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Abstract

In an industrial crystallization process, crystal shape strongly influences end-product quality and

functionality as well as downstream processing. Additionally, nucleation events, solvent effects

and polymorph selection play critical roles in both the design and operation of a crystallization

plant and the patentability of the product and process. Therefore, investigation of these issues

with respect to a priori prediction is and will continue to be an important avenue of research.

In this review, we discuss the state-of-the-art in modeling crystallization processes over a range

of length scales relevant to nucleation through process design. We also identify opportunities

for continued research and specific areas where significant advancements are needed.
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1 Introduction

Crystallization from solution is a process used in the chemical industries for the preparation of

many types of solids (e.g., pharmaceutical products, chemical intermediates, specialty chemicals,

catalysts). Several key properties of the resultant materials originate from this process, including

chemical purity and composition, internal structure (polymorphic state), size and shape distribu-

tions and defect density (crystallinity). Size and shape distributions impact various solid properties

including end-use efficacy (e.g., bioavailability for pharmaceuticals, reactivity for catalytics1), flowa-

bility, wettability and adhesion. In turn, these properties impact down-stream processing efficiency

(e.g., filtering/drying times and the possible need for milling), storage and handling.

The desired size and shape distributions of a crystalline product will vary depending on its

application. For example, needle shaped (i.e., high-aspect ratio) crystals are well known to be

difficult to process,2 making them undesirable for pharmaceutical applications. However, needle

shapes are key to several other applications (e.g., ZnO nanowires for solar cells), and in these cases

crystal shapes are engineered to be as needlelike as possible.

Due to the broad impact of crystal size and shape distributions, general methodologies for

the prediction, measurement and improvement of crystal size and shape are desired for product

and process design. While these topics have been studied for over one hundred years, recent

breakthroughs in experimental techniques, modeling and simulation have led to an improved un-

derstanding of crystal growth from solution. This article reviews some of these developments and

presents a path for future progress.

The remainder of this article is organized as follows. It begins with a review of recent advances

in the understanding of nucleation phenomena; highlighting experiments and simulations that have

provided insight into the size, shape and structure of critical-sized nuclei. The shapes of larger

crystals are discussed next. This discussion begins with a description of non-mechanistic models

and then moves to a detailed discussion of crystal growth mechanisms. This is followed by a review

of current modeling, experimental and simulation techniques for obtaining crystal shapes. Efforts in

shape modification through the use of additives are described next, followed by methods to predict

dynamics of crystal shapes evolving in time. Finally, crystal shape is discussed along with crystal

size in the context of population balance models.
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2 Nucleation and Polymorph Selection

The role of nucleation in polymorph selection is of particular industrial interest. The polymorph

(different crystal structures of the same molecule) obtained can have a large impact on the final

utility (for example the Ritonavir case3) and patentability of a crystalline product. Different

polymorphs can have different physical properties such as stability, hardness, color, solubility,

dissolution rate and bioavailablity.4 Recent experiments have shown that the internal structure of

a crystal may be set during nucleation.5 Furthermore, seeding experiments have shown that the

seeded polymorph will not always appear in the final crystal.6 A method to predict the observed

polymorph is an important goal in the study of nucleation. However, a more fundamental knowledge

of nucleation must be achieved before predictive tools can be perfected.

Traditionally, Classical Nucleation Theory (CNT) has been used to describe gas, liquid and

solid nucleation.7–12 Classical nucleation theory was laid out by Gibbs7 (page 257) in the 1870’s,

and has proven useful for understanding nucleation in a variety of systems, in particular gases and

liquids. Nonetheless, Gibbs himself questioned its validity for solid nucleation.

Classical nucleation theory is based on the total change of the free energy of the system during a

nucleation event. In a nucleation event, energy is decreased by the creation of the new lower energy

phase (Equation 1, first term), and energy is increased by the formation of an interface between

the two phases (Equation 1, second term). For a spherical nucleus the change in Gibbs free energy

resulting from the creation of a nucleus with radius r is given by

∆G = −4
3

πr3∆µ

VM
+ 4πr2γ (1)

where VM is the molar volume of the solid nucleus, γ is the specific surface energy of the solid-

liquid interface assumed isotropic in this case (i.e., the same in all directions), ∆µ is the chemical

potential difference (on a per mole basis) between solute in solution and in the nucleus (∆µ > 0,

for supersaturated solutions). The free energy surface, ∆G (r), resulting from Equation 1 has a

single stationary point occurring at a maximum in ∆G (for anisotropic nuclei, this will occur at a

saddle point as shown for 2D nucleation in Figure 8), yielding a critical-sized nucleus of radius rc,

given by

rc =
2γVM

∆µ
(2)
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The change in ∆G of the system at this stationary point is given by

∆Gc =
16
3

V 2
M

∆µ2
πγ3 =

4
3
πr2

cγ (3)

If a cluster is larger than this critical size it has a higher probability to grow than decay, below

it has a higher probability to decay. This indicates that nucleation (as predicted by CNT) is a

thermally activated process with a free energy barrier height of ∆Gc, which therefore occurs at a

rate given by

I = κ3D exp (−∆Gc/kBT ) (4)

where I is the nucleation rate which has dimensions number of nuclei/(volume-time), κ3D is a

kinetic pre-factor, kB is and T is temperature.13

As shown in Equation 2, the critical nucleus size is affected by surface energy, supersaturation

and nucleus shape. As the supersaturation increases and the system moves away from equilibrium

(∆µ ↑), the critical nucleus size will decrease. It is important to note that the shape and polymorph

of the nucleus (the latter of which impacts γ) must be specified a priori in using CNT to determine

rc and ∆Gc.

It cannot be assumed that the surface energy of a critical nucleus is identical to that of the

bulk solid, since critical-sized nuclei are small, O(1 nm), and their structures may differ from the

equilibrium bulk structures.14 This has been supported by recent simulations of NaCl15 and SF6.16

However, the magnitude of the deviation in surface energy between critical-sized nuclei and bulk

solids is not known. In addition to the differences in overall structure, the nucleus may have a

different shape than the final crystal, revealing different faces and their different surface energies.

Furthermore, the nucleus may even be spherical/elliptical in shape, in which case the concept

of faces does not apply. Since critical nuclei are small, no direct experimental surface energy

measurements on them have been made. This causes all theories and ideas about the correct

nucleus surface energy to remain experimentally unverified. In addition to the question of surface

energy, surface work terms, such as surface stress, may also need to be included for an accurate

theory of solid nucleation.17 Surface stress, though unimportant in fluid nucleation, may become

significant when the nucleus surface can experience strain.

In recent years, the theory of two step crystallization (also called two step nucleation) has

attracted attention. In two step crystallization, nucleation proceeds through a dense liquid (amor-

3



(a) (b) (c)

Figure 1: Two step nucleation of colloidal particles. Image (a) shows the initial liquid phase, (b)

shows the dense liquid nucleus created first, followed by (c) the crystalline nucleus forming in the

dense liquid.25

phous) step before ordering into the growth structure.18 This theory is supported by both sim-

ulations19–22 and experiments.23–25 Two step crystallization has been experimentally observed in

protein and colloidal systems and in simulations of MnO2. The two step progression from liquid

to crystalline nuclei observed in colloid experiments can be seen in Figure 1. Since CNT assumes

a single step, the evidence supporting two step crystallization raises the question of how to include

a multi-step process in nucleation theory.23

Experimental studies and simulations are being actively pursued in order to enable methods of

nucleus polymorph and shape prediction. However, nuclei are difficult to observe experimentally as

they are often indistinguishable from their parent solution due to their small size (O(100 particles))

and low concentration. Frenkel and coworkers26 estimated that for melt NaCl crystallization, a

single nucleus would form in a droplet of diameter O(3 µm) in O(10 s) which highlights the rarity

of nucleation in terms of experimental observation. Designing experiments to ensure that nuclei

are observed before significant growth has occurred remains a challenge.

These challenges have been overcome in large particle experiments where nucleation has been

directly observed.5,27 Colloids and globular proteins are large enough and nucleate slowly enough for

nucleation to be observed using techniques such as optical and atomic force microscopy (AFM). The

colloidal and protein nucleation experiments performed by Gasser et al.27 and Yau and Vekilov,5
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Figure 2: Atomic Force Microscopy (AFM) image (a) of a critical nucleus of apoferritin molecules

with molecules in nucleus shown in green and (b) a critical nucleus of poly(methyl methacrylate)

colloids with particles in the nucleus shown in red and particles with only one bond to the nucleus

shown in blue with reduced size for clarity. Images (a) and (b) were adapted from Yau and Vekilov5

and Gasser et al.,27 respectively.

respectively, found critical nuclei with 25-100 particles and non-spherical shapes, as shown in Figure

2. In both cases the internal structure of the critical nuclei corresponded to the thermodynamically

stable polymorphs.4 Small-angle neutron scattering techniques have also been used to observe

nucleation of polymer blends.28 The results of these experiments have provided new insights into

the nucleation process.

For small molecules, direct measurement and observation of nuclei is currently impossible.

Though limited by the small length and short time scales, indirect measurements of nucleation

can be made.29–32 Indirect methods include the observation of crystal particles after growth to

a larger size and characterization of the final crystal structure, with attempts made to keep the

nucleation rate low after initial nuclei formation. These methods can measure average nucleation

rates, induction time and the effects of experimental conditions on crystal structures.

The development of new computational techniques coupled with increases in computing power

have recently allowed for nucleation phenomena to be simulated. To date, most nucleation simu-

lations have been performed using model particles with simple pair-additive potentials.33–39 The

model particle studies performed by Browning et al.39 found critical nuclei similar to the protein
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Figure 3: Near critical size nuclei found in model particle simulations performed by Brown-

ing et al..39

and colloid experiments with sizes of ∼100 particles and non-spherical shape, shown in Figure 3.

