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 Preface     

  The idea of this book came to me in the course of a long ski journey across the Alps. 
Perhaps the extended contact with rocks, ice and snow fl akes inclined my mind toward 
my professional and scientifi c activity in crystal growth, so that, after some days, the 
general outline was ready and, when I returned back to my offi ce, I began contacting 
potential authors. 

 It may seem surprising to the reader that capillarity is the backbone of this book, as it 
refers to the liquid state, which seems like the opposite of the crystalline state. The idea 
that crystals are grown in crucibles is common, probably because metallic alloys are cast 
in moulds; in fact, most crystals are produced without contact with a crucible wall and 
their shape is controlled by capillary forces. The aim of this book is, above all, to explain 
how much and in what way the crystal growth techniques are dependent on liquid surface 
phenomena. 

 All the aspects of capillarity that are of interest to the crystal grower have been reviewed 
in this book. The authors ’  main wish is that it will be useful to a range of people, includ-
ing researchers at the start of their career looking for fundamental principles or working 
on laboratory experiments; industrial engineers; and advanced senior researchers looking 
for detailed information. 

   Thierry Duffar 
 Saint Martin d ’ H è res, France 

 October 2009 
       





 Introduction  

  Thierry   Duffar  
  SIMaP - EPM       

     The historical development of crystal growth processes is a good refl ection of the impor-
tance of capillarity and crucible - free concepts. The fi rst technique that was used for 
producing crystals was described by Verneuil at the turn of the 20th century  [Verneuil 
1902, 1904, 1910]  but there is evidence that the so called  ‘ Geneva ruby ’  was grown by 
a similar technique almost 20 years earlier  [Nassau 1969] . Verneuil in fact wished to 
study the properties of ruby and other alumina - based crystals and was aware of the very 
high melting temperature of these materials ( c. 2000    ° C), which prevented the use of any 
crucible material known at that time. By melting alumina powder in a hydrogen – oxygen 
fl ame and solidifying the droplets on a colder seed, he got artifi cial ruby crystals (Figure 
 1 ). Obviously a melt layer, sustained by surface tension, exists at the hot side of the 
growing crystal where the droplets arrive and merge. Thousands of furnaces, little changed 
from that used by Verneuil, are used nowadays for the industrial production of sapphire 
and spinel crystals.   

 The second technique for crystal growth was introduced by Czochralski a few years 
later  [Czochralski 1918] . In order to study the growth kinetics of metals, Czochralski 
needed materials with small dimensions in order to dissipate the latent heat of solidifi ca-
tion effi ciently and rapidly. He pulled thin wires from the melt at various speeds and 
obtained single crystals. As can be seen in Figure  2 , this technique for the growth of bulk 
semiconductor single crystals, beginning in the 1950s, eventually developed into the 
complex technology required in order to obtain the large - diameter perfect crystals that 
are the raw material for the electronics industry. In this case, capillarity acts on the small 
meniscus that joins the liquid surface in the crucible to the crystal and is of paramount 
importance in the problem of crystal diameter control.   

 In Czochralski ’ s time, controlling the dimensions of the crystal was very diffi cult. It 
was in order to stabilize crystal growth that Gomperz had the idea of using a shaping 
device fl oating on the melt surface  [Gomperz 1922] ; he used a drilled mica plate. Since 
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that time, numerous types of shaping devices have been devised in order to get crystals 
of various shapes (Figure  3 ).   

 After the important growth processes based on capillarity, historically the next develop-
ment was the Bridgman method, aiming to increase crystal size and consisting of growing 
crystals in a crucible  [Bridgman 1925] . In spite of the great advantage of solving the 
problem of crystal shape control, contact between the growing crystal and a crucible wall 
has numerous associated drawbacks such as the crystal adhering to the crucible or the 
appearance of defects in the crystal. Bridgman was perfectly aware of these problems; in 
order to avoid adhesion he suggested greasing and fl aming the crucible before the experi-
ment. However, it is not clear from his explanation whether he invented encapsulation or 
crucible wall coating. 

    Figure 1     Schematic of Verneuil ’ s method and drawing of the equipment used in his labora-
tory (Reprinted with permission from  [Verneuil 1904] , copyright (1904)). The seed is held 
on the shaft S, powder is supplied by the feeder C – D, and gases are provided through the 
torch entries H and T.  
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 The next method to be invented was the fl oating zone (FZ) technique. Initially used 
for material purifi cation, it was later patented for the growth of single crystals without a 
crucible  [Theuerer 1952] . It is a purely capillary - based technique, because the liquid 
column from which the crystal is grown is supported entirely by surface tension. As can 
be seen in Figure  4 , controlling the shape of the crystal is very diffi cult in this case and 
a lot of research and development effort was required to fi nd effi cient solutions.   

 Since then various modifi cations of these basic methods have been proposed, such as 
pedestal growth, the EFG process, micro - pulling down and others, all based on the use 
of capillary forces in order to maintain and shape the liquid. A tentative classifi cation can 
be proposed, based on the presence or absence of a crucible or shaping die in contact 
with the molten material and on the direction of pulling (Figure  5 ). This clearly shows 
that, from the capillarity point of view, the techniques proceed from one to the next by 
changing one parameter at a time, and consequently this specifi c point of view links all 
the processes in a unique way.   

    Figure 2     Schematic of Czochralski ’ s method of pulling single crystal wires of metals (K) 
from the melt (Sch) (Reprinted with permission from  [Czochralski 1918] , copyright (1918) 
Oldenbourg Wissenschaftsverlag). On the right, view of a 300 - mm, 250 - kg silicon single 
crystal grown by Czochralski ’ s method (Reproduced with permission from Siltronic AG).  
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 In recent years there has been a succession of good books dealing with crystal growth. 
The  Handbook of Crystal Growth   [Hurle 1993]  is certainly the most comprehensive of 
them, treating all aspects of the fundamental and practical questions in crystal growth; 
capillarity issues are of course developed in some detail, but because of the size of the 
book and the large variety of topics covered, they do not appear as a link between bulk 
growth techniques. Some books are organized by classes of materials, so that readers can 
easily fi nd out the most appropriate method to grow the material of their choice [ Capper 
2005 ,  Scheel 2003 ]. Experimental, technical and theoretical topics including important 
recent improvements can also be found in  [Scheel 2003] . Finally, the only book that deals 
entirely with capillarity aspects [Tatartchenko 1993] focuses principally on the study of 
the stability of the various processes and does not cover all the aspects relating to capil-
larity in crystal growth. It is the purpose of the present book to present all the growth 
techniques in a unifi ed way. I hope that it will be useful to a wide range of readers, with 
its various chapters covering in turn fundamental capillary effects, detailed experimental 
developments or technically important processes, and some associated software. Because 
of such different points of view, there is a certain amount of overlap between the chapters 
but this is intentional, with the hope that it will help the reader to get a full coverage of 
the topic. 

    Figure 3     Schematic of Gomperz ’ s method of pulling single crystal wires of metals (S) 
through a fl oating open disc (Gl) (Reprinted with permission from  [Gompertz 1922] , copy-
right (1922) Springer Science + Business Media). On the right, some bent single crystal tubes 
of sapphire obtained by a modifi ed shaping method (Reproduced with permission from the 
Commissariat  à  L ’ Energie Atomique).  
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 Some crystal growers are not totally familiar with the concepts involved in capillarity, 
namely surface tension and wetting. The purpose of the fi rst part of  Chapter    1   is to give 
a strict defi nition of these concepts in a clear way, based on physical sense rather than 
on mathematical developments. N. Eustathopoulos and B. Drevet were certainly the right 
people to write this account. They have both worked for a long time in the fi eld of high -
 temperature capillarity and it has always been a pleasure for me to work with them, 
because of the way they really introduced me to capillary matters. In the second part of 
the chapter they discuss wetting, a very important aspect of surface science which is in 

    Figure 4     Principle of the fl oating zone crystal growth process (Reprinted with permission 
from  [Theuerer 1952] , copyright (1952) H. C. Theurer), where 25 is a graphite resistance 
heater, 11 the silicon or germanium rod. On the right, the fi rst published silicon fl oating zone 
crystal (Reprinted with permission from [ Keck 1953 ], copyright (1953) American Physical 
Society).  
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    Figure 5     Classifi cation of the various crystal growth processes using capillary forces for 
maintaining or shaping the molten material.  
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fact a measure of the interaction between a melt and a solid. Their critical analysis of the 
available data concerning wetting of molten materials on the crucibles used in crystal 
growth is quite original and will be useful to anyone looking for reliable and up - to - date 
values of wetting angles. One specifi c wetting behaviour concerns the liquid on its own 
solid, i.e. the melt on the crystal. A measure of this interaction is the growth angle, a 
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concept which is central to the whole book, involved in stability analysis, shape control, 
technical achievements and numerical simulation. S. Brandon and A. Virozub have 
recently improved the understanding of this phenomenon and of the related measurement 
methods, and they provide a full coverage of the topic. 

 The book written by V.A. Tatartchenko has already been cited as the only one specifi -
cally dealing with capillarity in crystal growth. Obviously it was necessary to cover the 
aspect of shape stability in the present book and I was very pleased when he agreed to 
write  Chapter    2  , summarizing his earlier book and including new aspects. All techniques 
involving capillarity are analysed in this chapter, including Verneuil ’ s process. There is 
some overlap with other chapters, but this gives a great unity and clarity to the stability 
analysis approach. In the last part of his chapter, Tatartchenko gives a historical view of 
his career. He fi rst worked with Stepanov, recognized as the father of shaping techniques, 
spent too short a time in my laboratory in Grenoble, and now continues his activity in 
Western - based companies, including Saphikon in the USA, which uses developments of 
the EFG method, previously recognized as the Western challenger to the Soviet Stepanov 
method. It is a pleasure to include these historical details in the book. 

  Chapter    3   will be the most interesting for all readers trying to control the diameter of 
the crystals grown by the Czochralski (Cz) process. In fact the problem is not only to 
control the diameter of the crystal but also, as a consequence, to improve its quality, which 
is always damaged when the growth rate is not perfectly stable. It is a diffi cult control 
problem whatever the measurement technique used  –  weighting of the crystal or optical 
observation of the liquid meniscus. These diffi culties are fi rst explained in detail, based 
on the physics of the process, and the reader is then introduced to the control techniques 
and vocabulary. Two approaches are described in detail. The fi rst is the linear approach, 
as developed during the 1980s and 1990s and benefi ting from the involvement of M. 
Gevelber and N. Duanmu. The second approach is a recent nonlinear model based on 
up - to - date developments in control science. It was developed at the Leibniz Institute of 
Crystal Growth in Berlin by J. Winkler and M. Neubert with the help of J. Rudolph from 
the University of Dresden. The two different approaches give good results in term of 
diameter control and consequently of crystal quality, showing that there are always several 
ways of solving a given problem. The authors succeeded in combining the two approaches 
and fi nally delivered a clear and convincing chapter, in spite of the diffi culty of the topic, 
which is not familiar to crystal growers. I am particularly grateful to J. Winkler for his 
energy and involvement and to M. Gevelber for the diffi cult task of coordinating the 
chapter. 

 As explained in  Chapter    4  , in the fl oating zone process the liquid is essentially stabi-
lized and maintained by the forces of surface tension. This makes this technique central 
one to the book, with a very important application to the growth of single silicon crystals 
of high purity and high structural quality. A. L ü dge, H. Riemann and M. W ü nscher agreed 
to write this part of the chapter, with very detailed technical explanations. They are 
members of the team at the Leibniz Institute for Crystal Growth in Berlin, now the world ’ s 
leading centre in silicon fl oating zone research and development. The development of the 
technique for the growth of large - diameter crystals on a large scale has been possible with 
the help of numerical simulation. This is a very diffi cult task, as it is necessary to compute 
the shape of three free surfaces, as well as their interaction with electromagnetic forces. 
A. Muiznieks has been working on this for many years and has succeeded in giving clear 
explanations of the tricky numerical problems. The fl oating zone technique is also 
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employed in many laboratories for the growth of pure or alloyed metallic and intermetallic 
materials and also for oxide growth. The team at the University of Dresden, G. Behr and 
W. L ö ser, is famous for the growth of this type of materials and they explain the problems, 
and related solutions, associated with the specifi city of these materials. Often the furnace 
used is an optical heating device and A. Cr ö ll has written a very detailed and compre-
hensive review of this specifi c technique, the fi rst as far as I know. 

  Chapter    5   is remarkable. V.N. Kurlov and S.N. Rossolenko give a fascinating descrip-
tion of the ingenious methods they use in order to grow sapphire crystals of very different 
shapes and qualities. It seems that there is no limit to their ability to use dies in order to 
control the liquid shape and consequently the form of the crystals. This is a shining illus-
tration of the potential of capillary - based crystal growth techniques for the production of 
shaped crystals. The part concerning process control is also new and very interesting. 
N.V. Abrosimov describes how silicon can be shaped in ribbons or tubes, for the very 
useful application of photovoltaic cells. It is worth noting the specifi c twinned crystal 
structure that naturally appears in these silicon ribbons and tubes and which periodically 
changes its orientation in order to follow the shape of the growing crystal. Such phenom-
ena can only be studied in the case of capillary shaping. Micro - pulling down is one of 
the most recent crystal growth techniques to have emerged. K. Lebbou gives a compre-
hensive survey of the technical details and crystal fi bres that are currently grown in this 
way. 

 Perhaps surprisingly,  Chapter    6   is devoted to the Bridgman technique and some vari-
ants. This was in fact a good place to discuss the problems related to crystal – crucible 
contact and then, in comparison, to highlight the positive aspects of capillary techniques. 
In fact capillary - based variants, such as full encapsulation, are commonly used in an 
attempt to get the advantage of the method without the defects. L. Sylla recently fi nished 
a PhD thesis on the dewetting phenomenon and process, and this part of the chapter forms 
a natural sequel. First discovered as a result of experiments under microgravity conditions, 
dewetting evolved toward a terrestrial variant of the Bridgman process where crucible 
contact does not occur. So far it has not found industrial application but it is useful to 
give a review of this process, including the theoretical and experimental details. 

 Capillarity involves liquid free surfaces that are submitted to temperature and concen-
tration gradients. This generates the Marangoni convection, which in turn impacts the 
crystal growth process.  Chapter    7   is devoted to the coverage of this fl uid fl ow problem, 
which is absolutely capillary dependent. In order to study this phenomenon thoroughly, 
without perturbation due to buoyancy convection, A. Cr ö ll performed many experiments 
under microgravity conditions. In parallel, T. Hibiya and S. Shiratori studied the effect 
of Marangoni convection on silicon fl oating zones and especially how this changes when 
oxygen contamination occurs. One important practical and theoretical problem is the 
onset of the different fl uid fl ow regimes that occur successively when the Marangoni 
convection increases from laminar to fully turbulent convection. The authors ’  discussion 
clearly explains how the critical values are observed, measured and simulated. There is 
no doubt that this chapter will be of interest not only to crystal growers but also to those 
interested in fl uid mechanics. Marangoni convection also impacts the Czochralski process 
and has been studied in details with the help of numerical simulation by K. Kakimoto 
and L. Liu as detailed in this chapter, as well as the effect of this convection on the 
EFG and Bridgman processes. 
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  Chapter    8   is devoted to the resolution of the Young – Laplace equation that was intro-
duced in Chapter  1 . This equation relates the pressure inside the liquid to the curvature 
of the liquid surface, and then allows computation of the shape of liquid menisci or liquid 
columns involved in the crystal growth processes. However it is a highly nonlinear equa-
tion which has analytical solutions only in very rare confi gurations. Specifi c mathematical 
methods must then be used in order to study the solutions. In the most general cases only 
numerical methods can help in solving the problem. L. Braescu and S. Epure are working 
on the mathematical aspects of these solutions and have chosen the Czochralski, EFG 
and dewetting confi gurations in order to give detailed examples of the exact, approxi-
mated and numerical solutions that are known in these cases. The preferred numerical 
method used in these problems is the Runge – Kutta method, and an appendix describes 
in detail how this technique works and can be implemented on a computer. We hope that 
readers will be able to fi nd useful solutions for their specifi c problems, based on these 
examples.  
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 Nomenclature     

  As far as possible the nomenclature has been harmonized between the various chapters. 
However, because of the wide range of physical phenomena involved, some chapters have 
used specifi c symbols for the sake of clarity. 

   a      lattice parameter; also capillary constant 
  b      Burgers vector 
  c      chemical composition 
  c  p      heat capacity 
  d      diameter 
  e      gap thickness 
  f      solidifi ed fraction; frequency of the induction current (Chapter  4 ) 
  g      gravitational acceleration 
  h      meniscus height 
  k      segregation coeffi cient 
  k  B      Boltzmann constant 
  m      liquidus or solidus slopes; mode of rotational wave 
  p  0      reference pressure in the melt 
  p  v      gas pressure 
  p      pressure 
  r      radial coordinate 
  r  a      ampoule/crucible radius 
  r  c      crystal radius 
  s      arc length 
  t      time, also ribbon thickness 
  u      fl uid velocity 
  v      pulling rate 
  v  c      solid - liquid interface velocity (crystallization rate) 
  w      die half thickness 
  x, y, z      axis 
  A      surface, area 
  B      magnetic fi eld 
  Bi      Biot number 
  Bo      Bond number 
  D  th      thermal diffusivity 
  E      Young ’ s modulus 
  Gr      Grashof number 
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  H      magnetic induction; distance from the shaper edge to the coordinate plane 
(Chapter  2 ) 

  Ha      Hartmann number 
  H  m      length of the melt column 
  I      nucleation rate (s  − 1 ) 
  L      crystal length 
  La      Laplace number 
  M      mass 
  Ma      Marangoni number 
  N      a number (of nuclei, of particles, etc.) 
  P      heating power 
  Pe      Peclet number 
  Pr      Prandtl number 
  Re      Reynolds number 
  Sc      Schmidt number 
  T      temperature 
  T  a      ambient temperature 
  V      volume (V a , atomic volume) 
  We      Weber number 
  X      mole fraction 
  W      ribbon width, also weight of crystal 
  D      thermal diffusivity 
  P      powder charge fl ow rate 
   ζ       latent heat of melting 
  Ω      rotation rate 
   α       growth angle 
   α   0      angle between the tangent to the meniscus and the vertical axis 
   β       angle between the shaper wall and the horizontal; dilatation coeffi cient also 

coeffi cient of mass fl ow rate prescribed by the feeder 
   γ       surface energy (solid liquid, liquid gas, etc.) 
   δ       boundary layer thickness 
  ε      fl uctuation, perturbation; strain, emissivity 
   κ       curvature (1/ R ) 
   σ       stress; also Stefan – Boltzmann constant; 
   σ   el      electrical conductivity of the melt 
   θ       wetting angle (Young, or apparent, etc.) 
   ν       kinematic viscosity 
   λ       thermal conductivity, also surface mass transport coeffi cient (Chapter  1 ) 
   ρ       density; resistivity 
   μ       dynamic  viscosity , also permeability 
   φ       angle between the tangent to the meniscus and the horizontal axis 
   δ  φ   0      angle of crystal tapering at any moment 
   ϕ       angular polar coordinate, also the angle between the pulling direction and 

the vertical direction (Chapter  5 ) 
   ψ       angle between the vertical axis and the l/ v  interface (Chapter 1 ) 
  Φ      electrical potential; also heat fl ux (Chapter  3 , Chapter  6 ) 
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   ω       frequency 
  Γ      Gibbs parameter (  γ  / Δ  S ; K   m) 
  J,   j      fl ux and fl ux density 
  G      Gibbs free energy 
  H      enthalpy 
  S      entropy 
  Δ  G,   Δ  H,   Δ  S      differences of formation/migration/etc. energy or entropy 
  Δ  T      undercooling 
  Δ  c      supersaturation 
  ∇      gradient  

  Subscripts 

  s     solid 
 l     liquid 
 i     at the solid/liquid interface 
 m     melting 
 c     crystal 
 e     environment/encapsulant; also boron oxide layer (Chapter  3 ) 
 0     reference 
 ch     chemical 
 T or th     thermal 
 t     time 
 v     vapour  

 Vectors are in  bold .       
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Basic Principles of Capillarity in 

Relation to Crystal Growth  

  Nicolas   Eustathopoulos  
  Laboratoire SIMaP  

  B é atrice   Drevet  
  CEA - INES/RDI  

  Simon   Brandon   and   Alexander   Virozub  
  Technion – Israel Institute of Technology       

     The fi rst part of this chapter (1.1) contains a brief defi nition of characteristic energies of 
surfaces and interfaces, as well as of capillary pressure. The second part (1.2) presents 
the basic principles of wettability and selected data for surface tension and contact angle 
for liquids of interest in crystal growth on various solid substrates. The third part (1.3) 
deals with growth angles, i.e. the contact angles formed by liquids on their own crystal, 
and the role of these angles in melt growth processes.  

  1.1   Defi nitions 

  1.1.1   Characteristic Energies of Surfaces and Interfaces 

 In order to defi ne the characteristic energies of surfaces and interfaces, let us consider 
two bodies, solid (s) and liquid (l) respectively, that have a unit cross - sectional area. The 
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solid and the liquid are surrounded by a vapour phase (v) at constant temperature. The 
free energy change corresponding to the reversible creation, without any elastic or plastic 
deformation, of two new surfaces of solid and liquid, by the process schematized in Figure 
 1.1 .a, is:

    ΔF1 2 2− = +( )γ γsv lv     (1.1)     

 In this expression, the quantities   γ   sv  and   γ   lv  defi ne the surface energy of the solid and the 
liquid respectively. Consider now the transformation 2 – 3 consisting in joining two sur-
faces of solid and liquid. The free energy change is equal to:

    ΔF2 3 2− = − −( )γ γ γsl sv lv     (1.2)   

 Finally, the transformation 1 – 3 corresponds to:

    Δ Δ ΔF F F1 3 1 2 2 3 2− − −= + = γ sl     (1.3)  

where   γ   sl  is the solid/liquid interface energy. 
 For pure liquids and solids, the quantity 2  γ   lv  or 2  γ   sv  defi nes the  work of cohesion W  c  of 

the liquid (  Wc
l

lv= 2γ ) or the solid (  Wc
s

sv= 2γ ). The values of these quantities are propor-
tional to the evaporation and sublimation energies per unit area respectively. In Equation 

v s s s s

sl l l

l

l

ΔF1-2 ΔF2-3

3etats2etats1etats

cross section 
of unit area

(a)

(b)

x x Δx

s s

     Figure 1.1     (a) Formation of two solid/liquid interfaces of unit area from pure solid and 
liquid bodies. (b) Formation of solid surface by elastic deformation.  
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 (1.2) , the quantity (  γ   sl      −       γ   sv      −       γ   lv ) is equal but opposite in sign to the  work of adhesion W  a  
defi ned by Dupr é   [Dupr é  1869] :

    Wa sv lv sl= + −γ γ γ     (1.4)   

 Accordingly, the magnitude of  W  a  directly refl ects the intensity of interactions between 
atoms in the liquid and solid states across the common interface.  

  1.1.2   Capillary Pressure 

 Consider a spherical liquid (l) drop of radius  r  in a vapour v. The volume of this drop is 
increased slowly, for instance by using a syringe to inject fresh liquid into the drop (Figure 
 1.2 a). The increase of drop radius from  r  to ( r    +   d r ) leads to an increase of the surface 
energy of the system equal to d(4 π  r  2   γ   lv )   =   8 π  r γ   lv d r . If  P  l  is the pressure inside the drop 
and  P  v  the pressure in the vapour, the increase of  r  is associated with an amount of 
mechanical work to move the surface by a distance d r , i.e. ( P  l     −     P  v )4 π  r  2  d r . Equating the 
two amounts of work leads to the expression of capillary pressure  Δ  P  c  given by Laplace 
 [Laplace 1805] :

    ΔP P P rc l v lv= − = 2 γ     (1.5)     

 In the general case of a surface characterized by principal radii  R  1  and  R  2  (Figure  1.2 .b), 
the curvature at each point Q of the liquid/vapour surface has to satisfy:

    P P
R R

l
Q

v
Q

lv− = +⎛
⎝⎜

⎞
⎠⎟γ 1 1

1 2

    (1.6)   

 The various mathematical forms of Laplace ’ s equation are discussed in Chapter  8 . The 
capillary pressure  Δ  P  c  preponderates over the hydrostatic pressure of a liquid of density 
  ρ   for liquid sizes less than a characteristic length called the  capillary length  and defi ned 
by (  γ   lv /(  ρ g )) 1/2  where  g  is the acceleration due to gravity.  

liquid
vapour

r

dr

(a)

vapour

liquid

R1

R2

Q

(b)

     Figure 1.2     (a) Displacement of a liquid surface allowing derivation of the Laplace 
equation. (b) The principal radii of curvature R 1  and R 2  at a point  Q  on a curved liquid 
surface.  
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  1.1.3   Surface Energy versus Surface Tension 

 In Figure  1.1 .a, the two new solid/vapour surfaces are created by breaking bonds to 
increase the number of solid atoms (or molecules) which belong to the surface. A typical 
example of such a process is cleavage achieved without any elastic or plastic deformation 
of the solid. An alternative process to create a new solid/vapour surface is by purely elastic 
strain of the solid (Figure  1.1 b), i.e.  without increasing the number of surface atoms . The 
extra stress due to the surface, called  ‘ surface tension ’  or  ‘ surface stress ’ , is denoted by 
  σ   sv  and expressed as a force per unit length. 

 For liquids,   σ   lv  and   γ   lv  are equal because the reversible stretching of a liquid surface is 
identical to the reversible creation of new surface. In both cases, the liquid can increase 
its surface area only by the addition of new atoms to the surface. Note that, from a dimen-
sional point of view, an energy per unit area is equivalent to a force per unit length and 
the values are numerically equal when   γ   lv  is measured in J   m  − 2  and   σ   lv  is measured in 
N   m  − 1 . 

 For solids,   σ   sv  and   γ   sv  are different quantities. For instance, for each crystal face, there 
is a unique value of   γ   sv  (which is a scalar) while   σ   sv  depends also on the orientation along 
the face. Moreover,   γ   sv  is always a positive quantity (breaking bonds needs work) while 
  σ   sv  can be either positive or negative  [Nolfi  1972] . For high symmetry surfaces, the surface 
tension is related to the surface energy by the equation  [Shuttleworth 1950] :

    σ γ γ εsv sv svd d= +     (1.7)  

where  ε  is a macroscopic elastic strain. The physical origin of the difference between   γ   sv  
and   σ   sv , i.e. of the term d  γ   sv /d  ε   in Equation  (1.7) , can be explained taking into account 
the atomistic origin of   γ   sv . For instance, for monoatomic solids,   γ   sv  is proportional to the 
difference in potential energy between an atom of the surface and an atom of the bulk 
solid. When a new surface is created by stretching the solid (Figure  1.1 b), this difference 
does not remain constant. Indeed, because surface atoms are bonded weakly compared 
to those in the bulk, the work needed to stretch the surface is less than for the bulk 
material. 

 From now on, for solid/vapour and solid/liquid boundaries, only the surface and 
interface energies   γ   sv  and   γ   sl  will be considered. For liquid/vapour boundaries, both the 
surface tension   σ   lv  and surface energy   γ   lv  will be used interchangeably depending on the 
context.   

  1.2   Contact Angles 

 In this part (sections  1.2.1 – 1.2.4 ), the fundamental equations describing the wetting of 
ideal surfaces in chemically inert systems are given. Then the wetting of real surfaces is 
presented, taking into account the effects of roughness and chemical heterogeneities of 
the solid surface. The dynamics of wetting will be presented mainly for nonreactive solid/
liquid systems and more briefl y for reactive ones. After a short description of methods 
for measuring contact angles and surface tensions at high temperature, selected data are 
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given and discussed for molten semiconductors, oxides and halides on solid oxides, 
carbon, nitrides and metallic substrates. 

  1.2.1   Thermodynamics 

  1.2.1.1   Ideal Solid Surfaces 

  Young ’ s and Young – Dupr é  equations.     Consider a fl at, undeformable, perfectly smooth 
and chemically homogeneous solid surface in contact with a nonreactive liquid in the 
presence of a vapour phase. If the liquid does not completely cover the solid, the liquid 
surface will intersect the solid surface at a  ‘ contact angle ’    θ  . The equilibrium value of   θ  , 
used to defi ne the wetting behaviour of the liquid, obeys the classical Young ’ s equation 
 [Young 1805] :

    cos Y
sv sl

lv

θ γ γ
γ

=
−

    (1.8)   

 In this chapter, a contact angle of less than 90    °  will identify a wetting liquid, while a 
greater value will identify a nonwetting liquid. If the contact angle is zero, the liquid will 
be considered to be perfectly wetting. 

 Equation  (1.8)  can be easily derived by calculating the variation of the  surface  free 
energy  F  s  of the system caused by a small displacement   δ x  of the solid/liquid/vapour 
 triple phase line  (TPL). In Figure  1.3 , the TPL is perpendicular to the plane of the fi gure 
and assumed to be a straight line, rendering the problem two - dimensional. Thus, the total 
length of the TPL is constant during its displacement, as in the case of a meniscus formed 
on a vertical plate. Moreover, the radius  r  of the TPL region considered in this derivation 
(Figure  1.3 ) is much larger than the range of atomic (or molecular) interactions in the 

solid

liquid

vapour

δx

r

x

θ

     Figure 1.3     Displacement of a triple line around its equilibrium position that allows 
derivation of Young ’ s equation. Only a small region close to the triple line is taken into 
account to neglect the curvature of the liquid/vapour surface.  
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system ( r     >>    10   nm) and small compared to a characteristic dimension of the liquid, for 
instance the average drop base radius  R  in the sessile drop confi guration (see Figure  1.15 a) 
or the maximum height of a meniscus formed on a vertical solid wall which are both 
typically in the millimetre range. With these assumptions, the variation of interfacial free 
energy per unit length of the TPL, resulting from a small linear displacement   δ x  of the 
TPL, is

    F x x F x F x xs s s sl sv lv+( ) − ( ) = = −( ) + ( )δ δ γ γ δ θ γ δcos     

 and the equilibrium condition d(  δ F s  )/d(  δ x )   =   0 leads to Equation  (1.7) . Young ’ s equation 
was shown also to be valid in the presence of the gravitational fi eld for the confi guration 
of a meniscus formed on a vertical plate  [Neumann 1972, Eustathopoulos 1999 p. 12] , 
and for the classical confi guration of an axisymmetric sessile drop  [Garandet 1998] . 

 By combining Equation  (1.4)  of  W  a  and the Young Equation  (1.8) , the following fun-
damental equation of wetting, known as the Young – Dupr é  equation, is obtained:

    cosθ
γ

= −
Wa

lv

1     (1.9)   

 Taking into account the transformation  Δ  F  3 – 2  of Figure  1.1 a, this equation shows that the 
contact angle results from the competition of two types of forces: cohesion forces respon-
sible for   γ   lv  (  γ lv c

l=W 2) and adhesion forces responsible for  W  a .  

  System Size Effects.     In the sessile drop confi guration, the increase of the drop base 
radius during wetting leads not only to a change of surface and interface areas but also 
to the increase of the TPL length. The TPL can be considered as a line defect, similar to 
the step energy in crystal growth, with a specifi c excess energy   τ    [Eustathopoulos 1999 
p. 10] . Therefore, the contact angle is in principle a function not only of surface energies 
  γ  ij   but also of   τ  . However, the importance of   τ   decreases when the drop size increases, 
and becomes negligible for a droplet radius of more than a few tens of nm  [Chizhik 1985, 
Eustathopoulos 1999 p. 11] .  

  Metastable and Stable Contact Angles.     Young ’ s equation is derived from minimization 
of the free energy of the system carried out by considering only displacements of the 
triple line parallel to a solid/vapour surface assumed to be undeformable (Figure  1.4 b). 
Therefore,   θ   Y  corresponds to a metastable equilibrium confi guration. For isotropic solid/
vapour and solid/liquid surface and interfacial energies, the local stable equilibrium 
shown in Figure  1.4 c is described by the Smith equation by means of three dihedral angles 
  θ   l ,   θ   v  and   θ   s   [Smith 1948] :

    
γ

θ
γ

θ
γ

θ
sv

l

sl

v

lv

ssin sin sin
= =     (1.10)     

 For a simple derivation of this equation, the interested reader can refer to  [Eustathopoulos 
1999 p. 16] . 
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 For fl uids with low viscosity (a few mPa   s), such as molten metals and semiconductors 
or certain oxide melts at high temperature, the approach to the local stable equilibrium 
occurs in two stages with very different rates. In the fi rst rapid stage (spreading time 
for millimetre - sized droplets of the order of 10  − 1  or 10  − 2    s, see section  1.2.2.1 ), the 
macroscopic contact angle approaches   θ   Y . This stage is followed by a much slower 
process occurring at the vicinity of the triple line to satisfy the Smith equation. As 
discussed in  [Saiz 1998] , the growth of the  ‘ wetting ridge ’  of height  h  (Figure  1.4 c) can 
take place by mechanisms similar to those occurring during grain boundary grooving as 
described by Mullins  [Mullins 1957, 1960] . An example is millimetre - size Cu droplets 
on Al 2 O 3  surfaces in Ar at 1150    ° C. While the Young contact angle is reached in a few 
ms, a wetting ridge with  h    =   10 nm is formed after 2   h. Clearly, such a wetting ridge 
has a negligible effect on the value of the contact angle. Therefore, the area of the solid/
liquid and liquid/vapour interfaces at equilibrium is determined essentially by the value 
of   θ   Y . 

 For vitreous solids, such as SiO 2 , viscosity decreases strongly close to the melting 
point. In this case, the solid ridge can be formed by viscous fl ow and the height  h  
can reach easily measurable sizes in quite short times. For example, wetting of a Ni 
droplet on a SiO 2  substrate at 1470    ° C is accompanied by the formation, in about 
20   min, of an easily observable SiO 2  meniscus on the Ni drop ( h    =   5 − 10    μ m)  [Merlin 
1992] .   
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     Figure 1.4     Metastable (b) and stable (c) equilibrium angles at a solid/liquid/vapour 
junction obtained after spreading of a liquid droplet (a).  
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  1.2.1.2   Effect of Roughness 

 The roughness of solid surfaces affects wetting as a result of two different effects: the 
fi rst is the fact that the actual surface area is increased and the second is pinning of 
the triple line by sharp edges. 

  Effect of Increased Surface Area  –  Wenzel Equation.     If  s  r  denotes the ratio of the 
actual area to the planar area ( s  r     >    1), for a surface with a small asperity wavelength 
compared to the capillary length, the macroscopic equilibrium contact angle denoted by 
  θ   W  is given by the equation of Wenzel  [Wenzel 1936] :

    cos cosθ θW r Y= s     (1.11)   

 According to this equation, for   θ   W     <    90    °  and if  s  r     >    1/cos  θ   W , perfect wetting will be 
observed.  

  Effect of Sharp Edges  –  Hysteresis of Contact Angle.     Sharp edges can pin the triple 
line at positions far from stable equilibrium, i.e. at contact angles markedly different from 
  θ   Y . This effect is illustrated schematically in Figure  1.5  where a solid substrate with an 
horizontal surface  A  1  and another surface  A  2  inclined at an angle   β   is considered. The 
initial equilibrium confi guration of the liquid surface, marked (1) in Figure  1.5 , corre-
sponds to a contact angle on the  A  1  surface   θ  ( A  1 )   =     θ   Y . Then, if the liquid volume is 
increased slowly enough for the liquid to retain capillary equilibrium, the TPL will 
advance on surface  A  1  and reach confi guration (2) where the contact angle at point N is 
  θ   N ( A  1 )   =     θ   Y . Thereafter, the TPL will be pinned at point N and the macroscopic contact 
angle on  A  1 ,   θ   N ( A  1 ), will increase until the liquid surface assumes confi guration (3) where 
  θ   N ( A  1 )   =     θ   Y    +     β  , which corresponds to the establishment of the Young contact angle on 
the  A  2  surface, i.e.   θ   N ( A  2 )   =     θ   Y . Any further increase in the liquid volume will produce a 
movement of the TPL on the  A  2  surface, for example to confi guration (4) with   θ  ( A  2 )   =     θ   Y . 

(1)(2)

(3)

(4)

liquid

solid

vapour

A1

A2

β

β
A1

A2

θY(A1)θY(A1)

θY(A2)

θY(A2)

N

     Figure 1.5     Effect of a sharp edge on the contact angle when a triple line advances on a 
solid surface. (1), (2), (3) and (4) denote the successive confi gurations of the liquid 
surface when the liquid volume is increased.  
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Thus, the liquid can form an infi nite number of  advancing  contact angles at point N on 
the  A  1  surface lying between   θ   Y  and   θ   Y    +     β  . This last value defi nes the maximum advanc-
ing contact angle on  A  1 :

    θ θ βa Ymax( ) = +     (1.12a)     

 Consider now that confi guration (4) in Figure  1.5  represents the initial liquid surface and 
that the liquid volume is slowly decreased. Using similar arguments for the retreat of the 
liquid on the  A  2  surface, it can be shown that the liquid can form an infi nite number of 
 receding  contact angles at point N on the  A  2  surface lying between   θ   Y  and   θ   Y      −       β  . This 
last value defi nes the minimum receding contact angle on  A  2 :

    θ θ βr Ymin( ) = −     (1.12b)   

 When these considerations are applied to a rough surface consisting of grooves parallel 
to the moving triple line, one can identify the maximum advancing contact angle and the 
minimum receding contact angle, as shown in Figure  1.6 :

    θ θ βa Ymax max( ) = +     (1.13a)  

    θ θ βr Ymin max( ) = −     (1.13b)     

 The range of angles lying between   θ   a (max) and   θ   r (min) defi nes the hysteresis domain of 
contact angle. For a given system and roughness, a large number of angles belonging to 
the hysteresis domain and corresponding to metastable equilibrium states can be observed. 
Vibrations help the triple line to overcome the energy barriers caused by roughness and 
to approach the stable equilibrium state, i.e. the Wenzel contact angle (Equation  (1.11) ). 
In practice, for random roughness surfaces with average roughness parameter  R  a  of about 
100   nm, the excess (  θ   a     −      θ   Y ) values are a few degrees, while for  R  a  close to 1    μ m the 
excess (  θ   a     −      θ   Y ) values for various nonwetting liquids can be as much as 20    °   [Hitchcock 
1981, Eustathopoulos 2005]  (Figure  1.7 ).    

  Composite Wetting.     For solid surfaces with high roughness, a liquid forming large 
nonwetting contact angles (  θ      >>    90    ° ) cannot infi ltrate surface cavities, resulting in the 

βmax

θY

θY

θa(max)

θr(min)

vapour

solid

liquid

liquid

     Figure 1.6     Identifi cation of the maximum advancing contact angle   θ   a  (max) and 
minimum receding contact angle   θ   r  (min) on a rough surface.  
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formation of a composite interface, i.e. a mixed solid/liquid interface and solid/vapour 
surface (Figure  1.8 ). A characteristic of such an interface is the disappearance of the 
energy barriers to the movement of the TPL. Indeed, the liquid surface contacts the solid 
only at a limited number of points so that no pinning of the TPL can occur, explaining 
why the difference (  θ   a      −       θ   r ) tends towards zero in this case. Thus, Hg droplets on ceramic 
surfaces are very mobile. Indeed, owing to the poor wetting by Hg and the formation of 
composite interface, droplets are never pinned and move easily.   

 The condition for the transition from a solid/liquid to a composite interface is given by 
 [Eustathopoulos 1999 p. 34] :

    β θ> ° −180 Y     (1.14)  

where   β   is the maximal average slope of the surface. In practice,   θ   Y  values of metals and 
semiconductors are rarely greater than 150    ° . In this case, composite interfaces can be 
obtained only with very rough surfaces (  β      >    30    ° ).  
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     Figure 1.7     Advancing contact angle   θ   a  measured by the sessile drop technique as a 
function of  R  a  / λ   a , a quantity proportional to the average slope of the surface profi le where 
 R  a  is the average roughness and   λ   a  the average wavelength of the asperities, for Hg on 
abraded SiO 2  and C v ; the arrows indicate  R  a  values.   θ   Y  values for Hg on these substrates 
are the values at  R  a /  λ   a    =   0  [Eustathopoulos 2005a] .  Data from work reported in  [Hitchcock 
1981] .   
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     Figure 1.8     Formation of a composite interface in a nonwetting system.  
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  Sticking.     When composite interfaces are formed, no sticking is observed during cooling 
at room temperature, whatever the thermomechanical characteristics of the system. 
Typical examples are nonreactive metals (e.g. Cu, Ag) on polycrystalline graphite, or 
soda - lime glasses on steel moulds lubricated with a porous layer of carbon  [Pech 2005] . 

 When a true interface is established at any point of the common area, the behaviour of 
the interface on cooling depends on several material parameters, as well as system geom-
etry and cooling rate. Sticking is favoured by (i) a high adhesion energy  W  a  and (ii) a low 
thermoelastic energy stored in the system during cooling due to thermal contraction mis-
match ( Δ   α     =     α   A     −      α   B ) between the substrate A and the solidifi ed liquid B. For a given 
 Δ  T    =    T  sol     −     T  room  (where  T  sol  is the temperature of solidifi cation and  T  room  the room tem-
perature), this energy increases proportionally to ( Δ   α  ) 2  and to  E  A  E  B  2 /( E  A    +    E  B ) 2  where  E  
is Young ’ s modulus  [Pech 2004] . Ductility of one of the contacting phases in a certain 
range of temperature contributes to decrease, by plastic deformation, the driving force for 
detachment. Many semiconductors (e.g. Si, InSb, GaSb) are brittle materials, such that 
energy dissipation by plastic deformation is small. In this case, the mechanical response 
of the system during cooling depends critically on the adhesion energy of the solidifi ed 
liquid/substrate couple. For instance, for Si on Si 3 N 4  and SiC, the adhesion energy is high 
(Si wets well both these ceramics; see Tables  1.4  and  1.5 ) resulting in sticking or cohesive 
fracture  [Drevet 2009] . Conversely, the adhesion energy of GaSb and InSb on vitreous 
carbon is very low (see Table  1.4 ) leading during cooling to detachment by a purely 
interfacial separation  [Harter 1993, Boiton 1999] . See also Chapter  6 , section  6.1.3 .     

  1.2.1.3   Wetting on Heterogeneous Surfaces 

 Many materials of practical interest are multiphase solids with heterogeneous surfaces 
that can be either regular (oriented eutectics, unidirectional composites, etc.) or random 
( ‘ hard ’  alloys processed by liquid phase sintering, alloys strengthened by precipitation, 
etc.). 

 Consider an horizontal solid consisting of two macroscopic phases   α   and   β   separated 
by a plane intersecting the solid surface by a vertical straight line (Figure  1.9 ). The intrin-
sic contact angles on the two phases are such that   θ   α       >      θ   β   , and for the sake of clarity 
  θ   α       >    90    °  and   θ   β       <    90    ° . The initial position of the liquid surface is on the   β   phase with a 
macroscopic contact angle   θ   M  equal to   θ   β    (confi guration (1) on Figure  1.9 ). If the liquid 
volume is increased, when the TPL reaches the line of separation from   β   to   α  , it will be 
pinned at this position by the nonwetted   α   phase (confi guration (2)). When the volume 
of the liquid is increased again, the TPL does not move until confi guration (3) is obtained 

(1)(2)
(3)(4)
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     Figure 1.9     Successive confi gurations of the liquid surface on a solid surface consisting of 
two macroscopic phases  α  and  β  when the liquid volume is increased.  
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where   θ   M    =     θ   α   . If the liquid volume is further increased, the TPL will move on the   α   
surface while   θ   M  will remain equal to   θ   α    (confi guration (4)).   

 Consider now the case of a composite solid consisting of alternate strips of   α   and   β   
phases, with contact angles   θ   α    and   θ   β   , such that the surface area fractions are  f  α    and  f  β   . 
The width of the strips is assumed small compared to the capillary length, so that the 
macroscopic TPL is a straight line which is either perpendicular (Figure  1.10 a) or parallel 
(Figure  1.10 b) to the strips. For the fi rst situation, it has been shown that there are no 
metastable states and, as a consequence, no hysteresis of contact angle  [Johnson 1993, 
Neumann 1972] . The macroscopic contact angle that would be observed at equilibrium, 
denoted   θ   C , is then given by Cassie ’ s equation  [Cassie 1948] :

    cos cos cosθ θ θα α α βC = + −( )f f1     (1.15)     

 This equation, which is an analog of the Wenzel equation for rough surfaces (Equation 
 (1.11) ), gives the stable equilibrium contact angle for any heterogeneous surface. 

 When the TPL is parallel to the strips, a situation analogous to a rough surface with 
grooves parallel to the TPL (Figure  1.6 ), free energy change calculations  [Johnson 1993, 
Neumann 1972]  indicate the existence of metastable states separated by energy barriers 
for any position of the TPL corresponding to a macroscopic contact angle   θ   M  between   θ   α    
and   θ   β   . Consequently, the maximum advancing and minimum receding contact angles are 
given by the equations:

    θ θαa max( ) =     (1.16a)  

    θ θβr min( ) =     (1.16b)   

 which are analogous to equations  (1.13)  for rough surfaces.   

  1.2.2   Dynamics of Wetting 

 In this section, spreading kinetics will be presented fi rst for nonreactive solid/liquid 
systems and then for reactive ones. In view of the systems of interest in crystal growth, 

liquid
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     Figure 1.10     Composite solid consisting of alternate strips perpendicular (a) and parallel 
(b) to the triple line.  
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the reactive case will be presented briefl y. Nonreactive systems exhibit a reactivity low 
enough such that the resulting solid/liquid interface remains fl at at the macroscopic scale 
and reactivity has a negligible effect on the interfacial energies. Under this last condition, 
interfacial energies can be taken constant with time during the wetting process. 

  1.2.2.1   Nonreactive Spreading 

 Consider a drop of millimetre size spreading on a fl at surface spontaneously, i.e. in the 
absence of any external force. The triple line velocity  U    =   d R/ d t , where  R  is the drop base 
radius, results from a balance of forces that drive and resist to spreading. The driving 
force for wetting per unit length of triple line is given by the change in the surface and 
interfacial energies of the system resulting from a lateral displacement of the triple line:

    γ γ γ θ γ θ θsv sl lv lv F− − = −( )cos cos cos     (1.17)  

where   θ   F  is the fi nal, equilibrium, contact angle. In the so - called hydrodynamic models 
of wetting, energy dissipation is supposed to occur by viscous friction in a macroscopic 
wedge near the triple line of typical width 0.1   mm. The resulting expression for  U  for 
  θ      <    135    °  is:

    U
K

= −( )γ
μ

θ θlv
F

3 3     (1.18)  

where   μ   is the dynamic viscosity,  K  is a constant close to 100 and   θ   is expressed in radians 
 [de Gennes 1985, Cox 1986, Kistler 1993] . It has been shown that this equation does not 
depend on the confi guration (sessile drop or meniscus formed on a vertical wall). Moreover, 
this equation is valid for both spontaneous and forced spreading. An example of forced 
spreading is the steady immersion (or withdrawal) of a plate in a liquid bath at an  imposed 
rate U . Then, the observed contact angle would be the value   θ  ( U ) given by Equation 
 (1.18) . Finally, for   θ   F  close to zero, Equation  (1.18)  can be written as:

    θ μ
γ

≅ ⎛
⎝⎜

⎞
⎠⎟ =

K U
K Ca

lv

1 3
1 3 1 3     (1.19)  

where  Ca  is the capillary number. Accordingly, for all liquids with   θ   F     ≅    0, the experi-
mental   θ     =    f ( Ca ) results would lie on the same  ‘ universal ’  curve. 

 Molten metals and semiconductors are low viscosity liquids, their viscosity close to 
the melting point being a few mPa   s. For this type of liquid, the experimental average  U  
is very high, of the order of 1   m   s  − 1 . For millimetre - sized droplets, this leads to spreading 
times  t  s  of a few ms  [Eustathopoulos 1999 p. 54] . The analysis of experimental results 
obtained in the sessile drop confi guration shows that values  U (  θ  ) predicted by Equation 
 (1.18)  consist in an upper limit. Overestimation of  U  is particularly high for   θ      >    30    ° . For 
instance, in the liquid Sn/solid Ge system at 600    °  in which the fi nal contact angle is about 
40    °   [Naidich 1992] , the spreading rate at   θ     =   80    °  is about 0.5   m   s  − 1 , while the value 
calculated by Equation  (1.18) , taking   γ   lv    =   0.5   J   m  − 2  and   μ     =   1.1   mPa   s, is 11   m   s  − 1 . For low 
viscosity liquids and large   θ  , it is likely that the spreading rate is limited not by viscous 
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fl ow but by the movement of atoms at the solid/liquid interface close to the triple line, as 
proposed by Blake  [Blake 1993] , who considered spreading as an adsorption – desorption 
process of the liquid atoms on the substrate surface. The values of  U  calculated by Blake ’ s 
model are very sensitive to the value of a model parameter, i.e. the activation energy of 
wetting which is an unknown quantity. 

 The viscosity of molten oxides is often several orders of magnitude greater than that 
of molten metals. As a consequence, the spreading time  t  s  for millimetre - sized droplets 
can attain several seconds or hundreds of seconds (vs a few ms for metals) and even more. 
In agreement with Equation  (1.18) , the wetting rate is very high at short times (i.e. for 
high   θ   values) and decreases strongly at longer times (Figure  1.11 ). Finally, the experi-
mental wetting curves obtained for the same molten oxide/solid metal couple by varying 
the temperature by 240    °  (implying a variation of   μ   by more than two orders of magnitude) 
are plotted as   θ     =    f ( Ca ) on Figure  1.12 . In agreement with Equation  (1.18) , a unique curve 
is obtained (note that in these experiments the change of   θ   F  with temperature is negligible) 
 [Pech 2004] .    

  1.2.2.2   Reactive Spreading 

 In this type of spreading, wetting is accompanied by (and in many cases coupled to) a 
reaction forming a new compound at the interface. The fundamentals of reactive wetting 
(driving force, limiting process) have been studied mainly for molten metals and alloys 
on ceramics and are reviewed in  [Eustathopoulos 2005b] . In these systems, the observed 
spreading times are in the range 10 1  – 10 3    s (Figure  1.13 ), corresponding to spreading rates 
 U  several orders of magnitude lower than those measured for molten metals in nonreac-
tive spreading. Therefore, in reactive spreading,  U  is limited by the interfacial reaction 
itself. Actually it has been shown that the relevant region is not the two - dimensional solid/
liquid interface but the solid/liquid/vapour triple line. Indeed, at this line where the liquid 
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     Figure 1.11     Wetting kinetics of a drop of soda - lime glass (13.4   wt% Na 2 O, 10.9   wt% 
CaO, 1.6   wt% Al 2 O 3 , 1.4 wt% MgO, SiO 2  bal.) on steel at 1200    ° C (  μ     =   10 2    Pa   s)  [J. Pech, 
M. Jeymond, N. Eustathopoulos, unpublished work].   
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     Figure 1.12     Contact angle as a function of  Ca    =     μ U /  γ   lv  for the glass 13.4   wt% Na 2 O, 
10.9   wt% CaO, 1.6   wt% Al 2 O 3 , 1.4   wt% MgO, bal. SiO 2  on steel at different temperatures 
(Reprinted with permission from   [Pech 2004] , copyright (2004) Elsevier Ltd) .  
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     Figure 1.13     Variation of drop base radius and contact angle with time for Ge - 20 at.% Si 
alloy on vitreous carbon at 1231    ° C under high vacuum (the dashed vertical line indicates 
the moment of drop detachment from the capillary end in the dispensed drop apparatus 
of Figure  1.15 b)  (Reprinted with kind permission from  [Dezellus 2000] , copyright (2000) 
O. Dezellus) . In this system, wetting is promoted by the formation at the interface of a 
wettable SiC layer.  

contacts directly a fresh surface of the solid substrate, the growth rate of the reaction 
product is maximal (Figure  1.14 ). Far behind the triple line, thickening of the reaction 
product continues but this process is slow as it occurs by solid state diffusion. Two 
regimes of reactive spreading have been identifi ed depending on the relative rate of the 
two successive steps: (i) diffusion of the reactive solute from the liquid bulk to the triple 
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line and (ii) the local process at the triple line. When the local process at the triple line 
is the slowest one, the spreading rate  U  was found to be nearly constant in a large domain 
of the   θ  ( t ) curve (linear spreading) (Figure  1.13 ). Conversely, nonlinear spreading is 
predicted for diffusion controlled reactive spreading (drop base radius  R     ∼     t  1/4 )  [Mortensen 
1997] .     

  1.2.3   Measurements of Contact Angle and Surface Tension by the 
Sessile Drop Technique 

 A critical review of the state of knowledge in high temperature contact angle measurement 
is given in  [Eustathopoulos 1999 p. 106, Eustathopoulos 2005a]   . Briefl y, the technique 
most widely used for wetting experiments is the sessile drop method. In its classical form, 
shown in Figure  1.15 a, a small piece of solid, typically some tens or hundreds of milli-
grams, is placed on a substrate and then heated above its melting temperature. In another 
variant, a metal or alloy is melted in an unwetted and chemically inert ceramic tube and 
is dispensed on the substrate surface through a small hole in the tube end by applying a 
back pressure of inert gas or using a piston (Figure  1.15 b). One advantage of this tech-
nique is that oxide fi lms on liquid metals are disrupted during liquid extrusion from the 
crucible through the capillary. In the  ‘ transferred drop ’  technique (Figure  1.15 c), a sessile 
drop can be melted on an inert substrate, which is then raised so that the top of the drop 
contacts a fresh solid surface. The liquid can be transferred to the top substrate provided 
it is better wetted than the inert bottom substrate. In all the above techniques, values of 
advancing contact angles   θ   a  are measured and they are attained by an irreversible move-
ment of the triple line from   θ      ∼    180    °  to   θ   a . 

 When it is possible, single crystal or amorphous substrates with a random roughness 
less than 100   nm are preferred in order to achieve an acceptable accuracy of   θ   (a few 
degrees). The experiments are conducted in controlled furnace conditions under either 
high vacuum or gases with low or known oxygen partial pressure. For contact angles 
greater than 90    ° , the sessile drop technique allows the surface tension of the liquid to be 
determined with an accuracy of 2 – 3% by fi tting the shape of the droplet to the Laplace 
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     Figure 1.14     Schematic representation of the  ‘ reaction product control ’  model. The initial 
contact angle   θ   0  is the contact angle on the unreacted ceramic substrate surface s. After a 
transient stage, a quasi - state confi guration is established at the triple line where the 
advance of the liquid is hindered by the presence of a nonwettable substrate in front of 
the triple line. Thus, the only way to move ahead is by lateral growth of the wettable 
reaction product layer p until the macroscopic contact angle equals the equilibrium 
contact angle   θ  F   of the liquid on the reaction product   (Reproduced with permission from 
[Eustathopoulos 1998] , copyright (1998) Elsevier Ltd) .  
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equation, i.e. by expressing at each point of the drop surface the balance between the 
hydrostatic pressure and the capillary pressure. This is often performed by automatic 
imaging procedures that give also a reliable value of the contact angle. Table  1.1  gives 
the value of   γ   lv  for a number of semiconductors and compounds relevant in crystal growth.    

  1.2.4   Selected Data for the Contact Angle for Systems of Interest 
for Crystal Growth 

  1.2.4.1   Semiconductor/Ceramic Systems 

  Semiconductors on Oxides.     The wettability of ionocovalent oxides by molten metals 
and semiconductors depends critically on their reactivity at the common interface. This 
can be quantifi ed by the molar fraction of oxygen in the liquid metal,   XO

I , provided 
by the dissolution of the oxide at the solid/liquid interface I. For SiO 2 , the dissolution 
reaction is:

    SiO Si O2 2→ ( )+ ( )     (1.20)  

where the parentheses mean that the species are in the liquid state. It has been found in 
 [Eustathopoulos 1998, Eustathopoulos 1999 p. 198]  that for all metal/oxide couples with 
  XO

I < −10 5 , the observed equilibrium contact angles are in the range 115 – 135    °  whatever 
the value of   XO

I . In these systems, considered as nonreactive from the point of view of 
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     Figure 1.15     (a) Classical sessile drop method. (b) Dispensed drop method. (c) Example 
of the transferred drop method: Pb drop transferred from an Al 2 O 3  substrate (bottom) to a 
Fe substrate (top) at 400    ° C.  
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wettability, adhesion is ensured mainly by weak, van der Waals, interactions. Typical 
examples are the noble metals Ag, Au, Cu and the low melting point metals Ga, In, Pb, 
Sn on SiO 2  or Al 2 O 3  substrates. Note that for these systems, the contact angle decreases 
with temperature only slightly (d  θ  /d T     ≅    10  − 2 /K). The molten Ge/SiO 2  couple in high 
vacuum belongs to this type of system (Table  1.2 ).   

 For a given metal/oxide couple, the concentration of oxygen in the liquid metal can be 
increased above the value imposed by the interfacial equilibrium  (1.20)  by increasing the 
oxygen partial pressure  P  O  2  in the furnace atmosphere. Indeed, according to Henry ’ s law 
(i.e. constant activity coeffi cient of the diluted solute), at constant temperature 
  X K T PO O= ( ) 2

1 2, where  K ( T ) is a constant depending on the metal. As shown in Figure 
 1.16 , when  X  O  becomes higher than   XO

W ≅ −10 5, the contact angle decreases from its 
 ‘ plateau ’  value, and for elements such as Ag, Cu or Ni dissolving enough oxygen, contact 
angles as low as 80 – 100    °  have been observed on Al 2 O 3 . A similar  ‘ wetting transition ’  
was found for molten Pb on SiO 2   [Sangiorgi 1995] . As discussed in  [Naidich 1981, 
Eustathopoulos 1999 p. 220, Eustathopoulos 2001] , the improvement of wetting by dis-
solved oxygen results from the development of chemical interactions between the oxide 
surface and oxygen – metal clusters formed in the liquid.   

 Oxidation of the liquid metal M surface can occur when  P  O  2  in the furnace becomes 
equal to   PO

x
2°  corresponding to the reaction ( M )   +    n /2[O 2 ]    →     < MO  n   > . When the MO  n   

oxide is solid, the skin formed around the metal prevents direct contact between the liquid 
and the substrate resulting in very large, obtuse, contact angles (typically 150 – 160    ° ) 
(Figure  1.16 ). As long as such oxide skins exist, no sticking is observed on cooling. 

  Table 1.1    Values of surface tension for compounds of interest in crystal growth 

   Compound      T  m  ( ° C)       γ   lv  (mJ   m  − 2 )     Reference  

  Ge    937    587 – 0.105 ( T     −     T  m )     [Eustathopoulos 1999 p. 149]   
  Si   a       1412    827 – 0.48 ( T     −     T  m ) 

 749 – 0.15 ( T     −     T  m )  
   [Eustathopoulos 1999 p. 149]   

  GaSb    711    453 – 0.14 ( T     −     T  m )     [Harter 1993]   
  InSb    530    434 – 0.08 ( T     −     T  m )     [Harter 1993]   
  CdTe    1092    181 at  T  m  

 d  γ   lv  / d T    =    − 0.16  
   [Shetty 1990a]   

  186 at 1100    ° C     [Katty 1992]   
  Pb 0.8 Sn 0.2 Te     T  l    =   905    230 – 0.17 ( T     −    905    ° C)     [Kinoshita 1989]   
  GaAs    1238    465 at  T  m  

 d  γ   lv /d T    =    − 0.96  
   [Shetty 1990b]   

  Al 2 O 3     2047    630 at  T  m      [Eustathopoulos 1999 p. 165]   
  SiO 2     1720    307 at  T  m      [Eustathopoulos 1999 p. 165]   
  CaF 2     1418    387 at  T  m      [Tanaka 1996]   
  BaF 2     1290    253 at  T  m      [Tanaka 1996]   
  LiF    848    236 at  T  m      [Tanaka 1996]   
  NaF    992    186 at  T  m      [Tanaka 1996]   
  CsI    621    72 at  T  m      [Tanaka 1996]   
  NaI    660    86 at  T  m      [Tanaka 1996]   
  LiNbO 3     1250    192 at 1300    ° C     [Shi 1980]   

    T  l , temperature of liquidus;  T  m , melting temperature.  
    a     Two groups of values for both   γ   lv ( T  m ) and d  γ   lv  / d T  have been found.   
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Classical examples are Al on Al 2 O 3   [Laurent 1988]  or molten silicides on SiC  [Mailliart 
2008]  (see also Figure  6.28 ). Figure  1.17  shows the contact angle vs time curve for Ge 
on fused SiO 2  under high vacuum or Ar containing a few ppm of oxygen. In high vacuum, 
steady contact angles close to 115    °  are observed. When Ar is introduced the contact angle 
increases strongly towards 155    ° , indicating liquid oxidation. As a general rule, the effect 
of a skin on wetting predominates in the low temperature – high  P  O  2  ranges. As shown in 
Table  1.3 , the   PO

x
2°  value in equilibrium with the oxide of the metal at a temperature 

close to its melting point is much lower than typical  P  O  2  values in regular neutral gas 
atmospheres (10  − 6  − 10  − 8    atm), resulting in skin formation. Some elements such as Al and 
Si can form volatile suboxides. Then, the reaction between the skin and the underlying 
metal (for instance the reaction (Si)   +    < SiO 2  >  skin     →    2[SiO]) favors deoxidation which can 
occur at  P  O  2  values in the furnace much higher than   PO

x
2°   [Laurent 1988, Castello 1994] . 

Obtaining clean surfaces is much easier in high vacuum where the removal of SiO (or 
Al 2 O) gaseous species far from the metal surface is much easier than in neutral gas 

  Table 1.2    Contact angle of semiconductors on  S i O  2  

   Semiconductor      T  ( ° C)     Atmosphere       θ   F  ( ° )     Reference  

  Ge    1100    High vacuum 
 Ar  

  115 
 155  

   [Kaiser 2001]   

  Si    1420    Ar ( P  O  2    =   10  − 15    Pa)    85     [Yuan 2004]   
  Ge - 4.6 at.% Si 
 Ge - 10.7 at.% Si  

  1100    High vacuum    105 
 100  

   [Cr ö ll 2002]   

  GaSb    920    High vacuum    119     [Harter 1993]   
  GaSb    710 – 910    H 2     132     [Cr ö ll 2003]   
  InSb    800    High vacuum    110     [Harter 1993]   
  InP    1065    High vacuum   +   P vapour    140 – 150     [Shimizu 2002]   
  GaAs    1238    High vacuum   +   As vapour    115     [Shetty 1990b]   
  CdTe    1092    High vacuum   +   Cd vapour    83     [Shetty 1990a]   
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     Figure 1.16     Schematic representation of the variation of  θ  with  log   P  O  2  at constant 
temperature for a given metal/oxide couple. The wetting transition occurs at   POw

2  and 
  XO

w . When the metal changes,   XO
I  and   XO

x°  change too but   XO
w  remains nearly constant 

  [Eustathopoulos 2001]  . However, the value of   POw
2  is different from metal to metal.  
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     Figure 1.17     Contact angle of Ge on fused silica showing the effect of a change between 
dynamic vacuum and 1040   mbar Ar on the wetting angle.  Data from work reported in 
(Reprinted with permission from  [Kaiser 2001] , copyright (2001) Elsevier Ltd) .  

  Table 1.3    Partial pressure of oxygen in equilibrium with the oxide of the metal at the 
temperature of fusion of the metal   Tm

M and at 1000    ° C  

   Metal/metal oxide       Tm
M  ( ° C)       PO x

2°  (  Tm
M ) (atm)       PO x

2°  
(1000    ° C) (atm)

  
  Al/Al 2 O 3     660    3    ×    10  − 52     10  − 35   
  Pb/PbO    327    2    ×    10  − 28     8    ×    10  − 9   
  Sn/SnO 2     232    10  − 50     6    ×    10  − 14   
  Si/SiO 2     1412    10  − 19     10  − 28   
  Ge/GeO 2     950    2    ×    10  − 15     2    ×    10  − 14   
  Ga/Ga 2 O 3     30    2    ×    10  − 113     6    ×    10  − 19   
  In/In 2 O 3     157    9    ×    10  − 63     10  − 14   
  Sb/Sb 2 O 3     631    10  − 18     4    ×    10  − 11   
  Cd/CdO    321    8    ×    10  − 43     8    ×    10  − 9   
  Te/TeO 2     450    2    ×    10  − 14     10  − 4   

atmospheres  [Mailliart 2008] . In some cases, the metal oxide is liquid and can react with 
the oxide substrate, thus promoting wetting and adhesion. On cooling, sticking can be 
observed. An example is PbO formed during wetting of Pb on SiO 2  substrates  [Sangiorgi 
1995, Eustathopoulos 1999 p. 230] .     

 The above considerations concern metals (M) for which the thermodynamic stability 
of the MO n  oxide, as refl ected by its Gibbs energy of formation   ΔG0

f , is much lower than 
that of the oxide substrate (see also the values of   PO

x
2°  at 1000    ° C in Table  1.3 , which 

are calculated from   ΔG0
f ). This is no longer the case for molten Si on SiO 2 . Indeed, the 

value of   XO
I  for the Si/SiO 2  system at a temperature close to the melting point of Si is in 

the range 5    ×    10  − 5  – 15    ×    10  − 5 , i.e. above the   XO
w  value defi ning the wetting transition 
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(Figure  1.16 ). This can explain the contact angles close to 90    °  observed for molten Si on 
SiO 2  (Table  1.2 ) and also on Al 2 O 3 , MgO and ZrO 2   [Maeda 1986, Yuan 2004] . However, 
it is likely that Si (like Al) also modifi es the surface chemistry and structure of the oxide 
substrate itself, as discussed in  [Eustathopoulos 1998, Eustathopoulos 1999 p. 216] . 

 Consider now an alloying element added in a nonreactive, nonwetting matrix M on a 
ionocovalent oxide. If the alloying element develops weak, van der Waals, interactions 
with the oxide substrate, as the matrix M, the effect of the alloying element on wetting 
is expected to be small and even negligible. This is consistent with the thermodynamic 
model of Li  et al.   [Li 1989] . This explains the small variation of contact angle for Ga – Sb 
on SiO 2  when varying the composition of the liquid between pure Ga (  θ     =   136    ° ) and pure 
Sb (  θ     =   132    ° )  [Cr ö ll 2003] . A similar behaviour has been observed for In – Sb mixtures 
 [Harter 1993] . 

 A more signifi cant effect can be observed by the addition of an element developing, 
by adsorption, chemical interaction with the oxide substrate, such as Si in Ge (see Table 
 1.2 ). This effect is important for the fi rst few per cent of the addition, further addition 
having much less effect. 

 Note that in Table  1.2  differences of about 10    °  in   θ   values measured in the same system 
by different teams are not surprising, taking into account differences in  P  O  2 , substrate 
roughness, experimental procedure and method for obtaining   θ   values from drop images. 
Among the results presented in Table  1.2 , the case of CdTe is rather puzzling. In the 
absence of oxygen in the quartz ampoule containing the sessile drop, Cd and Te cannot 
react with SiO 2  as their   PO

x
2°  values are much higher than the value for Si (Table  1.3 ). 

Therefore, according to the previous developments, in the absence of oxygen the equi-
librium contact angle would be much higher than 90    ° . Oxygen present in the ampoule 
can dissolve in CdTe, thus reducing the contact angle. However, to our knowledge, no 
data exist showing a signifi cant solubility of O in CdTe. Moreover, an explanation based 
on dissolved oxygen can hardly explain the comparatively marked decrease of   θ   (15    ° ) 
observed in  [Shetty 1990a]  for a limited increase of temperature (60   K). Indeed, for a 
given value of  P  O  2 , the molar fraction of oxygen dissolved in a liquid metal or alloy 
decreases when the temperature increases. Another possibility for the oxygen in the 
ampoule is to form a liquid oxide such as TeO 2  likely to react with SiO 2 , thus improving 
wetting and adhesion. Such an effect was observed by Yasuda  et al.   [Yasuda 1990] , cited 
in  [Cobb 1999] , who found that TeO 2  in the starting charge of CdTe ingots reacted with 
the quartz ampoule, causing adhesion. The same situation was likely to occur with ZnO 2  
and SeO 2  when solidifying Hg 1 −    x  Zn  x  Se alloys in quartz ampoules  [Cobb 1999] .  

  Semiconductors on Carbon - Based Substrates.     The wettability of carbon - based sub-
strates by liquid metals and semiconductors depends on the liquid/carbon reactivity. Three 
cases can be distinguished  [Eustathopoulos 1999 p. 317] : (i) very low solubility of carbon 
in the liquid (typically  < 100   ppm), (ii) high solubility, and (iii) formation of metal carbide 
at the interface. Only (i) and (iii) are considered here. 

 Nonreactive pure metals (such as In, Ga, Sb, Pb, Sn, Cu, Ag) do not wet carbon sub-
strates (  θ      >>    90    ° ) whatever the type of carbon: vitreous carbon (C v ), graphite (C g ), or 
diamond (C d ). As for ionocovalent oxides, adhesion in these systems is ensured by weak, 
van der Waals, interactions. As a result, for a given system,   θ   changes only slightly with 
temperature (typically by 1 – 2    °  for every 100   K). Moreover, the addition of a nonreactive 
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element in a nonreactive matrix produces a change in   θ   of only 5 – 15    °   [Eustathopoulos 
1999 p. 324] . All the semiconductors listed in Table  1.4 , except Si and Ge – Si alloys, 
belong to this type of nonreactive, nonwetting, system. Note that for a given element, the 
contact angles on smooth surfaces of C v  are higher by 15 – 20    °  than those on basal faces 
of monocrystalline graphite because of the lower atomic density of vitreous carbon 
 [Dezellus 1999] . For polycrystalline graphite, very large contact angles are often observed 
(150 – 160    ° ). However, these values are due to its high roughness (it is diffi cult to prepare 
polycrystalline graphite surfaces with an average roughness less than 100   nm) and also 
to porosity (in nonwetting systems pores act as a second phase with   θ   β      =   180    °  in Cassie ’ s 
Equation  (1.15) ). 

 Reactive wetting will be considered only for pure Si and Ge – Si alloys. Si reacts with 
C forming at the interface a continuous layer of SiC, a few microns in thickness. Figure 
 1.18  shows the change with the logarithm of time of the contact angle of Si on a smooth 
surface of C v . When time tends towards zero, the contact angle tends towards 150    ° , which 
is the contact angle of Si on unreacted carbon (see also Figure  1.14 ). The fi nal contact 
angle of 36    °  is very close to the contact angle of Si on SiC. As a general rule, reported 
values for polycrystalline graphite are in the range 5 – 15    ° , i.e. lower than those on C v . 

  Table 1.4    Contact angle of semiconductors on carbon - based substrates 

   Semiconductor     Substrate     Temperature 
 ( ° C)  

   Atmosphere       θ   F  ( ° )     Reference  

  Ge    C v  
 C g   

  1100    High vacuum    157 
 166  

   [Kaiser 2001]   

  Ge    C g     1000    High vacuum    139     [Naidich 1968]   
  Ge    C d  CVD    1100    High vacuum    146     [Kaiser 2001]   
  Ge    C d     1000    High vacuum    136     [Naidich 1981]   
  GaSb    C v     920    High vacuum    128 

 no sticking  
   [Harter 1993]   

  InSb    C v     800    High vacuum    124 
 no sticking  

   [Harter 1993]   

  CdTe    C v     1100    High vacuum   
+   Cd 
vapour  

  116     [Katty 1992]   

  Cd 0.96 Zn 0.04 Te    C v     1100    High vacuum   
+   Cd 
vapour  

  126     [Katty 1992]   

  GaAs    C - coated SiO 2     1238    High vacuum   
+   As 
vapour  

  120     [Shetty 1990b]   

  Ga – In – As    C g     632    H 2     148     [K ö nig 1984]   
  InP    C g     632    H 2     144     [K ö nig 1984]   
  Si    C g     1450    High vacuum    15     [Naidich 1981]   
  Si    C v     1430    High vacuum    36     [Dezellus 2005]   
  Ge - 4.6 at.% Si    C v  - coated C g     1100    High vacuum    103     [Cr ö ll 2002]   
  Ge - 20 at.% Si    C v     1231    High vacuum    55     [Dezellus 2000]   

   C d , diamond; C g , graphite; C v , vitreous carbon.   
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Indeed, for wetting systems (  θ      <<    90    ° ), roughness favours wetting, as indicated by the 
Wenzel Equation  (1.11) . Moreover, Si can infi ltrate the open porosity of graphite ahead 
of the drop triple line. In this case, fi lled pores act as a second phase with   θ   β      =   0    °  in 
Cassie ’ s Equation  (1.15) . Finally, infi ltration decreases the drop volume leading to a 
receding contact angle instead of an advancing one.   

 Ge does not wet C v  (Table  1.4 ) but the addition of Si promotes wetting by forming a 
wettable SiC layer at the solid/liquid interface. For the Ge - 20 at.% Si alloy, a steady 
contact angle of 55    °  is reached in 1300   s at 1231    ° C (Figure  1.13 ). However, for the Ge -
 4.6 at.% Si alloy, the driving force of the interfacial reaction at 1100    ° C is much lower, 
resulting in very slow spreading kinetics : the contact angle decreases from an initial value 
of 150    °  to a value close to 110    °  within a day  [Cr ö ll 2002] . However, it is possible that 
the value of 103    °  reported in Table  1.4  is not a steady angle.  

  Semiconductors on Nitrides.     Al and Si nitrides are nonoxide but oxidizable ceramics. 
Indeed, even a very short time (1 – 2   min) in contact with air at room temperature leads to 
the formation of nanometre - thick oxide or oxi - nitride layers. These layers are stable even 
in high vacuum environments. For instance, in the case of Si 3 N 4 , several hours at 1140    ° C 
in an ultrahigh vacuum are needed to remove oxygen. Therefore, at temperatures lower 
than 1100    ° C, in neutral gas or standard vacuum environments employed in crystal 
growth, wettability of Al and Si nitrides is imposed by oxygen - rich surface layers. As a 
consequence, the contact angle of nonreactive metals such as In, Sn, Ga, Pb, Sb, Ag on 
these nitrides is in the range 110 – 140    ° , as on ionocovalent oxides. Among semiconduc-
tors, Ge and GaSb form also nonwetting contact angles (Table  1.5 ). 

 The initial contact angle of Si on Si 3 N 4  is close to 80    ° , as on SiO 2  substrates (see Table 
 1.2 ). However, the contact angle decreases rapidly with time and tends towards 49    ° , 
which is close to the intrinsic contact angle of Si on Si 3 N 4  (Figure  1.19 ). The spreading 
kinetics in this system are controlled by substrate deoxidation occurring by reaction 
between liquid Si and the oxide layer at the triple line with formation of volatile SiO 
 [Drevet 2009] . For Ge – Si alloys on Si 3 N 4 , Cr ö ll  et al.   [Cr ö ll 2002]  also observed a 
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     Figure 1.18     Variation of contact angle with time for Si on C  v   at 1430    ° C  (Reprinted with 
kind permission from  [Dezellus 2005] , copyright (2005) Springer) .  
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decrease of the contact angle from 150    °  towards 96    °  (Table  1.5 ) probably occurring by 
a similar process. However, due to the low thermodynamic activity of Si and the com-
paratively low temperature, the spreading time is very high (several hundreds of minutes). 
Similar phenomena occur with Ge – Si alloys on AlN  [Cr ö ll 2002] .   

 BN is also an oxidizable ceramic but boron oxide, B 2 O 3 , which is liquid above 450    ° C, 
is a volatile oxide such that clean BN surfaces are expected to form at higher temperatures, 
especially in high vacuum. Nonreactive metals such as Ga, Sn, Ag, Au do not wet BN at 
temperatures of 1000 – 1100    ° C, the contact angle being in the range 130 – 150    °   [Naidich 
1981] . No signifi cant differences in wettability have been found between hexagonal and 
cubic BN  [Naidich 1981] . Even higher contact angle values, close to 160 – 170    ° , have 
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     Figure 1.19     Contact angle and drop base diameter as a function of time for a Si drop on 
sintered Si 3 N 4  at 1430    ° C  (Reprinted with permission from  [Drevet 2009] , copyright (2009) 
Elsevier Ltd) .  

  Table 1.5    Contact angle of semiconductors on  A  l  and  S  i  nitrides 

   Semiconductor     Nitride     Temperature 
 ( ° C)  

   Atmosphere       θ   F  ( ° )     Reference  

  Ge    AlN sintered    950    High vacuum    122     [Naidich 1995]   
  Ge    AlN sintered    1100    Vacuum/Ar    153     [Kaiser 2001]   
  Si    AlN CVD    1430    H 2  

  P  O  2    =   8.7    ×    
10  − 16    Pa  

  45     [Barsoum 1981]   

  Si    AlN sintered    1412    High vacuum    48     [Naidich 1995]   
  Ge - 6.3 at.% Si    AlN sintered    1100    Vacuum/Ar    124     [Cr ö ll 2002]   
  GaSb    AlN pyrolytic    820    High vacuum    103     [Harter 1993]   
  Ge    Si 3 N 4  sintered    1100    Vacuum/Ar    136     [Kaiser 2001]   
  Si    Si 3 N 4  CVD    1430    H 2  

  P  O  2    =   10  − 15    Pa  
  48 – 52     [Barsoum 1981]   

  Si    Si 3 N 4  sintered    1430    Ar    49     [Drevet 2009]   
  Ge - 6.2 at.% Si    Si 3 N 4  sintered    1100    Vacuum/Ar    96     [Cr ö ll 2002]   
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been reported in the literature, mainly due to roughness effect. The wetting of Ge, GaSb, 
InSb, InP, CdTe and GaAs on BN is the same as that of nonreactive metals (Table  1.6 ).   

 Molten Si does not wet the different forms of BN, but the contact angles are signifi -
cantly lower than for nonreactive semiconductors (Table  1.6 ). Moreover, despite this 
nonwetting behaviour, sticking has been observed in the Si/BN system. These phenomena 
were explained in  [Drevet 2009]  by the reaction between Si and BN leading to the forma-
tion of Si 3 N 4  at the interface (3(Si)   +   4 < BN >     →     < Si 3 N 4  >    +   4(B)). However, the reactivity 
in the Si/BN system is so weak that chemical equilibrium (i.e. saturation of liquid Si with 
B) is established well before the equilibrium contact angle on the reaction product (i.e. 
Si 3 N 4 ) is attained. 

 Ge – Si alloys with a low Si content are nonreactive with BN, such that the presence of 
Si in the melt does not affect the contact angle of Ge on BN (Table  1.6 ).   

  1.2.4.2   Oxide/Metal and Oxide/Carbon Systems 

 Although several articles have been devoted to crystal growth of oxides in contact with 
refractory metals (Pt, Ir, Mo, W), only a few give measurements of contact angles. In 
contrast, a signifi cant number of wettability studies has been performed with oxide slags 
and glasses. One can reasonably expect that the conclusions drawn from these studies can 
also be applied to oxide/metal systems that are relevant in crystal growth. 

 In nonreactive molten oxide/solid metal systems, as in nonreactive liquid metal/iono-
covalent oxide ones, adhesion results from weak, van der Waals, interactions leading to 
values of work of adhesion  W  a  of a few hundreds of mJ   m  − 2 . However, while liquid metals 
do not wet ionocovalent oxides, molten oxides wet metallic substrates (  θ      <    90    ° , Table 
 1.7 ). The reason for this difference is the very different values of surface tension between 

  Table 1.6    Contact angle of semiconductors on  BN  

   Semiconductor     Substrate     Temperature 
 ( ° C)  

   Atmosphere       θ   F  ( ° )     Reference  

  Ge    BN pyrolytic    1100    Ar – 2% H 2     173     [Kaiser 2001]   
  Ge    BN cubic 

 BN hexagonal  
  1100 
 1100  

  High vacuum 
 High vacuum  

  138 
 139  

   [Naidich 1981]   

  Si    BN pyrolytic    1430    Ar    117     [Drevet 2009]   
  Si    BN cubic 

 BN hexagonal  
  1500 
 1500  

  High vacuum 
 High vacuum  

  95 
 110  

   [Naidich 1981]   

  Si    BN pyrolytic    1500    High vacuum    105     [Champion 
1973]   

  Ge - 7.1 at.% Si    BN pyrolytic    1100    vacuum/Ar    168     [Cr ö ll 2002]   
  GaSb    BN pyrolytic    920    High vacuum    129     [Harter 1993]   
  InSb    BN pyrolytic    800    High vacuum    134     [Harter 1993]   
  InP    BN pyrolytic    1065    High vacuum   

+   P vapour  
  140 – 150     [Shimizu 

2002]   
  CdTe    BN pyrolytic    1092    High vacuum   

+   Cd vapour  
  132     [Shetty 1990a]   

  GaAs    BN pyrolytic    1238    High vacuum   
+   As vapour  

  155     [Shetty 1990b]   
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molten metals and molten oxides. For instance,   γ   lv  of molten SiO 2  at 1720    ° C is 300 mJ   m  − 2  
while at the same temperature   γ   lv  of molten Ni is six times higher. Thus, for liquid metals, 
  γ   lv  is higher than  W  a , resulting in nonwetting according to the Young – Dupr é  Equation 
 (1.9) . Conversely, for molten oxides,   γ   lv     <     W  a , leading to   θ      <    90    ° . The physical reason 
for which the surface tension of molten oxides is low, comparatively to their cohesion 
energy, is discussed in  [Eustathopoulos 1999 p. 164] .   

 A feature of van der Waals interactions is lack of selectivity. For instance, the contact 
angle of soda - lime glass on a stainless steel rich in Cr, a metal with a high affi nity for 
oxygen, is close to the contact angle observed for the same glass on the noble metals Pt 
and Au (Table  1.7 ). However, the mechanical behaviour of the solid oxide/metal substrate 
system on cooling is very different. Indeed, soda - lime glass adheres on Pt but not on steel 
substrates. The adhesion energy in these systems is very close, as well as the elastic 
modulus of contacting phases. However,  Δ   α   is very different, close to zero in the case of 
Pt ( < 0.2    μ m   m  − 1    K  − 1 ) and very high in the case of stainless steel ( ≅    10    μ m   m  − 1    K  − 1 )  [Pech 
2004] . 

 For a given mixture of oxides on Pt substrate, when the wetting experiments are per-
formed in air, the contact angles are found systematically lower by 10 – 30    °  than those 
measured in a neutral gas atmosphere (50 – 80    ° ). This effect was attributed to the forma-
tion on the metal surface of a layer of chemisorbed oxygen  [Eustathopoulos 1999 p. 345] . 
Indeed, with metal atoms adsorbed oxygen forms a partially ionocovalent bond that 
increases the adhesion energy of the solid metal with the molten oxide. Such an adsorp-
tion effect on adhesion was evidenced by Ownby  et al.   [Ownby 1995]  who found a 
signifi cant decrease in contact angle, occurring above a given value of  P  O  2  in the gas, in 
a range where no oxidation of the W substrate takes place (Figure  1.20 ). Oxidation of the 
solid metal can enhance wetting, but this usually leads to dissolution of the oxide layer 
in the molten oxide, which may locally increase the viscosity and thus reduce the spread-
ing rate. Duffar  et al.   [Duffar 2009]  report melting studies of BGO in Ir where an increase 
of  P  O  2  above 0.1   mbar promotes Ir oxidation, leading to a decrease in the contact angle 
(from 70    °  to 0    ° ) and sticking.   

 Nonreactive oxides do not wet carbon. Indeed, contact angles as high as 130 – 140    °  
have been observed for various oxides on vitreous carbon or graphite  [Ellefson 1938, 
Towers 1954, Pech 2005] . Reactivity promotes wetting. For instance, molten B 2 O 3  reacts 
with C v , leading to contact angles as low as 30 – 40    °   [Wery 2008] . In this system, it seems 
that wettability is improved by the formation at the interface of B 4 C, a compound wettable 
by the oxide.  

  Table 1.7    Contact angles of soda - lime glass (13.4   wt% 
 N  a  2  O , 10.9   wt%  C  a  O , 1.6   wt%  A  l  2  O  3 , 1.4   wt%  M  g  O ,  S  i  O  2  
bal.) on different substrates at temperatures close to 1000    ° C 

   Substrate     Atmosphere       θ   F  ( ° )  

  X25V steel    He    65    ±    3  
  Pt    He    75    ±    3  
  Au    N 2     60    ±    3  

 Reprinted with permission from  [Pech 2004] , copyright (2004) Elsevier Ltd. 
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  1.2.4.3   Halide/Ceramic Systems 

 Molten halides have low   γ   lv  values (in the range 50 – 250   mJ   m  − 2 ) comparatively to other 
molten substances, such as metals and even oxides. The thermodynamic adhesion of 
molten halides on carbon is weak, as ensured solely by physical interactions  [Baumli 
2008] . From modelling molten halide/graphite interactions, it was shown that for the same 
type of halides (for instance chlorides), when the surface tension decreases, the work of 
adhesion increases rapidly. According to the Young – Dupr é  Equation  (1.9) , this implies 
a strong decrease in the contact angle (Table  1.8 ). Similarly, while large nonwetting 
contact angles (130 – 150    ° ) were found for LiF (  γ   lv    =   236   mJ   m  − 2 ) and NaF (  γ   lv    =   186   mJ   m  − 2 ), 
the contact angle of KF (  γ   lv    =   144   mJ   m  − 2 ) was found to be 80    °  and that of CsF 
(  γ   lv    =   106   mJ   m  − 2 ) was 41    °   [Morel 1970] .   

 Like molten oxides, molten halides seem to wet metallic substrates. An example 
is molten LiF on various metals. In all cases,   θ      <    90    °  but signifi cant differences were 
found, for instance between Ta (  θ     =   4    ° ) and Ni (  θ     =   62    ° ) or Pt (  θ     =   68    ° )  [Jaworske 
1989] .    
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     Figure 1.20     Contact angle values as a function of  log   P   O  2   for SiO 2  – 20Al 2 O 3  – 10CaO –
 10MgO (wt.%) on W at 1400    ° C.  Data from work reported in  [Ownby 1995] .   

  Table 1.8    Contact angles of molten salts measured on 
graphite immediately after melting 

   Salt     Temperature ( ° C)       θ   ( ° )       γ   lv  (mJ   m  − 2 )  

  NaCl    810    113    114  
  KCl    780    78    99  
  RbCl    740    58    95  
  CsCl    645    31    92  

 Reprinted with permission from  [Baumli 2008] , copyright (2008) Elsevier Ltd. 
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  1.3   Growth Angles 

 This section begins with a review of the basic theory underlying the concept of the growth 
angle, important in meniscus - defi ned melt growth systems, in the case of both isotropic 
and anisotropic interfacial energies. Next, various methods for measuring growth angles 
are discussed and data resulting from such measurements are presented. This is followed 
by a brief report on the application of the growth angle condition in simulations of crystal 
growth, as well as by the description and application, in a number of systems, of a method 
for determining and rigorously verifying the growth angle (assumed constant). The con-
stant angle assumption, as well as the impact of heat transport and interface - attachment 
kinetics on the verifi cation procedure (effectively involving a small - scale crystal growth 
simulation), are also discussed. 

  1.3.1   Theory 

 The concept of the growth angle stems from the early work on equilibrium at a junction 
between several phases. Consider Figure  1.21 , which depicts the case relevant to this 
section: three phases (solid, liquid, and vapour) in equilibrium with one another along 
their line of mutual contact, the TPL, which is normal to the plane of the fi gure. Herring 
used an energy minimization approach  [Herring 1951]  to derive a vector condition, which 
in our case is given by the following sum of coplanar vectors:  

    γ γ γ γ γ γsl sl sv sv lv lv sl sl sv sv lv lve e e e e e 0+ + + ′ + ′ + ′ =† † † .     (1.21)   

 The fi rst three terms of Equation  (1.21) , containing the three interfacial energies together 
with the unit vectors tangent to the three interfaces, are related to the system ’ s tendency 
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     Figure 1.21     The triple phase line (TPL) with associated vectors and angles between 
interfaces.  
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to minimize the area of the more energetically expensive interfaces via contraction. The 
last three terms involve the derivative of the three energies with respect to the angular 
coordinate (measured in a counterclockwise sense around the TPL), together with unit 
vectors normal to the interfaces. These so called  ‘ torque terms ’  refl ect the system ’ s resist-
ance to the change of interfacial orientation in a manner leading to the increase of energy 
due to its angular dependence. 

  1.3.1.1   Isotropic Interfacial Energies 

 The liquid/vapour interfacial energy is isotropic (i.e.  ′ =γ lv 0) and therefore the last term 
on the left - hand side of Equation  (1.21)  can be dropped. Now consider the case where 
both the solid/fl uid interfacial energies do not depend on orientation (  ′ = ′ =γ γsl sv 0 ), yield-
ing the isotropic form of the Herring equation. The resultant vector equation is often 
presented as two independent scalar equations relating interfacial energies and angles 
between interfaces. One form, originally proposed by Smith  [Smith 1948] , is given by 
Equation  (1.10) . A different representation of the same conditions is given  [Voronkov 
1963, Bardsley 1974] ) by:

    cos , cosα γ γ γ
γ γ

β γ γ γ
γ γ

=
+ −

=
+ −sv lv sl

sv lv

sv sl lv

sv sl

2 2 2 2 2 2

2 2
    (1.22)  

where the fi rst angle, defi ned as   α     =    π     −      θ   v , is the growth angle and the second angle is 
defi ned as   β     =    π     −      θ   s . 

 The two isotropic relations for   α   and   β   given in Equation  (1.22) , together with the 
trivial equality   θ   v    +     θ   1    +     θ   s    =   2 π , provide the  intrinsic  values of the three angles between 
the interfaces as a function of the three interfacial energies. However, when viewing the 
TPL from a macroscopic viewpoint, it is not obvious that these angles will be preserved. 
This depends on the distance from the TPL over which the slope of the interface (i.e. its 
orientation) can be assumed constant. In the case of the liquid/vapour interface the rele-
vant distance (see e.g.  [de Gennes 2004] ) is of the order of the capillary length 
(  l gc lv l= γ ρ ), where   ρ   l  and  g  are, respectively, the liquid phase density and the accel-
eration due to gravity. Since, in typical crystal growth systems, the resultant value of  l  c  
is of the order of millimetres, it is reasonable to assume that the slope of this interface at 
the TPL can be observed from a macroscopic viewpoint. 

 The solid/liquid interface typically conforms to the melting point isotherm (whose 
shape and position is governed by heat transport) except near the TPL where it must curve 
away from the isotherm to satisfy Equation  (1.22)  at the TPL. The curvature is related to 
the local undercooling at the TPL via the Gibbs – Thomson equation (see e.g.  [Flemings 
1974] ), where the distance from the TPL over which the deviation from the isotherm 
occurs typically ranges from a few microns to several hundredths of a micron (see e.g. 
 [Voronkov 1978, Voronkov 1981] ). 

 Most interesting is the possibility of local (close to the TPL) variations in the slope of 
the solid/vapour interface. Following Voronkov  [Voronkov 1978] , consider the curvature 
of the solid/vapour interface, whose value at the TPL can be associated with the under-
cooling at this point. The surface gradient of this curvature can be related to a process of 
surface transport and deposition of mass from the liquid phase at the TPL to a point far 
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from the TPL where the curvature is negligible and the solid/vapour interface can be 
considered  ‘ fi nally formed ’ . The resultant deviation between the intrinsic growth angle   α   
and the (effective) growth angle   α   * , measured with respect to the slope at this point, is 
depicted in Figure  1.22 . Quantifi cation of this deviation  [Voronkov 1978] , assuming 
steady - state solidifi cation and an isotropic solid/vapour interfacial energy near the TPL, 
yields:

    α α χ α* .= − = − −
0

1 3Cv TΔ     (1.23)     

 The angle   χ   0  appearing in this equation is marked in Figure  1.22 ,  Δ  T  (given by  Δ  T     =     T  m      −      T ) 
is the undercooling at the TPL,  T  is the temperature at the TPL,  T  m  is the material ’ s 
melting point,  v  is the crystal growth rate in the direction tangent to the solid/vapour 
interface far from the TPL, and  C  is a coeffi cient given by:

    C
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     Figure 1.22     Important angles at the TPL.  
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 In Equation  (1.24)   Δ  H  is the volumetric latent heat of fusion of the crystal,   N̂   is the atomic 
density of the crystal and   λ   is the surface mass transport coeffi cient. Assuming a surface 
diffusion mechanism of mass transport yields:

    λ =
D N

k T
S S

B

ˆ
,     (1.25)  

where  D  S ,   N̂   S  and  k  B  are, respectively, the surface diffusion coeffi cient, the atomic surface 
density of the crystal and the Boltzmann constant. In the next section, concerned with 
anisotropic interfacial energies, an example related to the growth of silicon is used to 
obtain a feel for values of   χ   0  in typical semiconductor growth systems (with and without 
isotropic interfacial energies).  

  1.3.1.2   Anisotropic Interfacial Energies 

 Consider the more general case of anisotropic fl uid/crystal interfacial energies. Following 
Bardsley  et al.   [Bardsley 1974] , a scalar multiplication of the relevant form of the Herring 
equation (Equation  (1.21)  with   ′ =γ lv 0) with the unit vectors  e  sv  and  e  lv  yields two rela-
tions uniquely defi ning   α   and   β  :

    
γ γ α γ β γ β

γ γ α γ α β

ϕsv lv sl sl

lv sv sl

sl
− − − ′( ) =

− + +( )

cos cos sin

cos cos

0

−− ′( ) + ′( ) +( ) =+γ α γ α βϕ ϕsv slsv slπ sin sin ,0
    

(1.26)
  

where, following Figure  1.22 , the angular derivatives of the interfacial energies are taken 
with respect to   ϕ  , which is measured counterclockwise from the horizontal. 

 Using Equation  (1.26)  allows for the determination of   α   and   β   provided all three inter-
facial energies are known where, in the case of the two solid/fl uid interfaces, the angular 
dependence of these energies is also required. Alternatively, Equation  (1.26)  can be used, 
together with experimental and calculated data for average values of the interfacial ener-
gies and angles   α   and   β  , to obtain rough estimates for the contributions of the torque 
terms in these two relations (see e.g.  [Bardsley 1974]  for such an estimate in the case of 
the growth angle of Ge). 

 The relations in Equation  (1.26)  specify the intrinsic angles   α   and   β   as long as the two 
solid/fl uid interfacial energies (  γ   sl ,   γ   sv ) are continuously differentiable at the relevant 
angular orientation of these interfaces (  ϕ   sl  and  π    +     ϕ   sv ; see Figure  1.22 ). As in the case 
of isotropic energies, there is the possibility that macroscopically observed angles will 
differ from their intrinsic values. The above discussion of this issue is still relevant though 
certain restrictions apply (related to anisotropy of the solid/vapour interface). Of special 
interest is the case where a facet exists on the solid/liquid interface near the TPL. The 
resultant typically nonnegligible value of  Δ  T  at the TPL associated with such a facet is 
often associated with an appreciable difference between   α   and   α   *  according to Equation 
 (1.23) . 

 To obtain a feeling for values of   χ   0  in typical semiconductor growth systems, consider 
the case of a dislocation - free silicon crystal grown by the Czochralski method in the  〈 111 〉  
direction, where a ring - shaped facet appears on the solid/liquid interface near the TPL 
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(see e.g.  [Voronkov 1975] ). The undercooling at the TPL is  Δ  T    =   3.7    ° C and the experi-
mentally based estimated value of   χ   0  is of the order of 20    °  (see  [Voronkov 1978]  and 
references therein). In the event that a facet is not present near the TPL, the undercooling 
is two orders of magnitude smaller (see e.g.  [Voronkov 1974] ). Assuming a similar 
growth velocity and treating  C  (in Equation  (1.23) ) as a constant suggests that the value 
of   χ   0  is negligible and the effective observable growth angle is, in this case, equal to   α  . 
This important conclusion implies that a typical semiconductor crystal growth system, 
whose growth front is facet - free in the vicinity of the TPL and whose solid/vapour inter-
facial energy can be assumed isotropic, is likely to exhibit a macroscopically observable 
growth angle which is the thermodynamic constant   α   given by Equation  (1.26) ; in the 
event that both solid/fl uid interfacial energies are isotropic the growth angle will be given 
by Equation  (1.22) . 

 Systems exhibiting facets in contact with the TPL cannot be analysed using Equation 
 (1.26)  since the interfacial energy associated with faceted surfaces is not continuously 
differentiable with respect to orientation at the relevant value of   ϕ  . In this case it is useful 
to consider graphical solutions to Equation  (1.21) . Two similar approaches have been 
proposed, the fi rst in  [Hoffman 1972]  and the second in  [Voronkov 1980; Voronkov 
1981] . In the following the approach described in  [Voronkov 1981]  is presented. 

 First, two two - dimensional polar (Wulff) plots are constructed, one for   γ   sl  and the 
other for   γ   sv . For each surface orientation  n   ij   a segment of length   γ  ij  ( n   ij  ) is drawn from the 
origin in the direction of  n   ij   ( ij    =   sl or sv); note that (see Figure  1.21 )   n esl sl= †  and 
  n esv sv= − † . Next, a straight line perpendicular to this segment is drawn at its end. 
The family of these straight lines defi nes an inner closed form whose boundary is denoted 
by   Γ  ij   ( ij    =   sl or sv). Examples of the two resultant forms are depicted in Figure  1.23 . 
Note that in this specifi c case a system has been chosen which exhibits one singular 
orientation (identical for both solid/fl uid interfaces), associated with a cusp in the two 
Wulff plots.   

 Consider a vector  g   ij   drawn from the origin to some point on   Γ  ij   ( ij    =   sl or sv). It can 
be shown (see e.g.  [Voronkov 1980] ) that:

    g n nij ij ij ij ij ij= + ′ =( )γ γ † ,sl, sv, lv     (1.27)  

where (see Figure  1.21 )   n esl sl
† = − ,   n esv sv

† = ,   n elv lv
† = −  and   n elv lv= † ; notice that the defi -

nition of the vector  g   ij   is given for all three interfaces ( ij    =   sl, sv, lv). Let us now rotate 
the Herring equation, Equation  (1.21) , by  π /2 in the counterclockwise direction 
where this can be achieved by performing a scalar multiplication of this equation 
(with   ′ =γ lv 0 ) from the left by an appropriately chosen dyadic. Inserting into the 
resultant vector equation, for all three interfaces, the relation given by Equation  (1.27)  
yields:

    g g g 0sl sv lv− + = .     (1.28)   

 Following Voronkov  [Voronkov 1981] , for a given solid/vapour interfacial orientation at 
the TPL ( n  sv ), assuming the three interfacial energies are known (as a function of orienta-
tion), it is possible to use Equation  (1.28)  together with the two   Γ   plots in Figure  1.23  to 
obtain the other two interfacial orientations  n  sl  and  n  lv . First, the point on   Γ   sv  whose ori-



Basic Principles of Capillarity in Relation to Crystal Growth 33

Gsv

nsv

O

gsv

A B

Gsl

gsl

nsl

Glv

glv

nlv

     Figure 1.23     Geometric representation associated with the Herring equation (Equation 
 (1.21) ).  

entation is  n  sv  (point B) is located, where OB is the corresponding  g  sv  vector. Drawing 
from point B a circle whose radius is equal to g lv  (i.e.   γ   lv ), determines point A which is 
the intersection of this circle with   Γ   sl . The obtained vectors OA and AB are, respectively, 
equal to  g  sl  and  g  lv , where the resultant closed triangle constructed by the three vectors is 
a graphical representation of Equation  (1.28)  and now all three orientations ( n  sl,   n  lv ,  n  sv  
or   ϕ   sl,    ϕ   lv ,   ϕ   sv ) are known. This result immediately yields the two intrinsic angles 
  α     =     ϕ   lv     −      ϕ   sv  and   β     =     ϕ   sv     −   ϕ   sl . Finally, note (in Figure  1.23 ) the additional intersection 
point of the circle with   Γ   sl . Although this point admits an additional solution to Equation 
 (1.28) , it must be rejected because the resultant interfacial orientations are not consistent 
with the physical picture involving, when moving in a counterclockwise direction around 
the TPL, a crossover from solid to liquid to vapour and back again to solid (see Figures 
 1.21  and  1.22 ). 

 The specifi c triangle of vectors in Figure  1.23  refl ects the orientations of the three 
interfaces at a given point in time where, in the case of steady - state growth, all orienta-
tions are time - independent and the growth angle   α   is a constant. It is possible to think of 
several positions for point B, each with different corresponding orientations of the three 
interfaces. Plotting the resultant solid/fl uid interfacial orientation angles (  ϕ   sl ,   ϕ   sv ) as a 
function of the angular orientation of the liquid/vapour interface (  ϕ   lv ) yields a useful fi gure 
of the type proposed in  [Voronkov 1980] . A schematic of such a plot, qualitatively con-
sistent with Figure  1.23  is shown in Figure  1.24 ; the point corresponding to the specifi c 
OAB triangle shown in Figure  1.23  is marked in Figure  1.24 . Note that Figures  1.23  and 
 1.24  are not completely consistent with Figures  1.21  and  1.22 , which do not show a facet 
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on the solid/vapour interface at the TPL. In addition, it is important to note that the curves 
in Figure  1.24  are associated with a limited range of interfacial orientations and do not 
cover all possibilities that can be derived from Figure  1.23  (e.g. facets on the solid/vapour 
interface).   

 It is possible to relate  ′γ sl  to the relevant step energy (normalized by the step height) of 
a vicinal surface associated with the singular direction characterized by the specifi c  n  sl  
vector shown in Figure  1.23 . As described in  [Voronkov 1981] , and consistent with Figure 
 1.23 ,   ′γ sl  on the singular surface jumps from the negative value associated with a negative 
vicinal surface slope to a positive value associated with a positive vicinal surface slope. 
As can be understood from Figures  1.23  and  1.24 , a faceted solid/liquid surface in contact 
with the TPL may theoretically be associated with a variety of growth angles whose range 
can be related to the negative and positive vicinal slope step energy values. Interestingly, 
in  [Yuferev 2005]  it is shown how this phenomenon (in the context of a facet on the solid/
vapour interface) may result in two distinctly different growth angles on the two sides of 
a sapphire ribbon grown by the EFG technique. Finally, in the case of isotropic energies, 
the two   Γ   plots are circular, the size and relative orientation (one with respect to the other) 
of the three vectors remain constant and, consistent with Equation  (1.22) ,   α   and   β   also 
remain constant regardless of the position of point B. This situation can be observed in 
Figure  1.24  for large values of   ϕ   lv  at which the curves are parallel to one another (recall 
that   α     =     ϕ   lv     −      ϕ   sv  and   β     =     ϕ   sv     −      ϕ   sl ). 
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     Figure 1.24     Relative orientations of the three interfaces. The dashed line corresponds to 
the 45    °  line (  ϕ   lv  vs   ϕ   lv ) and the point corresponding to the OAB construction in Figure 
 1.23  is marked.  
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 The above relatively simple picture of the graphical approach to the determination of 
the growth angle is misleading. First of all, real quantitative data on both   Γ   plots is not 
usually available. In addition, signifi cant differences between the values of   α   and   α   *  can 
be expected in certain cases, providing further complications to the analysis. Additional 
nontrivial issues such as the possibility for metastable solutions are discussed in  [Voronkov 
1981] . Such complications lead to the practical approach according to which growth 
angles are typically measured from experiments. The analysis of the results of these can, 
however, benefi t from an understanding of the above theoretical considerations.   

  1.3.2   Measurements of Growth Angles: Methods and Values 

 Over the past four decades there have been several efforts to measure growth angles in 
a number of melt growth systems. The measurement techniques can usually be classifi ed 
as belonging to one of two main approaches, observation of the TPL region during growth 
(method 1) or an  a posteriori  analysis of solidifi ed material (method 2). Method 1 involves 
either direct observation and measurement of the angle between tangents to the meniscus 
(liquid/vapour interface) and the solid/vapour interface at the TPL, or a mathematical 
analysis of the observed meniscus (and in some cases the solid/vapour interface) leading 
to the determination of the growth angle. Related measurements of contact angles of melt 
drops placed on substrates (e.g. relevant to liquid phase epitaxy  [K ö nig 1983, K ö nig 
1984] ) are not discussed here. 

 In the following, several studies involving the application of methods 1 and 2 to the 
measurement of growth angles in a variety of systems are briefl y discussed. Measured 
values, sorted according to the type of crystalline material studied, are listed in Table  1.9 . 
Note also that partial lists of growth angles are reviewed in the literature ( [Bohm 1994, 
Hurle 1994, Hurle 1995, Duffar 1997, Kuandykov 2001] ).   

 The early measurements date back to the 1960s. Antonov  [Antonov 1965]  photo-
graphed the meniscus (including the TPL) of Ge growing by the Czochralski technique. 
He directly measured the angle between the tangent to the meniscus and the horizontal 
and, in addition, showed that two different values of this angle give a good fi t to an 
approximate solution of the Young – Laplace equation for two different sets of experi-
mental measurements of crystal diameter and meniscus height. The angles determined 
are equal to  π /2    −      α   (where   α   is the growth angle) only if the measurements can be 
assumed to have involved a time - independent crystal diameter. Shashkov and Mel ’ inkov 
 [Shashkov 1965]  fi lmed the Czochralski growth process, applied to Ge and Si, to obtain 
direct observations of the growth angles of these materials. Further measurements using 
method 1 are reported by Wenzl  et al.   [Wenzl 1976, Wenzl 1978]  who used a Czochralski 
growth process to determine the growth angles of Cu  [Wenzl 1976]  and Ga  [Wenzl 
1978] . The angle in the case of Ga was measured both with He as the vapour phase 
and with an aqueous solution of HCl replacing the vapour phase (value not shown 
in Table  1.9 ). Additional similar measurements for Ge and Au are reported in 
 [Wenzl 1978] . 

 The direct viewing approach (method 1) was used in a number of additional investiga-
tions. The growth angle of sapphire was measured, using this method, by Satunkin and 
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  Table 1.9    Values of growth angles reported in the literature 

   Material   a          α   ( ° )     Surface   b        References     Method  

  Si {111}    11    ±    1    Nonfaceted     [Surek 1975]     2  
  11    ±    1.5    Nonfaceted     [Hamidi 1983]     2  
  11.4 – 19.9    Nonfaceted     [Antonov 2002]    c       2  
  12    ±    1    Unknown     [Satunkin 1980]     2  

  Si {110}    11    ±    1.5    Nonfaceted     [Hamidi 1983]     2  
  Si    12    ±    1    Isotropic     [Satunkin 2003]     2  

  10    Isotropic    [Virozub 2008]   d       2  
  8.5 – 9    Polycrystalline     [Surek 1975]     2  
  9.5    ±    1.5    Polycrystalline     [Hamidi 1983]     2  
  15 – 20    Unknown     [Shashkov 1965]     1  

  Ge {111}    13    ±    1    Nonfaceted     [Surek 1975, 1976]     2  
  12    ±    1    Facet     [Satunkin 2003]     2  

  Ge {110}    14    ±    1    Facet     [Satunkin 2003]     2  
  Ge    8    Polycrystalline     [Surek 1975]     2  

  8 – 10.3    Polycrystalline     [Antonov 2002]    c       2  
  14    ±    1    Isotropic     [Satunkin 2003]     2  
  12    ±    1    Isotropic     [Satunkin 1980]     2  
  14.3    Isotropic    [Virozub 2008]   d       2  
  7    ±    3    Unknown     [Wenzl 1978]     1  

  InSb (  1 1 1)    25    ±    1    Facet     [Satunkin 1980]     2  
  25.5    ±    0.5    Facet     [Antonov 2002]    e       2  
  25 – 30    Facet     [Satunkin 2003]     2  

  LiNbO 3     0    Unknown     [Satunkin 1986]     1  
  NaNO 2     7    ±    1    Unknown     [Ivantsov 1986]     1  
  LiF    19    ±    2    Unknown     [Ivantsov 1986]     1  
  Sapphire {0001}    35    ±    4    Facet     [Dreeben 1980]     1  
  Sapphire    17    ±    4    Nonfaceted periphery     [Dreeben 1980]     1  
  Sapphire    20    ±    5    Unknown     [Tatarchenko 1977]     1  
  Sapphire    12    ±    1    Unknown     [Satunkin 1980]     1  
  Cu    0    Nonfaceted     [Wenzl 1976]     1  
  Ga    0    Facet     [Wenzl 1978]     1  
  Au    0    Unknown     [Wenzl 1978]     1  
  GaP (111)    9.8    ±    0.5    Facet     [Antonov 2002]     2  
  InP (111)    7.0    ±    0.5    Facet     [Antonov 2002]     2  
  GaSb    30.7    ±    2    Unknown     [Tegetmeier 1996]     1  
  GaSb ( μ g)    28    Unknown     [Tegetmeier 1996]     1  
  W    20    ±    5    Unknown     [Glebovsky 1989]     1  
  GaAs    16    Unknown     [Satunkin 2003]     2  

     a     In some cases the nominal orientation of the solid/lquid interface (i.e. the growth direction) is provided.  
    b     This is the quality of the solid/liquid interface which, if reported, is typically known only at the onset of 
solidifi cation.  
    c     Based on data from  [Surek 1975] .  
    d     Based on data from  [Satunkin 2003] .  
    e     Based on data from  [Satunkin 1980] .   

co - workers [ Tatarchenko 1977   ,  Satunkin 1980 ]. The measurement system involved 
pulling thin crystalline rods through a shaper, where the growth angle was determined by 
a number of different analysis techniques applied to data on solid/vapour and liquid/
vapour interfaces obtained by direct observation of the TPL and shaper regions. The 
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application of method 1 to sapphire growth is also reported in  [Dreeben 1980] , in which 
case the crystals were grown in a laser - heated fl oat zone system. In  [Satunkin 1986]  
Satunkin and co - workers emphasize the fact that their (type 1) method, applied to the 
pulling of thin lithium niobate rods from a shaper, does not require knowledge of the 
position of the TPL. The method described in  [Satunkin 1986]  is applicable to crystals 
of uniform diameter. The constant diameter assumption is also necessary when using the 
type 1 method applied in  [Ivantsov 1986]  for the determination of the growth angles of 
LiF and NaNO 2 . 

 Two more studies involve the application of method 1 in the measurement of growth 
angles of W  [Glebovsky 1989]  and GaSb  [Tegetmeier 1996] . The growth angle was 
determined in  [Glebovsky 1989]  using an approximate analytical solution for the menis-
cus between tube - shaped feed and crystalline rods in an electron - beam zone melting 
system. The analysis in  [Tegetmeier 1996]  involved fi tting lines to the meniscus and solid/
vapour interface to determine the growth angle in a fl oating zone system, both under 
normal conditions and in microgravity. Finally, an example of method 1 applied to the 
case of fl oating zone growth of Si can be found in Chapter  4  of this book. 

 The  a posteriori  analysis of solidifi ed material (method 2) was, to the best of our 
knowledge, pioneered by Surek and Chalmers  [Surek 1975] . These authors determined 
growth angle values based on a careful examination of a re - solidifi ed small circular region 
of melt created in a thin crystalline wafer using an electron gun. Gravity was ignored in 
the analysis and the solid/liquid interface was assumed planar. This technique was applied 
to the case of Si and Ge  [Surek 1975, Surek 1976] , where in  [Surek 1976]  a rough estimate 
of gravitational effects was mentioned. 

 In  [Satunkin 1980]  Satunkin  et al.  presented a study of InSb, where the measurement 
was based on the  a posterior i analysis of directionally solidifi ed drops obtained when 
Czochralski - grown crystals were pulled free (i.e. separated) from the melt. The analysis 
involved approximating the solid/vapour interface to be parabolic in shape, an assumption 
of negligible effect of gravity on the liquid/vapour interface form, as well as a planar 
solid/liquid (growth) interface. Interestingly, in their later publication  [Satunkin 1986] , 
Satunkin and co - workers mentioned that transparent materials such as LiNbO 3  or sapphire 
cannot be analysed using this method since solidifi cation in this case is not unidirectional 
from the base (original crystallization front) to the tip. 

 The method proposed in  [Surek 1975]  was used in  [Hamidi 1983]  to determine angles 
of Si both in vacuum and under Ar atmosphere. Antonov and Selin  [Antonov 2002]  
proposed an elegant method for determining the growth angle from directionally solidifi ed 
drops based on their cone angle and the assumptions of negligible gravitational effect on 
meniscus shape as well as a planar solidifi cation front. This method was applied to GaP 
and InP systems as well as to photographs from the literature of InSb  [Satunkin 1980] , 
Ge  [Surek 1975]  and Si  [Surek 1975] . Interestingly, the comparison with results of Surek 
 [Surek 1975]  was in some cases excellent in spite of the fact that the solidifi cation geom-
etry in  [Surek 1975]  is different from that of a solidifying drop. 

 An extensive report on measurements of growth angles using method 2 applied to Ge, 
Si and InSb is given in  [Satunkin 2003] . A number of analysis techniques are applied. In 
particular, the assumption of constant growth angle is tested and is found to be valid for 
Si and Ge but not for InSb. Finally, in  [Virozub 2008]  method 2 was applied to data on 
Ge and Si drops from  [Satunkin 2003]  in a manner that requires no assumptions regarding 
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the shape of the solidifi cation front. Once determined, the accuracy of the growth angle 
value and the possibility that it can be assumed constant were both verifi ed using a 
detailed dynamic growth simulation involving coupled heat transport and capillarity. 
Results highlight the possible importance of gravity in these problems. In addition, this 
reference suggests that solidifi ed drop shapes may not be very sensitive to the shape of 
the solid/liquid interface during growth. 

 Although (as can be seen in Table  1.9 ) several measurements were made on systems 
with a known crystallographic orientation, it is not always obvious if the solidifi cation 
interface near or at the TPL is faceted or atomically rough. As can be understood from 
section  1.3.1  as well as from  [Voronkov 1981, Satunkin 2003] , although knowledge of 
the exact nature of the solid/liquid and solid/vapour interfaces at the TPL may not always 
be necessary for growth angle measurement, this information is important for the inter-
pretation of measured values.  

  1.3.3   Application of the Growth Angle Condition in 
Simulations of Crystal Growth 

 Rigorous simulations of meniscus - defi ned crystal growth processes, in which the liquid/
vapour interface shape is calculated, should be consistent with the growth angle as dic-
tated by the application of the physics, described in section  1.3.1 , to the system at hand. 
Relevant modelling efforts of melt growth systems, coupling heat transport and capillarity 
in a self - consistent manner, can be traced back to the mid 1980s. Some of the earliest 
studies include a quasi - steady - state model for the edge - defi ned fi lm - fed (EFG) growth of 
Si  [Ettouney 1983] , a steady - state description of small - scale fl oating - zone growth of Si 
 [Duranceau 1986]  and a dynamic analysis of the Czochralski growth of Ge  [Crowley 
1983] . In  [Ettouney 1983]  the growth angle value is enforced as a boundary condition in 
the numerical solution of the Young – Laplace equation for the liquid/vapour interface 
shape, in  [Duranceau 1986]  this boundary condition is used to determine the  a priori  
unknown pressure jump across the liquid/vapour interface, and in  [Crowley 1983]  the 
growth angle value is implemented by a dynamic equation relating the changing crystal 
diameter to the crystal growth rate at the TPL. This equation, important when considering 
the stability of growth (see Chapter  2  of this book) and control of crystal diameter (see 
 [Hurle 1994]  and Chapter  3 ), is given by:
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where  r  c  is the crystal radius at the TPL,   ψ   is the angle between the vertical and the liquid/
vapour interface, and  v  g  is the crystal growth rate at the TPL; note that in Czochralski 
growth systems this growth rate is equal to the difference between the pull rate and the 
rate of change of melt height below the TPL. 

 It is interesting to note, that in the case of a fl oating zone system (discussed in 
 [Duranceau 1986] ), in which two TPLs exist, the growth angle is enforced only at the 
TPL associated with growth. No angles are specifi ed at the TPL on the melting solid/
vapour interface (i.e. on the feed rod). A relevant discussion of this issue is presented, in 
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relation to back - melting during Czochralski growth, in  [Van den Bogaert 1996] . Following 
the discussion in this reference, it is probably best to restrict growth angle measurements 
to experiments in which it is verifi ed that growth actually takes place at the relevant TPL. 

 The fi eld of crystal growth modelling has advanced considerably since the mid - 1980s. 
Highly sophisticated modelling efforts have been reported in the literature, many of which 
involve simulation of meniscus - defi ned systems in which transport - phenomena and capil-
larity are rigorously coupled. Physically consistent methods, accounting for the growth 
angle condition in these studies, are typically based on the principles laid down in the 
three above - mentioned references and other early works. A description of the develop-
ment and application of relevant modelling efforts, which is beyond the scope of this 
chapter, is given in several review articles and book chapters published since the mid 
1980s (e.g.  [Brown 1988, Dupret 1994, Yeckel 2005] ). In addition, note that a discussion 
related to the application of modelling to the fl oating zone technique can be found in 
Chapter  4  of this book. 

  1.3.3.1    Constant Growth Angle Approximation 

 Almost all of the computational analyses of meniscus - defi ned growth, accounting for the 
growth angle, assume it to be constant in both time and space. Exceptions include the 
analysis of a directionally solidifying sessile water drop  [Anderson 1996]  in which a 
dynamic angle was used to fi t experimental data, and the calculation of a nonaxisymmetric 
cross - section of crystals pulled from the melt  [Pet ’ kov 1993]  which involved growth angle 
anisotropy in the plane perpendicular to the growth direction. However, in  [Anderson 
1996]  heat transport was not accounted for in the analysis. As indicated in  [Schultz 2001]  
and shown in  [Virozub 2008] , agreement with experimentally observed features in this 
particular case (involving solidifi cation of a sessile water drop) can be obtained when 
heat transport is accounted for in the analysis without the need for relaxing the constant 
growth angle approximation. In addition, although the basic reasoning behind the analysis 
in  [Pet ’ kov 1993]  is sound, this two - dimensional study is limited to the cross - sectional 
plane of the crystal with no account for heat transport in the formulation. 

 In  [Virozub 2008]  a method is discussed for the estimation and verifi cation of growth 
angle values based on experimentally obtained directionally solidifi ed sessile or pendant 
drops. The estimation refers to the angle exhibited at the initial stages of drop solidifi ca-
tion while the verifi cation is based on the constant growth angle assumption. The two 
examples shown in this reference, of Si and Ge solidifying on isotropic fronts of 
Czochralski - grown crystals pulled free from the melt, suggest that this assumption is 
satisfactory in these systems. Following the discussion in section  1.3.1 , it is theoretically 
possible for this assumption to fail in systems exhibiting anisotropy of interfacial energies, 
signifi cant undercooling at the TPL, or a combination of both. It is important to note 
however, that even in cases where one or both of these phenomena occur, the angle may 
still remain constant throughout growth due to  time - independent  conditions at the TPL. 
Finally, as discussed above in relation to  [Pet ’ kov 1993] , three - dimensional effects, such 
as those involving anisotropy of interfacial energies in the plane perpendicular to the 
growth direction, may lead to nonuniform growth angle values along the TPL. 

 The following involves the application of an approach based on the method 
presented in  [Virozub 2008] , further probing issues related to the constant growth angle 
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approximation. In particular a situation is examined, where a facet dominates the solid/
liquid interface. Since the method and related equations are given in detail in  [Virozub 
2008] , they are only briefl y mentioned here. Additional information, associated with 
anisotropic interfacial attachment growth kinetics, is briefl y discussed below with more 
detail provided in  [Weinstein 2004] . 

  Computational Approach to the Estimation and Verifi cation of Growth Angle 
Values.     Our starting point is a solidifi ed pendant or sessile drop whose shape, which is 
known, is used for the determination of the solid drop volume as well as the angle of 
contact between the solid/vapour interface and the substrate. The solidifi ed material 
volume is multiplied by the solid - to - liquid density ratio thus providing a value for the 
original liquid drop volume. This is then used, together with the known drop/substrate 
(circular) interfacial area, to determine the liquid drop ’ s shape by numerical solution of 
the Young – Laplace equation with gravity (see Chapter  8  for the various forms of the 
Young – Laplace equation):
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 The coordinate system used here is the same as the one described below (see Figure  1.25 ) 
in the context of drop - solidifi cation calculations, where  z  l ( r ) is the  z  - coordinate value of 
the liquid/vapour interfacial profi le at a given radial position. In Equation  (1.30)   1/b  is 
the drop ’ s mean curvature at its apex ( r     =    0,  z  l     =     z  la ),  z  la  is the vertical distance of the 
drop apex from its base,  e  z  is the unit vector in the z coordinate direction and  g  is the 
gravity vector. Boundary conditions applied in this case are a symmetry (zero slope) 
condition at  r    =   0 and the fact that, at  r    =    R  0 , the liquid/vapour interface ’ s vertical position 
is fi xed at  z  l    =   0. In addition, the parameter 1/ b  is determined by coupling the solution of 
Equation  (1.30)  with that of an additional equation enforcing the pre - determined liquid 
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     Figure 1.25     Mathematical representation of model system for drop solidifi cation.  
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volume. Once the shape,  z  l ( r ), is known it is possible to evaluate the angle of contact 
between the liquid/vapour interface and the substrate. Finally, the difference between this 
angle and the previously obtained contact angle of the solidifi ed drop is the estimated 
growth angle.   

 Verifi cation of the estimated growth angle, assuming it is constant, is obtained by 
solving the coupled problem of heat transport, phase - change and capillarity during the 
directional solidifi cation of the drop. A mathematical representation of the axially - sym-
metric model system used in these calculations is shown in Figure  1.25 . 

 The evolution of the temperature fi eld in the solid ( D  s ) and liquid ( D  l ) phases during 
solidifi cation is assumed to be governed by the heat equation:

    ρi pi iC
T
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∂
∂

= ∇⋅ ∇ =( )l, s ,     (1.31)  

where   ρ  i  ,  C pi  , and  k i   are, respectively, the density, heat capacity and thermal conductivity 
of phase  i , while  T ,  t  and  ∇  represent temperature, time and the gradient operator. Note 
that in this analysis of small - scale systems with relatively low - valued temperature gradi-
ents, we have neglected the impact, on the thermal fi eld, of melt fl ow driven either by 
buoyancy or by surface tension gradients. 

 External boundary conditions for this problem include a prescribed ( T    =    T  0 ) temperature 
along the interface between the drop and the cold substrate ( ∂  D  sp ) and heating by 
the environment at the liquid/vapour ( ∂  D  lv ) and solid/vapour ( ∂  D  sv ) interfaces according 
to:

    − ∇ ⋅ = − =( )( )k T h T T iji ijn a lv sv, ,     (1.32)  

where  n   ij   is the unit normal vector pointing from the interface towards the environment, 
 T  a  is the ambient temperature and  h  is the convective heat transfer coeffi cient enhanced 
due to radiative transport effects. 

 Along the solidifi cation interface ( ∂  D  sl ) a balance of heat fl uxes requires adherence to 
the Stefan condition given by:

    k T k T Hvs s l l sl∇( ) − ∇( )[ ]⋅ =n Δ n,     (1.33)  

where the subscripts l and s respectively denote quantities evaluated on the liquid and 
solid sides of the solid/liquid interface, the volumetric heat of fusion is given by  Δ  H ,  v  n  
is the normal growth rate and  n  sl  is the unit normal vector pointing from the interface into 
the liquid phase. In  [Virozub 2008]  the solid/liquid interface is assumed to coincide with 
the melting point isotherm. This assumption, which is consistent with extremely fast 
interfacial attachment growth kinetics, is relaxed (where necessary) in the following to 
allow for the formation of a kinetically driven facet during solidifi cation; see e.g. 
 [Weinstein 2004]  for a full discussion of our approach to the problem of faceting. In this 
case, the simple isotherm condition ( T    =    T  m  on  ∂  D  sl ) in  [Virozub 2008]  is replaced here 
by the more general equation:

    v Tn k= Δβ ,     (1.34)  
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where  Δ  T  is the undercooling on  ∂  D  sl  and   β   k  is the kinetic coeffi cient (which is not neces-
sarily constant). In the common event of an atomically rough solid/liquid interface, kinet-
ics of growth are extremely fast (  β   k  is relatively large), the resultant undercooling value 
is negligible ( Δ  T     →    0), and the isotherm condition used in  [Virozub 2008]  is recovered. 
However, when (at some point on the solid/liquid interface) crystal growth occurs along 
a singular orientation, a facet may appear, molecular attachment kinetics become rela-
tively slow and the resultant nonnegligible undercooling must be accounted for. This is 
done via Equation  (1.34)  where the kinetic coeffi cient now depends on the undercooling 
as well as on the deviation from the singular orientation (  δ  ), in accordance with basic 
crystal growth mechanisms characteristic of growth in the vicinity of an atomically 
smooth singular surface. 

 As described in detail in  [Weinstein 2004] , a general expression for the kinetic coef-
fi cient near a singular surface can be formulated using a combination of the following 
expressions:
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where   β   r  is a large - valued rough growth kinetic coeffi cient (practically enforcing the 
isotherm condition),   β   st  is a step kinetic coeffi cient and  A ,  B  and  C  are additional param-
eters which, together with   β   r  and   β   st , can be treated as constants. In the most simple (yet 
robust) approximation, each mechanism is enforced separately depending on the local 
crystallographic orientation and (in the case of extremely small values of   δ   ) on the nature 
of the singular surface. For large enough values of   δ   rough surface kinetics are used, for 
intermediate   δ   values vicinal kinetics are enforced, and below a certain value of   δ   either 
screw dislocation or two - dimensional nucleation kinetics are applied depending on the 
availability of screw dislocations on the surface. In  [Weinstein 2004]  (and here) the 
crossover from step source (screw dislocation or two - dimensional nucleation) to vicinal 
surface kinetics for  〈 111 〉  Si is modelled as occurring at misorientation values on the order 
of 0.001    ° , while switching to rough growth kinetics is enforced at   δ   values on the order 
of 0.5    ° . 

 The liquid/vapour interface shape is calculated, as a function of time, by solving 
Equation  (1.30)  coupled with an overall mass conservation equation for the determination 
of  1/b , where a zero interfacial slope condition is imposed at the liquid drop ’ s apex and 
the edge of the drop is positioned to coincide with the TPL. Finally, self - consistency with 
the thermal fi eld calculation is enforced by applying the growth angle condition according 
to which   α   is equal to the difference between the inverse tangent (arctan) values of the 
solid/vapour and liquid/vapour interfacial slopes at the TPL. 

 The fi nite - element based numerical procedures for solution of the equations presented 
above are mostly given in  [Virozub 2008] . When enforcing the isotherm condition (as in 
 [Virozub 2008] ), an iterative procedure is used, involving an empirically determined 
interface motion coeffi cient. However, when modelling a solid/liquid interface which 
exhibits a facet, this interface motion procedure is replaced with the algorithm described 
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in detail in  [Weinstein 2004] . Details of mesh and time - step sizes as well as other numeri-
cal parameters are the same as in  [Virozub 2008]  except for when Equation  (1.34)  is 
applied. In this case a reduced time - step size ( Δ  t    =   0.00025   s) is used with approximately 
70 substeps employed for advancement of the interface at each time - step. 

 As already discussed above, in  [Virozub 2008]  the growth angles for Si and Ge were 
estimated (and verifi ed to be constant), based on experiments reported in  [Satunkin 2003] . 
Here additional data from  [Satunkin 2003]  is used to estimate the growth angle for InSb 
(  111). The resultant growth angle value, obtained using the procedure briefl y described 
above (and in more detail in  [Virozub 2008] ), is found to be given by   α     =   25    ° . Next the 
verifi cation procedure is applied while assuming the isotherm condition to be applicable 
(i.e. ignoring effects of interface attachment kinetics). System parameters and physical 
coeffi cients are given, respectively, by the following values of estimated base undercool-
ing, estimated ambient overheating, liquid density  [Kozhemyakin 1995] , solid density 
 [Vaidya 2006] , heat of fusion  [Vaidya 2006] , solid conductivity  [Vaidya 2006] , liquid 
conductivity  [Roussopoulos 2004]   , volumetric liquid heat capacity  [Kozhemyakin 1995] , 
volumetric solid heat capacity  [Vaidya 2006] , liquid/vapour interfacial energy  [Hurle 
1995]  and estimated heat transfer coeffi cient:  T  m     −     T  0    =   10   K,  T  a     −     T  m    =   12   K,   ρ   l    =   6430   kg/
m 3 ,   ρ   s    =   5640   kg/m 3 ,  Δ  H    =   1.3    ×    10 9    J/m 3 ,  k  s    =   4.57   W/mK,  k  l    =   12.3   W/mK, 
  ρ   l  C  pl    =   1.68    ×    10 6    J/m 3 K,   ρ   s  C  ps    =   1.5    ×    10 6    J/m 3 K,   γ   lv    =   0.434   J/m 2 ,  h    =   115   W/m 2 K. 

 A plot of the predicted solidifi ed drop profi le, obtained with the above estimated angle 
value, is shown in Figure  1.26  together with the relevant experimental data from  [Satunkin 
2008] . For comparison, this fi gure contains a similar plot for the case of Ge grown on an 
isotropic growth front, obtained using the angle   α     =   14.3    °  which was determined and 
verifi ed in  [Virozub 2008] . The agreement between experiment and simulation is excel-
lent, suggesting that the growth angle is indeed constant. However, in the case of InSb, 
numerical diffi culties limited the ability to simulate solidifi cation beyond the level shown 
in Figure  1.26 . Consider the nonnegligible size of the residual liquid drop in this case 
( ~ 4% of original volume as compared with less than 0.5% in the case of Ge). It is theo-
retically possible that, if achievable, continued simulated solidifi cation may reveal a 
discrepancy between experimental and simulated profi les for small values of the radial 
coordinate. It is important to consider this possibility in this case since Satunkin ’ s analysis 
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     Figure 1.26     Experimental (circles) and simulated (solid lines) directionally solidifi ed 
pendant drop profi les. Shaded regions are the fi nal (simulated) solid drop shapes. The 
small regions above the simulated solid drops are the residual liquid.  
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 [Satunkin 2003]  determined the growth angle of this material to be nonconstant (see Table 
 1.9 ). In addition, as mentioned above, the verifi cations exhibited in Figure  1.26  were made 
using the isotherm condition at the interface. Strictly speaking, this approach is incorrect 
in the event (possibly relevant in the case of InSb shown in Figure  1.26 ) that a facet 
appears on the solid/liquid interface during the solidifi cation process.   

