If the 
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real structure contains N atoms in the unit cell, the cell of the squared structure 
contains N(N — 1) atoms excluding the atom at the origin. 

By analogy with equation (3.70), the electron distribution of the squared 
structure may be calculated by use of a Fourier series whose coefficients are the 
squares of the structure amplitudes, 

P(uvw) = 
l 	

IF(hk1)12e- 2,n  u 	 i(hu+ kv Iw) 

r  Cell h = — oo k = — oo I = — oo 

half recip. space 
= 	F 000)1 2  + 2 E 	TOW )1 2  cos 2Tc(hu + kv +1w)]. (3.72) 

Vcen 	 h 	k 	I 

P(uvw) is called the Patterson function (A. L. Patterson, Phys. Rev. 46, (1934) 
372-376). The values of the function are expressed in e 2 A 3 . According to 
crystallographic usage, coordinates in the squared cell are represented by u, v, 
w instead of x, y, z (clearly these are fractional numbers, not integers). Alternative-
ly, we may derive equation (3.72) by inserting equation (3.69) into an integral 
analogous to equation (3.29) to obtain the autoconvolution product of < p(x, y, z)> r : 

P(uvw) = Vceii  f d x 	dy 	dz < p(x, y, z)>, < p(x + u, y + v, z + w)>,. (3.73) 

According to the convolution theorem (Section 3.3.4), the Fourier transform 
of P(uvw) is the set of the I F(hk1)1 2 , that of < p(x, y, z)>, being the set of the 
F(hk1). Equation (3.73) represents the interatomic distances in direct space in 
a similar manner to equation (3.71) in reciprocal space. If u, v, w does not 
represent an interatomic vector, at least one of the terms < p(x, y, z)>, or 
< p(x + u, y + v, z + w)>„ as well as their product, is small whatever the value of x, 
y and z; hence, the value of P(uvw) is also small. In contrast, the terms are both 
large if x, y, z and x + u, y + v, z + w are atomic coordinates; hence P(uvw) has 
a maximum and u, v and w correspond to an interatomic vector. Thus, the 
Patterson function does indeed represent the squared structure. In other 
branches of physics, it is called the correlation or autocorrelation function. 

Figure 3.40 shows two cells of a one-dimensional structure containing three 
well-resolved atoms per cell, as well as the corresponding Patterson function or 
squared structure. In this example, it is easy to derive the positions of the maxima 
from P(u) and thus solve the phase problem. It can be shown that this is always 
possible if all the interatomic vectors of <p(r)>, can be observed as maxima in 
P(u). We observe that the most pronounced maxima in P(u) represent the vectors 
between heavy atoms. The maxima of P(u) are broader than the atoms in < p(r)>, 
and are larger in number. They often overlap and their resolution is not always 
possible. In fact, it is impossible to identify the set of 90 interatomic vectors for 
a three-dimensional structure with 10 atoms in the unit cell; we are able to 
interpret only P(uvw) in special cases. However, the study of the Patterson 
function is a very useful tool for structure determination, especially if we make use 
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Fig. 3.40. One-dimensional crystal represented by the function <Mil>, and the 
corresponding Patterson function P(u). (Structural parameters: translation of 10 
A; 0 atoms at x, = 0.10; C at x2  = 0.27; Na at x3  = 0.55; vectors 04-C at u12  - + 0.17; 
Na4- C at u23 = + 0.28;  Na*-0 at u,3 = + 0.45) 

of the space group symmetry. The following examples will serve to illustrate 
this. 

(a) KH 2 PO4  (A. L. Patterson, Z. Kristallogr, 90 (1935) 517)). 

Figure 3.41 shows the projection of the structure of KH 2 PO4  as well as the 
corresponding Patterson function. The distribution of the (K,P)-(K,P) vectors in 
(b) is identical to the atomic positions (K,P) in (a). These atoms would in fact be 
equivalent by translation if the oxygen atoms were absent. The (K,P)-0 vectors 
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a 

(a) 

  

   

(b) 

Fig. 3.41. Projections on (001) of the structure (a) and of the Patterson function 
(b) of KH 2 PO4. The K and P atoms are superimposed. The H atoms have been 
omitted because of their low scattering power. The two-dimensional tetragonal 
unit cells are C centered 

are easy to identify. The maxima corresponding to the 0-0 vectors are weak and 
of no importance for the solution of the structure. In this example, we see an 
important property of the Patterson function: it is the superposition of the 
structure seen from the (K,P) atom at O.  0 or 4, 4, and of the structure seen from 
the (K, P) atom at 0, 1 or 1, 0. 

(D) Platinum phthalocyanine, C 32 N 8 F1 16Pt (J. M. Robertson & I. Woodward, 
J. Chem. Soc. (1940) 36) 

The molecule of phthalocyanine (Fig. 3.42) has an empty space in its center. It is 
possible to place a metal atom such as Ni or Pt in this space. The structure of 
Pt-phthalocyanine was the first to be solved by the so-called heavy atom method. 
The unit cell is monoclinic and contains two centrosymmetric molecules. The 
space group is P2 1/a. Pt occupies the positions 0, 0, 0 and , -, 0 (special position 
of site symmetry 1). The Patterson function correspondingly shows two large 
maxima at u, y, w = 0, 0, 0 and -, 0. Structure factors can then be calculated 
following equation (3.64) using uniquely the Pt atoms. Because the heavy atoms 
dominate the scattering, we thus obtain a good estimation of the phases. In the 
next step, we use these approximate phases along with the measured structure 
amplitudes to calculate the electron density distribution using equation (3.70). In 
the case of Pt-phthalocyanine, the molecule is approximately parallel to (010). 
The unit cell of the projection of the structure down b onto the (010) plane is 
a' --  4a, c' = c (Section 3.8.3). It contains a single atom of Pt which occupies the 
center of symmetry at 0, 0. Because fpt  is very large in comparison to the form 
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Fig. 3.42. Pt-phthalocyanine. The unlabeled apices 
represent C or C-H 

Fig. 3.43. Projection of the 
electron density of Pt-phthalo-
cyanine. The contour interval 
is 1 e A -3  except for the Pt 
atom 

factors of the other atoms, equation (3.64) indicates that the signs of almost all the 
structure factors h 0  I are positive. The projection of the molecule (Fig. 3.43) is 
revealed by the summation of a two-dimensional Fourier series using the 
structure factors F(h01)= -4- I F observed (h01)1. 

In general, knowledge of the heavy atom positions alone is not sufficient for the 
determination of all the phases. The Fourier series using these phases will show 
only a few of the light atoms, in particular those which are located in the 
neighborhood of the heavy atom. The process is then repeated. The set of known 
atomic positions will provide a better estimation of the phases and the subse-
quent Fourier series will reveal additional atomic positions. 
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(c) Biguanidinium sulfate, [H2bg][SO 4].H 20 

This example illustrates the utilization of the space group symmetry. [H 2bg] is an 
abbreviation for the dication of biguanide, 

H 	 H 
N N

H 
 N 

H 	 H 

N 
HHHH 

H2bg 

2+ 

  

  

 

H 

 

   

  

H20 

The cell is orthorhombic, a = 7.208, b = 11.805, c = 20.507 A. The systematic 
absences are Okl: k =  2n, hOl: = 2n, hk0: h = 2n; hence, we deduce that the space 
group is Pbca. The density is 1.65 g cm 3 , hence the unit cell contains eight units 
of formula C 2H 1 N 5 05 S (Section 2.8). First we look for the positions of the sulfur 
atoms with the help of the space group symmetry, the S—S vectors being the most 
important in the Patterson function. 

According to the International Tables for Crystallography (Section 2.7.3), the 
general position in Pbca has a multiplicity of 8; thus eight sulfur atoms may 
occupy the eight equivalent general positions: 

X, y, z; 
x, y,z; x,, — y, + z; + z;  

We now calculate the 56 vectors between the eight equivalent positions of Pbca 
which should correspond to the highest maxima in the Patterson function. Note 
that the corresponding space group of the Patterson function is Pmmm. The 
general position of this group also has a multiplicity of 8, 

U, V, W; 

174 V, w; 

The list of the 56 vectors is 

	

+ 2x, 	+ 2y, 	+ 2z 	] 	8 vectors 

	

, 
1 	A + 2y, 	+ 2z 

	

2 	 ] 	8 vectors 

	

+ 2x, 	1 
25 	1-  + 2z 	] 	8 vectors 

	

A ± 2x, 	+ 2y, 	1 
2 	 ] 	8 vectors 

	

A ± 2x, 	1 
2, 	 0 	 ] 	8 vectors 

	

0, 	A + 2y, 	i 
1 	] 	8 vectors 

	

i 
, 	 0, 	A + 2z 

	

2 	 ] 	8 vectors 

Thus, we should find in one asymmetric region of the cell 0 .._. u, v,w ..._., one 
maximum in a general position, three maxima of double the intensity on each of 
the three mirror planes m perpendicular to a (u = 1), b ( ) = A ) and c (w = A), and 
three maxima of quadruple intensity on the twofold axes [u, A, 01 , [0,  v, ], [A, o, 

[ 
double [ 
double [ 
double [ 

quadruple [ 
quadruple [ 
quadruple [ 
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Fig. 3.44. Electron density of [H2 bg]+ 2 . The contour interval is 1.5 e A - 3. The 
hydrogen atoms are not visible 

w]. The Patterson function of [H2bg] [SO 4]. H20 contains all these maxima. 
From this the coordinates of S are deduced: x = 0.064; y =0.236; z = 0.134. 
Several cycles of structure factor calculations followed by the summations of the 
Fourier series reveal all the other atomic sites. The agreement between the 
I Fobserved I 2 and  the  Fcalculated 2  „ 	I is then optimized by refining the positions and the 
displacement factors  U 	to equation (3.33) using least squares 
methods. For [H2bg] [SO4]. H20, the average difference between the 1547 
measured structure amplitudes and those calculated from the final coordinates is 

I II- 	I Fobserved I 	Tcalculated I } I  R = 	 0.046 
Fobserved  I 

Figure 3.44 shows the electron density in the plane of the molecule. By counting 
the number of contour lines for each atom, it is easy to distinguish C from N. The 
electron density at the center of N is 14.5 e  A3  and at the center of C 12.5 e A - 3. 

The electron density of H is too small to be visible in this figure, but these atoms 
can, in fact, be seen by choosing a finer contour interval. 

The heavy atom method may be used to determine structures with more than 
100 independent atoms. However, it cannot be used to determine structures 
composed of similar atoms, as is the case for many organic molecules and for 
many alloys. In order to determine structures of this type, algebraic (direct) 

methods are available, however, they are beyond the scope of this book. Readers 
interested in the area of structure determination are referred to the numerous 
specialized books. 



CHAPTER 4 

Tensor Properties of Crystals 

4.1 ANISOTROPY AND SYMMETRY 

Crystalline matter is anisotropic (Section 1.1). Hence, a number of its properties 
are dependent on the direction of observation. Thus, electrical conductivity may 
depend on the orientation of the electrical potential applied to the crystal; 
Young's modulus which describes the linear strain of a material resulting from 
a linear stress is equally a function of direction. In contrast, no property of an 
isotropic material has directional dependence. Anisotropy is also the source of 
characteristic properties that are lacking in isotropic materials. As examples, we 
may consider piezoelectricity (coupling between mechanical force and electric 
polarization) and birefringence. With the longitudinal effects, additional trans-
verse effects may occur. In a crystal, an electric current does not necessarily flow 
parallel to the applied electric field. In general, a crystal under a longitudinal 
stress will undergo not only a longitudinal dimension change but also shear. 

The description of anisotropic crystal properties is based on the concept of 
symmetry. The macroscopic symmetry of a crystal is described by one of the 32 
crystallographic point groups (crystal classes, Sections 2.5.4 and 2.5.5). We 
remember that the symmetry elements generating these groups are the rotation 
axes x and the rotoinversion axes k which link the directions which are equivalent 
with respect to all the properties. Thus the strains of a tetragonal crystal subjected 
to longitudinal stress parallel to [uvw], or [i'uw], or  [ùw],  or [aiw] must be 
equivalent. Indeed, the symmetry of a crystal is determined by studying the 
symmetry of its properties. The external shape, for example, expresses the 
anisotropy of the rate of crystal growth; the phenomenon of diffraction also 
provides evidence for equivalent directions (Laue method, Section 3.5.1); 
measurements of conductivity, elasticity or piezoelectricity can all contribute 
to the determination of the symmetry of a crystal. Isotropy, i.e. the equivalence 
of all directions in space, implies at least the pure rotation group cc co 
(Section 2.5.6). 

A crystal property may, however, have intrinsic symmetry. Thus, according to 
Friedel's law of diffraction (Section 3.7.3), the intensities hkl and TikTare approxi-
mately equal, even for a non-centrosymmetric crystal. The intrinsic symmetry of 
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diffraction is thus (approximately) I. The observation of a single property is 
generally not sufficient to determine the symmetry. The real symmetry of a crystal 
may be a sub-group of that deduced from the observations. 

The origin of the anisotropic macroscopic properties of a crystal is its ordered 
microscopic structure, i.e. the crystal lattice which is demonstrated by the 
diffraction of X-rays. This order which gives rise to these very special effects has 
been characterized by W. Voigt (Lehrbuch der Kristallphysik, 1910) in the 
following manner: 

Imagine several hundred excellent violinists all playing the same piece with 
perfectly tuned instruments in a large room. However, they start to play the 
piece from di fferent places, each playing for himself with no consideration for 
the other violinists. The effect would be hardly delightful; it would be a pitiful 
mixture of sounds, characteristic, not of the piece being performed, but only of 
the average of all the notes played. This is the music of molecules in gases and 
liquids. These are perhaps very talented molecules with a marvelous architec-
ture, but each one disturbs the others in their activity. The crystal corresponds 
to the same orchestra directed by a capable conductor. The piece performed is 
now shown to advantage, the melody and the rhythm are now reinforced and not 
destroyed by the large number of musicians. This image shows us that crystals 
possess properties that are lacking in other bodies or which are expressed in 
drab and monotonous ways in gases and liquids. The music of the laws of 
physics manifests itself in the physics of crystals by the most rich and beautiful 
chords. 

The applications of crystallography in modern technology are many. The 
development of the technology of high frequencies, semiconductors and lasers are 
based on crystal properties. In this chapter we will only develop a few fundamen-
tal ideas. Non-tensor properties (crystal growth, hardness, cleavage, phase 
transitions) will not be discussed. 

4.2 TENSORS 

4.2.1 CAUSE AND EFFECT 

In order to avoid the mathematical difficulties associated with the metric 
(Section 1.2), in crystal physics we use only unitary coordinate systems: three 
mutually perpendicular axes e l , e2 , e 3  of length Ile i ll =-- 1. In this coordinate 
system, a vector A is represented by a 3 x 1 matrix (a column vector); the 
transposed representation A T  is a line vector. 

A physical property is the relation between two measurable quantities which, 
in themselves, represent no property of the material in question. The density is the 
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mass divided by the volume; the electrical conductivity is the current density 
divided by the electric field strength. In the second example, the conductivity 
appears as the relation between two vectors which is represented only by a scalar 
(number) for the case where the two vectors are parallel. 

Let us represent the electric current density by the vector J (J 1 , J2, J3) and 
the electric field by E  (E 1 ,  E2, E3). The general relation between the two vectors 
is represented by the functions: 

Jnt = Jni (E i ,E2 ,E 3 );  m1  to 3} 
Jm (000) = 0 
	 (4.1) 

We develope nt  into a Taylor series about the point (0, 0, 0): 

3  Of 	1 3 3  02J 
E 2 , E 3) , En En  + — EE 	En Ep  

n  aEn 	2 1  
, 

n p aka Ep 
3 	 3 3 

Jm (E) = E mn En  EE 6r;mp En Ep 	 (4.2) 
n p 

We call amn  and cfmnp  tensors. The number of indices is the rank of the tensor. 

• rank 0: 1 coefficient, scalar (density, temperature); 
• rank 1; 3 coefficients, vector (electric field); 
• rank 2; 9 coefficients (linear conductivity); 
• rank 3; 27 coefficients (non-linear conductivity, piezoelectricity); 
• rank 4; 81 coefficients (linear elasticity); 
• etc. 

Hence, the physical properties of materials are represented by tensor equations: 

effect property* cause 
A 
	 (4.3) 

If the cause A is a tensor of rank M and the effect B a tensor of rank N, then the 
linear property a is a tensor of rank M + N: 

3 

Bmnap =-- 
rst.... 
	 (4.4) 

N M 

Non-linear properties are of rank M + N ± 1, M N  + 2, etc. 
It is clear that a consequence of the tensor equation for the conductivity (4.2) is 

that E and J are not necessarily parallel, and that the absolute value 11J11 is 
a function of the direction of E. The property is thus anisotropic. Isotropy is 
characterized by the equation a u  b iicr. Figure 4.1 shows an example of a tensor 
relationship. 
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displacement 

supplementary force 
due to springs 

Figure 4.1. The displacement of a ball suspended between two springs is not 
generally parallel to the applied force 

4.2.2 INVARIANCE WITH RESPECT TO THE CHOICE OF 
COORDINATE SYSTEM 

A tensor of rank 2 can be represented by a 3 x 3 matrix (three-dimensional space 
91 3). However, this must not be confused with a matrix which describes a change 
in coordinate system. A physical magnitude is invariant with respect to a change 
in coordinates. In particular, the norm of a vector ( 11 E 11 2 , Ilj 1 2 ) and the scalar 
product of two vectors (EA= ETJ =J TE must be independent of the chosen 
coordinate system. 

A change in coordinate system is represented by an orthogonal transformation 
matrix U (unitary coordinate system), 

e'l  ) 

e'2 	— 
( 

e'3  

/u 11  

U21 

/4 3   

U12 

U22 

U32 

U1 3  \/e 1 
U23 

U 33 

e i  
e2 ) = U (e2 ) 5 

e 3 	e 3 
± 1, u  - 1 =__ u  T (UT is the transpose of matrix U, Section 2.2.3). 
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The vectors E and J transform according to 

E' = UE, J' = UJ, E' TJ' = E T U TUJ = ETJ, 
3 	 3 

gn = E unr„En ; J;„=-- E uJ„. 	 (4.5) 
n 	 n 

The conductivity links equally J and E, and J' and E': 

J = GE, J' = 

The invariance of the product J - E = J'- E' shows that E T0E must be invariant. By 
using equation (4.5) we can write 

U - 1 J' = aU - E', thus J' = UaU TE', 

(4.6) 

3 3 

Urn,' 	 U mp Unq apq . 