In these simulations, the majority of the critical nucleus’s structure corresponded to that of the

stable polymorph; however, some percentage of the metastable polymorph was also found.

Nucleation simulations using interaction potentials based on small molecules have also been

performed. Simulations of amorphous silicon found critical nuclei containing 30-50 atoms (∼1.2

nm in diameter) with nearly spherical shape.40 critical-sized nuclei of N2 were found to contain

approximately 300 molecules.41 Faceted critical nuclei of similar size have been observed in melt

nucleation simulations of NaCl26 and SF6.16 A summary of selected critical nucleus sizes and shapes

is reported in Table 1.

Due to the time and size scale difficulties of simulating nucleation, pre-critical aggregates have

also been studied. Simulations of NaCl in water showed that the centers of stable aggregates had

non-hydrated sodium ions.42 Acetic acid aggregation in carbon tetrachloride solution was found

to proceed through dimer formation to oligomers to hydrogen bonded micelles.43 New simulation

techniques such as reaction coordinate calculation and transition path sampling44,45 may soon allow

for a more complete study of small molecule nucleation from solution.

The nucleation stage, wherein pre and post critical-sized clusters (∼(100-10,000) molecules and

∼10 nm in diameter) grow by aggregation, is now being actively explored using molecular dynamics

(MD), Monte Carlo (MC) and other simulation techniques. However, after a crystallite has grown

to a microscopic size on the order of millions of particles and ∼1000 nm, other methods of growth

have been observed. These methods are discussed in the remainder of this article. What occurs

during the transition between the nucleation and macroscopic growth stages is presently unknown.
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Table 1: Summary of selected critical nucleus sizes determined by experiment (apoferritin) and

simulations (SF6, NaCl, and Lennard-Jones particles). The general agreement between the different

systems and the decrease in critical nucleus size with increasing driving force can be seen.

System Driving Force Critical Nucleus Size Shape

(# particles or molecules)

Apoferritin5 43.7 4 quasi-planar

3.95 25 (faceted)

2.00 60

SF6
16 0.20 40 anisotropic

0.13 120 (faceted)

0.086 266

NaCl26 0.25 120 cubic

0.22 150 (faceted)

Lennard-Jones37 0.2 240 ellipsoidal

where Driving Force is C/Ceq − 1 for apoferritin and 1− T/Tmelt for remaining systems
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The methods that have been used to study nucleation are not sufficient to study this regime and

therefore new methods must be developed, which will surely give rise to a lively and dynamic

research area in the next decade.

3 Equilibrium and Growth Shapes

Equilibrium criteria for the interfaces dividing solids and fluid phases were developed by Gibbs.7

Wulff developed a geometric approach for determining the shapes of faceted crystals (at constant

temperature and pressure) with anisotropic surface free energies conforming to these criteria, known

as the Wulff construction.46,47 The work of formation of a solid polyhedron with volume V from a

fluid phase is given by the Gibbs-Thomson formula

∆G = −V ∆µ

VM
+

∑

i

γiAi (5)

where γi and Ai are the surface free energy and area of the ith facet, respectively.48 The equilibrium

shape occurs when
∑
i

γiAi is a minimum for fixed crystal volume, V , and can be determined from

∑

i

γi dAi = 0 (6)

The Wulff construction (which yields the equilibrium shape) is obtained by connecting the

exterior end points of vectors, with origins located at the center of the crystal, to planes with

angles perpendicular to them and magnitudes, Hi, proportional to their corresponding surface free

energies; resulting in48,49

γ1

H1
=

γ2

H2
= · · · = γi

Hi
(7)

While Gibbs was the first to develop the criteria for equilibrium crystal shapes; he recognized, as

footnoted in his collected works (page 325), that crystal shapes are usually determined by kinetics

rather than by thermodynamics alone.7

“On the whole it seems not improbable that the form of very minute crystals in

equilibrium with solvents is principally determined [...] by the condition that
∑

i γiAi

shall be a minimum for the volume of the crystal, [...] but as they grow larger (in

a solvent no more supersaturated than is necessary to make them grow at all), the

deposition of new matter on the different surfaces will be determined more by the
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nature (orientation) of the surfaces and less by their size and relations to the surrounding

surfaces. As a final result, a large crystal, thus formed, will generally be bounded by

those surfaces alone on which the deposit of new matter takes place least readily (i.e.,

the slow-growing faces) [....] But the relative development of the different kinds of sides

[...] will not be such as to make
∑

i γiAi a minimum.”†

In contrast to fluids, the resistance to deformations ubiquitous with solids requires that shape

changes occur through the deposition and removal of material at crystal faces. Therefore, the shapes

of growing crystals will be determined by the net rate of material incorporation into individual

surfaces rather than by their equilibrium shapes. If the net rate of material incorporation is

constant on each face, a crystal will evolve towards its steady state growth shape, at which point

growth proceeds in a self-similar manner. This steady state growth shape is generally not equivalent

to the equilibrium shape.

Analogous to the Wulff construction for predicting equilibrium shapes; the Frank-Chernov con-

dition50,51 can be used to predict steady state growth shapes for faceted crystals, provided the

crystallographic data and growth rates of the faces are known. Thus, the remaining sections of this

article (with the exception of §8) will focus on the development of theories, simulations and ex-

periments that have contributed to the elucidation of crystal growth kinetics. The Frank-Chernov

condition has the same form as the Wulff construction, with the exception that the shape is deter-

mined from the perpendicular growth rates of faces and not surface energies,

G1

H1
=

G2

H2
= · · · = Gi

Hi
(8)

where Gi is the perpendicular growth of the ith face. Additionally, methods to predict shape

evolution in both growth52,53 (discussed in §7) and dissolution53 have been developed.

The first approaches for predicting growth shapes were based solely on the structure and in-

teractions within the crystal. Bravais54 proposed a quantitative relationship for predicting crystal

shape based on crystal structure, which gained validity from the observations of Friedel.55 Bravais’

relationship is

Ghkl ∝ 1
dhkl

(9)

†The words in italics are ours and [...] indicate words that we left out for brevity and/or clarity.
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where Ghkl and dhkl are the perpendicular growth rate and interplanar spacing, respectively, of

the face specified by the index hkl. Donnay and Harker56 modified this approach by including

reductions in dhkl due to extinction conditions. These conditions are the same as those that cause

extinction in x-ray diffraction patterns. This model (referred to as the BFDH model) represents

the most easily implemented method for shape prediction, since it requires only a knowledge of the

crystallography of the crystal.

Later, the attachment energy model, developed by Hartman and Perdock,57,58 took into account

the energetics of crystal interactions in addition to the crystal geometry. They assumed that the

time needed for the formation of a bond decreases with increasing bond energy. Defining the

attachment energy, Eatt
hkl, as “the bond energy released when one building unit is attached to the

surface of a crystal face,” this assumption results in the perpendicular growth rates of a crystal

face increasing with increased attachment energy, yielding the relationship

Eatt
m > Eatt

n ⇒ Gm > Gn (10)

where m and n are the indices describing two different faces. For a crystal face the attachment

energy can be determined from

Elatt = Eslice
hkl + Eatt

hkl (11)

where Elatt is the total energy of intermolecular interactions per mole in a crystal and Eslice
hkl is the

energy of the intermolecular interactions contained within a layer of thickness dhkl.59 To obtain the

perpendicular growth rates from Equation 10, the assumption of linearity is often made,60 i.e.,

Ghkl ∝ Eatt
hkl (12)

Since its inception, the attachment energy model has been further modified61 and is used

extensively to predict crystal shape. In recent years, however, there has been a growing trend away

from the BFDH and attachment energy models towards higher fidelity mechanistic models. These

models appear to be more accurate and versatile.

4 Growth Processes

While the BFDH and attachment energy models can provide accurate predictions for vapor grown

crystals, they account only for the influence of solid-side energetics on crystal shape. In doing
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Figure 4: Schematic of step edges at 0 ◦K (a) and above 0 ◦K (b and c). The grey squares in (b)

represent kink sites separated by an average distance of x0. Image (c) is a schematic of layered

growth of the {hkl} face growing at a perpendicular growth rate, Ghkl, through the lateral spreading

of steps separated by an interstep distance, y, with a height, h, at a step velocity of v.

so, they ignore the influence of external factors on crystal growth such as solvent, additives and

supersaturation, which can impact their accuracy to varying degrees for solution crystallization.

An understanding of growth processes, namely the creation of kink sites and transport of material

to growing faces, is required to develop models that can account for these factors.

Kink sites are the positions on a crystal where molecules can most readily incorporate into

or detach from the lattice and appear as exposed trihedral corners (shown as grey squares in

Figure 4b). At a classical kink site, the adjacent molecule in the crystal is bound by half of the

possible intermolecular interactions for a molecule incorporated into the lattice,62,63 thus their

description as “half crystal positions”. The method by which kink sites are created on a crystal

face depends on solid-state factors and the state of the growth environment.

During growth of a crystal face from solution the following processes occur in series: (1) solute

molecules are transported from the bulk solution towards the face by convection and diffusion (2)

solute molecules and kink sites shed their surrounding solvent molecules (desolvate) and solute

molecules incorporate into kink sites and (3) the latent heat of crystallization is released and
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Figure 5: F, S and K faces for a crystal with 3 PBCs, shown in red.

transported to the crystal and solution. For clarity: process 1 is hereafter referred to as bulk

transport, process 2 is referred to as surface integration and process 3 is referred to as heat transport.

The growth rate of a crystal face is limited by the slowest of these processes.64,65 Kink sites are

created at a certain density on the face by processes occurring simultaneously with processes (1)-(3).

The density of kink sites is included as a contribution to the rate of surface integration.

