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PREFACE

This book is a beginner’s introduction to chemical thermodynamics for engineers. According
to the author’s experience in teaching physical chemistry, chemical thermodynamics is the
most difficult part for junior students to understand. Quite a number of students tend to lose
their interest in the subject when the concept of entropy has been introduced in the lecture of
chemical thermodynamics. Having had the practice of chemical technology after their
graduation, however, they realize acutely the need of physical chemistry and begin studying
chemical thermodynamics again.

The difficulty in learning chemical thermodynamics stems mainly from the fact that it
appears too conceptual and much too complicated with many formulae. In this textbook
efforts have been made to visualize as clearly as possible the main concepts of thermodynamic
quantities such as enthalpy and entropy, thus making them more perceivable. Furthermore,
intricate formulae in thermodynamics have been discussed as functionally unified sets of
formulae to understand their meaning rather than to mathematically derive them in detail.

Most textbooks in chemical thermodynamics place the main focus on the equilibrium of
chemical reactions. In this textbook, however, the affinity of irreversible processes, defined
by the second law of thermodynamics, has been treated as the main subject. The concept of
affinity is applicable in general not only to the processes of chemical reactions but also to all
kinds of irreversible processes.

This textbook also includes electrochemical thermodynamics in which, instead of the
classical phenomenological approach, molecular science provides an advanced understanding
of the reactions of charged particles such as ions and electrons at the electrodes.

Recently, engineering thermodynamics has introduced a new thermodynamic potential
called exergy, which essentially is related to the concept of the affinity of irreversible processes.
This textbook discusses the relation between exergy and affinity and explains the exergy
balance diagram and exergy vector diagram applicable to exergy analyses in chemical
manufacturing processes.

This textbook is written in the hope that the readers understand in a broad way the
fundamental concepts of energy and exergy from chemical thermodynamics in practical
applications. Finishing this book, the readers may easily step forward further into an advanced
text of their specified line.
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The author finally expresses his deep gratitude to those who have contributed to the
present state of chemical thermodynamics on which this book is based. He also thanks Mrs.
Y. Sato for her assistance.

Norio Sato

Sapporo, Japan
December 2003



Ch.
Ch.
Ch.
Ch.
Ch.
Ch.
Ch.
Ch.
Ch.
Ch.
Ch.

© 00 N oo o b~ w N P

N
)

Table of Contents

Preface

Thermodynamic state variables
Conservation of energy

Entropy as a state property
Affinity in irreversible processes
Chemical potential

Unitary affinity and equilibrium
Gases, liquids, and solids
Solutions

Electrochemical energy

Exergy

Exergy diagram

List of symbols

References

Index

19
37

57
63
71
83
97
115
141
145
147



CHAPTER 1

THERMODYNAMIC STATE VARIABLES

Chemical thermodynamics deals with the physicochemical state of substances.
All physical quantities corresponding to the macroscopic property of a physico-
chemical system of substances, such as temperature, volume, and pressure,
are thermodynamic variables of the state and are classified into intensive and
extensive variables. Once a certain number of the thermodynamic variables
have been specified, then all the properties of the system are fixed. This
chapter introduces and discusses the characteristics of intensive and extensive
variables to describe the physicochemical state of the system.

1. 1. Thermodynamic Systems.

In physics and chemistry we call an ensemble of substances a thermodynamic system
consisting of atomic and molecular particles. The system is separated from the surroundings
by a boundary interface. The system is called isolated when no transfer is allowed to occur of
substances, heat, and work across the boundary interface of the system as shown in Fig. 1.1.
The system is called closed when it allows both heat and work to transfer across the interface
but is impermeable to substances. The system is called open if it is completely permeable to
substances, heat, and work. The open system is the most general and it can be regarded as a
part of a closed or isolated system. For instance, the universe is an isolated system, the earth
is regarded as a closed system, and a creature such as a human being corresponds to an open
system.

Ordinarily, the system may consist of several phases, whose interior in the state of
equilibrium is homogeneous throughout its extent. The system, if composed for instance of
only liquid water, is a single phase; and if made up for instance of liquid water and water
vapor, it is a two phase system. The single phase system is frequently called a homogeneous
systemn, and a multiphase system is called heterogeneous.
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substances
isolated system closed system open system
heat and work heat and work

Fig. 1.1. Physicochemical systems of substance ensembles.

1. 2. Variables of the State.

All observable quantities of the macroscopic property of a thermodynamic system, such
as the volume V , the pressure p, the temperature 7, and the mass m of the system, are called
variables of the state, or thermodynamic variables. In a state of the system all observable
variables have their specified values. In principle, once a certain number of variables of the
state are specified, all the other variables can be derived from the specified variables. The
state of a pure oxygen gas, for example, is determined if we specify two freely chosen
variables such as temperature and pressure.

These minimum number of variables that determine the state of a system are called the
independent variables, and all other variables which can be functions of the independent
variables are dependent variables or thermodynamic functions. For a system where no external
force fields exists such as an electric field, a magnetic field and a gravitational field, we
normally choose as independent variables the combination of pressure-temperature-composition
or volume-temperature-composition.

In chemistry we have traditionally expressed the amount of a substance i in a system of
substances in terms of the number of moles n, = m, /M, instead of its mass m,, where M,
denotes the gram molecular mass of the substance i. The composition of the system of
substances is expressed accordingly by the molar fraction x, as defined in Eq. 1.1:

x= ”fn =2 Yx=1. (L.1)

In the case of solutions (liquid or solid mixtures), besides the molar fraction, we frequently
use for expressing the solution composition the molar concentration (or molarity) c,, the
number of moles for unit volume of the solution, and the molality m,, the number of moles
for unit mass of the solvent (main component substance of the solution):

=

i
C; =

mole-m™, m; = L mol - kg_‘ s 1.2)
S

<|

where Vis the volume of 1 m® of the solution and M; is the mass of 1 kg of the solvent.
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1. 3. Extensive and Intensive Variables.

The variables whose values are proportional to the total quantity of substances in the
system are called extensive variables or extensive properties, such as the volume V and the
number of moles n. The extensive variables, in general, depend on the size or quantity of the
system. The masses of parts of a system, for instance, sum up to the total mass of the system,
and doubling the mass of the system at constant pressure and temperature results in doubling
the volume of the system as shown in Fig. 1.2.

On the contrary, the variables that are independent of the size and quantity of the system
are called intensive variables or intensive properties, such as the pressure p, the temperature
T, and the mole fraction x; of a substance i. Their values are constant throughout the whole
system in equilibrium and remain the same even if the size of the system is doubled as shown
in Fig. 1.2.

Extensive variable V Intensive variable p

Fig. 1.2. Extensive and intensive variables in a physicochemical system.

1. 4. Partial Molar Quantities.

An extensive variable may be converted into an intensive variable by expressing it per
one mole of a substance, namely, by partially differentiating it with respect to the number of
moles of a substance in the system. This partial differential is called in chemical thermodynamics
the partial molar quantity. For instance, the volume v, for one mole of a substance i in a
homogeneous mixture is given by the derivative (partial differential) of the total volume V
with respect to the number of moles of substance i as shown in Eq. 1.3:

where the subscripts T, p and »; on the right hand side mean that the temperature T, pressure
p, and all n's other than n; are kept constant in the system. The derivative v, is the partial
molar volume of substance i at constant temperature and pressure and expresses the increase
in volume that results from the addition of one mole of substance { into the system whose
initial volume is very large.

In general, the partial molar volume v, of substance i in a homogeneous multiconstituent
mixture differs from the molar volume v = V/n, of the pure substance i . When we add one
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mole of pure substance i into the mixture, its volume changes from the molar volume v,.O of
the pure substance i to the partial molar volume v, of substance i in the mixture as shown in
Fig. 1.3(a). In a system of a single substance, by contrast, the partial molar volume v, is
obviously equal to the molar volume v,.° of the pure substance i.

A binary system

\
\
\
\
\
\
<—v,—>]

(a) (b)

Fig. 1.3. Partial molar volume: (a) the molar volume v, of a pure substance i and the
partial molar volume v, of substance i in a homogeneous mixture; (b) graphical
determination of the partial molar volumes of constituent substances in a homogeneous
binary system by the Bakhuis-Rooseboom Method: v = V/ (n1 + nz) = the mean molar
volume of a binary mixture; x,= the molar fraction of substance 2; v, =
v - x,(0v/ 9 x,) = the partial molar volume of substance 1; v, = v - (1= x, v/ x,)
= the partial molar volume of substance 2. [Ref. 1.]

In a system of a homogeneous mixture containing multiple substances the total volume V
is given by the sum of the partial molar volumes of all the constituent substances each
multiplied by the number of moles as shown in Eq. 1.4:

V=Znv, (1.4)

The partial molar volume v, of a substance i is of course not identical with the molar volume
v =V/[Z, n of the mixture.

Considering that the volume V of a system is a homogeneous function of the first degree
in the varables n,, [Euler's theorem; f (kn,,knz)e K (nvn2 )] we can write through differen-
tiation of Eq. 1.4 with respect to n, at constant temperature and pressure the equation expressed
by:

2 n(dvion), =0. (1.5)

i
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For a homogeneous binary mixture consisting of substance 1 and substance 2, we then have

Eq. 1.6:

iv—_ 3y ) _ av, ( o, ) _
™ ( dn, on, )T,p T ( any om, Jr, 0 4 ( on, )T'p th on, Jr, 0. (1.6)
Furthermore, Eq. 1.6 gives Eq. 1.7:
vy ) ( v, )
ol =0 1.
x‘(axz L ), )

From the molar volume v=Vi{n; +n,)=(1-x) v, +x, v, and its derivative (8v/8x2)7' s =
(v, — ;) multiplied by x,, we obtain Eq. 1.8:

v =v-x, (i)T . (1.8)

This equation 1.8 can be used to estimate the partial molar volume of a constituent substance
in a binary mixture from the observed curve of the molar volume v against the molar fraction
x, as shownin Fig. 1.3(b).

1. 5. The Extent of a Chemical Reaction.

Let us consider a chemical reaction that occurs in a closed system. According to the law
of the conservation of mass, the total sum of the mass of all the chemical substances remains
constant in the system whatever the chemical reactions taking place.

The chemical reaction may be expressed by a formula shown in Eq. 1.9:

viRi+v,R, > v,P,+v,P, (1.9)

where R, and R, are the chemical species being consumed (reactants), P; and P, are the
chemical species being produced (products), and v, ---v, are the stoichiometrical coefficients
of the reactants and products in the reaction, respectively. The stoichiometrical coefficient is
negative for the reactants and positive for the products. The conservation of mass in the
reaction is expressed by Eq. 1.10:

Vs Ms+ v, M+ viM+v,M,=0  Z,vM;=0, (1.10)

>

where M, denotes the relative molecular mass of species i.
We express the change in the number of moles n, of each species as follows:

n-m=vig m-m=v,§ nm-m=v;§ n-n=v,§ (1.11)
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where nlo . nf denote the initial number of moles of the reaction species at the beginning of
the reaction. The symbol & represents the degree of advancement of the reaction. In chemical
thermodynamics it is called the extent of reaction.

The initial state of a reaction is defined by & = O, and the state at which & = 1 corresponds
to the final state where all the reactants (v, moles of R, and v, moles of R,) have been
converted to the products (v, moles of P, and v, moles of P,) as shown in Fig. 1.4. We say
one equivalent of reaction has occurred when a system undergoes a chemical reaction from
the state of £= 0 to the state of £=1.

0.5v;R,+0.5v, R,
viRi+wR, |= =|vP+v,P,
- 05v,P,+05v, P,

£=0 E=05 E=1

Fig. 1.4. The extent of a chemical reaction.

Equation 1.11 gives us the differential of the extent of reaction d& shown in Eq. 1.12:

dn. _dn, _dny, _dng _
vl‘vz‘v3‘v4‘d5

(1.12)

To take an instance, we consider the following two reactions in a system consisting of a solid
phase of carbon and a gas phase containing molecular oxygen, carbon monoxide and carbon
dioxide:

2 Cpoigy + Oy,

) — 2 COyy),  Reaction 1,

Clootiy T Oz —> CO

2 (gas) Reaction 2.

For these two reactions the following equations hold between the extents of reactions & and
the number of moles of reaction species #,:

dne=-2d§ -d&,, dno,=—d§ —d§;,, dnyp=2d§, dne,=dE,;.

The reaction rate v is expressed by the differential of the extent of reaction &(¢) with respect
to time ¢ as shown in Eq. 1.13:

V= — (1.13)
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The reaction rate may also be expressed by the time-differential of the mass or the number of
moles of reaction species. For a single reaction the reaction rate in terms of the extent of
reaction is related with the reaction rate in terms of the mass m, or the number of moles n, of
reaction species as shown in Eq. 1.14:

dn,
dt

dm,
= —L=vM v 1.14
ViV, 4 - ViMv (1.14)
The extent of reaction is an extensive property, and it can apply not only to chemical
reactions but also as the extent of change to all physicochemical processes such as diffusion,
melting, boiling, and solid state transformation.



CHAPTER 2

CONSERVATION OF ENERGY

The first law of thermodynamics provides the concept of energy, which is
defined based on empirical knowledge as a physical quantity of the state of
thermodynamic systems. In reality energy presents itself in various forms such
as thermal, mechanical, chemical, electrical, magnetic, photonic energy, etc.
These various forms of energy can be converted into one another with some
restriction in thermal energy. The first law also expresses the empirical principal
that the total amount of energy is conserved whatever energy conversion may
take place. Moreover, thermodynamics introduces two energy functions called
the internal energy and the enthalpy depending on the choice of independent
variables. This chapter discusses the characteristics of these two energy
functions.

2. 1. Energy as a Physical Quantity of the State.

Thermodynamics has provided in its first law the concept of energy, which is a self-evident
quantity empirically defined for the capacity that a thermodynamic system possesses of doing
physicochemical work (energy = en+erg). The first law of thermodynamics indicates that the
energy of an isolated system is constant and that the change in the energy of a closed system
is equal to the amount of energy received from or released out of the system (the principal of
the conservation of energy). Energy is an extensive property and its recommended SI unit is
joule J whose dimension is kg-m” -s7>.

Energy may be classified into varieties such as mechanical, thermal, chemical, photonic,
electric, and magnetic energy. These different forms of energy, however, can theoretically be
converted one to one in each other, except for thermal energy whose conversion is restricted
by the second law of thermodynamics as will be mentioned in the following chapter. If the
system undergoes nuclear reactions, the mass of substances converts into what is called the
nuclear energy. We won'’t discuss nuclear reactions in this book, however.
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In general, mechanical energy or work is expressed by the product of the force f
affecting a body and the distance A/ over which the body moves in the direction of the force:
f AL A change in the volume of a system causes mechanical work done by the system or
performed on the system, whose magnitude corresponds to the product of the pressure p and
the volume change AV: p- AV . Further, electric energy is represented by the product of the
voltage and the electric charge. Furthermore, thermal energy reversibly received by a system
equals the product of the absolute temperature T" and the change in thermal entropy AS in the
system:entropy will be described in the following chapter. We may hence conceptually
assume the following relation in Eq. 2.1:

Energy = Intensive variable x Conjugate extensive variable. 2.1

where energy is formally expressed by the product of conjugated intensive and extensive
variables.

2. 2. Conservation of Energy.

Let us consider a closed system which can exchange heat and work but not substances
with its surroundings. The exchange of heat and work takes place through the boundary
interface of the system. The energy of the system then increases by an amount equal to the
heat and work absorbed from the surroundings. We define the internal energy U of the
system as a state property whose infinitesimal change dU is equal to the sum of infinitesimal
heat dQ and infinitesimal work dW received by the system as shown in Eq. 2.2:

dU = dQ + dW, 2.2

where the heat and work received by the system are positive quantities, while those released
out of the system are negative as shown in Fig. 2.1. The integral of internal energy
f du = f dQ + f dW from a certain initial state to a certain final state of the system is always

independent of the route followed, though each of f dQ and f dW may depend on the rout.

The internal energy is hence defined as a state property. We also call the heat dQ and the
work dW the energy transferred across the boundary between the system and the surroundings.
Internal energy, heat, and work must of course be measured in the same unit.

Work can have different forms such as compression-expansion-, electric-, magnetic work
and other forms. The amount of work done by these different forms can be measured in the
same scale of joule that we normally use for measuring heat and energy. Work, heat, and
internal energy thus present themselves in the same category of energy. Thermodynamics
however shows us that the heat differs somehow in its quality from the other forms of energy
in that the energy of heat (thermal energy) can not be completely converted one to one into
the other forms of energy as will be discussed in the following chapter.
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If the work done by the system is only due to a change in volume of the system under the
pressure p, we obtain dW = —p dV . Then, Eq. 2.2 yields Eq. 2.3:

dU=dQ-padv, (2.3)

where p is the internal pressure of the system. In thermodynamics we usually assume an ideal
process called reversible in which all changes take place in quasi-equilibrium. The external
pressure then is equal to the internal pressure of the system. We thus assume for the reversible
process that the pressure p in Eq. 2.3 is equal to the internal pressure of the system itself.

7> . S

~law| -] +|dW| +]ag|

Fig. 2.1. Conservation of energy in a closed system.

2. 3. Internal Energy U with Independent Variables 7, V, and &.

We now consider a homogeneous closed system containing ¢ species of substances in
which a chemical reaction occurs in a reversible way. The internal energy, U, is a function of
the state of the system, and hence may be expressed in terms of the independent variables
that characterize the state. If the state of the system is determined by the independent variables
temperature 7, volume V, and extent of reaction & as shown in Fig. 2.2, we have U =
U(T, V,n - nfg) where n -+ -n are the initial number of moles of the species of substances.

The total differential of the internal energy U is then given by Eq. 2.4
_{0U au U
av=(9Y )V’ ar+ (8Y )de + ( e )T’ g 24
From Eqs. 2.3 and 2.4 we obtain Eq. 2.5 for transferred heat dQ:
_{oU aUu oU
dg=(2% )v, AT+ {( oy )T,(§ + p} v + ( 0 )T' g @.5)
Equation 2.5 can also be expressed by Eq. 2.6:

dQ=C,  dT + 1 dV +uy , d&, 2.6)

where C, ., I ., and u, , are the thermal coefficients for the variables T, V, and &.
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The coefficient, Cy, =(dQ/dT),, =(dU/T),,, is the amount of heat required to raise
the temperature of the system by unit degree at constant V and & it is called the heat
capacity of the system at constant volume and composition. The coefficient, [, , =
(6Q/07V)Ty§ = {(&U/&V)T’§ +p}, is the heat that must be supplied to the system for unit
increase in volume at constant temperature, and may be called the latent heat of volume
change of the system. For an ideal gas, whose internal energy is independent of the volume
(aUlaV),, =0, we have I, = p.

The coefﬁclent of u., (aQ/ o"§)T v= (6U / 6&)“/ is the heat received by the system when
the reaction proceeds by an extent of reaction d§ at constant temperature and volume, and its
integral from §=0 to §=1 is the heat of reaction at constant volume and temperature, Q, ,:

Ory= L 1 U,y d&. Q7

In particular, if u; , is independent of &, Q; , is given by Q. , = uT‘V(é;-'1 - 50), and for one
equivalent extent of reaction (& —§&, = 1) we obtain the heat of reaction Q. , = u; ,, at constant
volume.

The reaction is called exothermic if the heat of reaction is negative; whereas, the reaction
is endothermic if it is positive.

Variables 7, V, & Variables 7, p, €

Fig. 2.2. Thermodynamic energy functions: (a) Internal energy U, (b) Enthalpy H.

2. 4. Enthalpy H with Independent Variables T, p, and &.
If we choose T, p, and & as independent variables, the total differential of U is given by

Eq.2.8:

dU = (-%17{_)1,‘ AT+ (—g—g—) dp + ( e )T pdg 2.8)

Volume V is no longer an independent variable but a function of T, p, and &: V(T, p,§). The
total differential dV (T, p,§)in Eq. 2.3 can then be expressed by Eq. 2.9:

dv = (g—g) dT + ( gz ) dp + ( g‘é’ )T pdg. (2.9)
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By writing dQ from Eq. 2.3 explicitly and using Eqs. 2.8 and 2.9, we thus obtain Eq. 2.10:

- [4) r (35 Jor (4] o ()

(38, o))

We realize in Eq. 2.10 that, for the independent variables 7, p, and &, it is advantageous to
use the thermodynamic energy function H called enthalpy as defined in Eq. 2.11:

p,

H=U+pV, @.11)

which may also be called the heatr content or heat function in the field of engineering
thermodynamics. The word of enthalpy means “heating up” in Greek.