 The importance of using the rigorous boundary condition, Equation  (1.34) , in cases 
involving facets at the solid/liquid interface is investigated using a hypothetical case of 
Si drop solidifi cation in the  〈 111 〉  direction. Here parameters are the same as those used 
in  [Virozub 2008]  for the case of Si growing on an isotropic growth front. Since the actual 
value of the growth angle is not truly known in this case, the same value (  α     =   10    ° ) as 
that determined in  [Virozub 2008] , is chosen. Solidifi cation is simulated twice. First an 
analysis identical to that employed in  [Virozub 2008]  is applied. Next, the solidifi ed drop 
profi le is recalculated, this time using the rigorous approach involving Equation  (1.34)  
which accounts for interface attachment kinetics on a facet, should it evolve. In this case 
it was assumed that a two - dimensional nucleation mechanism dominates step generation. 
Parameters relevant to Equation  (1.35)  are   β   r    =   0.001   m/sK,   β   st    =   0.63   m/sK  ,  B    =   4.8    ×    10 8    m/
sK and  A    =   140   K. Looking at the results, shown in Figure  1.27 , it is interesting to note 
that, although the more rigorous calculation predicts the solid/liquid interface to be domi-
nated by a (111) facet, this result has almost no impact on the shape of the solidifi ed drop. 
This suggests that the commonly used approach of assuming the solid/liquid interface to 
be planar, when estimating the growth angle, may yield accurate results even in some of 
the cases where this assumption is clearly incorrect. Additional calculations (not exhibited 
here), showing a surprising insensitivity of the solidifi ed drop shape to variations in  k  s , 
 k  l ,  h ,  T  0  and  T  a , provide further support for this conclusion at least with respect to the Si 
system considered here.      
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     Figure 1.27     Thermal fi elds and interfacial profi les during simulated solidifi cation of Si in 
the  〈 111 〉  direction assuming   α     =   10    ° . Right - hand side (both of main fi gure and of inset) 
depicts solid/vapour, residual liquid/vapour and solid/liquid interfacial profi les; the dashed 
line demarks the solid/liquid interface when faceting is accounted for. Left - hand side 
depicts isotherms spaced 1   K apart. Dashed lines correspond to the faceted growth 
calculation and solid lines to those obtained using the isotherm condition.  
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  1.3.4   Summary 

 The concept of the growth angle, its measurement and relevant crystal growth simula-
tions are reviewed. The constant growth angle approximation appears valid in cases 
where signifi cant anisotropy is not present near the TPL. The existence of a facet (asso-
ciated with signifi cant anisotropy) at or near the TPL may lead to variations in the value 
of the growth angle. However, if steady - state growth conditions are maintained near the 
TPL, this growth angle value may remain constant throughout most of the solidifi cation 
process. 

 The agreement between different measurements of growth angle values for a given 
material is not always satisfactory (see Table  1.9 ). There may be a number of reasons 
for the discrepancies. Although some of the relevant references include information on 
the quality of the solid/liquid interface (faceted, polycrystalline, nonfaceted), it is not 
necessarily simple to verify that this information is accurate throughout the solidifi cation 
process. In particular, the quality of the interface at the TPL (e.g. the nature of contact 
between a solid/liquid interfacial facet and the TPL) is not easy to resolve. An additional 
complication is related to the accuracy of the estimation methods employed. Systematic 
errors may be introduced due to the use of approximate solutions of relevant equations. 
For example, as shown in  [Virozub 2008] , when neglecting the effect of gravity in the 
analysis of solidifying drops it is important to make sure that the Bond number is small 
(to be on the safe side it is probably best to neglect gravity only when  Bo     <    0.1). 
Assuming the solid/liquid interface to be planar when calculating solidifi cation profi les 
is probably incorrect in many cases considered in the growth angle measurement litera-
ture. However, the rigorous growth angle verifi cation procedure, applied here for a 
hypothetical case of a  〈 111 〉  Si drop solidifi cation process, shows almost no change in 
the solidifi cation profi le when simulating a faceted (fl at) as compared to a curved (non-
faceted) solid/liquid interface (using the same value of the growth angle in both cases). 
Further manipulation of system parameters indicates that the solidifi cation profi le is, in 
this case, relatively insensitive to heat transport. This result, which is in contradiction 
with the situation described for solidifi cation of a sessile water drop ( [Virozub 2008]  as 
compared with  [Anderson 1996] ), suggests that a more complete investigation of this 
issue is necessary. 

 Anisotropy and the possibility of a nonconstant growth angle are important issues 
which require further attention. Understanding the three - dimensional picture of a menis-
cus - defi ned growth process often requires the consideration of anisotropy in the plane of 
solidifi cation (along the TPL). The coupling of capillarity with kinetics associated with 
faceted growth near the TPL in relevant systems (see e.g.  [Santos 1996] ), is a nontrivial 
problem which must be addressed when considering the three - dimensional analysis of 
such processes.   
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  2 
The Possibility of Shape Stability in 

Capillary Crystal Growth and Practical 
Realization of Shaped Crystals  

  Vitali A.   Tatartchenko  
  Saint - Gobain Crystal       

     As mentioned in Chapter  1 , capillary crystal growth techniques have many advantages 
compared with crucible techniques. The main one is the absence of defect formation as 
a result of the contact with the crucible walls during solidifi cation. In addition, however, 
crystals of specifi ed shape and size (shaped crystals) with controlled defect and impurity 
structure can be grown with these techniques. Since the 1950s several hundreds of papers 
and patents concerned with shaped growth by crucible - free techniques have been pub-
lished. This chapter does not try to enumerate the cases of successful application of shaped 
growth to different materials but to carry out a fundamental mathematical analysis of 
shaping as well as peculiarities of shaped crystal structures. Four main techniques, where 
the lateral surface of the crystal is shaped without any contact with container walls, are 
analysed here: the Czochralski (Cz) technique, the Verneuil technique, the fl oating zone 
(FZ) technique and the technique of pulling from shaper (TPS). Modifi cations of these 
techniques are also analysed. In all these techniques the shape of the melt meniscus is 
controlled by the forces of the surface tension  –  these are capillary forces, so they are 
classifi ed as capillary shaping techniques (CST). For successful use, the crystal growth 
process in each of the CST has to be  dynamically stable . In this case, all process perturba-
tions attenuate and a crystal of constant cross - section is grown without any special 
regulation. 
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 Dynamic stability theory of the crystal growth process for all CST is developed on the 
basis of Liapunov ’ s dynamic stability theory. Liapunov ’ s equations for the crystal growth 
processes come from fundamental laws. The results of the stability analysis allow us to 
choose stable regimes of crystal growth for all CST as well as special designs of shapers 
in the TPS. The experiments of shaped crystal growth by Cz, Verneuil and FZ techniques 
are discussed, but the main consideration is given to TPS and the history of the TPS is 
also described. Shapers allow us not only to grow crystals of very complicated cross -
 section but to provide special distributions of impurities. The crystal growth of silicon, 
and some other materials, including crystal growth in space, are briefl y discussed. More 
technical details can be found in Chapter  5 .  

  2.1   Crucible - Free Crystal Growth  –  Capillary Shaping Techniques 

 Modern engineering makes much use of components fabricated from crystals, mainly in 
the shape of plates, rods or tubes although sometimes the shapes can be more complicated. 
Traditional methods of fabrication (growth of a bulk crystal and its machining) incur a 
loss of expensive material (often up to 90%) as well as the appearance of structure defects. 
Crystals of specifi ed shape and size with controlled defect and impurity structure are 
therefore desirable; they can be used as fi nal products with minimal additional machining, 
if any. 

 The problem of shaped crystal growth seems to be simply solved by profi led container 
crystallization, just as in the case of casting. Indeed, it is possible to fi nd a realization 
of this idea by the vertical or horizontal Bridgman techniques for growth of silicon, sap-
phire, fl uorides and YAG as well as other crystals with crucibles of different cross - 
sections (see, for instance  [Bagdasarov 1977] ,  [Petrova 1990] ,  [Horowitz 1993] ). But 
these techniques have many disadvantages, mentioned in Chapter  6  of this book. 
The main problem is that the crucible material must satisfy certain requirements  –  it 
should neither react with the melt nor be wetted by it. Even if all these requirements are 
fulfi lled, the growth of perfect crystals is not assured: the crucible serves as a source of 
uncontrolled nucleation as well as internal residual stresses. In addition, if the crucible 
material is wetted by the melt, the crucible should be made from a thin foil and used only 
once. 

 The techniques of crystal lateral surface shaping without contact with the container 
walls therefore have to be considered as candidates for shaped crystal growth. Since the 
late 1950s, both the theoretical and practical aspects of shaped crystal growth by 
these techniques have been developed and published in books and reviews  [Antonov 
1981, Tatartchenko 1988, 1993, 1994 - 1, 2001 - 1, 2001 - 2, 2005] , in the proceedings 
of three international conferences  [Cullen 1980, Kalejs 1987, 1990] , in the thirteen 
published proceedings of Russian national workshops  [Voinova 1968, Antonov 1969, 
1971, 1972, 1976, 1979, 1982, 1983, 1985, 1989, 1994, 1999, 2004]  and in hundreds of 
papers. 

 The few  ‘ classical ’  techniques of this type are well known: the Cz technique (Figure 
 2.1 ), the Verneuil technique (Figure  2.2 ) and the FZ technique (Figure  2.3 ). For all these 
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techniques, the shapes and the dimensions of the grown crystals are controlled by the 
shapes and the dimensions of the melt meniscus existing at the vicinity of the crystal – melt 
interface. The shape of the meniscus is controlled by the surface tension forces of the 
melt  –  capillary forces. The above - mentioned techniques (some  ‘ nonclassical ’  ones will 
be added later) are classifi ed as capillary shaping techniques (CST). As a rule, all these 
techniques are used to grow crystals of irregular shape, but all of them have been used 
for shaped crystal growth as well. For shaped crystal growth it is necessary to guarantee 
a special shape for the melt meniscus and dynamical stability of the crystal growth 
process. But in any case, all of the above - mentioned techniques allow us to obtain only 
simple shaped crystals (cylinders, plates or tubes) and have to be modifi ed to allow growth 
of more complicated shapes. The  ‘ classical ’  Kyropoulos technique also belongs to the 
CST category, but the problem of stability for this technique is in fact a very specifi c one 
(discussed in section  2.3.4  below); in addition, the Kyropoulos technique has never been 
used for growth of shaped crystals.   

 Some variants of  ‘ classical ’  CST are shown in Figure  2.4 . All of them are characterized 
by the presence of a shaper. The schemes in Figure  2.4 a – e, h, i may be classifi ed as 
modifi ed Cz techniques; and they differ from the standard Cz technique by the 
presence of a shaper in the melt. The schemes in Figure  2.4 f, g, j may be classifi ed as 
modifi ed FZ techniques with lowering, where the melting rod is replaced by a shaper 
with the melt inside. The scheme in Figure  2.4 k may be classifi ed as a modifi ed 
Verneuil technique where the melt layer is augmented by using a shaper with the melt 
inside.    
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     Figure 2.1     Crystal growth by the Czochralski technique (Cz). 1, seed; 2, crystal; 3, 
crystallization front; 4, melt; 5, crucible;  r  c , crystal radius;  h , crystallization front height;  
v , crystal pulling rate;  H  m , melt level in the crucible;  zOr , nondimensional coordinate 
system;  R 1   and  R 2  , main radii of liquid surface curvature.  
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  2.2   Dynamic Stability of Crystallization  –  the Basis of Shaped Crystal 
Growth by  CST  

 As the crystal is not restricted by crucible walls, its cross - section depends on the growth 
regime. Any deviations of the rate of pulling or lowering (for downward growth), as well 
as heat transfer fi eld, result in changes of the crystal cross - section (pinch formation). 
Many defects (increased amount of inclusions, nonuniform impurity distributions, sub-
grain formation) are observed at the pinch locations. It is not the pinches themselves that 
seem to cause defect formation, but some deviation from optimal growth conditions 
(mainly the crystallization rate), indicated by a change in the crystal dimensions. Therefore, 
stabilization of the crystal cross - section and of the position of the crystallization front has 
to be achieved. Why is the stabilization of the position of the crystallization front so 
important? We can see from the CST schemes shown in Figure  2.1  that if the position of 
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     Figure 2.2     Cylindrical crystal growth by the Verneuil technique. 1, powder stock bin; 2, 
burner, H  2  , hydrogen fl ow, O  2  , mixed oxygen and powder fl ow; 3, furnace thermal 
insulation; 4, peep - hole; 5, melt layer; 6, crystal; 7, seed;  r  c , crystal radius;  l 1  , melt surface 
position relative to the burner;  l , crystallization front position relative to the burner; 
 h    =    l     −     l 1  , melt meniscus height;  zOr , coordinate system;  v , crystal displacement rate;   ω  , 
crystal rotation rate.  
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the crystallization front is stationary, the crystal growth rate is exactly equal to the speed 
of pulling or lowering the seed. A displacement of the crystallization front position 
changes the real crystal growth speed  –  see Equation  (2.10)  below. As a result, in spite 
of stabilization of the pulling or lowering speed, there is defect formation. 

 The modern systems of control using weight or crystal diameter detectors make it pos-
sible to obtain cylindrical crystals by CST. These systems act on a change of heating 
power or of pulling rate. Sometimes the regulation is not stable, and there is a permanent 
perturbation of the crystallization front position. The solution is to analyse theoretically 
the dynamic stability of practical confi gurations of crystal growth and to select the stable 
ones on the basis of this analysis. In a dynamically stable system, the perturbations of 
parameters attenuate because of internal processes and without any additional active regu-
lation; it is possible to provide crystals of specifi ed shape and controlled cross - section. If 
an active regulator is included in the system under investigation, this dynamically stable 
system can improve the shape and quality of crystals. 

 A comparative theoretical analysis of the dynamic stability of the crystallization process 
for the Cz technique and TPS was carried out for the fi rst time by the present author in 
1971  [Tatartchenko 1973 - 1] . This explains why it is diffi cult to pull crystals of constant 
cross - section by the Cz technique but easy by TPS: the use of a shaper permits dynamic 
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     Figure 2.3     Cylindrical crystal growth by the FZ technique: (a) pulling up; (b) lowering). 
1, growing crystal with radius  r  c ; 2, feeding rod with radius  r 0  ; 3, heater; 4, melted zone; 
 h  c ,  h  m , positions of crystallization front and melting front relative to the heater, 
respectively;  h    =    h  c    +    h  m , length of the melted zone,  V , volume of the melted zone,   α  , 
growth angle;  v , rate of growing crystal displacement relative to the induction heater;  v  m , 
the same for feeding rod.  
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     Figure 2.4     TPS melt growth of crystalline rod with shapers: pulling up (a – e, h, i) or 
lowering (f, g, j, k) with rate  v ; shaping on the shaper surfaces (a, c, g – i); shaping on the 
shaper edges (b, d – f, j, k); positive melt pressure of value  d  (b, f, g, j, k), negative melt 
pressure of value  d  (d, e), undetermined melt pressure (a, c, h, i), fi xed point (G) and 
nonfi xed point (C) of contact of the meniscus with the shaper,  n , normal vector to the 
shaper wall,  d 0  , shaper depth,  r  c , crystal radius;  r 0  , edge contour radius,  h , crystallization 
front height,   θ  , wetting angle,   α  , growth angle,   α   d , meniscus inclination angle with respect 
to positive  r  direction at the point of contact with the shaper,   α  1     =     π      −      α   d ,   β  , angle of cone 
shaper wall inclination,  r 1  , cone radius on the melt free surface level.  
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capillary stability (see below) of the crystal growth process to be obtained. The fi rst paper 
on the investigation of dynamic stability in the Verneuil technique was published in the 
same year  [Tatartchenko 1973 - 2] . The investigation of stability in the Cz, TPS, Verneuil 
and FZ techniques was presented at the 4th International Conference on Crystal Growth 
in Japan  [Tatartchenko 1974] . The detailed analysis of capillary and heat stability using 
Lyapunov ’ s approach was published for the fi rst time in  [Tatartchenko 1976] . In 1976, 
T. Surek published a paper on capillary stability analysis only  [Surek 1976]  repeating the 
main results for the Cz technique and TPS  [Tatartchenko 1973 - 1, 1974] , but without any 
reference to these papers. 

  2.2.1   Lyapunov Equations 

 The main results of stability analysis for all CST  [Tatartchenko 1976 - 1, 1977 - 1, 1987, 
1988, 1991, 1993, 1994 - 1, 1994 - 2, 1997, 2000, 2001 - 1, 2005]  were obtained by applica-
tion of the Lyapunov approach  [Korn 1961] . In this approach, the crystallization tech-
niques under consideration are characterized by a fi nite number,  n , of variables (degrees 
of freedom),  X i  , which can be arbitrarily varied in the process of crystallization. Each 
CST has to include, as a minimum, crystal dimension  r  c  and crystallization front position 
 h  as degrees of freedom, i.e. the minimum number of degrees of freedom, min  n , is 2. 
Depending on the confi guration, this may be suffi cient for the dynamic stability analysis 
(see Figure  2.1  for the Cz technique and Figure  2.4  for TPS). But for the Verneuil tech-
nique, min  n    =   3 (Figure  2.2 ):  r  c ,  l ,  h ; and for the FZ technique, min  n    =   4 (Figure  2.3 ): 
 r  c ,  V ,  h  c ,  h  m . In addition, min  n  depends on the cross - section of the crystal to be grown. 
For instance, for a tube crystal, the internal diameter and the external diameter are both 
degrees of freedom and therefore min  n    =   3 for Cz tube pulling and for TPS of tubes. 

 If  n  exceeds min  n , the analysis is more fruitful. Sometimes several iterations can be 
used. The fi rst iteration can include the stability investigation for min  n . After that, one 
or more variables can be added. For instance, in  [Tatartchenko 1993 pp. 71 – 145] , the 
stability of TPS as a system with min  n  was investigated. As a second step ( [Tatartchenko 
1993 pp. 155 – 9] ), the melt pressure was added as a third degree of freedom and comple-
mentary information concerning the infl uence of pressure perturbation on the stability of 
growth was obtained. So,  n     ≥    min  n    =   2, but there is no simple way of choosing  n ; in 
every case, it has been the result of specifi c investigations. 

 To carry out a mathematical analysis of stability, a set of equations  (2.1)  for derivation 
of each degree of freedom  X i   with respect to time  t  as a function of all  n  degrees of 
freedom  X  1 ,  …  ,  X n  , their  n     −    1 derivatives (except  i ), time  t , and parameters of process 
 C  (temperature of the melt, pulling velocity, cooling regime, etc.) must be obtained:
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 To fi nd the explicit function  f i  , a set of fundamental physical laws has to be used. This 
set could include (among others): 

   •      the Navier – Stokes equation for the melt with the boundary conditions on the meniscus 
free surface (Laplace ’ s capillary equation);  
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   •      the continuity equation (law of crystallizing substance mass conservation);  
   •      the heat transfer equations for the liquid and the solid phases with the equations of heat 

balance at the crystallization front and at the melting front as boundary conditions (law 
of energy conservation);  

   •      the diffusion equation (impurity mass conservation);  
   •      the growth angle existence condition.    

 This set of equations is general for all the crystallization techniques under consideration 
(but it does not mean that all of them are used in each case), while the specifi c features 
of each crystallization confi guration are characterized by the set of boundary conditions 
and concrete values of the parameters included in the equations. 

 Equation  (2.1)  with zero left - hand side corresponds to the system under conditions of 
equilibrium (  X Xi i= 0): growth of crystal of constant cross - section   X1

0  with stationary 
crystallization front position   X2

0 , etc.

    f X X X t Ci n1
0

2
0 0 0, , , , , .…( ) =     (2.2)   

 Stable solutions of Equation  (2.1)  are sought. According to Lyapunov  [Korn 1961]  the 
solutions of  (2.1)  are stable if they are stable for the linearized set of equations:
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 Here   δ X X Xk k k= − 0 ,  ∂  f i  / ∂  X k     =    A ik  , and all partial derivatives are taken with   X Xk k= 0. 
 The stability of  (2.3) , in turn, is observed when all the roots  S  of the characteristic 

equation  (2.4) :

    det
∂
∂

−⎛
⎝⎜

⎞
⎠⎟ =

f

X
Si

k
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 have negative real components (  δ  ik   is the Kronecker delta  [Korn 1961] ). The equilibrium 
is unstable if  (2.4)  has at least one root with a positive real component. If an imaginary 
number is found among the roots, additional investigation including a consideration of 
the nonlinear terms in  (2.3)  is required. 

 Calculation of the time - dependent nonstationary functions  f i   is usually rather diffi cult. 
These diffi culties can be avoided using a quasi - stationary approach. This approach has 
been used successfully in the most of the CST dynamic stability investigations and in 
other cases. For instance, Mullins and Sekerka  [Mullins 1964]  applied it to the tempera-
ture and impurity distribution problem while studying the morphological stability of the 
crystallization - front shape. However, in each particular case, the quasi - stationary approach 
has to be justifi ed. 

 A number of constraints imposed on the systems and on the perturbations occurring in 
the course of the Lyapunov stability study should be noted. Stability is examined over an 
infi nitely long period of time. In this case, the perturbations are considered to be small 
and are imposed only on the initial conditions: the same forces and energy sources affect 
the system after the perturbations as before.  
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  2.2.2   Capillary Problem  –  Common Approach 

  2.2.2.1   Melt Meniscus Shaping Conditions 

 For CST, the crystal cross - section is determined by the melt meniscus section formed by 
the crystallization surface. The melt meniscus shape can be calculated on the basis of the 
Navier – Stocks equation, the Laplace capillary equation being the free - surface boundary 
condition. 

 The complete solution of this problem poses considerable mathematical diffi culties. To 
simplify formulation of the problem, the contributions of various factors to meniscus 
shaping should therefore be estimated: the inertial forces associated with the melt fl ow, 
capillary forces, gravitational forces, viscous and thermocapillary forces  [Tatartchenko 
1987, 1993] . The relative effect of the fi rst three factors can be estimated by means of 
dimensionless numbers: 

   •      the  Weber number We    =     ρ   l  u  2  L /  γ   lv , characterizing comparative action of the inertial and 
capillary forces;  

   •      the  Froude number Fr    =    u /( gL ) 1/2 , characterizing comparative action of the inertial and 
gravity forces;  

   •      the  Bond number Bo    =     ρ gL  2 /  γ   lv , characterizing comparative action of the gravity and 
capillary forces.    

 Here   ρ   l  denotes the liquid density,  L  the liquid meniscus characteristic dimensions,   γ   lv  the 
liquid surface tension coeffi cient,  u  the liquid fl ow rate, and  g  is the acceleration due to 
gravity. 

 When the Weber and Froude numbers are small, the melt fl ow can be neglected. The 
Bond number defi nes the region of capillary or gravity force predominance (Figure  2.5 ). 
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     Figure 2.5     Inertial (1), capillary (2), and gravitational (3) force effects on the melt 
column shaping ( We ,  Bo ,  Fr  are the characteristic Weber, Bond and Froud numbers, 
respectively)  (Reprinted with permission from  [Tatartchenko 1987] , copyright (1987) 
Elsevier Ltd).   
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If the liquid fl ow rate is considered to be of the order of the crystallization rate, the effect 
of the inertial force as compared to the gravity and capillary forces proves to be negligible. 
Indeed, if the linear dimensions of the meniscus lie within the range of 10  − 3  – 10  − 2    m, 
  ρ   l     ≅    10 3    kg   m  − 3  and   γ   lv     ≅    1   N   m  − 1 , the liquid meniscus shaping can be investigated using 
the hydrostatic approximation up to fl uid speeds of 0.1 – 1.0   ms  − 1 .   

 Convective fl ows, whose rates can substantially exceed the crystallization rate, can 
occur in a liquid column in addition to the fl ow associated with crystallization. This fl ow 
has effects on meniscus shaping and on liquid - phase heat transfer  [Tatartchenko 1993] .  

  2.2.2.2   Meniscus Surface Equation 

 In the hydrostatic approximation, the equilibrium shape of the liquid surface is described 
by the Laplace capillary equation  [Landau 1971] :

    
γ γ ρlv lv

l const
R R

gz
1 2

+ + =� .     (2.5)   

 Here  R  1  and  R  2  denote the main radii of liquid surface curvature, which must be located in 
two perpendicular planes. As a rule, one of the planes coincides with the plane of the 
diagram ( R  2  in Figure  2.1 ) and the second one is perpendicular to it ( R  1  in Figure  2.1 ). The 
  z̃    - axis is directed vertically upwards. The value of the constant depends on the selection 
of the origin of the   z̃    - coordinate and is equal to the difference between the pressure  p  in 
the liquid at   z̃      =   0 and the pressure of the gas  p  v . In particular, if the   z̃    - coordinate origin 
coincides with the plane of the liquid surface, the constant is equal to zero (Figure  2.1 ). 

 In this chapter our study is restricted to a meniscus possessing axial symmetry (Figures 
 2.1 – 2.4 ). Such a meniscus is obtained during melt pulling of a straight circular cylinder, 
or a tube - shaped crystal. The equation of such a meniscus surface is found by introducing 
the cylindrical coordinates   z̃  ,   r̃  . The problem of calculating the shape of the liquid menis-
cus for an axially symmetric meniscus is reduced to fi nding the shape of a profi le curve 
  z̃     =    f (  r̃  ). The liquid surface meniscus for cylindrical or tubular crystals is obtained by 
rotating the profi le curve around the   z̃   - axis. 

 Equation  (2.5)  is also appropriate for the fl at part of a ribbon if  R  1     →     ∞ . In this case, 
the profi le curve   z̃     =    f (  r̃  ) is the equation of its meniscus. This equation will also be used 
for growing large - diameter crystals. 

 Now let us introduce the capillary constant,  a , and move on to the dimensionless coor-
dinates and parameters:

    2 21 2γ ρ γlv l lvg a z a z r a r p a d( ) = = = ⋅ ( ) =, , , .� �   

 Now the capillary constant serves as the unit of linear dimension, and the weight of the 
melt column of the height  a  corresponds to unit pressure. This approach allows the results 
to be applied to any substance and any magnitude of gravity, with a simple scale change. 
Then, after calculation of the radii of curvature,  (2.5)  takes the form:

    ′′ + ′ + ′( ) + −( ) + ′( ) = ′ <z r z z d z z r z1 2 1 0 02 2 3 2
, if     (2.6a)  

    ′′ + ′ + ′( ) − −( ) + ′( ) = ′ >z r z z d z z r z1 2 1 0 02 2 3 2
, . if     (2.6b)   
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 For large Bond numbers ( Bo     >>    1, Figure  2.5 ), gravity prevails and  (2.6)  can be 
simplifi ed:

    ′′ ± −( ) + ′( ) =z r d z z r2 1 02 3 2
.     (2.7)   

 This condition corresponds to  R  1     →     ∞ . As mentioned above, Equation  (2.7)  can be 
applied to the fl at part of ribbon growth and the growth of large - diameter crystals with 
 r  c     ≥    5 a . 

 For small Bond numbers ( Bo     <<    1, Figure  2.5 ), capillarity prevails (this condition cor-
responds to growing small - diameter crystals ( r  c     <     a ) and is also easily satisfi ed in TPS 
experiments on space stations  [Tatartchenko 1993]  where the capillary constant is high) 
and  (2.6)  can also be simplifi ed:

    ′′ + ′ + ′( ) ± + ′( ) =z r z z d z r1 2 1 02 2 3 2
.     (2.8)   

  Static stability of the melt meniscus , as well as the dynamic stability of the crystal growth 
process, should apply. Static stability means that the melt meniscus exists for all values 
of crystallization parameters. A stability analysis can be carried out by a method based 
on Jacobi ’ s equation. For the TPS, this analysis was realized in  [Tatartchenko 1993, 1997, 
2000] .  

  2.2.2.3   Growth Angle Existence  –  Common Boundary Condition for  CST  

 As the Laplace capillary equation is a second - order differential equation, the formulation 
of the boundary problem for calculating melt meniscus shape requires the assignment of 
two boundary conditions. The fi rst of these is determined by the geometry of each specifi c 
CST and will be analysed in detail below, but the second boundary condition (the crystal –
 melt interface condition) is common to all CST. This condition follows from the existence 
of the growth angle. 

 The growth angle   α   (Figures  2.3 ,  2.4 a, b) is the angle between the line tangent to 
the meniscus and the lateral surface of the growing crystal. It is discussed in detail in 
Chapter  1  of this book and should not be confused with the wetting angle, which char-
acterizes particular equilibrium relative to the liquid movement along a solid body and is 
not directly associated with crystallization  [Tatartchenko 1993] . In the earliest studies of 
the Cz technique and TPS, a crystal of constant cross - section was considered to grow in 
the case   α     =   0. Judging by a purely geometric diagram of the liquid – solid phase conjuga-
tion, this assumption is quite natural. However, experimental and theoretical investiga-
tions of the crystal growth process showed that the geometrical condition   α     =   0 is not 
satisfi ed while growing crystals of constant cross - sections, and   α   is a physical character-
istic of the melt – crystal system. The particular case   α     =   0 occurs only for some metals. 
Experimental determinations of   α   have included direct measurements as well as indirect 
calculations. The indirect techniques are more precise, as a rule  [Tatartchenko 1993] . In 
 [Satunkin 1980, Tatartchenko 1993] , shapes of crystallized drops were studied, obtained 
on the bottom of Si, Ge and InSb crystals detached from the melts at the end of pulling 
by the Cz technique. Values of   α     =   25    °     ±    1    °  for InSb,   α     =   11    °     ±    1    °  for Si, and 
  α     =   12    °     ±    1    °  for Ge were obtained. The problem is discussed in detail in section  1.3  of 
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this book, where it is shown in particular that   α   is an anisotropic value as well as depend-
ing on the crystallization speed. In this chapter, for the dynamic stability analysis, the 
value of   α   will be considered as a constant for the crystal to be grown.   

  2.2.3   Equation of Crystal Dimension Change Rate 

 From the growth angle boundary condition, an equation for the crystal characteristic 
dimension change rate,  ∂  r  c / ∂  t , common to all CST, is obtained. In Figure  2.6  a vector  r c   
is located within the diagram plane and represents the radius of a straight circular cylinder -
 shaped crystal. For a plate it is its half - thickness. Now we introduce the angles made by 
the line tangent to the meniscus on the three - phase line with the horizontal,   φ   0 , and with 
the vertical,   α   0  (the crystal grows in the vertical direction). When the angles   φ   0  and   α   add 
up to  π /2, a crystal of constant cross - section,   rc

0, grows. In this case, the angle   α   0  is equal 
to the growth angle   α   and the value of the angle   φ   0  is denoted by   φ   e . If   α   0     ≠      α   the crystal 
lateral surface declines from the vertical on the angle   α      −      α   0    =     φ   0     −      φ   e    =     δ  φ   0 , the crystal 
changes its dimension,   δr r rc c c= − 0, in accordance with the equation (Figure  2.6 ):  
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     Figure 2.6     Crystal growth by CST: pulling up (a – c); lowering (d – f);   φ  0     =     φ   e , growth of a 
crystal with constant cross - section (a, d);   φ  0      <      φ   e , growth of a widening crystal (b, e); 
  φ  0      >      φ   e , growth of a narrowing crystal (c, f);  v  is the crystal displacement rate; other 
symbols as in the text.  
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    δ δφ φ φ�r v vc c c e= ( ) = −( )tan tan .0 0     (2.9)   

 The angle   δ  φ   0  is the angle of crystal tapering at any moment, and the crystallization rate 
 v  c  is equal to the difference in rates between pulling and displacement of the front:

    v v h tc d d= − .     (2.10)   

 Near the stationary state (  r rc c= 0 ,  h    =    h  0 ), that we need for  (2.3) , deviations d h /d t  as 
well as   δ  φ   0  have to be negligible. Hence, the crystallization rate  v  c  can be replaced by the 
rate of pulling  v  and tan(  δ  φ   0 )    ≈      δ  φ   0 . The angle   φ   0 , together with the meniscus shape as a 
function of  r  c ,  h  and other parameters, can be determined by solving the capillary bound-
ary problem whose equation was discussed above. Assuming that the capillary problem 
is solved, i.e. the function   φ0 1

0
2
0 0 0X X X t Cn, , , , ,…( ) =  is found, Equation  (2.9)  can be 

written as:

    δ φ δ δ�r v X X A Xk k

k

n

ik k

k

n

c = ∂ ∂ ⋅ = ⋅
= =

∑ ∑0
1 1

.     (2.11)    

  2.2.4   Equation of Crystallization Front Displacement Rate 

 The equation of the crystallization front displacement rate belongs to the set  (2.3)  and, 
like  (2.11) , is common to all CST. It follows from the heat - balance condition on the 
crystallization front:

    − ( ) + ( ) =λ λ ζs s l l cG h G h v     (2.12)   

 Here   λ   s  and   λ   l  denote thermal conductivities of the solid and liquid phases respectively, 
 G  s ( h ) and  G  l ( h ) are the temperature gradients in the solid and liquid phases at the crystal-
lization front,  h  is the crystallization front position,   ζ   denotes the latent heat of melting 
per unit volume of material and  v  c  is the crystallization rate. In accordance with  (2.10) , 
we obtain a  (2.1)  - type equation for d h /d t :

    d d l l s sh t v G h G h= − ( ) − ( )( )−ζ λ λ1 .     (2.13)   

 The corresponding  (2.3)  - type equation is:

    δ ζ λ λ δ�h G X G X Xk k

k

n

= ∂ ∂( ) − ∂ ∂( )[ ]−

=
∑1

1
s s k l l .     (2.14)   

 Now the functions  G  s ( h ) and  G  l ( h ) have to be found, which can be done by solving the 
Stefan problem  –  a nonstationary thermal conductivity problem with the solid – liquid 
interface as a heat source.  
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  2.2.5   Stability Analysis in a System with Two Degrees of Freedom 

 If only the crystal radius  r  c  and the crystallization front position  h  are regarded as variable 
parameters, Equations  (2.11)  and  (2.14)  have the following form:

    δ δ δ�r A r A hrr rhc c= +     (2.15)  

    δ δ δ�h A r A hhr hh= +c     (2.16)  

with

   A v rrr = − ∂ ∂( )φ0 c ;  

   A v hrh = − ∂ ∂( )φ0 ;  

   A G r G rhr = ∂ ∂( ) − ∂ ∂( )[ ]−ζ λ λ1
s s c l l c ;  

   A G h G hhh = ∂ ∂( ) − ∂ ∂( )[ ]−ζ λ λ1
s s l l .   

 The solutions of the set of equations  (2.15) ,  (2.16)  are:

    δr C S t C S tc = ( ) + ( )1 1 2 2exp exp ,     (2.17)  

    δh C S t C S t= ( ) + ( )3 1 4 2exp exp .     (2.18)   

 Here  S  1  and  S  2  are the roots of the characteristic equation  (2.4) , which for this case is:

    S A A S A A A Arr hh rr hh rh hr
2 0− +( ) + −( ) = .     (2.19)   

 To estimate the stability of the set of equations  (2.15)  and  (2.16)  there is no need to solve 
the equations themselves: the Routh – Hurwitz conditions  [Korn 1961]  can be used. The 
set  (2.15)  and  (2.16)  is stable if and only if the equation coeffi cients satisfy the following 
inequalities:

    A Arr hh+ < 0,     (2.20)  

    A A A Arr hh rh hr− > 0.     (2.21)   

 This type of stability is robust in the sense that the stability of the system remains 
unchanged within a wide range of values of the coeffi cients  A ik   ( i , k    =    r , h ). 

 If at least one of the inequalities  (2.20) ,  (2.21)  is replaced by an equality, the roots of 
the characteristic equation  (2.19)  are either imaginary or zero. In this case the system 
stability can not be judged from its linear approximation, and a nonlinear model must be 
used. 

 The coeffi cients  A rr   and  A hh   indicate direct correlation between  ∂  r  c / ∂  t  and   δ r  c , as well 
as  ∂  h / ∂  t  and   δ h , i.e. self - stability of the parameters. The coeffi cients  A rh   and  A hr   represent 
the effect of the change in one value on the rate of change of the other value, i.e. inter-
stability of the parameters. It can be concluded from the analysis of  (2.20)  and  (2.21)  that 
the crystal growth system is stable if:
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    A A A Arr hh rh hr< < <0 0 0, , ,     (2.22)  

    A A A A A A A Arr hh rh hr rr hh rh hr< < > >0 0 0, , , ,     (2.23)  

    A A A A A A A A A Arr hh rr hh rh hr rr hh rh hr< > > < <0 0 0, , , , ,     (2.24)  

    A A A A A A A A A Arr hh rr hh rh hr rr hh rh hr> < < < <0 0 0, , , , .     (2.25)   

 It can be seen that negative values of  A rr   and  A hh   are a very important condition for the 
stability of the crystal growth system. The following terminology will be used in what 
follows: there is  capillary stability  in the system if  A rr      <    0 and there is  heat stability  if 
 A hh      <    0.   

  2.3   Stability Analysis and Growth of Shaped Crystals by the 
 C  z  Technique 

  2.3.1   Capillary Problem 

 Solving the boundary capillary problem allows us to fi nd the coeffi cients  A rr   and  A rh  . The 
problem is investigated in details in  [Tatartchenko 1967, 1968, 1969 - 1, 1976 - 1, 1976 - 2, 
1977 - 1, 1977 - 2, 1987, 1991, 1993, 1994 - 1, 1994 - 2, 1995, 1997, 2000] ; only a few of the 
results are given here. The problem includes Equation  (2.6)  with  d    =   0 and two boundary 
conditions:

    d d tancz r r r= = − φ0,     (2.26)  

    z r→∞ = 0 .     (2.27)   

 Because of the particular choice of origin we have  p (  z̃      =   0)   =    p  v  and  d    =   0. 
 The numerical solution of the boundary problem is given in Figure  2.7  and shows that:

   A Arr rr r> →→∞0 0; ,     (2.28)  

   A A vrh rh r< → ∼→∞0 4; .     (2.29)     

 For numerical calculation, the dimensionality of  A ik   is s  − 1 ; all angles have to be measured 
in radians; the unit of length is the capillary constant  a , and the speed of pulling 
is  a  s  − 1 .  

  2.3.2   Temperature Distribution in the Crystal – Melt System 

 Solving the boundary heat problem allows us to fi nd the coeffi cients  A hh   and  A hr  . Much 
research has been devoted to calculation of the temperature fi eld in the crystal – melt 
system. It forms a group of the Stefan problems in which the crystal – melt interface is a 
heat source. However, because of the variety of growth confi gurations and the presence 
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of a great number of factors that have to be taken into account for the thermal conductivity 
problems (complex temperature dependence of the thermophysical properties of various 
materials, convective fl ows in the melt, etc.) a complete mathematical description of heat 
patterns during crystal growth is very diffi cult. Analytical solutions are usually achieved 
by signifi cant simplifi cations. With this end in view, the following equation from  [Carslaw 
1959]  allowing simple analytical solutions will be used to analyse the heat conditions in 
the crystallization process:

    D T t T z vk T z F T Ti i i i i i i ith ad d d d,
− − −∂ ∂ = − − −( )1 2 2 1 1μ λ     (2.30)   

 Here  i    =   l, s ( i    =   l for the liquid,  i    =   s for the solid body),  T i   denotes the temperature,  
D  th   ,i   is the thermal diffusivity coeffi cient,  z  is the vertical coordinate,   μ  i   denotes the coef-
fi cient of heat exchange with the environment,  F  denotes the crystal perimeter to area 
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     Figure 2.7     For the Cz technique (a) (  ∂  φ  0  /  ∂ r  c )  ⋅  a (denoted by   φ0
r ) and (b) ( ∂   φ  0  /  ∂ h )  ⋅  a 

(denoted by   φ0
h) vs crystal radius for various values of the growth angles   α  : (1)  − 15    ° ; 

(2)  − 5    ° ; (3) 0    ° ; (4) 10    ° ; (5) 20    ° ; (6) 30    ° ; (7) 40    ° . The capillary constant, a, is used as a 
unit of all dimensions  (Reprinted with permission from  [Tatartchenko 1988] , copyright 
(1988) Springer Science + Business Media).     
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ratio at the interface,  T  a  is the ambient temperature and   λ  i   is the thermal conductivity 
coeffi cient. 

 Equation  (2.30)  has a few peculiarities: 

   •      It describes the temperature distribution of the crystal – melt system in a one - dimensional 
approximation that means that the temperature in the crystal (meniscus) cross - section 
is averaged and isotherms are fl at.  

   •      The heat exchange with the environment is described not as boundary conditions but 
by introducing heat losses on the lateral surface in the form of an additional term in 
the equation.  

   •      It gives a good description of real temperature distribution for small Biot numbers 
(  Bi ri i= −μ λc

1 1� )  –  this is the case during growth of crystals of small diameter or wall 
thickness, for low coeffi cients of convective heat transfer from the crystal (melt) 
surface, and for high thermal conductivities.  

   •      Heat exchange is described by the Newtonian law, which means that the convective 
heat exchange is much higher than the heat losses caused by radiation (the heat losses 
caused by free convection are comparable to the heat losses caused by radiation for a 
surface temperature up to 1000    ° C and even higher in the case where the crystal surface 
is cooled by forced convection).  

   •      The equation is not applicable to refractory materials pulled under vacuum; radiation 
heat exchange (the Stefan – Boltzmann law) must be used, which leads to considerable 
nonlinearity of the problem. In this case a linearization of the crystal - surface radiation 
law described in  [Tatartchenko 1993]  can be applied that allows the use of Equation 
 (2.30)  for temperatures up to 2000    ° C.    

 In section  2.2.1  we discussed the possibility of using a quasi - stationary approximation, 
according to which temperature distribution in the crystal – melt system at any moment of 
time satisfi es the stationary thermal conductivity equation with instantaneous values of 
all the process parameters. For this approximation to be applied, the time for relaxation 
of the crystallization front to the stationary state should be signifi cantly longer than the 
characteristic of temperature relaxation time. As a rule, this condition is satisfi ed 
 [Tatartchenko 1993] . Thus, Equation  (2.30)  with zero left - hand side can be used for the 
calculation of  G  s  and  G  l . 

 As an example of the calculation of  A hh   and  A hr  , consider the growth of a long crystal 
(the limiting case is continuous pulling), with good thermal screening of the melt column. 
So, Equation  (2.30)  is used with zero left - hand side for the crystal as well as for the melt 
meniscus with   μ   l    =   0. The boundary conditions of the problem are the following: 

   •      The melt temperature at the bottom of the liquid column at the level of the melt free 
surface is fi xed:   T Tzl = =0 0 .  

   •      The crystallization - front temperature is equal to the melting temperature 
 T m  :   T T Tz h z hl s m= == = .  

   •      The temperature of the end of the crystal is equal to the ambient temperature: 
  T Tzs a→∞ = .    

 The solution of Equation  (2.30)  with these boundary conditions (the solution for 
other boundary conditions can be found in  [Tatartchenko 1993] ) allows us to obtain  A hh   
and  A hr  :
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   A h T Thh = − −( )− −ζ λ1 2
0l m ,     (2.31)  

   A r T T v k rhr = −( ) = +⎛
⎝

⎞
⎠

− − − − − −ζ μ ς ς μ λ1 2 1 2 2 2 1
11

4
2s c s m a s s s s cwhere,

22

.     (2.32)   

 So, based on the solution of the capillary and heat boundary problems, the signs and the 
values of the growth stability coeffi cients for the Cz technique are found. If the melt is 
superheated ( T  0     >     T  m ), the signs are as follows:  A rr      >    0;  A rh      <    0;  A hr      >    0;  A hh      <    0.  

  2.3.3   Stability Analysis and Shaped Crystal Growth 

  2.3.3.1   Capillary Stability 

 First we introduce the notion of capillary stability. Consider the case where a change in 
crystal dimensions and crystallization front position does not lead to a change in liquid -  
and solid - phase temperature gradients at the crystallization front. In this case, the system 
stability can be provided only by capillary effects (capillary stability). In practice, a crys-
tallization system with one degree of freedom is considered in this case and the set of 
equations  (2.3)  describing stability reduces to the simple relation  ∂  r  c / ∂  t    =    A rr  δ r  c . A neces-
sary and suffi cient condition to attain capillary stability is  A rr      <    0. In this case, any crystal 
dimension perturbation will attenuate. 

 The positive value of the coeffi cient  A rr   found in section  2.3.1  is indicative of the 
absence of capillary stability during crystal pulling by the Cz technique. This is illustrated 
in Figure  2.8 . Let the point A characterizes constant - diameter crystal growth (  φ   0    =     φ   e ). 
An arbitrary change in the crystal dimensions (upward tapering  A ′  , downward tapering 
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     Figure 2.8     Heights of profi le curves vs crystal radius for various growth angles  α : 
(1)  − 10    ° ; (2) 0    ° ; (3) 10    ° ; (4) 20    ° ; (5) 30    ° . A, scheme of capillary instability; B, scheme 
of thermal stability.  (Reprinted with permission from  [Tatartchenko 1988] , copyright 
(1988) Springer Science + Business Media).     
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 A ″   ), or in the position of the crystallization front (rise   A
.
  , fall   Ä  ), will cause a change in 

the angle   φ   0  such that it will lead to further crystal tapering according to Figure  2.6 .    

  2.3.3.2   Stability Analysis 

 On the basis of the two previous sections, it can be concluded that for the Cz 
technique: 

   •      Capillary stability is absent for all crystal diameters.  
   •      Heat stability can be realized.  
   •      There is a possibility of satisfying the conditions  (2.25)  and to have a stable crystal 

growth if the following two inequalities can be fulfi lled:

    ∂ ∂ < −( )− − −φ λ ζ0
1 1 2

0r v h T Tc l m ,     (2.33)  

    ∂ ∂ < ∂ ∂ −( ) −( )− − − −φ φ μ λ ς0 0
2 2 1 1

0
1r h h r T T T Tc s c l s m a m .     (2.34)      

 In this case, a change in crystal dimension (points  B ′   or  B ″   in Figure  2.8 ) results in a 
change in the position of the crystallization front (points   B

.
   and   B̈    in Figure  2.8 ) such that 

it provides growth of a crystal with slightly changed dimensions, with the liquid – solid 
phase conjunction angle equal to the growth angle. In practice this means that a constant 
crystal of cross - section with an immovable interface position can be grown if the diameter 
of the crystal is bigger than the melt capillary constant and if the melt is superheated, i.e. 
high thermal gradients are applied. If the crystal has a smaller diameter, superheating has 
to be greater and a special combination of the crystal growth process parameters has to 
hold, given by the inequalities  (2.33)  and  (2.34) .  

  2.3.3.3   Shaped Crystal Growth 

 Our experience of the Cz technique crystal growth without any special diameter regulation 
as well as the growth of cylindrical crystals of Ag  [Bachmann 1970]  and of large - diameter 
Si tubes  [Alioshin 1990]  confi rms the conclusions of the above analysis. The necessity 
of very good stabilization of the pulling speed must be mentioned: it has been shown 
 [Tatartchenko 1967]  that even a stable system cannot compensate for a sudden change of 
speed, and pinch formation is the result. The problem of control in the Cz technique is 
discussed in detail in Chapter  3 , where technical solutions are given.   

  2.3.4   Dynamic Stability Problem for the Kyropoulos Technique 

 It was mentioned earlier that the  ‘ classical ’  Kyropoulos technique also belongs to CST 
and is formally very similar to the Cz technique. But, in fact, the problem of crystal growth 
in dynamically stable regimes is a very specifi c one for the Kyropoulos technique. 
As already explained, crystal growth using CST in stable regimes makes it possible 
to eliminate the appearance of defects, especially in the case of crystallization speed 
perturbations. On the other hand, the condition  (2.33)  shows that much superheating and, 
as a result, large temperature gradients near the interface, is one of the necessary condi-
tions for stable growth by the Cz technique. This means that the generation of defects 
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(especially dislocations) resulting from the large temperature gradients is very probable 
during crystal growth by the Cz technique in stable regimes. The Kyropoulos technique 
differs from the Cz technique by using very low temperature gradients and consequent 
annealing of crystals in the same growth zone. As a result, there is no dynamically 
stable growth in the Kyropoulos technique and it has never been used for shaped growth. 
Thus, to choose whether the Cz shaped growth technique or the Kyropoulos techique 
is preferable for a specifi c material it is necessary to compare them from this point of 
view. Such a comparison is made for sapphire in the review  [Tatartchenko 2005] , for 
example.   

  2.4   Stability Analysis and Growth of Shaped Crystals by the 
Verneuil Technique 

  2.4.1   Principal Schemes of Growth 

 Figure  2.2  illustrates the Verneuil crystal growth technique. A fi ne powder of the material 
from which the crystal is to be grown is fed into a burner with an oxy - hydrogen fl ame. 
The powder melts, partially or completely, forming a melt layer on the surface of the seed 
crystal. The powder must be extremely fi ne, with particle size 1 – 20    μ m. The crystal grows 
by consecutive melt crystallization as a result of downward pulling of the crystal toward 
the colder zone. 

 Until the middle of the 20th century this technique was used mainly to grow precious 
gemstones (corundum, i.e. ruby and sapphire) 20   mm in diameter. Alumina powder is 
used for corundum crystals grown by the Verneuil technique. The pure aluminium oxide 
is  α  - alumina. Different degrees of hydration give  β  - alumina,  γ  - alumina, and so on. 
For instance,  γ  - alumina is 5Al 2 O 3 .H 2 O. Both  α  -  and  γ  - alumina can be used for crystal 
growth. A widely used process for powder fabrication includes purifi cation of alum 
(KAl(SO 4 ) 2 .12H 2 O) by recrystallization and decomposition of the alum to  α  -  or  γ  - alumina 
by heating. The optimal temperature of heating to obtain  α  - alumina is 1000    ° C. 

 The equipment (see Figure  2.2 ) was originally very simple because of the absence of 
any special requirement for crystal quality, but the use of ruby crystals in lasers changed 
the situation dramatically. It was necessary to increase the crystal dimensions and to 
improve the crystal quality. This was achieved by modifying the equipment on the basis 
of theoretical investigation of the crystal growth process. Modern furnaces for the Verneuil 
technique include several oxygen and hydrogen channels for more homogeneous burning 
of the hydrogen, preliminary heating of the gases, special heating of the furnace, thermal 
insulation and automatic growth regulation. 

 It is clear why the Verneuil technique has been the most widespread technique for 
production of laser elements. Its main advantage is the absence of a crucible and, as a 
result, absence of contamination of the crystal by the crucible material. In addition, the 
Verneuil technique can be used for growth of crystalline plates with large surface area. 
Several modifi cations of the classical confi guration (Figure  2.2 ) were used for this 
purpose. Some patents are cited in our review  [Tatartchenko 2005] : using rotation of the 
seed crystal around a horizontal axis made it possible to obtain a single crystal sapphire 
disc with an area up to 180   cm 2 ; reciprocating motion of the seeding crystal in relation to 
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the gas burner enabled the production of plates about 70   cm 2  in size; a split burner model 
was used to grow plate - shaped crystals up to 240   cm 2 . In our experience all these tech-
niques have had major problems with crystals cracking because of internal tension due 
to periodic changes of temperature for each crystal volume and inhomogeneous tempera-
ture distribution in the growth zone. There are versions of the Verneuil technique using 
plasma, laser radiation and Ir resistive heating, but they do not have a wide application. 
In an unpublished technique, combined ruby – sapphire crystals have been grown for a 
laser application: ruby crystals with sapphire ends. This only requires changing the feed 
from doped to undoped powder.  

  2.4.2   Theoretical Investigation 

 In the early 1970s, our attention was drawn to the experimental fact that it is easy to 
grow small - diameter corundum crystals ( ∼ 5   mm); they are grown especially as seed 
crystals. In practice, the growth regime required no correction by an operator. The 
crystals had smooth surfaces and cylindrical shapes. This stimulated our investigation 
of dynamic stability in the Verneuil technique. As mentioned above, for cylindrical 
crystals, the analysis should be carried out with three degrees of freedom (Figure  2.2 ): 
(i)  r  c , the crystal radius; (ii)  l , the crystallization front position relative to the burner; 
(iii)  h    =    l     −     l  1 , the melt meniscus height, where  l  1  is the melt surface position relative to 
the burner. 

 In the present case the linearized set of equations  (2.3)  defi ned from the Lyapunov 
criteria of growth process stability takes the following form:

   δ δ δ δ�r A r A h A lrr rh rlc c= + + ,     (2.35)  

   δ δ δ δ�h A r A h A lhr hh hl= + +c ,     (2.36)  

   δ δ δ δ�l A r A h A llr lh ll= + +c .     (2.37)   

 The explicit form of the coeffi cients of the system must now be found. 

  2.4.2.1   Determination of the Coeffi cients  A   rr  ,  A   rh  ,  A   rl   

 Comparison of Equations  (2.35)  and  (2.11)  gives:

    A v r A v h A v lrr rh rl= − ∂ ∂( ) = − ∂ ∂( ) = − ∂ ∂( )φ φ φ0 0 0c ; ; .     (2.38)   

  A rl     =   0 as the meniscus shape and the angle   φ   0  do not explicitly depend on the position 
of the liquid – gas interface. The functional relation between the angle   φ   0 , the crystal radius 
 r  c , and the meniscus height  h  is defi ned from the Laplace capillary equation  (2.6) . 

 The specifi city of the capillary shaping by the Verneuil technique appears in the 
following way: 

   •      The line tangent to the melt surface is horizontal at the peak point of the melted layer 
(Figure  2.9 ): 

     d dz r r = =0 0.     (2.39)    
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   •      The second boundary condition is specifi ed at the solid – liquid interface and follows 
from the condition of growth angle existence:

    d d tancz r r r= = − φ0     (2.40)    

   •      The shape of the melt zone is obtained by rotation of the profi le curve AC around the 
 z  - axis. The curve AC consists of two portions, AB and BC. Each of them is described 
by the proper differential form of the Laplace capillary equations  (2.6a)  and  (2.6b) .  

   •      The maximum radius of the melted layer cross - section BD is denoted by  r  ma   x   in 
Figure  2.9 . The point B is selected in such a way that the line tangent to it is vertical. 
At point B: 

     d d mz r r r= = ∞.     (2.41)        

 In the usual case the Laplace equation  (2.6)  is not solvable by quadrature and numerical 
calculation is required. However, a semiquantitative solution of the problem can be esti-
mated in the following way. For the meniscus with  r  c     <     a  and  r  c     >     a , analytical solutions 
can be obtained (here  r  c  is the dimensional crystal radius). Then by joining the functions 
and their derivatives at the point  r  c    =    a , a common solution can be obtained. 
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     Figure 2.9     Capillary shaping for the Verneuil technique (see text for explanation) 
 (Reprinted with permission from  [Tatartchenko 1988] , copyright (1988) Springer Science + 
Business Media).     
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  Small Bond Number (  r    c      <     a ).     First, the case where the crystal radius is considerably 
smaller then the capillary constant will be discussed. Then the melt weight in the Laplace 
equation  (2.6)  can be disregarded; it takes the form  (2.8) . The function describing the 
shape of curve AB satisfi es the equation

    ′′ = − + ′( ) −( )−z r z r1 2 3 2
1 2sinφ d     (2.42)   

 with the boundary conditions  (2.40)  and  (2.41) . For curve BC, this equation takes the 
form

    ′′ = + ′( ) −( )−z r z r1 2 3 2
1 2sinφ d     (2.43)   

 with the boundary conditions  (2.39)  and  (2.41) . 
 The meniscus height  h  can be obtained as a result of mutual solution of these boundary 

condition problems (Figure  2.10 , range  r  c     <     a ):

    h r= +( )( )−
c 1 0 0

1cos sin .φ φ     (2.44)      

  Large Bond Number ( r c      >     a ).     Secondly, the case where the crystal radius is consider-
ably bigger then the capillary constant will be discussed. Then the Laplace equation takes 
the form  (2.7)  with boundary conditions  (2.39) – (2.41) . The meniscus height  h  proves to 
tend asymptotically to the value (1   +   cos  φ   0 ) 1/2  with increasing  r  c  (Figure  2.10 , range 
 r  c     >     a ). In this approach the greatest deviation from the true relation  h ( r  c ) is observed in 
the vicinity of the point  r  c / a    =   1, however it allows us to avoid the diffi culties of the 
numerical methods and provides a qualitative representation of the relation behaviour 
(Figure  2.10 ). 

 The capillary coeffi cients for the fi rst case have the following forms:

    A v r vrrr = − ∂ ∂( ) = − <−φ φ0
1

0 0c c sin ,     (2.45)  

    A v h vrrh = − ∂ ∂( ) = − +( ) >− −φ φ φ0
1

0 0
11 0c sin cos .     (2.46)   
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     Figure 2.10     Nondimensional melt meniscus height  h /a vs crystal radius  r  c /a for various 
angles   φ  0  :   φ  01      >      φ   e     >      φ  02    (Reprinted with permission from  [Tatartchenko 1988] , copyright 
(1988) Springer Science + Business Media).     
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 For the second case:

    A Arr rr r< →→∞
−0 0; ,     (2.47)  

    A A vrh rh r> → +( ) ( )→∞
−0 1 0

1 2
0

1; cos sin .φ φ     (2.48)   

 Thus, formally,  A rr      <    0 for all ranges of crystal dimensions and the Verneuil technique 
possesses capillary stability. But its effect on the crystal growth is very important only 
for small crystal diameters, where the value of  A rr   is large. For large crystal dimensions, 
the infl uence of capillary effects on dynamic stability is insignifi cant:   Arr r→∞

−→ 0 .   

  2.4.2.2   Determination of the Coeffi cients  A   lr  ,  A   lh  ,  A   ll   

 The coeffi cients  A lr  ,  A lh  ,  A ll   can be found from mass - balance conditions in the powder –
 crystal – melt system, which can be represented in the following form:

    W r v l t r l t l t0
2

1
2

1= −( ) + −( )π πρ ρs c l cd d d d d d .     (2.49)   

 Here  W  0  is the charge mass fed into the melted layer per unit time, and   ρ   s  and   ρ   l  are 
solid -  and liquid - phase densities, respectively. The fi rst term on the right - hand side of 
 (2.49)  denotes the substance mass crystallizing per unit time, while the second component 
is the change in mass of the melted layer. Assuming that   ρ   s    =     ρ   l    =     ρ  , for simplicity, gives:

    d d cl t W r v= − ( ) +−
0

2 1πρ     (2.50)   

 Linearization of  (2.50)  gives:

    ∂ ∂ = ( )−
l t W r r2 0

3 1πρ δc c     (2.51)   

 Comparing this equation with  (2.37)  we obtain:

    A r A Alr lh ll= ( ) > = =−
2 0 0 00

3 1
W cπρ , , .   

 When calculating the coeffi cient  A lr  , the charge - mass distribution in the falling fl ow was 
assumed to be localized close to the  z  - axis (Figure  2.11 , curve 1), and with changing 
crystal radius the amount of substance fed to the melt remains unchanged. In a real situ-
ation the charge - mass distribution in the fl ow along the muffl e cross - section in the crystal-
lization area depends on a number of factors (in particular, on the design of the equipment 
used  –  Figure  2.11 , curves 2 – 4) and the mass of substance fed into the melt per unit time 
depends on the crystal diameter:

    W F r r
r

0

0

2= ( )∫πβ d
c

,     (2.52)     

 where   β   denotes the coeffi cient of mass fl ow rate prescribed by the feeder. Substitution 
of Equation  (2.52)  into Equation  (2.50)  and subsequent linearization gives
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    A r F r r r F rlr

r

= ( ) − ( )⎛
⎝⎜

⎞
⎠⎟

− ∫β c c cd
c

3

0

22 .     (2.53)   

 Possible forms of the function  F ( r ) are shown in Figure  2.11 . If  F ( r )   =   const then  A lr     =   0. 
It is obvious that if the function  F ( r ) reaches its extremum when  r    =   0 the sign of  A lr   will 
not change with changing  r  c . If the extremum is a minimum,  A lr      <    0. Finally, when the 
charge is fed from the central nozzle of the burner (the most widely used case in practice) 
the maximum of the charge distribution in the fl ow lies in the centre of the burner muffl e 
(curves 1, 2, Figure  2.11 ), therefore  A lr      >    0.  

  2.4.2.3   Determination of the Coeffi cients  A   hr  ,  A   hh  ,  A   hl   

 As usual, these coeffi cients have to be found as a result of the heat boundary problem 
solution for the crystal – melt system. First, we note some peculiarities of the heat problem 
formulation for the Verneuil technique and the main conclusions. When formulating the 
heat problem for crystal growth from melts, the melt temperature has been specifi ed as 
the boundary condition (see section  2.3.2 ). This boundary condition for the Verneuil 
technique does not correspond to the real situation. Crystal displacement in the furnace 
muffl e results in a temperature change on the melt surface. This is why the heat conditions 
of the technique under consideration will be defi ned through the density  Q  of the heat 
fl ow fed from the burner on to the surface of the melted layer. With the gas fl ow speci-
fi ed, the density of the heat fl ow  Q  depends on the distance between the burner and the 
level of the melt surface  Q ( l ). The function  Q ( l ) is determined by the burner design and 
the gas fl ow. 

 Space limitations in this chapter do not allow giving further details about the theoretical 
model. They can be found in  [Tatartchenko 1988, 1993, 1994] .   

     Figure 2.11     Function  F  (r)  of the charge distribution in the gas fl ow depending on the 
burner design (see text for details)  (Reprinted with permission from  [Tatartchenko 1988] , 
copyright (1988) Springer Science + Business Media).     
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  2.4.3   Practical Results of the Theoretical Analysis 

  2.4.3.1   Cylindrical Crystals 

 For the process to be stable the following three conditions have to be fulfi lled: 

   •      The diameter of the crystal, 2 r  c , has to be small ( r  c     <     a ). We can see that this result is 
opposite to the case of Cz technique.  

   •      Variation of the heat fl ow density  Q ( l ) along the furnace muffl e in the vicinity of the 
growth zone, at a distance of the order of  r  c , should not exceed the latent heat of 
crystallization.  

   •      The heat fl ow density value  Q ( l ) in the vicinity of the growth zone has to be decreased 
if the distance between the melt surface and the burner,  l  1 , is increased.    

 The results of the theoretical investigation explain why growing corundum crystals of 
small diameters ( ∼ 5   mm) is easy. They grow in the dynamically stable regime; this means 
that there are internal mechanisms for the attenuation of perturbations. Using our termi-
nology, capillary stability exists for  r  c     <     a  ( a    =   6   mm for sapphire melt). 

 In spite of the fact that capillary stable growth is impossible for cylindrical sapphire 
crystals with diameter more than 12   mm, the theoretical model allows us to minimize the 
crystallization process perturbations while growing large - diameter crystals. For this, the 
previous two conditions have to be fulfi lled (evidently, without the crystal dimension 
limitation) and also: 

   •      The temperature of the muffl e wall has to be as high as possible.  
   •      Irregularities of the density distribution of the charge fl ow falling on the melted layer 

have to be kept as small as possible.    

 These requirements for the crystallization conditions (classifi ed as optimized conditons) 
are in good agreement with experimental results  [Tatartchenko 1973 - 2, Romanova 1976] . 
In the experiments, rates of hydrogen and oxygen fl ow in a three - channel burner resulted 
in crystals with a larger diameter growing closer to the burner. This corresponds to an 
increase in heat - fl ow density when approaching the burner. Preheating the gas before 
feeding it into the burner and increasing the furnace muffl e temperature were also used. 
As a rule, no parameter control was required to keep the cross - section of the crystal 
constant. Crystals grown under these conditions had a smoother surface and improved 
optical and structural characteristics. Figure  2.12  shows corundum crystals of 40   mm 
diameter, grown in 1972 without any automatic control by the present author with col-
laborators from the Leningrad State Optical Institute.   

 Several crystal growth experiments were carried out using a shaper (see Figure  2.4 k). 
The advantage of this scheme is evident  –  it is possible to have a thicker melt layer and, 
as a result, better crystal quality. In addition, as will be shown below, this confi guration 
shows capillary stability for all dimensions of grown crystals. On the other hand, the very 
important advantage of the Verneuil technique  –  the absence of a crucible  –  is lost. It is 
diffi cult to discuss the experimental results because no shaper material resistant to the 
hydrogen – oxygen fl ame was found; Ir was more or less usable, but contamination - free 
crystals were not obtained.  
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  2.4.3.2   Tubular Crystals 

 The theoretical analysis  [Tatartchenko 1988, 1993]  states that crystallization of tubes of 
arbitrary outer diameters by the Verneuil technique is stable if the tube wall thickness is 
less than a critical value. This critical thickness is smaller than the capillary constant,  a , 
and depends both on the heat conditions of the process and on the outer diameter of the 
tube. It increases as the outer diameter increases. In the experiments  [Borodin 1982 - 2, 
Tatartchenko 1993]  tubes with an outer diameter of 17 – 25   mm with walls 3 – 4   mm thick 
were grown (Figure  2.13 ). A crystallization apparatus fi tted with a four - channel burner 
providing charge supply via the central and peripheral channels was used. The optimal 
gas distribution in the burner channels has been experimentally determined as oxygen –
 hydrogen – oxygen – hydrogen. Crystal growth was initiated from a seed 3 – 4   mm in diam-
eter. First, a seed cone was grown. The cone was widened by feeding the charge through 
the central channel, the peripheral oxygen fl ow rate being increased. As soon as the crystal 
diameter reached the specifi ed value (20 – 22   mm) the charge was additionally fed through 
the peripheral channel. A little later (10 – 15   min) the charge supply from the central tank 
was cut off, and the rate of the central oxygen fl ow was reduced within 30 – 60   min. This 
growth regime provided a smooth transition from a bulk crystal to a tube. The lowering 
rate was gradually increased and after that a stationary growth process contunued. Tubes 
up to 120   mm long were grown. Usually no parameter control was required to keep the 
cross - section of the tube constant, i.e. the theoretically predicted stable growth conditions 
were attained. Figure  2.13  shows some of the tubes grown in 1981 by the present author 

     Figure 2.12     Corundum cylindrical crystals grown by the Verneuil technique in optimized 
(right) and nonoptimized (left) regimes  (Reprinted with permission from  [Tatartchenko 
1988] , copyright (1988) Springer Science + Business Media).     
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with collaborators from the Solid State Institute of the Russian Academy of Science. 
Three of the tubes are cut (one of them along the axis, and two obliquely) to show the 
tube walls. For comparison, a cylindrical crystal of the same outer diameter, grown in the 
same furnace, is also shown. The irregular shape of the bulk crystal indicates that this 
regime is not optimal from the point of view of stability for the bulk crystal growth of 
this diameter. This corresponds to the theoretical prediction.    

  2.4.3.3   Plate - Shaped Crystals 

 The theoretical results are applicable for the growth of plate - shaped crystals: growth of 
crystal plates of less than two capillary constant thicknesses (12   mm for sapphire) is stable. 
Information of corundum crystal plate growth by the Verneuil technique can be found in 
the review  [Tatartchenko 2005] .   

  2.4.4   Stability Analysis - Based Automation 

 As shown above, crystallization stability is lost when crystal diameter exceeds two capil-
lary constants. In practice this means that the crystallization front position and crystal 
dimensions change during the crystal growth process. In this case, an operator has to 
control the parameters by changing the gas rate, charge feed rate and crystal lowering 
rate using experience and intuition. An automatic control system provides better results. 
When developing crystal growth systems with automatic diameter control, the problem 
of fi nding the rules for automatic control of the process parameters versus changes in 
crystal dimensions arises. Before we carried out our investigations, the required rules of 
parameter control had been obtained as results of empirical trial and errors. Later they 
were defi ned on the basis of the crystal growth stability analysis  [Borodin 1981, 
Tatartchenko 1988, 1993, 1994] . In this instance, controllable parameters should be added 

     Figure 2.13     Six corundum single crystals (fi ve tubes and one bulk cylindrical crystal, on 
the right) grown by the Verneuil technique in the same regime.  (Reprinted with permission 
from  [Tatartchenko 1993] , copyright (1993) Springer).     
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to the crystal diameter, liquid – gas interface position and melt meniscus height as the 
degrees of freedom of the crystal growth process. For the Verneuil technique the density 
of the heat fl ow from the burner  Q  (which is regulated by changing the gas rate   Π  ), the 
rate of crystal lowering  v  and the powder charge fl ow rate  P  can be used as controllable 
parameters. Usually,   Π   and  P  are used as controllable parameters for the crystal widening 
stage. After the crystal has already widened from the seed dimension up to the desired 
diameter, the control is provided by regulation of  P  only. In the theoretical approach,  P  
has to be regarded as an additional fourth degree of freedom for the cylindrical crystal. 
But the coeffi cients of the linear equation for  P  are unknown; they have to be found from 
the necessary and suffi cient conditions of the set of four stability equations of the same 
type as  (2.3) . The problem can have several solutions, each of which can be used as the 
regulation law for the control system. In this case the system of crystal growth, including 
the regulator, is stable. In  [Borodin 1981, Tatartchenko 1988, 1993, 1994]  three different 
 P  change laws allowing stable growth were found. Figure  2.14  compares a corundum 
crystal grown with one of the stable laws of  P  regulation to another crystal grown with 
a simple proportional control law. These crystals were grown in 1979 by the present 
author with collaborators from the Institute of Crystallography and Solid State Physics 

(a)
(b)

     Figure 2.14     Corundum crystals grown by the Verneuil technique with automatic 
regulation under stable (a) and unstable (b) laws of powder charge control.  
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Institute of the Russian Academy of Science. A standard industrial Verneuil furnace was 
used for the experiments. Comparing Figure  2.14  with Figure  2.12  shows that a furnace 
designed in agreement with optimized growth conditions, from the stability point of view, 
can provide the same crystal quality as an automatic control system (or even better).     

  2.5   Stability Analysis and Growth of Shaped Crystals by the 
 FZ  Technique 

 The FZ technique is described in detail in Chapter  4  of this book. It has been widely used 
for crystal growth of different materials, especially semiconductors (RF heating), high -
 melting metals and dielectrics (electron beam, plasma or laser heating and mirror fur-
naces). There are a lot of publications concerning the theoretical study of the FZ technique, 
but only two aspects have been the subject of investigation: the static meniscus stability, 
melt fl ows included, and impurity segregation. Only few papers have been devoted to the 
dynamic stability analysis, and  [Surek 1976]  was the fi rst of them. However, this analysis 
is incomplete as the heat conditions of crystallization are not been taken into account and 
the capillary aspect of the problem has been simplifi ed. As a result, in  [Surek 1976] , 
capillary stability was shown to exist in all versions of the FZ technique. Analysis based 
on Lyapunov ’ s theory  [Tatartchenko 1988, 1993, 1994]  shows that this is not correct. 
The latter approach is more detailed and includes the following main points: 

   •      A value of min  n    =   4 was chosen (Figure  2.3 ).  
   •      Pulling up as well as pulling down of the crystal, with different crystal/feed rod diameter 

ratios, was analysed.  
   •      Equation  (2.11)  for   δ  r.   c  was obtained as a result of the capillary boundary problem with 

the boundary condition of the growth angle on the crystallization front.  
   •      It has been shown that the growth angle boundary condition does not apply at the 

melting front  [Tatartchenko 1988, 1993] .  
   •      The equation for  ∂  V / ∂  t  was obtained from the mass balance of melted and crystallized 

substances.  
   •      Equation  (2.14)  for   δ  h

.
   c  and   δ  h

.
   m  were obtained as a result of the solution of Equation 

 (2.30)  near the crystallization front and near the melting front consequently.    

 The analysis of the results is rather complicated because four Routh – Hurwitz inequali-
ties have to be satisfi ed simultaneously; see  [Tatartchenko 1988, 1993] . The main conclu-
sions are as follows: 

   •      Capillary stability exists ( A rr      <    0) for large diameters of the growing crystal and feed 
rod ( r  c     >     a ,  r  0     >     a ) for all  r  c / r  0  ratios.  

   •      For small crystal and rod diameters ( r  c     <     a ,  r  0     <     a ),  A rr      <    0 if  r  c     ≥    1/2 r  0 .  
   •      The largest negative value of the  A rr   coeffi cient corresponds to  r  c    =    r  0 .  
   •      Capillary stability exists for both directions of growth (up or down), but pulling down-

wards is preferable.    

 In terms of practical use of the FZ technique for shaped crystal growth, besides the 
widely prepared cylindrical rods, the ribbon - to ribbon (RTR) technique  [Lesk 1976]  has 
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to be mentioned. A sintered powder ribbon was used to feed a growing ribbon crystal. 
This method achieved silicon ribbons (for use in solar cells) of width 75   mm, thickness 
0.1   mm, and 3 – 9   cm   min  − 1  growth rate with use of laser heating.  

  2.6    TPS  Techniques: Capillary Shaping and Impurity Distribution 

 In the beginning, TPS are analysed as a system with two degrees of freedom ( r  c  and  h ). 
Therefore, Equations  (2.15) – (2.25)  have to be used. The fi rst step is the analysis of the 
melt - column shaping conditions in TPS. 

  2.6.1   Capillary Boundary Problem for  TPS  

 For the axisymmetrical case, the Laplace capillary equations  (2.6) – (2.8)  will be used in 
the analysis. As mentioned above, each of them is a second - order differential equation 
and the boundary problem for the melt meniscus shape calculation strictly requires assign-
ment of two boundary conditions. The fi rst of these is  (2.26) , which is common to all 
CST, but the second one is determined by the structural features of each specifi c TPS. A 
shaper is used for melt - column shaping in the TPS (Figure  2.4 ). The functions of the 
shaper in the TPS are numerous, and will be discussed later. At the moment, the shaper 
is characterized only as a device to control the melt - column shape. This problem is a 
fundamental one for dynamic stability analysis of shaped crystal growth by the TPS and 
it will be discussed in detail. In a mathematical description of the problem, the shaper 
function determines the meniscus shape by imposing the second boundary condition of 
the capillary problem. The characterization of shapers from this point of view was fi rst 
accomplished in 1967  [Tatartchenko 1968] . In most cases, the shaper (Figure  2.4 h, i) is 
characterized by its wall or free edge curvature radius  r  0  in the horizontal plane, and the 
angle   β   made by its wall with the horizontal. The wetting angle   θ  , formed by the melt 
and the shaper surface, is a very important shaper characteristic (Figure  2.4 a, c, g, h, i). 
If this angle exceeds 90    ° , the shaper material is not wetted by the melt (Figure  2.4 a, g, 
h, i); if it is smaller, the melt wets the shaper material (Figure  2.4 c). Shaping is accom-
plished either on the surfaces of the shaper (Figure  2.4 a, c, g – i) or on its sharp edges 
(Figure  2.4 b, d – f, j, k). This corresponds to two different boundary conditions of the 
capillary boundary problem discussed in the following. 

  2.6.1.1   Catching Boundary Condition 

 In the case where the shaper material is wetted by the melt, the melt is easily caught by 
the sharp edges of the shaper. This boundary condition is therefore termed the  catching 
condition . There is a possibility of providing catching conditions on nonwettable free 
edges of the shaper, which will be discussed below. The catching condition means that a 
contour line on the meniscus surface is fi xed by the edge of the shaper, i.e. it coincides 
with the edge contour of the shaper. It does not matter whether the edge contour is concave 
(Figure  2.4 b, d, j, k) or convex (Figure  2.4 e, f), or whether the crystal is pulled up (Figure 
 2.4 b, d, e) or down (Figure  2.4 f, j, k). In the general case the shaper may not be fl at, i.e. 
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the height of the catching point is not necessarily constant all around the shaper. If the 
coordinate plane coincides with the free level of the melt (Figure  2.4 a, c, g, h, i, k) the 
catching condition has the following mathematical form in the cylindrical coordinate 
system:

    z H rG = ( ), ϕ     (2.54)   

 because in this case in the Laplace capillary equations  (2.5) – (2.8)  const   =    d    =   0. Here  G  
is the contour of the shaper edge and  H  is the distance from the shaper edge to the coor-
dinate plane. If the shaper is fl at and is positioned parallel to the melt plane,  H    =   const. 
For axisymmetric fl at shaper edges the condition  (2.54)  has the following form:

    z Hr r= = =0 const ,     (2.55)  

where  r  0  is the contour radius of the shaper edge. 
 Thus, in this case,  H  defi nes the pressure of feeding the melt to the shaper, and 

it is included in the boundary condition. The nondimensional pressure  H / a  is denoted 
by  d . 

 If the coordinate plane coincides with the shaper edge plane (Figure  2.4 b, d – f, j) the 
right part of  (2.55)  is equal to zero and the pressure  d  is included in the Laplace capillary 
equations  (2.5) – (2.8)  as a parameter (const   =    d ). If the pressure is positive, the shaper 
edges are positioned below the melt free - surface level, and vice versa.  

  2.6.1.2   Angle Fixation Boundary Condition (Wetting Condition) 

 If the melt contacts with the shaper surface, the angle it makes with the surface is 
the wetting angle,   θ   (Figure  2.4 a, c, g – i). This boundary condition will be termed the 
 angle fi xation condition  or  wetting condition . It can be realized for nonwettable shaper 
materials (Figure  2.4 a, g – i) as well as for wettable ones (Figure  2.4 c), and for pulling 
up (Figure  2.4 a, c, h, i) as well as for lowering (Figure  2.4 g) shaped crystal growth. 
The condition means that the shaper fi xes the meniscus angle on a line belonging to the 
shaper surface, where the angle of wetting is satisfi ed. The condition has the following 
forms: 

   •      In the general case, where  n  denotes the direction of the normal towards the shaper 
wall,  C  is the line of contact of the meniscus with the shaper walls:

    1 2 2 1 2
+ ∂ ∂( ) + ∂ ∂( )⎡⎣ ⎤⎦ ∂ ∂ = −

−
z x z y z Cn cos .θ     (2.56)   

 Shapers with complicated surfaces (Figure  2.4 a, c) can illustrate this condition although 
the fi gure shows the special case of the cylindrical symmetry system ( z ,  r  coordinates), 
whereas in the general case the use of a three - dimensional coordinate system is 
necessary.  

   •       For an axisymmetrical problem  (a rod or tube) on the vertical shaper walls (Figure 
 2.4 h):

    d dz r r r= = − −( ) = −0 2 1tan tan .θ φπ     (2.57)    
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   •       For circular conical shaper walls  with an angle   β   with the horizontal (Figure  2.4 i):

    d d cotanz r r r z= − = − + −( ) = −1 2 1β θ β φtan tan .π     (2.58)      

 For the wetting boundary condition, the coordinate plane has to coincide with the free 
level of the melt (Figure  2.4 a, c, h, i). In the Laplace capillary equation, const   =   0. The 
position of the line of contact of the melt with the shaper surface will be found as a result 
of the boundary problem solution (to be discussed below).  

  2.6.1.3   Wetting - to - Catching Condition Transition 

 With the melt pressure increasing, the catching boundary condition on the nonwettable 
free edges of the shaper can be obtained. Figure  2.15 a illustrates this transition with 
increasing the pressure by gradual immersion of the shaper into the melt. The diagram is 
based on a description  [Adams 1941]  of particle buoyancy conditions for fl otation proc-
esses. A nonwettable shaper, with a hole of depth  d  0  and vertical walls, is considered. 
The angle between the line tangent to the liquid surface and the shaper wall is denoted 
by   χ  . We can now analyse a number of successive positions of the shaper. In  position A , 
the shaper touches the melt with its lower plane. The lower - plane immersion depth is 
equal to zero. The line tangent to the liquid surface coincides with the liquid surface. The 
angle   χ   is  π /2. The catching condition holds at the lower free edge of the shaper. When 
the shaper is now immersed into the liquid, the angle   χ   increases, and when the shaper 
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     Figure 2.15     Transition of the shaper lower free - edge catching boundary condition 
(meniscus A) to the wetting condition (meniscus B, C, D) and further to the shaper upper 
free - edge catching condition (meniscus E, F). (a) Pressure changes (the external horizontal 
lines denote successive positions of the liquid free surface). (b) The seed – shaper 
dimension ratio changes;   χ   is the angle between the line tangent to the melt surface and 
the shaper wall,   θ   is the wetting angle.  (Reprinted with permission from  [Tatartchenko 
1988] , copyright (1988) Springer Science + Business Media).     



84 Crystal Growth Processes Based on Capillarity

lower plane reaches some depth  d  1 , ( position B ) the angle   χ   will be equal to the wetting 
angle   θ   (within the immersion depth range from 0 to  d  1  the catching condition holds at 
the lower free edge). With further shaper immersion into the liquid,   χ   remains equal 
to the wetting angle   θ  . The liquid – shaper wall contact line goes up by the value of  L ′  , 
the shaper immersion depth, the distance between this line and the free surface level 
remaining equal to  d  1  ( position C ). As soon as the immersion depth is equal to  d  0    +    d  1 , 
the liquid – shaper contact line coincides with the sharp edge of the shaper ( position D ), 
and with further pressure increase, the catching condition at the upper free edge of the 
shaper holds ( position E ). In this case the angle   χ   will increase until the wetting angle   θ   
is formed by the liquid and the shaper surface. For the horizontal shaper surface, 
  χ     =    π /2   +     θ   ( position F ). Further increase in pressure is not considered as it will lead to 
liquid spreading over the shaper surface and the shaper will not operate properly. But if 
the free edges of the shaper are really sharp (Figure  2.4 b), pressure increase is possible 
up to the point where the static stability of the meniscus is lost.   

 The presence of a seed or a profi led crystal considerably changes the conditions of the 
transition described above. This means that the condition at the upper boundary (along 
the crystal – melt contact line) can affect the condition at the lower boundary (along the 
melt – shaper contact line). A diagram, which will be proved when solving the boundary 
problem, is shown in Figure  2.15 b. By changing only the seed/shaper diameter ratio, the 
catching boundary condition at the lower free edge (meniscus A, B), the wetting condition 
on the shaper walls (meniscus C, D) and the catching boundary condition at the upper 
free edge (meniscus E, F) can be achieved. The very important conclusion is the follow-
ing: the wetting boundary condition means that the angle   χ   is fi xed but the line of contact 
of the meniscus with the shaper can move. Its position on the shaper walls depends on 
the melt pressure and on the crystal – shaper dimension ratio. Certainly, the melt pressure 
can be changed in any other way and the growth direction does not matter. For instance, 
by changing the melt pressure or the crystal – shaper edge dimension ratio, it is possible 
to get either the confi guration Figure  2.4 g or Figure  2.4 j. 

 A comparison of the Figures  2.15 a and  2.15 b shows that there are two very different 
situations: before seeding and after seeding (during pulling). In the second case, even for 
nonwettable shaper walls, the meniscus changes its curvature, thus causing an internal 
negative pressure which raises the melt above the shaper edge, up to the crystallization 
front (the same situation exists in the Cz technique). 

 Later it will be shown that the catching boundary condition usually leads to a process 
that is more stable from the capillary point of view, so the ways of achieving the catching 
condition at the free edges of the shaper in the TPS should be specifi ed: 

   •       First , a melt - wettable material should be used for the shaper, and the latter should be 
designed in such a way that the melt can rise up to the free edges of the shaper as a 
result of capillary forces (Figure  2.4 d – f).  

   •       Secondly , for melt - nonwettable materials, the melt column should be under external 
pressure, providing additional pressure on the liquid to have the melt – shaper contact 
line at the sharp edge of the shaper (Figure  2.4 b, j).  

   •       Thirdly , for poorly wettable shaper materials, the crystal – shaper dimension ratio should 
be used in order to ensure contact of the melt column with the shaper sharp edges  –  
compare Figures  2.4 g and  2.4 j.     
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  2.6.1.4   Infl uence of Wetting - Angle Hysteresis on the Capillary Boundary Conditions 

 While analysing the capillary effects, the existence of wetting - angle hysteresis should be 
taken into consideration. The wetting angle hysteresis is discussed in Chapter  1 . It reveals 
itself in the fact that the wetting angle of a liquid spreading onto a solid body is larger 
than for the same liquid receding from the surface of the solid body. This means that the 
stationary wetting angle depends on the process of meniscus formation (run - on or run -
 off). This results, for example, in the fact that a higher pressure has to be applied to create 
the catching condition at the free edge of the shaper than is required to keep it unchanged. 
In the case where the catching condition is created by the seed, this condition can remain 
unchanged in the growth process, although the gap between the free edge of the shaper 
and the growing crystal changes.  

  2.6.1.5   Comparison of the Catching Boundary Condition and the 
Angle Fixation Condition 

 The previous description of the transition from one to the other forms a basis for com-
parison. It shows that there is a big difference between these two boundary conditions. 
The catching condition fi xes the coordinate of the end of the meniscus line, but the angle 
of inclination of the meniscus is not fi xed. The wetting condition fi xes the angle of incli-
nation of the end of the meniscus at the contact line, but not its coordinate. In this case 
the meniscus is movable (Figure  2.15 b). Its position on the shaper wall depends on the 
second boundary condition (seed or growing crystal presence, as well as the growing 
crystal dimensions and growth angle) and can be found as a result of the capillary bound-
ary problem solution. So, for capillary shaping by walls, shaper design has to take account 
of this phenomenon as well as the wetting - angle hysteresis. 

 This difference needs to be explained carefully because there is considerable 
misunderstanding of this key problem in capillary shaping. Let ’ s analyse some wrong 
approaches. In  [Tsivinskii 1970]    the idea from  [Tsivinskii 1962]    has been used for the 
solution of the boundary capillary problem. For the axisymmetrical meniscus described 
by the Laplace equation  (2.5) , Tsivinski  et al.  suggested replacing 1/ R  2  (Figure  2.1 ) by a 
linear function of the vertical coordinate. There are at least four mistakes in this approach 
(Figure  2.16 ): 

   •      The axisymmetrical meniscus is applied for the growth of crystals with arbitrary 
cross - section.  

   •       A priori , it is necessary to know if the meniscus is concave, convex or 
concave – convex.  

   •       A priori , for a concave – convex meniscus, it is necessary to know the coordinates of 
the point of infl ection.  

   •       y  0 ,   α   0  and   α   01  (Figure  2.16 ) should be known. This is the worst mistake. Indeed, fi xing 
these parameters means that three boundary conditions for the second - order differential 
equation should be used: fi xation of the growth angle on the crystal – melt boundary and 
(in our terminology) the catching condition as well as the wetting boundary condition 
on the shaper. But this is nonsense. The authors ’  main argument is that this approach 
is applied for the Cz technique  –  there is a lot of experimental evidence for it. But 
the reason why the approach is applicable for the Cz technique is clear: the second 
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boundary condition for Cz technique  (2.27)  states that the vertical coordinate tends 
toward zero at infi nity. Automatically this means that the fi rst derivative also tends 
toward zero at the infi nity. So, this is a well - known mathematical peculiarity of the 
boundary condition at infi nity and, as a result, there are three boundary conditions. The 
nonapplicability of this approach to the TPS was fi rst explained in  [Tatartchenko 1969 -
 2]  and later in the reviews  [Tatartchenko 1988, 1993, 1994 - 1] . Unfortunately, many 
journals have continued to publish this kind of mistake (see for instance  [Pet ’ kov 1990] , 
an investigation of the dynamic stability of shaped growth, published in the special 
issue of the  Journal of Crystal Growth  on shaped crystals  [Kalejs 1990] ). The nonap-
plicability of this approach was explained again in the paper  [Tatartchenko 1995] .       

  2.6.1.6   More Precise Defi nition of the Catching Boundary Condition 

 The misunderstanding is as follows: from the formal point of view, the mathematical 
formulation of the problem requires two boundary conditions. But from the physical point 
of view, the melt has to form a wetting angle with the shaper surface. This discrepancy 
was explained in the paper  [Tatartchenko 1997] , which presents a well - grounded math-
ematical proof. Here only the main idea is illustrated. 
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     Figure 2.16     Arrangement for producing a crystal with cross - section of arbitrary form: (1) 
crystal; (2) shape former; (3) column of melt; (4) melt column profi le curve; (5) cross -
 section of the crystal being pulled; (6, 7) contours of crystal cross - section and of opening 
in the shape former. Melt column parameters:  y 0   represents the melt column height,   α   is 
the inclination of the profi le curve tangent to the  x  - axis (  α  0   at  y    =   0 and   α  01   at  y    =    y 0  ), and 
 R 1   the radius of curvature of the melt column surface, lying in a plane perpendicular to the 
tangent ( R 0   at  y    =   0 and  R 01   at y   =    y 0  ).  (Reprinted with permission from  [Tsivinskii 1970] , 
copyright (1970) Nauka).     
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 Figure  2.17  presents one specifi c case: the growth of a cylindrical crystal with respect 
to the scheme of Figure  2.4 d. The shaper edge is replaced by a circular coaxial torus in 
four cases with four different radii  r  S , the last  r  S     →    0 (Figure  2.17 a). The example cor-
responds to a middle - range Bond number,  Bo     ≈    1. The dimensionless shaper radius  r  0    =   1. 
The unit of length measurement is the capillary constant  a , which is 7.6   mm for Si, 6   mm 
for sapphire, 4.8   mm for Ge and 3.7   mm for InSb  [Tatartchenko 1993] . This means that 
for Si the diameter of the shaper edge circle is about 15.2   mm, for sapphire 12   mm, etc. 
The origin of the  z  - coordinate is located on the free surface of the melt (not shown). The 
negative melt pressure is  d    =    − 1, e.g. the free surface of the melt is located at a distance 
 a  lower than the shaper edge (Figure  2.4 d). Three sets of profi le curves (a profi le curve 
is a section of the meniscus by the fi gure plane) are shown in Figure  2.17 . All sets are 
characterized by the same value of the angle   α  d  , the meniscus inclination angle with 
respect to the positive  r  direction at the point of contact with the shaper, and each set has 
four profi le curves for the four values of  r  S . The lower end of each profi le curve is located 
on the surface of the torus and forms the wetting angle   θ     =   10    °  with the surface of the 
torus. Each torus corresponds to a shaper edge with a different radius of curvature 
 r  S :  r  S    =   0.09 (0.68   mm for Si) for all three profi le curves of set d,  r  S    =   0.06 (0.46   mm for 
Si) for the curves c,  r  S    =   0.03 (0.23   mm for Si) for curves b,  r  S     →    0 for curves a. The 
upper end of each profi le curve forms an angle of 10    °  with the vertical. It corresponds 
to crystal growth of the respective dimension with a growth angle   α     =   10    ° :  r  c     ≈    0.45 (a 
crystal of 7   mm diameter for Si) for set 1,  r  c     ≈    0.7 (the crystal of 10.6   mm diameter for 

a

b

c

d

A

ad

y0

rs

r0

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

Z

r

q

d

c

b

a

d
c

b
a

1

2

3

     Figure 2.17     Mid - range  Bo : profi le curves  z  (r) , starting from a sharp edge of the shaper 
(a) and from surfaces of different radius  r  S  torus (b – d): (1)  r  c    =   0.45; (2)  r  c    =   0.7; (3) 
 r  c    =   0.9.  
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Si) for set 2,  r  c     ≈    0.9 (a crystal of 17   mm diameter for Si) for set 3. The crystallization 
front is located at a height (from the plane of the shaper edges) of approximately 0.20 
(1.5   mm for Si) for sets 1 and 3, and approximately 0.30 (2.2   mm for Si) for set 2.   

 So, at the micro scale, the melt forms a wetting angle with the torus surface which is 
a normal physical wetting condition. If the crystal dimension changes, the contact point 
also changes its position on the torus surface but, in any case, its position will be in the 
vicinity (torus radius  r  S ) of the point A. With  r  S  decreasing, the location of the lower end 
of the profi le curve comes closer and closer to the point A with the coordinates ( r  0    =   1, 
 z    =   1). If the torus radius is infi nitely small then, in the macroscopic sense, the meniscus 
catches on the sharp shaper edge (at point A). So,  the catching condition is just a useful 
mathematical approach to satisfy the capillary boundary problem. From the physical 
point of view it defi nes a wetting boundary condition on the sharp edges of the shaper . 
Unfortunately, in spite of the publication  [Tatartchenko 1997] , the history of applying the 
approach used in  [Tsivinski 1962]  to the TPS is not yet complete: see  [Kuandykov 2001]  
or  [Balint 2005] .  

  2.6.1.7   Capillary Boundary Problem Solution 

 The solution of the problem will be discussed in three parts relating to large, intermediate 
and small values of the Bond number,  Bo . For large and small  Bo , the Laplace equation 
takes the forms  (2.7)  and  (2.8)  respectively. A solution of the boundary problems for both 
of these can be obtained in analytical form (sometimes with the use of special elliptical 
functions). For a mid - range  Bo , a numerical solution is needed. A comparison of the 
analytical and numerical solutions shows that, in practice, with a suffi cient accuracy, these 
approximations can be used: 

   •      The large  Bo  approximation for the growth of cylindrical solid rods or tubes of 10 a  
minimal diameter (this corresponds to 76   mm for Si, 60   mm for sapphire) as well as for 
the fl at part of a ribbon growth.  

   •      The small  Bo  approximation for the growth of cylindrical solid rods or tubes of 1 a  
maxi mal diameter (this corresponds 7.6   mm for Si, 6   mm for sapphire) on the Earth ’ s 
surface, as well as for very largediameter crystals grown under microgravity conditions.    

 Solution of the boundary capillary problem allows us to obtain very interesting informa-
tion concerning the capillary shaping as a function of the shaper design, melt pressure 
and wetting angle. The information can include  [Tatartchenko 1988, 1993, 1994] : 

   •      the shape of the meniscus  –  conditions of existence of concave, convex and convexo -
 concave ones;  

   •      the range of parameters for the existence of catching and wetting boundary 
conditions;  

   •      the design of the shaper and the range of parameters for the existence of a meniscus 
with a defi nite growth angle   α  ;  

   •      the design of the shaper and the range of parameters for the existence of a meniscus 
with a fi xed crystallization front position;  

   •      the signs and values of the  A rr   and  A rh   coeffi cients.    

 Here are few examples of this kind. 
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  Large  B  o .     First, we formulate the following crystal growth conditions (Figure  2.18 ) 
which correspond to the scheme in Figure  2.4 h  [Tatartchenko 1988, 1993] : the nonwetted 
shaper wall is located to the right, where  r    =    r  0 . The tangent to the melt surface at the 
melt – shaper contact point makes the wetting angle   θ   with the shaper wall. We now intro-
duce the angle   φ   1    =     θ      −     π /2. The edge of a melt - growing fl at crystalline ribbon or that of 
a circular cylindrical crystal of large diameter is situated to the left, where  r    =    r  c . Let the 
angle   φ   0  (Figure  2.6 a), between the tangent to the melt surface at the melt – crystal growing 
contact point and the negative direction of the  r  - axis, be specifi ed (while growing crystals 
of constant cross - section, the angle   φ   0    =    π /2    −      α  ). Let  l  0  denotes the gap between the 
crystal edge and the shaper:  l  0    =    r  0     −     r  c . Now consider which process parameter data 
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     Figure 2.18     Large  Bo : (a) wetting boundary condition (  θ     =   135    ° ); convex – concave 
(3 – 7) and concave (8 – 12) profi le curves  z  (l 0 )  ( l 0   is the gap between the crystal edge and 
the shaper:  l 0     =    r 0      −     r  c ) and (1, 2) boundary curves  h  (l 0 ) : 1 (  α     =   0) and 2 (  α     =   15    ° ); (b) 
transition from the wetting boundary condition (profi le curves 3 – 6) to the catching one 
(profi le curves 7 – 9) by changing the shaper design  (Reprinted with permission from 
 [Tatartchenko 1988] , copyright (1988) Springer Science + Business Media).   
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can be obtained with such problem formulation. According to the terminology defi ned 
above, the angle - fi xation boundary conditions (or wetting conditions) apply on both 
ends of the  l  0  variation interval: Equation  (2.7) , with boundary conditions  (2.26)  and 
 (2.57) . The analytical solution of the problem was obtained with the help of Legendre ’ s 
elliptical functions (see, for instance,  [Tatartchenko 1988, 1993] ) and is shown in 
Figure  2.18 a for the following parameter values:   θ     =   135    °  (  φ   1    =   45    ° ),   α     =   15    °  (  φ   0    =   75    ° ) 
and   α     =   0 (  φ   0    =   90    ° ). The origin of the  z  - coordinate coincides with the free melt 
surface. The profi le curves 3 – 12 are the sections of the melt meniscus cut by the diagram 
plane. Each profi le curve corresponds to a defi nite distance  l  0  between the growing crystal 
and the shaper wall. The edges of the crystals are located on one of the two boundary 
curves  h ( l  0 ) corresponding to two different growth angles: (1) for   α     =   0 and (2) for 
  α     =   15    ° . Based on this boundary problem solution, the following results are 
established: 

   •      With the angle fi xation boundary condition satisfi ed at both ends of the  l  0  - variation 
interval, the vertical coordinates of the liquid – solid phase contact points (melt – crystals 
and melt – shaper) with respect to the melt free surface are not fi xed but depend on the 
relation between the angles at both ends of the meniscus and on the value of the gap 
between the shaper and the crystal being pulled. This is a confi rmation of the scheme 
in Figure  2.15 b.  

   •      There exists some specifi c value  m  of the gap  l  0  between the shaper and the crystal 
being pulled (it is equal approximately to one capillary constant  a  for the set of param-
eter values used). When  l  0     >     m , the meniscus is located partly above and partly below 
the melt free surface. When  l  0     <     m , the line of meniscus contact with the shaper wall 
is located higher than the melt free surface.  

   •      The part of the meniscus located below the melt surface is convex; the part located 
above the melt surface is concave.  

   •      A higher crystallization front position corresponds to a smaller growth angle.  
   •      For a crystal – shaper gap larger than the capillary constant,  a , the crystallization front 

height does not exceed the capillary constant. For smaller gaps, the crystallization front 
height can be larger, tending toward infi nity with a vanishing gap.  

   •      Any change in the melt level during pulling will have the following effect on the crystal 
dimensions: with the level decreasing, the ribbon thickness (or the rod diameter) can 
be kept unchanged only if the crystallization front is lowered by the same value. With 
the crystallization front position kept unchanged, the ribbon thickness or the crystal 
diameter will decrease with the lowering of the melt and vice versa. This means that 
the melt level can be qualifi ed as one of the degrees of freedom. These phenomena 
were investigated in  [Tatartchenko 1988, 1993] .  

   •      The capillary coeffi cients of stability  A rr   and  A rh   of the set of equations  (2.15)  and  (2.16)  
can be defi ned. It follows from Figure  2.18 a that  |  ∂   φ   0 / ∂  h  |     >    0;  |  ∂   φ   0 / ∂  r  c  |     >    0 for  l  0     <     m ; 
 |  ∂   φ   0 / ∂  r  c  |     <    0 for  l  0     >     m . This means that there is a capillary stability ( A rr      <    0) only if 
the gap between the shaper wall and the pulling crystal is larger than the capillary 
constant ( l  0     >     m     ≈     a ).      

 Now, we modify the shaper design and locate a sharp shaper edge at the melt free 
surface level. The solution of the new boundary problem is shown in Figure  2.18 b. This 
gives new results: 
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   •      For  l  0     >     m     ≈     a , the situation is the same as in the previous case.  
   •      But for  l  0     <     m     ≈     a , the situation is dramatically changed: the catching boundary condi-

tion is realized (this is a second confi rmation of the scheme of Figure  2.15 b). In this 
case, and also for  l  0     <     m     ≈     a ,  |  ∂   φ   0 / ∂  r  c  |     >    0 and as a result  A rr      <    0), i.e. capillary stability 
exists for the whole range of  l  0  variations.  

   •      On the other hand, the crystallization front  h ( l  0 ) has to be located much lower than in 
the previous case. In particular,   h l l0 00

0( ) →→ .     

  Mid - Range  B  o .     For intermediate values of  Bo  ( Bo     ≈    1), the three profi le curves (a) of 
sets 1 – 3 in Figure  2.17  give an example of the numerical solution of the capillary bound-
ary problem with the catching boundary condition that corresponds to Figure  2.4 d. 
Therefore, the meniscus shape is given by Equation  (2.6)  and the boundary conditions 
 (2.26)  and  (2.55) . The results were discussed in section  2.6.1.6  above, but two peculiari-
ties must be mentioned: 

   •      A central part of the meniscus corresponding to the crystal radius  r  c     ≈    0.5 is located 
lower than the shaper edge.  

   •      The crystal radius  r  c     ≈    0.7 is peculiar. First of all, the highest crystallization front posi-
tion corresponds to this crystal radius. Secondly, if  r  c     >    0.7 then  ∂   φ   0 / ∂  r  c     >    0, i.e.  A rr      <    0, 
and if  r  c     <    0.7 then  |  ∂   φ   0 / ∂  r  c  |     <    0, i.e.  A rr      >    0. Thus, there is capillary stability for crystals 
with ratio  r  c / r  0     >    0.7 but there is no capillary stability for crystals with ratio  r  c / r  0     <    0.7. 
Thus, for  r  c / r  0     <    0.7 the shaper has no infl uence on the capillary shaping. In practice, 
this is a realization of the Cz technique.     

  Small  B  o .     The infl uence of the melt pressure on the shape of the profi le curves  z ( r ) is 
presented as an example of the capillary boundary problem solution for a small  Bo  
( Bo     <<    1), which is studied in detail in the analytical form using Legendre elliptical func-
tions in  [Tatartchenko 1988, 1993] . In Figure  2.19  the catching boundary condition is 
fi xed at the point  r  0  (shaper radius  r  0    =   0.05). The boundary curves  h ( r  c ) (1 – 4) are shown, 
corresponding to the growth angle   α     =   0 as well as several profi le curves. Hence, the set 
of equations of interest consists of Equation  (2.8)  with the boundary conditions  (2.26)  
and  (2.55) . It is very important to mention that in the capillary problem with small 
 Bo , the infl uence of gravity is neglected. This is why these results are applicable to the 
growth of crystals of different sizes in microgravity conditions. For growth in normal 
gravity, the results are applicable for fi lament growth (for sapphire, for instance, the case 
under consideration corresponds to growth of a fi lament of 0.6   mm diameter) with pulling 
up as well as lowering. Consequently, the schemes Figure  2.4 b, d, e, f, j are described 
in the framework of this model. Here are some peculiarities of the results presented in 
Figure  2.19 : 

   •      The order of magnitude of the crystallization front position is the same as the shaper 
radius for all values of pressures under investigation. In the example,  r  0    =   0.05, e.g. for 
sapphire, the crystallization front is located at the distance of 0.5 – 0.6   mm from the plane 
of sharp shaper edges.  

   •      For all boundary curves, except 4,   h r r rc c( ) →→ 0 0.  
   •      Boundary curve 4 is a special one: if pressure  d  corresponds to the value giving 

2 dr  0    =   1, the boundary curves for all  r  0  values (but only in the range of small  Bo  values) 
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should have a shape similar to curve 4. The main particularity of this curve is 
  h r rr rc c( ) == 0 0 5 0. π . Hence, for this particular pressure, if the diameter of the pulled 
crystal is equal to the shaper edge diameter, the very special meniscus has the shape of 
a right circular cylinder.  

   •      All boundary curves, except 4, have a maximum. The maximum position corresponds 
to  r  c    =    r  m     ≈    0.7 r  0  and it divides the range of the crystal dimensions in two parts for 
which  ∂   φ   0 / ∂  r  c     >    0 if  r  c     >     r  m  and  ∂   φ   0 / ∂  r  c     <    0 if  r  c     <     r  m . It means that for  d  values such 
that 2 dr  0     <    1, there is capillary stability ( A rr      <    0) only if the gap between the shaper 
edge and the pulling crystal is less than 0.3 r  0 . Hence, it exactly corresponds to the mid -
 range  Bo .         

  2.6.2   Stability Analysis 

 For the different Bond numbers and boundary conditions, the signs of the capillary coef-
fi cients  A rr   and  A rh   are listed in Table  2.1 . For stability estimation, Equations  (2.31)  and 
 (2.32)  for heat coeffi cients can be used:  A hh      <    0,  A hr      >    0. From Table  2.1 , we can see that 
a shaper can be designed in order to have capillary stability:  A rr      <    0,  A rh      <    0. The inequali-
ties  (2.22)  are thus fulfi lled, and dynamic stability of the shaped crystal growth is attained.   

 Here only the simplest case of dynamic stability investigation (growth of a solid cylin-
drical crystal in the thermal conditions described by the one - dimensional thermoconduc-
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     Figure 2.19     Small  Bo : boundary curves  h  (r c )  1 – 4 and some profi le curves  z  (r)  for a 
shaper with  r  0    =   0.05, under various pressures  d :  − 10 (curve1),  − 5 (curve 2), 0 (curve 3), 
10 (curve 4)  (Reprinted with permission from  [Tatartchenko 1988] , copyright (1988) 
Springer Science + Business Media).   
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tivity equation  (2.30) ) has been analysed. Additional information on the topic can be 
found in reviews and papers by the present author  [Tatartchenko 1988, 1993, 1994 - 1, 
1997, 2000] . They include: 

   •      Investigation of the meniscus static stability.  
   •      Investigation of tube growth dynamic stability. It is a stability problem with three 

degrees of freedom where the internal tube diameter is the third degree of freedom.  
   •      Investigation of the infl uence of melt pressure on the dynamic stability. It is a stability 

problem with three degrees of freedom where the melt pressure is the third degree of 
freedom.  

   •      Crystal cross - section shape stability.    

 Although some problems have been solved, a lot of theoretical problems remain. 
Important ones are the stability of crystal growth for complicated shapes and the infl uence 
of crystallographic anisotropy. Now, before the experimental work begins rough estima-
tions are used for preliminary analysis of the capillary shaping conditions. For instance, 
for ribbon growth, an approximation including three steps was proposed in  [Tatartchenko 
1988, 1993] : 

   •      Solution of the capillary problem with large  Bo  for fl at part of the ribbon.  
   •      Solution of the capillary problem with small  Bo  for the edge of the ribbon.  
   •      Joining up the two solutions on the corner at the edge of the ribbon, with the condition 

that the growth angle is the same on both parts.    

 To conclude this section, the use of computer modelling for calculation of non - 
axisymmetric shapers  [Babik 1999, Despreaux 2000]  must be mentioned.  

  Table 2.1    Cz technique and  TPS  capillary coeffi cients for different   B  o   and capillary 
boundary conditions 

   Conditions of crystallization      A rr        A rh    

   Method     Bond number     Boundary condition     Parameter values  

  Cz              

  r      
r
    

  TPS    Small    Catching    sin  φ   0     <    2 r  0  d      < 0     < 0  
  sin  φ   0     >    2 r  0  d   

  
r0 rm 

r    

  Wetting      φ   0     <      φ   1      < 0     < 0  

    φ   0     >      φ   1      > 0  

  Large    Catching    Single -  and doubled -
 valued meniscus  

   < 0     < 0  

  Double - valued 
meniscus  r  c     ≈     r  0   

   > 0  

  Wetting      φ   0     <      φ   1      < 0     < 0  
    φ   0     >      φ   1 ,  r  0     −     r  c     >     m   
    φ   0     >      φ   1 ,  r  0     −     r  c     <     m      > 0  

 Source: Reprinted with permission from  [Tatartchenko 1988] , copyright (1988) Springer Science + Business Media. 
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  2.6.3   Experimental Tests of the Capillary Shaping Theory Statements 

 Here some experimental confi rmations of the main statements of the capillary shaping 
theory presented above are discussed. 

  2.6.3.1   Existence of a Growth Angle 

 The existence of a growth angle during crystal growth from the melt is one of the main 
foundations of capillary shaping theory, which is why special experiments were carried 
out to examine it  [Tatartchenko 1988, 1993] . Thin sapphire crystals were grown from a 
shaper of 0.8   mm diameter (Figure  2.20 ). By changing the slope between the crystalliza-
tion front and the surface of the skew shaper by means of differential heating, various 
boundary conditions were created for the left and right sides of the same crystal. In Figure 
 2.20 a a rod of a constant cross - section grows: the angles   α   1  between the crystallization 
front and the growth direction are different on the left and on the right crystal sides; 
constancy of the diameter is provided by maintaining the angle   φ   0    =     φ   e  (  φ   e    =     π  /2    −      α  ) all 
over the perimeter. In Figure  2.20 b,   φ   0    =     φ   e  on the left and   φ   0     <      φ   e  on the right; the right 
side of the crystal widens. In Figure  2.20 c, the deviation   φ   0  from the equilibrium value 
  φ   e  on the right has led to crystal contraction. In the transient region, the crystal surface is 
convex in Figure  2.20 b and concave in Figure  2.20 c, which corresponds to the capillary 
stability effect.   

 If in the process of crystal dimension change the growth angle   α   remains constant, the 
following relation should be valid for the crystal lateral surface (Figure  2.6 ):

    d dc er z = −( )tan .φ φ0     (2.59)   

 Integrating Equation  (2.59)  in the range of the crystal radius  r  c  changing from   rc
0 to the 

fi nal value   rc
01 for small deviation of the angle   φ   0  from the angle of growth   φ   e  gives the 

following:

    ln .D r z D r r r r= −( ) = −( ) −( )d d wherec c c c cφ0
01 0 01     (2.60)   
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     Figure 2.20     TPS growth of a thin sapphire fi lament with skewed shaper: (a) constant 
cross - section, (b) convex widening from the right, (c) concave constriction from the right 
 (Reprinted with permission from  [Tatartchenko 1988] , copyright (1988) Springer Science + 
Business Media).   
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 Figure  2.21  presents the data processed from Figure  2.20 b, c. The linear dependence of 
ln  D  on  z  is a proof of the correctness of  (2.59)  and then of the existence and constantcy 
of the growth angle.    

  2.6.3.2   Microgravity Experiments 

 Model experiments have been carried out in microgravity conditions (small  Bo ) to test 
some capillary shaping theory statements  [Tatartchenko 1988, 1993] . 

  Simulation Experiments.     Crystal growth experiments under microgravity conditions in 
space were preceded by simulating the liquid column shape by using immiscible liquids 
of equal densities. A meniscus of an alcohol – water solution was formed between two 
glass tubes (1 and 3), surrounded by a mineral oil with same density (Figure  2.22 ). The 
pressure  d  in the meniscus was equal to the weight of the column of the alcohol solution 
in the upper tube (1). The lower tube (3), of constant diameter 2 r  0    =   13.12   mm, imitated 
the shaper, and the upper one (1), of diameter 2 r  c , the crystal. The spherical meniscus (4) 
at the end of the lower tube (3) was used for the pressure estimation as well as, under a 
certain known pressure, for calculation of the value of the surface tension at the boundary 
of the two liquids. A convex meniscus (2) (Figure  2.22 b) was formed under the pressure 
of 27.14   dyn/cm 2 . For existence of a right circular cylindrical meniscus (2) with 2 r  c    =   2 r  0 , 
a pressure of 16.8 dyn/cm 2  was determined (Figure  2.22 a). Some experiments were 
carried out on board a fl ying laboratory with 20   s microgravity time.    

  Crystallization of  C  u  Under Short - Term Microgravity Conditions.     The simulation 
experiments with isodense liquids were only the fi rst step in estimating the real conditions 
of crystal growth. Moreover, we began to doubt that shaped crystal growth could be 
obtained under microgravity because in the simulation experiments the liquid sometimes 
fl ew on to the crystal surface. Therefore, Cu was crystallized by capillary shaping on a 
high - altitude rocket with 20   min microgravity time  [Tatartchenko 1988, 1993] . This metal 
has a relatively low melting point (1083    ° C), resistance to stress (which is important for 

ln D

1.6

0.8

0
0 0.02 0.04 0.06 0.08 z (mm)

1
2

     Figure 2.21     Sapphire fi lament constriction (1) and widening (2) in the transient range 
 (Reprinted with permission from  [Tatartchenko 1988] , copyright (1988) Springer Science + 
Business Media).   
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rocket launching as well as for capsule landing), and its physicochemical properties are 
well known. 

 The technique of capillary shaping was fi rst used to produce a rod specimen under 
vacuum. This enabled us to reduce the amount of gas in the metal. The specimen (6), in 
the form of a cylinder 5 – 8   mm in diameter and about 5 – 6   cm long (Figure  2.23 ), was 
placed between two Mo shapers (1) and (8) into which Cu (4) was fused and solidifi ed 
beforehand. This guaranteed complete wetting of the shaper during the microgravity 
experiment. Two graphite guard rings (3) and (7) were introduced to prevent the melt 
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     Figure 2.23     Design of the capsule used to investigate the crystallization process from the 
melt under microgravity conditions (notation as in the text)  (Reprinted with permission 
from  [Tatartchenko 1993] , copyright (1993) Springer Science + Business Media).     

     Figure 2.22     Experiment with two isodense immiscible fl uids. Meniscus model that 
appears on pulling a circular rod under zero - gravity condition: right circular cylinder (a), 
convex meniscus (b).  
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escaping beyond the sharp lip of the shaper. These rings were supported by the graphite 
spacer (5), which also acted as a thermal shield. Both shapers were pushed into the cou-
pling tube (2). The above design ensured rigidity, simplicity of assembly, and constant 
separation between the shapers. W – Rh thermocouples were mounted near the ends of the 
specimen to estimate the temperature distribution along its length. The capsule was 
inserted into an exothermic heating device that contained no moving parts.   

 The experiment was carried out in the following way. When microgravity conditions 
were achieved, the specimen was completely melted. After that, during the microgravity 
phase, a directional crystallization of the melt column was realized by heat removal from 
the upper shaper. On these high - altitude rockets there were no photographic facilities for 
recording the crystallization process so the shapes of the crystallized specimens were 
examined experimentally after the fl ight and were compared to the calculated shapes for 
  α     =   0. 

 The results are presented in Figure  2.24  which confi rms that: 

   •      With a crystallization speed of 5 – 7   mm/min as computed from the thermocouple 
recordings,   α     =   0 for Cu crystallization.  

   •      The melt did not fl ow on the crystal surface during crystallization.      

 These results suggested that crucible - free zone melting and capillary shaping crystal 
growth could be realized in space. 

 The next crystallization processes were realized in the  ‘ Shape ’  and  ‘ Ribbon ’  
experiments.  

   ‘ Shape ’  Experiment.     The main idea of the experiment was to grow a crystal by using 
a right cylindrical melt column which cannot exist in the terrestrial conditions (except for 
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     Figure 2.24     Calculated profi le curves of the melted copper columns (dashed line) and 
crystallized specimens (solid line) for different pressures (1, 2, 3) within the meniscus; 
experimental data of crystallized specimen shape (open circles)  (Reprinted with permission 
from  [Tatartchenko 1993] , copyright (1993) Springer Science + Business Media).     
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small - diameter fi lament growth). Under microgravity (Figures  2.19 ,  2.22 a), such a melt 
column is formed if  r  c    =    r  0 ;   φ   0    =    π /2 under a pressure  d , satisfying the equality 2 dr  0    =   1, 
but on increasing  h  up to  h     ≈     π  r  0  it loses static stability and transforms fi rst into a menis-
cus, the profi le of which has an ambiguous projection onto the abscissa axis, and then, 
with further increasing  h , it breaks into two independent menisci. For  h     <     π  r  0  and  d    =   0, 
the meniscus is a catenoid; with increasing pressure its curvature in the axial cross - section 
decreases, reaching infi nity at 2 dr  0    =   1. When the pressure increases above this value the 
meniscus becomes convex (Figure  2.22 b). A cylindrical meniscus can be used for crystal 
growth only for   α     =   0, which means that a metal should be chosen for the material to be 
grown in the experiment (the angle of growth for metals is usually close to zero). In 1984, 
under microgravity in the Salyut orbital space station, the crystallization of In was carried 
out by a large group of Russian scientists; see  [Tatartchenko 1988, 1993] . The advantage 
of In is its low melting temperature (156    ° C), which is very important for the simplicity 
of the space furnace and the limited energy available on the spacecraft. Some other physi-
cal characteristics of In are a comparatively high density in solid state (7.28   g/cm 3 ), which 
differs only slightly from that of the melt (7.03   g/cm 3 ); surface tension of the melt 
  γ   1v    =   0.592   J   m  − 2 ; and capillary constant under terrestrial conditions  a    =   0.41   cm. 

 Figure  2.25  shows a schematic of the growth device. A plastic case (1) with a lid (2) 
has a graphite container (3) previously fi lled with In. A resistive heater (4), insulated by 
a layer of polyurethane foam (5), is used. The heat is delivered to the container through 
a Cu capsule (6), which also serves to holding a Cu cap (7) which is also the shaper, with 
a hole to ensure equality of the inert gas pressure inside and outside the container (3). 
The meniscus of melt (8) is formed fi rst between the initial Cu rod (9), fastened to a rod 
(10), and the edge of the shaper (7). The meniscus shape is recorded by a camera through 
illuminated windows (11). The most important part of this set - up was the system of 
maintaining the pressure inside the meniscus by means of a melt meniscus formed near 
the bottom of the crucible. The pressure depends on the radius  r  a  of the graphite container 
and on the wetting angle. This idea was used also for the  ‘ Ribbon ’  experiments. Figure 
 2.26  depicts the shape of a drop (a), formed at the edge of the shaper, and of the melt 
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     Figure 2.25     Experimental set - up for crystal growth in space (notation as in the text) 
 (Reprinted with permission from  [Tatartchenko 1988] , copyright (1988) Springer Science + 
Business Media).   
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meniscus (b). The pressure, which was determined from the shape of the drop (Figure 
 2.26 a), exceeded by approximately 40% that required for the formation of a cylindrical 
column. There are a lot of error factors, including those governed by the wetting angle 
hysteresis. Some of them were encountered only under real space conditions and could 
not have been predicted. Unfortunately, we did not have any possibility of repeating the 
same experiment with a suitable correction. Nevertheless, the main aim of the experiment 
was achieved: the typical shape of the meniscus had the ratio  h / r  0     ≈    3.6 ( h    =   10   mm) that 
exceeded terrestrial TPS growth conditions by an order of magnitude. After the seed rod 
was wetted with the melt, it was pulled at the speed  v   ∼ 3   mm/min. The pulling speed of 
the test In specimen grown with an analogous device in terrestrial conditions could not 
be increased above 0.2   mm/min. The diameter of the fl ight specimen was approximately 
5.6   mm, whereas for the test one it was 2.9 – 3.2   mm. No special regulation systems were 
used, but it is evident that both pulling processes were stable. Both samples were mainly 
single crystals in structure.    

   ‘ Ribbon ’  Experiment.     The crystallization of ribbons of Ge and GaAs from the melt in 
the orbital station Mir in 1990 is the next example of TPS realization under microgravity 
conditions  [Tatartchenko 1993] . The melt is placed in a fi xed gap between two nonwet-
table fl at plates (Figure  2.27 ). The right part of the melt has a free surface of curvature 
1/ R  which depends on the wetting angle and on the distance 2 r  0  between the plates. The 
same idea had previously been used in the  ‘ Shape ’  experiment: to maintain a positive 
pressure inside the growth meniscus by the curvature of the melt free surface. The growth 
meniscus projections in the gaps between the walls and the growing crystal are circular 
arcs of same radius  r . This is the realization of TPS with the wetting boundary conditions 
on the walls of the shaper. The use of nonwetted walls is successful if the following 
inequality is fulfi lled:  

   φ θ φ α1 02 2= − > = −π π   

 i.e.   θ      >     π       −      α  , where   θ   is the wetting angle and   α   is the growth angle. 
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     Figure 2.26     The melt drop at the edge of the shaper (a) and the meniscus formed there 
(b)  (Reprinted with permission from  [Tatartchenko 1988] , copyright (1988) Springer 
Science + Business Media).   



100 Crystal Growth Processes Based on Capillarity

 The ribbon thickness 2 r  c  and the capillary coeffi cients  A rr   and  A rh   are given by:

    2 2 0 0 1r rc = sin sin ,φ φ     (2.61)  

    A v rrr = − ( )sin cos ,φ φ1 0 0     (2.62)  

    A v rrh = − ( )sin sin .φ φ1 0 0     (2.63)   

 Both capillary coeffi cients are negative and there is capillary stability. 
 For the usual dynamic stability estimation, the heat coeffi cients  (2.31)  and  (2.32)  can 

be disregarded, because, without gravity, the position of the solid – liquid interface has no 
effect on the meniscus shape and thus on  r  c . Therefore, with the inequalities  (2.22)  ful-
fi lled, the dynamic stability of the scheme under investigation is ensured. 

 In the fl ight experiments, Ge and GaAs ribbons were grown between pyrocarbon plates. 
Unfortunately, the heating regime was not optimal, the seeds were melted and the ribbon 
structures were polycrystalline; see picture in  [Tatartchenko 1993] . But the smooth sur-
faces and constant thickness of the ribbons, grown without any special regulation, are 
evidence of the stability of the process. This is further confi rmed by the dewetting 
confi gurations, which are spontaneous and stable in microgravity as fully described in 
Chapter  6 .    

  2.6.4   Impurity Distribution 

 The shapers used in the TPS technique provide possibilities for regulation of the impurity 
distribution along the crystal as well as in its cross - section. We analyse these possibilities 
fi rst for thin ribbon growth. Impurity distribution in crystals grown by the Bridgman, Cz 
and FZ techniques has been studied quite thoroughly, but extension of the known mecha-
nisms to thin - profi le growth using TPS can lead to erroneous conclusions. Application of 
the Burton – Prim – Slichter equation  [Burton 1953]  to calculation of the impurity distribu-
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     Figure 2.27     Schematic drawing of the Ribbon growth space experiment  (Reprinted with 
permission from  [Tatartchenko 1993] , copyright (1993) Springer Science + Business 
Media).     
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tion effective coeffi cient  K  ef  requires specifi cation of the thickness of the diffusive bound-
ary layer. If this thickness is assumed to be equal to the total height of the meniscus and 
of the shaper capillary channel,  K  ef    =   1 for any impurity  [Swartz 1975] , which does not 
correspond to reality. The present section gives a model of impurity transfer for the 
TPS under conditions that allow relating  K  ef  to the of capillary shaping and feeding 
parameters  [Brantov 1983, Tatartchenko 1988, 1993] . Figure  2.28 a illustrates the growth 
of a thin tape.   

 A stationary process is considered; it is assumed that the melt in the zone of the menis-
cus and the capillary channel is not stirred and that complete stirring occurs in the crucible. 
Under these assumptions, the stationary impurity transfer in the meniscus is described by 
the equation written in the polar coordinates of the Figure  2.28 a:

    D c r r c r v c rd d d d d d2 2 1+( ) = −− ,     (2.64)   
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     Figure 2.28     Confi guration for calculation of the impurity distribution effective coeffi cient: 
(a) diagram; (b)  K  ef    =    f  (rc  h  )     −    calculated; (c)  K  ef    =    f  (v  o  )     −    calculated; (d) comparison of 
experimental values (1) with calculated ones (2) from Equation  (2.69)  of the In 
distribution effective coeffi cient for thin - walled shaped Si crystal growth  (Reprinted with 
permission from  [Tatartchenko 1988] , copyright (1988) Springer Science + Business 
Media).   
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 with the following boundary condition at the crystallization front:

    − = −( ) ( )=D c r v K c rr rd d 0 0 0 01 ,     (2.65)  

where  c  denotes the impurity concentration in the melt,  D  is the diffusion coeffi cient and 
 K  0  is the impurity distribution equilibrium coeffi cient; others notation is obvious from 
Figure  2.28 a. 

 The polar coordinate system chosen allows easy specifi cation of the melt fl ow rate 
distribution in the meniscus  v ( r )   =    v  0  r  0 / r . Then Equation  (2.64)  is rearranged:

    d d d d2 2 1
0 01 0c r r v r D c r+ +( ) =− .     (2.66)   

 Impurity transfer in the capillary channel is described by the equation in the linear 
coordinate  z :

    D c z v c zd d d dc² ² = −     (2.67)   

 with the following boundary condition:

    c z c→∞ ∞→ .     (2.68)   

 It is assumed that the impurity concentration in the bulk of the melt  c   ∞   is constant in the 
process of tape growth. The solution of the problem relates the value of the impurity 
distribution effective coeffi cient  K  ef  to the parameters of the crystallization conditions 
( v  0  and 2 r  c ), with the conditions of capillary shaping ( w ,  r  Ch ,   θ  ) and the impurity charac-
teristics ( D  and  K  0 ):

    K K K r w K r w v r D
ef Ch c

c= + −( )[ ]+ −( ) −( )( ){ }0 0 01 1 1 1 2 0θ ϕ ϕ ϕ θcos cos sin ..     (2.69)   

 If the width of the capillary channel  r  Ch  reaches its maximum value  w , Equation  (2.69)  is 
reduced to:

    K K K K r w v r D
ef c

c= + −( ) −( )( )[ ]{ }0 0 01 1 1 2 0cos sinϕ θ     (2.70)   

 It should be mentioned that  [Seidensticker 1979]  used a similar approach for solute par-
titioning during silicon dendritic WEB growth. 

 Figure  2.28 b shows  K  ef    =    f ( r  C   h  ) calculated for Al impurities in Si. The following values 
are used:  K  0    =   0.002,  D    =   0.53    ×    10  − 3    cm 2    s  − 1 , 2 r  c    =   0.03   cm,  w    =   0.06   cm. Figure  2.28 c 
shows  K  ef    =    f ( v ) calculated from Equation  (2.70)  for various values  of r  Ch . It is obvious 
that  K  ef  increases with  v  (and as a result  v  C ) increasing. Under actual conditions of growing 
thin - walled profi led Si crystals,  K  Al     <<    1. Processing the data of  [Kalejs 1978]  gives a 
value of  K  Al    =   0.039 in Si, which agrees very well with the value of  K  Al    =   0.03 – 0.04 
calculated from Equation  (2.69)  with the parameters and data values of  [Kalejs 1978] . 

 Figure  2.29  gives data on sulfur distribution along the axis of a TPS Si tape obtained 
by laser emission microanalysis (LEM). The ratio of the sulfur spectral line strength  J  S  
to that of silicon  J  Si  (the ratio is proportional to the concentration of the element analysed 
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in the Si matrix) is plotted on the ordinate. The rate of tape pulling was 12   mm/min. 
Increase of sulfur concentration in the Si tape in the process of pulling shows that  K  S     <    1 
(it is assumed that  K  0    =   1    ×    10  − 5  for sulfur impurity in Si). No explicit regularities were 
observed while analysing other impurities.   

 To verify the main equation  (2.69)  several In - doped (0.01   wt%) Si tapes were grown. 
The mass of each tape did not exceed 7% of that of Si charged into the crucible. The tape 
thickness 2 r  c , the shaper transverse dimension  w , the capillary slot dimension  r  Ch  and the 
growth rate  v  were measured. Photometric spectral lines of In in the grown crystals and 
in the crucible residue were then determined. The measurement accuracy of the In distri-
bution effective coeffi cient was 40 – 50%. The results obtained are shown in Figure  2.28 d. 
Vertical arrows indicate experimental results, circles show the values calculated from 
Equation  (2.69)  in accordance with the above - mentioned parameters. The values of 
 D    =   5.2    ×    10  − 4    cm 2    s  − 1 ,  K  0    =   4    ×    10  − 4  are assumed for In impurity in Si. The results shown 
in Figure  2.28 d do not allow plotting  K  versus the growth rate,  v  0 , since the thickness of 
the silicon tape, 2 r  c , decreases with increasing  v  0  (the value of 2 r  c  v  0  was practically con-
stant in the experiments), and they can only demonstrate satisfactory agreement between 
calculated and experimental values. The values of  K  calculated from the Burton – Prim –
 Slichter equation are 0.8 – 0.9, i.e., they are one order of magnitude greater than the 
experimental values. 

 Distribution of impurities along the widths of profi led crystals is to a great extent 
determined by the technique used to feed the melt to the growth meniscus. In Figure 
 2.30 a, b distributions of resistivity,   ρ  , across Si tapes grown under the conditions of two 
versions of meniscus melt feeding are compared. The shaper shown in Figure  2.30 d had 
one long capillary slot, while the shaper shown in Figure  2.30 e had two small slots at its 
end faces. The same feeding system was used for sapphire ribbon growth. The diffusion 
of refl ected light (Figure  2.30 c) indicates a bubble concentration at the centre of the 
ribbon. The following explanation of the nonuniformity of the impurity distribution across 
the crystal (Figure  2.30 a – c) can be proposed. In the case of horizontal melt fl ow in the 
meniscus from the shaper edges towards its centre, impurities with  K     <    1 rejected by the 
growing crystal accumulate in the central part of the meniscus where they are pushed by 
the liquid fl ows. Hence, a corresponding distribution of capillary channels in the shaper 
allows control of the impurity distribution in the cross - section of the grown crystals.    
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     Figure 2.29     Sulfur distribution along the length of a silicon tape (LEM data)  (Reprinted 
with permission from  [Tatartchenko 1988] , copyright (1988) Springer Science + Business 
Media).   
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  2.6.5   Defi nition of  TPS  

 On the basis of the theoretical analysis above, a defi nition of TPS can be proposed:

  TPS are shape crystal growth techniques which use a solid body (shaper) to defi ne a melt menis-
cus shape by means of either a catching (on shaper edges) or a wetting (on shaper surfaces) 
capillary boundary condition in order to obtain a crystal of predetermined   cross - section and 
impurity distribution as a result of pulling it in a dynamically stable regime.   

 This defi nition follows from our analysis of capillary catching and wetting boundary 
conditions, completed in 1967  [Tatartchenko 1968] , as well as from our dynamical stabil-
ity analysis with capillary shaping, completed in 1970  [Tatartchenko 1973 - 1] .  

  2.6.6   Brief History of  TPS  

 With the defi nition of TPS in mind, we can analyse the development history of the tech-
nique. This is why the history is placed here rather than at the beginning of this section. 