One important description of the solid-state for a molecular crystal is its (non-covalent) bond

structure, which can be discussed using periodic bond chain (PBC) theory, proposed by Hartman

and Perdok.57 PBCs have been defined as a set of connections between growth units at their centers

of mass following only “strong” interactions with an overall periodicity [uvw] = ua + vb + wc,

(u, v, w ∈ Z) where a, b and c are the primitive lattice vectors co-incident with the unit cell

directions and Z consists of all positive and negative integers.60 Using PBC theory, faces can be

classified based on the number of coplanar PBCs they contain within a slice of thickness dhkl. If

a face contains at least two PBCs, it is stable and macroscopically flat (F face); if it has only one

PBC then it is stepped (S face) where each step can be readily kinked; if it has none, then it is

completely kinked and rough (K face). These faces are shown in Figure 5.

The mechanism by which a face grows can also depend on the state of the external environment,

specifically the supersaturation and temperature at the surface. In general, a face will grow by
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Figure 6: Growth mechanisms for a flat (F) face as a function of supersaturation. The solid line

is the growth rate. The short dashed lines are the growth rates if 2D nucleation is continued to

be dominant below its applicable supersaturation range. The long dashed line is the rate if spiral

growth was the persistent mechanism above its applicable supersaturation range.

whichever process (or combination of processes) provide the fastest growth rate for a given state

of the growth environment. While S and K faces grow by rough growth (described in §4.1) at all

states of the growth environment, F faces grow by a layered growth mechanism (described in §4.2)

until the state of the growth environment is above a roughening transition (described in §4.1). This

is shown schematically for F faces in Figure 6, which assumes that the growth rate is limited by the

rate of surface integration for all growth mechanisms. The transition between growth mechanisms

has been illustrated experimentally using in situ atomic force microscopy (AFM) by Land and De

Yoreo.66

4.1 Rough Growth

Some faces, such as the {111} faces of a Kossel crystal (the classic example of a K face, shown in

Figure 5) are composed almost entirely of kink sites. On these faces, molecules can incorporate into

the crystal regardless of their position and growth is typically limited by the transport of solute

molecules to the surface, resulting in growth rates given by:

GBT ∼ VM (C∞ − Ceq)
D
δd

(13)

where GBT is growth rate limited by the bulk transport of material to the surface, C∞ is the bulk

concentration of the solute in solution, Ceq is the equilibrium saturation concentration of the solute

in solution, D is the diffusion coefficient of the solute in the solvent and δd is the thickness of the

depletion boundary layer wherein the concentration deviates from the bulk. Equation 13 (derived in
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the Supplementary Material) assumes the solute concentration at the crystal face is maintained at

Ceq. Typical values for molecular organic crystals grown from solution in an industrial crystallizer

are VM (C∞ − Ceq) ≈ 0.005, D ≈ 10−5 cm2/s and δd ≈ O(1 µm), result in GBT ≈ O(5 µm/s)

which is ∼ (10− 100) times larger than typical growth rates for faces growing by a layered growth

mechanism. As a result of this large growth rate, rough faces are typically short lived in the

evolution of a crystal’s shape as they grow into edges or vertices.52 Needle shaped crystals are

an industrially-important exception; as rough faces are present on and responsible for the highly-

elongated steady state shape of needles.

F-faces will also grow by rough growth at supersaturations or temperatures beyond their kinetic

and thermodynamic roughening transitions, respectively. These roughening transitions have been

extensively studied and the reader is referred to Chernov67 for further discussion.

4.2 Layered Growth

For F faces below their roughening transitions, kink sites are found along edges that result from

either 2D nuclei forming or dislocations emerging on the surface. As growth units incorporate into

these kink sites the edges flow outwards from their sources; forming complete layers of the crystal

face. In a supersaturated solution, this process repeats, resulting in the perpendicular growth of

the face. Layered growth is a slower process than rough growth since the density of kink sites is

much lower on an F face than on a rough face.

According to theory developed by Frenkel68 and extended by Burton et al.,69 at 0 ◦K steps

will be as straight as geometrically possible; however at any higher temperature they will contain

kink sites (Figure 4a and b). If the kink sites along an edge are formed by thermal fluctuations

(in contrast to one dimensional nucleation, for more on this subject the reader is referred to Zhang

and Nancollas70 and Cuppen et al.71,72) and are located in their most probable configuration, they

will be Boltzmann distributed along the steps with the distance between kinks, x0, equal to

x0 = ae (1 + 1/2 exp (φkink/kBT )) (14)

where ae is the lattice spacing in the direction along the edge (Figure 4b) and φkink is the energy

(positive) required to form a kink.67 The energy to form a kink includes both solid-solid and

solid-solvent interactions.
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Layered growth occurs by either 2D nucleation and growth or spiral growth, depending on the

method of edge generation. In 2D nucleation and growth, 2D nuclei forming at the surface provide

edges; whereas, in spiral growth, screw dislocations at the surface are constant sources of edges.

4.2.1 Two-Dimensional Nucleation and Growth

Crystal faces grow by the formation of critical-sized 2D nuclei in the absence of surface terminating

screw dislocations or at supersaturations above which growth by 2D nuclei becomes faster than

spirals (a method for determining this point is described in §5.1.1). These nuclei form when

individual growth units (e.g., atoms, molecules, dimers) adsorb onto the crystal face, diffuse and

agglomerate. After a nucleus has grown larger than its critical size, it becomes thermodynamically

favorable for growth units to attach themselves to this nucleus. In a supersaturated solution, a

larger than critical-sized 2D nucleus will spread laterally across the face until it reaches a boundary,

which can be the edge of the crystal, the front of the layer beneath it or a growth front from another

nucleus (or spiral).

4.2.2 Spiral Growth

In the presence of screw dislocations, crystal faces grow by the spiral growth mechanism at super-

saturations lower than the value where 2D nucleation and growth is the dominant mechanism. In

spiral growth, screw dislocations terminating on a crystal face act as continuous sources of edges

(which will also be called steps in the discussion of this mechanism). At each dislocation an edge is

exposed to the solution. If its length is greater than a critical value, lc, and the solution is supersat-

urated at the surface, there will be a net incorporation of growth units into kink sites distributed

along the edge. This incorporation causes the migration of the initial step in its outward normal

direction. As the step moves it exposes another edge to the solution. This new step is pinned at

the point where the dislocation emerged on the surface. The angle between steps is determined

by the bond structure of the face. Once this newly exposed step has reached its critical length;

it grows in its outward normal direction and the process repeats forming a spiral. The number

of sides contained in the spiral is determined by the bond structure of the face and the velocities

and critical lengths of the spiral sides. In a supersaturated solution the steps will continue to flow

outwards until they encounter a boundary, which can be a step from another spiral or 2D nucleus,
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Figure 7: Top (a) and perspective (b) view schematics of the first revolution of a square spiral. The

steps on this spiral obey the conditions: (i) vi = 0 for l < lc and vi = v∞,i for l > lc, (ii) vi = vj

and (iii) lc,i = lc,j , resulting in interstep distances yi = 4lc.

the step located a layer below it or the edge of the face; and new steps will continually be generated

at the dislocation. The process of spiral growth is illustrated in Figure 7.

5 Obtaining Shapes from Mechanistic Models, Simulations and

Experiments

Crystal shape engineering, which can be defined as the ability to design processes through the

modification of the crystallization environment to obtain desired crystal shapes, has benefited

from the development of mechanistic models, computer simulations and experiments investigating
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crystal growth processes. These approaches, which have been used to obtain/predict crystal growth

kinetics, have relied on each other in their development and will continue to do so.

5.1 Mechanistic Crystal Growth Models

Mechanistic growth models predict growth rates for crystal faces by accounting for surface integra-

tion kinetics. These models are useful for regimes where growth is limited by (1) surface integration

alone, or by (2) both bulk transport and surface integration. For most molecular organic crystals

grown from solution in an industrial crystallizer, this regime encompasses the states of the growth

environment for which F faces grow by spirals, as will be shown in §5.1.2. However, when growth

is limited by bulk transport, the growth rate of the face is given by Equation 13 regardless of

the growth mechanism. Mechanistic growth models are attractive for future development since

they provide the ability to account for the influence of surface structure and external conditions

(supersaturation, solvent, additives, etc.) on crystal growth rates in a physically realistic manner.

5.1.1 Modeling Two-dimensional Nucleation and Growth

Two-dimensional nucleation and growth models were the first mechanistic models used to describe

crystal growth.62,63,73 The principle thesis of these models is that otherwise perfectly flat crystal

faces grow by the formation of critical-sized 2D nuclei and their subsequent lateral growth. The

growth rate of a crystal face growing by this mechanism is dependent upon the size of nuclei formed

and their rates of formation and lateral spreading.

Classical nucleation theory has been used elsewhere to derive the change in free energy associated

with the creation of critical-sized 2D nuclei of different shapes.67,69,74,75 A critical-sized 2D nucleus

is an entity that exists in an unstable equilibrium with the system, occurring at a maximum or

saddle point on the free energy landscape. As with 3D nucleation, growth of sub-critical-sized 2D

nuclei occurs at an energetic expense while decay is an energetically favorable process. Conversely,

the growth of larger than critically-sized 2D nuclei is energetically favorable, whilst their decay

occurs at an energetic expense.

When the surface energy is isotropic on a face, disc-shaped nuclei are expected to form. The

expressions for ∆G, rc and ∆Gc are similar to Equations 1-3, except appropriately modified for 2-

dimensions.75 Interfacial energies along different directions on the faces of most molecular crystals
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are anisotropic, resulting in the formation of non-circular 2D nuclei. A parallelogram shaped

2D nucleus with anisotropic interfacial energies, γedge,1 = γedge,3 6= γedge,2 = γedge,4, is shown in

Figure 8a. For this case, ∆G is given by

∆G = h

(
2 (l1γedge,1 + l2γedge,2)− (l1l2) sin (ξ)

VM
∆µ

)
(15)

where ξ is the angle between sides 1 and 2, and l1 and l2 are the lengths of sides 1 and 2, respectively.