Using this energy function H, we obtain from Eq. 2.3 the expression of the heat received
by the system as shown in Eq. 2.12:

dQ=dH-pdV~-Vdp+pdV=dH-Vdp, (2.12)
which then yields Eq. 2.13:
8H dH oH
do=(9) ar+ (——) —V}d +(——-) dé. 2.13

0=(37 ),,,,; { op Jr.g PeE ), ¢ @13

Equation 2.13 may be expressed as follows:
dQ=C, dl + hy . dp+h; ,dE, (2.14)
where C,,, b, ,and h; , are the thermal coefficients for the variables 7, p, and &. Comparing
Egq. 2.13 with Eq. 2.14, we realize that; C, . = (0H/3T), . is the heat capacity of the system at
constant pressure and composition; h; . = {(0H/dp); . — V} may be called the latent heat of

pressure change, and h; ,=(0H/0E)
temperature:

_(oH _(OH Yy _ _(.8H
Coe=( - ),,,g frs = S )M v k(B 2.15)

The heat capacity C,, is an extensive property and, for a mixture of substances i, is

r,p 18 the heat of reaction at constant pressure and

given as the sum of the partial molar heat capacity c,, of all the constituent substances each
multiplied by the number of moles n, of i as shown in Eq. 2.16:

aC
Cpe=2mc, c,,,,~=( a;f )Tp”. (2.16)
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The latent heat of pressure change &, which is usually negative, is the amount of heat
that must be removed from the system for unit increase in pressure to maintain constant
temperature when the system is compressed at constant composition. For an ideal gas in
which pV =nRT and (6U/dp); . = 0, the second term on the right hand side of Eq. 2.10 gives

us hy . =(0U/3p);. . + p(0V/dp) .. We then obtain the latent heat of pressure change as
shown in Eq. 2.17:

_{3U vy n RT _ .
hu_( ap)m—l—p(ap)m_ SV dedgs, @.17)

indicating that for an ideal gas h,, equals ~V. From Eq. 2.15 we thus have the enthalpy of
an ideal gas as follows:

B_H) =0; ideal gas 2.18
(ap e &%, ( )

which indicates that the enthalpy of an ideal gas is independent of the pressure of the gas.
The coefficient h;, , = (IH/95), , is the differential of the amount of heat that must be
added to or extracted from the system for unit change in the extent of reaction at constant p

and 7, and its integral from £=0 to =1 is the heat of reaction at constant pressure and
temperature:

QT”’Z.[O hy , d&. (2.19)

If h;, is independent of £, the heat of reaction Oy , thenis equal to A, .
Figure 2.3 shows the relation between enthalpy H and each of the variables of T, p, and &

for an ideal gas reaction, in which we assume that the heat of reaction is constant irrespective
of the extent of reaction.

v H

v

nthalpy A

Enthalpy
nthalp

3 Cas

5
(5]
<,

E
B

Temperature T’ Pressure p Extent of reaction &

Fig. 2.3. Enthalpy as a function of temperature, pressure, and extent of reaction for
an ideal gas reaction.
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From Egs. 2.5, 2.6, 2.10, 2.13 and 2.14 we obtain the following three equations 2.20, 2.21
and 2.22, which show the relationship between the thermal coefficients Coe» hrg , and hT)p

for the variables T, p, and &, and the thermal coefficients vag, lTyg, and ur, for the variables
T,V,and &:

Coe=Cps +1p.s (g—¥)p ; (2.20)
hpe=1 (a_v> , 221
T8 T.& ap T ( )

hf,p=uw+lr,¢(%) . 222)

P

If we take, as an example, a closed system of a mixture of ideal gases in which a chemical
reaction is occurring, then we have Eq. 2.23:

B LR e

where v = v, is the sum of stoichiometrical coefficients in the reaction. Furthermore, since
L., = p for ideal gases as described in the foregoing in connection with Eq. 2.6, we obtain
Eqgs. 2.24 and 2.25 from Eqgs. 2.20, 2.21, and 2.22:

Ce—Cve=nR, (2.24)

oH aU
h, —u.,=vRT, (—) —(—) =VRT. 225
T.p TV ag .p aé v ( )

Thus for a gas reaction such as N, ) +3H, .,y =2NH; ., for which v = -2, we obtain
(8HIBE);. , — (0U/9E);,, =—2 RT. This shows the relationship between the heat of the reaction
at constant volume and that at constant pressure.

2. 5. Enthalpy and Heat of Reaction.

To describe the energy of a physicochemical system in which a chemical reaction takes
place, it is convenient to make use of the internal energy U if the reaction proceeds at
constant volume or the enthalpy H if the reaction proceeds at constant pressure. The system
at constant volume undergoes no mechanical work and hence the change in internal energy is
equal to the heat of the reaction. The system at constant pressure, in contrast, can receive
work from or give off work to the surroundings as it changes its volume, so that the heat of
reaction is not equivalent to the change in internal energy U but to the change in enthalpy
H=U + pV of the system.

The heat of a reaction at constant temperature and pressure is normally defined as the
change in enthalpy of the reaction system when the reactants are completely transformed into
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the products. The heat of a reaction, (8H/8E); ,, can thus be expressed in terms of the partial
molar enthalpy, ,, of reaction species i given by Eq. 2.26 as shown in Eq. 2.27:

O0H
h,= (——) R 2.26)
on, Ip.
aH) :E(GH) an sy 2.27
( a& - H an! T’p'j a T 1 12 ( )

where v, is the stoichiometrical coefficient of substance i in the reaction. From Eq. 2.27 we
obtain, as an example, Eq. 2.28 for the heat of reaction for the formation of a compound AB
from its constituent elements A and B, such as Sygjiq) + O; (gus) ™ SO, gy

(%Igi)” = hap — (ha+ by ) = Mh, (2.28)
where hI{B represents the heat of the formation of compound AB at constant p and 7.
Recalling 0(0H/08)/aT = 6(0H/IT)/9&, we have from Eq. 2.15 the heat of reaction at
constant pressure as a function of the heat capacities, C,, of all the reaction species. The
temperature dependence of the heat of reaction at constant pressure is thus determined by the

partial molar heat capacities, ¢, ,, of the reaction species as shown in Eq. 2.29:

pi

3 (SH)Y _[9Cns)\_
(5, ()= 2 e &2

This equation enables us to calculate the heat of a reaction at any temperature, provided that
we know the value of the heat of the reaction at a specified temperature and that we know the
partial molar heat capacities c,, of all the species taking part in the reaction: ¢, ; may be
equated to the molar heat capacities of the pure species in the case of gas reactions. By
integrating Eq. 2.29 with respect to temperature we obtain Eq. 2.30 for the temperature
dependence of the heat of reaction:

8H\ _(B8H\ _, _n ("
(ag )TM (ag )Thp_hTz,p hm_frl Zvic,.dr. (230)

This equation is used for estimating the heat of a reaction (0H / 9&)y, , at a temperature T,
when we know the value of the heat of the reaction (0H / §)y, , at a specified temperature T,
and the partial molar heat capacities ¢, of the reactants and products.

2. 6. Enthalpy of Pure Substances.

We now examine the enthalpy of a pure substance. Equation 2.15 shows that the enthalpy
of a pure substance { is a function of temperature 7"and pressure p. A pure substance i
increases its enthalpy H when it absorbs heat Q at constant pressure. The differential of the
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molar enthalpy dh, is equivalent to the heat absorbed, dg = dQ/dn,, for one mole of i at
constant pressure, and hence can be expressed in terms of the molar heat capacity ¢, ;. The
molar enthalpy also depends on the pressure of the system. The general equation to estimate
the molar enthalpy of a substance can be derived from Egs. 2.15 and 3.37, and we obtain Eq.
231:

T

h = h(0,0)+ f c(T,0)dT + f ’ (%) dp, 2.31)
0 T

[

where A(0,0) is the enthalpy extrapolated to p = 0 and T = 0, ¢,{T, 0) is the heat capacity
extrapolated to p = 0 at temperature 7. If the substance undergoes any phase transformations
in the temperature range concerned, the thermal and other energy changes associated with the
phase transformations have to be taken into account.

In this equation 2.31 the second term on the right hand side is the thermal part and the
third term is the pressure-dependent part. Normally, the pressure-dependent part is very small
compared with the thermal part as shown in Eq. 2.18 for ideal gases, in which (§H/dp)r =0,
and Eq. 7.27 for liquids and solids. For most purposes then the enthalpy may be regarded as
independent of pressure and is given by Eq. 2.32

T

h=H00)+ [ (T, 0)dT, 232)
[}

The enthalpy of a chemical substance at the standard state (298 K, 101.3 kPa) is called
the standard enthalpy. In chemical thermodynamics, the standard enthalpy values of chemical
elements in their stable states are all set zero, and hence the standard enthalpy of a chemical
compound is represented by the heat of formation of the compound from its constituent
elements at the standard state. Numerical values of the standard enthalpy of various chemical
compounds thus obtained are tabulated in handbooks of chemistry.



CHAPTER 3

ENTROPY AS A STATE PROPERTY

The second law of thermodynamics provides a physical state property called
entropy as an extensive variable relating to the capacity of energy distribution
over the constituent particles in a physicochemical system. Also provided are
two state properties called free energy (Helmholtz energy) and free enthalpy
(Gibbs energy) both representing the available energy that the system possesses
for physicochemical processes to occur in itself. This chapter discusses the
creation of entropy due to the advancement of an irreversible process in a
system, and elucidates the change in entropy caused by heat transfer, gas
expansion, and mixing of substances. Also discussed is the affinity
thermodynamically defined as the driving force of an irreversible process.

3. 1. Introduction to Entropy.

The energy of a physicochemical system is dependent on the substances that make the
system. The substances, though macroscopically forming phases, are microscopically
comprised of particles such as atoms, ions, and molecules constituting a particle ensemble.
The energy of the system is distributed among individual particles in the ensemble, and the
energy distribution over the constituent particles plays an important role in determining the
property of the physicochemical system.

The second law of thermodynamics defines a state property called entropy as an extensive
variable relating to the capacity of energy distribution over the constituent particles. The
name of entropy comes from Greek meaning “progress or development”. The energy of a
system is not uniformly shared among the individual constituent particles but unevenly
generating high and low energy particles. The distribution of energy among atomic and
molecular particles is known to obey the Boltzmann statistics, which gives the most probable
number of particles, N, , atan energy ¢, in Eq. 3.1:
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3.1)

where N=Z N_ is the total number of particles, k is the Boltzmann constant, 7 is the

absolute temperature. The exponential factor, e 1" on the right hand side of Eq. 3.1 is
well-known as the Boltzmann factor.

The denominator of the right hand side of Eq. 3.1 is relevant to the total number of the
microscopic energy states of the system and is called the particle partition function z:

=3 et (3.2)

Egs. 3.1 and 3.2 give us an expression for the average internal energy U/N of a particle in
the system as shown in Eq. 3.3:

_Q__Z&Ns,._zs,.e’;_?_k],z(aan) 33)
N ZN;, Ze‘;% a7 Jyn ’

Statistical thermodynamics has defined, in addition to the particle partition function z, the
canonical ensemble partition function Z as follows:

7=3 e, (3.4)

where U; is one of the allowed amounts of energy for a component system of the canonical
system ensemble. The average internal energy U of the ensemble is then obtained in the
form similar to Eq. 3.3 as shown in Eq. 3.5:

dlnZ )v ) 3.5)

— 2
U=kT (—8 T )y

For a system consisting of the total number of particles N and maintaining its total energy
U and volume V constant, statistical thermodynamics defines the entropy, S, in terms of the
logarithm of the total number of microscopic energy distribution states €(N,V,U) in the
system as shown in Eq. 3.6:

S=kinQ(N,V,U). 3.6)

The number of microscopic energy distribution states (N, V,U) in the system is also related
with the ensemble partition function Z. According to statistical mechanics, the entropy S
has been connected with the ensemble partition function Z in the form of Eq. 3.7:

ds=kdin @=kd(lnZ+ %), S=kan+LZJ:+constant, G
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where the absolute temperature T is defined by the second law of thermodynamics (thermo-
dynamic temperature scale, Kelvin’s temperature). Equation 3.7 gives us the unit of the
entropy to be J- K. The entropy is obviously one of the extensive variables to specify the
state of the system.

dQ,,

Fig. 3.1. Entropy change due to a reversible transfer of heat into a closed system at
constant volume and temperature: dQ,, = reversible heat transfer.

The classical definition of entropy based on the second law of thermodynamics has given
the total differential of entropy in the form of dQ,,, /T . With a reversible heat transfer into a
closed system receiving a differential amount of heat dQ,,, , the system changes its entropy
by the differential amount of dS as shown in Eq. 3.8:

dQ,, _ dU-dw,,
=== — (3.8)

ds

where dQ,,, is the heat reversibly absorbed by the system, dW,,, is the work reversibly done
to the system, and dU is the change in the internal energy of the system. This classical
equation 3.8 is equivalent to the statistical equation 3.7 for the entropy. Figure 3.1 shows the
change in entropy due to a reversible transport of heat into a closed system.

In conclusion, entropy is the physical quantity that represents the capacity of distribution
of energy over the energy levels of the individual constituent particles in the system. The
extensive variable entropy S and the intensive variable the absolute temperature T are conjugated
variables, whose product TdS represents the heat reversibly transferred into or out of the
system. In other words, the reversible transfer of heat into or out of the system is always
accompanied by the transfer of entropy.

3. 2. Reversible and Irreversible Processes.

A physicochemical change is said to be reversible, if it occurs at an infinitesimally small
rate without any friction and if both system and surroundings remain in a state of quasi
equilibrium: the variables characterizing the system go and return through the same values in
the forward and backward changes at an infinitesimally small rate. No change that occurs in
nature is reversible, though some real processes can be brought as close as possible to
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reversible processes. The reversible change is thus regarded as an ideal change which real
processes can possibly approach and to which equilibrium thermodynamics can apply. All
changes other than the reversible changes are termed irreversible ; such as changes in volume
under a pressure gradient, heat transfer under a temperature gradient, and chemical reactions,
all of which take place at a rate of finite magnitude.

In an advancing irreversible process such as a mechanical movement of a body, dissipation
of energy for instance from a mechanical form to a thermal form (frictional heat) takes place.
The second law of thermodynamics defines the energy dissipation due to irreversible processes
in terms of the creation of entropy §,, or the creation of uncompensated heat Q, .

In a closed system a reversible process creates no entropy so that any change dS in
entropy is caused only by an amount dQ,,, of heat reversibly transferred from the surroundings
as shown in Egs. 3.8 and 3.9:

a0,

dS:T,

reversible processes. 3.9

An irreversible process, by contrast, creates an amount of entropy so that the total change dS
in entropy in a closed system consists not only of an entropy change dS,,, due to reversible
heat transfer dQ,,, from the surroundings but also of an amount of entropy dS, created by
the irreversible process as shown in Eq. 3.10:

d dQ, _ d d
= Qrev + Qlﬂ‘ — Qrev + dS Q

a§=—7 T -7 e T

=ds

ir?

irreversible processes. (3.10)

This equation 3.10 defines the creation of uncompensated heat (), and the creation of
entropy S,,:

do. d
ds,, = ?’" =dS- %""’ >0,  irreversible processes. (3.11)

Distinguishing the created entropy d,5,,, from the transferred entropy 4.5;,, we express the
total change in entropy as the sum of the two parts shown in Fig. 3.2 and Eq. 3.12:

as=dSs,,, +4dS,,. (3.12)

For a closed system with reversible transfer of heat dQ,,, where an irreversible process occurs

creating uncompensated heat Q. , these transferred and created parts of entropy are thus
given, respectively, in Eq. 3.13:

_ erev _ inrr
deSrev - T > diS," - T > O (3 13)

In an isolated system where no heat transfer occurs into or out of it (d,§ = 0), the entropy
increases itself whenever the system undergoes irreversible processes: this is one of the
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expressions of the second law of classical thermodynamics that entropy increases in an
isolated system when irreversible processes occur in the system. In a closed system where the
transferring entropy can be positive or negative, the total entropy does not necessarily increase
with irreversible processes. This is also the case for an open system where the transfer of
both heat and substances is allowed to occur into or out of the system. In any type of system,
isolated, closed, or open systems, however, the advancement of irreversible processes always
causes the creation of entropy in the system.

Transferred entropy

erev
Created entropy AeSrey T

ds 99

iz‘rr—'Tm>O

Fig. 3.2. Entropy d.S,, teversibly transferred from the outside and entropy 45,
created by irreversible processes in a closed system.

3. 3. The Creation of Entropy and Uncompensated Heat.

As an irreversible process advances in a closed system, the creation of entropy inevitably
occurs dissipating a part of the energy of the system in the form of uncompensated heat. The
irreversible energy dissipation can be observed, for instance, with the generation of frictional
heat in mechanical processes and with the rate-dependent heat generation in chemical reactions
different from the reversible heat of reaction. In general, the creation of entropy is always
caused by the presence of resistance against the advancement in irreversible processes

We consider a simple chemical reaction, AB — A + B, such as CO, = CO + 0.50, , in
which reacting particles (molecules) distribute their energy among themselves in accord with
Boltzmann’s distribution law. In order for the reaction to occur, the reacting molecules have
to leap over an energy barrier (activation energy) that normally exists along the reaction path
from the initial state to the final state of the reaction as shown in Fig. 3.3: this is a flow of
reacting molecules through an activated state required for the reaction to proceed.

In the case that the process is reversible in which the initial and the final states are in the
same energy level, as shown in Fig. 3.3(a), the energy absorbed by the reacting molecules
rising up from the initial state to the activated state equals the energy released when the
molecules fall from the activated state down to the final state of the reaction, and hence no
net energy dissipation occurs during the reaction.

In the case in which the reaction occurs irreversibly at a finite rate, however, there exists
an energy gap between the initial state and the final state of the reaction as shown in Fig.
3.3(b). As the reaction proceeds, then, the amount of energy equivalent to the energy gap
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dissipates, thereby producing an amount of uncompensated heat and creating an amount of
entropy. Usually, the energy diagram of a chemical reaction at constant T and p is expressed
in terms of free enthalpy (Gibbs energy) which will be introduced in the following sections.
It follows from Fig. 3.3(b) that the energy equivalent to the uncompensated heat created as a
result of an irreversible reaction corresponds to the driving force (affinity A = the difference
in free enthalpy between the initial and the final states) of the irreversible reaction.

Activated state Activated state

Activation energy

. Energy discharge
B Energy discharge
Activation energy

” A
Initial state Energy gap
Y

Initial state Final state Final state
@ b)

Fig. 3.3. Energy diagrams for (a) reversible process and (b) irreversible process.

According to irreversible thermodynamics {Ref. 2.], the rate of the creation of uncom-
pensated heat, which equals the rate of the creation of entropy times the absolute temperature,
is equivalent to the driving force A times the rate v = d&/dt of the irreversible reaction as
shown in Eq. 3.14 (vid. Eq. 3.39):

sz'rr — dSm‘ —_
L o7 Lo —pv 0. (3.14)

In the range in which a linear relationship v = £ A holds between the driving force A and the
rate v of the reaction, Eq. 3.14 yields Eq. 3.15:

d‘%" =T dg;" =k A’ 20, (3.15)
where 1/k is a reaction resistance. Equation 3.15 indicates that the rate of the creation of
uncompensated heat is proportional to the square of the driving force A, the energy gap
between the initial state and the final state of the processes. Note that linear reaction kinetics
v =k A is valid only in the regime close to the reaction equilibrium, beyond which non-linear
exponential kinetics usually predominates.
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3. 4. The Creation of Entropy and Thermodynamic Potentials.

From Eq. 2.3 of the conservation of energy, dQ_, =dU + pdV, and Eq. 3.10 of the
creation of entropy, dQ,, = TdS — TdS,,, , we obtain Eq. 3.16 for an infinitesimal advancement
of an irreversible process in a closed system:

dU+pdV=TdS-Tds,, (3.16)

where dS =dS,, +dS, is the differential of the fotal entropy dS consisting of the entropy
dS,, reversibly transferred and the entropy dS,, irreversibly created in the system. The
entropy created by an irreversible process is always positive (plus) dS,, > 0. The differential
of the internal energy U is then given by Eq. 3.17:

dU=TdS~-pdV-Tds,,. GB.17

We thus see that an irreversible process, if occurring at constant entropy and volume (dS =0
and dV =0), is accompanied by a decrease in the intemal energy of the system as shown in

Eq.3.18:

Tds,=-dUu>0, -(U,,-U

 tiad )> 0; atconstantSand V, (3.18)
where (Uﬁm, - Uim.,ial) is the change in internal energy between the initial state and the final
state of the irreversible process.

Similarly, for the energy function enthalpy H = U + pV defined in the foregoing chapter
we have Eq. 3.19 from Eq. 3.17:

dH=TdS+Vdp-Tds,,, (3.19)
which yields Eq. 3.20 for an irreversible process at constant entropy S and pressure p:

Tds,=-dH>0, -(H,, -H,

im.ﬂ.al) >0; atconstantSand p. (3.20
This indicates that any irreversible process, if occurring at constant entropy § and pressure p,
is accompanied by a decrease in the enthalpy from the initial high level H,,, toward the
final low level H,,, of the system. From the foregoing we see that the internal energy and
enthalpy may play the role of thermodynamic potentials for an irreversible process if occurring
under the condition of constant entropy S. This condition of constant entropy, however, is
unrealistic because entropy S contains both created entropy S, and transferred entropy S, .

We then introduce two new energy functions called free energy F (Helmholtz energy) for
the independent variables temperature T and volume V, and free enthalpy G (Gibbs energy)
for the independent variables temperature T and pressure p as defined, respectively, in Egs.
3.21 and 3.22:
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F=U-TS, (321)
G=U-TS+pV=H-TS. (3.22)
Inserting F and G into Eq. 3.17 yields Egs. 3.23 and 3.24:
dF=-8dT-pdV-TdS,, (3.23)
dG=-8dT +Vdp-TdS,, (3.24)
For an irreversible process in an isothermal system at constant V, we then obtain Eq. 3.25:

Tds,=-dF>0, -(F,, -F

initial

}>o0, (3.25)
while in an isothermal system at constant pressure p, Eq. 3.26 holds:

T dS,=-dG>0, ~(G,,-G,

i) > 0. (3.26)
Obviously, the energy functions of free energy F and free enthalpy G play the role of
thermodynamic potentials for an irreversible process to occur in isothermal systems at constant
volume and constant pressure, respectively. In general, the energy functions of F, and G can
be used as the thermodynamic potentials to indicate the direction of an irreversible processes
to occur under the condition that their respective characteristic variables remain constant.

As mentioned above, free energy F is occasionally called the Helmholtz energy, and free
enthalpy G is frequently called the Gibbs energy. These two energy functions F and G
correspond to the amounts of energy that are freed from the restriction of entropy and hence
can be fully utilized for irreversible processes to occur at constant temperature.

3. 5. Affinity of Irreversible Processes.

We now consider a simple system in which equilibrium is already established with
respect to temperature and pressure and in which, on the other hand, equilibrium is not
attained with respect to the redistribution of substances susceptible to chemical reactions, nor
with respect to any changes being characterized by the parameter &, the extent of reaction
shown in Eq. 1.11. Let us first consider a system in which a single chemical reaction takes
place in an irreversible way. Suppose that in an infinitesimal time interval the value of &
changes by an amount d§, producing then an amount of uncompensated heat dQ,, and hence
an amount of created entropy 4S;,,. We now introduce a new energy function called the
affinity A of an irreversible process defined by the relation shown in Eq. 3.27. Namely, the
differential of the irreversibly dissipated energy (uncompensated heat) dQ;,, equals the affinity
A times the differential of the extent of reaction d&:
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dQ,, =T dS,, = AdE>0, 3.27)

Equation 3.27 is called De Donder’s inequality.

The affinity is expressed as a function of independent variables such as A(T,V,E) and
A(T, p,fg). For the characteristic variables T, V, and &, we obtain from Eqs. 2.5 (where
Q=0,),3.11 and 3.27 the following equation 3.28 for the affinity A of the reaction:

el ) ),

while for the characteristic variables of 7, p, and &, we further obtain from Eqgs. 2.14 (where
0 =0,),3.11 and 3.27 the following Eq. 3.29 for the affinity A of the reaction at constant
temperature and pressure:

These two equations show that the affinity depends not only on the internal energy U or the
enthalpy H but also on the entropy S.