P 9 

For tensors of higher rank (which can no longer be described by matrices), we 
proceed in an analogous manner. Thus, when expressing equation (4.4) in two 
different coordinate systems, 

B(rank N)= a(rank M + N) A(rank M), 

and 

B'(rank N)= a'(rank M + N) A'(rank M), 

and, by knowing the transformations of the tensors of rank M and N, we can 
derive the transformation of the tensor of rank M + N. For a tensor of rank T, we 
obtain: 

3 

mnop... 	 " ' CY  rstu... - Umr Uns Uot Upu 
	 (4.7) 

rstu... 

-C 
	

-C factors 	t 

The idea of a tensor may be characterized by using equation (4.7). A tensor is 
defined by its transformation properties. In other words, a tensor represents an 
entity whose description is independent of the choice of coordinate system. 

Let x = (x 1 , x 2 , x 3) be a vector of coordinates that transform like equation (4.5). 
Thus the products of T coordinates transform according to equation (4.7): 

3 	 33  

	

X'm  =-- E ump x p ; hence x'„,x',., — E E u,unqxpxq , (t  = 2) 	(4.8) 
P 	 P 9 

3 

	

X;n .Vri Xo'  --= E umpunqu,xpxq xr . (t = 3) 	(4.9) 
pqr 
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The products x„,x„ have the properties of a tensor of rank 2, the products xm x„x„ 
those of a tensor of rank 3, etc. However, here we are concerned with tensors 
which are totally symmetric with respect to the indices. Because x„,x n  = xnx,„ the 
term (12) is equal to the term (21); for the case  of t  =-- 3, the terms (123), (231), (312), 
(213), (132), (321) are all the same. Taking this constraint into account, the 
products of the coordinates allow us to rapidly obtain the transformation of 
a tensor. 

EXAMPLE 	(x'1 , x'2 , x'3) = (x l , x2 , — x 3 ) 

x 2  =x =-- Xi 	(1= 1, 2, 3) 
x'1 x'2  = x 1 x2  
xt1 x'3  = — x 1 x3  
Xt2X'3  =-- — X2X 3  

Hence, an inversion of the coordinate e 3  into — e 3  transforms the tensor a into 

a 11 a12 — a13 

a' = an 0- 22 - a23 	• 

-a31  - 0- 32 a33 

If the transformation matrix U permutes the coordinates x i, it is generally 
necessary to apply relation (4.7) which is easy to program for numerical calcula-
tions by computer. 

4.2.3 NEUMANN PRINCIPLE 

We stated above that the physical properties of a crystal correspond to its 
symmetry. In fact, a symmetry operation represents an invariance with respect to 
all the properties of a crystal. The symmetry of a property (e.g. the conductivity) 
can, however, be higher than that of the crystal. This is the origin of the Neumann 
principle: 

The symmetry group of any property is a super-group, either trivial or 
non-trivial, of the point group of the crystal. 

It follows that the symmetry of a crystal is a sub-group common to all the 
symmetry groups of its properties. 

As an example, let us describe the case of the tensor, ainn , of rank 2: 

• Center of symmetry Ï. A center of symmetry transforms the vector x into 
x' — — x , ( — x l , — x2, - x 3). The products of two coordinates are thus invari-
ant, xx„' = xmx„, and the transformation i does not change the representation 
of the tensor: cy' — cy„,„. Thus a tensor of rank 2 has the intrinsic symmetry 
1;  the corresponding property is centrosymmetric, even if the crystal is not. If 



/all C7 12 

Cr  = a21 a22 
\ 0 	0 

\ 	groups 2, m, 2/m 
(monoclinic, unique axis e 3) 

0 
0 

(7  3 3 / 

(4.10) 
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the direction of the electric field is reversed, so is the direction of the current 
flow. This is not so for non-linear conductivity. 

• Reflection m perpendicular to e 3 . The vector x transforms into x' = 
(x 1 , x 2, — x 3). The transformation of cr„,„ was described above (Section 4.2.2): 

— o- „,„, for m 0 n; m or n = 3 
arm. =-- 	

0-mn otherwise 

If the crystal has symmetry m (e 3  perpendicular to the mirror plane), the tensor 
must also have this same symmetry, (fn.= o-  mn , and consequently o- 13  = 
o- 23  = o- 31  = o- 32  = 0. From the tensor's own symmetry of I, it follows that this 
condition is equally valid for the groups 2 and 2/m: 

• The three orthorhombic groups 222, nnnn2 and nnmm have twofold axes or 
mirror planes in the three directions e l , e 2  and e 3 : 

0 a22 

0 
groups 222, mm2, mnnm 	

(4.11) 
(orthorhombic) 

0  

	

a (

a 11 	0 

	

0 	0 a 33 

— 

• Consider the presence of a fourfold axis parallel to e 3 . The vector x transforms 
into x' = ( — x2, x l , x 3). Equation (4.6) gives: 

(722  — a21 -21 — a23 

	

a'  =( — 0-12 	(711 	0- 13  , and a'  =a according to Neumann. 

	

— (732 	a31 	0- 33 

We obtain the same result for a threefold, fourfold or sixfold axis. For the Laue 
classes (Section 2.5.7) j, 4/m, 6/m, we thus obtain: 

/  a11  (712 0 groups 3, 3 

a= —a12  a 11 0 4, 4, 4/nn (4.12) 
\ 	0 0 a33 6, 6, 6/m 

0 	0 a33 

• A threefold axis down [111] = e l  + e 2  ± e 3  transforms x into x' = (x 2 , x 3 , x 1 ) 
from which we derive the conditions an I6 = 22 = a33; (7 12 = a23 = (7 31; 

621 =-- (7 32 = a13. For the cubic group 23, these conditions are added to those 

• For the classes 4/mmm, jnn and 6/m mm, equation (4.12) combined with the 
mirror plane perpendicular to e l  gives: 

m 
0 au 0\ 

 
0 

jm, 4/m m m, 6/m nn 
Laue classes 

(4.13) 
a 11 	0 



obtained for mmnn (4.11). The tensor of rank 2 is thus isotropic for the group 
23 and equally so for all of the other cubic groups: 

a 0  O\  
0 a 0 a = 
0 	

(4.14) 
0 a 

 
cubic groups, isotropic with 

respect to a tensor of rank 2 
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For a symmetric tensor of rank 2, o- „in  = unm . We can distinguish five cases: 

triclinic 	 6 terms; 	uniaxial 3, 4, 6 	2 terms; 
monoclinic 	- . 	4 terms; 	cubic 	 1 term, isotropic; 
orthorhombic - . 	3 terms. 

4.2.4 POLAR VECTORS AND AXIAL VECTORS 

Vectors which transform according to equation (4.5) are called polar. The vector 
product of two polar vectors p and q, r = p x q, is equally considered as a vector. 
The transformation properties of r, however, differ from those of p and q. r is 
invariant with respect to a mirror plane perpendicular to the vector and inverted 
by a mirror plane parallel to the vector. The symmetry of p and q is co m, that of 
r is oo/nn. r is an axial vector. As an example, we cite the magnetic field H. If the 
components of p and q are p i  and qi  respectively, the components of r are: 

r (r 1,r2,r 3) UP2q3 P3q2),(P3qi P1q3),(P1q2—  P20]. 	(4.15) 

Because it concerns products of coordinates, equation (4.15) transforms like 
a tensor of rank 2 ((4.6) and (4.8)). Indeed , this is an antisymmetric tensor 

/0 
	

r 3  —r2  
p x q 	— r3 	13 	r1 ; Pnqm- 

	(4.16) 

	

r2  - r1 	0 

The transformation of r r' by the matrix U is easily obtained by the use of either 
equation (4.15), or (4.16) and (4.6), 

= (u22u33 u 23u 32)r 1  + (u23u 31  — u21 u 33)r2  + (u21 u 32  u22u 31 )r 3  (4.17) 

and the analogous expressions for r'2  and r'3 . The sub-determinants 
u,npu n, — ti mq unp  are proportional to the coefficients y of the inverse matrix U 
for example: 

(14 23 U31  — U2111133) =1U11)21. 

For an orthogonal matrix, U = + 1 u21 u 12 , and equation (4.17) becomes 

3 

r' = + Ur, r; n = ±E Li nn", 

+ for a rotation 
— for a rotoinversion 

(4.18) 
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A tensor which connects two axial vectors transforms as one which connects 
two polar vectors. Thus, the magnetic susceptibility which connects the magnetic 
field with the magnetization is a polar tensor of rank 2. 

In contrast, the electromagnetic susceptibility, i.e. the magnetization of a crys-
tal obtained by the application of an electric field, is described by an axial tensor 
of rank 2 (also called a pseudo-tensor), which transforms as: 

3 3 

Ofmn  =-- ± E E ump ung o-pg , + for rotation, — for rotoinversion. 	(4.19) 
P q 

An axial tensor of rank 2 vanishes in the presence of a center of symmetry T. For 
a mirror plane M perpendicular to e 3 , only o- 13 , 0- 23 , 0- 3 1, a 3 2 survive, whereas, for 
a twofold axis, we obtain equation (4.10). In addition, we note that the pseudo-
scalar (axial tensor of rank 0) also exists, for example, the rotation power of an 
optically active solution. 

4.2.5 TENSORS OF RANK 2: REFERENCE SURFACE 

A general tensor of rank 2 may be considered to be the sum of a symmetric tensor 
and an antisymmetric tensor: 

a = a(s) + a(a) 

if OA = -1(a ii +  a1);  u(a) _  — -ika ii — a 1) 
u(s)ii  =-- a(s)ii, 	a(a) 1  =-- — u(a)ii  

(4.20) 

The antisymmetric tensor describes a pure transverse part Ba  of the effect 
B: Ba  = a(a)A, Ba . A = ATcr(a) TA = 0 for any vector A. The vector Ba  is also 
perpendicular to the axis of cr(a), i.e. the direction of the axial vector 
[o-(a) 23 , cr(a) 31 , cr(a)12]. This vector is the real eigenvector of a(a) with an eigen-
value of zero. The vector Ba  must not be confused with the transverse part BT 
described below. 

It turns out that Ba  is difficult to measure experimentally. However, the 
majority of the tensors of rank 2 of physical interest are symmetric with a(a) = 0. 
We will derive this characteristic for equilibrium properties (Sections 4.4.1, 4.4.2 
and 4.4.6). 

The tensor relation B = GA implies that B and A are not necessarily parallel, 
even if a is symmetric. The longitudinal effect is the projection of B onto A, 
B L  ,-- WA/ 11 AM. The longitudinal property is thus o- L  — 13' A/ 11 A11 2  as BL  = o-LA. 
The transverse effect is perpendicular to A: BI-' A = 0;  B = BL  ± BT  =-- ULA ±  B. If 
the vector A is represented by its direction consines A =-- (A1, A2, A3) = 



CI  1 1 X21 ± a  2 2X 22 ± CI  3 3 X23 ± 2(1 1 2X 1 X2 + 201 3X 1X 3 ± 172 3X 2X 3 1 
(4.22) 

reference ellipsoid 
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II A II (4, /2 ,1 3); + + 1 = 1, we obtain: 

3 

B m 	A II Ear,„1„, 

3 	 33 

B-A = EA,Bm  =-- A VEEamnimin ,  

33 

EE umnimIn. 
mn  

(4.21) 

For the transverse tensor, we find that (T)mn = o-„,„ 6 nin CrL , BT  CrTA. Note that 
this is not the antisymmetric tensor described above. 

We can equally define a longitudinal effect for each direction 1 = (4,12 ,13) as 
well as transverse effects (Section 4.4.2) for tensors of rank superior to 2. 

In certain directions, the transverse effect BT is absent. For tensors of rank 2, it 
is sufficient to calculate the eigenvectors of the matrix a. Effectively, BT  O if A o  
satisfies •  

B= aA0  AA0 , (a — ),E)A 0  = 0, 

E being the unit matrix, E mn  6 nm . If a is symmetric, the three vectors A o  and 
eigenvalues A are real. 

The tensor a may be represented by a second-order surface 

3 	3 

EE cfm„x„,xn  = 1. 
m = 1 n = 1 

This expression represents only the symmetric part because, for in n we obtain 
the term (o- mn  + anm)xmx„. Let us suppose that the eigenvalues of a are all positive. 
The surface is then an ellipsoid: 

Let r be the vector directed from the origin to the point P(x i  , x2 , x 3) on the 
ellipsoid. 

(x i , x 2 , x 3) — r(1 1 ,1 2 ,1 3), 11 = the direction cosine of r, and r 	r 

3 3 	 33 

E 0- mn xm x„ r2 EE6rmn im in  r2 O L  = 1, 
m n 	 mn  

r 	
1 
	 (Fig. 4.2). 	 (4.23) 
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B 	ILAN 
L L 

r = 1 Isiff 

Fig. 4.2. The distance from the origin 0 to the point P(xi , x2 , x3 ) in the direction of 

the vector A (e.g. the electric field) is equal to r =  NFL , aL  being the longitudinal 
property (e.g. the longitudinal conductivity parallel to the electric field) 

The plane tangent to the ellipsoid at the point P(x i  , x2 , x 3 ) is 
3 { 3 

Iamn in }x'm  = pcc'i  p2x'2  ±p 3x'3  = p Tr' = 1 
m n 

(4.24) 
3 

p ar,  Pm =rEamn ln; tangent plane 

Clearly, the plane p Tr' = r Tar = 1 and the ellipsoid rTar = EE0-m„x m n,, 1 have 
only one point in common: rTcr(r r') 0 implies that r = r' if the eigenvalues of 
a are all non-zero. The vector p is normal to the tangent plane. Its direction is the 
same as that of B (Fig. 4.3), 

B = crA = (err) 11 A 11 	11 A p. 	 (4.25) 

By choosing the eigenvectors of a to be the coordinate system, the tensor is 
reduced to a diagonal matrix whose elements are the eigenvalues all , am . The 
reference ellipsoid becomes a 1 x 2i  + a11x 22 + a111x23 1 and its semi-axes are 1/ 
1/.\/0-1/, 1/.\/o- m. If one or two of the eigenvalues are negative, the reference 
surface is a hyperboloid. If am  <O,  cri  and all  > 0, two surfaces have to be 
considered: 

cr1x 2i eynx22  _ 	Pc 23  -= 1, positive longitudinal effect; 

+ auxi — an1 14 = 1, negative longitudinal effect. 

Figure 4.4 shows an analogous construction to that of Fig. 4.3. 
The point symmetry of an ellipsoid or a hyperboloid is mm m. The characteris-

tic symmetry of a symmetric tensor of rank 2 is thus nnnnm. By using the Neumann 
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Fig. 4.3. The normal to the tangent plane at the point P of Fig. 4.2 indicates the 
direction of B (e.g. A = electric field, B = current) 

Fig. 4.4. Hyperboloids in the plane x2  = O. A, B: positive longitudinal effect; A', B': 
negative longitudinal effect 

principle (Section 4.2.3) we can deduce the symmetry of the ellipsoids for the 
different crystal systems: 

• triclinic: the six terms of the tensor correspond to three eigenvalues and to three 
orientation angles for the ellipsoid; different properties are represented by 
ellipsoids of different orientations: 
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• monoclinic: one eigenvector is necessarily parallel to the twofold axis or 
normal to the mirror plane; the four terms of the tensor (4.10) correspond to 
three eigenvalues and a single orientation angle; 

• orthorhombic: the orientation of the ellipsoid is determined by the symmetry; 
the three terms of the tensor (4.11) correspond to the three eigenvalues; 

• trigonal, tetragonal, hexagonal: the tensor is represented by an ellipsoid of 
revolution whose principal axis is parallel to the unique axis; the two terms of 
the tensor (4.13) correspond to the two eigenvalues parallel and perpendicular 
to the unique axis; 

• cubic: the tensor (4.14) is represented by a sphere; all the eigenvalues are 
identical; the crystal is isotropic with respect to a tensor of rank 2. 

An inverse property is represented by the inverse matrix a -1 : B =-- crA hence 
A =a -1 B. If a is the conductivity, 6 -1  is the resistance. The tensor a -1  is 
represented by the ellipsoid whose principal axes are jo71, 'all, \/o- 111 . For 
inverse tensors of higher order, no simple analogy with matrices exists. 

11  The norm of B is given by 11B 2 , B Tis—  , ATacrA (a symmetric). For the inverse 
we obtain 11A11 2  = BT[ a] - 'B. If B = 11B11 (b 1 ,b 2 ,b 3), bi  being the direction 
cosines of B, and [oa]  1  ----, S: 

3 3 
11B VIES,„„i bmb n , and for 11A11= 1: 

m n 

3 3 	)- 1/2 

103 11 =-- (1 ESmn bmbn  
m n 

(4.26) 

 

Fig. 4.5. Ellipsoid representing the value of II B II for II A II — 1; sphere of radius 1; 
reference ellipsoid (e.g. A — electric field, B — current) 
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The ellipsoid EES„,„x,nx„ , 1 (Fig. 4.5) represents the value of II BI  for II A II  

Referred to the eigenvectors of a, its equation becomes: 
2 	2 	2 

X 1 _L  X 2 _L  X 3 	1  
2m 	' 2 == • 

47 1 	c,- 11 CI III 

(4.27) 

COMMENTS 
• It is possible to construct a surface whose radius parallel to A represents the 

longitudinal property. However, such a surface would not be second order. The 
surface 

33 
2 	2 	2 r -  3  E E 0-,n„x,nx„ , 1 ;  r =-- .\/x 1 + x2 + x3  

m n 

has the property that the distance from the origin to the surface in the direction 
of the vector A is equal to GL . 

• In order to determine the tensor a-, the longitudinal effects are measured in 
different directions (6 for a tensor of rank 2). A possible antisymmetric 
component would be neglected because it would create only transverse effects. 

4.3 STRESSES AND STRAINS 

4.3.1 MECHANICAL STRESS TENSOR 

Let us consider the forces acting on a volume element of a solid body in the form 
of a parallelepiped (Fig. 4.6). 

A stress is a force per unit area. It acts on two opposite parallel faces (couple). In 
particular, o- ,,n„ is the stress parallel to em  acting on the faces perpendicular to e n . 
The stresses a m„ normal to the faces are positive in the case of an extension of the 
solid. 