In this case, the critical-sized nucleus occurs at a saddle point in the free energy landscape, shown

in Figure 8b and the critical lengths are given by

l1,c =
2VMγedge,2

sin (ξ)∆µ
(16)

and

l2,c =
2VMγedge,1

sin (ξ)∆µ
(17)

The shape of the critical nucleus is equal to the equilibrium shape, as it agrees with the Wulff

construction (i.e., l1,cγedge,1 = l2,cγedge,2 or γedge,1

H1
= γedge,2

H2
where H1 = l2,c

2 sin (ξ) and H2 =
l1,c

2 sin (ξ)). The resulting free energy of formation of the critical-sized nucleus is given by

∆Gc =
4VMh

sin (ξ)∆µ
γedge,1γedge,2 (18)

As with 3D nucleation (treated in §2), 2D nucleation is a thermally activated process with a

free energy barrier height of ∆Gc. Thus, nucleation rates, I, in units of nuclei/(area time) will be

given by

I = κ2D exp (−∆Gc/kBT ) (19)

where κ2D is a kinetic pre-factor. Ohara and Reid74 determined κ2D, obtaining

I =
2v̄n2

1

π

(
VMσ

NAh

)1/2

exp (−∆Gc/kBT ) (20)

where v̄ is the speed of a molecule striking a nucleus, n1 is the concentration of unbound growth

units on the surface, σ ≡ ∆µ/RT and NA is Avogadro’s number.

The ratio of the rates of lateral spreading to the formation of critical-sized nuclei determines

the specific 2D nucleation and growth model that can be applied to characterize the growth of

a crystal face. At relatively slow though non-negligible rates of lateral spreading, the birth and

spread model can be applied. The assumptions used in this model are: (1) no intergrowth between
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Figure 8: Geometry (a) and Gibbs free energy surface (b) for an anisotropic parallelogram-shaped

2D nucleus. The lines are contours or equal ∆G and the dot is the position of a critical-sized 2D

nucleus, which occurs at a saddle point in the surface.
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Table 2: Edge energies and minimum values of α for observed growth by 2D nucleation for various

compounds, adapted from Land and De Yoreo66 and De Yoreo and Vekilov.77

Molecule
Atoms per h γedge γedgeah α for

Nc
Molecule (nm) (erg/cm2) (erg) 2D nucleation

CaCO3 5 0.31 675 1.3×10−12 20.1 < 600

KDP (101) 8 0.51 20 4.2×10−14 1.1 650

Thaumatin 1,552 5.5 0.4 1.3×10−13 1.2 800

Canavalin 10,660 7.4 2 1.2×10−12 12.2 800

Catalase 16,436 11.7 0.32 5.2×10−13 2.5 < 2000

where Nc refers to the number of molecules in a critical nucleus and a is a unit cell dimension

nuclei, (2) the lateral spreading rate is constant and independent of direction, and (3) nuclei can

be formed anywhere (i.e., on top of complete or incomplete layers). Ohara and Reid74 determined

the resulting growth rate for this model to be

G = hv2/3I1/3 (21)

where v is the rate of lateral spreading (methods for determining v are given in §5.1.3). Cuppen

et al.76 provide a detailed analysis of the birth and spread model for the case of directionally

dependent rates of lateral spreading.

In order to obtain realistic growth rates for faces growing by this mechanism (G & 0.1 nm/s),

Equation 20 limits the range of ∆Gc to small orders of magnitude (which implies large ∆µ or

small γedge/RT ) as larger values of ∆Gc result in insignificant nucleation rates. Land and De

Yoreo66 report the lowest values of σ at which growth by 2D nucleation was observed experimentally

for various compounds, which are reproduced (in terms of α ≡ C
Ceq

) in Table 2. The apparent

correlation between normalized edge energy and the onset of 2D nucleation and growth as the

dominant growth mechanism is shown in Figure 9. When small organic molecules are crystallized

by cooling, the upper limit on supersaturation is normally C
Ceq

. 1.65 and the lower limit on

γedgeah & 0.01 × 10−12 erg, shown in the grey region in Figure 9. It is expected, therefore, that

most F faces on organic crystals grown in a cooled environment will grow by the spiral mechanism.
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Figure 9: Relationship between the onset of 2D nucleation and normalized edge energy adapted

from Land and De Yoreo66 (see Table 2). The grey region highlights an estimated region for

crystallization of molecular organics from solution.

5.1.2 Modeling Spiral Growth

In 1931, Volmer and Schultze78 observed the growth of iodine crystals at α ∼ 1.01; which is far

below the minimum supersaturation predicted for growth to occur by the 2D nucleation and growth

mechanism. This study demonstrated the need for an alternative mechanism to explain layered

growth at low supersaturations. This alternative came in the form of the spiral growth mechanism

proposed by Frank which was based on the creation of renewable sources of steps at the emergence

of screw dislocations on crystal faces.79 Working with Burton and Cabrera, this mechanism was

further developed and published in their landmark paper.69 The model developed in that paper to

describe the growth of crystal faces by a spiral mechanism is referred to as the BCF model.

This model results in a relationship between the perpendicular growth rate of the hkl face, the

step velocity and geometry of the face, given by

Ghkl =
(

vih

yi

)

hkl

(22)

where vi and yi are the step velocity and interstep distance for the ith edge, respectively. The step

height, hhkl, is typically equivalent to the interplanar spacing in the direction normal to the face

or a fractional (< 1) multiple thereof, depending on the growth unit. Equation 22 can also be
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re-written in terms of the characteristic rotation time, τ , as

Ghkl =
(

h

τ

)

hkl

(23)

where τ is the time it takes for the first turn of the spiral to complete a single revolution. Therefore,

each time the spiral completes a revolution the perpendicular distance of the face from the center

of the crystal is increased by an amount hhkl. Methods for predicting relative τ for F faces, based

on spiral geometries and step velocities are developed by Snyder and Doherty.80

5.1.3 Step Velocities

Step velocities can be determined from a detailed mass balance at the step front (see De Yoreo

and Vekilov77 or §3.2.1 of Markov81 for details) when growth is limited by surface integration.

Assuming the concentration of solute at the surface is equivalent to that of the bulk (i.e., Cs = C∞,

δd → 0), the resulting velocity for the ith step in the surface integration limit is given by

vi = VM (C∞ − Ceq) ap,iρk,iν̄ exp
(
−∆U

RT

)
(24)

where ap,i is the distance the ith step propagates by the addition of a row of molecules, ν̄ is

a frequency factor, ∆U is the energy barrier for incorporation (which can be approximated by

the desolvation enthalpy) and ρk,i is the kink density along the ith step given by ρk,i = ae,i/x0,i

where ae,i is the distance along the step that a single growth unit occupies and x0,i is given by

Equation 14. Equation 24 is typically expressed in terms of the step kinetic coefficient, βi, defined

by βi ≡ ap,iρk,iν̄ exp
(−∆U

RT

)
, resulting in

vi = VM (C∞ − Ceq) βi (25)

Combining Equations 25 and 22 results in a growth rate by spirals for the hkl face in the surface

integration limit (denoted by the subscript SI) given by

GSI,hkl = VM (C∞ − Ceq) (hβi/yi)hkl (26)

Doherty and co-workers75,82 have applied the surface integration limit to predict the relative

face growth rates for solution grown molecular organic crystals. Since only relative growth rates

are required for shape predictions, the isotropic terms in Equation 24 (terms without subscript i),
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Table 3: Typical values for molecular organic crystals, used to estimate β and v.

VM (C∞ − Ceq) ρk ap h ν̄ ∆U

(Å) (Å) (Hz) (kcal/mol)

0.005 0.05 5 5 1013 7.5

do not need to be determined.82 Under these conditions, the predicted relative velocity of a step

in the ith direction is given by:

v∞,i ∼ ap,i

(
ae

x0

)

i

∼ ap,i

1 + 1/2 exp (φkink,i/RT )
(27)

Kink energy is therefore a key anisotropic physical property in a morphology prediction. Thus,

methods have been developed for calculating kink energy, including contributions from both solid

and solution phases.75,82–84

Typical values for molecular organic crystals of the parameters in Equations 24-27 are listed in

Table 3. These values can be used to provide order of magnitude estimates for β and v resulting

in β = O(1, 000 µm/s), v = O(5 µm/s) when surface integration is rate limiting. Assuming

h = 5 Å and y = O(100 nm) results in GSI = O(25 nm/s), which is in agrement with the values

determined for growth of F faces on a paracetamol crystal from aqueous solutions.85,86

The Damköhler number, Da, which can be used to determine whether growth on a face is

limited by surface integration or bulk transport, is obtained by forming the ratio of the growth

rates from Equations 26 and 13

Da ≡ GSI,hkl

GBT,hkl
=

(hβi/yi)hkl

D/δd,hkl
(28)

For Da ¿ 1, GBT À GSI,hkl and the growth is surface integration limited (with the rate given by

Equation 26); conversely for Da À 1, GBT ¿ GSI,hkl and the growth rate is bulk transport limited

(with the rate given by Equation 13).

Using the estimate for β, obtained for small molecule molecular organic crystals, and assuming

y = O(100 nm), D = 10−5 cm2/s and δd = 10 µm yields Da = O(0.05). Thus indicating that

in the supersaturation regime where spiral growth is the dominant mechanism for most molecular

organics grown in an industrial crystallizer (or in any crystallizer where δd ≤ O(10 µm)), growth

will be limited by the kinetics of surface integration processes. Vekilov and Alexander87

performed a similar analysis for protein crystals grown in a natural convection environment (where
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it was assumed that δd = 300 µm) and obtained Da ranging from 0.05 for lysozyme to 1.2 for

satellite tobacco mosaic virus.