 The development of shaped crystal growth for industrial applications began from 
a group of papers published in 1958 – 1959  [Goltsman 1958, 1959; Shakch - Budagov 
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     Figure 2.30     Impurity distribution across ribbons using two different versions of melt 
feeding of the meniscus: (a) Si ribbon and (d) corresponding feeding scheme; (b) Si as 
well as (c) sapphire ribbon and (e) corresponding feeding scheme  (Reprinted with 
permission from  [Tatartchenko 1988] , copyright (1988) Springer Science + Business 
Media).   
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1959; Stepanov 1959 - 1, 1959 - 2] . These papers described how the Russian scientist A.V. 
Stepanov had carried out experiments concerning pulling of shaped polycrystalline and 
single - crystalline specimens (sheets, tubes and others) from melts of some metals, espe-
cially Al and its alloys, in the Physical and Technical Institute of the USSR Academy of 
Sciences in 1938 – 1941. The Second World War interrupted these experiments, but they 
have continued since the 1950s. In 1950 – 58, some of Stepanov ’ s collaborators, especially 
postgraduate students A.L. Shakch - Budagov and B.M. Goltsman, continued these experi-
ments with metals and alkaline halides. The present author of this chapter has taken part 
in these events since 1959 when he began his scientifi c activity as an undergraduate 
student in the Stepanov laboratory of the Leningrad Physical and Technical Institute of 
the USSR Academy of Sciences. 

 In 1963 A.V.Stepanov formulated his global idea  [Stepanov 1963] : it is necessary to 
fi nd a way to pull all types of industrial profi les from melts of metals and alloys. It could 
save energy, and eliminate extruding, rolling, cutting and many other types of mechanical 
treatments. This was the basis of practical investigations carried out in Stepanov ’ s labora-
tory. Two main directions have been developed: (i) polycrystalline metals and alloys and 
(ii) semiconductor single crystals. 

  2.6.6.1   Shaped Metal Profi les 

 The present author of this chapter was put in charge of work on polycrystalline metals 
and alloys. First of all, Stepanov and I decided to demonstrate the possibilities of the 
technique. For this, we designed equipment for the continuous production of Al tubes and 
the installation was completed in 1963. During development of this apparatus, many 
technical problems were solved  [Tatartchenko 1971 - 1] . The equipment contained two 
connected crucibles: the fi rst for feeding and the second for the pulling of a 6 - mm diameter 
tube with 0.5 - mm wall thickness, automatically wound on a coil. During testing of the 
installation, we obtained specimens of tubes 4000   m   long with a growth speed of 15   m   h  − 1 . 
The installation was made very compact so that its operation could be demonstrated at 
various exhibitions. In 1964, the present author showed it at the Industrial Exhibition of 
the Soviet Union in Genoa, Italy. It was a great success: many articles described this new 
metallurgical technique. After that, we developed a second version of the installation for 
production of Al profi les of various complicated cross - sections with lengths up to 3   m 
 [Antonov 1981] . The author demonstrated the working installation at exhibitions in 
Hungary (twice in 1967), in Italy (1968) and in Czechoslovakia (1971). Examples of 
aluminium profi les obtained with this installation are shown in Figure  2.31 . The possibil-
ity of using the technique for pulling steel profi les was also demonstrated  [Tatartchenko 
1971 - 2]  (Figure  2.32 a).    

  2.6.6.2   Shaped  G  e  Crystals 

 For the application of the technique to single - crystal pulling, the laboratory was working 
intensively with the huge industrial Ge project. The present author participated by devel-
oping the theory described above as well as its application to the process (see, for instance, 
 [Sachkov 1973] ). Some industrial laboratories and plants were included in the project 
and, in the former Soviet Union in the late 1960s, about 85% of Ge was produced as 
shaped crystals. For instance, for electronic applications, instead of pulling one crystal 
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     Figure 2.32     Steel tube (a) and steel tube with Al rib (b) TPS - grown by the author of this 
chapter at the Physical and Technical Institute of the USSR Academy of Sciences.  

     Figure 2.31     Al heat exchangers and other profi les TPS - grown by the author of this 
chapter in collaboration with A.S. Kostigov at the Physical and Technical Institute of the 
USSR Academy of Sciences in 1964 – 1972.  
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by the Cz technique, we pulled, from the same crucible, without any special control, 26 
round cylindrical crystals with a diameter of 10.0    ±    0.1   mm  [Antonov 1981] .  

  2.6.6.3   Development of  TPS  

 Until 1967 shaped crystal growth had been developed only in the former Soviet Union. 
The publication of information concerning shaped fi lament growth  [La Belle 1967]  and 
especially edge - defi ned fi lm - fed growth (EFG)  [La Belle 1971 - 1, 1971 - 2]  changed the 
situation dramatically: shaped crystal growth now appeared in the USA. After that, inter-
est in shaped crystal growth spread to many research groups, especially for the growth 
of sapphire and silicon. In the former Soviet Union, these crystal growth techniques have 
continued to develop. Every year since 1968, the laboratory has organized Russian 
national conferences with published proceedings (see, for instance,  [Voinova 1968] ) as 
well as special issues of the  Bulletin of the Academy of Sciences of the USSR, Physical 
Series  (see, for instance,  [Antonov 1969] ). 

 A.V. Stepanov died in 1972 but the work in his laboratory has continued. All types of 
methods involving pulling from a shaper were called Stepanov techniques. As for the 
present author, he organized the Shaped Crystal Growth Laboratory with a staff of 40 
within the Solid State Physics Institute of the Academy of Sciences of the USSR in 
Chernogolovka, near Moscow. Many theoretical and experimental aspects of shaped 
growth, including microgravity experiments, were developed there. For a long time our 
main competitor during was the Tyco laboratory in the USA, where EFG growth was 
being developed for sapphire and Si. In 1978, the present author visited the Tyco labora-
tory and had very interesting discussions with La Belle. At that time, it was impossible 
to imagine that he would come to work in that laboratory (later Saphikon, then Saint -
 Gobain Crystal) as the chief scientist 24 years later. Now, shaped crystal growth is 
widespread but a lot of names are used, especially EFG and Stepanov technique. Since 
1980, the author has preferred to use the name TPS rather than Stepanov or EFG tech-
niques. Here are the reasons for that.  

  2.6.6.4   Initiation of  TPS  Development and Some Peculiarities 

 The priority in using a shaper (holes in plates placed onto the melt surface for shaping 
melt - pulled crystals) belongs to Gomperz  [Gomperz 1922] . He was the fi rst to have used 
mica plates fl oating on melt surfaces for pulling Pb, Zn, Sn, Al, Cd, Bi thin fi laments 
through holes in the plates. Sometimes the fi laments had a single crystalline structure. In 
1923 and 1924, the same technique was also used for fi lament pulling by  [Mark 1923, 
Gr ü neisen 1924] . In 1929, for growth of Zn single - crystalline fi laments, a single crystal-
line seed was used for the fi rst time  [Hoyem 1929] . In 1929, the technique was named 
the Czochralski – Gomperz technique  [Hoyem 1929, 1931] . In 1928, P. Kapitza, later 
awarded the Nobel Prize, used this technique for growth of Bi rods  [Kapitza 1928] . So, 
between 1922 and 1931 period, six papers concerned with the use of shapers for crystal 
pulling were published. Moreover, the technique was described as a variant of the Cz 
technique, the Czochralski – Gomperz technique. Hence, Stepanov does not have the prior-
ity. However, he never referred to these papers in his publications. He did not seem to 
be interested in the functions of the shaper from the physical point of view. For example, 
he is one of the co - authors of the papers  [Tatartchenko 1968, 1969 - 1] , which explain 
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catching and wetting boundary conditions, and on the other hand, he is a co - author of 
 [Tsivinskii 1970] , the inconsistency of which has been discussed in section  2.6.1.5  above. 
What makes the situation more absurd is that he also co - authored the paper where this 
inconsistency is demonstrated  [Tatartchenko 1969 - 2] . 

 In  [Stepanov 1963]  Stepanov claimed to have invented  ‘ the principle of shape forma-
tion from a melt, using capillary forces or some other actions (other than crucible walls) 
on the melt, of the cross - section or an element of a cross - section of solid profi le following 
crystallization ’ . This formulation covers the Cz, Verneuil and FZ techniques as well as 
electromagnetic, ultrasonic, inertial and other possibilities of shaping. In the same book 
we read:  ‘ A shaper should be distinguished from a die. A die is the embodiment of a 
brute force. A shaper is a more spiritual system. Its aim, fi rst of all, is to provide a delicate 
effect on the curvature and shape of the mobile column of the liquid melt stretching itself 
behind the crystal by creating new boundary conditions along its contour ’ . We agree that 
there is a big difference between a die and a shaper, but in spite of Stepanov ’ s important 
role in the dissmination of TPS  [Tatartchenko 2001 - 2] ,  ‘ new boundary conditions ’  were 
never been specifi ed in his papers. On the contrary, our capillary shaping analysis of the 
TPS and theoretical explanation of the determining role of the infl uence of boundary 
conditions on dynamic stability, carried out in 1967 and 1970  [Tatartchenko 1968, 1969 - 1, 
1973] , are complete: if a shaper is used to pull shaped crystal, it is impossible to suggest 
conditions other than catching or wetting. From this point of view, the EFG technique is 
only a variant using catching boundary condition. It is probably because of a low level 
of expertise in patent offi ces that the independent EFG patent exists: the edge - defi ned 
condition for meniscus was published in the paper  [Tatartchenko 1968, 1969 - 1]  as  ‘ catch-
ing boundary conditions ’  before the EFG patent was deposited. Capillary feeding was, 
however, described for the fi rst time in the EFG patent. Certainly, many shaped growth 
schemes have some peculiarities. Among them, principally the variable shaping technique 
(VST) and local shaping technique (LST), developed with the participation of the present 
author, should be mentioned. They are discussed in Chapter  5 .    

  2.7   Shaped Growth of  G  e , Sapphire,  S  i , and Metals: a Brief Presentation 

 The widest industrial application of the TPS has been for the growth of Ge, sapphire, 
and Si. 

  2.7.1    G  e  

 In the 1960s and 1970s, Ge was one of the main materials used for electronics. It is 
a rare and expensive material, and is no longer used for this purpose. The development 
of TPS for Ge at that time has been mentioned above, and information concerning 
TPS Ge growth can be found in the review and proceedings of the Russian national 
workshops  [Voinova 1968, Antonov 1969, 1971, 1972, 1976, 1979, 1981, 1982, 1983, 
1985] .  
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  2.7.2   Sapphire 

 Information concerning TPS growth of sapphire and peculiarities of its structure and 
application can be found in Chapter  5  of this book and also in the reviews  [Tatartchenko 
1993, 2005] .  

  2.7.3    S  i  

 The third example of the successful industrial application TPS is Si. But, unlike sapphire, 
all of the numerous attempts to grow shaped Si crystals of electronic grade have been 
unsuccessful. Shaped Si is characterized by the presence of a specifi c defect structure 
(parallel twins) infl uencing its electronic properties. However, the quality of the large - area 
thin sheets obtained was acceptable for industrial production of cheap solar cells. 
Information concerning the TPS growth of Si and peculiarities of its structure and applica-
tion can be found in Chapter  5  of this book, in reviews  [Tatartchenko 1988, 1993]  and 
also in the proceedings of three international conferences  [Cullen 1980, Kalejs 1987, 
1990] . 

 Using the example of Si shaped growth, we now show how stability theory can be used 
to characterize a crystal growth process. In Figure  2.33  three schemes of shaped growth 
are compared: classical schemes of rod and tape growth with the catching boundary 
condition, and the two shaping elements technique (TSET)  –  horizontal growth on a 
substrate where the substrate is used as a part of a solar cell. This variant of shaped Si 
growth was suggested 25 years ago  [Brantov 1984] . An outline of the technique can be 
seen in Figure  2.33 . When a graphite cloth is used as the substrate the technique is called 
 ‘ silicon on cloth ’  (SOC). Figure  2.33  shows the attenuation curves for perturbation of the 
crystallization front. It is clear that the TSET shows better behaviour than the other 
techniques.   

 Special experiments were carried out for TSET. The relocation time was calculated as 
a function of the growth speed. It was found to be decreased when the growth speed 
increased up to 6   cm/min but unchanged with a further speed increase. Two speeds 
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     Figure 2.33     Calculated curves of attenuation of crystallization front perturbation for Si 
shaped growth techniques.  
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(1.5 and 6   cm/min) were used in the experiments. The surface quality of the ribbons 
grown at a speed of 6   cm/min was much better; the roughness amplitude was fi ve times 
less.  

  2.7.4   Metals and Alloys 

 In the author ’ s experience, profi les can be pulled from pure metals and eutectic 
alloys when a proper material for the shaper is found, either wetted or nonwetted, but 
chemically inert. The profi les have good surface quality (sometimes mirror - like). It is 
easy to grow low - melting metal single crystals by this technique, but they have not found 
any technical applications. For single crystals of refractory metals, for instance Mo, which 
is used in foil production by subsequent forming, it is very diffi cult to fi nd a shaper 
material. 

 Polycrystalline metal profi les could be used for many applications, for instance heat -
 exchangers from Al alloys (see Figure  2.31 ). But when alloys with good mechanical 
properties are needed, the composition of the alloy is complicated. There is a big gap 
between the temperatures of liquidus and solidus. Dendrite crystals appear in the meniscus 
and the problem of profi le pulling is rather diffi cult, both from the point of view of surface 
quality and internal structure. So, it is diffi cult for TPS to compete with extrusion. On the 
other hand, the structure and mechanical properties of TPS profi les are better than those 
of cast profi les. The story is not over yet. The problem of industrial application is not 
easy, and a lot research effort is required. First of all, alloys of special compositions have 
to be developed. Success in TPS applications for special steel  [Tatartchenko 1971 - 2]  
(Figure  2.32 a) and for steel tubes with Al rib (Figure  2.32 b) was promising. These last 
profi les (previously unpublished) were pulled by the author, but unfortunately investiga-
tions have not been continued.   

  2.8    TPS  Peculiarities 

 In conclusion, the peculiarities of TPS are as follows: 

   •      The crystals have the shape that is needed for the most rational practical use.  
   •      The technique can be applied to any material if a suitable shaper material (either wetted 

or nonwetted, but chemically inert) can be found.  
   •      The range of crystal dimensions is large: fi laments of 0.02   mm diameter; tubes of 0.5   m 

diameter; plates 480    ×    320    ×    10   mm.  
   •      The growth speed, as a rule, is much higher than in other crystal growth techniques.  
   •      The crystal, as a rule, has a special structure concerned with the interface faceting (see 

Chapter  5 ).  
   •      The shaper infl uences the interface shape.  
   •      The separation of the growth zone from the melt in the crucible allows continuous 

feeding by raw material during the growth process. As a result, brief presence of the 
melt in the crucible before growth is possible, if necessary. Periodic change of doping 
is also possible.  
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   •      The distribution of impurities along the axis of the crystal is more uniform. Indeed, if 
the coeffi cient of distribution of impurities is not equal to 1 during crystal growth, the 
concentration of impurities changes along the axis of crystals in most of the crystal 
growth techniques. A solution to this problem can be found by localizing part of the 
melt at the growth zone without stirring it in with the other melt volume. This situation 
is realized, for instance, in using an additional small - volume crucible for the Cz tech-
nique. More effective results are achieved by capillary feeding of the TPS.  

   •      The distribution of impurities in the cross - section of the crystal can be controlled by 
the use of special systems of capillaries for feeding.  

   •      A combination of doped and undoped areas can be achieved in the same crystal (see 
Chapter  5 ).  

   •      The dynamic stability theory, developed for the TPS, was successfully used for other 
CST as well as for analysis of cylindrical pores (negative crystals) growth and radial 
instability of vapour whisker growth  [Tatartchenko 1988, 1993, 1994 - 1, 1994 - 2] .     
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 This chapter presents many of the critical concepts and practices needed to design and 
implement modern control for the Czochralski (Cz) process. An overview of important 
process modelling and control issues is provided in sections  3.1  and  3.2 . Mathematical 
modelling for analysis and controller design is presented in section  3.3 . Critical to devel-
oping an appropriate control design is an understanding of the fundamental dynamics and 
input/output coupling of the process, which is provided in section  3.4 . Here, in particular, 
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it is important to understand the relation of the process dynamics (e.g. how fast the process 
states respond to an input change and the nature of this response) to both the specifi c 
operating regime selected, and important process characteristics such as gradients, process 
physics, system design, and materials characteristics. Two conventional control approaches 
are presented in section  3.5 : PID control using the diameter of the bright meniscus ring 
as the measured variable, as used in Si crystal growth, and weight - based control using 
PID controllers, as commonly used when crystal imaging is not available or possible (e.g. 
in growth of compound semiconductors by the liquid encapsulated Cz (LEC) method). 
Although these approaches are widely used in industry, they have some important limita-
tions, which are discussed in detail. 

 A modern geometry - based nonlinear control approach which at least partially over-
comes these problems and limitations is presented in section  3.6 . The main idea of this 
approach is not to rely on a complex mathematical model of the overall process. Such a 
model usually suffers from many unknown parameters, boundary and initial conditions 
as well as doubtful assumptions. Instead, only those parts of the process are modelled and 
used for control design which describe the behaviour of the crystal geometry and the 
hydromechanics. The hydromechanical modelling of the system has been thoroughly 
explored in the literature, its parameters are known with suffi cient accuracy, and its 
structure is suffi ciently precise. The model - based controller is the core of the control 
concept. Some conventional PI controllers are grouped around this model - based controller 
in order to compensate for the missing knowledge about the thermal behaviour. 

 Finally, the use of an observer scheme to reconstruct process state variables not explic-
itly measured is presented in section  3.7 , in terms of linear dynamics as well as those 
from a model based on the geometric coordinate frame. This section also shows how an 
alternative control structure can enhance the ability to reject disturbances.  

  3.1   Introduction and Motivation 

 This section presents an overview on the motivation and requirements of control for 
Czochralski crystal growth. Furthermore, some basic principles of control theory are 
presented to provide a framework. 

  3.1.1   Overview of  C  z  Control Issues 

 Early closed - loop control for the Cz process focused on implementing automatic diameter 
control (ADC) using a variety of different sensors and actuators. The goal was to reduce 
the variations of diameter, replacing the constant attention required by highly skilled 
operators. Early pioneers included Levinson, who used a weight measurement of the 
crucible or growing crystal to control heater power  [Levinson 1959] , and Patzner, 
Dessauer, and Poponiak who used an optical sensor to manipulate pull rate for Silicon 
(Si)  [Patzner 1967] . Since then, diameter control has been developed for a variety of dif-
ferent materials and system confi gurations, where many complex problems have been 
identifi ed such as those relating to use of a liquid encapsulant for the process, materials 
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with hard - to - control conditions that resulted in either high dislocation densities or large 
growth and shape variations, as well as the challenges in the scale - up of the process for 
larger crystal sizes. More recently, the focus of control design has been extended to 
maintain additional degrees of freedom which affect crystal quality such as growth rate, 
as well as crystal shape during the neck, shoulder, and tail sections in addition to the main 
body. In this section these requirements are described  and the components of a modern 
control system needed to meet them are discussed.  

  3.1.2   Diameter Control 

 Crystal diameter is important mainly in matters of technological requirements. The better 
it meets the desired value and the better its constancy, the less material has to be cut off 
after growth  [Hurle 1990] . Marked radius changes may also infl uence the structural prop-
erties of the crystal  [Jordan 1981, Jordan 1984, Motakef 1991, Neubert 2001] . However, 
since Cz is a batch process (meaning there is no constant operating point due to the 
decrease in melt height) the dynamics of which cannot be captured in a linear model 
 [Gevelber 1987 - 1, Hurle 1990] . In addition, in LEC growth there are time delays, making 
diameter control even more diffi cult  [Johansen 1987 - 2, Jordan 1983] . Furthermore, more 
sophisticated variants of the Cz process, like the vapor pressure controlled Czochralski 
(VCz) method  [Azuma 1983] , intentionally lead to reduced axial and radial temperature 
gradients. This again results in increasing problems of diameter control and could thus 
benefi t from a more sophisticated control concept. Consequently, the performance of 
diameter control based on the use of linear PID controllers with heuristically chosen 
parameters can be limited  [Gevelber 1987 - 2, Gevelber 1988, Gevelber 1994 - 1, Gevelber 
1994 - 2] , as seen in Figure  3.1 .    

  3.1.3   Growth Rate Control 

 Apart from tracking crystal radius along a desired trajectory, control of the crystal growth 
rate is also of special interest because it directly infl uences the properties of the growing 
crystal. With increasing demand for very narrow tolerances in structural, electrical and 
optical material properties, the growth rate becomes more and more important. It corre-
lates directly with the amount of imperfections, like polycrystalline growth, twins and 
dislocations, as well as the number of native point defects and residual impurities and the 
amount of intentionally introduced dopants  [Gevelber 1987 - 2, Voronkov 2002, Hurle 
1991, Neubert 2001] . Consequently, there is an interest in growth rate control  [Gevelber 
2001] , especially in Si crystal growth where the relation between growth rate and thermal 
gradients at the interface is of great importance in ensuring an extremely low point defect 
content  [Falster 2000, Voronkov 1982, Voronkov 2002] .  

  3.1.4   Reconstruction of Quantities not Directly Measured 

 Another challenging task results from the fact that, at least for the LEC process, the 
crystal diameter is not directly measured, because of the boron oxide layer. The measured 
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quantity most commonly used in that case is the fi rst time derivative of the force acting on a 
load cell mounted at the top of the pulling rod  [Levinson 1959, Rummel 1966] . Because this 
quantity is also infl uenced by forces resulting from the meniscus and the boron oxide layer, 
the crystal diameter cannot be calculated easily from this signal  [Bardsley 1974 - 1, Johansen 
1992 - 1, Johansen 1992 - 2, Jordan 1983] . Furthermore, if the density of the solid is less than 
the density of the liquid, a well - known anomaly comes into play: an increasing diameter 
temporarily results in a decreasing fi rst time derivative of the force measured 
by the load cell  [Bardsley 1974 - 2, Bardsley 1977 - 1, Bardsley 1977 - 2, Gevelber 1988]    (see 
Figure  3.2 ). The same holds for materials of which the melt does not completely wet its solid 
(see Chapter  1 ). Unfortunately, all commonly grown semiconducting materials show both 
effects. Measurement of the diameter of the bright meniscus ring  [Digges 1975] , as widely 
used in Si growth, can also be affected by a similar anomaly due to the so - called right - half -
 plane zero of the interface height  [Gevelber 1988, Gevelber 1994 - 1] . From this it follows 
that reconstruction of crystal diameter and growth rate is a challenging task requiring com-
prehensive knowledge of the model. Details can be found in sections  3.5.2  and  3.7 .   

 The anomaly also leads to crucial problems during the transfer from the shoulder into 
cylindrical growth: see Figure  3.3  (left). Furthermore, in case of LEC growth, the infl u-
ence of the boron oxide layer comes into play, resulting in additional dynamical effects, 
as shown in Figure  3.3  (right).    

  3.1.5   Specifi c Problems for Control in  C  z  Crystal Growth 

 The most important region in Cz crystal growth is the meniscus, the interconnection 
between melt and crystal (Figure  3.4 ). The meniscus and its shape result from 

     Figure 3.1     4 ″  GaAs crystal grown by the vapour pressure controlled Cz (VCz) method. 
Left: Poor diameter control even though much effort has been spent in parametrization of 
a conventional control system. Right: Trajectory of radius and growth rate. Considerable 
fl uctuations in growth rate can be observed, especially in the conical part.  
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gravitational forces and surface tension. At its upper end the so - called phase boundary, 
or interface is located. Here crystallization takes place and thereby heat of fusion (latent 
heat) is released. Because the crystal is pulled upwards into colder regions of the furnace 
a temperature gradient is established, which leads to a heat fl ow by conduction from the 
hot interface into the colder crystal  [Derby 1986 - 1] . By this mechanism, crystallization 
is maintained throughout the growing process.   

 The amount of heat transported into the crystal consists of two components: The 
amount of heat transported from the meniscus region into the interface with radius  r c   
and the amount of heat released by crystallization. In general, the following relation 
holds for the vector   

�
vc  of the growth rate along the phase boundary described by  z    =   Z( r ), 

 r     ∈    [0,  r c  ]:
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     Figure 3.2     Anomaly of the differential weight gain signal illustrated by the example of a 
small perturbation of the crystal radius (based on conditions reported in  [Bardsley 
1977 - 1] ). Top left: increase of crystal radius. Bottom left: corresponding fi rst (solid line) 
and second (dashed line) derivative of the crystal radius. Top right: corresponding reaction 
of the meniscus height. Bottom right: Derivative of the force acting on the load cell with 
respect to time in case of anomalous (solid line) or normal behaviour (dashed line, i.e. the 
density of the solid is larger than the density of the liquid and the melt wets its solid). 
Radius and meniscus height are normalized on their unperturbed values, derivatives are 
normalized on the maximum values occurring during the perturbation.  
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 In this equation the specifi c latent heat is denoted by  Δ  H , the heat conductivities of the 
solid and the liquid are given by   λ   s  and   λ   1 , respectively, and  T  s ( r ,  z ) and  T  1 ( r ,  z ) represent 
the temperature in the solid and the melt. The density of the crystal at the interface (at 
melting temperature  T  i ) is given by   ρ   s . A necessary condition for growth is that the growth 
rate is positive, i.e. the heat fl ux is directed from the melt into the crystal. 

 Changes in the temperature gradients on the liquid or solid side of the phase boundary 
lead to an immediate change of growth rate, as can be easily seen from Equation  (3.1) . 
On the one hand, a local change of growth rate results in a deformation of the phase 
boundary, and in a change of the crystal diameter if this deformation is located at the rim 
of the interface. On the other hand, a change in interface geometry initiates a change in 
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     Figure 3.3     Left: Increase of the derivative of the force acting on the load cell with respect 
to time before the radius reaches its maximum. Right: For the LEC process an  “ aftershock ”  
occurs in the differential weight gain signal because of the boron oxide layer. For clarity, 
the corresponding trajectory of the radius is shown as a dashed line (from  [Winkler 
2010 - 1] ).  
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     Figure 3.4     Sketch of the interface region with important physical quantities (from 
 [Winkler 2010 - 1] ).  
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heat transport. This consideration leads to the conclusion that the demand to grow 
crystals of well - defi ned shape makes necessary exact control of thermal conditions in the 
interface region. This is quite complicated because of disturbances in heat transport 
(initiated by convection of gas and melt or changes of material properties during 
growth) as well as by the batch character of the process which causes an ever - changing 
heat input from the heaters (see e.g.  [Kim 1983] ). Furthermore, the shape of the meniscus 
strongly depends on the radius  r  c  of the crystal at the interface as well as on the growth 
angle   α  ; see section  1.3  and Chapter  2  or [Boucher  1980, Mika 1975, Surek 1980] . 
This means that changes in the meniscus shape initiated by changes in geometry 
result in an immediate change of the heat balance in this region, with the consequences 
described above.  

  3.1.6    PID  Control vs. Model - Based Control 

 It is common practice to realize feedback control by means of a PID controller. The PID 
controller processes a deviation  e ( t ) between the desired and the real value of the variable 
to be controlled in order to calculate a change  Δ  u ( t ) of the manipulated variable at time  t :

    Δu t K e t K e K
e

t
t

t
( ) = ( ) + ( ) + ( )∫P I Dd

d

dt
τ τ

0
.     (3.2)   

 The dynamic behaviour of the PID controller is parametrized using the three real constants 
 K  P ,  K  I , and  K  D . The PID controller has several advantages: (i) its operating principle is 
simple, (ii) it can be easily implemented, (iii) if certain conditions hold it can be adjusted 
using some simple rules, (iv) it is suitable for a wide range of technological systems found 
in practice. However, there are some drawbacks as well: (i) The PID controller is a linear 
controller. This means that its parametrization is adjusted for a certain operating point of 
the process. If this operating point changes (as is the case in Cz growth) parameters may 
have to be scheduled. The same holds for trajectory tracking, e.g. if the system is inten-
tionally driven from one operating point to another. (ii) Because of their linear character, 
the performance of PID controllers is limited if the system shows nonlinear behaviour. 
The reason for this is the fact that a change of the manipulated variable is processed 
nonlinearly resulting in  ‘ unexpected ’  reactions of the system (in comparison to a linear 
one). (iii) The situation worsens if the system contains time delays (e.g.  y ( t )   =    u ( t     −      τ  ) 
with delay time   τ  ). In this case, any reaction of the system to a change of the manipulated 
variable appears delayed by the delay time   τ  . This may result in an increasing integral   in 
the PID algorithm (see Equation  (3.2) ). In Cz crystal growth, the LEC process belongs 
to the class of delay systems (see Figure  3.3 , right). (iv) In summary, a PID controller 
does not necessarily refl ect the dynamics of the system, especially if the order of the 
system is greater than 2. Therefore, it may be very time consuming to fi nd appropriate 
parameters. 

 Generally speaking, one may overcome these limitations by empirical methods for 
parameter scheduling and parameter tuning rules. However, most often the controller has 
to be parametrized very weakly and with scheduled parameters. Thus, control perform-
ance becomes poor. 
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 Fortunately, the theory and application of control systems have developed very rapidly 
in recent decades. The increasing capacity of microcontrollers and programmable logic 
controllers (PLC) combined with powerful mathematical control design methods prepared 
the ground for the use of sophisticated model - based controllers in practice. A model - based 
controller uses a mathematical model of the system, i.e. its structure and parameters are 
fi tted to the system. This means that the controller can be used in a wide range of operat-
ing points and refl ects the nonlinear system characteristics as well as time delays. In 
addition, parametrization effort is dramatically reduced. Anyhow, a model - based control-
ler performs well only if the model is appropriate. 

 In addition, improved performance can be achieved by combining a feedback control 
law with additional components such as feedforward control or sophisticated trajectory 
planning. Therefore, in the next section a brief survey of the components of a current 
control system and the way of using mathematical models in control applications is 
provided.  

  3.1.7   Components of a Control System 

 A modern control system consists of more than a simple PID controller, as explained in 
detail in what follows (see Figure  3.5 ). 

   •      Depending on time or crystal length, a  reference trajectory generator  calculates refer-
ence values for crystal radius and growth rate or other useful quantities. In the simplest 
case, the trajectory generator holds a fi xed value, often called the setpoint or  ‘ hand 
value ’ . The planning of trajectories has to consider the physical properties of the system 
in order to avoid impossible values for the control inputs, for example. Furthermore, 
one cannot request physically impossible behaviour from the system, such as steps in 
any of the system quantities or their derivatives. It may be useful to reschedule the 
reference trajectories during growth to guarantee smooth behaviour of the controller.  

     Figure 3.5     Sketch of a modern feedback control loop consisting of an observer for 
reconstruction of quantities which are not directly measured, a reference trajectory 
generator, a feedforward control and a feedback controller.  
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   •      The  feedforward control  calculates the control inputs (such as heater power or crystal 
pulling speed) from the reference values provided by the trajectory generator. This can 
be done empirically or by means of a mathematical model describing the system behav-
iour  [Hagenmeyer 2005] . Using the values from the feedforward control one might be 
able to  steer  the system along its reference trajectory if the system is stable, only small 
perturbations are acting on the system, and the model is accurate enough. In the simplest 
case, the feedforward control is a constant value for the control inputs, commonly 
referred to as the setpoint.  

   •      The  feedback controller  compensates for disturbances acting on the process. Furthermore, 
it is responsible for the correction of modelling imprecisions resulting in inaccuracies 
of the feedforward control. This is achieved by feedback of the measured variable (or 
an estimate of the latter) and a correction of the input calculated by the feedforward 
control. Unstable systems are stabilized by means of the feedback controller.  

   •      Finally, it is not always possible to measure the controlled variable (e.g. the radius, for 
the Cz method) directly. In that case one can reconstruct this variable from the measured 
variable by means of a (possibly nonlinear)  observer  if a suitable model of the system 
is available and the system is observable (a system property discussed later in 
section  3.7 ).      

 All of these four components have to be adjusted carefully in order to obtain a high per-
formance of the feedback control system. As one can see, modelling is an important task 
in developing a control system. For this reason, this topic is detailed in the following 
section.  

  3.1.8   Modelling in Crystal Growth Analysis and Control 

 Today, modelling and computer simulation play an important role in crystal growth as 
well as in control applications. A short comparison of how models are used in automatic 
control in contrast to numerical approaches in crystal growth will be given here, since 
the approaches and requirements differ quite a lot between the two fi elds. 

 A mathematical model which takes the spatial distribution as well as the time depend-
ency of material parameters into account leads to a system of coupled  partial  differential 
equations with the corresponding initial, boundary, and compatibility conditions. They 
form a so - called infi nite - dimensional or distributed - parameter system. Such systems are 
usually solved numerically using fi nite element methods (FEM). Using this approach, one 
can obtain results refl ecting reality quite accurately. FEM is an absolutely essential 
resource in solving problems in plant design, thermal and stress analysis, etc. However, 
computational effort increases dramatically depending on the accuracy required, espe-
cially for solving  time - dependent  problems. 

 The approach used in model - based control is to keep the models as simple as possible. 
This is done in order to be able to run the models on the limited computer hardware 
usually available at the growth furnaces. It is achieved by partitioning the system under 
consideration into domains which may reasonably be considered as homogeneous, i.e. 
the material parameters of which are assumed to be constant. Heat and mass transfer 
between these domains are calculated from appropriate mass and energy balance equa-
tions. Since spatial dependence of the parameters is neglected, one ends up with a set of 
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 ordinary  differential equations forming a fi nite - dimensional or lumped - parameter model. 
Using such models one can calculate the basic system behaviour, leading to a qualitatively 
and quantitatively satisfactory insight into the process. Powerful methods for controller 
and observer design, trajectory planning and dynamic analysis exist for this class of 
models. The lack of accuracy can be mitigated by the introduction of feedback.   

  3.2    C  z  Control Approaches 

 After Jan Czochralski ’ s discovery, it took about 40 years for the Cz process to be intro-
duced into industry  [Teal 1950] . Since then, the development and improvement of diam-
eter control has been on the agenda. In the following, we give a brief review of some of 
the most important articles published in the last 30 years dealing with the components of 
a control system for Cz crystal growth. 

  3.2.1   Proper Choice of Manipulated Variables 

 As explained in section  3.1.5 , the main task of process control is to keep the thermal 
conditions in the interface region under control. Therefore, a proper  choice of the manipu-
lated variables is very important. The most obvious manipulated variables are the heat 
fl ows injected into the system by the heaters  [Domey 1971] , the translation 
speeds of the pulling and crucible rod  [Patzner 1967] , and the rotation rates of crystal and 
crucible (which change convection patterns in the melt and consequently the heat 
entry into the interface region). It is important to understand that a change in pulling 
speed indirectly effects the growth rate. Hence, the amount of latent heat released by the 
crystallization infl uences the heat balance at the interface, resulting in changing growth 
conditions; see Equation  (3.1) . Furthermore, it has to be considered which of these 
manipulated variables have a long - term, short - term, or only temporary effect. This 
strongly depends on thermodynamic conditions and parameters of the system  [Derby 
1987] . 

 Apart from these quantities, several special inputs are presented in the literature: In 
 [Ekhult 1986]  the heat entry into the meniscus is directly manipulated by infrared radia-
tors;  [Brice 1970]  suggests an apparatus blowing inert gas of well - defi ned temperature 
along the surface of the crystal in order to vary the heat fl ow through the crystal. This 
method is theoretically investigated in  [Srivastava 1986] . The Peltier effect is used to 
initiate local temperature modifi cations at the interface in  [Vojdani 1974] . 

 In Si crystal growth heater power and pulling speed are usually both used as control 
inputs  [Domey 1971] , while in growth of III – V compound semiconductors the pulling 
speed is traditionally kept at low and constant values (In contrast to the elemental semi-
conductor Si, compound semiconductors are grown at low pulling speeds in order to avoid 
constitutional supercooling and thermoelastic stress  [Riedling 1988, Thomas 1989, Wilke 
1988] .) However, small growth rates mean a small heat fl ux released from latent heat 
compared to the fl uxes inside the melt and the crystal (Equation  (3.1) ). Thus, changes in 
pulling speed may not greatly affect the heat balance at the interface.  
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  3.2.2   Feedforward Control 

 As described in section  3.1.7 , feedforward control is an essential part of the overall control 
system. In crystal growth, a common method in practice is to determine the feedforward 
control by careful analysis of repeated growth runs, resulting in a trajectory for the control 
inputs which can then be used as part of the recipe. 

 Although this method is widely accepted it suffers from the fact that it is extremely 
time consuming and, thus, expensive, but it works well if the same conditions are repeated 
and there are no signifi cant variations from run to run. However, any change in plant 
setup or change in desired crystal cylinder diameter means repeating this procedure. 
Finally, not all details of the system dynamics can be determined by this empirical 
approach. If a suffi ciently exact model of the process is available this model can be used 
as a basis for determining proper feedforward control trajectories which can then be 
empirically fi ne tuned afterwards  [Riedling 1988] . 

 In case of a lumped - parameter model the system equations describe the time depend-
ency of some system variables  x , e.g. the temperature of a heater or the radius of the 
crystal. The behaviour of these quantities depends on initial values  x  0  and control inputs 
 u , such as heater power. A very specifi c example of such a model may be given by

    � � �x t f x t u t x x x t u t n n( ) = ( ) ( )( ) ( ) = ( ) ( )( ) ∈ ×, , 0 , , .0     (3.3)   

 Using this model, as the number of controls  u  equals the number of components of the 
state  x , the trajectories  u  ref ( t ) of the inputs can be directly calculated from reference 
trajectories  x  ref ( t ). In order to achieve this,  (3.3)  must be solved for  u :

    u t g x t x tref ref ref( ) = ( ) ( )( ), .�     (3.4)   

 The desired inputs are calculated from given trajectories of the system quantities  x  ref . This 
can be used for a model - based feedforward control. This strategy is also known as the 
solution of the  inverse problem , in contrast to the  forward problem  which consists of the 
solution of  (3.3)  depending on initial values  x  0  and given trajectories  u ( t ) for the input. 

 If the system equations are more complicated the solution of the inverse problem 
becomes diffi cult. Such a lumped - parameter approach is presented in  [Kim 1983]  (4 ″  Si), 
 [Masi 2000]  (InP) and  [Nalbandyan 1984] . However, in the case of feedforward control 
the performance of lumped - parameter models is limited because these models neglect the 
spatial distribution of system properties (see section  3.1.8 ). Most often one ends up with 
introducing some empirical corrections (e.g. in  [Masi 2000] ) to fi t the model to reality. 
However, if these fi t parameters are chosen properly the feedforward control performs 
quite well. 

 In order to overcome such limitations one may describe the system behaviour without 
neglecting the spatial dependence of some of the system properties. Then one is con-
fronted with the problem of numerically solving a set of time - dependent partial differen-
tial equations with free boundary conditions. Even though powerful FEM for solving such 
problems exist, and computational performance has dramatically increased in recent 
years, the time - dependent solution of the inverse free - boundary problem still is one of 
the most challenging tasks  [Brown 1989] . The situation gets even worse if feedforward 
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trajectories need to be rescheduled during growth, for instance in order to react to some 
perturbations. If such behaviour is required, the solution of the inverse problem should 
be available in real time  [Voigt 2000] . Extensive studies on this task can be found in 
 [Dornberger 1996, van den Bogaert 1997 - 1, van den Bogaert 1997 - 2] , using the growth 
of large - diameter Si and Ge crystals as examples. 

 In order to reduce the computational effort one might restrict the problem to the 
quasi - stationary case. In this approach, a sequence of steady state solutions is used to 
form the feedforward trajectory. The strategy is presented in detail by Derby and Brown 
in  [Derby 1986 - 1, Derby 1986 - 2] , cf. section  3.7.3  for further discussion, also.  

  3.2.3   Model - Based Analysis of the Process 

 The aim of model - based analysis of a system is to gain insight into its dynamical behav-
iour using powerful methods provided by systems theory. A wide range of analysis 
methods exist, especially for lumped - parameter systems. Model - based analyses of the 
principal system behaviour were fi rst presented in the 1970s  [Bardsley 1972, Bardsley 
1974 - 1, Bardsley 1974 - 2, Bardsley 1977 - 1, Bardsley 1977 - 2] . They used lumped - param-
eter models of selected components of the process in order to improve diameter feedback 
control. In particular, they addressed the anomaly of the weight gain signal (see section 
 3.1.4 ) and its consideration in control system design. They identifi ed the physics related 
to the weight measurement signal (see section  3.1.4 ) and its adverse impact on controller 
tuning. This anomaly was later identifi ed as corresponding to the right - half - plane zero 
characteristics of the weight measurement and interface dynamics, which set a fundamen-
tal limitation on achievable control performance  [Gevelber 1988, Gevelber 1994 - 1] ; see 
also sections  3.3.3  and  3.5 . 

 A  global  lumped - parameter model of the overall Cz crystal growth system was fi rst 
presented by  [Steel 1975] . In order to simplify and improve parametrization of PID con-
trollers they analysed a linearized model in terms of a transfer function in several growth 
stages. The central idea of their approach consists of partitioning the Cz system into four 
areas: melt, meniscus, crystal, ambient. This is still the basis of all lumped - parameter 
models of the Cz process used to date. Using their method an  a priori  controller design 
could be dramatically improved, thus avoiding time - consuming empirical parametrization 
of PID controllers. However, this requires suffi cient accuracy of the model. 

 Analysis of steady state conditions, the dynamics of the process, and optimal control 
design using lumped - parameter models (in terms of a state space model) is subject of 
investigations presented by Satunkin  et al.  for the standard Cz process  [Satunkin 1986 - 1]  
as well as for the LEC process  [Satunkin 1995] . Optimal reference trajectory planning 
based on such models has been considered by the same author in  [Satunkin 1986 - 2] . 

 A very comprehensive and detailed model - based analysis of the global Cz system is 
presented in  [Gevelber 1987 - 2, Gevelber 1988, Gevelber 1994 - 1, Gevelber 1994 - 2] . The 
fi rst two of these publications are based on a seventh - order lumped - parameter model of 
the process, while the latter ones make use of a more refi ned one. 

 One might also use distributed - parameter models for such an analysis. Thorough analy-
sis approaches based on such models (treated for the quasi - stationary case) have been 
presented in  [Derby 1985, Derby 1987, Thomas 1989] . The great advantage of these 
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approaches is the fact that the heat fl ow in the plant can be modelled quite accurately. 
On the other hand, much effort is required to adapt the models to the actual plant design 
and to determine the physical parameters needed in the model with suffi cient accuracy.  

  3.2.4   Stability 

 An important issue in control theory is the question of whether the system under consid-
eration is stable or not, since unstable systems have a limitation on achievable control 
performance. When discussing this subject it is very important what type of model is used 
for stability analysis and which physical effects are included in the model: Surek ’ s initial 
stability analysis was only of the capillary problem, i.e. of the meniscus region  [Surek 
1976] . He came to the conclusion that the capillary system is unstable. However, if the 
heat fl uxes are taken into account, one comes to a different conclusion, depending on the 
assumptions made during modelling. Thus,  [Surek 1980, Tatartchenko 1980]  as well as 
 [Derby 1987]  show stable behaviour of the growth system under certain operating condi-
tions.  [Crowley 1983]  and  [Johansen 1991]  show that the system is unstable for the cases 
they evaluated, even if the thermal effects are included in the analysis. This shows that 
the assumptions made for the thermal model (and for the plant set - up) are extremely 
important if one wishes to determine which of the two effects is dominant, i.e. whether 
the real process under consideration is stable or not. Sections  2.3  and  3.3  deal with the 
conditions for determing open - loop stability, and that stability is determined by how the 
heat fl ows in the interface - region vary with changes in radius.  

  3.2.5   Model - Based Control 

 As stated in section  3.1.8 , for model - based control it is very important that the underlying 
model of the controller is accurate enough to make the controller(s) work properly. 
Indeed, this is the crux of all model - based approaches. Especially in Cz growth with its 
free boundary conditions and very complicated heat transfer mechanisms, it is almost 
impossible to derive a lumped - parameter model of the overall process that is suitable for 
implementing feedforward control and is robust in practice. However, at least each 
approach gives some insight into the process dynamics and some valuable considerations 
for parametrization of the control system. 

 Gevelber has proposed a multi - loop control system  [Gevelber 1987 - 2, Gevelber 1988, 
Gevelber 1994 - 1, Gevelber 1994 - 2]  based on a model analysis of the process in order not 
only to ensure a correct diameter over the whole process but also to ensure that identifi -
able disturbances are compensated for before they affect the growth dynamics. Two main 
disturbances are identifi ed, both related to the melt drop: the thermal state of the melt, 
which changes the heat fl ux entering the interface, and the thermal environment that the 
crystal experiences, affecting the heat fl ux from the interface and, thus, the growth 
dynamics. 

 For example, by adding a closed loop around the melt temperature, the impact of this 
disturbance is signifi cantly reduced, enabling tighter control of diameter and minimizing 
growth rate variations in a robust manner (e.g. insensitive to model uncertainties or 
process variations). Additionally, this work analysed the importance of controlling the 
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interface shape in addition to crystal diameter, in terms of meeting additional control 
objectives such as keeping thermal stress below a limit in order to minimize dislocation 
defects. Controlling interface shape as well as diameter requires the use of additional 
actuators, and an important part of the design task is to select an actuator set that 
can control both degrees of freedom relatively independently. To obtain further design 
insight, Gevelber  et al.  derive a model which, in particular, refl ects the infl uence of heat 
transfer by radiation within the furnace as exactly as possible within a lumped - parameter 
model. 

 An interesting approach based on model predictive control can be found in  [Irizarry -
 Rivera 1997 - 1, Irizarry - Rivera 1997 - 2] . The model used in this approach is of the lumped -
 parameter type. It includes melt convection, which requires very strict assumptions to be 
fulfi lled in order to make the model applicable. Roughly speaking, model predictive 
control makes use of a dynamic model of the process also, but the way of calculating 
values for the manipulated variable is based on optimization methods. The solution of 
such optimization problems is well known and widely used in mathematics. For this 
purpose, in each time step the set of control activities recorded so far is evaluated in order 
to predict the values of the manipulated variable over a fi nite prediction horizon. The 
optimization criteria, in some sense the  ‘ parameters ’  of a model predictive controller, 
refl ect, for example, the dynamics of the deviation between desired and real values 
 [Allg ö wer 2007, Camacho 2004] . 

 Another approach to establish such a model - based control on the basis of a lumped -
 parameter model has been published by  [Voronkov 2002, Voronkov 2004] . It is closely 
related to the  v  c / G  theory  [Falster 2000, Voronkov 1982]  which requires very precise 
tracking of the growth rate  v  c . This approach will be presented in a bit more detail since 
it shows an elegant compromise between completely model - based and empirical control. 
They propose a system for the control of both crystal radius and growth rate simultane-
ously by means of the heater power  P  and the pulling speed  v . The heat transfer mecha-
nism in the growth furnace is not explicitly modelled. Instead, it is assumed that the 
growth rate  v  c  directly depends on the meniscus height  h  and the heater power  P . Then 
the following relation holds approximately in a neighborhood of an operating point 
(  vc
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with the two important control parameters  A h  ,  A P  . Such an assumption is reasonable since, 
as will be discussed in detail in section  3.3.2 , the value of the growth rate is directly 
related to the temperature gradient  G  1  in the melt at the interface. For this the approxima-
tion  [Hurle 1986] 
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holds. Here one has the meniscus base temperature  T  1  (which is directly infl uenced by 
the heater power) and the melting point temperature  T  m . 
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 As will be discussed later, trajectories of the crystal radius  r  c  and the meniscus height  h  
can be calculated by solving appropriate differential equations:

    � …r t R h t v t v t A r rhc c c c0( ) = ( ) ( ) ( )( ) ( ) =, , , , 0 ,     (3.7)  

    � …h t H h t v t v t A h hh( ) = ( ) ( ) ( )( ) ( ) =, , , , 0c 0,     (3.8)  

which, among other quantities, depend on the growth rate  v  c . 
 If one assumes that Equation  (3.5)  is valid and the heater power is constant over a 

certain interval of time, these differential equations can be solved analytically on this 
interval, i.e. we obtain  algebraic  equations for calculation of  r  c  and  h :

    r t R r h h t v vc c c*( ) ( )( )= , , , , ,0 0 … ,     (3.9)  

    h t H h v v( ) ( )= , , , .0* c …     (3.10)   

 Now, over a certain observation period  Θ    =   [ t     −     t p   1 ,  t ],  t p   1     >    0, the pulling speed  v  and the 
heater power  P  are kept constant and the trajectory of the radius  r  c (  τ  ),   τ      ∈     Θ  is measured. 
Subsequently, those trends of  h  and  v  c  are numerically determined which are an optimal 
approximation of the measured trajectory  r  c (  τ  ),   τ      ∈     Θ . This is done by using a  ‘ best fi t 
routine ’   [Voronkov 2004]  working on Equation  (3.9) . As a result, at the end of the obser-
vation period values for the meniscus height  h  *  and the growth rate   vc* are available. On 
the basis of these values a controller calculates values of the manipulated variables  v  and 
 P  valid for the next observation period: 

   •      Roughly speaking, based on Equations  (3.9) ,  (3.10)  the new value for the pulling speed 
 v  is calculated such that crystal radius and meniscus height tend to their reference 
values.  

   •      The heater power is changed by   δ P  such that the growth rate tends to its reference value 
 v  c,ref , i.e. deviations of  v  from its feedforward value are compensated, too:
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 The constants  A h   and  A  P  as well as the observation period  t  P1  (and some other parameters) 
have to be  ‘ chosen appropriately ’   [Voronkov 2002] . 

 The strategy of excluding problematic parts of the system from modelling is presented 
by other authors, too.  [Wilde 1991]  introduces a nonlinear PID controller the parameters 
of which are defi ned on intervals, for instance
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in Equation  (3.2) . This is combined with a heuristic limitation of the manipulated variable 
during growth of strontium niobate (Sr 2 Nb 2 O 7 ) crystals.  
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  3.2.6   Identifi cation 

 In the publications mentioned above, models are derived from theoretical considerations. 
A different approach consists of deriving the model from experimental investigations. 
Here, the trajectories of selected output variables generated by well - defi ned trajectories 
of the input variables are carefully analysed, resulting in a model of the process. This 
method is commonly referred to as  identifi cation   [Ljung 1987] . A transfer function 
describing the growth of Si crystals at a certain operating point has been experimentally 
determined by  [Hurle 1986] , while in  [Looze 1995]  an approach for growth of GaAs in 
a LEC furnace is presented. The results presented in both papers are valid in the neigh-
borhood of an operating point. Usually, the phase of cylindrical growth is taken as the 
operating point.  

  3.2.7   Measurement Issues and State Estimation 

 For Cz crystal growth the measurement of the variable(s) to be controlled is quite a 
complex task. This may be shown for example on the most important variable, the crystal 
radius at the solid – melt interface. There are three different approaches: 

   •      Optical capturing of the meniscus shape, typically by detecting the bright meniscus ring 
 [Digges 1975, Gross 1972, Lorenzini 1974, Patzner 1967] .  

   •      Image processing of the whole crystal  [Bachmann 1970, van Dijk 1974] .  
   •      Evaluation of the force acting on a load cell mounted at the top of the pulling rod 

 [Bardsley 1972, Bardsley 1974 - 1, Bardsley 1977 - 1, Bardsley 1977 - 2, Levinson 1959, 
Rummel 1966] . Weighing of the crucible is also possible [Valentino  1974, Zinnes 1973] .    

 Optical imaging of the bright meniscus ring, which results from refl ections of light emitted 
by the heaters, is the most important measuring technique used in Si crystal growth. This 
seems quite easy, since the radius is directly available in the control system. However, 
one has to take into account that what is measured is the diameter of the meniscus at a 
certain height, not the crystal diameter at the three - phase boundary. This means that the 
anomaly (see section  3.1.4 ) also comes into play: if the crystal radius begins to decrease, 
the meniscus height will increase fi rst  [Gevelber 1988, Gevelber 1994 - 1] . This means that 
the measured diameter of the bright meniscus ring will increase, which might result in 
incorrect reactions of the controller if it is not adapted to this behaviour. 

 The second method has no technological relevance; one reason is that it is very com-
plicated to apply, and another one is that it detects changes in growth only when 
they have already infl uenced the crystal (which is not the case for the fi rst and third 
technique, where changes in the meniscus precede a change in the crystal are detected) 
 [Hurle 1993] . 

 In the case of the LEC process where melt and meniscus are covered by a layer of 
boron oxide, only the third technique can be applied. It is based on the idea that the 
gravitational force  F  c  of a rotationally symmetric crystal of length  l  and density   ρ   s  can be 
calculated by integration:

    F g r
l

c s c d= ( )∫π ρ λ λ2

0

    (3.12)  
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with crystal radius  r  c  and gravitational acceleration  g . The force measured by the load 
cell is not actually equal to  F  c  in Equation  (3.12) ; in practice it is also infl uenced by forces 
resulting from the surface tension of the meniscus, the hydrostatic pressure of the melt 
raised over the melt level, and in the case of LEC by the buoyancy forces resulting from 
the liquid boron oxide. This makes things considerably more complicated than a fi rst 
glance at Equation  (3.12)  might suggest. Details are discussed in section  3.3.1.8 . 

 In order to overcome this diffi culty one has to reconstruct the crystal radius from the 
measured force. This can be done by a so - called  ‘ observer ’ , as shown in Figure  3.6 . It is 
based on the following idea. Assume a mathematical model

   �x t f x t u t x x( ) = ( ) ( )( ) ( ) =1 0, , 0  

   y t f x t u t( ) = ( ) ( )( )2 ,  

of a process with ( x ( t ),  u ( t ))    ∈      R  n      ×      R  r   and  y ( t )    ∈      R  m  . If some components of  x  are not 
directly measured one might implement a  ‘ copy ’ 

   ˆ ˆ ˆ ˆ�x t f x t u t x x( ) = ( ) ( )( ) ( ) =1 0, , 0  

   ˆ ˆy t f x t u t( ) = ( ) ( )( )2 ,  

of the system model in a computer program. The trajectories of the manipulated variables 
 u  acting on the real system are also fed into this computer program. Then one has access 
to all components of   x̂  . Since the initial values of   x̂   are not known, i.e.   x̂   0   ≠   x  0 , and because 
of model inaccuracies as well as disturbances acting on the system, the values calculated 
for   x̂   will generally not be equal to the real values  x . However, under certain circumstances 
it is possible to inject the error   ŷ      −    y between the estimated value   ŷ   and the measured value 
 y  in such a way that the difference between the calculated value   x̂   and the real value  x  will 
converge to zero as time increases  [Luenberger 1964] . In this case the system

   ˆ ˆ ˆ ˆ ˆ�x t h x t u t y t y t x x( ) = ( ) ( ) ( ) − ( )( ) ( ) =, , , 0 0  

   ˆ ˆy t f x t u t( ) = ( ) ( )( )2 ,  

is called an  observer .   

Process
Observer

u(t) ∈ Rr manipulated variables

u

x 0

ẋ = f 1(x, u )

Disturbances

x̂
!→ x

˙̂x = h(x̂, u, ŷ − y)

ŷ

x̂ 0y = f 2(x, u )

x 0, x̂ 0 ∈ Rn initial conditions

x (t), x̂ (t) ∈ Rn state variables

y(t), ŷ(t) ∈ Rm measured variables

     Figure 3.6     Possible structure of an observer for reconstruction of the not directly 
measured quantities  x  by injection of the measured quantities  y  and the manipulated 
quantities  u .  



132 Crystal Growth Processes Based on Capillarity

 The design and dimensioning of the error relating to the measured variable is the key 
task when developing an observer. However, it is important to know whether it is possible 
to reconstruct a quantity from the measured variable at all. This property is commonly 
referred to as  ‘ observability ’ . 

 For Cz crystal growth several publications deal with this problem. Satunkin and 
Leonov discuss the question of observability in case of the Cz and LEC growth in 
 [Satunkin 1990] . The discussion is based on a linearized model of the overall process 
which is bound to the knowledge of some thermodynamical parameters. An elegant 
approach is presented in  [Abrosimov 2003, Rossolenko 1992]  where, roughly speaking, 
an iteration algorithm is used that fi ts the theoretically calculated mass of the load cell to 
its real value by heuristically changing the crystal diameter at every step. However, this 
algorithm again contains a parameter which must be empirically determined to guarantee 
convergence. 

 If the infl uence of the changing meniscus can be more or less neglected, a simple 
approach is presented in  [Kubota 1999, Masi 2000] . Here the basic idea is to exclude the 
meniscus dynamics from the model, making it easy to solve the remaining equations for 
the radius. This method is useful for the reconstruction of the radius during cylindrical 
growth and for crystals with slowly increasing diameter in the cone. For crystals with 
large slope angles in the shoulder this method fails, especially at the point where it tapers 
into the cylinder (see Figure  3.3 ).   

  3.3   Mathematical Model 

 The objective for developing a system model is to capture the dominant nonlinear and 
time - varying heat transfer conditions that determine the system ’ s eigenstructure, input/
output gains, and couplings that are needed to design an appropriate control algorithm. 
Furthermore, the purpose is to develop an advanced control system, one that considers 
multiple objectives beyond diameter control and addresses choice of control structure 
 [Gevelber 1999]  (e.g. selection of input/output pairings). A  low - order  control volume -
 based approach is used  [Jaluria 1986]  to derive the system equations where each of the 
system components is subdivided into smaller  ‘ lumps ’ . 

 A low - order modelling (LOM) technique is used since it easily reveals how the domi-
nant dynamics and coupling scale with design parameters and operating regime selection. 
While not providing the accuracy achieved by higher - order models, high open loop accu-
racy is not required for real - time, measurement - based feedback control, since feedback 
can provide robustness both for model errors and uncertainties of material properties and 
to boundary conditions (see section  3.1.8 ). 

 As we will see, this model can be split into two parts: a fi rst part (section  3.3.1 ) describ-
ing the dynamics of the hydromechanical – geometrical system and a second part represent-
ing the dynamics of the temperatures and heat fl uxes (section  3.3.2 ). The focus of the 
thermal LOM presented is to relate the interface dynamics to the local and global thermal 
dynamics. Section  3.3.3  closes this modelling discussion with a short analysis of some 
important dynamic properties of the linearized model. 
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 Table  3.1  lists the assumptions made during modelling. Unless specifi ed otherwise the 
model equations refer to both standard Cz and LEC crystal growth. Furthermore, it must 
be recalled (see section  1.3  and Chapter  2 ) that the growth angle   α   is defi ned as

    α α α= +0 c     (3.13)  

with   α   0  as the growth angle for cylindrical growth and   α   c  as the so - called slope angle 
(angle between the tangent to the crystal surface at the interface and the vertical, i.e. 
during cylindrical growth   α   c    =   0). The choice of the symbol   α   c  is in contrast to Chapter 
 2  where the symbol   δ  φ   0    =     α      −      α   0  is used instead for   α   c . This is done in order to avoid 
notational confl icts when linearizing the models, where   δ   denotes the deviation of a 
quantity from a reference (not necessarily equilibrium!) value.   

  3.3.1   Hydromechanical – Geometrical Model 

 The hydromechanical – geometrical model describes the behaviour of the meniscus (in 
terms of the geometric conditions), the melt height, the forces resulting from the growing 
crystal that determined the measured weight, and the crystal radius depending on crystal 
pulling speed, crucible translation speed, and growth rate. These model equations are 
particularly useful for developing the nonlinear control system described in section  3.6  
and the observer presented in section  3.7 . 

  Table 3.1    Assumptions made during modelling of the hydromechanical – geometrical 
system and resulting limitations 

   Subject     Assumption     Constraint  

  Crystal shape    Rotationally symmetric    Faceted growth is not described.  
  Interface    Planar (However, 

infl uence of curved 
interface is discussed in 
sections  3.3.1.9  and 
 3.3.2.2 )  

  Negligence of buoyancy effects 
resulting from convex/concave 
interface 

 Force resulting from surface tension of 
the meniscus may be calculated 
incorrectly  

  Meniscus height    Calculated from 
approximation formulas  

  Cut - off of meniscus according to 
 [Mika 1975]  not described 

 Inaccuracies for extreme growth 
angles (  α      →     ± 90    ° ) 

 For LEC growth, buoyancy and boron 
oxide height calculated incorrectly  

  Growth angle   α   0     Constant    Force measured at load cell may be 
interpreted incorrectly  

  Crucible    Constant radius    Infl uence of crucible calotte not 
included, i.e. melt height calculated 
incorrectly  

  Melt    Surface is free (not 
infl uenced by crucible)  

  Volume of meniscus and height of 
melt incorrect  
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  3.3.1.1   Crystal 

 The rate of change of the crystal length  l  is described by the growth rate  v  c    =   d l /d t . 
Assuming a planar interface, the growth rate can be calculated from the following 
equation:

    v
l

t
v v h Hc cruc m

d

d
= = − − −� �     (3.14)  

with pulling rate  v , crucible translation rate  v  cruc  and rates of change   h
.
   and   H

.
   m  of meniscus 

and melt height, respectively. 
 Assuming rotational symmetry, the rate of change of the crystal mass  M  c  is given by

    �M r vc s c c= πρ 2 .     (3.15)   

 Here  r  c  is the radius of the crystal at the solid – melt interface and   ρ   s  is the density of the 
solid at the melting point temperature  T  m . 

 Furthermore, one has

    V
l

s d= ( )∫π R2

0
λ λ     (3.16)  

for the crystal volume, where   R  :[0,  l ]    →      R describes the dependency of the crystal radius 
on the crystal length (see Figure  3.7 )   

 From geometric considerations  [Gevelber 1987 - 2]  the following relation describing the 
behaviour of the crystal radius can be derived:

l
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l = l

Φs
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vcruc
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Vmen
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h
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v

l

a0 + ac

     Figure 3.7     Quantities used in the model.  
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    �r vc c c= ( )tan α     (3.17)  

with the crystal slope angle   α   c  (see Figure  3.7 ).  

  3.3.1.2   Meniscus Height 

 For further calculations the height  h  of the meniscus at the interface is of interest. Under 
steady state conditions the shape of the meniscus is described by the  Young – Laplace 
equation  (see section  8.2 ). Instead of solving the Young – Laplace equation numerically it 
is better to rely on analytical approximations describing the meniscus height as a function 
of the crystal radius  r  c  and the slope angle   α   c :   =     α       −       α   0 . For example, Boucher derived 
the following formula  [Boucher 1980] :

    h a
a r

=
− +( )

+ ( )
1

1 2
.

sin α α0 c

c

    (3.18)   

 An advantage of this approximation (in contrast to others) is the fact that it can be 
explicitly solved for   α   c . Here, the parameter  a  is the capillary length, often called the 
 Laplace constant  (cf. section  2.2.2.2 ). This material - specifi c parameter depends on the 
surface tension   γ   le  between melt and environment (the boron oxide for LEC growth, 
otherwise the relevant atmosphere) and the densities   ρ   1  of the melt and, in case of LEC 
growth, additionally   ρ   e  of the boron oxide  [Egorov 1976] . The angle   α   0  is assumed to be 
constant. Details of these approximations are discussed in section  8.2 , with respect to the 
growth angle in section  1.3 . 

 The derivative   h
.
   of the meniscus height follows from

    � � �h
h

r
r

h
=

∂
∂

+
∂

∂c
c

c
cα

α     (3.19)  

with   r.   c  according to Equation  (3.17) . An expression for   �αc will be derived in section 
 3.3.1.5 .  

  3.3.1.3   Meniscus Mass 

 In this section an expression for the mass of the meniscus is derived. This is needed for 
the mass balance  (3.26)  in order to derive a differential equation for the crystal slope 
angle   α   c . The force  F  men  resulting from the meniscus acting on the crystal consists of two 
components if no boron oxide layer is present: 

   •      The melt elevated over the free melt level in the crucible causes a hydrostatic pressure 
drop resulting in a force acting against the pulling direction.  

   •      On the circumference of the crystal at the interface there is a force  F  σ    resulting from 
the surface tension.    

 The vertical component of the latter is of interest:

    F rσ γ α α= +( )2 .π c le 0 ccos     (3.20)   
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 As a result one has the following relation describing the force  F  men  acting on the crystal 
(with gravitational acceleration  g ):

    F g r h g a rmen l c

hydrostatic pressure drop

l c= +π πρ ρ α2 2

� ��� ���
cos 00 c

vertical component of surface tension

+( )α
� �������� ���������

.     (3.21)   

 Formally one can derive expressions for the meniscus mass  M  men  and the meniscus volume 
 V  men :

    M F g V F gmen men men men land= = ( )ρ .     (3.22)   

 The derivative   M
.
   men  of the meniscus mass with respect to time is given by

    � �M r h r
h

r
a r

r
h

a

men l c c
c

0 c c

l c
c

= +
∂
∂

+ +( )⎛
⎝⎜

⎞
⎠⎟

+
∂

∂
−

π

π

ρ α α

ρ
α

2 2 2

2

cos

22 .rc 0 c csin α α α+( )⎛
⎝⎜

⎞
⎠⎟

�

    

(3.23)

   

 At this point we must be careful: the expression  (3.22)  has been derived formally using 
the well - known relation  F    =    mg  for a mass point (of mass  m ) in the gravitational fi eld 
with gravitational acceleration  g . This means that  (3.22)  does not really describe the 
meniscus volume. However, this approximation is reasonable, as discussed in  [Johansen 
1987 - 1]  where a comparison with the real volume of the meniscus calculated from solving 
the Young – Laplace equation is performed.  

  3.3.1.4   Melt 

 The height of the melt in the crucible is denoted by  H  m . With the density   ρ   1  of the 
melt and the crucible radius  r  a  the derivative of the melt mass  M  1  with respect to time is 
given by

    � �M r Hl l a m= πρ 2 .     (3.24)   

 For a detailed discussion it would be necessary to consider the dependency of the crucible 
radius on the melt height. However, in most cases this effect is important only if the 
height of the melt is very small, i.e. the crucible calotte comes into play. 

 From the mass conservation law it follows that

    M M M M0 l men c= + +     (3.25)  

with initial mass  M  0 . Differentiating with respect to time leads to

    � � �M M Mc men l= − +( ).     (3.26)   
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 Using Equations  (3.15)  and  (3.24)  we get

    �
�

H
r v M

r
m

s c c men

l a

= −
+π

π
ρ

ρ

2

2
,     (3.27)  

where expression  (3.23)  must be used for   M
.
   men .  

  3.3.1.5   Crystal Slope Angle 

 Substituting   H
.
   m  in Equation  (3.27)  by Equation  (3.14)  and   h

.
   by  (3.19)  we obtain

    �α
α

α
α

α
c

cruc z c c c

n c c

=
− − ( )

( )
v v c r v

c r

,

,
,     (3.28)  

with

    c r
r
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and

    c r
r

r

h a r

r
nα α

α
α αc c

c

a c

c

a
0 c, 1 .

2

2

2

2
( ) = −⎛

⎝⎜
⎞
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∂
∂

+ +( )sin     (3.30)   

 Hence, using  (3.23)  and  (3.28)  we can rewrite Equation  (3.27)  as

    �H
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v v
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∂
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    (3.31)    

  3.3.1.6   Growth Rate 

 An expression describing the dependency of the growth rate  v  c  on radius, slope angle and 
translations can be directly derived from Equation  (3.28) :

    v
v v

c r c r
l

z n

c
cruc

c c c c
cd

d

=
−

( ) + ( )α αα α α
, ,

.     (3.32)   

 For convenience we can write this equation in a form which directly shows the infl uence 
of the three components  r  c , d r  c /d l  and d  α   c /d l , respectively:
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  3.3.1.7   Boron Oxide Layer 

 In case of LEC growth the mass  M  e  of the boron oxide and its density   ρ   e  are assumed to 
be constant. Because the meniscus and a part of the crystal are submerged in the boron 
oxide, additional buoyancy forces come into play. With the height  h  e  of the boron oxide 
layer one can write:

    πr h V V
M

a e sub men
e

e

2 .= + +
ρ

    (3.34)   

 The length  L  es  of the emerged part of the crystal results from

    L l h hes e= − + .     (3.35)   

 Thus, the radius of the crystal at the surface of the boron oxide layer is given by

    r l h hes e= − +( )R .     (3.36)   

 The volume  V  sub  of the part of the crystal which is submerged under the boron oxide layer 
can be calculated from

    V
l h h

l

sub

e

d= ( )
− +
∫π R2 .λ λ     (3.37)   

 Differentiating Equation  (3.37)  leads to

    � � �V r r v r h hsub c es c es e= −( ) + −( )π π2 2 2     (3.38)  

which, together with Equation  (3.34) , gives an expression for the time derivative of the 
height of the boron oxide:

    �
� �

h
r r v r h V

r r
e

c es c es men

a es

=
−( ) − +

−

2 2 2

2 2

1

.π     (3.39)   

 From inspection of Equation  (3.36)  it follows that the model of the LEC process belongs 
to the class of delay systems: The crystal radius affects the system with a delay again 
corresponding to the length  L  es  (see Figure  3.3 , right).  

  3.3.1.8   Force Acting on the Load Cell 

 As already mentioned in section  3.3.1.2 , the force acting on the load cell does not only 
consist of the gravitational force of the crystal. This force is also signifi cantly infl uenced 
by the surface tension and the hydrostatic pressure drop resulting from the meniscus as 
well as the buoyancy resulting from the boron oxide. 

 For LEC growth one has,

    F M g V g V V geLEC c

crystal

l men

meniscus

sub men= + − +( )
��� �� � ��� ���

ρ ρ
bbuoyancy

� ������ ������
.     (3.40)   
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 After differentiation, use of Equations  (3.15) ,  (3.23) ,  (3.38)  and some algebra we get 
 [Johansen 1992 - 2] 

    � �F gr c r r v c r r r c rp rLEC c LEC c es c LEC c es c c LEC c= ( ) + ( ) +π 2 , , , ,, , ,α α rres c c, ,α α( )( )�     (3.41)  
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(3.44)   

 In case of growth without boron oxide the last term in Equation  (3.40)  can be omitted:

    F M g V gCz c
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ρ ,     (3.45)  

and for the force  F  Cz  we obtain

    � � �F gr v c r r c rrCz c s c Cz c c c Cz c c c= + ( ) + ( )( )π 2 , , ,ρ α α αα, ,     (3.46)  
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  3.3.1.9   Infl uence of a Curved Interface on Weight Measurement 

 Up to now the solid – melt interface has been assumed to be planar. In this section the 
consequences for the weight gain signal resulting from a concave or convex interface are 
sketched and discussed. The main problem in modelling a curved interface is the fact that 
it is almost impossible to express its dynamics in terms of a lumped - parameter model, as 
will be shown at the end of this section. The approaches and problems discussed here 
were originally addressed for example in  [Johansen 1992 - 1, Johansen 1992 - 2] . 

  Concave Interface.     In case of an interface which is concave to the melt, the force acting 
on the load cell can be expressed as follows:

    F M g V g gCz c

crystal

l men

meniscus

l s m= + + −( )
��� �� � ��� ���

ρ ρ ρ Ω .     (3.49)   

 Here  Ω  m  denotes the additional volume replaced by the melt within the crystal.  

  Convex Interface.     In case of a solid – liquid interface which is convex to the melt the 
situation becomes a bit more complicated since it is possible for the interface to grow 
beyond the melt level. In this case we have

    F M g g rCz c

crystal

s s c lg 0 c

surface tension

= + + +( )
��� �� �

ρ γ α αΩ 2π cos
�������� �������

− Fi.     (3.50)   

 Here  Ω  s  denotes the volume of the crystal which replaces melt in, and eventually under, 
the meniscus. An additional buoyancy force  F  i  results from the melt replaced by this part 
of the crystal. Its value can be calculated from

    ρl s i cg F prΩ = − π 2     (3.51)  

with the hydrostatic pressure  p  at the fl at top surface of  Ω  s . The hydrostatic pressure at 
the three - junction line is  p    =    −   ρ   1  gh . Thus, from Equation  (3.51)  it follows that

    F g hri l s c= −( )ρ Ω π 2 .     (3.52)   

 Using this equation and  (3.21)  we obtain the fi nal expression for the force  F  Cz  in the case 
of a convex interface as follows:

    F M g V g gCz c

crystal

l men

meniscus

s l s= + + −( )
��� �� � ��� ���

ρ ρ ρ Ω .     (3.53)    

  Determination of the Derivative.     Up to now the expressions  (3.49)  and  (3.53)  have 
described the situation at the interface exactly. However, an expression describing the 
volumes  Ω  m  and  Ω  s  is missing although it is important to know these because otherwise 
we cannot determine the derivative   F

.
   Cz  describing the  dynamics  of the force  F  Cz . Usually 

we try to overcome this problem by defi ning the volume  Ω  s  as
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    Ωs c=
π
3

3ωr     (3.54)  

with an empirically chosen factor   ω  . Then we have

    � �Ωs c c= ωgr r2 .     (3.55)   

 In general   ω   will depend strongly on the thermal conditions defi ning the actual shape of 
the interface, i.e. in reality it is time varying and Equation  (3.55)  is not valid. This is why 
the curved interface  –  although frequently used for some principal analysis methods  –  is 
usually not applied within control system design. Besides, it is impossible or at least very 
diffi cult to measure the defl ection of the interface in real time.   

  3.3.1.10   Summary 

 The equations derived so far can be summarized as follows:

   �r vc c c= ( )tan α     (3.56)  
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   � �F gr c r r v c r r r c rp rLEC c LEC c es c LEC c es c c LEC c= ( ) + ( ) +π 2 , , , ,, , ,α α rres c c, α α( )( )�     (3.61)  

respectively

    � � �F gr v c r r c rrCz c s c ,Cz c c c ,Cz c c c= + ( ) + ( )( )π 2 , ,ρ α α αα     (3.62)  

    r l h hes e LEC growth only= − +( ) ( )R .     (3.63)   

 On inspecting system  (3.56) – (3.63)  one may conclude the following: 

   •      What is missing is an expression describing the behaviour of the crystal growth rate 
and length  l . For a fl at interface they are related since one has   l

.
     =    v  c . An expression for 

 v  c  can be expressed in terms of the thermal conditions found at the solid – melt interface, 
i.e.  v  c  couples the hydromechanical – geometric part with the thermal part described in 
the next section.  

   •      Since there is an algebraic relation between  r  c ,   α   c , and  h , Equation  (3.18) 
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   h a
a r

=
− +( )

+ ( )
1

1 2
,

sin α α0 c

c

   

 we may describe the geometric behaviour of the crystal growth either by equations  (3.56) , 
 (3.57)  for (  r.   c ,   �αc) or by equations  (3.56) ,  (3.58)  for (  r.   c ,   h

.
  ), respectively. The pair (  r.   c , 

  �αc) is suitable for nonlinear controller design in section  3.6  while (  r.   c ,   h
.
  ) is more advanta-

geous for purposes of analysis in sections  3.3.3  and  3.4 . Anyway, both types of system 
description are equivalent.   

  3.3.2   Model of Thermal Behaviour 

 As described in section  2.2.4  and Equation  (3.1) , the growth rate  v  c  depends on the thermal 
gradient at the interface, which in turn is determined by the thermal conditions in the 
growth furnace. Modelling of the thermal conditions is one of the most challenging tasks 
in Cz crystal growth (see section  3.1 ). Therefore, for control purposes, where real - time 
capability must be provided, the thermal behaviour is usually modelled by a LOM describ-
ing the heat fl uxes at the interface. 

 The LOM control volume - based approach is appropriate since the dominant dynamics 
typically result from the slowest modes (poles) of the system which typically correspond 
to large length scales. To choose the number and location of the lumps in each system 
component, experimental data as well as the results of detailed models  [Assaker 1997, 
Dornberger 1997, Kinney 1993]  are analyzed. The models were used to identify where 
large temperature gradients/heat fl uxes were expected to occur and, thus, the size of lumps 
needed to resolve the temperature gradients. 

  3.3.2.1   Growth Rate 

 An expression for the growth rate is governed by the energy and phase transformation/
mass balances about the interface. Figure  3.7  illustrates the energy balance for a fl at 
interface where the integrated heat fl ows across the interface are represented by  Φ  s , the 
heat fl ow being taken out by the crystal, and  Φ  1 , the heat fl ow into the interface from the 
meniscus; their difference,  Φ   h  , is the rate of heat release for material solidifi cation. 
The growth rate in the axial direction is given by  v  c . The energy balance about the whole 
interface is given by:

    Φ Φ Φ Δh r Hv= − =s l c s cπ 2ρ     (3.64)  

where  r  c  and  h  are the interface radius and meniscus height at the three - phase boundary. 
The parameters   ρ   s  and   ρ   1  are the density of the solid and the liquid, and  Δ  H  is the 
heat of fusion per cubic space. This is the lumped or integral form of the local gradient 
form of the interface energy balance given in equation  (3.1) . The growth rate is 
given by

    v
r H

c
s l

c s

=
−Φ Φ

Δπ 2
.

ρ
    (3.65)    
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  3.3.2.2   Interface Shape Modelling 

 Coupled to the radius dynamic state equation  (3.17) , the interface shape refl ects the heat 
transfer which determines the growth rate and evolution of shape. Two approaches can 
be taken to model the interface dynamics, based on whether one treats the interface shape 
as fl at or curved. Assuming a fl at interface reduces the degrees of freedom and the number 
of equations, yet captures the dominant dynamics of the Cz growth process. Modelling a 
curved interface shape reveals somewhat different dynamics and refl ects the variations in 
local thermal gradients that can affect defect formation. 

 For the fl at interface, the axial growth rate can be expressed in terms of the local veloc-
ity of the interface as well as of the thermal conditions. Manipulation of Equations  (3.14)  
and  (3.64)  yields a state equation for the meniscus height dynamics in terms of the energy 
balance

    � �h v v H
H r

= − − −
−

cruc m
s l

s c

Φ Φ
Δ ρ π 2     (3.66)  

which is a way of explicitly expressing the connection of the thermal model to Equations 
 (3.14)  and  (3.58) . 

 A more detailed analysis of the interface shape considers the two - dimensional tempera-
ture distribution in the melt and the crystal since the heat is released from the side surface 
of the crystal. The interface shape refl ects the ratio of the radial to axial gradients, and it 
is orthogonal to the local temperature gradient and heat fl ow. A low - order set of equations 
can be developed using piecewise linear segments to represent the interface shape and a 
local energy balance for each segment  [Gevelber 1994 - 1, Duanmu 2006] . Figure  3.8  
shows how four pairs of geometrical variables can be used to describe the radial and axial 
positions for each segment.   

 Equations  (3.67) – (3.70)  describe the energy balance for the four interface segments:

    v v H h H r s l− − −( ) = −cruc m s c
� � ρ Δ Φ Φπ 2

1 1     (3.67)  
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     Figure 3.8     Linear segment representation of interface shape  (Reprinted with permission 
from  [Duanmu 2006] , copyright (2006) Ning) .  
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 These equations yield a set of coupled equations for the interface height for each segment. 
As indicated in section  3.3.2.4 , the dynamics of this system becomes somewhat more 
oscillatory than with the fl at interface equations.  

  3.3.2.3   Equipment Considerations 

 In order to determine the local gradients at the interface and the way how they vary 
throughout the batch process and as a function of operating regime (e.g. selection of heater 
setting and pull rate), a coupled equipment – process model is needed  [Duanmu 2006] . A 
typical Cz crystal growth equipment confi guration (Figure  3.9 ) is made up of four major 
parts: resistance heater, crucible assembly, insulation package, and water - cooled steel 
chamber. The crucible assembly is positioned in the central part of the furnace surrounded 
by the heater and supported by the crucible pedestal which lifts the crucible during the 
growth process. Graphite resistance heaters surround the crucible assembly and typically 
have a  ‘ picket fence ’  shape.   

 Insulation material outside the heater is used to cut down the heat transfer from the hot 
zone to the steel chamber. The physical properties and the equipment geometries are 

Steel
Chamber

Top
Insulation

Side
Insulation

Crucible
Pedestal

Bottom
Insulation

Support

Crucible

Heater

Melt

Receiving
Chamber

     Figure 3.9     Schematic of the Cz crystal growth furnace  (Reprinted with permission from 
 [Duanmu 2006] , copyright (2006) Ning) .  
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chosen based on a small - scale commercial puller and a summary of other modelling 
publications  [Bornside 1990, Bornside 1991] . Major parameters used in the equipment 
model are listed in Table  3.2 .   

 The temperature dynamics for each thermal lump is determined by the sum of all the 
heat fl ows entering lump  i  from all the surrounding lumps by the relation

    
d

dt
C Ti i ij

j i

n

( ) =
=

∑Φ     (3.71)  

where  C i   is the thermal capacitance of the lump, which can vary in time if the boundaries 
change. 

 The system components, including crystal, melt, crucible, heater, and insulation, are 
divided into 120 lumps of different dimensions (see Figure  3.9 ). Each lump is a control 
volume whose shape can be deformed (and the state equation modifi ed to refl ect this 
transient characteristic) and materials are allowed to fl ow across the boundary  [Arpaci 
1966] . Finer lump sizes are used where the temperature gradient is larger, especially close 
to the interface region. 

 Since the crystal normally grows in and out around the nominal diameter, the crystal 
contour is described by a stack of truncated conical surfaces rather than a straight cylinder. 
The lower part of the crystal is divided into six small axial lumps with fi xed lengths to 
capture the temperature gradient and interface heat fl ow with good accuracy. The lumps 
in the upper part of the crystal are allowed to elongate as the crystal body grows. There 
are four lumps in radial direction. The radial lumps in the meniscus are aligned with the 
corresponding lumps in the crystal to keep the consistency of the heat fl ow calculation. 
In the outside regions of the melt that are exposed to the hot zone, the melt mass is evenly 
divided into three radial lumps. 

  Table 3.2    Summary of geometric parameters of equipment (all measurements in cm) 

   Steel chamber      Heater   

  Inner radius    24.4    Inner radius    13.8  
  Height    60.0    Outer radius    15.8  
          Height    29.0  
          Empty ratio    0.4  

   Crucible      Top insulation   

  Inner radius    12.0    Inner radius    13.2  
  Outer radius    13.2    Outer radius    21.6  
  Depth    18.5    Liner thickness    0.5  
  Bottom thickness (calotte)    5.0    Felt thickness    6.0  

   Side insulation      Bottom insulation   

  Inner radius    13.2    Radius    21.6  
  Outer radius    21.6    Liner thickness    1.0  
  Liner thickness    0.5    Felt thickness    1.5  
  Felt thickness    6.0          

 Source:  [Duanmu 2006] , copyright (2006) Ning. 
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 Only axial lumps are formulated in the crucible side wall because the dominant tem-
perature gradient is in the axial direction. The thermal capacity of the silica liner and the 
graphite container are considered together, but different material properties are taken into 
account in evaluating the thermal resistances. Different thermal emissivities are used in 
radiation calculation: graphite (.8) for the outside surface facing the heater and silica (.6) 
for the inside surface facing the hot zone  [Gevelber 2001] . 

 There are fi ve axial lumps in the heater, six axial lumps in the side graphite liner and 
six axial lumps in the side felt. In the top and bottom insulation, the lumping strategy is 
designed to capture the different thermal conditions from the centre to the periphery of 
the equipment in the radial direction.  

  3.3.2.4   Heat Transfer Modelling 

 The thermal status of each individual lump is represented by one temperature state vari-
able given by Equation  (3.71) . The lump is considered homogeneous in terms of physical 
properties such as thermal conductivity and specifi c thermal capacity. The lump tempera-
ture corresponds to the spatial integral of the temperature inside the lump, and thus is the 
average temperature. Fourier ’ s law of heat conduction is expressed in a lumped formula-
tion and is expressed in terms of the two neighbouring lump temperatures. 

 The convective infl uence on heat transfer is taken into account by using effective 
conductivity in the calculation of thermal resistance in the melt. The effective thermal 
conductivity in the melt is set to 1.8 times the nominal value  [Sinno 2000]  to take into 
account the mixing effects of convection. The effective conductivities of the meniscus 
lumps and the fi rst layer of melt lumps underneath the meniscus are considered as linear 
function of the radial distance of the lump to the central line to count in the effect of 
crucible rotation. 

 Enclosures are used to model the radiative heat transfer, and are closed cavities where 
energy exchange happens mutually between surfaces. Six radiation enclosures are used, 
including a top enclosure, low enclosure, and four small side enclosures around the heater, 
crucible, and side insulation. Of these, the top enclosure is most important to the thermal 
conditions around the interface. It consists of meniscus, and melt surfaces, exposed cru-
cible wall, part of the top insulation package, and inner surface of the steel chamber, 
including 30 surfaces. The view factors among these surfaces are evaluated on a dynamic 
basis in conjunction with geometric variation. With a noncylindrical real crystal, the effect 
of blocking issues is important and must be taken into account properly. 

 The openings in the picket fence shaped heater results direct radiation between 
the crucible side wall and the graphite liner of the side insulation. If the heater shape is 
not considered, the required heater power would differ signifi cantly from the real 
system. 

 All surfaces inside the radiation enclosure are considered as diffuse grey surfaces, 
meaning their monochromatic hemispherical emissivity is independent of direction and 
wavelength. The calculation procedure described in  [Bejan 1993]  is employed to evaluate 
the radiation energy exchange among the enclosure surfaces. 

 The view factor is defi ned as the fraction of radiation emitted by one surface which is 
directly intercepted by another. It represents the geometrical characteristics of radiation 
enclosure. The evaluation of the view factor contributes to most of the modelling and 
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computational complexities for radiation heat transfer calculation in Cz crystal growth 
simulation  [Dupret 1990] , especially when the changing crystal geometry is included.  

  3.3.2.5   Crystal Surface Orientation 

 Energy interaction between the crystal side surface and the surrounding thermal environ-
ment inside the hot zone is signifi cantly infl uenced by crystal geometry. Models based 
on simplifi ed heat transfer assumptions treat the crystal as a straight cylinder with uniform 
diameter. This assumption is effective in studying the steady state of thermal conditions 
but it can result in incorrect process dynamics. As illustrated in Figure  3.10 , the crystal 
surface faces a different thermal environment depending on whether it is growing inwards 
or outwards, and as a result, the crystal side surface radiation differs signifi cantly. To take 
the effect of crystal surface orientation into account, the crystal contour is described by 
using a pile of truncated cones. This enables the model to capture the infl uence of the 
changing crystal surface orientation on the radiation heat transfer and, therefore, on the 
energy balance at the interface.   

 The basic concept of shape evolution is illustrated in Figure  3.11 . Thre are some dis-
crepancies between the real and approximated crystal shape, but for each control volume 
the dominant surface orientation is captured, as well as its impact on view factors and the 
radiation heat transfer  [Duanmu 2006] . The further the crystal lump is from the interface 
region, the less precise the linear segment interpolation method becomes due to the lump 

     Figure 3.10     Illustration of the effect of crystal surface orientation  (Reprinted with 
permission from  [Duanmu 2006] , copyright (2006) Ning) .  

Linear segment approximation Real history of crystal shape

     Figure 3.11     Lumped approximation of the real crystal shape history  (Reprinted with 
permission from  [Duanmu 2006] , copyright (2006) Ning) .  
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size. However, this crystal geometry error is not critical to capturing the dominant growth 
dynamics.   

 Another important model feature to capture correctly is the radiation blocking caused 
by the crystal standing in the central part of the hot zone. The crystal lumps block the 
radiation interaction among crystal melt surfaces, the interior surface of the crucible wall, 
and the adjacent surfaces of insulation material. It is critical to estimate how the view 
factor function varies with the changing crystal length while keeping it as smooth as pos-
sible to avoid discontinuity in the radiation heater transfer calculation (see  [Wilson 2001]  
for details). 

 Since the body of the crystal is modelled as a pile of truncated cones rather than a 
straight cylinder, further computational diffi culties are encountered: no analytical view 
factor expression is available when the blocking object is noncylindrical. The strategy for 
dealing with this problem is to approximate the noncylindrical object by a cylindrical 
shape. Its accuracy depends on how well the approximated cylinder resembles the block-
ing effects of cones. The accuracy can be improved by using a better approach for 
approximating the crystal shape.   

  3.3.3   Linear System Model Analysis 

 The most straightforward approach to obtain a linear model is full - state linearization of 
a nonlinear model at an equilibrium point. The partial derivatives of the nonlinear dif-
ferential equation are calculated using a numerical central difference perturbation 
approach. Since the radiation heat transfer is incorporated, no explicit analytical solution 
can easily be derived for the nonlinear differential equations. The linearization results are 
shown in Equation  (3.72) , where the partial derivative terms are written in matrix form 
and are the Jacobian matrices

    �x
f

x
x

f

u
u Ax Bu

x x u u

=
∂
∂

+
∂
∂

= +
= =0 0

    (3.72)   

 Here  x     ∈      R  n   is the state vector and  u     ∈      R  m   the input vector describing a  n th - order system 
with  m  inputs. 

 However, signifi cant differences are observed between the linearized and nonlinear 
model simulations due to the changing crystal surface orientation, as shown in Figure 
 3.12 . Although their initial transient responses (the fi rst 40   min) are similar, the linear 
dynamics quickly settles down to the steady state value (the settling time is about 1.5   h), 
but the nonlinear dynamics exhibits slow and poorly damped oscillations (the oscillation 
period is about 10   h). These results are, however, similar to those found by  [Atherton 
1987]  and  [Dupret 1990] .   

  3.3.3.1   Reduced - Order Linear Model 

 The state variables of the full model can be categorized into two subsets, (i) geometrical 
state variables that include the crystal radius and interface shape, and (ii) thermal state 
variables. The dominant timescale of the geometry dynamics (minutes) is much smaller 
than the timescale of the thermal dynamics (hours). Thus, a reduced - order linear model 
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can be found based on the dynamics of the geometrical states for constant thermal 
equilibrium conditions, which greatly reduces the order of the dynamic model. This 
reduced - order linear model does not consider the interactions between the thermal and 
geometrical states. Previous research for simple linear models developed by  [Hurle 1993, 
Satunkin 1995, Johansen 1991]  was based on similar modelling assumptions, including 
a straight cylindrical crystal. 

 The differential state equation  (3.17)  for  r  c  is linearized around the equilibrium point 
under the growth condition that the crystal is pulled up with nominal speed of  v  0  and the 
slope angle is zero. We obtain
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 Equation  (3.73)  can be transformed to a transfer function form in the Laplace domain, 
and describes the dynamic input – output relation between the Laplace transformed quanti-
ties   R   *    =     L  { r  c } and   H   *    =     L  { h } as:

    R H* =
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*     (3.74)  
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     Figure 3.12     Comparison between linear and nonlinear model simulations  (Reprinted with 
permission from  [Duanmu 2006] , copyright (2006) Ning) .  
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 This fi rst - order system has a positive pole and negative steady state gain. The positive 
pole suggests that once the interface height is perturbed, the change of the meniscus angle 
accelerates the initial change of the radius, instead of driving it back. For this reason, 
 [Surek 1980]  claimed that the Cz process is not stable if only the capillary effect is con-
sidered (see section  2.4 ). 

 Equation  (3.74)  alone, however, does not provide any indication about the growth 
dynamics since the energy balance equation that drives the interface movement has not 
been considered. Linearization of the interface height state equation about the equilibrium 
point yields
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 The heat fl uxes  Φ  s  and  Φ  1  are considered as system parameters determined by the hot 
zone design, and the pulling speed  v  is the system input. The sensitivities of  Φ  s  and  Φ  1  
to the perturbation of  r  c  and  h  are evaluated based on steady state process model 
simulations. 

 By combining Equations  (3.73)  and  (3.75) , a reduced - order linear model of the Cz 
process growth dynamics is obtained:
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 This form of the linear model corresponds to Equations (2.15) and (2.16) and the related 
stability analysis described in that section, but more explicitly shows the connection to 
the thermal model, and dependency on how the heat fl ows scale. How the eigenstructure 
of Equation  (3.76)  varies with operating point is analysed in section  3.4 .    

  3.4   Process Dynamics Analysis for Control 

 To aid in developing an appropriate controller tuning strategy as well as control structure, 
it is desirable to understand how the eigenstructure and steady state gains vary as a func-
tion of operating conditions and throughout the batch process. This section analyses these 
issues for an 80 – 120   mm diameter Si crystal for the system described in section  3.3.2.3 . 
Specifi c issues that are addressed include how the fundamental dynamics of the interface 
shape scale (section  3.4.1 ), the impact that a curved interface shape has on the dynamics 
and the impact of dominant nonlinear dynamics (section  3.4.4 ). Many of these issues are 
addressed for other materials such as Ge  [Hurle 1990, Satunkin 1995] , GaAs  [Looze 
1995] , InP  [Masi 2000] , and LiNbO 3   [Satunkin 1990] . 
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 Figure  3.13  shows the dominant crystal interface radius and interface height dynamics 
in response to a step decrease in heater power. The radius response has dominant second -
 order response characteristics with moderate overshoot and has a relatively slow settling 
time (i.e. the time where the output settles to within 5% of steady state) of 24   000   s (400   h). 
The interface height response, in contrast, clearly displays the characteristics of a so - called 
right - half - plane (RHP) zero, fi rst decreasing, but in steady state, increasing relative to the 
initial condition. This RHP zero characteristic affects the response measured both by weight 
and by meniscus refl ection sensors. It is signifi cant, since it can be shown to pose a funda-
mental limitation on closed - loop control performance and could result in unstable (or highly 
oscillatory) closed - loop response if not properly addressed in controller tuning. This 
problem and its consequences are discussed in more detail in section  3.5.2 .   

 Figure  3.13  also compares the response of the full linearized model to that of the 
reduced (second) - order model described in section  3.3 . The full state linear model has a 
slightly less oscillatory and slower dynamic response than the reduced - order linear model. 
The difference is mostly due to the thermal lag in the heat transfer process captured by 
the full state model but neglected by the reduced - order linear model. However, the sec-
ond - order model does a good job of capturing the critical timescales and dynamic features. 
This is achieved because the linear model is coupled to an appropriate global heat transfer 
model to determine the operating point, which affects how the partial derivatives in 
Equation  (3.76)  are evaluated. 

 Both the reduced - order linear model and full state linearized model refl ect the dynamic 
characteristics of the nonlinear system around the equilibrium point for a small perturba-
tion. The sensitivity of the interface heat fl uxes  Φ  s  and  Φ  1  to perturbation of  r  c  and  h  is 
evaluated for the system geometry at the equilibrium condition, e.g. straight crystal sides. 
However, some nonlinear effects of the Cz process related to the global thermal – geometry 
interaction are not captured by either linear model (see section  3.4.4 ). 

 The dynamic relation between the pulling rate and interface radius is governed by the 
coupled mass and energy balance at the interface (Equation  (3.76) ). Figure  3.14  compares 
the steady state relation between the interface height and the radius (dashed line) of the 
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     Figure 3.13     Comparison between full state and second - order linear model to a step 
decrease in heater power (100   W) (operating conditions:  r  c    =   4.0   cm,  v    =   3.0   cm/h, 
 H  m    =   3.0   cm)  (Reprinted with permission from  [Duanmu 2006] , copyright (2006) Ning) .  
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step decrease in pulling speed, nonlinear model (operating conditions:  r  c    =   4.0   cm, 
 v    =   3.0   cm/h,  H  m    =   7.5   cm)  (Reprinted with permission from  [Duanmu 2006] , copyright 
(2006) Ning) .  

Young – Laplace meniscus relation  (3.18)  and the dynamic state trajectory of the open 
loop response to a 10% step decrease in pulling rate using the nonlinear model. In 
steady state, the interface height increases with radius and, for a constant thermal 
environment, this will correspond to a lower pull rate. Thus, the decrease in pulling speed 
will initially move the interface down as dictated by Equation  (3.75) . As shown in 
Figure  3.14 , while the crystal radius dynamically increases from one equilibrium condi-
tion to another, the interface height initially moves in the opposite direction to that of the 
fi nal equilibrium point. This is the characteristic of the RHP zero response shown in 
Figure  3.13 .   

  3.4.1   Operating Regime and Batch Implications 

 In general, process dynamics vary for different operating conditions due to different 
thermal conditions around the interface, as well as throughout the batch process, since 
the melt height changes. Understanding the infl uence of these variations on the process 
dynamics provides a foundation for developing a robust process control system. In part, 
these different operating characteristics (e.g. temperature gradients and pulling speeds) 
are selected to meet process objectives related to achieving the desired material quality 
while optimizing throughput requirements. 

 A summary of how the process dynamics changes as a function of operating regime 
and melt level, based on the reduced - order linear model, is given in Table  3.3 . The 
dynamic characteristics, e.g. pole locations, dominant time constants and damping ratios, 
as well as steady state input – output gains for pulling rate input, depend on the pulling 
speed, crystal radius, and melt level. Important trends include: (i) the response time 
becomes smaller as diameter increases and for lower pull rates, and (ii) the damping ratio 
(which indicates how oscillatory the response will be) decreases for faster pulling rates, 
lower melt heights and greater diameters. Plotting the dominant time constant as a func-
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  Table 3.3    Dynamic characteristics for different operating conditions (Note:  K  P  is the 
scaled steady state gain where  r  c  is scaled using 1% of the nominal radius and  v  is scaled 
using 10% of the nominal growth rate,   τ   is the time constant,   ζ   is the damping ratio) 

   Growth Condition      r  c  (m)      P  in  (W)      K  P        τ   (s)       ζ    

   v    =   0.03 (m/h) 
  H  m    =   0.030 (m)  

  0.04    28006.8    2.00    709    0.6363  
  0.05    27147.8    2.19    835    0.4765  
  0.06    26117.6    2.38    957    0.3519  

   v    =   0.03 (m/h) 
  H  m    =   0.075 (m)  

  0.04    27839.0    1.83    678    0.7154  
  0.05    27537.4    1.98    795    0.5260  
  0.06    27374.3    2.09    898    0.4124  

   v    =   0.06 (m/h) 
  H  m    =   0.030 (m)  

  0.04    27322.6    1.61    450    0.3244  
  0.05    26288.2    1.71    521    0.2306  
  0.06    25070.6    1.80    588    0.1595  

   v    =   0.06 (m/h) 
  H  m    =   0.075 (m)  

  0.04    27176.9    1.51    436    0.3759  
  0.05    26698.7    1.60    504    0.2620  
  0.06    26334.1    1.65    563    0.1972  

 Source:  [Duanmu 2006] , copyright (2006) Ning. 
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     Figure 3.15     Relation of dominant time constant from the reduced - order model to the 
ratio of the crystal radius to pulling rate, obtained from Table  3.3  for 40 – 60   mm radii and 
pull rates of 3 – 6   cm/h.  

tion of the ratio of crystal radius to pulling rate ( r  c / v ) reveals that there is a linear relation-
ship (Figure  3.15 ), which indicates it is an important scaling variable.     

 Figure  3.16  illustrates how the dynamics change for different pull rates and melt levels. 
For low pull rates, the system responds slower, is better damped, and has larger steady 
state gain. Thus, a higher pulling speed (6.0   cm/h instead of 3.0   cm/h), there is a 20% 
decrease in steady state gain, a 37% decrease in time constant, and a 50% decrease in 
damping ratio. As the system goes from high melt level to low melt level, the interface 
dynamic characteristics undergo moderate changes in terms of both gain and dynamic 
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characteristics (9% decrease in steady state gain, 4% decrease in time constant, and 11% 
increase in damping ratio). These observations are due to by the dominant linear model 
eigenstructure shown in Figure  3.17 .   

 Figure  3.18  shows how the dynamics change for open - loop heater power steps based on 
the linear model for different operating conditions. Similar to the open - loop pulling speed 
step response, at high growth rate condition, the interface responds to the heater power 
change faster than to the low growth rate condition. However, the system does not display 
the underdamped characteristics at high pull rates as was the case for low pulling rate.   

 The importance of designing a controller based on the specifi c operating point is indi-
cated in Figure  3.19 , where a PI controller designed on the basis of the low growth - rate 
condition does not work well for the high growth - rate condition. On the other hand, the 
model indicates that for the conditions evaluated, there is little need to adjust controller 
parameter settings at different melt levels throughout the batch process, although those 
results can differ, especially for low - gradient operations.    

  3.4.2   Actuator Performance Analysis 

 Pulling speed and heater power are the two major actuator inputs for the Cz crystal growth 
process, but they infl uence the material solidifi cation process at the interface in different 
ways. The heater power affects the energy balance at the interface region, while pulling 
rate acts directly to carry the newly grown materials away. To keep the growth process 
operating uniformly in terms of constant crystal radius and growth rate, the pulling speed 
should match the growth rate for the specifi ed heater power. Process variation happens 
whenever the interface energy balance is disturbed. 

 Changes in pulling rate impose a direct change to the interface dynamics (Equation 
 (3.73) ) and also impact the local interface heat fl ows. The heater power affects the 
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     Figure 3.16     Open - loop pulling speed step response based on linear model under 
different operating conditions  (Reprinted with permission from  [Duanmu 2006] , copyright 
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interface height by changing the interface energy balance and thus the material solidifi ca-
tion rate. Reducing the heater power causes the crucible wall and melt temperatures to 
decrease, changing the heat fl ow around the interface. As shown by the linear model 
open - loop step response in Figure  3.20 , the interface radius responds faster to the pulling 
speed change than to heater power. The difference is primarily due to the additional 
thermal lags in the heater – crucible – melt interface region.   

 The nonlinear model open - loop step response simulation (Figure  3.21 ) reveals some 
important differences from the linear model predictions. During the initial stage of the 
transient process, the crystal radius responds faster to the pulling speed change noticeably 
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     Figure 3.17     Dominant poles of linear dynamics under different operating conditions 
 (Reprinted with permission from  [Duanmu 2006] , copyright (2006) Ning) .  
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than the heater power (as indicated by the dashed circle). Thus, to some extent, the pulling 
speed can be considered to be a more effective actuator in feedback control to maintain 
constant crystal radius. Beyond the initial transient response, the nonlinear model reveals 
an additional slow oscillatory dynamic mode caused by the thermal geometry interaction. 
This results in there not being much difference between the peak time of  v  and  P  in  step 
responses (as indicated by arrows).   

 However, the use of the pull rate to control crystal diameter variations is also subject 
to desired acceleration constraints and possible speed limits for the pull rate actuator. In 
addition,  [Voronkov 1982]  and experimental research  [Dornberger 2001, Falster 2000]  
also suggest that there are important limitations to pulling rate variation for growing 
high - quality, defect - free single crystal semiconductors, since pulling speed has to be 
maintained within 10% of the optimized level determined by the  v  c / G  theory.  

Closed loop step response at low growth rate

Closed loop step response at high
growth rate using the controller
designed for low rate condition.
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     Figure 3.19     Closed - loop step response simulation based on linear mode at different 
growth rate  (Reprinted with permission from  [Duanmu 2006] , copyright (2006) Ning) .  
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     Figure 3.20     Open - loop step response for different actuators based on the linear model 
 (Reprinted with permission from  [Duanmu 2006] , copyright (2006) Ning) .  
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  3.4.3   Curved Interface 

 The importance of simulating the actual interface shape using a more complex model is 
that the shape refl ects the local gradients which impact defect formation and the thermal 
stress  [Frank 2000, Neubert 2001] . Large interface defl ection indicates large radial tem-
perature gradients relative to the axial gradient. Also, for wafers that are cut from the 
crystals, a smaller interface defl ection results in more uniformly distributed material 
properties across the radial direction of the wafer. Thus, in general, it is desirable to 
control the interface shape during the growth process and it is useful to understand the 
impact of pulling speed and heater power on the interface shape. 

 The steady state interface shape shown in Figure  3.22  reveals the impact of different 
operating conditions (growth rate and melt height). For the same growth rate, the interface 
shape shows little change from high melt level to low melt level. But interface defl ection 
is signifi cantly larger at high growth rate than at low growth rate, due to greater crystal 
heat fl uxes.   

 In terms of dynamic characteristics, nonlinear model simulations (Figure  3.23 ) reveal 
that fl at interface modelling refl ects the dominant dynamics of the system, although the 
curved interface dynamics is somewhat more oscillatory with higher overshoot.    

  3.4.4   Nonlinear Dynamics 

  3.4.4.1   Thermal - Geometry Interactions 

 The evolution of the crystal geometry infl uences the radiation energy exchange inside the 
hot zone since view factors are changing dynamically among different enclosure surfaces. 
The crystal surface orientation near the interface region strongly affects the interface 
energy balance (see Figure  3.10 ). As the crystal surface near the interface region tilts 
upwards when the crystal grows outwards, it becomes easier to lose heat to the cold 
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     Figure 3.21     Open - loop step response based on the nonlinear model for different 
actuators  (Reprinted with permission from  [Duanmu 2006] , copyright (2006) Ning) .  
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environment. When the crystal grows inwards, the crystal surface tilts downwards and 
interacts more with the hot melt surface. 

 Figure  3.24  shows the simulation results for crystal geometry variation and its impact 
on the radiation heat transfer and diameter dynamics for a 10% step decrease in pulling 
speed. The expansion of the outward - growing edge (labelled as edge (a) in the 4 - h snap-
shot in Figure  3.24 ) makes the crystal a more effi cient radiator of heat. As the interface 
height and crystal radius approach the equilibrium condition, the crystal stops growing 
larger. Similar results were found by  [Atherton 1987] .   

 However, as the edge (a) is slowly pulled further away from the interface, its cooling 
effect becomes weaker. Therefore, the crystal contour is not able to lose enough heat to 
sustain the amount of interface heat fl ow at the crystallization front with the interface 
radius at the end of edge (a), so the crystal radius starts to grow inwards. As shown in 
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     Figure 3.22     Interface shape variation under different operating conditions  (Reprinted 
with permission from  [Duanmu 2006] , copyright (2006) Ning) .  
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     Figure 3.23     Nonlinear model step response simulations with fl at and curved interface 
shape  (Reprinted with permission from  [Duanmu 2006] , copyright (2006) Ning) .  
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     Figure 3.24     Effects of the thermal - geometry interaction using nonlinear dynamic 
model simulation (operating conditions:  r  c    =   4.0   cm,  v    =   3.0   cm/h,  H  m    =   3.0   cm) 
 (Reprinted with permission from  [Duanmu 2006] , copyright (2006) Ning) .  
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the 16 - h snapshot in Figure  3.24 , the inward - growing (b) has now developed. After the 
crystal radius becomes small enough to match the overall effect of edge (a) and edge (b), 
the interface reaches a local minimum. 

 The crystal geometry then grows inwards and outwards for a number of iterations 
before settling down at the fi nal steady state value. By this mechanism, the crystal radius 
oscillates with a very long time period and small degree of damping if no control is used. 

 To test whether the orientation is the cause of this long - term dynamic, as well as to 
compare the results predicted by the common assumption that the crystal is cylindrical, 
the nonlinear model is run with both a varying orientation and with straight crystal sides. 
Figure  3.25  shows the response to a 10% step decrease in the pulling speed for both 
modelling approaches using the nonlinear model. The difference between the dynamic 
responses of the two modelling assumptions is signifi cant. The slow evolution of crystal 
geometry variation gives a slow and oscillatory pattern to the overall dynamic response 
which is not captured by using the straight cylinder approach.    

  3.4.4.2   Closed - Loop Simulations 

 A Closed - loop nonlinear simulation of a step change in crystal diameter is illustrated in 
Figure  3.26 . A PI controller is used, designed using the reduced linear model. This shows 
the surprising result that the controller design based on the reduced - order models performs 
well, in spite of the signifi cant difference in long - term behaviour between the nonlinear 
and linear models. The reason could be that the closed - loop control limits how large the 
shape/orientation becomes, thus eliminating the long - term oscillatory response. This sug-
gests that the signifi cantly simpler linear model is useful for developing tuning strategies, 
while the nonlinear models are useful in understanding how local gradients and interface 
shape vary with different operating conditions and might be controlled.      
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     Figure 3.25     Nonlinear dynamic simulations using different modelling assumptions on 
crystal geometry (operating conditions:  r  c    =   4   cm,  v  =4   cm/h,  H  m  =7.5   cm)  (Reprinted with 
permission from  [Duanmu 2006] , copyright (2006) Ning) .  
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  3.5   Conventional Control Design 

 This section presents two PID control approaches (section  3.1.6 ), commonly used in 
industry, utilizing optical and weight based measurements. 

  3.5.1   Control Based on Optical Diameter Estimation 

 In  [Patzner 1967, Digges 1975]  a method for determining an estimate of the crystal radius 
is presented using optical imaging. The idea is based on the fact that light emitted by the 
red - hot heaters is refl ected upwards from the meniscus. These refl ections can be seen and 
detected by an optical camera as a so - called  ‘ bright ring ’ . Image processing software is 
then able to determine the diameter of the ring in real time. This value, scaled by an 
empirically determined factor accounting for the difference between the measured menis-
cus and the expected crystal radius, is used as the measured variable in the control system. 
Since Si has a large Laplace constant (i.e. high surface tension and low density, resulting 
in large meniscus heights) and because of its metallic refl ectivity, this material is an 
obvious candidate for this technique. Hence, although the crystal radius itself is not 
measured, this technique is widely and successfully used especially in Cz growth of Si 
 [Hurle 1977, Lorenzini 1974] . 
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     Figure 3.26     Nonlinear closed - loop simulation of control design based on linear model 
 (Reprinted with permission from  [Duanmu 2006] , copyright (2006) Ning) .  
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  3.5.1.1   Control System Structure 

 Using conventional PID - based control in Cz growth of Si crystals, one aims for the fol-
lowing objectives: 

   •      The crystal radius has to be tracked along a given reference trajectory in order to meet 
requirements of post - processing steps such as wafer production. Furthermore, mechani-
cal stress resulting from large diameter variations has to be avoided.  

   •      The desired growth rate should be maintained throughout the batch process and chang-
ing thermal environment, in order to maintain the desired production rate.  

   •      The growth rate has to be kept within a very narrow tolerance band in order to match 
important requirements of crystal quality, especially with respect to point defects (see 
sections  3.1.2  and  3.4.2  and  [Falster 2000, Voronkov 1982, Voronkov 2002] ).    

 When designing a control system that meets these objectives one has to refl ect the dif-
ferent time constraints the available control inputs have on the system, as outlined in 
section  3.4.2 : (i) changes in pulling speed affect the system quite quickly, (ii) changes in 
heater power need some time, depending on the thermal conditions occurring in the 
system  [Gevelber 1987 - 2, Gevelber 1988] . Usually, therefore, a cascaded control structure 
is chosen (see Figure  3.27 )  [Voronkov 2002] .   

 Deviations  Δ  r  c  from the reference value  r  c,ref  of the crystal radius  r  c  are fed into a PID 
controller manipulating the reference value  v  ref  of the pulling speed by an amount  Δ  v . 
This value, indicating a deviation of the real pulling speed trajectory from its pre - 
calculated reference value, is also fed into a second PID controller manipulating the refer-
ence value  P  ref  of the heater power by an amount  Δ  P . By this strategy it is ensured that 
the system is able to react quite quickly to perturbations in crystal diameter. Accumulated 
deviations in the pulling speed trajectory lead to a change of the heater power trajectory, 
ensuring that the system is kept in its reference state in the long term. The pulling speed 
especially returns to its reference level. 

 This control system approach requires very careful planning of the feedforward trajec-
tories, especially for the pulling speed needed to obtain a certain growth rate trajectory. 
This can be achieved by using powerful numerical methods to solve the inverse problem 
(see section  3.2.2 ). Performance can be further improved by processing the knowledge 
gained through repeated growth runs.  

ProcessPIDPID

rc

Pref

vref

v

Δrc Δv ΔP Prc,ref

     Figure 3.27     Cascaded PID - based control scheme utilizing pulling speed and heater 
power for diameter control  (Reprinted with permission from  [Voronkov 2002] , copyright 
(2002) Ning) .  
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  3.5.1.2   Limitations 

 Despite its undoubtedly widespread application in industry and the fact that using this 
approach it is possible to grow crystals which perfectly match crystal radius requirements 
down to fractions of a millimeter, this approach to control system design has several 
important limitations. 

 First of all, this approach does not directly control the growth rate. Proper tracking of 
this value is only guaranteed if the pulling speed and the crystal radius trajectories follow 
their references (see Equation  (3.32) ). Recalling Equation  (3.14) ,

    v v v h Hc cruc m= − − −� � ,  

one immediately sees that further conditions must be fulfi lled in order to conclude the 
growth rate directly from the pulling speed: 

   •      The crucible speed must compensate for the rate of change of the melt level, i.e. 
 v  cruc    =    −   H

.
   m .  

   •      The meniscus height must be constant, i.e.   h
.
     =   0, which is actually the case only on 

during cylindrical growth.    

 The fi rst requirement can be met by an additional measurement of the melt height 
 [Gevelber 1989] , but the second one is diffi cult to meet since any perturbation in the 
crystal radius causes the meniscus height to vary. Thus, the required growth rate trajectory 
is matched only if the feedforward trajectory for the pulling speed is properly calculated 
and one can ensure that perturbations leading to long - term deviations of the pulling speed 
from its reference trajectory do not occur. In addition, the coupled nature of the process 
physics, which can limit the achievable material properties, has not been explicitly con-
sidered in designing the control structure. Closed - loop control is used to maintain diam-
eter, but there is no explicit coordination of control to achieve the ensemble of objectives 
such as interface shape. Also, the process conditions required to meet advanced materials 
requirements become tighter and are diffi cult to achieve throughout the varying batch 
process. Finally, the conventional control system designs do not directly address impor-
tant process dynamics, such as the time variation of the process due to its batch nature, 
and the inherent performance limitations posed by some process dynamics and measure-
ments (e.g. the RHP zeros). 

 Analysis of data sets for actual growth runs in commercial puller systems reveal 
control requirements and complexities that might be observed from analysis of  ‘ idealized ’  
process models (both low - order and high - order methods). Figure  3.28  presents normalized 
plots of inputs and resulting crystal diameter from a growth run in a Kayex KX150 
puller (90   kg charge, 10 ″  diameter crystal) utilizing a conventional cascaded control 
structure. Several important points may be observed: (i) the pulling rate set point trajec-
tory used decreases the pull rate by half, limiting productivity; (ii) there are signifi cant 
variations in pull rate (up to  ± 17%), which can have adverse impact on point defect dis-
tribution; (iii) the diameter control performance changes at the beginning and the end of 
the growth run (indicated by the long - period oscillations), showing a need for adaptive 
control.     
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  3.5.2   Weight - Based Control 

 If it is not possible to capture the diameter of the bright meniscus ring, the usual control 
strategy is to use the crystal or the crucible  ‘ weight ’  as the measured variable  [Levinson 
1959, Rummel 1966] . The basic idea is to measure the force acting on the pulling or 
crucible rod and to compare it with the force required, derived from the reference shape 
of the crystal  [Bardsley 1972] . The deviation between these values is used to drive a PID 
controller manipulating the heater power. Crystal weighing is preferred, because of prob-
lems of material evaporating from the charge, the crucible, and the susceptor in case of 
crucible weighing. When RF heaters are used, additional vertical forces induced in the 
susceptor also come into play  [Hurle 1977] . 

  3.5.2.1   Control System Design 

  Operation Mode.     The structure of a weight based control system is sketched in Figure 
 3.29 . It is important to distinguish between two modes of operation  [Hurle 1977] : 

   •      Weight mode:     The weight measured by the load cell is compared to the reference value 
and the difference is used as an error signal for the PID controller. Hence, in this mode 
the controller tries to keep the weight on its reference value, meaning that a previous 
error in crystal radius later results in an error of opposite sign (see Equation  (3.16) ). 
Thus, oscillations may occur. However, this mode circumvents noise generation by 
numerical differentiation of the force raw signal, as required in differentiated weight 
mode.  

   •      Differentiated weight mode:     The force raw signal is differentiated with respect to time 
and then compared to the reference value resulting from the predefi ned shape of the 
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     Figure 3.28     Results of a Si growth run utilizing the cascaded control structure proposed 
in Figure 3.27  (Reprinted with permission from  [Gevelber 2001] , copyright (2001) Ning) .  
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crystal. If one neglects the dynamics of the meniscus, this signal is proportional to the 
crystal radius (Equation  (3.15) ), i.e. this mode tries to keep the radius on its reference 
value without being infl uenced by the past. The differentiation of the raw signal leads 
to a phase advance in the control system which tends to make the system  ‘ more stable ’ . 
On the other hand, sophisticated signal processing and fi ltering methods as well as 
high - resolution load cells are required.       

  Calculation of Reference Trajectories.     When weight - based control is used, care is 
needed when defi ning the reference shape of the crystal. As already mentioned in section 
 3.3.1.8 , infl uences of the meniscus and, in case of LEC growth, of the boron oxide layer 
have to be considered  [Bardsley 1974 - 1, Bardsley 1974 - 2, Bardsley 1977 - 1, Bardsley 
1977 - 2, Johansen 1987 - 1, Johansen 1987 - 2, Johansen 1992 - 1, Johansen 1992 - 2] . Given 
a reference trajectory for the crystal radius which is at least two times differentiable with 
respect to crystal length and trajectories for the pulling speed  v  as well as for the crucible 
speed  v  cruc , one can calculate a reference trajectory for the fi rst time derivative of the force 
using Equations  (3.32)  and  (3.46)  (or  (3.41)  in case of LEC growth). Using these equa-
tions, the complete reference meniscus dynamics (and in case of LEC growth the buoy-
ancy) is considered. As an example, in Figure  3.30  three types of reference trajectories 
of the crystal radius are sketched on the left - hand side while the corresponding trajectories 
of the derivative   M

.
   of the weight gain signal can be found on the right - hand side (solid 

lines). In order to demonstrate the infl uence of the meniscus the trajectories of the mass 
of the pure crystal are also given (dashed lines). The plot at the bottom shows a very 
simple reference trajectory for the crystal shape on the basis of cut - lines. Such a trajectory 
results in steps in the reference signal fed into the controller. This means that the manipu-
lated variable will perform a step, which may result in an unintended stimulation of the 
system. A more detailed discussion of reference trajectory planning issues is presented 
by Satunkin and Rossolenko in  [Satunkin 1986 - 2] .     
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     Figure 3.29     Weight - based PID control scheme utilizing heater power for diameter 
control.  
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  3.5.2.2   Problems Resulting from Anomalous Behaviour 

 The most crucial part of this technique is the well - known so - called  anomalous behaviour  
of the elementary and III – V compound semiconductors; see section  3.1.4 . Using Cz 
growth as an example, the topic is addressed in this section in a little bit more detail, 
since it fundamentally limits the performance of the weight - based control approach. 

 Qualitatively speaking, the reason why, for example, a decrease in the differential 
weight gain signal does not necessarily refl ect a decrease in crystal radius is that an 
increasing crystal diameter fi rst results in a decrease of the meniscus height (see Figure 
 3.2 , top right). Since for most semiconducting materials the density of the melt is larger 
than the density of the solid, a decreasing meniscus volume makes the differential weight 
gain signal decrease at fi rst although the crystal diameter is increasing (see Figure  3.2 , 
bottom right). Furthermore, for materials which do not completely wet their solids, i.e. 
  α   0   ≠  0, an increase in crystal diameter (  α   c     >    0) leads to a reduction of the infl uence of 
surface tension acting on the crystal (its vertical component is proportional to cos(  α   0    +     α   c ); 
see Equation  (3.20) ), resulting in similarly incorrect information. 
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     Figure 3.30     Left: Plots of different crystal shapes (solid lines: radius  r  c , dashed lines: 
slope angle   α   c ). Right: Corresponding trajectories of the fi rst time derivative of the weight 
gain signal (solid line) and of the fi rst time derivative of the crystal mass (dashed line). Cz 
growth without boron oxide.  
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 Such behaviour is well known in control theory and will now be analysed. More 
detailed discussions can also be found in  [Bardsley 1977 - 1, Gevelber 1988, Johansen 
1992 - 1, Satunkin 1990] . 

 For this purpose, Equation  (3.46)  describing the dynamics of the force is recalled:

    � � �F gr v c r r c rrCz c s c Cz c c c Cz c c c= + ( ) + ( )( )π ρ α α αα
2 , , ., ,     (3.77)   

 If  v  cruc    =    −   H
.
   m , we obtain from Equation  (3.14) 

    v v hc = − �.     (3.78)   

 Assuming only small perturbations in cylindrical growth (i.e.   h
.
      ≈    0), Equation  (3.17)  can 

be rewritten as   r.   c    =    v α   c , the time derivative of which is

    �� �r vc c= α .     (3.79)   

 Inserting Equations  (3.78)  and  (3.79)  into  (3.77)  while using  (3.19)  for   h
.
  , we obtain

    � �F gr v c r
h

r
r

v
c rrCz c s Cz c c s

c
c Cz c c= + ( ) −

∂
∂

⎛
⎝⎜

⎞
⎠⎟ + ( )π 2 ,

1
,ρ α ρ αα, , −−

∂
∂

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

ρ
αs

c
c

h
r��  

which can be rewritten as

    � � ��F g r v r r
v

r rCz l c
s

l
c c c c c c= + ( ) + ( )⎡

⎣⎢
⎤
⎦⎥

π ρ ρ
ρ

φ α ψ α2 ,
1

,     (3.80)  

with

    φ α ρ
ρ

α
α

r
h

r

h

r

a

rr

c c
s

l c c c c c
c, 1

2

,

2

2 0( ) = −⎛
⎝⎜

⎞
⎠⎟

∂
∂

+ + +( )
( )

cos Θ     (3.81)  

    ψ α ρ
ρ α

α
α

r
h a

rr

c c
s

l c c c c
c, 1 .

,

2

0( ) = −⎛
⎝⎜

⎞
⎠⎟

∂
∂

− +( )
( )

sin Θ     (3.82)   

 Linearizing Equation  (3.80)  around some setpoint (  rc
0 ,   α c
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 In this equation   δ r  c ,   δ  r.   c  and   δ  r̈   c  denote the deviation of the radius and its two time deriva-
tives from the setpoint, respectively. Now it is worth defi ning the normalized weight error 
 E F   as
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 Using  (3.84)  and assuming that initial deviations   δ r  c ,   δ  r.   c  are zero, the Laplace transform 
of Equation  (3.83)  reads
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with the complex frequency  s  and the Laplace transformed variables   E   *    :=     L  { E F  } and 
  R L L* := −{ } = { }r r rc c c

0 δ . Thus, one can write the transfer function describing the 
response of the fi rst time derivative of the normalized weight error with respect to the 
radius as follows:
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 In general, a transfer function  G ( s ) is a rational function
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consisting of two polynomials  N ( s ) and  D ( s ), both in the complex frequency  s . The roots 
of the numerator  N ( s ) are called  zeros  and the roots of the denominator  D ( s ) are called 
 poles . The values of these roots determine dynamic characteristics of the system such as 
rise time, overshooting and settling time. For example, if one of the poles has a positive 
real part, i.e. it lies in the RHP of the complex  s  - domain, the system is unstable. If there 
are conjugate complex poles with negative real parts, the system tends to damped oscil-
lations. A zero with negative real part which is close to a complex pole pair with negative 
real part will increase overshooting, and so on  [Franklin 2002 - 1] . Things become consid-
erably more complicated if a zero with positive real part occurs, i.e. lying in the RHP of 
the complex  s  - domain. The effect of an RHP zero is that the initial response of such a 
system is in the opposite direction to the fi nal steady state (which can be clearly seen in 
Figure  3.2 , bottom right, solid line). Such systems are called non - minimum - phase systems 
or  ‘ systems containing an all pass ’ . 

 Unfortunately, the system under consideration belongs to this class  [Gevelber 1988, 
Johansen 1992 - 1] , as will be shown now in addition to the simulation results already 
presented in Figures  3.2  and  3.13 . The transfer function  (3.86)  has two zeros:
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 Now, it can be clearly seen that, if   η   is negative, one of these zeros is positive, i.e. it lies 
in the RHP. Indeed, inspecting the coeffi cients   γ   and   η   one comes to the conclusion that 
their signs depend on the signs of   φ  (  rc

0,   αc
0) and   ψ  (  rc

0,   αc
0). These functions have been 

intensively studied, for example, by  [Johansen 1987 - 2] . He concludes that   φ  (  rc
0,   αc

0 ) is 
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always positive while the sign of   ψ  (  rc
0,   αc

0) is always negative if   ρ   1     >      ρ   s  and   α   0     ≠    0. Thus, 
for such materials, the anomalous behaviour is inherent. This has also been shown 
experimentally by Hurle  et al.   [Bardsley 1974 - 1, Hurle 1986]  and by Bardsley  [Bardsley 
1977 - 1]  who discusses the differential equation  (3.83)  in the time domain (instead 
of the Laplace domain as in this chapter). The consequence of this observation is that 
performance of the control system proposed in this section is fundamentally limited 
depending on the frequency of the RHP zero  [Gevelber 1988] . Qualitatively speaking, 
the reason for this limitation is the fact that the controller  ‘ is only allowed to respond 
carefully ’  to any sort of perturbation, since it could be of opposite direction and 
not indicating what really goes on at the interface. For example, if the radius of the 
crystal increases the controller would have to increase heater power in order to counteract 
this perturbation (i.e. the parameters  K  P ,  K  I ,  K  D  of the controller  (3.2)  must be 
chosen positive). However, what is fi rst detected in this case is a decrease of the 
differentiated weight gain signal leading the controller to decrease heater power, thus 
countenancing the increase of the crystal radius. From a system theoretic point of view 
the problem of RHP zeros is the fact that they cannot be compensated by a pole in the 
corresponding controller since this pole would have to lie in the RHP, i.e. it would be 
unstable. 

 The strength of the effect depends on several factors discussed in detail in  [Bardsley 
1977 - 1] . The growth rate especially is of great importance. Roughly speaking, we can 
sum up by saying that the lower the pulling speed, the stronger the effect.  

  3.5.2.3   Improvements and Optimizations 

 In this section some approaches that attempt to compensate for the problems mentioned 
above are outlined. 

  Prediction of Anomalous Behaviour.      [Bardsley 1977 - 2]  presented a method based on 
estimating the anomalous component of the measured weight gain signal and subtracted 
it from the signal. The estimation is done using a linear model calculating the radius 
change induced by changes in heater power. This has been shown experimentally to work 
for some specifi c conditions, but no analysis was presented to show whether it can be 
universally implemented and with what performance implications. Specifi cally, the fun-
damental limitation posed by the RHP zero in terms of the achievable control system 
performance must be respected, particularly in terms of limitations to closed - loop speed. 
In addition, the approach presented by Bardsley  et al.  requires knowledge of a suffi ciently 
precise model of the process, including thermal conditions, and there will be signifi cant 
problems if this model is not accurate enough.  

  Further Optimization.     Besides the RHP zero problem, a challenging task in this control 
approach is the determination of the parameters of the PID controller. Most often this is 
done by trial and error. However, there are some interesting approaches that attempt to 
determine optimal parameters of the PID controller on the basis of the model knowledge 
available.  [Satunkin 1986 - 1, Satunkin 1990]  propose an approach based on a cost func-
tional for adjusting parameters in a single - loop as well as in a multi - loop control system, 
using heater power and pulling speed as manipulated variables. In  [Satunkin 1990] , the 
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same author presents a modelling approach focusing on inaccuracies of the weight sensor 
signal and the consideration of these in the control system.  

  Parameter Scheduling.     As already mentioned, the dynamic characteristics of the 
process change during crystal growth. As a consequence, parameters of the PID controller 
determined for one setpoint may not produce acceptable results as the process proceeds. 
A strategy to overcome this problem is to change the parameters at suitable intervals. 
This strategy is commonly known as  parameter  or  gain scheduling  in the fi eld of adaptive 
control  [ Å str ö m 1994, Warwick 1988] .     

  3.6   Geometry - Based Nonlinear Control Design 

 After the discussion of requirements and objectives for control of Cz growth in sections 
 3.1  and  3.2  and the problems arising when using conventional approaches in section  3.5 , 
in the present section an approach for  nonlinear  model - based control of the Cz process 
is given. Such an approach may be useful if the approaches presented in the previous 
section do not provide the performance required. Usually, in that case the alternative 
would be a completely model - based controller as proposed in section  3.1.6 . However, if 
the thermal parameters included in the underlying model of such a controller are not 
known with suffi cient accuracy, or the assumptions during modelling of the thermal part 
are not fulfi lled, such an approach may also fail. The approach derived here presents a 
compromise between both approaches, i.e. it tries to overcome the limitations of conven-
tional approaches, while avoiding complete modelling of the thermal system. The useful-
ness of the approach is proven by several experimental results from growth of GaAs and 
InP crystals. 

  3.6.1   Basic Idea 

 Since one of the objectives is to have a control system which (i) is robust with respect to 
parameter uncertainties, (ii) can be parametrized easily, and (iii) need not be completely 
reparametrized when plant setup is changed (e.g. in the laboratory), a model - based 
approach is chosen. Now, the central idea in deriving the model - based controller is to 
focus only on the geometrical aspects of the growth system, avoiding explicit modelling 
of the thermal part (similar to the approach presented by Voronkov, see section  3.2.5 ). 
Such an approach is reasonable because of the diffi culties arising in modelling the thermal 
part with the precision required for feedback control (see section  3.1.5 ). At least a time -
 dependent and spatially two - dimensional model would be required. Consequently, for this 
part, no model is used in the control system. However, the hydromechanical model of the 
system has been thoroughly discussed in the literature, its parameters are known with 
suffi cient accuracy, and its structure is suffi ciently precise. It can, therefore, be used for 
model - based control. Such an approach is possible due to a parametrization of the model 
in crystal length instead of time (details on this reparametrization will be discussed in the 
next section). 
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 The controller based on this partial model does not cover the full process dynamics, 
especially the dynamics of the thermal part. Thus, it is combined with conventional PI 
controllers acting as a  ‘ substitute ’  for the missing thermal model. Anyway, a large amount 
of model knowledge is introduced into the control system by the model - based controller. 
Since this regime operates directly on the crystal radius and its derivatives it is not affected 
by the RHP zero problem. Moreover, the time needed for fi nding appropriate controller 
parameters is reduced. In doing so, the tracking of crystal diameter and growth rate tra-
jectories is accomplished. 