The component of the resulting torque in the direction e l  is given by: 

M 1  = A 2e2  x (c)- 32A 1 A 3)e 3  + A 3 e 3  x (o- 23 A 1 A 2)e2  = 5V(o- 32  — c)- 23 )e 1 . (4.28) 

The torque resulting from all the 6„,„ is thus: 

M=  — (5V[(a- 23  — 6 32)e 1  + (a- 31  — 6 1 .-.)e.-. . z + (6 12 — 0- 2.1)e31 	(4.29) 

This is an axial vector. If the volume element is in equilibrium, M = 0. It thus 
follows that 

CI mn =-- a  nm• 	 (4.30) 

The stress tensor is symmetric. For inhomogeneous stresses where o- mn  is a func-
tion of position, consult J. F. Nye, Physical Properties of Crystals. 

Let us calculate the forces acting on a plane of orientation l= (4, 12, /3); III =-- 1 . 
We allow that the tetrahedron in Fig. 4.7 is in equilibrium. The resultant of all of 
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e 3  

3 

Cr32 

(5 22 
- 

3 

1 
1 

............ 	 ............... 
.... ....... 

...... .......... 

A2 	• 

CF12 e 2 

A 1  

.... .... .... ...
.. 

Fig. 4.6. Stresses acting on a parallelepiped in static equilibrium; dimensions 
A l , A2 , A3; volume SV 

the forces acting on its faces is hence zero. If we represent the area of the triangle 
OPiPi  by S, for the component f 1  of the force f, we obtain: 

f 1-4711S23 + 0- 12S13 + 0- 13S12 

The stress p is 

110  f/S123, S 123  being the area of the triangle P 1 P 2P3 . 

As the ratio of the areas is Sii/S 123  lk  (i j k 0, it results that 

3 

En- n3.1.; P 	TI. 	 (4.31) 

The longitudinal component normal to the plane is equal to 

33  

PL -EE amnimin 
	 (4.32) 

mn  
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e 3  

33 

Fig. 4.7. Stresses on the faces of a tetrahedron 

The reference ellipsoid EE0-,,„x„,x. = 1 represents 

• the stress parallel to 1 (distance origin-surface = 1/\/pL); 
• the direction of the total stress p acting on the plane (normal to the tangent 

plane). 

A uniaxial stress a parallel to the direction 1= (4,12 , / 3 ) is given by the tensor 
unin 

1 1 1 2 	1 1 1 3 
12 	1 2 / 3 	, 
'2 

1 2 1 3 	123 

uniaxial stress. 	 (4.33) 

Indeed, equation (4.31) becomes pm = o- En lm ln2  aim . Any stress can be decom-
posed into three mutually perpendicular uniaxial stresses (the three eigenvectors 
and the three eigenvalues of 6). Hydrostatic pressure, for example, is given by 

1 
— a-  (0 

0 

0 
1 
0 

0 
0 ). 
1 

4.3.2 STRAIN TENSOR 

The homogeneous longitudinal tensile strain of a solid, of a metal bar, for 
example (Fig. 4.8), is defined as the expansion per unit length of the undeformed 
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Fig. 4.8. Tensile strain and shear strain 

body: 
L' —L  

e = 	 
L L 

(4.34) 

By analogy, the homogeneous shear strain of a parallelepiped (Fig. 4.8) is the ratio 
of the displacement caused by the strain to the dimension of the solid perpendicu-
lar to the displacement: 

y —
H 

angle of shear 
	

(4.35) 

A rotation of the deformed body allows us to use the angle E = y/2 as an 
alternative description. 

In general, we measure the homogeneous strain of a solid by the relative 
displacement of two points P 1  and P2  separated by the vector r, keeping the 
coordinate system invariant (Fig. 4.9). The strain displaces the point P l (xi) to the 
point Pii (x i  + 0 and the point P2(x 1  + ri) to 1Y2(x i + r + ui). The vector r + u 
gives the relative position of the two points of the strained solid, By analogy with 
equation (4.34) and (4.35), the strain tensor e expresses the displacement u per unit 



0 um  
u ---, er; e m  --= 

n 	ern ' 
(4.36) 
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e 3  

P ' 
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e 1 	
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e 2 

Fig. 4.9. Description of the homogeneous strain of a solid 

length of r. The components of u (r) may be expanded as a Taylor series, 

3 34 	1 	0 2 tim 

	

U m  =E
n Orn 

rn  + 
T

EE 
Or Or 
	rnr

' 
+ ..-. 

np n p 

On retaining only the linear terms, we obtain the strain tensor, 

The emn  are dimensionless numbers. 
In the case of inhomogeneous strain, we consider the behavior of two points P 1  

and P2 which are very close together; u and e are functions of the position 
(x 1 , x 2 ,x 3). 

Following equation (4.20), we decompose e into symmetric and antisymmetric 
tensors: 

emn I(emn + enm); Pmn =Ye-km, —  enm)  

The antisymmetric part p expresses a rotation of the solid around the eigenvector 
yo  of p having the eigenvalue 0, pv 0  --= 0, 

, 

V O -= (P235P31 , Y12) T := l
ig,

23 — e32. ,e31 — ei3, ei2 —eni
IT 

 • (4.38) 

The antisymmetric part of the vector u, ua  --= pr is perpendicular to r and to vo : 
rTua  = r  Tpr  =0,  vua  = voTpr  =0. Consequently ua  does not contribute to the 
strain of the solid. The actual strain, obtained after subtraction of the rigid body 
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e 12 E 12 

e l  

Fig. 4.10. Illustration of the tensors e, E and p 

motion, is expressed by the symmetric tensor c, 

U  Er. 	 (4.39) 

In the case of inhomogeneous strain, local rotations may exist, but they do not 
contribute to the strain energy. Figure 4.10 illustrates the significance of the 
tensors e, E and p. The terms Eii represent the longitudinal tensile effects 
(expansions and contractions), whereas the terms e ii  (i OA represent shear. 

The reference ellipsoid Dox ixi  = 1 represents: 

• the tensile strain parallel to I (distance of origin to surface 1/.NAL); 
• the direction of the relative displacement u of two points separated by the 

vector I (normal to the tangent plane). 

EXAMPLE. Under the effect of a homogeneous strain c, a cube of linear 
dimension D, characterized by the edges a i  — De i  (i =  1, 2, 3), is transformed into 
a parallelepiped. Following equation (4.39), the displacement u 1  along the edge a l  
is given by 

	

Ul :=13 {e1 lel 	e 1 2e2 e13e3} D 1E11 , E 12 ,  

After deformation, the equation of the edge becomes 

a'1 = a l  +u 1  =D{(1 + 8 11), 8 12, 8 13}" 
In an analogous manner, for the other edges, we obtain 

= D { 8 12,( 1  + e22), e23} ,  

	

a'3 	D{8 13 ,8 23 ,(1 + 8 33 ) } . 
By retaining only the linear terms, the strained parallelepiped is characterized by: 

ai 	DU + ell); 	a'21I 	+ 	 D(1 + 8 33); E22}; 	a'3 1 
2E23 	 2 13 

 COS 
1 + Ell + 33  

COS Œ1 	1 ' 8 22 + 
	 33 ; 

  

2e 12  cos Œ 3 	  
1  + e11 +C22  

0e2 —2 — L'e13;  
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The volume of the strained cube is approximately: 

V' = D 3(1 +E +E + • 11 	E • 22 • 33 )  == 	+ Ell + E22 	E33),  

V' — 
+ e22 e 33. V 

(4,40) 

Equation (4.40) is a good approximation, independent of the shape of the solid. 

4.3.3 VOIGT NOTATION 

For some applications it is useful to write the stress and the strain tensors as 
six-dimensional vectors. The indices are assigned as follows: 

tensor: 11 22 33 23 13 12 
'vector' 1 2 3 4 5 6 

The sress tensor becomes: 

611 612  a13\  l 6 1 66 6 5 

612 

( 

622 623 —> 

665 47  2  6643 —> (al 62  63 

0-4.  6 5  a-6) T. (4.41) 

613 623 633 / \ 6  4:74 

For the strain we will use the engineers' notation, who prefer to use the angles 2eii  

(i 0 j) (Fig. 4.8): 

C11 E 1 2 e 1 3 \ (

E 13 e23 e 33 / 	

e 	1 	1 
i 	-I C  6 -2-e5 

1, 
e12 e22 e2.3 —' 	e6 -12 	2 	-2-'4 

1 	1 
.2e 5 —2 e4 e 3 

(el E 2 e 3 E4 E5 E6) T  —> 	 .(4.42) 
Ek  2eii  (i j, k 9 — i — j) 

COMMENT. The 'vectors' only represent a notation! If there is a change in 
coordinate system, only the rules for the transformation of tensors are applicable. 

4.4 EXAMPLES OF TENSOR PROPERTIES 

In this section we will present a number of equilibrium properties of crystals such 
as the electric polarization, elasticity and piezoelectricity. Transport properties 
will not be covered in this book. 

4.4.1 ELECTRIC POLARIZATION: TENSOR OF RANK 2 

In a vacuum, the electric displacement D is proportional to the electric field E, 

D = E 0E, 	 (4.43) 

e 0  = 8.854188 x 10 - 12  C/Vm, permittivity of a vacuum, 
[D] = Coulomb/m 2 , 
[E] = V °Wm. 
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D  =  11D11 is the charge density induced into a metal plate, or the charge density 
necessary to create the field E =  E in a condenser. 

In an isotropic dielectric, the relation between D and E is: 

D = a0E, 	 (4.44) 

where E ?) 1 is the dielectric constant (relative permittivity) of the material and 
E the electric field in the interior of the material. The electric polarization P is 
defined by: 

D = E o E  + P = Do  + P, 

P eo(e — 1)E 
	

(4.45) 

where x 0 is the electric susceptibility of the material. 
P is the electric dipole moment per unit volume, P =  P being the polariz-

ation charge per unit area normal to the vector P. D 11D11 also expresses the 
charge density of a condenser required to maintain the field E at the interior of the 
dielectric (Fig. 4.11). 

COMMENT. The field E created in the dielectric by a homogeneous field Et, 
generally depends on the shape of the dielectric. The dielectric creates a depolariz-
ation field Ed  such that E = E L, + Ed . Clearly, for the plate represented in Fig. 4.11, 
these values are given by E le, hence Ed  — (e — 1)E xE and P — E0 Ed. 
For a long bar of isotropic material whose axis is parallel to E„ E = Et, and Ed = 0 
because the field is continuous across the vacuum/solid interface. In general, E is 
not homogeneous, even if Et, is. 

Fig. 4.11. Condenser containing an isotropic dielectric material. The value of the 
field E is E= OA and the charge density is a = D= 880 E. In the empty spaces, the 
field is Ev = cr/e0 =  E> E. The field E polarizes the atoms and induces the polariz-
ation P 
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-0' 

Fig. 4.12. Condenser containing an anisotropic dielectric material. The empty 
spaces are very narrow compared to the distance L.  According to D. F. Nye, 
Physical Properties of Crystals 

In an anisotropic dielectric, the relation between D and E is characterized by 
a tensor of rank 2, 

3 

Dm  =Eo lErnnEn , 

(4.46) 
3 

Pm — 80 EZmn E  n ,  Xrnn E mn  —  mn • 

E, D and P are generally not parallel. Figure 4.12 shows the relations which link 
these vectors. 

The electrostatic potential is constant over the surface of the condenser plates. 
Hence, in a vacuum, the field Et, is perpendicular to the plates. The electric 
displacement in a vacuum is D„ = 8 0E,, D„ = a. The crystal/vacuum interface 
obeys the following continuity conditions: 

• the tangential component of the electric field and the normal component of the 
electric displacement are continuous across the interface; 

• the normal component of the electric field and the tangential component of the 
electric displacement may be discontinuous across the interface. 

The tangential component of E„ being zero, E is also perpendicular to the 
plates. The width of the empty spaces is negligible compared to the thickness of 
the crystal, hence E 0/L. The electric displacement may aquire a tangential 
component at the surface, i.e. D is not necessarily parallel to D. The normal 
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component DL  is equal to Dv, 

DL= E0ELII E  j  =  j D t, 
33  

EL  EEE,,,„im i„ according to equation (4.21). 
m n 

The direction cosines l i  define the orientation of the crystal lattice with respect to 
the condenser plates. The longitudinal susceptibility is 

33  
XL = EExmnimin — EL  — 1; /2 + + 	1. 

m 

The field in a vacuum is 

1 
ME v11 	—

E
11D 	EL v 11 == 	11 E 

The capacity C of the condenser per unit area is oleo, 

C = coeLlIE11/0  E0EL/L 

The longitudinal dielectric constant is obtained from the relation: 

C (with anisotropic crystal) 

Thus the transverse effect is not measured. The symmetric tensor for a triclinic 
crystal may be obtained from the measurement of EL  in six different directions. 
Any possible antisymmetric contribution will not be revealed by these measure-
ments (Section 4.2.5). 

A condenser with plates of area F to which a potential (1) has been applied 
contains a total charge of Fa. Its electrostatic energy is 

W=  feld(cF)= FJL  E ci(e 0EL  11 	= FLEA, E  j d j E  j. 

= eL. C (with no dielectric) 

The energy per unit volume is thus 

1 	3 3 
W= —W

l
e gLI1E11 2=-2 EollEVEE emnimin- 

FL 2 ° 

Setting E =  j E  j (l 1 ,12 , / 3), we obtain: 
1 	3 3 	 1 	1 

W —1 E 0  E E EmnEm E,,---=-
2

e
°
ET  EE= –

2
D • E. 

m n 

m n 

(4.47) 

A possible antisymmetric component will not add any contribution to the energy 
because it would induce a polarization, i.e. a charge separation, in a direction 
normal to the field. The transverse polarization implied by the symmetric tensor 
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-1(e„,„ + e„„,) is linked to the anisotropy of the longitudinal effect CL .  In contrast, 
there is no justification for the existence of an antisymmetric tensor component 
and no possible method for its observation. In a more formal way, we apply the 
following reasoning. The energy w depends only on the state of the solid and not 
on its history. Hence, it is a state function. It follows that 

curl grad w(E) — curl D = o; 

a2 w 	0 2 w  

OE„,0E„ 0Enak,' 

= ennr , the tensor is symmetric. (4.48) 

Note that D — grad w(E) is the normal to the plane tangent to the reference 
ellipsoid (equation (4.25), Fig 4.3). 

The tensors compatible with different symmetries have the forms (4.10), (4.11), 
(4.13) and (4.14). The reference ellipsoids are described in Section 4.2.5. The 
eigenvalues of e are all positive. For an alternating electric field, the tensor e is 
a function of the frequency. 

EXAMPLES: quartz Si0 2  (group 32): 	8 11 - C 12 - 4.5; e 33  = 4.6 
rutile TiO 2  (group 4/m  mm): e 11  := C 22 := 89 ;  13 33 - 173  

at a frequenxy of 4 x 10 8  Hz. 

The following properties are characterized by symmetric tensors of rank 2: 
magnetic susceptibility (negative eigenvalues for diamagnetic materials); electri-
cal and thermal conductivities (these tensors are symmetrical according to the 
Onsager principle); thermal expansion. 

4.4.2 ELASTICITY; TENSOR OF RANK 4 

The coefficients of elasticity describe strains caused by stress. The two moduli of 
linear elasticity for isotropic solids are well known: 

• longitudinal effect (Fig. 4.8), stress a, strain e = u/L: 

1 
e = — a, E = Young's modulus 

E 
(Hooke's law) 

(4.49) 

• shear (Fig. 4.8 and equation (4.13)), transverse stress "C, y = 
H 

y = —
1 

t ,  G ---= shear modulus. 
G 

(4.50) 
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A bar which is subjected to a longitudinal stress (4.49) parallel to its axis 
undergoes a contraction e' perpendicular to its expansion (Fig. 4.8): 

B' — B 
= 	= 	= - 

 

where m = Poisson's number. 
(4.51) 

The volume of the bar after dilation LB' 2  cannot be less than the volume LB 2  
before the deformation, from which we obtain that 

0 	 (4.52) 

If a cube of edge A is subjected to a transverse stress -C (Fig. 4.13, 1" = (712 u21 
in the terminology of Section 4.3.1), by using the shear y defined in equation (4.50), 
we can calculate the diagonals of the deformed cube: 

long diagonal: 2A cos (-
4 

—
2
) 

• 	

A( 1 + 1) 
2 

TE 	y 

short diagonal: 2A cos + = 2A( 1 — 7-) 
2 

By changing the coordinate system e 1 e2  into e'l e'2  (Fig. 4.13), according to 
equation (4.6), the stress tensor transforms as 

010  
100  
000 

100 
 0  —1  0 ) 

000 

The transverse stress  t is thus equivalent to a dilation stress parallel to e plus 
a compression stress along e'2 ; in Fig. 4.13, 1" =  r. According to equations (4.49) 
and (4.51), the two diagonals change as follows: 

long diagonal: A 2(1 + e)(1 + me) • A.A1 + (1 + m)e] 	1 
short diagonal: A 2(1 — E) (1 - ME) 

• 

A 2[1 — (1 + m)e] 

 From which we obtain the relation between G, E and m: 

M = - 1, 
2G 

2G<E<3G' —

E

2

- 3 

(4.53) 

(4.54) 

The linear elasticity of an anistropic solid is a tensor property of rank 4. It 
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Fig. 4.13. A change in coordinate system (e 1 e2 ) --(eri e21 ) transforms the transverse 
stresses "C — 	 into longitudinal stresses = 12 — 621 	 a a; 1 = 	a2'2 

characterizes the relation between the stresses a and the deformations e, both of 
which are tensors of rank 2: 

33  

cm.  = E  E s 0- • mnpq pq ,  

mn 

P 
3 3 

=EECinnpq e pg. 

P 

(4.55) 

with 

S mnpq : tensor of the elastic constants (compliance); 

C mnpq : tensor of the elastic moduli (stiffness). 

The tensors a and c are symmetric, emn Enm , (T rrtn 	nm, hence 

Smnpq  = Snmpq  = S mnqp  = Snmqp . 	 (4.56) 

These conditions allow us to use the Voigt notation, (equations (4.41) and 
(4.42)): 

6 	 6 

e i  -= E s ij o- _; 0-, = E c ii 8i . (4.57) 

Remembering that ei  2emn  for mOn from equation (4.42), and that 
Smnpq rfpq  Smnqp (T qp  = 2Smnpq i7pq  according to equation (4.56), the coefficients of 
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equation (4.57) become: 

{S
mnpq  (i and j are 1,2,3) 

= 2S pq  (i or j are 4,5,6) ; 
4S, pq  Ci and j are 4,5,6) 

Cmnpq  C. 