5.1.4 Step Velocity Profiles and Interstep Distances

The step velocity profile (relationship between edge length, l, and step velocity) for a polygonized

spiral has typically been modeled by one of two limiting cases; the thermodynamic case (using the

Gibbs-Thomson relationship) or the profile proposed by Voronkov.88 The Gibbs-Thomson relation-

ship predicts89:

v (l) =





0 l ≤ lc

v∞
(
1− eσ(lc/l)−1

eσ−1

)
l > lc



 (29)

which for low supersaturation reduces to the commonly used form:

v (l) =





0 l ≤ lc

v∞ (1− lc/l) l > lc



 (30)

Though the Voronkov88 profile was developed for low supersaturations, it has been experimentally

shown to apply at larger values of σ than one might expect. This profile is given by;

v (l) =





0 l ≤ lc

v∞ l > lc



 (31)

The velocity profiles (Equations 29 and 31) approach each other as supersaturation increases. The

effects of different velocity profiles on growth rates were first discussed by Burton et al..69 Recently

Chernov90,91 has examined the validity of Equations 30 and 31 in light of in situ AFM observations

of growing steps on various materials.89,92,93 Observations of step velocities for calcite performed

by Teng et al.89 are reproduced here in Figure 10a. As shown in the figure, the velocity profile is

independent of supersaturation, which is in disagreement with velocity profile predicted using the

Gibbs-Thomson relationship (Equation 29).

Interstep distances can be determined from the geometries (including angles and critical lengths)

and velocities (including velocity profiles) of a spiral’s steps.80 In doing so, Burton et al.69 assumed

a round Archimedean spiral comprised of steps with velocity profiles consistent with Equation 30.

Applying these assumptions they found y = 4πrc for their calculation of interstep distance, where

rc is the critical radius of a disk-shaped 2D nucleus. Cabrera and Levine94 determined y = 19rc
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Figure 10: The velocity profile at different supersaturations (a) and the relation between supersat-

uration and y (b) for calcite, adapted from Teng et al..89 In (a) the symbols are experimental data

taken with σ in the range from 0.346 to 0.826. In (b) the circles are experimental data and the

crosses are the y ' 9.5 lc prediction.

for similar spirals; this relationship was used by Liu et al.83 for crystal shape predictions and is

commonly cited throughout the literature. Since rc ∼ σ−1, y ∼ σ−1 using either the Burton et

al.69 or the Cabrera and Levine94 prediction.

Teng et al.89 and Chernov91 discuss the effect of the velocity profile on isotropic square spirals.

For square spirals with step velocity profiles conforming to Voronkov’s profile (Equation 31), y = 4lc

(see Figure 7), whereas square spirals with step velocity profiles that conform to Equation 30, result

in y ' 9.5lc. In situ AFM observations of calcite growth89 have demonstrated steps advancing with

y ∼ σ−1 (Figure 10b) and y ≈ 4lc indicating the usefulness of Voronkov’s88 relationship. Assuming

square spirals that obey Equation 31, interstep distances will range from y = O(100 − 1, 000) nm

for γedge = 25− 100 erg/cm2, VM = 150 cm3/mol and σ = (0.01− 0.1).

5.2 Crystal Simulations

Simulation techniques are also valuable tools for use in crystal growth modeling. Some of the earliest

simulation results for crystal growth were those of Gilmer and Bennema, where the dynamics and
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transition probabilities of surface diffusion in crystal growth were determined for the (100) face of a

Kossel crystal.95 Since that time, simulation techniques including Monte Carlo, kinetic Monte Carlo

and molecular dynamics simulations have been applied to crystal growth for a variety of molecules.

See the reviews of Rohl96 and van der Eerden97 for the development of simulation techniques.

More recently, several groups have continued to advance the field of crystal growth via simulations.

The Meekes group has continued to evolve their Monte Carlo algorithm to include more complex

and generic systems such as fats.98 Gilmer continues to develop crystal growth simulations using

a lattice Monte Carlo approach, most recently for a high explosive pentaerythritol tetranitrate

(PETN).99 Additionally, Piana et al. have developed a kinetic Monte Carlo scheme and have

applied it to the growth of urea crystals from water.100 A similar scheme was followed by Anderson

et al.101 to predict the shape of hydrothermally synthesized zeolite A crystals. These simulation

techniques have both advantages and drawbacks compared to the modeling methods described in

§5.1 for problems ranging from fundamental discovery to product and process development.

Molecular dynamics simulations can be extremely useful in determining the fundamental mech-

anisms and movements of molecules as they incorporate into the crystal. The difficulty in applying

these molecular dynamics schemes to crystal growth is the disparity in the relevant time and length

scales between processes. For example, considering a molecular crystal surface of O(1000) mole-

cules O(10 by 10) nm, a molecular dynamics simulation of 1 ns would take about O(10) hours of

single processor computation time. Kinetic Monte Carlo (KMC) schemes can allow for calculations

on more realistic time and length scales (micron size crystals in O(10) hours of computation time);

however, in order to implement these schemes the Monte Carlo moves need to be defined. These

moves are often determined using underlying molecular dynamics schemes99,100 or other move de-

termining methods which require previous knowledge or good intuition about the specific system.

Thus, in order for calculations to be performed over a range of conditions (i.e., multiple solvents),

the MD and KMC codes must be rerun. It is this set of challenges of time scales that limits the

ability to interlink simulation methods into process and product design methodologies. Simulation

techniques, however, are excellent tools for discovering the underlying physics and solid state chem-

istry of the processes that occur during crystal growth. The insight gained can be used to improve

the fidelity of mechanistic models described in § 5.1.
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5.3 Experiments

A variety of microscopy techniques have been used to investigate crystallization phenomena. A

summary of these techniques adapted from102 is given in Table 4.

Optical microscopy is a commonly used technique to characterize the morphology of crystals

& 1 µm both in situ and ex situ. It is often the first microscopy technique used to characterize

a crystallization product. A number of temperature controlled flow cell investigations have been

performed in situ to determine the growth shapes of various small molecule molecular organic

crystals.103–105 The kinetics of polymorphic phase transformations in drug solutions have been

studied in situ using a quiescent thermostated batch crystallizer placed under an optical microscope

by Veesler et al..106 While the spatial resolution of optical microscopy is limited by the wavelength

of light, it offers the ability to image growth processes in situ at the length scale equivalent to that

of crystal faces.

Interferometry provides the ability to measure the steepness of the surface and face growth (or

dissolution) rates simultaneously. Interferometry provides a higher vertical resolution (∼ 1 nm)107

than optical microscopy, allows for faster growth rates and can be used to study larger areas than

in situ AFM.108 However, the technique is limited by relatively poor (∼ 1 µm) lateral resolution

making it unable to resolve individual steps.108,109 Interferometric studies have been performed on a

number of macromolecular crystals,87,110 KH2PO4 (ADP)111,112 and small molecule organic crystals

such as paracetamol,85 amongst others. Unique to interferometry is the ability to observe solute

concentration iso-contours near crystal surfaces. These observations allow for the determination of

depletion boundary layer thicknesses.112

Investigations into solution crystal growth are limited to ex situ observations when using any

of the various electron microscopy techniques as they are all operated under vacuum. Electron mi-

croscopy (specifically scanning electron microscopy) has traditionally been used to determine crystal

shapes. However, modern field emission scanning electron microscopes (FE-SEM) can use low ac-

celerating voltages (∼0.5-1.5 kV) that enable the study of surface topography on non-conducting

materials. Low accelerating voltage FE-SEM studies have provided clear images of growth terraces

and spirals on faces of zeolite and zeo-type materials.113–115 These studies have been important in

determining growth mechanisms for these systems.114–116

Atomic force microscopy has been used to characterize the surface microstructure of a variety of
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Table 4: Microscopy techniques used to determine crystallization kinetics and growth mechanisms.

Technique Information Obtained

Optical Microscopy - applied for in situ or ex situ characterizations of morphology

- characterize additive/solvent interactions with specific faces

- identify growth mechanisms (layered or rough)

- measure crystal face growth rates

- monitor shape evolution and polymorph transformations

Interferometry - applied for in situ examination of morphology and surface

steepness

- simultaneously measure step velocities and face growth rates

- identify growth mechanisms (layered or rough)

- determine solute concentration iso-contours and depletion

boundary layer thicknesses

Electron Microscopy - applied for ex situ examination of morphology and surface

topography

- characterize shape and additive/solvent interactions with specific

faces

- identify growth mechanisms (spirals, 2D nuclei or rough)

Atomic Force Microscopy - applied for in situ or ex situ characterizations of surface

topography

- characterize additive/solvent interactions with specific faces

- identify growth mechanisms (spirals, 2D nuclei or rough)

- determine step kinetic coefficients

- determine kink densities (macromolecular systems)
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different crystalline systems including: ionic crystals,89,108,117–123 porous materials,101,114,116,124–127

macromolecules and proteins128–130 and small molecule organics.131–134 Atomic force microscopy

provides the ability to image crystal growth and dissolution processes in situ at nanometer-scale

resolutions. This ability has been used to investigate several fundamental aspects of crystal growth

including: methods of kink formation,135–138 step velocity profiles,89 the transition between growth

mechanisms66 and the effects of additives and impurities.121–123,131,132,139 AFM has also been used

to distinguish between polymorphs for pharmaceutical compounds140 and to observe nucleation in

proteins.5

6 Solvents, Impurities and Additives

The importance of solvent selection in a crystallization process can be traced to the fact that the

nature of the solvent-solute interactions at the crystal surface greatly influence the ultimate shape

of the crystal. Wells drew attention to these phenomena by citing solvent effects on the crystal

shapes of iodoform and anthranilic acid141 and resorcinol141,142 (see also Davey et al.143 for more

on resorcinol). The crux of the matter is that a given crystallographic orientation on a crystal

exposes a particular set of atoms of the solute molecule, so different orientations therefore have

varying affinities for the solvent; these varying affinities impart different growth rates to the crystal

faces and thus influence the shape. Other examples of such behavior are abundant in the literature.