Combining Eq. 3.27 with Egs. 3.17, 3.19, 3.23, and 3.24, we obtain the following four
equations:

dU=TdS-pdV-Adé (3.30)
dH=TdS+Vdp-Adé, (331)
dF =—SdT - pdV ~ A dE, (3.32)
dG=—-SdT +V dp—AdE. (333)

These four thermodynamic energy functions of state U = U(S, V,§), H-= H(S, D, §) , F=
F(T, Vv, §), and G = G(T, p.&) are called the thermodynamic potentials for the characteristic
variables S and V; § and p; T and V; and T and p; respectively.

An irreversible process advances, if its affinity is positive (A > 0), and it finally reaches
the equilibrium state where the affinity becomes zero (A =0). This indicates that the
advancement in an irreversible process is accompanied by decreasing thermodynamic potentials.
As shown in Fig. 3.4, an irreversible process proceeds in the direction in which the
thermodynamic potentials of the process decrease. In principle, the affinity decreases as the
irreversible process proceeds.

The affinity of irreversible processes, as mentioned above, is related to the thermodynamic
potentials U, H, F, and G under the conditions that their respective characteristic variables
are kept constant. From Eqgs. 3.30, 3.31, 3.32, and 3.33, we obtain the partial differentials of
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these thermodynamic potentials with respect to their respective characteristic variables as
shown in Eqs. 3.34, 3.35, 3.36, and 3.37:

Q_,Q)

)S ) (3.34)

(as)v[’ (57),77 (3
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(—i) o (g%)r‘é: o (%)r v G:36)
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In these equations we see the regularity that the partial differential of these four thermodynamic
potentials with respect to their respective extensive variables gives us their conjugated intensive
variables and vice versa. We thus obtain minus the affinity of an irreversible process in terms
of the partial differentials of U, H, F, and G with respect to the extent of reaction; affinity is
an extensive variable.

Non - equilibrium state

- AU, —AH, - AF, - AG

U, H F,and €

A=0
Equilibrium state

Thermodynamic poteatial

Fig. 3.4. An irreversible process occurs reducing its affinity from a state of high
thermodynamic potentials to an equilibrium state of low thermodynamic potentials.

The differentials of the energy functions are complete differentials with the property that
the mixed second order differentials are equal to each other. This leads to important relations
as exemplified for the free enthalpy by Eq. 3.38 as obtained from Eq. 3.37:

., )-8, (B, ow

From Eq. 3.27 we have for an irreversible process the rate of energy dissipation
dQ, [dt = TdS, |dt equal to the affinity A times the rate d&/dt = v as shown in Eq. 3.39:
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Adé

inrr - TdSirr —
a7

dt

=Av>0. (3.39)

We thus see that the affinity always has the same sign as the rate of the process. If the affinity
is positive A >0, the rate must be positive v > O indicating that the irreversible process
proceeds in the forward direction; whereas, if the affinity is negative A <0, the rate must be
negative v < 0 meaning that the process proceeds in the backward direction. When the
affinity decreases to zero A = 0, the rate of process also decreases to zero and the process is
in equilibrium. This property of affinity is characteristic of all kinds of irreversible processes
such as the transfer of heat under a gradient of temperature and chemical reactions under a
gradient of thermodynamic potentials.

Equation 3.39 holds valid for the system in which only a single process or reaction is
occurring. In a system in which multiple chemical reactions are simultaneously occurring,
Eq. 3.27 for the uncompensated heat can be expressed by the sum of the products of all
independent affinities and their conjugated reaction rates as given in Eq. 3.40:

d irr TdSi” d J

where A is the affinity of the ith reaction and &, is the corresponding extent of reaction.

4 N

A v;>0

A5 Ct050,—cCO C+050,~>CO AV, >0
_ J

FeO+C—=Fe+CO Avi+ A, >0

4 N

A, v, >0

Az"zo FeO —» Fe + 0.5 0, FeO —-Fe +0.50,  A,>0

<
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Fig. 3.5. Energy transfer from a coupling reaction C + 0.5 O, —> CO to a coupled
reaction FeO — Fe + 0.5 O, for a combined reaction FeO + C — Fe + CO.

We also notice that the creation of entropy in various reactions occurring simultaneously
is positive as a whole, though it may be positive or negative for individual reactions. Thus, in
a system in which two chemical reactions occur, it is possible that A v, > O for one reaction
and A,v, <0 for the other, provided that Ayv, + A,v, >0. In such a case we call reaction 1
the coupling reaction which proceeds producing an amount of created entropy (uncompensated
heat) under its positive affinity, and reaction 2 is the coupled reaction which proceeds
absorbing the created entropy (uncompensated heat) under its negative affinity. We thus see
that the transfer of energy from the coupling reaction 1 to the coupled reaction 2 makes it
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possible for the latter to proceed even though its affinity is negative. The rate of a coupled
reaction, however, must be within the limit that v, <(Ale/A2) shown in Eq. 3.40. As an
example of the thermodynamic coupling of chemical reactions, we have the combination of
carbon oxidation and iron oxide reduction as shown in Fig. 3.5. Such coupling-and-coupled
reactions will again be discussed in terms of exergy in chapter 11.

3. 6. Entropy of Pure Substances.
The entropy of a pure substance is a function of temperature T and pressure p. Equations
2.13 and 3.9 yield the total differential of the molar entropy ds of a pure substance:

_dh-vdp ¢

ds = L dT - — dp, (3.41)

T T
where ¢, h, and v are the molar heat capacity at constant pressure, the molar enthalpy, and
the molar volume of the pure substance, respectively. We then obtain Eq. 3.42 for the
entropy of a pure substance:

s(T, p)=5(0,0) + I C"(g’ D ar —f - dp, 3.42)

where s(0, 0} is the molar entropy of the pure substance extrapolated to p =0 and 7= 0. The
third law of thermodynamics, called the Nernst heat theorem, assumes that the entropy of the
condensed phase of a perfect crystal may be equated with zero at the zero absolute temperature,
5(0, 0) = 0: No energy fluctuation occurs at T =0 giving Q(N,V,U)=1 in Eq. 3.6 and
hence entropy is zero.

On the right hand side of Eq. 3.42, the second term is the thermal part and the third term
is the pressure-dependent part of the molar entropy. The entropy of a pure substance thus
consists of the thermal part and the pressure-dependent part. Under ordinary conditions,
however, the latter is so small compared with the former that we may regard the entropy as
independent of pressure for condensed substances particularly (vid. Eqgs. 7.29 and 7.30). For
gaseous substances a slight change in entropy results from a change in pressure, (T, p)=
sY(T, p")— RiIn{p/ p°) where p°is a reference pressure, as will be shown in section 3.8.

From Eq. 3.42 we obtain the molar entropy of a pure substance in the gas state at constant
pressure as shown in Eq. 3.43:

Ve o Ak (Y AR (TG p
§8= L TdT + Tf + 'TdT + Tv + I; ‘TdT— Rin (70‘), (343)
Tf v

where cﬁ, c;, and c; are the molar heat capacities of the substance at constant pressure in the
gas, liquid, and solid states, respectively; A s and A are the heat of fusion and the heat of
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evaporation, respectively; and 7T} and 7, are the melting temperature and the boiling temper-
ature, respectively. In Eq. 3.43 the first term on the right hand side is the thermal part of the
molar entropy for the solid state, the second term is for the melting, the third term is for the
liquid state, the fourth term is for the boiling, the fifth term is for the thermal part of the gas
state, and the last term is the pressure-dependent part of the molar entropy in the ideal gas
state.

Figure 3.6 shows schematically the molar entropy of a pure substance as a function of
temperature. If a structural transformation occurs in the solid state, an additional increase in
the molar entropy comes from the heat of the transformations. As shown in the figure, the
molar entropy of a pure substance increases with increasing temperature. In chemical handbooks
we see the tabulated numerical values of the molar entropy calculated for a number of pure
substances in the standard state at temperature 298 K and pressure 101.3 kPa. A few of them
will be listed as the standard molar entropy, s’, in Table 5.1. Note that the molar entropy
thus calculated based on the third law of thermodynamics is occasionally called “absolute”
entropy.

Molar entropy §

Absolute temperature 7

Fig. 3.6. Molar entropy of a pure substance as a function of temperature.

3.7. Entropy of Heat Transfer.

Let us now consider a steady flow of heat dQ(irr) that occurs irreversibly between a
phase at a high temperature 7, and a phase at a low temperature 7, in a closed system as
shown in Fig. 3.7. The phase 1 continuously receives heat dQ = 1,dS, in a reversible way
from the surroundings at temperature 7, and the phase 2 continuously releases heat
dQ =T,dS, into the surroundings at temperature 7. In the steady state no change occurs in
the state property of the system except an increase in entropy ds,, due to the irreversible heat
transfer dQ(irr) = dQ:

LT,

ds,. =dS,-ds, = (% - %) dQlirr) >0, dQlirr) = -3~ dS,., (3.44)

w
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where dS; and d8S, are the entropy at 7, and the entropy at 7, due to the steady flow of heat
ag (= dQ(irr)) in a reversible way between the system and the surroundings, respectively.
Equation 3.44 shows the relation between the amount of heat dQ(irr) irreversibly transferred
and the amount of entropy dS,, irreversibly created in the steady flow of heat between the
two different temperatures. In this case the irreversibly created entropy is continuously released
from the low temperature phase to the surroundings so that no accumulation of created
entropy occurs in the system.

Phase 1 Phase 2
dg—t» ——dQirr} 1 s ™ aQ
T; 2

Fig. 3.7. Irreversible steady flow of heat from phase 1 at high temperature T to phase
2 at low temperature 7, in a closed system.

Heat transfer between two different temperatures can be carried out in a reversible way
by using a reversible heat engine or heat pump. In this case, however, a part of the transferring
heat converts into work or a part of the transferring heat is created by work. The heat engine
is a closed system of a gas, in which a quantity of heat dQ), is absorbed from an outside heat
source at a high temperature 7; and preforms a quantity of work dW to the exterior of the
system releasing a quantity of heat dQ, less than dQ, into an outside heat reservoir at a low
temperature 7,. On the other hand, a closed system of a gas is called a heat pump or an
inverse heat engine, when it receives a quantity of work dW from the outside and takes up a
quantity of heat dQ, from an outside heat reservoir at a low temperature 7, bringing a
quantity of heat dQ, more than dQ, into an outside heat reservoir at a high temperature 7;.
Figure 3.8 shows the processes that occur in a heat engine and a heat pump. One of the ideal
heat engines operating in a reversible way is known as Carnot’s heat engine, in which two
adiabatic and two isothermal processes constitute what is called the Carnot cycle.

From the first law (energy conservation) of thermodynamics we have dQ, = dW +d(Q,,
and the second law (entropy creation) of thermodynamics gives us (dQ,/T;) +{dQ,/T,} = 0,
where equality is for a reversible heat engine and inequality for an irreversible one. We then
have the efficiency A, ,=(dW/dQ,) for the reversible heat engine and the efficiency
2,1 =(dQ,/dW) for the reversible heat pump as shown, respectively, in Eq. 3.45:

_law|_T,-T, _leal_ 1,
heZag =TT Rt aw ST G4

No creation of entropy and uncompensated heat occurs in the reversible heat engine and
pomp, and hence Eq. 3.45 gives the maximum efficiency theoretically attainable for heat
engines and heat pumps. This equation also shows that thermal energy (heat) can not be
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wholly converted into work and that its conversion efficiency depends on the temperature at

which the thermal energy is reserved.

High Low High Low
temperature temperature temperature temperature

aw

dw

Heat engine Heat pump

Fig. 3.8. Processes occurring in a heat engine and in a heat pump.

This type of reversible heat transfer by means of a heat engine has its affinity A, which is
equivalent to the maximum work W obtainable with the engine as expressed by Eq. 3.46:

_L-T

A=W T, 20,. (3.46)

This is the maximum available energy that we can obtain from an amount of heat ©; at a
temperature 7.

5y 52

PVt —m———— Py

Fig. 3.9. [sothermal expansion of one mole of an ideal gas resulting in an entropy
increase.

3. 8. Entropy of Gas Expansion.
Let us now discuss the entropy of gas expansion in a closed system. Equation 3.42 gives
us the molar entropy of an ideal gas at constant temperature T as shown in Eq. 3.47:

s(T, p)=s"(T, p°) - R1n 73’30—, ST, ) =5"(T,¥)+ Rin Y-, ) =s"(T)+ RInRT, (347)



34 ENTROPY AS A STATE PROPERTY

where v is the molar volume of the gas, p is the pressure of the gas, and p° and ° are a
reference pressure and a reference molar volume, respectively.

If the gas expansion takes place isothermally as shown in Fig. 3.9, the molar entropy of
the gas then increases with increasing volume and decreases with increasing pressure as
shown in Eq. 3.48:

V2 P
- 2 = £2 3.48
As=Rln Rin B (3.48)
where As =5, — s, is the change in the molar entropy of a gas caused by the gas expansion
from an initial state (p,, v,) to a final state ( p,,v,) at constant temperature.

3. 9. Entropy of Mixing.

The mixing of substances is an irreversible process that takes place creating entropy in
the system. The entropy thus created is defined as the entropy of mixing ™. Suppose two
different ideal gases with different volumes V, and V, are mixed isothermally at a constant
pressure p to make a single mixture system with a volume V, + V, as shown in Fig. 3. 10.
The overall entropy §* of both individual systems before the mixing is obtained from Eq.
3.47 as shown in Eq. 3.49:

1 - . —RIn-E-
ST, p)= I n{si(T, p) - Rin £}, 3.49)
On mixing the gases we obtain the entropy $* of the mixed gases as expressed by Eq. 3.50 as

a function of the partial pressure p, ( p=23,p) and the molar fraction x, = p,/p of the
constituent gases:

g - - _RinPA=>, s —Rin-E-_ :
ST, p)= Zn,- {si(T, p)—Rln—4 } Z,: n, {s,(T, P)-RlIn 5~ Rin x,}
=S(T,p)-X nRlnx, (3.50)
The entropy of mixing S* is thus given in general in the form of Eq. 3.51:

S =S4T, p)-S(T, p)=- 2 n,RlIn x,>0. (3.51)

The mixing of gases at constant pressure may also be regarded for each constituent gas as
an expansion of its volume decreasing its partial pressure ( p—>p ), and hence the entropy of
mixing can also be obtained from Eq. 3.48 for the mixing of two gases as shown in Eq. 3.52:

AS=SM=—n,Rln%—anln%:—anlnxl—anlnxpO. 3.52)



Entropy of Mixing 35

The entropy of mixing is generated not only in the gas state (gas mixtures) but also in the
states of liquids (liquid solutions) and solids (solid solutions).

S, s, S§=8 +8,+8"
n=n+n,
p’thl P’Vz:nz '_> V=V1+Vz
p=p+p

S"=—nRInx,-nRlnx,>0

Fig. 3.10. Entropy of mixing of two gases to form a gas mixture at constant pressure
and temperature.



CHAPTER 4

AFFINITY IN IRREVERSIBLE PROCESSES

The affinity of irreversible processes is a thermodynamic function of state
related to the creation of entropy and uncompensated heat during the processes.
The second law of thermodynamics indicates that all irreversible processes
advance in the direction of creating entropy and decreasing affinity. This
chapter examines the property affinity in chemical reactions and the relation
between the affinity and various other thermodynamic quantities.

4. 1. Affinity in Chemical Reactions.

The concept of affinity introduced in the foregoing chapter (section 3.5) can apply to all
the physicochemical changes that occur irreversibly. Let us now discuss the physical meaning
of the affinity of chemical reactions. As mentioned in the foregoing, we have in Eq. 3.27 the
fundamental inequality in entropy balance of irreversible processes as shown in Eq. 4.1:

dQ,,=T dS,,=AdE20, A%:szo. .1
The inequality in this equation is for irreversible reactions that occur spontaneously, while
the equality is for reversible reactions in quasi-equilibrium. The inequality equation 4.1 is in
fact the most important property of the affinity showing that the affinity always has the same
sign as that of the rate of reaction at any instance during the reaction.
In Egs. 3.30 to 3.33, we have seen a series of equations for the various thermodynamic
potentials as functions of the affinity as follows:

dU=TdS-pdV-Ade, (4.2)

dH=TdS+Vdp—AdE 43)
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dF =—SdT - pdV - A d&, 4.4
dG=-SdT +Vdp—Adé. @.5)

These equations give us the affinity as the partial differential of the thermodynamic potentials
with respect to the extent of reaction as shown in Eq. 4.6:

= (e L5 L (5 ) (5 ), o

This equation indicates that the affinity corresponds to the thermodynamic potentials of U
and H under the conditions of constant entropy § and to the thermodynamic potentials of F
and G under the conditions of constant temperature T.

Irreversible reaction

viRi+v,R,—»v;P,+v, P,

Affinity

(), (),

ok}

Fig. 4.1. Affinity in a chemical reaction.

If the affinity is zero A =0, no irreversible reaction advances and the system is in
equilibrium. Then the equations from 4.2 to 4.5, if excluding the third terms on their right
hand side, represent the fundamental properties of thermodynamic potentials U, H, F, and G
in the state of reaction equilibrium, i.e. the state in which no physicochemical change occurs.

4. 2. Affinity and Heat of Reaction.
Equations 3.28 and 3.29 have shown the relationship between the affinity A and the heats
of reaction dU/JE at constant volume and JHfJE at constant pressure as shown in Eq. 4.7:

£ T 7 5 B - RO

In the case in which the second entropy term on the right hand side of the above equations is
significantly small compared with the first energy or enthalpy term (i.e. the system is at very
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low temperature), the affinity is nearly equal to the heat of reaction: A~ —(0U/ ag)m or
A= —(dH/ ‘9‘5)7,," If an irreversible reaction (A > 0) has the enthalpy term larger than the
entropy term, (&H/ﬁg)rp > T(aS/ﬁg)T‘p, the enthalpy term is negative (&H/o"&)T‘p <0 and
hence the reaction is exothermic.

Reminding that for the independent state variables p, T, and & the following relations
hold:

(%%)p@ =Crs (g%)pé ) ETP_’% ’ [%(%—H)MLE - (aacgg)p,r ’
rl38). ), -, L~ )

and that the similar equations also hold for the independent variables V, T, and &, we obtain
Eq. 4.8 from Eq. 4.7 [Ref. 1.]:

Frltl (8, b)), e
Integrating the second equation of Eq. 4.8 yields Eq. 4.9:
{ AT . £ _ A(To%f, 3 Lg _ f (%) ar. @9

We can make use of this equation 4.9 to estimate the affinity A(T, p,Zj) as a function of
temperature T from a known affinity value A(];,, p,Ig) at a specified temperature T, provided
that we know the molar heat capacities of the reactants and products.

From Egs. 3.38 and 4.8 we obtain the total differential of A(T, p,&)/ T shown in Eq. 4.10:

)= (), - (Gg) o (5, % (10

Using the three symbols (&A/aZj)T,p =ar ,, (&V/&g)” = v ,, and (aH/&&)T,p =l ,, we may
put Eq. 4.10 into the alternative form shown in Eq. 4.11:

A+h .
dA=—T-T-‘!:d1—v,,pdp+a,,pd§. 4.11)
Equations 4.10 and 4.11 hold valid for a single reaction. For multiple reactions occurring
simultaneously in the system the third term on the right hand side of Eq. 4.11 consists not
only of the sum of individual reactions but also of the sum of the interactions among the
reactions. Since the interaction between reaction i and reaction j is given in Eq. 4.12:
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0A, PG ) (aA,.)
Q9. | T\ 3B ge | S\GE | 4.12
( agl )T,p ( 65’ agj T.p ag! T,p ( )
we have in place of Eq. 4.10 Eq. 4.13 for simultaneous multiple reactions:
AN 1 (8H A 1 yf 94
)= T (663- )T,,,dT T (6~§,~ )T,,,dp T EJ:( 3E, )”dgr “.13)

This equation 4.13 can be used for studying the stability of chemical equilibria of multiple
chemical reactions.

4. 3. The Average Heat of Reaction.

The heat Q(’g‘) absorbed in or released out of a closed system in which a chemical
reaction occurs is in principle a function of the extent of reaction £, temperature 7, and
pressure p (or volume V) of the reaction system. If we fix the condition at which the reaction
occurs, all the variables defining the state of the reaction system will be definite functions of
&. We now introduce a symbol q(&) denoting the heat received by the system when the
reaction proceeds by an extent d&§ as defined in Eq. 4.14:

q(&)= dg(;) . (4.14)

The function of q(&) is the heat of reaction relative to the chemical reaction under consideration
{Ref. 1.]. We further define the average heat of reaction for the change from &, to & as
expressed by Eq. 4.15. Integrating Eq. 4.14 for one equivalent extent of the reaction, we
obtain the average heat of reaction Q™ for the chemical change as shown in Eq. 4.15:

man___ 1"
o=t [ a@as @19)

We usually call g™ the average heat of reaction when the chemical change occurs as much
as one equivalent extent of reaction, § - &, = 1.

For a system at constant temperature and volume, as described in Egs. 2.5. 2.6 and 2.7,
the differential (o’?U/ o'?§)”,d§ =u; ,dE gives us the average heat of reaction at constant T and
Vas shown in Eq. 4.16:

‘foU l
Q;w;nzl) (—ag—)tvdfa::j; uT.Vd;:f:(U§=l'—U§=0)T,v=(AU)T,V' (4.16)

mean

This equation indicates that the average heat of reaction Q)" at constant Tand V equals the
change in the internal energy (AU )T‘V for one equivalent extent of the reaction.
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Similarly, from Eqs. 2.13 and 2.19 we obtain Eq. 4.17 for the average heat of reaction at
constant 7 and p:

'( 9H '
or=| || d&= f by dE=(Hy - He o), ,=(AH) , 4.17
s L 98, 0

mean

indicating that the average heat of reaction Q; " at constant T and p is equivalent to the
decrease in the enthalpy for one equivalent extent of the reaction.

The reaction is exothermic (heat-releasing) when the heat of reaction is negative, while it
is endothermic (heat-absorbing) when the heat of reaction is positive.

4. 4. The Average Affinity of Reaction

The affinity of a reaction, A(fg), is also a function of the extent of reaction &. On
integrating the reaction affinity A(Zj) for one equivalent extent of the reaction from §,=0to
&, = 1, we define the average affinity of reaction, A™" , as shown in Eq. 4.18:

mean __ 1 !
e fo A(E)dE . (4.18)

For a chemical reaction at constant temperature and volume, Eqgs. 3.21, 4.7 and 4.18 give
the average affinity of the reaction as shown in Eq. 4.19:

‘[ oF
ATV =— y déz_(F‘§=l—F§:0)T,V=—(AF)T,V7 (4.19)
o V08 Jry

mean

indicating that the average affinity A7, at constant temperature T and volume V is equal to
the decrease —( AF )T,V in the free energy (Helmholtz energy) that occurs during the advancement
of one equivalent extent of the reaction.