 It must be pointed out that for the sake of clarity, in the fi rst instance, in this section 
it is assumed that crystal radius, crystal slope angle, and growth rate are available (meas-
ured) in the control system. Usually this is not the case. The reconstruction of these 
quantities from the measured variable (e.g. the force acting on a load cell) by means of 
a nonlinear observer is the subject of section  3.7 .  

  3.6.2   Parametrization of the Hydromechanical – Geometrical Model in 
Crystal Length 

 As already explained, the control approach presented in this section is based on the 
hydromechanical – geometrical model only. Such a model has been presented in section 
 3.3.1 , Equations  (3.56) – (3.63) . Using this model and considering the relation
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with vc \neq 0 all equations of the hydromechanical – geometrical model  (3.56) – (3.63)  can 
be divided by the growth rate  v  c    =   d l /d t . As a result we obtain a model which is para-
metrized in crystal length instead of time. In addition, the input can be defi ned as

    v
v v

v
z :=

− cruc

c

.     (3.88)   

 The quantity  v  z  is called the  lift ratio . 
 By this procedure the thermal part has been  ‘ hidden ’  for control system design, i.e. it 

is implicitely included. The exact meaning and importance of this variable will be dis-
cussed in section  3.6.3.2 . 

 The length - parametrized model reads:
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 Parametrizing the model in terms of length still requires knowledge of the growth rate  v  c . 
This value is needed when calculating the manipulated variables,

    v v v v= +z c cruc,  

and when integrating one of the equations in  (3.89) – (3.95) . This will be detailed in section 
 3.7.2.4 . It must be pointed out again that the thermal model is  ‘ hidden ’  only for controller 
and observer design. The thermal dynamics of the system still play the driving role in the 
system. Roughly speaking, the dynamics of the thermal system is expressed by the growth 
rate  v  c .  

  3.6.3   Flatness and Model - Based Feedback Control of the 
Length - Parametrized Model 

 In this section the core of the proposed control system, the model - based controller, is 
derived. The design of this controller is based on a special system property called  fl atness . 
The hydromechanical – geometrical model belongs to the class of  fl at systems . Roughly 
speaking, the fl atness of a model (consisting of a set of system variables and a set of 
ordinary differential equations they satisfy) means that there is a set  y  of variables (called 
a  fl at output ) for which  independent  trajectories can be defi ned. These trajectories can be 
defi ned in such a way that all other system variables can be calculated  without  the need 
to solve a differential equation. This will be shown in the following sections (a formal 
defi nition can be found in  [Rothfuss 1996]  or, more generally, in  [Fliess 1995] ). 

 Furthermore the importance of the lift ratio  v  z  is discussed, and using the fl atness 
property it is shown that both crystal radius and growth rate can be controlled independ-
ently. The composition of the overall control system is discussed in the following 
section  3.6.4 . 

  3.6.3.1   Flatness of the Length - Parametrized Hydromechanical – Geometrical Model 

 The equations in the subsystem  (3.89) – (3.90)  are required for control of the crystal radius 
using  v  z  as the manipulated variable. This system is fl at and a fl at output is  y    =    r  c . This 
can be seen as follows: 

   •      All remaining system variables in  (3.89) – (3.90)  can be expressed by  r  c  and its deriva-
tives: By defi ning a reference trajectory for the crystal radius  r  c  and its derivatives with 
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respect to length up to the second order one can calculate a trajectory for   α   c  and its 
derivatives from Equation  (3.89)  (solved for   α   c ) without integration. Then Equation 
 (3.90) , solved for  v  z , can be used to calculate the lifting ratio  v  z , again without 
integration.  

   •      Since the fl at output  y    =    r  c  consists of one component only, it is trivial that a trajectory 
for  r  c  can be chosen freely.    

 The fl atness property forms the basis of the controller design for the lumped - parameter 
model derived in the previous section. In this way, it is possible to integrate a lot of model 
knowledge into the control algorithm, while avoiding problems arising from modelling 
of the thermal part of the system. However, when the thermal part of the system is 
neglected it is not possible to manipulate the interaction between both parts. Thus, the 
strategy is to apply controllers of fi xed structure (like PI controllers) where a model - based 
control of the thermal part would be required. With a judicious combination of model -
 based and PI controllers it is possible to control either growth rate and crystal shape alone 
or both together.  

  3.6.3.2   Important Role of the Lift Ratio  v  z  

 A given value for the lift ratio defi nes the ratio between pulling speed and growth 
rate required for the crystal to grow according to the reference trajectory. From this 
point of view it makes no difference whether the crystal shape is controlled via 
pulling speed (i.e. from the mechanical side) or via growth rate (i.e. from the thermal 
side). This is the essential idea of the control system proposed in this section. In particular, 
it has to be kept in mind that during cylindrical growth (i.e.   α   c    =   0,   ′ =αc 0) the radius 
will not change as long as the lift ratio  v  z  is kept constant (see Equation  (3.90) ), i.e. in 
the length - parametrized system  v z   is the variable solely responsible for manipulating the 
system. 

 The model - based controller derived in the next section will calculate values for  v z   
depending on the deviation of the crystal radius and the slope angle from their reference 
values. The values of  v z   are calculated in such a way that they match the system dynamics 
under the current growth conditions. Additionally, they refl ect a predefi ned behaviour of 
the error, i.e. the dynamics of its degradation. Since it is not relevant whether the trajec-
tory of  v z   is realized by manipulating the pulling speed or the growth rate (see Equation 
 (3.88) ) one is free to choose which variable is manipulated in order to adjust the desired 
lift ratio  v z   calculated by the model - based controller. Indeed, for some materials the best 
manipulated variable for adjusting a desired value of  v z   is the pulling speed  v . For other 
materials the heater power or the heater temperature is better suited. This is discussed in 
section  3.6.4 . 

 A simulation example is shown in Figure  3.31 . The plot on the right shows the trajec-
tory of  v  z  (solid line) which must be realized in order to make the crystal grow as sketched 
by the solid line in the left plot. At this point it is worth mentioning that in steady parts 
(cylindrical growth), generally  v z      <    1. This can be illustrated as follows: If the crucible 
translation rate  v  cruc  is equal to zero then  v  c     >     v  because of the falling melt level. If  v  cruc  
is chosen in such a way that the interface position is fi xed within the growth plant, then 
 v    =    v  c  and, thus, again  v z      <    1.    



174 Crystal Growth Processes Based on Capillarity

  3.6.3.3   Flatness - Based Controller 

 In this section a fl atness - based controller is derived, making the crystal radius follow a 
given reference trajectory. In order to do so we fi rst defi ne the tracking error 
 r  c     −     r  c,ref    =    y     −     y  ref . In what follows the controller is designed in such a way that the track-
ing error satisfi es the linear second - order differential equation

    ′′− ′′( ) + ′ − ′( ) + −( ) =r r r r r rc c ref c c ref c c,ref, , ,ε ε1 0 0     (3.96)  

with  ε  0 ,  ε  1     ∈      R    >    0. The values of  r  c,ref ,   ′rc ref, , and   ′′rc ref,  are defi ned by the reference trajec-
tory of the crystal radius. The observer calculates estimated values for  r  c  and   ′rc . If we 
want the dynamics of the tracking error to satisfy Equation  (3.96) , we  must  have

    ′′= ′′ − ′ − ′( ) − −( )r r r r r rc c ref c c ref c c ref, , ,ε ε1 0 .     (3.97)   

 This can be achieved by a proper choice of  v z  . 
 By defi ning a new input   ϑ := ′′rc  with   ′′rc  according to  (3.97)  and inserting this input in 

the equation used for calculation of  v z   (see Equation  (3.90) ) we obtain

    v
c r r

r
c r rz = ′( )( )

+ ′( )
+ ′( )( )ϑ α

α
n c c

c

z c c
, arctan

arctan
1

, .
2     (3.98)   

 This equation determines  v z   in such a way that the tracking error satisfi es the given error 
dynamics  (3.96) . 
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     Figure 3.31     Example of trajectory planning for the length - parametrized hydromechanical –
 geometrical model of the Cz process. Left: trajectories of crystal radius (solid line) and 
slope angle (dashed line). Right: required trajectory of the lift ratio  v  z  (solid line) as 
calculated from subsystem  (3.89) – (3.90)  and Equation  (3.88) . Furthermore, the trajectory 
of the growth rate  v  c  (dashed line) is presented, which has to be realized by manipulating 
the heater power or the heater temperature if the pulling speed is kept constant at 
 v    =   12   mm/h and if the crystal is intended to have the form shown on the left (see 
Equation  (3.88) )  (Reprinted with permission from  [Winkler 2010 - 1] , copyright (2010) 
Elsevier Ltd) .  
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 The coeffi cients  ε  0 ,  ε  1  in Equation  (3.96)  are the controller parameters, the real inputs 
are  r  c ,   ′rc , and the desired inputs are  r  c,ref ,   ′rc ref, ,   ′′rc ref, . The coeffi cients  ε  0 ,  ε  1  defi ne the 
dynamical behaviour of the tracking error, i.e. the way the error converges to zero. A 
simulation example is given in Figure  3.32  in which two sets of coeffi cients  ε  0 ,  ε  1  have 
been chosen in order to demonstrate the impact of their choice: The fi rst parameter set 
results in a very smooth trajectory of the radius and its derivatives towards their reference 
trajectories. The second one leads to a quite fast transfer towards the reference trajectories, 
but with some overshooting in the derivatives.    

  3.6.3.4   Possibility of Independent Control of Crystal Radius and Growth Rate 

 The fl atness property can be used to show that crystal radius and growth rate can be 
controlled independently, i.e. it is reasonable to derive a control system for independent 
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     Figure 3.32     Simulation of fl atness - based feedback control for different parameter sets of 
the fl atness - based controller. Trajectories of real and reference values of the radius (top 
left, initial error 2   mm), of the slope angle (top right, initial error 40 ° ) and of the derivative 
of the slope angle with respect to length (bottom left). The trajectories of the lift ratio  v  z  
can be found on the bottom right fi gure. (Eigenvalues of the error system  (3.96) : 
parameter set 1:  p 1     =    p 2     =    − 400   m  − 1  resulting in   ε  0     =   0.16   mm  − 2 ,   ε  1     =   0.8   mm  − 1  (solid lines), 
parameter set 2:  p 1     =    − 1000   m  − 1    +   j1000   m  − 1 ,  p 2     =    − 1000   m  − 1     −    j1000   m  − 1  resulting in 
  ε  0     =   2.0   mm  − 2 ,   ε  1     =   2.0   mm  − 1 )  (Reprinted with permission from  [Winkler 2010 - 1] , copyright 
(2010) Elsevier Ltd) .  
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control of these quantities. This matter is addressed in the following using the fact that 
the time - parametrized hydromechanical – geometrical model is fl at, too. 

 Collecting the system equations required for the controller design in that case, we have:

    r
V

v
c

s

c

=
�

π
    (3.99)  

    αc
c

c

= ⎛
⎝⎜

⎞
⎠⎟arctan

�r
v

    (3.100)  

    h h r= ( )	
c c, α     (3.101)  

    V r h a rmen c c 0 c= + +( )π π2 2 cos α α     (3.102)  

    H
M V V

r
m

0 s s l men

l a

=
− −ρ ρ

ρπ 2     (3.103)  

    v v h Hnet c m= + +� � .     (3.104)   

 Here, the function   h̃    : (0,  r  a )    ×    ( −  π /2,  π /2)    →      R +  represents an arbitrary analytical formula 
approximating the meniscus height  h  depending on crystal radius  r  c  and crystal slope 
angle   α   c  (see Chapter  8 ). The difference  v     −     v  cruc  between crystal pulling speed and cru-
cible translation rate is denoted by  v  net . At this point, it is worth mentioning that Equation 
 (3.99)  results from Equation  (3.15)  and Equation  (3.100)  is obtained from Equation  (3.17)  
solving for   α   c . Furthermore, one gets  (3.28)  for calculation of   �αc by inserting Equations 
 (3.101) – (3.103)  into Equation  (3.104) . 

 The system  (3.99) – (3.104)  consists of six equations involving the eight system varia-
bles  r  c ,   α   c ,  V  s ,  h ,  V  men ,  H  m ,  v  c , and  v  net . Thus, one has two degrees of freedom and a fl at 
output (if it exists) must consist of two components. For example,  y    =   ( V  s ,  v  c ) forms one 
possible fl at output. Inspecting  (3.99) – (3.104)  one may observe that: 

   •      All remaining system variables can be expressed by  V  s  and  v  c  and their derivatives, i.e. 
the system can be completely parametrized by trajectories of  V  s  and  v  c . This can be 
seen as follows: given trajectories for  V  s ,  v  c , and their derivatives (  V

.
   s ,  … ), and 

(  V
.
   c ,  … ) one can immediately calculate  r  c  (and its derivatives   r.   c ,  … ) from Equation 

 (3.99)  without integration. Then, using Equation  (3.100) ,   α   c  can be calculated. The 
trajectories obtained for  r  c  and   α   c  can be used in the right hand side of Equation  (3.101)  
in order to obtain a trajectory for  h . The procedure can be continued until the last equa-
tion  (3.104)  is reached  –  without doing any integration.  

   •      There does not exist any differential equation in  y    =   ( V  s ,  v  c ) only, i.e. the trajectories 
for the components of  y  can be chosen independently.    

 One conclusion resulting from this observation is the fact that the crystal shape and the 
growth rate can indeed be controlled independently.   

  3.6.4   Control of Radius and Growth Rate 

 The fl atness - based controller presented in section  3.6.3.3  calculates a desired value for 
the lift ratio  v z   as the ratio between pulling speed and growth rate. It has to be kept in 
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mind that  v z   is the only manipulated variable of the length - parametrized system. 
Furthermore, in section  3.6.3.4  it has been shown that the radius and the growth rate can 
be controlled independently. The present section is concerned with the realization of the 
calculated  desired  value of  v z   in the real process. Assuming that the  real  value of  v z   is 
available in the control system, there are two options: 

   •      The difference between the desired value and the real value of  v z   is used as an input of 
a controller manipulating the pulling speed  v .  

   •      The difference between the desired value and the real value of  v z   is used as an input 
for a controller manipulating the heater power or heater temperature.    

 Depending on which manipulated variable is associated to the lift ratio  v z  , the remaining 
one can be used to control the growth rate. 

 As this approach omits modelling of the thermal part, controllers manipulating the 
system via thermal mechanisms cannot be model - based. Here, conventional PI controllers 
are used. One should keep in mind that, unlike conventional PI control, this approach 
introduces a large amount of model knowledge into the overall control system by model -
 based calculation of the lift ratio  v z  . This is demonstrated by the following two examples. 
Note that here, for the sake of clarity, in the fi rst instance only descriptive explanations 
of the operating principles are given. In what follows it is assumed that  r  c ,   ′rc ,  v  c , and  v  z  
are available (see section  3.7.2 ). 

  3.6.4.1   Case 1: InP 

 The fi rst approach may be illustrated with simultaneous control of shape and growth rate 
for InP. Experimental open - loop results show that changes in pulling speed have only a 
very small effect on the radius; see Figure  3.33 . Keeping in mind what has already been 
discussed in section  3.6.3.2 , one can conclude that the missing radius change means that 
the lift ratio  v  z  seems to remain constant, despite the variation in pulling speed. From this 
it follows that pulling speed changes are directly transformed into changes of the growth 
rate of nearly the same amount (see Equation  (3.88) ).   

 This behaviour of InP allows us to use the pulling speed for tracking the growth rate 
by means of a fi rst PI controller. The fl atness - based controller calculates the lift ratio  v z   
required to make the crystal shape follow its reference trajectory. The difference between 
this desired value of  v z   and the real value of  v z   is fed into a second PI controller manipu-
lating the temperature (or power). 

 In order to understand the working principle, especially the decoupling between both 
loops, the following explanations are given. For this purpose the control structure in 
Figure  3.34  is simplifi ed for better understanding, as follows:   

  Loop I:    Growth rate     →     PI( v )          
  Loop II:    Crystal shape     →     FBC( v z  )     →     PI( T ).  

 Here  ‘ PI ’  represents a PI controller and  ‘ FBC ’  a fl atness - based controller, and the vari-
ables in parenthesis represent the quantities the values of which are manipulated by the 
corresponding controller. 

 It can be argued that the radius loop is decoupled from the growth rate loop since a 
change in pulling speed does not affect the radius (as discussed above). On the other hand, 



178 Crystal Growth Processes Based on Capillarity

a change in heater temperature will change the growth rate (see Equation  (3.65) ). This is 
immediately detected by the fi rst control loop, resulting in a change in the pulling speed 
in order to compensate for the initiated growth rate change. It follows that the lift ratio 
 v z   will change in such a way that the radius change intended by the second loop occurs 
while the growth rate is kept constant. The lift ratio  v z   remains at the value demanded by 
the second loop despite the changes introduced by the fi rst loop (Equation  (3.88) ). In a 
way one can say that the change in heater temperature is transformed into a change in 
pulling speed. 

 An example of such a system is sketched in Figure  3.34 . Experimental results acquired 
during growth of InP by the LEC process are shown in Figure  3.35 . Here one can see 
that after activating the control system the crystal growth rate (top right) is perfectly 
tracked using the pulling speed (bottom left). The desired increase of the growth rate in 
hours 5 – 7 of the experiment leads to greater cooling (bottom right, indicated by the 
exclamation marks). This effect is a direct consequence of the increasing amount of latent 
heat produced by the increasing growth rate (see Equation  (3.65) ).    

  3.6.4.2   Case 2:  G  a  A  s  

 The second approach is illustrated through simultaneous control of shape and growth rate 
for GaAs. In this case it can be shown experimentally that the crystal radius reacts quite 
quickly to changes in the pulling speed, as long as the crystal is not grown at too low 
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     Figure 3.33     Pulling speed step response experiment during growth of a 2 ″  InP crystal by 
the LEC process. The crystal has been grown without automatic diameter control using 
manual adjustment of the heater temperature. Steps in pulling speed (dashed line) have 
been applied at several stages of the process. Temperature adjustment has not been 
changed in the time after the steps. However, even large steps in pulling speed did not 
signifi cantly infl uence the crystal radius (solid line)  (Reprinted with permission from 
 [Winkler 2010 - 1] , copyright (2010) Elsevier Ltd) .  
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     Figure 3.34     Sketch of the structure of the two - loop control system with pulling speed and heater 
temperature as control inputs. The observer for the reconstruction of radius, slope angle and growth 
rate is omitted here for simplifi cation  (Reprinted with permission from  [Winkler 2010 - 1] , copyright 
(2010) Elsevier Ltd) .  
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pulling speeds. Thus, as explained below, it is quite reasonable to interchange the outputs 
of the PI controllers in comparison to Figure  3.34 : the PI controller responsible for track-
ing the lift ratio  v  z  now manipulates the pulling speed (instead of temperature in case of 
InP), and the PI controller responsible for tracking the growth rate  v  c  manipulates the 
heater temperature. 

  Loop I:    Growth rate     →     PI( T )          
  Loop II:    Crystal shape     →     FBC( v z  )     →     PI( v ).  

 Now, the working principle and the decoupling between both loops can again be explained 
in a rather descriptive way. A change of pulling speed initiated by the PI controller of 
the second loop changes the crystal radius (as has been shown experimentally). This 
means that the lift ratio  v  z  changes (see discussion in section  3.6.3.2 ); consequently, the 
growth rate remains nearly constant. Hence, in some sense the growth rate loop is (tem-
porarily) decoupled from the radius loop. The radius change will take place as required. 
However, after some time the growth rate will change, too, because the radius has been 
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     Figure 3.35     Simultaneous control of radius (top left) and growth rate (top right) for 
growth of a 2 ″  InP crystal by the LEC process. Eigenvalues of fl atness based controller: 
 − 400   m  − 1 , − 400   m  − 1 , parameters of PI controller 1 ( v z      →     T ):  K  P    =    − 3   K,  K  I    =    − 0.3   K/min), 
parameters of PI controller 2 ( v  c     →     v ):  K  P    =    − 0.2,  K  I    =    − 0.35   min  − 1   (Reprinted with 
permission from  [Winkler 2010 - 1] , copyright (2010)) .  
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changed; see Equation  (3.32) . Then the heater driven by the PI controller of the fi rst loop 
will change the temperature, keeping the growth rate at its desired value, Equation  (3.65) . 
Thus,  v  z  is kept at the value desired by the second loop, too. 

 GaAs crystals grown by the LEC method using this approach are shown in Figure  3.36 . 
Here the crystal radius is quite perfectly tracked along its reference trajectory.    

  3.6.4.3   Notes on Robustness 

 Looking at the results obtained during growth of the GaAs and InP crystals presented in 
the previous section, the question arises how robust the approach is. This is of particularly 
great interest since the model assumes a fl at interface and because the thermal 
part of the system is not  explicitly  included in the model - based controller (however, 
remember that it is  implicitly  included via the lift ratio  v z  ). These very important 
questions are strongly connected with the reconstruction of quantities that are not directly 
measured  –  radius, slope angle, and growth rate. This subject is discussed in detail in 
section  3.7.2  dealing with nonlinear observer design.    

  3.7   Advanced Techniques 

 This section presents some advanced techniques which may be useful in control design 
for the Cz growth process. 

     Figure 3.36     GaAs crystals grown with two - loop control according to the structure 
sketched in Figure 3.34 but with transposed manipulated variables. Parameters of the 
fl atness - based controller (eigenvalues of error dynamics  (3.96) ):  − 400   m  − 1 ,  − 400   m  − 1 . 
PI controller 1 ( v z      →     v ):  K  P    =    − 5   mm   h  − 1 ,  K  I    =    − 3   mm   h  − 1    min     − 1 . PI controller 2 ( v  c     →     T ): 
 K  P    =   0.12   K   mm  − 1    h,  K  I    =   0.06   K   mm  − 1    h   min     − 1   . Desired growth rate: 15   mm   h  − 1  (Reprinted 
with permission from  [Winkler 2010 - 1] , copyright (2009) Elsevier Ltd) .  
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 The fi rst two subsections deal with the reconstruction of quantities that are not directly 
measured by means of so - called observers. Such observers are especially useful if the 
quantities needed in the control system are not available in the process by measurements. 
Two different approaches in observer design are presented: a linear one based on a linear 
state space model and a nonlinear one based on the nonlinear hydromechanical – geometrical 
model. The basic idea of an observer has already been presented in section  3.2.7 . 

 The third section addresses some important considerations for a more advanced control 
system. 

  3.7.1   Linear Observer Design 

 In this section a linear time - invariant Luenberger observer  [Luenberger 1964]  for recon-
struction of the crystal radius from the weighing signal is derived. As a starting point, a 
linear approximation of the system behaviour can be used. For this purpose the nonlinear 
equations required for observer design (which have already been presented in section  3.3 ) 
need to be linearized around some operating (or steady state) values, i.e. the equations 
are expanded to a Taylor series which is truncated at the second order (as in section  3.3.3 ). 
For example, Equation  (3.17)  describing the radius dynamics,

    �r v f vc c c c c= ( ) = ( )tan α α, ,  

can be approximated by
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around some fi xed values   αc
0,   vc

0. With new coordinates   δ α� �r r vc c c
0

c: tan= − ( )0 , 
  δv v vc c c= − 0, and   δα α αc c c:= − 0  one fi nally obtains

    δ δ δα�r a v ac c c= +11 12 .     (3.106)   

 In the same way one can continue with the remaining equations needed for describing 
the process dynamics. This has been done by  [Satunkin 1986 - 1] , for example. The linear 
model he derived is

   �x t Ax t Bu t( ) = ( ) + ( )     (3.107)  

   y t c x tT( ) = ( ),     (3.108)  

where  x     ∈      R 3  denotes the state vector (radius, meniscus height and melt height),  u     ∈      R 2  the 
input (pulling speed and temperature), and  y     ∈      R the force acting on the load cell. 
Furthermore, one has the 3  ×  3 system matrix  A , the 3  ×  2 control matrix  B  and the 1  ×  3 
output matrix  c  T . One has to keep in mind that the values of the state space vector  x , the 
input vector  u  and the output  y  describe the deviation of the corresponding quantities from 
their operating values. 
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 Now, for a system given in the form of Equations  (3.107) – (3.108)  the standard tech-
nique for deriving a  Luenberger  identity observer  [Luenberger 1964]  can be applied. 
According to  [Luenberger 1964]  then the observer reads

   ˆ ˆ ˆ�
� ����� �����

x t Ax t Bu t H y t y t( ) = ( ) + ( ) + ( ) − ( )( )
Copy of system Corrrective injection

� ����� �����
    (3.109)  

   ˆ ˆy t c x tT( ) = ( ).     (3.110)   

 Here the hat (e.g.   x̂  ) denotes a variable the value of which is an estimate of the real value. 
The corrective injection  H (  ŷ  ( t )    −     y ( t )) is introduced to ensure convergence of the observa-
tion error; see section  3.2.7 . In the linear time - invariant case the values of the 3  ×  1 matrix 
 H  must be chosen in such a way that for  t     →     ∞  the estimation error   x̃      =     x̂      −     x  with

    	� 	x t A Hc x tT( ) = −( ) ( )     (3.111)  

tends to zero. This is exactly the case if the roots  s  1 ,  s  2 ,  s  3  of the characteristic polynomial 
det( sI     −     A    +    H  c   T  )   =   0 have negative real parts. System  (3.111)  is obtained by subtracting 
 (3.107)  from  (3.109)  and inserting  (3.108)  and  (3.110) . Here a key point is the fact that 
all elements of the matrices  A ,  c , and  H  are constant. This means that the observer can 
only be used around a certain setpoint where the linear approximation is accurate enough. 

 In order to make the observer work properly (i.e. to assign the observer error dynamics 
as described above) the system must be  observable . Roughly speaking, the property of 
observability ensures that the initial state of the system can be reconstructed from any 
sequence of measurements of the outputs. For a given system  (3.107) – (3.108)  this can be 
proven rigorously by the Kalman observability condition  [Franklin 2002 - 2] :
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 This has been proved to hold for the Cz and LEC system in  [Satunkin 1990] .  

  3.7.2   Nonlinear Observer Design 

 The advantage of a nonlinear observer is that it refl ects the complex nonlinear dynamics 
of the process. Moreover, its use is not bound to a certain operating point, i.e. it can be 
used throughout the whole process, especially when growing the conical parts in which 
the dynamics of the process is changing greatly. Furthermore, such an approach over-
comes the problems resulting from the anomaly of the weight gain signal. However, 
design of such an observer is rather complicated. The fundamental design method of a 
nonlinear observer (specifi c to the model of Cz crystal growth which is used in this con-
tribution) is sketched in this section. Details can be found in  [Winkler 2007, Winkler 
2009 - 2] . The capability of the observer as well as thorough investigations regarding its 
robustness are illustrated using simulations and experimental results. 
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  3.7.2.1 Nonlinear Design Procedure for  C  z  Growth 

 The observer design for Cz growth without boron oxide is based on the length para-
metrized equations taken from section  3.6 . For the sake of clarity they are rewritten in a 
more genreal form using symbols  f 1 , f 2 , f 3   for the right - hand sides of the equations:

   ′ = ( ) ( ) =r f r v r rc c c c c c1 0, 0, ,α     (3.112)  

   ′ = ( ) ( ) =α α α αc c c c c cf r v2 0, 0, ,     (3.113)  

   ′ = ( ) ( ) =F f r v FCz c c c Cz3 , 0 0, ,α     (3.114)  

with initial values  r  c0 ,   α   c0  for the crystal radius and the crystal slope angle, respectively. 
Now, by setting  y  :=  F  Cz , the design procedure consists of three steps. 

  Step 1.     System  (3.112) – (3.114)  is third order. However, only the radius and the slope 
angle have to be reconstructed since the third quantity,  y , is measured. So it seems obvious 
that the observer has to be second order only. Thus, the third - order nonlinear system 
 (3.112) – (3.114)  is transformed into a nonlinear second - order system with new states  x  1 ,  x  2 :

   ′ = ( ) + ( )x f x x v f x x v1 1 1 2 1 3 1 2, , , ,z zψ     (3.115)  

   ′ = ( ) + ( )x f x x v f x x v2 2 1 2 2 3 1 2, , , ,z zψ .     (3.116)   

 Here   ψ   1 ,   ψ   2  are design parameters which, basically, can be freely chosen and need not be 
constant. The functions  f  1 ,  f  2 ,  f  3  are a result of the transition of the system  (3.112) – (3.114)  
to new coordinates. It is worth mentioning that the transition from ( r  c ,   α   c ,  y ) to ( x  1 ,  x  2 ) 
implies that  x  1  and  x  2  do not only depend on ( r  c ,   α   c ), but also on the measured variable  y  
and the design parameters   ψ   1  and   ψ   2 . For example, a transition could be defi ned as

    x r y x y1 1 1 2 2 2,: , , := + ( ) = + ( )c cφ ψ α φ ψ     (3.117)  

with appropriate functions   φ   1 ,   φ   2 . This means that from  x  1  and  x  2  the  ‘ original ’  values of 
 r  c  and   α   c  can be calculated if the values of the measured variable  y  and   ψ   1 ,   ψ   2  are known. 
For example, from  (3.117)  it follows that:

    r x y x yc c= − ( ) = − ( )1 1 1 2 2 2, .φ ψ α φ ψ, ,     (3.118)    

  Step 2.     The system  (3.115) – (3.116)  is copied and denoted as an observer which calcu-
lates estimates   x̂   1 ,   x̂   2  of the new states  x  1 ,  x  2 :

   ˆ ˆ ˆ ˆ ˆ′ = ( ) + ( )x f x x v f x x v1 1 1 2 1 3 1 2, , , ,z zψ     (3.119)  

   ˆ ˆ ˆ ˆ ˆ .′ = ( ) + ( )x f x x v f x x v2 2 1 2 2 3 1 2, , , ,z zψ     (3.120)   

 We still have to keep in mind that   x̂   1  and   x̂   2  depend on the measured variable  y  and 
parameters   ψ   1 ,   ψ   2 . Here, the parameters   ψ   1 ,   ψ   2  play the role of so - called observer gains. 
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In order to ensure that system  (3.119) – (3.120)  is an observer for  (3.115) – (3.116) , 
i.e.   x̂   1     →     x  1 ,   x̂   2     →     x  2  for  l     →     ∞ , the design parameters   ψ   1 ,   ψ   2  must be chosen 
appropriately.  

  Step 3.     In order to fi nd a calculation formula for   ψ   1 ,   ψ   2  which makes system  (3.119) –
 (3.120)  an observer for  (3.115) – (3.116) , both systems,  (3.115) – (3.116)  and  (3.119) –
 (3.120) , are linearized around the reference trajectory   l x x v� 1 1,, ,, ,ref ref z ref( )  [Fliess 1996] . 
We obtain
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 Similarly from  (3.119) – (3.120)  we obtain
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 After subtracting the linearized systems  (3.121) – (3.122)  and  (3.123) – (3.124)  from each 
other in matrix notation we obtain

    	 	
� ������ ������

′ ( ) = ( ) + ( ) ( )( ) ( )x l A l l c l x lT

O

Ψ     (3.125)  

with
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 Here  a  1,1 ,  a  1,2 ,  a  2,1 ,  a  2,2 ,  c  1  and  c  2  depend on the reference trajectories, i.e. fi nally on crystal 
length. 

 It can be seen immediately that system  (3.125)  is very similar to system  (3.111) . They 
differ in that the elements of the matrices  A  and  c  are not constant in  (3.125) , but depend 
on length. Thus, the elements of  Ψ  need not be constant in order to ensure stability of 
system  (3.125) . 

 Now, the elements of  Ψ  have to be determined. To this end, system  (3.125)  is trans-
formed into the so - called observer canonical form  [Bestle 1983] :

    	 	x l A l l c l x lT′ ( ) ( ) + ( ) ( )( ) ( )* * * * *= ,Ψ     (3.126)  

with   Ψ* l l l T( ) = ∗( ) ∗( )( )ψ ψ1 2 ) ,  c  * T  ( l )   =   (0 1),
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new coordinates (  	x1
∗,   	x2

∗) and functions   a l1
∗( ),   a l2

∗( ). Equation  (3.126)  can be rewrit-
ten as
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..     (3.127)   

 This differential equation (like Equation  (3.125) ) describes the behaviour of the estima-
tion error of the observer (in new coordinates (  	x1

∗,   	x2
∗)). If we choose the coeffi cients  ε  1 , 

 ε  0  to be constant and greater than zero, the last term in  (3.127)  vanishes and the error 
tends to zero for  l     →     ∞ . This is exactly the same idea as during model - based controller 
design in section  3.6.3.3 . The parameters  ε  1 ,  ε  0  defi ne the dynamical behaviour of the 
observer. The transformation between coordinates (  x̃   1 ,   x̃   2 ) and (  	x1

∗,   	x2
∗) and between 

observer gains  Ψ  and  Ψ  *  involves a lot of mathematics which it is not discussed here. 
Details can be found in  [Winkler 2007] . 

 One has to keep in mind that the values for  Ψ  depend on length and they are calculated 
from the reference trajectory of the radius  r  c  and its derivatives. This is due to the fact 
that systems  (3.115) – (3.116)  and  (3.119) – (3.120)  have been linearized around the refer-
ence trajectory. 

 The three steps discussed above are needed for calculation of the observer gains in 
each time - step. In the following it is shown how these values are processed within the 
observer  (3.119) – (3.120) :  
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 (i)   Values for the observer gains   ψ   1 ,   ψ   2  are calculated according to the algorithm pre-
sented above (for details see  [Winkler 2007] ). The values of the observer gains can 
be calculated in advance using the reference trajectory for crystal radius  r  c  and its 
derivatives. An example can be found in Figure  3.37 .    

  (ii)   The values of   ψ   1 ,   ψ   2 , the measured variable  y  and the input  v  z  are used to drive the 
observer

   ˆ ˆ ˆ ˆ ˆx f x x v f x x vz′ = ( ) + ( )1 1 1 2 1 3 1 2, , , ,z ψ  

   ˆ ˆ ˆ ˆ ˆx f x x v f x x vz′ = ( ) + ( )2 2 1 2 2 3 1 2, , , , .z ψ   

 Remember that   x̂   1 ,   x̂   2  depend on  y  and   ψ   1 ,   ψ   2 .  
  (iii)   Having estimates   x̂   1 ,   x̂   2  calculated by the observer, one can determine estimates   r̂   c , 

  α̂c for the crystal radius  r  c  and the slope angle   α   c  using the inverse transition  (3.118)  
discussed in step 1.    

 It is important that a suitable controller tracks the system in a neighborhood of the 
reference trajectory used for linearization in step 3 of the design procedure. Such an 
observer is called a  tracking observer   [Fliess 1996, Fliess 1997] . This condition is not 
too restrictive and will be discussed in more detail in section  3.7.2.5 . The theoretical 
background of this restriction is that the observer gains calculated in the way discussed 
above ensure that the observer converges only locally (i.e. in a neighborhood of the refer-
ence trajectory). However, nothing can be said about the size of the domain of attraction. 
Therefore, the controller has to ensure that the trajectory follows the reference suffi ciently 
closely. A necessary technical condition is that the reference trajectories comply with 
certain conditions: they have to be suffi ciently often continuously differentiable and they 
have to be exponentially bounded; see  [Fliess 1997] . For Cz growth these conditions are 
usually fulfi lled. 
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     Figure 3.37     Left: reference trajectory of crystal radius used for calculation of observer 
gains. Right: trajectory of the observer gains   ψ  1   (solid line),   ψ  2   (dashed line) resulting from 
the trajectory plotted on the left - hand side. Note the large variations of the gains due to 
the dynamics of the meniscus during growth of the shoulder. Eigenvalues for error system 
 (3.125) :  p 1     =    − 400   m  − 1 ,  p 2     =    − 600   m  − 1   (Reprinted with permission from  [Winkler 2010 - 2] , 
copyright (2009) Elsevier Ltd) .  
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 If the matrix O in  (3.125)  is singular (i.e. not invertible) at a certain length  l , calculation 
of   ψ   1 ( l ) and   ψ   2 ( l ) is not possible at that length. This means that reconstruction of the 
radius and the slope angle fails at this point. However, the elements of the matrix O 
depend on the reference trajectory only, and it is possible to plan these trajectories in 
advance. In doing so one can check in advance if reconstruction is possible for a complete 
growth run (i.e. if the the matrix O is regular for all  l ).   

  3.7.2.2   Nonlinear Design Procedure for  LEC  Growth 

 In LEC growth one has to take into account the dynamics of the boron oxide layer as 
well as the time delay introduced by the emerging crystal. In principle the same design 
method as illustrated in section  3.7.2.1  can be applied. 

 For this purpose one has to exchange Equation  (3.114)  in system  (3.112) – (3.114)  by 
Equation  (3.41) , parametrized in length:

    
′ = ( ) + ( ) ( )(

+
F gr c r r c r r

c
p rLEC c LEC c es LEC c es c c

LEC

π 2 , , ,, ,

,

tanα α
α rr r Fc es c c LEC, , , 0 0α α( ) ′ ) ( ) = .     (3.128)   

 Now, one can continue as in section  3.7.2.1 . While determining the values of the observer 
gains in Steps 1, 2, and 3 one assumes that the radius  r  es  of the crystal at the top of the 
boron oxide layer is at its desired value in order to obtain a linear length varying error 
dynamics as in  (3.125) . 

 The observer itself (see Equations  (3.119) – (3.120) ) is

   ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ′ = ( ) + ( ) ( ) =x f r v f r r v x rz z1 1 1 3 1 0, , , , , , 0c c c es c cα ψ α     (3.129)  

    ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ′ = ( ) + ( ) ( ) =x f r v f r r v xz z2 2 2 3 2 0, , , , , , 0 ,c c c es c cα ψ α α     (3.130)  

with

    r x y x yc c= − ( ) = − ( )1 1 1 2 2 2, , ,φ ψ α φ ψ     (3.131)  

and

    ˆ ˆ ˆr l h h res e c0= − +( ) ( ) = ∀R R, < 0.λ λ     (3.132)   

 Here, values for   ĥ   e  result from integration of
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with  h  e0  the initial height of the boron oxide layer. Values for   ĥ   result from evaluation of 
 (3.18)  using   r̂    c ,   α̂c. Note that this approach does not assign an error dynamics for the 
calculation of  h  e , i.e. errors occurring during calculation of  h  e  are continuously summed. 
However, as we will see during inspection of the experimental results, this does not lead 
to problems.  
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  3.7.2.3   Calculation of Growth Rate 

 An estimate of the growth rate can be calculated from the values   r̂   e  and   α̂c  provided by 
the nonlinear observer. For this it is necessary to numerically differentiate   α̂c with respect 
to crystal length in order to obtain values for   ′αc . Then we can estimate the growth rate 
from Equation  (3.32) :
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  3.7.2.4   Parametrization in Time 

 The observer design is based on a model of the process which is parametrized in crystal 
length. The advantage of this method is the elimination of the growth rate  v  c  and, thus, 
the hiding of the thermal model. In practice all calculations in the observer have to be 
done with respect to time parametrization. Therefore, reparametrization from length to 
time is required at two points: 

   •      when calculating the input variable  v  z    =   ( v     −     v  cruc )/ v  c ;  
   •      when integrating the observer equations  (3.119) – (3.120) :   

    ˆ ˆ ˆ ˆ ˆ′ = ( ) + ( ) =x f r v f r v jj j z j zc c c c, , , , , 1, 2.3α ψ α   

 The reparametrization has to be done using the growth rate  v  c . Since values of the growth 
rate are not known in advance it is assumed that the system is near to its reference trajec-
tory (represented by  v  c,ref ):

    v
v v

v
z =

− cruc

c,ref

.   

 This condition must be ensured by an appropriate control; see section  3.6 . Then, the refer-
ence values of the growth rate can be taken for this calculation.  

  3.7.2.5   Simulation and Experimental Results 

 In the following the capability of the approach is demonstrated on the basis of results 
from simulations and experiments. Here the values of the crystal radius and the slope 
angle reconstructed by the observer are compared to the values determined manually from 
the crystal after the growth experiment. 

  Variable Observer Gains.     First of all the trajectories of the observer gains for a given 
reference shape of the crystal are plotted in Figure  3.37 . These trajectories also depend 
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on the choice of the two parameters  ε  1 ,  ε  0  (see Equation  (3.127) ) defi ning the dynamics 
of the estimation error. It can be clearly seen that the values of the observer gains depend 
on the crystal length, especially in the conical part, refl ecting the complex nonlinear 
dynamics of the system  –  in contrast to the linear case, where the elements of the vector 
 H  are constant. The underlying reference trajectory is plotted on the left - hand side of the 
fi gure.  

  Cz Growth Without Boron Oxide.     Results of a simulation as well as of a real growth 
run are presented in Figure  3.38 . Both refer to Cz growth without a boron oxide layer 
 [Kiessling 2008] . In the simulation, the results of which can be found on the left - hand 
side, of the fi gure the observer starts with a wrong initial radius and a wrong initial slope 
angle. It can be seen that radius and slope angle reconstructed by the observer converge 

     Figure 3.38     Crystal radius (top) and slope angle (bottom) reconstructed by means of the 
nonlinear reduced observer for growth without boron oxide. Left: simulation. Right: 
experimental results (2 ″  GaAs, VCz - growth without boron oxide). The real trajectories are 
dotted and have been determined manually after the growth run, the reference trajectory 
used for calculation of the observer gains is given by the dashed line. Eigenvalues for error 
system  (3.125) :  p 1     =    − 400   m  − 1 ,  p 2     =    − 600   m  − 1   (Reprinted with permission from  [Winkler 
2010 - 2] , copyright (2009) Elsevier Ltd) .  
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to the real values after a few millimeters. The results obtained in a real growth run are 
presented on the right - hand side of the fi gure. The crystal has intentionally been grown 
without feedback control in order to show that  –  even if the process is away from its 
reference trajectory (see condition in Step 3 of section  3.7.2.1   –  the observer still produces 
acceptable results. Just as in the simulation, the observer starts with wrong initial values 
and quickly converges to the real ones.    

   LEC  Growth.     An example for growth using the LEC method is shown in Figure  3.39 . 
There, again, the growth run was intentionally done in open - loop mode demonstrating 
that even large differences between real and reference trajectory do not lead to serious 
problems.     

     Figure 3.39     Left: reconstructed (solid lines) and real (dotted lines) trajectories of crystal 
radius and slope angle in case of LEC growth. The reference trajectory used for calculation 
of the observer gains is plotted using dashed lines. Right: striations determined from a 
longitudinal section of the grown crystal showing the shape of the interface during growth 
 (Reprinted with permission from  [Winkler 2010 - 2] , copyright (2009) Elsevier Ltd) .  



192 Crystal Growth Processes Based on Capillarity

  3.7.2.6   Robustness of the Observer 

 One may wonder if the performance of the presented observer and of the overall closed 
loop system degrades if uncertainties in the physical parameters or a non - fl at interface 
come into play. These problems are addressed in the present section. 

  Infl uence of a Curved Interface.     The most critical assumption of the approach pre-
sented so far is the fl at interface. The presence of a fl at interface allows one to repara-
metrize the model equations in crystal length (as described in section  3.6.2 ). One might 
assume that, if the assumption is not met, the control system may fail. In fact, a nonfl at 
interface leads to the following problems: 

   •      A  ‘ lumped ’  growth rate  v  c  cannot be defi ned as the derivative of crystal length with 
respect to time because the length of the crystal depends on the radial coordinate also, 
i.e. growth rate would become a spatially distributed variable.  

   •      The curvature of the interface leads to additional terms for mass and buoyancy which 
have to be considered, e.g. in the equation describing the force acting on the load cell.  

   •      Changes of the curvature of the interface during growth may introduce additional 
dynamics into the system.    

 In the literature there are some approaches that attempt to consider the effects of a nonfl at 
interface within a  lumped - parameter  model; see e.g.  [Gevelber 1994 - 1, Johansen 1992 - 1, 
Johansen 1992 - 2, Satunkin 1995]  and section  3.3.1.9 . Here, the main problem is that it 
is diffi cult to derive the necessary dynamic equations describing the defl ection of the 
interface. This is a direct consequence of the lumped - parameter character: since the cur-
vature of the interface is, broadly speaking, a result of the melting - point isotherm, it 
cannot be described by a single lumped parameter. 

 In order to check the robustness of the control system with respect to changes in the 
interface defl ection the following simulation has been performed. It is assumed that the 
curvature of the interface has a form like that sketched in Figure  3.40 . The degree of 
defl ection is described by the parameter   ζ  . In this case the force acting on the load cell 
(compared to the force  F  when the interface is fl at) is infl uenced by the following term:

    ΔF g ri s l c= −( ) −⎛
⎝

⎞
⎠π ρ ρ ζ ζ1

2

1

6
.2 3     (3.134)     

 Now, the observer (designed for a fl at interface) is fed with data  F    +    Δ  F  i  for the modi-
fi ed weighing signal. The interface is assumed to be convex, i.e.   ζ      >    0. In the beginning 
of the simulation the parameter   ζ   is kept constant at 0.5   mm. Starting at crystal length of 
60   mm the value of   ζ   is increased linearly up to 5   mm, i.e. an increasing defl ection of the 
interface into the melt is simulated. The crystal radius is 27.5   mm. The effect of a chang-
ing weighing signal resulting from this increasing defl ection is sketched in Figure  3.40 . 
It can be easily seen that the additional force introduced into the system is quite small 
compared to the overall mass of the crystal and has not much effect on the reconstruction 
of the radius. 

 Some results of experimental investigations are shown in Figure  3.39  by way of 
example. Here, the reconstruction result of the observer is compared to the real values 
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R
rc

ζ

     Figure 3.40     Left: parameters used for simulation of the infl uence of a nonfl at interface. 
Right: simulation of the infl uence of a changing defl ection of the interface. The change of 
the interface defl ection   ζ   from 0.5   mm to 5   mm occurs between a crystal length of 60 and 
80   mm. Model used for simulation taken from  [Winkler 2010 - 1] , parameters used for 
simulation from  [Looze 1995]   (Reprinted with permission from  [Winkler 2010 - 2] , copyright 
(2009) Elsevier Ltd) .  

(as determined after the growth run) of crystal radius and slope angle. The crystal has 
been grown using the LEC method and the observer presented in  [Winkler 2007] . The 
grown crystal has been cut longitudinally after growth in order to determine the striations 
shown on the right - hand side of Figure  3.39 . It can be seen that the interface is not fl at 
and its shape has varied during growth. Despite that, the observer still shows acceptable 
performance, even though the experiment has been performed in open - loop mode, thus 
resulting in a quite large difference between reference and real trajectories. 

 Note that the infl uence of a defl ected interface shape directly depends on the difference 
between the densities of the solid and the melt (Equation  3.134 ). As long as the difference 
  ρ   s     −      ρ   1  is not too large (as is the case for a lot of semiconductor materials, e.g. GaAs, 
where the difference is only about 10%), the effect might be negligible. However, some 
materials may have a larger difference between the densities of their solid and melt and 
here the effect might become a problem.  

  Parameter Uncertainties.     The following physical parameters are important for the 
model used in the observer: the densities of the solid and liquid phase, the crucible radius, 
the capillary constant, and the growth angle. The values of the densities and crucible 
radius are well known, but determination of the capillary constant and the growth angle 
might be complicated and, therefore, inaccurate. Hence, in what follows some simulation 
results are presented showing the effect of a non - constant growth angle even during 
cylindrical growth. The values and constancy of this parameter have been intensively (and 
controversially) discussed in the literature (see for instance  [Anderson 1996, Bakovets 
1998, Surek 1980, Virozub 2008]  and Chapter  1.3.2 ). 

 In a simulation the growth angle   α   0  was increased from its reference value of 17    °  to 
a value of 27    °  during growth of the cylinder from 60 to 80   mm in length, in order to show 
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     Figure 3.41     Simulation of the infl uence of a nonconstant growth angle during cylindrical 
growth on the reconstruction of the crystal radius (GaAs, model and other constant 
parameters as in Figure  3.40 )  (Reprinted with permission from  [Winkler 2010 - 2] , copyright 
(2009) Elsevier Ltd) .  

the effects of a nonconstant value. The results are shown in Figure  3.41 . It can be clearly 
seen that the effect is not negligible, since the accuracy of the reconstructed radius rapidly 
degrades.    

  Closed - Loop Performance.     Finally, some results obtained in closed - loop experiments 
using the controller derived in section  3.6  are presented (Figure  3.42 ). In these cases the 
controller ensured that the values of growth rate and crystal radius were close to their 
reference values, i.e. the observer should operate with  ‘ optimal ’  performance. On the 
right - hand side of each picture a sketch of the striations made from a longitudinal section 
of a GaAs crystal is shown. Here, we can make two observations: 

   •      The interface is not strictly fl at as assumed in the model, but it is not heavily defl ected 
as it might be under certain growth conditions.  

   •      The shape of the interface does change during growth, i.e. an additional dynamical 
effect not included in the model is added to the weighing signal.      

 Despite these observations no effects on diameter control can be seen in the photographs 
of the grown crystals on the left. 

 Furthermore, in Figure  3.43  the trend of the radius as calculated by the observer and 
the real radius determined after the growth experiment are displayed for the crystals 
presented in Figure  3.42 . In both cases the estimated radius is consistent with the real 
radius. Hence, from an experimental point of view, the approach is robust, at least to 
moderate defl ections of the phase interface. Furthermore, we may conclude that the 
growth angle during cylindrical growth seems to be almost constant.      

  3.7.3   Control Structure Design for Batch Disturbance Rejection 

 So far the discussion has focused on the design and dimensioning of feedback controllers 
and observers. As already mentioned in section  3.1.7 , a feedforward control may be 



Czochralski Process Dynamics and Control Design 195

     Figure 3.42     Striations and photographs of two GaAs crystals grown using diameter 
control via heater temperature (left) and both diameter and growth rate control via heater 
temperature and pulling speed, respectively (right, as in  [Winkler 2010 - 1] ). Radius, slope 
angle and growth rate have been reconstructed using the observer proposed in section 
 3.7.2   (Reprinted with permission from  [Winkler 2010 - 2] , copyright (2009) Elsevier Ltd) .  
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     Figure 3.43     Trajectories of the radius of the crystals shown in Figure 3.42. Solid line: 
radius measured manually after the growth experiment. Dashed line: radius estimated by 
the observer during the growth run. It can be clearly seen that the two - loop control (right) 
shows better performance  (Reprinted with permission from  [Winkler 2010 - 2] , copyright 
(2009) Elsevier Ltd) .  
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required in order to improve the performance of the overall control system. Using the 
system model described in section  3.3.2 , the performance of model - based feedforward 
heater power and pull rate trajectories for achieving diameter control is evaluated. The 
advantage of this control approach is that it takes the guesswork out of what those tra-
jectories should be. The result presented here, which is consistent with the results of 
 [Assaker 1997] , is that it is critical to include the dynamics of both the equipment (pri-
marily thermal lags that are sensitive to assumptions of insulation and radiation interac-
tions) and the process (primarily the large lag associated with the interface dynamics). 
Figure  3.44  shows the melt surface temperature and resulting diameter of a dynamic 
simulation where the power input trajectory was derived from analysing the steady state 
of the model as a function of melt height. The use of steady state models has been pro-
posed by others since it requires signifi cantly less computational time than a full simula-
tion of the entire batch process (due to the wide difference in timescales in the process 
and equipment models). While the temperature deviation is only of the order of 3   K, the 
resulting diameter error is 3%. The reason is that there are signifi cant dynamics in both 
the equipment and process models that are ignored. Note, however, that the performance 
of feedforward control, even using a dynamic model, is limited by model error, plant 
variation, and unmodelled disturbances.   

 In analysing the experimental benchmarks of growth runs (as shown for example in 
Figure  3.28 ), it is observed that a decreasing pull rate trajectory was used as a reference 
trajectory. This might seem to be reasonable since, as the melt level decreases, the crystal 
is exposed to more hot crucible wall which reduces the crystal heat fl ux. The large initial 
decrease in pull rate may also be due to the fact that the shoulder, which is an effective 
radiator, moves further away from the interface. The model analysis, as well as others, 

     Figure 3.44     Resulting diameter and melt temperature from steady - state feedforward 
control  (Reprinted with permission from  [Gevelber 2001   ], copyright (2001) Elsevier Ltd) .  
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showed, however, that it is possible to fi nd a heater power trajectory that would enable 
a constant pull rate to be maintained. A reduction in pull rate might be motivated by 
several additional factors; for example, it might be related to a desired  v  c / G  ratio in order 
to achieve a desired defect structure. Additionally, the model analysis indicates that 
another factor might be the different resulting melt temperature trajectories. Figure  3.45  
shows the resulting melt surface temperature for a series of different pull rate trajectories, 
starting with no decrease in pull rate to decrease by half. Maintaining a constant pull rate 
would result in the surface melt temperature being only 17   K above the solidifi cation 
temperature towards the end of growth. Such a low offset may not be desirable because 
of sensitivity to growth variations and crystal quality due to melt turbulence, which can 
be of the order of  ± 5   K. In contrast, decreasing the pull rate by half results in a 40 - K 
offset at low melt heights. Since the batch melt temperature variations are one of the batch 
disturbances acting on the interface to change the diameter, this analysis suggests that a 
more direct control strategy of maintaining the melt temperature would (i) compensate 
more directly for part of the batch disturbance, and (ii) enable one to operate  ‘ closer 
to the edge ’  (i.e. limit the pull rate reduction) and achieve an increase in process 
productivity.   

 Figure  3.46  shows a new control structure  [Gevelber 2001]  to compensate for the batch 
disturbance, while meeting the desire of maintaining a desired melt temperature offset. 
The structure incorporates explicit control of the melt temperature, and uses feedforward 
input trajectories for pulling rate and heater power. In this fashion, the actuators are 
changed in anticipation of needed changes (i.e. the general ramp), and therefore not driven 
entirely by an error signal. Feedback is still used as a trim, however, e.g. to provide a 
corrective term to the actual heater power and pull rate implemented. Comparing the 
performance of the conventional control structure to the new one (Figure  3.47 ) reveals 
that to achieve the same performance, the new structure requires six times less control 
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     Figure 3.45     Simulation of melt surface temperatures for different pull rate trajectories 
 (Reprinted with permission from  [Gevelber 2001] , copyright (2001) Elsevier Ltd) .     
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gain. This lower gain should signifi cantly reduce the magnitude of the pull rate fl uctua-
tions. The gain comparison is based on the control gain required to achieve the same 
volumetric error in the crystal shape. In addition, the melt temperature follows the setpoint 
trajectory very closely (Figure  3.48 ), indicating that it will be safe to utilize a higher pull 
rate trajectory. The robustness of the proposed scheme is suggested by the fact that we 
used very rough feedforward trajectories (i.e. we did not use model - developed dynamic 
trajectories).   

     Figure 3.46     Advanced melt/diameter control structure (dashed line)  (Reprinted with 
permission from  [Gevelber 2001] , copyright (2001) Elsevier Ltd) .    
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     Figure 3.47     Radius performance comparison of conventional and proposed controllers 
for different control gains  (Reprinted with permission from  [Gevelber 2001] , copyright 
(2001) Elsevier Ltd) .     
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 Section  3.7.3  reprinted with permission from  Journal of Crystal Growth , M. Gevelber, 
D. Wilson and N. Duanmu, 230, 1 – 2, 217 – 223 Copyright (2001) Elsevier Ltd.   
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     Originally, horizontal zone melting was applied to reduce impurity levels in different 
materials such as metals, semiconductors and organic compounds  [Pfann 1966] . A hori-
zontal boat crucible was used to contain the material, and a molten zone was generated 
and passed from one end of the crucible to the other by moving a narrow heater. Multiple 
zone melting shifts most of the impurities to one end and purifi es the remainder up to 
high grades. If the melt does not wet the crucible, the method can also be used to grow 
a single crystal, e.g. of Ge, if a seed crystal is placed at the start of the solidifi cation. 
However, impurities can be newly introduced from the crucible to the melt. Some impor-
tant substances such as Si react with or adhere to any crucible material, and can be neither 
purifi ed nor single - crystallized in that way. So, the crucible - free fl oating zone (FZ) 
process was invented for Si in 1952  [Theuerer 1952, Keck 1953, Zulehner 2000] . 

 The FZ crystal grows from the molten lower end of a cylindrical feed rod. A stationary 
molten zone between rod and crystal therefore has to be produced by contactless heating. 
For this, inductive heating by a radiofrequency (RF) magnetic fi eld is widely used. The 
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main limitation of RF heating is the necessity for high electrical conductivity of the solid 
rod and the melt, which is normally fulfi lled for metallic materials. For Si and some other 
materials with insuffi cient electrical conductivity at room temperature, it is often neces-
sary to preheat the feed rod to enable the coupling with the electromagnetic (EM) fi eld. 

 Other ways of heating the FZ are also possible: focused lamp radiation, laser beams, 
electron bombardment, electric arcs or plasma discharge. 

 As well as Si, single crystals of a wide variety of other substances have been grown 
after the FZ method. Typical examples are: 

   •      transition metals Ni, Co, Fe and alloys such as Fe – Si  [Kade č kova 1963, Van ě k 1979, 
Van ě k 1983] ;  

   •      refractory metals such as W, Ta, Mo  [Berthel 1963, Otani 1990, Pfann 1966] ;  
   •      rare earth borides such as LaB 6  for electron emission sources  [Niemyski 1968, Shimizu 

1975, Tanaka 1975]  and CeB 6 , SmB 6 , GdB 6   [Tanaka 1980] , CaB 6   [Otani 1998] , CrB 2  
 [Otani 1999] , YB 4  and YB 6   [Otani 2000] ;  

   •      transition metal silicides and aluminides V 3 Si  [Jurisch 1977] , Cr 3 Si  [Jurisch 1979] , NiAl 
 [Essmann 1995] , RuAl  [Hermann 2008] ;  

   •      metal carbides such as TiC  [Otani 1984]  and WC  [Tanaka 1988] ;  
   •      complex ternary and quaternary rare earth (RE) – transition metal (TM) compounds of 

the type RENi 2 B 2 C, RE 2 PdSi 3  as well as RECu 2 Si 2  and REPd 2 Si 2   [Behr 1999, Behr 
2000, Behr 2002, Behr 2005 - 2, Behr 2008]   . See  [Pfann 1966]  and  [Wilke 1988 - 1]  for 
comprehensive reviews of early works;  

   •      a variety of oxides as described in section  2.4 .    

 The possible size of the molten zone is the decisive parameter for applying the FZ method. 
It is determined by equating the capillary forces of surface tension and the hydrostatic 
pressure of the melt column. The maximum height and the shape of the zone were cal-
culated by Heywang  [Heywang 1954]  under the condition that only surface tension and 
gravity are acting on the zone. For large rod diameters (a diameter approximately twice 
the maximum zone height or more), the maximum zone height  L  max  becomes independent 
of the radius:

    L
g

max .=
⋅

2 84
γ
ρ

lv

l

    (4.1)  

where   γ   1v  is the surface tension of the melt,   ρ   l  the density of the melt and  g  the accelera-
tion due to gravity. 

 The maximum zone height depends on the material parameters as shown in Table  4.1 . 
The factor 2.84 in Equation  (4.1)  may slightly vary between 2.62 and 3.18 according to 
other theoretical approaches (see  [Bohm 1994] , p. 219).   

 In general, a crucible - free method is only possible if surface tension and density of the 
melt enable a stable molten zone which does not spill out. Si, with its high surface tension 
and low density, is a unique element which allows molten zones high enough to grow 
the largest FZ crystals. Today, FZ Si is grown with a maximum diameter of 200   mm. 
This is possible with the needle - eye technique, where the waist - shaped molten zone, 
which is drawn through the inductor hole, does not exceed the maximum zone height 
(Figure  4.1 a).   
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 From Table  4.1 , Ti seems to be just as suitable for the FZ process as Si. Irrespective 
of the fact that there is, so far, no important need for single - crystalline Ti, a phase transi-
tion from the cubic to hexagonal phase at about 880    ° C prevents obtaining a single crystal. 
Other semiconductors of higher density, like Ge and GaAs, or heavy metals like Au, allow 
only small melting zones to be stable, leading to correspondingly small crystal diameters 
(e.g.  < 10   mm for GaAs). 

 In principle, higher molten zones are possible under microgravity. Nevertheless, the 
length of the molten zone is also limited: a liquid cylinder between two rods is not sta-
bilized by the surface tension if its length exceeds its circumference (Rayleigh limit). In 
this case, a small perturbation of the melt surface allows the liquid cylinder to break down. 
FZ crystal growth under microgravity was investigated during space missions: e.g. a GaAs 

  Table 4.1    Density of the melt   ρ   l , surface tension   γ   lv  at melting point and maximum zone 
heights  L  max  of materials 

   Material       ρ   l  (kg   m  − 3 )       γ   lv  (N   m  − 1 )       γ   lv  / ρ   l 10  − 4  (s  − 2    m 3 )      L  max  (mm)  

  Ti   b       4130    1.65    4.00    18  
  Si   a       2580    0.88    3.41    17  
  Co   b       7750    1.87    2.42    14  
  Ni   b       7900    1.78    2.25    14  
  Mo   b       9099    2.25    2.47    14  
  Cu   b       8000    1.30    1.63    12  
  Ge   b       5490    0.62    1.13    10  
  Ag   b       9330    0.97    1.04    9  
  GaAs   c       5400    0.45    0.83    8  
  GaSb   c       6030    0.47    0.78    8  
  Sn   b       6980    0.56    0.80    8  
  Au   b       17400    1.17    0.67    7  
  Pb   b       10670    0.46    0.43    6  

   Data from   a      [Ratnieks 2008] ,       b      [Iida 1993]    and       c      [Tegetmeier 1996] .  
  For many substances, such as intermetallic compounds, accurate parameters are not known.   

     Figure 4.1     Schemes of FZ techniques: (a) with needle eye; (b) without needle eye; 
(c) pedestal growth. The dark hatched area is the growing crystal, the lighter hatched area 
is the feed rod and the white dashed area is the molten zone.  
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crystal 20   mm in diameter which had a zone length of 20 – 24   mm when grown  [Herrmann 
1995]  and two GaSb crystals 16   mm in diameter which had a zone length of 13 – 14   mm 
 [Cr ö ll 1998] . These zone lengths in space were more than twice the size of those possible 
on Earth; see section  2.2 . A summary of the results concerning the dynamic stability of 
the FZ process can be found in Chapter  2 , section  2.5 . 

 The pedestal technique, equally crucible - free, is similar to the FZ process but with a 
reversed set - up. The feed rod below the inductor is molten at the top and the crystal is 
pulled upwards. This technique was introduced by several authors  [Dash 1958, Dash 1960, 
Poplawsky 1960] . Here, the diameter of the growing crystal is always smaller than that of 
the feed rod. From the viewpoint of capillarity, the pedestal process is comparable to the 
Czochralski growth method as described in Chapter  3 , although without a crucible. 

 Figure  4.1  shows schematics of possible FZ confi gurations. The heat transfer of the FZ 
technique is characterized by competition between the power for heating a narrow zone 
from outside and energy dissipation via the liquid and solid surfaces. Considering the 
heat dissipation by surface radiation and heat conduction, the power needed to establish 
a zone is governed by the dimensionless Biot number ( Bi ) independent of the mode of 
heating. It describes the ratio between the heat transfer by radiation and that by conduc-
tion.  [Kobayashi 1978, Otani 1984] .

    Bi
r

T= εσ
λ

c
m
3     (4.2)   

 Here,  ε  is the emissivity,  σ  the Stefan – Boltzmann constant,  r  c  the crystal radius,   λ   the 
heat conductivity and  T  m  the melting point temperature. If  Bi  is relatively small, the heat 
transfer of the zone is conduction - dominated, which means that the heat is mainly dis-
sipated through the solid – liquid interfaces, whereas a considerably larger  Bi  means that 
the heat is mainly dissipated through the outer zone surface (for materials and numbers 
see Table  4.2 ). Additional convective and conductive heat transfers to a surrounding 
gaseous growth are not considered in Equation  (4.2)  but should be considered in the 

  Table 4.2    Melting temperatures of some materials and 
respective Biot numbers of rods with 10   mm diameter 
 [Kobayashi 1978, Otani 1984]  Copyright (1978) [Elsevier Ltd] 

   Material      T  m  ( ° C)      Bi   

  Cu    1083    2    ×    10  − 4   
  Mo    2610    0.02  
  Si    1412    0.06  
  Ge    937    0.03  
  W    3377    0.05  
  TaC    3527    0.12  
  LaB 6     2715    0.18  
  TiC    2827    0.18  
  ZrB 2     3037    0.19  
  Cr 2 O 3     2265    1.86  
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case of comparably low radiative heat dissipation (small emissivity, low crystallization 
temperatures).   

 In all FZ methods the feed rod as well as the crystal is rotated to homogenize the 
temperature fi eld. Normally, feed rod and crystal are rotated in opposite directions, but 
co - rotation or no rotation is also possible. 

 In this chapter, the different crucible - free methods of crystal growth are described in 
detail for various heating methods and the corresponding suitable materials: RF heating 
in section  4.1 , optical heating in section  4.2 . Numerical simulation is an important aspect 
of modern FZ Optimization, it is described in detail for Si in section  4.3 .  

  4.1    FZ  Processes with  RF  Heating 

  4.1.1    FZ  Method for Si by  RF  Heating 

 The FZ melting of Si is the most important commercial application of this technique. The 
basis for the growth of Si single crystals is a suffi ciently pure Si feed rod of a diameter 
comparable to that of the crystal to be grown. Siemens started the production of poly-
crystalline Si rods by chemical vapour deposition in 1953. Beginning with an electrically 
heated Si fi lament, the so - called slim rod, ultra pure trichlorosilane (SiHCl 3 ) pyrolytically 
decomposes on the rod surface at about 1100    ° C. This process is known as the  ‘ Siemens 
process ’   [Zulehner 2000] . Silane (SiH 4 ) can be used at about 850    ° C instead of trichlo-
rosilane. With the Siemens process, feed rods of up to 200   mm diameter can be produced 
for FZ crystal growth. 

  4.1.1.1   General  FZ  Setup 

 The FZ growth chamber as shown in Figure  4.2 b has to have a tightly closing chamber 
door and can be fi lled with a growth atmosphere that is inert to Si such as Ar (plus addi-
tives) or vacuum. The upper and lower vertical spindles (Figure  4.2 b, c2, 9) are fed 
through the top and bottom walls of the growth chamber. Their ends carry mounts for the 
cylindrical Si feed rod at the top (Figure  4.2 b, c3) and the seed crystal at the bottom. The 
spindles can both rotate and translate. A one - turn RF induction coil (Figure  4.2 b, c5), 
which is connected to the RF power generator (Figure  4.2 b, c12), is placed between them. 
The inductor is a ring - shaped one - turn coil, commonly a fl at  ‘ pancake ’  inductor (Figure 
 4.3 ). It has to be water - cooled to prevent overheating. The two important functions of 
the inductor are homogeneous melting of the feed rod and stable cylindrical growth of 
the crystal.   

 During the growth process, the inductor encloses the FZ without contacting it (Figure 
 4.2 b, c11). The liquid Si molten from the feed rod fl ows through the inner hole of the 
coil and crystallizes below. For bigger crystals, the lower spindle carries a mechanical 
crystal - supporting device (Figure  4.2 b, c8). 

 Optionally, special shields that refl ect or back - diffract the heat radiation emitted from 
the Si can be placed around the crystal and/or the feed rod so as to achieve optimum 
temperature gradients for the crystallization and melting conditions, respectively.  
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  4.1.1.2   Basic Process Steps 

 After the setup is assembled, the chamber evacuated and then fi lled with the protective 
gas atmosphere, the lower end of the feed rod is preheated and inductively melted until 
a drop of liquid Si hangs over the inductor hole (Figure  4.4 a) . It does not fall because 
adhesion, surface tension of the melt and electrodynamic forces act against gravity and 
stabilize the free melt surface of the drop. Then, the rod - like crystalline Si seed of about 
5   mm diameter is slowly moved upwards to the drop, dipped into it and melts back, 
smoothing the seed – melt interface. After this, the seed is moved downwards with a rather 
high pull rate of 8 – 16   mm/min, whereby the heating power is reduced. The reduced power 
lets the melt zone shrink to a diameter and height of a few millimetres. In this manner, 
the so - called thin neck  [Dash 1958]  is grown with a high crystallization rate. Under these 
conditions, grown - in dislocations leave the crystal when they cross the surface, and new 
dislocations are not generated because the thermomechanical stress is very small for a 
growth diameter of 2 – 3   mm. After a few centimetres of pull length, all line dislocations 
are eliminated in the thin neck. Because of their high energy of generation, new disloca-
tions are now highly unlikely. This necking after Dash works well, if the  〈 110 〉  main 
direction of the dislocations is not the growth direction of the crystals. So, dislocation - free 
single - crystalline FZ crystals of  〈 100 〉  and  〈 111 〉  orientations can be grown, whereas the 
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     Figure 4.2     The FZ process: (a) three - dimensional scheme, (b) model set - up of the 
chamber, (c) cross - section through a growth chamber. 1, growth chamber; 2, upper 
spindle; 3, rod holder; 4, feed rod; 5, induction coil; 6, growing crystal; 7, seed with 
thin neck; 8, crystal support; 9, lower spindle; 10, gas inlet; 11, molten zone; 12, RF 
generator; 13, doping gas; 14, pump  .  
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     Figure 4.3     RF induction coil with central hole, slit and connecting fl anges to the coaxial 
feed - trough and the cooling - water supply.  

     Figure 4.4     Process phases of the FZ needle - eye process (for diameters  < 30   mm): 
(a) hanging drop; (b) growing cone; (c): stable crystal growth.  
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     Figure 4.5     X - ray topogram of a  〈 111 〉  thin neck (5   mm    ×    40   mm) with vanishing 
dislocations, enlargement on the right: no further dislocations after about 20   mm.  

 〈 110 〉  orientation will not enable dislocation - free crystals, because not all dislocations 
leave the thin neck. Figure  4.5  shows the disappearing dislocations in the X - ray topogram 
of a grown  〈 111 〉  thin neck.   

 After growing the thin neck, the crystal diameter is increased. By increasing feed rate 
and RF power, the cone is enlarged until the fi nal diameter of the crystal is reached (Figure 
 4.4 ). The pull rate of the crystal is lowered to typically 2 – 5   mm/min depending on the 
crystal diameter. If, for once, crystals with dislocations are acceptable, the thin - neck phase 
is omitted. 

 Commonly, feed rod and crystal are rotated in order to average thermal deviations of 
the rotational symmetry, e.g. of the induction heating, what results in an approximately 
circular crystal cross - section and a crystallization interface with only slight deviations 
from symmetry due to the crystal - inherent anisotropy.  

  4.1.1.3   Forces Acting on the Melt Zone 

 The forces acting on the FZ during the FZ growth process are of different physical origins: 
inertia, buoyancy, surface tension, thermocapillarity and electrodynamics. 

 The crystal rotation, which can optionally be modulated, causes centrifugal and Coriolis 
forces which infl uence the zone shape and cause melt fl ow. The electrodynamic laws 
defi ne the RF current distribution (e.g. the skin effect) and produce temperature differ-
ences in the melt which generate buoyancy convection as well as gradients of the surface 
tension which are the origin of Marangoni convection. 
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 Generally, the surface tension, which itself is temperature - dependent and so varies 
along the free surface, shapes the melt zone. Last but not least, the electrodynamic inter-
action between the RF magnetic fi eld and the induced current fi eld results in repulsion 
forces according to Lenz ’ s rule which can deform the zone shape and drive the electro-
dynamic melt fl ow, if there are tangential forces.  

  4.1.1.4   Growth Angle 

 For the FZ crystal growth of Si, Ge, GaAs or GaSb with a constant diameter, a material -
 specifi c angle   α   appears between the vertical crystal surface and the tangent of the melt 
surface at the solid – vapor – liquid (svl) line which is independent of gravity, growth rate, 
diameter and some other parameters. This phenomenon is experimentally and theoreti-
cally investigated in the works of various authors, e.g.  [Surek 1975, Voronkov 1963, 
1974, 1978]  and is described and studied in detail in Chapter  1 , section  1.3 . Tegetmeier 
 [Tegetmeier 1995]  worked out that, as a consequence of the minimal overall surface 
energy of the melt zone during crystal growth, the zone shape and especially the growth 
angle   α   is related to the ratios of the specifi c energies of the interfaces between the liquid, 
solid and gaseous phases. Under the assumption of a horizontal solid – liquid growth 
interface and a constant crystal diameter, we can conclude that

    γ α γlv slsin ,=     (4.3)  

where   γ   lv  is the liquid – vapour interface energy (surface tension) and   γ   sl  the solid – liquid 
interface energy. Furthermore, Tegetmeier conducted that, for   γ   sl     <<      γ   lv , a zero growth 
angle,   α     =   0, leads to   γ   sl    =   0 and   γ   sv    =     γ   lv  which means that melt and solid (at the svl triple -
 phase line) do not differ with regard to the surface energies. 

 An experimental determination of the growth angle from photographs is diffi cult for 
Si, because it is diffi cult to get good photographs. Therefore, in  [Tegetmeier 1995]  the 
values for the growth angle   α   of Si range from 6    °  to over 12    ° . Figure  4.6 a shows a new 
photograph of a FZ process taken by the authors which is suitable for determining this 
angle. Various photographs were taken at the same position during this process. Evaluating 
17 photographs similar to the one in Figure  4.6 , the angle   α   was determined to be 
11.5    °     ±    1.9    ° . Further investigations of this phenomenon will be presented later.    

  4.1.1.5   Stability of the  FZ  

 The shape of the free melt surface is defi ned by the equilibrium of the acting forces as 
mentioned above. The question is, however, whether the zone is stable or unstable and 
where the (metastable) transition is. 

 It is necessary but not suffi cient that the zone is in static equilibrium, i.e. its height 
does not exceed a certain limit which depends on diameter, gravity, surface tension and 
some other material constants. Additionally, the zone must be dynamically stable. A small 
mechanical disturbance, or any other type of disturbance, must not lead to self - amplifying 
shape changes which would lead to spilling out of the melt and an interruption of the 
zone. 

 The Laplace – Young equation  (4.4)  (see Chapter  1  for the details) describes the pressure 
balance for a stable molten zone:
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    γ κ ρlv l n= − +p gz F0     (4.4)  

where   κ   is the curvature,  z  the coordinate for the height of the melt,   γ  lv  κ   the capillary 
pressure,   ρ   l  gz  the hydrostatic pressure,  F  n  the EM pressure and  p  0  the isostatic pressure 
in the melt at  z    =   0. Generally, the value of  p  0  is computed from the specifi c confi guration 
of the molten zone: see Chapter  8  for examples of the computation of  p  0  for different 
crystal growth processes. In the case of FZ, there is no simple way to compute  p  0  which 
is controlled by the shape and volume of the molten zone. If it is too big, the angle at the 
svl triple - phase line is forced to exceed its steady - state value until the melt fl ows out over 
the svl line. On the other hand, if  p  0  is too small, which means there is not enough melt 
in the zone, the melt neck will narrow and the surface tension force, rising with surface 
curvature, will strangulate the neck with the result of zone separation and the end of the 
process. 

 Considered in more detail, the growing FZ crystal is not a perfect cylinder, mainly 
because of the inherent crystal anisotropy. The undercooling of the melt which is needed 
for the crystal to grow depends on the crystallographic orientation. Therefore, the crystal-
lization interface is not absolutely equivalent to a distinct isothermal face. In particular, 
positions where the  〈 111 〉  direction crosses the svl line are exceptional, because the crys-
tallization rate is slowest in the  〈 111 〉  direction and fastest perpendicular to  〈 111 〉 . The 
svl line therefore moves downwards in a groove, with the consequence that the melt leans 
outwards a little more there and the crystal surface does, too. This effect stops if the 
crystal periphery comes close to a  〈 111 〉  face at that position and results in a mirror - like 
outer facet. There, the increased surface of the generated bulge causes an enhanced heat 
loss which locally lowers the temperature, lets the position of the svl line rise; both melt 
meniscus and crystal periphery retract back towards the initial position and the cycle can 
start again. Such bulges are well known for  〈 111 〉  FZ crystals, whereas for the  〈 100 〉  
growth direction, because of the steeper angle of the  〈 111 〉  faces, this effect becomes 
steady - state with the result of straight ridges along the growth direction. Figure  4.7  shows 

     Figure 4.6     (a) Photograph of the growth angle during the FZ process of a 2 ″  Si single 
crystal; (b) growth angle   α   between the tangents 1 and 2; from this photograph, a value 
of   α     =   11.2    °  can be derived.  



Floating Zone Crystal Growth 213

two crystals, one growing in the  〈 111 〉  direction (Figure  4.7 a), the other in the  〈 100 〉  
direction (Figure  4.7 b). The different shapes of the cones as well as the occurrence of 
bulges for the  〈 111 〉  crystal are obvious.   

 Of course, the crystal diameter strongly infl uences the stability of the zone. With 
increasing diameter, up to about 20   mm, the maximum zone height also rises and approxi-
mates a limiting value for large diameters, which is 16   mm for Si (see Table  4.1  and 
Equation  4.1 ). The needle - eye technique enables us to generate such zones for large 
diameters. Therefore, in principle, the maximum diameter of FZ crystals is not limited 
by capillary effects. The problems when increasing the diameter arise from the design of 
the RF inductor and will be described in the next section.  

  4.1.1.6   Melting the Feed Rod 

 The RF induction coil (Figure  4.3 ) has to ensure two different functions in the FZ process 
for Si: under it, the FZ has to be established with the thermal and capillary conditions for 
crystal growth; above it, the feed rod must be molten so that a slightly conical and smooth 
open melting front is formed. If there were hillocks or spikes of solid Si remaining at the 
melting front, they would be less heated by the RF fi eld and touch the coil surface sooner. 
In other words, a large temperature gradient is necessary at the open melting front which 
can be achieved by the RF skin layer   δ  , in which, for high frequencies, the current fl ows 
mainly at the outer surface:

    δ
ωμ μ σ

= 1

1
2

0 r el

    (4.5)  

     Figure 4.7     Pulling the cone of FZ crystals in (a)  〈 111 〉 , (b)  〈 100 〉  growth direction.  
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where   δ   is the skin depth,   ω   the angular frequency,   μ   0  and   μ   r  the absolute and the relative 
permeabilities and   σ   el  the electrical conductivity of the melt. The skin depth   δ   must be 
small enough so that the surface of the rod is predominantly heated. This condition is 
fulfi lled if the RF frequency is higher than 2.5 – 3.0   MHz, which yields a skin depth of 
0.27 – 0.29   mm for Si with   σ   el    =   1.2    ×    10  − 6 S/m. 

 Especially for the needle - eye case, the open melting front is laterally inhomogeneous 
and consists of small solid islands1 – 2   mm in size which are surrounded by the melt 
because the Si melt does not perfectly wet the solid Si. This circumstance has to be borne 
in mind particularly for the numerical calculation of the shape of the melting front. Figure 
 4.8  shows the conical melting front in a FZ growth process. It can be seen that the melt 
front consists of solid islands and liquid puddles.   

 For larger diameters, it gets technically more and more diffi cult to design a suitable 
fl at inductor which is able to melt large rods and to achieve crystal diameters of 200   mm 
or even more.  

  4.1.1.7   Pedestal Growth 

 In the reverse of the FZ process, the pedestal method delivers Si crystals pulled from an 
inductively heated melt reservoir on top of a cylindrical feed rod. Because of the high 
surface tension of molten Si, the melt can be held securely on the Si pedestal. For crystals 
less than 10 – 15   mm in diameter, a pedestal of the same diameter or slightly bigger is 
suffi cient. For larger crystals, the diameter of the pedestal must be considerably larger. 
This is a disadvantage compared to the FZ method, where the crystal can be up to 20% 
thicker than the feed rod. However, the growing crystal hangs on the seed and is therefore 
mechanically stable. The maximum crystal diameter is defi ned by the inductor hole. Very 
long Si crystals with diameters up to 50   mm (Figure  4.9  shows a growing crystal of 40   mm 
diameter) or polycrystalline slim rods 5 – 8   mm in diameter and several metres in length 
can be pulled by the pedestal growth. Industrially these slim rods are pulled by pedestal 
growth as starting material for the Siemens process for producing polycrystalline Si feed 
rods for the FZ and Cz methods.   

     Figure 4.8     FZ process for Si; the inhomogeneous melting front at the feed rod on top is 
nicely visible.  
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 In addition, monocrystalline Si fi bres less than 1   mm thick can be grown by this method, 
as demonstrated by the present authors  [Riemann 1996] .  

  4.1.1.8   Growth of  FZ  Crystals with Quasi - Square Cross - Section 

 As already mentioned, and contrary to general opinion, a growing FZ crystal does not 
have to rotate. It is clear that, in this case, the temperature fi eld is no longer rotationally 
averaged and the cross - section of the crystal can differ from a circular one. The cross -
 section of such a crystal is formed by the temperature fi eld caused by the geometry of 
the heating coil and the anisotropy of the surface tension. 

 Figure  4.10  shows a FZ crystal growing without rotation. To reach this state, the FZ 
growth started in the usual way up to the steady - state diameter of the crystal. After that, 
the RF power and the feed rate were slightly decreased in order to reduce the volume of 
the molten zone according to the size of the square to be grown, then the crystal rotation 
was stopped, and, from then on, this crystal grew dislocation - free and square until the 
end. The inductor applied for this experiment has four diagonal slits and generates a 
temperature fi eld of almost square symmetry. The main slit in the inductor, which has to 
form the current loop is not completely equivalent to the other three slits, however, as 
shown in Figure  4.11 b. Furthermore, the surface tension rounds off the corners, minimiz-
ing the melt surface. This effect is undesirable because the practical goal of this project 
is square wafers cut directly from the crystal. On the other hand, on the straight sides, 
where the curvature is almost zero, growth instabilities can occur. For applications in the 
solar power industry, it is essential to get a stable cross - section approximating a square 
as effectively as possible, to save material losses and costs in cutting a round crystal into 
a square one.   

     Figure 4.9     Pedestal growth of a 40 - mm diameter Si crystal; the diameter of the pedestal 
is 135   mm.  
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 Later in this section, it will be shown how numerical modelling can support process 
development. Also for this application, calculations were done  [Muiznieks 2006]  in order 
to fi nd out whether a symmetrical square cross - section is possible. Even with a rather 
simple inductor, the numerical calculation shows that it should be possible to form a 
useful crystal shape (Figure  4.11 ).  

  4.1.1.9   Comparison between Experiment and Numerical Results 

 As will be seen in section  4.3  below, numerical modelling of the FZ process can include 
almost the complete set of physical phenomena involved in the FZ process, partly in three 
dimensions, and deliver amazingly detailed results. The question is how to compare those 
numerical results with the experimental reality. 

     Figure 4.10     Growing a single - crystalline Si FZ crystal with a quasi - square shape (the feed 
rod on top of the dark coil is mostly covered by a heat shield).  

     Figure 4.11     Numerical modelling for crystals grown without rotation: (a) molten zone; 
(b) inductor and calculated shape of the cross - section   [Muiznieks 2006]  .  
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     Figure 4.12     FZ machine in operation (pedestal experiment); large windows for process 
observation are available at the front and on both sides.  

 Because of the good view of the FZ process through the large windows of the growth 
chamber (Figure  4.12 ), the free melt surface can conveniently be photographed. The free 
surface can therefore be compared with the solution given by solving the Young – Laplace 
equation (see equation 4.4   and Chapter  1  for details). This equation is parameterized 
through the arc length  s , which leads to a system of three differential equations  [Lie 1990] . 
In our program, we use the dimensionless form of the equation:  
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where the coordinates  r  and  z  are reduced to the dimensionless form through the crystal 
radius  r  c :   r̃      =    r  /  r  c  and   z̃     =    z  /  r  c ,  Bo  is the Bond number   Bo gr= ρ γl c lv

2  with   ρ   l  the 
density of liquid Si,   γ   1v  the surface tension of liquid Si,   J̃    the dimensionless surface current 
density,  La  the dimensionless isostatic pressure (Laplace number)  La    =    p  0  ( r  c /  γ   1v ) with  p  0  
the isostatic pressure and  Bo  em  the EM Bond number   Bo V rem lv c= 0

2 2 3μγ ω  with   μ   perme-
ability,   ω   angular frequency of the RF fi eld and  V  0  the applied voltage. The angle   β   is 
measured clockwise starting from the direction of the  z  - axis. 

 The white curve in Figure  4.13 a, which is overlaid with the picture taken from the 
process, was calculated without considering the electrodynamic forces and shows devia-
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tions to the free surface in the photograph. Therefore, the additional EM forces caused 
by the RF heating have to be taken into account by calculating the surface current density 
  J̃    in Equation  (4.6)  according to  [Lie 1990] . The system of equations  (4.6)  is solved by 
a Runge – Kutta procedure. The initial conditions are   r̃      =   1 and  s    =   0. The initial angle 
corresponds to the growth angle   α  , see section  4.1.1.4 . The fi rst parameter, the Bond 
number, can be calculated from the material constants. For determining the second param-
eter, the Laplace number, a second point must be chosen from the photograph of the free 
surface. Normally one would choose the inner triple point, but this point, seen in Figure 
 4.13 , is covered by the induction coil. So, a good viewable point at about 95% of the 
visible melt height is taken instead. Newton ’ s algorithm is used to fi t that second point 
by starting not too far from the solution and calculating the height for the radius of the 
second point by fi tting the pressure  La .   

 An example program to calculate the free surface shape of an axisymmetric zone 
without EM forces is given in the Appendix to the chapter. For this initial free surface, 
the white line in Figure  4.13 a, the surface current density is calculated and iterated 
between fi tting the Laplace number and calculating the surface current density, until the 
Laplace number does not change within a certain numerical precision. The third param-
eter, the electrical Bond number, is chosen to fi t the free surface for a starting angle of 
about 11    ° , the value of the growth angle, see section  4.1.1.4 . 

 Figure  4.13  shows the same photograph of the free surface throughout. In the upper 
row, the white curves are the solutions for three different inductor voltages  V  0  (at a start-
ing angle of 11    ° ): (a) 0   V, (b) 500   V, (c) 600   V . In the lower row are the solutions for 
three different starting angles (for V 0    =   500   V): (d) 0    ° , (e) 11    ° , (f) 20    ° . Without the EM 
forces, the calculated free surface could not be fi t to the one in the photograph for a start-
ing angle of 11    °  (Figure  4.13 a). With increasing EM forces, the calculated free surface 
decreases and reaches a good agreement with the photograph for a value of 500   V, as seen 

     Figure 4.13     FZ process photograph (diameter 52   mm) with overlaid calculated free 
surface curves: for different voltages (at 11    ° ): (a) 0   V, (b) 500   V, (c) 650   V and starting 
angles (at 500   V): (d) 0    ° , (e) 11    °  (growth angle   α   for Si), (f) 20    ° , all fi tting the same 
second point taken from the photo:  Bo    =   21.43;  La ,  Bo  e  (a) 7.68, 0; (b) 9.16, 40.69; 
(c) 10.06, 68.76; (d) 8.45, 40.69; (e) 9.16, 40.69; (f) 9.68, 40.69  .  
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in Figure  4.13 b. For a higher voltage  V  0 , the starting part of the calculated curve goes 
below the real free surface as seen in Figure  4.13 c. The changes are only seen in the 
starting part of this curve because the end of the curve is fi xed by the algorithm. The 
solution with a fi xed voltage of 500   V and a starting angle of 0    °  lies below the real free 
melt surface (Figure  4.13 d), and for 20    °  it lies above it (Figure  4.13 f). 

 For further comparison, the interior of the molten zone and growing crystal as well as 
the shape of the solid – liquid interface are not visible  in situ . Lateral photovoltage scan-
ning (LPS)  [L ü dge 1997]  is one method that can visualize how the crystal grew inside 
on an axial sample cut from the crystal. A focused light spot is scanned over the rectan-
gular sample. The voltage between two contacts at opposite edges is a measure of the 
resistivity gradient at the focus position and visualizes the dopant striation pattern. 
Striations are generated by a fl uctuating incorporation of dopant at the crystallization 
interface due to changes of the local temperature and melt convection fl ow in the liquid 
boundary layer. 

 A sample prepared for LPS needs a smooth surface, preferably a polished one, in order 
to get the highest possible signals. Figure  4.14  shows the LPS plot of an axial section 
from a 2 ″  FZ crystal. To extract a representative striation line from the measurement, 
which is then assigned to the shape of the solid – liquid crystallization interface during 
crystal growth, all pairs of adjacent axial LPS line scans are correlated and their shift is 
determined. The experimental interface shape derived in this manner can be compared to 
the numerically simulated one. The measured and calculated phase boundaries are plotted 
into the LPS scan of the 2 ″  Si sample as shown in Figure  4.14 . The simulated interface 
was computed by calculating the temperature fi eld of the FZ process with the same 
parameters used for the growth of the 2 ″  crystal from which the sample for LPS was 
prepared. For this computation, the commercial program FEMAG FZ  [Bioul 2007]  was 
used, where the convection in the melt was neglected. A detailed description of numerical 
analyses of the FZ process is given in section  4.3 .   

     Figure 4.14     LPS plot of a 52   mm    ×    20   mm single - crystalline Si sample grown at 3.2   mm/
min. The solid white line is the calculated phase boundary defl ection   =   9.1   mm; the white 
dashed line is the phase boundary derived from the measurement, defl ection   =   11.0   mm.  
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 Figure  4.14  shows that the measured and computed curves coincide well, but also that 
there are some small deviations. These can be caused by not taking the heat transport by 
melt convection into account in the computation. The melt fl ow has a small but noticeable 
infl uence on the temperature fi eld, which can, when neglected, result in deviations to the 
measured phase boundary. For different melt zone dimensions and for different FZ 
process parameters, considerable changes take place in the interplay of the acting forces. 
Therefore, such a comparison between experiments and calculations must be done for 
changing process conditions in order to be sure that the computations fi t reality.   

  4.1.2    FZ  Growth for Metallic Melts 

 In the FZ crystal growth of intermetallics by RF heating, a cone - shaped single - turn or 
double - turn coil is usually applied as an external heat source (Figure  4.15 ). The alternating 
EM fi eld couples directly to the material. This makes it easy to design different coil forms 
to obtain the correct shape of the growing interface so that a proper crystal is obtained. 

 Anisotropic interface energies can lead to facets on the surface of the growing crystal 
and to large deviations from the axisymmetric zone form  [Mazilu 2007] , as shown in 
Figure  4.16 .   

 For the FZ growth of metallic melts, as for Si (section  4.1.1.6 ), a suitable frequency 
has to be used which allows the feed rods to melt. For a frequency of 250   kHz, the skin 
depth   δ   is 0.47   mm for Cu, 0.92   mm for Ni, 0.9   mm for Mb and 1.84   mm for TiC. The 
heat diffuses from the outer heated zone to the centre of the rod. Above and below the 
radiated region, the isotherms of the rod become concave because of radiation and con-
vection cooling by the ambient gas. The radial temperature distribution in the zone and 
the solid – liquid interface shape depend on the ratio   δ /r . The interface shape is normally 
convex (towards the melt) in the central part of the zone. For large values of   δ /r , there is 
a sizeable part of concave interface curvature near the rod surface (Figure  4.17 ). With 
increasing overheating of the zone (beyond the melting temperature), the radial heat fl ow 

     Figure 4.15     Vacuum chamber of a FZ melting apparatus with RF inductive heating. 
Right: sketch of the setup with schematic temperature profi le ( T m    , melting temperature) 
  [Behr 2005 - 2]  .  
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     Figure 4.16     Facet (bottom) during the FZ growth of a Gd 2 PdSi 3  crystal with upward 
motion (Reprinted with permission from   [Mazilu 2007] , copyright (2007) Uni - edition, 
Berlin) .  

     Figure 4.17     (a) Calculated temperature distribution in a Mo rod with melting 
temperature 2610    ° C. Isotherms are drawn at intervals of 100   K. (b) Photograph of the 
longitudinal cross - section of the initial molten zone of the Mo rod. (c) Longitudinal 
cross - section of the molten zone of Tb 0.2 Y 0.8 Ni 2 B 2 C  (Reprinted with permission from 
 [Otani 1984] , copyright (1984) Elsevier Ltd)   .  
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increases until concave isotherms occur in the internal zone also, and the interface 
becomes concave  [Kobayashi 1978 , Otani  1984] . This is also the case for large zone 
lengths.   

 The slightly concave interface curvature in the outer part of the growing crystal is 
basically caused by the fi nite penetration depth of the RF EM fi eld, but it can be intensi-
fi ed by the melt fl ow driven by EM fi elds, which transports the hot melt from the surface 
to the inner region. The concave interface regions may become one serious drawback 
with RF EM heating in comparison with other heating modes for FZ growth. As shown 
in Figure  4.17 c for the FZ growth of Tb 0.2 Y 0.8 Ni 2 B 2 C crystals, polycrystalline surface 
layers are formed and only the inner part is single - crystalline. This behaviour is typical 
in processes with slow growth velocities (1 – 2   mm/h), where nuclei formed on the zone 
surface can overgrow the seed crystal. In FZ growth with optical radiation (see section 
 4.2 ) or electron beam heating, the heat is generated immediately at the surface, and 
concave interface regions can be effectively circumvented at least for appropriate (short) 
zone lengths. 

  4.1.2.1   Convective Flow in the  FZ  

 The crystal – melt interface shape and velocity are mainly governed by heat transport in 
the molten zone by diffusion and convection. The material - dependent Prandtl number 
 Pr    =     ν  / D th characterizes the relation between convection - driven and diffusive heat trans-
ports. The kinematic viscosity   ν   is a measure of the convection damping, and  D th is the 
thermal diffusivity. The kinematic viscosity in oxide melts ( Pr     >    1) is of the same order 
of magnitude as for metallic melts, but the thermal diffusivity in metallic melts is two 
orders of magnitude larger, leading to typical Prandtl numbers of  Pr     ≈    2 – 3    ×    10  − 2 . 
Convection therefore has a sizeable effect in the FZ growth of oxides  [Kitamura 1980]  
but it often plays a minor role in the heat transport for the FZ melting of metals and can 
only slightly modify the zone shape, which is basically determined by heat diffusion. On 
the other hand, the ratio between convective and diffusive solute transport is refl ected by 
the Schmidt number  Sc    =     ν  / D . Here,  D  is the diffusion coeffi cient of solute atoms in the 
melt. Because for metallic melts  Sc     >>    1 (typically  Sc  is of the order 10 2   [Chang 1975] ), 
convection has a much stronger effect on the solute transport than on heat transfer and 
may lead to composition inhomogeneities in crystals [ Barthel 1979 , Chang  1975 ]. 

 Experimental investigations of mass and heat transfer in FZ are very complicated 
because of the high temperatures and high chemical activities of most of the melts. 
Computer simulations are one effective way to get a deeper insight into the interplay of 
heat fl ow and nonlinear phenomena. In order to simulate convection patterns, the steady 
state Navier – Stokes equations must be solved numerically  [Chan 1992 , Chang  1976 , 
Kobayashi  1982 , Lan  2003 , M ü hlbauer  1983] . Another effi cient method for visualizing 
fl ows is model experiments with transparent fl uids such as NaNO 3   [Schwabe 1978] , 
Na 1 −    x  Cs  x  NO 3  or n - decane  [Schwabe 2007] . However, since most of the transparent fl uids 
have  Pr     >    1, transferring the results to FZ processes of metals requires care. Moreover, 
computer simulations are often restricted to two - dimensional axisymmetric problems. 
Though the potential of simulation has already reached a high level, as shown in section 
 4.3 , a three - dimensional simulation of FZ growth considering all factors, particularly the 
zone shape, interfaces, and the morphology of the grown crystal, in a self - consistent 
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manner has not yet been reported. Therefore, only a complex consideration of computer 
simulations and model experiments, careful studies of temperature profi les, FZs and 
crystal – melt interface shapes during the FZ process  [Hermann 2001]  combined with 
investigations of grown crystals  [Barthel 1979, Van ě k 1983]  can provide a realistic view 
of the convection phenomena  [Louchev 1996] . 

 The melt convection in the zone is induced by different driving forces which result 
from the inherent temperature and concentration gradients within the zone and from 
external factors like crystal rotation and EM fi elds, as explored in numerous theoretical 
and experimental studies  [Carruthers 1976, Jurisch 1990 - 2, Lan 2003, Van ě k 1983] . 
Typical fl ow patterns in the FZ originating from different driving forces  –  surface tension, 
buoyancy, centrifugal and EM forces  –  are illustrated in Figure  4.18   [Souptel 2005 - 2] . 
The resultant fl ow pattern in actual crystal growth processes is a superposition of forces 
of different kinds.   

 The thermocapillary (Marangoni) convection is caused by the temperature - dependent 
surface tension of the melt on the free surface of the zone (Figure  4.18 a). The strength 
of the thermocapillary convection is governed by the Marangoni number  [Chang 1975]  
which expresses the ratio of a characteristic time for Marangoni - driven fl ow and a char-
acteristic heat dissipation time:

Polycrystal
(a)

Single crystal

Polycrystal
(b)

Single crystal

Polycrystal
(c)

Single crystal

Polycrystal
(d)

Single crystal

     Figure 4.18     Schemes of convective fl ows in the molten zone: (a) Marangoni convection; 
(b) natural convection; (c) forced convection driven by crystal and feed rotation; (d) EM 
convection through RF induction heating.  
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where  Δ  T  is the temperature difference on the free surface of the zone,   ρ   l  is the melt 
density and  L  is a characteristic dimension of the molten zone (normally zone height or 
rod diameter). For almost all liquids, the temperature coeffi cient of the surface tension 
 ∂   γ   lv / ∂  T  is negative and convection fl ows are directed from the middle of the zone to the 
solid interfaces along the free surface. The fl ows are commonly concentrated near the 
free melt surface and persist even in the presence of other forces, but they are much 
weaker in the bulk melt. A comprehensive survey of Marangoni convection in crystal 
growth from the melt is given in Chapter  8 . 

 Because the melt density depends on the temperature, buoyancy forces cause the so -
 called natural convection, governed by the Grashof number:

    Gr
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where   β   T  is the thermal expansion coeffi cient and  g  the acceleration due to gravity. The 
Grashof number is a ratio between buoyancy force and viscous forces in the melt 
 [Carruthers 1976] . The convectional fl ows commonly consist of two large eddies in the 
bulk melt, which are caused by the up - streaming melt in the outer (heated) part of the 
zone and the back fl ow in the centre. 

 The relative strength of the natural convection in relation to the Marangoni convection 
is often measured by the dynamic Bond number  [Barthel 1979, Schwabe 1978] :
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  Bo  decreases very fast as the size of the molten zone diminishes. For  Bo     <    1, the 
Marangoni convection becomes the dominating driving force, which is typically achieved 
for zone heights less than 5 – 20   mm  [Barthel 1979] . 

 In crystal growth of alloys and compounds, where the melt consists of multiple com-
ponents, additional driving forces for convection may arise from concentration gradients 
in the zone, which can generate density differences enhancing the natural convection as 
well as surface tension differences giving rise to solutal Marangoni fl ow  [Schwabe 1978] . 
The radial concentration profi le of crystals grown from an alloy melt is tightly connected 
with the local fl ow direction close to the melt – crystal interface  [Barthel 1979 , Chang 
 1975 , Jurisch  1982 , Lan  1993]  and can lead to variations of the physical properties 
 [Souptel 2005 - 1] . 

 Centrifugal or rotation - driven fl ows in the FZ are generated by the rotation of crystal 
and feed rod, as shown in Figure  4.18 c. The fl ow patterns depend on rotation rates, zone 
size and melt properties. The characteristic rotational Reynolds number is the ratio 
between inertia forces and viscous forces:

    Re
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where  Ω  c  is a characteristic rotation rate of crystal and feed rod. Forced rotation is 
intended to homogenize both the temperature and the solute distribution of the FZ in order 
to improve crystal perfection. The actual fl ow pattern depends on the rotation method  –  
single rotation, iso -  or counter - rotation of crystal and feed rod  –  and is superimposed by 
buoyancy and Marangoni forces  [Chun 1980 , Kobayashi  1982] . The rotation - driven con-
vection pattern is signifi cantly changed in zones of high kinematic viscosity   ν  , such as 
zones of Al 2 O 3  compared with those of Si. Therefore, in oxide melts, the direction of 
rotation plays a more important role than for metallic melts. 

 In FZ processes with induction heating, the RF EM fi eld of a coil generates a radial 
EM force component. RF - induced EM fi elds with a maximum fl ux in the middle plane 
induce a fl ow in the opposite direction to Marangoni convection (Figure  4.18 d), which 
can lead to a dramatic change of solute distributions in the grown crystals  [Van ě k 1983] . 
The maximum velocity can reach 10 – 100   cm/s, which is more than one order of magni-
tude higher than the Marangoni convection in the molten zone  [Launder 1975] . Sometimes, 
due to very strong EM forces and high corresponding Reynolds numbers, the convection 
becomes turbulent. Convection pattern and strength are strongly affected by the design 
of the RF coil, frequency, electrical melt parameters, and crystal – melt and melt – feed 
interface shapes  [Hermann 2001] . A wider inner diameter and a greater height of the coil 
reduce the gradient of the EM fi eld and the undesired melt fl ow towards the centre of the 
solid – liquid interface. 

 Flow stability is one crucial problem not only for the mechanical stability of the FZ 
but also for the perfection of the grown crystals. Unsteady oscillatory fl ow in FZ processes 
arises for high driving forces, i.e. if the characteristic dimensionless numbers exceed 
critical values. For thermocapillary fl ow, oscillations occur in half - zone experiments with 
NaNO 3  ( Pr    =   9) beyond the critical value  Ma  c     ≈    10 4   [Schwabe 1978] . The period of 
oscillation increases with zone dimensions. The oscillatory mode was identifi ed with an 
azimuthally travelling hydrothermal wave  [Schwabe 2007] . In FZ experiments with fl uids 
of low Prandtl number such as Nb  [Jurisch 1990 - 1]  and Mo ( Pr     ≈    0.025)  [Jurisch 1990 -
 2] , critical Marangoni numbers of  Ma  c     ≈    600 – 1600 were obtained for increasing zone 
lengths, which are one order of magnitude smaller than in high Prandtl number fl uids. 
Characteristic frequencies were in the order of 1   Hz  [Jurisch 1990 - 2] . See Chapter  7  for 
a detailed discussion of the various fl ow fi elds due to Marangoni convection. 

 Oscillatory fl ow beyond a critical zone length ( L  c    =   3.5   mm in FZ crystal growth of 
Mo) can lead to a drastic change of impurity distribution and the formation of impurity 
striations in the grown crystal  [Barthel 1967, Barthel 1979, Jurisch 1990 - 2, Van ě k 1979] . 
For more vigorous fl ow, back - melting phenomena at the growing interface can detract 
from crystal perfection. The convective state in a FZ process must therefore be controlled 
by an appropriate zone length, melt overheating and other process parameters. The oscil-
latory Marangoni fl ow can be effectively suppressed by isorotation  [Chun 1980] . 

 According to Tiller ’ s criterion, the morphological instability caused by constitutional 
supercooling ahead of the crystal – melt interface occurs beyond a critical value of  G/v , 
where  G  is the temperature gradient in the melt at the interface and  v  is the growth rate 
 [Wilke 1988 - 1] . Practical experience of FZ crystal growth reveals that melt convection 
is another important factor. RF EM heating causes vigorous fl ow and solute mixing in 
the molten zone, which has benefi cial effects compared to optical or electron beam 
heating. It can suppress constitutional undercooling and cellular growth instability due to 
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trace elements. Figure  4.19  illustrates that a cellular instability is induced by the oxygen 
trace element in a CeSi 2 −    δ   crystal grown at  v    =   10   mm/h by optically heated FZ, which 
contrasts with the stable interface for RF EM heating  [Souptel 2004] . Therefore, RF EM 
heating allows higher growth rates in FZ processes. The actual form of the cellular insta-
bility often depends on convection peculiarities. For the FZ growth of a Mo 1   wt.% – Ir 
crystal, it was proved that the cellular instability fi rst occurs at core regions of the interface 
(Figure  4.19 c) near the stagnant points of the convection vortices where the diffusion 
boundary layer thickness increases  [Barthel 1979 , Barthel  1981] .    

  4.1.2.2   The Travelling Solvent  FZ  Method 

 In crystal growth of incongruently melting compounds by the FZ technique, the molten 
zone has a different composition from the solidifying material. If, at the beginning, feed 
rod and initial molten zone have the stoichiometric composition of the incongruently 
melting compound, the melt composition changes continuously by primary phase crystal-
lization until it approaches the primary crystallization fi eld of the desired compound. This 
is illustrated in Figure  4.20  for the FZ crystal growth of the intermetallic compound 
TbNi 2 B 2 C, which melts incongruently at 1518    ° C with a properitectic phase TbB 2 C 2  
according to the reaction TbB 2 C 2    +   L    ↔    TbNi 2 B 2 C.   

 Metallographic images of longitudinal sections of TbNi 2 B 2 C crystals, grown from stoi-
chiometric feed rods, show inclusions of the TbB 2 C 2  primary phase (Figure  4.20 b). These 
are periodically precipitated in the TbNi 2 B 2 C matrix. This is accompanied by a shift of 
the FZ composition (Ni enrichment, C depletion) until the TbNi 2 B 2 C primary crystalliza-
tion region is reached. Unlike the fortunate case considered here, where the primary phase 
and the matrix grow practically independently, the primary phase can often generate new 
grains of the main phase. This can obstruct single - crystal growth or decrease the quality 
of crystals. Furthermore, the simple FZ method cannot be used for the crystal growth of 
incongruently melting compounds from an oriented seed, because the seed would decom-
pose once in contact with the stoichiometric melt. For this reason it is better to use the 
travelling solvent FZ method (TSFZ), a modifi cation of the FZ technique. Here, at the 
very beginning of the crystal growth process, an additional piece of material with a dif-

     Figure 4.19     SEM images of cross - sections with cellular structure (a) and without cellular 
structure (b) of CeSi 2 −    x   ( x    =   0.19) crystals grown with 10   mm/h FZ methods with optical 
and RF induction heating, respectively  (Reprinted with permission from  [Souptel 2004] , 
copyright (2004) Elsevier Ltd) . Bright phase: CeO 2 . (c) Cellular growth instability at core 
regions of the interface of a Mo - 1 wt.% Ir crystal grown by FZ with electron beam heating 
(autoradiograph)   [Barthel 1981]  .  
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ferent composition is placed between seed and feed rod, so that the initial molten zone 
has a composition in the primary solidifi cation range of the incongruently melting phase. 
In this case, the incongruently melting phase crystallizes from the beginning of the crystal 
growth, without properitectic phase precipitation. During the rest of the process, the 
molten zone should maintain its composition, if the zone size is not changed and the 
compositions of melting feed rod and solidifi ed crystal coincide. The TSFZ method has 
been successfully applied for the growth of various incongruently melting compounds 
 [Kimura 1977] ; in particular it has been extensively used for crystal growth of supercon-
ducting cuprates  [Liang 2002, Takekawa 1988] . One unique application of TSFZ with 
RF heating is the crystal growth of WC, which does not coexist with the binary W – C 
melt at elevated temperature  [Tanaka 1988] . The addition of B stabilizes the WC structure. 
Crystal growth has been accomplished with a ternary W – C – B FZ under pressurized He 
atmosphere at 2900    ° C, leaving a WC crystal containing B only at an impurity level 
(100   ppm). More details of TSFZ growth for YNi 2 B 2 C are given in  [Behr 1999] . The key 
role of the liquid – solid interface shape is of particular interest for the grain selection 
process mentioned above. 

 In the TSFZ method, crystal perfection crucially depends on the exact control of 
process parameters such as the zone travel rate. Because of the high concentration of 
solvent in the molten zone, the growth rate is normally much smaller than for congruently 
melting materials (typically  ≤ 2   mm/h). Otherwise constitutional supercooling may 
occur in front of the solidifying interface, which is often accompanied by second - phase 
precipitation and generation of new grains  [Souptel 2005 - 1] . The difference in composi-

     Figure 4.20     (a) Tb – Ni – B – C phase diagram. The section TbB 2 C 2  – TbNi 2 B 2 C – TbNi 4 B is 
relevant for TbNi 2 B 2 C crystallization processes.  Superimposed is a DTA heating plot  [Behr 
2005 - 2]  . (b) Metallographic images of longitudinal sections of TbNi 2 B 2 C crystals (grown by 
FZ with radiation heating) with inclusions of the primary phase TbB 2 C 2   (Reproduced with 
permission from  [Souptel 2005 - 1] , copyright (2005) Elsevier Ltd) .  
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tion between melt and crystal leads to solute boundary layers ahead of the crystallizing 
interface and requires intensive convective mixing of the zone either by the inherent RF 
EM stirring or by asymmetric counter - rotation of feed rod (10   rpm) and seed (20 – 50   rpm), 
which is commonly employed. 

 Because of the large concentration difference between the FZ and the adjacent crystal/
feed rod in TSFZ, any fl uctuation of the zone dimension will immediately result in a 
change of the melt composition and fi nally in local composition fl uctuations in the crystal, 
depending on the solute partition coeffi cient of the element under consideration. In Figure 
 4.21 a, the dependence of the element concentration on the length coordinate of a 
Ce 2 Pd 0.3 Co 0.7 Si 3  crystal grown by TSFZ with RF inductive heating is shown  [Mazilu 
2005] . The variation of the Co/Pd ratio is caused by fl uctuations of local growth condi-
tions. For TSFZ with radiation heating of the same intermetallic compound the course of 
the Co/Pd ratio is smoother over the length coordinate because the temperature regime is 
more stable, resulting in smaller fl uctuations of the zone length than for inductive heating. 
On the other hand, the radial composition differences turned out to increase slightly 
because of less intensive convective stirring of the melt  [Mazilu 2005] . Therefore, in 
TSFZ, a proper choice of heating mode is decisive for the growth strategy of crystals of 
high quality.   

 The operating point of the growth process in TSFZ is primarily fi xed by the average 
composition of the FZ. However, it may respond to temporal composition fl uctuations 
and may also drift continuously by gradual accumulation of elements in the molten zone 
if the composition of the feed rod differs from that of the crystal. The temperature at the 
surface of the FZ measured by a pyrometer can point to changes in the growth process. 
As shown in Figure  4.21b  for the TSFZ growth of the Tb 0.4 Y 0.6 Ni 2 B 2 C compound, the 
zone temperature starts below the peritectic temperature of 1556    ° C. Apart from tempera-
ture fl uctuations typical for TSFZ growth with RF heating, the average temperature 
decreases with processing time  t , which is caused by a gradual drift of the melt composi-
tion towards a higher Tb/Y ratio. This leads to a slight gradient of the Tb fraction in the 
grown crystal  [Bitterlich 2000] . Fluctuations in the local growth regime are often evident 
from small - diameter changes of the grown crystal. These surface ripples (Figure  4.22 ) 
are more marked in FZ growth with RF induction heating where the zone is less stable 
than for radiation heating.    

  4.1.2.3   Effect of Ambient Atmosphere and Metal – Vapour Reactions 

 The refi ning of materials  [Pfann 1966]  is still an important aspect in FZ crystal growth. 
The ambient atmosphere plays a crucial role. Normally, for metals and intermetallic 
compounds, high - purity protective gases like Ar or He are used to avoid reactions with 
the melt. Volatile elements and constituents with low melting and boiling points can 
evaporate from the FZ into the gas atmosphere and fi nally sublimate at the cold container 
walls. This permits a low partial pressure of the impurity elements in the ambient atmos-
phere. Therefore, the growing crystal is constantly purifi ed during the growth process and 
fi nally has a higher purity than the feed rod. This effect is utilized especially for growing 
ultrahigh - purity crystals of refractory metals  [Berthel 1963]  by the FZ method with elec-
tron beam heating in a high - vacuum environment. In the crystal growth of intermetallics, 
the selective evaporation of elements is normally an undesired phenomenon because it 
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alters the stoichiometry of the melt and the growing crystal. However, under certain 
circumstances, the vaporization can be employed for melt refi ning during the growth 
process. In the FZ crystal growth of V 3 Si and Cr 3 Si it was shown that a silicothermic 
reaction of oxides proceeds for melting temperatures higher than 1500    ° C, leading to a 
marked depletion of the oxygen content  [Behr 1985 , Jurisch  1979] . The oxygen impurities 
in the form of transition metal oxides are reduced by Si, e.g.

     Figure 4.21     (a) Element segregation of Si, Ce, Co   +   Pd, and Co, Pd (bottom part) near 
the rod axis  z  in the Ce 2 Pd 0.3 Co 0.7 Si 3  crystal grown with  v    =   10   mm/h for FZ growth with 
induction heating. Dotted lines serve as guides for the element concentrations. Thin 
horizontal lines show nominal composition  (Reprinted with permission from  [Mazilu 2005] , 
copyright (2005) Elsevier Ltd) . (b) Temperature of the FZ during the growth process of 
Tb 0.4 Y 0.6 Ni 2 B 2 C with zone travelling velocity  v    =   2   mm/h. The axial coordinate of the crystal 
 z    =    tv  is related to the processing time  t . Dashed line, recorded temperature  T  zone ; solid 
line, averaged temperature  T  av . For comparison, peritectic temperature  T  p    =   1556    ° C 
 (Reprinted with permission from  [Bitterlich 2000] , copyright (2000) Elsevier Ltd) .  

     Figure 4.22     CeSi 2  single crystal grown by a FZ method with induction heating, showing 
typical growth facets and surface ripples  (Reprinted with permission from  [Souptel 2004] , 
copyright (2004) Elsevier Ltd) .  
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    6 13 4 92 3 3 2V O Si V Si SiO+ ↔ +     (4.11a)  

    SiO Si SiO2 2+ ↔     (4.11b)   

 The volatile SiO can evaporate from the molten zone into the ambient atmosphere (Ar) 
and sublimes at the cold coil or container walls. Surprisingly, this method of purifi cation 
also works for the FZ crystal growth of rare earth (RE) – transition metal compounds. 
Although rare earth oxides are thermodynamically much more stable than SiO 2 , they 
experience a similar reduction during the melting process. This has led to a reduction of 
the oxygen content by a factor of 2 – 3 in crystal growth of CeSi 2   [Souptel 2004] . This 
reaction also takes place in ternary melts of RE – transition metal silicides (RE 2 PdSi 3 , 
RE   =   Tb, Dy, Ho, Ce) and results in improved crystal quality  [Behr 2005 - 2] . To com-
pensate for the loss of Si caused by the silicothermic reaction during the FZ crystal 
growth, excess Si was added to the prepared feed rod. 

 In a similar way, borothermic or carbothermic reactions can proceed at elevated tem-
perature ( > 1500    ° C) in melts containing B or C  [Souptel 2007 - 2] . In these reactions, the 
volatile boron oxides (BO) and carbon oxides (CO) are formed. The long exposure time 
of the melt under Ar gas fl ow in the growth chamber during the slow growth ( ∼ 1   mm/h 
is typical for RENi 2 B 2 C crystals) boosts the extraction of BO and CO from the molten 
zone. This reduces the O 2  content in the melt and fi nally in the grown crystals. 

 In practice, in FZ crystal growth of intermetallic compounds with high melting tempera-
tures containing volatile elements (Eu, Tm, Ce), one is often faced with the opposite situ-
ation. Evaporation of important constituents with low melting temperatures must be 
prevented during the FZ growth process. High growth velocities and small zone length can 
reduce the evaporation losses within narrow limits  [Behr 2008] . Another more effi cient 
means is to use an elevated pressure of the ambient gas. For FZ growth with RF induction 
heating, the enhancement of gas pressure is rather limited because of the large dimension 
of the growth chamber. In case of optical heating, the growth chamber can be more compact, 
enabling gas pressures of some MPa, depending on the set - up (see next section).    

  4.2    FZ  Growth with Optical Heating 

  4.2.1   Introduction 

 Although RF heating is the main technique employed in FZ growth, especially for the 
industrial FZ growth of Si as described in section  4.1.1 , optical heating with focused EM 
radiation in the visible and infrared part of the spectrum is used for instance to melt 
small - diameter semiconductors and oxides. This heating method allows excellent visual 
observation of the sample, very high temperatures, and operation in vacuum as well as 
in a gas atmosphere. The two main options for optical heating are the use of image fur-
naces and laser heating.  

  4.2.2   Image Furnaces 

 Image or mirror furnaces use a light source (e.g. the fi lament of a light bulb) as heat 
source and optical elements (mirrors, lenses) to focus it onto the sample. Additional 
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optical elements (apertures, baffl es) may be used to infl uence the amount and the 
profi le of the incoming radiation. Some basic confi gurations of such furnaces are shown 
in Figure  4.23 .   

 Imaging furnaces can be very energy effi cient, there is in principle no limit to process-
ing temperatures, and the visual control of the zone and the crystal growth process is 
excellent. Starting in the 1950s and 1960s  [Baum 1959, Field 1968, Kooy 1961, Weisberg 
1956]  different image furnaces have been developed over the years, especially for FZ 
growth of nonmetallic melts and the study of thermocapillary (Marangoni) convection 
in FZs, e.g.  [Akashi 1969, Arsenjew 1973 - 1, Arsenjew 1973 - 2, Balakrishnan 1993, 
Balbashov 1981, Bednorz 1984, Carlberg 1984, Carlberg 1986, Cox 1972, Cr ö ll 1994 - 2, 
Eyer 1979,Kitazawa 1977, Koohpayeh 2008, Lenski 1990, Matsumoto 1992, Mizutani 
1974, Saurat 1971, Souptel 2002, Trivich 1970] . Commercial systems specifi cally 
designed for FZ growth have become available from several different companies over the 
years, e.g. Astrium - EADS, Crystal Systems Inc., GERO, LOT - Oriel, Moscow Power 
Engineering Institute, NEC. Many optical furnaces were also built in - house in research 
laboratories  [Bednorz 1984, Eyer 1979] . Practically all optical furnaces employ refl ective, 
not refractive elements because the geometric effi ciency of lenses is quite limited and the 
heat exposure of the optical elements excludes most refractive materials except fused 
quartz or sapphire. 

     Figure 4.23     Mirror furnace set - ups. (a) and (b), closed monoellipsoid mirror furnaces; 
(c) double ellipsoid mirror furnace; (d) open ellipsoid mirror furnace with aperture; 
(e) parabolic mirror furnace; (f) parabolic mirror furnace with lamp below the sample 
and additional hemispherical mirror. Dashed lines indicate unfocused rays (copyright 
A. Cr ö ll; reproduced with permission).  
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 Either ellipsoidal or parabolic mirrors are used to focus the light from one or several 
lamps as shown in Figure  4.23 . Closed monoellipsoidal mirrors as in Figure  4.23 a, b are 
the most effi cient because nearly all of the light is focused onto the sample; open ellip-
soidal (Figure  4.23 d) or parabolic mirrors (Figure  4.23 e) do not use the radiation directly 
refl ected by the mirror shell on the sample side. Improved effi ciency of parabolic mirrors 
or of ellipsoidal refl ectors using only partial ellipsoids  [Arsenjew 1973 - 1, Arsenjew 1973 -
 2, Ray 1988]  is possible by the introduction of an additional hemispherical mirror as 
shown in Figure  4.23 f. Parabolic mirrors have the advantage that the distance between 
the foci can be varied. 

 For a real point focus, there is in principle no limit for the separation of parabolic mirror 
shells. However, because of the fi nite dimensions of the lamp fi laments or arcs, the result-
ing optical aberrations usually preclude large separations. A combination of ellipsoidal 
and parabolic geometries is also possible (Figure  4.24 ).   

 A distinction can be made between furnaces where the sample axis and the main axis 
of the furnace coincide, and furnaces where the main axis is at 90    °  to the main sample 
axis. The fi rst concept, shown in Figure  4.23 a, d – f, allows a very good rotational sym-
metry of the radiation fi eld and thus the thermal fi eld, but the accommodation of different 
translation mechanisms for the feed rod and the crystal is diffi cult (compare e.g. the 
construction in  [Bednorz 1984] ) and the maximum processing length is limited to a value 
less than the lamp focus – sample focus distance. In this type of furnace, an ampoule or 
similar construct is necessary to hold the feed rod and the growing crystal (compare Figure 
 4.24 ). With the second type of furnace (Figure  4.23 b, c), the processing length is limited 
only by the translation mechanism and independent translation of the feed rod and crystal 
is possible, but the thermal symmetry is considerably degraded, making crystal rotation 
a necessity. Often several mirrors are combined to partially alleviate the thermal asym-
metry, as in the double - ellipsoid mirror furnace shown in Figure  4.23 c or the four - mirror 
furnace made by Crystal Systems in Japan; this allows also an increase in heating power 
 [Crystal 1992] . The good effi ciency of a closed single ellipsoid is reduced by combining 
several mirrors, because the radiation directly emitted from one lamp into a different 
ellipsoid is not focused and is lost. A furnace with toroidal geometry (Figure  4.25 ) can 
also be regarded as part of this group, or as a cross between a ring resistance heater and 
an image furnace. The rotational symmetry of such a furnace is quite good, but only a 
few types have been reported to date  [Davidson 1978 , Quon  1993] . The furnace described 
in  [Quon 1993] , used for the crystal growth of Ge and Bi 12 GeO 20 , used a Super Kanthal 
resistance heating element, not a lamp.   

 Mirrors are either made of glass [Crystal n.d.] or machined from metal, e.g. aluminium 
alloys, brass, or steel. The inner surface has to be polished and can either be used as is 
(aluminium alloy mirrors) or is coated with a highly refl ective metal, usually gold (see 
Figure  4.26 ). Silver, although having the best refl ectance, is avoided because of its unfa-
vourable tarnishing properties when used as fi rst surface mirror.   

 If processing in air is not possible, the processing atmosphere can be provided by the 
furnace volume itself in the case of closed mirror furnaces with vacuum - tight feedthroughs, 
or by additional transparent containers, e.g. ampoules or fused quartz tubes. Transparent 
vessels for pressures up to 10 7    Pa have been used  [Balbashov 1981] . 

 Although some of the fi rst furnaces to be developed used carbon arcs  [Kooy 1961] , the 
light sources used today are either tungsten halogen lamps of the order of 0.5 – 1.5   kW 
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     Figure 4.24     Paraboloid – ellipsoid mirror developed by Astrium - EADS  (Reprinted with 
permission from  [Lenski 1990] , copyright (1990) Elsevier Ltd) . The foci of the two outer 
paraboloids coincide with the foci of the centre ellipsoid. The lower focus is an annulus of 
20   mm diameter. The sample is housed in a fused quartz ampoule (copyright A. Cr ö ll; 
reproduced with permission).  

     Figure 4.25     Schematic view of a FZ furnace with toroidal elliptic refl ector, after   [Quon 
1993]  (copyright A. Cr ö ll; reproduced with permission) .  
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maximum power or xenon arc lamps up to 10   kW for high power requirements  [Balbashov 
1981, Eyer 1979, Kitazawa 1977] . In the latter case, the spectral distribution of the radia-
tion (important for simulations) has to be taken from the manufacturer ’ s data. The spectral 
intensity of thermal radiators such as tungsten fi laments is given by Planck ’ s law for black 
body radiation and the emissivity of the emitting material. Note that in this case the 
maximum sample temperature is always below the fi lament temperature. In all cases 
where lamp bulbs are made of fused quartz, wavelengths shorter than 0.2    μ m or longer 
than 4    μ m are cut off. The lamp fi laments or arcs should be as small and isometric as 
possible, as the focusing properties degrade rapidly for nonfocal/nonparaxial rays (Figure 
 4.27 ) because of the marked coma in parabolic and elliptic mirrors  [Ray 1988] .   

 Optical aberrations are more pronounced for strongly curved surfaces, i.e. for ellipsoids 
with an axis ratio much less than 1  [Eyer 1979]  or paraboloids with large geometric coef-
fi cients (Figure  4.27 ). Furnaces based on point focus geometries, such as standard ellip-
soid or parabolic optics, limit the maximum sample diameter to 10 – 15   mm. This can be 
partially counteracted by deviation from the ideal shape, introducing a so - called ring focus 
where the energy maximum is not a point but an annulus optimized for a given sample 
diameter  [Danilewsky 1996, Kramer 1985, Lenski 1990] . The maximum sample size and 
the maximum temperature that can be achieved in a given image furnace depend heavily 
on the absorption and refl ection coeffi cients of the solid and liquid material. 

 A disadvantage of mirror furnaces is the fact that temperature measurements during 
growth are often diffi cult. The temperature in the heating elements (i.e. the lamps) is only 
indirectly related to the sample temperature, and contactless measurement of the sample 
temperature by pyrometry is nearly impossible because of the much higher level of light 
refl ected versus radiation emitted from the sample. Theoretically, pyrometric measure-
ments can be made by using light sources emitting only a line spectrum, or by fi ltering. 
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     Figure 4.26     Refl ectivity of several mirror materials from 200 to 4000   nm, using values 
from   [Naumann 1987]  (copyright A. Cr ö ll; reproduced with permission) .  
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Temperature fi eld data can be obtained from special samples with incorporated tempera-
ture sensors, from numerical simulations, and from analytical computations  [Dold 1994, 
Haya 1996, Lan 1997, Rivas 1992, Rivas 1999, Rivas 2001, Rivas 2002, Rivas 2004, 
Souptel 2007 - 1, Watson 1994] . Feedback control of image furnaces using the sample 
temperature is therefore uncommon; a feedback loop of the lamp brightness is useful, 
however. The zone height is often controlled just by visual observation of the sample and 
manual regulation of the power. If automatic processing must be used, an optimum 
parameter set (power/translation/rotation) is fi rst established by simulations, measurement 
samples, and test runs, and then executed automatically. A control loop regulates either 
the lamp power or the light intensity measured by photodiodes pointing at the fi lament. 

     Figure 4.27     Focusing properties of differently shaped parabolic and ellipsoidal mirrors for 
focal rays and rays originating from axial positions    ±    5   mm from the focus; shown are three 
rays 15    °  apart on each side for each position.  f  is the distance from the focal point to the 
apex of the mirror. The progressive coma for strongly curved geometries is clearly visible 
(copyright A. Cr ö ll; reproduced with permission).  
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Light intensity control takes into account changes of the light output not only related to 
voltage fl uctuations and fi lament resistance, but also other changes such as the discolora-
tion of the lamp bulb or the higher light intensity during processing under microgravity, 
caused by the absence of convective gas cooling of the fi lament. Because of the nature 
of closed mirror furnaces, however, the photodiode signal can be quite susceptible to 
changes of the light refl ected back from the sample towards the lamp, such as changes 
of the zone shape. Light intensity measurement devices employing diffusers and beam 
splitters between the mirror shells are possible in open mirror furnaces (Figure  4.23 d – f), 
and are better suited for control  [Balbashov 1981] . With modern image analysis tech-
niques, a control loop using the zone shape or height determined by image analysers 
should be possible, although the many refl ections and back - refl ections in a mirror furnace 
make automatic detection of the interfaces diffi cult. 

 The power of incandescent lamps can be varied between zero and full power, but arc 
lamps allow changes of the light intensity only within a smaller power range (usually 3/4 
to full power). In this case, or when a constant colour temperature is desired with incan-
descent lamps, the light fl ux can be controlled by an aperture in open geometries (Figure 
 4.23 d – f,  [Balbashov 1981] ). 

 Temperature gradients in the sample are determined mainly by the geometry of the 
furnace, the fi lament and the sample, as well as by the optical and thermal coeffi cients of 
the solid and liquid sample material. As an example, the direct radiation of the lamp on 
to the sample top in monoellipsoid furnaces and the focusing properties lead to a consid-
erable fl attening of the temperature gradient at the upper interface. A small absorber or 
refl ector mounted between the tips of the lamp and the sample, such as the hemispherical 
mirror in Figure  4.23 f, can reduce this effect. 

 The absorber needs to be actively cooled, though, because, otherwise, it will heat up 
and emit radiation itself. A small (1 – 5   mm) defocusing of the lamp towards the apex of 
the ellipsoid also steepens the temperature profi le between the focus and the centre of the 
ellipsoid in these furnaces, because it diminishes the amount of defocused rays coming 
from parts of the fi lament located nearer to the furnace centre in favour of rays coming 
from near the apex (Figure  4.27 ). The latter are better focused, but can lead to a second 
focus below the original focus for certain defocusing distances  [Dold 1994] . It should be 
noted that the position of the temperature maximum in monoellipsoid mirror furnaces, 
sometimes called  ‘ thermal focus ’ , is usually not located at the geometric focus, but a few 
millimetres towards the centre of the ellipsoid. Paraboloidal mirrors with moderate cur-
vature allow a more symmetric axial gradient than ellipsoidal ones, at the expense of 
effi ciency. An example of combining both concepts is a closed mirror furnace using a 
combination of two paraboloids and an ellipsoid with common foci (Figure  4.24 ) built 
by Astrium - EADS  [Lenski 1990] . It was successfully used on several space missions for 
samples up to 20   mm in diameter  [Cr ö ll 1994 - 1, Cr ö ll 1998, Danilewsky 1994, Herrmann 
1995, Lopez 1999, Maffei 1997] . 

 The results of the FZ crystal growth of GaSb by optical heating in space and on Earth 
are shown in Figure  4.28 . The two microgravity - size crystals were grown in the parabo-
loid – ellipsoid mirror furnace shown in Figure  4.24 , the 1 - g crystal in a double - ellipsoid 
mirror furnace. The 1 - g crystal was grown with a zone height of 6.5 – 7.0   mm, close to the 
maximum possible zone height of 8.7   mm. Because of the interface curvature, the zone 
height limits the maximum diameter of GaSb to 5 – 6   mm on Earth. The microgravity 
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crystal, however, was grown with a zone height of 13 – 14   mm, allowing a much larger 
crystal diameter. Even larger zone heights are possible for small crystal sizes, but aspect 
ratios much above 1 lead to the formation of concave interfaces.   