For instance, Davey et al.144 demonstrated that succinic acid grown from water resembles a flat,

diamond-like plate and exhibits large {001} basal planes bounded by {110} side faces, while succinic

acid grown from isopropanol resembles an elongated hexagon with {001} basal planes and bounded

by the {110} and {010} side faces. Gordon and Amin145 disclosed that ibuprofen grown out of

more polar solvents such as methanol or isopropanol yield crystals with a more equant aspect

ratio, whereas ibuprofen crystals grown out of hexane yield much more elongated crystals. Finally,

Davey146 and Lahav and Leiserowitz147 have reviewed several other examples of solvent-influenced

crystal shapes and discuss mechanisms related to the solvent effect.

It is also well known that foreign molecules (additives or impurities) influence the growth shape

of crystals. These molecules can be divided into three categories: tailor made additives, small

molecule additives and macromolecules. Small molecule additives include surfactants and fatty

acids. Assuming the crystallizing solute has a molecular weight no more than 200-500 atomic mass
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units, a macromolecular additive or impurity could be a protein, polymer or peptide. An important

type of molecular impurity or additive is one which is structurally related to the solute, sometimes

referred to as being “tailor-made.” As the name suggests, a tailor-made additive is a molecule that

is practically identical to the crystallizing solute molecule; these types of additives are relevant

to crystallization as they often occur as reaction by-products formed during the synthesis of the

solute. There are many reports in the literature that describe the effect of additives or impurities

on the shape or growth of crystals, both organic and inorganic.123,148–151 Sections 6.1 - 6.3 describe

some of these experiments, as well as past modeling efforts.

6.1 “Tailor-Made” Additives

Weissbuch et al.152 demonstrated that chiral molecules can be directly assigned an absolute con-

figuration (levorotary “L” or dextrorotary “D”) based on changes they caused to the morphology

of a crystal composed of a prochiral molecule (i.e., an achiral molecule that can be converted to

a chiral molecule in a single step) as the crystal is grown in the presence of either resolved or

racemic molecular additives. In particular, the α polymorph of glycine (H+
3 NCH2COO−), when

crystallized out of water, normally exhibits a coffin shape whose basal planes are the {010} family

(i.e., the (010) and (01̄0) planes); the glycine molecules on these planes are related by a center

of inversion. Ultimately, these researchers observed that if D-alanine (CH3CH(NH2)COOH) was

present in solution during crystallization, the α-glycine crystal possessed a much larger (010) plane

as compared to the (01̄0) face; in contrast, the crystal possessed a large (01̄0) face if L-alanine were

in solution. Their results are shown in Figure 11a-c. The effects of the D- and L-alanine on crystal

shape were so pronounced that the researchers were able to assign their absolute chirality.

A U.S. Patent by Klug and van Mil154 described the effect of properly chosen additives on the

purity of adipic acid as it crystallized from water. They employed both surfactants and tailor-made

additives and observed that certain additives caused a change in the normal shape of adipic acid

such that crystals with the altered shape exhibited improved purity with respect to the uptake of

other structurally related molecules. In particular, the authors observed that when adipic acid,

whose steady state convex hull is bounded by the (dominant) {100}, {001}, and {011} forms, was

crystallized from water in the presence of an amount on the order of 1 wt.% (solvent-free basis)

of any of glutaric acid (HOOC(CH2)3COOH), succinic acid (HOOC(CH2)2COOH), maleic acid
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Figure 11: Growth shapes of crystals of α-glycine (a-c)152 and adipic acid (d-f)153 as influenced by

additives.
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(cis-HOOC(CH)2COOH) or fumaric acid (trans-HOOC(CH)2COOH). The resultant crystals were

hardly distinguishable from the native crystal; that is, the {100} form still comprised most of the

total area. However, when 3 wt.% (solvent-free basis) of caproic acid (CH3(CH2)4COOH) was

present, the adipic acid crystals exhibited a shape where the {001} form dominated. Klug and van

Mil proposed that caproic acid, and no other additive, was incorporated into the {001} face and

interfered with the subsequent addition of adipic acid molecules; moreover, they also observed a

simultaneous reduction in the uptake of the other molecules.

These experiments demonstrate that both tailor-made additives or impurities can have a signif-

icant impact on shape, which arises from the specificity of interaction between the crystal’s surfaces

and the additive or impurity. The specificity ultimately arises out of the high degree of similarity

between the solute molecule and the tailor-made additive or impurity. Additionally, shape is seen

to be important to the most basic purpose of crystallization: separation of a particular species.

Therefore purity of the crystallized solute is important, and a well-chosen additive can alter the

shape so as to prohibit uptake of structurally-related impurities.

6.2 Macromolecules

Michaels and Colville155 presented results from a systematic study on the morphology change ex-

erted by two surfactants, anionic sodium dodecylbenzene sulfonate (SDBS) and cationic trimethyl-

dodecylammonium chloride (TMDAC), on adipic acid as it was crystallized from water. The authors

observed that when adipic acid was grown in the presence of 50 ppm SDBS, the {001} and {011}
forms became increasingly dominant over the {100} form. At higher concentrations of SDBS (500

ppm), the {100} form had almost disappeared and the crystals resembled thin rods or needles with

{001} and {011} side faces. On the other hand, when adipic acid was grown with 96 ppm TMDAC

the {100} form became larger at the expense of the other forms. The authors determined that

both SDBS and TMDAC reduced the growth rate of all forms, but the surfactants’ effects on the

different forms were anisotropic. Indeed, the measured growth rates revealed that TMDAC was

much more effective in reducing the growth rate of the {100} form as compared to either {011} or

{001}. Michaels and Tausch153 performed similar experiments, the results of which are reproduced

here in Figure 11(d-f).

Another example of the effect of macromolecules on crystal growth has been observed in na-
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ture: Antarctic fish are able to survive in waters where temperatures fall as much as 1◦C below

the equilibrium freezing point of their body’s fluids. Ice crystals are abundant in the waters at

these temperatures. DeVries156 and Raymond and DeVries157 demonstrate that these fish have

glycoproteins and serum proteins which prevent the growth of ice crystals in their blood. Unlike

NaCl, these “antifreeze” proteins do not lower the freezing point through a colligative effect, as

evidenced by the fact that the melting point of ice crystals in the fishes’ blood serum is virtually

unchanged. Rather, the proteins preferentially adsorb to nascent ice crystals and disrupt growth.

6.3 Modeling Impurity and Additive Effects

Cabrera and Vermilyea158 advanced the idea that flowing steps could be stopped by additives

which adsorb to a crystal surface and remain immobile (the term immobile is relative; more specif-

ically, the additive must have an adsorption lifetime much longer than some characteristic time for

growth). Their hypothesis was that flowing steps would be forced to percolate through a collection

of additives; as the edge encountered the immobile additive, the edge would be “pinned” at the

point of contact and a segment of edge between two additives would begin to curve as growth

proceeded. If the spacing between the additives parallel to the edge direction was less than some

critical length lc (see §5.1.1), the steps would be partitioned into sections of less-than-critical length

and growth would be arrested. If the additives were spaced a distance greater than lc, the step

would pass between the additives and continue to grow; however, due to its curvature the edge

would experience a decrease in the driving force for growth resulting in a diminished velocity. As

shown in §5.1.1 the critical radius of a 2-dimensional nucleus rc ∼ σ−1. Therefore, one consequence

of Cabrera and Vermilyea’s model is that there will be some critical supersaturation σ∗ > 0 be-

low which growth cannot occur (sometimes called a “dead zone”). Physically this means that by

decreasing the supersaturation to some non-zero value, σ∗, the critical length becomes larger than

the spacing between the additives, and growth is arrested. Several accounts in the literature report

observation132,159 of this effect.

Some additives may have adsorption lifetimes comparable to or shorter than the characteristic

time for surface growth; in these cases, the above model does not hold. Because the velocity

of a step is directly proportional to its kink density (Equation 27), a natural alternative is to

consider the possibility that additives adsorb into kink sites and reduce their effective density. An
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equivalent statement is to consider that the additives increase the average distance between effective

kink sites along an edge. Chernov160 and Cabrera and Coleman161 developed such an expression

for a crystal growing from a vapor phase with additive partial pressure, Pp, by considering the

relative equilibrium probabilities of finding each of the following along an edge: a straight segment,

a kinked segment, a straight segment with an adsorbed additive, and an additive adsorbed at a

kink site. If step velocity is proportional to kink density, (see §5.1.3) as given by Equation 27,

then the (poisoned) kink density must relax to its equilibrium value on a timescale much shorter

than some characteristic timescale for growth of the edge. Physically this leads to the requirement

that 1-dimensional particle exchange along the edge is much faster than 2 or 3-dimensional mass

transport between the edge and the adlayer and/or the bulk phase.