(4.58) 

The S ii  and Cif  form 6 x 6 matrices, C =  S 1  (for more detailed information, 
see Section 4.4.6). In order to derive the transformation properties, however, it is 
necessary to use the four indices. 

By analogy with the tensors of rank 2, C and  Scan be Considered to be the sum 
of a symmetric tensor and an antisymmetric tensor (4.20): 

symmetric: 	(Sii  -E Sii); 1-(Cij  -F Cii); 
antisymmetric: 	— Sii); 	— Cji). 

The longitudinal effect E L  is the expansion of the crystal in the direction of 
a uniaxial stress. Following from equation (4.33), the stress c parallel to 1 is 
represented by a tensor whose elements are o-/,,,/„. The resulting deformation is 

3 3 

C mn  = o-E ESmnpqp lq. 

P 

The longitudinal effect is thus 

33 	 3 

CL = E E E mn im in 	E Smnpq 1jjp lq  = 0-sL . 	 (4.59) 
m n 	 mnpq 

The product /„,/„Iplq  is invariant witirçi--espect to all permutations of the indices. 
The result of this is that Si, only represents the totally symmetric part of S with 
respect to the indices. In particular, any possible antisymmetric component of 
S will only add a pure transverse effect to the transverse effects inherent to the 
symmetric part. 

The surface of rank 4 

3 

E sm„„g x„rxnxpx q  = 1 
mnp, 

represents the part of S that is totally symmetric with respect to the indices. The 
length of a vector from the origin to a point (x 1 , x2 , x 3) = r(11 ,l2 ,13 ) on the surface 
is r = SL-1 / 4 , For the surface 

1 3  
E s„,,xmxnxpx„ = 1 with r2  = x i  + x2 + X 3  

2 	2 	2 

mnpq 

the length of r is equal to SI,. The surface represented by 1/S L  is called the elasticity 
surface because 1/SL  can be compared to an anisotropic Young's modulus. 
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The strain energy of a solid is equal to the scalar product of the applied force 
and the resulting elongation. The energy per unit volume is thus equal to the 
product of a stress G and a corresponding strain E; more precisely, we calculate the 
products of the stresses o-mn  and the strains E which are parallel to 
them, 

	

 W=f

a 3 3 	 ( i 3 333 

EEEnindo-„,„ 	EEEEsmnpq Cfpqdamn• 	(4.60) 

	

0 m n 	 mnp q 

Equation (4.60) is a curvilinear integral. We can arrive at the final stress in 
different ways: for example, we can first apply o-  (o- 22 =  0 33 := 47 12 := 13 := 

0-23 = 0), then o-22  (Cr ii  constant, Cr 33 Of == 12 = 0- 13 = 0- 23 = 0), and so on to o-23 . Any 
other order in the application of the CT mn  leads to the same final state of stress and 
hence results in the same value of w. This argument implies that the matrix S of 
dimension [6 x 6] is symmetric, 

S mnpq  = S pqmn ; S =S 

C mnpq  C pqmn ; C = C fi  

By analogy with the electric polarization (4.47), the antisymmetric part of the 
tensor S does not contribute to the energy because it represents a pure transverse 
effect. There is no energetic reason for this effect to appear and the antisymmetric 
part of S is considered to be zero. The deformation energy becomes 

3 3 3 3 	 1 3 3 

 

1 6  
W —

1
EEEEsmnpqGmnpq — EE E mn CT m  —E E.0-.. 	(4.62) 

2 	 " 2 " mnpq 	 m n 

From equations (4.56) and (4.61), it follows that the terms of S and C are equal for 
the following permutation of indices: 

mnpq = mnqp = nmpq = nmqp = pqmn = qpmn = pqnm = qpnm. 

However, as S mnpq  &rpm , the tensor is not totally symmetric. The elastic 
behavior of a triclinic crystal is thus characterized by 21 elastic constants or 
moduli whose indices are: 

tensor notation 
	 Voigt notation 

(4.61) 

1111 1122 
2222 

1133 
2233 
3333 

1123 
2223 
3323 
2323 

1113 
2213 
3313 
2313 
1313 

1112 
2212 
3312 
2312 
1312 
1212 

11 12 
22 

13 
23 
33 

14 
24 
34 
44 

15 
25 
35 
45 
55 

16 
26 
36 
46 
56 
66 

groups 1, 1 
	

(4.63) 



0 0 0 

0 0 0 

0 0 0 

S44 0 0 
0 S44 0 
0 0 S44 

S  1 1 	S 12 
	

S 12 

S 12 	Sll 
	

S 12 

S 12 	S 12 
	

S 11 

o 	o 	o 
o 	o 	o 
o 	o 	o 
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The elasticity tensor transforms according to equation (4.7), i.e. like the 
product of four coordinates. An inversion center transforms the coordinates 
(x i  , x 2 , x 3 ) into (x'i  , 	x'3 ) = ( — xl , — x 2 , — x 3), hence S'n,„pq  ( — 1)4S„,„pq  
Smug . Thus the tensor is invariant with respect to inversion. 

A tensor of even rank (2, 4,  6,...)  is invariant with respect to a center of 
inversion. A center of symmetryi is an intrinsic symmetry element of the tensor. 

A study of the 11 Laue classes is hence sufficient to characterize tensors of even 
rank. 

A mirror plane perpendicular to e3  transforms (x l , x2 , x 3 ) into ()el  , x'2 , x13 ) 
(x 1 , x 2 , — x 3), hence S'„,npq  ( — 1)iS„,„ pq  where j is the number  of indices with the 
value 3. If the tensor is invariant with respect to the reflection, Simnpq  S m „pq . In the 
Voigt notation, it has the following form: 

11 12 
22 

13 
23 
33 

0 
0 
0 

44 

0 
0 
0 

45 
55 

16 
26 
36 

0 
0 

66 

groups 11m, 112, 112/m (4.64) 

The reader is invited to derive the form of the tensor for the other Laue classes or 
is referred to the literature (e.g. J. F. Nye, Physical Properties of Crystals). The 
cubic classes merit an additional comment: they cannot be distinguished with 
respect to elasticity: 

cubic classes, 3 terms; the matrix C has the same form. 	(4.65) 

We have seen that isotropic bodies have two independent elastic moduli. Thus, 
cubic crystals are not isotropic with respect to their elasticity. For an isotropic 
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body, the condition supplementary to the cubic conditions is 

S44  = 2(5 ii  — S 12); C44 = -1-  (C11 — C12); isotropic 
	

(4.66) 

We thus obtain that: 

el --= S1161 + S12 472 + S12a3 = {al m(a2  +49- 3)}/E, in accordance with equa-
tions (4.49) and (4.51); 

84  =  2(S 	S 12)11-4  = a4/G, in accordance with equation (4.50); 

hence 

	

S 1 1 — 1/E; S12  = — m/E; 2(5 11  — 5 12) — 1/G. 	 (4.67) 

From this, relations (4.53) and (4.54) are easy to deduce. The relations for the 
moduli Cii  are more complex: 

Sii +Si2 —  S 
C11 — tv 	 C 	

12  
12 — 

k" 11 S12)(S11 + 2S 12) ; 	(S 11  —512)(S11 +2S12)' 

1 	1 
C44 — 2(S 11  — S12) 2  (C11 C12) .  (4.68) 

The elastic constants obey certain other supplementary conditions. Thus, the 
deformation energy is positive, 

6 

2w = E Eta i  > 0. 
i = 1 

From this, for a cubic crystal, we deduce that 

Sii(ai + cr .  + a )  + 2S 12(o-  i o-  2  + a- 1(73 + 0-  20-  3) + S44(0-2  + a25 + aZ) > 0; 

by setting a2  — 	o- 2  — a4  — o- 5  — o- 6  —0:  S11  > 0; 

by setting a l  = o-2 , o- 3  --= a4  = o- 5  = o- 6  = 0: S 11  + S12 > 0; 

by setting al  =---- a 2  = a3 , a4  = a5  = t:T6  =  0:S 11  + 2S12  > 0;  

by setting a l  ---- a 2  = a3  =0:  S44  > 0.  

Hence S ii  > 0, S11  > 215' 12 1, S44 > 0. 

In the isotropic case, we obtain: 

E > 0, G > 0, rn < 

The effect of a hydrostatic pressure applied to a crystal is described by 

3 

Cm, = — limo-, hnin  --= E Smnpp . 
P 

(4.69) 
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With the help of equation (4.40), the compressibility of the crystal becomes: 

K = 	= 	 E Es 
vo- 	 p 

— 	—  el 1  — 822 833 
 3 3 

mn,„ 

= (S11  + S2  2 + S33) + 2(Si2 +S13 + S23)- 
	 (4.70) 

3 
For an isotropic solid: K = —

E
(1 — 2m). 

EXAMPLE 

Right handed quartz, Si02 , symmetry 32, el  parallol to 2, e4  parallel to 3. This 
symmetry imposes on the tensor S the following form: 

Sll S12 

S11 

S13 	Sl4 0 	0 

	

S13 — S14 0 	0 

S 33 	0 	0 	0 

	

S44 0 	0 

S44 	2S14 

2(S11 5 12) 

The tensor C has the same form with the difference that C56= C 14, C66 == 
(C11 — C12). The elastic constants (in the absence of an electric field, Section 

4.4.6) are in units of 10- 21 pa -1 == 10-4 kbar -1 :  

S11 = 17.294; 5 3 3 = 12.021; g 
	

2.825; S 13  — 1.615; S1 4  = — 5.756; 
S44 = 26.457. 

The elastic moduli are in units of 10 11  Pa = 10 3  kbar: 

C11  = 0.8674; C33  --= 1,072; C12 =  0.0699; C 13  = 0,1191; C14 — 0.1791; 
C44 = 0.5794. 

A uniaxial stress of 1 kbar = 108  Pa parallel to e l  (twofold axis) produces the 
following deformations in units of  10:  

E l  = 1.73;  E2  — 0.28;  e3 = —0.16;  e4  = 2e23  = 0.58; e 5  .e6  = 0, 

i.e. a lengthening along the twofold axis and an anisotropic shortening accom- 
panied by shear in the plane perpendicular to the twofold axis. The longitudinal 
effect is eL  = 1.73 x 10 -3 . 

4.4.3 ELASTIC WAVES  INA  CRYSTAL 

Figure 4.14 shows a volume element dx 1 dx2dx3  centered at (x 1 ,  x 2 , x 3).  During 
the passage of an elastic wave, a force f acts on this volume element. f may be 



188 
	

CRYSTALLOGRAPHY 

f 

2 

Fig. 4.14. Forces acting on a volume element during the passage of an elastic 
wave 

calculated by means of the stress tensor a(x i , x2 , x 3 ) which, in this case, is 
a function of xi , x 2 , x3 . 

Let us consider the componentf i  of the force f parallel to e l . The contribution 
of o- 11  acting on the two faces of the volume element perpendicular to e l  is 

for the front face: t1 1 1 (x 1  + 1 dx i  , X2 , X 30X2dX3; 

	

for the rear face: 	— al 1(X 1 — 21 dX1, X2, X3)dX2dX3• 

In a similar manner, we can obtain the contributions of o- 12  and o- 13  acting on the 
faces perpendicular to e2  and e3  respectively. The components of f are thus 

aui i  0612  00-13  
f1 == 	+ 	+ 	)dx1 dx2 dx 3 ,  

	

ex1 	3x 2 	0.X 3  

( 	
2 

 8612  °C722  	 
+ °U23  )CiXi dX2dX3, f2= 

aX i  i  OXOX3  

a6r 13  °623  3(733  

' CTX2 . OX 3 

	

( 1 	
dX i  dx2dx3 . 

The stress a(x 1 , x 2 , x 3) generates an inhomogeneous deformation in the crystal, 

33  
Cf inn (Xi, X 2 , X3) --= 	C„,„pq Cpq (X i , X2, X3). 

P 4 

According to equation (4.36), the strain is the derivative of the displacement u of 
the volume element with respect to the undeformed crystal, 

Oup(x 1 , x 2 , x 3) auq(x i , x 2 , x3 ) 

	

epq(x i , x2 , x 3) --, 	
Oxq 	

, 	 . 
OX P 
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The force acting on the volume element is thus related to the second derivatives of 
the elastic displacements, 

3  00-mn 	 3 3 3 	n2.. 

--= dx1dx2dx3 
n1 	

Cmnpq 	 , dx idx 2dx 3  E 	u up  

= aX n 
 a X n aX q n p q 

It is equally given by the acceleration of the volume element, 
0 2 u  

fm  = dxi dx2 dx3p 	t2m  , 

where p is the density of the crystal and t the time. From this we obtain the 
differential wave equation 

6 
-2 u 	3 3 3 	

Up 

P  at2m 

	

	
cm"' aXnaXg .  n p q 

(4.71) 

The general solution of equation (4.71) for an isotropic solid shows the existence 
of waves that are purely longitudinal (compressive) and purely transverse (shear). 
In the more difficult case of an anisotropic solid, we consider the existence of 
a plane wave represented by 

u = Ap exp [2ni(n. x  

where A is the amplitude, p the polarization vector (11 = 1), n = (n 1 , n 2 , n 3)T  111) 
the wave vector normal to the plane of the wave (11n11= 1), y the speed of 
propagation and the wavelength. We can then easily calculate the quantities 
in equation (4.71), 

	

02up 	
47E2 

	

ax„Ox 	nnnqup; 
t, 

02 um  

	= — 4•r 2 V2 Um ; 
at 2  

333  

PV2 Pm 	Cmnpq l1n 11qpp . 
n p q 

This is an equation of eigenvalues and eigenvectors, 

pv2p = Bp; B mn = E E Cmr,,,nr ns . 	 (4.72) 
r s 

We can deduce from equation (4.72) that: 

• for each wave vector n, there are in general three elastic waves which propagate 
at different rates vi , the eigenvalues of B being pvf; 

• the three waves are polarized along the eigenvectors of B; the vectors p, are 
mutually perpendicular, but are, in general, neither parallel nor perpendicular 
to n; 

• if two eigenvalues are equal, q.  =  v , any linear combination p = ap, + bpi  is 
also a solution for equation (4.72); all of the corresponding waves can exist in 
the crystal. 
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By employing equation (4.58), we obtain explicitly for if 

B 11  = C11n 21 + C66n22  +• C55n23 + 2C 16 n 1 n 2  + 2C15 n i n 3  

▪  

2C 5 6n2 n3 

B22 = C• 66n 21 + C• 22n22  + • C44/I +  2G26  n 1 n 2  + 2C46 n 1  n 3  

▪  

2C24n2 n3 

B33 := C• 55 n21 + C• 44n22 + • C33/1 23  + 2C45 /11 n2  + 2C35 n i n 3  

▪  

2C 3 4n2 n3 

B 12 C16n 2i + C26n 22 + C45 n23 + ( C12 + C66)n1n2 + (C14 + C56)nin3 

+ (C46 + C25)n2n3 

B 13  = 5n 2i  C46n22 + C35/123 +  (C14+  C56)n1n2 + C13 + C55)//03 

+ (G36 + C45),12 /1. 3  

B23  = C56 2  + C24n22  + C34n 23 + (C46 + C25)n i n2  + (C36  + C45 )n i n3  

+(C23  + C44)n 2 n 3  

In an isotropic medium, by using equations (4.65), (4.66), (4.67) and (4.68), we 
obtain: 

7 1(C11 + ci2)ni +1(ci —C12) 	 + ci2)nin2 	 i (Ci + 2)n i n, 
8 = 	1 (C11 + C12)n1n2 	1(C11 C12)71i + 1.(C11 C12) 	12(C11 + C12)n2n3 

i(C i + C i2)n i n3 	1-(ci + ci2)n2n3 	i(c i + ci2)ni+i(ci —C12) 

The magnitudes 1(C 11  + C12) and 1(C 11  — C 12) are the Lamé moduli. The eigen-
values and eigenvectors of B are 

1—m  
• Pvi= G11 = E (1 + m)(1 2m)' 	  Pi  = n, longitudinal wave; 

• Pv = Pv = 1(C11 — C12) = E 	
1 

2(1 + m) 
= GIE; p2  and p3  are perpendicular to n; 

transverse waves. 

E is Young's modulus, G the shear modulus and m Poisson's number. The ratio of 
the rates in an isotropic medium is; 

v i 	(2(1 —  m) ) 1 /2  

4.4.4 PYROELECTRICITY: TENSOR OF RANK 1 

When subjected to a temperature change, certain crystals become electrically-
polarized. Tourmaline, a silicate of boron and aluminum, symmetry 3m, is the 
best-known example. On heating, such a crystal becomes negatively charged on 
one side and positively charged on the other. Pyroelectricity is a tensor of rank 
1 (vector), 

/12 , 3 1 — 2m t12 , 3 

P = pAT, 	 (4.73) 
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where P is the electric polarization or the dipole moment per unit volume, and A T 
the temperature change. 

A change in coordinate system transforms the polar vector p according to 
equation (4.5). It is easy to show that the pyroelectric effect can only appear in 
directions which are polar and unique, and hence only in the following groups: 

1 (p can point in any direction); 
m (p is parallel to the mirror plane); 
2, 3, 4, 6, nnnn2, 3m, 4mnn, 6mnn (p is parallel to the unique axis). 

The pyroelectric effect is due, above all, to the piezoelectric effect (Section 4.4.5). 
During heating the crystal deforms because of the thermal expansion, 

en,„ = e„,„AT, thermal expansion 	 (4.74) 

This strain carries with it a piezoelectric effect, 

33 	 33  

anin  E ECmnpq Cpq E E C„,,„pqe pqAT, elasticity (Section 4.4,2) 
pq 	 P 

piezoelectricity (Section 4.4.5) 

(4.75) 

The primary pyroelectric effect (i.e. at constant volume) is extremely small. 

EXAMPLE. Tourmaline, crystal class 3m. 

p 1  p2  = 0; p 3  = 4 x 10' Coulomb 111 — 2  deg'. The dielectric constant down 
the threefold axis is E 33 = 7.1. The corresponding electric susceptibility is thus 
X33 = 6.1. The electrostatic field E 3  necessary to create the same polarization as 
a rise in temperature of 1°C is calculated by setting P 3  = e033E3 = p 3, thus 
E3  = 740 volt/cm. 