 During the German Spacehab mission D - 2 in 1993, the GaAs crystal shown in Figure 
 4.29  was grown in space with a diameter of about 20   mm; on Earth GaAs only crystals 
of 6 – 8   mm diameter can be grown using the FZ method . For the GaSb crystal, the zone 
height of 20 – 24   mm was more than twice the terrestrial value. For details see  [Herrmann 
1995] .   

 One important peculiarity of radiation heating is the feedback between the heating 
power absorbed and the change of absorption and refl ection coeffi cients upon melting. 
For some materials, these coeffi cients change considerably at the melting point (Table 
 4.3 ). In Figure  4.30 , the substantial increase in the refl ectivity of Si and in the absorp-
tion coeffi cient (colour change) of GGG on melting can easily be seen. The fi rst case, 
i.e. the increase in refl ectivity of an opaque substance on melting, leads to the formation 
of a pattern of droplets and solid material on the surface at melting temperature [ Celler 

     Figure 4.28     Two GaSb crystals of 16   mm diameter grown under microgravity (left and 
centre) during the Spacehab - 4 mission   [Tegetmeier 1996]  , and one 5 - mm diameter GaSb 
crystal grown under gravity (right) (copyright A. Cr ö ll and R. Geray; reproduced with 
permission).  
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     Figure 4.29     20 - mm diameter GaAs FZ crystal grown under microgravity during the 
German Spacehab mission D - 2 in 1993  (Reprinted with permission from  [Herrmann 
1995] , copyright (1995) Elsevier Ltd) .  

  Table 4.3    Optical material parameters in the solid (s) and liquid (l) state for 
several materials 

   Material     Wavelength      r  s       r  l       ε  s       ε  l        α   s        α   l      Reference  

  Si    VIS    0.38    0.72    0.60    0.28             [Celler 1985]   
  Ge    VIS    0.35    0.82    0.65    0.18             [Crouch 1982]   
  Fe    650   nm    0.65    0.63    0.35    0.37             [Weast 1981]   
  Au    650   nm    0.86    0.78    0.14    0.22             [Weast 1981]   
  Al 2 O 3     633   nm    0.04    0.06            0.01 – 0.1    0.5     [Nason 1990]   
  Y 3 Al 5 O 12     633   nm    0.07 – 0.08    0.09            0.083 – 0.111    2     [Nason 1990]   

    r , refl ectivity;  ε , emissivity;   α  , absorption coeffi cient.  
  The  ε  s  and   α   s  values are for smooth surfaces. Value ranges indicate temperature - dependent measurements. Note that 
the absorption coeffi cient is used, not the absorptance, equivalent to the emittance (equals emissivity only for opaque 
materials with smooth surfaces).   

1984, Celler 1985, Jackson 1985] , adjusting the macroscopic average refl ectivity such 
that the melting temperature is maintained despite the changes in absorption coeffi cient 
at the phase transition. In other words, between the point where the surface starts melting 
and the point where the whole surface is molten, a substantial increase in heating power 
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is necessary to allow for the reduction of the absorptivity, in addition to the latent heat 
required. The droplets at the interface are not stable, but move and coalesce in the 
temperature gradient as a result of surface tension effects and gravity, and can introduce 
some irregular vibrations of the zone. These effects are enhanced for materials where 
superheating of the solid is possible, such as many semiconductors  [Wenzl 1978] . Apart 
from the movements, this change of refl ectivity is advantageous in general in that it 
leads to a self - stabilization of the system; it damps the effect of a perturbation or an 
asymmetry of the radiative fl ux, unavoidable in real systems, on the energy fl ux into 
the sample. Materials with a higher absorption coeffi cient of the melt than of the solid, 
such as many oxides, show the opposite effect (Figure  4.30 ). The power must be 
decreased immediately on the formation of the melt zone, and asymmetries in the exter-
nal radiation/temperature fi eld are amplifi ed. Constant attention is necessary for the 
control of these melt zones.     

 The complex interplay between the different material parameters, temperatures, con-
vective fl ows and geometry leads to diffi culties in determining the temperature fi elds in 
mirror furnaces. Advances in computing power mean that numerical simulations by fi nite 
element methods can now predict some aspects of the process, if the energy fl ux on the 

     Figure 4.30     Floating zones in a double ellipsoid mirror furnace. Left: Si ( T  m  1410    o C), 
diameter 12   mm, power 850   W. Right: Gd 3 Ga 5 O 12  (GGG,  T  m  1767    o C), 4   mm diameter, 
with passive afterheater (visible at bottom), power 1200   W (from  [Geray 1984] ). Note the 
much higher refl ectivity of the Si melt zone compared to the Si crystal and the darker 
colour of the garnet melt zone compared to the GGG crystal ( adapted from   [Cr ö ll 1998]  , 
by permission from Elsevier   ).  
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surface of the sample is calculated by other means such as a Monte Carlo simulation or 
an optics program; with some simplifi cations analytical methods are also possible  [Haya 
1996, Lan 1997, Rivas 1992, Rivas 1999, Rivas 2001, Rivas 2002, Rivas 2004, Souptel 
2007 - 1] . Simulations have shown that the secondary radiation, i.e. the radiation emitted 
by the sample, cannot be neglected in calculating the temperature fi eld in mirror  [Dold 
1994, Haya 1996, Kramer 1985, Lan 1997, Rivas 2002, Watson 1994] .  

  4.2.3   Laser Heating 

 Laser heating shares many aspects with the image furnaces described above, including 
good visual control, unlimited temperature range (in principle), no general limitations for 
the processing atmosphere, and the effects associated with the change of refl ectivity and 
absorption coeffi cient at the melting point. Because of its monochromatic nature, laser 
heating allows straightforward pyrometric temperature measurements. Secondary radia-
tion does not infl uence the temperature profi le greatly unless radiation shields are used. 
Automatic diameter control, e.g. with a second laser at a different wavelength  [Fejer 
1984] , is also easier than in mirror furnaces. The energy effi ciency of laser furnaces is 
not as good as that of mirror furnaces, starting with a low electro - optical conversion 
effi ciency, e.g. 10% for a CO 2  laser  [Carlberg 1991] . The available optical power is then 
further reduced in the optical system (beam expander, mirrors) by refl ection and absorp-
tion losses. Typically, 4 – 10 optical surfaces are common in advanced systems. Additional 
pre -  and afterheaters are sometimes used to reduce the necessary laser power. Although 
all types of lasers providing the power at an appropriate wavelength might be used, the 
continuous - wave CO 2  laser with a wavelength of 10.6    μ m is a common type. This reason 
for this is that oxides, the material group where laser heating furnaces are most often 
applied, are opaque at this wavelength. The same reason, however, precludes the use of 
this laser when standard ampoule or tube materials (SiO 2 , Al 2 O 3 ) are used for sample 
containment. Therefore lasers with wavelength in the visible or near infrared, such as 
Nd   :   YAG lasers with   λ     =   1.06    μ m, are also used. 

 The use of lasers for FZ growth started in 1969 with the growth of ruby crystals by 
Eickhoff and G ü rs  [Eickhoff 1969]  and has continued over the years  [Burrus 1977, Chen 
1995, Chen 1996, Dreeben 1980, Elwell 1985, Gasson 1970, Gurtler 1978, Kim 1979, 
Sekijima 1998, Takagi 1977] . The main application has been for pulling optical single -
 crystal fi bres by the pedestal method, e.g.  [Feigelson 1986, Feigelson 1988, Fejer 1984, 
Imai 1995, Lai 2001, Nason 1990, Tang 1988, Tiller 1991, Yangyang 1991] . 

 Early designs employed a single laser or several lasers directed at the zone (sometimes 
with beamsplitter and mirrors, see e.g.  [Gasson 1970] ), resulting in strongly asymmetric 
temperature profi les. For good rotational symmetry, axicon optics as shown in Figure  4.31  
are employed  [Carlberg 1991, Feigelson 1986] . A focusing system as in Figure  4.31 a 
does not pose any diffi culties for cooling the optical elements and, at the CO 2  laser wave-
length, more materials than the ones listed in Figure  4.26  are available as mirrors (e.g. 
Mo has a refl ectivity of 98% at this wavelength). Another possibility is the use of a cata-
dioptric system as shown in Figure  4.31 b.   

 Refractive elements can be made of GaAs, ZnSe (Irtran - 4) for   λ     =   10.6    μ m; Si or Ge 
are not suitable for high - power CO 2  lasers owing to absorption bands (Si) or thermal 
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runaway (Ge)  [Karow 1993] . The high refractive index of these materials (e.g.  n    =   2.43 
for ZnSe,  n    =   3.28 for GaAs at 10.6    μ m) leads to a considerable loss of power by refl ec-
tion (17% for ZnSe) and makes antirefl ective coatings a necessity. An analysis by 
 [Carlberg 1991]  showed that in a typical setup only 50% of the power leaving the laser 
is absorbed by the sample (Al 2 O 3 ), and, in another example, 900   W of electrical power 
(equivalent to 58   W laser power reaching the sample) was needed to form a FZ in 10   mm 
diameter LiNbO 3  rods ( T  m  1260    ° C). A possible advantage of laser heating systems is that 
tilting of optical elements might be used for translating a zone without mechanical move-
ments of the sample  [Bagdasarov 1986] . 

 The axial temperature gradient in laser - heated FZs is usually rather high (up to 1000   K/
cm  [Feigelson 1988] ) if the profi le of the laser beam is maintained or focused by the 
optical system. This can be advantageous in terms of high possible growth rates  [Feigelson 
1986 , Feigelson  1988] , but also introduces higher thermal stress in the crystal and strong, 
time - dependent thermocapillary convection in the zone. If these disadvantages outweigh 
the benefi ts of a high pulling rate, the axial gradient (as well as the interface curvature) 
can be changed by additional pre -  and afterheaters, thermal shields around the sample, 
defocusing of the beam profi le by the optical system, the use of several coaxial laser/
axicon systems for producing concentric ring beams  [Carlberg 1991] , or a combination 
of a laser heating system and image furnace  [Geho 2004] .  

     Figure 4.31     Axicon optics - based laser heating systems: (a) Catoptric pedestal growth 
system, after  (Reprinted with permission from  [Fejer 1984 ,  Feigelson 1986] , copyright 
(1986) Elsevier Ltd) . (b) Catadioptric system for FZ growth, after  (Reprinted with 
permission from  [Carlberg 1991] , copyright (1991) Springer Science + Business Media) . A 
parabolic mirror may be used instead of the conical one (or vice versa), depending on the 
desired radiation distribution. AR, axicon mirror system; P, parabolic mirror; M, fl at mirror; 
E, optional beam expander; AT, axicon lens system; C, conical mirror.  
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  4.2.4   FZ Growth for Oxide Melts 

  4.2.4.1   General Growth Features for Various Classes of Oxides 

 The basic difference between the FZ crystal growth of metals and most oxides is the low 
electrical conductivity of the latter. With the exception of some special oxides like UO 2 , 
which exhibit semiconducting properties, RF heating cannot be applied to this class of 
materials. Single crystals of UO 2  were grown by FZ with RF heating by using an addi-
tional Mo preheating element  [Chapman 1960] . Alternative heating methods for FZ 
crystal growth use resistive Ir heaters for YVO 4   [Muto 1969]  or a hollow cathode gun 
for YAlO 3  and Y 3 Al 5 O 12  garnet materials  [Class 1968] . The methods might lead to con-
tamination of the melt by the heater materials. 

 Poplawsky was the fi rst to use an arc image furnace for FZ melting of oxide crystals 
of various ferrites, Fe 3 O 4 , MnFe 2 O 4  and NiFe 2 O 4   [Poplawsky 1962] . Optical heating with 
various modifi cations of image furnaces has become a well - established method for FZ 
growth of oxides (see section  4.2.2 ). 

 Oxides exhibit much smaller heat conductivities than metals and intermetallics. 
Temperature gradients in the crystal during the growth process are therefore greater and 
precautions, such as an additional resistance heater around the rod, are required to avoid 
cracks and other defects caused by inherent thermal stresses  [Balbashov 1981] . 

 Various oxide single crystals are used as optical materials. Large sapphire (Al 2 O 3 ) 
crystals are commercially grown by the Czochralski or the Verneuil method  [Wilke 1988 -
 2]  or the temperature gradient technique  [Jianwei 1998] . These techniques of crystal 
growth are also useful for other oxides. In some cases hydrothermal growth, Czochralski 
pulling from a skull, solidifi cation of a skull melt and fl ux methods can be used. FZ growth 
is employed if high - quality crystals cannot be prepared by other methods because of high 
thermal stresses or high temperatures and the high reactivity of the melt. This is illustrated 
by the following typical examples. 

 The FZ growth of Al 2 O 3  is suitable if small quantities of crystals are required. An Al 2 O 3  
crystal of 6   mm diameter enriched with the  17 O isotope for electron spin resonance (ESR) 
studies was grown at 1.5   cm/h in an optical furnace, wasting only a minimum amount of 
material  [Cox 1972] . 

 Rutile (TiO 2 ) single crystals are important materials for polarizers in a variety of optical 
devices. Transparent and grain - boundary - free TiO 2  single crystals, to which a small 
amount of A1 2 O 3  was added, were successfully grown by the FZ method with an infrared 
image furnace under an O 2  stream  [Hatta 1996] . SrTiO 3  and SrZrO 3  single crystals are 
used for substrates in optical and many other scientifi c and technical applications. Their 
crystal growth using container methods is hampered by the high melting temperatures of 
about 2040    ° C for SrTiO 3  and 2650    ° C for SrZrO 3 . Internal stresses, subgrain boundaries 
and high dislocation densities are therefore common in these crystals. High - quality SrTiO 3  
crystals with dimensions up to 20   mm in diameter and 60 – 80   mm in length were grown 
by the FZ method with optical heating  [Nabokin 2003] . The maximum misorientations 
of subgrains were at most 100 – 300 ″  and dislocation densities of 1 – 5    ×    10 5    cm  − 2  were 
determined. The infl uence of FZ growth conditions on the quality of SrZrO 3  crystals was 
studied  [Souptel 2002] . Instability of the molten zone was observed at growth rates of 
30   mm/h. Increasing the growth rate up to 40 – 60   mm/h resulted in colourless, transparent 
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and crack - free single crystals 5   mm in diameter and 40   mm long. The key factors for 
preparing high - quality crystals are low temperature gradients in the grown crystal achieved 
by an in - growth annealing furnace and the stoichiometry and purity of the initial materi-
als. Changes composition of the molten zone during growth due to evaporation of SrO 
were minimized by high growth rates. 

 Compared to the single - crystal growth of garnets like Y 3 Fe 5 O 12  (YIG) or Y 3 Al 5 O 12 (YAG) 
by melt fl ux methods, the TSFZ method with radiation heating offers a higher growth 
rate of about 1   mm/h and avoids contamination with the fl ux  [Kimura 1977, Kitamura 
1980] . The method has also been applied to orthoferrites, ferrites and related oxide com-
pounds  [Balbashov 1981] .  

  4.2.4.2   Control of Interface Shape 

 The control of the interface shape is one crucial point of the crystal growth of oxides. A 
concave interface is unfavourable for the growth of single crystals from the melt, because 
it enhances the concentration of inclusions and dislocations along the core of growing 
crystals. The tendency to form a concave interface is promoted for melts with small 
thermal conductivities. Although the exact material parameters are unknown unfortu-
nately, a sequence of interface shapes (Figure  4.32 ) was predicted from the striations in 
crystals grown with the FZ method  [Kitamura 1980] .   

 Here, forsterite (Mg 2 SiO 4 ) has a comparatively low thermal conductivity of 
0.008   W   cm  − 1    K  − 1  (Al 2 O 3  0.07   W   cm  − 1    K  − 1 ) as extrapolated from sintered samples to the 
melting points. Obviously, it has the strongest tendency to form a concave interface. The 
growing interface of oxide materials, which absorb very little of the near - infrared radia-
tion, tends to become concave towards the melt in FZ growth using an infrared radiation 
convergence - type heater  [Kitamura 1982] . 

     Figure 4.32     Interface shapes of growing oxide materials in FZ crystal growth with 
radiation heating: 1, YFeO 3 ; 2, YIG; 3, NdGG; 4, Mg 2 SiO 4   (Reprinted with permission 
from  [Kitamura 1980] , copyright (1980) Elsevier Ltd) .  
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 A computer simulation showed the effect of fl uid fl ow on the isotherms in the FZ during 
crystal growth for melts with low ( Pr    =   0.01) and high ( Pr    =   1) Prantdl numbers repre-
senting metals and oxides, respectively  [Kobayashi 1984] . While the isotherms in the FZ 
of metallic melts remain virtually unaffected by the fl ow patterns of different rotation 
modes, for oxides a tendency towards concave isotherms near the interface was predicted 
for counter - rotation of seed and feed rod. This has been qualitatively confi rmed by TSFZ 
experiments with YIG crystals  [Kitamura 1979] . In this case, the interface was only stable 
for a growth rate less than 1   mm/h. 

 The interface shape tends to become more and more concave in the core region of the 
growing crystal with increasing strength of counter - rotation (Figure  4.33 ), whereas it 
becomes convex if crystal and feed rod are rotated in the same direction (iso - rotation). 
In this case, or in a situation where no rotation is applied, the interface becomes unstable. 
The choice of the optimum rotation mode is therefore a subtle balance of the growth 
parameters, which have to be adapted to the individual substance.   

 The schematic fl ow pattern close to the interface is illustrated in Figure  4.34 . The 
convection in the outer region is dominated by thermocapillary fl ow. In the core region, 
the forced convection from the centre toward the periphery ahead the growing interface 

LIQUID

SOLID

1 mm

30 rpm

30 rpm
45 rpm

60 rpm

iso-rotation

     Figure 4.33     Infl uence of rotation rate on the growing interface  (Reprinted with 
permission from  [Kitamura 1979] , copyright (1979) Elsevier Ltd) .  

     Figure 4.34     Schematic representation of fl ows in the molten zone near the growing 
interface and local variation of the diffusion boundary layer thickness at a rotation rate of 
30   rpm  (Reprinted with permission from  [Kitamura 1979] , copyright (1979) Elsevier Ltd) .  
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is generated by crystal rotation. The different eddy fl ows can also produce radial segrega-
tion profi les in the YIG crystals doped with Al or Ga  [Kitamura 1979] .   

 When a heat reservoir is used in the form of an hollow alumina cylinder around the 
crystal heated by radiation from a lamp, the temperature distribution in the vicinity of the 
growing interface is altered. For YAG crystal growth, where the interface is concave 
without a heat reservoir, the interface can be changed into a convex form towards the 
crystal  [Kitamura 1982] . 

 Laser heating is now often used, e.g. for FZ crystal growth of sapphire or spinel 
(MgAl 2 O 4 ) fi bres  [Dreeben 1980, Sigalovsky 1993] . FZ with CO 2  laser heating was used 
for crystal growth of small diameter (0.25 – 0.5   mm) sapphire crystals with high rates of 
50 – 300   cm/h  [Dreeben 1980] . A television viewing system allows the growth of fi bres 
with a constant cross - section. Anisotropy of the growth angle   α   was measured in   1010  
growth. A value of   α     =   35    °     ±    4    °  is measured at the faceted trijunction, in contrast to 
  α     =   17    °     ±    4    °  at the nonfaceted periphery of  〈 0001 〉  growth.  

  4.2.4.3   Effect of Ambient Atmosphere 

 Apart from the heating mode, the FZ crystal growth of oxides is distinguished from that 
of metals and intermetallics by the very different atmospheres needed. In the FZ growth 
of metals, high - purity protective gases (Ar, He) are utilized and traces of O 2  are largely 
removed to avoid any oxidation which could decrease crystal quality. Some oxide crys-
tals can be grown in air, but for most of them a well - controlled O 2  partial pressure must 
be applied. The O 2  partial pressure depends strongly on the thermodynamic stability of 
valence states of the cationic components in the materials at melting temperature. For 
example, a valence state Fe 2+  requires the use of purifi ed H 2  or H 2 /Ar mixtures  [Chen 
2005] , the Mn 2+  state is stable in pure Ar  [Wizent 2009]  and the Co 2+  state is stable in 
a 1 - bar O 2  atmosphere  [Saint - Martin 2008] . The O 2  partial pressure can be further 
increased by applying high pressure, which is of striking importance in FZ crystal 
growth (up to 10   MPa  [Balbashov 1981]  or 15   MPa  [Behr 2008] ). Elevated gas pressure 
up to 10   MPa can be used to reduce evaporation losses from the molten zone and to 
maintain the stoichiometry  [Balbashov 1981] . In FZ crystal growth of LiMnPO 4 , 4   MPa 
Ar pressure was applied to avoid Li 2 O vaporization and the oxidation of Mn 2+  to Mn 3+  
 [Wizent 2009] . 

 On the other hand, elevated O 2  pressure can directly affect the thermodynamic equi-
librium and the solidifi cation behavior. For example, CuO is an incongruently melting 
compound  [Schramm 2005] . Elevated O 2  pressure brings CuO closer to the congruent 
melting behaviour (Figure  4.35 ). This has facilitated the FZ crystal growth of CuO under 
high O 2  pressure of 3.5 – 5.5   MPa, enabled higher growth rates up to 10   mm/h and improved 
crystal quality  [Behr 2005 - 1] .   

 Comparable behaviour is also observed for a wide class of ternary and quaternary 
cuprates, such as La 4 Sr 10 Cu 24 O 41  (Notbohm  2007 ). In a similar way, the interval between 
the eutectic and the peritectic temperature is increased by applying high O 2  pressures for 
incongruently melting compounds like Y 3 Fe 5 O 12  and Gd 3 Fe 5 O 12 . Therefore, these crystals 
grown by FZ with radiation heating under O 2  pressures of typically 2 – 5   MPa have a higher 
quality and fewer secondary - phase inclusions  [Balbashov 1981] . Barium hexaferrite 
(BaFe 12 O 19 ) melts incongruently in air. Congruent melting can be achieved at 4   MPa O 2  
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pressure. BaFe 12 O 19  crystals were grown by the FZ method under 7   MPa O 2  pressures 
where the content of the FeO phase is dramatically reduced  [Balbashov 1981] . 

 For incongruently melting oxides a vast difference in the oxygen content at the oxide/
melt interface may arise because the metal ions may change their valence. The O 2  released 
must be removed from the interface and can lead to gas bubbles in the melt, which desta-
bilize the FZ or become trapped in the growing crystal. Conversely, O 2  must be trans-
ported to the interface if the oxygen concentration in the melt is lower than in the solid 
phase. The latter case is illustrated by a SEM cross - section through the interface of the 
growing CuO crystal and the quenched last zone in FZ crystal growth experiments under 
3   MPa O 2  pressure (Figure  4.36 ). The huge oxygen defi ciency of the melt becomes clear 
from the high Cu 2 O fraction in the microstructure of the quenched FZ. To grow a CuO 
crystal, the excess O 2  must be transported by diffusion and convection through the molten 
zone towards the interface. On the other hand, the O 2  released at the melting interface 
must be removed. Gas bubbles are formed if the solubility limit of oxygen in the melt is 
exceeded, which destabilize the FZ or are even trapped in the growing crystal. This natu-
rally limits the growth velocity of oxide crystals.   

 The growth parameters can be optimized by adapting the oxygen partial pressure of 
the ambient atmosphere. The situation becomes more complex because O 2  exchange 
between the melt and the ambient atmosphere via the free surface of the travelling zone 
has to be taken into account. If the solubility of oxygen in the melt is high, the molten 
zone can take up O 2  from the ambient atmosphere which is released at the growing inter-
face  [Ii 1979] . The oxygen content in the melt can be reduced by lowering the O 2  partial 
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     Figure 4.35     Calculated Cu – O phase diagram projection. Dashed line   [Hallstedt 2003]   at 
  PO MPa2 10= ; solid line, calculated phase equilibria at   PO MPa2 10= ; dotted line, 
calculated phase equilibria at   PO MPa2 10= . Circles and squares indicate experimental 
data for the CuO and Cu 2 O liquidus  (Reprinted with permission from  [Schramm 2005] , 
copyright (2005) Springer Science + Business Media) .  
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pressure in the growth chamber, limiting the O 2  uptake of the melt, or forcing oxygen to 
be transported from the melt into the atmosphere. For instance, bubble - free crystals of 
Ca 2 MgSi 2 O 7 , and Ca 2 Al 2 SiO 7  produced by the FZ technique were achieved if the O 2  
atmosphere was replaced by air, N 2  or Ar, the latter two delivering the better results  [Ii 
1979] . By diluting O 2  with Ar in an Ar/O 2  mixture the formation of gas bubbles at the 
melting interface was prevented in the FZ crystal growth of CaCu 2 O 3   [Sekar 2005 - 1, 
Sekar 2005 - 2] . 

 The O 2  partial pressure affects not only the solidifi cation mode and the growth process 
of oxides but also the composition, homogeneity and properties of the oxide crystals them-
selves. Bi 2 Sr 2 CaCu 2 O 8  (Bi - 2212) oxides are an example showing high - temperature super-
conductivity  [Takekawa 1988] . Underdoped Bi - 2212 single crystals were successfully 
grown by the TSFZ technique under low O 2  pressures. A starting composition of 
Bi 2.1 Sr 1.9 CaCu 2 O 8+   d   and a slow growth rate of 0.2   mm/h were employed  [Liang 2002] . The 
growth habit was not sensitively infl uenced by decreasing   PO2 from 1   bar to 5    ×    10  − 4    bar. 
However, the oxygen distribution in as - grown crystals became inhomogeneous as   PO2 
decreased. The crystals do not show phase segregation until   PO bar2 1 10 3= × − . When   PO2 
decreases from 1 bar to 1    ×    10  − 3    bar the c - axis expands while  T  c  is reduced from 92 to 79   K 
and  Δ  T  c  increases from 2 to 10   K. A further decrease of   PO2 leads to a broader superconduct-
ing transition range  Δ  T  c  due to the oxygen inhomogeneity and phase decomposition.    

  4.3   Numerical Analysis of the Needle - Eye  FZ  Process 

 In the previous sections, several FZ processes which are strongly infl uenced by capillarity 
forces were described, and modelling results of different authors were shown and dis-
cussed. In the present section, as a more detailed example, the numerical modelling of 

     Figure 4.36     SEM image showing the interface between the grown CuO crystal (left) and 
the quenched molten zone (right) consisting of CuO (dark) and Cu 2 O (bright) 
( v    =   10   mm/h)  (Reprinted with permission from  [Behr 2005] , copyright (2005) 
Wiley - VCH) .  
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the FZ process for the industrial growth of large Si single crystals with the needle - eye 
technique using RF pancake inductors is described. This process has great relevance for 
the electronic and photovoltaic industry and the corresponding mathematical models, 
which have been described in great detail in the literature, have reached a high level of 
sophistication. 

  4.3.1   Literature Overview 

 We start with a brief literature review of the mathematical modelling of the FZ process 
mentioned above. 

 The fi rst numerical calculations of the needle - eye confi guration were made in a simpli-
fi ed way by M ü hlbauer  et al.  in  [M ü hlbauer 1983] . They calculated the induced current 
distribution at the free melt surface and the only EM - driven fl uid fl ow in the FZ with a 
presumed shape of the free surface. In the 1990s, Lie  et al.  in  [Lie 1991]    calculated the 
melt motion in the FZ under a strong axial magnetic fi eld. The infl uence of the inductor 
slit on the distribution of the EM fi eld in a FZ system was analysed in  [M ü hlbauer 1993]  
by means of three - dimensional calculations. 

 In a publication by M ü hlbauer ’ s international team  [M ü hlbauer 1995]  and in the PhD 
thesis of Virbulis  [Virbulis 1997] , an axisymmetric model was presented for calculating 
the phase boundaries and the global heat transfer with melt convection in a needle - eye 
FZ process for the growth of 100 - mm diameter crystals. Their model included most of 
the physical features that can be considered in a two - dimensional model, even including 
the large open part of the melting front, which is characteristic of the needle - eye process. 
Meanwhile, Riemann  et al.   [Riemann 1995]  calculated interface shape and heat transfer 
by a more limited model without melt convection and open melting front calculation, and 
analysed the thermal stress inside the crystal. 

 Later, M ü hlbauer, Muiznieks and Virbulis  [M ü hlbauer 1997, M ü hlbauer 1999 - 1]  com-
pleted their model with axisymmetric calculations of the time - dependent dopant transport 
in the melt, derived the resistivity variation in the grown crystal from the time - dependent 
dopant distribution and compared the theoretical results with resistivity measurements 
performed by Riemann and L ü dge. The calculated model showed a good agreement with 
the laboratory experiments concerning the shape of the crystallization interface and the 
radial profi le of the resistivity. An overview of the full model is given in  [M ü hlbauer 
1999 - 2] . Raming  et al.  used the above model to study the infl uence of different magnetic 
fi elds on the resistivity distribution of FZ crystals  [Raming 1999]  (see also Raming ’ s PhD 
thesis  [Raming 2000] ). 

 Japanese researchers also developed axisymmetric calculation models of the needle - eye 
FZ process and compared the results to resistivity measurements of the crystal. Togawa 
 et al.   [Togawa 1998]  calculated the global heat transfer and the liquid zone shape, the 
time - dependent melt fl ow and the dopant transport, and obtained the radial resistivity 
distribution in the crystal. The work of Togawa  et al.  is complemented by better radiation 
heat transfer models by Guo  et al.  in  [Guo 1998] . The effect of the vertical magnetic fi eld 
on the FZ growth process was investigated by Kimura  et al.  in  [Kimura 1993 , Kimura 
 1996] . Their calculations, however, assumed an oversimplifi ed shape of the molten zone. 
The approximation of the radiation heat transfer is an important issue for modelling the 
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phase boundaries in the FZ growth of large crystals. Of the references mentioned above, 
only Guo  et al.   [Guo 1998]  considered the view factors associated with the surface of the 
sample including crystal, melt and feed rod, with inductor and casing. They also studied 
the importance of modelling the specular properties of the crystal and melt surfaces 
instead of treating them all as diffuse. Guo  et al.  concluded that the specular property 
could be important. 

 The global Czochralski model developed from the work of Dupret and van den Bogaert 
 [Dupret 1994]  has been applied for modelling the FZ process  [Assaker 1998] . Bioul 
 [Bioul 2007]  developed a new RF model of the magnetic fi eld distribution, where the 
small but not negligible skin depth is taken into consideration. Their quasi - static FZ model 
is axisymmetric and considers heat transfer by conduction, convection and grey radiation; 
the open melting front has to be specifi ed. These models are used in the program 
FEMAG - FZ. 

 The quasi - stationary model of the needle - eye FZ process for the growth of large Si 
single crystals as given in the PhD theses of Virbulis  [Virbulis 1997]  was essentially 
improved by Ratnieks, see  [Ratnieks 2003]  and his PhD work  [Ratnieks 2008] , and the 
model was implemented in the specialized program FZone  [Ratnieks 2003] . After that, 
the nonstationary axisymmetric model was developed in the PhD theses of Rudevics 
 [Rudevics 2008]  and this model was implemented in the program FZoneT  [Rudevics 
2004] . A range of model and program components from the program FZone was used to 
create the nonstationary FZ model. For that reason, and because of the importance of 
quasi - stationary calculations for industrial practice, the quasi - stationary model will be 
described fi rst here.  

  4.3.2   Quasi - Stationary Axisymmetric Mathematical Model of the Shape of 
the Molten Zone 

 In reality, the FZ crystal process is always nonstationary because the lengths of feed rod 
and crystal change over time during crystal growth. Nevertheless, the so - called laboratory 
reference system (LRS) can be introduced, in which the position of the RF inductor is 
fi xed. In this reference system, the molten zone and the nearest parts of feed rod and 
crystal do not change their geometry and their temperature distributions if it is assumed 
that the crystal grows with a constant radius, the volume of melt does not change in time, 
and feed rod as well as crystal are cylinders of sizeable lengths moving with a constant 
speed. We call such a process  ‘ quasi - stationary ’ . The corresponding quasi - stationary 
mathematical model allows calculation of the initially unknown phase boundaries and the 
corresponding distributions of temperature and EM fi elds for those processes. In this 
model, the algorithms used for calculating the quasi - stationary melting and crystallization 
interfaces are partially based on modelling the movement of interfaces in time. The model 
was implemented in the computer program FZone  [Ratnieks 2003] . 

  4.3.2.1   Key Assumptions and Approximations of the Quasi - Stationary Model 

 The elaboration of the fi nal version of the quasi - stationary model for FZ processes with 
a needle - eye inductor  [Ratnieks 2003]  assume the FZ system to be axisymmetric (see 
Figure  4.37 ), except for the RF inductor (see Figure  4.38 ), which can have radial gaps. 
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Nevertheless, the infl uence of the gaps is approximated using the azimuthally averaged 
axisymmetric EM fi eld and, thus, the mathematical treatment of the FZ process can be 
implemented in two dimensions in a vertical cross - section with a cylindrical coordinate 
system ( r ,  z ).   

 The temperature fi eld is calculated in crystal, feed rod and molten zone. As well as the 
heat diffusion in both feed rod and crystal, the convective heat transport due to the pull 

     Figure 4.37     Vertical cross - section of the FZ system in axisymmetric approximation 
 (Reprinted with permission from  [Ratnieks 2003] , copyright (2003) Elsevier Ltd) .  

     Figure 4.38     RF inductor with radial gaps, top view  (Reprinted with permission from 
 [Ratnieks 2003] , copyright (2003) Elsevier Ltd) .  
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velocity in the solid parts is considered. In this section, the infl uence of the fl ow on the 
temperature fi eld in the molten zone is neglected because of the relatively low Prandtl 
number of molten Si ( Pr    =   0.013). This approximation has proved to be suffi ciently 
accurate for many practical cases. The analysis of the infl uence of the melt fl ow on the 
zone shape can be found in the literature, e.g. in  [Ratnieks 2008] . 

 In the model, positions and shapes of the phase boundaries are initially unknown and 
must be calculated. Crystallization interface, melting interface and open melting front are 
determined by using the balance of the local heat fl ux density. The free melt surface is 
modelled by a simplifi ed stationary model using the Young – Laplace equation (Equation 
 4.4 ). It is assumed that the exterior surfaces of feed rod and crystal are known. 

 As an AC current with a RF frequency of about 3   MHz is used in the FZ processes 
under consideration, the corresponding values of the skin depth   δ   (Equation  4.5 ) of the 
EM fi eld in molten and solid Si are 0.27   mm and 1.30   mm, respectively. These values are 
several orders of magnitude less than the characteristic dimensions of the system, which 
are about 100   mm. Therefore, surface values such as linear surface current density, Joule ’ s 
thermal source surface density and EM fi eld pressure can be used for describing the EM 
processes in Si. For that reason, the boundary element method (BEM) is applied in the 
numerical calculations of the electromagnetic fi eld; see  [Ratnieks 2003] .  

  4.3.2.2   Phase Boundary Models 

 In this section the models for calculating the phase boundaries are reviewed; see also 
 [Ratnieks 2003] . First, the models for computing the melting interface, the crystallization 
interface, and the open melting front are given, which are based on the balance of the 
heat fl ux density. Later, the stationary model for modelling the free melt surface in the 
FZ system is considered. 

  Models of the Melting and Crystallization Interfaces.     The melting and crystallization 
interfaces are modelled as nonstationary, i.e. to get the steady - state solution. The interface 
form is iteratively modifi ed using its motion speed in the LRS with the given time step. 
The local speed of the phase boundary in the solid Si reference system (SRS) is calculated 
from the balance of the local heat fl ux density at the interface after the following 
equation:
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where the indices s and l denote solid and molten Si, n denotes the local normal to the 
interface coordinate directed into the melt (see Figure  4.37 ),   ζ   is the latent heat of 
melting,  V  n  the local speed of the phase boundary in the direction of the local normal 
to the interface in the SRS,   λ   s  and   λ   l  the thermal conductivities in solid and liquid Si 
respectively and  T  the temperature fi eld. The left - hand side of Equation  (4.12) , repre-
sents the local heat fl ux density directed from the interface into the solid Si; the right -
 hand side, the sum of the heat fl ux density supplied to the interface from the hot melt 
(fi rst term) and the crystallization heat surface density due to the latent heat of crystal-
lization (second term). 
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 In the LRS, the crystal is pulled with a speed   
�
vc and the local interface speed   

�
vn is 

expressed as follows:

    
� � �
v v V nn c n= + ⋅ ,     (4.13)  

where   V nn ⋅ �  is the local speed of the interface in the SRS, expressed in vector form. The 
calculated speed of the interface   

�
vn and the chosen time step  Δ  t  are used to calculate 

changes of the position of the phase boundary in the LRS. In the numerical implementa-
tion, the interface form is approximated by a chain of line segments (boundary elements), 
where the speed   

�
vn in the LRS is calculated at the endpoints of the segments in compli-

ance with Equations  (4.12)  and  (4.13) . Correspondingly, these points are shifted by   
�
v tn ⋅ Δ  

in the LRS at each time step. When the speed   
�
vn reaches a value of zero for the whole 

interface, it is assumed that the stationary solution for the phase boundary has been 
obtained.  

  Model of the Open Melting Front.     The open melting front is that part of the melting 
front of the feed rod which builds the interface with the vapour in the FZ process equip-
ment. The heat fl ux density balance on this interface can be expressed as:

    λ ζs
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q q V     (4.14)  

where  q  EM  is the surface density of the induced EM power (it is adjusted by applying the 
thin fi lm model  [Ratnieks 2003] ),  q  rad  the emitted power density of the surface (for more 
about the radiation model see  [Ratnieks 2003] ) and   ζ |V  n | the specifi c melting heat power 
surface density where  V  n  is the local speed of the phase boundary in the direction of the 
local normal to the interface in the SRS ( V  n     <    0 because in the calculations of the open 
melting front it is assumed that the direction of the normal vector   

�
n is directed to the 

exterior of the solid Si). Thus, the right - hand side of Equation  (4.14)  describes the local 
heat fl ux density which penetrates into the solid Si. The value of  V  n  in Equation  (4.14)  is 
used to calculate the local interface speed in the LRS according to Equation  (4.13) , but 
instead of the crystal pull rate, the feed rod push rate is applied.  

  Stationary Model of the Free Melt Surface.     Under stationary conditions, the pressure 
balance must be valid for each point ( r, z ) on the free melt surface, see Figure  4.39 . The 
following equation is applied, which is derived from the Young – Laplace equation  (4.4)  
adding the electrodynamic and centrifugal forces:  
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where  D  PI  is the pressure imbalance (must be zero at all surface points in the case of 
stationary solution);   α   0  is the local angle of the surface with the vertical (Figure  4.37 ); 
  γ   lv  the surface tension coeffi cient,  R  ′  the radius of curvature of the surface in the merid-
ian plane;  Ω  the cyclic frequency of crystal rotation (it is assumed that the liquid rotates 
along with the crystal like a solid body),  p  0  the interior gauge pressure in the melt at 
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 z    =   0 which determines the volume of the molten zone and  p  EM  the pressure caused by 
the EM fi eld. 

 For the given endpoints of the free melt surface in a vertical cross - section, the internal 
triple point (ITP) and the external triple point (ETP) (see Figure  4.39 ), and a given interior 
gauge pressure  p  0 , it is possible to compute the shape of the free melt surface unequivocal 
from Equation  (4.15) . To establishing the initially unknown value of the interior gauge 
pressure  p  0 , an additional condition is necessary. It is known from the literature  [Bardsley 
1974]  (also measured for a 50   mm FZ crystal in sections  4.1.1.4  and  4.1.1.9 ) that the free 
melt surface has a specifi c growth angle of   α      ≈    11 °  with the vertical at the ETP of Si 
during stationary growth conditions and for a growing crystal of constant radius. Therefore 
for a given surface shape, an expression for  p  0  can be derived from Equation  (4.15)  for 
a growing crystal with constant radius:
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where the index ETP indicates that the corresponding values are taken at the ETP. In 
order to compute the free melt surface shape numerically, it is described with fi nite - length 
segments and a special iteration procedure is used, in which each of the segments is moved 
in the direction of decreasing the local imbalance  D  PI . During the iteration steps, the 
interior gauge pressure  p  0  is recalculated repeatedly by Equation  (4.16)  with regard to the 
actual surface shape. The output of the iteration procedure is the shape of the free melt 
surface with  D  PI    =   0 for the endpoint of each segment including the ETP (for more details 
see  [Ratnieks 2003] ).  

  Model for the Position of the Internal Triple Point.     Unlike the ETP position, the ITP 
position needs a special modelling procedure. The ITP is defi ned as that point in the verti-
cal cross - section where the three phase boundaries connect: melting interface, open 
melting front, and free melt surface (see Figure  4.40 ).   

 While modelling the FZ process, the position of the ITP is iteratively determined by a 
special procedure. First, along the common line of melting interface and open melting 
front, the position of the ITP is moved iteratively until the imbalance at the ITP reaches 
the value  D  PI    =   0; see Equation  (4.15)  and Figure  4.40 a. Secondly, the ITP position is 
changed corresponding to the local interface speed, see Equation  (4.13)  and Figure  4.40 b, 

     Figure 4.39     Free melt surface in vertical cross - section with endpoints  –  internal triple 
point (ITP) and external triple point (ETP).  
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which is determined by the melting process of the feed rod. For the interface speed at the 
ITP, a smooth connection is assumed between the melting interface and the open melting 
front. An example for this connection in the numerical calculation of a realistic FZ process 
is shown in Figure  4.40 c. A more detailed description of the ITP model is given in 
 [Ratnieks 2003] .   

  4.3.2.3   Axisymmetric Modelling of the EM Field for an Inductor with Slits 

 In a typical FZ process at frequencies around 3   MHz, the EM skin depth is very thin (distinct 
skin effect), so the boundary elements method can be used to solve the EM problem numeri-
cally; see  [Ratnieks 2003] . In a vertical cross - section of the system, the surfaces of Si and 
inductor are covered with line segments, i.e. boundary elements. In each boundary element, 
the initially unknown surface current density (linear current density), which is azimuthally 
directed, is defi ned. By using the Biot – Savart law, it is possible to obtain the relationship 
between the linear current densities in the boundary elements and the magnetic fi eld at 
arbitrary points in the system. Because of the distinct skin - effect, the normal component 
of the magnetic fi eld is zero on the surfaces of all Si parts and of the inductor. This is used 
to obtain the linear algebraic equation system for the values of the unknown linear current 
densities in the boundary elements. As an additional condition, the total current in the verti-
cal cross - section of the inductor is used. The infl uence of narrow inductor slits (Figure  4.38 ) 
is modelled with a specifi c axisymmetric approximation; see the detailed description of 
this approximation in  [M ü hlbauer 1993, Ratnieks 2003] . Such approximation is justifi able, 
because the infl uence of the nonsymmetric three - dimensional EM fi eld on the FZ process 
is averaged over time due to rotation of crystal and feed rod. In the model, the azimuthally 
directed linear current densities are calculated on all the outer surfaces of Si and inductor. 
These values are used to calculate the heat source surface densities on the outer surfaces 
of Si in the skin boundary layer approximation and the electromagnetic pressure on the free 
surface of the melt; see  [Ratnieks 2003] .  

  4.3.2.4   Heat Transfer Modelling 

  Radiation Modelling.     In the radiation model, it is assumed that the surfaces to be con-
sidered are opaque (emission, absorption, and refl ection occur on the surfaces of the 

     Figure 4.40     Internal triple point (ITP) model: (a) and (b), scenarios for changes of 
positions; (c) fi nite - element mesh used  (Reprinted with permission from  [Ratnieks 2003] , 
copyright (2003) Elsevier Ltd) .  
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objects) and optically grey. Furthermore, radiation is considered to be diffusive. For the 
system of relevant radiation equations, the view factors are used in the axisymmetric 
approximation  [Ratnieks 2003] . 

 After solving the system of radiation equations, the distribution of the radiation power 
surface density  q  rad  falling on all exterior surfaces in the system is obtained. The value 
 q  rad  is used as a boundary condition for the temperature problem in the FZ system. Since 
 q  rad  itself depends on the temperature fi eld, the models for calculating the radiation and 
temperature fi elds are iteratively connected:

    …→ → → → →…( ) ( ) +( ) +( )T q T qn n n n
rad rad

1 1 ,     (4.17)  

where  T  (   n   )  is the temperature fi eld at the  n th step of the system and   q n( )
rad

 the correspond-
ing distribution of the surface density of radiation power. Such iterations are continued 
until the changes in the temperature fi eld become less than a given numerical 
precision.  

  Modelling the Temperature Field.     The temperature fi eld is solved separately in feed 
rod, melt, and crystal  [Ratnieks 2003]  according to the following equation:
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where   ρ   l  is the density,  c  p  the specifi c thermal capacity,   λ  ( T ) the heat conductivity, 
temperature - dependent only in the solid, and  u z   is the material convection speed due to 
the movement of feed rod and crystal. In the quasi - stationary model, the temperature fi eld 
is calculated in the LRS. Therefore, in order to model the convective heat transfer of feed 
rod and crystal, their pull rates are used as the convective speed in the temperature equa-
tion. The convective heat transport is neglected in the liquid Si  [Ratnieks 2003] . To solve 
the temperature problem, the following boundary conditions are applied:  ∂  T  /  ∂  r    =   0 at 
the symmetry axis,  T    =    T  0  ( T  0    =   1420    ° C) at the crystallization and melting interfaces, 
  λ  ( T ) ∂  T /   ∂  n    =    q  EM     −     q  rad  (the right - hand side of the equation expresses the difference 
between the induced surface densities of electromagnetic and radiation power) on all 
exterior surfaces of feed rod, melt and crystal. In order to solve the temperature problem 
numerically, the fi nite element method (FEM) is applied  [M ü hlbauer 1995, Ratnieks 
2003] .   

  4.3.2.5   General Calculation Algorithm 

 A simplifi ed block scheme for the calculation algorithm of the quasi - stationary FZ process 
is shown in Figure  4.41   [Ratnieks 2003] . At the beginning of the calculation for the outer 
iteration step, all phase boundaries (except the free melt surface) are moved in compliance 
with their local speed at the current time step. Thereafter, the free melt surface and the 
EM fi eld are iteratively calculated at a fi xed ITP position; afterwards, the imbalance at 
the ITP   DITP

PI  is calculated. If the obtained value of   DITP
PI  is not zero, then the ITP point is 

moved in accordance with a special algorithm and the calculation of the free melt surface 
is repeated until   DITP

PI = 0. Then, radiation and temperature distribution in the system are 
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calculated iteratively until the stationary solution of the temperature fi eld in all Si parts 
of the system is reached. With the temperature fi eld in all Si parts known, the temperature 
gradients are calculated along the phase boundaries. The temperature gradients are then 
used to calculate the local normal speeds of the phase boundaries in the LRS. It is assumed 
that a quasi - stationary solution is obtained when the corresponding speeds of the phase 
boundaries tend to zero.     

  4.3.3   Numerical Investigation of the Infl uence of Growth Parameters on 
the Shape of the Molten Zone 

 In the 1990s, the industrial production of Si single crystals with diameters of up to 150   mm 
was possible. At the beginning of this century, Siltronic AG was the fi rst company to 
produce FZ Si crystals of 200   mm (8 ″ ) diameter  [von Ammon 2004] , a size that was not 
believed to be attainable a few years ago. In this section the modelling of the 8 ″  Si crystal 
growth process is described in order to demonstrate the possibilities of mathematical 
modelling for supporting industrial process development. 

 Figures  4.42 ,  4.43  and  4.44  show typical examples of the shape of the molten zone for 
an 8 ″  FZ process and its dependence on inductor current and feed rod diameter. The FEM 

     Figure 4.41     Simplifi ed block scheme for the calculation algorithm in the quasi - stationary 
model of the FZ process  (Reprinted with permission from  [Ratnieks 2003] , copyright 
(2003) Elsevier Ltd) .  
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     Figure 4.42     Temperature isolines in the melt ( Δ  T    =   58   K) and the magnetic fi eld lines; H Z  
is the zone height,  H Cr   and  H M   are the defl ections of the crystallization and melting 
interfaces, respectively.  

     Figure 4.43     Phase boundaries with different zone heights corresponding to inductor 
current values of 1410 – 1610   A with steps of 50   A. The thick phase boundary lines 
correspond to the reference case with 1510   A and  H Z     =   37   mm.  

grid used is shown in Figure  4.45 . For all cases, the crystal pull rate is 1.8   mm/min. In 
these calculations, the infl uence of the melt fl ow on the shape of the molten zone is 
neglected. More results of calculations and results including the infl uence of melt fl ow 
are given in  [Ratnieks 2008] .    
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  4.3.4   Nonstationary Axisymmetric Mathematical Model for Transient Crystal 
Growth Processes 

 A new nonstationary axisymmetric (two - dimensional) model of the FZ process, based on 
the components of the quasi - stationary model of the FZ crystal growth described in the 
previous section, was elaborated and validated  [Rudevics 2004, Rudevics 2008] . By using 

     Figure 4.44     Phase boundaries with feed rod radii from 93   mm to 31   mm. A stable 
quasi - stationary solution does not exist for a feed rod radius of only 31   mm  –  the feed rod 
does not melt suffi ciently and touches the crystal.  

     Figure 4.45     Finite - element grid as used in the calculations: left, starting grid; right, result 
of the calculated temperature fi eld.  
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this model, it is possible to calculate the time - dependent shape of the molten zone. The 
model also provides the opportunity to study this process at the initial and fi nal stages of 
the growth process (growing the start and end cones), where the phase boundaries in the 
LRS essentially change in time. In addition to that, this model makes it possible to 
examine the automated process control, which has an important role in the industrial 
growth of FZ crystals. This model was implemented in the computer program FZoneT 
 [Rudevics 2004] . 

  4.3.4.1   Mathematical Model and Numerical Implementation 

 Several components of the quasi - stationary model are taken over for the nonstationary 
model: the model of the open melting front, the RF EM fi eld model, the ITP model and 
the models of temperature and radiation. The model of the free melt surface is also 
applied, with slight modifi cations. 

 The new and basic component of the nonstationary FZ model is the calculation of the 
actual value of the melt volume. The amounts of molten Si and of crystallized Si are 
calculated during the given time interval and used to compute the change in the melt 
volume, which is then applied to determine the actual free melt surface. Thereafter, 
depending on this shape, the formation of the crystal shape is modelled at the ETP by 
 ‘ growing ’  the crystal along the free melt surface. A brief description of the most signifi -
cant components of the nonstationary model is given below. 

  Calculation of Melt Volume.     In order to fi nd out the change  Δ  V  melt  of the melt volume 
in a time interval [ t ,  t  + Δ  t ], it is necessary to calculate the volume of the liquid Si  Δ  V  feed , 
which originates by melting the feed rod at the melting interface and the open melting 
front, as well as to calculate the loss of liquid Si  Δ  V  c  at the crystallization interface where 
the material crystallizes. Knowing both volumes, the change in the melt volume  Δ  V  melt  
can be calculated according to the following equation:

    Δ Δ ΔV V Vmelt feed c= − .     (4.19)   

 To describe the feed rod melting, the axial coordinate  Z  F ( r ,  t ) is introduced in the LRS 
for the melting interface and the open melting front at a time  t  (see Figure  4.46 ). As 
a result of melting, after a time interval  Δ  t  the surface can be moved to a condition 
 Z  F ( r ,  t    +    Δ  t ). Taking into consideration that the feed rod itself is moved downwards at a 
specifi c rate  v  F ( t ) in the LRS, the amount of molten Si coming from the feed rod can be 
calculated for a time interval  Δ  t  according to the following equation:  
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where   ρ   s  is the density of solid Si and   ρ   l  the density of molten Si. The amount of liquid 
Si which crystallizes at the crystallization interface  Z  cr ( r , t )is calculated analogously:
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     Figure 4.46     Surfaces used in the calculation of the actual melt volume value  (Reprinted 
with permission from  [Rudevics 2004] , copyright (2004) Elsevier Ltd) .  
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     Figure 4.47     Calculation of the free melt surface  (Reprinted with permission from 
 [Rudevics 2004] , copyright (2004) Elsevier Ltd) .  

  Model of Free Melt Surface.     During the short time interval  Δ  t , the change of the melt 
volume  Δ  V  melt  causes a corresponding change in the free melt surface. The shape of the 
free melt surface at a time  t  can be described by its axial coordinate  Z  FR ( r, t,  φ   0 ) in 
the LRS, where the additional parameter   φ   0  is the angle between the vertical  z  - axis and 
the tangent to the free surface at the ETP (Figure  4.47 ).   

 The surface shape after the time interval  Δ  t  is  Z  FR ( r ,  t    +    Δ  t ,   φ   0    +    Δ   φ   0 ); thus, the change 
of the actual melt volume has to be calculated by the following equation:
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    Δ Δ ΔV Z r t t Z r t r r
R

R

act FR FR d
ITP

ETP
= + +( ) − ( )[ ]( )∫ , , , , ,φ φ φ0 0 0 2π     (4.22)  

where  R  ETP  is the radial coordinate of the external triple point and  R  ITP  is the radial coor-
dinate of the internal triple point. Because of the conservation of the melt volume in the 
nonstationary model, it is necessary to ensure that

    Δ ΔV Vact melt= .     (4.23)   

 This is achieved by an iterative algorithm, where a change of the angle  Δ   φ   0  is sought, 
such that the change of the actual melt volume  Δ  V  act  is equal to  Δ  V  melt , which is known 
from the analyses of the melting and crystallization fronts. In this algorithm, the shape 
of the free melt surface is calculated at the fi xed extreme points (ITP and ETP), requiring 
that for each surface point the imbalance is zero,   DITP

PI = 0; see Equation  (4.15) .  

  Modelling the Crystal Surface.     The crystal shape that develops during the nonstation-
ary FZ process is dependent on the angle   φ   0  between the tangent to the free melt surface 
and the vertical direction at the ETP. In the numerical calculations, the free melt surface 
is described with line segments of fi nite length (see Figure  4.48 ). To enhance the precision 
of the calculation, the vertical cross - section of the melt surface at the ETP is approxi-
mately described by the circumference, which goes through the extreme points of the line 
segment at the ETP so that its tangent at the ETP creates the angle   φ   0 , which is calculated 
from Equation  (4.23) . Thus, the tangent to the free melt surface at the ETP is the same 
as the corresponding tangent at the circumference. For a nonzero growth angle   α  , the 
direction of the tangent to the solid is correspondingly corrected. This tangent at time  t  
is used to calculate the new position ETP ′  of the external triple point at the time  t    +    Δ  t . 
For this, fi rst, the crystallization interface at the time  t    +    Δ  t  is obtained by moving the 

     Figure 4.48     Modelling the crystal surface  (Reprinted with permission from  [Rudevics 
2004] , copyright (2004) Elsevier Ltd) .  
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one at the time  t  in the normal direction to the growth speed in the LRS. Then, the point 
ETP ′  is obtained as the point of intersection between the new crystallization interface and 
the tangent of the free melt surface at the ETP (see Figure  4.48 ).    

  Modelling the Nonstationary Temperature Field.     In the mathematical model for the 
nonstationary FZ process, the heat transfer is modelled similarly to the previously 
described quasi - stationary model (see section  4.3.2.4 ). In each FZ system sector, an 
unstable version of Equation  (4.18)  is solved with the corresponding boundary conditions. 
Moreover, in the nonstationary model, when solving the temperature equation in feed rod 
and crystal, it is assumed that the temperature fi eld is calculated correspondingly in the 
reference systems connected with feed rod and crystal, i.e. the convective speed of the 
material is zero. The convective heat transfer is taken into account by moving the fi nite 
element grid in feed rod and crystal with the calculated temperature values in the grid 
nodes in the LRS.  

  Grid Processing Algorithms in the Nonstationary  FZ  Process.     For the complete mod-
elling of the nonstationary FZ process, it must be taken into account that the initial phase 
of the process starts with a small single crystal with a diameter of only a few millimetres 
and ends up with the fi nal phase of the process, where the diameter of the crystal can 
reach as much as 200   mm. Thus, special grid processing algorithms are necessary for the 
numerical solution of the problem  [Rudevics 2004, Rudevics 2008] . The generating 
algorithms of the boundary element grids were elaborated fi rst, ensuring adaptation of the 
grid to the system dimensions, i.e. with the element number dependent on the system size. 
Moreover, in order to optimize the numerical implementation and decrease the total 
number of elements, while maintaining suffi cient numerical precision for calculating the 
phase boundaries, an algorithm was developed that also changes the element size based 
on the assumption that the smallest elements are used for the melt. The crystal and feed 
rod are described with elements of size gradually increasing away from the molten zone. 
For instance, Figure  4.49  shows a grid of boundary elements on the feed rod surface. It 
can be seen that the element size, beginning with a minimum size  a , increases gradually 
in the direction away from the molten zone.   

 Next, for the generation of the boundary elements on the crystal surface, a special 
auxiliary surface was used with many more points than in the boundary element grid. 
This auxiliary surface describes the precise crystal shape up to the current point in time. 
This is important especially in regions far away from the molten zone, where the bound-
ary elements are very large. The left side of Figure  4.50  shows the numerical divisions 
of the crystal geometry during the modelling time when the auxiliary surface is not used 
(the auxiliary surface is shown only for comparison), the right side exhibits the crystal 
shape obtained using the auxiliary surface in the grid generation algorithm.   

 This grid generation algorithm is illustrated in Figure  4.51 , where the initial modelling 
condition of the crystal cone and three consequential system conditions are shown. It can 
be observed that, at the initial stage of the modelling, the small crystal has a relatively 
fi ne grid compared with the one used for later phases of the nonstationary calculations, 
where the crystal dimensions have already signifi cantly increased. In order to optimize 
the calculations, the size of the fi nite elements gradually increases in the direction away 
from the molten zone.     



     Figure 4.49     Grid sample of the boundary elements for the feed rod at a given time 
 (Reprinted with permission from  [Rudevics 2004] , copyright (2005) Elsevier Ltd) .  

     Figure 4.50     Modelling the crystal surface: left, without auxiliary surfaces; right, with 
auxiliary surfaces  (Reprinted with permission from  [Rudevics 2004] , copyright (2005) 
Elsevier Ltd) .  
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  4.3.4.2   Calculations for the Nonstationary  FZ  Process 

  Experimental Verifi cation.     At the Institute for Crystal Growth (ICG), Berlin, an experi-
ment was performed to examine the reaction of the FZ system to changes of inductor 
power and feed rate. The impulse - type parameter changes were applied after the system 
reached an equilibrium state, i.e. the crystal was growing with constant radius. These data 
were used to carry out a corresponding nonstationary simulation with the mathematical 
FZ model implemented in the program FZoneT  [Rudevics 2005 - 1] . 

 The initial geometry used for the nonstationary calculation is shown in Figure  4.52  and 
corresponds to the experimental FZ system at the quasi - stationary process stage. During 
the crystal growth process, the inductor current  I  0  and the feed rate  v  F  were changed as 
shown in Figure  4.53 , which caused changes in the crystal radius  r  c  and zone height  H  Z . 
A comparison of the results of the nonstationary FZ model with the experiment is given 
in Figure  4.54  and shows that the features of the calculated changes of crystal radius and 
zone height in time correspond well with the experiment. The visible differences can be 

     Figure 4.51     Finite - element grids for four different phases of the nonstationary FZ process 
starting from the cone.  
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     Figure 4.52     Phase boundary shapes and characteristic parameters for the FZ system at 
the beginning of the nonstationary calculation  (Reprinted with permission from  [Rudevics 
2005 - 1] , copyright (2005) Elsevier Ltd) .  
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     Figure 4.53     Impulse - type changes of inductor current and feed rod speed used in the 
experiment and in the calculations  (Reprinted with permission from  [Rudevics 2005 - 1] , 
copyright (2005) Elsevier Ltd) .  

explained by the precision of the numerical approximation as well as measurement errors 
of zone height and crystal radius during the experiment. Figure  4.54  also shows that the 
characteristic transition time of the system response to parameter changes is about 15   min 
and is well described by the numerical model. The diameter response also shows decreas-
ing oscillations; see  [Rudevics 2005 - 1] .   

 Further numerical nonstationary calculations  [Rudevics 2005 - 1]  for the end cone of 
crystal growth (crystal diameter is decreasing) have also shown that the angle between 
crystallization interface and crystal surface at the ETP is larger than during cylindrical 
growth. On the other hand, during the growth of the crystal cone (crystal diameter is 
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increasing), this angle is smaller than during cylindrical growth. Such dependencies could 
be important for stability analyses of crystal growth.  

  Modelling the Transient  FZ  Crystal Growth Process with Control.     One of the most 
signifi cant tasks in practice is to ensure the growth of crystals with a defi nite shape, e.g. 
with a given slope of the crystal surface and with defi ned conditions, e.g. a given zone 
height. Control of the zone height ensures the stability of the process and precludes 
emergency interruption of the process, e.g. spilling of the melt or collision of the feed 
rod with the RF inductor. Therefore in practice, special automatic control algorithms are 
used, during which the previously unknown values of the process parameters, e.g. value 
of the inductor current, are found during the growth process. 

 For modelling the dynamics of crystal growth with automatic control, proportional –
 integral – differential (PID) controllers were implemented in a separate program module 
 [Rudevics 2005 - 2]  in the nonstationary program FZoneT. For PID control, the following 
control parameters were used: molten zone height  H  Z , inductor current  I  0 , feed rate  v  F , 
and angle   φ   0  between the tangent to the crystal surface at the ETP and the vertical direc-
tion. Figure  4.55  shows a sample calculation in which a FZ system is modelled with a 
PID control during a time period of 4000   s (from the beginning of the simulation) to 
ensure a specifi ed crystal surface slope of 11    ° . It can be seen that the control algorithm 
ensures the desired shape of the crystal. It must be emphasized that the time dependencies 
of inductor current and feed rate during this calculation are not preplanned but obtained 
from the simulated PID control of the process.   

 In conclusion, it must be emphasized that the behaviour of the free melt surface strongly 
infl uences the whole process of FZ crystal growth. Capillary forces therefore play a 
crucial role in the system and must be modelled properly. The examples of mathematical 
modelling presented in this chapter show that, by using advanced mathematical models 
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     Figure 4.54     Reactions of crystal radius and zone height on the impulse - type changes 
 (Reprinted with permission from  [Rudevics 2005 - 1] , copyright (2005) Elsevier Ltd) .  
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together with increased computer performance, stationary and nonstationary crystal 
growth processes can be modelled with an acceptable approximation. Such modelling is 
a real help for optimizing the FZ process in industry  [von Ammon 2004] .     

  Appendix: Code for Calculating the Free Surface During a  FZ  
Process in Python as used in 4.1.1.9 

  #!/usr/bin/env python 
 #  -  *  -  coding: utf - 8  -  *  -  
 # Author: Michael W ü nscher  < wuenscher@ikz - berlin.de >  
 # 
 # You can freely use the code for whatever you want. 
 # 
 # Any comments are welcome. 
  from  numpy  import  array, zeros, sin, cos, pi, double 
  from  pylab  import  plot ,  show 

     Figure 4.55     Result of modelling a nonstationary FZ crystal growth process with PID 
control to obtain 11    °  slope of the crystal surface.  
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  class RungeKuttaFreeSurface:  
  ‘  “ This is the class which implements the Runge - Kutta -
 Solver using 
 the numpy array functions. ”  ’  
 force  = None  
  def __init__( self ,  x ,  y ,  para ,  dx ):  
     ‘  “ Initialise the integrator with the given variables and 
parameter 
           -  x arc length 
           -  y variable array r, z and beta 
           -  para parameter 
           -  dx step length ”  ’  
    self . x  =  double ( x )  
    self . y  =  array ( double ( y ))  
    self . para = array ( double ( para ))  
    self . dx  =  double ( dx )  
     print   ‘ RK4 - FreeSurface - Init:  ‘  ,  x ,  y ,  para ,  dx 
  def abl( self ,  x ,  y ):  
     ‘  “ Derivative which implement the Young -  Laplace ’ s 
 - Equation ”  ’  
    dydx = zeros ( len ( y ))  
    #eqn for the radius 
    dydx [ 0 ]  = sin ( y [ 2 ])  
    #eqn for the horizontal 
    dydx [ 1 ]  = cos ( y [ 2 ])  
    #eqn for the angle 
    dydx [ 2 ]  = cos ( y [ 2 ])/ y [ 0 ] +  self . para [ 0 ]  *   y [ 1 ] 
 -   self . para [ 1 ]  
    #Setting a electric force object 
     if  self . force :  
       dydx [ 2 ]+ =  self . force ( x )  
     return  dydx 
  def step( self ):  
     ‘  “ Calculates a rk4 step of the length dx ”  ’  
    hdx  =  0.5  *  self . dx 
    hx  =  self . x + hdx 
    dydx0 = self . abl ( hx ,  self . y )  
    dydx1 = self . abl ( hx ,  self . y + hdx  *  dydx0 )  
    dydx2 = self . abl ( hx ,  self . y + hdx  *  dydx1 )  
    dydx3 = self . abl ( self . x + self . dx ,  self . y + self . dx  *  dydx2 )  
    self . y  + =  self . dx / 6.   *  ( dydx0  +  2.   *  ( dydx1  +  dydx2 ) +  
dydx3 )  
    self . x  + =  self . dx 
  def GetData( self ):  
     return  self . x ,  array ( self . y )  
  def GetAngle( self ):  
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     return  self . y [ 2 ]  
  def SetForceSpline( self ,  force ):  
    self . force  =  force 
  class FreeSurfaceFZSolver( RungeKuttaFreeSurface ):  
  ‘  “ It is used to initialize the solver and make the unit 
conversion ”  ’  
  def __init__( self ,  pressure  =  232.5 ,  radius = 0.0255 ,  
beta_degree = 11. ,  
 rho  =  2530. ,  gamma  =  0.783 ,  grav  =  9.81 ,  stepsize  =  
0.002 ):  
     ‘  “ Initilize the integrator ”  ’  
    #Intial Conditions 
    self . radius  =  radius 
    self . para_dim  = ( pressure ,  radius ,  beta_degree ,  
 rho ,  gamma ,  grav )  
    r = 1. 
    z = 0. 
    beta = beta_degree   *   pi  /  180 
    bondnr = rho   *   grav   *   radius  *  radius  /  gamma 
    pzero = pressure   *   radius  /  gamma 
    RungeKuttaFreeSurface . __init__ ( self ,  0. , [ r ,  z ,  beta ], 
[ bondnr ,  pzero ],  stepsize )  
  def solve( self ,  stop_angle  =  0. ,  integration_length  = 
( 0.5 ,  2. ),  output_steps  =  10 ):  
     ‘  “ Solve the system and out put the result ”  ’  
    minintegration  =  int ( integration_length [ 0 ] /  self . dx )  
    maxintegration  =  int ( integration_length [ 1 ]/  self . dx )  
    stop_angle = stop_angle  / 180.   *   pi 
    i  =  0 
    x ,  y  =  self . GetData ()  
    data  = [[], [], [], []]  
    #data[0] = [] 
    data [ 0 ]. append ( x )  
     for  j  in  range ( 1 ,  3 ):  
       #data[j] = [] 
       data [ j ]. append ( y [ j  -  1 ])  
     while  i   <   maxintegration :  
       self . step ()  
       i + =  1 
        if  i  %  output_steps =  =  0  :  
          x ,  y = self . GetData ()  
          data [ 0 ]. append ( x )  
           for  j  in  range ( 1 ,  3 ):  
             data [ j ]. append ( y [ j  -  1 ])  
        if  i   >   minintegration  and  self . GetAngle ()  >   stop_angle  :  
           break  
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    data_scaled  = []  
     for  vari  in  data :  
       data_scaled . append ( array ( vari ) *  self . radius )  
     return  data_scaled ,  self . para_dim 
  def main_fsFZ():  
  ‘  “ Sample solution for Si ”  ’  
 fsFZ = FreeSurfaceFZSolver ()  
 data ,  parameter = fsFZ . solve ()  
 #Plot using matplotlib from pylab 
 plot ( data [ 1 ] *  1000. ,  data [ 2 ] *  1000. )  
 show ()  
  if  __name__ =  =   ‘ __main__ ’  :  
 main_fsFZ ()    
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  5.1   Introduction 

 Although metallic crystals were grown through a hole in a fl oating mica disc as early as 
the 1920s  [Gomperz 1922, Linder 1927, Mark 1923] , primarily to prevent the oxidation 
of the melt surface, A.V. Stepanov of the Ioffe Physico - Technical Institute, Leningrad, 
in the 1960s was the fi rst to formulate a concept of crystal shaping: 

   the shape or an element of shape to be produced is created in the liquid state by means of various 
effects enabling the liquid to retain that shape, and then the shape or element is converted to the 
solid state by the use of appropriate crystallization conditions   [Stepanov 1963]  .   

 For the growth of shaped crystals and material structures, he suggested forming a melt 
column of a defi ned shape with the aid of a special  shaper  (i.e. a  die ), and subsequently 
crystallizing the melt column outside the vessel walls. Liquid melt columns can be made 
in a variety of shapes by the application of a suitable high - frequency electromagnetic 
(EM) fi eld or by the use of the hydromagnetic effect, among others. 
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 In fact, the main idea of this concept was to limit the area of the liquid - free surface 
and its perturbations. Then there are only two possibilities that can be used for shaping: 
the edges or the walls of shaper (die)  [Tatartchenko 1969] . This means that in the theo-
retical analyses two different boundary conditions have to be used: fi xing a line on the 
surface of the meniscus by the edges of the shaper (die) or fi xing the wetting angle 
between the melt and the wall of the shaper. The details of the theoretical analysis of 
shaping processes are discussed in Chapter  2  of this book. 

 Since any desired sectional shape can be obtained  –  ribbons, tubes, rods and others  –  
cutting processes can be eliminated, allowing for a reduction in cost in comparison with 
bulk crystals grown by other techniques. Various profi les were grown by Stepanov and 
his coworkers  [Koptev 1967, Shach - Budagov 1959, Stepanov 1959, Stepanov 1963, 
Tsivinskii 1965, Tsivinskii 1966] . The Stepanov group mainly studied systems in which 
the die material is not wetted by the melt. 

 A very important step in shaped crystal growth was the discovery and development of 
the edge - defi ned fi lm - fed growth (EFG) technique  [LaBelle 1971 - 1, LaBelle 1971 - 2] , 
based on Stepanov ’ s concept. The die is drilled with capillary channels so that, when it 
is held in contact with the melt, the liquid rises by capillary action to the top of the wet-
table die, where crystal growth proceeds at or slightly above the top of the die, where 
thermal gradients are controlled as in any crystal pulling processes (Figure  5.1 ).   

 Intensive research has been devoted to designing and optimizing this process and 
investigations of shaped crystal growth can be found in numerous original papers. The 
proceedings of Soviet and Russian conferences on shaped crystal growth were published 
in  [Bull. Acad. Sci., Proc. Stepanov Conf. 1969 – 2004]  A special issue on shaped crystal 
growth was published in the  Journal of Crystal Growth   [Cullen 1980]  after the appearance 
of numerous papers in this area. The fi rst and second international symposiums on shaped 
crystal growth (SSCG - 1 and SSCG - 2) were held in Budapest (Hungary) in 1986 and 1989. 
The proceedings were published in  [Proc. SSCG - 1 1986, Proc. SSCG - 2 1990] . Several 
monographs on shaped crystal growth have also been published  [Antonov 1981, Rudolph 
1982, Dobrovinskaya 2002, Fukuda 2003, Tatartchenko 1993, Tatartchenko 1994]  as well 
as reviews  [Abrosimov 2003, Antonov 1988, Antonov 1990, Antonov 2002 - 1, Antonov 
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     Figure 5.1     The principle of the EFG technique. 1, melt; 2, crucible; 3, meniscus; 4, die; 
5, crystal; 6, seed.  
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2002 - 2, Buzynin 1977, Ciszek 1984, Dobrovinskaya 1979, Dobrovinskaya 1988, Kalejs 
1987, Kurlov 2001, LaBelle 1980, Nikanorov 1987, Rudolph 1999, Shikunova 2007, 
Tatartchenko 2005, Taylor 1983] . 

 The concept of the EFG/Stepanov technique and the research and engineering efforts 
have focused on the application and optimization of the process for a wide variety of 
materials (Table  5.1 ). Single crystals and eutectics have been grown by the EFG/Stepanov 
technique or by the micro pulling down ( μ  - PD) technique. However, the industrial proc-
esses have been developed primarily for the manufacture of shaped crystals of sapphire 
and Si. These shaped crystals are now produced commercially throughout the world and 
have many industrial uses.   

 The development of various techniques for the growth of sapphire and Si shaped crys-
tals is described in this chapter. Also special attention is devoted to the  μ  - PD technique, 
which has been developed on the basis of the Stepanov concept.  

  5.2   Shaped  S i 

 Because photovoltaic energy conversion constitutes a form of electricity production that 
is environmentally clean and structurally very modular it is becoming more and more 
important in replacing fossil fuels and preserving the environment from global warming. 

  Table 5.1    Some materials for which the  EFG / S tepanov technique has been applied 

  Al 2 O 3  - Y 3 Al 5 O 12      [Pollock 1974 - 2, Starostin 1994]   
  Al 2 O 3  - Zr 2 O 3 (Y 2 O 3 )     [Borodin 1988, Bates 1992]   
  Ca 3 (Nb,Ga) 2 Ga 3 O 12      [Voronkov 1988]   
  Ca 3 VO 4 , Bi 12 SiO 20 , Bi 12 GeO 20 , 

Bi 4 Ge 3 O 12 , Nd 3 Ga 5 O 12   
   [Ivleva 1987]   

  Ga 3 Gd 5 O 12      [Swartz 1974]   
  GaAs     [Egorov 1976]   
  Gd 2 (MoO 4 ) 3      [Kurlov 1994]   
  Ge     [Antonov 1980, Kuznetsov 1980, Levinson 1980]   
  Heavy metal halides     [Dmitruk 1985, Dmitruk 1988]   
  InSb     [Nosov 1969]   
  LiF, CaF 2      [Antonov 1988, Nicolov 2000, Tsivinskii 1966]   
  LiF - NaCl, LiF - CaF 2      [Pollock 1974 - 1]   
  LiNbO 3      [Matsumura 1976, Red ’ kin 1987]   
  LiTaO 3      [Red ’ kin 1986]   
  LiTa  x  Nb 1 −    x  O 3  solid solution     [Fukuda 1976]   
  Lu  x  (RE 3+ ) 1 −    x  AlO 3      [Mare š  2002]   
  MgAl 2 O 4      [Hurley 1975]   
  Mn 2 SiO 4      [Finch 1975]   
  NaNO 2      [Antonov 1990]   
  NaNO 3      [Lin 1993]   
  PbTe     [Klimakow 1984]   
  Rare earth orthovanadates     [Epelbaum 1998, Kochurikhin 2006, Zhang 2002]   
  Sr  x  Ba 1 -    x  Nb 2 O 6      [Ivleva 1995]   
  TiO 2      [Machida 1993]   
  Y 3 Al 5 O 12      [Kravetskii 1980]   
  Y 3 Al 5 O 12    :   RE 3+      [Kurlov 2005]   
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Crystalline Si technology is clearly dominant in solar cell production today, with about 
90% of the market, and will remain dominant for at least the next decade. 

 Photovoltaics (PV) was and is the driving force for shaped Si crystal growth. Starting 
just before the oil crises in the early 1970s, the development of shaped Si growth over 
30 years has played an important role in world production of Si substrates for solar cells. 
Market share changes continually, because of the expanding production of PV products; 
at the turn of the millennium the proportion of shaped Si was about 10%  [Kalejs 2003] . 

 The goal of research and development activities in PV is cost reduction of the electricity 
produced, to compete with other energy sources. One of the main expenses incurred is in 
fabrication of Si wafers, which makes up about one - third of the cost of the fi nished PV 
module. Some 30 – 50% of Si crystallized in the form of ingots (from the Czochralski 
process, casting etc.), which has to be cut into slices to produce Si wafers, is wasted as 
kerf loss during the cutting process. In addition to wasting material, wafering suffers from 
surface damage which leads to further use etching and polishing techniques. Moreover, 
it is diffi cult to produce a thin wafer (100    μ m). An alternative approach is to grow shaped 
Si by pulling from the melt. In this case the as - grown crystal is in form of the end substrate 
for solar cell production and nearly all the starting material from the crucible is crystal-
lized. This reduces the use of Si feedstock, which is a critical parameter for the long - term 
success of the PV industry because of the need to lower costs. 

 Shaped crystal growth of Si began in the early 1960s with the dendritic web growth 
technique  [Dermatis 1963] , in which the ribbon shape of the crystal was controlled by 
crystallography and surface tension of the melt, followed by the Stepanov method 
 [Boatman 1967] , in which the crystal shape was defi ned by a nonwetting slot at the top 
of an inductively melted Si rod. Quite soon, a dendritic web - grown ribbon 30   mm wide 
and 100    μ m thick was reported  [Barrett 1971] . Though Stepanov - grown shaped crystals 
were dislocation free, the growth of ribbons wider than 12   mm was diffi cult. 

 The situation changed after introduction of wetted dies for the growth of shaped crys-
tals, applied for the fi rst time in the growth of sapphire  [LaBelle 1971 - 1] . This technique 
was called edge - defi ned fi lm - fed growth (EFG), because crystal grows from the melt acted 
on by capillary force and spread as a thin fi lm on the top of the die. The cross - section of 
the growing crystal in EFG is defi ned by the form of the die, as in the Stepanov method, 
which makes both methods similar. In 1972, EFG was applied to Si ribbon growth  [Ciszek 
1972]  and 3 years later to the growth of Si tubes  [Ciszek 1975] . Some years after that 
Russian scientists published the fi rst results dealing with the Stepanov growth of Si 
ribbons  [Tatartchenko 1978] , Si tubes  [Abrosimov 1983]  and hexahedral crystals 
 [Abrosimov 1985]  (more detailed information on this development can be found in 
Chapter  2 ). 

 The golden age of Si shaped crystal growth began in the mid 1970s. T.F. Ciszek in his 
review  [Ciszek 1984]  described 15 sheet growth methods that were under development 
at that time, and in the next few years more than a dozen techniques appeared. He pro-
posed a classifi cation of Si sheet growth methods based on the shape of meniscus that 
forms between the melt and the growing shaped crystal (sheet) (Figure  5.2 ). M 1  and M 2  
menisci are typical for the vertical ribbon (tube) growth methods and differ in height: the 
height of the M 1  meniscus is of the order of the profi led crystal thickness (e.g. EFG) and 
the M 2  meniscus rises from the free melt surface to the solid – liquid interface and typically 
has a height of the order of 6 – 7   mm (e.g. dendritic web growth, String Ribbon ™ ). The 
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M 3  meniscus is characterized by a large solid – liquid interface that typically occurs for 
the horizontal growth techniques either with a free melt surface (e.g. horizontal ribbon 
growth (HRG)) or with a supporting substrate (e.g. ribbon growth on substrate (SGR) or 
Silicon Film ™ ).   

 Of the 30 or more shaped crystal growth techniques that have been developed since 
the 1960s, only a few have been commercialized or are in the pilot production phase 
 [Kalejs 2003] . Some techniques (e.g. EFG, String Ribbon) can up to now compete with 
traditional Si wafer production from bulk materials. The application of apparently well -
 developed techniques like dendritic web growth depends on the willingness of the meth-
od ’ s owners to invest in the R & D and take it from pilot stage to production. In what 
follows, the leading shaped crystal growth techniques and technologies will be discussed, 
including historical aspects of their development. 

  5.2.1    EFG  Method 

 The EFG method was the fi rst one to be used for commercial PV Si substrate production. 
Because solar cell substrates are fl at, the process development was concentrated on the 
growth of Si ribbons from the very beginning. A critical parameter for the cost reduction 
of the grown crystals is the productivity of the process (or productivity per furnace). So, 
in 1975, Mobil Tyco Solar Energy Corporation reported the continuous growth of Si 
ribbons 25   mm wide and 25   m long  [Ravi 1975] . Another important value for productivity 
is the growth rate. The maximum growth rate for melt - grown ribbon - shaped crystals was 
derived in  [Ciszek 1976] :

    v
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where   ζ   is the latent heat of fusion,   ρ   l  is the density of the crystal at the melting tempera-
ture  T  m ,   σ   is the Stefan – Boltzmann constant,  ε  is the surface emissivity of the crystal,   λ   s  
is the thermal conductivity of the solid crystal at the melting temperature,  W  is the ribbon 
width and  t  is the ribbon thickness. If the width - to - thickness ratio of the growing ribbon 
is large ( W/t     >>     1 ) , v  max  is essentially independent of width and varies as  t   − 1/2 . The 
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     Figure 5.2     Classifi cation of Si ribbon technologies according to the shape of the meniscus 
at the solid – liquid interface  (Reprinted with permission from  [Hahn 2004] , copyright 
(2004) Institute of Physics)   .  
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maximum growth rate for shaped Si crystals (the formula is also valid for the growth of 
Si tubes) with a thickness of about 300    μ m could be predicted to be about 6 – 7   cm/min. 
But in practice the pulling rate is limited to 1 – 2   cm/min because of thermal stresses that 
produce both a high level of dislocations and residual stresses that cause ribbon splitting 
or bucking, leading to low yield during further solar cell processing. 

 Fundamental barriers for Si ribbon growth, such as growth stability or residual stresses, 
were not recognized in the early stage of process development and the main goals were 
to grow wider ribbons with higher pulling rates. The peak level was reached with the 
growth of Si ribbon up to 7.5   cm wide at a growth rate of 7.5   cm/min  [Kalejs 1980] . This 
was achieved by the construction of high - speed cartridges including forced cooling ele-
ments to remove the latent heat of crystallization from the growth interface and afterheater 
systems with linear cooling plate to minimize the residual stresses in the grown ribbon. 
As a result, a steep temperature gradient (up to 2500    ° C/cm) in the solid near the growth 
interface was obtained through combined action of the die heaters, the die - top radiation 
shields, and the heat removal elements, making possible a growth rate of up to 7.5   cm/
min. To minimize the high level of residual stresses that undoubtedly accompany such 
severe growth conditions, the ribbon was reheated to temperatures  ≥ 1200    ° C and cooled 
in a linear temperature profi le to room temperature, passing through linear cooling plates. 

 Another fundamental problem of ribbon growth  –  the stability of the ribbon width 
caused by control of the ribbon edges (see Chapter  2  for more details)  –  was investigated 
by using the die end heaters to heat each end of the die independently from its central 
part. The end heaters were used mainly to supply enough power to control the ribbon 
edge isotherms. In spite of all the technical solutions used, the residual stress and buckling 
problems still remained and the process did not attain the expected productivity. Also, 
because of the complexity of the high - speed cartridge for ribbon growth, the process was 
too complicated to be adapted for mass production, which requires simplicity of 
technology. 

 The physical cause of ribbon edge instability is that, for steady - state growth, the menis-
cus height must be lower on the edges than on the ribbon face  [Tatartchenko 1993] . This 
problem does not exist for the growth of shaped crystals with a closed shape, e.g. Si tubes 
fi rst reported in  [Ciszek 1975] . The next idea was to use Si tubes for production of Si 
solar cells used in photovoltaic – solar thermal energy systems, combining solar cells with 
a light concentrator and with an internal working fl uid to obtain low - grade heat  [Eriss 
1980] . Because of the small diameter (9.5   mm) it was possible to grow crystalline Si tubes 
at pulling rates up to 12   cm/min,  ∼ 140   cm in length and with wall thicknesses in the range 
0.05 – 1.0   mm. An important result concerns the effect of the growth rate on the wall thick-
ness variation: the observed smaller thickness variation at higher pulling rates is because 
the latent heat of crystallization terms begins to dominate as the temperature gradient in 
the meniscus approaches zero. The process stability in Si tube growth is an advantage in 
comparison to the edge - caused instability during ribbon growth, but the tubular substrate 
is unusual for solar cell technology and this prevented further development, in spite of 
the reported simultaneous growth of several tubes  [Abrosimov 1983] . 

 The essential step for EFG Si growth and further process development was based on 
the idea of combining the advantage of a closed crystal shape with plane ribbon geometry. 
This is possible when the cross - section of the shaped crystal is polygonal. Initially, deca-
gons were grown with 2.5 - cm wide faces, and nonagons with 5 - cm faces  [Taylor 1981] , 
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but the commercialization of EFG Si shaped growth was on the basis of an octagon with 
10 - cm wide faces, equivalent to simultaneous growth of eight 10 - cm wide ribbons from 
a single furnace  [Kalejs 2002] . The octagonal tubes have average wall thickness of 300    μ m 
and can be grown to a height of 5.4   m with continuous melt replenishment. Although the 
graphite crucible with an integrated capillary die contains only about 1   kg of Si, continu-
ous melt replenishment makes possible to grow up to 200   kg of shaped Si during a growth 
run (Figure  5.3 ).   

 Market pressures and the standards of the PV industry are directing EFG technology 
development to increase the EFG furnace productivity and the width of the polygons in 
steps from 10   cm to 12.5   cm and 15.6   cm (Figure  5.4 )  [Mackintosh 2006] . The same 
furnace used for the 12.5 - cm faced octagon growth can be used for the growth of 15 - cm 
faced hexagon, or the 50 - cm EFG cylinder furnace can accommodate either a 12.5 - cm 
faced dodecagon or a 15 - cm faced decagon.   

 The common feature of all polygonal hollow Si tubes is the tendency to buckling with 
the reduced wall thickness and increased in face width and growth rate. Together, the 
larger faces of polygons and larger furnace diameters required to grow such crystals force 
furnace designers to maintain uniform temperatures of the order of 1    ° C across each 
individual face width with a tolerance acceptable for solar cell production. In comparison, 
the growth of large - diameter EFG cylindrical tubes can offer the possibility of increasing 

     Figure 5.3     EFG growth furnace at RWE SCHOTT Solar with growing thin - walled 
octagonal Si tube  (Reprinted with permission from  [Behnken 2005] , copyright (2005) 
Elsevier Ltd) .    
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productivity per furnace and ensure temperature uniformity around the perimeter of the 
growing tube. The axial symmetry of the growing system reduces thermoplastic stress, 
which is the main limitation for pulling rate, and makes thin wafer growth more practical. 
Using this approach EFG cylindrical tubes with a diameter of 50   cm and wall thickness 
75 – 80    μ m have been grown up to a length of 1.2   m  [Garcia 2001] . In addition, tube rota-
tion can be used to minimize the circumferential temperature variations that make growth 
of EFG polygons with wall thickness less than 200    μ m diffi cult. The PV industry has to 
balance the advantages and the drawbacks of a curved substrate. 

 Modelling plays an important role in the understanding and improvement of crystal 
growth processes. Various modelling approaches have been used to study meniscus 
dynamics, heat and mass transport, melt fl ow and impurity distribution, stress, and defor-
mation behaviour for both Si ribbon and thin - wall cylinder (polygons)  [Kalejs 2001] . 
With the development of better computing systems and physical and mathematical models 
of the process, modelling has been extended to three - dimensional computation because 
the growth system of polygonal symmetry cannot be adequately described in an axially 
symmetrical model. Figure  5.5  shows the schematic and geometry of an EFG Si tube 
growth system commonly used for modelling  [Sun 2004] .   

 Recently three - dimensional models have been used: 

   •      for evaluation of stress development and bucking deformation during the growth of 
octagonal thin - walled tubes  [Behnken 2005]   ;  

   •      for coupled electromagnetic and thermal modelling of three - dimensional temperature 
fi elds to analyse the temperature profi les along and across the growing Si tubes (octago-
nal with 125 - mm face) and to investigate the thermally induced stress and strain in 
different cases  [Kasjanow 2007] ;  

   •      for three - dimensional unsteady analysis of melt fl ow and Ga segregation during the 
growth of a dodecahedral EFG Si tube 0.5   m in diameter and 3   m in grown length 
 [Smirnova 2008] .    

     Figure 5.4     10 - cm and 12.5 - cm face octagons grown by EFG  (Reprinted with permission 
from  [Mackintosh 2006] , copyright (2006) Elsevier Ltd) .    



Shaped Crystal Growth 285

 Based on these achievements, the current owner of the EFG technology, Wacker SCHOTT 
Solar, introduced the growth of a 12.5 - cm faced dodecagon (12 sides) as the standard 
process for EFG ribbon growth, and the growth of a 15 - cm faced decagon (10 sides) is 
under development. 

 As mentioned earlier, the advantage of shaped crystal growth is better use of the feed-
stock. Taking into account all steps from crystal growth to wafer preparation, about 90% 
of feedstock can be transformed into usable wafer for solar cell production  [Kalejs 2003] . 
Furthermore, some the losses, including transient parts just after seeding, pot scrap and 
EFG tube corners (arising from cutting the polygonal crystal to wafers using a Nd   :   YAG 
laser) can be recycled. 

 From the crystal quality point of view, the EFG Si ribbon is similar to other multic-
rystalline materials obtained by directional solidifi cation. In spite of the long history of 
Si shaped crystal growth for solar cell applications, not all the factors that limit the elec-
tronic properties of as - grown EFG substrates have as yet been identifi ed. Carbon crucibles 
and dies and higher pulling rates are the main causes of defects. Independently of the 
seed orientation, ribbons grown by the EFG process achieve quasi - equilibrium defect 
structure after sustained growth  [Garone 1976, Rao 1980] . The predominant surface 
orientation is close to the {011} plane (within about  ± 15 ° ) and the preferred growth 
direction is  〈 211 〉 . The structure consists of crystallographic defects parallel to each other, 
and also parallel to the growth direction. Arrays of dislocations and twin boundaries 
dominate the macroscopic defects, although a few grain boundaries can be found, too. 
The defects generally extend through the thickness of the shaped crystal. SiC formation 
and its incorporation into the crystal is another factor infl uencing the crystal quality. 

 During the growth of Si crystals with a closed shape, e.g. Si tubes, there are some 
peculiarities in the defect structure formation because of the curved crystal surface 
 [Abrosimov 1985] . The predominant surface orientation with the planar defects 
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     Figure 5.5     Schematic and geometry of a commonly used EFG Si tube growth system: (a) 
general view, (b) die top and meniscus geometry  (Reprinted with permission from  [Sun 
2004] , copyright (2004) Elsevier Ltd)   .  
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perpendicular to the crystal surface can be achieved only within the segments where the 
surface orientation is close to {011} (Figure  5.6 a). Whenever the defl ection of the surface 
from {011} reaches  ∼ 15 ° , the surface orientation changes abruptly because of a  ‘ severely 
defective spot ’  that causes an unavoidable rotation of the crystal surface orientation in 
such a way that the system of planar defects becomes again approximately perpendicular 
to the crystal surface. Either large - angle grain boundaries or dislocation pile - ups can act 
as such defect areas (Figure  5.6 b). It was observed that 11 – 12  ‘ severely defective spots ’  
are needed to form the quasi - equilibrium defect structure of Si tubes with diameter up to 
20   mm.   

 Electrical activity of the dislocations and grain boundaries contributes to a relatively 
short lifetime for the as - grown EFG wafer; however, the specifi c solar cell processes 
developed for EFG materials improve it to levels comparable with those of other multi-
crystalline solar cells. Starting with 11 – 12% solar cell effi ciency  [Ravi 1977] , EFG - grown 
Si substrates have since been improved to a quality level suffi cient to produce solar cell 
effi ciencies of 14 – 15% in large - scale manufacturing  [Kalejs 2004] .  

  5.2.2   Dendritic Web Growth 

 Historically, dendritic web growth was the fi rst method applied for Si shaped crystal 
growth by the Westinghouse Corporation  [Dermatis 1963] . Unlike EFG growth using a 
shape - defi ning die, the ribbon form of dendritic web Si is controlled by crystallography 
and surface tension forces. Because the web ribbon growth is carried out from the free 
surface of the melt, this method can be classifi ed as an  M  2  meniscus form (Figure  5.2 ). 
Figure  5.7  shows the principle of dendritic web growth  [Seidensticker 1977] . The growth 
process starts by dipping a dendrite seed crystal into a supercooled Si melt, which leads 
fi rst to lateral growth in the  〈 110 〉  direction to form a button at the melt surface. The 
button is then pulled from the melt and two needle - like dendrites, aligned in the  〈 112 〉  
growth direction, propagate from each end of the button into the melt. The solidifi cation 
of the liquid fi lm, supported initially by the button and the bounding dendrites, results in 

~ <110>

(a) (b)

     Figure 5.6     Defect structures of Si tubes (cross - sectional fragments), a pattern of selective 
chemical etching (wall thickness of the tube 400    μ m): (a) quasi - equilibrium defect 
structure (twins perpendicular to the tube surface); (b) defect area providing rotation of 
the system of twin - boundary planes.  
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ribbon growth with a {111} surface. The ribbon thickness is typically  ∼ 100    μ m, depending 
on the pulling rate and melt temperature profi le. The odd number of twin planes intro-
duced from the seed (extending from one dendrite to the other) provides re - entrant corners 
for dendrite growth and allows a high growth rate of the crystal.   

 The goal of any process development for the PV industry is to achieve low - cost solar 
cells. For ribbon crystal growth this means increasing the output rate  –  the product of 
ribbon width and growth rate. The process should be carried out continuously in steady 
state mode, which requires a melt replenishment system to keep the thermal fi eld in the 
furnace constant. The growth of a wide ribbon by the dendritic web growth method is 
diffi cult because of the initial button growth stage and the diffi culty in obtaining widely 
spaced bounding dendrites. It requires very precise control of the temperature distribution 
in the melt and on the melt surface, which should be essentially isothermal over a distance 
of the order of the ribbon width. The temperature control requirements in dendritic web 
growth are typically of the order of  ± 0.1    ° C. 

 The basic replenishment system used in dendritic web growth is a multichambered 
crucible in which the melting of granular feedstock is separated from the growth process 
by a perforated barrier  [Seidensticker 1982] . The melt level controller uses a laser melt 
level detector  [Hopkins 1987]  and keeps the level constant to within a few tenths of a 
millimetre. Another closed - loop system controls the melt temperature and the melt thermal 
symmetry, to keep both bounding dendrites at the optimal growth temperature. Because 

Dendrite Seed

Button

Bounding Dendrites

Web

Twin Planes

Liquid

Dendrite H - Arm Region
Dendrite Tip and Transition Region

     Figure 5.7     Schematic geometry of dendritic web growth  (Reprinted with permission from 
 [Seidensticker 1977] , copyright (1977) Elsevier Ltd)   .  
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the dendrite thickness is sensitive to melt temperature changes, dendrite size is also used 
as a regular parameter in the automatic control system. But in spite of the high level of 
automation, dendritic web growth demands great skill. 

 As in EFG Si ribbon growth, the attempts to grow a wide, thin web with a high growth 
rate lead to elastic buckling and plastic deformation generated by thermally induced 
stresses. As result of this limitation, ribbons 5 – 8   cm wide can be grown with pulling rate 
1 – 2   cm/min, which provides a throughput of 5 – 16   cm 2 /min  [Kalejs 2002] . That is why 
full commercialization of dendritic web growth is diffi cult, in spite of the reported 
maximal solar cell effi ciencies of 17.3%. The pilot production by EBARA Solar Inc. was 
closed down in 2003.  

  5.2.3   String Ribbon 

 Another vertical silicon ribbon growth technique is String Ribbon ™ . This technique, 
earlier called  ‘ edge supported ribbon ’  or  ‘ edge stabilized ribbon ’  was developed in the 
1980s at the National Renewable Energy Laboratory  [Ciszek 1982]  and at Arthur D Little 
 [Sachs 1987]  and commercialized by Evergreen Solar Inc. in 1994. Geometrically, String 
Ribbon growth is analogous to dendritic web growth where the edge - stabilized bounding 
dendrites are replaced by two wetted strings which are resistant to Si (the material of the 
strings is not described in the relevant papers). It makes the technique easier because the 
temperature control requirements are not so tight as in dendritic web growth and tempera-
ture excursions of  ± 5    ° C can be tolerated. As a result, the process is simple and robust 
and has excellent stability and reliability. 

 The general schema of String Ribbon growth is shown in Figure  5.8   [Hanoka 2001] . 
High - temperature strings pass up through a crucible with a shallow Si melt. The edge of 
the growing ribbon is determined and stabilized by capillary attachment to the wetted 
strings. Because the ribbon grows directly from the surface of the melt like in dendritic 
web growth, this method can be classifi ed as an M 2  meniscus type (Figure  5.2 ) and the 
typical meniscus height is equal to 7   mm. The growth process begins with the dipping of 
the seed into the melt; after that the process is conducted by the furnace controller. After 
steady - state growth has been achieved, Si is continuously fed into the crucible. The 
primary process controls on the growth furnaces are temperature, pulling rate and Si feed 
rate. The growth runs continuously for many hour; the operator cut strips without inter-
rupting the growth when the given length of 2   m is achieved, and makes process adjust-
ments. In the conventional String ribbon method, a single Si ribbon is 8   cm wide with 
thickness of about 250    μ m. The String Ribbon growth process called Gemini (dual ribbon 
growth) allows production of two Si ribbons simultaneously from a single crucible 
 [Wallace 2003] .   

 Another concept in String Ribbon growth  –  the Mesa Crucible concept  –  offers new 
possibilities of reducing the process costs. The Mesa Crucible is a narrow piece of graph-
ite, 2   cm wide by 65   cm long, upon which molten silicon rests  [Sachs 2004] . The melt is 
contained by capillary attachment to the edges of the crucible, not by walls (Figure  5.9 ). 
The free melt surface has a concave downward shape. The edges of the Mesa stabilize 
the melt if the melt height does not exceed about 6   mm above the mesa plane. The 
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     Figure 5.8     Schematic of String Ribbon growth  (Reprinted with permission from  [Hanoka 
2001] , copyright (2001) Elsevier Ltd)   .  

      Figure 5.9     (a) A schematic conventional  ‘ walled ’  crucible: the left image shows a 
centred ribbon, the right image shows a ribbon displaced to the right of centre. (b) A 
schematic cross - section through a mesa crucible: the left image shows the melt with no 
ribbon present, the right image shows a ribbon growing.  (Reprinted with permission from 
 [Sachs 2004] , copyright (2004) WIP-Renewable Energies,  http://www.wip-munich.de/ ) .    
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meniscus shape that forms during the growth leads to an inherently stable fl atness for the 
string ribbon. Mesa Crucible concept allows four ribbons to grow in a furnace (Figure 
 5.10 )  [Sachs 2004] .   

 The common challenge for all ribbon technologies is to overcome stress - related issues 
like buckling caused by high cooling rates. It limits the pulling rates of String Ribbon to 
1 – 2   cm/min. The use of an active afterheater to linearize the cooling profi le allows an 
increase of the growth rate and a decrease in the ribbon thickness to 100    μ m. 

 From the point of view of crystal quality, String Ribbons are identical to EFG: many 
twin boundaries and some high - angle grain boundaries caused by contact of strings with 
Si, melt. For String Ribbon the twinned regions (bands) can be as much as 1   cm wide and 
the minority carrier lifetime can be as high as 10 – 15    μ s resulting in a solar cell effi ciency 
of over 16% (laboratory process)  [Hanoka 2001] .  

  5.2.4   Ribbon Growth on Substrate ( RGS ) 

 There are two methods  –  RGS and Silicon Film ™   –  that belong to the M 3  meniscus type 
(Figure  5.2 ). Both of them utilize a substrate to assist in the process of crystallization. 
The difference is that the substrate for the Silicon Film process becomes incorporated 

      Figure 5.10     Growth of four 80   mm - wide ribbons at pulling rate of about 25   mm/min 
using Mesa Crucible concept  (reproduced with the permission of Evergreen Solar) .    
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     Figure 5.11     Principle of the RGS process  (Reprinted with permission from  [Burgers 
2006] , copyright (2006) WIP-Renewable Energies,  http://www.wip-munich.de/ ) .    

into the solar cell while the RGS ribbon is separated from the substrate after the growth 
and the substrate can then be reused. Because of the lack of information concerning the 
Silicon Film growth process commercialized by AstroPower  [Kalejs 2003] , only the RGS 
process will be analysed here. 

 The RGS method was originally developed by Bayer AG in the 1990s. Figure  5.11  shows 
a schematic view of the technique. Substrates move under a crucible containing Si melt at 
a pulling rate  v . The Si layer crystallizes with crystallization rate  v  c  in a direction perpen-
dicular to the moving direction of the substrate. The frame acts as a melt container, as well 
as a shaper which determines the width of the ribbon and the thickness of the wetted melt 
layer and solidifi ed Si foil on the graphite substrate. During cooling, the difference in 
thermal expansion coeffi cient between the substrate material and the Si layer causes the 
separation of the Si ribbon from the substrate and allows re - use of the substrate  [Hahn 
2004] . In the RGS process the substrate is used for cooling the bottom surface of the Si 
layer and the solid – liquid interface length is greater than the ribbon thickness. The direc-
tions of pulling and crystallization are almost perpendicular to one another, depending on 
the temperature conditions during growth. This allows for the decoupling of the crystalliza-
tion rate and the pulling rate, and leads to high productivity of the growth process.   

 The maximum ribbon growth rate for horizontal growth techniques with wafer transport 
almost perpendicular to the crystal growth direction can be estimated using one - dimen-
sional considerations of the thermal fl uxes during ribbon growth  [Lange 1990] :

    v
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t t
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Δ     (5.2)  

where   α   is the effective coeffi cient of heat transfer,   λ   s  is the thermal conductivity of the 
solid crystal at the melting temperature,  s  is the length of the solid – liquid interface (in 
the pulling direction),  t  is the ribbon thickness,   ζ   is the latent heat of fusion,   ρ   l  is the 
density of the crystal at the melting temperature  T  m , and  Δ  T  is the temperature difference 
between melt and substrate. This equation predicts a 600   cm/min pulling rate for 
 Δ  T    =   160    ° C. 
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 In general, high crystal pulling rates infl uence the crystal structure. In comparison to 
the horizontal ribbon growth (HRG) process  [Bleil 1969]  which used crystallization from 
the free surface of the Si melt, RGS has the advantage of a substrate, which leads to 
heterogeneous nucleation and columnar crystallization with grain size of the order of the 
ribbon thickness. In this way the instabilities that occurred at the tip of the crystallization 
front in the HRG process, leading to dendritic growth with 10   K undercooling, can be 
avoided. The heterogeneous nucleation process on the substrate limits the supercooling 
of the liquid Si near the ribbon tip to the nucleation supercooling  [Steinbach 1997] . 

 The RGS process is now under development at the Energy Research Centre of the 
Netherlands (ECN). The R & D growth equipment now used by ECN allows a very high 
production rate of one wafer per second. Silicon wafers are 10   cm wide and 300    μ m thick, 
but the growth of RGS ribbon with a thickness of about 100    μ m is possible too. In spite 
of the high carbon concentration and small grains, nearly 13% effi ciency shunt - free solar 
cells was achieved on RGS Si wafers  [Burgers 2006] . 

 In conclusion, the ribbon growth techniques remain a promising cost - effective alterna-
tive to multicrystalline wafers sliced from ingots as there are no kerf losses  [Hahn 2006] . 
Although some techniques, e.g. dendritic web growth are no longer in development, other 
techniques, e.g. Ribbon on a Sacrifi cial Template (RST), formerly called Ribbon Against 
Drop (RAD)  [Belouet 1987]  are again in development at Solarforce. This technique is 
characterized by a vertical growth direction combined with the use of a substrate.   

  5.3   Sapphire Shaped Crystal Growth 

 Sapphire has been recognized for a long time as a material with important properties. It 
has a high refractive index and a broad transmission band spanning the ultraviolet, visible 
and infrared bands, a high hardness, melting point, very good thermal conductivity, tensile 
strength and thermal shock resistance. The favourable combination of excellent optical 
and mechanical properties, along with high chemical durability, makes sapphire an attrac-
tive structural material for high - technology applications. Sapphire crystals are used in 
medicine and blood chemistry as they are resistant to human blood and body fl uids, are 
totally impervious to moisture, and are chemically inert. Frequently it is the combination 
of two or more of its properties that makes sapphire the only material available to solve 
complex engineering design problems  [Klassen - Neklyudova 1974] . 

 However, sapphire is diffi cult to shape because of its high hardness, and its physical 
properties are anisotropic since it possesses a hexagonal crystal structure. Nevertheless, 
there is a high demand for sapphire and it has been grown for a variety of applications 
by a number of techniques. Techniques for growing sapphire crystals of any predeter-
mined cross - section, constant along the crystal length (rods of various cross - sections, 
ribbons, tubes, fi bres, capillaries), and crystals with discretely changing cross - sectional 
confi gurations (crucibles, boats, near - net - shaped domes, etc.) have been developed. 

 Sapphire has been produced commercially for many years and its unique properties 
make it an ideal material for hundreds of applications. The main applications of shaped 
sapphire crystals are scanner windows, windows for high - temperature and high - pressure 
applications, chemical vapour deposition (CVD) reactors, arc envelopes for vapour lamps, 
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thermocouple sleeves, wear - resistant nozzles, substrates, watch windows, transparent 
armour, optical systems for high - power laser optics, insulators, high - pressure reactors, 
high - vacuum equipment, moving pieces for friction welding, guides for textile machinery, 
precision bearings, heat and water impeller meters, chromatograph pistons, engines, 
domes for high - speed missiles, light guides, acoustic rods, reinforcing elements for com-
posite materials, sensors, nuclear components, research and technological equipment, 
medicine (implants, scalpels, needles for laser therapy, medical power delivery systems), 
jewels, etc. 

 Although sapphire has been used for many years, it is still in a development stage. The 
optimization of standard crystal growth technologies and development of new techniques 
are actively pursued in order to increase the dimensions of crystals, improve the quality, 
reduce the cost of material, and grow complex shapes. There are good reasons to believe 
that sapphire will not only strengthen its position in traditional markets, but will also be 
used in a number of new applications. 

  5.3.1    EFG  

 This sapphire shaping technique has been described, discussed and reviewed in numerous 
publications  [Abrosimov 2003, Antonov 2002 - 1, Dobrovinskaya 1980, Kravetskii 1980, 
Krymov 1999, Kurlov 1997 - 1, Kurlov 1997 - 2, Kurlov 1997 - 3, 1998 - 3, Kurlov 1999 - 1, 
Kurlov 2001, LaBelle 1967, LaBelle 1971 - 1, LaBelle 1971 - 2, LaBelle 1980, Locher 1992, 
Nicoara 1987, Novak 1980, Perov 1979, Tatartchenko 2005, Th é odore 1999 - 2, Wada 
1980, Zatulovskii 1983]  and only a summary is presented here. 

 In 1967 LaBelle and Mlavsky  [LaBelle 1967]  reported on the growth of sapphire fi lament 
from the melt using a wetted die made of molybdenum. In the fi rst instance they used the 
Gomperz principle  [Gomperz 1922]  where the crystal was pulled through a disk - like die 
located on the surface of the melt. The fl oating orifi ce technique proved to be a reliable 
experimental approach for producing sapphire fi laments. But although the technique was 
used as an excellent research tool, it was diffi cult to conceive of it as a reliable manufactur-
ing process. A principal concern was the continual change in temperature at the orifi ce as 
the melt was consumed and the disk moved lower in the crucible. In addition, there were 
always occasions where mechanical instability would cause the disc to become submerged 
in the melt  [LaBelle 1980] . LaBelle and Mlavsky subsequently improved the technique by 
using a die with capillary channels attached to the bottom of the crucible  [LaBelle 1971 - 1, 
LaBelle 1971 - 2] . Crystals are grown from a melt fi lm formed on the top of the capillary 
die. The melt rises to the crystallization front within the capillary channel. This is ideal for 
producing crystals with small square cross - section. 

 It was clear that the EFG technique offered major advantages as a crystal growth 
process. Since the die is rigidly fi xed in the crucible, its top surface and, therefore the 
growing interface remain essentially fi xed with respect to the crucible, heat shields, and 
heating source. It solved the problem of mechanical instability and eliminated the variabil-
ity of melt temperature at the die top with the decreasing melt level in the crucible. 
Molybdenum is considered to have good chemical compatibility with molten alumina: 
sapphire crystals grown using molybdenum crucibles and dies contain only 5 parts per 
million of molybdenum, and molten alumina is able to wet the molybdenum. 
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 Several outstanding results have been achieved in sapphire shaped crystal growth by 
the EFG technique. Sapphire fi bres have been produced at Saphikon, Inc. and at the 
former parent company, Tyco Laboratories, since the early 1970s. The method was used 
to produce sapphire fi bres for reinforcement of ceramic and metal matrix composites 
for high - temperature use in aircraft engines. Saphikon has worked extensively since 
1987 to advance the production capability further, and by 1994 they produced structural 
grade fi bre at volumes over 10   000   m per week through cooperation with several com-
panies. The process allows for the continuous growth of multiple fi bre strands from a 
single machine; in structural fi bre production, 75 strands have been grown simultane-
ously. Continuous growth of lengths exceeding 300   m has been demonstrated  [Fitzgibbon 
1998] . 

 Production of optical - grade sapphire fi bre for use in high - temperature fi bre optics is 
has also been developed. Sapphire fi bres grown using the Saphikon EFG technique have 
proved to be effective converging systems for Er   :   YAG and Er   :   YSGG lasers for medical 
applications. In a summary report by Fitzgibbon  et al. , relating to sapphire fi bre perform-
ance, experimental results were detailed: fi bre losses as low as 0.2   dB/m with an average 
of 1.5   dB   m  − 1 ; laser damage threshold 1245 J   cm  − 2 ; laboratory lifetime testing of 1 - m fi bre 
samples (325    μ m diameter) demonstrated 150   000 pulses at a delivered energy of 275   mJ/
pulse  [Fitzgibbon 1996] . 

 Sapphire fi bres can be used for infrared spectroscopy, as well as for very high - temper-
ature sensing (2000    ° C). Sapphire has replaced quartz (silica) fi bres in many of these 
applications, as the wavelength extends beyond the transmission limit of quartz. With a 
usable temperature range up to 2000    ° C, sapphire exceeds the usable range for quartz, 
which devitrifi es in the 1100 – 1200    ° C range. Quartz also degrades in moist or chemically 
aggressive environments, while sapphire can be used in extremely harsh conditions. 
Sapphire fi bres are now routinely used in the aggressive environment of fl uorine (NF 3 , 
CF 4 ) plasma etching chambers used in the manufacture of semiconductor wafers. Bare 
sapphire fi bres are prime candidates for evanescent wave sensing because of their chemi-
cal inertness and low bending losses  [Fitzgibbon 1998] . 

 In 2005, J. Locher and others (Saphikon) reported EFG sapphire sheets measuring 
305    ×    510   mm and 225    ×    660   mm  [Locher 2005] . That was a great step in technology, 
which provided the aerospace industry with sapphire of the required size. The EFG 
method seems to be the best choice for producing large - area sapphire crystals. The large 
crystal size requires not only appropriate dimensions of the growth machine but also the 
creation of a uniform temperature along the very long top face of the die. These sapphire 
plates were high quality. The average optical transmission of 6.15 - mm thick uncoated 
polished panels is 84.0%    ±    0.5% at 700   nm. This value assures good transmission through-
out the 500 – 5000   nm spectral range. Effective absorption coeffi cients for this spectral 
range and thickness are calculated and reported. An average index inhomogeneity of 
6   ppm    ±    2   ppm has been measured and is the requirement for panels polished to 0.1    λ  at 
this thickness ( ∼ 633   nm)  [Bates 2005] . 

 The EFG method initiated the development of other growth techniques for shaped sap-
phire crystals which fulfi lled the requirements for practical use. Some versions are 
described here in more detail for shaped sapphire single crystals because in this area the 
problems of obtaining crystals of preset shape, control of single crystal structure quality, 
defectiveness, and optical and mechanical properties can be solved.  
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  5.3.2   Variable Shaping Technique ( VST ) 

 The development of modern science and technology requires sapphire crystals of complex 
forms, i.e. shaped crystals with variable cross - section. The variable shaping technique 
(VST) makes it possible to vary the dimension and confi guration of the crystal cross -
 section during pulling. This method allows a gradual transition from one preset confi gura-
tion of the crystal cross - section to another during the same crystal growth process 

 It is well known that in the process of crystal growth by the EFG technique, the shape 
of the cross - section profi le is controlled mainly by the die design, and its cross - sectional 
dimensions can vary only within very narrow limits restricted by the meniscus - existence 
zone, with the melt meniscus catching on the free edge of the die (see Chapter  2 ). Hence, 
the fi rst attempt to increase the possibility of varying pulled profi le cross - sectional dimen-
sions in the process of growth was to displace movable die elements  [Mlavsky 1975] . 
The cross - section was varied by using complex external and internal dies. The fi rst die 
was used for tubular crystal growth; the second one was connected to a rod that could be 
shifted in the axial direction so as to move the top surface of the two dies in and out of 
horizontal alignment with each other. When the internal die moved into alignment with 
external one, the crystal grew as a circular rod. 

 Other techniques of varying the inner tube diameter are based on melt spreading from 
a circular capillary channel on the top surface of the die  [LaBelle 1975] . Initially, the 
melt fi lm covers only part of the top surface in the vicinity of the circular capillary 
channel, and a tubular crystal grows. Then the pulling velocity and the melt temperature 
are adjusted so that the surface tension causes the fi lm to spread toward the centre of the 
top surface. As a result, the cross - section of the crystal is changed. Both techniques allow 
transition from a tubular crystal to a circular rod in one process. 

 The next technique for discrete variation of the dimensions and geometry of the crystal 
cross - section during growth was based on the relative displacement of the elements of 
the thermal zone in a horizontal or vertical plane. This technique was proposed by 
Kravetskii  et al.   [Kravetskii 1980, Zatulovskii 1983]  and later developed by Borodin 
 et al.   [Borodin 1983, Borodin 1985 - 1, Borodin 1999] . 

 In order to change the preset crystal shape during crystallization and to preserve the 
altered cross - sectional confi guration during further growth, it is necessary to alter the 
geometry of the liquid meniscus. This technique consists of a sequence of steady state 
growth steps with different transition crystallization modes. During the transition the base 
of the meniscus moves across the top surface of the die assembly from one edge to the 
other, and the meniscus volume and shape are changed. A VST schemes with a change-
able crucible position is illustrated in Figure  5.12   [Borodin 1999] . The sequence of opera-
tions to alter the crystal cross - sectional confi guration is shown from left to right. The set 
of dies is not connected with the crucible, so the crucible can be translated along the 
vertical axis relative to a fi xed position of the die assembly. The dies should be of differ-
ent lengths to allow their lower parts to be dipped into the melt separately. In shape transi-
tion mode, the lateral surfaces of the neighbouring dies are separated by narrow gaps 
which can serve as capillary feeding channels for the melt. When the crucible is raised 
so that the next die is dipped into the melt, the capillary gap supplies an additional mass 
of melt to the top of the die assembly. This portion of the melt contacts the already exist-
ing meniscus with the edge of the die just dipped into the melt. As a result, a new type 
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of meniscus forms and the growing crystal alters its shape which is controlled by the dies 
dipped into the liquid. If the crucible is lowered so that one of the dies is withdrawn from 
the melt, the pulled crystal will suck the rest of the melt out of the die capillary channel 
and out of the capillary gap between the neighbouring dies. In this case the base of the 
meniscus will move to the top surface edges of the die which is still dipped in the melt. 
This causes alteration and reduction of the crystal cross - section.   

 Sapphire shaped crystals grown by the VST are shown in Figure  5.13 . Sapphire cruci-
bles, boats, caps for thermocouples, crystals with change from rectangular cross - section 
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     Figure 5.12     Principle of the VST using displacement of the crucible: 1, crystal; 2, 
meniscus; 3, die; 4, melt; 5, crucible.  

     Figure 5.13     Sapphire shaped crystals grown by the VST.  
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to tube, tubes with predetermined inside and outside diameters, tubes with attachment of 
side ribs and envelopes for high - pressure sodium lamps were grown by VST.    

  5.3.3   Noncapillary Shaping ( NCS ) 

 One of the basic defects in crystals grown from the melt is gas bubbles, which appear at 
some critical supersaturation of the melt with a gas impurity whose distribution coeffi cient 
is usually less than unity. In this case the homogeneous nucleation and growth of a gas 
bubble can take place in the impurity - enriched zone ahead of the crystallization front 
 [Geguzin 1981, Tiller 1953] . Distribution of the gas - forming impurity ahead of the crys-
tallization front in Czochralski growth depends on the pattern of the forced melt convec-
tion. This is mainly defi ned by the crystal rotation  [Miyazawa 1980] . Melt stirring close 
to the crystallization front sweeps away the impurity - enriched zone and decreases the 
amount of impurities at the crystallization front. Therefore, melt stirring decreases the 
probability of gas - forming impurities in the crystal. 

 The growth of shaped crystals by the EFG method with a die wetted by the melt and 
with a capillary feeding system does not allow impurities to be removed from the crystal-
lization front. In this case the distribution of gas bubbles is determined by the hydrody-
namic fl ow of the melt in the neighbourhood of the crystallization front and thus the die 
design plays an important role. The dependence of the gas bubbles and dopant distribution 
on the geometry of the capillary channels in the dies has been observed earlier when 
growing shaped Si and sapphire crystals  [Andreev 1986, Borodin 1985 - 2, Kalejs 1978, 
Kurlov 1994, Kurlov 1997 - 1, LaBelle 1980] . 

 Figure  5.14  shows the cross - section of a sapphire rod 40   mm in diameter grown from 
a die with four ring capillary channels. Comparison of the sapphire crystal cross - section 
with the top surface of the die shows that the gas bubbles in the disk are located at the 
places where melt fl ows moving from the capillary channels meet each other. An analo-
gous situation has been observed when growing sapphire rods of 12   mm diameter from 
a die with a ring capillary channel or from one made from sections of a molybdenum 
wire placed in a cylindrical tube  [Borodin 1985 - 2] . The authors  [Andreev 1986, Borodin 
1985 - 2]  showed analytically that the regions with an enhanced concentration of gas 
impurities driven back by the interface surface are adjacent to those regions of the 
crystallization front under which the components of the velocity of the melt fl ow are 
minimum. These minimum - velocity regions are formed by intersecting melt fl ows which 
spread over the top surface of the die, and are the most likely sites for the generation 
and capture of gas inclusions. So, one of the main problems in high - quality shaped 
crystal growth is how to prevent the formation of gas bubbles and other inclusions, 
which are formed in the regions where the melt velocity ahead of the crystallization 
front is minimum.   

 The primary difference  [LaBelle 1980]  between LaBelle ’ s EFG process and Stepanov ’ s 
early work is that the EFG process must use a wettable die and the Stepanov technique 
generally used a nonwetted die. For melt - nonwettable materials, the melt column should 
be surrounded externally, providing additional pressure on the liquid to make the melt – die 
contact point touch the sharp edge of the die  [Tatartchenko 1994]  (Figure  5.15 a). For 
melt - wettable materials, the melt column has negative pressure using the capillary die 
(Figure  5.15 b).   
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     Figure 5.14     Distribution of gas bubbles in the cross - section of a 40 - mm diameter 
sapphire rod, grown using a die with four ring - shaped capillary channels.  
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     Figure 5.15     Principle of Stepanov (a), EFG (b) and NCS (c) methods: 1, melt; 2, 
crucible; 3, nonwetted die; 4, wettable die; 5, meniscus; 6, crystal  (Reprinted with 
permission from  [Antonov 2002 - 1] , copyright (2002) Elsevier Ltd)   .  
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 The NCS method, unlike the traditional capillary feed technique, ensures the absence 
of micro - voids and gaseous and solid inclusions, which are formed in the regions with 
minimum components of melt velocity ahead of the crystallization front. The dominant 
fl ow always moves from the centre to the periphery irrespective of crystal cross - section, 
thus enabling the growth of large sapphire crystals free of bulk inhomogeneities. The 
formation of the optimal interface surface and the hydrodynamic fl ows of melt ahead of 
the crystallization front are determined by the shape of the top surface of the die, the 
growth velocity, and the size of the noncapillary channel (the word  ‘ noncapillary ’  means 
that the diameter of the channel is greater than the value of the capillary constant). 

 The NCS method was developed for the growth of high - quality shaped sapphire crys-
tals with large cross - section. This method uses a wettable die. However, in contrast to 
the EFG method the NCS technique does not use the lifting of the melt from the crucible 
to the die - top through a capillary channel. But nevertheless the melt column has a nega-
tive pressure, as for the EFG method. The main feature of the NCS technique consists of 
the delivery of the melt to the growth interface through a noncapillary channel via a wet-
table die (Figure  5.15 c). 

 But why does the melt rise to the crystallization front through a noncapillary channel 
via a wettable die? Figure  5.16  shows the sequence of bulk crystal growth stages by the 
NCS method using different seed shapes. At the beginning of the process the die top is 
at the level of the melt in the crucible. By using a small seed (Figure  5.16 a), the crystal 
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     Figure 5.16     The sequence of bulk crystal growth stages by NCS method using different 
seed shapes: (a) with the use of a point seed; (b) with the use of a bulk seed. 1, melt; 2, 
crucible; 3, meniscus; 4, die; 5, crystal; 6, point seed; 7, bulk seed.  
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grows up to the edges of the die during the initial stage. After that the melt level in the 
crucible can be lowered relative to the level of the die top. The melt rises to the crystal-
lization front through the central noncapillary channel because it is pumped up by the 
crystal, which acts as a piston. A wettable rod can also be used as a seed (Figure  5.16 b). 
The melt level in the crucible can be lowered after the seeding process.   

 The special case of seeding using both capillary and noncapillary channels is described 
in  [Kurlov 1997 - 1] . The lifting of the melt to the crystallization front inside a noncapillary 
channel is achieved by the pressure difference between the growth chamber and the 
internal closed volume under the seeding plate. The melt arriving through the noncapillary 
section of the die joins the melt meniscus coming through the ring capillary channel, 
which results in the growth of a crystal in the shape of a solid rod (Figure  5.17 ). To create 
the closed volume, the seeding is performed over the entire perimeter of a ring capillary 
channel (Figure  5.17 a). In the initial stage, when the melt approaches the crystallization 
front only through the capillary feed, a hollow crystal grows. The closed volume below 
the seed begins to increase and the pressure decreases according to the Boyle – Mariotte 
law. The resulting difference in pressures forces the melt to rise inside the noncapillary 
section of the die (Figure  5.17 b). On further pulling, the melt arriving through the non-
capillary section of the die joins the melt meniscus coming through the ring capillary 
channel, which results in the growth of a crystal in the shape of a solid rod (Figure  5.17 c).   

 The distance  l  between the seeding point and the beginning of the solid rod depends 
substantially on the pressure  p  in the growth chamber. The distance  l , assuming that the 
crystallization of the melt arriving from both capillary and noncapillary sections occurs 
at the same level from the die top, is:

(a)
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     Figure 5.17     Principle of monolithic crystal growth by the NCS method using the pressure 
difference in the growth chamber and inside a closed volume under the seeding plate: (a) 
seeding, (b) growing a hollow closed shape, (c, d) growing a monolithic crystal  (Reprinted 
with permission from  [Kurlov 1997 - 1] , copyright (1997) Elsevier Ltd)   .  
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where  H  is the distance between the level of melt in the crucible and the top of the die, 
 H  f  the distance between the melt level in crucible and the crystallization front,   ρ   l  the melt 
density and  g  the gravitational constant. 

  5.3.3.1   Growth of Crystals with a Predetermined Cross - Section 

 The formation of the optimum interface surface and the hydrodynamic fl ows of melt in 
the neighbourhood of the crystallization front are determined by the shape of the top 
surface of the die, and by the relationship between the crystal cross - section, velocity of 
growth and size of the central noncapillary channel. 

 When the solid rod starts growing, the crystallization front is fed with melt through the 
ring capillary and central noncapillary channels (Figure  5.17 b). The regions in which 
these fl ows join are characterized by a minimum in the resulting velocity. In these areas 
homogeneous nucleation, growth and capture of gas bubbles by the crystallization front 
is likely to occur (Figure  5.14 ). Figure  5.18  (on the left) shows the characteristic ring -
 shaped porous regions in the cross - section of solid sapphire rods grown under simultane-
ous melt feeding from the capillary and noncapillary channels of dies with different 
geometries. The distribution of gas bubbles (width of the ring, its location, etc.) depends 
on the position of the capillary channel and on the velocity components of melt fl ows 
below the crystallization front.   

     Figure 5.18     Cross - sections of sapphire crystals grown by the NCS method: crystals grown 
with simultaneous feed from capillary and noncapillary channels (on the left) and using 
feed provided only from the noncapillary channel (on the right)  (Reprinted with 
permission from  [Kurlov 1997 - 1] , copyright (1997) Elsevier Ltd)   .  
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 However, the most important aspect of this method is that it allows the production of 
crystals completely free of gas bubbles whose origin is connected with the presence of 
regions characterized by a minimum in the melt fl ow velocities. This is achieved either 
by the suppression of the capillary fl ow from the noncapillary channel, or by shutting off 
the capillary feed; then the crystal grows only from the melt fed from the noncapillary 
channel (Figure  5.17 d). The melt moves only from the centre to the periphery; in this 
case the free surface of the meniscus is a sink for gaseous impurities, which results in the 
absence of bubbles both in the centre of the growing crystal, and near its surface (Figure 
 5.18 , right). 

 Sapphire cylindrical rods up to 40   mm in diameter for use in optics (Figure  5.19 ) and 
rods of other shapes for various applications have been grown by the NCS technique. 
Investigation of the grain structure of sapphire crystals grown by the NCS method has 
shown a misorientation of less than 1 °  between the grain boundaries over a fi nite length 
of the grown rods (150 – 300   mm).   

 The method based on noncapillary feed is also applicable to the growth of thick - walled 
tubes and plates free of gas bubbles. The noncapillary channel is arranged between the 
two capillary channels, or other channels with more complicated profi les, which can be 
 ‘ switched off ’  or  ‘ switched on ’  to act as capillary or noncapillary channels.  

     Figure 5.19     Sapphire bulk crystal of 35   mm diameter grown by the NCS method using 
feed provided only from a noncapillary channel  (Reprinted with permission from  [Kurlov 
1997 - 1] , copyright (1997) Elsevier Ltd)   .  
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  5.3.3.2   Growth of Crystals with a Variable Cross - Section 

 The NCS technique also allows changing the growing crystal from one shape to another, 
e.g. from a solid crystal to a hollow one (where the feed of melt proceeds only from the 
ring capillary) and vice versa  [Kurlov 1994, Kurlov 1997 - 1]  (Figure  5.20 ). Like the VST, 
the NCS method produces a wide range of sapphire crystals  [Borodin 1985 - 1, Kravetskii 
1980]  and it has vastly increased the dimensions of grown crystals. The essential differ-
ence between the crystals grown by the NCS method and those produced by the VST is 
the absence of gas bubbles in the crystal volume.   

 Figure  5.21  shows sapphire crucibles grown by the VST (on the left) and by the NCS 
method (on the right). The arrow indicates a typical column of gas bubbles in the bottom 
part of the crucible grown by the VST. Bubbles of this type are absent in the same section 
of the sapphire crucible grown by the NCS method. Consequently, this method is good 

     Figure 5.20     The transformation from sapphire rod to tube and vice versa.  

     Figure 5.21     Sapphire crucibles grown by the VST: external diameter 13   mm and the 
arrow indicates a column of gas bubbles (on the left); and one grown by the NCS 
method, external diameter of crucible 34   mm (on the right)  (Reprinted with permission 
from  [Kurlov 1997 - 1] , copyright (1997) Elsevier Ltd)   .  
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for growing sapphire crucibles with transparent bottoms (free of gas bubbles) and crystals 
of variable cross - section of other shapes without gaseous inclusions. Figure  5.22  shows 
sapphire crucibles 65   mm in diameter.   

 The NCS method was used to grow sapphire rods and tubes with internal and external 
threads (Figure  5.23 ). This method allows a change in the pitch of thread during the 
growth process.   

 Besides controlling the lateral form of the crystal, it is also possible to control the 
formation of the junction between the hollow part of the crystal and its solid region, and 

     Figure 5.22     Sapphire crucibles of 65   mm in diameter grown by the NCS technique.  

     Figure 5.23     Sapphire crystals with internal and external threads grown by the NCS 
method.  



Shaped Crystal Growth 305

vice versa. Combination of this control with the possibility of producing crystals without 
gas inclusions in their volume by the NCS method enables the growth of near - net - shaped 
domes  [Kurlov 1997 - 2] . 

 Sapphire is the most durable commercially available mid - infrared window material. 
One of the most important applications is domes for relatively high - speed missiles. Here, 
the main problem is to obtain transparent materials that have good high - temperature 
properties and good resistance to rain and other sources of damage. A new approach to 
producing sapphire at reduced cost is to grow a near - net - shaped crystal. Methods for the 
preparation of near - net shapes directly in the course of the growth process by the heat 
exchange method (HEM)  [Khattak 1989, Khattak 1992] , the gradient solidifi cation 
method (GSM)  [Horowitz 1993, Horowitz 1996]  and the modifi ed EFG method  [Locher 
1990, Locher 1992]  have been reported. NCS is another technique that can be used to 
produce sapphire domes. 

 The main design feature of the die is a hemispherical top for the inner thick - wall liner 
with a noncapillary channel (Figure  5.24 ). The die is also provided with a capillary channel 
along its perimeter. The height of the hollow spherical segment  h  is   h d R d= −( )2 , where 
 R  is the radius of the spherical segment and  d  the required thickness of the blank wall. At 
the initial stage, after the formation of a ring meniscus between the seed plate and the die 
(Figure  5.24 a), the melt approaches the crystallization front only through the capillary feed, 
and the crystal grows in a tubular shape (Figure  5.24 b). As the enclosed volume increases, 
the difference between the gas pressure in the enclosed volume and that in the growth 
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     Figure 5.24     The sequence of individual near - net - shaped dome growth stages. 1, die; 2, 
ring capillary channel; 3, liner cavity; 4, noncapillary channel; 5, crucible; 6, melt; 7, seed 
plate; 8, ring meniscus; 9, tubular crystal; 10, near - net - shaped dome; 11, enclosed volume 
 (Reprinted with permission from  [Kurlov 1997 - 2] , copyright (1997) Elsevier Ltd)   .  
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chamber also grows. because of this pressure difference, the melt rises in the hole and then 
in the liner cavity. When the melt in the cavity reaches the edges and meets the meniscus, 
the hemispherical part of the blank (Figure  5.24 c) begins to crystallize. The shape of the 
inner surface of the blank depends on the rate of pulling and the radial temperature gradient. 
Under proper thermal conditions this shape may resemble that of the crystallization front. 
The front surface refl ects the hemispherical confi guration of the liner top (Figure  5.24 d). 
As soon as the stage c begins, the crystal is pulled to a length equal to the height  h  of the 
spherical segment. The hemispherical sapphire blank is then abruptly broken from the die 
top (Figure  5.24 e) at high pulling velocity.   