Similarly, for a chemical reaction at constant temperature 7 and pressure p Egs. 3.22, 4.7
and 4.18 give the average affinity of the reaction as shown in Eq. 4.20:

Ar D =— f (ﬁ) dé=- (Gé=1 - G§=0)T p= (AG)T’;,. (4.20)
0 a‘g T.p '

mean

Equation 4.20 indicates that the average affinity A; " at constant T and p is equivalent to the
decrease —(AG)T‘ » 1n the free enthalpy (Gibbs energy) that occurs during the advancement of
one equivalent extent of the reaction.

The physical quantity that we usually call the affinity of a reaction corresponds to the
average affinity of the reaction. Generally, the affinity of a reaction at constant T and V
differs numerically from that at constant Tand p, as compared to the heat of reaction whose
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numerical value depends on whether the reaction occurs at constant V or at constant p.
Integrating Eq. 4.7 from £=0 to £=1 yields Eq. 4.21:

£=1

fmrao| () o[ (B e e

By introducing the entropy change (AS), , shown in Eq. 4.22 for one equivalent extent of
reaction at constant Tand V:

(a8
a8 ,= | (o] dE=—(Sei-Sed)y 422
@5,= [ (), =i @)

=0

we then obtain from Eq. 4.21 the average affinity of the reaction at constant T'and p as shown
in Eq. 4.23:

- A7 =(AH), - T (AS); ,= OF 3" =T (4AS); . (4.23)
Similarly, we obtain the average affinity of the reaction at constant T and V:
— ATy =(AU)r =T (AS) = Qry — T (AS); . 4.24)

On taking account of Eqgs. 4.16, 4.17, 4.19 and 4.20, we rewrite Eqs. 4.23 and 4.24 in the
form shown in Egs 4. 25 and 4.26, respectively:

-~ A?f;“ = (AG)T, o= (AH )T, o~ T (AS)T, » (4.25)
- Al;eia/n = (AF )T, y= (AU)T, y=T (AS)T, v (4.26)

These equations 4.25 and 4.26 are of great importance and are frequently used to estimate the
average affinity of a chemical reaction, A7y”" = —(4AF),, or A" = -(AG),,, from the
average heat of the reaction, (AU),, or (AH), ,, and the entropy changes of the reaction,
(45}, or (4S), .

Furthermore, from Eq. 4.8 we have Eq. 4.27:

T [

This is the direct relation connecting the average affinity and the average heat of reaction.

Equation 4.27 enables the average affinity to be calculated at a temperature 7, if its value
at some specified temperature T, is known. If we integrate Eq. 4.27 between T, and T, we
have at constant pressure:
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AR AT " (AH);,
_ = 2 4T, 428
i S (428)

where the heat of reaction (AH); , is a linear function of the partial molar heat capacity of
substances taking part in the reaction as shown in Eq. 2.30. We have usually to assume that
the partial molar capacities of substances in the reaction system are equal to the molar heat
capacities in the pure state. From Eq. 2.30 we have:

(AH); ,=(AH);, ,+ f Z vic, dT (4.29)

which on substitution in Eq. 4. 28 gives Eq. 4.30:

AP AT (AH),, (AH), , tdr ot
=T T ot T +Zi,'viro?frocp'idT (4.30)

We see that the average affinity A7™" of a reaction at a temperature T can be calculated, if
we know: (a) the average affinity A7 at one specified temperature T, at the pressure p; (b)
the heat of reaction (AH);, ,at T,; and (c) the partial molar heat capacities of the constituent
substances as a function of temperature throughout the whole range from T to 7.

At temperature T,, we have from Eq. 4.25, — A7, = (AH); ,— Ty (AS);, , , which on
insertion in Eq. 4.30 gives Eq. 431:
Alen (AH);, dar T
= (AS)y, 4 2 ?frocp,idT. 431)
To

The double integral may be transformed by integration by part to Eq. 4.32:

T
dar ’ Cp.i ' Cpi 1 {7
f fc dT——fT de ;, dT:f ; dT—TJ;Cp.idT. (4.32)
o 7 1 o

Thus, Eq. 4.31 may be expressed in the alternative form:

T . r
Tf T dT—f ¢, dT'|.
1, o

With the aid of tables of molar heat capacities in physicochemical handbooks we can evaluate
the third term on the right hand side of this equation for each constituent substances taking
part in the reaction.

Ay==— (aH)

(4.33)

To. p

+T(AS), ,+ 2 v,




CHAPTER 5

CHEMICAL POTENTIAL

The chemical potential is defined as an intensive energy function to represent
the energy level of a chemical substance in terms of the partial molar quantity
of free enthalpy of the substance. For open systems permeable to heat, work,
and chemical substances, the chemical potential can be used more conveniently
to describe the state of the systems than the usual extensive energy functions.
This chapter discusses the characteristics of the chemical potential of substances
in relation with various thermodynamic energy functions. In a mixture of
substances the chemical potential of an individual constituent can be expressed
in its unitary part and mixing part.

5. 1. Thermodynamic Potentials in Open Systems.

We have introduced in the foregoing chapters energy functions (thermodynamic potentials)
of extensive properties such as U, H, F, and G to describe the thermodynamic state of a
closed system which forbids the exchange of substances with its surroundings. For an open
system which allows the exchange of substances to occur with the surroundings, it is often
convenient to use energy functions of intensive properties such as the partial molar quantities
of energy rather than thermodynamic energy functions of extensive properties.

For a closed system the first law of thermodynamics has defined an energy function
called internal energy U, which is expressed as a function of the temperature, volume, and
number of moles of the constituent substances in the system; U = U(T, V.n - nc). Furthermore,
the second law has defined a state property, called entropy S, of the system, which is also
expressed as a function of state variables; § = S(T,V,n1 . --nc). Thermodynamics presumes
that the functions U(T,V,n1 -~nc) and S(T,V,nl--'nc) exist independent of whether the
system is closed or open. The energy functions of U, H, F, and G, then, apply not only to
closed systems but also to open systems.
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The total differential of the internal energy U of a system can be written as a function of
independent state variables such as the temperature, volume and composition of the system
as shown in Eq. 5.1:

W=5r), G ) E G, e &

where #, is the number of moles of every constituent i and 7, is the number of moles of all
constituents j other than i. The total differentials of the other energy functions H, F, and G
can also be expressed in the form similar to Eq. 5.1.

5. 2. The Partial Molar Quantity of Energy and the Chemical Potential.

We shall now choose S, V, n,-*+ n, -+ - as independent variables. The intemal energy of an
open system then yields its total differential dU expressed as a function of these independent
variables as shown in Eq. 5.2:

wo(34) a-(3) W Z(L) o

By substituting (ﬁU/&S)V," =T and (&U/aV)S‘n = -p into Eq. 5.2 as shown in Eq. 3.34, we
obtain Eq. 5.3 for the total differential of U. For all energy functions U, H, F, and G, a series
of fundamental equations in a form similar to Eq. 5.3 with different characteristic variables
can thus be obtained as follows:

AU=TdsS-pav+53 (g—”l{)& . "jdn,, (53)

dH=Tds+Vdp+3 (%’_—)S | dn, (5.4)
i Jsvn,

dF=-SdT-pdv+3 (g—i)ﬁ ., dn, (5.5)

dG=-SdT+Vdp+ 3 (%)T  dn (5.6)
v,

Recalling the definition of these energy functions H=U+pV, F=U-TS, and
G =U + pV - TS, we realize that the third terms on the right hand side of these equations are
equal to one another as shown in Eq. 5.7:

(g_’lljx)s V,n ,'= (%_l’;lx)s 2 nj= (g—i) L.V, "j= ( gr(;’: )T' Py - &7

Equation 5.7 defines the chemical potential p, of a constituent substance i in the system.
We then obtain a series of the fundamental equations for the total differential of the
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thermodynamic energy functions as shown in the following equations:

dU=TdS—-pdVv + Z w,dn,, (58)
dH=TdS+Vdp+ Z’ w dn, (5.9)
dF=-SdT-pdV+2i’u,.dn,., (5.10)
dG:—SdT+Vdp+Zi,‘uidni. (5.11)

Obviously, the chemical potential of a substance is the partial molar quantity of the principal
energy functions with respect to the number of moles of the substance at constant values of
their respective independent variables in the system as shown in Fig. 5.1.

One mole of substance i

Fig. 5.1. The chemical potential of a substance i in a system.

5. 3. Chemical Potentials and the Affinity of Reaction.

The affinity of a chemical reaction is in general expressed as a function of the extent of
reaction & and hence of the number of moles of the chemical substances in the reaction as
shown in Eq. 5.12:

where #; is the number of moles of substance i and v, is the stoichiometrical coefficient of i
in the reaction. We thus obtain Eq. 5.13 for the affinity of the reaction as a function of the
chemijcal potentials of the chemical substances taking part in the reaction:

A=-X v, U, (5.13)

This simple form of expression has extensively been used for the calculation of the affinity of
chemical reactions.
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Consider for instance the reduction of iron oxide to metallic iton by gaseous molecular
hydrogen:

Fe,0;5 otig) T 3 Ha (ga) = 2 Feppngy + 3 HyOfpy -

gas)

The affinity of this reaction is then given by the following equation:
A= Hreos + 3 Mz — 2 Mg =3 Hino-

As the reaction reaches its equilibrium, the affinity of the reaction decreases to zero as
shown in Eq. 5.14:

Zvip=0, (5.14)

Equation 5.14 thus represents the state of equilibrium of the reaction A = 0.

The most important property of the chemical potential is that the affinity of a reaction is
expressed by the difference in the chemical potential between the reactants and the products
as shown in Eq. 5.13 and that the condition of reaction equilibrium is also expressed in terms
of the chemical potentials of these reactants and products as shown in Eq. 5.14.

5.4 Chemical Potentials and Thermodynamic Energy Functions.

Among the four principal thermodynamic energy functions, U, H, F, and G, the free
enthalpy G (Gibbs energy) associated with the intensive variables T and p is a homogeneous
Junction of the first degree with respect to the extensive independent variable of the number
of moles n; of the constituent substances present in the system considered, so that it can be
expressed as the sum of the chemical potentials of all constituent substances at constant
temperature and pressure:

G=Xny,. (5.15)

From this equation we can derive the other energy functions, U= G+ TS-pV, H= G+ TS,

and F= G- pV, in terms of the chemical potentials of all constituent substances in the
system as shown in the following equations:

U=Xnu+TS-pV, (5.16)

H=Xnu+TS, (5.17)

F=Ynu-pV. (5.18)
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Comparing these four equations from 5.15 to 5.18, we realize that the free enthalpy G (Gibbs
energy) is the most convenient in that it is directly proportional to the chemical potentials of
the constituent substances and is a function of the characteristic intensive variables 7 and p.

5. 5. Chemical Potentials in Homogeneous Mixtures: The Gibbs-Duhem Equation.
From Eq. 5.15 we have Eq. 5.19 for the total differential of the free enthalpy in a
homogeneous mixture containing multiple substances:

dG =X n.du,+ X w,dn, (5.19)
which, on combination with Eg. 5.11, yields Eq. 5.20:
SdT-Vdp+ 2 n,du,=0. (520

This equation 5.20, called the Gibbs-Duhem equation, is unique among a variety of the
thermodynamic equations of state in that the characteristic variables are all intensive quantities,
each multiplied by its conjugate extensive quantity.

At a constant temperature and pressure we then obtain Eq. 5.21 for the relation between
the chemical potentials and the numbers of moles of the constituent substances:

2 ndu=0. (5.21)

Equation 5.21 shows the interrelationship among the chemical potentials of the constituent
substances in a homogeneous mixture and is often used for the determination of the chemical
potential of solute constituents in solutions.

5. 6. Chemical Potentials of Substances in Ideal Mixtures.

The chemical potential of a substance i in a homogeneous mixture depends on the
temperature, pressure, and concentrations of constituent substances, u, = ui(T, DX X ) ;
whereas, that of a pure substance is a function of temperature and pressure only. As mentioned
in the foregoing chapters, the mixing of substances causes an increase in entropy of the
system and hence changes the chemical potentials of the substances

Generally, the chemical potential of a constituent substance i in a mixture consists of a
unitary part, which is inherent to the pure substance i and independent of its concentration,
and a communal part, which depends on the concentration of constituent i [Ref. 3.]. The
communal part of the chemical potential of a constituent i in a mixture arises from the
entropy of mixing of i: For an ideal mixture the molar entropy of mixing of i, s, is given
from Eq. 3.51 by sf" = —RIn x,, and hence the communal part of the chemical potential is
expressed by ptf" = —TsiM = RTInx, at constant temperature, where x, is the molar fraction of
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constituent i in the mixture: G = H—TS gives p, = b, —Ts, and hence g = -Ts for an
ideal mixture in which 4/ = O (vid. section 5.9.). We then express the chemical potential of
substance i in a mixture as shown in Eq. 5. 22:

#{T, p)=wp(T, p)+ RT In x, (522)

where (7, p) is the unitary part of the chemical potential of i in the mixture. The unitary
part w,(T,p) is a function of temperature and pressure only. We call u:(T, p) the unitary
value of the chemical potential or simply the unitary chemical potential of i. The communal
part, RT In x,, on the right hand side of Eq. 5.22 is called the chemical potential of mixing. In
general, as described above, the chemical potential of constituent i consists of the unitary
term u, and the mixing term w," as shown in Eq. 5.23:

w(T, p), unitaryterm. 4 =RTInx, mixing term. (5.23)

Equation 5.22 holds valid only in the case in which the mixture is an ideal mixture. A
mixture can thus be called ideal, if the chemical potential of the constituent substances, i, in
the system varies linearly with the logarithm of the molar fraction of i at the ratio of RT.

If this linear relation between the chemical potential and the logarithm of the molar
fraction of i holds valid in the whole concentration range extending from x, =0 to x; = 1, the
unitary part of the chemical potential g (7,p) is identical with the chemical potential
u?(T, p) of the pure substance i. The linear relation of Eq. 5.22, however, is not necessarily
valid over the whole range of concentrations but in the range of dilute concentrations only. In
such a case the unitary part of (7, p) is usually set at the value estimated by extrapolation
from the dilute concentration range to the mole fraction of x, = 1.

Two cases then arise with respect to the ideality of mixtures: One is the case in which the
mixture is ideal for all values of x, and for all constituent substances. This type of mixture is
thermodynamically called the perfect mixture, for which the Raoult’s law (a linear relation
between #; and In x; in the whole range of concentrations) holds valid and in which the
unitary chemical potential g (7,p) of i equals the chemical potential w(T,p) of pure
substance i for all the substances in the system as shown in Eq. 5.24:

(T, p)= T, p). (524

The other is the case in which the mixture is ideal when all substances but one (solvent)
are at very dilute concentrations. Such mixtures are called ideal dilute solutions, for which
the Henry’s law (a linear relation between g, and In x,in a limited range of dilute concentrations)
holds valid and in which the equality of Eq. 5.24 is realized only for the main substance
present in excess as solvent and not for the solute substances as minor constituents:

w(T, p)= (T, p), for solutes. (5.25)
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In this case the unitary value of the chemical potential of solute substance i can be estimated,
as mentioned above, by extrapolating the chemical potential of dilute constituent i to x, =1
from the dilute concentration range in which the linear relation of Eq. 5.22 holds.

If we use the concentration scale of molality m instead of mole fraction x, the chemical
potential of a solute constituent { is expressed by Eq. 5.26:

w{T, p)=w™T, p)+ RT Inm, (5.26)

where ¢;™(T, p) is called the chemical potential of i at temperature T and pressure p and at the
unit concentration in the molality scale. In the case of aqueous dilute solutions we obtain the
following relation between the unitary value of chemical potential (7, p) in the molar
fraction scale and that &;™(7, p) in the molality scale:

w(T, p)= wxT, p)- RT In 55.51,

where 55.51 is the number of moles of water for one kilogram of water.

5.7. Activity and Activity Coefficient.

For a non-ideal mixture in which Eq. 5.22 is not valid, we use a physical quantity called
activity a, in place of the molar fraction x,. We then have Eq. 5.27 in place of Eq. 5.22 for
the chemical potential of i in a non-ideal mixture:

{7, p)=w(T, p)+RT Ina, (527
The second term on the right hand side of this equation, as in the case of Eq. 5.22, represents

the communal part of the chemical potential, uiM = RTIna,.
The ratio of the activity a, to the molar fraction x, is called the activity coefficient v, :

=2 528
r=g (528)

Substitution of a, from Eq. 5.28 in Eq. 5.27 gives Eq. 5.29 for the chemical potential of
substance i in the non-ideal mixture:

#(T, p)=w(T, p)+ RT Inx,v;= (T, p)+ RT In x,+ RT In y,. (529

The third term RTIny, on the right hand side of Eq. 5.29 is called the excess chemical
potential of i.
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Chemical thermodynamics also provides the concept of absolute activity a; defined by:

a;,=exp (%‘) (5.30)

By contrast, the activity introduced in Eq. 5.27 is the relative activity expressed by Eq. 5.31:

ui—u,-’)

T (531)

a,:exp(

5. 8. Chemical Potentials of Pure Substances.

The chemical potential of a pure substance i indicates the thermodynamic energy level of
the substance relative to the energy level of the chemical elements that make up the substance
i. In chemical thermodynamics the chemical potentials of elements are conventionally all set
zero in the stable state of them at the standard temperature 298 K and pressure 101.3 kPa.
The chemical potential of a substance (a chemical compound) i at the standard state, as a
result, is equal to the free enthalpy (Gibbs energy) required to form one mole of the substance
i from its constituent elements in their stable standard state.

Table 5.1. Standard chemical potentials 1, standard molar enthalpy 4’ , and standard
molar absolute entropy values s? of substances in the standard state of 298 K and

101.3 kP.

Substance  State w &I -mol ™ 12k -mol ™ s2 (1K mol ™!
Fe Solid 0 0 272
FeO Solid -244.5 —-266.6 54.0
Fe,0O, Solid -7413 -822.6 90.0
H, Gas 0 0 130.6
HO Gas -228.7 ~242.0 1888
HO Liquid -2377 —-286.0 70.0
N, Gas 0 0 191.6
C Solid (Graphite) 0 0 57
CO Gas -1373 - 1106 198.0
CO, Gas -394.6 -393.7 213.7
CH, Gas -50.80 -74.88 1864
CH,CH Gas -162.0 -2014 2378

CH,OH Liquid - 1664 -2388 126.8
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For a chemical reaction the stoichiometrical sum of the chemical potentials of the reactants
relative to that of the products is important in thermodynamic examination of the reaction.
Let us consider a chemical reaction of solid carbon and gaseous oxygen to form gaseous
carbon dioxide:

C(solid) + 02 {gas) - COZ (gas) (532)

From Egs. 5.13 and 5.22 we obtain the unitary part of the affinity of the reaction as a
function of the unitary chemical potentials, p. = u2™, uf)z = ug, »and y;oz = o, - of the
reactants and product as shown in Eq. 5.33:

A" =~ Ueo,— Mo~ 1, ) (533)

We call this quantity A" the unitary affinity of the reaction. Since the chemical potentials of
solid carbon C and of gaseous molecular oxygen O, are set zero in the standard state
(,u; = e =0, u;l = ugz = 0), the unitary affinity of the reaction in the standard state equals
minus the standard chemical potential of carbon dioxide “;02 = g, A= —y&,z = —uocoz.
As mentioned above, the standard chemical potential of carbon dioxide y‘&,z is often called
the standard molar free enthalpy of formation of CO,,

It follows, in general, that the standard chemical potential u? of a chemical compound i
corresponds to the free enthalpy of formation for one mole of the compound substance i at
the standard state, the value of which is tabulated in chemical handbooks as shown for a few
compounds in Table 5.1. For ions in electrolytic solutions the chemical potential in their pure
state can not be defined, but we may use the standard state of an ion in which the ionic
activity is equal to unity (a, = 1) to define the unitary chemical potential of the ion as will be
discussed in chapter 9.

5.9. Thermodynamic Potentials in Ideal Mixtures

Starting from the definition 5.22 we now establish several important properties of
thermodynamic potentials (partial molar quantities of thermodynamic energy functions) for
an ideal system of mixture. Differentiating G = H - TS with respect to n, with 7' and p
constant, we have p, = b ~ T, and furthermore [(w;/ 1)/ 0T1,,, = (1/ T) (8,1 6T) — (w1 T?)
=—[(Ts,+u)/ T*] == h,/ T* From this equation we obtain Eq. 5.34 for the partial molar
enthalpy h,.id of a constituent i in an ideal mixture:

A _|d5)

oT oT

*

h.
= (534)
P T

a&)

_h T
ol

7

1%

+ {GR in x,-]
i aT

(23]

Since the unitary chemical potential y is a function of T and p only, the partial molar
enthalpy 4’ of each constituent i of an ideal system is independent of the composition of the
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system. We also see that in an ideal mixture the partial molar enthalpy A equals the unitary
partial molar enthalpy /; in the whole range of composition.

The partial molar volume Vi of the constituents of an ideal system also have this same
property as above as shown in Eq. 5.35:

id — atu: —
. ( ap) =v, (535)

where V; is the unitary partial molar volume.
The partial molar entropy i, however, depends on the composition as follows:

. a‘u,’.k ) N
id — _ ] _ = :
5= ( T ), Rinx,=s;-Rinx,, (536)
where s; is the unitary partial molar entropy of constituent { in the ideal system.
From Eqgs. 5.34 and 2.27 we obtain the heat of reaction, (§H" / §&); ,, for a reaction in an

ideal system as written in Eq. 5.37:

5]

a( T
oT 1)

indicating that the heat of reaction in an ideal system is independent of the concentrations
and depends only on the temperature and pressure.

Similarly, from Eq. 5.35 and {8V / 9E); » Z v, v, the volume change (6V*/ 9E);. , due
to the advancement of a reaction, for an ideal system is given by:

(%‘f)” -3, (%PI‘) )T, (538)

(537)

and hence the volume change due to a reaction is independent of the composition.
Furthermore, from Eq. 5.36 and (35 / 8?5)7 » Z v, 5;, the partial derivative of entropy
(981 9&);, , for a reaction in an ideal system is given by Eq. 5.39:

(%)T,pz ZV(?;) —R2vInx, (539)

indicating that the entropy change due to a reaction depends on the composition of the
system.