Clydesdale et al.162,163 extended the attachment energy model (see §3) of crystal shape pre-

diction57,164 by considering the effects of tailor-made additives on the attachment energies. Their

approach was to “map” the atomic coordinates of a tailor-made additive molecule onto those of a

host or solute molecule and calculate slice and attachment energies, both when the imposter was

within and external to a particular layer. Modified attachment energies were implemented in a

shape model to yield shapes different from those predicted by the native model. The researchers

employed a quantity developed by Berkovitch-Yellin165 called the “binding energy”, ∆b, which

allowed them to determine which faces would favorably receive imposter molecules. The binding

energy compares the energies of a host molecule after being bound up in a layer, Eslice, and subse-

quent attachment of the layer to a substrate, Eatt(−), to those of an imposter molecule bound up

in the same layer, E′
slice, and subsequent attachment of the layer to a substrate, E′

att(−). Defining

∆b ≡ E′
slice + E′

att(−) −
(
Eslice + Eatt(−)

)
, values of ∆b > 0 imply unfavorable imposter binding,

values of ∆b < 0 imply favorable imposter binding, and values of ∆b = 0 imply indifferent imposter

binding.

The step-pinning model of Cabrera and Vermilyea158 and the kink density reduction model of

Chernov160 and Cabrera and Coleman161 address the problem of predicting the effect of additives

or impurities on crystal growth by considering which mechanisms must be at work. In the case of

the step-pinning model, one must know the extent to which additives or impurities have adsorbed

on a crystal face. The kink density reduction model requires estimating the chemical potential

of the additive or impurity in a kink site. The modified attachment energy model of Clydesdale
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et al.,162,163 though helpful for characterizing crystal faces with respect to their ability to receive

tailor-made additives or impurities in a heuristic fashion, does little to elucidate exactly how the

growth rate of a face is reduced. A common approach to modeling the effects of additives or

impurities is to assume a mechanism such as the ones described above, assume a form of an

adsorption isotherm, perform experiments and then regress the data in order to estimate all the

unknown parameters in the model equations. While this approach may correlate the measured

data in a satisfactory manner, it is unlikely to result in a predictive methodology. A first-principles

model is more desirable, which would predict everything, from the level of surface adsorption of

the additives or impurities to the reduced growth rate and also account for any kind of growth-

reduction mechanism. Such a model can only spring from an understanding of the processes that

govern the movements of molecules in and out of the surface during crystallization.

7 Crystal Shape Evolution Model

Whether growing from a pure solution or in the presence of additives or impurities, crystals can

eventually reach a steady state shape; that is, the shape of the crystal has the property of being

self-similar, even as it continues to grow. However, in a crystallizer, crystals do not all necessarily

reach their steady state shape, nor does the shape of a crystal remain constant during growth.

Consequently, it is important to have a method that predicts the evolving shape of a crystal grown

from an arbitrary starting shape (e.g., seed) at any subsequent moment under realistic operating

conditions. This method, under the appropriate limiting conditions, should also show that a crystal

possesses a steady state shape.

7.1 Geometric View of Crystal Growth

A geometric view of surface evolution means that the outward normal velocity of a surface de-

pends only upon its local orientation. The physical implication is that each point on the surface

evolves in only one direction (forward), unlike, for instance, diffusive phenomena. The governing

equation for geometric surface evolution is the Hamilton-Jacobi equation; the solution(s) to this

equation describes many types of phenomena,166–168 including the growth of crystals.50 Solutions

to the Hamilton-Jacobi equation exhibit so-called shock transitions which, for crystal growth, are
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interpreted as transitions from smooth to faceted growth. However, by assuming that crystals

are faceted for all time, Zhang et al.52 developed a more straightforward and readily applicable

evolution model as follows.

Let Ghkl be the perpendicular growth rate of the hkl face; it follows that the rate of change of

the perpendicular distance Hhkl from an origin inside the crystal to the face is given by:

dHhkl(t)
dt

= Ghkl (32)

where this equation applies to each of N faces. Zhang et al.52 nondimensionalize Equation 32 by

selecting a reference face and using its corresponding values of Href and Gref to define the relative

perpendicular distance xhkl ≡ Hhkl/Href and the relative growth rate Rhkl ≡ Ghkl/Gref . Coupled

with a dimensionless time dξ = (Gref/Href )dt, they derive the following dynamical model for the

remaining N − 1 faces assuming the crystal is faceted for all time:

dxhkl(ξ)
dξ

= Rhkl − xhkl (33)

where

ξ = ln

(
Href (t)
Href (0)

)
(34)

When all of the Rhkl are constant, Equation 33 clearly displays a unique, stable steady state

x̂hkl, given by

x̂hkl = Rhkl (35)

Equation 35 is equivalent to the Frank-Chernov condition50,51 (see §3). A consequence of this

steady state condition is that the steady state growth shape of a crystal can be predicted by

knowing (either by measurement or prediction) the relative growth rates of each face. Conversely,

the relative growth rates of each face can be obtained from the steady state growth shape. The

growth models in §5 can be used to develop expressions for each Rhkl and Equation 33 can be

integrated to determine how the shape of a seed crystal (or a nucleus) evolves with time.

7.2 Evolution Case Study: Ibuprofen

Ibuprofen is a commonly used anti-inflammatory drug. When grown from aqueous solution, its

crystal structure (as reported by Shankland et al.169) belongs to the monoclinic P21/c space group
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Figure 12: Predicted evolution of ibuprofen (a-d) (∆ξ = 0.025) and experimental steady state

shape170 (e), not drawn to scale.

with lattice parameters a = 14.397, b = 7.818, c = 10.506 Å and β = 99.70◦. Its unit cell is

comprised of four molecules. Following the method of Winn and Doherty,75 the {100}, {011} and

{002} forms were determined to grow by the screw dislocation mechanism with relative perpen-

dicular growth rates Rhkl = 1.00, 2.67, and 1.45, respectively. Other low index forms (e.g., {111̄}
or {102̄}) and higher index forms were assigned relative growth rates of 10, as they contained no

stable edges and are therefore expected to grow by the rough growth mechanism, which as noted

in §4.1 is expected to occur at a rate at least 10 times faster than growth by a layered mechanism.

The above relative growth rates account for the effect of the solvent.

To show the evolution of ibuprofen from an arbitrary state, a “spherical” seed was used as the

initial condition for Equation 33. This seed was composed of 102 faces situated equidistantly from

the origin (Figure 12a). The crystal was then evolved from this seed, assuming constant relative

growth rates for all time ξ and discretizing Equation 33 with a time step ∆ξ = 0.025. The results

of this evolution are shown in Figure 12(a-d). As can be seen, the faster growing forms disappear,

leaving only the {100}, {011} and {002} forms on the steady state growth shape. The predicted

steady state shape as ξ → ∞ is shown in Figure 12d. It has a large hexagonal {100} form that

is slightly elongated in the b direction because R011 > R002. An experimental shape obtained by

Cano et al.170 is shown in Figure 12e for comparison with the prediction.

It is important to recognize that the shape in Figure 12d is a pure prediction and nothing about

the measured shape was used to obtain it. This example also demonstrates an important rule for

crystal shape; faces with large perpendicular growth rates will usually possess smaller areas on the

final shape. If faces have large enough growth rates, they will either disappear from the shape

altogether or contribute to the formation of needle crystals.
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8 Coupling Size and Shape Predictions

So far we have described experiments, simulations and models for shape prediction and evolution

of a single crystal growing from solution. However, when considering the design and control of

industrial scale crystallizers the shape of the entire population of crystals becomes more relevant.

There is often a particular interest in achieving a target particle size and shape distribution (PSD)

of the crystal population, which is modeled by using population balance equations (PBE).171,172

8.1 Multi-Dimensional Population Balances

In order to track the distribution of crystal morphologies inside a crystallizer, shape effects need to

be incorporated into PSD modeling. Iveson173 suggests that multi-dimensional population balances

need to be used due to the limitations of conventional single dimensional PBE’s that consider

particle size in only one internal direction. For multi-dimensional population balances, a growth

rate is needed for every independent direction that is used in the model; techniques for measuring

growth rates in multiple directions are discussed in the following sections.

Several studies have developed two-dimensional PBEs in order track two characteristic crystal

dimensions, usually length and width. Ma et al.174,175 used a compartmental model of a batch

crystallizer to account for imperfect mixing, coupled with a 2-D PBE, to model the growth of

needle-like potassium dihydrogen phosphate (KDP) crystals. For continuous crystallization, Puel

et al.176–178 incorporated a detailed kinetic study of growth rates, primary and secondary nucleation

and diffusion effects into a 2-D PBE model and were able to accurately predict the shape evolution

of the rod-like hydroquinone crystals. Oullion et al.179,180 studied the batch cooling crystallization

of a platelet-like organic crystals and included growth and secondary nucleation mechanisms into

their 2-D PBE to determine the effects of seeding and cooling profiles on the final PSD. Other

researchers have demonstrated the use of particle properties other than characteristic length in their

multi-dimensional population balances. For instance, Gerstlauer et al.181 considered the internal

lattice strain of individual crystals as a particle coordinate, and Briesen182 used a coordinate

transformation on the multidimensional PBE to model the system by the crystal volume and a

shape factor. Briesen demonstrated his particle coordinate transformation technique by simulating

a batch cooling crystallizer and inverting the transformation to obtain the original two-dimensional

number density function at the initial and final time as shown in Figure 13a.
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Figure 13: Multidimensional Population Balance Examples a) Two-dimensional representation with

respect to the characteristic lengths of the particle number density function at the initial and final

time182 b) Steady-state crystal size and shape distribution for triangular seeds of succinic acid

grown from water183

A different approached developed by Zhang and Doherty183 coupled a variation of the shape

evolution model described in §7 with a 1-D population balance to simultaneously predict crystal

shape evolution and size distribution. This method is applicable to crystals that can be treated

as essentially 2D (e.g., plates) and assumes the relative growth rates of crystal faces are constant.