 Figure  5.25 a shows the as - grown near - net - shaped hemispherical sapphire blank with 
the seed plate. Figure  5.25 b shows the cross - section of a near - net - shaped dome grown by 
the NCS method. The surface sections to be removed mechanically for fabricating a fi nal -
 shaped dome are shaded. This shows that the surfaces can be controlled accurately so that 
minimum grinding and polishing is necessary to produce the fi nished domes. Final - shaped 
sapphire domes fabricated from near - net - shaped blanks and a conoscopic fi gure from the 
sapphire dome are shown in Figure  5.26 . High - quality near - net - shaped sapphire domes 
were grown by the NCS method.   

(a) (b)
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     Figure 5.25     The as - grown near - net - shaped sapphire dome grown by the NCS method 
(a). Near - net - shaped dome cross - section (b)  (Reprinted with permission from  [Kurlov 
1997 - 2] , copyright (1997) Elsevier Ltd)   .  

(a) (b)

     Figure 5.26     (a) Mechanically fi nished hemispheres produced by the NCS method. 
(b) Conoscopic fi gure from sapphire dome grown along the  c  - axis (photograph taken with 
dome between crossed polarizers)  (Reprinted with permission from  [Kurlov 1997 - 2] , 
copyright (1997) Elsevier Ltd)   .  
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 Experiments were also carried out to obtain a set of near - net - shaped domes during one 
growth cycle for additional cost saving in crystal growth. The NCS method allows the 
passage from a solid crystal to a hollow one (where the feed of the melt proceeds only 
from the ring capillary) and vice versa  [Kurlov 1997 - 2] .   

  5.3.4   Growth from an Element of Shape ( GES ) 

 Stepanov ’ s concept  [Stepanov 1963]  indicates that two modes of capillary shaping can 
be used in pulling a crystal from the liquid on a seed: producing a meniscus whose shape 
completely coincides with that of the grown crystal and producing a meniscus represent-
ing a small element in the crystal shape. 

 The growth from an element of shape (GES) method was developed on the basis of 
the Stepanov concept and its main principles were described by Antonov  et al.   [Antonov 
1985] . It consists of pulling a shaped crystal from a melt meniscus, which is only a small 
element of the whole transverse cross - section confi guration of the growing crystal (Figure 
 5.27 ). The crystal grows layer by layer and the period  l  is determined by the ratio  v  / ω  , 
where  v  is the pulling rate and   ω   is the rotation frequency.   

 The fi rst experiments involved the growth of lithium fl uoride single tubular crystals 
 [Antonov 1985] . Between the surface of the seed and the shaper there is a column of 
liquid, which is a small element of the tubular form of the future crystal. When the seed 
is rotated, its horizontal surface contacts the meniscus in the column, and a thin layer of 
liquid is formed. 

 The most important development of the GES method was the growth of complicated 
sapphire crystals with continuous variation of the lateral surface profi le. The authors of 
the GES method report that small liquid volumes can be continuously solidifi ed after 
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     Figure 5.27     Principle of the GES method. 1, seed plate; 2, tubular crystal; 3, meniscus; 
4, crucible; 5, die; 6, melt.  
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combined displacements of the seed relative to the die, in order to produce crystals with 
complicated shapes. During growth, the displacement may be applied to the seed or the 
die, or to both simultaneously  [Nikiforov 1988] . 

 Sapphire tubes and other hollow revolving bodies were fi rst grown by Borodin  et al.  
 [Borodin 1990] , who used the term  ‘ local shaping technique ’  (LST) rather than the GES. 
To alter the profi le of the lateral surface according to a preset program they used horizontal 
die displacement relative to the crystal rotation axis  [Borodin 1999] . Following variation 
of the horizontal die coordinate the inner and the outer radii of the sapphire tube change, 
and the profi le of the lateral surface changes accordingly. 

 The alternative is to use horizontal displacement of the seed during the growth process. 
A specially designed apparatus with horizontal translation of the pulling shaft, in addition 
to the usual vertical and rotating movements, was use to produce sapphire crystals of 
complicated shapes  [Kurlov 1999 - 1] . Hollow sapphire crystals of complex shapes were 
grown by the GES technique using horizontal translation of the pulling shaft (Figure  5.28 ).   

 The following results were achieved for the preparation of high - quality sapphire hemi-
spheres for use in high - temperature optics: (i) growth of GES crystals free of gas bubbles 
and solid inclusions in their volume; (ii) growth of near - net - shaped blanks close to dome 
shape; (iii) growth of crack - free sapphire hemispheres. 

 GES crystals grew layer by layer, with the thickness of each layer being determined 
by the ratio of pulling rate to rotation rate:  v  / ω  . As a consequence, GES sapphire crystals 

     Figure 5.28     Sapphire hollow crystal grown by the GES technique.  
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contained regular striations and a band - like distribution of voids described  [Borodin 1990]  
as gas bubbles, solid inclusions and inhomogeneous doping impurities. On the one hand, 
argon, nitrogen, carbon oxides, molybdenum oxides and products of alumina dissociation 
may contribute to striation forming. On the other hand, the striations may also be caused 
by structural imperfections; a confi guration of void pile - ups is often followed by stria-
tions. The regular striations and band - like distribution of voids observed in the longitu-
dinal sections of the sapphire tubes display a spiral distribution in the bulk of the crystal, 
with the angle of the spiral line slope given by   α     =   arctan ( v /2 π  R ω  ), where  R  is the dis-
tance from the rotation axis of the seed holder to the axis of the die.The arrangement and 
dimension of voids in the crystal are determined by the morphology of the solid – liquid 
interface, the period  v  / ω  , and the linear growth rate  v  ω      =    2  π  R ω  . 

 These defects greatly decrease the optical and mechanical properties  [Gurjiyants 1999]  
of the material. In broken GES crystals, steps were observed on the fracture surface. The 
height of the step is correlated with the height of the layer, so the crack propagates in 
several jumps from one level to another. The failure originates in a zone where there is 
a high concentration of voids. The location of these zones coincides with the bubbles 
distributed along each new crystallized layer. Partial removal of stress is observed in GES 
crystals before destructive failure. This occurs as a result a crack interacting with defec-
tive layers, resulting in the partial loss of energy of the crack. 

 It is therefore very important to fi nd the optimum regimes that lead to GES sapphire 
growth without striations. It was found that a marked decrease in the linear growth rate 
and period  v  / ω   leads to improved GES crystal quality. Figure  5.29  shows a longitudinal 
cross - section of a sapphire GES crystal which was grown using a low rotation rate (1   rpm) 
 [Kurlov 1999 - 1] . The ratio  v  / ω   was reduced from 130    μ m (Figure  5.29 a) to 4    μ m (Figure 
 5.29 b) to obtain GES crystals completely free of voids.   

 Light transmittance measurements along the  c  - axis are compared for GES samples with 
4    μ m and 130    μ m layer thicknesses  [Kurlov 1999 - 1] . When the crystallized layer is small 
enough, the light transmittance for GES crystals become comparable with Gentilman ’ s 
reference data  [Gentilman 1986] . 

 An interesting application of the GES is the pulling of hemispherical hollow crystals. 
The most diffi cult part of this application is the initial stage of hemisphere formation after 
seeding, when pulling is carried out practically only in a horizontal direction. The size of 
the crystal cross - section  d  c  depends on the size of the die - top cross section  d  d  and the 
angle   ϕ   between the pulling direction and vertical axis; it is determined by a simple ratio 
 d  c    =    d  d cos  ϕ   for a horizontal die - top surface (Figure  5.30 a). In the initial stage of growth 
the thickness of the hemisphere wall approaches zero and growth is impossible because 
of the absence of attachment of the melt column to the die edge. One way to solve this 
problem is to design the die with a tilted top surface  [Th é odore 1999 - 1] , as shown in 
Figure  5.30 b, in order to make the process available for any crystal shape by rotation of 
the seed together with a combination of vertical and horizontal translations. A 45    °  tilted 
angle for the molybdenum die is optimum for use with a factor   d dc d = 2  for pulling 
crystals over a wide range of angles. The thickness of the growth layer for each turn of 
a die angle of 45    °  is:  

    h
v vx z
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ω

    (5.4)  
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(a)

(b)

     Figure 5.29     Longitudinal cross - sections of GES sapphire crystals using a 1   rpm rotation 
rate at a ratio  v/ ω   equal to: (a) 130    μ m; (b) 4    μ m  (Reprinted with permission from  [Kurlov 
1999 - 1] , copyright (1999) Wiley - VCH)   .  
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     Figure 5.30     Scheme showing the dependence between size of the die - top and crystal 
cross - sections for: (a) horizontal die - top surface, (b) tilted die surface.  
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where  v z   and  v x   are the corresponding vertical and horizontal translation rates, and   ω   is 
the rotation rate. 

 A failure mechanism has been proposed in order to explain the generation and propaga-
tion of cracks during the growth of sapphire domes from an element of shape  [Th é odore 
1999 - 2] . According to this model, expansion of 10 -  μ m gas bubbles is induced by glide 
dislocations (Orowan ’ s model), up to a critical size at which the crack is initiated. 
Numerical simulation of stresses during growth explains how cracks propagate fi rst verti-
cally (V - type cracks) then horizontally (H - type cracks). The calculations were done on 
the basis of  in situ  temperature measurements  [Krymov 1999] . In order to avoid crack 
initiation, it is necessary to keep the plastic strain rate, which relaxes the stresses and at 
the same time lengthens the initial defect, below a critical value. One solution consists 
of relaxing the opening hoop stress at the same rate as that which is lengthening the defect. 

 A criterion based on plastic strain relaxation is defi ned in order to determine the growth 
parameters (pulling and rotation rates) as a function of the measured thermal gradients in 
the crystal. The time derivative of the crystal base radius is the same as the horizontal 
translation rate of the seed,  v x  ; a no - failure criterion is obtained:
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where  ∇  s  T  represents the curvilinear thermal gradient,  ∇  r  T  represents the radial thermal 
gradient,   �εpl

max  is the maximum strain rate and   α   th  is the thermal expansion coeffi cient. 
The vertical translation  v z   is combined with the other displacements to grow sapphire 
domes in the way presented in Figure  5.31 a.   

 According to the equation,   ω   reaches its lowest value,   ω   u , at the end of the growth, 
where the crystal radius is maximum. This defi nes the linear growth rate that is kept 
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     Figure 5.31     Principle of the growth of a dome from an element of shape (a) and 
crack - free sapphire hemispheres (b)  (Reprinted with permission from  [Th é odore 1999 - 2] , 
copyright (1999) Elsevier Ltd)   .  
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constant all through the process in order to keep a constant liquid fl ow rate in the die. In 
practice, crack - free crystals were obtained for linear pulling rates of about twice the latter 
critical value, a result consistent with the fact that the   σ   θ  θ    stress component reaches its 
maximum when the crystal horizontal radius is close to half the ultimate base radius 
 [Th é odore 1999 - 2] . 

 The other parameters ( v x  ,  v z  ) are derived from the Pythagorean relation and from crys-
tallized layers of constant thickness. In practice, ( v x  ,  v z  ,   ω  ) are calculated at each time 
step, connected with latitude increments that describe the hemispherical dome from its 
top to its base. These increments (0.5 ° ) are small enough to get a roughness lower than 
the surface defect between successive growth layers. 

 This led to the growth of GES crack - free sapphire hemispheres (Figure  5.31 b) that can 
be used for infrared dome blanks.  

  5.3.5   Modulation - Doped Shaped Crystal Growth Techniques 

 A current problem in the fi eld of optoelectronics is the development of new materials that 
can combine several different functions simultaneously. One way to do this is to grow bulk 
crystals with regularly doped structures. In particular, the presence of spatial resonance 
structures (periodic structures of variable composition) in crystals of Al 2 O 3    :   Ti 3+  sharply 
reduces the threshold for laser oscillation and makes it almost independent of the external 
cavity characteristics  [Kaminsky 1986] . The characteristics of the laser medium are also 
infl uenced by the contrast of the spatial resonance structures in terms of a parameter  a , e.g. 
refractive index. The contrast is determined as in Equation  (5.6) , and is a function of many 
variable quantities at the same time (activator concentration, growth conditions, etc.).

    K
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  5.3.5.1   Periodically Doped Structures 

 In the fi rst approach to the  in situ  production of crystals with regularly doped structures, 
crystals were grown by the EFG technique in the shape of ribbons, rods, and tubes. 
Changing the crystallization rate leads to a periodic disturbance of temperature conditions 
at the crystal – liquid interface and hence to periodic capture of the dopant by the crystal. 
The frequency of the temperature fl uctuations can be varied by changing the pulling rates, 
periodically displacing the die, and varying the power supply. The periodic change of 
pulling rate was achieved in two different ways: either the rate was periodically increased 
and decreased, or the pulling mechanism was periodically switched on and off. The dura-
tion of the periodic structures produced in this way ranged from 5 to 100    μ m. The periodic 
structure in a longitudinal section of a sapphire is shown in Figure  5.32 a  [Kurlov 1998 - 1] . 
The dopant modulation in the grown crystals was observed using cathodoluminescence 
(scanning electron microscope DSN - 960 ( ‘ Opton ’ )), the image contrast being dependent 
on the contents of the luminescent impurity in the matrix – activator couple. This approach 
also made it possible to change the period of the spatially doped structures during the 
process of growth and to go from a periodically doped structure to a homogeneously 
doped one  [Kurlov 1998 - 2]  (Figure  5.32 b).   
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 The contrast in the stripes produced in the structures is not great because it is limited 
by the redistribution of the impurity in advance of the crystallization front in only a small 
volume of melt  –  in the meniscus. The activator concentration varies by no more than 
one order of magnitude. The thickness of the transition layer between  ‘ doped ’  and 
 ‘ undoped ’  regions is comparable to the striation period. The contrast decreases with 
decreasing striation period and virtually vanishes for periods less than 5    μ m. Somewhat 
thinner transition layers were observed by periodically stopping the pulling. 

 Antonov and his coworkers  [Antonov 1985, Nikiforov 1988]  developed the GES 
concept with the simultaneous operation of two (or more) dies. The dies were placed at 
some distance from the rotation axis and the menisci form from small elements of the 
melt (Figure  5.33 ). These authors used layered single crystals having the composition 
LiF – LiF   :   Mg 2+  as a model for the investigation of mechanical parameters and dislocations 
in composite structures.   

 Later, the applicability of the GES method for high - temperature multicomponent oxide 
crystal growth was investigated. Sapphire  [Kurlov 1998 - 1, Kurlov 1998 - 2, Kurlov 1998 -
 3] , calcium – niobium – gallium garnet (CNGG) and yttrium orthovanadate (YVO) 
 [Epelbaum 1998 - 2]  were chosen as representative test materials. Shaped crystals in the 
form of rods and tubes were grown at a pulling rate of 3 – 25   mm/h and at a rotation rate 
0.5 – 20   rpm. Grown crystals included regularly doped structures Al 2 O 3  - Al 2 O 3    :   Ti 3+  with 
periods of 5 – 100    μ m  [Kurlov 1998 - 3]  (Figure  5.34 a). The impurity concentration in the 
undoped parts of the crystal was less than 10  − 4    wt.% and in the doped parts of crystal it 

(a)

(b)

     Figure 5.32     The periodic structure Al 2 O 3 :Ti 3+  in the longitudinal section of a sapphire rod 
grown by the EFG method. The structures were prepared by changing the pulling rate  .  
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was up to 0.2 wt%. The doped and undoped layers constitute spirals with the angle of the 
spiral line slope given by   α     =   arctan ( v /2 π  R ω  ) where  R  is the distance from the rotation 
axis of the seed holder to the axes of the dies (when dies are located at equal distance 
from the axis of rotation of the seed holder). The volume of the transition region between 
layers is defi ned mainly by the width of partial melting of the initially crystallized layer 
as a result of contact of the layer with the meniscus. The width of the partially melted 
zone and the pattern of the impurity distribution in the transition region depend on the 
thermal conditions in the crystallization zone, the frequency of rotation and the pulling 
rate of the crystal. In particular, high - contrast structures with small periodicity were 
produced under conditions close to supercooling on the crystallization front, i.e. with a 
small meniscus height.   

 Application of the GES method allows  in situ  production of various types of spatially 
periodic structures: 

   •      A change of period during the growth process can be realized by varying the ratio  v  / ω   
(Figure  5.34 b)  [Kurlov 1998 - 3] .  

   •      Application of this method allows predetermining the required ratio of layer heights 
within a period and also allows this ratio to be varied during the growth process (Figure 
 5.34 c)  [Kurlov 1998 - 1] . Change of doped – undoped layer width ratio can be achieved 
in one of two ways, either by variation of the top surface level of one of the dies or by 
variation of the relative location of the dies if the top surface levels are constant.  

   •      Transition from the periodic structures to uniformly doped or undoped crystal was 
carried out by disconnecting melt feeding in one die during the growth process.  

   •      Location of dies having various areas of work surface and/or various distances of dies 
from the rotation axis and/or combinations of the die arrangements makes it possible 
to obtain various types of doping structures in crystals  [Kurlov 1998 - 3] .  
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     Figure 5.33     Principle of layered crystal growth by the GES method using two crucibles: 
1, seed plate; 2, layered crystal; 3, meniscus; 4, crucible; 5, die; 6, undoped melt; 7, 
doped melt.  
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   •      The GES technique make it possible to control not only the contrast, period, and ratio 
of heights of doped regions in one period, but also the pattern of dopant distribution 
within the period (Figure  5.35 ).      

 The two techniques of  in situ  preparation of modulated structures described here can 
be used universally in the growth of crystals of other compositions from the melt. The 
structures in bulk crystals outlined above amount to a new class of materials. The authors 
believe that these structures will fi nd applications in the development and fabrication of 
various devices.  

(a) (b)

1<b/a1>b/a

(c)

     Figure 5.34     Periodical structures of Al 2 O 3  - Al 2 O 3 :Ti 3+  grown by the GES method: 
(a) structure with constant period; (b) structure with a variable period; (c) structure 
with different ratios of width of doped and undoped regions in one period  (Reprinted with 
permission from  [Kurlov 1998 - 1] , copyright (1998) Wiley - VCH)   .  



316 Crystal Growth Processes Based on Capillarity

  5.3.5.2   Core - Doped Fibres 

 The availability of high - quality fi bre crystals doped with active laser ions only in a sharply 
separated inner core region  [Burrus 1977, Rudolph 1994]  is of special interest. Because 
of the step - like change of the radial doping profi le of nonlinear optical core - doped fi bres, 
the pumping energy is absorbed only by the central part and an effi cient laser mode 
translation takes place. 

 For the fi rst time Burrus and Stone  [Burrus 1977]  grew a thin ruby laser as a quasi -
 cladded core - doped fi bre with a diameter of 40    μ m by a two - step laser melting technique. 
Homogeneously doped ruby fi bres were fi rst grown by a fl oating zone technique from 
small source rods, and these fi bres were then carefully surface melted in the same CO 2  
laser apparatus to outdiffuse the Cr into a region near the fi bre surface. Such a structure 
had a modulated radial refractive index with improved waveguide properties, i.e. trans-
mission effi ciency. 

 Core - doped fi bres were grown directly from the melt for the fi rst time by Dmitruk 
 [Dmitruk 1985] . Two crucibles were combined with an outer and inner die for differently 
doped melts (Figure  5.36 ). While the melt of the outer crucible rises only in a small central 
bore, the melt of the inner crucible goes up within a ring - like aperture surrounding the 
central bore. A meniscus forms at the front consisting of two essentially different melt 
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     Figure 5.35     The distribution of cathodoluminescence intensity (a.u  .) along the Al 2 O 3  –
 Al 2 O 3 :Ti 3+  samples  (Reprinted with permission from  [Kurlov 1998 - 3] , copyright (1998) 
Elsevier Ltd)   .  
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columns  –  an inner doped core and an outer undoped wrapping. Core - doped fi bres of 
CsBr(AgBr) – CsBr and TlBr – TlBr  x  Cl 1 −    x   compositions were grown.   

 Later, the same approach was used  [Shimamura 1994]  for LiNbO 3  rods with a length 
of  ∼ 10   mm having an outer diameter of 5   mm consisting of a sharply separated inner Cr -  
or Nd - doped core region. Crystals with diameters  ∼ 1.5 and 4   mm were successfully grown 
at pulling rates up to 60   mm   h  − 1 . This technique was also used for preparing  in situ  sap-
phire core - doped fi bres (Al 2 O 3  – Al 2 O 3    :   Ti 3+ ) with automated weight control  [Kurlov 
1998 - 4] . 

 To grow high - performance shaped crystals with different compositions in their cross -
 section it was necessary to solve the problem of forced mass transfer across the meniscus 
between melts of various composition and to control the introduction of gas bubbles and 
solid inclusions in the volume of the crystal. In order to solve the fi rst problem it is neces-
sary to form and maintain a preset spatial component distribution in the meniscus and in 
the region of crystallization during the growth process, which is determined by thermal 
convection, mass exchange by diffusion and convection induced by the gradient of surface 
tension at the meniscus surface. The main parameters that determine the extent of mixing 
between the different melt compositions in the meniscus are the pulling rate, the meniscus 
height which is dependent on the thermal gradient, the geometric sizes of the capillary 
channels of the dies and the form of the die top. Calculations were carried out to estimate 
the spreading region of the core - doped part of the meniscus as a function of the pulling 
rate and the meniscus height with regard to diffusion in the meniscus:

    d d
h D

v
c i

m= + 2 ,  

where  d  c  is the core diameter,  d  i  the diameter of the inner die bore,  D  the diffusion coef-
fi cient of the dopant in the melt,  h  m  the meniscus height and  v  the pulling velocity 

Meniscus

Sapphire 
seed

Core-doped 
fiber

Pull

Undoped melt

Die

Doped melt

Crucible

     Figure 5.36     Principle of core - doped fi bre growth using two crucibles  (Reprinted with 
permission from  [Kurlov 1998 - 4] , copyright (1998) Elsevier Ltd)   .  
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 [Rudolph 1994] . To grow a crystal with a small mixing zone between the doped and 
undoped parts it was necessary to achieve a small meniscus height and large pulling rate 
simultaneously. This displaces the growth conditions at the crystallization front to the 
supercooling region. Supercooling is followed by the appearance of cellular structure and 
facets on the growth surface, which results in the mass capture of bubbles and solid phase 
inclusions. 

 In order to control the growth conditions at the crystallization front and prevent the 
formation of related defects, an automated control system using a crystal weight sensor 
was applied to the process of shaped crystal growth. The meniscus height and the condi-
tions at the melt – crystal interface, including supercooling and superheating, are control-
led. Figure  5.37  shows the cross - section of a high quality core - doped fi bre Al 2 O 3  – Al 2 O 3    :   Ti 3+  
grown under optimal conditions.   

 Supercooling at the crystallization front in the process of growing variable composition 
crystals can be nonuniform because of constitutional supercooling in the zone of the more 
refractory melt, which results in the appearance of solid - phase inclusions in the doped 
crystal part. To obtain the optimal temperature distribution in the crystallization zone, the 
heights of the edge for the inside and outside parts of the die were varied. 

 The modifi ed EFG method involving two (or more) crucibles was also used to grow 
large composition - modulated Al 2 O 3  - Al 2 O 3    :   Cr 3+   [Kurlov 1998 - 5]  as ribbons, tubes, and 
rods. The modifi ed NCS technique was also used for the growth of sapphire crystals of 
large cross - section with a controlled dopant distribution. Figure  5.38   [Kurlov 1998 - 5]  
illustrates the transition from a core - doped rod (B) to a uniformly doped rod (C), which 
was achieved by switching off the melt supply through the capillary channel. The state 
of the crystallization front was controlled in such a way as to prevent the entrapment of 
solid and gaseous inclusions. The automated control system was similar to that used in 
the EFG technique. The modifi ed NCS method permits the growth of rods with various 

     Figure 5.37     The cross - section of core - doped Al 2 O 3   –  Al 2 O 3 :Ti 3+  fi bre grown under optimal 
conditions.  
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cross - sectional shapes and various transverse dopant distributions, thick tubes, and crys-
tals of intricate external shape and doping patterns.     

  5.3.6   Automated Control of Shaped Crystal Growth 

 The growth of sapphire crystals of various shapes is now well developed. Currently, the 
most urgent problem in shaped crystal growth is to increase the crystal quality. 

 The most abundant defects in shaped crystals are gaseous and solid inclusions, as well 
as block boundaries. Their most probable origin is crystal supercooling (thermal or con-
stitutional) and hence loss of the crystallization front stability  [Dobrovinskaya 1980, 
Nicoara 1987, Novak 1980, Tatartchenko 1980, Wada 1980] . In order to control the 
growth conditions at the crystallization front and prevent the formation of related defects, 
an automated control system using a crystal weight sensor was applied to the process of 
shaped crystal growth. Automated computer systems provide  in situ  quality control as 
well as shape control, permiting an increase in the yield of high - quality crystals and an 
expansion of the areas of application of sapphire crystals as building and optical 
material. 

 Direct application of automated control systems such as that developed for the 
Czochralski technique is unacceptable for shaped crystal growth because of the anchoring 
of the meniscus to the edge of the die. This additional constraint for the growth of shaped 
crystals is the essential difference from the Czochralski technique. 
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     Figure 5.38     Principle for pulling a composition - modulated rod by the modifi ed NCS 
technique: 1, seed plate; 2, crystal ingot with hollow part A, core - doped part B, and 
uniformly doped part C; 3, meniscus; 4, noncapillary channel; 5, capillary channel; 6, die; 
7, doped melt; 8, undoped melt; 9, crucible with two compartments. The inset shows part 
of the cross - section of a 16 - mm diameter Al 2 O 3  - Al 2 O 3 :Ti 3+  core - doped rod.  
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 The principles of automated control of shaped crystal growth with use of a crystal 
weighing technique have now been developed  [Kurlov 1997 - 3]  for all stages of the pulling 
process (seeding, crystal enlargement, stationary growth,  in situ  change of cross - section). 
Regulation of the crystal cross - section has been achieved by controlling the deviation   δ M  
of the real mass  M  r  from the programmed mass  M  P  by variation of the heating power  P . 
The real mass  M  r  is calculated from the measured weight signal  W . 

 The meniscus height and the conditions at the melt – crystal interface, including super-
cooling and superheating, are closely related to the amplitude of oscillations of the devia-
tion of the mass rate   δ  M

.
  . Together with analysis of mass deviation   δ M  and its fi rst and 

second derivatives (  δ  M
.
   and   δ  M̈  , respectively) the program also processes the amplitude 

of   δ  M
.
   oscillations. The measured parameter   δ  M

.
   is a characteristic of the oscillatory mass 

rate deviation, which always exists in any real growth process. The oscillation period is 
controlled by the time characteristics of the actual process and of the regulator. The oscil-
lation amplitude is controlled by the heat transfer and the response rate of the mechanical 
system. 

 The amplitude of the oscillations   δ  M
.
   is related implicitly to the meniscus height and 

the position of the melt – crystal interface. One should choose an amplitude range and 
maintain the amplitude within this range during growth. A relatively small amplitude 
indicates superheating of the melt – crystal zone and a rather large meniscus height. This 
may result in the appearance of facets on the lateral surface of the growing crystal with 
a decrease of cross - sectional area and, as a further consequence, a rupture of the meniscus. 
The upper boundary of the amplitude is the most important parameter for automated 
growth of high - quality shaped crystals. A large   δ  M

.
   corresponds to supercooling in the 

melt – crystal zone, i.e. the meniscus height is correspondingly small. In this case a cellular 
structure can form on the melt – crystal interface, which leads to the formation of defects 
in the growing crystal. A further increase of   δ  M

.
   can lead to the partial freezing of the 

crystal to the die and an undesirable change of crystal shape. The meniscus becomes so 
small that the crystallization front  ‘ sits down ’  on the working surface of the die. 

  5.3.6.1   Automated Crystal Seeding Process 

 Crystal seeding is an important stage of the growth process. The further stages of crystal 
growth depend on successful seeding, so the seeding process has found its own place in 
the general problem of automation of shaped sapphire crystal growth. 

 There are two main versions of the seeding procedure  [Kurlov 1997 - 3] . In the fi rst case 
the seed crystal partially melts, which results in a slow increase of the weight signal  W . 
The value of the weight signal change is proportional to the area of seeding. The weight 
signal increase can be explained by the infl uence of the surface tension force on the weight 
signal. The surface tension force appears when the seed starts to melt, and this results in 
the formation of a melt meniscus between the seed and the shaper. Too extensive seed 
melting can result in the rupture of the meniscus and a sharp decrease of the weight signal. 
When meniscus rupture occurs the heating power is decreased automatically by a certain 
amount, and the seeding process has to be repeated. This  ‘ calculation – technological ’  cycle 
is repeated until the weight signal increases slowly or decreases (after its slow increase 
because of meniscus formation) to a value which is not less than that before the seeding 
cycle. 
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 In the second case  ‘ cold ’  contact of the seed crystal and shaper occurs (without menis-
cus formation) and the weight signal  W  decreases sharply. After that the heating power 
is increased gradually until meniscus formation starts. 

 The automatic crystal seeding process is tuned by a specifi c set of software parameters 
to get a stable  ‘ calculation – technological ’  iteration process. The most important param-
eters that infl uence the stability of the crystal seeding process are as follows: 

   •      maximum rates of seed crystal lowering and lifting;  
   •      minimum time interval for the evaluation of the weight data change;  
   •      minimum time interval for melt exposure for a specifi c value of heating power;  
   •      minimum step in the heating power change.    

 Crystal pulling starts when the controlling computer has obtained a correct crystal 
seeding. Crystal enlargement proceeds if the weight signal  W  increases gradually with a 
suffi ciently small amplitude   δ  M

.
  . The absence of a gradual increase of the weight signal 

or a too large   δ  M
.
   amplitude during the fi rst moments of crystal pulling indicate supercool-

ing in the melt – crystal zone. In this case the computer will automatically increase the 
heating power until the weight signal starts to grow gradually with a suffi ciently small 
  δ  M

.
   amplitude, and then the process of crystal expansion will begin.  

  5.3.6.2   Calculation of Programmed Mass Change for Stationary Growth of Crystal 
Rods and Tubes with Arbitrary Cross - Sections 

 It is necessary to know the programmed mass at each time moment that it can be compared 
with real mass in the automated system with crystal weight control. This programmed 
mass is the sum of the crystal mass and meniscus mass including infl uence of the surface 
tension of the meniscus surface and infl uence of the external static pressure. External 
static pressure is calculated as the difference between the level of melt in the crucible and 
the level of the working surface of the die. In the most usable processes (for wetting 
melts) this pressure is negative, i.e. the melt surface in the crucible is lower than the 
working surface of the die. 

 The programmed mass of the meniscus is determined from integrating the Young –
 Laplace equation for each cross - section of the growing crystal. As found in  [Rossolenko 
2001] , the program meniscus mass  M  m  for a crystal rod of arbitrary cross - section can be 
written as:

    M hA a H Am l c l l c d d l d d= + −( ) −ρ ρ α θ ρ1

2
2 Γ Γcos sin ,     (5.7)   

 Here   ρ   l  is melt density,  h  is meniscus height,  A  c  is the area of crystal cross - section,  A  d  is 
the area of the die cross - section,  a  l  is the capillary constant,  Γ  c  is the length of the contour 
of the crystal cross - section,  Γ  d  is the length of the contour of the die cross - section,   α   is 
the growth angle,   θ   d  is the angle of contact of the meniscus profi le curve with the die and 
 H  d  is the external hydrostatic pressure (in our case it is negative). 

 For a tubular crystal, the shape of the cross - section of the die is described in a cylindri-
cal coordinate system with functions  r  d,1 (  ϕ  ) and  r  d,2 (  ϕ  ) of the outer and inner contours of 
the die cross - section, respectively. The shape of the cross - section of the growing crystal 



322 Crystal Growth Processes Based on Capillarity

is similar to the shape of the die cross - section and is described by the functions  r  d,1 (  ϕ  ) 
and  r  d,2 (  ϕ  ), respectively. Cross - sections of the die and crystal have their own lengths  Γ  
and squares  A . The length of the outer contour of the die is  Γ  d,1 , its inner contour length 
is  Γ  d,2  and its cross - sectional area  A  d . The length of the outer contour of the crystal is  Γ  c,1 , 
its inner contour length is  Γ  c,2  and its cross - sectional area is  A  d . The outer and inner 
meniscus profi les may have different meniscus heights  h  1  and  h  2  at their contours, respec-
tively, assuming a planar interface boundary. The expression for the full mass  M  m  in this 
case can be written as:

   M
h h

A am l c l l c c d d d d= + + +( ) − −ρ ρ α θ θ1 2 2
1 2 1 1 2

2

1

2
Γ Γ Γ Γ, , , , ,cos sin sin ,, .2[ ]− ρl d dH A     (5.8)    

  5.3.6.3   Calculation of Programmed Mass Change for Tube Enlargement 

 We now consider the case of movement of the crucible according to the change in melt 
level. In this case the distance between the working surface of the die and the melt level 
should be constant. Enlargement of the crystal tube up to the die size was found to be the 
critical factor for high - quality crystal growth. 

 Calculation of the programmed mass for various profi les can be determined by integrat-
ing the preset crystal shape. For single point seeding (Figure  5.39 ) the shape of the 
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     Figure 5.39     Tube growth drawing for calculation of the programmed mass with one 
seeding point  (Reprinted with permission from  [Abrosimov 2003] , copyright (2003) 
Elsevier Ltd)   .  
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growing crystal is defi ned by the function of the angle   β  ( z ) of the slope of the crystal 
unwrapping curve   l̆   ( z ) to the crystal pulling axis  z .   

 The mass  M  d  that is weighed with the weight sensor is the sum of the mass  M  s  of the 
solidifi ed fraction of the melt and the mass  M  l  of the meniscus (with consideration of the 
surface tension force)  [Bardsley 1977] :

    M M Md s l= + .     (5.9)   

 The crystal mass change d M  s  during a small time interval d t  is:

    d ds s T cM r z v z t= ( ) ( )ρ δ ϕ� ,     (5.10)  

where   ρ  s   is crystal density,  r °     =   0.5  ·  ( r  1    +    r  2 ) is the mean tube radius,  r  1  and  r  2  are inner 
and outer crystal radii, respectively,   ϕ  ( z ) is the angular coordinate of the boundary 
segment of crystal enlargement in the cylindrical system of coordinates ( r,  ϕ , z ),   δ   T  is the 
tube thickness and  v c  ( z ) is the crystallization rate (which is not generally constant). Using 
Equation  (5.10)  one can obtain the rate   M

.
   s  of crystal mass change:

    � �M r z v zs s T c= ( ) ( )ρ δ ϕ .     (5.11)   

 The mass  M  s  of growing crystal may be obtained by integrating Equation  (5.11) :

    M r z v z
t

t

s s T c d= ( )( ) ( )( )∫ρ δ ϕ τ τ τ�

0

,     (5.12)  

where    z t v
t

t

( ) = ∫ cdτ
0

.   

 The length of the crystal unwrapping curve   l̆   ( z ) is defi ned as   l̆   ( z )   =    r ϕ  ( z ). Then, 
tan  β  ( z )   =   d  l̆   ( z )/dz,   β ϕz z( ) = ′( )arctan  (where   ′( )ϕ z  is the derivative of   ϕ  ( z )), and the 
angular coordinate   ϕ   may be determined as follows:

    ϕ β τ τ τ= ( )( ) ( )( )∫
1

0
r

z v z
t

t

tan .c d     (5.13)   

 Expressions (5.12) and (5.13) defi ne the crystal mass  M  s  at each moment of time for the 
preset shape of crystal. 

 The meniscus mass, taking into consideration the surface tension force on the edges of 
the die and the lateral crystal surfaces (but without consideration of surface tension in 
boundary segments of the cross - section) is determined from the approximate 
expression:

    M r h a r a R H Rl l T m l l l d D= + −( ) −2 22 2ρ ϕ δ α ρ φ δ� cos sin ,Θ     (5.14)  
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where   ρ   1  is the density of the melt,  h  m    =   ( h  1    +    h  2 )/2 is the mean meniscus height,  h  1  and 
 h  2  are the heights of meniscus on the inner and outer surfaces of the crystal, respectively, 
  α   is the growth angle,  R    =   ( R  1    +    R  2 )/2 is the mean radius of the die,  R  1  and  R  2  are the 
radii of inner and outer edges of the die, respectively, and  Θ    =   (  θ   1    +     θ   2 )/2 is the mean 
angle between the meniscus and the working surface of the die, with   θ   1  and   θ   2  the contact 
angles between meniscus and the working surface of the shaper at inner and outer shaper 
edges, respectively, and   δ   D  the thickness of the working edge of the die. 

 The shape of the melt – crystal interface, the values of the meniscus heights  h  1 ,  h  2 , and 
contact angles   θ   1 ,   θ   2  can be determined from the coupled numerical solution of the capil-
lary and Stefan problems. These problems are not considered for arbitrary profi les in the 
controlling software. Instead of the exact values of the above parameters, approximate 
estimations are used. The expressions (5.12) – (5.14) defi ne the programmed mass change 
for a preset crystal shape. 

 For sapphire tubes of large diameter grown along the  c  - axis, the most remarkable 
occurrence at this stage was the appearance of inclined facets at the end surface  [Kurlov 
1998 - 6] . This surface was defi ned by the sequential appearance of positive rhombohedral 
planes  r  ({  1011}, {  0111}, {  1101}) and the dipyramidal planes  n  ({  4223}, {  2423}, 
{  2243}, {  4223}, {  2423}, {  2243}) (Figure  5.39 ). During the enlargement of the tube, up 
to the die size, the transition from one plane to another may be of three types:  n  →  r ,  r  →  n  
or  n  →  n . The angle between the perpendicular to  r  - planes and the  c  - axis is 57.6    °  and 
the angle between the perpendicular to  n  - planes and the  c  - axis is 61.2    °   [Klassen -
 Neklyudova 1974] . 

 To optimize the enlargement of the sapphire tube, the angle of the unwrapping curve 
should be changed according to  r  -  and  n  - planes (Figure  5.40 ).   

 Let {  ϕ  i  } be a sequence of azimuthal angles between centres of rhombohedral and 
dipyramidal planes having the declination angles {  β  i  } to the vertical. Obviously, if {  β  i  } 
is kept constant, then the current crystal length  l  is defi ned by the sequence {  ϕ  i  }. In par-
ticular, if a discrete transition from one plane to another is assumed, neglecting smooth 
plane transition, then the current length  l  c  is defi ned by:

[0001]

r {1011} n {4223}

     Figure 5.40     Faceting of 85 - mm diameter sapphire tubular crystal: the  r  -  and  n  - planes at 
the end surface  (Reprinted with permission from  [Abrosimov 2003] , copyright (2003) 
Elsevier Ltd)   .  
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    l r ctg r ctgi i i
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k

k k kc = −( ) + −( ) >+
=

+ + +∑� �β ϕ ϕ β ϕ ϕ ϕ ϕ1
1

1 1 1, ,     (5.15)  

where  k  is the number of planes already grown and  k    +   1 is the number of the growing 
plane. 

 The current length is known, since it is the integral of the pulling velocity. Therefore, 
Equation  (5.15)  can be used to fi nd the current angular coordinate of the profi le   ϕ   depend-
ing on the sequence {  β  i  } to calculate the programmed mass. 

 The length of enlargement depends on the tube radius  r °     =   ( r  1    +    r  2 )/2 and the averaged 
declination angle   β  , given by the equation  l    =    π  r  ° /tan     β  . Obviously, the value of the crystal 
expansion angle that needs to be maintained in the course of the enlargement stage is in 
the range of 28.8    °  (90    −    61.2    ° ) to 32.4    °  (90    −    57.6 ° ). In this case, the optimum length 
is in the range  l    =   (4.96 – 5.72) r  ° . In practice, the enlargement from two opposite die points 
(with two - point seeding) is of interest (Figure  5.41 ).   

 For a pair of growing profi les, two current azimuthal angles   ϕ   1  and   ϕ   2  are calculated 
to depend on different sequences {  ϕ  ij  } and {  β  ij  } ( j    =   1, 2) of azimuthal and vertical angles 
of rhombohedral and dipyramidal planes. For different sequences {  β  i   ,1 } and {  β  i   ,2 }, defi ned 
by seed orientations, the junction point is shifted relatively to the horizontal symmetry 
axis of the seeding points, which is perpendicular to the line connecting them. The shift 
of the seeding point  f  relative to the symmetry axis is written as:

    f r= −( )� sin ,ϕ ϕ1 2 2     (5.16)  

where   ϕ   1  and   ϕ   2  are taken at the junction of the two profi les.  

  5.3.6.4   Calculation of Programmed Mass Change for Plate Enlargement 

 The case of the constant distance between the working surface of the die and the melt 
level is considered. The grown profi le for the plate is defi ned by the angle   β  ( z ) of the 
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     Figure 5.41     Tube growth drawing for calculation of the programmed mass with two 
seeding points  (Reprinted with permission from  [Abrosimov 2003] , copyright (2003) 
Elsevier Ltd)   .  
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plate lateral profi le to the crystal pulling axis  [Kurlov 1999 - 4]  (Figure  5.42 ). The mass 
 M  d  measured by the weight sensor is composed of crystallized melt and meniscus masses 
 M  s  and  M  1 . The crystal mass rate   M

.
   s  is given by:  

    �M b z d v zs s s s c= ( ) ( )ρ ,     (5.17)  

where  b  s  and  d  s  are the plate width and thickness, respectively,   ρ   s  is the crystal density, 
and  v  c  is the crystallization rate. The meniscus mass  M  1  is:

    M b d hl s s l≈ ρ ,     (5.18)  

where   ρ   1  is the melt density and  h  is the meniscus height. The rate of mass increase of 
the growing meniscus is approximately written as:

    �M d h v z zcl s l= ( )2 ρ β( )tan .     (5.19)   

 The crystallization front shape and meniscus height can be found by simultaneous solution 
of the capillary problem and the Stefan thermal problem. In the control system this 
problem is not solved and estimations are used instead of exact values.  

  5.3.6.5    In Situ  Correction of Programmed Mass Change 

 Since the meniscus parameters cannot be calculated exactly during the growth process, 
especially for complicated crystal cross - sections and multicrystal processes, Equations 
 (5.12) – (5.14) ,  (5.17)  and  (5.18)  cannot exactly describe the programmed mass change. 
To compensate for the error of this calculation, one parameter of the meniscus is corrected 
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     Figure 5.42     Schematic illustration of plate growth by the EFG technique  (Reprinted with 
permission from  [Abrosimov 2003] , copyright (2003) Elsevier Ltd)   .  
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from the measured weight signal, other  ‘ doubtful ’  parameters of meniscus and crystal 
being constant. Therefore one parameter involved in Equations  (5.12) – (5.14) ,  (5.17)  and 
 (5.18)  is adjusted so as to compensate for the estimation errors of the other parameters. 
For this selected parameter an equation must be solved, the left - hand side of which has 
an expression similar to Equation  (5.9)  and the right - hand side the measured mass data. 

 In the case of sapphire tube growth the tube thickness is selected as the tuning param-
eter, and it is determined from the equation:

    � � �M t M t M ts T
r

l T
r

rδ δ( )( ) + ( )( ) = ( ),     (5.20)  

where   M
.
   r ( t ) is the measured real mass rate data depending on time, and   δT

r t( ) is the  ‘ real ’  
tube thickness calculated from Equation  (5.20) . For the case of constant melt level and 
using Equation  (5.20)  we can fi nd the tube thickness:

    δ
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 In the case of enlargement of a plate, the plate thickness  d  is used as a free variable. 
During the process, the equation

    � � �M d t M d t M ts
r

l
r

d
r( )( ) + ( )( ) = ( ),     (5.22)  

where   �M td
r( ) is the measured real mass rate data depending on time, is used to fi nd the 

 ‘ real ’  profi le thickness  d r  ( t ) of the plate:

    d t
M t

b v hv
r d

r

s s c l c

( ) = ( )
+

�

ρ ρ β2 tan
.     (5.23)   

 Note that the tube and plate thickness as calculated from Equations  (5.21)  and  (5.23)  can 
differ considerably from the real thickness of the tube or plate, depending on the accuracy 
of values of other  ‘ weakly known ’  parameters of the crystal and meniscus that are 
involved in Equations  (5.21)  and  (5.23) . 

 At the fi rst moments of crystal expansion the control parameters of the software provide 
 ‘ mild ’  automated control based mainly on manual regulation. At this stage it is necessary 
to observe the state of the melting zone, i.e. to analyse the excessive overheating or 
overcooling of the crystal, and to observe the behaviour of the deviation   δ  M

.
   and calculated 

thickness   δT
r t( ) for tube growth and  d r  ( t ) for plate growth. The user then makes corrections 

to the programmed mass rate   M
.
   by adjusting the programmed thickness  d  s  or  δ  T  and after 

that crystal regulation is totally performed by the computer. 
 Crucible translation is also necessary for shape and quality control. The rate of crucible 

translation is calculated according to the change of melt level during the crystal growth 
process. It is important to maintain a constant distance between the working edges of the 
shaper and the level of the melt in the crucible, to keep a suffi ciently constant thermal 
gradient in the shaper and constant hydrostatic pressure in the meniscus. Additional changes 
to the crucible translation rate can be used for control of the crystal shape and quality.  
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  5.3.6.6   Steady State Growth 

 At the steady state growth stage the programmed rate   M
.
   of mass increase is constant 

and controlled by the cross - section of the crystal. As shown above, the grower can correct 
  M
.
   to improve growth conditions by changing the programmed tube thickness (  δ   T ) or plate 

thickness ( d  s ) (or another geometrical parameter in the case of an arbitrary shape).The 
behaviour of the deviation   δ  M

.
   can be observed and analysed on the computer display 

without visual inspection of the state of the molten zone. 
 In the case of plate growth the required plate thickness is estimated by Equation  (5.23)  

simplifi ed to:

    d t
M t

b v
r r

s s c

( ) = ( )�

ρ
    (5.24)   

 for the steady state growth stage. 
 Optimum seed orientation is extremely important to produce a large - scale, high - quality 

sapphire plate. Growth experiments with plates of various orientations have shown that 
plate growth perpendicular to the  c -  axis is preferred to prevent small - angle grain boundary 
formation. The plates are pulled in the direction of the hexagonal prism  m  [  1100], the 
plate plane coincides with the plane  a  {  1120}, and the basis plane  c  {0001} is the lateral 
face of the plate (Figure  5.42 ). Because of the singular minimum of the specifi c free 
surface energy, the outer crystal surface has an energetically favourable orientation as the 
angle between meniscus and face (or the meniscus height) is varied, i.e. a mirror face is 
formed at the outer surface of the growing crystal  [Voronkov 1983] . 

 If the lateral faces of the plate comprise the singular face {0001}, this signifi cantly 
increases the temperature range during crystal growth because of the high stability of the 
face adherent to the die edges. A steady state growth shift toward higher temperatures 
elevates the meniscus (increases the angle between meniscus and face) with no substantial 
change in the plate cross - section. A wide temperature range is extremely important when 
growing several plates in multirun growth processes and wide plates with a nonuniform 
thermal fi eld in the die or dies. 

 Along with power control, crucible movement is also effectively controlled. First, the 
rate of crucible translation is calculated according to the change of melt level during 
the crystal growth process. It is important to maintain a constant distance between the 
working edges of the die and the level of the melt in the crucible. This distance should 
maintain a suffi ciently constant thermal gradient in the die and constant hydrostatic pres-
sure in the meniscus to improve the crystal quality. Secondly, a fi xed displacement of the 
crucible in combination with weight control is used for the control of the crystal shape 
and quality. 

 Sapphire tubes with diameter up to 85   mm (Figure  5.43 a)  [Kurlov 1999 - 2]  and other 
various shapes  [Kurlov 1999 - 3]  have been grown using the automated control system. A 
multicrystal pulling process with  in situ  quality control provided an increase in growth 
productivity. Sapphire crystals in the shape of rods and tubes with up to 50 crystals per 
pulling process were grown by a multicrystal system  [Kurlov 1997 - 3]  (Figure  5.43 b).   

 For crystal growth by the EFG technique using an automated control system based on 
the application of the crystal weight sensor, estimating the real current melt level in the 
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crucible during the pulling process is a problem. Information about the changing melt 
level is necessary to defi ne the crucible movement rate in order to maintain the melt level 
at one preset value or to change the melt level due to some growth strategy. The problem 
is to determine the melt level on the basis of the meniscus shape, crystal shape and meas-
ured weight. 

 The EFG technique is characterized by the presence of the die, which infl uences the 
weight signal. As well as the weight of the growing crystals and the weight of the menisci, 
the sensor also measures the infl uence of the external hydrostatic pressure resulting from 
the difference between the heights of the melt level in the crucible and the working edges 
of the die. The weight sensor also measures the capillary force of the meniscus. 

 The mass conservation law gives an approximate expression for the rate of the melt 
level change based on the measured weight signal rate   M

.
   d :

    �
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 Here  A  d  is the area of the lower part of the die dipped in the melt in the crucible,  A  d,c  is 
the area of the working surface of the die contacting with the meniscus,  A  c  is the surface 
of the crystal cross - section,  r  T  is the inner radius of the cylindrical crucible,   ρ   l  is the melt 
density,  v  T  is the rate of crucible translation and   h

.
   is the derivative of the meniscus height 

change, which can be neglected in steady state growth conditions. 

(a) (b)

     Figure 5.43     Sapphire crystals grown by the Stepanov/EFG technique with automated 
control: (a) tubes with diameter up to 85   mm; (b) rods 3.0   mm in diameter and tubes 
3.5   mm in outer diameter grown by the multirun pulling process  (Reprinted with 
permission from  [Abrosimov 2003] , copyright (2003) Elsevier Ltd)   .  
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 As mentioned above, it is necessary to distinguish two types of crucible movements. 
First, a slow crucible translation relative to the pulling rate. In this case, the crucible 
translation acts as an additional factor to the slow heating or cooling of the crystallization 
zone and slow external pressure change. Secondly, a fast (small, almost stepwise, short -
 term) crucible movement which is, in fact, an additional method of crystal profi le control, 
acting almost without inertia, on the heating or cooling of the crystallization zone and 
giving a stepwise change of external pressure in the meniscus, with subsequent infl uence 
on the profi le of the growing crystal. 

 In order to understand this effect, fi rst the capillary Young – Laplace equation was 
solved for the preset meniscus height which is approximately equal to 0.05 in capillary 
constants, i.e. for sapphire it is 0.3   mm. The external pressure  H  d  changes during the 
calculations. For each value of the external pressure the meniscus angle near the die 
changes so that the profi le curve reaches the preset meniscus height at the preset crystal 
radius. The calculated set of profi le curves is shown in Figure  5.44 .   

 The minimal external pressure ( H  d    =    − 8 in capillary constants) corresponds to the 
lower curve in Figure  5.44  and the maximal external pressure ( H  d    =    − 1 in capillary 
constants) to the upper curve. Thus, fast short - term stepwise crucible translation, and, 
correspondingly, decrease of the absolute value of the external pressure, result in an 
increased convexity of the meniscus. As consequence, the meniscus angles near the 
crystal and the die will change. The value of the meniscus angle near the crystal increases 
with decrease of the absolute value of the external pressure (Figure  5.44 ). Thus, fast 
short - time stepwise crucible translation is a factor that widens the crystal (besides acting 
the thermal factor). 
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     Figure 5.44     Meniscus profi le curves calculated for the single meniscus height and for 
various values of the external hydrostatic pressure  H  d .  
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 The dependence of the meniscus angle near the die on the external pressure has the 
opposite behaviour, but the same result: amplifying the convexity of the meniscus profi le 
curve.  

  5.3.6.7   Automated Growth of Capillary Crystal Tubes 

 Automated crystal growth of capillary (small) crystal tubes has some specifi c diffi culties 
relating to the small dimensions of the meniscus. The oscillations of the weight signal of 
the meniscus and crystal variations are very small. Secondly, the shapes of the inner and 
outer menisci of the capillary are different. Figure  5.45  shows typical shapes of the inner 
and outer menisci for capillary crystal growth.   

 As shown in Figure  5.45 , the convexity of the inner and outer menisci of the capillary 
is different. This can be explained by the different signs of the azimuthal curvatures 
involved in the Young – Laplace equation. In addition, the weight of the capillary menisci 
is suffi ciently small to have an infl uence on the menisci shape. 

 The convexity of the inner meniscus of the crystal capillary directed toward the centre 
of the crystal is a negative factor for growth stability, because it is diffi cult to maintain 
a meniscus with such a convex shape. Such a meniscus can be mechanically destroyed 
at any moment of the growth run. 

 During the crystal growth process of the capillary crystals the automated system also 
analyses the behaviour of the mass rate deviation   δ  M

.
  . During the growth process the 

control is based on the maintenance of the amplitude of the   δ  M
.
   oscillation in a certain, 

very narrow, range of values to maintain the melt – crystal interface close to the supercool-
ing condition. 

 A proportional – integral – differential (PID) procedure was used in the closed loop of 
the automated system. The change of heating power resulting from PID processing 
of the deviation   δ  M

.
   was limited to a certain value |  δ P | max . A geometrical parameter  r  of 
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     Figure 5.45     Meniscus profi le curves of capillary tubes calculated for various values of the 
radius of the working edges of the die: (a) inner menisci, (b) outer menisci.  
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the crystal (e.g. middle radius of the capillary tube) is involved in the calculation of the 
programmed mass and thus in the evaluation of the deviation   δ  M

.
   as well as in the 

heating power limitation |  δ P | max . The geometrical parameter  r  is evaluated from 
the weight signal in the controlling software during growth run  [Kurlov 1997 - 3] . So, 
the user has the possibility of taking into account the evaluation of the parameter  r  and 
changing its programmed value  r  p  without interrupting the process control. The geo-
metrical parameter  r  is the main parameter for changing the   δ  M

.
   amplitude to the neces-

sary range. Varying  r  modifi es the middle value of the   δ  M
.
   oscillations and thus changes 

the slope of the heating power curve. This results in overheating or overcooling of the 
meniscus and melt – crystal interface, and the   δ  M

.
   amplitude decreases or increases, 

respectively. 
 The variation of  r  is done automatically. For this, the amplitude of the oscillations 

|  δ  M
.
  | max  is calculated at each period of its wave. Then this value is compared with neces-

sary optimal value |  δ  M
.
  | 0  which should be found experimentally. The change   δ r  of the 

programmed radius is proportional to the difference between these two amplitudes of 
oscillation:

    δ δ δr k M M= − −( )r
� �

max
,

0
    (5.26)  

where  k  r  is proportional coeffi cient which should be determined experimentally. 
 The value of the heating power limitation |  δ P | max  also infl uences the heating power 

curve. Small |  δ P | max  results in an increase of auto - oscillations of the heating power (in 
our case a permanent increase during the growth run) and, consequently, in larger oscil-
lations of   δ  M

.
  , i.e. an overcooling regime. Large |  δ P | max  leads to more freedom in the 

closed loop and more accurate increments of power change at each step of control, and 
to smaller   δ  M

.
   amplitude. Therefore, variation of |  δ P | max  during the growth process was 

also used for changing the   δ  M
.
   amplitude under constant and optimal parameters of the 

PID controller. 
 Various shaped crystals with capillary channels in their volume have been grown using 

an automated control system. Sapphire ribbons comprising a channel 0.5   mm in diameter 
are shown in Figure  5.46 , and Figure  5.47  show sapphire rods with channels.      

)b()a(

     Figure 5.46     Sapphire ribbons with a channel 0.5   mm in diameter: (a) general view; 
(b) cross - section.  
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  5.4   Shaped Crystals Grown by the Micro - Pulling 
Down Technique ( μ  -  PD ) 

 The pulling down technology as a growth process (also based on the Stepanov concept) 
has been available since 1976. Ricard  et al.   [Ricard 1980, Duffar 1991]  originated this 
technology and used the process to grow sapphire plates, Si sheets  [Duffar 1982]  and 
NaCl fi bres. Rudolph and Fukuda provide an overview of the  μ  - PD story  [Rudolph 1999] . 
But it is important to identify the early 1990s as an important time of increasing research 
relating to  μ  - PD technology. During this period, many projects were developed in 
Fukuda ’ s laboratory at Tohoku University (Japan) using  μ  - PD technology for fi bre 
pulling. Resistive  μ  - PD has been used for the growth of LiNbO 3   [Yoon 1994 - 1]  and 
K 3 Li 2 Nb 5 O 15   [Yoon 1994 - 2, Yoon 1994 - 3]  and a radiofrequency (RF) inductive  μ  - PD 
machine was built to grow high - melting materials (melting temperature  > 1500    ° C). 
Different material families have been grown in the framework of national and interna-
tional collaborative projects between research laboratories and private companies. As a 
result of this research effort, high - quality fi bres have been pulled under stationary stable 
growth conditions using the  μ  - PD method. Chani  [Chani 2004] , Epelbaum  [Epelbaum 
2004] , Yoshikawa  [Yoshikawa 2004] , Lebbou  et al.   [Lebbou 2004]  and Lee  et al.   [Lee 
2001]  have developed a large range of single - crystalline and polycrystalline fi bres from 
congruent and noncongruent melts. These researchers had worked together under the 
umbrella of a fundamental and applied research programme in Fukuda ’ s laboratory in 
Japan. Table  5.2  summarizes some crystal fi bres grown by the  μ  - PD technique using 
resistive and radiofrequency  μ  - PD equipment. Since 2000, the  μ  - PD technique has been 
introduced to other countries throughout the world: Brazil, France, Germany, Italy, Korea, 

(a) (b)

     Figure 5.47     Sapphire rods with capillary channels: (a) 4.5 - mm diameter rods with fi ve 
and four 0.6 – 0.7 - mm diameter channels; (b) 22 - mm diameter rod with one 0.9 - mm 
channel.  
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  Table 5.2    A selection of crystals grown by the   μ   -  PD  technique. Most crystals are fi bres 

   Crystals     Machine     Crucible     Melt 
behaviour  

   Pulling rate 
(mm/min)  

   Shape     Quality problem     Ref  

  Si    RF    Mo    Congruent    0.02 – 0.5    Fibre    Problem     [Shimamura 1996]   
      C            Plate    Impurities      

  LiNbO 3     RF    Pt    Congruent    0.1 – 09    Fibre    Transparent     [Yoon 1994 – 1]   
  RES        Limit eutectic 

Li 2 O losses  
          Colouration      

  KNbO 3     RES    Pt    Incongruent    0.09 – 0.4    Fibre    Cracks     [Chani 1999 – 2]   
          K 2 O losses            Colouration      

  K 3 Li 2 Nb 5 O 12     RES    Pt    Noncongruent    0.1 – 2    Fibre    Transparent     [Yoon 1994 – 2]   
          K 2 O losses        Plate    Acceptable     [Yoon 1994 – 2]   

  Ba 2 NaNb 5 O 15     RES    Pt    Nearly 
congruent  

  0.1 – 0.5    Fibre    Transparent 
 Acceptable  

   [Lebbou 2000]   

  Sr 1 − x Ba x Nb 2 O 6     RES    Pt    Congruent    0.1 – 0.5    Fibre    Transparent brown    [Hassouni  2003]   
  Bi 2 Sr 2 CaCu 2 O x     RES    Pt    Noncongruent    0.01 – 0.2    Fibre    Textured grains     [Lebbou 2000]   
  Bi 4 Ge 3 O 12     RES    Pt    Congruent    0.2 – 0.8    Fibre    Transparent     [Chani 2006]   

  RF        Bi 2 O 3  losses                  
  Sr 3 Nb 1 −    x  Ga 3+(5/3)   x  Si 2 O 14     RES    Pt    Congruent    0.1 – 0.5    Fibre    Transparent     [Jung 2001]   

  Al 2 O 3 /YAG eutectic    RF    Ir    Noncongruent    0.1 – 10    Fibre    Opaque     [Yoshikawa 1999]   
                  Plate    High strength stress     [Lee 2001]   

  YAG (Nd, Yb)    RF    Ir    Congruent    0.1 – 5    Fibre    Transparent 
 Comparable to bulk 
 Laser power (10   W)  

   [Chani 1999 – 1]  
  [Shimamura 1996]  
  [Chani 1999 – 2]  
  [Lebbou 2000]  
  [Hassouni 2003]  
  [Lebbou 2000]  
  [Chani 2006]  
  [Jung 2001]  
  [Yoshikawa 1999]  
  [Lee 2001]  
  [Chani 2000 – 2]   
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   Crystals     Machine     Crucible     Melt 
behaviour  

   Pulling rate 
(mm/min)  

   Shape     Quality problem     Ref  

  Tb 3 Ga 5 O 12     RF    Ir    Ga 2 O 3  
evaporation  

  0.4 – 1    Fibre    Transparent     [Chani 2000]   

  (Tb,Lu) 3 Al 5 O 12     RF    Ir    Congruent    1.2    Fibre    Transparent 
 Quality depends on 

composition  

   [Chani 2000 – 1]   

  Ca 8 La 2 (PO 4 ) 6 O 2    :   Yb    RF    Ir    Congruent    0.1 – 0.8    Fibre    Transparent 
 Acceptable  

   [Boulon 2001]   

  (Lu,Yb) 3 Al 5 O 12     RF    Ir    Congruent    0.1 – 1    Fibre    Transparent 
 Acceptable  

   [Yoshikawa 2002]   

  MgAl 2 O 4    :   Ti, Mn    RF    Ir    Congruent    0.05 – 0.5    Fibre 
 Square  

  Transparent     [Jouini 2006]   

  Lu 2 SiO 5    :   Pr    RF    Ir    Congruent 
 SiO 2  losses  

      Rod    Transparent     [Novoselov 2006]   

  LYSO   :   Ce    RF    Ir    Congruent 
 SiO 2  losses  

      Rod    Transparent     [Hautefeuille 2006]   

  Al 2 O 3     RF    Ir    Congruent    0.5 – 2    Fibre    Transparent     [Sato 2007]   
                  Rod          
                  Square          

  YAlO 3  (Ce)    RF    Ir    Congruent    0.02 – 0.1    Fibre    Transparent     [Alshourbagy 2007]   
  Gd 1 -    x  Yb  x  F 3     RF    C    Congruent    0.05 – 0.5    Fibre    Transparent     [Simura 2006]   
  LiF    RES    Pt    Congruent    0.6 – 1.5    Fibre    Transparent     [Santo 2004]   

   RES, resistive; RF, radiofrequency.   
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Poland and the USA. There may also exist other laboratories we do not know of. The 
total number of  μ  - PD machines around the world is approximately 40. Several master ’ s 
and PhD theses have been defended on crystals grown by the  μ  - PD technique for lasers 
and scintillating applications. The numbers of researchers involved in  μ  - PD techniques 
is increasing and there is much effort by the scientifi c and industrial communities to 
improve this technique and its industrialization. As a consequence, a small  μ  - PD com-
munity has been created, centred on Fukuda ’ s laboratory, and various exchange pro-
grammes have been supported.   

 Today  μ  - PD technology is an attractive process, especially for research laboratories. 
The simplicity of this technique, the small quantity of starting raw materials required, and 
the crucible design and cost compared to crucibles used in the case of bulk crystals grown 
by the Czochralski and Bridgman techniques makes it possible to carry out fundamental 
research on phase diagram equilibrium, crystallization kinetics of complex multicompo-
nent materials, crystal growth dynamic, modelling and simulation of specifi ed crystal 
growth process. The  μ  - PD technique could be a great help in the development of large 
new crystal growth compositions for use in the Czochralski technique, for example. By 
testing with a low - cost technique, such as the  μ  - PD technique, which saves material and 
time, it is possible to estimate the possibility of growing high - quality bulk crystals that 
have been rejected for Czochralski or other comparable complex techniques. There are 
many materials that are unavailable in single - crystal form and that are diffi cult to grow 
using the classical standard growth methods because of their unknown equilibrium phase 
diagrams or incongruent melting behaviours. 

 Much effort, time and fi nancial support are required to develop crystal growth technol-
ogy resulting in good quality and high performance. Most optical, laser and scintillating 
crystals are RE 3+  doped, such as Nd 3+  in YAG  [Belt 1972] , Ce 3+  in LSO  [Melcher 1993]  
and Al 2 O 3    :   Ti 3+   [Moulton 1986] . Segregation problems are observed, but because of the 
high pulling rate (1 – 20   mm/min), it is possible to overcome the segregation diffi culties 
and to introduce higher dopant concentrations  [Chani 1999 - 1] . It is also possible to grow 
incongruently melting materials from melts where the composition is slightly different 
from that of the crystal. In such a situation, the segregation problem can be studied pre-
cisely depending on the starting composition in the equilibrium diagram. It is clearly 
important to take advantage of the  μ  - PD technique for the growth of particular materials 
based on a phase diagram corresponding to complex compositions (eutectic, peritectic, 
volatile compounds, etc.). 

 The  μ  - PD technology is based on pulling fi bres or shaped crystal bodies from a crucible 
with a hole of a predetermined shape. Numerous variations in crucible design have been 
developed by research laboratories and companies involved in shaped crystal growth. The 
basic concept of this technology is the melting of a mixture of the starting raw materials 
to a temperature slightly above its melting temperature in a specifi ed crucible (Pt, Ir, Mo, 
W, etc.) depending on the raw material melting point and on the required crystal geometry. 
A pendant drop forms at the lower part of the capillary die at the bottom of the crucible 
by the action of gravity, an appropriately oriented seed crystal is connected to the drop, 
and then the crystal is pulled down from the opening of the crucible (Figure  5.48 ). 
The quantity of crystal - forming material fed per unit of time is equal to the quantity of 
solidifi ed single crystal. The fl ow quantity  Q  of liquid passing through a capillary die is 
given by:  
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    Q R l p p= ( ) −( )π 4
1 28μ ,     (5.26)  

where  R  is the radius of the capillary die,  l  is the length of the capillary die,   μ   is the 
dynamic viscosity of the liquid and ( p  1     −     p  2 ) is the pressure difference between the ends 
of the capillary die. 

 Drops continue to fall until the liquid height in the crucible reaches a value  h  fi xed by 
the capillary forces. The length  H  is determined by the following equation for a capillary 
die of circular section:

    H
R g

= 2γ θ
ρ

lv

l

cos
    (5.27)  

where   γ   lv  is the surface tension of the liquid at the given temperature,   ρ   l  is the liquid 
density at the given temperature,  g  is the acceleration due to gravity,  R  is the internal 
radius of the capillary die and   θ   is the wetting angle of the melt on the crucible. 

 For the growth of plate crystals using a capillary die with a rectangular section (Figure 
 5.49 ), the length  H  is given by:  
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     Figure 5.48     Schematic illustration of the  μ  - PD technique.  
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     Figure 5.49     Plate pulling down by the  μ  - PD technique.  
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    H
e g

= 2γ θ
ρ

lv

l

cos
    (5.28)  

where  e  is the capillary channel rectangular width. 
 Unfortunately, so far there is a limit to  μ  - PD plate crystal growth. Pulling plate - shaped 

crystals using a planar seed crystal geometry generates some defects such as cracks near 
the interface connection between the seed crystal and the die body. This is why plate 
crystals are preferably grown by the EFG technique. Nevertheless, some plate crystals 
have already been grown by  μ  - PD such as sapphire, Si, LiNbO 3 , KLN and YAG. 

 The starting raw materials for growing the crystals (the charge) can be fed in any 
appropriate form such as fi ne, granular, sponge or spheroidal powders. Fine powders are 
better compacted, otherwise they will fl ow through the capillary hole. The crystal growth 
process can be carried out under an appropriate atmosphere depending on the chemical 
composition, the melt behaviour and the crucible material. Depending on the machine 
type, it is possible to grow crystals under an inert gas or oxygen - free gas such as nitrogen 
or argon, or in air. Quite often, the use of a controlled atmosphere necessitates a primary 
vacuum to eliminate the impurities inside the chamber. The pressure can varied over a 
wide range. In the case of fl uoride fi bre crystal growth, it is possible to use CF 4  as the 
gas. The temperature of the crucible is chosen so that the material is entirely molten. 
Thus, in the case of YAG ( T  melt   ≈  1980    ° C), a temperature of 2010    ° C would be used, for 
sapphire ( T  melt   ≈  2050    ° C), a temperature of 2080    ° C would be used. For high - melting 
materials such as LSO ( T  melt   ≈  2150    ° C), this poses problems, especially with an Ir cruci-
ble. It is important to optimize the thermal insulation and control the thermal gradient, 
otherwise the crucible will be damaged. 

 The  μ  - PD crucible and the growth process with RF heating are shown in Figure  5.50 . 
The heating system was specially set up for fi bres and shaped crystal growth (plates, 
tubes, rods). The crucible ( ∼ 30 – 70   mm in height    ×    15 – 20   mm in diameter) is placed on 
an alumina pedestal inside a quartz chamber and is heated using a RF generator. The 

CrucibleRegion of crucible setup 
and RF heating

Crucible

     Figure 5.50     RF  μ  - PD machine and crucible used for heating and melting the feed.  
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meniscus region, the solid – liquid interface and the crystals are visually observed by a 
CCD camera and monitor. The calibrated hole in the capillary die is drilled at the crucible 
bottom to allow the melt to fl ow in the direction of the liquid – solid interface. An after-
heater is used to adjust and control the temperature gradient under the crucible and 
therefore allow the regulation of the position of the solid – liquid interface in the vicinity 
of the crucible tip.   

 Shaped pulling down of crystals by the  μ  - PD technique, like other crystal growth 
techniques, must be set up in good conditions without any perturbation during the growth 
operation. It is very important to pull down fi bres at stable rate and with a constant heater 
power, especially with a RF heating source. The important parameters for fi bre crystal 
growth are: 

   •      Mass conservation.     If the density difference between the liquid and the crystal is 
neglected:

    r r v vcry cap cap cry( ) ( ) =2 2     (5.29)  

 where  r  cry  and  r  cap  are the radius of the pulled crystal and capillary die, respectively,  v  cry  
is the growth rate and  v  cap  is the mean fl ow rate in the capillary die.  

   •      Stationary state.     This behaviour corresponds to a given meniscus height that requires 
solving the Young – Laplace equation:

    
1 1

1 2R R

p p gz+⎛
⎝

⎞
⎠ = −

− −O v l

lv

ρ
γ

    (5.30)  

 with boundary condition:

    α α= 0     (5.31)  

 and

    2r D= cap     (5.32)      

  on the die,where   α   is the growth angle of the crystal (Figure  5.51 a), a constant for a 
given crystal (see Chapter  1 ).   

 It is clear that the fundamental parameters involved in pulling down crystals by the  μ  - PD 
technique are the crucible diameter capillary die, the fi bre diameter and the meniscus length 
( H ) of the molten zone. These parameters fi x the stationary stable state growth conditions 
and there is a theoretical relationship between these parameters (Equation  5.30 ). 

  5.4.1   Crucible – Melt Relation During Crystal Growth by the  μ  -  PD  Technique 

 In spite of the simplicity of the  μ  - PD technique, some problems exist during the growth 
of high - quality crystals with controlled sizes (diameter, section). Depending on the viscos-
ity of the liquid, each melt has its own behaviour as a function of the crucible shape. 
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Some melts, such as Y 3 Al 5 O 12  (YAG) garnet, are nonwettable; in this case, it is possible 
to grow crystal fi bres under stationary stable state conditons with a controlled diameter. 
The fi bre diameter can be adjusted by the RF power control. Quite often, an increase 
(decrease) of the crucible temperature, resulting in an increase (decrease) in the heat sup-
plied to the liquid, affects the variation of the fi bre diameter, a behaviour comparable to 
that the Czochralski growth technique. But if the melt wets the crucible, it is diffi cult to 
control the fi bre diameter. The LiNbO 3  fi bre is a good example of such behaviour. The 
control of the position of the solid – liquid interface is quite different from that of a non-
wetting melt (e.g. YAG) and it is diffi cult to control the seeding and the growth process 
(Figure  5.51 b). Overheating of the melt will be accompanied by its overfl ow through the 
crucible lip and spreading on the wall surface. Under these conditions, Chani  et al.   [Chani 
2000]  proposed growing a fi bre with minimal possible overheating of the crucible, which 
allows the minimization of the liquid width between the crystal and the crucible. But 
technically, it is very diffi cult to accurately control the power (melt temperature) for a 
slightly overheated melt. To overcome this type of problem, the tendency is to focus on 
the crucible shape design.  

  5.4.2   Examples of Crystals Grown by the  μ  -  PD  Technique 

  5.4.2.1    Y  3  Al  5  O  12  ( YAG ) Garnet Crystals 

 Garnet crystals are of great interest because of the wide variety of their compositions 
 [Geller 1967] . The YAG crystals belong to the Y 2 O 3  – Al 2 O 3  pseudo - binary equilibrium 
diagram. Their cubic structure ( a    =   12.01    Å ) is stable from room temperature to melting 
temperature and they melts congruently at 1980    ° C  [Monchamps 1971] . Because of their 
good properties, YAG crystals are a popular material for a large range of applications, 
especially optics and lasers. The available commercialized YAG - RE 3+  crystals are grown 
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     Figure 5.51     Meniscus representation during  μ  - PD fi bre pulling: (a) nonwetting melt; 
(b) wetting melt.  
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by the Czochralski technique, but they can be also grown by Bridgman and other con-
ventional techniques. In YAG crystals, it is possible to substitute Y 3+  sites (doping) by 
RE 3+  (Lu 3+ ,Yb 3+ , Tm 3+ , Er 3+ ,  …  , Nd 3+ , Ce 3+ ). The dopant concentrations depend on the 
RE 3+  ionic radius (Vegard ’ s law). If the radius difference is more than 10%, some segre-
gation problems might be observed in melt crystal growth, and the crystal quality is 
strongly affected by the fl uctuations in composition parallel and perpendicular to the 
growth direction. 

 Demonstration of the growth of undoped and RE 3+  - doped YAG crystals by  μ  - PD has 
stimulated the scientifi c community to develop homogeneous fi bres for laser and scintil-
lation applications. The fi rst paper on YAG fi bre crystals grown by  μ  - PD was published 
in 1999  [Chani 1999 - 1] . Undoped and doped YAG crystals can be grown by  μ  - PD under 
stationary stable conditions. Figure  5.52  shows the different steps of YAG fi bre growth 
by  μ  - PD. The fi bre crystals can be grown at a pulling rate in the range 0.1 – 10   mm/min 
and diameter 0.3 – 3.0   mm. The meniscus length is about 100    μ m. In the  μ  - PD technique, 
growing YAG crystals under stationary stable conditions corresponds to a fl at crystalliza-
tion interface. In this case, it is possible to grow undoped and RE 3+  - doped YAG crystals 
whose length can easily reach 1   m, depending on the quantity of starting raw material in 
the crucible. The temperature distribution in the lower part of the crucible and the melt 
in the capillary die can be measured with an optical pyrometer. Several measurements 
always gave the same results, which allows for process control. If the crucible is station-
ary, heat is transferred through the melt mainly by conduction and there is little natural 
convection. The absence of a rotating seed minimizes the transfer of additional heat by 
forced convection. Whatever the dopant type (Yb 3+ , Nd 3+ , Ce 3+ ), no difference was 
observed in the behaviour of the melt. Figure  5.53  shows some examples of YAG garnet 
fi bres and plates grown by the  μ  - PD technology. By using Ir wire or dense YAG ceramic 
seed, the grown YAG fi bres were faceted with hexagonal cross - section along the  〈 111 〉  
direction, which is typically the easy growth direction of garnet materials  [Yu 1997] . The 
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     Figure 5.52     The different intermediary steps for  μ  - PD YAG fi bre growth.  
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grown fi bre crystals are reproducible; the diameter and the cross - section are uniform. The 
crystals are transparent and their coloration depends on the added dopant (yellow for Ce 3+ , 
for example). Growing large YAG crystals (diameter > 2   mm) by  μ  - PD is possible, but the 
crystal quality is decreased. This problem is related to the diffi culties of controlling the 
shape of the molten zone because of the nonwetting properties of YAG melts. In addition, 
other macroscopic defects are observed such as scattering particles and constitutional 
supercooling in Nd   :   YAG  [Zhang 1990] . There are also microscopic defects such as 
dislocations which can strongly affect the YAG optical quality. Up to now, the presence 
of dislocations has been the principal source leading to optical inhomogeneity of the 
crystals. Compared to others technologies, the segregation problem can be more easily 
controlled in the case of fi bre crystals grown by the  μ  - PD technique. The average segre-
gation coeffi cient of crystals grown by the Czochralski method is 0.15  [Nishimura 1975] . 
The segregation coeffi cient can be raised to 0.8 by growing fi bres under high pulling rate 
(5   mm/min), but this value is still less than 1  [Chani 1999 - 1] . The Nd 3+  dopant substitution 
in YAG crystals increases when the pulling rate is increased  [Chani 1999 - 1] . But in order 
to attain the best performance, such as laser generation, it is necessary to fi nd a compro-
mise between pulling rate and crystal quality. Yb   :   YAG and Nd   :   YAG fi bres of high 
quality have been grown by the  μ  - PD technique  [Lebbou 2006, Lebbou 2007, Yoshikawa 
2003] . Lasers have been made from Nd   :   YAG single crystal fi bres grown by  μ  - PD; a 
laser power of 10   W at 1064   nm for an incident pump power of 60   W at 808   nm and 

(a) (b)

(c) (d)

     Figure 5.53     YAG crystals grown by the  μ  - PD technique: (a) undoped YAG plate (width 
3   mm); (b) Nd 3+  - doped YAG fi bres (length up to 1   m); (c) Ce 3+ :YAG plate (width 10   mm); 
(d) Ce 3+ :YAG fi bres.  
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360   kW peak power for 12 - ns pulses at 1   kHz in the  Q  - switched regime has been achieved 
 [Didierjean 2006] . In the past, the  μ  - PD technique has been known as a powerful labo-
ratory - scale method, but the encouraging results on Nd   :   YAG fi bres shows the possibility 
of using this technique to manufacture fi bres for laser devices.    

  5.4.2.2    B  i  4  G e 3  O  12  ( BGO ) Fibre Crystals 

 Because of its remarkable properties such as fast luminescence and highly effi cient scintil-
lation in gamma - ray spectroscopy and high - energy physics, bismuth orthogermanate 
(BGO) is an important strategic material  [Hubner 1969] . In the scintillating crystal 
market, BGO represents 70% of the crystals produced. BGO crystals, as potential scintil-
lating material and high - quality bulk crystals, can be grown by the industrial Czochralki 
technique  [Borovlev 2001, Vasiliev 2005] . 

 BGO crystal was chosen as a candidate for  μ  - PD because it combines both congruent 
melting  [Kaplun 1996]  and a relatively high rate of evaporation of one of the constituents, 
namely Bi 2 O 3   [Shim 2002] . The resistive  μ  - PD technique has been used to grow BGO 
fi bres  [Chani 2006] . Crystal growth of BGO fi bres using a stoichiometric melt composi-
tion was performed in an air atmosphere using a Pt crucible directly heated by electrical 
current (Figure  5.54 ). Evaporation of the Bi 2 O 3  was observed even by visual observation 
of the surfaces of the parts forming the  μ  - PD system. It has not proved possible to avoid 
the evaporation or decrease it greatly by modifying the set - up and temperature parameters 
(gradients) acting in the vicinity of the crucible and the solid – liquid interface. As a result, 
the problem of stability of the melt composition has not generally been solved. However, 
by controlling the temperature gradient, the melt composition, and power to the crucible, 
it was possible to grow high - quality fi bres (Figure  5.55 ). BGO fi bre crystal growth is very 
promising and has yielded original results. In spite of the volatility of Bi 2 O 3 , homogene-
ous BGO fi bres of constant diameter were grown. But it is necessary to improve the 
process and control the different growth parameters.    

(a) (b)

     Figure 5.54     Crucible types that can be used for resistive heating: (a) crucible for BGO 
crystal growth; (b) crucible causing wetting problems in the case of BGO.  
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  5.4.2.3    L  i  N  b  O  3  ( LN ) Fibres 

 Lithium niobate (LiNbO 3 , LN) is an attractive material for a wide range of applications 
because of its properties  [Nassau 1966] . It is used for different devices in optics and 
opto - electronics  [De La Rue 1990, Voges 1986] . In addition, LN is a standard model for 
fundamental research that uses electro - optic, birefringent, acousto - optic, or piezoelectric 
properties, making it a preferred material for applications in surface acoustic waves and 
integrated optics. It has a complex structure and crystal growth technology which has led 
to a promising technology for device processing, although its thermal instability led to 
problems of waveguide fabrication which have now been overcome  [Dierolf 1999] . 
Crystal growth by the Czochralski technique was reported almost simultaneously in 1965 
by Ballman  [Ballman 1965]  and Fedulov  et al.   [Fedulov 1965] . Its total production now 
amounts to about 50 – 150 tonnes/year. 

 Yoon and Fukuda have studied the quality of LiNbO 3  crystalline fi bres grown by the 
 μ  - PD technique  [Yoon 1994 - 1, Yoon 1994 - 2] . Epelbaum has studied the relationships 
between faceting and LiNbO 3  crystalline qualities as a function of growth conditions by 
the  μ  - PD technique  [Epelbaum 2004] . Even though this material has been well known 
for long time and much progress has been made on the technology of its crystal growth, 
there remain many problems that are observed during the crystal growth process and the 
composition problem remains unresolved, especially with regard to the need for stochio-
metric single crystals. 

 Oriented LiNbO 3  single crystal fi bres were grown using  μ  - PD. The fi bres were oriented 
along the  c  - axis or  a  - axis as a function of initial seeding. The fi bres were grown using 
pulling rates in the range of 0.1 – 0.7   mm/min in air. The fi bres are transparent and crack -
 free and have a homogeneous diameter. The loss of Li 2 O causes a displacement of the 
composition in the Li 2 O – Nb 2 O 5  binary equilibrium diagram and the crystal quality 
decreases; in particular, the interface crystallization geometry becomes unstable. On the 
other hand, the use of an excess of Li 2 O with controlled temperature gradient around the 
melting zone region makes it possible to obtain stable growth conditions and a high level 
crystal quality even during an extended period of crystal growth operation. The fi bres 

     Figure 5.55     BGO fi bres grown by the  μ  - PD technique. The starting melt contains an 
excess of Bi 2 O 3  (5%).  
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obtained work as light guides and the losses are rather low. Figure  5.56 a shows the resis-
tive  μ  - PD used for the LiNbO 3  fi bre crystal and Figure  5.56 b shows the heating of the 
crucible up to the melting temperature of LiNbO 3 . Figure  5.56 c shows the connection 
stage of the seed to the melt and the growth process. Table  5.3  gives the lattice parameters 
and the Curie temperature of the grown fi bres as a function of the starting composition. 
It is clear that in order to grow homogeneous reproducible congruent LiNbO 3  (CLN) by 
 μ  - PD it is necessary to start from a rich Li 2 O melt to compensate the Li 2 O losses. The 
Curie temperature of stoichiometric LN is about 1200    ° C, in good agreement with the 
results obtained by Kitamura  et al.   [Kitamura 1992] . Figure  5.57  shows some LiNbO 3  
fi bres grown in the authors ’  laboratory.     

 Even though different fi bre crystal materials have been grown by the  μ  - PD technique, 
growing high - quality reproducible fi bres by this method is a challenge to. It is a fast and 
inexpensive way to grow optical crystals for test evaluation. There are many opportunities 
for the use of this technology in crystal growth science, materials studies, determination 
of phase equilibrium diagrams, studies of melt behaviours such as convection, turbulence, 
viscosity and validation of simulation and modelling programs to be used for bulk crys-
tals. The  μ  - PD technology can also be used in the evaluation of fi bre crystals for laser 
applications as passive elements. Small - diameter fi bres contain small defects in compari-
son to bulk crystals. In this case, single - crystal fi bres can be used for applications requir-
ing high optical energy. However, there remain many technological problems relating to 

(a)

(b)

(c)

     Figure 5.56     LiNbO 3  crystal growth: (a) resistive  μ  - PD machine; (b) resistive crucible 
heating step and melting charge; (c) connection and pulling.  
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  Table 5.3    Lithium niobate fi bres single crystal grown by the   μ   -  PD  technique, and their 
properties 

   Starting 
composition 
(%Li 2 O)  

   Pulling rate 
(mm/min)  

   Materials 
obtained  

   Lattice 
parameters ( Å )  

   Curie 
temperature ( ° C)  

   Fibre qualities  

  47    0.6    LN   a        a    =   5.1460 
  c    =   13.8638  

  1134    Cracks, defect  

  48    0.6    LN   a        a    =   5.1462 
  c    =   13.8641  

  1132    Cracks, defect  

  49.5    0.5    CLN     a    =   5.1492 
  c    =   13.8649  

  1140    Transparent,  
 good quality  

  50    0.5    CLN     a    =   5.1495 
  c    =   13.8651  

  1142    Transparent,  
 good quality  

  51    0.4    CLN     a    =   5.1499 
  c    =   13.8652  

  1141    Transparent,  
 good quality  

  52    0.5    SLN     a    =   5.1479 
  c    =   13.8566  

  1201    Transparent,  
 good quality  

  54    0.5    SLN     a    =   5.1476 
  c    =   13.8568  

  1202    Transparent,  
 good quality  

   CLN, congruent lithium niobate, composition analysed by ICP; SLN, stochiometric lithium niobate, composition ana-
lysed by ICP.  
    a     LiNb 3 O 8  secondary phase is observed by X - ray powder diffraction on cracked fi bre.   

     Figure 5.57     High - quality LiNbO 3  fi bres grown by the  μ  - PD technique.  

 μ  - PD technology. It is diffi cult to grow reproducible thin fi bres (100    μ m) with high crystal 
quality and homogeneous diameter. The laser heated pedestal growth (LHPG) technique 
is a serious competitor to  μ  - PD growth of thin fi bres and can be a good candidate for thin 
single - crystal fi bres. Nonetheless, different research programmes on the  μ  - PD technique 
are in progress and the number of published papers shows the dynamic activity in 
this area.    
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  5.5   Conclusions 

 The development of shaped crystal growth was a great technological advance, which has 
provided several types of applications. Although shaped crystals have been produced 
commercially and used for many years, the technology is still in a developmental stage. 
The optimization of standard crystal growth technologies and the development of new 
techniques are actively pursued in order to increase the dimensions of crystals, improve 
the quality, reduce the cost of material, and grow complex shapes. There is good reason 
to believe that shaped crystals will not only strengthen their position in traditional 
markets, but will also be used in a number of new applications.  
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     This chapter dealings with the vertical Bridgman (VB) technique of crystal growth and 
its variants. In these processes, the material is introduced in a crucible placed in a furnace. 
By heating the furnace and controlling a vertical thermal gradient, the material is melted, 
possibly with a remaining unmelted single - crystal seed placed at the bottom of the cru-
cible. The controlled solidifi cation is obtained by cooling down the furnace (vertical 
gradient freeze growth, VGF), or by pulling down the crucible (VB) or both (Figure  6.1 ). 
The Stockbarger variant uses a specifi c furnace made up of two heating elements sepa-
rated by an adiabatic zone. These techniques are commonly used for the growth of III – V 
and II – VI semiconductors, halide and chalcogenide crystals, and a number of oxides for 
scintillation or laser applications.   

 Compared to capillary - based techniques, these processes have advantages: 

   •      The shape of the crystal is a direct result of the shape of the crucible; there is no concern 
with control of the crystal shape. As both diameters are equal, the furnace is generally 
smaller than for other techniques.  

   •      In the other crystal growth methods studied in this book, it is necessary to apply rela-
tively high thermal gradients in order to control the crystal shape. This is detrimental to 
crystal quality because high thermal gradients generate thermal stresses in the hot 
crystal, above the elasticity limit, and dislocations are then generated in the crystal. In 
Bridgman - type methods, the thermal gradient can be as small as necessary: thermal 
gradients as low as 3 or 4   K   cm  − 1  have been used for the growth of GaAs  [Asahi, Buhrig] .  
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   •      Once the process is established, reproducibility is good and growth is easily controlled 
automatically, without human intervention.  

   •      The result is relatively simple, small and cheap growth equipment, especially for proc-
esses where the growth is controlled by simply cooling down the furnace, without any 
moving parts in the furnace.    

 Clearly the drawbacks of these methods are linked to the use of a crucible in intimate 
contact with the crystal. This has thermal, thermodynamic and mechanical adverse con-
sequences. In itself the technique does not involve capillarity, but in order to solve these 
problems some variants based on capillarity aspects have been proposed, such as full 
encapsulation or dewetting. Other important points linked to interfacial energy are the 
adhesion of the solid to the crucible and the crystal – liquid – crucible contact angle, which 
have consequences for crystal quality.  

  6.1   Peculiarities and Drawbacks of the Bridgman Processes 

  6.1.1   Thermal Interface Curvature 

 During crystal growth from the melt in a crucible, thermal transfer in the furnace – 
crucible – sample system leads to curvature of the isotherms and especially of the solid –
 liquid interface. This has many well - known effects on the grown crystal, such as spurious 

CRYSTAL

LIQUID

SEED

CRUCIBLE

HEATING
ELEMENT

TEMPERATURE
GRADIENT

     Figure 6.1     General sketch of a Bridgman set - up.    
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grain nucleation  [Feigelson, Pfeiffer]  or radial solute segregation  [Coriell 1979, Coriell 
1981, M ö ller] . Global heat transfer in the furnace, related for instance to the design of 
the heating and cooling elements, has a major effect in terms of interface shape  [Chang, 
Naumann 1982] . Various strategies have been proposed to limit the curvature of the 
solid – liquid front  [Feigelson, Huang, Jasinski] , since it is often detrimental to crystal 
quality. 

 The local heat transfer between the crucible, the solid and the liquid is also of major 
importance in terms of interface shape (see Figure  6.2 ). This so - called  ‘ crucible effect ’  
has been widely studied in the past  [El Mahallawy, Jasinski, Naumann 1983] , Naumann 
being the fi rst author to show that it is controlled by the difference between the thermal 
conductivities of the material in the liquid and solid states. In an interesting paper, Jasinski 
and Witt  [Jasinski]  analytically estimated the crucible effect from a model of the heat 
fl uxes in an ideal Bridgman confi guration. They obtained a rather complex solution for 
the temperature fi eld within the furnace, and performed a parametric study, featuring the 
various thermal conductivities, the thermal gradient and the geometry of the problem.   

  [Barat]  studied the problem experimentally, numerically and by simple considerations 
of the heat fl ux transfer between the liquid, the solid and the crucible. The geometry of 
the system is shown in Figure  6.3 . The crucible is long enough that end effects on the 
interface are negligible. The sample radius is  r  a , the thickness of the crucible is  d  and 
the interface curvature, defi ned as the difference in height between the center and the 
crucible wall, is  f . The thermal conductivities of the crucible, liquid and solid sample are 
respectively   λ   c ,   λ   l  and   λ   s .   

 In order to study only the crucible effect the external wall of the crucible was taken as 
adiabatic, so that heat conservation requires:

    Φ Φ Φ Φl c
hot

s c
cold+ = + .     (6.1)   

 The thermal fl uxes can be locally expressed as:

    Φ = ⋅ ⋅λ G A,     (6.2)  

with  G  the thermal gradient and  A  the surface through which the fl ux is fl owing. Using 
these expressions, with the hypothesis that the interface has a parabolic shape, Barat 
fi nally obtained for the interface curvature:

Liquid

Solid

Liquid

Solid

(a) (b)

     Figure 6.2     Local heat fl uxes at the liquid – solid interface: (a) a solid with lower thermal 
conductivity than the liquid; (b) a solid with higher thermal conductivity than the liquid.    
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 Such a simple treatment gives only an approximate value of the interface defl ection, but 
comparisons with experimental measurements and numerical simulation have shown that 
the expression gives the appropriate variation with the parameters of the problem. Useful 
values are obtained provided that the amount of heat carried by the crucible is small 
compared to the overall heat fl ux, which is generally the case. 

 It can be seen that this expression is indeed independent of the magnitude of the tem-
perature gradients  G  l  and  G  s  and of the temperature difference imposed on the crucible. 
The reason is that, in the simple case studied, only the repartition of the heat fl ux is of 
importance, not the absolute values of the fl uxes. This is no longer the case if the latent 
heat of solidifi cation, released at the interface, is taken into account.  [Stelian 2001]  studied 
this problem in the same way as above and found an additional term due to the latent 
heat, where  G  l  is the thermal gradient in the liquid,  v  i  the interface velocity and  H  the 
latent heat of fusion:
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 This expression also gives values that compare well with numerical and experimental 
results. 

 In order to decrease the solid – liquid interface curvature, and the associated drawbacks 
for crystal quality, it is advisable to have an insulating layer between the crucible and the 
crystal. Techniques such as full encapsulation (section  6.2 ) and dewetting (section  6.3 ) 
can, to a certain extent, provide such a layer.  

  6.1.2   Melt – Crystal – Crucible Contact Angle 

 As shown in Figure  6.4 , the equilibrium of interfacial energies at the liquid – solid – crucible 
triple line defi nes a contact angle   θ   which is characteristic of the sample – wall system. In 
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     Figure 6.3     Geometry and principal parameters of the  ‘ crucible effect ’  problem (see text 
for details)  (Reprinted with permission from  [Barat 1998] , copyright (1998) Elsevier Ltd) .    
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order to fi nd and measure this angle, specifi c experiments were performed in order to 
mark the solid – liquid interface in GaSb and Ge samples  [Duffar 1999] . The samples were 
doped with Te for GaSb and Ga for Ge in order to get observable interfaces after etching. 
The marks were obtained by interruption of pulling for 2   h then pulling at high speed 
(40   mm/h). The samples were then cut along their axis, polished and etched. Figure  6.5  
shows several examples of the contact angle for Ge. Figure  6.6  shows two examples of 
the shape of the GaSb liquid – solid interface close to the crucible wall for pyrolytic boron 
nitride (p - BN) and silica crucibles. Table  6.1  summarizes the results obtained for these 
crystals. The large uncertainty of these values is due to the diffi culty of getting a good 
polish very close to the border of the sample and because the actual angle seems to be 
sensitive to the local roughness of the crucible (orientation towards the vertical), which 
is diffi cult to estimate on the pictures.     

 Note that one of the Ge crucibles was made of BN but with a pyrolytic carbon layer a 
few micrometres thick. It is believed that such a thin layer does not change the thermal 
curvature of the interface, as studied in section  6.1.1  (compare Figures  6.5 c and  6.5 d) and 
the contact angle is found to be the same as for bulk pyrolytic graphite (compare Figures 
 6.5 b and  6.5 c). This shows that the contact angle is related to the chemical nature of the 
wall rather than to its thermal properties. It is then expected that this measured angle 
corresponds to the contact angle as defi ned by Volmer in his classic work on heterogene-
ous nucleation  [Volmer]  because, as discussed in section  6.1.1 , a change in the thermal 
fi eld changes the overall interface shape but not the local angle, which changes the inter-
face shape for a distance of about 100    μ m. 
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     Figure 6.4     Interfacial energies at the solid – liquid – crucible triple line.  

  Table 6.1    Liquid – crystal – crucible contact angles for  G  a  S  b  
and  G  e  in various crucibles 

        Crucible material       θ   ( ° )  

  GaSb    SiO 2     85 – 100  
  BN    25 – 60  

  Ge    SiO 2     110 – 120  
  C and C - coated BN    90 – 100  
  BN    60 – 70  
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 According to Figure  6.4 , a low value of the angle shows that there is a noticeable 
difference between the crucible – liquid and crucible – crystal interfacial energies.  

  6.1.3   Crystal – Crucible Adhesion and Thermomechanical Detachment 

 During solidifi cation, the crystal usually sticks to the crucible because of the solid – solid 
interfacial energy. In the general case, as discussed in Chapter  1  (section  1.3 ) it is diffi cult 
to measure and even to give an order of magnitude of this energy because it takes into 
account not only the chemical interaction between the crystal and the crucible, but also 
other parameters: 

(a)

(b)

(c)

(d)

100 µm

     Figure 6.5     Metallographic pictures of marked Ge solid – liquid interfaces, in contact with 
the crucible wall: (a) silica (  θ     =   100    ° ); (b) vitreous carbon (  θ     =   90    ° ); (c) BN with carbon 
coating (  θ     =   90    ° ); (d) BN (  θ     =   40    ° , crucible wall was on the right)  (Reprinted with 
permission from  [Duffar 1999] , copyright (1999) Elsevier Ltd) .  
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   •      the crucible roughness, which increases or decreases the area of interaction depending 
whether or not composite wetting is obtained;  

   •      the elastic energy due to the stresses created by the solid – solid interaction during 
cooling down and likely to evolve with time.    

 However, in the vicinity of the solid – liquid interface, close to the melting temperature, 
only the chemical interaction is active. It is after this, during cooling down, that thermal 
stresses are created in the crystal. For a general discussion of thermal stresses in crystal 
growth, see  [V ö lkl] . 

 When they are larger than the critical resolved shear stress, these stresses produce 
dislocations. Furthermore the dislocations, if numerous enough ( > 5    ×    10 5    cm  − 2 ), may align 
in subgrain boundaries and, ultimately, give grains (Figure  6.7 ). Such mechanism of grain 
generation in Bridgman growth has been reported for GaAs growth  [Althaus]  under high 
thermal stresses and for CdTe  [Shetty 1995 - 1]  and GaSb  [Boiton]  where sticking of the 
crystal to the crucible occurred.   

(a)

(b)

100 µm

200 µm

     Figure 6.6     GaSb solid – liquid interfaces at the vicinity of the crucible wall for silica (a) 
and p - BN (b). The solidifi cation proceeds from the bottom to the top and the crucible 
wall was on the left of (a) and on the right of (b)  (Reprinted with permission from  [Duffar 
1999] , copyright (1999) Elsevier Ltd) .  
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 During cooling, the cylindrical crucible retracts towards its neutral cylinder and the 
crystal also retracts; consequently, whatever the relative magnitude of both dilatation 
coeffi cients, there is always a tensile strength tending to detach the crucible from the 
crystal. Numerical simulations for GaSb in a silica crucible have shown that the resulting 
stress reaches some 150   MPa, a value which is much higher than the critical resolved 
shear stress of the material  [Santailler] . 

 However, on opening the furnace and removing the crucible, the crystal is often found 
to be detached from the crucible. The phenomenon has been studied by  [Boiton]  for GaSb 
in silica crucibles.  [Harter]  gives the work of adhesion, for liquid GaSb, on silica, BN 
and C. It is generally accepted that the work of adhesion of a solid metal on a ceramic 
substrate is close to the liquid one  [Pilliar] , with a difference less than 20%. It will be 
supposed in the following that this is also true for GaSb, which has been shown to have 
a wetting behavior comparable to that of metals  [Harter] . 

 Considering a cylindrical layer of crystal, height d z  and radius  r , stuck to the crucible, 
detachment will occur if the elastic energy stored in the crystal,  W  el , is greater than the 
energy of adhesion acting at the periphery:

    W r z W r zel adhd dπ π2 2>     (6.5)  

(a) 100 µm (b) 100 µm

(c) 100 µm

     Figure 6.7     Etch pits of dislocations revealed at three successive locations (a, b, c) along 
the growth direction in a GaSb  〈 111 〉  crystal  (Reprinted with permission from  [Boiton] , 
copyright (1999) Elsevier Ltd) .  
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or

    W W rel adh> 2 .     (6.6)   

 Considering that the elastic energy is composed of energy of volume variation (at constant 
shape),  W  s , and energy of shape variation (at constant volume),  W  d , from classical elastic 
theory we get:

    W W W
E E

el s d VM VM= + = − + +1 2

6

1

3
2 2ν σ ν σ .     (6.7)   

 Considering that the Von Mises stress,   σ   VM , is limited by plasticity to the critical resolved 
shear stress,   σ   CRSS , the criterion for detachment, Equation  (6.6) , is now written:

    σ
νCRSS

adh>
−( )

12

5 4

EW

R
.     (6.8)   

 Mezhennyi  et al.   [Mezhennyi]  have measured the variation with temperature of the stress 
at which  ‘ the dislocation density is multiplied by a factor 1.5 to 3 ’  in GaSb. Interpolation 
from a value of   σ   CRSS    =   0.5   MPa at  T  m  gives:

    log . .10 4 3 79 2833σCRSS( ) = − + T     (6.9)   

 Substituting Equation  (6.9)  into  (6.8)  gives the temperature at which the crystal detaches 
from the crucible. It was found that detachment is likely to occur, as experimentally 
observed, between 750   K and 900   K, for all crucibles, and also in the seed well. The large 
divergence from the melting temperature (983   K) explains why, for a silica crucible, many 
dislocations are found in the samples, leading to grain boundaries. 

 This thermomechanical phenomenon has also been observed by  [Sylla 2008 - 2]  
for GaSb, 11   mm in diameter, by taking video recordings through the transparent silica 
crucible during solidifi cation. Optical interference, due to the small gap between the 
crystal and the crucible, appears suddenly from time to time all along the growing crystal 
(Figure  6.8 ). Subsequent surface analysis of the crystals has shown periodical striations 
on their external surface.   

 As can be seen in Table  6.2 , the detachment temperature is expected to be 760   K, which 
is 220   K lower than the melting temperature. However, from Figure  6.8 , the thermome-
chanical detachment occurs after a maximum of a few millimetres and considering the 
thermal gradient in the furnace during the experiment, 10   K   mm  − 1 , the experimental 
temperature decrease needed for detachment to occur is in all cases less than 50   K. Thus 
the proposed model probably refl ects the physics of the detachment but still needs to be 
improved in order to better fi t the experimental results. Better knowledge of the critical 
resolved shear stress and of the energy of adhesion is also needed.    

  6.1.4   Spurious Nucleation on Crucible Walls 

 During crystal growth from the melt in a crucible, nucleation of grains on the walls often 
occurs and leads to polycrystalline material. Because of the energy associated with the 
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     Figure 6.8     Video snapshots showing the thermomechanical detachment of GaSb in a 
silica crucible. The large dark central band is an optical artefact. The solid – liquid interface 
is the line separating the white upper side (liquid) from the darker lower side (solid). The 
red arrows show the line that separates the attached solid (darker) from the detached 
solid (clearer, the coloured interferences cannot be seen on this black and white fi gure). 
Window size: 9   mm.  

  Table 6.2    Detachment temperature of a  G  a  S  b  crystal from 
various crucibles during cooling down 

   Crucible     SiO 2       BN      Carbon  

   W  adh   [Harter]     0.22   J   m  − 2     0.15   J   m  − 2     0.07   J   m  − 2   
  Diameter 10   mm     T     <    760   K     T     <    777   K     T     <    815   K  
  Diameter 44   mm     T     <    832   K     T     <    852   K     T     <    897   K  
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grain boundary, the nucleation of a randomly disoriented seed directly on the growing 
interface is not possible. It is considered that grain nucleation then occurs on the crucible 
wall, ahead of the solid – liquid interface which is undercooled by an amount depending 
on the growth mode (rough or faceted interface). Obviously, due to the temperature gradi-
ent applied to the system, the wall in contact with the liquid is at a temperature higher 
than the growing solid and, at fi rst sight, nucleation on the wall is not likely to happen. 
In fact, there is competition between nucleation on the growing crystal and nucleation on 
the crucible wall ahead of the solid – liquid interface. 

 As shown in Figure  6.9 , two confi gurations may lead to grain nucleation in the layer 
of undercooled melt ahead of the interface: nucleation on a smooth crucible wall or in 
the pores of a rough crucible.   

 From the classical nucleation theory, there is a critical radius for nucleation of a two -
 dimensional nucleus on a faceted interface (case 1 in Figure  6.9 ) and the associated energy 
is given by:

    Δ
Δ Δ

G
a

S T
I

m

sl= π γ 2

,     (6.10)  

where  a  is the height of an atomic row,  Δ  T  the solid – liquid interface undercooling, 
 Δ  S  the entropy of fusion and   γ   sl  the liquid – solid interfacial energy. On the smooth 
crucible wall (case 3 in Figure  6.9 ), the critical seed has a similar radius, but the 
energy is decreased by a factor depending on the contact angle of the seed on the wall 
 [Volmer] :
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with  Δ  T  het  the undercooling of the seed depending on the seed radius of curvature  R :

    Δ
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T
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.     (6.12)   
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     Figure 6.9     Nucleation of solid seeds above the solid – liquid interface ( T  m  shows the 
melting isotherm position): 1, on the interface; 2, in a hole in a rough crucible; 3, spurious 
nucleation on the crucible wall.  
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 Figure  6.10  shows the variation of the energy of nucleation of a GaSb critical nucleus 
as a function of the undercooling for both cases (Equations  6.10  and  6.11 ) and for various 
  θ  , computed with   σ   sl    =   0.166   Jm  − 2   [Dashevskii] . From these results, it appears that the 
nucleation on the crucible is possible for faceted growth (undercooling of a few kelvin) 
and even for the growth of a semiconductor crystal with a nonfaceted interface (i.e. 
undercooling of a few tenths of kelvin, as given by  [Brice] ) but this necessitates low 
values of the contact angle   θ  . Statistics concerning spurious grain nucleation during 
semiconductor growth in various crucibles is in good agreement with this analysis  [Duffar 
1999] .   

 When the crucible wall is rough, for example for nucleation in a pore, it can be seen 
for Figure  6.9  (2) that the sign of the curvature of the seed is changed (the centre of 
curvature is in the liquid in this case and  R  is negative). According to Equation  (6.12)  it 
follows that the undercooling of the solid seed is negative, and for low enough values of 
the contact angle, the nucleation temperature can be higher than the melting point, due 
to the curvature effect. The probability of spurious nucleation therefore becomes very 
high. Nevertheless, experiments show that parasitic grain nucleation is a very rare phe-
nomenon, compared to the number of atomic layers that are piled up to make a crystal. 
Further theoretical and experimental work is still needed before we can gain complete 
knowledge of the phenomenon.   

  6.2   Full Encapsulation 

  6.2.1   Introduction 

 Liquid encapsulation by B 2 O 3  was initially proposed in order to prevent evaporation of 
components from high vapour pressure melts during Czochralski growth of PbTe and 
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     Figure 6.10     Nucleation energy of a two - dimensional nucleus on the interface and on a 
smooth wall with various contact angles, plotted as function of the undercooling 
 (Reprinted with permission from  [Duffar 1999] , copyright (1999) Elsevier Ltd) .  
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PbSe  [Metz]  and of InAs and GaAs  [Mullin] . The technique was later introduced by 
 [Blum]  as an improvement of the gradient freeze growth of GaP in p - BN crucibles in 
order to prevent phosphorus evaporation. Since that time the method has been used for 
numerous materials. Table  6.3  lists all the crystals grown under encapsulation. Some of 
these processes are in common industrial use (growth of GaP, InP or GaAs).   

 Two simultaneous papers fi rst reported the observation of full encapsulation of the 
crystal by the encapsulant.  [Hoshikawa] , after encapsulated growth of GaAs in p - BN, 
found a B 2 O 3  layer between the crucible and the crystal all along the pulling length. In 
some places where this layer was absent, grain nucleation occurred as a consequence of 
crystal – crucible interaction.  [Garandet]  also obtained a continuous layer of salt between 
the crystal and the crucible after the growth of GaSb in silica crucibles with the LiCl – KCl 
eutectic as encapsulant; the dislocation density in these crystals was practically zero. 
Full encapsulation of the crystal was also reported in the InP – B 2 O 3  – BN  [Matsumoto] , 
Si – CaF 2  – C  [Lay 1987  and personal communication] and Ge:Si – CaCl 2  – SiO 2   [Kadokura]  
systems. 

  [Bourret]  studied the full encapsulation of GaAs by B 2 O 3  in p - BN which effectively 
prevents the occurrence of grain nucleation. It was found that, in order to get a homoge-
neous oxide layer, the B 2 O 3  lumps must be mixed with the GaAs or that the crucible inner 
wall must be oxidized, prior to the growth experiment, by heating at 1100    ° C under oxygen 
fl ow; the effect of the water content of the B 2 O 3  is also discussed. The chemistry of the 
GaAs – B 2 O 3  system in the presence of small amounts of water (B 2 O 3  is highly hygro-
scopic) has been studied by  [Nishio]  and the general agreement is that a water content of 
about 100   ppm in the encapsulant is optimal in order to get the best crystal quality. Fully 
encapsulated GaAs Bridgman growth was also used by  [Althaus]  in p - BN and silica 
crucibles but did not work when a pyrolytic carbon layer was deposited on the silica. 
 [Amon]  has extensively employed pre - oxidized p - BN crucibles for the growth of GaAs. 

  Table 6.3    Crystals grown by the liquid encapsulation Bridgman technique 

   Crystal     Encapsulant     Crucible     Reference  

  GaP    B 2 O 3     p - BN     [Blum]   
  CdTe    B 2 O 3     SiO 2      [Carlsson]   
  InP    B 2 O 3     SiO 2      [Ciszek]   
  CuAgInSe 2     B 2 O 3     SiO 2      [Ciszek]   
  Si    CaCl 2     SiO 2      [Ravishankar]   
   < 111 >  InP 
  < 100 >  InP  

  B 2 O 3     p - BN     [Monberg]  
  [Matsumoto]   

  GaAs    B 2 O 3     p - BN     [Swiggard]  
  [Hoshikawa]   

  GaAs    B 2 O 3     SiO 2      [Althaus]   
  GaSe    B 2 O 3  (?)    SiO 2      [Singh]   
  ZnSe    B 2 O 3     p - BN     [Okada]   
  Si    CaCl 2  - SiO 2  (0.95 - 0.05)    Graphite    [Lay]  
  Si - Ge    CaCl 2     SiO 2      [Bliss, Kadokura]   
  GaSb    LiCl – KCl eutectic    SiO 2      [Garandet]   
  InSb    LiCl – KCl eutectic    SiO 2      [Potard]   
  AlSb    LiCl – KCl eutectic    SiO 2      [Pino]   
  CdZnTe    B 2 O 3     SiO 2      [Zappettini]   
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 All papers report on the great advantage associated with full encapsulation: the encap-
sulant layer which remains liquid far below the solidifi cation point of the semiconductor 
prevents any contact with the crucible, dramatically decreasing dislocation density and 
grain nucleation. It was also reported that the encapsulant prevents twinning and further 
solid state allotropic reactions  [Okada]  and can purify the liquid from some impurities 
 [Bourret] . Of course all the cited examples have verifi ed that the pollution of the crystal 
by the encapsulant is negligible. 

 It is therefore highly desirable that the encapsulant not only prevents vaporization of 
the crystallized species but also that the sample – crucible – encapsulant system presents the 
full encapsulation phenomenon.  [Duffar 1997 - 1]  and co - workers carried out an experi-
mental and theoretical research programme with the aim of better understanding how the 
full encapsulation phenomenon works when using halides or B 2 O 3 .  

  6.2.2    L  i  C  l  –  KC  l  Encapsulant for Antimonides 

 The fact that solid salt is found between the crystal and the crucible, when cold, is not in 
itself evidence that a liquid salt layer was present when the semiconductor was liquid or 
even when it solidifi ed. It could be thought, for example, that the salt is all located above 
the liquid semiconductor during the process and subsequently fl ows down into the gap 
that is created during cooling down between the crucible and the sample because of the 
great difference between the expansion coeffi cients of silica and GaSb. In order to answer 
this question, it was fi rst observed visually that, above the melting point, a LiCl – KCl fi lm 
exists between the GaSb and the silica crucible. These observations confi rmed that the 
liquid salt, when it melts, fl ows down between the crucible and the solid sample and stays 
as a stable liquid layer when the semiconductor is molten. 

 A further step has been to measure the thickness of the layer between the cold crystal 
and the silica after fully encapsulated crystal growth. Measurements of the layer thickness 
vs GaSb depth have been performed on crucibles 10 and 14   mm in diameter. Results are 
plotted in Figure  6.11 ; the error for the thickness was estimated to be  ± 9    μ m in the worse 
cases. From 0 to 60   mm, the thickness decreases. Beyond 60   mm from the top of the GaSb, 
the thickness is constant and equal to the differential contraction between silica and GaSb 
from the melting point of GaSb to ambient, which depends on the diameter of the tube.   

 These observations and measurements suggest that a liquid fi lm exists between the 
semiconductor and the crucible and that, after solidifi cation of the semiconductor, the gap 
between the crucible and the crystal increases due to differential contraction and is con-
tinuously fi lled by liquid salt from the top. For depths greater than 60   mm, the original 
thickness is negligible compared to the differential contraction. 

 In order to understand why this layer exists, the energies associated with the two con-
fi gurations shown in Figure  6.12  are compared. If  A  cyl  is the inner lateral area of the 
cylinder along the GaSb depth and  A  bot  the area of the bottom of the crucible, then:

    E E A Aa b cyl bot sc Ec Es+ = +( ) − −( )γ γ γ ,     (6.13)  

with   γ   sc ,   γ   Ec  and   γ   Es  the liquid – semiconductor – crucible, encapsulant – crucible and encap-
sulant – liquid – semiconductor surface energies, respectively. This can also be written, 
taking into account the Young – Dupr é  equation (see Chapter  1 ), as:
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    E E A Aa b cyl bot E E s s Es− = +( ) − −( )γ θ γ θ γcos cos ,     (6.14)  

where   θ   E  and   θ   s  are the contact angles of the encapsulant and of the semiconductor on 
the crucible and   γ   E  and   γ   s  the surface tensions of the encapsulant and semiconductor. With 
the values of Table  6.4 , for the system GaSb/LiCl - KCl/SiO 2 :

    Δγ = − +( ) = ± −E E A Aa b cyl bot J m0 13 0 11 2. . .     (6.15)       

 Then, confi guration (a) has a greater energy than confi guration (b) and the stable state of 
the system corresponds to the presence of a layer of salt between the molten semiconduc-
tor and the crucible. 
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     Figure 6.11     Thickness of the salt layer vs depth of GaSb melt, for several 10 - mm and 
14 - mm diameter tubes. Lines correspond to the differential contraction, from 706    ° C to 
ambient, of GaSb vs silica for both diameters. The broken line corresponds to Equation 
 (6.18)  for a diameter of 10   mm and a growth angle of 20    °   (Reprinted with permission 
from  [Duffar 1997] , copyright (1997) Elsevier Ltd) .  

A
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     Figure 6.12     The two confi gurations discussed in the text: (a) regular encapsulation; 
(b) full encapsulation  (Reprinted with permission from  [Duffar 1997] , copyright (1997) 
Elsevier Ltd) .  
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 In order to estimate the thickness of the layer,  e , as observed after growth, the following 
mechanism is suggested. As a consequence of the very good wetting of the salt on both 
GaSb and SiO 2 , a thin wetting fi lm of salt exists between the molten semiconductor and 
the crucible. During solidifi cation, due to the growth angle   α   typical of semiconductors, 
the lateral surface of the crystal grows at an increased distance from the wall (see Figure 
 6.13 ) and, during cooling down, this gap increases again because of the differential con-
traction between the crucible and the sample.   

  [Joanny]  and de Gennes studied the thickness of wetting fi lms and found values less 
than 1    μ m, even for strong Van der Waals or ionic interactions. The thickness of the initial 
layer is then supposed to be negligible. In order to estimate the gap generated by the 
solidifi cation process, we will refer to Figure  6.13 . For a fi rst approximation, it will 
be supposed that the hydrostatic pressure does not change signifi cantly along the little 
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     Figure 6.13     Detail of the solid – liquid – salt triple line region during growth of a fully 
encapsulated semiconductor  (Reprinted with permission from  [Duffar 1997] , copyright 
(1997) Elsevier Ltd) .  

  Table 6.4    Surface and wetting properties of the semiconductor/salt/crucible systems at 
the melting temperature of the semiconductor 

        Contact 
angle ( ° )  

   Reference          Surface 
tension (J   m  − 2 )  

   Reference  

  GaSb/SiO 2     122    ±    2     [Harter]     GaSb    0.45    ±    0.03     [Harter]   
  LiCl – KCl/SiO 2     0 - 10     [Duffar 1997 - 1]     LiCl – KCl    0.21    ±    0.05     [Ubbelhode]   
  GaAs/SiO 2     120    ±    5     [Shetty 1990]     GaAs    0.4    ±    0.06     [Rupp]   
  B 2 O 3 /SiO 2     10    ±    2     [Duffar 1997 - 1]     B 2 O 3     0.1     [Shipil ’ rain]   
  GaAs/BN    155    ±    5     [Shetty 1990]     GaSb/LiCl – KCl    0.31    ±    0.03     [Duffar 

1997 - 1]   
  B 2 O 3 /BN    59    ±    2     [Duffar 1997 - 1]     GaAs/B 2 O 3     0.5     [Amashukeli]   
  GaAs/C    120    ±    5     [Shetty1990]               
  B 2 O 3 /C    79    ±    2     [Duffar 1997 - 1]               
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meniscus created between the solid – liquid – salt triple line A and the point B where the 
liquid semiconductor is parallel to the crucible. In this case the meniscus is an arc of a 
circle and the Laplace equation gives:

    R gh= γ ρEs Δ ,     (6.16)  

with  R  the radius of curvature (the second radius of curvature has the order of magnitude 
of the radius of the crucible and is negligible),  Δ   ρ   the difference of density between GaSb 
and the salt (6100    −    1600   =   4500   kg   m  − 3 ),  g  the acceleration due to gravity and  h  the GaSb 
depth. From Figure  6.13  we have:

    e R= −( )1 cosα     (6.17)  

or

    e gh= −( )γ α ρEs 1 cos .Δ     (6.18)   

 Taking into account the differential contraction between silica and GaSb from the melting 
point,  T  m , to ambient,  T  a , the thickness of the gap becomes

    e r T T gh= −( ) −( ) + −( )a GaSb SiO m a Esβ β γ α ρ2 1 cos ,Δ     (6.19)  

with  r  a  the radius of the crucible. This result is shown by the dotted line on Figure  6.11 . 
Of course the growth angle of GaSb immersed in the molten eutectic is not known and 
the value of 20    ° , typical of antimonides under inert gas, has been chosen for the calcula-
tions. Despite the approximations on which it is based, this rough expression gives a good 
estimate of the variation of the thickness of the layer.  

  6.2.3    B  2  O  3  Encapsulant 

 For the growth of CdZnTe encapsulated by B 2 O 3  in a silica crucible,  [Zha]  measured an 
encapsulant thickness of 100 – 200    μ m. For GaAs in p - BN,  [Bourret]  reported an initial 
B 2 O 3  layer 50    μ m thick, but no value was measured after the growth experiment. 

 If Equation  (6.15)  is applied to the case of GaAs with B 2 O 3 , taking the numerical data 
from Table  6.4 , the following results are obtained:

   Δγ = − ± −0 09 0 08 2. . , ;J m for p-BN  

   Δγ = − ± −0 20 0 10 2. . , ;J m for silica  

   Δγ = − ± −0 28 0 08 2. . , .J m for pyrolytic carbon on silica   

 These negative values indicate that a layer of B 2 O 3  is not likely to exist between 
GaAs and any kind of crucible. Nevertheless, except in the case of carbon  [Althaus] , full 
encapsulation was observed. Despite the fact that the water content of the B 2 O 3   [Bourret]  
or the stoichiometry of GaAs  [Rupp]  might have an effect on the surface properties and 
then increase the chance of full encapsulation, another explanation must be found. 
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 The viscosity of B 2 O 3  at the melting point of GaAs is 3.6   Pa   s  [Sabhapathy]  (compare 
that of LiCl – KCl at 700    ° C: 9.6    ×    10  − 3    Pa   s). The fl ow of a liquid under a pressure gradient 
between two plates gives the mean value of the velocity  [Duffar 1997 - 1] :

    V e= −ρ ρ
μ

S E

E

2

12
2.     (6.20)   

 For a layer 10    μ m thick, this gives a mean velocity of 22.5    μ m   h  − 1  (0.2    μ m   h  − 1  for 1    μ m, 
2.2   mm   h  − 1  for 100    μ m). Then, for a typical growth process ( ∼ 100   h), the encapsulation 
phenomenon must be as follows: the B 2 O 3  melts before GaAs and wets the walls of the 
crucible. For silica the wetting is good, but for p - BN it is necessary to help it either by 
mixing the GaAs and B 2 O 3  lumps or, better, by pre - oxidation of the crucible, as reported 
by several authors  [Althaus, Amon, Bourret] . Then the GaAs melts and its hydrostatic 
pressure pushes the B 2 O 3  layer upwards in order to get the confi guration shown in Figure 
 6.12 a. Because of the high viscosity of the layer, the steady state cannot be reached at 
the time scale of the growth process. For the case of pyrolytic carbon, the poor wetting 
of B 2 O 3  prevents obtaining a homogeneous layer before melting the GaAs. During growth, 
increase of the gap thickness by the mechanism described for LiCl – KCl occurs but it is 
diffi cult to estimate the thickness of the initial layer of encapsulant. 

  [Zha]  performed the same calculations for the CdZnTe – B 2 O 3  – SiO 2  system and also 
obtained the result that the energy of the confi guration in Figure  6.12 a is lower than the 
energy of confi guration in Figure  6.12 b, and then the full encapsulation of CdTe by B 2 O 3  
cannot be spontaneous. Computing the maximum velocity for the encapsulant thickness 
of 100    μ m that they measured, they found a value of 12   mm   h  − 1  which is 10 times higher 
than the growth rate  [Zappettini] . They conclude that some other mechanism must act in 
the case of B 2 O 3  encapsulant in a silica crucible. They measured the chemical composition 
across the crucible – encapsulant interface and found a layer, presumably of borosilicate 
complexes, where the Si/O ratio decreases from the crucible to the encapsulant along the 
200    μ m of layer thickness (see Figure  6.14 ). It is therefore supposed that, in this case, the 
encapsulant reacts with the silica in order to form a borosilicate glass, the viscosity of 
which is higher than that of pure B 2 O 3 .    

  6.2.4   Conclusion 

 The full encapsulation phenomenon occurring during encapsulated Bridgman growth of 
semiconductors can be explained as follows. For GaSb/LiCl – KCl, and presumably also 
the other halide encapsulants, the salt layer which prevents contact between the sample 
and the crucible corresponds to a stable energetic confi guration due to the very good 
wetting of both the silica crucible and the semiconductor by the salt (contact angles practi-
cally zero). For B 2 O 3  in silica or p - BN, with poorer wetting behaviour, an initial fi lm of 
B 2 O 3  or borosilicate must be established before the melting of the semiconductor and it 
is the high viscosity of this layer which prevents it from fl owing upwards at the time scale 
of the growth process. During solidifi cation, a mechanism specifi c to semiconductors 
increases the thickness of the encapsulant layer. 

 For the case of InP and GaP encapsulated by B 2 O 3 , and for the other halide encap-
sulants, the lack of physical data prevents us from drawing a fi rm conclusion; surface 
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tension measurements would be of interest, as well as determination of layer 
thicknesses. 

 In their original paper,  [Metz]  and co - workers listed the properties necessary in order 
to select a good encapsulant for Czochralski growth: 

   •      The vapour pressure of the encapsulant must be low at the melting point of the pulled 
material.  

   •      The encapsulant must be less dense than the melt.  
   •      The encapsulant must be insoluble in the liquid.  
   •      The liquid must not contaminate and react with the encapsulant.    

 Considering the Bridgman techniques and the analysis of the phenomenon of full 
encapsulation, some more properties should be taken into account: 

   •      The melting temperature and solid expansion coeffi cient of the encapsulant must be 
lower than for the crystal.  

   •      The encapsulant must be chemically inert toward the crucible.  
   •      The encapsulant must wet the crucible and the semiconductor as much as possible.  
   •      A high viscosity of the encapsulant helps the full encapsulation.      

  6.3   The Dewetting Process: a Modifi ed  VB  Technique 

  6.3.1   Introduction 

 Until the development of the dewetted Bridgman method  [Duffar 1997 - 2] , suppression 
of crystal – crucible contact during VB growth was ensured only by the encapsulated 
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     Figure 6.14     Chemical composition across the B 2 O 3  - SiO 2  interface, after  [Zha]   (Reprinted 
with permission from  [Duffar 1997 - 1] , copyright (1997) Elsevier Ltd) .  
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Bridgman growth of semiconductors (section  6.2 ). In 1973, a peculiar phenomenon was 
observed by  [Witt 1975]  on the surface of InSb crystals grown from the melt in space, 
characterized by the absence of contact between the crystal and the inner walls of the 
container. The surface appearance of the detached parts was markedly different from that 
of the inner crucible walls. Obviously this phenomenon resulted from the appearance of 
a gap between the growing crystal and the crucible walls, which could not be explained 
by thermal contraction only. Removal of the crystal – crucible contact allows elimination 
of the adverse consequences resulting from the use of a crucible, such as thermal interface 
curvature, crystal – crucible adhesion and spurious nucleation on the walls. Hence, the 
major interest of this phenomenon is the drastic reduction of dislocations and other struc-
tural defects within the detached parts. The interpretation of this result by  [Duffar 1997 - 2]  
is based on the assumed existence of a liquid meniscus separating the crystal from the 
crucible. Figure  6.15  shows a dewetted VB confi guration involving the simultaneous 
presence of a liquid meniscus and a gap.   

 In normal terrestrial gravity, the dewetting has been achieved by counterbalancing the 
melt column hydrostatic pressure with the help of gas pressures applied at the hot ( p  h ) 
and cold ( p  c ) parts of the sample. This method almost reproduces the effects of micrograv-
ity. According to the macro - roughness or smoothness of the crucible walls, Duffar and 
co - workers have developed different methods to obtain effective dewetting in normal 
gravity  [Duffar 2000, Duffar 2001 - 1] . 

 The dewetted VB method offers an excellent compromise because it combines the 
advantages of the classical VB method with those of the capillary techniques (such as the 
Czochralski and fl oating zone techniques) without suffering from their main drawbacks. 
Hence, a low temperature gradient (a few degrees per centimetre) can be applied and both 
the shape and the size of the crystal can be controlled. Several III – V and II – VI crystals 
have been grown by this technique with a crystalline quality comparable to that of other 
capillary techniques (section  6.3.3 ). 

 Our approach in this review is to carry out a comprehensive analysis of the published 
experimental results that demonstrate the occurrence of dewetting and compare them to 
the proposed theoretical models. Strictly speaking, the terms  ‘ detached solidifi cation ’ , 
 ‘ dewetted growth ’ ,  ‘ detachment ’  or  ‘ dewetting ’  refer to a common and identical physical 
phenomenon that is defi ned and applied according to the following criteria: 

   •      The materials studied are semiconductors: pure, doped or compounds.  
   •      The growth technique is VB and its related techniques such as the Bridgman – Stockbarger 

and the Gradient Freeze.  
   •      There must be a narrow and constant gap a few to tens of micrometres wide and several 

millimetres or centimetres long.  
   •      The crystal surface morphology must differ from that of the crucible walls.    

 These criteria mean that this work does not include the study of voids, bubbles or other 
specifi c contactless morphologies, or other materials such as metals.  

  6.3.2   Dewetting in Microgravity 

 An exhaustive review of detached solidifi cation in microgravity was published by  [Wilcox 
1998] . A large number of experimental results are listed and classifi ed with respect to the 
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observation of reduced contact with ampoule wall (under its various surface shapes: voids, 
bubbles, necking, dewetting, growth morphology, gap width, etc.) and the infl uence of 
the detachment on crystallographic perfection and compositional homogeneity.  [Duffar 
2004 - 2]  also published a general review that includes the study of the crystal – crucible 
adhesion, the dewetting of III – V and II – VI materials and transport and segregation phe-
nomena under microgravity. 

 When dewetting has occurred, the existence of the gap is clearly proved after solidifi ca-
tion by the easy removal of the crystals from the crucible. Unlike the corresponding 
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     Figure 6.15     Comparison between a classical VB confi guration (a) and one based on 
dewetting (b) requiring the coexistence of a liquid meniscus and a gap. Etched Ge slices 
show the dramatic decrease of the dislocation density by two orders of magnitude in a 
detached crystal   [Schweizer 2002 - 1]  .  
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terrestrial samples, the removal of the microgravity solidifi ed material was easy. Even a 
gap thickness of a few micrometres can provide this result. Unfortunately, there is a lack 
of quantitative measurements of surface roughness for microgravity crystals. As the 
matter stands, the occurrence of dewetting is validated by the observation of a constant 
gap width and the decrease of crystal defects (dislocation density). 

 Most of the semiconductor crystals grown under microgravity conditions were charac-
terized by the presence of microscopic irregularities, known as ridges, when they grew 
partially detached from rough or smooth crucibles. According to  [Witt 1975] , the phe-
nomenon of ridge formation was fi rst observed on the surface of crystals grown under a 
confi ned geometry on board Skylab III. From the analysis of crystals grown on board 
Skylab IV  [Witt 1978]  they concluded that ridges are not the result of anomalous solidi-
fi cation. Surface ridges appear when the crystal diameter increases and approaches the 
value of the internal diameter of the ampoule. Their dimensions are typically tens of 
micrometres in width to hundreds in length. This surface feature might be formed on the 
melt prior to solidifi cation, and refl ects the morphological characteristics of the melt 
surface in the vicinity of the growth interface. Yet the explanation of ridge formation is 
still unclear. A direct consequence of a network of ridges on crystal surfaces is a defi nite 
rough aspect. Figure  6.16  shows a typical ridge pattern on a crystal surface.   