5. 10. The Unitary and Mixing Terms of Thermodynamic Potentials.
The concept of the unitary and mixing terms described above can apply, in general, not
only to the chemical potential of substances in a mixture but also to the other thermodynamic
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functions such as the partial molar enthalpy £, the partial molar entropy s, and the partial
molar volume v, of substances in the mixture. These thermodynamic functions can be derived
from the chemical potential y, by partially differentiating it with respect to temperature and
pressure. From Eq. 3.37 we have s;= 9,/ 0T and v, = 0,/ dp. From Eq. 5.34 we also have
hy=—T"8(u,/ T)/ 0T.

For the chemical potential ;= ¢ + 14 in a non-ideal system;

=T, p), unitary term. (5.40)
W =RT Inxy, mixing term. (5.41)

If the system is ideal, then we have # = RT In x,,
For the partial molar enthalpy &, = k; + }” in a non-ideal system:

" w1 T

h=-T M unitary term. (5.42)
oT

WM =~ RT? Oinxy, mixing term. (5.43)

aT

If the system is ideal, we have & =0 and h, = ;.
For the partial molar entropy s;=5; + 57" in a non-ideal system:

.__ o .

5 =- 7 unitary term. (5.44)
o Oln x, y, .

sf'=—RInx,y,—RT —T mixing term. (5.45)

If the system is ideal, then we have 52’ =— R In x,
For the partial molar volume v, =v; + v/ in a non-ideal system:

. O .
PSS ap unitary term. (54¢6)
din x, y,
vM=RT —m mixing term. (5.47)

ap

If the system is ideal, we have v/* =0and v, = v;.
In conclusion, the partial molar quantity in thermodynamics functions consists of its
unitary term and its mixing term as shown above.



CHAPTER 6

UNITARY AFFINITY AND EQUILIBRIUM

A chemical reaction proceeds in the direction of decreasing its affinity and
reaches equilibrium at which the affinity vanishes. The equilibrium is thus the
state at which the unitary affinity of the reaction equals minus the affinity of
mixing of the reaction system. The equilibrium constant of a reaction is
accordingly an exponential function of the unitary affinity of the reaction.
This chapter discusses the role of the unitary affinity in reaction equilibrium

6. 1. Affinity and Equilibrium in Chemical Reactions.
Let us consider a chemical reaction in which reactants R, change into products P, as
shown in Eq. 6.1:

viRi+v,R, = v; P+ v, P, or 2v,R+ 2v,P=0 6.1)

where v, is the stoichiometrical coefficient. Equations. 5.13 and 5.27 give us the affinity
shown in Eq. 6.2:

A== v, u(T,p)- 3 v,RT Ina,= A" + A™. (6.2)

In the summations, the stoichiometrical coefficient v, is negative for the reactants and positive
for the products. In Eq. 6.2 the first term on the right hand side is the unitary affinity A,
which comprises of the stoichiometrical sum of the unitary chemical potentials of the reactants
and products, and the second term is the affinity of mixing A, which comprises of the
stoichiometrical sum of the chemical potentials of mixing for the reactants and products. By
substituting the unitary affinity A” for the first term on the right hand side of Eq. 6.2 and
defining this to be equal to RT in K{T', p), we obtain Eq. 6.3
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A =-2 v, u(T, p)=RT InK(T, p). (63)

Substitution of Eq. 6.3 in Eq. 6.2 then gives Eq. 6.4:

K(T, p)

A=RTIn —— 22
alla22as3a44

(6.4)

Since A= 0 at equilibrium, Eq. 6.4 yields Eq. 6.5 when the reaction is at equilibrium:
K(T, p)= al*ap agp aj-. (6.5)

We call K(T, p) the equilibrium constant of the reaction. As realized from Eq. 6.2, the
reaction equilibrium is established at which the unitary affinity A" becomes equal to minus
the affinity of mixing A" of the reaction.

The unitary affinity of a reaction in the standard state (298 K, 101.3 kPa, and unit
activities) is normally called the standard affinity A°.

6. 2. The Unitary Affinity.
From Eq. 6.3 we have the relation between the unitary affinity A" and the equilibrium
constant K(T,p) of a reaction as shown in Eq. 6.6:

K(T, p)=exp [%} (6.6)

The unitary affinity of a reaction can be obtained, as mentioned in the foregoing chapter 5,
from the unitary chemical potentials of the reactants and products.

Let us consider a reaction of gaseous molecular hydrogen with solid iodine to form
gaseous hydrogen iodide as shown in Eq. 6.7

1 1
7 HZ (gas) + -2— IZ(solid) - HI(gas)~ (67)

The standard affinity of this reaction at the standard temperature and pressure is expressed by

Eq.6.8:
AO—_I_ 0 +_1_ O _ 0 6.8
= 5 iy, + > 1D, — iy 68)

With uf, =0, g =0, and uly = -13kJ-mol ™" found in chemical handbooks, we then
obtain the standard affinity equal to A° = - pujy = 1.3 kJ- mol™'. If the gas phase is an ideal
gas, the activities are equal to the molar fraction of gaseous substances. Further, if solid [, is a
pure substance, the activity of I, is unity. The equilibrium constant X in the standard state
will then be expressed by the molar fractions of gaseous constituents as shown in Eq. 6.9:
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K =25 -0.5093, 6.9)

=3 7
Equation 6.9 gives the molar fractions of gaseous molecular hydrogen and hydrogen iodide
Xy, = 0.558 and x; = 0.442, respectively, in the reaction equilibrium at the standard state.

6. 3. Equilibrium Constants and Concentration Units.

The equilibrium constant K of a reaction is dimensionless but we can express concentration
in different units. For a gaseous mixture, in addition to the molar fraction x,, two other
concentration units may be used: One is the partial pressure p, = x,p, which is proportional
to the molar fraction x, and the total pressure p; and the other is the molar concentration
(molarity) ¢, = n,/V, which is inversely proportional to the volume V of the gaseous mixture.
In terms of these concentration units the equilibrium constant of a gas reaction is expressed
in three different formulas shown, respectively, in Eq. 6.10:

KT, p)=x a2 xp xe, K[T)=popy pepie, K{T)=cit e e e, (6.10)
For an ideal gas in which the equation of state p, = ¢,RT holds valid, we have Eqgs. 6.11,

6.12, and 6.13 as the relation of the unitary affinity A~ with either of the equilibrium
constants, K,(7T, p), K(T'), and K(T), expressed in the three different concentration units:

A"=RTInK/(T, p), 6.11)
A'=RTInK,(T)~vRT Inp, (6.12)
A'=RTInK(T)-vRTInp+vRTInRT, (6.13)

where v = 2, is the sum of the stoichiometrical coefficients of the reactants and products.
We hence obtain the relationship among the three different expressions of the equilibrium
constant of the reaction, K, K P and K, as shown in Egs. 7.14and 7. 15:
KT, p)=p K(T), 6.14)
K(T)=[RTT"K(T). (6.15)

Let us take, for example, a reaction decomposing water vapor into gaseous molecular
hydrogen and oxygen in which vy, = -2, v, = 42, and v, = +1 as shown in Eq. 6.16:

2 I_I2O(siw) -2 Hz,(gas) + OZ,(gas) . (6.16)
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Since v = X, = +1, we obtain Eq. 6.17:

K (T RT
Kx(T’ p) = ;é ) = D KC(T)’ 6.17)

which shows that K (T, p) is inversely proportional to the pressure p, while KP(T) and
K_(T') are independent of the pressure p of the system. It is then advantageous to use K P(T)
and K (T) rather than K_(T, p) for the reactions involving gaseous substances.

6. 4. Equilibrium Constants as a Function of Pressure and Temperature.

We now discuss the partial differential with respect to pressure p and temperature 7 of
the equilibrium constant K {7, p) in terms of the molar fraction. From the definition in Eq. 6.3
we obtain immediately Eq. 6.18 for the partial differential of the logarithm of K, with respect
to pressure p:

)y 3.5

where v, is the stoichiometrical coefficient of i in the reaction. From Eq. 5.46 v, = du/dp, the
right hand side of Eq. 6.18 contains the stoichiometrical sum of the unitary partial molar
volume ¥, of the reactants and products: 3 v, v/. For an ideal reaction system v, is equal to
the partial molar volume v; of substance i: 2 v,y =2 v,v,=(dVI9E), ,, where V is the
volume of the reaction system. 1 I

In the case of an ideal reaction system therefore we have Eq. 6.19:

T.p°

which can also be derived from Eqgs. 3.38 and 5.37. We hence obtain Eq. 6.20 for the
pressure-dependence of the reaction equilibrium constant:

(aln KX(T,p))T_ 1 (aV)T (6.20)

ap "7 RT \o&

Thus the partial differential of the logarithm of K, with respect to pressure p is equal to
minus the molar expansion, dV/8&, divided by RT. We see then that an increase in pressure
increases the equilibrium constant K, if the reaction is accompanied by a decrease in volume
(0V/0E < 0), and conversely if §V/9& > O the equilibrium constant is decreased.

Similarly, the partial differential of In K, with respect to temperature is given by Eq. 6.21:

(aanx(T,p))_ 1 (aH) _

aT p—— RT? \9& (6.21)
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which can be derived from Egs. 6.3, 5.36, and 4.10 for an ideal reaction system in which the
mixing term of the partial molar enthalpy 4 is zero. Thus the partial differential of the
logarithm of K, with respect to temperature T is equal to minus the heat of reaction dH/0&
divided by RT”. If the reaction is accompanied by an absorption of heat (0H/9E > 0) the
equilibrium constant increases with increasing temperature, whereas for an exothermic reaction
(0H/3& < 0) it decreases with increasing temperature.

By integrating Eq. 6.21 and assuming that (3H/9E); , is independent of 7, we obtain for
K p(T) Eq. 6.22:

InK,(T)=~ 2 (%—?)7 +C, (6.22)

where C is an integral constant. This equation, called van’t Hoff’s equation, indicates that a
linear relation between In K p(T) and the reciprocal absolute temperature /T holds as shown
in Fig. 6.1. The slope of van’t Hoff’s plot can be used for an estimation of the heat of
reaction (0H/9E); .

K, (7)

7
Fig. 6.1. van't Hoff s linear relation between the equilibrium constant and the reciprocal
absolute temperature for a chemical reaction.



CHAPTER 7

GASES, LIQUIDS, AND SOLIDS

A gaseous substance at dilute density normally is in the state of an ideal gas
and it turns into a non-ideal gas as the density increases. A further increase in
the density leads to the condensation of a gas into a liquid or solid phase. In
the ideal gaseous state the chemical potential of a substance changes linearly
with the logarithm of the density, and a deviation from the linearity occurs in
the non-ideal state. For a condensed substance in the liquid or solid state its
chemical potential hardly changes with the density. This chapter concerns the
equations of state and the calculation of thermodynamic potentials of gaseous
and condensed substances.

7. 1. Perfect and Ideal Gases.

For an ideal gas the internal energy U depends on the temperature T only (Joule’s law)
and the volume V is inversely proportional with the pressure p at constant temperature
(Boyle’s law). Equation 7.1 shows the equation of state for an ideal gas:

pV=nRT, 7.1

where 1 is the number of moles in the gas and R is the gas constant ( R =8.314J K" -mol 7).
The gas for which Eq. 7.1 holds is called the perfect gas or the ideal gas: The two terms
perfect and ideal mean the same for gases, but they do not mean the same for liquid solutions
as will be mentioned in chapter 8.

We shall first consider a perfect or ideal gas of a single substance and discuss its molar
enthalpy, molar entropy, and chemical potential as a function of temperature and pressure.
From Egs. 2.31 and 2.32 we obtain the molar enthalpy & of an ideal gas as shown in Eq. 7.2:

WT)=h(T°) + f : c(T)dT, (7.2)

T
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where #(T°) is the molar enthalpy at a reference temperature T° (the standard temperature)
and c,(T) is the molar heat capacity of the ideal gas: the molar enthalpy of an ideal gas is
independent of pressure as shown in Eq. 2.32. We further obtain Eq. 7.3 for the molar
entropy s from its differential ds = { dh - vdp) /T = (CP/T)JI— (v/T)dp shown in Eq. 3.41:

s(T°, p) + f C"(TT) dT

0

S(T, p) = ~RIn % =s(T, p°) - RIn %. (73)

Equations 7.2 and 7.3 then give us the chemical potential p=h— Ts as follows:

T r T
WT, p)=WT°) - TS(T°, p°) + fT AT AT =T f . C"(T ) dT |+RTIn %, (7.4)
ra
which is also expressed as Eq. 7.5:
(T, p)= W(T, p°)+ RT In %, (7.5

where s(T', p°) and ¢{T, p°) are the molar entropy and the chemical potential of an ideal gas at
temperature T and at the standard pressure p°, respectively. Equation 7.4 is frequently used
for calculating the chemical potential of a gaseous substance from its molar heat capacity
c(T).

With an ideal gas mixture we also have the same equation as Eq. 7.5 for the chemical
potential M,( T, p) of one of the constituent substances, i, in the ideal gas mixture at the total
pressure p and at temperature T as shown in Eq. 7.6

(T, p)=pr=(T, p’)+ RT In —5%, (7.6)
where p, is the partial pressure of i, and #P™(T, pf) is the chemical potential of pure substance
i at the standard pressure p?. The chemical potential #(7, p, x) in terms of the molar fraction
x, = p,/p is then obtained as follows:

#{T, p, x)= (T, p)+ RT In x, (a7
T, )= (T, p) + RTn (L), (78)

where the first term {7, p) on the right hand side of Eq. 7.7 shows the unitary chemical
potential of i at temperature T and total pressure p, and the first term u?{T’, p°} on the right
hand side of Eq. 7.8 is the chemical potential of pure gaseous substance i at the standard
pressure p® and at temperature T. The chemical potential of pure substance i, u™{(T°, p°), at
the standard temperature 7° and pressure p° is called the standard chemical potential.
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7.2. Non-ideal Gases.

Real gases are usually non-ideal. Thermodynamics describes both ideal and non-ideal
gases with the same type of formulas, except that for non-ideal gas mixtures the fugacity f, is
substituted in place of the pressure p, and that the acrivity a, is substituted in place of the
molar fraction x, or concentration c, of constituent substance i. We have already seen that in
the ideal gas of a pure substance the chemical potential is expressed by Eq. 7.5. By analogy,
we write Eq. 7.9 for the non-ideal gas of a pure substance i:

T
W, p)= T, f)+ RT1n L f’op ) (79)
where u(T, f°}is the chemical potential of i at the standard fugacity f° and at temperature T.
The fugacity f(7,p) is a function of Tand p, and it approaches p as the pressure decreases
toward zero, i.e. as the state of the gas approaches the ideal gas state:

. fiT.p) _
lim S =1, (7.10)

This ratio of f to p for a non-ideal gas of a pure substance may be calculated from the
equation of state for real gases such as the virial equation and the van der Waals equation.

In a mixture of non-ideal gases, similarly, the chemical potential u{T", p, p) of one of the
constituent substances i is expressed by Eq. 7.11 in the same form as Eq. 7.6:

(T, p, p)= (T, f)+ RT In ﬂ%p—p—) (7.11)
where we have substituted the fugacity (T, p, p) for the partial pressure p, in Eq. 7.6. The
term u(T, f7) is the unitary chemical potential of substance i in the gas mixture at the
standard fugacity £° and at temperature 7T

If we use instead of the partial pressure p, the molar fraction x, to express the concentration
of i, the activity a;, can be substituted for x; to obtain Eq. 7.12 for the chemical potential of
in a non-ideal gas mixture:

* 7 T7 >
w{T,p,x)=u (T, p.a?)+RT In f‘iaf_"), (7.12)
where the term y*(T, p.a’ ) is the unitary chemical potential of i at the standard unit activity
a} =1 at the total pressure p and at temperature T. Equation 7.12 for a non-ideal gas mixture
is equivalent to Eq. 7.7 for an ideal gas mixture. If the pressure of the gas mixture approaches
zero, the activity a, approaches the molar fraction x;:

llm ai(T’ p’ 'x)

p>0 X

=1. (7.13)
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The ratio of the activity a, to the molar fraction x, is called the activity coefficient y,:
Yi= 5 (7.14)
We also define the fugacity coefficient ; as the ratio of fugacity f, to partial pressure p,;:
@:= %-, (7.15)

whose value is not the same as that of the activity coefficient y,.

7. 3. Liquids and Solids.

Liquids and solids are in the condensed state in which chemical substances are very dense
and hardly undergo any volume change with changing pressure in the range of ordinary
pressures. Let us now consider a condensed system of a pure substance. The coefficient of
thermal expansion o and the compressibility k are defined in terms of the molar volume v by
the following two equations, respectively:

_1{av __1 ( v )
a=-54=], Kk=—=5{5=]. 7.16
v (57 )p v {ap ), (7.16)
These coefficients in general are extremely small; &~ 10°K™ and x =~ 10"'Pa™ for metallic
copper at room temperature. The compressibility k is one hundred times as large for liquids
as that for solids and is some thousand times as large for gases as that for liquids.
Besides aand «, we also make use of the pressure coefficient pdefined by Eq. 7.17:

p=-t (—g%)v. 7.17)

From the mathematical identity (3v / 0T, + (8v / dp){op / 9T), = O (the partial differential of
an implicit function), we obtain the relationship between these three coefficients as shown in

Eq.7.18:
B=+ % (7.18)

which enables us to calculate g if the values of aand xare known..

Normally, the coefficient of thermal expansion « of a solid approaches a certain constant
value at high temperatures and falls steeply as the temperature is lowered. This follows from
(av/aT), = -(35/dp), obtained by the differentiation of V and - in Eq. 3.37. The third law
of thermodynamics assumes that the entropy § falls toward zero as the temperature approaches
zero in the absolute temperature scale, and hence both (&S/o’fp)T and ((W/c?T)p must be close
to zero at sufficiently low temperatures.
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The coefficient of thermal expansion a of a condensed substance is related to the molar
heat capacities ¢, at constant pressure. The above equation (6v/o"‘T)p = -(as/ap)T for one
mole can be differentiated with respect to T and combined with (ds/ 6'T)P =c,/T to obtain
the following equation:

a’v)=_< 8’ )=_ 1 (3%) (acp)z_T(azv) 719
(6T2 , \Tép) T \opjr opJr T, 1)
Then, Eq. 7.16 give us Eq. 7.20 [Ref. L.1:

gc, \ Ja 2 Jda

(ap )T_—Tv(m,—ﬂx)z-Tv—aT, (7.20)

where o is negligibly small compared with daf 3T . The variation of the molar heat capacity
c, with pressure is thus related to the variation of « with temperature. Since dafdT has
always a positive sign, ¢, decreases with increased pressure, but the effect is known to
become small at high temperatures since dafdT falls off more rapidly than the temperature T
increases [Ref. 1.].

7. 4. The State Equation and Thermodynamic Functions of Condensed Substances .

In the case where the external pressure is not too high (< 100 atm.) and the compressibility
remains independent of pressure, the second equation of 7.16 can be integrated with respect
to pressure p to obtain Eq. 7.21 for the molar volume W7, p) of a condensed substance:

VT, p)=wT, 0)exp (- xp) =T, 0)(1 — kp), (7.21)

where v(T,, 0) is the molar volume extrapolated to zero pressure at constant temperature 7.
Equation 7.21 is the equation of state of a condensed substance at ordinary pressures and
remains valid provided that kp << 1. If we extend the equation of state to cover a wide range
of pressures, a series expansion of the equation may be made as shown in Eq. 7.22:

AT, p)=v0,0)(1 +a,+ap+--), (7.22)

where ¥ 0,0) is the molar volume extrapolated to T=0 and p=0, and a,, @, are
functions of temperature only. The volume v(7,0) in Eq. 7.21 is for zero pressure p=0 ata
temperature T so that it is expressed by ¥(T, 0)= (0, 0) (1 + a,), where a,(T) must be zero
when T =0. At ordinary temperatures a,(7T) is very small compared with one because the
coefficient of thermal expansion is very small. We thus obtain from Eq. 7.21 with v(7,0)
given above the equation of state of a condensed substance as shown in Eq. 7.23:

YT, p)=v{0,0)(1 + ay) (1 - xp) (7.23)
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We next discuss the molar enthalpy #, the molar entropy s, and the chemical potential u
of a condensed pure substance as a function of temperature and pressure. For molar enthalpy
h Eqgs. 2.15 and 3.37 yield Eq. 7.24 through a little complicated derivation [Ref. 1.]:

()=, () 0-r(22); a2

In this derivation Eq. 3.37 gives (ds/ a’r‘T) = —(o’?vlép)r‘g, Eg. 2.15 gives the latent heat of
pressure change for one mole &, = = (onf ap) -v,and h;, is also given by k. = T(a'?s/&p)ns
from the definition of entropy. These equatlons yield Eq. 7.24. As mentioned in section 2.6,
(0h/dp); = O in the case of an ideal gas, since v =T (3v/3T),.

Equation 7.24 provides the dependence of temperature and pressure on the molar enthalpy.
The molar enthalpy £ is then obtained upon integration of Eq. 7.24 with respect to Tand p to
give Eq. 7.25 equivalent to Eq. 2.31:

KT, p)=h(0,0)+ f (T, 0)dT + f '

0 {v— ( o ) >dp (7.25)
where ¢,(T,0) is the molar heat capacity extrapolated to p = 0 and 4 (0,0) is the molar
enthalpy extrapolated to T = 0 and p = 0. In Eq. 7.25 the second term is the thermal part of
enthalpy and the third term is the pressure-dependent part of enthalpy. Taking Egs. 7.16 and
7.23 into account, we obtain the pressure-dependent part of enthalpy as follows:

f{v T(aT)}dp f v(1-al)dp=py(T, 0)(1 - oT)(1- 4 xp). (7.26)

The molar enthalpy A T, p) is thus given by Eq. 7.27:

T
T, p)=h0, 0)+ L c T, 0)dr + pyT, 0)(1 - aT) (1 - 3- xp) (7.27)
Since kp<< 1 at ordinary temperatures, the molar enthalpy 4( T,p) varies linearly with the
pressure and the magnitude of the variation is given by the term pv( T,0), which is usually
very small compared with the first and second terms in Eq. 7.27. To most purposes, then, the
enthalpy may be taken as independent of the pressure.
For the molar entropy of a condensed substance, we obtain Eq. 7.28 from (ds/ dT)p =

c,/T and (ds/ dp), = ~(av/dT) , of Eq.3.37:

sr.p=s0.0+ [ L5 Dar- [(2)ap. a28)

where 5(0, 0) exirapolated toT =0 and p = 0 is zero based on the third law of thermodynamics.
Substituting Eq. 7.23 in Eq. 7.28 and assuming o to be independent of pressure, we obtain:
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s(T, p)= 50, 0) + f C”(i’ 9 - apH(T,0)(1- = xp) (7.29)

0

which indicates that the molar entropy decreases linearly with increasing pressure. The third
term in Eq. 7.29, however, is very small compared with the second term so that we may
regard the molar entropy s of liquids or solids as independent of the pressure.