4.4.5 PIEZOELECTRICITY: TENSOR OF RANK 3 

In certain crystals we observe an electric polarization P (i.e. a dipole moment per 
unit volume) on the application of a stress a, due to the rearrangement of the 
charges in the unit cell (Fig. 4.15). This is known as the piezoelectric effect, 
characterized by a tensor of rank 3, 

3 3 

Pi E E d jinn°.  rnn • 
	 (4.76) 

ni  n 

33  

Pl'EEdimnCT mn, 
m n 

3333  

Pi = EEEE d imnC mnpqe pq • 
mnpq 

The inverse piezoelectric effect is the strain E of a crystal due to the application of 
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(a) 

e l  

a 

Fig. 4.15. Piezoelectric property of a two-dimensional structure: undeformed 
structure A + I3 -  of symmetry p31m; the resultant of the dipole moments is zero 
(a); the stress —  ci (compression) creates an imbalance of charges; the resulting 
dipole moment per unit cell is P (b) 



TENSOR PROPERTIES OF CRYSTALS 	 193 

an electric field E, 
3 

env, E 

We will show in Section 4.4.6 that 

d*  =d  (mn 	imn• 

(4.77) 

(4.78) 

COMMENT. The inverse effect does not correspond to an inverse tensor where 
P would be the cause and a the effect! For the computation of such a tensor, see 
below. 

a and z are symmetric tensors. Therefore di m, is symmetric with respect to the 
indices m and n: 

dimn = dinm ; but dim„ dmin . 	 (4.79) 

By using the Voigt notation (Section 4.3.3), d can be represented by a 3 x 6 matrix. 
Thus, by using equation (4.78), equations (4.76) and (4.77) become: 

6 	 3 

Pi  — din;  ,g;  - dijEi . (4.80) 

du= 
 {

d
i
.
' 

= 1, 2, 3) 

2dim„ (i = 4, 5, 6) 

The effect resulting from a uniaxial stress  r parallel to 1(4.33) is expressed by: 

33 

Pi = o-E Edimnlmln, 
m n 

and the longitudinal effect PL  is thus: 

3 	 333 

PL  = E Pil i  = GE E E dimn l ilm ln  = dLa• 
	 (4.81) 

(mn  

We can represent cIL  in an analogous manner to equation (4.59). However, such 
a figure represents only the totally symmetric part of the tensor. 

If the coordinate system is transformed by the matrix U, d is transformed 
according to equation (4.7): 

333 

crmnp= E EE umrunsuptd„,. 
r s t 

Hence, the totally symmetric part of the tensor transforms like the product of 
three coordinates. An inversion (center of symmetry 1) transforms (x 1 , x 2 , x 3) into 
(x'1 , x'3) = ( — x l ,  —x2 , —x 3), thus 4n„ = (-1)3 dim„= —djmn .  If the tensor is 
invariant with respect to 1, d:„,„ = di mn = 0. Consequently, piezoelectricity can 
only appear in non-centrosymmetric crystals. 
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A tensor of odd rank becomes zero in the presence of a center of symmetry T. 
In contrast, a tensor of even rank is invariant with respect to an inversion 
center. A center of symmetry is an intrinsic symmetry element of such a tensor 
(Section 4.4.2). 

A twofold axis parallel to e2  transforms (x 1 , x2 , x 3 ) into (xii , 	x'3) = 
( —  x 1 ,  )C 2 , - ,C3). In this case, cl„,„= (— 1)fdi„,„ where j is the number of indices with 
values 1 and 3. For a tensor which is invariant with respect to such an axis, 
4,„ = dinr„, thus di. = 0  for ]  odd. The tensor is hence of the form 

A mirror 

tensor notation 	 Voigt notation 

0 	0 	0 	123 	0 	112 
211 	222 	233 	0 	213 	0 
0 	0 	0 	323 	0 	312 

0 	0 	0 	14 	0 	16 
21 	22 	23 	0 	25 	0 
0 	0 	0 	34 	0 	36 

group 121, 	 unique axis e2  

plane m normal to e2  gives a complementary result: 

tensor notation 	 Voigt notation 

(4.82) 

(4.83) 

111 	122 	133 	0 	113 	0 
0 	0 	0 	223 	0 	212 

311 	322 	333 	0 	313 	0 

11 	12 	13 	0 	15 	0 
0 	0 	0 	24 	0 	26 

31 	32 	33 	0 	35 	0 

group 1 ml , 	 unique axis e2  

The reader is invited to derive the form of the tensor for the other non-
centrosymmetric groups and/or to refer to the literature (for example, J. F. Nye, 
Physical Properties of Crystals). Piezoelectricity can exist in all these groups 
except the group 432 where the tensor cancels out. This fact may be understood 
on the basis of a useful theorem that we present without proof (C. Hermann, Z. 
Kristallogr. 89, 32-48, 1934): 

A tensor of rank R has cylindrical symmetry with respect to a rotation axis of 
order superior or equal to R 1. 

Thus, a symmetric tensor of rank 2 is characterized by an ellipsoid of 
revolution for threefold, fourfold and sixfold symmetries. With respect to 
piezoelectricity, the hexagonal groups impose the same conditions on the tensor 
as the corresponding tetragonal groups (422 622, 4m nn4— 6mm, etc.). Because 
a piezoelectric polarization can only develop along a polar direction, the effect is 
zero in any direction perpendicular to a fourfold or sixfold axis. Consequently, 
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the effect cannot exist in the group 432. In the case of the elasticity tensor, 
hexagonal groups generate the cylindrical symmetry co/mmm. 

In the literature we find not only the piezoelectric constants discussed above 
but also the inverse tensors, less directly related to experiment, which characterize 
the stresses resulting from an electrostatic field, as well as the polarization 
resulting from a strain: 

3 
	

33 

rimn 
 = eininE i ; Pi — 	eimnEnin• 

	 (4.84) 
m n 

The relation between e and d may be calculated by using the elasticity tensor 
which expresses E as a function of a: 

EXAMPLES 

33 	 6 

d i„ = E E e ininsmnpq , di, = E eusik;  
mn 

3 3 	 6 

eipq  = Iclimn Cinnpq ; e ik = dfJ CJk . 

rn n 

(4.85) 

The tensor 47. (j, m, n = 1 and 2) characteristic of the two-dimensional structure 
of symmetry p31m represented in Fig. 4.15 is: 

tensor notation 
	

Voigt notation 

d 1 1 1  — d111 
 

0 d11 — d 11  0 
0 0 d1 1 1 0 0  — 2d 1  

where e l  is parallel to the mirror plane m and to the bond B —*A, and e2  is 
perpendicular to m and to B A. The polarization resulting from a stress 
becomes: 

= d 111(6 11 — (122) = d 11( r 1 — (12);  P2= 	d 111 612 = 	 (4.86) 

The interpretation of the result for P 1  is clear (Fig. 4.15(b)): a compression along 
the bond produces the same effect as an expansion perpendicular to the bond. 
A uniaxial stress a parallel to 1 =  (i 1, 1 2), 11 1 11 = 1 gives: 

P 1 = d 1 1 6(121 — 122); P 2  = — 2d1 101112; 

p 112 = 0.2 
a

, 211,   independent of the direction of 1. 

The angle between P and 1 is 

cos (P/1) (4li — 3)11. 
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From this we deduce that the effect is purely longitudinal for / 1  = 1 or —4, i.e. for 

a stress parallel to the bond B A. For l 1  = 0 or + 0/2, the effect is purely 
transverse: the stress is then perpendicular and the polarization parallel to the 
bond B A. This result is easily explained with the help of Fig. 4.15(b). If the 

stress is diagonal with respect to e l  and e 2 , l i  = 1 2  = 1/0, we obtain a polariz-
ation perpendicular to the bond. 

This example corresponds exactly to the properties of quartz (Si0 2) cut 
perpendicular to the threefold axis. Quartz is the most important piezoelectric 
crystal for technical applications: 

Right-handed quartz, crystal class 32 (example from Sections 4.4.1 and 4.4.2). The 
tensor d has the form (Voigt notation): 

d 11  —d 11  0 d 14  0 0 
0 0 0 0 —d 14  —2d 11  

0 0  00 0 0 

d11 , 2.30 x 10' C/N, d 14  = —0.67 x  10_12  C/N; 1 Coulomb/Newton = 1 
meter/Volt = 10 8  C m 2  kbar - '. A stress perpendicular to the threefold axis, 
(cr i  0- 2  0 0 0 0-6), gives the polarization P 1  --= di dai — 0-2 ), P2  = — 2d i  10'6. We 
obtain equation (4.86) by eliminating the coordinate along e 3 . A uniaxial stress of 
1 bar (10 5  Pa, 1 atmosphere) gives a polarization of 2.30 x 10 C/m 2 . The 
electric susceptibility x 11  is 3.5 (Section 4.4.1). Thus the polarization corresponds 
to an electric field of 74 V/cm. 

NOTE. A stress 0- 1  of 1 bar with no electric field (E = 0), or an electric field E l  
of 74 V/cm with no mechanical stress (6=0) gives the same polarization, 
but the strain of the crystal is not the same in the two cases. For the case 
of the stress 0- 1  at E = 0, see Section 4.4.2. E l  at 6=- 0 gives c l  =dii-Ei, 
c2  = —d ilE i , c4 = 2c23 =d 14E I . For E l  = 100V/cm = 104V/m, c 1 = —c2 = 
2.3 x 10 -8 , c4 = —0.67 x 10 -8 . The principal effect c i  and c 2  is represented 
in Fig. 4.16. 

The vibration induced by + E allows the frequency of an electric resonant 
circuit (used, for example, in a quartz watch) to be stabilized. Quartz is also used 
in the manufacture of acoustic generators. The theory which accounts for this 
dynamic effect comprises the calculation of the elastic vibrations of the crystal 
(Section 4.43) induced by an alternating electric field E l  cos wt parallel to e l  in 
the absence of external stresses. The importance of quartz is due to the fact that it 
is chemically inert and very stable, and, even if the elastic and piezoelectric 
constants vary with temperature, it is possible to cut crystal plates with orienta-
tions such that their natural frequencies are constant over a large temperature 



TENSOR PROPERTIES OF CRYSTALS 
	

197 

	 I expansion for E l 
 parallel to [100] 

contraction for I 
E l  parallel to (TOO] 	 z 

Fig. 4.16. Strain of a quartz rod induced by an electric field + E1  down the twofold 
axis 

range. The piezoelectric effect of ceramics with the peroviskite structure is 
exploited in gas lighters. 

4.4.6 GENERAL DESCRIPTION OF EQUILIBRIUM PROPERTIES 

The anisotropic properties described in Sections 4.4.1 to 4.4.5 are not all 
independent. The strain E is not only a function of the mechanical stresses a to 
which the crystal is submitted, it is equally a function of the electric field E (inverse 
piezoelectric effect) and of the temperature A T  (thermal expansion): 

8inn 8mn( t7  pq , Er  AT), ( p, q from 1 to 3). 	 (4.87) 

The electric polarization P and the entropy S of the crystal depend on the same 
quantities crpq, Er  AT. A reversible temperature change  A T  implies an entropy 
change per unit volume of: 

AS = (C/T)A T, 

C being the specific heat and T the absolute temperature. The corresponding 
thermal energy per unit volume is: 

AQ = TAS = CA T. 	 (4.88) 

Following equation (4.3) we can see that a, E and  AT  are the causes of the effects 
E, P and AS. By developing the terms (4.87) into a Taylor series about the points 



pq) E,T 

(TE,T 
"rnnpq 

E mn : elastic constants (Section 4.4.2); 
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E = 0, E = 0, AS = 0, on keeping only the linear terms, we obtain: 

3 3 	 3 

E mn  = 1E sTE,T 	V 	E,, 	A T 
pq I L.,  1.4, 	 p 	,.. mn  1-1 , 

P 

33 	 3 
pm 	dE,T, 	e  V 

,T E + P TE AT  

	

rnpq" pq '0 Li Amp p 	rn 
P 

3 3 	 3 

AS  = Ev  a*E,T,Pq 
I 
 V n*a,T1- 

I 
 (Ca ,E/ TAT. Li` Pq 	_L Z-d q 	

_L 
k 

P 

(4.89) 

The exponents (E, T), (a, T) and (a-, E) signify (at constant electric field and 
constant temperature), (at constant stress and constant temperature), and (at 
constant stress and constant electric field) respectively. The individual terms are: 

d *u ' T  = 
(mn  aE 

pmn 	OE p ),,T  

E ( aErnn errn'n  = 
0 T) (Tx  

(" niPq 	a a  pq E,T 

zu T irm m,  = _ 	__. 

P E 0 Ep a,T 

ppa,E ( 13m) 

m 	aT 0.,E 

e*E T = 
(OS  

• Pq 	O CTpq) ET 

inverse piezoelectricity (Section 4.4.5); 

: thermal expansion (Section 4.4.4); 

: piezoelectricity (Section 4.4.5); 

: electric susceptibility (Section 4.4.1); 

: pyroelectricity (Section 4.4.4); 

: piezocaloric effect; 

*a,T ( aS  
P 	— 	

: electrocaloric effect; 
q 	OE q) 0, ,T 

	

Or•E/T = (-0aST),,,E 	: specific heat; Cc• E  = C p  (at constant pressure). 

By using the Voigt notation, we represent equation (4.89) by a 10 x 10 
symmetric matrix. Figure 4.17 shows this matrix and its inverse. The energy 
change per unit volume of a crystal subjected to a, E and AT in a reversible 
manner is equal to the sum of the strain energy (4.62), the electric polarization 



mnii■ 

, 

P 

1.....=.  

-t- 
AS 

S EP T  
0,T 

d* 
0.E 
e 

dE,T 
E0 X (5:r  

L 	
 

e *E,T p*0,T i  

C 1:5E.  

T 
A T  

E 
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6 
	

3 
	

i 

A T  

C PS  
E 

h* ' r 

hP'S 1 	W E,S r 
A 

E 

r*P' S  t*E 'S  i 
T 

6 

r1=I■4 

r1=I■4 

- 

E 

1••••■•I 

AS 

C El' 

Fig. 4.17. The 10 x 10 matrix and its inverse 
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energy (4.47) and the thermal energy (4.88): 

oa,E,T 3 3 	 3 

W = 	/ EEmn do-nin  + go lP „,dE„, + C dT} 	(4.90) 
m n 	 m 

Unlike equation (4.47), integral (4.90) contains the polarization energy without 
the energy of the electric field eo  11E 11 2 /2. By analogy with equation (4.60), integral 
(4.90) is curvilinear. The same final state a, E and T, and hence the same energy w, 
may be attained by subjecting the crystal consecutively to the components of 
stress, electric field and temperature in any order. It follows from this argument 
that the 10 x 10 matrices in Fig. 4.17 are symmetric. The inverse and direct 
piezoelectric tensors are thus numerically identical (4.78): 

rpecr,T = dE,T 
' pmn "pmn* 

In the same way we can recognize the correspondence between: 

• thermal expansion and the piezocaloric effect, e' m,nE = e*Em,nT;  

• pyroelectricity and the electrocaloric effect, ifm'E .  
(4.92) 
(4.93) 

We see that the sub-matrix C" is not the inverse of the sub-matrix SIT ,  hence 
cE,T C": the elastic moduli at constant electric field and constant temperature 
are different from the moduli at constant electric polarization and constant 
entropy. The specific heat CEP  (at constant strain and polarization) is commonly 
called C, (specific heat at constant volume), whereas Cc' E  = C p  (specific heat at 
constant pressure). 

4.5 CRYSTAL OPTICS 

4.5.1 BIREFRINGENCE 

Among the anisotropic properties of crystals, one of the most spectacular is 
birefringence. There are numerous scientific and technical applications. The 
best-known birefringent crystal is calcite, CaCO 3 , symmetry 3m (Erasmus 
Bartholin, 1669): the image of an object viewed through a calcite crystal appears 
doubled except when looking down the threefold axis. A light ray which 
penetrates into the crystal divides into two rays with perpendicular polarizations. 
One ray, called extraordinary, does not obey Snell's law of refraction. The other, 
the ordinary ray, does obey Snell's law; its polarization direction is perpendicular 
to the threefold axis (Fig. 4.18). In general, in crystals of low symmetry (triclinic, 
monoclinic, orthorhombic), neither of the two rays obeys Snell's law and are thus 
both extraordinary rays. 

The most important application of crystal optics is the identification of crystals 
and single-crystal domains in polycrystalline aggregates. The polarizing micro- 

(4.91) 



201 TENSOR PROPERTIES OF CRYSTALS 

1200 	a threefold axis 
non-polarized light, wave 
vector normal to (To 1 4) 

ordinary wave 
polarization along b 

threefold axis 	n 0 = 1.658  

extraordinary 
wave 
n e ,  :::: 1.567 

Fig. 4.18. Ordinary and extraordinary rays in calcite 

scope (Section 4.5.6) is an indispensable tool of the mineralogist. The reader 
interested by this technique should consult the specialist literature. 

4.5.2 WAVE NORMAL AND LIGHT RAY 

Maxwell's equations allow us to explain birefringence if we take into account the 
crystal anisotropy: 

curl H = 
OD 

insulating crystals, hence no electric current: at ' 

curl E = — 
OB

. at' 
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D ---- £ 0EE 	E is a tensor of rank 2 (Section 4.46); 

B ii0pH pi is the relative magnetic permeability tensor. 

tc0  is the permeability of free space. The relation between the magnetic induction 
B and the magnetic field H is exactly analogous to that which relates the electric 
displacement D and the electric field E (Section 4.4.1). With the exception of 
ferromagnetic crystals (which are only rarely transparent), the eigenvalues of 
it are close to 1: 

p 1 + 10 -5 ; + paramagnetic, – diamagnetic. 

Hence, there is no risk in neglecting the tensor nature of pi and supposing that 
B it 0/./B it 0H. In contrast, the eigenvalues of E are very different from 1 
(between 4 and 5 for quartz, Section 4.4.1) and the tensor nature of E has impor-
tant consequences. The terms of this tensor also vary with the frequency of light. 

Consider the existence of a plane wave in the interior of the crystal: 

2n 
E = E0 e40t -k- r)  = 	w = 2nv, 	k = —

.I.' 
(equation (3.6)), 

where I) is the frequency and the wavelength. Following the rules of vector 
algebra we obtain: 

curl E = curl (Eh) = tfi curl E 0  + grad ti/ x E0  = grad (// x E 0 , 

OB 
Ot 

1 
B = [k x E 	- k•r) 

/10/211.  