This model requires only one absolute growth rate (for a reference face) and all others are found

knowing the relative growth rates of all other faces relative to the reference face. This approach

gives the size and shape evolution of every independent face. The method was applied to succinic

acid grown from water as shown in Figure 13b.

Ma et al.184 have recently used polyhedral PBE modeling to predict the PSD for every inde-

pendent crystal face. This model uses knowledge of the crystal shape of a single crystal as well

as the measured growth rates for each independent family of planes; there are three sets of these

planes in their study of potash alum. This prediction of individual facet growth at different times

leads to the simultaneous prediction of crystal shape and size evolution.

One difficulty in implementing multi-dimensional PBEs is the increased computational efforts

required to solve the models. The studies discussed above used a variety of techniques to overcome
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these issues including: high-resolution simulation algorithms coupling upwind discretization and the

Lax-Wendroff method,174,175,185,186 the method of classes,176–178,180,184 model reduction by means

of a coordinate transformation method182 and other discretization methods such as the method of

lines181 and the finite difference method.183 Multi-dimensional population balances appear also in

the modeling of many particulate processes other than crystallization, such as granulation, polymer-

ization and cell dynamics, which have led to new solution techniques for these numerically intensive

models. Population balance discretization using a hierarchial two-tier solution strategy,187 adaptive

high-resolution finite volume schemes188 and a discretization method based on a generalized mov-

ing pivot technique189 are just a few of the recent methods developed for solving multi-dimensional

PBEs.

8.2 Particle Size and Shape Characterization

The measurement and characterization of particle size and shape distributions are important for

implementing and validating the methods described above for determining PSDs. Several tech-

niques and sensors are available that can measure particle size and/or PSDs (such as infrared

spectroscopy and laser diffraction) but they generally cannot be used to measure particle shape

directly. The most widely used technique today for simultaneous particle shape and size charac-

terization is in-situ monitoring via video microscopy coupled with image analysis. Various in-situ

monitoring tools currently in use include Lasentec’s Focused Beam Reflectance Measurement190–193

(FBRM) which provides the chord length distribution (CLD) of the crystal population (many algo-

rithms are currently available for transforming a CLD into a PSD), Lasentec’s Process Vision and

Measurement190,192–194 (PVM) that can take two-dimensional images of specific portions of the

crystal population and the on-line imaging system by GlaxoSmithKline194–202 among other on-line

and off-line imaging devices. These tools can be used in conjunction with conventional in-situ tech-

niques such as ATR-FTIR spectroscopy190,192,203 used for solution concentration measurements to

measure supersaturation, and Raman spectroscopy192 for polymorph monitoring.

Commercial image analysis software is available but generally fails to successfully segment

crystals from the image due to crystallizer hydrodynamics and continuous particle movement,204

thus motivating the need for improved on-line image analysis techniques. One method to evaluate

crystal size and shape information from in situ crystallization images is by image segmentation
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Figure 14: Image segmentation results for solutions of low solids concentration (Figures a and c)

and high solids concentration (Figures b and d); reproduced from Larsen et al..202

which separates crystals from the image background. Puel and co-workers have developed off-line

imaging techniques to characterize crystal shape and size in two dimensions176,178,179 but these

methods cannot be easily implemented in-situ. Calderon de Anda et al.194 presented a multi-scale

segmentation method that takes into account the varied pixel intensity of on-line images (this

article also provides a comprehensive review of other image segmentation techniques available at

that time). Larsen et al. developed a commonly used image analysis algorithm using a model-based

object recognition for needle-like particles201 and more recently extended the method to crystals of

any shape that can be represented by a wire-frame model202; the authors were able to successfully

implement these methods on solutions of moderate solids concentration. Figure 14 shows examples

of the model-based shape recognition for crystals (M-SHARC) algorithm developed by Larsen et

al.202 for solutions of low (Figure 14 a and c) and high (Figure 14 b and d) solids concentration.

Solutions of high solids density generally present a challenge to image segmentation methods205

due to the overlap of crystals and other phenomena such as agglomeration, breakage and attrition.

Once crystal images are segmented from the image background, size and shape descriptors are

used to characterize possible crystal shapes. Recent work on shape descriptors include contour-
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based and region-based methods to determine aspect ratios, convexity, roundness, as well as other

shape and size properties. A single shape descriptor is not sufficient to distinguish crystals of

different shapes prompting the use of alternative shape descriptors.204,206–208 A recent review by

Zhang and Lu209 discusses several shape descriptor techniques. Another commonly used technique

is Fourier descriptors to transform contours and regions of particle images into shape characteris-

tics.194,198,210 Most image segmentation and shape descriptor techniques provide 2D shape infor-

mation whereas a recently developed camera model by Li et al.198 constructs 3-D shapes from 2-D

images.

The on-line imaging and image analysis techniques discussed above can be used to estimate

crystal face growth rates and kinetics. One approach is to model crystal growth and shape using

multi-dimensional population balances (as discussed above) and estimate kinetic parameters from

off-line images190; however, in order to implement these measurements into a control scheme, real-

time growth kinetics are required. Puel and co-workers have measured in-situ growth kinetics of rod-

like hydroquinone crystals178 and later developed a two-dimensional model to simulate the growth

of platelet-crystals in batch seeded cooling crystallization to determine the kinetics of nucleation

and attrition mechanisms.180 L-Glutamic acid has multiple polymorphs and the needle-like β form

has been the subject of several in situ imaging studies modeled by multi-dimensional population

balances to estimate growth kinetics.192,199,200 Kempkes et al.193 presented a procedure to interpret

in situ images to estimate growth rates of a population of cuboids. The experimental studies

presented here are generally limited to measuring growth rates in two directions due to the 2D

imaging techniques currently available; however, in the future with proper 3D imaging, growth

rates of individual facets could be measured.211

8.3 Shape Control

Population balance models, coupled with on-line measurements can be used for developing model-

predictive algorithms. Such algorithms can provide insight into optimal control policies to produce

crystals of a certain size and shape. Patience and Rawlings204 used in situ images from a cooling

crystallizer to develop a feedback control algorithm using additive concentration as the manipulated

variable to control crystal shape. They effectively added sodium dithionate to a solution of growing

sodium chlorate crystals in order to change their shapes from cubic to tetrahedral while using the
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percentage of cubic crystals as the input to the feedback controller. In another study by Yang et

al.,212 the effects of different cooling modes were investigated for a batch cooling crystallization by

using the supersaturation as the manipulated variable to control the shape of KDP crystals; this can

be beneficial in selecting an optimal cooling profile for a desired product shape. Ultimately, if shape

and size can be effectively controlled then there is also the possibility of controlling polymorphic

transformations as demonstrated by the C-control strategies implemented by Hermanto et al.213 for

the transformation of L-glutamic acid from the metastable α form to the stable β form. Braatz and

co-workers214 have recently reviewed the advances in the direct design and control of pharmaceutical

crystallization processes and discuss the possible applications to more complicated tasks such as

polymorph control and protein crystallization.

Through the use of multi-dimensional population balances models, in situ imaging techniques

and real-time image analysis, model-predictive control schemes could potentially automatically

control the size and shape of an entire crystal population in order to meet product specifications.

For further insight into the techniques presented in this section the reader is referred to the following

recent reviews.211,215,216

9 Conclusions and Future Directions

Significant progress has been made in the past several years developing engineering tools that al-

low for improved crystallization processing design. In particular, methods have been developed to

predict steady-state crystal shapes through both molecular simulation and mechanistic modeling.

Some of these methods provide the ability to account for the effects of single solvents as well as

tailor-made additives on crystal shapes. The mechanistic modeling techniques can be performed

fast enough (on the order of minutes of calculation time for current personal computers) that they

have the potential to be implemented as part of product and process development. As we have

shown through scaling arguments, the shapes of most molecular organic crystals growing by spirals

are determined by the rates of surface integration on each face and not by bulk transport limita-

tions. Thus, bulk transport effects in solution growth of molecular organic crystals are important

only insofar as the local supersaturation is a function of position within the crystallizer. Further de-

velopment continues for multi-dimensional population balances, including their solution techniques

and implementation in real time feedback control. The combination of these modeling efforts with

43



on-line shape measurement and image analysis techniques provides a method to measure real time

growth kinetics, indicating a promising future for model predictive crystallization control.

In the future, continued research in these areas should allow for the prediction of: (1) crystal

shapes as a function of supersaturation, (2) the appropriate dominant growth mechanism for a given

set of processing conditions and (3) the effect of multiple solvents and various types of additives

on crystal shape. These predictive capabilities will enable the process design stage of crystalline

product development to include, for instance, both solubility and shape considerations in solvent

selection. Furthermore, a priori shape predictions based on mechanistic growth models (described in

§5.1) will be developed for inorganic material as new techniques for modeling long range interactions

and simultaneous reaction and crystallization are developed. Additionally, these shape predictions

can be coupled with devices that track the growth rates of individual crystal faces, improving the

ability to modify crystal shapes and PSD in real time during crystallizer operation.

Several aspects of crystal shape engineering will require the development of breakthrough tech-

nologies for the field to continue to advance. In order to couple polymorph and solvent selection,

new (more reliable) methods are required for polymorph prediction. Currently, a gap exists in the

knowledge of transitions between the growth mechanisms of nuclei (where the polymorphic struc-

ture is established) to those of faceted crystals. Filling this knowledge gap will require significant

improvements in simulation and experimental techniques to handle the range of length and time

scales involved. While the relative growth rates of crystal faces can be predicted for several systems,

a major advance is necessary to predict absolute growth rates from first principles.

Finally, the broader implementation of crystal shape engineering as a practice in product and

process design will require the development of computer aided design tools for polymorph selection

and shape prediction that are integrated with thermodynamic calculations (e.g., solubilities and

surface energies) and data bases (e.g., crystallography, solvent properties, etc.).
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