"c(T,0
s(T, p)=s(0, 0)+f & (T )dT, condensed substances. (7.30)

0

Finally, for chemical potential pu= k- Ts we have Eq. 7.31:

T

" ¢[T,0)

T dar

U(T, p)=H0, 0)-T5(0, 0) + f

0

/T, 0)dT -T J

+ AT, 0) (1~ xp), (731)

which can also be expressed by replacing the two integrals with a double integral as follows:

(T, p):[h(O, 0)-Ts(0, 0) - fo ' ‘g L ' cfT, 0)dT |+ (T, 0)(1- L xp) (732

We thus have the chemical potential ¢{ T,p) of a condensed substance at temperature T and
pressure p in the formula shown in Eq. 7.33:

WT', p)=W(T. 0)+ py(T, 0)(1 - 5 xp), (7.33)

where g7, 0) is the chemical potential extrapolated to p =0 at temperature T Normally,
(1-0.5¢p) ~ 1. The chemical potential u{liquid or solid) of a liquid or solid substance is
thus seen to change linearly with the product of p and v in contrast with the chemical
potential u(gas) of a gas which varies linearly with the logarithm of p as shown in Eq. 7.5.

Since the second term pv( T,0)(1- 0.5kp) on the right hand side of Eq. 7.33 is negligibly
small at ordinary pressures, the chemical potential of a condensed substance hardly depends
on the pressure of the system:

wT, p)=uT), condensed substances.  (7.34)



CHAPTER 8

SOLUTIONS

Solutions are thermodynamically classified into perfect, ideal, and non-ideal
solutions. This chapter discusses the characteristics of these solutions and
define the excess functions of non-ideal solutions. Also examined are electrolytic
solutions which contain dissociated ions.

8. 1. Ideal and Non-ideal Solutions.

A solution is defined as a condensed phase (liquid or solid) containing several substances.
The main substance of the solution is called solvent and the other constituent substances
dissolved in the solvent are solutes. Solutions are classified into ideal solutions and non-ideal
solutions. For an ideal solution the chemical potential of a constituent substance i is given by:

=T, p)+RT 1n x,. @81
From Eq. 7.32 we have the unitary chemical potential u.(7,p) as follows:
W(T, p)= (T, 0)+ pv(T, 0)(1-3-x, p), (82)

where y, (T',0) is the unitary chemical potential of constituent i at temperature T'and at zero
pressure, and v,(7,0) is the partial molar volume of i extrapolated to zero pressure. A
parameter x, in Eq. 82 is defined as a coefficient of compressibility, k, = —(l/v,. )(avi / z?p)
for each constituent substance { in the ideal solution.

Equation 8.1 is valid for ideal solutions only. In the case of non-ideal concentrated
solutions, an activity coefficient y, is inserted as an adjusting coefficient to keep the expression
of chemical potential g, in the same form as Eq. 8.1:

7

1= (T, p)+ RT Inx, 7, (83)
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We bear in mind however that the values of u,(T,p) and y,depend upon the choice of the
ideal reference system. If we choose for the solvent a reference system in which y, becomes
unity as x; approaches unity, the unitary chemical potential y,:(T, p) is given by the chemical
potential u*(T,p) of the pure solvent i: g (T,p) = 1/ (T, p). On the other hand, if we choose
for the solute substances a reference system in which y, becomes unity as x; approaches zero,
the unitary chemical potential g, (T,p) is given by the chemical potential p;’ (T, p) of the
solute i at infinite dilution: w(T,p) = u*(T,p).

Instead of characterizing the deviation from ideality for the solvent 1 in terms of its
activity coefficient y,, we may introduce the osmotic coefficient ¢ defined by ¢ =
(ln xy 1)/1n x, as shown in Eq. 8.4:

My =4(T, p)+ O RT In x,. (84)

Since Inx, = ln(l -2 ‘.x,.) =~ —Xx, when X, x, <1, where x, is the molar fraction of solute i, we
have an approximate equation for Eq. 8.4 as follows:

= (T, p)- ¢ RTX x. (8.5

We then lose some of the formal resemblance to Eq. 8.1 of ideal solutions, but on the other
hand the use of ¢ is advantageous in that it is much more sensitive to characterize the
deviation from ideality than y,. The osmotic coefficient ¢ is, in fact, the same coefficient as
what is called the boiling or freezing point coefficient.

8. 2. Perfect Solutions and Ideal Solutions.

A solution is called perfect, if Eq. 8.1 is valid over the whole range of concentration for
all constituent substances. The perfect solution is realized if the molecules of the solvent and
the solutes are similar to one another in their nature. In perfect solutions the unitary chemical
potential ‘uf( T,p) of a constituent substance i equals the chemical potential u?(T, p) of the
pure substance i for all the constituent substances: Raoult’s law.

Let us consider for simplification a binary perfect solution consisting of solvent 1 and
solute 2. The free enthalpy (Gibbs energy) for one mole of a binary mixture gmy 1S then
given by Eq. 8.6

Eivure = X1 By + Xy = 80 + RT X In x; + RT x, In x;, (8.6)

where ghen is the mean molar free enthalpy prior to the mixing of n, moles of solvent 1 and
n, moles of solute 2; that is g% =(mg’ +ng})[(n +n)=x4g +x,g5. The molar free

enthalpy of mixing g and the molar entropy of mixing s"are thus expressed, respectively,
in Eq. 8.7
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a M
g =RT x Inx + RT x,In x,, sM:—(.;g—T:—Rxllnxl—szlnx,_, 87

These simple equations for the mixing terms of the molar free enthalpy and entropy are
characteristic for perfect solutions and are identical with those for ideal gas mixtures.

Further, the enthalpy of mixing of a perfect solution derived from Eq. 8.7 is zero as
shown in Eq. 8.8 (vid. sections 5.9 and 5.10):

=0, 88)

indicating that the mixing of two constituents to form a perfect solution takes place at
constant enthalpy, thus causing no absorption or evolution of heat at constant pressure.

The volume of mixing for a perfect solution is also zero from Eq. 8.9 (vid. sections 5.9
and 5.10):

M _ ag™ -0

== =0 (89

indicating that the process of mixing to make a perfect solution is accompanied by neither
expansion nor contraction of the solution. If we write v and v as the molar volume of the
pure constituents 1 and 2, the mean molar volume v of the solution is expressed by:
v=x, % + x 5. The mean molar volume v of a perfect solution is thus a linear function of
molar fraction as shown in Fig. 8.1.

In contrast to a perfect solution, a solution is called an ideal solution, if Eq. 8.1 is valid
for solute substances in the range of dilute concentrations only. Moreover, the unitary chemical
potential u;( T,p) of solute substance 2 is not the same as the chemical potential ug(T, p) of
solute 2 in the pure substance: p,(T,p) = py(T,p); Henry’s law. For the main constituent
solvent, on the other hand, the unitary chemical potential u; (T,p) is normally set to be equal
to (T, p) in the ideal dilute solution: u{T,p) = u.(T,p). The free enthalpy per mole of an
ideal binary solution of solvent 1 and solute 2 is thus given by Eq. 8.10:

Gristure = X1 My + X, Yo = (X, ) + X%, 15) + RT x, In x, + RT x, In x,
= (x u) + 2, 1)+, (43 — 13) + RT x, Inx, + RT x; In x, (8.10)

in which an extra term xz( U - ug) for solute 2 emerges as a difference in the unitary free
enthalpy of solute 2 between an ideal binary solution and a comparative perfect binary
solution.

We further note that the entropy of mixing of two pure substances to form an ideal dilute
solution is not equal to the so-called ideal entropy of mixing but contains an extra term
xz(s; - sf) as shown in Eq. 8.11:
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sM=x,(s; - 53) - R(x In x, - x, In x,). 811)

where s; and s, are the unitary partial molar entropy of solute 2 in an ideal dilute solution
and the molar entropy of solute 2 in the pure substance, respectively.

Similarly, we also see a difference in the enthalpy or volume per mole between a binary
perfect solution and a binary dilute ideal solution. In a perfect binary solution the enthalpy 2
or volume v per mole of the solution is identical with the mean sum in the molar enthalpy or
volume of the constituent substances in their pure state, and no change in the enthalpy or
volume thus occurs when we make up a perfect solution from its constituent substances:
h=xh+xh orv= xv; + x,vs. In the case of an ideal dilute binary solution, on the other
hand, an extra term is required to equate the enthalpy or volume per mole of the solution to
the mean sum in the molar enthalpy or volume of the pure constituent substances:
h=xh’+xh and v = xy, + x,vs. In a dilute binary solution &, = &’ and v, = v! for the
solvent, while for the solute k) = iy = b, and vy = v¥ = v,, where i and vié are the partial
molar enthalpy and volume of solute 2 and are equal to the unitary partial molar enthalpy and
volume /2, and v; of solute 2 in an ideal binary solution, respectively (vid. section 5.9). We
hence observe an increase or decrease in the enthalpy (heat of mixing) or in the volume
(expansion or contraction), when we produce a dilute binary solution from its constituent
substances. This extra quantity is the enthalpy of mixing 4" or the volume of mixing v"in
an ideal binary solution and is given by Eq. 8.12:

B = xhy - k), vMEx(i-v), 812)

where A, and v, are the molar enthalpy and volume of solute 2 in the pure substance. Note
that in this section we have defined for the ideal dilute solution the unitary quantities of
thermodynamic potentials with respect to the unsymmetrical reference system for which we
refer to the following section 8.3.

2 Perfect solution 2 Dilute ideal solution
= i g
- -

0 Molar fraction x, 0 Molar fraction x,

Fig. 8.1 Volume per mole as a function of the molar fraction x, of solute 2 in a
binary perfect solution and in an ideal dilute solution: v; = the unitary partial molar
volume of solute 2 extrapolated to x, — 1.
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The enthalpy and volume per mole of a binary solution both vary linearly with the molar
fraction x, of solute 2 in the whole range of x, for a perfect solution and in a limited dilute
range of x, for a dilute ideal solution, as schematically shown for the volume per mole of a
binary solution in Fig. 8.1.

8. 3. Reference Systems for Thermodynamic Unitary Quantity

As mentioned in section 8.1, the value of the unitary chemical potential ,u: depends on
the choice of the reference system. There are two reference systems which are commonly
used; one is unsymmetrical and the other is symmetrical. In discussing the reference systems
we shall for convenience limit ourselves to a binary solution.

We first take as a reference system an infinitely dilute solution of solute 2 in solvent 1.
The chemical potentials of solvent 1 and solute 2, then, are given in the form of Eq. 8.13 for
an ideal solution and in the form of Eq. 8.14 for a non-ideal solution:

w=u+RTInx, w,=wu,+RTInx, idealsolution, (8.13)
w=uw+RTInxy, w=w+RlInx,y, non-ideal solution, 8.14)

where 4 is the chemical potential of pure solvent 1 (equal to the unitary chemical potential
u; of solvent 1 in the solution) and g; is the unitary chemical potential of solute 2 defined by
the chemical potential u; of solute 2 extrapolated from the infinitely dilute concentration
range to the unit molar fraction x, = 1; u; =y, = ug. We have then taken the infinitely
dilute solution as the reference system not only for a dilute ideal solution but also for a less
dilute non-ideal solution. As the solution becomes more dilute, Eq. 8.14 approaches Eq. 8.13,
which means thatas x, = 1 and x, — 0, then y, =l and y, ~> 1. We see that these properties
are unsymmeirical , since the two constituents 1 and 2 have not been treated in the same way.

The other choice is to define each unitary chemical potential u; as being equal to the
chemical potential g in the pure state for both solvent 1 and solute 2: (T, p)=uXT, p)-
We then obtain Egs. 8.15 and 8.16 for the chemical potentials of solvent 1 and solute 2 in
both an ideal and a non-ideal solution:

W=+ RT In x;, W=+ RT In x,, ideal solution, (8.15)

W= +RTInxy, m=pw+RTInx,y, non-ideal solution, (8.16)

This symmetrical reference system gives us the activity coefficient that becomes unity as the
molar fraction approaches unity for all constituent substances: y, =1 when x, — 1.

The symmetrical reference system is based on Raoult’s law in a perfect sotution, while
the unsymmetrical reference system is based on Henry’s law in an ideal dilute solution.
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8. 4. Thermodynamic Excess Functions in Non-ideal Solutions.

For a perfect binary solution the free enthalpy (Gibbs energy) of mixing per mole has
been given in Eq. 8.7. We extend this equation 8.7 to a non-ideal binary solution by using the
activity coefficients y, and y, as shown in Eq. 8.17:

g¥=RT x;Inx ¥, +RT x,Inx, 7, . (8.17)

In this section we shall always define the activity coefficients with respect to the symmetrical
reference system. Comparing Eq. 8.7 and Eq. 8.17, we define the excess free enthalpy (excess
Gibbs energy) g” per mole of a non-ideal binary solution as Eq. 8.18:

gE=RIT (x;Iny, +xIny,). (8.18)

The difference in thermodynamic functions between a non-ideal solution and a comparative
perfect solution is called in general the thermodynamic excess function. In addition to the
excess free enthalpy g©, other excess functions may also be defined such as excess entropy
s, excess enthalpy £”, excess volume v* , and excess frec energy f” per mole of a non-ideal
binary solution. These excess functions can be derived as partial derivatives of the excess
free enthalpy gE in the following.

For excess entropy s°:

e 08
T’

dln v, dln v,

s¥=—RT (xl =t % 5T )— R{x,Iny,+x,Iny,) (8.19)

For excess enthalpy A"

)
R a( I KE = - RT? (xl al(;‘Ty‘ +x, BI;T“ ) (8.20)
This excess enthalpy 4” corresponds to the heat of mixing of the non-ideal binary solution at
constant pressure. Namely, A% = x4 + x,i" with B =h -1’ = —RTZ(&lnyi/o"T), where
kM is the partial molar heat of mixing of substance i, h, 1s the partial molar enthalpy of iin
the non-ideal binary solution, and A’ is the molar enthalpy of pure substance i. Remind
ourselves that the reference system for the activity coefficients is symmetrical.
For excess volume v* we obtain Eq. 8.21:

, vE= RT (x1 algp’“ +3 615‘;2 ) 821)

This excess volume v® is the difference between the mean molar volume of the non-ideal

binary solution, v™"™** = V"""’M’/ (nl + nl), and the mean molar volume of the perfect binary

perf

solution v* = x,v; + x,v} (the sum of the volume of the two pure substances before mixing
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to form one mole of the solution): i.e. v¥ = v™™¥ _y#7 =y _ x30 _ x,v), where v|
and v; are the molar volumes of pure solvent 1 and pure solute 2, respectively.

Furthermore, for excess heat capacity Cf at constant pressure we obtain Eq. 8.22:

. OKE e ( dln y, dln yz)_ o[ dny, In yz)
C”_—E)T , C,=—2RT\x 5T +x, 3T RT* | x, e +x, a1 | (822)

This excess heat capacity cf is the difference between the mean molar heat capacity of the
non-ideal binary solution, c;"'"M = C;”’“‘M /(n1 +1n,), and the mean molar heat capacity of

the perfect binary solution ¢, 7 = xc’ + x,c; (the sum of the heat capacities of the two pure
conslituent substances): i.e. ¢, =c,™*" - cf’f =c;”'"”e“l —X\Cy, = X5C,, , Where C)° el and
c;"'"d“l are the heat capacity and the molar heat capacity of the non-ideal binary solution at

constant pressure, respectively.
In the foregoing the excess function has been defined for one mole of the non-ideal
solution. For the whole system of n moles of substances present, we then obtain Eq. 8.23:

GF=ngE, HE=nh", SE=n s~ (8.23)

We also see that the excess free enthalpy G is differentiated with respect to the temperature
and the number of moles of the solution to give the excess entropy S” and the partial molar
excess free energy of mixing RT'Iny, as follows:

0G" _ _ & aG" _
AT "~ S5, a—nt =RT In Y (8.24)

A discrepancy in free enthalpy between the perfect solution and the non-ideal solution, if
the reference system is symmetrical, is generally expressed by the excess free enthalpy G”,
which consists of the enthalpy term H” and the entropy term -75°; i.e. G* = H* - TS".
Two situations arise accordingly in non-ideal solutions depending on which of the two terms,
HF and — 7S, is dominant. The non-ideal solution is called regular , if its deviation from the
perfect solution is caused mostly by the excess enthalpy (heat of mixing) H":

[H"|>>|Ts*], G"~H"; regular solutions. (825

On the other hand, the solution is called athermal, if its deviation from the perfect solution is
caused mostly by the excess entropy — IS” as shown in Eq. 8.26:

lHEI << |T SEI, G®~-TS"; athermal solutions. (8.26)

8. 5. Units of the Concentration.
To express the concentration of a solution we frequently use, besides the molar fraction,
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the molality m,, which represents the number of moles of solute i in one kilogram of the
solvent, and the molar concentration (molarity) ¢,, which is the number of moles of solute i
per unit volume of the solution.

Of a solution containing r, moles of solute i and n, moles of the solvent 1 the molality
m, of solute i is related to the molar fraction x, of solute i as shown in Eq. 8.27:

= 1000 n, _ 1000 x,
oM, T oo M

827

where M, is the molecular mass of solvent 1. For a dilute solution where x, — 1, we have an
approximate equation shown in Eq. 8.28:

X;
m;= 1000 M (8.28)
The chemical potential of i is expressed using the molality scale as shown in Eq. 8.25:
= "(T,p)+RT Inm,y, (829)

where the unitary chemical potential of ,u: ™(T, p) on the molality scale is related with that of
w, (T, p) on the molar fraction scale as follows:

*mo_ %X M 1
wm=wAT, p)+RT In 1500~ (830)
Similarly, with the molar concentration scale we obtain Eqs. 831 and 8.32:
w=w9T, p)+RT nc, v, (831)
w T, p)=w T, p)+ RT In (T, p), (832)

where v; (T, p) is the molar volume of the pure solvent 1 at temperature 7 and pressure p.
The molar concentration c, can be approximated with x,/v; in dilute solutions.

8. 6. Osmotic Pressure.

Let us consider a semipermeable membrane separating a pure liquid solvent 1 from a
solution containing solvent 1 and solute substances as shown in Fig. 8.2. The chemical
potentials of solvent 1 in the pure solvent and in the solution, ;41 and y] are given by Eqgs.
8.33 and 8.34, respectively:

wy = wi(T, p) (833)
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w =pXT, p")+ ¢ RT In x,, (834)
where (T, p) is the chemical potential of the pure solvent 1 and ¢ is the osmotic coefficient

defined in Eq. 8.4. In the osmotic equilibrium state the pressure p on the pure solvent side is
usually higher than the pressure p on the solution side.

W P WooPox

Pure solvent 1 Solution:

Solvent 1 + Solutes

Fig. 8.2 Permeation of solvent 1 through a semipermeable membrane between a pure
solvent 1 and its solution.

The driving force for osmotic permeation across the membrane is given by the affinity A
of the flow of solvent molecules from the pure solvent to the solution as shown in Eq. 8.35:

A=p—p' =p)T, p)- (T, p")-¢ R In x,. (835)

From Eq. 7.33 we have the chemical potentials of solvent 1 in the pure solvent and in the
solution as shown in Eqs. 8.36a and 8.36b, respectively:

(T, p)= T, 0)+ p' v} (1 - % K p'), (836a)
W(T, p')= (T, 0)+ p' wi (1= 5k p), (836b)

where x is the compressibility of the solution, v is the molar volume of pure solvent 1, and
v, is the partial molar volume of solvent 1 in the solution. Under ordinary conditions we have
v,~ .. Taking the molar volume of the pure solvent as V0 =v? {1 ~(1/2) k (p'+ p')} at the
average pressure (p' + p')/ 2, we obtain Eq. 8.37 for the osmotic pressure = at osmotic
equilibrium (A = 0 in Eq. 8.35):

0 O RT In x,

T=p"-p, m= (837)

o
4}

This equation enables the osmotic pressure to be calculated as a function of ¢, x;, v0, and T.
In the case of an ideal solution in which ¢ = 1, Eq. 8.37 yields Eq. 8.38:
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RT In x,

o
4]

”id -

i (838)

which shows that the osmotic pressure & of the ideal solution is independent of the nature of
the dissolved solute. If we neglect the compressibility of the pure solvent, the average molar
volume v? for solvent 1 may be replaced by the usual molar volume v{ of pure solvent 1 in
Eqgs. 837 and 8.38.

For very dilute and ideal solutions, since Inx; =In (1 - in) ~-2x and ¢;=x /1),
where i denotes solute substances, Eq. 8.38 with vJ = v? yields Eq. 8.39:

a¢=RT X ¢, (839)

This is known as the van’t Hoff’s law showing that, independent of the kinds of solvents, the
osmotic pressure in dilute solutions is a function of the concentration of the solutes only.

8. 7. Electrolytic Solutions.
Electrolytic solutions contain not only neutral molecules but also charged ions which are
formed by dissociation of neutral molecules such as acetic acid shown in Eq. 8.40:

HAc=H"+Ac", (8.40)

An ion charged positive is called a cation and an ion charged negative is called an anion. The
total charge of cations is of course equal to the total charge of anions in any electrolytic
solution which is electrically neutral as a whole.

Since an ion has an electric charge, the partial molar free enthalpy g, of an ion i consists
not only of the chemical potential g, but also of the electrostatic energy z,F¢ of the ion;
where z, is the ionic valence, F is the Faraday constant, and ¢ is the electrostatic inner
potential of the solution. This partial molar free enthalpy g, defines the electrochemical
potential m, of an ion in an electrolyte solution as shown in Eq. 8.38:

&=M=U+7,Fo. (8.41)

Let us now consider the reaction of acetic acid dissociation shown in Eq. 8.37. By using
the electrochemical potential of ions, the equilibrium of the reaction is expressed in Eq. 8.42:

Huae =M + Nae- = P + FO+ o — FO= Ly + [, (842)
which indicates that the sum of the electrochemical potentials of dissociated cations and

anions is equal to the chemical potential of the undissociated molecules at equilibrium.
In an electrolyte solution the chemical potentials of a cation and an anion can not be
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measured separately. Accordingly, we define the mean chemical potential u, of the cation
and anion by Eq. 8.43:

P = 2 (far + Foae) (843)

If in an electrolyte solution a molecule dissociates into v, pieces of cations each with a
valence z, and v_ pieces of anions each with a valence z_, the relation of zv, +z.v_ =0
holds. We can then define the mean chemical potential pu, of the dissociated ions in general
by Eq. 8.44:

v +v_ i
He= +€:+v_u' (8.44)

The mean chemical potential of a pair of cations and anions can be estimated from the
ionic dissociation equilibrium shown as an example in Eqs. 8.42 and 8.45:

Au’HAc = 2 lu’i-(H"', Ac_)’ (845)

which enables us to estimate py+ pc-), Iy, is known.