In a similar manner, for D we obtain: 

1 
D = 	2  { [k x E0] x k} e i(wt - Ivr) = E o EE. 

/Vow  

(4.94) 

(4.95) 

Remember that [k x E 0] x = h kh 2 E0  – k(EO •k). 
We note that B-E =  Bk =  BD = Dk = 0, but in general, E 	O. The 

energy flux carried by the wave is given by the Poynting vector: 

	

S = [E x H], light ray. 	 (4.96) 

Indeed, we can easily show that 

OB 	OD 
div S = div [E x H] = H -curl E – E- curl H = –  H  — E.–

Ft
, 

OD 	3 3 	OE 1 0 3 3  
E.-- 1lE 	—ELE at 	mn E I) 	m  at 	2 °at n, „ inn

E

m
En . 

rn n 

curl E = – i[k x E 0] e i" -k.r)  = – 
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Fig. 4.19. Representation of the vectors H, E, D, y, s 

Using relation (4.47), for the electric energy density w et  we obtain: 

OD Ow 
E — = 

Ot 	Ot 

and in an analogous manner for the magnetic energy density: 

013 1 	a 3  3 	
aWma  H — = 	E E p„,„ .11„,H„--= 

et 	2 	et ,,, 	 Ot 

The energy density of the wave is W ei  + Wmag = "'tot :  

OWtot div S 
et 

S is indeed the energy flux per unit area. 
We define the unit vectors y and s, 11Y11 2  = 11s11 2 = 1, as follows: 

k = k y,  y  = normal to the plane wave; 

(4.97) 

S = 11S 11s, s = direction of the light ray. 

The wave normal y is perpendicular to the plane of the wave (locus of constant 
phase) k•r = (27c/.1)y.r = constant. The rate of propagation in the direction of y is 

= co/11101. In the direction of s (Fig. 4.19), the rate of propagation is 
v s  = vn/cos 6, where 6 is the angle between D and E. With the help of equations 
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(4.94), (4.95) and (4.96), for H, E, D, y and s, we obtain: 

H=  1  [y x E] = v n [y x D] =  1 [s x E] = vs[s x D], 
iiktoVn 	 11P0 Vs 

1 	 1 
D = 	x y] = 	2  tE — v(v•E)}, 

PPO v. 
(4.98) 

E = iiti o v s [H x s] = pp0 vs2 {D — s(s.d)}. 	 (4.99) 

Figure 41 9 illustrates these relationships. It is important to distinguish be-
tween the wave normal y and the light ray s. The plane of the wave is 
always perpendicular to v. It contains D but not E. The plane wave is trans-
verse with respect to y, but it is not purely transverse with respect to s. An 
analogous effect is observed for elastic waves in a crystal (Section 4.4.3), which 
are neither purely transverse or purely longitudinal in general. In addition, we 
note that 

div D = — ik.D = 0, but div E = — ik.E — ikE sin (5 0 O. 

4.5.3 SNELL'S LAW 

In order to simplify the discussion, let us choose a coordinate system based on the 
eigenvectors of the tensor E: Di = c o ciEi (i = 1, 2, 3). First, let us calculate the waves 
which can propagate in the direction of a given wave normal y (v 1 , v2 , v 3 ). 

With equation (4.98) we obtain: 

D i { v 	
1

.2 po it — 	v i(v • E) = 0, 
EoEt 

D i  
Vi(V - E)E o E i  

2 1 — co c i p otiv. 

3 
Dv i =0,  

3 	e  
4iri 

1 

 

— v 00  

3 

EiVi2 (1 —  y 	— y.2  yogo k)= 0. (i j k) 

Equation (4.101) is a quadratic function of v.2 . For each direction y, there are two 
solutions, v.' 2  and v." 2 . For example, for y = (1, 0, 0), we obtain: 

  

v." = v 3  — 

 

1 

    

    

  

v/IlottEo3 

= 0,  (4.100) 

(4.101) 
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Using these relations, equation (4.100) becomes: 

2 Vi 	V 2 	V 2 

	

2 	3 _i_ + __. 0 , ' 2 	2 	' 	2 	2 	2 	2 V i  — Vn 	V 2  — Vn 	V 3  — \In  

V i 	V2 V3 
(4.103) D 1 :D2:D 3  = 	: v i  — Vn  V2  —- 

1  
(4.104) 

N/ Po 1-1 0 r 

The two vectors D' and D" correspond to the two solutions, vn' 2  and vn" 2  from 
equation (4A02). The scalar product D'-D" is obtained from equation (4.103) by 
use of the formula 

1 	1  (1 	1 

ab =  a — ba b ) 

from which we can deduce that D'•D" = 0. D' is thus perpendicular to D". 

In a given direction y of a wave normal, two waves can propagate with different 
speeds v n' and \in" . The polarizations of the corresponding electric displacements 
are perpendicular: D'•D" = H'•H" = 0. In contrast, the vectors E' and E" are 
not perpendicular, and the light rays s' and s" are not coincident. 

For the waves propagating in a given direction s =  (s i ,  s2 , s 3 ) of the light ray, 
from equation (4.99) we can carry out an analogous calculation: 

	

1 	
2 
2 	s2 

	

s2 	s 3  
—2 	—2  + —2 	—2  + —2  V 1  — Vs 	V 2  — y8 	V 3  — y8  

51 	S2 	53  
E - E- E — 	 P  2* 3 — — 2 — • — 2 	— 2 ' V 1  — Vs— 2  . V 2— 2  — V

2
s  V3  — Vs  

1 

(4.106) 

vi  = 	, 	 
•\/ Po Wo Ei 

Two vectors E' and E" correspond to the two solutions vs' 2  and v's' 2  from equation 
(4.105). From equation (4A06) we obtain the scalar product E'-E" = 0. 

In a given direction s of a light ray, two waves can propagate with different 
speeds v NI s" . The polarizations of the corresponding electric fields are 
perpendicular: E'•E" = H'•H" = 0. In contrast, the vectors D' and D" are not 
perpendicular, and the wave normals y' and y" are not coincident. 

Thus, there are two types of birefringence, one with respect to the light rays and 
the other with respect to the wave normals. The relative importance of the two 
types depends on the laws of refraction. 

(4.105) 
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Fig. 4.20. Incident ray of polarized 
light normal to a crystal face 

Figure 4.20 shows an incident ray of polarized light perpendicular to the face of 
a crystal. According to the continuity conditions (Section 4.4.1), the electric 
displacement in the crystal D, is parallel to that in the vacuum D„ whereas the 
electric fields E, and E, are not necessarily parallel. It follows that the light ray 
s undergoes refraction and does not obey Snell's law, in contrast to the wave 
normal v. Using similar arguments for the general case of oblique incidence at the 
vacuum/crystal interface, it can be shown that 

the normal to the wave obeys Snell's law; the light ray does not obey Snell's law. 

Figure 4.20 shows that waves can be created in any direction y in a crystal. It is 
sufficient that the incident light be perpendicular to a crystal plate cut in a chosen 
direction. For a non-polarized incident ray, the crystal produces two light rays of 
mutually perpendicular polarizations D' and D". If one of the two rays is 
suppressed, the crystal emits a ray that is perfectly polarized. This is the principle 
of the Nicol prism. In contrast, the creation of a wave in a selected direction s is 
not so simple. 

4.5.4 FLETCHER INDICATRIX 

The reference ellipsoid of the tensor (1) = E — 1  characterizes the birefringence of the 
normal to the wave. Still in the coordinate system of the eigenvectors of E , by 
introducing D = D(d i , d2 , d 3) and d2i  + d22  + d23  = 1 into equation (4.98), we ob-
tain: 

' 2 _ 	 ED 
vn  — 2 	= 1  {4 

+ + 	, and with equation (4.104) 
D PO iloWo i 2 	3 
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The index of refraction n is the ratio between the speed of propagation in 
a vacuum and in the crystal. It concerns the rate vn  because the light ray does not 
obey Snell's law: 

v o n = —o  = 
vn  A 

d22  

n 2 = n2 + n2 + n2 • 
1 	2 	3 

(4.107) 

Equation (4.107) gives the indices of refraction for a wave polarized in the 
direction D = D(d 1 ,d 2,d 3). The ellipsoid 

	

2 	2 	2 
X 	X 2  X 3  

	

2 	2' 2 = - n 1  n2  n3  
(4.108) 

is called the Fletcher (1892) indicatrix or the ellipsoid of the indices. The length r of 
a ray from the center of the ellipsoid to the surface and parallel to D equals n: 

x i  = 	r = n. 

This result is hardly surprising. In an isotropic medium, the speed of light is 
=  (p) 1/2  from which we can deduce that the refractive index 

n = (tte) 1 /2  \fe because p ',:z51. In an anisotropic medium, we must consider the 
longitudinal dielectric effect E L  = (EL D) 'D parallel to D and not DL  = L,EE 

parallel to E because the fact that y  <y0  is due to the displacement of charges 
under the influence of an electric field. This longitudinal effect is represented by 
the tensor ellipsoid (1:• = 1 . In an arbitrary coordinate system, from equation 
(4.46) we obtain: 

1 E Onin Dn  

0 n 	 0n  

3 3 

E E omndm d„ = 	1   = longitudinal effect parallel to D. 
mn 	 gL,D 

The Fletcher indicatrix 

33  

E E omnx m x„ = 1 
m n 

is the ellipsoid which has the property that the length of the ray in the direction of 
D is r = 1/\/4 L  — -\/EL

'
D = n in agreement with equation (4.23). 

The normal to the tangent  plane of this ellipsoid determines the direction of 
E (equation (4.25), Fig. 4.3). It is evident that the normal y of a wave D polarized 
along a principal axis of the ellipsoid is coincident with the corresponding light 
ray s. This is the reason the principal rates v 1 , v2  and v 3  are the same in 
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equation (4.103) and (4.106). The corresponding values ni  in equation (4.108) are 
the principal refractive indices. 

The Fletcher indicatrix was deduced from equation (4.98). In an analogous 
manner, we can obtain from equation (4.99) an ellipsoid which represents the 
tensor E and hence the rates v s : 

e22 e  23  

2 = 2 + 2 + 2'  
Vs  V 1  V2  V3  

E = E(e 1 , e 2 , e 3); e21  + 	e23  1. 

The ellipsoid nN + nx + n 32x 32  = 1, called the rate ellipsoid, has the property 
that the length of the ray parallel to E is r vs/v o . 

The Fletcher indicatrix allows the determination of the polarizations and 
refractive indices of the waves which propagate in a crystal along the normal v. 
The intersection of the ellipsoid and the plane perpendicular to y which passes 
through the center is an ellipse. The vector D normal to y lies in this plane. 

Remembering that the indicatrix represents the tensor E — 1  , for a given 
direction of D, E is thus the normal to the tangent plane (Fig. 4.3). In addition, 
D,E and y are coplanar (Fig. 4.19). Figure 4.21 shows that these conditions 
determine the polarizations of the two waves associated with y; D' and D" are 
parallel to the two principal axes of the ellipse. 

Construction permitting the derivation of the two waves associated with 
a normal y by means of the Fletcher indicatrix ( Fig. 4.22):  

The plane perpendicular to y which passes through the center of the 
indicatrix is constructed. The intersection of the plane and the ellipsoid is an 
ellipse. The polarizations D' and D" are parallel to the principal axis of the 

(a) 
	 (b) 

Fig. 4.21. Ellipse from the intersection of the indicatrix and of the plane perpen-
dicular to y. E is constructed for a given direction of D according to Fig. 4.3. The 
tangent plane is not perpendicular to the plane of the page and, hence, E is not 
perpendicular to y. Only in (I)) are the vectors y, D and E coplanar 
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Fig. 4.22. Construction allowing the determination of the indices of refraction 
and the polarizations of two waves associated with a normal y 

ellipse, whereas the refractive indices n' and n" are equal to half the lengths of 
these axes. We find that n 1  .., n' ..., n2  <..n" ,,, n 3  where n 1 , n 2  and n 3  are the 
principal indices of refraction. 

4.5.5 OPT/CAL AXES 

For an arbitrary ellipsoid n 1  n2  n3 , there are two planes for which the inter-
sections are circles of radius n 2 . The  directions perpendicular to these planes are 
the optical axes (or binormals); they lie in the plane flan 3 . The waves with normal 
y parallel to an optical axis propagate with a random polarization D. The optical 
axes are, however, not directions of isotropy. Each polarization corresponds to 
one direction s of the light ray which only coincides with y for D parallel to n2 . 
Internal conical refraction is an effect that is due to this anisotropy (Fig. 4.23(a)). 
The light rays whose normals propagate down a binormal form a cone in the 
interior of the crystal. After leaving the crystal, the directions of propagation of 
the light rays are parallel. 

The indicatrix of the rates vs  is of no practical importance. It also has optical 
axes (biradials) which are not coincident with the binormals. Waves whose light 
ray s is parallel to a biradial can propagate with any polarization E. However, 
there is a different wave normal y for each polarization. The angle of refraction of 
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Fig. 4.23. Internal conical refraction (binormal) (a); external conical refraction 
(biradial) (b); the arrows indicate the light rays and their polarizations 

a wave whose light ray propagates along a biradial depends on the polarization. 
This effect leads to external conical refraction (Fig. 4.23(b)). 

The directions n 1  and n 3  are the bisectors of the angles between the optical axes; 
n2  is the optical normal. The optical sign of the crystal is defined as follows 
(Fig. 4.24): 

positive + n3  acute bisector, n 1  obtuse bisector; 

negative — n 1  acute bisector, n 3  obtuse bisector. 

For n 1  0 n2  0 n 3  there are two optical axes, hence the crystal is biaxial. If the 
indicatrix is an ellipsoid of revolution, there is only one optical axis, the rotation 
axis, and the crystal is uniaxial. The optical axis of a uniaxial crystal is a direction 
of isotropy. For any direction v, there is a wave whose polarization is perpendicu-
lar to the optical axis, and for which s is therefore parallel to y, and E parallel to 
D (Fig. 4.25). This wave is the ordinary wave and it behaves like a wave in an 
isotropic medium. Its refractive index is symbolized by no . For the extraordinary 
wave, s and v are not coincident (Fig. 4.18). The corresponding refractive index ne , 
takes a value intermediate between n o  and the length of the principal axis ne. The 
optical sign is defined as follows: 

positive + n1  = n2  = no , n 3  = ne , ne > no , oblong ellipsoid; 

negative — n 2 = n 3  = no , n 1  = ne , ne  > no , oblate ellipsoid. 



TENSOR PROPERTIES OF CRYSTALS 	 211 

n 3 

n 2  
n 

Fig. 4.24. Optical sign of a biaxial crystal 

Triclinic, monoclinic and orthorhombic crystals are biaxial; trigonal, tetrag-

onal and hexagonal crystals are uniaxial; whereas cubic crystals are isotropic 

(Section 4.2.5). 

Let us cite the optical properties of two important minerals as examples: the 
optical sign of quartz (Si0 2 ) is positive ( + ), no  = 1.5442, ne  = 1.5533; that of 
calcite (CaCO 3) is negative ( — ), no  = 1.6584, ne  = 1.4865. 

The light from a point source in the interior of a crystal does not generally 
propagate as a spherical wave. The surface of the wave is represented by the set of 
points (x 1 , x2 , x3 ) whose distance from the source in the direction s = (s i , s2 , s 3 ) is 
equal to v s : 

xi  = rsi, r2 = x2i  + x22  + x32 = vs2 

From equation (4.105) we obtain: 

x 2iv2i(r2 _ v 22  _ v 23) + x22v 22(r2 _ v2i  _ v 23)  + x23v23(r2 _ v 2i  _ v22)  + v2iv22v32 _ 0 .  

This fourth-order equation represents two distinct surfaces which intersect in the 
biradials. For a negative uniaxial crystal g = vi, these surfaces are a sphere and 
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Fig. 4.25. Positive and negative uniaxial indicatrices 

an ellipsoid of revolution: 

	

2 	2 	2 
2 =v 2.  

r 	2 , 

	

v 2 	V 2 
1 

They allow us to illustrate the refraction of light using Huygens' principle (Fig. 4.26). 

4.5.6 POLARIZING MICROSCOPE 

Birefringent crystals may be studied either with parallel light (orthoscopy) or with 
convergent light (conoscopy). In order to make the majority of minerals transpar-
ent, thin sections are prepared whose thickness is of the order of 0.02 to 0.04 mm. 
The crystal is placed between two polarizers whose orientations are perpendicu-
lar to each other. Figure 4.27 shows the orthoscopic set-up. The intensity of the 
polarized light incident on the crystal is I.  After the second polarizer (the 
analyzer), the intensity is IA. These intensities may be calculated with the aid of 
Fig. 4.28. 

The components s and t along n" and n' of the amplitude D p  transmitted by the 
first polarizer are: 

S = D p COS Ifr; t D p sin ip. 

The components al  and a2  of s and t parallel to the amplitude DA  transmitted by 
the analyzer are: 

a l  = — a 2  = 1 Dp  sin 21p. 
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normal 
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Fig. 4.26. Refraction according to Huygens' principle; the wave fronts and the 

light rays in a uniaxial crystal 

Fig. 4.27. Orthoscopic arrangement 
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D P 	n" 

a 2 
	a 1  

Fig. 4.28. Dp, DA  are the polarization vectors of the polarizer and analyzer; n' and 
n" are the refractive indices and polarization directions of the waves traversing 
the crystal 

Let d be the thickness of the crystal, re one of the two indices of refraction, 2 0  
and 2' the wavelengths in the vacuum and in the crystal, and vo , vn , the 
corresponding rates. The thickness of the crystal can be expressed in units of 
wavelength: 

✓ 2 f 	o 	0 n  . = — . = — 
• 2" 

d 	d, 

T: ---: To n  • 

The wave n" moves more slowly in the crystal than the wave n'.  This results in 
a phase difference 6 between the two waves: 

6 
—27rd 

(n" — re). 
2o 

The waves a l  and a 2  transmitted by the analyzer interfere and the resultant wave 
DA becomes: 

DA= a 1  + a2 C ia  =-D sin  201 - e'). 

The intensities I being proportional to D 2, we obtain the Fresnel (1821) equation: 

IA = Ipsin 2  20 sin 2 [; d(n" — 01 	 (4.109) 
Al) 

'A goes to zero under the following conditions: 

• iii — ma/2; n" and n' are parallel to the analyzer and polarizer. We can thus 
determine the directions of n" and  n'. 