 Furthermore, peripheral faceting has also been observed on the surface of space - grown 
crystals (Figure  6.17 ) and, commonly, in nonconfi ned growth conditions such as in the 
Czochralski technique. Faceted free surfaces changed the crystal shape, and result from 
anisotropy effects due to the polycrystalline structure of these samples. The presence of 
ridges and facets is obviously an indication of contactless growth conditions. It is con-
sidered that the ridges result from a  ‘ partial ’  dewetting because in this case the detachment 
is local.   

  [Duhanian]  and co - workers have studied the effect of the crystal – crucible interactions 
leading to dewetting during the LMS - AGHF - ESA8 mission on board Spacelab. A pseudo -
 binary GaSb – InSb semiconductor crystal was grown in a crucible consisting of two 

     Figure 6.16     Surface of an InSb:Te ingot solidifi ed on board the International Space 
Station during the SUBSA mission: the ridge pattern is easily identifi able by the valleys 
formed on the surface, indicating local detachment. In contrast, the shiny smooth surface 
indicates places where the crystal was in contact with the crucible wall   [Ostrogorsky]  .  
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different parts, one made from silica and the other from BN. The crystal surface shows 
ridges and facets on the BN side (Figure  6.18 ). The points to be emphasized here are the 
infl uence of the melt contact angle and the fi rst quantifi cation of a gap value that is con-
stant for a length of several centimetres due to the dewetting in microgravity. The 70 -  μ m 
gap is remarkably constant in the BN part. The contact angle of the GaSb – InSb melt is 
higher on BN than on silica, respectively 135    °  and 120    °   [Harter] . Dewetting occurred 
obviously only within the BN crucible. Therefore, a higher value of the melt contact angle 
enhances the occurrence of dewetting. The dewetting is said to be total, in contrast to the 
previous partial dewetting, when a constant gap is measured along several centimetres. 
The fi nal value of the gap has to be corrected by the differential thermal expansion 
between the solidifying melt and the crucible.   

 Duffar and co - workers have widely studied the effect of a macro - roughness crucible. 
They obtained remarkable results for three microgravity experiments on the solidifi cation 
of GaInSb alloys in machined rough crucibles on board the TEXUS 31 and 32, Spacelab 
D2 and EURECA missions  [Duffar 1995, Duffar 1996, Duffar 1998] . The profi le of the 
inner wall has a sawtooth shape, leading to a wavy profi le of the crystal surface. Figure 
 6.19  shows that sharp roughness leads to the dewetting of two GaSb samples. The struc-
ture of both samples is initially polycrystalline and they end up as single crystals. The 
decrease in number of grains can be explained by avoiding stresses and nucleation in the 
peripheral regions of the growing crystal. Partial wall contact, at the end of growth, led 
to the nucleation of secondary grains or twins at the contact region.   

 In many microgravity experiments, the crystal surfaces are characterized by a dark and 
dull layer that is assumed to be oxide. Indeed, the usual long storage period of the ampoule 
before the fl ight and its subsequent outgassing can cause the formation of oxides. Hence, 
chemical pollution in the growth environment is suspected to participate in microgravity 
dewetting. 

 Dewetting never occurs if the melt undergoes overpressure by a spring within a closed 
crucible. Neither the pressure difference nor the magnitude of the growth rate has an effect 
on the dewetting phenomenon in microgravity  [Duffar 2001 - 2] . 

(a) (b)

     Figure 6.17     The growth of GaSb under microgravity conditions: (a) ground samples; 
(b) space samples  (Reprinted with permission from  [Lendvay] , copyright (1985) Elsevier 
Ltd) . The surface of the space samples shows ridges, proving the occurrence of local 
detachment.  
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 To conclude, the main identifi ed parameters that lead to dewetting under microgravity 
conditions are crucible roughness, the crucible material, the wetting properties of the melt 
and chemical pollution. Apparently the roughness profi le should be sharp, the crucible 
material nonadherent and the contact angle of the melt on the crucible high. As dewetting 
was unambiguously observed only for semiconductor growth, it is also expected that the 
growth angle, which is large for these materials, participates in the phenomenon. It is also 
important to underline that the dewetting is intrinsically stable, with the formation of a 
constant gap several centimetres long.  

  6.3.3   Dewetting in Normal Gravity 

 Even though the fi rst observations under microgravity were made in 1973, effective 
reproduction of the dewetted growth on the Earth ’ s surface started more recently, in the 
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     Figure 6.18     (a) Surface morphology of a GaSb – InSb polycrystal grown during the 
LMS - AGHF - ESA8 mission  (Reprinted with permission from  [Duhanian] , copyright (1997) 
Springer Science + Business Media) . The crucible is made up of two parts: SiO 2  and BN. 
(b) Corresponding measurement of the surface profi le: a constant gap 70    μ m thick runs for 
4   cm in the BN part of the crucible.  
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early 1990s. Tables  6.5 – 6.8  summarize the results of the published ground experiments. 
These tables are set out in accordance with the different operating parameters.   

 On the ground, the aim is to counterbalance the hydrostatic pressure due to the melt 
column in order to artifi cially reproduce the microgravity condition. This hinders the 
liquid – crucible contact at the level of the solid – liquid interface and favours dewetting. 

 The fi rst method consists of applying a pressure difference with the help of an accurate 
external controller that is connected to the two closed gas volumes at the ends of the 
sample (Figure  6.20 ). The second method is similar, but has a more sophisticated external 
differential pressure system consisting of differential and absolute pressure gauges with 
a vacuum/backfi lling gas system. The third method aims to manipulate the thermal fi eld 
within the furnace and the ampoule in order to modify the pressure in one closed gas 
volume according to the ideal gas law. The liquid is pushed away from the wall when 
the temperature is decreased in the hotter part or increased in the colder part. Controlling 
the pressure difference across the meniscus is a very effective way to produce the dewet-
ting under terrestrial gravity.   

 The existence of the liquid meniscus remained hypothetical till the dedicated experi-
ments performed by Sylla. Closed ampoules containing antimonide samples and argon 
gas were introduced into a mirror furnace and dewetting was controlled by an additional 
furnace that increased the pressure at the cold part (see Figure  6.20 c). A viewing window 

1 cm

     Figure 6.19     View of two GaSb EURECA samples (left) and corresponding metallographic 
analysis (right)  (Reprinted with permission from  [Duffar 1995] , copyright (1995) 
Elsevier Ltd) .  
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  Table 6.5    Dewetted crystal growth experiments in normal gravity for  G  e  and  G  e  - rich alloys 

   Feed material 
 Seed crystal  

   Crucible 
 Fill atmosphere  

   Crystal and 
feed 
dimensions  

   Method and growth 
rate 
 Thermal conditions  

   Furnace     Results: dewetted length 
( I ), gap thickness ( e ) and 
surface morphology  

   Crystallinity and 
relevant observations  

   Reference  

  Ge:Ga            VB    Monoellipsoid 
mirror 
furnace 

 Bulb moved 
toward the 
ellipse 
center  

   l    =   27   mm 
  e    =   30    μ m 
 Separated narrow ridges 

in contact with wall 
( ∼ 10    μ m wide)  

  Dewetting obtained 
with 0   T 

 Rapid motion of 
particles on the top 
and wave - like 
motion of free 
surface during 
growth (3   T)  

   [Szofran]   

  Ge:Ga 
 8.2    ×    10 18    at cm 3  
  < 111 >  Ge  

  Silica glass 
ampoule 

 600   mbar Ar  

   Ø    =   9   mm 
  L    =   41   mm  

  VB 
 0.5   mm/min 
  G     ≈    100   K/cm  

  Monoellipsoid 
mirror 
furnace 

 Bulb moved 
2   mm out of 
focus  

  After 7   mm attached 
growth: 

  l    =   27   mm 
 10    ≤     e     <    80    μ m 
 Small bridges in contact 

with wall (tens of  μ m 
in width and 
hundreds in length)  

  No infl uence of 
dewetting on axial 
macrosegregation 

 EPD in dewetted area 
is 10 times lower 
compared to 
attached areas  

   [Dold]   

   Ge:Ga  
  ≈ 8    ×    10 18    at/cm 3  
 (111)  Ge   

  Closed - bottom 
and open p - BN 
sealed in silica 
glass ampoule 

 Ar containing 2% 
H 2  or vacuum  

   L    =   45 – 60   mm 
  L  seed     ≈    20   mm 
  Ø  seed    =   12   mm  

  VB translation - free 
 5   mm/h 
  G    =   20 – 25   K/cm  

  Universal 
multizone 
crystallizator 
(UMC)  

   e     ≈    10    μ m 
 Small isolated islands 

200    μ m grew 
attached to the wall 

 Attached growth for 
open - bottom 
ampoules  

  No infl uence of 
dewetting on axial 
macrosegregation 

 EPD is reduced by 
more than two 
orders of magnitude 
in dewetted areas  

   [Schweizer 
2002 - 1]   

  (111)  Ge     Closed and 
open - bottom 
p -  BN  
containers 
sealed in silica 
glass ampoule 

  A r containing 2% 
H 2  or vacuum 
(2    ×    10  − 6    mbar)  

   Ø    =   12   mm 
  L    =   45 – 60   mm 
  L  seed     ≈    20   mm  

  Translating 
 5   mm/h 
  G    =   30   K/cm  

  Seven zone 
vacuum (VF)  

  A few  μ m    <     e     <    50    μ m 
 Observation of  e  

fl uctuations on one 
completely dewetted 
ingot 

 Strong surface striations.  

  Axial spacing of 
striations and their 
amplitude increase 
along the dewetted 
part: 0.4   mm up to 
3   mm and from 
1 – 2    μ m to 7 – 8    μ m 
respectively.  

   [Schweizer 
2002 - 2]   

  (111) Ge:Ga 
  ≈ 7    ×    10 18    at. cm 3   

  Translation - free 
 5   mm/h 
  G    =   20   K/cm  

  24 - zone UMC    A few  μ m    <     e     <    50    μ m 
 Dewetted regions up to 

100 – 200    μ m on 
attached - grown 
crystals in open -
 bottom p - BN tubes  
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   Feed material 
 Seed crystal  

   Crucible 
 Fill atmosphere  

   Crystal and 
feed 
dimensions  

   Method and growth 
rate 
 Thermal conditions  

   Furnace     Results: dewetted length 
( I ), gap thickness ( e ) and 
surface morphology  

   Crystallinity and 
relevant observations  

   Reference  

  Ge:Sb 
 up to 

1.5    ×    10 20    cm  − 3   

  Porous graphite 
with treated 
surfaces: 
turned, 
polished and 
oxidized 

 Flowing Ar: slow 
and fast rates 
(0.095 and 
1.90   l/min) 

 1.35   atm Ar 
pressure  

   Ø    =   38.1   mm 
  L    =   58   mm 
 Two seed 

geometries: 
 5    ×    5    ×    15   mm 3  

prismatic, 
and 
cylindrical 
with the 
same  Ø  as 
crystal  

  VB modifi ed: Use of 
a baffl e heater to 
supply heat 
axially over the 
growth interface 
(AHP) 

 3 – 20   mm/h 
  G    =   ?  

  Three heating 
zones. Axial 
Heat 
Processing 
technique 
(AHP).  

  Conical geometry: all 
crystals grew attached 

 Cylindrical: 
 Fast Ar fl ow rates: all 

crystals grew 
attached 

 Slow fl ow rates and 
Ar pressure: 
complete detached 
growth whenever 
GeO 2  fi lm is 
formed on Ge 
melt. Gap size is 
constant  

   Δ  P    =   0 because of 
graphite porosity 

 GeO 2  fi lm is off - white 
and deposited 
inside crucibles 

 Higher growth 
velocity leads to 
detached growth 
(narrower gap) 

 Melt/crucible 
interaction: 
formation of Ge – C 
mechanical 
bonding on 
roughened graphite 
surfaces for 
attached growth  

   [Balikci]   

  Single crystal 
Ge:Ga  

  Smooth or 
sandblasted 
silica: 
uncoated, 
graphite or BN 
coated 

 p - BN tube fi tted 
inside silica 

 Annealed at 
800 - 900    ° C 
under dynamic 
vacuum 

 Backfi lled with 
 ∼ 100   mbar of 
4%H 2  and 
96% Ar  

   Ø    =   12   mm 
  L    =   75   mm  

  VB. Use of two 
chambers 
separated by melt 
height. Outer 
chamber 
connected to a 
 Δ  P  gauge and a 
vacuum/
backfi lling gas 
system. Inner 
(crucible) to  Δ  P  
and absolute 
pressure gauge 

 5   mm/h 
(solidifi cation rate 
7.5   mm/h) 

  G    =   15    ° C/cm at 
950    ° C  

  Two heating 
zones with 
active 
control 
pressure.  

  Silica: occasionally 
partly dewetted for 
 Δ  P    =   a negative few 
to  ∼ 0   mbar with  e    =   0 
up to 60    μ m 

 Graphitized: attached 
for  Δ  P   ∼ 0 – 30   mbar 
and  e    =   0 

  BN  coating: attached for 
 Δ  P   ∼ 0 – 45   mbar and 
 e    =   0 

 p - BN: 
 Attached for 

 Δ  P     <     − (40 – 50) 
mbar and  e    =   0 

 Dewetted for 
 Δ  P     <     − (30 – 40) to a 
few mbar and  e  up 
to 15    μ m 

 Mostly dewetted for 
 Δ  P     <     − (15 – 1)   mbar 
and e   =   0 to 
10 – 60    μ m 

 Smooth and shiny 
surface with presence 
of microfacets for 
dewetted portions  

  Dewetting is 
successful in a 
wide range of 
negative  Δ  P  with 
p - BN crucibles 

 Melt run - down is 
observed at the 
growth beginning 
in ampoules with 
  θ     +     α      <    180    °  and 
initial  e  between 60 
and 100    μ m 

 Dewetted growth is 
possible with an 
appropriate growth 
procedure for 
BN - coated silica 
crucibles 

 BN coating is not 
optimized 

 Good agreement 
between 
experimental results 
and stability 
analysis based on 
Duffar  et al.  model.  

   [Palosz]   
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   Feed material 
 Seed crystal  

   Crucible 
 Fill atmosphere  

   Crystal and 
feed 
dimensions  

   Method and growth 
rate 
 Thermal conditions  

   Furnace     Results: dewetted length 
( I ), gap thickness ( e ) and 
surface morphology  

   Crystallinity and 
relevant observations  

   Reference  

  Polycrystalline 
Ge:Ga 

 10 18    cm  − 3  
 Undoped  〈 111 〉  

Ge  

  Open - top p - BN 
crucibles 
sealed in silica 
ampoule 

 Conical geometry 
transition from 
round seed to 
cylindrical feed 

 Ar: 3    ×    10 4    Pa 
and 1    ×    10 4    Pa  

   Ø    =   2 in 
  L    =   45 – 60   mm  

  VGF. Three different 
temperature 
profi les to obtain 
small positive  Δ  P  
values 

 2.8   mm/h 
  G  - ?  

  Seven heater    Slight overpressure in 
the gap ( T  top  
decreased): 

 Partial dewetting on the 
seed 

 Oval - shaped areas 
caused by formation 
of bubbles. Almost 
the whole conical 
part grew dewetted 

 Large dewetted areas of 
several cm 2  in the 
cylindrical part with 
 e  ∼ 10 – 80    μ m 
separated by elevated 
islands 

 Initial  Δ  P     ≥     P  hyd  ( T  bottom  
increased): dewetting 
occurs on seed with 
 e  of up to 300    μ m. 
Gap vanishing after a 
few mm.  

  s/l interface defl ection 
is lower in case of 
dewetted growth 
leading to a 
decrease of thermal 
shear stress 

 Dewetting is unstable 
in the region of 
changing crystal 
shape  

   [P ä tzold]   

  Ge 1 −    x  Si  x   
 (0    <     x     <    12) 
 Ge  

  Closed - bottom 
and open p - BN 
sealed in silica 
glass ampoule 

 600   mbar Ar 
containing 2% 
H 2   

   Ø    =   12   mm 
  L    =   65 – 80   mm 
  L  seed     ≈    20   mm  

  VB with pressure 
difference ( Δ  P ) 
controlled by 
decreasing  T  
above the melt 

 0.2 and 0.3    μ m/s 
  G     ≈    35   K/cm  

  Resistively 
heated 
furnace with 
seven zone 
heaters  

  One sample is 
considered 
completely dewetted 
( l  ∼ 70    μ m) 

 Shininess and partial 
roughness of 
dewetted surface 

 A few areas ( < 1   mm 2 ) 
with attachment 

 Dewetting occurs at the 
end of growth for 
open - bottom 
ampoules  

  Effectiveness of  Δ  P  
control 

 All dewetted or 
partially dewetted 
crystals slid out of 
the p-BN ampoules  

   [Volz]   

   EPD, etch pit density; VB, vertical Bridgman.   

Table 6.5 (continued)
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  Table 6.6    Dewetted crystal growth experiments on the ground for antimonides 

   Feed material 
 Seed crystal  

   Crucible 
 Fill atmosphere  

   Crystal and feed 
dimensions  

   Method and 
growth rate 
 Thermal 
conditions  

   Furnace     Results: 
dewetted length 
( l) , gap 
thickness ( e ) 
and surface 
morphology  

   Crystallinity and 
relevant 
observations  

   Reference  

  InSb    Silica     Ø    =   14   mm    Bridgman 
Stockbarger 
8   mm/h 

  G  between 
5    ° C/cm and 
 ∼ 100    ° C/cm  

  Two heating 
zones  

   e    =   ?; 
 l    =   10   mm 

 Ridges, 
roughness  

  Oxygen 
contamination 
has been 
identifi ed.  

   [Duffar 
2000]   

  GaSb 
 Single crystal 

seed  

  Pure silica 
ampoule 
fi lled with 
10 – 30   kPa 
Ar  

   L    =   100   mm 
  Ø    =   14   mm 
  L  seed  ∼ 30 – 40   mm  

  VB with a third 
furnace heating 
an inert gas 
volume at the 
bottom: 
150 – 200    ° C 

 3    μ m/s 
 10    ° C/h  

  Three heating 
zones with 
external 
pressure 
controller  

   e     ≤    10    μ m 
  l    =   40   mm 
 Dewetted 

surfaces are 
shiny  

  Neither twins 
nor grains 
observed 
(single 
crystals) 

 Dislocation 
density of 
grown crystals 
is equal to 
that of seed. 
=10 4    cm  − 2  

 Grain 
nucleation for 
melt run -
 down and air 
introduction  

   [Duffar 
2001 - 1]   
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   Feed material 
 Seed crystal  

   Crucible 
 Fill atmosphere  

   Crystal and feed 
dimensions  

   Method and 
growth rate 
 Thermal 
conditions  

   Furnace     Results: 
dewetted length 
( l) , gap 
thickness ( e ) 
and surface 
morphology  

   Crystallinity and 
relevant 
observations  

   Reference  

  Polycrystalline 
InSb:Ga 
16   g 
containing 
1   ppm C 
and O, and 
0.1% Ga.  

  Fused silica 
 Coated with 

hexagonal 
BN 

 Uncoated 
 Filled with 10, 

20, 40 or 
80   kPa of 
Ar   +   10%H 2 .  

   Ø    =   9   mm with 
conical 
bottom 

  L    =   4 – 6   cm  

  VB 
 5 and 10   mm/h 
  G   ∼ 20 – 30   K/cm 

depending on 
temperature 
settings 

 

  Two - zone VB 
furnace 

 Temperature 
profi le 
resulting 
from 
variations 
of spacing 
between 
heating 
wire turns  

  Uncoated: 
completely 
attached. 
Surfaces 
smooth and 
shiny with 
gas bubble 
indentations 

 Coated: 
 e    =   8    μ m, 
20% of 
surface 
totally 
dewetted. 
Dull areas 
dewetted 
with some 
tiny facets 
and steps, no 
bubble 
indentations 

 Neither small 
attached 
areas nor 
striations 
have been 
observed  

  Attached ingots 
partially or 
entirely 
covered with 
rough brown 
or black 
surface 
(presumably 
oxide, Ga 2 O 3 ) 

 Best results with 
20   kPa of fi ll 
atm. and 
convex 
freezing 
interface 

 Freezing rates 
induced a 
small 
difference  

   [Wang 
2004]   

Table 6.6 (continued)
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  Table 6.7    Dewetted crystal growth experiments on the ground for cadmium telluride. 

   Feed material 
 Seed crystal  

   Crucible 
 Fill atmosphere  

   Crystal and 
feed 
dimensions  

   Method and 
growth rate 
 Thermal 
conditions  

   Furnace     Results: dewetted 
length (l), gap 
thickness (e) and 
surface 
morphology  

   Crystallinity and 
relevant 
observations  

   References  

     CdTe 
Polycrystalline     

     Piece of pure Cd 
as a vapor 
counter - pressure 
to P hyd  of melt.     

      Ø    =   
14 mm  

  L   =   ?     

     VB with a third 
furnace  

  1.8 to 3   mm/h  
  2    ° C/h during 

37   h     

     Three 
heating 
zones 
with 
active 
control 
pressure     

     Dewetting is 
successful in 
the fi rst phase 
of growth 
process.  

  Non constant gap 
from 10 to 
60    μ m 
(maximum in 
the beginning). 
Gap disappears 
at 25 – 30 mm 
from the seed.  

  Twins and 
large - scale 
inclusions on 
attached areas.     

     Single crystals have 
been grown on 
polycrystalline or 
twinned seeds.  

  Interface shape is 
convex during 
dewetted growth.  

  Concave curvature 
initiates its 
interruption.  

  Better crystallinity 
and high 
resistivity are 
obtained in 
dewetted areas.  

  Absence of 
deposition on 
the ampoule 
walls.     

   [Duffar, 
2004 - 1]  
 [Fiederle, 
2004 - 2]   

     CdTe:Ge 
 Single crystal     

     Idem  
  0.7    ° C/h, then 

5    ° C/h and 
fi nally 
100    ° C/h: 
47   h     

     CdTe 
 80   g single 
crystal with 
twins     

     0.7     ° C/h and 
5    ° C/h: total 
173   h     
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  Table 6.8    Dewetted crystal growth experiments on the ground for nonsemiconductor materials 

   Feed 
material 
 Seed 
crystal  

   Crucible 
 Fill atmosphere  

   Crystal and 
feed 
dimensions  

   Method and 
growth rate 
 Thermal 
conditions  

   Furnace     Results: dewetted length 
( l ), gap thickness ( e ) and 
surface morphology  

   Miscellaneous and 
relevant 
observations  

   Reference  

  Water 
 Deionized 

or 
 Doubly 

distilled 
or 

 HPLC  

  Uncoated and 
clean Pyrex 
(  θ   ∼ 0    ° ) 

 Coated with 
silicone oil 
(  θ   ∼ 80    ° ), or 

 Tefl on (  θ     =   121    ° ) 
or 

 Tefl on with 
powder 
(  θ     =   146    ° ) 

 All bottom sides 
are closed 

 Air or CO 2  is 
bubbled through 
the water  

      Ø    =   5, 10 
and 20   mm  

   L    =   12   cm  
  Bottom 

immersed 
5 – 10   cm 
into cold 
bath     

  VB apparatus 
 From 0.4 to 

100   mm/h 
 Sometimes 

ampoule 
rotated 
slowly up 
to 10   rpm 

  G  ∼ 0.5    ° C/mm  

  Nichrome -
 wire 
around a 
silica tube 
and a 
refrigerated 
bath at the 
bottom  

  3 kinds of regular 
bubbles formed on 
the wall: 

 Isolated gas bubbles 
uniformly distributed 
along the ampoule 
wall 

 Long, narrow 
cylindrical gas tubes 
periodically formed 
around the periphery. 
Fraction of detached 
 ∼ 60% (air) 

 Wider gas tubes with 
CO 2  saturated water 
at 1   atm.: detachment 
is  ∼ 85% 

 Wide gas tubes with a 
rough nonwetting 
coating. 95% 
detachment achieved  

  Gas bubbles and 
tubes do not 
propagate 
around the 
periphery of the 
freezing 
interface. They 
grow on the 
ampoule wall 
and not in the 
interior 

 Freezing rate 
infl uences the 
interface shape 
and the 
convection 

 Slow rotation 
decreases the 
transformation 
of gas bubbles 
to tubes  

   [Wang 
2002 - 2]   

   HPLC, high - pressure liquid - chromatography.   
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     Figure 6.20     (a) VB confi guration on the ground with different methods of controlling the 
pressure difference across the meniscus: (a) use of an external pressure controller   [Duffar 
2000]  ; (b) differential and absolute pressure gauges with a vacuum/backfi lling gas system 
connected to both closed gas volumes separated by the melt   [Palosz]  ; (c) manipulating 
the thermal fi eld inside the furnace or the closed ampoule to decrease the hot pressure or 
increase the cold pressure   [Duffar 2001 - 3]  .  
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and video equipment enabled the solid – liquid interface region to be viewed throughout 
the melting and solidifi cation phases  [Sylla 2008 - 2] . This series of experiments made it 
possible to validate a number of hypotheses, including the existence of the liquid menis-
cus, as can be seen in Figure  6.21 , and its control by manipulating the gas pressure in the 
ampoule.   

 A very important peculiarity of terrestrial dewetting is the self - stabilizing pressure 
difference: it was observed that, once the process has begun, it is no longer necessary to 
adjust the pressure difference. It appears that, as the hydrostatic pressure decreases when 
growth proceeds, the pressure at the bottom decreases, or the pressure at the top increases, 
in such a way that the liquid meniscus remains unchanged throughout growth. The mecha-
nism is not yet totally understood, but rarely gas was observed passing upwards between 
the liquid and the crucible. Surprisingly, it looked like a thin gas layer rather than a gas 
bubble. 

 The main parameters that have been identifi ed to enhance the occurrence of dewetting 
are described in the following sections. 

  6.3.3.1   Crucible Material and Wetting Properties of the Melt 

 It is well known from sessile drop measurements  [Harter]  that the values of the contact 
angle of the III – V, II – VI and Ge materials increase respectively with the following 

SEED 
(SOLID)

LIQUID

LIQUID
LIQUID

LIQUID

SEED 
(SOLID)

     Figure 6.21     Video snapshots of the solid – liquid interface region during dewetted growth 
of  GaSb  in an ampoule fi lled with air   [Sylla 2008 - 2]  . 1, meniscus stabilization at the end of 
melting by an increase of the gas pressure at the cold side; 2, beginning of dewetted 
growth; 3 and 4, dewetted growth with a stable meniscus. White arrows show the 
dewetted solid surface of the ingot.  
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crucible materials: SiO 2 , C, BN and p - BN. Consequently most of the experiments carried 
out on the ground with the use of p - BN crucible material led to dewetting. Values of the 
apparent contact angle,   θ   app , around 180    °  were measured by  [Palosz]  for Ge on p - BN. 
Single crystals of CdTe, Ge, Ge 1 −    x  Si  x  , GaSb and InSb were grown thanks to a total dewet-
ting. It is therefore recommended to use a liquid/crucible material couple with a weak 
work of adhesion ( W  a ). 

 Another critical wetting parameter is the growth angle that corresponds to the contact 
angle of a melt on its own solid under dynamic growth conditions (see Chapter  1 ). The 
same conclusions can be drawn for the effect of the growth angle  α , which must be larger 
than 0    °  (a condition satisfi ed by all semiconductor materials).  

  6.3.3.2   Value of the Applied Pressure Difference Across the Meniscus 

  [Palosz]  and co - workers have successfully obtained dewetting by the method described 
in Figure  6.20 b. Their results are impressive because they demonstrate in practice how 
the values of the pressure difference across the meniscus,  Δ  p  m , infl uence the formation 
of a constant gap. These values are defi ned by the following expression:

   Δp p gH pm h l m c= + −ρ  

with  p  h  and  p  c  the gas pressures in the hot and cold volumes,   ρ   l  the liquid density,  g  the 
acceleration due to gravity and  H  m  the height of the melt column. It seems that  Δ  p  m  should 
be of the order of a few millibars to stabilize the dewetted growth.  
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     Figure 6.22     Ge:Ga crystals grown in a BN - coated silica crucible (a) and in p - BN sleeves 
(b). The corresponding measured surface profi les and applied pressure differences during 
growth are plotted  (Reprinted with permission from  [Palosz] , copyright (2005) Elsevier Ltd) .  
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  6.3.3.3   Sample and Growth Procedure 

 Grown crystals vary in diameter from 9   mm to 50   mm. The successful dewetted growth 
of large single crystals proves its real potential for producing high - quality crystals 
 [P ä tzold] . Although larger crystal dimensions seem to be feasible, the geometrical shape 
of the seed and grown crystal is another factor infl uencing the steady state of dewetted 
growth. For the detached growth of 2 ″  Ge crystals  [P ä tzold] , a classical Bridgman crucible 
with seed well was used. The feed material consisted of an upper part, 2 ″  in diameter, 
joined to the seed by a conical part. Large dewetted areas of several square centimetres 
were observed in the upper cylindrical part separated by elevated islands, whereas the 
seed was partially dewetted. As already mentioned, according to the authors the process 
seemed to be self - controlled. Dewetting was reported to be unstable in the region of 
changing crystal shape. In a similar way, for Sb - doped Ge  [Balikci]  studied the effect of 
conical and cylindrical geometry on the dewetting. All crystals grew attached to the 
conical crucibles, but the use of a cylindrical crucible led to completely dewetted growth 
with a specifi c growth atmosphere. 

 The growth procedure also determines the occurrence of dewetting. It has been shown 
that the seeding process is an essential step to start dewetting  [Sylla 2008 - 2] . However, 
for the crystal growth of Ge:Ga dewetted growth was obtained when the seed was com-
pletely molten, whereas crystals grew attached if growth started on the seed/feed region 
 [Palosz] . Melt run - down is also a problem to be overcome at the beginning, because it 
can hinder the dewetting from starting. Seed diameter is always less than crucible diam-
eter and the initial gap should not be too large to avoid melt run - down. It is recommended 
not to exceed a 60    μ m gap width  [Sylla 2008 - 2] . 

 Lastly Wang, Wilcox and Regel performed experiments on the freezing of water and 
studied the role of propagation of gas bubbles as a starting event in detached solidifi cation 
 [Wang 2002 - 2] . However, the observed gas bubbles and gas tubes did not propagate 
around the periphery of the freezing interface, so this phenomenon must be excluded as 
a likely mechanism for the initiation of detached solidifi cation (especially for experiments 
without seeding procedure). In the case of a crystal initially stuck to the crucible it is 
believed rather that spontaneous detachment due to the stress caused by thermal contrac-
tion (see section  6.1.3 ) is at the origin of subsequent dewetting. 

 Finally, it seems that the dewetting does not require a seed. However, the use of a seed 
makes it easier to control the stability of the meniscus and the start of contactless growth.  

  6.3.3.4   Growth Atmosphere and Pollution 

 The growth atmosphere is a critical factor in the crystal growth process since its interac-
tion with the solid and liquid phases infl uences the melt properties (wetting angle) and 
melt – crucible interactions, and the stoichiometry of grown crystals. All experiments 
require an inert growth atmosphere (except those involving stoichiometry control due to 
a volatile element for a compound semiconductor). Argon (Ar) with low hydrogen content 
(2 – 10%) is the gas commonly used to fi ll the quartz - glass ampoule just before sealing. 
The pressure level seems to be an important factor: the Ar pressure range is 10 – 80   kPa. 

 An interesting experimental study was performed by  [Wang 2004] . The infl uence of 
operating conditions was determined to achieve detached solidifi cation of InSb in their 
experimental set - up. The pressure of the forming gas (Ar - 10% H 2 ) varied from 10 to 
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80   kPa. At under 10   kPa the ingot grew attached and had a totally rough surface. From 
40 to 80   kPa, detachment was not conspicuous although some partially detached sections 
were observed. The best results were obtained at 20   kPa. 

 Purity of the growth atmosphere is another critical parameter. A number of terrestrial 
experiments have proved the involvement of oxygen activity in enhancing the dewetting 
process  [Balikci, Duffar 2000, Sylla 2008 - 1] . Balikci  et al.  have grown Ge in graphite 
crucibles under various Ar atmosphere and gas fl ows. The gap width was about 10    μ m 
along the entire surface and can be attributed to nonadhesion phenomena, so that dewet-
ting is not ascertained for these experiments. Anyhow they clearly reported nonadhesion 
(or dewetting) under oxidizing conditions and attachment under high Ar fl ow rate, when 
oxidation was unlikely to occur. 

 Sylla performed dedicated experiments on antimonide growth in order to study the 
effect of the gas on dewetting, with a series of atmospheres including air, regular polluted 
Ar, pure Ar, Ar   +   H 2 , purifying getters and vacuum  [Sylla 2008 - 2] . It was unambiguously 
shown that any occurrence of dewetting is impossible under vacuum. The use of a reduc-
ing or very pure atmosphere always prevented dewetting in the GaSb – SiO 2  system. On 
the contrary, presence of small or important amounts of oxygen promoted dewetting. 
Surprisingly this was not the case for InSb – SiO 2 , for which dewetting was never obtained, 
whatever the conditions. In the same publication, a thermodynamic equilibrium analysis 
of the chemical compounds likely to exist in the quaternary Ga – Sb – Si – O and In – Sb – Si – O 
systems led to the conclusion that the Ga 2 O 3  is stable above the melting point, whereas 
In 2 O 3  is less stable and is likely to decompose a few degrees above the melting point. It 
is then argued that the Ga 2 O 3  acts as a layer on the liquid meniscus with the effect of 
increasing the apparent growth angle and promoting dewetting, which cannot be the case 
for InSb (Figure  6.23 ). In this latter case, the quantity of dissolved oxygen  X  O  in the liquid 
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     Figure 6.23     Schematic view of (a) the case of InSb where the In 2 O 3  oxide is less stable 
above the melting point and oxygen is essentially dissolved in InSb and (b) the case of 
GaSb where the Ga 2 O 3  oxide layer is more stable.  
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from the gas or from the silica crucible can increase the wettability of the liquid at the 
liquid/SiO 2  interface.    

  6.3.3.5   Growth Velocity 

  [Schweizer 2002 - 2]  studied the stability of detached - grown Ge single crystals. One com-
pletely detached ingot was obtained. The measured profi les showed fl uctuations of gap 
thickness, giving strong surface striations. These fl uctuations can be explained by assum-
ing different translation rates of the crucible – melt – gas and crystal – melt – gas tri - junctions. 
According to the authors, constant gap thickness and stable growth might be reached 
when the two velocities are equal. 

 However,  [Sylla 2008 - 1]  demonstrates by  in situ  observation that the growth velocity 
does not affect the occurrence of dewetting. Furthermore, a space experiment  [Fiederle 
2004 - 1]  has also shown that a high growth velocity (almost quenching) leads to dewetting 
as well.  

  6.3.3.6   Surface Morphology 

 The surface morphology of Earth - grown crystals is similar to that of space - grown crystals. 
When detached growth occurs, the surface shows ridges and facets testifying the free 
growth of the melt. Figures  6.21  and  6.22  show facets and small bridges (equivalent to 
ridges) on dewetted surfaces.    

  6.3.3.7   Interface Shape 

 Dewetted parts of ingots have shown a convex interface (seen from the liquid) whereas 
the attached growth part is characterized by a concave interface on the ground  [Chang, 
Fiederle 2004 - 2, P ä tzold] . 

 Dewetted growth of high - resistivity CdTe showed that dewetting was successful in the 
fi rst phase of the growth process with a convex solid – liquid interface  [Fiederle 2004 - 2] . 
Photoluminescence mapping revealed instability of the interface shape during growth. 
According to the authors, the concave curvature initiates the dewetting interruption. 

 The effect of dewetting on the defl ection of the solid – liquid interface and the thermal 
shear stress has been studied for detached growth of 2 ″  Ge crystals  [P ä tzold] . The inter-
face in the attached - grown reference crystal is concave with a maximum defl ection of 
7.5% with respect to the radius of the seed. Detached seeding gave a fl at or even slightly 
convex interface. For the grown crystals, the maximum defl ection was 9.0% under 
attached conditions and 7.6% under detached conditions. The author performed a numeri-
cal simulation of these experiments with an ideal gap extending along the crystal – crucible 
boundary, the width of which was modelled with a value of 200    μ m in the seed and 50    μ m 
in the cylinder, in agreement with the experimental results. The numerical results were 
in good qualitative agreement with the experiments. Attached growth is characterized by 
a concave interface with relatively strong defl ection. For dewetted growth, this defl ection 
is lowered and at the edge of the seed, a transition to a convex - shaped interface occurs 
(an S shape). 

 On the basis of the analysis presented in section  6.1.1 ,  [Epure 2008]  performed a sys-
tematic study of the effect of the gap on the interface curvature. The dependence of the 
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interface curvature on the gap thickness, crucible thickness, and on the liquid, solid and 
crucible thermal conductivities is studied analytically and compared with results obtained 
from numerical simulations using the fi nite element method. For the analytical study, the 
thermal conductivity of the gas in the gap is considered negligible compared to the other 
conductivities. The interface defl ection varies as follows:
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with  A  s ,  A  g  and  A  c  the surfaces of the solid, gap and crucible respectively. This formula 
is similar to Equation  (6.3) ; the only difference is that now the surfaces of the liquid 
and the gap appear because the surface of the liquid is different from the surface of 
the solid, because of the existence of the crystal – crucible gap. The numerical analysis 
is in agreement with this simple expression and shows that the shape of the interface 
depends on the width of the gap (Figure  6.24 a), the thickness of the crucible, and on the 
thermal conductivities of the liquid, solid, gas (Figure  6.24 b) and crucible. As expected, 
the curvature of the interface decreases when the crystal – crucible gap increases. An 
interesting result is that, for a large enough gap, the curvature of the interface may 
be reversed.   

 If the latent heat release is taken into account, the interface curvature can be estimated 
by  [Epure 2010] :
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Recently, numerical simulations have been performed in order to investigate the shape 
of the melting isotherm close to the meniscus  [Stelian 2009 - 1, Stelian 2009 - 2] . The 
authors demonstrated that depending on the heat transfer confi guration in the furnace and 
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     Figure 6.24     Nondimensional curvature of the solid – liquid interface  α  as function of the 
ratio of the surfaces of the gap and crystal (a) or of the ratio of thermal conductivities of 
the liquid and vapour (b)  (Reprinted with permission from  [Epure 2008] , copyright (2008) 
Elsevier Ltd) .  
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ampoule wall, the meniscus may in fact be undercooled; it is then likely to solidify and 
thus prevent dewetting from occuring. This might also be an explanation of the ridges 
and of the partial dewetting observed on the sample.   

  6.3.4   Theoretical Models of Dewetting 

 Figure  6.25  schematizes the different confi gurations leading to dewetting for which a 
theoretical explanation has been proposed. This classifi cation is based fi rst on the nature 
of the crucible: crucibles that are macroscopically rough, and smooth crucibles. This latter 
group is subdivided into two groups that are differentiated by the sum of the Young or 
apparent contact angle,   θ   Y  or   θ   app , and the growth angle,   α  , of the liquid semiconductor. 
The notations 1g and  g    =   0 mean, respectively, presence and absence of gravitational 
acceleration (i.e. experiments on Earth or in space). All these models are based on an 
idea from Zemskov who postulated the existence of a liquid meniscus between the 
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     Figure 6.25     Overview of the different confi gurations leading to the dewetted Bridgman 
process  .  
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solid – liquid interface and the crucible in order to explain the decrease of crystal diameter 
that he observed after a space experiment  [Zemskov] . However, he never considered the 
case of a stable gap between a crystal with constant diameter and the crucible.   

  6.3.4.1   Rough Crucibles (Model 1) 

 The explanation of dewetting with rough crucibles was developed mainly by  [Duffar 
1990] . Dewetting is possible when the liquid does not penetrate into the cavities of the 
rough crucible surface, i.e. when the necessary condition of composite wetting is satisfi ed 
between the melt and the crucible roughness. Figure  6.26  illustrates composite wetting 
where the roughness is simulated by a sawtooth curve (sharp peaks). The radius of the 
liquid surface curvature,  R , is given by the Laplace equation:

    Δp R= γ ,     (6.23)  

where  Δ  p  and   γ   are respectively the pressure difference and the surface tension.   
 On the ground, the hydrostatic pressure gives:

    R gh= γ ρl ,     (6.24)  

where   ρ   l  and  h  are respectively the specifi c mass and the height of the liquid. Under 
microgravity conditions, this pressure is negligible and a very large radius of curvature 
will be assumed compared to the characteristic roughness dimensions ( R     >>     l ). The liquid 
surface is then assumed to be fl at. The condition of composite wetting is satisfi ed by:

    l R ≤ − −( ) ( )2 6 26cos . ,θ β see Figure     (6.25)  

where  l  is the distance separating the liquid – crucible punctual contacts. 
 In microgravity, it is easier to obtain composite wetting thanks to the relatively large 

value of  R . The condition becomes:

    β θ<= − π 2 .     (6.26)   

l

R

Vapour

v
Liquid

Crucible

b

     Figure 6.26     Composite wetting for sharp roughness  (Reprinted with permission from 
 [Duffar 1990] , copyright (1990) Elsevier Ltd) .  
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 Analytical solutions were developed for both sharp and rounded (sinusoidal) peaks in 
microgravity and on the ground. Assuming a planar front solidifi cation and a constant 
growth angle between the solid and the liquid, the calculated solidifi cation trajectory 
corresponds to the equation of an infi nite spiral for sharp peaks in polar coordinates under 
microgravity conditions (Figure  6.27 ):

    ρ θ α= −( )[ ]l exp tan .π     (6.27)     
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     Figure 6.27     Solidifi cation trajectory under microgravity conditions for a crucible with 
sharp roughness at four successive times, a, b, c, and d  (Reprinted with permission from 
 [Duffar 1990] , copyright (1990) Elsevier Ltd)   .  
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 On the ground, the solution also corresponds to the equation of an infi nite spiral:

    ρ θ α= +( )[ ]2R kexp tan .     (6.28)   

 These solutions were obtained with the initial conditions  d    =    l  and   θ     =    π . 
 It was concluded that, as soon as composite wetting conditions are satisfi ed, detachment 

of the liquid takes place regardless of the growth angle value. This confi guration was not 
widely used on Earth because the hydrostatic pressure forces the liquid into the crucible 
wall cavities. 

 There is a good agreement between the theoretical prediction of model 1 and the results 
of the space experiments TEXUS 31 and 32, Spacelab D2 and EURECA  [Duffar 1995, 
Duffar 1996, Duffar 1998]  because the measured profi le corresponds to the computed 
one.  

  6.3.4.2   Contamination in a Smooth Crucible with  θ    +    α     >    180    °  Under Microgravity 
(Model 2) 

 Under microgravity conditions, the free surface of the melt adopts a concave curvature 
viewed from the liquid because the melt contact angle is higher than 90    ° . This curvature 
fi xes the pressure inside the liquid and the same curvature of the liquid meniscus joining 
the crystal – melt – vapour and the crucible – melt – vapour triple lines. Because of the negli-
gible hydrostatic pressure, the meniscus is then concave (viewed from the liquid). 

 Figure  6.29  shows the confi guration of the melt, the solid, the vapour and the meniscus 
in an axisymmetric system. It is obvious that a concave meniscus must satisfy the geo-
metrical condition   θ     +     α      >    180    ° . However, no semiconductor has a Young contact angle 
higher than 150    °  at equilibrium when these values are obtained with the sessile drop 
measurement method. Moreover, except for InP, the growth angles of semiconductor 
melts are less than 30    ° . It is therefore impossible to satisfy this geometrical confi guration 
if the equilibrium wetting parameters are considered. The concept of this second model 
relies on this inconsistency.  [Duffar 1997 - 2]  suggested a possible chemical contamination 
effect that modifi es the contact angle by increasing it artifi cially. Indeed, the lengthy 
storage of the cartridges before the spacecraft launch could give rise to feed material 
contamination, e.g. by the outgassing of residual gases in a silica ampoule.   

  [Harter]  and co - workers have performed several sessile drop experiments with III – V 
semiconductor materials on different kinds of substrates (ionocovalent oxides, graphite 
and BN). They observed reproducibly that the initial shape of the drop has a high contact 
angle value on oxide substrates. After applying some mechanical vibrations, the contact 
triple line moves to reach an equilibrium position which is considered as the Young 
contact angle with an ideal substrate (Figure  6.28 ).   

 This observation indicates that the droplet spreading kinetics could be hindered by the 
formation of a thin oxide layer on its liquid surface. Such a thin layer might modify the 
surface energies and artifi cially increase the contact angle, which then no longer does 
corresponds to a Young contact angle. In most of the crystal growth experiments, it is 
therefore assumed that the contact angle of the melt on the crucible wall is an apparent 
contact angle because the mandatory conditions of an ideal substrate (nondeformable, 
smooth, clean and homogeneous) are not all fulfi lled, especially under microgravity. 
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     Figure 6.29     Growth confi guration under microgravity conditions with   θ     +     α      >    180    ° .  

 After analysing the space experimental results under microgravity conditions, 
Duffar and co - workers have proposed a theoretical explanation for dewetting in smooth 
crucibles  [Duffar 1997 - 2] . The major assumptions about the model are: (i) the dewetting 
results from the common formation of a constant gap thickness,  e , and a liquid meniscus 
joining the two triple lines (crucible – liquid – vapour and crystal – liquid – vapour); (ii) both 
triple lines move at the same velocity during the contactless growth. This model aims to 
predict the gap thickness  e  as a function of the different geometrical and physical 
parameters. 

 The confi guration is schematized in Figure  6.29  with a constant gap and a concave 
meniscus. The free surfaces are represented by two arcs AB (meniscus) and PQ, which 
are sectors of a sphere. In this model, either both gas volumes are connected, or the 
crucible is opened, such that  p  h    =    p  c . According to the Figure  6.29 , the gap thickness is 
given by:

    e r= +( )a
cos cos

cos
.

α θ
θ

    (6.29)   

(a)

qapparent qYoung

(b)

     Figure 6.28     Observation of a GaSb sessile drop on an Al 2 O 3  substrate. The residual 
oxygen in the vapour is supposed to change the melt/substrate interaction and the value 
of the contact angle: (a) measurement of a metastable apparent contact angle   θ   app     ≅    160    °  
just after melting; (b) measurement of an equilibrium contact angle after applying 
mechanical vibration   θ   Y    =   112    °   (Reprinted with permission from  [Harter] , copyright 
(1993) Elsevier Ltd) .  
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 Figure  6.30  shows the variation of  e  as a function of the wetting parameters   θ   and   α   
for a GaSb crystal in a crucible with an internal diameter of 11   mm. The calculated values 
of  e  are consistent only up to a few hundreds of micrometres (200    μ m maximum). It 
appears that the gap thickness value is proportional to the crystal diameter.   

 The contact angle   θ   may vary from 178 to 152    °  for   α   varying from 10 to 30    °  and a 
maximum gap thickness of 100    μ m. These values are much higher than the reported 
Young contact angle values. The authors assumed that the dewetting of a crystal in space 
and in an open crucible is possible only when the contact angle is artifi cially increased. 
They suggested that the chemical pollution is the source of increased   θ  , in order to explain 
the occurrence of dewetting under these specifi c conditions.  

  6.3.4.3   Pressure Difference in a Smooth Crucible with  θ    +    α     >    180    °  or 
 θ    +    α     <    180    °  (Model 3) 

  Microgravity.     Consider fi rst the system in Figure  6.29  where the two free gas volumes 
are disconnected. Experimentally, this corresponds to the use of a sealed silica ampoule 
where the liquid column acts as plug between both gas volumes so that  p  h     ≠     p  c , where  p  h  
is the gas pressure at the hot side and  p  c  the gas pressure at the cold (crystal) side. The 
expression of the gap thickness is in this case  [Duffar 1997 - 2] :
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     Figure 6.30     Variation of the gap thickness as a function of (  θ     +     α  )    −      π   for a GaSb crystal 
11   mm in diameter,  g    =   0,   θ     +     α      >    180    °   .  
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 Figure  6.31  shows the variation of the pressure difference ( p  h     −     p  c ) for a given gap 
thickness for an 11   mm diameter GaSb crystal under microgravity. Figure  6.32  illustrates 
the different meniscus shapes for various sets of both parameters values:   θ     +     α   and 
( p  h     −     p  c ).   

 When the values of ( p  h     −     p  c ) are negative ( − 4000 to  − 100   Pa) and   θ   is fi xed,  e  increases 
when the pressure  p  c  decreases. The meniscus is convex viewed from the liquid (Figure 
 6.32 ) and the sum   θ     +     α   is less than 180    ° . The values of  e  corresponding to the experi-
mental results ( e     <    100    μ m) correspond to negative values of ( p  h     −     p  c ). If   θ      >    162    ° , there 
is no geometrical solution (horizontal hatched area in Figure  6.31 ). 
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     Figure 6.31     Values of ( p  h     −     p  c ) recalculated from   [Duffar 1997 - 2]   to obtain a gap 
thickness  e  as function of  θ  for the growth of a GaSb crystal under microgravity 
(2 r c     =   11   mm,   γ   lv    =   0,45   J   m  − 2 ,   α     =   18    ° ).  
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     Figure 6.32     Various meniscus shapes during dewetting with different values of ( p  h     −     p  c ) 
and  θ    +    α  in a smooth crucible.  
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 When the value of ( p  h     −     p  c ) is positive (0 – 200   Pa) and   θ   is fi xed, the gap thickness 
increases with increasing ( p  h     −     p  c ). The meniscus is concave and the sum   θ     +     α   is greater 
than 180    ° . If   θ      <    162    ° , there is no geometrical solution (vertical hatched area in Figure 
 6.31 ). 

 The region of intermediate values of ( p  h     −     p  c ) ( − 80 to 0   Pa) is characteristic of a con-
vexo - concave meniscus. The meniscus shape adopts an S shape (Figure  6.32 ). For a given 
  θ  , the value of  e  decreases drastically with increasing ( p  h     −     p  c ). 

 Finally, the dewetting of a  ‘ clean ’  crystal for which the contact angle is   θ   Y  (and so for 
  θ     +     α      <    180    ° ) requires increasing the gas pressure at the cold side  p  c  (negative values of 
( p  h     −     p  c )) in order to obtain values of  e  comparable to those measured experimentally 
( e     <    100    μ m). When   θ     +     α      >    180    °  (contamination model 2), the pressure difference must 
be zero or slightly positive. Therefore dewetting occurs more easily, with a high contact 
angle, when the pressure difference is not controlled. It appears from Figure  6.31  that the 
dewetting is possible for materials with a zero growth angle and   θ     =   180    ° . This case 
would correspond to metal solidifi cation. However, so far no microgravity result has 
clearly shown dewetting of a metal.  

  Normal Gravity.     On Earth, the hydrostatic pressure due to the liquid height has to be 
taken into account. Different methods have been used experimentally in order to coun-
terbalance the hydrostatic pressure and create a stable meniscus (section  6.3.2 ). 
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     Figure 6.33     Stability diagram for the growth of InSb in a silica crucible. The grey area 
corresponds to stable growth condition for given radius  a  rc  of the crystal and pressure 
difference ( p  h     −     p  c ) (in the simulation, the hydrostatic pressure was 6327   Pa). The dotted 
lines represent the most stable condition, where  e  does not change with ( p  h     −     p  c ) 
 (Reprinted with permission from  [Duffar 2000] , copyright (2000) Elsevier Ltd) .  
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     Figure 6.34     Principle of the  ‘ detached solidifi cation ’  model: dissolved gases are rejected 
at the solidifi cation interface and transported towards the meniscus where they feed the 
gap.  

  [Duffar 2000]  calculated the shape of the meniscus by solving the Laplace differential 
equations representative of the phenomenon on Earth. These calculations made it possible 
to plot a diagram giving the pressure difference values as a function of the crucible radius, 
which furthermore fulfi ll the capillarity stability criteria of the meniscus (see discussion 
of stability in section  6.3.5  below). For an InSb crystal, the absolute calculated pressure 
difference ( p  h     −     p  c ) is very close to the value of the hydrostatic pressure. The difference 
is of the order of a few hundred Pa, due to the curvature of the meniscus. 

 Palosz and co - authors have also used this model in order to explain the dewetting of 
Ge in SiO 2 , BN and p - BN crucibles  [Palosz] . There is a good agreement between the 
experimental results and the model. 

 To conclude, the value of the applied pressure difference should be very close to the 
hydrostatic pressure.   

  6.3.4.4   Residual Gases:  ‘ Detached ’  Growth (Model 4) 

 This model was introduced by Wilcox and co - workers and is basically similar to the 
previous model, as gas pressures are also involved. It further assumes that the excess 
pressure comes from the residual gases present in the ampoule  [Wilcox 1995] . This 
explanation is based on the release of gas between the crucible and the sample at the level 
of the solid – liquid interface (the segregation coeffi cient  k  gas     <    1). The gas, previously 
dissolved in the sample, is expelled from the liquid at the level of the solidifi cation front, 
then transported towards the periphery by diffusion and capillary convection and fi nally 
released in the gap between the growing crystal and the crucible where it generates a 
pressure. Hence, a steady state with a constant gap width can be reached. 

 Steady state analysis has been studied by numerical solution of the hydrodynamic 
equations (Marangoni convection along the meniscus) and chemical species conservation. 
The numerical model is known as the  ‘ moving meniscus model ’  for detached solidifi ca-
tion  [Popov 1997 - 1]  (Figure  6.34 ). According to Wilcox  et al. :   

   a steady - state gap width is reached when the transport of volatile species across the meniscus 
equals that required to maintain a gas pressure satisfying the condition of mechanical equilibrium 
across the meniscus.   

 The authors obtain the following expression for the stationary gap:
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where  T  avg  is the mean temperature in the gap,  v  c  the growth rate,  p  m  the gas pressure at 
the hot side and  j  mol  the molar fl ux of gas through the meniscus. The leading parameters 
of the problem are the diffusion length  D/v  c , the gas pressure  p  m , the segregation and 
Henry coeffi cients of the volatile species,  k  and  H , and the capillary parameters   α  ,   θ   and 
  γ   1v . The main conclusions are as follows: 

   •      The calculated gap thickness is  ∼ 1   mm.  
   •      A low growth rate favours detachment and a high growth rate decreases the diffusion 

length and enhances backdiffusion in the bulk liquid.  
   •      A high vapour pressure of the dissolved species favours detachment. When it is too 

small, a stationary state cannot be reached. It is recommended to maintain the liquid at 
high temperature in order to enhance the dissolution of gas before growth.  

   •      The effect of Marangoni convection on the gap thickness is low.  
   •      The gap thickness increases for large values of   θ   and   α   because the meniscus is longer 

and more gas can feed the gap.    

 In another study  [Popov 1997 - 3] , the authors include the liquid buoyancy convection 
in the model and show that the curvature of the solid – liquid interface is likely to signifi -
cantly affect the transport of expelled gas toward the meniscus. Applied to InSb, the 
analysis gives reasonable conclusions, except for too large a gap thickness  [Wang 2000] . 
Applied to the freezing of water, the model predicts that detached growth is not likely to 
occur  [Wang 2001] , in agreement with the experimental results of  [Wang 2002 - 2] . 

 The same authors studied the same problem in a different way, based on an approximate 
balance of the gas species in the vicinity of the solidifi cation interface  [Wang 2002 - 1] . 
This very elegant approach gave the same results as above, on a more physical basis.  

  6.3.4.5   Conclusions Concerning the Theoretical Models 

 The fi rst point to note is that all models involve a liquid meniscus joining the solid liquid 
interface to a liquid – crucible triple line, with both triple lines having equal velocity. This 
meniscus remained hypothetical until the experimental results presented in Figure  6.21 , 
but it is now universally accepted that dewetting is linked to the existence of the meniscus. 
On this basis, all models give a formula for the calculation of the gap thickness. Obviously 
large contact and growth angles enhance dewetting, which is in agreement with all the 
experimental results (see Figure  6.18 ). 

 For rough crucibles, model 1 above is in very good agreement with experiments 
 [Duffar 1990, Duffar 1995, Duffar 1998] . For smooth crucibles, it has also been clearly 
shown that contamination of the melt surface increases the contact angle (and maybe the 
growth angle) and enhances dewetting (model 2); this is likely to have occurred in 
most of the microgravity experiments. In practice, dewetting in normal gravity can be 
controlled by monitoring the gas pressure in the ampoule and the pressure difference 
should be of the order of the hydrostatic pressure. The theoretical predictions of model 3 
are in very good agreement with the experimental results of  [Palosz] . This model gives 
gap thicknesses of the same order as the experimental ones, which is not the case 
with model 4. 

 This last model has the drawback of being based on physical parameters (segregation, 
diffusion and Henry coeffi cients of gases in semiconductors) that are unknown. Whatever 
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the value chosen for these parameters, the model always gives gap thicknesses that are 
too large and a dependence on the growth rate that has never been observed experimen-
tally. Furthermore, it can be applied only to closed ampoules and cannot explain the 
results obtained in open crucibles, where the pressures are equal on both sides of the 
sample. The main argument against the model 4 surely comes from the recent experiment 
of Sylla who grew GaSb under an Ar   +   10% H 2  atmosphere  [Sylla 2008 - 2] . The H 2  dis-
solved into the melt and was expelled at the solid – liquid interface. However, instead of 
feeding a stationary gap, numerous bubbles nucleated on the crucible walls and were 
entrapped at the surface of the crystal (Figure  6.35 ). Only a very small part of the surface 
of the sample was dewetted. It therefore appears that this last model may occur under 
certain conditions but cannot explain most of the experimental results.     

  6.3.5   Stability Analysis 

 As mentioned earlier, the dewetting process is a very stable one; see Figure  6.18 b where 
a constant gap of 70    μ m was observed along 5   cm of growth, without any external moni-
toring. This intrinsic stability is one of the most striking peculiarities of dewetting. The 
basis of the stability analysis of dewetting, as for all other capillary - based growth proc-
esses, is based on Tatartchenko ’ s work which is explained in detail in Chapter  2  of this 
book and developed in his own book  [Tatartchenko]   . The objective of the analysis is to 
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     Figure 6.35     Bubbles nucleating on the crucible wall during the growth of GaSb under 
Ar   +   10%H 2  atmosphere   [Sylla 2008 - 2]  .  
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fi nd out the necessary conditions in order to get a stable dewetting, i.e. a stable crystal 
diameter or gap thickness. 

 Following the analysis presented in Chapter  2 , it appears that under microgravity condi-
tions there is only one variable parameter, the gap thickness, because the heat transfer 
cannot change the pressure in the meniscus (or only very marginally through modifi cation 
of capillary parameters   γ   1v  and   θ  ) and thus has no effect on the meniscus shape or on the 
gap. Therefore only one equation is needed, which is the Laplace equation. 

 For experiments performed on Earth, on the other hand, melting or solidifi cation 
changes the height of liquid, then the hydrostatic pressure acting on the meniscus, and 
then the gap thickness. In this case the gap thickness and the solid – liquid interface posi-
tion are variables of the problem and two equations are needed: the Laplace equation and 
the heat balance at the interface. Furthermore, in cases where gas pressures are likely to 
fl uctuate, they also have an effect on the meniscus shape and the perfect gas law should 
be added to the initial set of equations. 

 In the microgravity case, only the capillary effects are taken into account. If the growth 
angle is considered to be constant, which is an important hypothesis throughout this book, 
the only point to take into account is the concavity of the meniscus at the triple line with 
the solid – liquid interface. If  r  0  is the stable crystal radius ( r  0    =    r  a     −     e  with  r  a  the inner 
crucible radius) and   α   0  the angle formed by the tangent to the meniscus with the vertical 
axis, we obtain (Figure  6.36 ):
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where  v  c  is the the growth rate.   
 A Lyapunov analysis restricted to one parameter gives the stability criterion:
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 Stability is therefore linked to the concavity of the meniscus at the triple line: with a 
concave meniscus (as seen from the liquid, i.e. the centre of curvature is in the liquid), 
the growth is stable and with a convex meniscus it is unstable. Then, as is obvious from 
Figure  6.29 , the growth is stable only if the condition   θ     +     α      >    180    °  applies, which is the 
necessary condition for a concave meniscus. This result is in perfect agreement with the 
experimental observations: dewetting only occurs with very large contact angles, either 
because the wetting angle is naturally large (e.g. for a BN crucible  [Shetty 1995 - 2] ) or 
because it has been artifi cially increased, e.g. by pollution (see Figure  6.23 ). 

 When a pressure difference is introduced under microgravity conditions, the problem 
has been solved in  [Duffar 1997 - 2] :
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and the stability criterion is also  (6.32) :

    
∂
∂( ) <

= −

α0 0
r r r ea

  

 Three cases should be considered: 

   •      If  e  is very small ( r     −     e     ≈     r ), stability occurs if:

    p p
r

p p p ph c
lv

a
h c l hequivalent to− > − − > −2γ θcos

,     (6.35)  

as   θ       ∈    [ π /2;  π ] stability is obtained for all positive values of ( p  h     −     p  c ).  
   •      If  e  is not negligible, ( p  h     −     p  c ) should be positive and increased (compared to the case 

above) by a factor   1 2 2+( ) −( )( )r r ea a .  
   •      If ( p  h     −     p  c )   =   0, growth is intrinsically stable (see above).    

 The capillary problem with terrestrial gravity has been partly studied numerically in 
 [Duffar 2000] , by solving the Laplace equation when changing the parameters of the 
problem. The numerical scheme (fourth - order Runge – Kutta) followed the recommenda-
tions of  [Hartland]  and stability diagrams have be plotted, such as the one shown in Figure 
 6.33 . As the stability criterion is still the concavity of the meniscus, only concave and 
concavo - convex interfaces should be considered, as plotted on the fi gure. The most inter-
esting dewetting conditions in this fi gure, plotted as dotted lines, are such that a small 
variation of pressure has no effect on the gap thickness:

    
∂

∂ −( )
=e

p pc h

0.     (6.36)     
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 In the paper  [Duffar 1997 - 2] , the authors discuss the effect of pressure fl uctuations, based 
on Tatartchenko ’ s approach. It follows that such fl uctuations are not likely to destabilize 
stable dewetting; however, the analysis is simplifi ed and further studies are necessary to 
ascertain this point. 

 As already mentioned, thermal transfer has no effect on a freely moving meniscus in 
microgravity, which is subject only to capillary stability. The two - equation problem 
(capillarity and heat transfer) has been studied under microgravity conditions, with the 
hypothesis that the liquid – crucible triple line of the meniscus is anchored by some hys-
teresis wetting  [Bizet] . These authors studied several heat transfer cases and concluded 
that, in all the confi gurations studied, the dewetting remains stable provided that the 
concavity criterion is satisfi ed. 

 Popov  et al.  studied the stability of model 4 described above  [Popov 1997 - 2] . This is 
a problem with three degrees of freedom, where capillarity, heat transfer and gas fl ux 
should be taken into account. The conclusions are as follows: 

   •      Gas fl ux perturbations do not disturb the stability of the stationary growth.  
   •      Fluctuations of growth rate have a great effect on the gas fl ux through the meniscus, 

more than fl uctuations of gap or pressure, but do not destabilize growth.  
   •      Pressure fl uctuations have a destabilizing effect, more so if the gap is thin.  
   •      There is a critical gap thickness above which the system is no longer stable, whatever 

the other conditions.    

 It follows from these analyses that a high wetting angle is defi nitely the main parameter 
for stability. Considering the existing literature on this subject, and the complexity of the 
many possible cases, further studies are needed in order to solve the problem fully, espe-
cially on Earth where it is of practical interest, and to fi nd which are the stable conditions 
for dewetting for all confi gurations.   

  6.4   Conclusion and Outlook 

 Because it uses a crucible, the Bridgman crystal growth technique has advantages and 
drawbacks which have been discussed in details in this chapter. The main drawback is 
certainly the contact between the crucible and the crystal, which generates fi rst - order 
defects (stress, grain nucleation, and twinning) and secondary problems through the cur-
vature of the interface. However, the associated advantages  –  simplicity and consequent 
low cost, small thermal gradients, shaping of the crystal  –  are tempting. Two variants of 
the process, involving capillarity, have been devised in order to keep the advantages 
without the drawbacks. 

 Full encapsulation is used in industrial plants for production of GaAs and InP. 
Thanks to the work of Zappettini ’ s team, it is likely that it will soon be used for 
CdTe and related compounds as well. However, this technique is restricted by the 
necessity to fi nd an appropriate encapsulant, which in practice, for semiconductors, 
appears to be only B 2 O 3 . It is not clear if other encapsulants could be found for 
other materials that have too low a melting point or for which B is unacceptable (such as 
photovoltaic Si). 
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 Dewetting is probably the unique case of a phenomenon discovered as a result of 
microgravity experiments that has given birth to a promising terrestrial technology. 
Thanks to recent experiments and theoretical developments, the situation is clear from 
the theoretical point of view; only stability analysis needs some further developments. 
Our understanding of the phenomenon and associated process seems mature enough for 
us to think about a potential candidate for mass production. This next step will decide the 
usefulness of this technique.  
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     Marangoni convection is a capillary fl ow, named after the Italian physicist Carlo Giuseppe 
Matteo Marangoni (1840 – 1925). It is driven by the gradient of the surface tension at a 
free surface, which in turn results from temperature or concentration gradients. It can 
occur in every crystal growth set - up with a free liquid surface, i.e. in fl oating zone (FZ) 
growth, Czochralski (Cz) growth, horizontal Bridgman growth, and even vertical Bridgman 
(VB) growth and related methods such as vertical gradient freeze (VGF). Marangoni 
convection also occurs due to a gradient of interfacial tension at a liquid – liquid interface, 
e.g. in the case of liquid encapsulation. In this case a fl ow is observed in both liquids, 
with the fl ow velocities being determined by the more viscous liquid with respect to the 
continuity of shear stress through the interface. 

 The direction of a Marangoni fl ow is from areas of low surface tension to those of 
higher surface tension. Note that, strictly speaking,  ‘ Marangoni convection ’  has histori-
cally been used in fl uid science for an arrangement with a temperature gradient perpen-
dicular to the surface of the liquid, the so - called B é nard confi guration. In crystal growth 
arrangements, the temperature gradient nearly always has a component parallel to the 
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liquid surface and this  ‘ thermocapillary ’  convection is the one of interest here (Figure 
 7.1 ); very often it is also just called Marangoni convection in a more general use of the 
term. A good description of Marangoni effects in general can be found in  [Scriven 1960] . 
In addition to the surface tension gradient arising from temperature gradients as in ther-
mocapillary convection, concentration gradients will lead to chemo -  or solutocapillary 
convection  –   ‘ solutal Marangoni ’  convection. This also needs to be taken into account 
for some systems, especially for the growth of mixed crystals. The most important effect, 
however, is Marangoni convection driven by thermal gradients. For most materials, the 
surface tension decreases with increasing temperature, leading to a fl ow from hot to cold 
areas of the surface. Thermocapillary convection is characterized by the Marangoni (or 
P é clet – Marangoni) number:  
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where  ∂   γ   lv  /  ∂  T  is the temperature dependence of surface tension,  Δ  T  is the temperature 
difference,   ν   is kinematic viscosity,   ρ   l  is density,  D  th  is thermal diffusivity and  L  is the 
characteristic length. 

 Sometimes the related Reynolds – Marangoni number  Re  M  is used instead of  Ma :
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where  Pr    =     ν /D  th  is the Prandtl number. 
 Similar to  Ma , a solutal Marangoni number  Ma  Sol  can be defi ned for solutocapillary 

convection:
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     Figure 7.1     Schematic representation of thermocapillary fl ow velocities (top) and 
streamlines (bottom) in a rectangular cavity due to a temperature gradient parallel to the 
free surface  (copyright A. Cr ö ll; reproduced with permission) .  
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where  ∂   γ   lv  /  ∂  C  is the concentration dependence of surface tension,  Δ  C  is the concentration 
difference and  D  is the diffusion coeffi cient. 

 A good measure of the relative strength of thermal buoyancy and thermocapillary 
convection is the dynamic Bond number:
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where   β   is the expansion coeffi cient. 
 Fluid fl ow within a defi ned geometry exhibits transitions when its velocity exceeds a 

certain threshold value  [Drazin 1981] . This is also true for Marangoni convection. The 
corresponding value of the control parameter, which is represented by the Marangoni or 
the Reynolds – Marangoni number (Equations  (7.1)  and  (7.2) ), is defi ned as the critical 
condition. For the classical Marangoni – B é nard confi guration, where the temperature 
gradient is perpendicular to the interface, the critical condition for the onset of the fl ow 
is  Ma  c     ≈    80  [Pearson 1958] . For thermocapillary fl ow, where the gradient of surface 
tension is parallel to the free surface, there is no threshold for the fl ow to start. For a 
liquid bridge, when its size is fi nite, the Marangoni fl ow exhibits a stationary transition 
from axisymmetric steady fl ow to three - dimensional steady fl ow because of the existence 
of a solid end. The critical Marangoni number for this transition is defi ned as  Ma  c1 . This 
is the fi rst bifurcation for a low -  Pr  liquid bridge geometry. A further increase in the 
Marangoni number results in an oscillatory transition, which occurs through a Hopf 
bifurcation  [Wanschura 1995] . The critical Marangoni number for this transition is defi ned 
as  Ma  c2 . Above  Ma  c2 , velocity, pressure, and temperature fi elds become time dependent. 
As a result, the incorporation of impurities or dopants during crystal growth also shows 
time dependency, i.e. the spatially inhomogeneous distribution of impurities or dopants, 
also known as growth striations. At the critical condition  Ma  c2 , only a single pair of dis-
turbance modes becomes unstable, thus the frequency of the oscillation is single. Another 
pair of disturbance modes becomes unstable and a multiperiodic oscillation of the fl ow 
occurs when the Marangoni number exceeds the critical Marangoni number  Ma  c3 . From 
stability analysis, the critical value can be determined as a condition where the growth 
rate of a disturbance becomes zero. However, the experimentally observed multiple oscil-
lations appear to have larger Marangoni numbers (see below). This is attributed to the 
fact that the growth rate of the disturbance must be large enough that its amplitude 
becomes large enough to be detected in fi nite time. 

 The mechanism for the instability is different for low and high  Pr  - number fl uids; for 
low  Pr  - number fl uids, it is a mechanical instability and for high  Pr  - number fl uids, a 
hydrothermal instability coupled with the temperature fi eld. The hydromechanical feature 
of the Marangoni fl ow is reviewed in  [Kuhlmann 1999] . 

 Marangoni convection has been known to crystal growers for a long time, but used to 
be viewed as more of a curiosity with no real impact on crystal growth until the early 
1980s; to quote from the book  Floating - Zone Silicon   [Keller 1981] , p.42:  ‘ Marangoni 
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fl ow has not yet been observed experimentally in Si fl oat zones although calculations of 
Chang and Wilcox render very high driving forces for this case ’ . Chang ’ s articles  [Chang 
1975, Chang 1976]  were the fi rst numerical simulations elucidating the importance of 
thermocapillary convection, and were followed by a large number of other simulations 
and studies using transparent model materials  [Chang 1979, Chun 1978, Chun 1979, Chun 
1980, Chun 1982, Clark 1980, Schwabe 1978, Schwabe 1979, Schwabe 1981, Schwabe 
1982, Kamotani 1984] . Triggered by the development of microgravity experiments in the 
late 1970s and 1980s, intensive studies of Marangoni fl ow have been stimulated both for 
low  Pr  - number fl uids (opaque metallic melts) and high  Pr  - number fl uids (transparent 
organic fl uids), because Marangoni fl ow is a typical gravity - independent phenomenon but 
is often obscured by buoyancy convection on the ground. 

 The importance of thermocapillary convection for the crystal growth of semiconductors 
such as Si was demonstrated shortly thereafter with the fi rst FZ experiments under micro-
gravity  [Carlberg 1984, Carlberg 1986 - 1, Cr ö ll 1986, Cr ö ll 1994 - 1, Eyer 1984, Eyer 
1985 - 1] . Today thermocapillary convection has to be taken into account for all important 
crystal growth processes and nearly all numerical simulations of crystal growth melts 
with free surfaces. 

 Unfortunately, the values of  ∂   γ   lv  /  ∂  T , necessary for numerical simulations and for cal-
culating  Ma  or  Re  M  values in order - of - magnitude analyses, are not always precisely 
known, or not known at all for a variety of important crystal growth materials. Surface 
tension values and  ∂   γ   lv  /  ∂  T  can also be quite sensitive to small amounts of impurities. This 
is the case for Si and O, as discussed in section  7.1.3 . Table  7.1  shows the  ∂   γ   lv  /  ∂  T  values 
for a few common semiconductors.   

 Even less known than  ∂   γ   lv  /  ∂  T  is  ∂   γ   lv  /  ∂  C  for mixed crystals. The relationship between 
composition and surface tension can be linear, such as in the Ge – Si system with a value 
of  ∂   γ   lv  /  ∂  C    =   +2.2    ×    10  − 3    N/m ·  x  ( x    =   mole fraction of Si content)  [Cr ö ll 2002 - 2] , but this 
is not always the case. An example is shown for the Ga – Sb system in Figure  7.2  
 [Tegetmeier 1995] , where the value of   γ   lv  deviates from a linear relationship at both 
ends of the compositional range. For surface active components, there might be even 
larger deviations. A few systems, e.g. Sn – Bi  [Tison 1992] , or NaNO 3  – C 2 H 5 COOK 
 [Schwabe 1996] , have been reported where  ∂   γ   lv  /  ∂  T  has a maximum as a function of 
composition.    

  Table 7.1    Temperature dependence of the surface tension for several semiconductors. 
The surface tension of molten  S  i  and its temperature coeffi cient have been found to show 
a marked oxygen partial pressure dependence; see  7.1.3  

         ∂   γ   lv  /  ∂  T  (10  − 3 N/m   K)     Reference  

  Si (for   PO Pa2 10 19= − )     − 0.74     [Mukai 2000]   

  Si (for   PO Pa2 10 14= − )     − 0.37     [Mukai 2000]   
  Ge     − 0.08     [Kaiser 2001]   
  GaAs     − 0.18     [Rupp 1991]   
  GaSb     − 0.10     [Tegetmeier 1996]   
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  7.1   Thermocapillary Convection in Float Zones 

  7.1.1   Model Materials 

 Since it has the highest surface/volume ratio of the common melt growth methods, FZ 
growth is affected the most by Marangoni fl ows. Thermocapillary convection in FZ set -
 ups was fi rst investigated using transparent melts or model materials, since it is possible 
to visualize the fl ow in these systems. These materials, such as silicone oil or NaNO 3 , 
have a rather high Prandtl number ( Pr    =   1 – 100) compared to metallic melts such as 
semiconductors ( Pr    =   10  − 2     −    10  − 1 ). Thermocapillary convection in these transparent 
systems usually shows two convection rolls as depicted in Figure  7.3 , the standard pattern 
in a fl oat zone. Note that in addition, many  ‘ half - zone ’  model experiments were per-
formed. A half - zone consists of a set - up with a solid hot end and a solid cold end, usually 
a material different from the melt material (Figure  7.3 ). Crystal growth is of course not 
possible, or is reduced to crystallizing the zone, but it is much easier to have a well - defi ned 
temperature gradient and thus Marangoni number in this set - up.   

 Stream velocities in the high  Pr  systems are usually of the order of mm/s. The transi-
tion to a time - dependent regime occurs at comparatively high Marangoni numbers, with 
 Ma  c2     ≈    10 4   [Kamotani 1984, Schwabe 1988] . The transition to time - dependency involves 
a reduction of the symmetry, i.e. a transition from a two - dimensional to a three - dimen-
siononal fl ow pattern, together with azimuthal running waves of the convection roll 
 [Schwabe 1988] . There are other possibilities for instabilities in half - zones, such as 
surface waves, that have been studied in numerical simulations  [Kazarinoff 1989] ; a 
summary for earlier half - zone experiments can be found in  [Levenstam 1995] .  

  7.1.2   Semiconductors and Metals 

 Initially, thermocapillary convection for low  Pr  number melts such as metals and 
semiconductors was experimentally accessible only indirectly from the segregation of 

     Figure 7.2     Surface tension vs composition for the system Ga – Sb, after  (Reprinted with 
permission from  [Tegetmeier 1995] , copyright (1995) A. Tegetmeier) .  
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crystals. The fi rst experimental indications that thermocapillary convection is important 
were the results of  [Barthel 1979]  and  [Jurisch 1982]  on the formation of striations in FZ 
refractory metal crystals. Starting in 1983, several semiconductor FZ experiments were 
performed under microgravity conditions on sounding rockets and Spacelab fl ights, to 
separate the infl uences of buoyancy and thermocapillary convection in fl oat zones of Si 
and Ge  [Carlberg 1984, Carlberg 1986 - 1, Carlberg 1986 - 2, Cr ö ll 1986, Cr ö ll 1991, Cr ö ll 
1994 - 1, Eyer 1984, Eyer 1985 - 1, K ö lker 1984, K ö lker 1986] . Radiation heating (mirror 
furnaces, see Chapter  4.2 ) was always employed to avoid RF - induced convective fl ows. 
Comparison of the microgravity crystals and their terrestrial counterparts showed that 
similar striation patterns, although with slightly less variation in dopant concentration, 
were formed under microgravity (Figure  7.4 , top and centre). These results lead to the 
conclusion that thermocapillary convection is a dominant source of striations in radia-
tively heated Si FZ zones.   

 Those fi ndings were corroborated by later experiments with confi ned melt zones, where 
the Si melt zone was coated by a 5 -  μ m thin fi lm of SiO 2  to suppress thermocapillary 
convection  [Cr ö ll 1986, Eyer 1985 - 2] . Such crystals show no dopant striations at all 
(Figure  7.4 , bottom), indicating that time - dependent thermocapillary convection is the 
only source for the formation of dopant striations in FZ - Si, at least with radiation heating 
and the zone dimensions (8 – 10   mm diameter, 10 – 15   mm length) and temperature gradi-
ents (30 – 100   K/cm) employed in these experiments. Similar results were found for Ge 
 [Carlberg 1984, Carlberg 1986 - 1, Carlberg 1987, Levenstam 1996] . 

 Other FZ experiments under microgravity with low  Pr  materials, using GaAs  [Cr ö ll 
1994 - 2, Herrmann 1995, M ü ller 1991] and GaSb [Cr ö ll 1998 - 1, Tegetmeier 1996] , also 
pointed to time - dependent thermocapillary convection in these materials, as do the normal 
gravity results of the FZ growth of Mo and Nb  [Barthel 1979, Jurisch 1982, Jurisch 1990 -
 1, Jurisch 1990 - 2] , and the half - zone results for Hg  [Han 1996]  and Sn  [Yang 2001] .  

     Figure 7.3     Schematic drawing of Marangoni fl ow in a full fl oat zone (left) and in a model 
 ‘ half - zone ’  (right), with corresponding temperature profi les. The half - zone usually uses a 
different material than the melt for the top and bottom solid cylinders, although the lower 
one can be crystallized melt material. The dotted line indicates the melting temperature 
 (copyright A. Cr ö ll; reproduced with permission) .  



Marangoni Convection in Crystal Growth 419

  7.1.3   Effect of Oxygen Partial Pressure on Thermocapillary Flow in  S  i  

 One of the most important factors for the Marangoni fl ow of metallic melts including 
semiconductor melts is the effect of oxygen or sulphur. For example, in the welding 
process of steel, there is Marangoni fl ow due to temperature differences between the 
centre and the periphery of the weld pool, where fl ow direction depends on the oxygen 
partial pressure   PO2 of an ambient atmosphere. Normally, the fl ow direction is from the 
centre (hot) to the periphery (cold) because of the negative temperature coeffi cient of 
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     Figure 7.4     Micrographs of parts of Si:Sb crystals (growth direction bottom to top of each 
micrograph) and corresponding axial concentration profi les determined by spreading 
resistance measurements. Top: Crystal grown under normal gravity with dopant striations; 
centre, crystal grown under microgravity with dopant striations; bottom, crystal grown 
under normal gravity with surface coating, showing no dopant striations. Compare   [Cr ö ll 
1986, Cr ö ll 1991, Cr ö ll 1994 - 1, Eyer 1985 - 2]  .  
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surface tension. However, in an ambient atmosphere with high   PO2, the fl ow direction is 
the reverse, from the periphery (cold) to the centre (hot), because of a positive temperature 
coeffi cient of the surface tension  [Heiple 1982] . For molten steel, the value of the tem-
perature coeffi cient of surface tension,  |  ∂   γ   lv / ∂  T  | , has been reported to decrease with 
increasing   PO2, to become zero at a certain   PO2 value, and then to turn positive  [Takiuchi 
1991] . This suggests that the direction and velocity of thermocapillary fl ow can be con-
trolled by changing   PO2 values. 

 The thermocapillary fl ow of molten Si was observed for the fi rst time  in situ  by X - ray 
radiography under microgravity using the parabolic fl ight of a jet aircraft, as shown in 
Figure  7.5   [Azami 2001 - 2, Nakamura 1999 - 3] . Figure  7.6  shows the tracer velocity in a 
liquid bridge with an aspect ratio  As  of 1.0 as a function of the oxygen partial pressure. 
In this experiment,   PO2 was defi ned at the pressure where the silica ampoule was evacu-
ated and sealed. This oxygen partial pressure corresponds to that defi ned at   PO2 

inlet  by 
Ratto  et al.   [Ratto 2000] . The velocity was measured as the displacement of a tracer 
particle parallel to the axial direction of the liquid bridge per unit time and was of the 
order of 10   mm/s. This tracer particle velocity would not be the real fl ow velocity. The 
real surface velocity is expected to be one order of magnitude higher than that observed, 
as predicted by Lan and Kou  [Lan 1991 - 5] . Nevertheless, it clearly depends on   PO2.   

 The   PO2 dependence of the thermocapillary fl ow is explained by the fact that the 
Marangoni number,  Ma,  which shows the magnitude of the Marangoni fl ow, is a function 
of the temperature coeffi cient of surface tension, as given in Equation  (7.1) . Figure  7.7  
shows the   PO2 dependence of the temperature coeffi cient of surface tension of molten Si 
 [Mukai 2000] . The larger   PO2 becomes, the smaller the absolute value of the temperature 
coeffi cient,  |  ∂   γ   lv / ∂  T  | , becomes. The saturation oxygen partial pressure   PO

sat
2  is 1.32    ×    10  − 14    Pa 

at 1693   K and 2.75    ×    10  − 19    Pa at 1773   K. Above   PO
sat

2  the surface of molten Si is coated 

     Figure 7.5     X - ray radiograph of tracer particles in a liquid bridge (half - zone) of Si under 
microgravity during parabolic fl ight  (Reprinted with permission from  [Azami 2001 - 2] , 
copyright (2001) Electrochemical Society)   .  
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     Figure 7.6     Tracer velocity due to thermocapillary convection vs oxygen partial pressure 
in a Si liquid bridge (aspect ratio  As    =   1.0) under microgravity  (Reprinted with permission 
from  [Azami 2001 - 2] , copyright (2001) Electrochemical Society)   .  
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     Figure 7.7     Temperature coeffi cient of surface tension for molten Si as a function of 
oxygen partial pressure of an ambient atmosphere  (Reprinted with permission from  [Mukai 
2000] , copyright (2000) ISIJ) .    

with a thin fi lm of SiO 2 ; there is no Marangoni fl ow. In Figure  7.7 , however, the tempera-
ture coeffi cient of the surface tension is plotted even in such a range. This strange behav-
iour of the temperature coeffi cient is due to the measurement method, i.e. the sessile drop 
method. The specimen behaves as if it were a single - phase liquid, although the melt 
surface is coated with a solid fi lm of SiO 2 . This is why the temperature coeffi cient was 
measured over the   PO

sat
2  value.   
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 Note that there is a large difference in   PO2  value in the abscissa between Figures  7.6  
and  7.7 . This difference depends on where   PO2 was measured; i.e. at the inlet or the outlet 
of the gas fl ow system. The idea was theoretically derived by  [Ratto 2000]  and experi-
mentally validated by  [Azami 2001 - 4] . The oxygen partial pressure at the Si melt surface, 
  PO

surface
2 , can be estimated regardless of measurement position. From the practical point 

of view, controlling   PO2 at the inlet is convenient. 
 In order to check the possibility of controlling the thermocapillary fl ow during crystal 

growth by adjusting   PO2, single crystals of Si were grown in an atmosphere with various 
oxygen partial pressures ranging from   PO

surface
2 5 3 10 24= × −.  to 3.6    ×    10  − 14    Pa at the melt 

surface  [Hibiya 2003 - 1] . At   PO
surface Pa2 1 3 10 14= × −. , which corresponds to the equilib-

rium oxygen partial pressure for SiO 2  formation, precipitation of SiO 2  was observed 
during the seeding process. At   PO

surface Pa2 3 6 10 14= × −. , a thick SiO 2  powder layer was 
formed. Growth striations, which are evidence of oscillatory fl ow, were observed for all 
crystals except for those grown at   PO

surface
2 1 3 10 14= × −.  and 3.6    ×    10  − 14    Pa. This suggests 

that thermocapillary fl ow was not fully suppressed by increasing   PO2, whereas above 
  PO

surface
2 1 3 10 14= × −.    Pa thermocapillary fl ow was not possible because the melt surface 

was coated with SiO 2 . This shows that the thermocapillary fl ow of molten Si cannot be 
controlled by oxygen; for molten steel the velocity can be decreased gradually with   PO2 
and fi nally the fl ow direction can be changed. Crystal growth experiments suggest that 
only turbulent Marangoni fl ow exists at the Si melt surface; the smallest estimate for the 
Marangoni number in this system is  ∼ 900. This unique behaviour for molten Si can be 
attributed to the poor solubility of oxygen in the Si melt; the solubility of oxygen in molten 
Si is small (ppm range) compared with that in molten Fe (0.1%).  

  7.1.4   Fluid Dynamics of Thermocapillary Flow in Half - Zones 

  7.1.4.1   Introduction 

 As mentioned in section  7.1.1 , the so - called  ‘ half - zone ’  liquid bridge (see Figure  7.8 ) has 
been widely used to understand the fundamental features of thermocapillary fl ow in FZ 

     Figure 7.8     Half - zone confi guration  (Reprinted with permission from  [Shiratori 2007 - 2] , 
copyright (2007) S. Shiratori) .  
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crystal growth. Because of its simple confi guration, thermocapillary fl ow in a half - zone 
can be discussed using well - defi ned parameters; this confi guration is therefore more suit-
able for an investigation than a full zone from the viewpoint of fl uid dynamics.   

 In the half - zone confi guration, a liquid is sustained by surface tension between two 
parallel, coaxial and differently heated disks. The induced fl ow and temperature fi elds are 
strongly dependent on the Prandtl number ( Pr ) of the fl uid. Figures  7.9 a and  7.9 b show 
the fl ow and temperature fi elds of the axisymmetric steady fl ow in a liquid bridge with 
an aspect ratio (the liquid height  L  over the radius  a ) of  As    =   1.0 at the Reynolds number 
 Re  M    =   1000 for two different Prandtl numbers:  Pr    =   0.01, 10.0. In the low Prandtl number 
case ( Pr    =   0.01), the temperature fi eld is dominated by thermal conduction, and thus a 
nearly linear temperature distribution causes nearly homogeneous Marangoni effects all 
along the free surface. In contrast, for high Prandtl number ( Pr    =   10.0), the heat transfer 
due to convection is dominant in the temperature fi eld. The isothermal lines are strongly 
deformed and concentrated into rigid boundaries, especially in the cold corner where the 
locally strong Marangoni effect causes a sharp peak in the velocity distribution. Because 
of these characteristics, the behaviour of the fl ow transitions and their instabilities differ 

     Figure 7.9     Isothermal lines, streamlines, and axial velocities along the free surface for two 
different Prandtl numbers at  Re  M    =   1000,  As    =   1.0;  Pr    =   0.01 (a);  Pr    =   10.0 (b). The step 
sizes between neighbouring contour lines are 0.1 for isothermal lines, and 0.9  (Pr    =   0.01 )  
and 0.41  (Pr    =   10.0 )  for streamlines. Note that the lower disc is heated. Radial and axial 
coordinates are scaled by disc radius and bridge height respectively, and velocity  w  is 
scaled by kinetic viscosity over the disc radius  (Reprinted with permission from  [Shiratori 
2007 - 2] , copyright (2007) S. Shiratori) .  
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signifi cantly. The discussion here will be confi ned to low Prandtl numbers. An overview 
for high Prandtl numbers can be found e.g. in  [Ueno 2003] .   

 An outline of the current state of research on thermocapillary half - zones of low 
Prandtl numbers is shown schematically in Figure  7.10 . Generally speaking, for the 
small  Ma  case, there are fewer results from experiments than from numerical work; for 
the large  Ma  case, the opposite holds true. Thus, there has been a long - standing problem 
of the mutual understanding between experimental and numerical work. Since low -  Pr  
fl uids usually have high melting points, opacity, and chemical reactivity, experiments 
become much more diffi cult than in transparent high -  Pr  systems. Especially for experi-
ments using molten Si, a fl ow with small  Ma  below  Ma  c2  has not been achieved, because 
the temperature differences between the upper and lower edge of the liquid bridge cor-
responding to the critical conditions would be unrealistically small in the usual experi-
mental set - up. Some experimental data for  Ma  c1  have been obtained using molten Sn 
 [Matsumoto 2004] .   

 Important tasks in the study of fl uid dynamics are to determine the critical conditions 
for fl ow transitions (e.g. stationary to oscillatory), to clarify the mechanisms of the insta-
bilities which cause the transitions and to give simple descriptions of fl ow structures. In 
the following sections, results for the above tasks are summarized. Theoretical and 
numerical aspects of the thermocapillary fl ow were reviewed by  [Kuhlmann 1999] . 
Experimental studies using molten Si were overviewed in part by  [Hibiya 2003 - 2] .  

     Figure 7.10     Outline of the current state of the research on thermocapillary half - zones of 
low Prandtl numbers.  
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     Figure 7.11     Confi guration of sample: (a) sample cartridge; (b) layout of thermocouples 
(top view)  (Reprinted with permission from  [Hibiya 2005] , copyright (2005) Springer 
Science + Business Media) .  

  7.1.4.2   Experimental Approach 

 In a typical experiment, small liquid bridges (radius  < 5   mm) are sustained between upper 
and lower carbon rods, as shown in Figure  7.11 a, and they are heated from the top in 
order to suppress buoyancy fl ow on the ground. Heating is achieved by a mono - ellipsoidal 
infrared mirror furnace (Figure  7.12 ). In order to avoid oxidation of the melt surface, the 
ambient atmosphere must be replaced with pure Ar gas of 6N purity. Since the temperature 
coeffi cient of the surface tension depends strongly on the oxygen partial pressure   PO2 of 
an ambient atmosphere (see e.g.  [Mukai 2000] ), the control of the atmosphere is an 
important issue.   

 Because of the opacity of molten Si, the fl ow can only be visualized by X - ray radiog-
raphy. X - ray visualization with tracer particles (zirconia, 450    μ m in diameter coated with 
silica glass to an outer diameter of 1   mm) has been done by  [Nakamura 1996, Nakamura 
1999 - 1, Nakamura 1999 - 3] , but the size of the tracers might be too large to suffi ciently 
follow the fl ow; i.e. the tracer diameter is larger than the velocity boundary layer thick-
ness for a thermocapillary fl ow of 0.1   mm. Other experimental approaches have been 
employed based on temperature fl uctuation measurements using multiple thermocouples 
located near the cold disc, as shown in Figure  7.11 b,  [Hibiya 1996, Hibiya 2005, Nakamura 
1998, Yamane 2005] , and observations of the liquid – solid interface position fl uctuations 
using a laser microscope  [Sumiji 2001, Sumiji 2002] . 

 For noncontact measurement, the optical pyrometer  [Cheng 2000]  and the brightness 
of the recorded image have been employed to detect the frequencies of the temperature 
fl uctuations  [Azami 2001 - 3] . Sumiji  et al . have optically observed the fl uctuations of a 
solid – liquid interface position, and have confi rmed that the frequencies and azimuthal 
distribution of solid – liquid interface fl uctuations show similar features to that investigated 
by temperature observations  [Sumiji 2001, Sumiji 2002] . Since the time - dependent hydro-
dynamic pressure causes dynamic surface deformations, surface oscillation is expected 
to be synchronized with that of an oscillatory fl ow fi eld. Using a phase shift interferometry 
system, as shown in Figure  7.13 , the free surface oscillation has been measured on a very 
small scale by  [Okubo 2005, Onuma 1999, Sumiji 2000] .    
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  7.1.4.3   Flow Transitions 

 When the driving force of the fl ow exceeds a certain threshold in half - zones, the steady 
axisymmetric fl ow bifurcates to three - dimensional fl ows. In low -  Pr  fl uids, it was sug-
gested that the stationary transition takes place before the onset of oscillation, from the 
three - dimensional numerical simulations by  [Rupp 1989] . After their suggestion, impor-
tant information from linear stability analysis was given by  [Kuhlmann 1993, Neitzel 
1993, Shen 1990, Wanschura 1995] . From these investigations, the primary instability 
for the low -  Pr  fl uids is understood to be stationary. The Marangoni number corresponding 
to this threshold is defi ned as  Ma  c1 . The critical Reynolds number ( Re  M , as shown in 
section  7.1.1 ) which has been obtained from numerical studies, was summarized in 
 [Shevtsova 2005] . 

 In FZ confi gurations, the onset of the oscillatory Marangoni fl ow was experimentally 
detected for the fi rst time by  [Cr ö ll 1989] , as explained in section  7.1.6 . In half - zones, 
the second critical Reynolds number  Re  Mc2  was calculated for the fi rst time by  [Levenstam 
1995] .  [Leypoldt 2000]  provided the values of  Re  Mc2  and the fi rst explanation of the 
instability of the second transition.  [Imaishi 2001]  conducted a number of numerical 
simulations, and provided the fi rst and second critical Reynolds numbers as a function of 
the widely varied aspect ratio. 

     Figure 7.12     Mirror furnace for Marangoni fl ow study.  
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 The fi rst transition of the fl ow was observed experimentally for the fi rst time, using 
molten Sn with Fe rods, by  [Matsumoto 2004] . Numerical simulations that model the 
experiments of  [Matsumoto 2004]  have been carried out by  [Li 2005, Yasuhiro 2004] . 
The experimentally estimated values of  Ma  c1    =   10 – 20 by  [Matsumoto 2004]  agreed well 
with those reported in numerical studies. 

 The critical Reynolds numbers  Re  Mc1 ,  Re  Mc2  for the low -  Pr  half - zones are summarized 
in Figure  7.14 , as a function of the aspect ratio. The second critical conditions is rather 
dependent on the geometry, compared to that of the fi rst transition.  Ma  c2  has been deter-
mined experimentally for molten Sn by  [Takagi 2001] , as  Ma  c2    =   43.3 for the case 
 As    =   2.02.   

 In many of the numerical investigations mentioned, the static and dynamic deforma-
tions of the free surface were not taken into account, i.e. the liquid bridge was assumed 

     Figure 7.13     Schematic diagram for phase - shift interferometry for observing molten Si 
surface oscillations   [Okubo 2005, Sumiji 2000]  (Reprinted with permission from  [Okubo 
2005] , copyright (2005) Springer Science + Business Media) .    
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to be cylindrical. This corresponds only to a liquid bridge with large surface tension, or 
the case of zero gravity, whereas under gravity the liquid bridge deforms under its own 
weight, as shown in Figure  7.8 . By use of the body fi tted coordinate (BFC), the effect of 
the free surface deformation can be investigated. Chen  et al . carried out the linear stability 
analysis for the case that the liquid volume is different from that of the cylinder  [Chen 
1998, Chen 1999] .  [Nienh ü ser 2002]  investigated the detailed linear stability analysis with 
consideration of the static deformation due to the liquid ’ s own weight. These results 
coincide qualitatively, and the fi rst critical Reynolds number  Re  Mc1  has a local minimum 
near the condition that the volume ratio (normalized by 1 for the cylinder) becomes 0.9, 
for low -  Pr  cases. 

 When the Reynolds number of the fl ow increases beyond the second critical condition 
 Re  M     >     Re  Mc2 , the oscillation of the fl ow shows multiperiodicity. From the experiments by 
Nakamura  et al . and Azami  et al ., the  Ma  values at which the multiperiodic oscillatory 
fl ows take place can be roughly determined to be of the order of 10 3   [Azami 2001 - 1, 
Nakamura 1999 - 1] . On the other hand, from the numerical work, the onset of the multi-
periodicity seems to be much lower than that observed by experiment  [Imaishi 1999] . 
One of the reasons for this discrepancy may be the diffi culty in experimental detection 
of the onset of multiperiodicity in small Marangoni number conditions. 

 The three - dimensional fl ow has azimuthally periodic structures which are represented 
by an azimuthal wave number  m , which is an integer because of the cylindrical domain. 
The geometrical dependence of the azimuthal wave numbers has been investigated by 

     Figure 7.14     Critical Reynolds numbers  Re  M  as a function of the aspect ratio for the pure 
thermocapillary fl ows in cylindrical liquid bridges of low -  Pr  fl uids   [Imaishi 2001, Levenstam 
1995, Leypoldt 2000, Wanschura 1995]  .  
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numerical analysis or by experimental observation of the transparent high -  Pr  fl uids. A 
typical empirical relation is provided by  [Preisser 1983]  for the high -  Pr  fl uids as

    As m⋅ ≈ 2 2. .     (7.5)   

 This relationship also holds true for the low -  Pr  case, as reported by  [Wanschura 1995] .  

  7.1.4.4   Instability Mechanisms 

 The instability mechanisms for the fi rst transitions (at  Re  Mc1 ) were explained for the fi rst 
time by  [Wanschura 1995]  for both low and high Prandtl numbers. For low Prandtl 
numbers, the instability is solely caused by inertia effects: in the three - dimensional steady 
fl ow obtained by the numerical simulation, there exists an azimuthal fl ow directed against 
the Marangoni effect, and the same three - dimensional structures arise in the case of the 
pure conduction limit  Pr     →    0 (see e.g.  [Imaishi 2001] ). In the stability analysis by  [Xu 
1984] , who treated an infi nitely long cylinder, the instabilities of axisymmetric fl ows were 
oscillatory, even for the low -  Pr  cases. This suggests that the existence of the upper and 
lower discs is necessary for the appearance of a three - dimensional steady fl ow. 

 According to  [Levenstam 1995]  and  [Wanschura 1995] , the instability mechanism for 
the fi rst transition can be understood in terms of strain acting on the basic vortex core. 
This mechanism is analogous to that in vortex rings, which suffer instabilities due to a 
self - induced strain fi eld caused by the natural curvature of the vortex ring  [Fukumoto 
2005, Widnall 1974] . As a result of the instability, Kelvin waves are resonantly amplifi ed. 
Both the instability explained by  [Wanschura 1995]  and that of vortex ring belong to the 
same type of vortex instability, which is now termed  ‘ elliptic instability ’   [Bayly 1986, 
Kerswell 2002] . In addition,  [Nienh ü ser 2002]  reported that a  ‘ centrifugal instability ’  
mechanism also contributes to the instability for the fi rst transition at  Re  Mc1 . 

 For low -  Pr  half - zones the elliptic and centrifugal mechanisms reinforce each other 
mutually. The balance of these two mechanisms may change due to geometrical condi-
tions. This balance change has been investigated numerically, using the confi guration of 
a liquid bridge in which the free surface is partially confi ned by solid walls, as shown in 
Figure  7.15 a  [Shiratori 2004, Shiratori 2007 - 1, Shiratori 2007 - 2] . The balance of the 
elliptic and centrifugal mechanisms was found to determine the variety of the resulting 
instability, and it may cause the direct transition from axisymmetric steady fl ow to oscil-
latory fl ow. This confi guration is quite effective in reducing the Reynolds number of the 
fl ow and in keeping the temperature difference across the whole liquid bridge at realistic 
values. This idea was fi rst applied to experimental FZ crystal growth by  [Cr ö ll 1991] , as 
explained in Section  7.1.6 .   

 In this partially confi ned half - zone (PCHZ) confi guration, the ratio of the free surface 
length  L  w  to the whole liquid height  L  is defi ned as   ξ     =    L  w / L . The driving force is repre-
sented by the Reynolds number using  L  w  and the temperature difference along the free 
surface:  Re  w    =    −  ∂   γ   lv  /  ∂  T   Δ  T  w  L  w /(  ρ  ν   2 ), where  ∂   γ   lv  /  ∂  T  is the temperature coeffi cient of the 
surface tension,   ρ   is density, and   ν   is kinematic viscosity. In addition, the axial position 
of the free surface is indicated using angle brackets, e.g.  < hot >  for the case that the free 
surface is located adjacent to the hot disc. In PCHZ, the structure of axisymmetric steady 
fl ow depends on the fraction   ξ   and the axial position of the free surface, as shown in 
Figure  7.16 . In particular, in the case  < hot > , the shape of the vortex core becomes circular 
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     Figure 7.15     (a) Confi guration of partially confi ned half - zones (PCHZ), in which the free 
surface is partially covered by solid side walls leaving the length  L  w . Free surface fraction   ξ   
is defi ned as  L  w / L  (Reprinted with permission from  [Shiratori 2004] , copyright (2004) 
Elsevier Ltd).   (b) Critical Reynolds number   Rec

w as a function of the inverse free surface 
fraction for the case where the free surface is located adjacent to the hot disc (Reprinted 
with permission from  [Shiratori 2007 - 1, Shiratori 2007 - 2] , copyright (2007) American 
Institute of Physics)  . Line styles and labels indicate different instability mechanisms, and 
the azimuthal wave number is given in brackets. Axisymmetric steady fl ow is linearly 
stable in the shaded region. Asterisks indicate critical data taken from time - dependent 
simulations.  

     Figure 7.16     Streamlines of the basic axisymmetric steady fl ow for  Pr    =   0.01,  As    =   2.0 
and   Re0 1000w = . Solid lines indicate positive values of the Stokes stream function and 
dotted lines indicate negative values. The step size between neighbouring contour lines is 
constant with   Δ r rψ ψ0 0 10( ) = max  for positive values, and   Δ r rψ ψ0 0 10( ) = min  for negative 
values. The term in angle brackets defi nes the location of the free surface  (Reprinted with 
permission from  [Shiratori 2007 - 1] , copyright (2007) American Institute of Physics).     

for small   ξ  . Because the elliptic instability is due to the elliptical shape of the streamlines 
of axisymmetric steady fl ow, the confi guration  < hot >  affects the balance of elliptic and 
centrifugal instabilities. Figure  7.15 b shows the critical Reynolds numbers   Rec

w  in PCHZ 
of  As    =   2.0 for the case  < hot > . From the analysis of the energy transfer, four qualitatively 
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different types of instability mechanisms are classifi ed, depending on the geometry 
 [Shiratori 2007 - 1] . Two of them are oscillatory instabilities, i.e. the axisymmetric steady 
fl ow exhibits a direct transition to oscillatory fl ow in these geometrical conditions 
 [Shiratori 2004] . Figure  7.17  shows the regions where the energy production of the dis-
turbance fl ow is strong. The light grey regions indicate the centrifugal mechanism and 
dark grey regions the elliptic mechanism. Decreasing the free surface fraction   ξ   reduces 
the ellipticity of the streamlines near the basic vortex core. This leads to a reduction of 
the contribution of the elliptic mechanism and results in the balance with the centrifugal 
mechanism on the instability  [Shiratori 2007 - 1] .    

  7.1.4.5   Flow Structures at Supercritical Marangoni Numbers 

 When the Marangoni number exceeds the second critical condition, the fl ow shows an 
oscillatory behaviour both in the temperature and fl ow fi elds. At near the critical condition 
( Ma     ≈     Ma  c2 ), only a few modes are unstable so that the behaviour of oscillatory fl ow is 
described rather simply  [Imaishi 2001, Li 2007] . For conditions with a higher  Ma , many 
modes become unstable, thus the description of the fl ow is typically represented by mean -
 fl ow structures. 

 From the synchronized temperature oscillation data obtained by six thermocouples, 
information on the temperature fl uctuation  T , time  t , and space (azimuth   ϕ  ) could be 
obtained. The  T  –   ϕ   relationship at each moment was interpolated using a periodic cubic 
spline function and plotted in a circular format, so that the azimuthal wave number and 
its motion can be visualized, as shown in Figure  7.18 . Note that, in this method, the spatial 
resolution with respect to the azimuth is limited by the number of thermocouples; i.e. 
with only six thermocouples, an azimuthal wave number of 4 or more cannot be observed. 
As can be seen from the fi gures, the azimuthal structure of the temperature fi eld is time -
 dependent. Some typical structures can be observed. For  As    =   2.0 (Figure  7.18 a), the 
global rotating motion of the  m    =   1 structure can be recognized. By the same token, the 
twisting motion of the  m    =   2 structure is seen in the  As    =   1.0 case (e.g. in the range 
0    <     t     <    8   s in Figure  7.18 b), and the pulsating motion of the  m    =   3 structure in the  As    =   0.8 
case (Figure  7.18 c) as well. The  m    =   3 type structure was experimentally confi rmed for 

     Figure 7.17     Isosurfaces of local energy production. The free surfaces are located adjacent 
to the hot disc, and the aspect ratio for whole liquid bridge is  As    =   2.0. The light grey and 
dark grey regions indicate the centrifugal and elliptic mechanisms, respectively  (Reprinted 
with permission from  [Shiratori 2007 - 2] , copyright (2007) American Institute of Physics) .  
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the fi rst time for a molten Si bridge by  [Hibiya 2005, Yamane 2005] . In order to quantify 
the time - dependent motion of the temperature fi eld presented above, the spatial Fourier 
expansion and time averaging are introduced as follows  [Yamane 2005] .   

 An azimuthal temperature distribution can be expressed by the superposition of some 
wave numbers:

    T i a a m b mi m i
m

n

m iϕ ϕ ϕ, cos sin ,, , ,( ) = + ( ) + ( )
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∑0
1

    (7.6)  

where  a m,i   and  b m,i   are the coeffi cients corresponding to wave number  m . Based on this 
viewpoint, we attempted to quantify the azimuthal temperature distribution by the mode 
appearance coeffi cient (MAC) defi ned as follows:
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     Figure 7.18     Time evolution of azimuthal temperature distribution interpolated from six 
thermocouples  (Reprinted with permission from  [Yamane 2005] , copyright (2005) Springer 
Science + Business Media) . The circular fi gures on the left are snapshots which indicate 
typical wave numbers at the time indicated as grey bars in the fi gures on the right. (a): 
 As    =   2.0; (b):  As    =   1.0; (c):  As    =   0.8.  
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where  N  is the number of the sampled data. In the present experiment, the detectable 
wave number is limited to values up to  m    =   3.   φ  m   is the MAC for the wave number  m , 
which may represent the intensity of the  m  - fold symmetry of the mean fl ow structure. 
The coeffi cient for  m    =   0 measures an axisymmetric component. For all aspect ratios 
considered here, the MAC   φ  m   is calculated. 

 Figure  7.19  shows the calculated MAC as a function of the aspect ratio  As . In the fi gure, 
the values of MAC are normalized by the strongest of all the  As . It should be noted that 
the effect of the wave numbers higher than  m    =   3 may appear in these coeffi cients as a 
result of the aliasing error due to the spatial resolution of six thermocouples. For exam-
ples, the  m    =   4 structure is identifi ed as  m    =   2, and  m    =   5 as  m    =   1. The  m    =   1 mode 
seems to appear preferentially at the aspect ratio  As    =   2.0, and the  m    =   3 mode at  As    =   0.8. 
Although the other distinctive relations are not observed, we can suggest that the mean 
fl ow structures indicate the empirical relation  As  ⋅  m    =   2.0 – 2.4, as reported from the 
numerical investigations (see e.g.  [Levenstam 1995, Preisser 1983, Wanschura 1995] ). 
The aliasing error from higher wave numbers may appear in small  As  cases. In conclusion, 
it is suggested that even under conditions of high Marangoni number, such as 10 3  – 10 4 , 
the unstable fl ow sustains the mean fl ow structure which takes place at the condition of 
low Marangoni number.   

 The frequency is an important characteristic as a quantitative measure for the compli-
cated oscillatory fl ow, in addition to the wave numbers discussed above. The frequency 
of the oscillatory fl ow has been investigated using free surface oscillation measured by 
phase - shift interferometry  [Okubo 2005] . Figure  7.20 a shows a time evolution of the 
frequency of dynamic radial displacement for the case  As    =   1.2,  Ma    =   8200 – 14   000. This 
time – frequency plane (called the signal plane) is obtained by wavelet analysis in which 
the Gabor function is used as a mother wavelet  [Mallet 1999] . When a strong black con-
trast appears in the signal plane, this suggests that the amplitude of oscillation is strong. 
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     Figure 7.19     Mode appearance coeffi cient   φ  m   as a function of the aspect ratio  As . The 
values are normalized with respect to the largest one  (Reprinted with permission from 
 [Yamane 2005] , copyright (2005) Springer Science + Business Media) .    
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As shown in Figure  7.20 a, a band whose central frequency is about 0.5   Hz probably exists 
continuously from  t    =   3.0   s on. There is an unsteady frequency band whose central fre-
quency appears at  f    =   1.2   Hz and above. This indicates that the oscillation takes place 
intermittently. This frequency band, whose peak was 0.5   Hz or less, shows an agreement 
to that of the simple oscillatory fl ows near the second threshold (see e.g.  [Imaishi 2001, 
Leypoldt 2000] ). The frequency which appeared at 1.5   Hz and higher could be generated 
due to strong instability caused by a high Marangoni number. A similar tendency was 
observed regardless of aspect ratio  As  and sampling rate.   

 Figure  7.20 b shows the signal plane obtained under a relatively low Marangoni number 
condition. This condition was attained by employing a lower rod with a hybrid structure, 
alumina with a carbon attachment. For this confi guration, the Marangoni number was 
estimated to be 20% smaller than that for the conventional set - up, which utilizes carbon 
for both the upper and lower rods. In Figure  7.20 b, it is clear that the frequency bands 
were observed more clearly compared to those for the higher  Ma  case. The intermittent 
appearance of the frequency is also seen in the range 0.6    <     f     <    2.0   Hz. Figure  7.21  shows 
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     Figure 7.20     The signal plane for radial displacement oscillations obtained by wavelet 
analysis. (a):  As    =   1.2 and  Ma    =   8200 – 14   000; (b):  As    =   0.6,  Ma    =   2800 – 4800  (Reprinted 
with permission from  [Okubo 2005] , copyright (2005) Springer Science + Business Media) .    
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     Figure 7.21     The ranges of the frequency bands as a function of the aspect ratio. The 
lower bands appear time - independently, whereas the higher bands appear intermittently 
 (Reprinted with permission from  [Okubo 2005] , copyright (2005) Springer Science + 
Business Media) .  
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the relationship between the frequency of surface oscillation and aspect ratio  As   [Okubo 
2005] . This tendency agrees with that observed for high -  Pr  fl uid reported by  [Preisser 
1983] .     

  7.1.5   Full Float Zones 

 In the case of full fl oat zones, direct measurements can not be as precise as in the case 
of the half - zone set - up described above, because the interfaces are not fl at and the tem-
perature gradient along the surface cannot be determined as precisely. Some measure-
ments are possible, however. 

 Spatially resolved pyrometric measurements of electron beam - heated Mo and Nb zones 
have been made by  [Jurisch 1990 - 2] , showing oscillations in the 0.25 – 2   Hz range as well 
as transitions from single mode oscillatory to multimode oscillatory to chaotic behaviour 
upon increasing the zone height and temperature difference, i.e. the  Ma  number. For a 
full Si fl oat zone, optical fi bre thermometry has been used both on the ground and under 
microgravity to measure the temperature fl uctuations  [Cr ö ll 2002 - 1, Dold 2002, Schweizer 
1999] . A typical result is shown in Figure  7.22  for pure thermocapillary convection. 
Temperature fl uctuations over 1   K amplitude with the main frequencies around 0.3   Hz 
could be found, which is in good agreement with other results.   

 Temperature fl uctuations and dopant striations are of course coupled through the 
growth rate. That growth rate fl uctuations in semiconductor melt growth due to time -
 dependent convection can have considerable amplitudes has been shown by, for instance, 
 [Kim 1972, Kim 1978, Murgai 1976, Witt 1973] . A direct measurement of the micro-
scopic growth rate is thus useful to identify the effect of time - dependent thermocapillary 
convection in FZ growth. Figure  7.23  shows a series of single frames from a video 
sequence of the microscopic observation of the interface in Si FZ growth, and Figure  7.24  
shows the growth rate measured by analysing the video images. As can be seen in Figure 
 7.24 , strong fl uctuations of the growth rate occurred, with rates up to 17   mm/min and 
down to 0   mm/min at a translation rate of 1   mm/min. With no translation, occasional 
back - melting of the crystal could be detected. The main frequencies fi t well with the ones 
measured for the temperature fl uctuations and the distance of the dopant striations 
 [Schweizer 1999] .    

  7.1.6   The Critical Marangoni Number  Ma  c2  

 Since time - dependent thermocapillary convection is the predominant factor in the forma-
tion of dopant striations in low -  Pr  fl oat zones, a determination of the critical number for 
the onset of time - dependent convection,  Ma  c2 , in a full zone, is of particular interest. The 
easiest way is a simple reduction of the zone length  L  until the striations vanish; this 
method changes  L  and  Δ  T  in Equation  (7.1)  at the same time. This approach has been 
used to determine  Ma  c2  values for Mo and Nb  [Jurisch 1990 - 1, Jurisch 1990 - 2] , GaAs 
 [M ü ller 1991, Rupp 1990] , and GaSb  [Cr ö ll 1998 - 1] . Figure  7.25  shows periodic stria-
tions in a GaSb crystal grown under microgravity (compare Figure  4.29 ) that vanish 
slowly with a reduction in zone height, resulting in a value of  Ma  c2    =   375    ±    125  [Cr ö ll 
1998 - 1] . This method is, however, limited by the minimum zone height as determined 
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by the interface curvature and therefore not applicable to all systems. In the case of Si 
and Ge, striations can be found even in material grown from very small zones such as 
thin necks.  Ma  c2  for Si was determined by decoupling  L  and  Δ  T  in Equation  (7.1)  by 
coating the crystals, but removing a ring - shaped part to obtain a partially confi ned melt 
zone with an annular free surface of constant height (Figure  7.26 ). Free surface heights 
 ≤ 1   mm resulted in striation - free crystals, similar to totally coated ones, and surface heights 
 ≤ 3   mm produced a continuously striated area below the free surface. Crystals grown with 
intermediate heights of the free surface exhibit a succession of striated and nonstriated 
parts below the free surface (Figure  7.27 ). This can be explained by the change of  Δ  T  
along the free surface during the movement of the zone, depicted schematically in Figure 
 7.28 . Initially, when the melt zone is fully covered by the SiO 2  coating, the crystal grows 
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     Figure 7.22     Temperature fl uctuations (top) and corresponding FFT frequency distribution 
of the temperature fl uctuations in a Si fl oat zone under microgravity during the MAXUS 6 
sounding rocket fl ight. Three temperature sensors were used: sensor 1 was close to the 
growing interface, sensor 2 several mm above it near the centre of the zone, and sensor 3 
120    °  away from sensor 1. A cross - correlation analysis of the signals of sensors 1 and 3 
pointed to a lag of 2   s  (copyright A. Cr ö ll; reproduced with permission) .  
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     Figure 7.23     Top: basic set - up to obtain microscopic video images of the crystal – melt 
interface. An enlarged image of the zone is projected onto a screen, where a video CCD 
chip is placed at the position of the interface. Bottom: evolution of a crystal – melt interface 
over a time of 0.6   s in a Si fl oat zone. The translation rate was 1   mm/min .The dark arrow 
indicates the actual interface; the light - coloured area above it is the melt, the darker area 
the outside of the grown crystal. The grey arrow indicates the initial interface position. 
 (Reprinted with permission from  [Dold 1994] , copyright (1994) P. Dold) .  
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striation - free because thermocapillary convection is completely suppressed (Figure 
 7.28 a). When the zone reaches the opening, a free melt surface is formed. Since  Δ  T  is 
large in this position,  Ma  c2  is surpassed and striations are generated (Figure  7.28 b). Now 
 Δ  T  decreases until the free surface reaches the centre of the zone where  Δ  T  is small. In 
this phase, no striations are generated, implying  Ma      <      Ma  c2  (Figure  7.28 c). Then  Δ  T  
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     Figure 7.24     Growth rate fl uctuations determined by the analysis of the melt - crystal 
interface position through video images. The translation rate was 1   mm/min.  After  [Cr ö ll 
1997, Dold 1994]  .  
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     Figure 7.25     Dopant striations in a FZ GaSb crystal grown on the Spacehab - 4 mission 
under microgravity (compare Figure  4.29 ). In the fi rst part of the crystal, striations due to 
thermocapillary convection are visible in addition to rotational striations. When the zone 
height was reduced later on, the striations vanish (upper part of the image). The critical 
Marangoni number  Ma  c2  was determined to be 375    ±    125;  (Reprinted with permission 
from  [Cr ö ll 1998 - 1] , copyright (1998) Elsevier Ltd) .  
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increases again until  Ma      >      Ma  c2  and striations reappear (Figure  7.28 d). In the last phase, 
when the zone is again totally covered, Marangoni convection stops and the crystal grows 
striation free (Figure  7.28 e). If the axial temperature distribution at the zone surface is 
known,  Ma  c2  can be calculated from the relative sizes of the striated and unstriated parts, 
resulting in a value of 150    ±    50  [Cr ö ll 1989, Cr ö ll 1991] .   

 With numerical simulations, it is also possible to determine critical Marangoni numbers 
and at the same time gain insight into the paths leading to time - dependency. Early simula-
tions like those of  [Chang 1975, Chang 1976]  for Si zones chose a two - dimensional 
approach, because of the constraints of computing power and time. However, the critical 
numbers predicted were two orders of magnitude higher ( Ma  c2     ≈    10 4 ) than the ones later 
determined experimentally for low -  Pr  materials. Simulations using a three - dimensional 
approach gave a very different result for the low -  Pr  materials  [Herrmann 1994, Kaiser 
1993, Kaiser 1998, Levenstam 1996, M ü ller 1991, Rupp 1990] , as shown in Figure  7.29 . 
The classic two - roll pattern of the full fl oat zone is only present at very small Marangoni 
numbers; even before a transition to time - dependency, the symmetry is broken, similar 
to the half - zone results discussed above. The two rolls unite and form a large diagonally 
oriented roll plus small secondary rolls in the zone. These structures can rotate or pulsate 
leading to dopant striations. For Si fl oat zones of 10   mm diameter and 12   mm length, the 
three - dimensional simulations resulted in  Ma  c2  values of 115  [Rupp 1990]  and 150  [Kaiser 

10 mm

     Figure 7.26     Si melt zone with a partially free surface in a double ellipsoid mirror furnace. 
The free surface is located between the inner white arrows; the solid – liquid interfaces are 
marked by the outer grey arrows. The feed rod was coated by a 5 -  μ m thick SiO 2  coating 
which was partially removed by machining to achieve the annular free surface  (copyright 
A. Cr ö ll; reproduced with permission) .  



440 Crystal Growth Processes Based on Capillarity

1993] , close to the experimentally determined values. Three - dimensional simulations are 
therefore often a necessity for simulations of low -  Pr  materials. A simulation of a half -
 zone  [Rupp 1990]  gave  Ma  c2    =   290, about 2.5 times higher than his full - zone result; this 
is easily explained by the additional no - slip condition and reduced degrees of freedom 
compared to the full zone set - up. Changes in the zone geometry (e.g. cylindrical to barrel -
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     Figure 7.27     Composite NDIC micrographs of a Si:Sb crystal ([111], 2    ×    10 18    cm  − 3 , 
translation rate 5   mm/min), grown in a monoellipsoid mirror furnace with a partially free 
melt surface. A succession of striated and nonstriated areas is visible one zone length 
below the ring - shaped opening in the SiO 2  coating  (copyright A. Cr ö ll; reproduced with 
permission) .  
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 shaped under microgravity, bottle - shaped under normal gravity) infl uence the fl ow fi eld 
and thus the critical numbers  [Herrmann 1994, Kaiser 1993, Kozhoukarova 1986] . A 
bottle - shaped zone stabilizes the fl ow, as shown by an increase of  Ma  c2  from 112 to 145 
when going from a cylindrical (microgravity) zone to a bottle - shaped one  [Kaiser 1993] ; 
see Figure  7.29 .   

 Several empirical formulas have been suggested for the dependence of  Ma  c2  on  Pr  over 
the years; for the large range of  Pr    =   0.01 – 100, a relationship of  Ma  c2    =   2000 ·  Pr  0.6   [Yang 
2001]  has been proposed (Figure  7.30 ).    
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     Figure 7.28     Schematic sequence of striation formation during FZ growth of Si with a 
partially free melt surface. The diagram on the left shows a measured axial temperature 
distribution in a double - ellipsoid mirror furnace. See text for details  (copyright A. Cr ö ll; 
reproduced with permission) .  
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Ma = 40 Ma = 150 Ma = 150

     Figure 7.29     Three - dimensional numerical simulations of Marangoni convection in a full Si 
fl oat zone for different  Ma  numbers and geometries.  Ma    =   40 (top) is below the critical 
number and shows the classic two - roll pattern of Figure  7.3 .  Ma    =   150 (centre and 
bottom) shows the breaking of the radial symmetry at the transition to time - dependency. 
Buoyancy convection was not considered; however, the upper two simulations used the 
normal gravity shape of the zone whereas the bottom simulation used a microgravity 
shape. The transition to time - dependency happens at  Ma    =   145 for the normal gravity 
shape and earlier, at  Ma    =   112, for the microgravity shape.  (Reprinted with permission 
from  [Kaiser 1993] , copyright (1993) T. Kaiser)   .  
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     Figure 7.30     The critical Marangoni number  Ma  c2  vs the Prandtl number. Some 
experimental results are shown (nos. 1 – 8) as well as one empirical relationship (solid line). 
Note that  Ma  c2  is dependent on the aspect ratio of the zone and the zone shape; this will 
account for some variation in the numbers  (copyright A. Cr ö ll; reproduced with 
permission) .  
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  7.1.7   Controlling Thermocapillary Convection in Float Zones 

  7.1.7.1   Introduction 

 The experimental results and the three - dimensional simulations show that  Ma  c2  is much 
lower for low -  Pr  melts than for high -  Pr  melts; the  Ma  c2  values of the low -  Pr  materials 
are often 1 – 2 orders of magnitude lower than actual  Ma  values of real fl oat zone systems, 
e.g.  Ma    =   3000 – 4000 for a Si fl oat zone of 8   mm diameter and 10   mm height in a typical 
mirror furnace  [Cr ö ll 1994 - 1] , 20 times higher than  Ma  c2 . Typical fl ow velocities for a Si 
zone with  Ma    =   3000 are of the order of 10  − 1    m/s. It is obvious from these numbers that 
in this case it is impossible to avoid time - dependent Marangoni convection by reducing 
the temperature gradient or the zone height; in the above example an axial temperature 
gradient of less than 1   K   cm  − 1  would be necessary for a zone height of 10   mm. Similar 
values have been reported by other authors  [Levenstam 1995] . In addition to causing 
microsegregation, thermocapillary convection in fl oat zones is of course also a strong 
infl uence on axial segregation, radial segregation and interface shape. As shown above, 
trying to change the temperature coeffi cient of the surface tension by introducing small 
amounts of oxygen works, but is not fully suffi cient. Coating with SiO 2  leads to twinning 
and polycrystalline growth  [Cr ö ll 1989] . To reduce or suppress time - dependent Marangoni 
convection, other methods have to be used. 

 Because of the strong dependence of  Ma  c2  on  Pr , the situation is not as bad for systems 
with somewhat higher  Pr  values and smaller  ∂   γ   lv / ∂  T  values than Si or Ge; using small 
zones and/or low temperature gradients, materials such as GaSb can be FZ - grown 
striation - free.  

  7.1.7.2   Static Magnetic Fields 

 The damping of any fl ow in an electrically conducting liquid by a static magnetic fi eld 
is possible by the action of the Lorentz force on the fl ow components perpendicular to 
the magnetic fi eld lines. An important implication is that suffi cient damping will result 
in suppression of time - dependent fl ows and can therefore eliminate dopant striations. The 
characteristic dimensionless number to quantify the infl uence of the magnetic fi eld is the 
Hartmann number  Ha , given by:

    Ha B L= ⋅ ⋅
⋅

σ
ν ρ

el

l

,     (7.8)  

where  B  is magnetic induction,  L  is the characteristic length,   σ   el  is electrical conductivity, 
  ν   is kinematic viscosity, and   ρ   l  is density. 

 Following the successful use of magnetic fi elds in Si - Cz growth, the fi rst experimental 
investigations on the use of both transverse and axial static magnetic fi elds in Si FZ 
growth appeared in the 1980s  [DeLeon 1981, Kimura 1983, Kimura 1993, Robertson 
1986 - 1, Robertson 1986 - 2] . They all employed RF heating, so the strong additional infl u-
ences of its electrodynamic forces led to diffi culties with respect to experiment control 
and interpretation of the results. Typical inductions used were on the order of 100   mT, 
with 500 – 550   mT being the maximum inductions reported  [Robertson 1986 - 1, Robertson 
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1986 - 2] . A reduction of striation intensity, but no complete suppression of striations, has 
been found in such experiments, especially with axial fi elds of 550   mT. 

 The use of static magnetic fi elds to specifi cally suppress thermocapillary convection in 
radiation - heated zones has been studied in detail by  [Cr ö ll 1994 - 1, Cr ö ll 1998 - 2, Cr ö ll 
1999, Dold 1998, Dold 2003, Kaiser 1998] . For axial fi elds and a  Ma  number of the order 
of 10 3 , a reduction of the frequency spectrum and a transition to oscillatory behaviour 
could be found at about 60   mT, a transition to just one frequency at 200   mT ( Ha    =   75), 
and a disappearance of striations above 200   mT (Figure  7.31 ). At the same time, a core 
structure appears in the crystal, which is not identical with the (111) facet core, with the 
core diameter being a function of induction (Figure  7.31 ).The appearance of this radial 
inhomogeneity can be explained by two different fl ow regimes due to the damping of 
only radial and azimuthal components of the fl ow by the fi eld: in the centre a quiescent 
regime close to diffusive conditions prevails, whereas in the periphery of the melt zone 
a regime with still vigorous thermocapillary fl ow dominates, and the boundary between 
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     Figure 7.31     Composite NDIC micrograph of an etched axial section of a Si:P crystal, 
grown with different axial magnetic fi elds. The induction was increased in 100 - mT steps. 
Right: Enlargement of the structure separating core and periphery and corresponding radial 
concentration profi le from spreading resistance measurements. The dependence of the 
core width on the induction is clearly visible  (copyright A. Cr ö ll and P. Dold; reproduced 
with permission) .  
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them leads to a build - up of solute concentration  [Cr ö ll 1998 - 2] . The structure fi nally 
disappears at inductions larger than 2   T with strong enough damping  [Cr ö ll 1998 - 2] . 
Transverse fi elds break the symmetry of a fl oat zone, which leads to problems in the RF 
heated zones  [Robertson 1986 - 1] , but was quite effective for radiation - heated zones. An 
induction of 40   mT was enough to facilitate a transition to a single oscillatory state, and 
60 – 80   mT to achieve striation - free growth  [Dold 2003] . No coring was observed, but both 
for transverse and for higher axial fi elds the occurrence of thermoelectromagnetic convec-
tion, caused by the interaction of the fi elds with thermoelectric currents generated by 
segregation at the interface, leads to other radial inhomogeneities and even a new type of 
dopant striations  [Cr ö ll 1998 - 2, Dold 2003] . These problems, as well as the comparatively 
high fi elds needed, reduce the usefulness of pure static fi elds for the FZ process.    

  7.1.7.3   Alternating Magnetic Fields 

 Alternating magnetic fi elds are rotating, travelling, or pulsating fi elds that induce a fl ow 
in an electrically conducting melt. For fl oat zones, rotating magnetic fi elds have been 
used successfully to infl uence segregation due to thermocapillary convection  [Dold 1999, 
Dold 2001, Dold 2003, Dold 2004, Knobel 2005] . The force that drives the convection 
due to the fi eld is characterized by the magnetic Taylor number  Ta :

    Ta
B rB=

2 4

22

ω σ
ν ρ

el

l

,     (7.9)  

where  B  is induction,   ω  B   is the angular velocity of the fi eld , r  is the radius,   σ   el  is electrical 
conductivity,   ν   is kinematic viscosity and   ρ   l  is density. 

 For pure thermocapillary convection, a signifi cant change was found at inductions 
between 2.5 and 3.75   mT ( Ta    =   1    ×    10 4  – 2.3    ×    10 4 ) with a shift to a new higher charac-
teristic frequency. An induction of 7.5   mT at 50   Hz ( Ta    =   3.9    ×    10 4 ) proved to be enough 
to practically eliminate dopant striations due to time - dependent convection  [Dold 2001] . 
The striation patterns in the crystals indicate a shift from low frequencies and high ampli-
tudes to high frequencies and low amplitudes with increasing induction. This is corrobo-
rated by temperature measurements: Figure  7.32  shows the temperature signal of fi bre - optic 
sensors in a Si fl oat zone under microgravity with a fi eld of 7   mT at 50   Hz. With the full 
fi eld, the temperature fl uctuations are essentially reduced to the sensor noise, whereas 
without fi eld they reach over 1   K (Figure  7.22 ). Simulations show that the fl ow fi eld in 
this case is dominated by the induced azimuthal fl ow and radial and axial components 
are reduced considerably  [Dold 2001, Kaiser 1998] , leading to a much more symmetrical 
fl ow pattern than in the pattern without fi eld. Rotating magnetic fi elds are now used in 
the industrial FZ growth of Si  [Knobel 2005] .    