CHAPTER 9

ELECTROCHEMICAL ENERGY

Electrochemical energy concerns electrochemical processes in which charged
particles are involved besides neutral molecules. The energy level of a charged
particle is expressed by its electrochemical potential, which consists of a
chemical potential and an electrostatic potential. The electrode potential
frequently used in describing electrochemical energy conversion is a physical
intensive variable corresponding to the energy level of electrons or ions in
electrodes. This chapter discusses the energy level of charged particles, the
electrode potential, the electromotive force, and the equilibrium of charge
transfer reactions. Also examined is the chemical potential of hydrated ions.

9. 1. Electrochemical Potential of Charged Particles.

Charged particles such as ions and electrons play an important role in what is called
electrochemical processes. We shall now discuss the energy level of ions and electrons in an
electrochemical system. The partial molar free enthalpy (partial molar Gibbs energy) of a
charged particle i, as described in the foregoing chapter (section 8.7), is represented by the
electrochemical potential 1, shown in Eq. 9.1:

=W+ F, ©.)

where g, is the chemical potential of i, z, is the number of elemental charge of i, and ¢ is the
electrostatic inner potential of the electrochemical system. In physics the reference levet of
the electrostatic potential is usually set zero at infinite distance in vacuum.

The electrostatic inner potential ¢ in a condensed phase (liquid or solid) consists of the
outer potential ¥ and the surface potential yx as shown in Fig. 9.1 and Eq. 9.2:

p=y+y. (9.2)
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The outer potential 9 is an electrostatic potential at the closest distance (~1x 10 mm) to
the surface that a charged particle can approach without being affected by any image force
from the condensed phase.

¢ x Vv -
Condensed phase e << *< — — —Infinity

Fig. 9.1. Inner potential ¢, outer potential 1, and surface potential y of a condensed
phase.

The electrochemical potential ), of a charged particle i is then expressed by Eq. 9.3:
M=+ Fo= L+, FY+ o Fy =, + 2, Fy. 9.3)

The outer potential 1 depends on the electric charge on the condensed phase, while both the
chemical potential g, and the surface potential x remain constant irrespective of the electric
charge. The electrochemical potential 7, of a charged particle i thus varies depending upon
the amount of charge on the condensed phase, and consequently, it can not reasonably
specify the energy level of the charged particle i in the condensed phase.

Condensed phase o<l —
Charged patticle | e&<—0——o<—7; FYy — — —Infinity
¢ <—n—t————— — — — Infinity

Fig. 9.2. Chemical potential y , real potential «; , and electrochemical potential #;
of a charged particle i in a condensed phase.

On the other hand, if we take as a criterion for defining the energy level of a charged
particle i in a condensed phase the sum of the chemical potential u, and the electrostatic
energy of zFyx due to the surface potential y, this gives a uniquely defined energy level ¢
of the charged particle i in the condensed phase whatever the amount of electric charge on
the phase is:

a=u+z,Fy. (9.4)
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In electrochemistry this energy level o, is called the real potential of charged particle i in a
condensed phase. For electrons the real potential ¢, is equivalent to what is called in physics
the work function @ of electrons: —a, =@ ; the work function is the energy required for
electron emission from a solid. Figure 9.2 shows schematically the relations between y;, «,,
and 7, of a charged particle i in a condensed phase.

9. 2. Transfer of Charged Particles Between Two Condensed Phases.

If the transfer of a charged particle i takes place reversibly at the interface between two
condensed phases 1 and 2 as shown in Fig. 9.3, the electrochemical potentials of i in the two
phases are equilibrated to each other: 7, = B, * ¢, = B, +2Fo, =1 A difference
in the inner potential A¢,, = ¢, — $, consequently arises between the two phases as given by

Eq.9.5:

My — My

A=~ ;= ZF

, 9.5
which may be called the interfacial inner potential or simply the interfacial potential.

Furthermore, as shown in Fig. 9.3, there arises between the two phases a difference in the
outer potential Ay, = ¥, — ¥,, which is equivalent to what in physics called the contact
potential. In electrochemistry we may call Ay, the interfacial outer potential. The relation
of Ay, to Ay, is given by Eq. 9.6

A= AW 1+ (X — Xa), 9.6)

where x, and x, are the surface potentials of phase 1 and phase 2, respectively. Note that the
interfacial outer potential Ay, can be measured; whereas, the interfacial inner potential
Ag¢y, can not be measured by ordinary methods because of the immeasurable surface potentials
not equal to each other of the two phases..

&
Phase 1 Aty Phase 2
#i(l) i ‘P i :ui(Z)

M 7?:-(1)T Nz iz

Fig. 9.3. Transfer equilibrium of charged particle i across an interface between a
condensed phase 1 and a condensed phase 2.
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9. 3. Electrode and Electrode Potential.

Electrochemical reactions usually occur at the interface between a solid electrode and a
liquid electrolyte. The electrode is an electron conductor, such as metals and semiconductors,
and is immersed in an electrolyte. In practice the electrode is partially immersed in an
electrolyte, but in theory it is convenient to define that the electrode is a multiphase system in
which an electronic conductor is fully immersed in an electrolyte as shown in Fig. 9.4.

Electrolyte

Fig. 9.4. An electrode system.

An electrode is called an electronic electrode when the transfer of electrons occurs, while
it is called an ionic electrode when the transfer of ions occurs at the electrode interface.
Although electrons and ions are in the same category of charged particles, they are different
in electrochemical behavior due to a difference in the type of statistics that governs them.
Electrons are Fermi particles which obey the Fermi statistics, whereas ions are Boltzmann
particles which obey the Boltzmann statistics.

In electrochemistry we frequently refer to a technical term electrode potential . The electrode
potential means in its physical sense the energy level, i.e. the electrochemical potential, of
electrons in an electrode. It is however convenient, as described in the foregoing (Egs. 9.3
and 9.4), to define the electrode potential in terms of the real potential ¢, rather than the
electrochemical potential 1, of electrons in the electrode.

Vacuum V
= Fyfys T
l e

ae(WS/V) ae(s/v)

Electrolyte S

Fig. 9.5. Real potential a,aysv, Of electrons in an electrode.
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The real potential a,y) of an electron in an electrode is equivalent to the energy
required to transfer an electron from the position of the outer potential of the electrode
system to the interior of the electrode as shown in Fig. .5 and is given by Eq. 9.7:

O awsivy = Cesrvy t Ko sy = Moy — FARGs — F Xy, )

where a,gy, is the real potential of an electron in the electrolyte, a5 is the energy
required to transfer an electron from the electrolyte to the electrode, u,y, is the chemical
potential of an electron in the electrode M, Ag,, is the interfacial potential of the electrode
(M/S), and yx.,, is the surface potential of the electrolyte (S/V). We now define the electrode
potential £ as shown in Eq. 9.8 (Ref. 4 and 5):

, U,
E=—00 = Adus+ o =0 (©8)

The second and third terms on the right hands side of Eq. 9.8 remain constant for a given
electrode-electrolyte system, and hence the electrode potential is a linear function of the
interfacial potential A¢,,, of the electrode. This definition of the electrode potential holds
valid for all electronic and ionic electrodes, whether the electrode reaction is in equilibrium
or non-equilibrium. The potential defined by Eq. 9.8 is called the absolute electrode potential.

In electrochemistry we have customarily employed, instead of the absolute electrode
potential E,_ . ,arelative scale of the electrode potential, FE, ;. ..., referred to the standard
or normal hydrogen electrode potential Fg at which the hydrogen electrode reaction,
2H, +2€., = Hy gy » 18 at equilibrium in the standard state; unit activity of the hydrated
proton, the standard pressure of 101.3 kPa for hydrogen gas, and room temperature of 298 K.
Since Egy 1s + 4.44 V (or + 4.5 V) in the absolute electrode potential scale, we obtain Eq.
9.9 for the relation between E, . and E . .. [Refs.4and 5.]:

Ehydrogeu scale — L absolute scale — 444V, (99)

In the case that an electron transfer reaction (redox reaction) such as shown in Eq. 9.10 is
in equilibrium at the interface of an electrode:

RED & OX + €gmpoxy; for example, Fe* & Fe™ + epe p 5 (9.10)

the electron €y, in the electrode and the redox electron €gepox, of the redox particles in the
electrolyte are at the same energy level so that a ., = 0, and hence a5y = @ gyt DO
energy is required for the electron transfer between the electrode M and the electrolyte S. The
electrode potential E, thus corresponds to the real potential @, gppox) of the redox electron
in the electrolyte as shown in Eq. 9.11:
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&, sy Meenox,
@ sy = Co 5vy = Cogenony = Mogepoxy = F Xsve  Eeg=— 2 7 oAVTT oo 9.11)

where p,renox) 1S the chemical potential of the redox electron in the electrolyte. The electrode
potential E_ is called the equilibrium potential of the redox reaction or simply the redox
potential. It follows that the redox potential is determined by the energy level of the redox
electron which is independent of the electrode material. Note that the interfacial potential,
however, depends on the electrode material, since it is a function of the chemical potential of
electrons in the electrode material.

In the case of an ionic electrode at which the transfer of ions, such as metal ions shown in
Eq. 9.12, 1s in equilibrium across the electrode interface:

Mg & M, (9.12)

where M,y is the metallic ion in the metallic bonding state and My, is the solvated or

hydrated metallic ion in the electrolyte, the ionic transfer equilibrium determines the interfacial

potential Ag¢, of the metallic electrode, yielding A¢,,F = Png, ~ Bag,, > where ty, and
) (M) )

t are the chemical potentials of metal ions in the solvated state in the electrolyte and in
M)

the metallic bonding state in the electrode metal, respectively. We then obtain the real
potential of electrons &, aysy, in the electrode as shown in Eq. 9.13:

. qusvy = Heany = FARws — F sy = (u“e(M) + vy — #M(’S)) = Fsw,
= (MM(M) - MM(S)) = Ftsy = Bepanar ) = FXsv = Qopanar (s (9.13)

where (thy,, — Pa,) 1S €qual to the chemical potential p, (s Of the hypothetical electron
Sty 1N the electrolyte, and o, ey 18 the real potential of the hypothetical electron
e (s i the electrolyte; €y s 18 equilibrated with the electrodic electron €y, in equilibrium
with the ionic reaction formally expressed by Mgy, + €y & Mag & Mg, + €fuppr s The
equilibrium potential E, for the metallic ion transfer is thus equivalent to the real potential
O, e sy OF the hypothetical equilibrium electron for the metallic ion transfer as shown in Eq.
9.14:

E _ ae(M/S/V) _ aelM’/M[(s) _ _ ME{M‘/M](S)

eq — —F —F SV F

(9.14)

Since no electrons that pass through the electrode interface are involved in any ion transfer
reactions, the hypothetical equilibrium electron for an ion transfer is virtual, and the equilibrium
potential of the ion transfer reaction therefore corresponds to the energy level of that hypothetical
electron in the electrolyte.
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The electrode potential of an ionic electrode can also be defined by the ionic level rather
than by the electronic level in the electrode. For instance, the electrode potential of a metallic
electrode may be given by the real potential oy qpsny of metallic ion in the electrode as
shown in Eq. 9.15:

_ Oz awsivy _ Mgy
Ez'on - z F - z F + A¢M/S + XSN’ (9 15)

where thzqp is the chemical potential of metallic ion in the electrode metal and z is the ionic
valency of the metal ion. If the transfer of metal ion is in equilibrium at the electrode
interface, oy ausrvy 1s equilibrated with the real potential oy g5y, of solvated metal ion in the
electrolyte, and hence the equilibrium potential of the metallic ion transfer is equivalent to
the energy level of the solvated or hydrated metallic ion in the electrolyte.

We may call the electrode potential defined by the ionic energy level the ionic electrode
potential, and the electrode potential defined by the electronic energy level may be called the
electronic electrode potential. In the case in which the electrode has no electronic level in the
energy range of our interest such as certain membrane electrodes, it is convenient to describe
the system in terms of the ionic electrode potential rather than the electronic electrode
potential [Refs. 4 and 5.].

=

M1 : Mz MI @ Mz
<
Electrode @ Electrode Electrode @ Electrode
Electrolyte -/ Electrolyte
(a) (b)

Fig. 9.6. Electrochemical cell: (a) non-equilibrium cell, (b) equilibrium cell; Fpp=
electromotive force.

9. 4. Electrochemical Cells.

Two electrodes, if connected, constitute an electrochemical cell as shown in Fig. 9.6.
When the electrode potentials of the two electrodes differ from each other, a current flows
through the cell with each electrode undergoing an electrochemical reaction, i.e. the transfer
of electrons or ions. An electrode is called an anode at which the electrochemical reaction
carries positively charged particles from the electrode to the electrolyte and negatively charged
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particles in the reverse direction; while on the other hand an electrode is called a cathode if it
carries negatively charged particles from the electrode to the elecirolyte and positively charged
particles in the reverse direction.

The anodic reaction is an oxidation reaction producing electrons in the anode, while the
cathodic reaction is a reduction reaction consuming electrodic electrons at the cathode interface.
We shall consider, as an example, an electrochemical cell consisting of a metallic zinc
electrode and a metallic copper electrode, in which the anodic reaction of zinc ion transfer
(zinc dissolution) is coupled with the cathodic reaction of copper ion transfer (copper deposition)
as shown in the following processes:

Zn— Zn;’ +2e7, anodic reaction (oxidation reaction).

Cu:; +2e — Cu, cathodic reaction (reduction reaction).
These reactions compose a whole cell reaction given as follows:

Zn + Cull — Cu + ZnZ,.

In order to make the cell current zero we need to put an electrostatic voltage £y, in the cell
circuit; Fig. 9.6. This electrostatic voltage En is called the electromotive force of the cell.
The electrochemical cell is often described by a cell diagram such as shown in Eq. 9.16:

Zn | Zn™ : Cu** | Cu, (9.16)

where two vertical lines indicate the electrode interfaces and a vertical dotted line shows the
contact of two electrolytes. From left to right this diagram is built up such that positively
charged particles are transported from the electrode (anode) on the left hand side through the
electrolyte to the electrode (cathode) on the right hand side, according to IUPAC recom-
mendation. Furthermore, the electromotive force takes its reference level at the electrode
potential of the electrode on the left hand side .

Let us consider an electrochemical cell shown in Eq. 9.17:

PtI H, | H;O, Hi,py - H,O, OHgy 1 O,y | P, ©.17)

(aq)

whose overall cell reaction is given by Eq. 9.18:

H, (g + % 02 (g = Hz0 (g (9.18)

The anodic reaction on the left electrode and the cathodic reaction on the right electrode are
then expressed by Eqgs. 9.19 and 9.20, respectively:
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H, oy = 2 Hiuy + 2 €31 left electrode. 9.19)
% Oy gy + 2 Hiy + 2 €3 = Hy0 (o, right electrode. (9:20)

If the electrochemical reactions at the two electrodes are both in equilibrium, the electrochemical
potentials of electrons in the two electrodes are given by Egs. 9.21 and 9.22, respectively:

_1
Mear = 7 (Hity gy~ 2 Miig): ©.21)

_1 1
New =" (ano 2 Ny =5 Ho, (gas)). (9.22)

(aq -

In any electrochemical cell the outer potentials of the electrolyte for the two electrodes
are identical so long as the two electrodes are immersed in a homogeneous electrolyte. The
difference in the electrochemical potential of electrons consequently becomes equal to the
difference in the real potential of electrons between the two electrodes: that is (1), — M,0)) =
(am) — ). The electromotive force Ey , of the electrochemical cell is thus given by Eq.
9.23:

__1 - 1 1
Ey, 0= _"F (O‘e ® ~ % (L)) =3F (“HZO w3 Ho, oy — Hu, (gas))- (9.23)

The parenthesis on the right hand side of Eq. 9.23 is equal to minus the affinity Ay ,, of the
overall cell reaction 9.18 as shown in Eq. 9.24:

1 -
(uHZO {aq) - 7 qu (gas) - uHZ (gas)) - AHZ ’02' (924)
The electromotive force Ey,,, is thus related to the reaction affinity:

Ay, i0,

Eno,= 5 9.25)

The affinity of the reaction, as has been shown in the foregoing chapters 5 and 6, consists
of the unitary affinity Ay, and the affinity of mixing Al,, = RT In (py, pi2). We see then
that the electromotive force K ,,, also consists of the unitary electromotive force E;{z,o2 and
the mixing term (1/2) (RT/F) In (py, p57) as shown in Eq. 9.26:

. RT
Ey,0,= Enyio, + 3F In (Pﬂz Pé/;), (9.26)

where E;2,02 is the unitary term at the standard pressure for both hydrogen and oxygen gas.
The unitary electromotive force in the standard state is usually called the standard electromotive
force, Ey, o, , whose value is given by Ey , =123 V.
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In general, the electromotive force Ep,. of an electrochemical cell is given by Eq. 9.27:

- Acell = 1
Enp= 5 = EMF+WRTZI_'V,v1na,., 9.27)

where A, is the affinity of the cell reaction, n is the number of elemental charges involved
in the reaction, v, is the stoichiometrical coefficient of particle i, and a; is the activity of
particle i taking part in the reaction.

The temperature dependence of the reaction affinity is given by Eq. 4.8, and the result for
the hydrogen-oxygen cell is shown in Eq. 9.28:

A
Ago.=—AHy 0. +T (ﬂ) . (9.28)
/02 2/02 oT R
We then obtain from Eqgs. 9.25 and 9. 28 the relation between the electromotive force £y,

and the enthalpy change AHy, ,,, of the cell reaction as shown in Eq. 9.29:

aE‘H 1O
AHy 0,=2FT (#)p -2FEy 0, (9.29)
This equation indicates that, if the electromotive force has a positive sign and the temperature
coefficient of the electromotive force of the reaction has a negative sign, the reaction enthalpy
will be negative: AH, ,, <0 and hence the reaction is exothermic.

The reaction of the hydrogen-oxygen fuel cell shown in Eq. 9.18 is exothermic with the
reaction enthalpy equal to AH;’12 j0, = =47.3 kJ -mol “at the standard temperature and pressure.
The heat of reaction for gaseous hydrogen oxidation at room temperature amounts to
~284.7kJ mol ™', in which 237.3 kJ -mol ™" is used for producing the electromotive force of
1.23 V and 473 kJ -mol™" is exhausted as heat. On the other hand, the reaction of water
electrolysis, which is the reverse reaction of the hydrogen-oxygen fuel cell reaction, absorbs
an amount of energy of 237.3 kJ -mol™" equivalent to the electromotive force of 1.23 V from
an electric source and an amount of 47.3 kJ - mol ' from the environment to obtain the total
amount of energy 284.7 kJ - mol ™ required for the dissociation of one mole of water. During
water electrolysis both enthalpy and entropy increase, in which the increase in the entropy is
provided for by heat absorption from the environment.

9. 5. Equilibrium Electrode Potential of Electronic Transfer Reactions.
Let us consider an electronic transfer reaction of the redox couple of ferrous-ferric ions:

Feguy, + ¢ = Fegu,, (930)

Connecting this redox reaction in a half cell (an electrode) on the right hand side with the
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standard hydrogen electrode reaction H;, + € = 0.5 H,,, in another half cell on the left side,
we make up the cell shown in Fig. 9.7 and represent it in the cell diagram of Eq. 9.31:

Pt| H,,, | HOH, | Felu, Ferx | Pt (931)

2{gas 77 =)
whose total cell reaction is given by Eq. 9.32:

1
2

2+

H; (guy + Feagy = Heagy + Fetay (9.32)

The electromotive force I of this cell is equivalent to the redox potential Egg g of
the reaction referred to the standard hydrogen electrode, i.e. the equilibrium potential of the
redox reaction, and it is given by Eq. 9.33 at the standard temperature and pressure:

AFCS‘\/FCZ*

D il 1o 0
EFea*/Fez* - F - F (&uFe}‘(aq) + 2 lu'Hz (229 - #Fe2+(aq) - uHZaq)

_1 o 1 0 0 0 RT Ape3+
- F (‘u”"&(am 7 Haty gy Bt “Hfa«v) toF In ( [ )

= B+ BL 1n ( Fre ), (933)

%2

where EJs. g2 is the unitary redox potential at the standard state and is called the standard
redox potential of the reaction.

pu, =101.3kPa, T=298K

Pt : Pt
0.5H, I Fe>
e (—-{ HzO }-> €
H+ I FeZ+
Electrode | g =1 Electrolyte Electrode

Fig. 9.7. An electrochemical cell consisting of a redox electrode reaction of hydrated
ferric-ferrous ions and the standard hydrogen electrode reaction.

Table 9.1 shows the numerical values of the standard redox potentials for a few reactions
of electronic transfer at electrodes. Electrochemical handbooks provide the standard redox
potentials for various other transfer reactions of redox electrons. As mentioned in section 9.3,
the redox potential is independent of the electrode materials.
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Table 9.1. Standard redox potentials E2,.. of electronic electrode reactions: Eoy, is
referred to the standard hydrogen electrode potential and €74, is the redox electron
in equilibrium.

Redox reaction Standard redox potential Egu/ Vi
2 H:q + 2 e;dox = H2(ga§) 0.0
CuZl + €400 = Cul, +0.153
Fell + €gon = FeZ; +0.771
Oy +4HL +4e,,=2H,0, +1.229
2(gas) aq redo: q
Ceg + € = Celn +1.74

9. 6. Equilibrium Electrode Potential of Ionic Transfer Reactions.

Let us now consider a transfer reaction of iron ions Fe?{o from the lattice site in a metallic
iron electrode to the hydrated state of iron ion Fef:q) in an aqueous solution at the standard
temperature 298 K and pressure 101.3 kPa as shown in Eq. 9.34:

2+
Feg

;= Feqy,. (934)
Connecting this ionic transfer reaction with the standard hydrogen clectrode reaction

Hy,, + € = (1/2)H 4 gives the cell shown in Fig. 9.8 and in Eq. 3.35:

Pt| Hy, | HOHfy, ! Fe(y, | Fe. 9.35)
The total reaction in this cell is given by Eq. 9.36:
H, (guy + Feimy = 2 e,y + (Felp + 2 €agy)- (936)
pu, =101.3kPa, T=298K
Pt l Fe
H, | 2¢
I
2e <—< H,0 Fe** <> Fe™*
|
2H
Electrode| ayz. =1  Electrolyte Electrode

Fig. 9.8. An electrochemical cell consisting of an electrode reaction of iron ion
transfer and the hydrogen electrode reaction both in equilibrium.