• d(n" — n') = m/10 ; the path difference is an integral multiple of 20 . With poly-
chromatic light we observe colors. d(n" — re) is called the birefringence of the 
thin section. 
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The identification of n" and n' in a crystal of unknown orientation may be 
obtained with the help of a crystal plate of known orientation and birefringence 
(Fig. 4.29). The polarizing microscope is equipped with a gypsum plate with 
birefringence d(n" — n')=-- 551 nm (red in the first order). Colors of addition and 
subtraction are obtained according to the orientation of the unknown crystal with 
respect to the plate. 

Fig. 4.29. Addition and subtraction 

daylight 

Fig. 4.30. Conoscopic method with the help of a microscope and with the naked 
eye 
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The conoscopic set-up is illustrated in Fig. 4.30. The light incident on the 
crystal is convergent. The light rays traverse the crystal in different directions 
which each have a characteristic birefringence d(n" —  n').  The birefringence varies 
above all because of the anisotropy of the crystal. A small supplementary 
variation is due to the different pathlengths of the light through the crystal and to 
the refraction of rays inclined with respect to the surface. 

We do not observe an image of the crystal in the focal plane of the objective of 
the microscope, but an interference pattern. Each point in this plane corresponds 
to the direction of a wave normal characterized by a birefringence, and hence, by 
an interference color or light intensity. The intensity goes to zero for all waves 
polarized according to the polarizer and the analyzer. The interference figures are 
characteristic of the crystal symmetry, the optical sign and the orientation of the 
indicatrix. 



CHAPTER 5 

Exercises 

5.1 EXERCISES RELATING TO CHAPTER 1 

5.1.1 

Determine the Miller indices of the 12 faces that form a rhombododecahedron 
(Fig. 5.1). The coordinate system is defined by a l  = a 2  = a 3 , a l  = a 2  = a 3  = 90°. 
Each face is parallel to one of the axes of the coordinate system. Calculate the 
angles between the faces of the rhombododecahedron which have a common 
edge. 

Figure 5.1. Rhombododecahedron 
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SOLUTION: 

The indices are shown in Fig. 5.2. Parallel to a face (hkI) there is another face (iiki). The 
angle p between two faces (h lk 1 4) and (h 2 k 2 12) is given by: 

r  1 a 2 
COS p = 	* 

r r* 
 , where rr hi a* + ktb* + Itc*; 

 2  rr = IIrII  

The reciprocal coordinate system is at = al6  = 	= 1/a, cx 	= oc/36  = 90°. rt -rt = 
a-2(h i h 2  + k ik 2  + 11 1 2), = 	1 (q + 	+ 0112; cos(110; 101) = cos(101; 011) = cos(011; 
110) ,  1/2. The angles are 60°. 

Figure 5.2. Indices of the faces of a rhombododecahedron 

5. 1.2 

An orthorhombic coordinate system is characterized by a b cot = f3  =y= 90°. 
Let the ratios a:b:c 1:2:3. Calculate the angle between the normal to the face 
(112) and the direction [112]. Also calculate the angles between the directions 
(121) and [121], as well as between (211) and [211]. 

SOLUTION: 

The angle 0 112  between the vectors R* = a* + b* + 2c*, perpendicular to the face (112), 
and R = a + b + 2c is cos '112  = (11-121I(RR*). The reciprocal coordinate system is 
orthogonal as is the coordinate system a, b, c; a* b X c ----= 1/(abc) 
b* = 1/(2a), c* = 11(3a).  RR*  = 6, R2  = a2 + b2 + 4c2 = 11 	1 	= 6a 2/6a 3  = 1/a, 

41a2, R*2 , a 2 + 01 *2  + 4C*2  = 
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61/36a 2 . Hence cos 0112 = 0.7199; 0 11 2 = 43.96°. In an analogous way we obtain 
0121 - 35.92° and 0211 = 45.83°. 

5.1.3 

A hexagonal coordinate system is characterized by a = b 0 c, a = fi = 90°, 
y = 120°. Sketch the (210) face. Determine the angles between (210) and the a and 
b axes. Determine the indices of the faces of the two prisms in Fig. 5.3. 

Figure 5.3. Hexagonal prisms 

SOLUTION: 

The face (210) is perpendicular to a. The indices of the faces of the two prisms are given in 
Fig. 5,4, 

Figure 5.4. Indices of the faces of two hexagonal prisms 
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5.1.4 

Let 0 1 , 4)2 and 4)3 be the angles between the normal to the (111) face and the a l , a 2  

and a 3  axes of some non-unitary coordinate system. Show that the ratios of the 
norms of the vectors a 1 , a 2  and a 3  are given by a 1 :a2 :a3 = 1/cos 0 1 : 
1/cos 0 2: 1/cos  Ø.  Let tp l , 2  and tp 3  be the angles between the normal to the (123) 
face and the a l , a2  and a 3  axes. Determine the ratios al  :a2 :a3  as a function of 
these angles. 

SOLUTION: 

cos 0 1  = 	 = 1/(rf 11 a 1 ); [1 11  = at + + at 
cos 4) 2  — 	l'a2)/(rilla2) — 1 Arr1 1 a2) 
cos 4) 3  = (rf n  .a 3)/(rf i 1 a3) =  1/(r 1 1 a 3)  

from which 

cos 0 1 :cos 0 2 :cos 	= 1/a 1  :1/a 2 :1/a 3 . q.e.d. 

In an analogous manner we obtain 

cos ' 1  = (rf 23 .a 1 )/(rf 23 a 1 ) = 1/0123(0 
COS 2  — 2/(rf 23a 2) 
cos P 3 — 3Art2 3a 3) 

al :a2 :a3  = I/cos 	:2/cos 0 2  :3/COS 11/ 3. 

5.1.5 

Find the necessary condition such that three faces with the Miller indices  (h 1  k 
(h 2 k 2 1 2) and (h 3 k 3 1 3 ) belong to the same zone, i.e. that they be parallel to the same 
direction. 

SOLUTION: 

The three vectors rt 	+ ki b* + lic* are coplanar if (rf x rI,)r/36  = O. It then follows 
that the determinant formed from the 

D = 

coordinates 

k 1 	1 1 
h 2 	k2 	12 
h 3 	k 3 	13 

h i , k i , 	cancels: 

=0.  

5.1.6 

Figure 5.5 shows a crystal of anorthite, CaAl 2 Si 208, a member of the feldspar 
group. The crystal is centrosymmetric. For each face (hkl) there is a parallel face 
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O ) . Each pair of parallel faces is identified by a letter. The edges are numbered, 
parallel edges being characterized by the same number. 

Choose four faces which allow the definition of a coordinate system, a, b, c. 
Determine the Miller indices for as many faces and edges as possible. 

Figure 5.5. Anorthite crystal 

SOLUTION: 

Knowing that the most conspicuous edges correspond to important lattice lines, the 
coordinate system is defined starting from the faces a, b and c: a = (100), b = (010), 
c = (001). The base vectors a = [100], b = [010] and c = [001] are thus parallel to the edges 
1, 2 and 3. We assign the indices (111) to the face d, in order to fix the ratio of the norms of a, 
b and c. Clearly it is possible to imagine other choices of coordinate system, e.g. the facesf, 
e, c and g. 

The faces which are parallel to the same edge belong to a zone. Their normals it lie in 
the plane perpendicular to the edge. From the indices (hk1) of two faces, using the relation 
(1.20), the indices [uvw] of the edge common to the two faces may be calculated. From the 
indices [uvw] of two edges, the indices (hid) of the two faces defined by these edges may be 
calculated. First we calculate the indices for edges 1, 2, 3 and 5, the intersections of the four 
faces (100), (010), (001) and (111). Starting from the indices of these edges, the indices of 
other faces may be calculated, which, in their turn, may be used to calculate the indices of 
other edges. 

It is possible to deduce the indices of the faces without explicitly calculating the indices 
of the zones. Because the normals to three faces rf, r!, rI belonging to the same zone lie in 
the same plane, el =  sr  f + trI where s and t are real numbers. The indices of the faces a, b, 
c and d are known. Because the face e belongs both to the zone {a, b} and to the zone {c, d}, 
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we find: 

(he , k e , le) = s3(ha ,  k, la) + t3(hb , k b , 	= s 5(hc ,  k, lc) + t 5(hd, k d ,ld) 
= s 3(1,0,0) + t 3(0,  1,0)  =  s5(0,0,  1) + t 5(1, 1, 1) 

from which s 3  = ts, t 3  = t 5  and s 5 +t5 — 0 which allows the solution s 3  = t 3  ts  = — ss  = L 
Finally, (he , k e ,le) 	(1, 1,0). 

We see that all the faces of zone 1 have indices of the type (Omn), those of zone 2 indices of 
the type (mOn), and those of zone 3 indices of the type (mn0). Thus, let us assign to f the 
indices (mfi0) with m, n > 0. The indices of all the other faces (except i) can be derived as 
a function of m and n (or multiple theoreof): 

zones 1 and 9 

- 

j: (0, m + n, m) 
zones 2 and 9 - g: (m + n, 0, n) 
zones 1 and 7 - k: (0, m + n, Ft) 
zones 2 and 8 	h: (m + n, 0, tit) 

zones 4 and 8 —■ I: (m,  n ,  riz) 
zones 4 and 6 	f: (m, Ft, n — m) or (m, fi, 0) .  

From the two expressions giving the indices for the face f, we can deduce that m = n. On 
setting m = 1 we obtain: 

a: (100) 1: [100] 
b: (010) 2: [010] 
e: (001) 3: [001] 

(111) 4: [110] 
e: (110) 5: [T10] 
f: (1 10) 6: [112] 
g: (201) 7: [T12] 
h: (201) 8: [112] 
i: (pal) 9: [1T2] 
j: (021) 10: [g, — p + g, p] 
k: (021) 11: [g, 4, p] 
1: (1TT) 

The information thus set out does not allow us to find the indices of face i because the edges 
10 and 11 only belong to two faces and not to three. By considering the angles between the 
faces it can be shown that p g. 

5.2 EXERCISES RELATING TO CHAPTER 2 

5.2.1 

a) List the set of symmetry operations which leave invariant a regular triangular 
pyramid (crystal class 3m, Figs. 2.17 and 2.20). 

b) Establish the multiplication table for the corresponding group. 
c) Is the group Abelian? What are the characteristics of the multiplication table 

for an Abelian group? 
d) Find two operations which generate the complete set of operations of the 

group. 
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e) Find all of the sub-groups, i.e. all the subsets of operations forming a group. 
f) Find all equivalence classes of the group. By definition, the equivalence class of 

operation A contains the operations B such that B = XAX - 1 , X covering all 
the operations of the group. 

g) Represent the operations of the group by 2 x 2 matrices using a unitary 
coordinate system, on the one hand, and an oblique coordinate system 
adapted to the threefold symmetry, on the other. 

h) Let M i., and M. be the representations of the same group operation in the 
unitary coordinate system and in the oblique coordinate system respectively. 
Find the matrix T such that T-1 M.T =  Mo . 

SOLUTION: 

a) The threefold axis and the three mirror planes of the group 3m correspond to the 
symmetry operations {E, A3, Al, 

b) Table 5.1 Multiplication table for the 
group 3m. The order of multiplication 
is M 2M 1 , i.e. M 1  is executed before M 2  

E 	A 3  Ai 1 '2 	1 '; 	13 
A3 	A 3  Ai E 	13 	1 '2  
Ai 	Ai E 	A 3  13 	1 '2 	13 
1 /2 	1 '2 	13' 	E 	Ai A3 

13 	1 12 	13 	A3 E 	Ai 
1 11 	157 	15 	15 	Ai A 3  E 

c) The group is non-Abelian. The multiplication table of an Abelian group is symmetric 
with respect to the principal diagonal. * 

d) The group 3m may be generated from a rotation and a reflection, e.g. from A3  and  I.  
e) 1E, A 3, Ai}, {E, 1'2 } , 1E, 151, {E, 

f) E class: 	1XEX -1 1 = {E} 
A3 class: IXA 3 X - 1 1 = {A 3, Ai} 

	

1 '2  class: 	{ X13X -1 }= {1313 ,, In 

g) Let the base vectors of a unitary coordinate system  be e 1  parallel to the mirror plane m l  
and e2  perpendicular to m i : 

	

E
1  (1 0) 	A3  (COS 	—sin 4)) 

	

1 ! 	sin 0 cos 4) / 
Ai = 

( cos 0 sin 0 
—sin 	cos 4) 

= (1 
1 2 

0 
Ill 	( COS 4) 	sin (t• 

15 — 
(cos 4) 	sin 0 

0 	2  
4 =2t/3. 

	

- 	- sin 4) — cos 0 )' 	sin 0 —cos 

The base vectors of the oblique coordinate system a l  and a 2  are chosen parallel to the 
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edges of the triangle such that ai  = a 2 , y = 2n/3: 

E = 
(1 0\ 

A3  — ( 11 

(1 — 1 	i „ ( —1 
1 '2  = 

0 —17 2  — 1 — 

— 11 )' 4q  = ( 1  11 01 ) 

I34 (0 1 \ 
1 7 2  — 

h) The matrix T is the transformation matrix from the oblique coordinate system to the 
unitary system, 

(e l) = (T-1 )T(ai),  (Xunitary ) = T (Xoblique),  

e2 	 az 	Yunitary 	 Yoblique 

T = 
(1 — 1/2 

T' = (01  21//°0).  0 Op) 

5.2.2 

Figure 5.6 shows some cubes whose faces have been decorated. Identify the 
corresponding point groups with the aid of Fig. 2,17. Create other symmetries 
using a wooden or cardboard cube by decorating the faces in an appropriate 
manner. 

1 2 5 

Figure 5.6. Symmetries of decorated cubes 

SOLUTION: 

(1)  mm,  (2) 43m, (3) m3, (4) 23, (5) 432 

5.2.3 

Find the symmetry elements and the unit cells for the two -dimensional structures 
in Fig. 5.7. Compare your results with Fig. 2.29 
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Figure 5.7. 17 plane groups illustrated by G. Polya (Z Kristallogr. 60, 278-282, 
1924) 

5.2.4 

Determine the general and special positions (orbits) along with the symmetry 
elements for the plane group p4gm, 

METHOD. The group is generated by a glide line g parallel to an edge and 
a mirror line m parallel to a diagonal of a square. Draw several square unit cells 
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on squared paper as well as the two generating elements. Mark with a point 
a general position in one cell. Avoid choosing special coordinates like 1/2 or 1/4. 
Generate the other equivalent points by using the lines m and g, and the 
translations. After determining the complete orbit, mark all of the symmetry 
elements on the diagram and compare the result with Fig. 2.29. Move the origin of 
the coordinate system onto a fourfold rotation point and calculate the coordi-
nates of the orbit with respect to this origin. Determine the coordinates of all the 
special orbits and the symmetries corresponding to these points. 

SOLUTION: 

The coordinates of a general orbit are (Fig. 5.8): 

x, y; g —>1 + x, )7; m 	+ x; g 4 - y, — x; m 4 - x, - y; g 	+ y; 
m —>1 + y, iC; g y, x; m x, y. 

If the origin is moved to the fourfold symmetry point with coordinates ( 	the general 
orbit becomes: y; )7, x; .)Z, )7; y, 	+ y; + x; — x,±1- + y; 	— x; + 	— y. The 
special orbits with their corresponding symmetries are: 

symmetry m: 	x,1+ x; 	X, x; 	x; 	x, )C, 
symmetry 2mm: 1, 0; 0,1. 
symmetry 4: 	0,0; 1,1-. 
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Figure 5.8. Construction of an orbit starting from the generator symmetry 
elements 

5.2.5 

Determine the general and special positions along with the symmetry elements 
for the space groups Pnnna, 1342 1 c and 133c by analogy with Exercise 5.2.4. 
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The generators 2 1  and c can be chosen for 1342 1 c, and 2 and c for R 3c, because 
these symmetry elements intersect (Section 2.5.2). Verify your results with the 
extracts from the International Tables given in Section 2.7.4. 

5.2.6 

The structural parametes for calcite are given in Section 2.8. Sketch the projec-
tions of the structure down the [100] and [210] directions. Calculate the shortest 
C-0 and  CaO  distances along with the 0—Ca-0 angles. Determine the 
coordination number (with respect to oxygen) of calcium. 

SOLUTION: 

The C-0 distance is ax = 1.28 A. The Ca atom located at the origin (0, 0, 0) is surrounded 
by six oxygen atoms located at the points + — x,  ±1s, 	+ 	— x,1:-12); 
+ + x,  x i, 112); these coordinates define an octahedron slightly elongated along c. 
Taking into account the metric of the unit cell (1.16), the distance Ca-0 becomes 
[(x2  x + i)a2  + (412c) 21 112  =  2.356 A. The three angles 0—Ca-0 have values of 87.58, 
92.42 and 1800 . 

5.3 EXERCISES RELATING TO CHAPTER 3 

5.3.1 

Given a crystal lattice with dimensions a = 5 A, b = 10 A, c = 15 A, a = fi =  90°, 
y = 120° and radiation with a wavelength 2=  1.5418 A (CuKa radiation): 

a) Determine the parameters of the reciprocal lattice a*,  b*,  c* , a* , fi* , y* and the 
volumes of the direct and reciprocal unit cells. 

b) Calculate the d spacing and the diffraction angle 0 for the series of lattice 
planes (321). 

c) Let the incident beam be perpendicular to the c axis. Determine graphi-
cally, using the Ewald construction, the crystal orientation required to 
observe the reflection (320). This orientation can be defined by the angles 
between the incident beam s o  and the vectors a* and b*. Calculate these 
angles. 

d) Determine the maximum number of Bragg reflections that could be observed 
with CuKa radiation. 

e) Give the maximum values of the indices of the observable reflections hit., 
k max, 1.. 
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SOLUTION: 

a) According to equations (1.6) to (1.15),  V=  abc sin y == ( 3I2)abc = 649.52 A3 ;  

/3* 90°, y* = 60'; 

a* 1/(a sin y) = 0.23094 A -  '; 
b* 11(b sin y) = 0.11547 A -  1 ;  

c* 11c = 0.06667 

The volume of the reciprocal unit cell is V* =11V= 0.0015396 A - 3 . 
b) d 

- 321 113a* + 2b* + c* 
-

1, (9a* 2 4b*2 c*2 12a*b*cosy*) -1 /2  1.197 A; sin0 -- 
A1(2d 321 ) = 0.6440; 0 321  = 40.09'. 

c) The graphical construction (Fig. 5.9) gives two solutions for the orientation of the 
crystal. The angle (so; a*) is the sum of the angles  (s0; r 20)  and (a*;  r 20);  the other angles 
are calculated in an analogous manner: 

(so; a*) = 143.83'; (so; b*) = 83.83'; (s; a*) = 63.96'; (s; b*) = 3.96'; 

(sO; a*) = 116.04'; (s'o; b*) = 176.04'; (s'; a*) 36.17'; (s'; b*)— 96.17°. 