  7.1.7.4   Vibration 

 Vibrating a fl oat zone to reduce time - dependent convection and dopant striations seems 
counterintuitive, but is a viable new and promising method to counterbalance thermocap-
illary convection. In a free zone that is subjected to axial vibrations, three mechanisms 
lead to convective fl ow: thermovibrational convection, the Schlichting effect, and a fl ow 
generated by surface waves which are damped by viscosity  [Gershuni 1998, Lyubimov 
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1997] . This latter fl ow opposes thermocapillary convection. It has been shown by simula-
tions  [Lyubimov 2002, Lyubimova 2003]  as well as experiments with half - zone model 
systems using silicone oil and NaNO 3   [Anilkumar 1993, Anilkumar 2005, Dold 2003, 
Shen 1996]  that this is an effective method to control or even dominate thermocapillary 
convection. By adjusting the amplitude and/or frequency it is possible to slow or stop 
thermocapillary convection, or even reverse the fl ow roll. It should be noted that this 
method works independently of the electrical conductivity of the melt, whereas magnetic 
fi elds only work for conducting liquids. First results using this method with Si fl oat zones 
show that it does indeed work. Experiments with high - frequency vibrations (4   kHz, 1    μ m 
amplitude) showed a slight decrease of the dopant striations and a reduction of the inter-
face curvature  [Dold 2003] . Vibrations with higher amplitudes at a lower frequency 
(70   Hz, 100 – 375    μ m) showed a strong weakening of the dopant striations at 250    μ m 
amplitude and a reappearance at higher amplitudes, this time probably due to a time -
 dependent reversed fl ow  [Dold 2003] . Figure  7.33  shows micrographs of different stria-
tion pattern grown without and with vibration; the reduction in the part grown with 
vibration is quite apparent.    

  7.1.7.5   Other Methods 

 There have been at least two proposals to use a directional gas jet blown tangentially at 
the zone surface to reduce thermocapillary convection, with the fl ow direction opposite 
that of thermocapillary convection. This idea was investigated by numerical simulations 
 [Li 2003]  and by using a model system  [Dressler 1988] . Both approaches showed the 
viability of the basic concept. The simulations predict a reduction of thermocapillary 
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     Figure 7.32     Temperature fl uctuations in a Si fl oat zone under microgravity during the 
MAXUS 6 fl ight without fi eld (left) and using a rotating magnetic fi eld at 50   Hz and 
 B    =   7   mT (right). Three temperature sensors were used: Sensor 1 was close to the growing 
interface, sensor 2 several mm above it near the centre of the zone, and sensor 3 120    °  
away from sensor 1  (copyright A. Cr ö ll; reproduced with permission) .  



Marangoni Convection in Crystal Growth 447

convection up to 99%  [Li 2003] , and the model experiments using silicone oil showed a 
reduction of the fl ow velocity of up to 66%. However, this idea has not yet been tried for 
real crystal growth systems. The technical diffi culties of blowing high - speed gas jets at 
a hot melt zone are likely to be severe; the gas would probably have at least to be pre-
heated to the melt temperature to avoid a rapid cooling of the zone, and contamination 
problems might also occur. 

 Other methods that have been suggested include reduction of the free surface with 
heaters covering the surface  [Lan 1991 - 1, Lan 1991 - 2, Lan 1991 - 3] , although that method 
negates the main advantage of FZ growth, that the melt does not have contact with a 
crucible; and high - speed counterrotation of crystal and feed rod with rotation rates up to 
400   rpm  [Lan 1991 - 4] . Simulations and model experiments with NaNO 3   [Lan 1991 - 4]  

200 µm

↑ 70 Hz, 150 µm

↓ no vibration

200 µm

     Figure 7.33     Micrographs of an etched axial slice of a Si:Sb crystal. The bottom image 
shows the usual dopant striations due to time - dependent thermocapillary convection, the 
upper image shows a part of the crystal grown under axial vibrations of 150    μ m at 70   Hz, 
with a marked reduction of the striation intensity  (copyright A. Cr ö ll; reproduced with 
permission) .  
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showed the viability of the latter approach in principle, but it has not yet been used in 
other systems.    

  7.2   Thermocapillary Convection in  C  z  Crystal Growth of  S  i  

  7.2.1   Introduction 

 High - quality bulk crystals of Si have become a key material in the electronic industry 
owing to the development of large - scale integrated circuits (LSIs) and the increasing 
demand for large - diameter Si substrates for large memory chips. The Cz method is widely 
used to produce such crystals in industry. Accurate control of the melt – crystal interface 
shape and of the fl ow in the melt during Cz growth is essential to produce high - quality 
crystals, since the temperature distribution in the crystal affects crystal quality. 
Thermocapillary fl ow has been shown to affect interface shape and fl ow in crystal growth 
systems as discussed above. The effect of thermocapillary fl ow on the melt fl ow in this 
system is not so large compared with those of buoyancy convection and the rotation of 
the crystal and/or a crucible, especially in a large volume of the melt. However, the effect 
on impurity distributions, especially near the edge of the crystal, is signifi cant. The effect 
is dependent on the materials and their thermophysical properties. 

 In the 1970s, several papers reported the so - called  ‘ spoke and wave ’  - like pattern on 
high -  Pr  melt surfaces in the Cz system  [Brandle 1977, Takagi 1976, Whiffi n 1976]  which 
is partly based on thermocapillary fl ow. Miller  [Miller 1981, Miller 1982]  fi rst carried 
out the experiments by using water as a melt of simulated garnet in a container. They 
reproduced the spoke pattern which was modifi ed by the crystal rotation rate. They 
deduced that a thermocapillary instability was an indispensable factor in the formation of 
the spoke pattern. This inference was supported by Hurle  [Hurle 1983] , Shigematsu 
 [Shigematsu 1987] , and Morita  [Morita 1993] . Jones carried out a lot of work on cold 
model experiments with a fl uid of  Pr    =   1; he observed spoke patterns on the top of the 
melt and concluded that the spoke pattern was caused by a buoyancy instability  [Jones 
1983, Jones 1984, Jones 1985, Jones 1989] . 

 Schwabe and coworkers  [Schwabe 1981]  performed several experiments regarding 
thermocapillary convection. They found that the fl ow and isotherms near the melt surface 
and the crystal are infl uenced by thermocapillary forces. Nikolov  [Nikolov 1988]  reported 
a numerical study on the infl uence of physical and geometrical parameters on Cz fl ow. 

 The application of magnetic fi elds in Cz growth has been shown to be an effective tool 
for controlling the melt fl ow in general  [Hurle 1994, Kakimoto 2002, Krauze 2004 - 1, 
Krauze 2004 - 2, Ozoe 1994] . It is also important for the interaction of the thermocapillary 
fl ow in a Cz set - up, as will be shown below.  

  7.2.2   Surface Tension - Driven Flow in  C  z  Growth 

  [Jing 2000, Jing 2008]  reported mechanisms of the formation of spoke patterns in oxide 
melts by using three - dimensional time - dependent numerical calculations. The spoke 
pattern was formed by both Rayleigh – B é nard (buoyancy) and thermocapillary instabili-
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ties. They succeeded in reproducing spoke patterns visually by taking into account the 
temperature distribution at the top of the melt  [Jing 2000]  and the effect of thermocapil-
lary fl ow. They also reported a three - dimensional global model which includes the cal-
culation of three - dimensional fl ow and two - dimensional radiative heat and mass transfer 
in a Cz furnace  [Jing 2008] . They studied how the three - dimensional fl ow patterns includ-
ing the surface - tension fl ow affects the shape of the interface between the crystal and the 
melt. They concluded that the shape of the interface became more concave to the melt 
when a three - dimensional fl ow including thermocapillary fl ow was taken into account. 

 The hydrothermal wave is an interesting phenomenon in the Si Cz case  [Nakamura 
1999 - 2] . They reported that the azimuthal velocity of a thermal wave on top of the Si 
melt is smaller than that of the crucible rotation rate. Moreover, the wave number of the 
thermal wave increased when the crucible rotation rate increased.  [Azami 2001 - 5]  
observed the spoke patterns on shallow Si melts and polygonal cellular patterns on the 
surface of the Cz Si melts by a CCD camera. The dark stripes of the spoke patterns indi-
cated a lower temperature on the top of the melt. They found that the number of spokes 
depends on the depth of the Si melt. When the thermocapillary fl ow was dominant in an 
Si melt 3 - mm deep, a spoke pattern was observed on top of the surface.  

  7.2.3   Numerical Model 

 Confi gurations and dimensions of the computation model of Cz growth are shown in 
Figures  7.34  and  7.35   [Liu 2005 - 1] . For any case with an axisymmetric magnetic fi eld 
such as a vertical (VMCz) or cusp - shaped magnetic (CMCz) fi eld, two - dimensional 
global modelling is done as shown in Figure  7.34 . For the case of a transverse magnetic 
fi eld (TMCz), three - dimensional global modelling is done as shown in Figure  7.35 . The 
growth process is assumed to be quasi - steady. All the constituents of the furnace are 
subdivided into a set of block regions as shown in Figure  7.34 . Each block region is 
covered by a structured grid. In order to perform three - dimensional global modelling with 
moderate requirements of computer memory and computation time for TMCz, a mixed 
two - dimensional/three - dimensional fi nite - volume scheme was developed  [Liu 2005 - 1, 
Liu 2005 - 2] . The three - dimensional domain, as shown in Figure  7.35 , includes the crystal, 
melt, crucible, and heater. The other regions in the furnace are included in the two -
 dimensional domain. The calculation of view factors in the radiation modelling is an 
important part of the model with such a space discretization scheme and is described in 
 [Liu 2005 - 1] .   

 Transverse magnetic fi elds infl uence interface shape and temperature distribution near 
the melt – crystal interface through the melt convection in a crucible by exerting a Lorentz 
force on the melt. The governing equations for melt convection under the infl uence of a 
transverse magnetic fi eld with the assumptions of a quasi - steady process and incompress-
ible laminar fl ow of the melt are as follows:

    ∇⋅ =u 0,     (7.10)  

    ρ μ ρ βl
T

l T mu u p u v g T T J B⋅∇ = −∇ + ∇⋅ ∇ + ∇( )[ ]− −( ) + ×
� �

,     (7.11)  

    ρ λlc u T Tp ⋅∇ = ∇⋅ ∇( ),     (7.12)  
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     Figure 7.35     Confi guration of the computational grid  (Reprinted with permission from  [Lui 
2005 - 1] , copyright (2005) Elsevier Ltd)   .  
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     Figure 7.34     Confi guration of the computation model for Cz growth  (Reprinted with 
permission from  [Lui 2005 - 1] , copyright (2005) Elsevier Ltd)   .  
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where  u  is the melt velocity,   ρ   1  the melt density,  p  the melt pressure,   μ   the melt dynamic 
viscosity,  g  the acceleration due to gravity,   β   T  the thermal expansion coeffi cient,  T  m  the 
melting temperature,   

�
J  the electrical current density,   

�
B  the magnetic fl ux density,  c p   the 

heat capacity and   λ   the thermal conductivity. 
 In order to obtain the Lorentz force exerted on the melt, it is necessary to solve the 

electrical fi eld induced by the imposed magnetic fi eld and governed by

    ∇⋅ =
�
J 0,     (7.13)  

    
� � �
J E u B= + ×( )σel ,     (7.14)  

    
�
E = −∇Φ,     (7.15)  

where   σ   e1  is the electrical conductivity,   
�
E  the electric fi eld and  Φ  the electric potential. 

The crucible, pulling rod and ambient gas are electrically insulated, while the Si crystal 
is an electrical conductor. Therefore, the calculation of electromagnetic fi eld is limited to 
the melt – crystal domain. The melt fl ow is solved by a fi nite - volume method. 

 The thermocapillary fl ow was expressed by the following equations:

    u n⋅ = 0,     (7.16)  

    μ γ∂
∂

= ∂
∂

∂
∂

u

n T

T

t
t lv ,     (7.17)  

    μ γ
ϕ

ϕ∂
∂

= ∂
∂

∂
∂

u

n T

T

r
lv ,     (7.18)  

where  u  t  and  u  ϕ    are the velocities in tangential and azimuthal directions,  n  is the normal 
vector to the free surface of the melt,  ∂   γ   lv / ∂  T  is the temperature gradient of surface tension, 
and  r  and   ϕ   the radius and azimuthal angle respectively, as shown in Figure  7.36 .   

 The global solution is obtained by an iterative procedure that consists of a set of local 
iterations for all block regions, calculation of radiative heat transfer in the furnace and a 
global conjugated iteration among them. The input heater power and melt – crystal inter-
face are unknown  a priori . They are solved during the iterative procedure. Details of the 
model, including treatments of boundary conditions, have been published elsewhere  [Liu 
2005 - 1, Liu 2005 - 2] . 

crystal 

melt 
t

n

     Figure 7.36     Coordination at the melt surface  (Reprinted with permission from  [Liu 
2005 - 3], copyright (2005))  .    
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 Four cases of magnetic fi eld arrangement are numerically investigated: without mag-
netic fi eld, with a vertical magnetic fi eld (VMCz), with a cusp - shaped magnetic fi eld 
(CMCz) with its symmetric plane along the free surface of the melt, and with a transverse 
magnetic fi eld (TMCz). VMCz is 0.1   T, which is distributed homogeneously. CMCz has 
a distribution with the symmetric plane of the magnetic fi eld along the free surface of the 
melt. In this case the strength of magnetic fl ux density at the centre of the crucible bottom 
wall is 0.1   T.  

  7.2.4   Calculation Results 

  7.2.4.1   Without Magnetic Fields 

 Figure  7.37  shows results of the calculation of the distributions of temperature and veloc-
ity with and without thermocapillary fl ow  [Liu 2005 - 3] . The results indicate that fl ow 
velocity near the point where melt, crystal and gas coexist becomes large due to thermo-
capillary fl ow as shown in Figure  7.37 a, while the velocity becomes small at that point 
without thermocapillary fl ow as shown in Figure  7.37 b. The maximum fl ow velocity with 
thermocapillary fl ow is about 6   cm/s, while that without thermocapillary fl ow is 1   cm/s. 
The effect can be recognized in the streamlines shown in the fi gure.   

 The results also indicate that temperature distributions along the crystal surface with and 
without thermocapillary fl ow are almost the same since such distributions were mainly 
determined by radiative heat transfer among the crystal surface, melt surface and crucible 
wall. The maximum temperature in the melt with thermocapillary fl ow is 1722   K, while 
the value without thermocapillary fl ow is 1726   K. This homogenization of temperature in 
the melt with thermocapillary fl ow is due to the enhancement of fl ow mixing in the melt.  
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     Figure 7.37     Temperature distribution of melt and crystal, velocity vectors (lower left) and 
streamlines (lower right) with (a) and without (b) surface tension - driven fl ow, without a 
magnetic fi eld  (Reprinted with permission from  [Liu 2005 - 3] , copyright (2005) Elsevier Ltd) .    
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  7.2.4.2   Vertical Magnetic Fields 

 Vertical magnetic fi eld Cz crystal growth (VMCz) was one of the candidates for the 
control of melt fl ow. However, the radial distribution of oxygen concentration in Si crys-
tals became inhomogeneous and consequently the VMCz method has not been used for 
the production of Si crystals. 

 Figure  7.38  shows velocity distributions in the melt with and without thermocapillary 
fl ow with vertical magnetic fi elds  [Liu 2005 - 3] . The convective fl ow in the meridional 
plane is markedly decreased by applying a magnetic fi eld, which has the effect of stabiliz-
ing the convective fl ow. The maximum velocity of the melt was 20   cm/s at the periphery 
of the crystal – melt interface in the case with thermocapillary fl ow, while that without 
thermocapillary fl ow was 0.5   cm/s in the bulk of the melt. The radial velocity in the bulk 
fl ow has been reported to be suppressed by vertical magnetic fi elds due to hydromagnetic 
dynamics when thermocapillary fl ow is ignored. However, the fi gure shows that the radial 
fl ow is not suppressed, especially at the surface. This discrepancy is based on the differ-
ence between bulk fl ow and surface fl ow. Force based on surface tension acts only at the 
surface of the melt; it is therefore diffi cult to suppress the fl ow because the breaking force 
due to the magnetic fi eld acts in the whole volume of the melt.   

 Figure  7.39  shows temperature distributions in the melt with and without thermocapil-
lary fl ow  [Liu 2005 - 3] . The defl ection of the interface between the crystal and melt with 
thermocapillary fl ow is larger than that without thermocapillary fl ow. This phenomenon 
is related to the fl ow described above. Radial fl ow at the top of the melt, in the same 
direction as natural convection, is large; therefore, the velocity of the descending fl ow at 
the centre of the melt becomes large. Consequently, the temperature at the centre of the 
interface between the crystal and melt becomes low. Thus, the position of the interface 
becomes lower with thermocapillary fl ow than without thermocapillary fl ow, as shown 
by the dashed line in Figure  7.39 . The force of the surface tension acts at the top of the 
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     Figure 7.38     Velocity distributions in the melt with (a) and without (b) thermocapillary 
fl ow with vertical magnetic fi elds  (Reprinted with permission from  [Liu 2005 - 3] , copyright 
(2005) Elsevier Ltd) .    
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melt; however, it penetrates into the bulk melt through fl ow. Therefore, the melt is mixed 
even with vertical magnetic fi elds.    

  7.2.4.3   Cusp - Shaped Magnetic Fields 

 The cusp - shaped magnetic fi eld Cz (CMCz) method has been reported to partly modify 
heat and mass transfer in the melt  [Hurle 1994] . Magnetic fi elds in CMCz are distributed 
inhomogeneously, and the breaking force based on Lorenz force is therefore also distrib-
uted inhomogeneously. 

 Figure  7.40  shows velocity distributions in the melt with and without thermocapillary 
fl ow, with a cusp - shaped magnetic fi eld with its symmetry plane along the free surface 
of the melt  [Liu 2005 - 3] . The fl ow velocity in the melt is larger than in the VMCz case. 
This is because of the difference in the breaking force distribution between VMCz and 
CMCz. In VMCz the breaking force is distributed throughout the melt, while for CMCz 
it is distributed in only part of the melt. Therefore, in CMCz the motion of the melt is 
not as suppressed as it is in VMCz. The maximum velocity of the melt was 25   cm/s at 
the periphery of the crystal – melt interface in the case with thermocapillary fl ow, while 
that without thermocapillary fl ow was 0.6   cm/s in the bulk of the melt.   

 One interesting point is that the top of the melt near the crucible wall has a fl ow in an 
outward direction. This is due to the recirculation fl ow near the top at the edge of the 
melt. Such recirculation shifts the temperature distribution towards the outside of the melt; 
therefore, the outward fl ow is formed at the edge of the melt. Such outward fl ow some-
times enhances erosion of the fused quartz crucible. Therefore, controlling the recircula-
tion fl ow is one of the key issues for maintaining a fused quartz crucible for a long time. 

 Figure  7.41  shows the temperature distributions in the melt with and without thermo-
capillary fl ow  [Liu 2005 - 3] . The effect of the breaking force due to the cusp - shaped 
magnetic fi eld is not as large as that in the case of VMCz shown in Figures  7.38  and  7.39 , 
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     Figure 7.39     Temperature distribution in the melt with (a) and without 
(b) thermocapillary fl ow with vertical magnetic fi elds  (Reprinted with permission from  [Liu 
2005 - 3] , copyright (2005) Elsevier Ltd) .    
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and the difference in temperature distributions between the cases with and without ther-
mocapillary fl ow is therefore not so large even if a recirculation fl ow is formed as shown 
in Figure  7.40 a. This is because of the large value of thermal conductivity of the melt, 
which homogenizes the temperature distribution.    

  7.2.4.4   Transverse Magnetic Fields 

 Figure  7.42  shows velocity distributions in the melt with and without thermocapillary 
fl ow, with transverse magnetic fi elds  [Liu 2005 - 4] . The data were averaged along the 

60

50

40

30

Z

R

20

10

0
–30 –20 –10 0

(a) (b)

10 20

0.05 m (sec)

30

60

50

40

30

Z

R

20

10

0
–30 –20 –10 0 10 20

0.05 m (sec)

30

     Figure 7.40     Velocity distributions in the melt with (a) and without (b) thermocapillary 
fl ow with cusp - shaped magnetic fi elds  (Reprinted with permission from  [Liu 2005 - 3] , 
copyright (2005) Elsevier Ltd) .    
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azimuthal direction because TMCz has an asymmetric confi guration. The directions of 
the fl ow in the meridional plane with and without thermocapillary fl ow are opposite, due 
to surface tension force. Consequently, the interface shape, especially at the edge with 
thermocapillary fl ow, was different compared to that without thermocapillary fl ow. Such 
opposite types of fl ow modify the temperature distribution in the melt. The average veloc-
ity of this system is larger than in VMCz. This means that the fl ow was not suppressed 
as much as it is in VMCz.     

  7.2.5   Summary of  C  z  Results 

 Thermocapillary fl ow is one of the most important factors of the melt convection in the 
Cz method. The effect of thermocapillary fl ow on the bulk fl ow is not signifi cant; 
however, thermocapillary fl ow modifi es the temperature distribution in the melt, espe-
cially near the surface of the melt. Moreover, in the case of applied magnetic fi elds, the 
thermocapillary fl ow affects the interface shape between the melt and the crystal. The 
degree of the effect is dependent on the type of magnetic fi eld, e.g. vertical, cusp - shaped, 
and transverse magnetic fi elds.   

  7.3   Thermocapillary Convection in  EFG  Set - Ups 

 Edge - defi ned fi lm - fed growth (EFG) is described in detail in Chapter  5 . It is used com-
mercially for the production of multicrystalline solar Si tubes  [Smirnova 2008]  and for 
shaped sapphire crystals  [Bunoiu 2005] . In EFG there are two areas with a free surface 
and thus thermocapillary fl ow to consider: one is the melt pool in the crucible, and the 
other the small meniscus connecting the shaping die with the growing crystal. The results 
of numerical simulations, validated by the results of the actual crystal growth processes, 
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     Figure 7.42     Velocity distributions in the melt with (a) and without (b) thermocapillary 
fl ow with transverse magnetic fi elds  (Reprinted with permission from  [Liu 2005 - 3] , 
copyright (2005) Elsevier Ltd) .    
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have shown that thermocapillary convection plays a signifi cant role in both. In the melt 
pool, the interaction of thermocapillary and natural convection determines a three - dimen-
sional time - dependent fl ow structure which in turn has some infl uence on the segregation 
of impurities, e.g. for EFG Si  [Bellmann 2007, Smirnova 2008] . 

 The fl ow in the meniscus is almost entirely dominated by thermocapillary convection 
as shown in  [Bellmann 2007, Braescu 2008] . The resulting fl ow velocity depends signifi -
cantly, apart from the material and the temperature gradient, on the design of the shaping 
die, as shown by the simulations of  [Buniou 2005]  comparing a die with a central channel 
and an annular channel. These differences in turn lead to a different concentration fi eld 
of solute in front of the interface. In the case of EFG sapphire growth,  [Buniou 2005]  
showed that this effect determines the incorporation of bubbles into the crystals. 

 Three - dimensional simulations of the meniscus fl ow in the case of EFG Si compared 
the fl ow velocity with and without thermocapillary convection, resulting in values of 
3.44   cm/s and 0.34   cm/s, respectively  [Bellmann 2007] . It turned out that the pressure 
distribution caused by the thermocapillary convection rolls led to a reversion of the fl ow 
in some of the channels in the shaping die; this in turn altered the distribution of solute 
considerably. Due to this effect, the concentration of carbon (from the SiC - coated die) in 
front of the crystallization interface stays below the saturation point, whereas without 
thermocapillary convection the carbon concentration would reach the saturation point in 
the meniscus  [Bellmann 2007] .  

  7.4   Thermocapillary Convection in Bridgman and Related Set - Ups 

 Obviously, Marangoni convection will also play a signifi cant role in horizontal Bridgman 
set - ups and must be considered by the crystal grower. Simulations can be found in 
 [Kaddeche 1994 - 1, Kaddeche 1994 - 2] . 

 What may not be immediately obvious is the fact that even for VB growth, or similar 
set - ups like VGF, thermocapillary convection can infl uence the mixing of the melt. The 
radial temperature gradient along the free top of the melt in a VB crucible can drive a 
suffi ciently strong (laminar) thermocapillary convection to achieve even mixing of a 
dopant introduced from the gas phase into a Bridgman set - up. This has been proved by 
Ge   :   Zn growth experiments under microgravity  [P ä tzold 2002] . In the microgravity exper-
iment, the top surface of an undoped Ge melt was in contact with the ampoule atmosphere 
which contained a Zn source. The resulting distribution of Zn did not follow a diffusive 
profi le, but a profi le suggesting good mixing of the melt, which could only be attributed 
to thermocapillary convection at the top of the melt. Subsequent numerical simulations 
proved that this was the case  [P ä tzold 2002] .  

  7.5   Solutocapillary Convection 

 As mentioned in the main discussion of Marangoni convection above, solutocapillary or 
solutal Marangoni convection can exist in mixed growth systems, with the solutal 
Marangoni number given by Equation  (7.3) . For example, it plays a signifi cant role in 
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welding  [Nakajima 2003] . Considering both thermocapillary and solutocapillary convec-
tion, i.e. taking into account the contributions of both the temperature and the concentra-
tion gradient, an axial surface tension gradient at the interface of a growing crystal is 
given by:
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= ∂
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⋅ ∂
∂

+ ∂
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⋅ ∂
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γ γ γlv lv lv

z C
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z T
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z
,     (7.19)   

 with  z  as the axial coordinate. If  ∂   γ   lv / ∂  C     ≠    0 and the segregation coeffi cient  k     ≠    1, which 
holds for the vast majority of all crystal growth cases, the actual growth process will cause 
a surface tension gradient close to the growing interface due to the segregation - induced 
concentration gradient in the boundary layer ahead of the interface. Both thermal and 
solutal Marangoni forces will inevitably persist as long as the crystal growth continues. 
An important difference between thermo -  and solutocapillary convection is that thermo-
capillary convection will be constant as long as the temperature gradient is maintained, 
whereas solutocapillary convection will change during growth in accordance with the 
build - up (or reduction) of solute in front of the interface, in dependence on the growth 
rate. When the growth stops, e.g. by stopping translation during FZ or Cz growth, solu-
tocapillary convection will also stop, while thermocapillary convection will continue as 
long as the temperature gradient and the free surface are kept constant. 

 An assessment of the confi gurations possible can be made  [Tison 1992] , assuming that 

   •      the growth process is not in a transient stage, and;  
   •      the growth rate is at the limit of constitutional supercooling, i.e. the concentration gradi-

ent  ∂  C / ∂  z  can then be substituted by
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 The sign and amount of surface tension - driven convection are in this case governed by 
the contribution of the thermally driven part versus that of
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 for the solutally driven part. In principle, four different combinations are discernible, but 
since  ∂   γ   lv  /  ∂  T  is usually negative, only two cases are of practical importance: 

   Case  1:     Normal (towards the interface) thermocapillary and solutocapillary fl ow:
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   Case  2:     Normal thermocapillary fl ow and inverse (away from the interface) solutocapil-
lary fl ow:

    
∂
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>γ γlv L lvd

dT

C

T C
0 0, .      

 For Case 2, an inverse solutocapillary driven fl ow in front of the interface will be observ-
able if
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γ γ

.     (7.21)   

 Obviously, this will infl uence the segregation during crystal growth signifi cantly. The 
effect has been shown experimentally for the metallic system Sn – Bi  [Tison 1992, Camel 
2002] , for the system InSb – Sb  [Arafune 1998] , and for the system Ge – Si  [Campbell 
2001] .  [Arafune 1999]  measured the fl ow velocities for pure solutal convection in the 
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     Figure 7.43     Change of the interface shape with the Si content in a FZ - grown Ge – Si 
crystal due to solutocapillary convection. With increasing Si content the outer part of the 
interface deviates from the convex isotherm for the composition.  (Reprinted with 
permission from  [Campbell 2001, Dold 2003] , copyright (2001) Elsevier Ltd) .    
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system In – Ga – Sb by adding a liquid of different composition to an initially isothermal 
melt. Velocities up to 200   mm/s were measured, about 5 – 10 times faster than the veloci-
ties of thermocapillary convection caused by temperature differences of 10 – 80   K in the 
same geometry. Numerical simulations of horizontal directional solidifi cation by 
 [Kaddeche 1994 - 2]  in a differentially heated rectangular cavity found solutocapillary fl ow 
opposing thermocapillary convection, the size increasing with the build - up of solute, 
corroborating the experimental results. Results by  [Campbell 2001]  pointed to pronounced 
solutocapillary convection during the FZ growth of Ge – Si mixed crystals. A signifi cant 
change of the interface shape with increasing Si content, shown in Figure  7.43 , suggested 
the appearance of additional convective cells near the interface periphery. An order of 
magnitude analysis of solutocapillary convection in this confi guration, as well as numeri-
cal simulations corroborated the existence of solutocapillary convection with an opposing 
fl ow in this system  [Dold 2003] . Recent Ge 1 −    x   – Si  x   (0.03    <     x     <    0.1) crystallization experi-
ments in a shallow rectangular cavity under microgravity showed tracer velocities up to 
55   mm/s due to solutocapillary convection away from the interface at the onset of crystal-
lization  [Cr ö ll 2009] . Since the tracers were comparatively large (1   mm), the real fl ow 
velocity can be assumed to be even higher. These results show that solutocapillary con-
vection in crystal growth, although often neglected in experiments and simulations, can 
play as large a role as thermocapillary convection.    
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     One major problem confronting crystal growth researchers has been the development of 
techniques capable of monitoring and controlling the external shape of melt - grown crys-
tals, and simultaneously improving the crystal structures. In the EFG, Cz, dewetted 
Bridgman and FZ processes, the shape and the dimensions of the crystal are determined 
by the liquid meniscus and by the heat transfer at the melt – crystal interface. In addition, 
the meniscus is also of great practical use for techniques of diameter control: in the weigh-
ing method ([ Bardsley 1974, Bardsley 1977, Dijk 1974, Johansen 1992 , Chapter  3 ]) the 
weight of the melt enclosed by the meniscus appears as an essential parameter; when 
using video observation ( [Gartner 1972, Gartner 1973, O ’ Kane 1972, Sachs 1980] ), the 
crystal diameter and the interface height have to be measured exactly. 

 Historically, the physical origin and the shape of a liquid meniscus were among the 
fi rst phenomena to be studied in capillarity  [Hauksbee 1709] . The fi rst formal analytical 
expression was given by Laplace  [Laplace 1806] , after introduction of the  mean curvature 
 κ   defi ned as the average (arithmetic mean) of the principal curvatures   κ = +( )1

2 1 21 1R R  
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     Figure 8.1     (a) Sessile or pendant drop:   +   positive sign in Young-Laplace equation. 
(b) External meniscus:    −    negative sign in Young-Laplace equation.  

 [Young 1805] . Laplace showed that the  mean curvature  of the free surface is proportional 
to the pressure change across the surface. The proportionality coeffi cient is the surface 
tension   γ    lv . The pressure change across the surface contains  p  v  the pressure of the external 
gas on the melt;  p  O , the internal pressure applied on the liquid, which can generally be 
defi ned at the origin;   ρ   l  gz , the hydrostatic pressure;   12

2 2 2ρl lΩ x y+( ), the pressure deter-
mined by the centrifugal force due to a possible liquid rotation   12

2 2 2ρl lΩ x y+( ) where  Ω  1  
is the angular velocity of the liquid (around the  Oz  axis in crystal growth techniques), 
and, when magnetic fi elds are used, the Maxwell pressure which is proportional to the 
square of the magnetic induction  B  2 ( x ,  y ) / 2  μ   (  μ   - magnetic permeability). The following 
equality known as the Young – Laplace equation must hold:

    
1 1

1
2

2

1 2

2 2 2

R R

p p gz x y B x y
+ = ±

− − + +( ) − ( )[ ]O v l l l
2

lv

ρ ρ μ

γ

Ω ,
.     (8.1)   

 As quoted in  [Landau 1971] , the choice of the positive sign is a convention which gener-
ally follows the physical meaning. However, from the mathematical point of view, the 
positive or negative signs depend on the axis frame convention. Generally, the curvature 
is taken to be positive if the curve turns in the same direction as the surface ’ s chosen 
normal, and negative otherwise. 

 The result can be summarized as follows: the positive sign corresponds to the cases 
where the liquid has the shape of a sessile or pendant drop (Figure  8.1 a), e.g. fl oating 
zone (FZ), dewetting or Verneuil confi gurations, and the negative sign corresponds to the 
cases where the liquid has the shape of an external meniscus (Figure  8.1 b), e.g. EFG or 
Cz confi gurations  [Hartland 1976] .   

 Denoting the meniscus surface by  A :  z ( x, y ), it is known from differential geometry, 
that the mean curvature is expressed as  [Finn 1986] :
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    κ =
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,     (8.2)  

where  E  I ,  F  I ,  G  I  represent the coeffi cients of the fi rst fundamental form of the surface  A  
and  E  II ,  F  II ,  G  II  represent the coeffi cients of the second fundamental form. According to 
Finn, for a surface given in explicit form  z    =    z ( x, y ), these coeffi cients are given by:
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and hence the Young – Laplace equation  (8.1)  becomes:
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 This equation is a nonlinear partial differential equation (PDE) of second order, and the 
unknown function  z ( x, y ) represents the meniscus surface. Because of the nonlinearity of 
this equation, it is necessary to do qualitative analysis and to develop specifi c numerical 
tools for fi nding the meniscus surface, which, furthermore, should satisfy the boundary 
conditions depending on the chosen confi guration. 

 Section  8.1  below contains a mathematical formulation of the capillary problem. The 
boundary value problem for the Young – Laplace equation in the three - dimensional and 
axisymmetric cases is presented, and the initial and boundary condition of the axisym-
metric meniscus problem are given. The growth angle criterion and some approximated 
solutions of the axisymmetric meniscus problem are also included. 

 In sections  8.2  –  8.4  some analytical and numerical solutions for the meniscus equation 
in the Cz, EFG and dewetted Bridgman growth techniques are presented. The case of the 
FZ process is extensively described in Chapter  4  and is not treated here.  
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  8.1   Mathematical Formulation of the Capillary Problem 

  8.1.1   Boundary Value Problems for the Young – Laplace Equation 

  8.1.1.1   Three - Dimensional Case 

 In order to fi nd physically sound solutions of the Young – Laplace equation, it is generally 
necessary to formulate the model as a  ‘ well posed ’  PDE problem. A PDE problem is said 
to be well posed if: (i) a solution to the problem exists; (ii) the solution is unique; and 
(iii) the solution depends continuously on the problem data. In practice, the question of 
whether a PDE problem is well posed can be diffi cult to settle. 

 The Young – Laplace equation  (8.3)  can be written as follows:
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looks like an elliptic type of any solution  z ( x , y )  [Finn 1986] . Unfortunately Equation  (8.4)  
cannot be included in the general theory of the elliptic PDE from variational calculus 
because the functions  a ,  b ,  c ,  d ,  e:   Ω     ⊂      R 2     →      R are unknown and strongly nonlinear. 
Moreover, a well - posed elliptic PDE problem usually takes the form of a boundary value 
problem (BVP) with the solution required to satisfy a single boundary condition (Dirichlet, 
Neumann or Robin boundary condition) at each point on the boundary  ∂  Ω  of the region. 

 These circumstances have important consequences for the behaviour of the solutions, 
reasons for which each problem containing the Young – Laplace equation should be treated 
separately. The peculiarities of each problem will lead to a corresponding mathematical 
context capable of providing conditions that ensure the existence and uniqueness of the 
solution. 

 Because of the complexity of the BVP associated to the Young – Laplace equation, there 
is no general analytical solution and the problem must be addressed numerically  [Clanet 
2002] . In some particular domains  Ω , e.g. those obtained from crystal growth confi gura-
tions (Cz, EFG, dewetted Bridgman, FZ), certain approximations can be made in order 
to simplify the problem and hence the equation can be integrated. In the following, the 
approximations most commonly used in the literature are presented, i.e. the domain  Ω  is 
two - dimensional or axisymmetric. These two - dimensional models will then be developed 
for EFG, Cz and dewetted Bridgman growth techniques. In some particular conditions, 
analytical solutions will be given.  

  8.1.1.2   Axisymmetric Case 

 In the axisymmetric case, the Young – Laplace equation  (8.3)  can be written using cylindri-
cal polar coordinates  x    =    r     ·    cos  θ , y    =    r     ·    sin  θ , z    =    z  (the meniscus is axisymmetric). 
Expressing  r  and  θ  as functions of  x  and  y , i.e.   r x y= +2 2 ,   θ     =   arctan( y / x ), the partial 
derivatives of the function  z ( x,y ) are:
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 Replacing these derivatives in Equation  (8.3) , the Young – Laplace equation written in 
cylindrical coordinates is:
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for which the solution  z    =    z ( r ) is sought depending on the radial coordinate   r x y= +2 2 . An 
equivalent formulation of Equation  (8.10)  is given in terms of the principal curvatures:
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but the most useful formulation is:
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 This is a nonlinear second - order differential equation and to obtain its solution  z    =    z ( r ) 
two conditions are needed, which, in association with Equation  (8.12) , give the BVP or 
initial value problem (IVP). In general, because of its nonlinearity, the problem does not 
have a solution expressed in an analytical form. 

 To solve the BVP (or IVP) it is necessary do a qualitative analysis and to develop 
specifi c numerical tools. To this end, Equation  (8.12)  is transformed into a nonlinear 
fi rst - order system of differential equations. In the literature, two equivalent systems are 
known: one having three differential equations, and another having two differential equa-
tions. In both formulations, the angle   φ   between the tangent to the meniscus (at an arbi-
trary point) and the horizontal axis, called meridian angle  [Boucher 1980] , is involved. 

 First, Princen and Mason  [Princen 1965]  introduced the arc length  s  along the curve 
which generates the surface of revolution  z ( r ): d r /d s    =   cos  φ  , d z /d s    =    ± sin  φ   (the positive 
or negative signs depend on the axis frame convention in the same way as in Equation 
 (8.1) ). Taking into account that d r /d s    =   cos  φ  , d z /d s    =   sin  φ   imply the curvatures 1/ R  1    =   
d  φ  /d s  and 1/ R  2    =   (sin  φ  )/ r  (e.g. confi guration Figure  8.1 a), and d r /d s    =   cos  φ  , d z /d s    =   
 − sin  φ   imply 1/ R  1    =    − d  φ  /d s , 1/ R  2    =    − (sin  φ  )/ r  (e.g. confi guration Figure  8.1 b)), Equation 
 (8.11)  is transformed into a system of three parametric differential equations:
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 Later, Huh and Scriven  [Huh 1969]  eliminated the parameter  s  using the notation 
d z /d r    =    ± tan  φ   (with the sign convention mentioned above). Thus, Equation  (8.11)  was 
transformed into a system of two differential equations:
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 In order to make the analytical and numerical analysis easier, a dimensionless form of 
the Young – Laplace equation is also used, by introducing the following dimensionless 
parameters with  L  a characteristic dimension of the problem or the capillary constant of 
the material (see Chapter  2 ):
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which leads to:
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 Using the above dimensionless parameters, Equation  (8.12)  can be written as:
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where  Bo    =     ρ   l     ·     g     ·     L  2 /  γ    lv  denotes the Bond number,  La    =   ( p  o     −     p  v )    ·     L /  γ    lv  the Laplace 
number,  We    =     ρ   l  Ω  1  L  3 /  γ    lv  the Weber number and  Bo  em    =   ( B  2 ( r )    ·     L )/(  μ      ·      γ    lv ) is the electro-
magnetic Bond number. Because after the dimensionless analysis   φ   depends on the non-
dimensional parameter     r̃    , in the following   �φ  is used instead of   φ  (    r̃    ). 

 Taking into account that:
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the following dimensionless form of the Young – Laplace equation is obtained:
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 Therefore, Equation  (8.16)  is transformed into the system:
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 The mathematical models given by the systems  (8.13) ,  (8.14)  or  (8.19)  are very useful 
for obtaining information concerning the meniscus behaviour (shape, monotony, 
attainment of the growth angle, etc.). They were successfully applied only after the 
development of computers powerful enough to permit the computation of menisci.   
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  8.1.2   Initial and Boundary Conditions of the Meniscus Problem 

 The initial and/or boundary conditions required for solving the axisymmetric Young –
 Laplace equation are determined by the structural features of each specifi c confi guration 
and will be analysed in the following sections for EFG, Cz, and dewetted Bridgman 
crystal growth techniques. In this section, common features corresponding to typical 
boundary conditions of the capillary problem are discussed: the  catching  and  wetting 
boundary conditions . 

 The  catching boundary condition  is specifi c for materials that are wetted by the melt. 
It is used when one meniscus end is partially fi xed, e.g. for the EFG technique the counter 
line of the meniscus surface is fi xed by the internal or external edge counter (see Chapter 
 2 , Figure  2.4 b, d, j, k or Figure  2.4 e, f). This condition can be expressed as:

    z r r= =
0

const.,  

where  r  0  represents the radial coordinate of the point situated at the meniscus end, and 
the value of the constant depends on the position of the horizontal axis of the ( rOz ) frame, 
i.e. this constant is set to zero if the meniscus end is on the  Or  axis, or is equal to the 
distance between the horizontal axis  Or  and its parallel which passes through the meniscus 
end (see Chapter  2 , section  2.6.1.1 ). 

 The  wetting boundary condition  is also known as the  angle of fi xation boundary condi-
tion  because it expresses the angle made between the tangent to the meniscus at its endpoint 
situated at the base, and the tangent to the shaper or crucible wall (see also Chapter  2 , 
section  2.6.1.2 ). For the axisymmetric Young – Laplace equation written for the confi gura-
tions presented in Figure  2.4 a, c, g, h, i (see Chapter  2 ) or Figure  8.18  (see dewetted 
Bridgman technique), the wetting boundary condition can be expressed as follows:

    
d

d

z

r r r=
= −( )

0 2
tan θ π

 

where   θ   represents the wetting angle (see Chapter  1 , and Figures  8.4  and  8.18 ).   
 From the physical point of view, the catching and wetting conditions cannot be applied 

simultaneously at the same point  r    =    r  0 . However, for certain confi gurations, it is useful 
from the mathematical point of view to perform calculations with a given angle applied 
at the catching condition point. Then the angle is varied in order to fi nd a physically 
acceptable solution to the problem. In such cases, the systems  (8.13) ,  (8.14)  or  (8.19)  
have two initial conditions. Thus, an initial value problem is obtained and its unique 
solution represents the meniscus surface  z    =    z ( r ). The existence and uniqueness of the 
meniscus is assured on the basis of the Cauchy theorem, because functions from the 
right - hand terms of the system  (8.13) ,  (8.14)  or  (8.19)  are real analytically. The meniscus 
can be computed numerically using Runge – Kutta method (see Appendix   to this chapter 
in which the procedure for the fourth – order Runge – Kutta method is presented). 

 After the meniscus shape is obtained, the  growth angle criterion  should be imposed. 
It asserts that the crystal is obtained when the  growth angle    α   is attained at the place 
where the meniscus contacts the crystal (see Chapter  1 , section  1.3 ). This condition is 
expressed as
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    φ αr r= = −
c

π
2

,  

where  r  c  represents the crystal radius. 
 Even if the IVP of the Young – Laplace equation has a unique solution, it is nevertheless 

possible that this solution does not satisfy the condition for attainment of the growth angle. 
If this condition is satisfi ed then a crystal having a radius  r  c  can be obtained (Figure  8.2 ); 
otherwise, a crystal cannot be obtained.   

 The attainment of the growth angle is exemplifi ed in Figure  8.2 . More precisely, in the 
confi guration shown in Figure  8.2 a, there is no place along the meniscus where the angle 
is equal to   α  , so it is impossible to grow a crystal under conditions giving this meniscus. 
In Figure  8.2 b, it is possible to grow a crystal from this meniscus. In Figure  8.2 c, the 
growth angle can be achieved twice on the meniscus. This means that, under the same 
capillary conditions, it is possible to grow crystals with two different diameters. The 
choice is realized by heating or cooling the system in order to fi x the height of the solid –
 liquid interface. 

 As already explained in Chapter  2 , in some confi gurations, the wetting boundary condi-
tion does not exist (or it does so at infi nity and hence cannot be used in numerical solu-
tions; see section  8.2 ). In these cases, to solve the Young – Laplace equation, the growth 
angle should represent one boundary condition, and the second condition should be 
expressed using the meniscus height, which is unknown. These kinds of problems are 
very diffi cult from a mathematical and numerical point of view, so they should be treated 
separately, e.g. see section  8.2 .  

  8.1.3   Approximate Solutions of the Axisymmetric Meniscus Problem 

 Some authors have proposed  simple approximations  of the axisymmetric Young – Laplace 
equation used especially for unbounded extent (i.e.  Ω  is an unbounded axisymmetric 
domain), when numerical solution of the BVP is very diffi cult  [Huh 1969] . For example, 
in 1960 Nutt neglected the second curvature:

     Figure 8.2     Numerical meniscus shape and attainment of the growth angle for InSb 
( Bo    =   3.84,   α     =   25    ° ): (a)  La    =   0.105: the growth angle cannot be achieved; (b)  La    =   0.262: 
the growth angle is achieved once; (c)  La    =   0.393: the growth angle is achieved twice.  
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from Equation  (8.11)   [Nutt 1960] , leading an analytical expression for the meniscus. More 
precisely, for the confi guration presented in Figure  8.3 , the Equation  (8.11)  is reduced to
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which is equivalent to:
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where d z /d r    =   +tan  φ   (the positive sign is due to the confi guration). This equation can be 
integrated between  r  0  and  r  (here  r >  r  0 , see Figure  8.3 ), and the meniscus  z  can be 
expressed as a function of   φ  :

    z
g

φ γ
ρ ρ

φ( ) = −
−( )

⋅ ( )2
2

lv

B A

sin .     

 Another approximation was reported by Tsivinski  [Tsivinski 1962] . He considered both 
curvatures but expanded the curvature 1/ R  2  in a Taylor series, considering only the fi rst 
two terms from the Taylor series:
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     Figure 8.3     The meniscus for a vertical circular cylinder positioned in a fl uid  (Reprinted 
with permission from  [Huh 1969] , copyright (1969) Elsevier Ltd) .    
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where  h  represents the meniscus height. Using this approximation, Tsivinski obtained an 
analytical formula for the meniscus height as function of the crystal radius  r  c  and the 
growth angle   α   (for more details, see section  8.2 ):
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 This formula has been intensively cited and used for fi nding the analytical formulas of 
the meniscus. For example, Hurle obtained:
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 (see details in section  8.1 )  [Hurle 1983]   . 
 Other approximations of the axisymmetric Young – Laplace equation are based on 

Bessel functions  [Boucher 1980, Ferguson 1912] . Boucher obtained a most useful math-
ematical approximation involving zero -  and fi rst - order modifi ed Bessel functions:
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 Equation  (8.20)  can be used to give  z    =    z ( r ) at constant  φ , or  z    =    z ( φ ) at constant  r . 
 Comparisons between these analytical formulas  [Hurle 1983]    and the computed menisci 

reported by Huh and Scriven  [Huh 1969]  showed that the explicit approximations of the 
meniscus are adequate for the range of values of crystal radius and contact angle encoun-
tered in crystal growth. 

 The most recent approximation was given by Hernandez - Baltazar  [Hernandez - Baltazar 
2005]  who solved the Young – Laplace equation with an elliptic representation, i.e. the 
principal curvatures
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     Figure 8.4     Axisymmetric model for a cylindrical crystal grown by the Cz method.  

were approximated by
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assuming that the meniscus profi le is very close to an elliptic profi le with  a, b  representing 
the length of the semimajor (one half of the longest axis of the ellipse) and semiminor 
(one half of the shortest axis) axes of the ellipse centred at the origin. The elliptical ana-
lytical solution proposed by these authors is dependent on the parameter  a  in square form 
and its predictive capacity depends on a cubic expression. The parameters  a  and  b  are 
obtained from solving the Young – Laplace equation with the elliptical equation:
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g+ = + ⋅ = −( )⋅3
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γ
* where B A

lv

, * .   

 When the results of the analytical solution and the literature data for different profi les are 
compared, a correlation with acceptable error in the fi fth digit is obtained. This means 
that that the error in the parameter   β  *  , after applying the differential expression, would 
be less than 0.1%.   

  8.2   Analytical and Numerical Solutions for the Meniscus Equation 
in the  C  z  Method 

 For the Cz growth method (see Figure  8.4 ), the axisymmetric meniscus is given by the 
Young – Laplace equation  (8.12) . In the Cz process, the meniscus height  h  is controlled 
by heat transfer and the problem is to fi nd the relation between the crystal radius and the 
meniscus height.   
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 The pressure due to rotation in Cz is only a few pascals and is commonly neglected. 
If the growth process takes place without a magnetic fi eld, Equation  (8.12)  becomes:
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 The solution  z    =    z ( r ) of Equation  (8.21)  has to satisfy the following boundary 
conditions:

    z r h
z

r
r tgc c
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d
( ) = ( ) = − ∈( ), ; , ,α α0 0 0 2π     (8.22)  

where  r  c     >    0 is the crystal radius,   α   0    =    π /2    −      α   where   α   is the growth angle,  h  is the meniscus 
height (an unknown in the problem if a crystal with given  r  c  is to be pulled). Moreover, 
if the meniscus extends untouched far enough outwards its equilibrium shape becomes 
effectively fl at at some distance from the crystal. The meniscus may then, for all intents 
and purposes, be regarded as unbounded, i.e. as extending to infi nity  [Huh 1969] :

    z r→∞ = 0.     (8.23)   

 From this peculiarity (no curvature of the meniscus at  r     →     ∞ ) it follows that the pressure 
in the melt at  z    =   0 is equal to the vapour pressure  p  O    =    p  v . 

 Because of  (8.23) , it is very diffi cult to fi nd a numerical method for solving the menis-
cus surface equation,  (8.21) . To avoid this inconvenience, many authors have tried to fi nd 
suffi ciently accurate analytical approximations to the real meniscus profi le. The most 
often cited results are those reported by Tsivinski  [Tsivinski 1962]  which derived an 
analytical expression for the meniscus height (i.e. the unknown  h  from the boundary 
condition  (8.22) ), in a Czochralski confi guration using a particular form of the meniscus 
equation  (8.11) :
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represent principal curvatures. Tsivinski considered both curvatures but he expanded the 
curvature 1/ R  2  in a Taylor series at the point  h , as follows:
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 Using 1/ R  2    =   (sin  φ  )/ r , where   φ   is the angle between the tangent to the meniscus (at an 
arbitrary point) and the horizontal axis, the terms (1/ R  2 ) ( h ) and (d/d z ) (1/ R  2 )| z   =   h  from 
the above representation are obtained as function of the growth angle   α   and the crystal 
radius  r  c :
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 After computations, the following formula for the curvature 1/ R  2  is obtained:
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 Thus, the meniscus equation  (8.24)  becomes
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where  z  ′    =   d z /d r  and  z  ″    =   d 2  z /d r  2 . Multiplying this equation by  z  ′ , and integrating between 
0 and  z  gives:
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 Because   1 1 2+ ′ = ( )z rcosφ , it follows that:
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 For  z    =    h ,   φ α αh( ) = − =1
2 0π , and hence Equation  (8.29)  will represent an equation of 

the second degree for the meniscus height  h :
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 Solving this equation, the following analytical approximations on the meniscus height 
 [Tsivinski 1962]  is obtained:
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 It is easy to see that  h  1,2  can be positive or negative, but for physical reasons only the 
positive meniscus will be considered:
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where   α   is the growth angle. This is equivalent to:
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which is used to estimate the meniscus height in diameter control techniques ( [Bardsley 
1974 – 2, Bardsley 1977, Dijk 1974, Johansen 1992] ) (Figure  8.5 ), or for comparison with 
other analytic approximations  [Bardsley 1974 – 1, Hurle 1981, Hurle 1983, Johansen 1987, 
Johansen 1992, Mika 1975, Tatartchenko 1993]       .   

 An analytical approximation of the meniscus profi le can be obtained only for some 
particular cases. For example, Hurle considered a reduced form of Equation  (8.28) :
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 Writing the equation in the form:
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     Figure 8.5     Meniscus height profi le  h  T  as a function of the cylindrical silicon crystal 
radius  r  c .  
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     Figure 8.6     Meniscus profi le  r  T ( z ) vs  z .  
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the following ordinary differential equation is obtained:
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 After integrating between  h  and  z , using  r ( h )   =    r  c , the following explicit analytical formula 
 r  T ( z ) for the meniscus is obtained:
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 Replacing  A  and  h  by  (8.35)  and  (8.33)  respectively, the meniscus profi le for a cylindrical 
silicon crystal of radius  r  c    =   0.136   m is shown in Figure  8.6 .   

 The second analytical expression for the meniscus height reported in the literature is 
based on Bessel functions (see section  8.1.3 )    [Hurle 1983, Johansen 1992, Johansen 
1994]     :
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equivalent to
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 Details of Bessel functions and how they are used to obtain Equation  (8.34)  will be given 
later, when a new analytical - numerical solution for computing the meniscus surface will 
be proposed. 
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 A comparison between Equations  (8.33)  and  (8.37)  can be seen in Figure  8.7 . The 
fi gure shows accurate analytical approximations of the meniscus height as a function of 
the crystal radius. For small crystal radius the error is of the order 10  − 4 , but for large 
crystal radius, as in Cz crystal growth, the approximation is very good, which is why both 
formulas have been used by crystal growers. Moreover, for the second of the meniscus 
height formula  h  B ( r  c ) a similar analytical formula for the meniscus  r  B ( z ) can be found 
 [Hurle 1983] :
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where  P ( z ) is given by
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 The comparison between Equations  (8.36)  and  (8.38)  can be seen in Figure  8.8 .   
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     Figure 8.7     Meniscus heights  h  T   (8.33)  and  h  B   (8.37)  as function of the crystal radius  r  c .  
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 Computations show that for the considered cylindrical silicon crystal of radius 
 r  c    =   0.136   m, the errors between these two analytical formulas are of the order 10  − 5 . 

 The reason why researchers used the above approximations is that it is diffi cult to obtain 
a numerical solution because of the condition  (8.23) . In order to avoid this diffi culty, 
Mika and Uelhoff  [Mika 1975]    proposed an analytical - numerical solution. More pre-
cisely, part of the solution for  r     →     ∞  (called asymptotic part of the solution) can be 
derived analytically, i.e. for  r     ∈    [ r  * ;  ∞ ), and the remaining part can be solved numerically 
using Runge – Kutta method on the fi nite range  r     ∈    ( 0 ;  r  * ]. The problem is to fi nd the 
accurate range on which this analytical solution is available, and after that to fi nd initial 
conditions for computing the numerical solution. 

 In the following, the asymptotic part of the solution,  r     ∈    [ r  * ;  ∞ ), obtained using 
modifi ed Bessel functions  [Mika 1975]  is presented. For the second part of the solution, 
 r     ∈    (0;  r  * ], mathematical tools for fi nding initial conditions in order to solve the IVP 
numerically are used. 

 The asymptotic solution can be obtained starting from Equation  (8.21) , in which 
(d z /d r ) 2  is neglected because d z /d r     <<    1 at a large enough distance from the crystal, 
and  p  O    =    p  v :
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which can be rewritten in the form
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 In order to write this as a standard Bessel equation,  z ( r ) is transformed to  y ( x ) with: 
  r x g= ⋅ ( )γ ρlv l  and   z y g= ⋅ ( )γ ρlv l . Thus, Equation  (8.40)  becomes:
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 Equation  (8.41)  is called a homogeneous modifi ed Bessel differential equation, being of 
the type:

    x y x y x n y2 2 2 0⋅ ′′ + ⋅ ′ − +( )⋅ = ,     (8.42)  

with  n    =   0. From the theory of Bessel functions, it is known that the general solution is 
a linear combination between modifi ed Bessel functions of the fi rst and second order, 
respectively:  y ( x )   =    C  1     ·     I n  ( x )   +    C  2     ·     K n  ( x ), where  C  1  and  C  2  are constants which should 
be determined. The general solution of Equation  (8.41)  is:

    y x C I x C K x( ) = ⋅ ( ) + ⋅ ( )1 0 2 0 ,     (8.43)  

because  n    =   0. Moreover, it is known that for  x     >>     n  (this is available in Cz growth 
because for the asymptotic solution  r     ∈    [ r  * ;  ∞ ), and hence  r     >>    0), the modifi ed Bessel 
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functions become:   I x xn
x( ) ≈ e 2π  and   K x xn

x( ) ≈ −e 2π . Thus, the general solution 
 (8.43)  is
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 Returning to the problem in  z ( r ), the following general solution for the asymptotic part 
of meniscus shape is obtained:
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 The fi rst modifi ed Bessel function  I  0  ( r )   =    J  0  ( ir ) is complex, but only the real part of the 
solution  (8.45)  is considered:
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which is equivalent to  y ( x )   =    C  2     ·     K  0 ( x ), according to  [Mika 1975] . 
 The solution  (8.46)  satisfi es the boundary condition  (8.23) :

    z r→∞ = 0.   

 In order to fi nd the unique solution, the constant  C  2  must be computed. For that, the 
continuity condition of the fi rst derivative at the connection point  r *   is imposed, i.e. 
the continuity of the fi rst derivatives for asymptotic analytical and numerical solutions at 
 r *  , d z /d r |  r      =      r    *     =    − tan  φ   ( r  * ). Thus, deriving the asymptotic analytical solution  z ( r ) given 
by  (8.46)  and equating that with the corresponding derivative available for the numerical 
solution ( − tan  φ   ( r  * )), gives:
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 Here the derivative property of the modifi ed Bessel function: (d/d x ) ( K  0 ( x ))   =    −  K  1 ( x ) is 
used. Moreover, in this computation the previously used approximation:
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was considered. If  r    =    r *     =    r  c  in  (8.47) , and using the approximation  (8.48) , then the 
formula of the meniscus height given by  (8.37)  is obtained. Nowadays, it is not necessary 
to use approximation  (8.48)  because modern computers can compute modifi ed Bessel 
functions; this makes it possible to compute the initial conditions:

    z r h
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d
* *( ) = ( ) = − ( )*, tan ,φ     (8.49)  

necessary for solving numerically the nonlinear system of differential equations corre-
sponding to Equation  (8.21) :
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 In what follows, the meniscus will be computed, using the analytical - numerical solution 
described above, for a cylindrical silicon crystal grown by the Cz technique. 

 First, it is necessary to fi nd the region for which the asymptotic analytical solution is 
accurate. Using the material parameters of silicon and computing the modifi ed Bessel 
functions
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it follows that their ratio increases to 1 for  r   ≤ 3.7   m, and after that the modifi ed Bessel 
functions exponentially decay to zero, i.e. for  x     >>     n ,
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in our case  n    =   0 or 1, and  x  represents   r gl lvρ γ . This shows that a crucible radius 0.25 
 ≤ 3.7   m   and a value for  r *   which is not far from the crucible radius, e.g.  r *     =   0.19   m, 
should be considered, in order to have an almost fl at meniscus. Hence, we set  r  *    =   0.19   m 
and then fi nd  h  * , i.e. the corresponding meniscus height, and  − tan  φ   ( r  * ), necessary for 
conditions  (8.49) . 

 Replacing  r    =    r  *    =   0.19   m in Equations  (8.47)  and  (8.33)  the following system is 
obtained:
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     Figure 8.9     (a) Meniscus given by the asymptotic analytical solution on the interval [0.19; 
0.25]. (b) Computed meniscus obtained by numerical solution of the initial value problem 
on the interval [0; 0.19]. (c) The analytical - numerical meniscus for a cylindrical silicon 
crystal grown in a crucible of radius 0.25   m.  

 In solving this system we considered those values of   φ   ( r  * ) that belong to the interval 
  (0 1

2, π). For the above values, only one value is in the required interval:   φ   ( r  * )   =   7.2   s. 
Replacing this in fi rst or second equation gives  h *     =   0.2    μ m. In this way the initial condi-
tion is computed, which permits to fi nd the numerical solution. The asymptotic analytical 
approximation of the meniscus is obtained by plotting function given by  (8.47) , as can 
be seen in Figure  8.9 a. The numerical solution of the meniscus is obtained solving the 
system  (8.50)  with the boundary conditions  (8.49) . The computed meniscus is shown in 
Figure  8.9 b. The union between the analytical and numerical menisci forms the fi nal 
required meniscus (Figure  8.9 c).   
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 The error between the meniscus height  h    =   0.0067   m computed using the analytical -
 numerical solution, and those computed using only the analytical formulas  h  T   (8.32)  and 
 h  B   (8.37) , are of the order 10  − 5 , for a crystal radius  r  c    =   0.0136   m. 

 In the above analytical - numerical model, the idea reported in the literature concerning 
approximation of the meniscus using Bessel functions was used, but the fi rst part of the 
meniscus (situated in the neighbourhood of the crucible) was obtained by computing 
modifi ed Bessel functions, not using the approximation  (8.48) . From these calculations, 
initial conditions necessary to solve the IVP  (8.49) – (8.50)  were found, and the second 
part of the meniscus (situated near the crystal) was computed numerically. In comparison 
with previous approximations  [Huh 1969, Hurle 1983, Mika 1975] , this represents an 
improved result over the analytical - numerical method which gave errors of the order 10  − 4 . 

 As can be seen in the developments presented above, no exact solution of the meniscus 
shape, neither analytical nor numerical, can exist. Always an approximated part of the solu-
tion should be used and the diffi culty is to keep this approximation as low as possible  .  

  8.3   Analytical and Numerical Solutions for the Meniscus Equation 
in the  EFG  Method 

 The meniscus surface equation  (8.3)  and its corresponding boundary conditions for the 
EFG method are considered for sheets and cylindrical crystals.  Qualitative analyses  are 
performed, and when possible (i.e. in very particular cases)  analytical solutions  are given. 
The properties of the menisci obtained from the qualitative studies, are exemplifi ed 
through  numerical examples . 

 In the EFG technique, the main question is: what is the relation between the meniscus 
height  h  (which can be controlled through heat transfer) and the crystal sheet half - 
thickness or crystal rod radius? 

  8.3.1   Sheets 

 The central component of the EFG growth method is the die. The shape of the die defi nes 
the shape and the size of the meniscus, i.e. the liquid bridge retained between the die 
and the crystal (see Chapters  2  and  5 ). In order to obtain a sheet, the upper surface of the 
die has to be rectangular. The main characteristic of the sheet is its thickness (or half -
 thickness  x  c ). Then solutions  z    =    z ( x ) of Equation  (8.3) , depending only on the coordinate 
 x,  are sought. This means that the border effects (which occur on both edges   of the sheet) 
are not considered. This approximation is equivalent to those given by Nutt  [Nutt 1960]  
who neglected the curvature 1/ R  2  from Equation  (8.1)  written in the ( xOz ) frame (Figure 
 8.10 ). It is possible to consider the borders of the sheet as half - cylinders, and the meniscus 
computed for an EFG crystal rod can be used as a fi rst approximation. However, the 
junction between the axisymmetric border meniscus and the two - dimensional sheet 
meniscus remains a problem.   

 Thus, the meniscus equation  (8.1)  without magnetic fi eld and without rotation of the 
liquid becomes:
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which is equivalent to
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 In the EFG method, the pressure  p  O  is the pressure at the origin and it depends on the 
position of the liquid surface outside the die. For example, referring to Figure  8.10 , 
because a liquid surface plane coinciding with the shaper edge plane has been chosen, 
 p  O    =    p  v , and hence Equation  (8.53)  becomes:
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 The solution  z ( x ) of Equation  (8.54)  has to satisfy the following catching boundary 
condition:

    z w( ) = 0,     (8.55)  

where  w    >    0  is the inner half - thickness of the die. It is assumed that the bottom line of 
the meniscus on the die is fi xed on the edge of the die; i.e.  z ( w )   =   0 and  z ( x )     >    0  for  x     <     w  
( x  close to  w )  [Braescu 2003] . 

 At the other end of the meniscus, the growth angle criterion should be imposed, i.e.:
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     Figure 8.10     Two - dimensional model for a sheet grown by the EFG method.  
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     Figure 8.11     Dependence of the sheet half - thickness  x  c  as a function of the meniscus 
height  h  in zero gravity.  

where the meniscus height  h  and the sheet half - thickness  x  c  are unknown. In order to fi nd 
the relation between  h  and  x  c  for a given inner die half - thickness  w , an intermediate 
parameter   α   d  (see Figure  8.10 ) satisfying:
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is used, or   φ   c  if we denote by   φ   c    =    π     −      α   d :
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 In the following, Equation  (8.54)  will be solved satisfying conditions  (8.55)  and  (8.58)  
for a given die half - thickness  w , and a given angle   φ   c . After that, for the obtained meniscus 
 z ( x ), the growth angle criteria  (8.56)  will be imposed and the dependence of the sheet 
half - thickness  x  c  as a function of the meniscus height  h  will be found. 

 In the particular case of zero gravity the solution  z ( x ) can be expressed in an analytical 
form: Equation  (8.54)  becomes d 2  z /d x  2    =   0 for which the solution is  z ( x )   =    c  1     ·     x    +    c  2 , 
where  c  1  and  c  2  can be determined from the conditions  (8.55)  and  (8.58) . In this way, the 
obtained  analytical solution 

    z x x w( ) = −( )⋅ + ⋅tan tanφ φc c    (8.59)  

shows that in zero gravity the meniscus is a straight line. 
 Imposing the growth angle criterion, the parameter   φ   c  is eliminated and the following 

dependence of the sheet half - thickness  x  c  as a function of the meniscus height  h  is 
obtained:

    x h w
h

c ( ) = −
tan

.
α

    (8.60)   

 Using material parameters for silicon (growth angle  α    =   11    °    =   0.1919 radians), and a die 
half - thickness  w    =   0.002   m, the representation shown in Figure  8.11  is obtained.   
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 If gravity is considered, then  an analytical form of the meniscus cannot be obtained , 
but  qualitatively  it is possible to get information about the shape of the meniscus, and  the 
meniscus shape can be computed  using Runge – Kutta method. 

 Thus, using the technique set out in the fi rst section, the nonlinear Equation  (8.54)  is 
transformed into a nonlinear system of two differential equations:
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    (8.61)  

for which the boundary conditions  (8.55) ,  (8.58)  become:

    z w w( ) = ( ) = ∈( )0 0 2, ; , .φ φ φc c π     (8.62)   

 The functions from the right - hand side of Equation  (8.61)  are defi ned for  z     ∈    ( −  ∞  ;   ∞ ), 
  φ      ∈    ( −  π /2;  π /2) and are independent of  x  (the system is autonomous). These functions 
depend also on the material parameters   ρ   l     ∈    (0;  ∞ ),   γ   lv     ∈    (0;  ∞ ). The functions are real 
analytical, i.e. they can be expanded in a Taylor series in the neighbourhood of any point 
( z ,   φ  ,   ρ   l ,   γ   lv ) from  D    =   ( −  ∞ ; + ∞ )    ×    ( −  π /2;  π /2)    ×    (0; + ∞ )    ×    (0; + ∞ ). Therefore, for the 
Cauchy problem  (8.61) – (8.62) , all the conditions of the Cauchy – Lipschitz theorem con-
cerning the existence and uniqueness of the solution of the problem  (8.61) – (8.62)  are 
satisfi ed. It follows that the problem  (8.61) – (8.62)  has a unique saturated solution defi ned 
on an interval ( a; b ). The solution of  (8.61) – (8.62)  will be denoted by:

    z z x w x w= ( ) = ( ); , , , , ; , , ,φ γ ρ φ φ φ γ ρc lv l c lv l     (8.63)  

and depends on  x  and on the parameters  w,  φ   c ,   γ   lv ,   ρ   l ;  a  and  b  also depend on  w ,   φ   c  ,  γ   lv , 
  ρ   l  and satisfy  a     <     w     <     b.  

 In general, the solution  (8.63)  cannot be expressed in an explicit form (because the 
system is nonlinear). For this reason, the behaviour of the solution will be analysed in 
the neighbourhood of  w   [Balint 2005] . 

 From  (8.61)  and  (8.62)  we have:

    
d

d
c

z

x x w=
= − <tan ,φ 0     (8.64)  

which shows that there exists  ε  ′     >    0 such that for any  x     ∈    ( w     −     ε  ′ ;  w ] we have d z /d x     <    0. 
It follows that the function  z    =    z  ( x ;  w ,   φ   c ,   γ   lv ,   ρ   l ) is strictly decreasing on the interval 
( w     −     ε  ′ ;  w ] and is strictly positive on ( w     −     ε  ′ ;  w ):

    z z x w x w w= ( ) > ∀ ∈ − ′( ); , , , , ; .φ γ ρ εc lv l 0   

 Taking into account the equality:

    d

d

d

d
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2 2

1z

x x
= − ⋅

cos φ
φ  
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it follows that, in the neighbourhood of  w , the meniscus is convex at any point, which is 
obvious from the Young – Laplace equation:
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2 2 3

1 1
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x x

g z= − ⋅ = ⋅ ⋅ ⋅ >
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 The equality:

    
d

d
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φ ρ
γ φx

g z= − ⋅ ⋅ ⋅ 1

cos
 

shows that there exists   ε  ″      >    0 such that on ( w     −     ε  ″ ;  w ) the function   φ  ( x ;  w ,   φ   c ,   γ   lv ,   ρ   l ) is 
strictly decreasing and

    φ φ φ γ ρ φ ε= ( ) > ∀ ∈ − ′′( )x w x w w; , , , , ; .c lv l c   

 The growth angle is achieved if the following equality holds:

    φ φ γ ρ α φx w; , , , .c lv l( ) = − =π
2

0     (8.65)   

 In order to obtain more information about the solution  (8.63) , an approximation of the 
solution  (8.63)  by Taylor polynomials, obtained by expansion in  w , is considered:
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 The coeffi cients of these polynomials are obtained from Equations  (8.61)  and conditions 
 (8.62) , and are given by:

    z w z w w( ) = ( ) =; , , , ;φ γ ρc lv l 0     (8.68)  

    ′( ) = ( ) = −z w
z

x
w w

d

d
c lv l c; , , , tan ;φ γ ρ φ     (8.69)  
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    φ φ φ γ ρ φw w w( ) = ( ) =; , , , ;c lv l c     (8.72)  
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 Replacing these coeffi cients into  (8.66) – (8.67)  gives the following approximations to the 
solution  (8.63) :
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 These approximations are valid only for  x  close to  w   [Balint 2005] . This will be shown 
numerically for silicon sheets. 

 The attainment of the growth angle at a point (0;  w ] means that the equation:
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has at least one solution on (0;  w ]. Because
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it is easy to see that Equation  (8.77)  can have only one solution on (0;  w ] if the following 
inequalities hold: 
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 These inequalities express the range of the parameter   φ   c  for which the growth angle 
can be achieved. For example, using parameters for silicon and a die half - thickness 
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     Figure 8.12     Numerical representation of the functions  z    =    z ( x ;  w,  φ   c ,   γ   lv ,   ρ   l ) and 
  φ     =     φ  ( x ;  w,  φ   c ,   γ   lv ,   ρ   l ) for silicon sheets grown using a die with half - thickness  w    =   0.002   m, 
and   φ   c    =   1.04 or 1.11 radians.  
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     Figure 8.13     The computed dependencies  x  c ( h ) (a) and  h ( x  c ) (b).  

 w    =   0.002   m, the inequalities (i) – (ii) show that condition of the growth angle is satisfi ed 
for 1.11    ≤      φ   c     <    1.3787. 

 Indeed, considering 30 values of the parameter   φ   c  and integrating by Runge – Kutta the 
problem  (8.61) – (8.62) , it is found that the growth angle is achieved for 1.04    ≤      φ   c     <    1.3787. 
This proves that the above Taylor approximation is useful for fi nding the range of the 
parameter   φ   c . 

 Concerning the meniscus shape: from Equations  (8.75) – (8.76) , it is easy to see that the 
functions  z  ( x ;  w ,   φ   c ,   γ   1v ,   ρ   l ),   φ  ( x ;  w ,   φ   c ,   γ   lv ,   ρ   l ) are convex in the neighbourhood of  w . 
The growth angle condition imposes the same monotony on the whole interval ( x  c ,  w ) for 
the function   φ  ( x ;  w ,   φ   c ,   γ   lv ,   ρ   l ), i.e. d  φ  /d x     <    0. This implies:
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,
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i.e. the meniscus convexity on the interval ( x  c ,  w ), as can be seen in Figure  8.12 .   
 The couples ( x  c ,  h ) in which the growth angle is attained were computed for every 

parameter   φ   c  considered. Plotting these couples gives the dependence shown in Figure  8.13 .   
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     Figure 8.14     Axisymmetric model of a cylindrical crystal grown by the EFG method.  

 Because an analytical expression fi tting the above data is useful for practical 
crystal growers, the dependence of the sheet half - thickness  x  c  as function of the meniscus 
height  h :

    x h
h h h

h h
c ( ) = − ⋅ + ⋅ − ⋅
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0 002 0 42 87 20500

1 116 2 35500 382500

2 3
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. 00
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∈[ ]
h

h, ; . ,     (8.78)  

and the dependence of the meniscus height  h  as function of the sheet half - thickness  x  c :
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c

c c c

c c

( ) = − ⋅ + ⋅ − ⋅
− ⋅ + ⋅

0 004 5 64 2400 334000

1 1044 357000

2 3. .
22 7 3 8 43 86 10 3 10

0 0000012 0 002
− ⋅ ⋅ + ⋅ ⋅

∈[ ]
.

, . ; . ,
x x

x
c c

c   

  (8.78*)  

are obtained, for a silicon sheet grown using a die half - thickness  w    =   0.002   m. 
 The above  qualitative analyses  show that the dependences  x  c ( h ) and  h ( x  c ) are decreasing 

functions. For the confi guration shown in Figure  8.10 , i.e.  p  O    =    p  v , and zero gravity these 
dependences are linear functions, and the growth angle is always attained. In normal 
gravity conditions the above dependences are concave functions (the second derivative 
is negative), and the growth angle is attained if the parameter   φ   c  satisfi es inequalities 
(i) – (ii).  

  8.3.2   Cylindrical Crystals 

 In order to obtain a cylindrical crystal a circular die is used (see Figure  8.14 ). In this case, 
the equation of the meniscus surface is the axisymmetric Young – Laplace equation  (8.12) , 
which becomes:
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 if the growth process takes place without a magnetic fi eld and without rotation of the 
crucible  [Borodin 1979, Braescu 2004 – 1, Braescu 2004 – 2, Brener 1979 – 1, Brener 1979 –
 2] . In the confi guration in Figure  8.14 , the liquid surface plane coincides with the shaper 
edge plane and hence  p  O    =    p  v . Equation  (8.79)  becomes:
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.     (8.80)   

 The solution  z ( r ) of Equation  (8.80)  has to verify the following catching boundary 
condition:

    z r0i( ) = 0,     (8.81)  

where  r  0i      >    0  is the inner radius of the die. It is assumed that the bottom line of the 
meniscus on the die is fi xed on the edge of the die; i.e.  z ( r  0i )   =   0 and  z ( r )    >    0 for  r     <     r  0i  
( r  close to  r  0i ). 

 At the other end of the meniscus, the growth angle criteria should be imposed, i.e.:

    z r h
z

r
rc cand

d

d
( ) = ( ) = − tanα     (8.82)  

where the meniscus height  h  and the crystal radius  r  c  are unknown. For fi nding  h  and  r  c  
for a given inner die radius  r  0i , an intermediate parameter   α   d  will be used (see Figure 
 8.14 ) satisfying:
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r
r0( ) = tan ,α     (8.83)  

or   φ   c  if we denote by   φ   c    =    π     −      α   d :
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    (8.84)   

 In the following, Equation  (8.80)  satisfying conditions  (8.81)  and  (8.84)  will be solved 
for a given die radius  r  0i  and a given angle   φ   c . After that, for the obtained meniscus  z ( r ), 
the growth angle criteria  (8.82)  will be imposed and the dependence of the crystal radius 
 r  c  as function of the meniscus height  h  will be found. 

 In the particular case of zero gravity the solution  z ( r ) can be expressed in an analytical 
form. Equation  (8.80)  becomes:

    
d

d

d

d

d

d

2

2

21
1 0

z

r r

z

r

z

r
+ ⋅ ⋅ + ( )⎡

⎣⎢
⎤
⎦⎥

= ,     (8.85)  

which is equivalent to
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where  c  1  is a constant. From this an analytical expression for the derivative of the function 
 z ( r ) is obtained:
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2
1
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.     (8.86)   

 Imposing the condition  (8.84)  gives the value of the constant  c  1    =    r  0   i      ·    sin  φ   c  and the func-
tion  z ( r ) becomes:
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 Thus, the  analytical expression of the meniscus  as function of the parameters is:
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for which the condition  r     ∈    [ r  0i     ·    sin  φ   c ,  r  0i ] is imposed, in order to assure the existence of 
the functions employed  [Braescu 2005] . 

 Imposing the growth angle criterion, the parameter   φ   c  can be eliminated and the depend-
ence of the meniscus height as function of the crystal radius can be found. From the 
condition
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d
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which substituted into  (8.87)  gives:
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 Since  z  ( r  c )   =    h , the analytical formula of the meniscus height as a function of the crystal 
radius is obtained:
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    (8.89)   

 Using material parameters for silicon (growth angle  α    =   11    °    =   0.1919 radians), and 
a die radius  r  0i    =   0.002   m, the representation for the curve  (8.89)  is found as shown in 
Figure  8.15 .   

 If gravity is considered, then  an analytical form of the meniscus cannot be obtained , 
but performing  qualitative studies  gives us information about the shape of the meniscus 
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which depends on the pressure, and the  meniscus shape  is computed using Runge – Kutta 
method. 

 Thus, using the technique presented in previous section, the nonlinear equation  (8.60)  
is transformed into the following nonlinear system of two differential equations:
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for which the boundary conditions  (8.81) ,  (8.84)  become  [Braescu 2004 – 2] :

    z r r0 00 0
2

i i c c( ) = ( ) = ∈( ), ; , .φ φ φ π
    (8.91)   

 The functions from the right - hand member of Equations  (8.90)  are defi ned for  r     ∈    (0;  ∞ ), 
 z     ∈    ( −  ∞ ;  ∞ ),   φ      ∈    ( −  π /2;  π /2). They are real analytic functions, i.e. can be expanded into 
Taylor series, and hence for the Cauchy problem  (8.90) – (8.91)  the conditions of existence 
and uniqueness of a solution are satisfi ed. It follows that the Cauchy problem  (8.90) –
 (8.91)  has a unique saturated solution defi ned on an interval ( a ;  b ):

    z z r r r r= ( ) = ( ); , , , , ; , , , ,0 0i c lv l i c lv lφ γ ρ φ φ φ γ ρ     (8.92)  

depending on  r  and on the parameters  r  0i ,   φ   c  ,  γ   lv   ,  ρ   l . The interval extremities  a  and  b  
depend on  r  0i ,   φ   c ,   γ   lv ,   ρ   l  as well and verify 0    <     a     <     r  0i     <     b   [Braescu 2004 - 2] . 

 Generally, the solution  (8.92)  can not be expressed in an explicit form because the 
system is nonlinear; for this reason it is necessary to analyse the behaviour of the solution 
in the neighbourhood of  r  0i . 

 From the system  (8.90)  and the conditions  (8.91)  the following inequalities can be 
obtained:
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     Figure 8.15     Meniscus height  h  as function of the crystal radius  r  c  in zero gravity.  
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 Inequality  (8.93)  shows that there exists   ε  ′      >    0 such that for  r     ∈    ( r  0i     −     ε  ′ ;  r  0i ], d z /d r     <    0. 
It follows that the function  z    =    z  ( r ;  r  0i ,   φ   c ,   γ   1v ,   ρ   l ) is strictly decreasing on ( r  0i     −     ε  ′ ;  r  0i ] 
and is strictly positive on ( r  0i     −     ε  ′ ;  r  0i ):
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decreasing on ( r  0i     −     ε  ″ ;  r  0i ] and
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in the neighbourhood of  r  0i , it results that the function  z  ( r ;  r  0i ,   φ   c ,   γ   lv ,   ρ   l ) is convex in the 
neighbourhood of  r  0i . 

 In order to get more information about the solution  (8.92) , it will be approximated by 
Taylor polynomials obtained by expansion in  r  0i :
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 The coeffi cients of these polynomials are obtained from  (8.90)  and  (8.91) , being given 
by  [Braescu 2004 - 2]  as:
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has a minimum which is achieved at the point  r  min     >     r  0i :
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φ

,  

i.e. the polynomial function of second degree   φ  ( r ;  r  0i ,   φ   c ,   γ    lv ,   ρ   l ) decreases until  r  min  and 
increases after that. 

 The position of  r  min  shows that the function   φ  ( r ;  r  0i ,   φ   c ,   γ    lv ,   ρ   l ) decreases and is 
convex on (0;  r  0i ]. This implies convexity of the meniscus, too. Indeed, because 
  φ  ( r ;  r  0i ,   φ   c ,   γ   lv ,   ρ   l ) decreases, d  φ  /d r     <    0, and hence
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which proves convexity of the function  z  ( r ;  r  0i ,   φ   c ,   γ   lv ,   ρ   l ). 
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 Concerning the growth angle condition: from the monotonicity of   φ  ( r ;  r  0i ,   φ   c ,   γ   lv ,   ρ   l ), 
the growth angle can be achieved in (0;  r  0i ) only if the contact angle   φ   c  is in (0;  π /2    −   α  ]. 
Thus if   φ   c    =    π /2    −   α  , then the growth angle is achieved in  r  0i . If   φ   c     <     π /2    −      α  , then the 
growth angle can be attained on (0;  r  0i ) only once (because   φ   ( r ;  r  0i ,   φ   c ,   γ   lv ,   ρ   l ) decreases). 
Imposing the growth angle condition on the function   φ   ( r ;  r  0i ,   φ   c ,   γ   lv ,   ρ   l ), the following 
equation is obtained:
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which should have one root in (0;  r  0i ). This condition can be satisfi ed if: 
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 These inequalities express the range of the parameter   φ   c  for which the growth angle can 
be achieved. For example, using parameters for silicon and a die radius  r  0i    =   0.002   m, the 
inequalities (i) – (ii) show that the growth angle condition can be satisfi ed for 0    <      φ   c     <    1.378. 
Indeed, considering 30 values of the parameter   φ   c  and integrating by Runge – Kutta for 
the problem  (8.90) – (8.91) , the growth angle is achieved for 0.01    ≤      φ   c     <    1.378. The previ-
ous described convexity and the monotonicity of the functions  z    =    z ( r ;  r  0i ,   φ   c ,   γ   lv ,   ρ   l ), 
  φ     =     φ  ( r ;  r  0i ,   φ   c ,   γ   lv ,   ρ   l ) can be seen in Figure  8.16 . For every considered parameter   φ   c , the 
couples ( r  c ,  h ) in which the growth angle is achieved were computed. Plotting these 
couples gives the dependence showing Figure  8.17 .   

 Because an analytical expression fi tting the above data is useful for practical crystal 
growers, the dependence of the meniscus height  h  as function of the crystal radius  r  c :

     Figure 8.16     Numerical representation of the functions  z    =    z ( r ;  r  oi ,   φ   c ,   γ   lv ,   ρ   l ) and 
  φ     =     φ  ( r ;  r  oi ,   φ   c ,   γ   lv ,   ρ   l ) for cylindrical silicon rods grown using a die radius  r  0i    =   0.002   m, 
and   φ   c    =   1; 0.1 radians.  
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and the dependence of the crystal radius  r  c  as function of the meniscus height  h  are 
obtained for a cylindrical silicon crystal grown using a die radius  r  0i    =   0.002   m. 

 The above  qualitative analyses  show that the dependencies  r  c ( h ) and  h ( r  c ) are parabolic 
functions. For the confi guration presented in Figure  8.14 , i.e.  p  O    =    p  v , and zero gravity, 
the growth angle is always attained for  r     ∈    [ r  0i  sin  φ   c ,  r  0i ]. On Earth, the growth angle is 
achieved if the parameter   φ   c  satisfi es inequalities (i) – (ii).   

  8.4   Analytical and Numerical Solutions for the Meniscus Equation 
in the Dewetted Bridgman Method 

 Dewetted Bridgman is a crystal growth technique in which the crystal is detached from 
the crucible wall by a liquid free surface at the level of the solid – liquid interface, called 
 liquid meniscu s, which creates a gap between the crystal and the ampoule (Figure  8.18 ). 

 The dewetting is explained in Chapter  6  and involves the wetting angle   θ  , the growth 
angle   α  , possible modifi cation of these parameters due to pollution of the melt by the gas 
phase and possible pressure difference between the hot and cold sides of the crucible. 

 There are two problems of interest in dewetting (see Chapter  6 ): 

   •      What is the gap thickness  e , therefore the crystal radius  r  c    =    r  a     −     e ?  
   •      What is the shape of the meniscus? This shape is related to the stability of the process.    

 In order to understand the process which leads to a crystal with a constant radius under 
normal gravity, analytical and numerical studies of axisymmetric meniscus shapes must 
be made and the dependence of the meniscus shape on the pressure difference must be 
established, starting from the Young – Laplace equation of a capillary surface  (8.11)  
written in agreement with the above confi guration  [Duffar 2000] :
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     Figure 8.17     The dependencies  h ( r  c ) (a) and  r  c ( h ) (b).  
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     Figure 8.18     Schematic dewetted Bridgman crystal growth system.  
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 Here, the external pressure on the melt  p  v    =    p  cold  and the internal pressure applied on the 
liquid,  p  O  is defi ned as:

    p p gH
b

O hot l m
lv= + +ρ γ2

,  

where  p  hot  and  p  cold  are the vapour pressure at the hot and cold sides of the sample and  b  
is the radius of curvature at the apex of the liquid. Thus the Young – Laplace equation can 
be written as follows:
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,     (8.105)  

where  Δ  p    =    p  cold     −     p  hot  represents the pressure difference between the cold and hot sides 
of the sample and the term 2/ b  is due to the curvature at the top which depends on the 
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wetting angle   θ   and on the crucible radius  r  a   [Duffar 1997] . Under microgravity this can 
be written as follows:

    
1

b r
= − cos

.
θ

a

  

 What is specifi c for dewetted Bridgman is that the contribution due to the curvature 2/ b  
at the top of the free liquid must be considered in Equation  (8.105) . It is important to 
emphasize that for crucibles with a reasonable practical radius (larger than the melt capil-
lary constant), the curvature of the upper free liquid surface is very small in normal gravity 
conditions, and hence it can be neglected. This is not true in microgravity conditions, 
which is why these cases are treated separately in what follows. 

 From the physical point of view, the dewetting phenomenon is governed by the 
Young – Laplace equation through the Bond ( Bo ), and Laplace ( La ) dimensionless numbers. 
Thus, using the dimensionless numbers  (8.15)  obtained by using the ampoule radius  r  a  as 
length scale, Equation  (8.110)  becomes  [Epure 2010] :
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 where   H̃   m    =    H  m / r  a ,   Bo g r= ⋅ρ γl a lv. 2 , and  La    =    Δ  p  ·  r  a /  γ   lv . 

  8.4.1   Zero Gravity 

 In zero gravity conditions, the dimensionless Young – Laplace equation becomes:
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for which the following wetting boundary condition must be satisfi ed:
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and the choice of axis gives   z̃   (1)   =   0. 
 Equation  (8.107)  can be written as
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which is equivalent to
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 Integrating, we obtain the analytical expression for the derivative of the function   z̃   (    r̃    ):

    
d

d

�
�

�
� �

� � �

z

r
r

r r La c

r r r La c
( ) = − ⋅ − ⋅( ) +

− − ⋅ − ⋅( ) +

2 2
1

2 2 2

2

2

cos

cos

θ

θ 11
2( )

.     (8.109)   

 The constant  c  1  is determined from the boundary condition (d  z̃  /d    r̃    ) (1)   =   tan(  θ      −     π /2). It 
follows that
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 Further, the analytical expression of the meniscus can be obtained by integration. The 
integral can be expressed using elementary functions only in some particular cases. 

  8.4.1.1   Case  I :  L  a    =   0,  g    =   0 

 Integrating Equation  (8.110)  gives:

    � � �z r r c( ) = ⋅ − +
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1 2 2
2
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cos .

θ
θ     (8.111)   

 Using the boundary condition   z̃   (1)   =   0, the  analytical expression  of the meniscus surface 
in  zero gravity  when  La    =   0 is obtained:

    � � �z r r( ) = ⋅ − −( )1
1 2 2

cos
cos sin ,

θ
θ θ     (8.112)  

where     r̃        ∈    [0, 1]. Dewetting occurs when the growth angle   α   is achieved at least at one 
point on the meniscus surface, i.e. when the equation:

    � �φ αr( ) = ( ) −π 2     (8.113)  

has at least one solution in the range (0, 1); where   �φ  is the angle between the plane   z̃     =   0 
and the tangent plane to the meniscus. For this angle the equality   tan � � �φ = d dz r  holds, 
and hence information concerning attainment of the growth angle is given by the 
equation:
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from whence:

    sin cos� �φ θ= − ⋅r     (8.114)  
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which is equivalent to

    � �φ θ= − ⋅( )arcsin cos ,r     (8.115)  

for any     r̃        ∈    [0, 1]. What is remarkable is that Equation  (8.115)  gives a condition for 
dewetting that depends on the growth angle   α   and contact angle   θ  . From the positivity 
of the derivative
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it follows that the function   � �φ r( ) is strictly increasing for     r̃        ∈    [0, 1]. Considering this 
monotonicity and the boundary condition (d  z̃  /d    r̃    ) (1)   =   tan (  θ      −     π /2) which is equivalent 
to   �φ α1 2( ) = ( ) −π , the growth angle ( π /2)    −      α   can be achieved if   � �φ r( ) decreases from 
  θ      −    ( π /2) to ( π /2)    −      α  . This means that ( π /2)    −      α      <      θ      −    ( π /2) and hence   α     +     θ      >     π . In the 
opposite case, when   α     +     θ      <     π , the growth angle cannot be achieved because of the 
monotonicity of   � �φ r( ). 

 Assuming that the growth angle can be achieved, i.e.   α  +   θ      >     π , Equations  (8.113)  and 
 (8.114)  give:

    sin cosπ 2 1( ) −( ) = − −( )⋅α θ�e  

where   ẽ   represents the nondimensional gap thickness and     r̃     c    =   1    −      ẽ   the nondimensional 
crystal radius. The following  nondimensional gap thickness formula   [Duffar 1997]  results:

    �e = +cos cos
cos
θ α

θ
    (8.116)  

valid under  zero gravity  conditions,  La    =   0, and   α     +     θ      >     π . 
 We now have a remarkable new result concerning the meniscus shape. Because 

  tan � � �φ = d dz r  and   d d� �φ r > 0, the second derivative is:
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 This equation proves that d 2   z̃  /d    r̃     2     >    0, and hence under  zero gravity  and  La     =    0, the  menis-
cus is globally convex  for any     r̃        ∈    [0, 1].  

  8.4.1.2   Case  II :  L  a     ≠    0,  g    =   0 

 To obtain the meniscus equation, Equation  (8.110)  should be integrated, but if  La     ≠    0 this 
integral can not be expressed using elementary functions. In order to obtain information 
about the meniscus shape, attainment of the growth angle, and gap thickness, a qualitative 
study is necessary. 

 Introducing   tan � � �φ = d dz r  in Equation  (8.110)  gives:
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which is equivalent to
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for any     r̃        ∈    [0, 1]. In a similar way to previous calculations, the sign of the derivative 
  d d� �φ r  will give information about the shape of the meniscus, and about the condition 
that must be imposed on the sum of the wetting and growth angles to ensure that attain-
ment of the growth angle is feasible. Deriving the relation  (8.118)  gives:
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 The sign of this derivative depends on the sign of the expression depending on     r̃     and  La :
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 The following three cases should be considered: 

   •      If  La     ∈    ( −  ∞ ; 0], then  E  (    r̃    ,  La )    >    0 and hence   d d� �φ r > 0. Moreover,
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i.e. the meniscus is globally convex, and the growth angle can be achieved only if 
  α     +     θ      >     π .  

   •      If  La     ∈    (0;  − 2cos  θ  ), then the meniscus changes its curvature (concave to convex) at 
the point   �r La LaI = − ⋅ −( )2 cosθ , i.e.  E  (    r̃     1 ,  La )   =   0, which is equivalent to
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and the growth angle can be achieved either once or twice, depending on its value.  
   •      If  La     ∈    [ − 2cos  θ  ; + ∞ ), then  E  (    r̃    ,  La )    <    0 and hence   d d� �φ r < 0. In this case the meniscus 

is globally concave, i.e. d 2   z̃  /d    r̃     2     <    0, and the growth angle can be achieved only if 
  α     +     θ      <     π .    

 The above ranges for the pressure difference give information about the meniscus shape 
and the corresponding cases   α     +     θ      <     π  or   α     +     θ      >     π , in which the growth angle can be 
achieved or, in other words, when dewetting is feasible. 

 Assuming that  La ,   θ  , and   α   are chosen such that the growth angle can be achieved, the 
growth angle condition  (8.113)  is satisfi ed somewhere along the meniscus. From  (8.117) :
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     Figure 8.19     Meniscus shape   z̃   (  r̃  ) and meniscus angle   � �φ r( )  corresponding to  La    =    − 0.655 
and   θ     +     α     =   160    °    +   25    °  for InSb,  g    =   0. The place where the growth angle 
((  π /2 )    −      α     =   1.13446 radians) is reached is shown by the black dot.  

from which the following  gap thickness formulas  available in  zero gravity   [Duffar 1997]  
are obtained:
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2
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α θ α θ
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    (8.123)   

 The gap formula  (8.122)  is valid when the growth angle is reached on the convex part of 
the meniscus, and formula  (8.123)  is valid when attainment of the growth angle takes 
place on the concave part of the meniscus. More precisely, the numerical results obtained 
by solving the problem  (8.90) – (8.91)  by the Runge – Kutta method for InSb crystals grown 
in zero gravity by the dewetted Bridgman technique (the parameters for InSb are those 
presented in  [Balint 2008, Braescu 2008 - 2]   ), confi rm the results obtained from the qualita-
tive study: 

   •      If  La     ∈    ( −  ∞ ; 0], then the meniscus is globally convex and the growth angle can be 
achieved once. When the growth angle is reached the gap thickness is given by   ẽ   1 , as 
in  (8.122) . The numerical results reveal this behaviour for  La    =    − 0.655    ∈    ( −  ∞ ; 0] and 
  θ     +     α     =   160    °    +   25    °     >     π , as can be seen in Figure  8.19 . The fi gure shows that the 
meniscus is globally convex and that the growth angle is achieved. The computed gap 
thickness   ẽ     =   1    −        r̃     c1    =   1    −    0.97915   =   0.02085 is equal to the value given by formula 
 (8.122) , i.e.   ẽ   1    =   0.02085.  

   •      If  La     ∈    (0;  − 2cos  θ  ), then the meniscus is concave – convex (i.e it has a point of infl ex-
ion). If the growth angle is attained on the concave part the gap thickness is given by 
  ẽ   2  in  (8.123) ; if on the convex part, the gap thickness is given by   ẽ   1  in  (8.122) . The 
numerical results confi rm this behaviour. The menisci are concave – convex and the 
growth angle can be achieved either once or twice: (a) for   θ     +     α     =   112    °    +   25    °     <     π  and 
 La    =   0.105    ∈    (0;  − 2cos  θ  )   =   (0; 0.749) the growth angle is not achieved (see Figure 
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 8.20 ), but for  La    =   0.262    ∈    (0; 0.749) the growth angle is achieved once, as can be 
seen in Figure  8.21 ; (b) for   θ     +     α     =   160    °    +   25    °     >     π  and  La    =   0.393    ∈    (0;  − 2cos  θ  )   =   (0; 
1.879) the growth angle is achieved twice (Figure  8.22 ). If the growth angle is achieved 
on the concave part of the meniscus, then the computed gap thickness in Figure  8.21  
  ẽ     =   1    −        r̃     c1    =   1    −    0.1505   =   0.8494 is equal to   ẽ   2    =   0.8494 given by  (8.123)  and in Figure 
 8.22 ,   ẽ     =   1    −        r̃     c1    =   1    −    0.2819   =   0.7181 is equal to   ẽ   2 . If the growth angle is reached on 
the convex part of the meniscus, then the computed gap thickness   ẽ     =   1    −        r̃     c2    =   1    −    
0.9374   =   0.0626 is equal to   ẽ   1    =   0.0626 given by  (8.122) , as can be seen in Figure  8.21 .  

   •      If  La     ∈    [ − 2cos  θ  ; + ∞ ), then the meniscus is concave and the growth angle can be 
achieved once. When the growth angle is attained the gap thickness is given by   ẽ   2  in 
 (8.123) . The numerical results show that the meniscus is concave, and that the growth 
angle is achieved for   θ     +     α     =   112    °    +   25    °     <     π , La   =   0.85    ∈    [ − 2cos  θ  ; + ∞ )   =   [0.749; 
+ ∞ ) (Figure  8.23 ). The computed gap thickness   ẽ     =   1    −        r̃     c2    =   1    −    0.4573   =   0.5427 is 
equal to   ẽ   2  as given by  (8.123) .        

     Figure 8.20     Meniscus shape   z̃   (  r̃  ) and meniscus angle   � �φ r( )  corresponding to  La    =   0.105 
and   θ     +     α     =   112    °    +   25    °  for InSb,  g    =   0. The growth angle cannot be achieved.  

     Figure 8.21     Meniscus shape   z̃   (  r̃  ) and meniscus angle   � �φ r( )  corresponding to  La    =   0.262 
and   θ     +     α     =   112    °    +   25    °  for InSb,  g    =   0. The place where the growth angle 
((  π /2 )    −      α     =   1.13446 radians) is achieved is shown by the black dot.  



508 Crystal Growth Processes Based on Capillarity

  8.4.2   Normal Gravity 

 Under normal gravity conditions, for a crucible radius larger than the capillary constant 
of the material, the curvature of the upper free liquid surface can be neglected (it is very 
small), and hence the Young – Laplace equation  (8.105)  becomes:
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where the axisymmetric solution   z̃     =     z̃  (    r̃    ) has to satisfy the following boundary 
condition:

    
d

d

�
�
z

r
1

2 2
( ) = −( ) ∈( )tan , , .θ θπ π π     (8.125)  

and, by the choice of origin,   z̃   (1)   =   0. 

     Figure 8.22     Meniscus shape   z̃   (  r̃  ) and meniscus angle   � �φ r( )  corresponding to  La    =   0.393 
and   θ     +     α     =   160    °    +   25    °  for InSb,  g    =   0. The places where the growth angle 
((  π /2 )    −      α     =   1.13446 radians) is achieved are shown by the black dots.  

     Figure 8.23     Meniscus   z̃   (  r̃  ) and meniscus angle   � �φ r( ) corresponding to  La    =   0.85 and 
  θ     +     α     =   112    °    +   25    °  for InSb,  g    =   0. The place where the growth angle 
((  π /2 )    −      α     =   1.13446 radians) is achieved is shown by the black dot.  
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 Using the technique presented in section  8.1 , the nonlinear equation  (8.124)  is trans-
formed into the following nonlinear system of two differential equations:
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    (8.126)  

for which the boundary condition  (8.125)  becomes  [Balint 2008, Braescu 2008 - 2] :

    � �z 1 0 1
2 2

( ) = ( ) = − ∈( ), ; , .φ θ θπ π π     (8.127)   

 The functions on the right - hand side of Equations  (8.126)  are real analytic, i.e. they can 
be expanded in Taylor series, and the conditions of existence and uniqueness of a solution 
are satisfi ed for the problem  (8.126) – (8.127) . The meniscus shape is described by the 
solution

    � � � � � � � �z z r La Bo H r La Bo H= ( ) = ( ); , , , , ; , , ,θ φ φ θm m  

which depends on     r̃     and on the parameters   θ , La, Bo,  H̃   m . In what follows, this solution 
is denoted by   z̃     =     z̃   (    r̃    ),   � � �φ φ= ( )r . 

 Because of the high nonlinearity of the problem,  an analytical formula for the meniscus 
cannot be obtained,  hence analytical and numerical studies of meniscus shapes are neces-
sary. With this aim, the dependence of meniscus shape on the pressure difference will be 
established, and inequalities of the pressure intervals which assure the feasibility of dewet-
ting will be determined. 

 Because of the different behaviours of the meniscus shape in the cases   α     +     θ      <     π , and 
  α     +     θ      >     π , as already shown in zero gravity, qualitative studies will be performed on each 
case separately. Recent experimental developments  [Sylla 2008 – 1] , confi rmed by ther-
modynamic analysis  [Sylla 2008 – 2] , show that contamination of the system during the 
growth process may greatly increase the wetting angle, leading to an unexpected inequal-
ity between the wetting angle   θ   and growth angle   α  , i.e.   α     +     θ      >     π . 

  8.4.2.1   Case  I :  α    +    θ     <     π  

 In order to make a qualitative study of the meniscus shape (convex, concave – convex, 
convex – concave, concave) as a function of the Laplace number, the function   z̃     =     z̃   (    r̃    ) is 
approximated by a Taylor polynomial of third degree   T rz� �3( ) in the neighbourhood of     r̃       =   1. 
To establish the inequalities of the pressure intervals (i.e.  La  numbers) which assure the 
feasibility of dewetting, the information obtained from Taylor approximation (approxi-
mate meniscus) will be combined with properties deduced from the problem  (8.126) –
 (8.127)  which describes the shape of the real meniscus. Thus, approximating the function 
  z̃     =     z̃   (    r̃    ) by a Taylor polynomial of third degree   T rz� �3( ) in the neighbourhood of     r̃       =   1, 
accurate qualitative results are obtained only in a suffi ciently small neighbourhood of  r  a . 
The third - order Taylor polynomial   T rz� �3( ) which approximates the meniscus surface   z̃     =     z̃  (    r̃    ) 
is given by:
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where   z̃  ′  (1),   z̃  ″  (1),   z̃  ′  ′  ′  (1) represent the fi rst - , second -  and third - order derivatives of the 
function   z̃     =     z̃  (    r̃    ) at     r̃       =   1, and are obtained from the system  (8.126)  and boundary condi-
tions  (8.127)  as follows  [Braescu 2008 - 2] :

    � �′( ) = = −z Az1 1 cos

sin

θ
θ

,     (8.129)  

    �
�

� �′′( ) = − ⋅ + = − ⋅ + + ⋅
z A La B La

Bo H
z z1

12 2
3 3 3sin

cos
sin sin

,
θ

θ
θ θ

m     (8.130)  

    

� � � �′′′( ) = ⋅ − ⋅ +

= −
⋅

+
⋅

z A La B La C

La

z z z1

3 6

3 2 3 3

5
2

2

5

cos
sin

cos
sin

θ
θ

θ
θθ θ

θ
θ

θ

+⎛
⎝⎜ +

⋅ ⋅ ⋅ ⎞
⎠⎟

+ ⋅ −
⋅ ⋅ ⋅

1 6

1 3

3 5

3

2

sin
cos

sin

sin
co

Bo H
La

Bo H

�

�

m

m
2 ss

sin
cos

sin
cos

cos
sin

cos

θ
θ

θ
θ

θ θ
θ

θ

2

3

2

2

3
2

6

−
⋅

− ⋅ +⎡
⎣⎢

⋅

−
⋅ ⋅ ⋅

Bo

Bo H� m

ssin
.

2 θ
− ⋅ ⎤

⎦⎥
Bo H� m     (8.131)   

 The concavity or convexity of the meniscus   z̃     =     z̃   (    r̃    ) in a suffi ciently small neighbourhood 
of 1 is given by the sign of the second derivative of the approximated meniscus 
  � � ��z r T rT z( ) = ( )3 :
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 The sets of  La  values that defi ne convex, concave – convex, convex – concave and 
concave shapes of the approximated menisci are determined by the following 
inequalities: 

   •      if   Ez�
2 0>  and   Ez�

4 0<  (or   Ez�
2 0>  and   Ez�

4 1> ), then the approximated meniscus is convex;  
   •      if   Ez�

2 0>  and   0 14< <Ez� , then the approximated meniscus is concave – convex;  
   •      if   Ez�

2 0<  and   0 14< <Ez� , then the approximated meniscus is convex – concave;  
   •      if   Ez�

2 0<  and   Ez�
4 0<  (or   Ez�

2 0<  and   Ez�
4 1> ), then the approximated meniscus is concave;    

 where   E E Ez z z� � �
4 2 31= − ( ). 

 Dewetting occurs if the growth angle   α   is achieved at some point in the interval (0, 1), 
which is given by the solution of the equation:
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tan .     (8.133)   

 Because   α     +     θ      <     π , the boundary condition for   � �φ r( ) shows that the growth angle ( π /2)    −      α   
can be achieved only if   � �φ r( ) decreases, i.e.   d d� �φ r < 0. On the other hand,
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and the real meniscus should be concave in the neighbourhood of 1. For this reason, in 
what follows special attention is paid to the convex – concave (S - shaped), and concave 
meniscus shapes. Moreover, the inequality   Ez�

2 0> , which appears in both cases, gives the 
values of  La  resulting in a concave meniscus at 1:
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 The inequality  (8.134)  states that the gas pressure difference should be larger than the 
hydrostatic pressure plus a term which depends on the capillary parameters. 

 For certain values of  La , the growth angle can be achieved twice for a convex – concave 
approximated meniscus (Equation  (8.133)  has two solutions), and once for a concave 
approximated meniscus (Equation  (8.133)  has one solution). These values of  La  are given 
by the following statements (for details see  [Braescu 2008 - 2] ): 

   •      Statement 1:     The set of  La  values for which the growth angle   α   can be achieved once 
on the approximated meniscus is defi ned by the inequality:
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   •      Statement 2:     The set of  La  values for which the growth angle   α   can be achieved twice 
in the interval (0, 1) on the approximated meniscus is defi ned by the following 
inequalities:
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   •      Statement 3:     For   α     +     θ      <     π :  
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  (i)     If the real meniscus is concave at 1, then  La     >     Bo     ·      H̃   m    +   cos  θ  ;  
  (ii)     If the real meniscus is convex at the triple point  r  c  in which the growth angle is 

achieved  , then  La     <     Bo     ·    (  H̃   m     −      h̃  )    −    cos  α  . 

 Inequalities (i) and (ii) defi ne the interval  La  I  for which dewetted Bridgman growth 
is feasible with a convex – concave (S - shaped) meniscus. Moreover they show that the 
value  La  (concave)  for which the meniscus is concave can be deduced from the pressure 
difference values  La  (convex – concave)  for which the meniscus is S - shaped. 

 The range  La  I  can be refi ned by using the approximation   � �φT r( ) of the function   � �φ r( ), 
and the condition for attainment of the growth angle on the approximate meniscus   z̃  T  (    r̃    ).    

   •    Statement 4:     A refi ned range  La  approx  of the interval  La  I , for which dewetted Bridgman 
with convex – concave meniscus is feasible and the growth angle is achieved, is deter-
mined by the following inequalities: 
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where     r̃     1  ( La ) represents the real root of the equation
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and is in (0, 1)  [Braescu 2008 - 2] . 
 Inequalities (i) are related to the shape of the meniscus: concave at 1 and convex later. 
The inequality (ii)   F Laz�

1 0( ) <  indicates that the growth angle   α   is achieved once on 
the approximated meniscus. Inequality (iii) shows that in     r̃     1  ( La ) the approximated 
meniscus is convex.      

 In the following, numerical results are obtained by solving the problem  (8.126) – (8.127)  
for InSb crystals grown in normal gravity by the dewetted Bridgman process  [Balint 2008, 
Braescu 2008 - 2] . 

 Inequalities (i) – (ii), from Statement 4 give the  La  range [51.353; 52.617]. Through 
inequality (iii) this is refi ned to  La  approx    =   [51.353; 52.589] which represents the range of 
the Laplace number for which dewetted Bridgman growth with a convex – concave menis-
cus is possible and where the growth angle is achieved. Numerically integrating the 
system  (8.126) – (8.127)  for different values of the  La  from the refi ned range  La  approx , gives 
 La  real    =   [51.726; 52.458] which represents the real range of the pressure difference that 
gives a convex – concave real meniscus where the growth angle is attained twice (Figure 
 8.24 ). If  La  real     ≥    52.46 then the real meniscus is concave and the growth angle is achieved 
only once, as can be seen in Figure  8.25 .   

 Figures  8.24  and  8.25  show that the approximated meniscus given by the third - degree 
Taylor polynomial   T rz� �3( ) is accurate only in the neighbourhood of 1. However, experi-
mental values of the gap thickness are always much smaller than 1   mm (see Chapter  6 ). 
The points marked on the fi gures represent the points at which the growth angle is 
achieved.  
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     Figure 8.24     Approximated menisci   T rz� �3( )  (dotted line) and real (numerical) convex –
 concave menisci   z̃   (  r̃  ) corresponding to  La    =   51.726 (a) and  La    =   52.446 (b) for InSb, 
 H̃  m    =   10.9. The places where the growth angle ((  π /2 )    −      α     =   1.13446 radians) is achieved 
are shown by the black dots.  

     Figure 8.25     Approximated menisci   T rz� �3( )  (dotted line) and real (numerical) concave 
menisci   z̃   (  r̃  ) corresponding to  La    =   52.46 (a) and  La    =   64.167 (b) for InSb,  H̃  m    =   10.9. 
The places where the growth angle ((  π /2 )    −      α     =   1.13446 radians) is achieved are shown 
by the black dots.  

  8.4.2.2   Case  II :  α    +    θ     >     π  

 During the growth process of classical semiconductors grown in uncoated ampoules (i.e. 
  α     +     θ      <     π ), contamination of the system may greatly increase the wetting angle, leading 
to an unexpected sum of the wetting angle   θ   and growth angle   α  , i.e.   α     +     θ      >     π . For this 
reason, the dependence of the meniscus shape on the pressure difference is studied, in 
order to get conditions that allow dewetting for classical semiconductors grown in 
uncoated crucibles with contamination (or in coated crucibles). To study the meniscus 
shape qualitatively as a function of the Laplace number, only the properties obtained from 
the problem  (8.126) – (8.127)  are used. In the case   α     +     θ      >     π , the meniscus height increases 
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if  La  increases, hence the Taylor polynomial approximations cannot be used because they 
are valid only in a small neighbourhood of 1 (this is the opposite behaviour to the previ-
ous case   α     +     θ      <     π , where increasing  La  leads to a decrease of the meniscus). 

 Thus, considering the inequality   α     +     θ      >      π   and boundary condition for 
  � �φ r( ),   �φ θ1 2( ) = − ( )π , it follows that the growth angle ( π /2)    −      α   can be achieved if   � �φ r( ) 
decreases from   θ      −    ( π /2) to ( π /2)    −      α  , i.e.   d d� �φ r > 0. On the other hand, from Equations 
 (8.126) :
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 As   d d� �φ r 1 0( ) > , the following inequality for the pressure difference is obtained:
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for which the growth angle can be achieved. 
 Concerning the meniscus shape, because
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d 2   z̃  /d    r̃     2     >    0 in the neighbourhood of 1, which means that the growth angle can be achieved 
if the meniscus is convex in the neighbourhood of 1. 

 Then, for a pressure difference which satisfi es the inequality  (8.141)  the meniscus is 
convex in the neighbourhood of 1 (this includes globally convex or concave – convex 
menisci), and the growth angle can be achieved. 

 Numerical results obtained by solving the problem  (8.126) – (8.127)  for InSb crystals 
grown on the ground by the dewetted Bridgman process for high apparent wetting angle 
(i.e. the contamination case   θ     +     α     =   160    °    +   25    °     >      π  ) prove that if the pressure difference 
satisfi es the inequality  (8.141) , i.e.  La     <    49.794, then the meniscus is globally convex 
(Figure  8.26 ) or concave – convex (see Figure  8.27 ; it is diffi cult to see this shape on the 
fi gure, but it can be seen in the numerical results) and the growth angle is achieved once.   

 Further, there are cases in which the meniscus is concave at 1 and the growth angle 
can be achieved. There are two possible situations: (i) convex – concave meniscus, and (ii) 
globally concave meniscus. 

 For the  convex – concave meniscus  there is a point of infl exion   r̃   I , i.e. (d 2   z̃  /d    r̃     2 ) (  r̃   I  )   =   0. 
This condition implies that   d d I

� � �φ r r( )( ) = 0 because
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 Because the meniscus is concave at 1, i.e.   d d� �φ r < 0 in the neighbourhood of 1, the 
meniscus is concave for     r̃        ∈    [  r̃   I ; 1] and the function   � �φ r( ) decreases. Attainment of the growth 
angle may be possible on the convex meniscus, i.e. on the left side of   r̃   I  the meniscus is 
convex and   d d� �φ r > 0. This proves that the growth angle can be achieved if the function 
  � �φ r( ) is concave and its maximum is (  � � �r rI I; φ( )). This gives a condition on the second deriva-
tive   d d2 2 0� � �φ r r( )( ) <  for     r̃        ∈    (  r̃   I     −     ε ;   r̃   I    +    ε ). Thus, deriving the second equation

    
d

d
m

�

�
� � � �

�φ
φ

φ
r

Bo H z La
r

= ⋅ −( ) −[ ]⋅ − ⋅1 1

cos
tan  

from Equations  (8.126) , and replacing     r̃     by   r̃   I , we get:
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I I
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⎞
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     Figure 8.26     Meniscus shape   z̃  (  r̃  ) and meniscus angle   � �φ( )r  corresponding to 
 La    =    − 13.095 and   θ     +     α     =   160    °    +   25    °     >     π  for InSb,   H̃   m    =   10.9. The place where the 
growth angle ((  π /2 )    −      α     =   1.13446 radians) is reached is shown by the black dot.  

     Figure 8.27     Meniscus   z̃  (  r̃  ) and meniscus angle   � �φ( )r  corresponding to  La    =   49.788 and 
  θ     +     α     =   160    °    +   25    °     >     π  for InSb,  H̃  m    =   10.9. The place where the growth angle 
((  π /2 )    −      α     =   1.13446 radians) is achieved is shown by the black dot.  
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     Figure 8.28     Convex – concave meniscus shape   z̃  (  r̃  ) and meniscus angle   � �φ( )r  
corresponding to  La    =   50.679 and   θ     +     α     =   160    °    +   25    °     >     π  for InSb,  H̃  m    =   10.9. The place 
where the growth angle ((  π /2 )    −      α     =   1.13446 radians) is reached is shown by the 
black dot.  

which must be negative. As   � �φ θrI( ) ∈ − ( ) ( )( )π π2 2;  and   r̃   I     <    1, from  (8.142)  we have 
that   �r BoI > ( )⋅1 sinθ , which gives the following limit for the ampoule radius:

    1 1> ( )⋅Bo sin .θ     (8.143)   

 Moreover, since   d d I
� � �φ r r( )( ) = 0  the following inequality for the pressure difference is 

obtained:

    La Bo H Bo z r< ⋅ − ⋅ ( )�
m I .     (8.144)   

 Here   z̃   (  r̃   I ) is unknown but   z̃   (  r̃   I )    <    0, and hence if

    La Bo H< ⋅ �
m     (8.145)  

then inequality  (8.144)  is always satisfi ed. 
 In conclusion, for a convex – concave meniscus, the growth angle can be achieved (the 

crystal can be obtained) if inequalities  (8.143)  and  (8.145)  are satisfi ed. In practice, it is 
not certain whether the growth angle is always attained; this depends on the material and 
process parameters. 

 Numerical results obtained by solving the problem  (8.126) – (8.127)  for InSb crystals 
grown under normal gravity by the dewetted Bridgman process for the case 
  θ     +     α     =   160    °    +   25    °     >     π , show that if  La    =   50.679    <     Bo     ·      H̃   m    =   50.733 and 
  1 1 0 271> ( )⋅ =Bo sin .θ , then the meniscus is convex – concave and the growth angle is 
achieved on the convex part of the meniscus (Figure  8.28 ).   

 For the globally concave meniscus   d d� �φ r < 0, and hence the function   � �φ r( ) decreases on 
the interval (0; 1); because ( π /2)    −      α      <      θ      −    ( π /2) the growth angle cannot be achieved on 
the globally concave meniscus. Numerical results show that for  La    =   51.504    >     Bo     ·      H̃   m    =  
 50.733   Pa the meniscus is globally concave and the growth angle is not achieved 
(Figure  8.29 ).   
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 The above analytical and numerical studies of meniscus shapes were performed in order 
to derive the conditions which allow dewetting and lead to a crystal with a constant radius 
under normal gravity. The results are useful for  in situ  control of the process and show 
the importance of a careful calculation of the meniscus shapes for the optimization of 
stable dewetted Bridgman growth.    

  8.5   Conclusions 

 In this chapter, mathematical and numerical analyses of the BVP for the Young – Laplace 
equation have been presented as an essential part of capillarity problems and processes. 
First, a mathematical formulation of the capillary problem and the BVP for the Young –
 Laplace equation in the three - dimenional and axisymmetric cases was presented. 

 After that, the problems were formulated for the Cz, EFG and dewetted Bridgman 
growth techniques. For the confi gurations and specifi c boundary conditions considered, 
analytical solutions of the meniscus were found in some special cases. Due to the high 
nonlinearity of these problems in general cases, the solutions were approached qualita-
tively and proved by numerical computations using the Runge – Kutta method. From these 
analytical and numerical studies, information useful for practical crystal growers was 
reported: meniscus shapes for different growth conditions, the range of some parameters 
for which the growth angle is achieved (i.e. a crystal is obtained), the dependencies 
between the meniscus height and the crystal thickness. A relevant computer program (in 
Mathcad) is presented in the Appendix   . 

 Because of the nonlinearity of the Young – Laplace equation, no simple solution of the 
problem exists in most cases. It is always necessary to perform a qualitative analysis, 
which is problem dependent. After that a numerical solution can be sought. However, as 
shown for the Cz technique, there are confi gurations for which no exact solution is 
available.  

     Figure 8.29     Globally concave meniscus shape   z̃  (  r̃  ) and meniscus angle   � �φ( )r  
corresponding to  La    =   51.504 and   θ     +     α     =   160    °    +   25    °     >     π  for InSb,   H̃   m    =   10.9. The 
growth angle ((  π /2 )    −      α     =   1.13446 radians) cannot be achieved.  
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  Appendix: Runge – Kutta Methods 

 The Runge – Kutta methods are single - step methods which approximate solutions of fi rst -
 order differential equations (or systems) with given initial conditions. They are based on 
the Taylor series method in which derivatives are approximated by the forward difference 
and at the same time, keep the desirable property of higher - order local truncation error 
 [Braescu 2008 – 1] . These facts imply a better convergence to the solution. 

 In practice, there are some particular forms of the Runge – Kutta method: the second -
 order method RK2, the third - order method RK3, the fourth - order (standard) method RK4 
and the fi fth - order Runge – Kutta – Fehlberg method RKF5. The RK4 method is discussed 
in more details in the next section, as it is the most commonly used. 

  A.1   Fourth - Order Runge – Kutta Method ( RK 4) 

 Considering the initial value problem:

    ′( ) = ( )y x f x y,  

    y x y0 0( ) =  

where  f :( a; b )    ×    ( c; d )    →      R is an indefi nite derivable function and  x  0     ∈    ( a; b ),  y  0     ∈    ( c; 
d ). The solution  y ( x ) of IVP can be computed numerically using RK4 method along the 
interval [ x  0 ;  x N  ] which is divided in N equidistant subintervals. The RK4 method for this 
problem is summarized by the following equation with differences:

    y y k k k k i Ni i= + + + +( ) =−1 1 2 3 4
1

6
2 2 1, , ,…  

where  x i     =    x i    − 1    +    h ,  i    =   1,  …  ,  N ,  h  represents the step - size (equidistant nodes are considered), 
  
h

x x

N
N= − 0 ;  x N   is the end value of the interval;  x  0  is the fi rst value of the interval,  N  

represents the number of the solution values in the interval [ x  0 ,  x N  ];  y i   is the approximation 
of  y ( x i  ); and  … 

    k h f x yi i1 1 1= ⋅ ( )− −, ,  

    k h f x
h

y
k

i i2 1 1
1

2 2
= ⋅ + +( )− −, ,  

    k h f x
h

y
k

i i3 1 1
2

2 2
= ⋅ + +( )− −, ,  

    k h f x h y ki i4 1 1 3= ⋅ + +( )− −, .   

 Thus the current value  y i   is determined by the previous value  y i    − 1 , to which is added an 
estimated slope   16 1 2 3 42 2k k k k+ + +( ) which represents the weighted average of slopes: 

   •       k  1  is the slope at the beginning of the interval;  
   •       k  2  is the slope at the midpoint of the interval, using the slope  k  1  for determining the 

value of  y  at the point  x i    − 1    +   ( h /2) by Euler ’ s method (fi rst - order Runge – Kutta method);  
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   •       k  3  is the slope at the midpoint of the interval, but now using the slope  k  2  for determining 
the value of  y  at the point  x i    − 1    +   ( h /2) by Euler ’ s method;  

   •       k  4  is the slope at the end of the interval with its  y  - value predicted by  k  3 .    

 In summary, each value of  k i   gives an estimate of the size of the  y  - jump made by the 
actual solution across the whole width of the interval. The fi rst one uses Euler ’ s method, 
the next two use estimates of the solution slope at the midpoint, and the last one uses an 
estimate of the slope at the endpoint. Each  k i   uses the earlier  k i   as a basis for its prediction 
of the  y  - jump. The local truncation error for RK4 is of the order  O ( h  5 ). 

  A.1.1    RK 4 Procedure 

 Input  a, b, c, N, f  //  a, b, c  are the problem - dependent values of  x  0 ,  x N   and  y  0 //. 

  Runge – Kutta4(  c ,  a ,  b ,  N ,  f  )     

    x a

x b

y c

h
x x

N
for i N

k h f x y

k h f x
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i i
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  S:   =   Runge – Kutta4(  c ,  a ,  b ,  N ,  f  ).    
 This method is relatively easy to implement and gives good accuracy, but as it is a con-
stant step size method, the calculation time may become very long, especially if a very 
small step size is needed. Thus, in order to reduce computation time, an  adaptive step 
size  version of the Runge – Kutta method can be used. The general formula for the adaptive 
step size Runge – Kutta method is given by:

    y y c ki i n n

n

+
=

= + ∑1
1

6

 

where:

    k h f x yi i1 = ⋅ ( ),  
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    k h f x a h y b k nn i n i nm m

m

n

= ⋅ + ⋅ +⎛
⎝⎜

⎞
⎠⎟

=
=

−

∑, , , ,
1

1

2 6…  

with local truncation error of order  O ( h  6 ). 
 Several sets of  a n  ,  b nm   and  c n   coeffi cients and computer algorithms for implementation 

of this method were reported, e.g. those suggested by Cash and Karp  [Cash 1990] . 
 Thus, in the  adaptive  Runge – Kutta method, the step size is controlled so that the results 

are within the desired accuracy. This is why the numerical computations in Chapter  8  are 
performed using the  adaptive RK4 method . 

 Runge – Kutta methods are available in all standard computer mathematical toolboxes 
such as Matlab, Mathcad, Mathematica, Maple etc. The use of a Runge – Kutta fourth -
 order method with fi xed integration step (a routine called  rkfi xed ), and with step - size 
adaptation ( Rkadapt ) is shown here for Mathcad.    

  A.2   Rkfi xed and Rkadapt Routines for Solving IVP 

 The case of cylindrical rods grown in zero gravity using the EFG technique (the confi gu-
ration presented in Figure  8.14 ) is considered as an example. Equation  (8.86)  with the 
initial condition  (8.81)  is solved numerically and the solutions obtained using the routines 
 rkfi xed  and  Rkadapt  are compared with the analytical solution  (8.87) . 

 Thus, the following IVP is solved numerically:

    
d

d

sin

sin

0i c

0i c

z

r
r

r

r r
( ) = − ⋅

− ⋅( )
φ

φ2 2
    (A8.1)  

    z r0 0i( ) =     (A8.2)   

 The exact solution represents the analytical expression of the meniscus as function of 
the parameter   φ   c :

    z r r
r

r r r
r r( ) = ⋅ ⋅ +( )

+ − ⋅
∈ ⋅0i c

0i c

0i c

0i csin ln
cos

sin
, sin ,φ φ

φ
φ1

2 2 2
rr0i( ]     (A8.3)   

 The obtained solution of  rkfi xed  and  Rkadapt  routines is a matrix with two columns 
(independent variable values, and the corresponding solution function values). The argu-
ments list of these procedures is as follows: 

  rkfi xed (init,  x  1 ,  x  2 ,  N ,  D ) and  Rkadapt (init,  x  1 ,  x  2 ,  N ,  D)  

 where: 

   •      init is either a vector of  n  real initial values, where  n  is the number of unknowns, or a 
single scalar initial value, for a single ordinary differential equation (ODE);  

   •       x  1  and  x  2  are real, scalar initial and end points of the interval over which the solution 
to the ODE(s) will be evaluated;  

   •       N  is the integer number of points beyond the initial point at which the solution is to be 
approximated;  
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   •       D  is a derivative vector function of the form  D ( x, y ) specifying the right - hand side of 
the system.    

  A.2.1   Example of Implementation in Mathcad 

    r0i m: .= [ ]0 002  

   φc rad: .= [ ]1 3  

   a r c: := =0i ; // initial value given at the beginning of the 0 iinterval //  

   b r: sin= ⋅ ( ) + −
0i c // final value of the interval //φ 10 9  

   N a b: ,= [1000 // number of the solution value in the interval ]] //  

   init: = c  

   D x y
r

x r
, :

sin

sin
( ) = − ⋅

− ⋅( )
0i c

0i c

φ
φ2 2

 

   S_fixed init: , , , ,= ( )rkfixed a b N D  

   R_fixed S_fixed _fixed S_fixed: := =0 1Z  

   S_adapt init: , , , ,= ( )Rkadapt a b N D  

   R_adapt S_adapt _adapt S_adapt: := =0 1Z      

  A.2.2   Conclusion 

 Comparing the solution obtained by  rkfi xed  (i.e. RK4),  Rkadapt  and the analytical solu-
tion, it is easy to see that  Rkadapt  gives better results. In seeking the computed value 
of the function at the endpoint  b  of the interval, it can be observed that the difference 
between the exact solution and the approximate solutions are in the fourth digit for  rkfi xed , 
and the sixth digit for  Rkadapt . Note that the error can be decreased by increasing  N . 

   S_fi xed =     S_adapt =  

        0     1          0     1  

   •  •  •      •  •  •  •  •  •      •  •  •  •  •  •      •  •  •      •  •  •  •  •  •      •  •  •  •  •  •   
  990    0.001927846    0.000475318    990    0.001927846    0.000475318  
  991    0.001927773    0.000478036    991    0.001927773    0.000478036  
  992    0.0019277    0.000480909    992    0.0019277    0.000480909  
  993    0.001927628    0.000483968    993    0.001927628    0.000483968  
  994    0.001927555    0.000487253    994    0.001927555    0.000487253  
  995    0.001927482    0.000490826    995    0.001927482    0.000490826  
  996    0.001927409    0.000494776    996    0.001927409    0.000494776  
  997    0.001927336    0.000499258    997    0.001927336    0.000499258  
  998    0.001927263    0.00050457    998    0.001927263    0.00050457  
  999    0.00192719    0.000511483    999    0.00192719    0.000511479  

  1000    0.001927117    0.000532588    1000    0.001927117    0.000526005  
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         Figure A8.1     (a) Approximated menisci obtained by RK4 (dotted line) and adaptive RK4 
(full line). (b) Approximated menisci obtained by RK4 (dotted line) and adaptive RK4 
(enlargement of Figure A8.1a).  

 The  exact solution  is given by Equation  (A8.3) . At the end point of the interval the 
exact solution is:

    z b z r( ) = ⋅ ( ) +( ) =−
0i csin . .φ 10 0 00052639039   

 The  approximate solution  given by the  rkfi xed  routine, computed at the endpoint  b , is:

    z_fixed // the last value from the table S_fixe= 0 000532588. dd corresponding to  //b   

 The  approximate solution  given by the  Rkadapt  routine, computed at the endpoint  b , is:

    z_adapt // the last value from the table S_adap= 0 000526005. tt corresponding to  //b   

 After plotting the menisci obtained numerically (Figure  A8.1 a), it is diffi cult to see a 
difference of the order of the fourth or sixth digit and for this reason an enlarged image 
is shown in Figure  A8.1 b.      
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sapphire 295–7, 296, 303

VB technique see vertical Bridgman (VB) 
technique

VCz (vapor pressure controlled Czochralski) 
method 117, 118

Verneuil technique 70–1
capillary shaping parameters 72, 73, 75
cylindrical crystals 76, 77
dynamic stability 57, 71–80
origin xxiii, xxiv
plate-shaped crystals 78
schematic representation 54
shaped crystal growth 76–80

stability analysis-based automation 78–80, 
79

tubular crystals 77–8, 78
vertical Bridgman (VB) technique 355–73

contact angles 358–9, 360, 361
crystal–crucible adhesion 359–63
defect structures 361, 362, 363
dewetting process see dewetted vertical 

Bridgman (VB) technique
dislocation defects 363
growth striations 392
interfacial energies 359–60, 359
liquid encapsulation 366–73, 369

crystals grown 367
solid–liquid–salt triple point region 370
surface and wetting properties 370

origin xvi
set up 356
spurious nucleation on crucible walls 363, 

365–6, 365, 366
thermal interface curvature 356–8, 357, 358
thermocapillary convection 362–3, 364, 457
thermomechanical detachment 362–3, 364

view factor 146–7, 148
VST see variable shaping technique (VST)

Weber number 59
weight measurement 118, 119

evaluation 130–1
hydromechanical–geometrical 

model 138–42
right-half-plane zero characteristics 126

weight-based control 164–70, 165, 166
crystal seeding 320–1
plate enlargement 325–6, 326, 328
in situ correction 326–7
steady state growth 328–31
tube enlargement 322–5, 322, 324, 325

Wenzel Equation 8
wetting behaviour 5

heterogeneous surfaces 11–12
nonreactive spreading 13–14
reactive spreading 14–16, 15, 16
see also contact angles

work of adhesion 3
work of cohesion 2

Young–Dupré equation 6
Young–Laplace equation 38, 40, 135, 466, 

468–86
Young’s equation 5–6
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