It is clear that the s'o 	— s, s = so. 
d) The reciprocal lattice points which can cut the Ewald sphere are located in a sphere of 

radius 21A centered on the origin of the reciprocal lattice (Fig. 5.9). The number of lattice 
points N contained in the limiting sphere is given by the ratio of the volume of this 
sphere to that of the reciprocal unit cell, 

4n (2) 3  
 N VsphereIrt  V sphereV 	(abc sin 	593 9. 

e) The maximum values of the indices are given by the ratios of the radius of the limiting 
sphere 2/). to the lattice lengths a* sin y*= 1/a, b* sin y* — 1/b and c* = 1/c (Fig. 3.20). 

hmax = 2a1 A.= 6.49 6, k n., — 13, /ma. = 19. 

Figure 5.9. Reflection by the 320 planes (left) and the limiting sphere (right) 
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5.3.2 

Table 5.2 contains the results of measurements made on the powder diffracto- 
grams of four cubic substances obtained with CuKa radiation of wavelength 

- 1.5418 A. The Bragg angles 0 were measured with a precision of 0.01'; the 
intensities I are normalized such that I -,- 100 for the strongest line. Find the 
indices hid of the reflectiona_and ttel.attice..-cans.tanis (Section 3.5.3). For each 
compound, identify the systematic absences and deduce the Bravais lattice 
(Table 3.2). 

SOLUTION: 

Several lattice planes are characterized by the same value of s =-- h2 k2 + 12  (Section 3.5.3). 
The indices hkl given in Table 5.3 represent one of them with all positive indices. If the Laue 
class is mm,  these planes are symmetry equivalent. Clearly, the diffractograms do not 
allow the five cubic crystal classes or the two cubic Laue classes to beslislingtUshed. The 
lattice constants may be calculated by using equation (3.47)4 /2a) 2  E sin 2 0/Es. 

NaCI: a = 5.6404 A. The indices hkl all have the same parity, hence the Bravais lattice is 
F centered. Line No. 10 is a superposition of two lines which are not symmetry 
equivalent. 

CuZn: a - 2.948 A. There are no systematic absences, hence the lattice is P. 
W: 	a = 3.165 A. The hkl satisfy the condition h + k + 1 = 2n, hence the lattice is I. Note 

that s 1 cannot be assigned to the first line because the value for the seventh line 
would then become 7 which is impossible (Section 3.5.3). 

Si: 	a = 5.431 A. The lattice is F as is the case for NaCl. However, we can see that there 
are supplementary absences for h + k + 1 4n + 2, in particular, the line 222 is 
absent. For this reason, when a crystal of Si is used as monochromator (reflection 
111) the monochromatic radiation is not contaminated by radiation with 
wavelength /1/2. 

Table 5.2 Bragg angles (9 for four cubic substances 

NaC1 CuZn Si 

Line No. 0 r] / O[O] / Or] I o[°] I 
1 13.68 13 15.15 6 20.15 100 14.23 100 
2 15.86 100 21.75 100 29.16 15 23.67 55 
3 22.74 55 26.93 1 36.63 23 28.08 30 
4 26.95 2 31.53 15 43.55 8 34.60 6 
5 28.26 15 35.76 2 50.38 11 38.22 11 
6 33.14 6 39.85 29 57.53 4 44.06 12 
7 36.57 1 47.72 5 65.69 18 47.52 6 
8 37.69 11 51.65 1 76.99 2 53.42 3 
9 42.03 7 55.81 8 57.11 7 

10 45.25 1 60.13 1 63.86 8 



230 	 CRYSTALLOGRAPHY 

Table 5.3 Indexing of the powder  diffractog  rams  for four cubic substances 
h 2 	k 2 /2)  

NaC1 CuZn Si 

Line No. h, k,1 h, k,1 h, k,1 h, k,1 
1 3 111 1 100 2 110 3 111 
2 4 200 2 110 4 200 8 220 
3 8 220 3 111 6 211 11 311 
4 11 311 4 200 8 220 16 400 
5 12 222 5 210 10 310 19 331 
6 16 400 6 211 12 222 24 422 
7 19 331 8 220 14 321 27 511/333 
8 20 420 9 300/221 16 400 32 440 
9 24 422 10 310 35 531 

10 27 511/333 11 311 40 620 

5.3.3 

a) Compare the intensities in Table 5.2 to the values calculated on the basis of 
a spherical atom model. In order to compare the intensities of neighboring 
lines it is necessary to take into account the multiplicity m. (Section 3.5.3) and 
the structure factor F(hk1) (Section 3.7.1). The calculation may be simplified by 
neglecting the Lorentz (3.60) and polarization (3.19) factors, as well as the 
decrease in the form factors and the Debye-Waller factor as a function of 
sin 0/2  (Sections 3.3.3 and 3.3.4). The atomic coordinates are: 

NaCI: Space group Fm3m. 
(0, 0, 0) +; (1/2,  1/2,0)  +;  (1/2,0,  1/2) +; (0, 1/2, 1/2) +. 
4 Cl at 0, 0, 0; 4 Na at 1/2, 1/2, 1/2. 

CuZn: Space group Pm3m. 
Cu at 0, 0, 0; Zn at 1/2, 1/2, 1/2. 
Zn occupies the center of the unit cell. Why is the lattice not I centered? 

W: 	Space group Im3m. 
(0, 0, 0) + ; (1/2, 1/2, 1/2) + . 
2 W at 0, 0, 0. 

Si 	Space group Fd3m. 
(0, 0, 0) + ; (1/2, 1/2, 0) +; (1/2, 0, 1/2) +; (0, 1/2, 1/2) + . 
8 Si at 0, 0, 0; 1/4, 1/4, 1/4. 

b) Derive the systematic absences. Explain the alternating strong and weak lines. 

SOLUTION: 

NaCl: I F(hk1)1 2  16{[fc ]
t (_ oh + k+i[fN 	2 

a  j t j if h, k and 1 have the same parity, 
otherwise 0; m 8, 6, 12, 24, 8, 6, 24, 24, 24, 24 + 8. 
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CuZn: F(hk01 2  {Efoil+ (- 
oh+ k +i[f zn t ) 

j ; 	6, 12, 8, 6, 24, 24, 12, 6 + 24, 24, 24. 
For h + k + 1 = 2n + 1, Cu and Zn scatter out of phase and the intensity is weak. 
The lattice is not I centered because (a 1  + a2  + a 3)/2 is not a translation. 

W:  F(hk1)1 2  4[fw] if h + k +  1—  2n, otherwise 0; m = 12, 6, 24, 12, 24, 8, 48, 6. For 
h + k +  L 2n + 1 the atoms in the unit cell scatter out of phase and the intensities 
cancel. Due to the multiplicity factor, strong and weak lines alternate. 

Si:  Rhki) 12  64Usd if h, k and l are  even and h + k + 1 0 4n + 2, 32[f51] if h, k and 
are odd, otherwise 0; m 8, 12, 24, 6, 24, 24, 24 + 8, 12, 48, 24. It is interesting to 

note that the absence of the reflection 222 is not due to the space group, but to the 
special arrangement of the atoms in the unit cell. In fact, F(222) 0 only if the 
electron density of the silicon atom is spherical (Section 3.3.3). Precise measure-
ments carried out on a single crystal show that this intensity is very weak, but not 
zero. This is due to the Si—Si chemical bond and to anharmonic thermal vibrations. 

5.3.4 

Determine the space groups characterized by the following reflection conditions: 

a) orthorhombic; hkl: k + 1 = 2n; Okl: k = 2n; h01: h = 2n. 
b) tetragonal; hkl: no absences; 001: 1 =  4n; h00: h = 2n. 
c) tetragonal; hkl: no absences; Okl: 1 = 2n; hhl: 1 ---- 2n. 
d) tetragonal; hkl: no absences; hk0: h + k = 2n; Okl: 1 = 2n; hhl:  1=  2n. 
e) trigonal, Laue class 3m; hkl: h + k + 1— 3n. 
f) trigonal, Laue class 3m 1; hkl: no absences; 00/:  1=  3n. 
g) hexagonal; hkl: no absences; hhl: 1 = 2n. 
h) cubic; hkl: k + 1, h + 1, h + k 2n; h00: h = 4n. 
i) cubic, Laue class mm;  hkl: k + 1, h  +1,  h + k 2n. 

SOLUTION: 

a) Aba2 or Abam. In the International Tables, Aba m is given in another orientation with 
the symbol Cmca. 

b) P4 1 2,2 or P432 1 2. These groups are enantiomorphs. They cannot be distinguished if the 
structure factors obey Friedel's law (Section 3.7.2). The tetragonal symmetry implies 
the reflection condition  0k0: k 2n. 

c) P4cc or P4/mcc. The tetragonal symmetry implies the reflection conditions h01: 1 = 2n; 
hhl: 1 	2n. 

d) P4/ncc. The tetragonal symmetry implies the reflection conditions 1101: I 2n; ha 
=-- 2n. 

e) R3m or R32 or R3m. 
f) P3 1 21 or P3221. These groups are enantiomorphs. The mirror planes of 3m1 are 

perpendicular to the shortest translations of the triangular lattice plane. 
g) P63mc or P63/mmc. The hexagonal symmetry implies the reflection conditions 

2hia: 1 = 2n; IT2h/: 	2n. 
h) F4,32. The cubic symmetry implies the reflection conditions  0k0: k = 4n; 00/: I = 4n. 
I)  F432 or F43m or Fm 3m. 
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5.3.5 

Is there any advantage in choosing the Laue method to determine the space 
group of a crystal? 

SOLUTION: 

No, because it is difficult to observe the systematic absences. In general, a diffracted ray 
contains several orders of a reflection HKL. For example, all the reflections 00/ are 
superimposed. 

5.3.6 

At temperatures above 120°C, the structure of BaTiO 3  is cubic, space group 
Pm3nn, ar--,,  4A. At 1200  there is a phase change and the crystal becomes 
ferroelectric. Between 0 and 120° the structure is tetragonal, space group P4mm, 
a= 3.99 A, c = 4.03 A (at room temperature). We may observe this transition by 
using the powder method (Section 3.5.3) because certain lines in the powder 
pattern split when the structure changes from cubic to tetragonal. Which ones? 

SOLUTION: 

For a tetragonal structure, equation (3.46) becomes: 

(2 sin 0)2 01 2 ± k2) 12 
,‘ 	±-2' 

il 	a2 	
C 

Ifh0k0I0h, the line from the cubic pattern splits into three lines; if two indices are 
equal, it doubles; if h -- k —1, it is unchanged. 

5.4 EXERCISES RELATING TO CHAPTER 4 

5.4.1 

Show that a sphere cut from an anisotropic crystal subjected to hydrostatic pres-
sure deforms into an ellipsoid and determine the orientation of its principal axes. 

SOLUTION: 

Equation (4.69) gives the strain E as a function of hydrostatic pressure a. The undeformed 
sphere is represented by the equation xi + xi + x3 -- r2 . After deformation we obtain: 

3 

X,,,=-- E (S mn  — ahnjx n. 

n 
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In the coordinate system of the eigenvectors of h and E, the equation of the deformed sphere 
becomes: 

(X'1) 2 	 ( 1  X2)2 	( ' X3Y 	2  

(1 011 102  ± (1 ah22) 2 	ah33)2 r  

which is the equation of an ellipsoid. 

5.4.2 

The mineral calcite, CaCO 3 , is trigonal (Section 2.8). In order to determine 
the thermal expansion tensor e (4.74), the Bragg angles for the lines 330 and 
00,18 were measured from powder patterns obtained at two different tem-
peratures: 

T=  40°C: 
T=  140°C: 

20330  .-- 
20330  .-- 

136.27° 
136.43° 

2000 , 18  
2000,18  -  

=  108.82° 
108.42°. 

The wavelength of the radiation used was /1= 1.54051 A (CuKa l ). Calculate 
the components of the tensor e. In which direction is the thermal expansion 
zero? 

SOLUTION: 

Using the metric of the trigonal system, equation (146) becomes: 

(  2 sin 0)2  
d = (h2  + k2  + hk)a*2  + 12  c* 2  ; a* 

2 

a = 6d 330; c 18d00 , 18 . 

Thus we can calculate a and c at 40°C and at 140°C. The strain tensor E and the thermal 
expansion tensor e have the form of equation (4.13). The strains after heating are 
E ll 	r = .21 140 a40]/a40  and e 33  re 140 C40]/C4-09 thus e 11 	— 6 x 10 -6  and e 33  =- 
25 x 10 -6  per °C. The thermal expansion down the unit vector I = (1 1 ,12 ,1 3) is: 

eL(1) (1 —  1)e 11  + /3e 33 . 

This value goes to zero for 0 64°, where 	arccos(1 3), the angle between the vector 
I and the threefold axis. 

5.4.3 

The structure of copper is cubic, crystal class mm.  The elastic moduli are 
C11 = 1 . 76; C12 1.29, C44 0.75 x 10 11  Pa. The density is d = 8.92 g 
Calculate the rate of propagation y and the direction of polarization of the plane 
waves with wave normals parallel to [100], [111], [110], [210], [211]. Calculate 
the angles between the wave normals and the polarization directions. 
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SOLUTION: 

For each wave normal n, the matrix B (4.72) is obtained by using the tensor for the elastic 
moduli with cubic symmetry (4.65). The eigenvectors and eigenvalues of B may then be 
calculated. By taking into account the symmetry of the crystal, this information may be 
obtained without calculating the characteristic polynomial for B. 

In the propagation directions [100] and [111], any transverse polarization is possible. 
The polarization direction of the transverse waves propagating parallel to [110] are [110] 
and [001], i.e. the directions perpendicular to the mirror planes. If n is parallel to [210] and 
[211], the polarization direction of one of the waves is perpendicular to a mirror plane; the 
two other waves are neither transverse nor longitudinal. Table 5.4 summarizes these 
results. 

Table 5.4 Elastic plane waves in copper: rate of propaga- 
tion y in km/s and angles between the directions of propa- 

gation and polarization 

longitudinal 	transverse 	transverse 

angle  y angle  y angle 

[100] 4.44 0.00 2.90 90.00 2.90 90.00 
[111] 5.24 0.00 2.14 90.00 2.14 90.00 
[110] 5.05 0.00 1.62 90.00 2.90 90.00 
[210] 4.88 8.25 2.08 98.25 2.90 90.00 
[211] 5.08 7.28 2.05 97.28 2.55 90.00 

5.4.4 

KH 2PO4  (Section 3.9.2, Fig. 3.41) has a piezoelectric modulus that is particularly 
large at low temperature. The crystal class is 42m. At  122K, d 36  2 x 10' C/N; 
at room temperature, d 36  falls by a factor of about a thousand to 
1.7 x  10-11  C/N. The other moduli are negligible. 

Determine the independent terms of the piezoelectric tensor, the vectors e l  and 
e2  of the coordinate system should be chosen parallel to the twofold axes and e3  
parallel to the 4 axis. If a square crystal plate of KH 2 PO4  is cut in such a way that 
the sides are parallel to the twofold axes and an electric field of 3000 V/cm is 
applied to e 3, i.e. perpendicular to the plate, determine the deformation of the plate. 

SOLUTION: 

The independent moduli of the tensor are d 14, d25  d 14  and d36 . The inverse piezoelectric 
effect (4.77) results in a deformation e6- 2E12 d 36 E3, where d36  is given in C/N = m/V. 
A square plate of side a deforms to give a diamond, 

a'i 	+ ell5 8 12, 8 131 a / 2 	a[E12, 1  + 8 225 E23]. 

The angle in the diamond y iv/2 - 6. At 122 K, we obtain y - 89.66°. 
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5.4.5 

The important birefringence of the mineral calcite CaCO 3  is well known. The 
structural parameters are given in Section 2.8. The refractive indices are 
no  ,-- 1.6584 and ne =--  1.4865. Crystals are frequently found in the form of {104 } 

 rhombohedra composed of six equivalent faces (104), 014), (1 14), (104) (014), (114). 
Imagine an incident electromagnetic wave, non-polarized, normal to the face 

(104). Determine the vectors characterizing the waves which propagate in the 
crystal—electric displacements D, electric fields E, light rays s. Calculate the 
distance separating the images of an object observed through a crystal with 
a thickness of 3 cm. 

SOLUTION: 

The axes of the unitary coordinate system are chosen in the following manner: e 1  parallel 
to a*, e 2  parallel to b, e 3  parallel to c. The reciprocal vectors are given in Exercise 5.4.2. The 
reciprocal vector a* + 4c* = a*e l  + 4c*e3  is coincident with the normal to the wave v. The 
angle ri between y and e3  are calculated thus: 

12  
cos 2 q = 	

. 

12 + (c I a)2  ' 
v T  = (sin q, 0, cos ri); q = 44.53°. 

The electric displacement of the ordinary wave Do  is perpendicular to w and to e3 . The 
electric displacement of the extraordinary wave De., lies in the plane ( y; e 3). The directions 
of Do  and De  are represented by vectors of norm 1, 

D lo' = (0, 1, 0); DT 	cos ri, 0, sin ri). 

Figure 5.10. Ordinary (o.) and extraordinary (e.o.) waves in calcite 
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The refractive indices are calculated by using equation (4.107): no  = 1.6584 and 
 1.5668. By multiplying D with the inverse dielectric tensor E -1 , we obtain the direction of E, 

n -2  0 	0 
E = parallel to 	0  n 2  

0 	0 
0 D.   
— 2  

, i e 

The electric fields E0  and Ee, of norm 1 are 

1 
E'e = 	 (  n 	ri, 0,  n 	ri), E0T  = (0, 1,0). 

.\/n: + (n04' — n 4e) sin2  ti 

The light rays so  and se. lie in the planes (D o; E0) and (Dee; Eee). The angle 5 between so  and se. 
may be calculated thus: 

1 
s0 =  v, sT = 	 (re sin 77,0, 4 cos ri). 

./n4; +  (n 	4.) sin2  ri 

ne2 + (no2 _ ne2) sin 2 pi 	 none 
cos 5 = 	 = 	  .5  = 6.23°  ± (no4 _ ne4) sin4 1,1 ne ,,\In 02 ± ne2 _ ne2: 

The distance separating the two images is equal to 30 sin 3 = 3.26 mm (Fig. 5.10). 
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