Chemical Potential of Hydrated Ions 95

The electromotive force Eg g of this cell is equivalent to the equilibrium potential g2 g,
of the transfer reaction of divalent iron ions referred to the standard hydrogen electrode, and
it is given by Eq. 9.37 at the standard temperature and pressure :

AFez*lFe

_ ~ 1 0 0 0
Exorre = 2F T 2F (”F°<2§q) + Bty o ™ HMFeqyy ™ 2w HE@)

1 0 0 40 9,0 RT
2F (”F°(2§q>+ By g ™ By 2 H?aq))+ 2F In Arer,
= Epoope + —122; In arg , (937)

where ES 2 . is the standard equilibrium potential of the iron ion transfer reaction at metallic
iron electrodes, i.e. metallic iron dissolution and deposition.

Table 9.2 shows the numerical values of the standard equilibrium potentials for a few
reactions of ion transfer at ionic electrodes. Electrochemical handbooks provide us with the
standard equilibrium potential for a number of ionic transfer reactions.

Table 9.2. Standard equilibrium potential Eg, of ionic electrode reactions: E, is
referred to the standard hydrogen electrode potential and e,, is the equilibrium
electron in the ion transfer reactions.

Tonic transfer reaction Standard equilibrium potential Eg,/ Vy
Fe:; + 2 ei_on = l:e(solid) -044

NiOyyq + 2 Hyg + 2 €5, = Ni(s(gid) +H,0,, +0.132

AgCl(soﬁd) + €= Ag(solid) + Claq +0.132

Cugg +2 € = Cligpg +0337

Au:; + 3 ei_on = Au(solid) +1.50

9.7. Chemical Potential of Hydrated Ions.

Equation 9.37 gives us the chemical potential pg.: ., of hydrated ferrous ion Fe(z,,‘;) in the
standard state as a function of the standard equilibrium potential 2. . of the dissolution-
deposition reaction of metallic iron as shown in Eq. 9.38:

0 — 0 0 0
oy, = 2 F Exgrope— Mty oy + My + 2 it (9.38)

In chemical thermodynamics the standard chemical potentials pg, . and p,, of hydrogen
molecules and metallic iron are set zero, so that if the standard chemical potential u%a q) of
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hydrogen ions is known, we can estimate the standard chemical potential u,‘},(z;q) of the hydrated

ELECTROCHEMICAL ENERGY

ferrous ion from the standard equilibrium potential Fpa. ..

In electrochemistry we make it a rule that the standard chemical potential “%E@ of hydrogen
ions is set zero as the level of reference for the chemical potentials of all other hydrated ions.
The standard chemical potentials of various hydrated ions tabulated in electrochemical
handbooks are thus relative to the standard chemical potential of hydrogen ions at unit
activity in aqueous solutions. Table 9.3 shows the numerical values of the standard chemical
potential 4 , the standard partial molar enthalpy k', and the standard partial molar entropy

s_ for a few of hydrated ions.

Table 9.3. Standard chemical potential 1, standard partial molar enthalpy %, and
standard partial molar entropy s for a few hydrated ions: Standard state; 101.3 kPa,
298 K, unit activity in molality scale.

Ton State @ fKJ - mot™ /K -mol™ s2/3-K-mol™
cor hydrated ion -5279 -677.1 -569
CI- hydrated ion -1312 -1672 56.5
Fe* hydrated ion -789 -89.1 -137.7
Fe* hydrated ion -47 -485 -1377
=4 hydrated ion 0.0 0.0 0.0
Na* hydrated ion -2619 —-240.1 59.0
OH~ hydrated ion - 1573 -230.0 -10.7
Neoks hydrated ion —744.6 -9093 20.1
HS™ hydrated ion 12.06 -176 63.8
Zn™ hydrated ion -147.1 -1539 —-1121




CHAPTER 10

EXERGY

The law of conservation of energy indicates that energy never disappears,
while the second law of thermodynamics sets forth that thermal energy can
not be fully utilized so far as we are in our atmospheric environment. Engineering
thermodynamics has recently introduced a new energy quantity called exergy
to figure out how much work or power we can utilize from a given amount of
energy with respect to the natural environment. Energy is conserved in any
processes; whereas, exergy is dissipated in spontaneous processes. Exergy
analyses are thus effective in improving the energy efficiency in practical
manufacturing processes. This chapter examines the concept and property of
exergy in thermodynamic systems and shows that exergy losses are in principle
related to the affinity (the free enthalpy change) of irreversible processes. Also
discussed are various examples of exergy evaluation for heat transfer, gas
expansion, substance mixing, and chemical reactions.

10. 1. The Concept of Exergy.

The first law of thermodynamics has provided the concept of internal energy and enthalpy
which are conserved in a physicochemical system, and the second law has defined entropy,
free energy (Helmholtz energy) and free enthalpy (Gibbs energy) as thermodynamic energy
functions to indicate the possibility and capacity of advancing irreversible processes. Recently
(1950’s), engineering thermodynamics has introduced, from a practical point of view, a new
energy function called “exergy” to express; the amount of available energy; its ability to be
converted into other kinds of energy; and especially the capacity for doing work that we can
utilize with a given system of energy carriers in our normal environment on the earth [Refs. 6
and 7.]. The term of exergy was first introduced by Rant [Ref. 8.]; it means the amount of
work (-erg) that is released (ex- ).

Exergy is defined by Szargut [Ref. 9.] as the maximum amount of work obtainable when
an energy carrier is brought from its initial state to a state of thermodynamic equilibrium (an
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inert state) with the common substances of the natural environment by means of reversible
processes, involving interaction only with the above-mentioned substances of nature. In other
words, exergy is the maximum amount of work that we can obtain if a substance or a form of
energy is converted to its inert reference state. Exergy can thus be also the minimum amount
of work to be supplied if a substance or a form of energy has to be produced from its inert
reference state. Exergy is expressed in terms of state functions alone as far as it is defined by
means of reversible processes, and then it is a state function. Furthermore, as will be shown
later, exergy bears a close resemblance to the energy function of affinity (free enthalpy
change) which, as mentioned in chapier 4, represents the maximum work (available energy)
that we can draw out from a physical or chemical process of energy carriers when advancing
reversibly from its initial state toward its final equilibrium state. In contrast to affinity,
however, the exergy of energy carriers fixes its final reference level at the state of the most
stable existence (the dead state, the inert reference state) that the energy carriers can reach in
the ordinary natural environment on the earth [Refs. 7 and 9.]; the dead state or the inert
reference state is the state of chemical elements in which they are in “unlimited supply”
without expenditure of work from our natural environment that is in equilibrium with the
exergy reference substances. The exergy of any material is then the minimum expenditure of
work required to obtain this material from the reference level substances in our natural
environment [Ref. 10.].

Exergy therefore results from a difference in free enthalpy (Gibbs energy) between the
energy carriers under consideration and the common reference substances in the natural
environment: exergy is thus a function of the thermodynamic state of the substances under
consideration and of the thermodynamic state of the common reference substances in the
natural environment. In other words, exergy arises from an interaction between the substances
under consideration and the common reference substances in the environment.

Seawater on the earth is well known to possess a huge amount of internal energy or
enthalpy, which we can not utilize on the earth in global equilibrium with the ocean, however.
In other words, the affinity of seawater toward the global earth environment is zero, and
seawalter thus possesses no exergy. On the other hand, substances at a temperature higher or
lower than the atmospheric temperature on the earth contain an amount of available energy
for work, and they hence have an exergy value greater than zero. Analogously, gases at a
pressure higher or lower than the atmospheric pressure also possess an amount of exergy.

Gaseous molecular oxygen in the atmospheric air holds itself at the molar fraction of
X,, =021, and it is at this concentration that the exergy of gaseous oxygen is zero. In order
to produce pure oxygen gas from air, then, an amount of free enthalpy is required equivalent
to minus the chemical potential of mixing for oxygen molecules in air, so that the pure
OXygen gas possesses an amount of exergy greater than zero. Similarly, pure metallic iron
possesses an amount of exergy equivalent to the affinity of the chemical reaction to form iron
oxide from metallic iron and oxygen gas in air, since metallic iron spontaneously corrodes
changing into iron oxide that is the most stable existence of iron in the natural environment (a
top layer of the lithosphere).
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Any spontaneous change of substances that occurs in the natural environment advances
with a decrease in exergy of the substances: this is the law of exergy decrease in spontaneous
processes in analogy to the law of affinity decrease in spontaneous processes. In contrast to
energy which is always conserved in any processes due to the first law of thermodynamics,
exergy is exempt from the law of conservation and so is the affinity.

The exergy of a substance is conventionally classified into two parts: physical exergy
associated with changes in temperature (thermal exergy), changes in pressure (pressure exergy,
dynamic exergy), and changes in concentration (mixing exergy); and chemical exergy associated
with changes in chemical composition of substances.

In this book we shall use the symbol epsilon, E and ¢, in Greek to express total exergy
and molar exergy (or specific exergy), respectively.

10. 2. Exergy and Heat.

Thermal energy (heat), as has been mentioned in the foregoing (e.g. section 3.7), can be
converted only partly into work, whereas the other forms of energy are theoretically all
convertible into one another. We now consider the amount of work generated from an
amount of thermal energy at a high temperature level T with respect to our environment at
temperature 7;. An ideal reversible heat engine (section 3.7) converts thermal energy into
work as shown in Fig. 10.1, generating the maximum amount of work, W_ , that can be
obtained from an amount of thermal energy Q received by a working substance (an ideal
gas) in the engine from an outside heat source at a high temperature T and releasing an
amount of thermal energy @, into an outside heat reservoir at a low temperature 7 in the
absolute temperature scale:

W,,=0-0,=0 T}T°- (10.1)

If T, is set at the temperature of our natural environment to which exergy is referred, W,,
becomes equivalent to the exergy of the thermal energy at temperature 7. The exergy, E, of
an amount of heat Q at a high temperature 7 is thus evaluated at Eq. 10.2:

E=W,=0 70,

(10.2)

which is the maximum amount of work that we can gain reversibly from an amount of
thermal energy, O, at temperature 7.

The thermal energy, @, =Q-E = Q(I;, /T), released from the engine to the environment
at temperature T, can not be used and is called anergy in terms of engineering thermodynamics.
In general, anergy is defined as the difference in amount between energy and exergy:

Anergy = Energy — Exergy. (103)
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The efficiency of the reversible heat engine, A, = (W,,/Q) as given in Eq. 3.45, represents
the energy availability A, of an amount of heat Q at a constant temperature 7

Agz%az_g_ﬂ--?. (104)

When the heat engine is operated not in a reversible but in an irreversible way, the
amount of work, W,,, that we obtain from the amount of thermal energy Q is less than the
maximum amount of work, W,_, , and hence it is less than the exergy, E, of the thermal
energy Q at temperature 7 as shown in Eq. 105:

vviﬂ = E - AEiﬂ < Wreva (105)

where AE,, is the amount of exergy that has been lost in the irreversible heat engine and is
called exergy loss due to the irreversibility in the energy transformation. In other words, to
obtain the same amount of work we need a greater amount of driving exergy in irreversible
processes than in the reversible process.

Heat source
at high temperature T
e Work done
_ _ . T-T
E - erev - Q T

Environment .@

at low temperature 7,

Fig. 10.1. Conversion of heat Q into work W, through a reversible heat engine
between a high temperature 7" and the temperature T', of our environment.

10. 3 Exergy and Pressure.

Let us now consider a gas phase of volume V and pressure p that expands itself reversibly
at constant temperature T, toward the state of volume V, at pressure p, in equilibrium with
the atmosphere. The reversible work done by the gas is then given by Eq. 10.6:

Po
W, = f pav. (106)

Since the work done against the atmospheric pressure p, of the outside environment, i.e. the
work done for removing a volume of atmospheric gas, can not be utilized, the available work
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equivalent to exergy E will be less than W,,, as shown in Fig. 10.2. If p is much greater than
P, however, we may assume that W, approximately equals E. From the equation of state for
an ideal gas, pV =nRIT,, with n being the number of moles of the gas, we obtain
pdV +Vdp=0 and dV =—(V/ pjdp=—(nRT,/ p*)dp. Substituting these equations into
Eq. 10.6, then, yields Eq. 10.7 for the exergy of an ideal gas expressed as a function of its
pressure:

® dp P
E=W,_,=-nRT,| ——=nRT,In—— (10.7)
0 . 14 A 7%

From Eqs. 10.7 and 3.47 the pressure-dependent molar exergy £ of an ideal gas is:

e=RT, 1n%=—T0(s—so), (108)
where 5 and s, are the molar entropy values of the gas at pressure p and p,, respectively (vid.
Eq. 7.3). We see in Eqgs. 10.7 and 10.8 that exergy is zero E = 0 if p= p,, while exergy is
greater than zero E > 0 if p= p,;i.e. expansion will occur, p — p, or p, — p. The pressure-
dependent exergy of a gas have thus a positive value when the gas pressure is higher or lower
than the atmospheric pressure: namely, a gas at a pressure higher or lower than the atmospheric
pressure possesses an amount of exergy.

Pressure p , volume V

Py
Wrev = f (p - p(l) dv
14

Environmental pressure Po> volume V,

Fig. 10.2. Exergy of a gas at a high pressure p expanding toward a low pressure p,,
at constant temperature 7, of our environment.

10. 4. Thermal Exergy of High Temperature Substances.

Let us consider a certain substance at a high temperature 7 from which a reversible heat
engine receives an amount of heat dQ(= dH) and performs an amount of reversible work
dW_, releasing an amount of heat dQ0(= dHO) into the environment at room temperature 7
as shown in Fig. 10.3. The substance continues supplying heat to the engine until its temperature
is equal to the environmental temperature T,. During the heat supply dQ the substance
decreases its temperature by dT’ as shown in Eq. 10.9 and decreases its exergy by dE equal
to the reversible work done, dW,,,, by the engine as shown in Eq. 10.10:
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dQ=dH=C, dT, (10.9)

T—

TT" Q>0 (10.10)

dE=dW,, =

where C, is the heat capacity of the substance at constant pressure.

High temperature T’
H,§

E=(H-Hp)-T, (S-S,

Hlb S(]

Environmental temperature T,

Fig. 10.3. Exergy of a substance at a high temperature T releasing heat in decreasing
its temperature from I"toward environmental temperature T, at atmospheric pressure.

The thermal exergy E of a high temperature substance, which decreases its temperature
from T to T, at constant atmospheric pressure p,, is hence given by Eq. 10.11:

TT-T, TT-T, T T, T e
E=Wm=f S22 d =f °dH:f C<1——°>dT=f CdT—Tf 24T
w T )T » AT R Ml ) T

0
T T dQ T S
=fT deT—Tof T=f cpdT—Tof dS=(H-H,)-T,(S-S)>0, (10.11)
© To To 5o

where H and H, are the enthalpy of the substance at temperature T’ and T,; S and S, are
the entropy of the substance at temperature 7" and T, respectively. We notice in Egs. 10.10
and 10.11 that the exergy E of a high temperature substances has always a positive quantity
so that work can be obtained from it with respect to the environment.

Equation 10.11 yields the exergy ¢ for one mole of the substance in terms of its molar
enthalpy # and molar entropy s as shown in Eq. 10.12:

e=(h—ho)— Ty (s —s,). (10.12)

In fact, this equation 10.12 defines the thermal exergy of a high temperature substance.

When any phase transformation such as condensation or solidification occurs in the
temperature fall, an additional exergy Ae of the latent heat of the phase transformation takes
part in the available energy as shown in Eq. 10.13:
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A£=qt(1 -—?) (10.13)
t

where g, is the molar latent heat of the phase transformation at the transformation temperature
T,. On decreasing the temperature (condensation and solidification) the latent heat is negative
g, < 0; and hence if T, > T, then an amount of exergy is released Ae < 0. On increasing the
temperature (melting and vaporization) the latent heat is positive ¢, > O; and hence if T, > 1;,
then an amount of exergy is taken up Ae >0; however, if 7, < T, then an amount of exergy
is released Ag <0. The numerical values of the molar exergy of substances and of their
phase transformations are tabulated in the literature on engineering thermodynamics [Refs. 9
and 11.].

The fall in temperature from 7 to the environmental temperature T releases an amount
of enthalpy (& - k), of which however only the exergy part can be used for the available and
transformable energy to obtain useful work or products by means of reversible processes. We
then define the energy availability A of a high temperature substance as in Eq. 10.14:

(10.14)

The molar exergy of a high temperature substance in Eq. 10.11, if no phase transformation
is involved in the temperature range considered, can be expressed by Eq. 10.15 in terms of
the mean molar heat capacity ¢,

T T
esz eppmdl - Ty e | %dT:a;;j;m(T—To)—c;;mTOln—TTo— (10.15)
0 [
T T Cp
f CPdT f TdT
Cmea]lz TO Cmean: TO
vk T TToT, 0 % T,

where ¢, is the molar heat capacity of the substance and is usually a function of temperature.
We normally assume that ¢;5" is equal to ;%" cp" = cp4" = cy*". This molar exergy is

compared with the molar enthalpy given by Eq. 10.16:
T
h—hy= f e dl = g (T - To). (10.16)
To

We thus obtain the energy availability A of the thermal energy of a substance at a high
temperature T as shown in Eq. 10.17:

& T, T
A= =T =1- T-T, lnf- (10.17)

This equation however is valid only when no phase transformation is involved.
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10. 5. Thermal Exergy of Low Temperature Substances.

If the temperature T of a substance is lower than the temperature 7, of the environment,
a heat engine can be operated between the environment (heat source) and the low temperature
substance (heat sink) . Let us consider a reversible heat engine as shown in Fig 10.4 in which
the engine gas receives an amount of heat dQ from the environment at atmospheric temperature
T, and performs an amount of reversible work dW,, releasing an amount of heat into the
low temperature substance at temperature I', whose enthalpy is then increased by an amount
dH =dQ - dW,, > 0. From the efficiency of the reversible engine we have Eq. 10.18:

T,-T

dH + dW, T

rev,

_I,-T _TI,-T _
aw,,, = T dQ = T, ( ) aw,,, = dH>0. (10.18)

The reversible heat engine continues operating until the temperature of the substance
becomes equal to the atmospheric temperature. The thermal exergy E of the substance at a

low temperature T is thus given by Eq. 10.19:

T

T

To _ Ty
E:W,,_,Ff L-T dH:-f dH+Tof =H-H,-T,(S-5)>0, (10.19)
T T

T
T

This equation indicates that the thermal exergy of a low temperature substance has a positive
sign and hence that the low temperature substance possesses an amount of available exergy
relative to the same substance at the atmospheric reference temperature.

The molar exergy of a low temperature substance is then given by Eq. 10.20:

e=h—hy—Ty(s—5), (10.20)
which is in the same form as Eq. 10.13 for a high temperature substance. With low temperature

substances (h - ho) <0 and (s— so) <0, but the balance, as shown in Eq. 10.18, gives us
£ >0 as a whole indicating that they can release exergy to do an amount of work.

E=(H-Hy)-T,(S-S,) Environmental temperature Tg
Ho, S,

H, s

Low temperature T’

Fig. 10.4. Exergy of a substance at a low temperature receiving heat and increasing
its temperature toward environmental temperature 7,
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10. 6. Exergy in Mixing Substances.

In the foregoing section 5.10 we have discussed the thermodynamic functions of mixing
which arise in the mixing of substances. At temperature T; and pressure p, the exergy £ due
to the mixing of substances for one mole of the mixture is given by the free enthalpy
g"=h" T, s for the mixing of substances, where & and s* are the enthalpy and the
entropy for the mixing of substances for one mole of the mixture; 2™ is zero if the mixture is
a perfect system defined by the symmetrical reference system shown in section 8.3, such as
an ideal gas mixture and a perfect solution. For a perfect mixture consisting of molar fraction
x; of each of the substances present, the entropy of mixing s™ for one mole of the mixture is
given, from Eq. 5.45, by Eq. 10.21:

sM=— 3 x(smimre _ gy = _ 3 x Rinx,. (10.21)

mixture

where s/ and s are the partial molar entropy of each of the substances i in the pure state
and in the mixture, respectively. The molar exergy for the mixing of substances in the ideal
mixture at temperature T is then expressed by Eq. 10.22:

M= -TysM=m"+ X x TyRInx,~ X x, T,RInx,. (10.22)
As mentioned in sections 5.9 and 8.4 the enthalpy of mixing is zero A" =0 for perfect

mixtures, while it is not zero /" = 0 for non-ideal mixtures. In the case of an ordinary gas
mixture we may assume A" = 0.

Pure substance 1 Pure substance 2

€= RT,(x;Inx; + x,1n x,)

A binary mixture

Fig. 10.5. Exergy of mixing for one mole of a binary ideal gas mixture at our
environmental temperature T, and pressure p,,

The molar exergy ¢ of an ideal gas mixture (4" = 0) at the environmental temperature
T, and pressure p, is hence obtained from Eq. 10.22 as given by Eq. 10 23:
= x &P+ M= x e 4 B - T, sM

= x ey Z RT,xInx, (10.23)
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where €7 is the molar exergy of each of the pure substances i. In Eq. 10 23 the first term is
the unitary quantities of exergy and the second term is the quantities of exergy of mixing. We
notice that the exergy of mixing £ has always a negative sign and hence that mixing reduces
exergy of the system. Equation 10.23 can apply not only to gaseous ideal mixtures but also to
perfect solutions in condensed phases (liquid or solid). For dilute-ideal and non-ideal solutions
however the enthalpy of mixing is not zero &* = 0, and hence it has to be taken into account
in evaluating the exergy of mixing. Figure 10.5 shows the molar exergy of mixing in a binary
ideal gas mixture at the environmental temperature 7, and pressure p,,.

Consider now at the environmental conditions of temperature 7 and pressure p, a gas
mixture whose compositional values x; are different from those values x, , of the stable
atmospheric air. For this stable atmospheric air each of the partial molar exergy values of the
constituents are zero. From Eq. 10.23 we then obtain the exergy of the gas mixture as shown
in Eq. 10.24:

e=2 RT,xln xx*' . (10.24)

i,0

A gas of oxygen-rich air of the composition x,, =0.30 and x,, = 0.70, for example, possesses
the exergy for one mole shown in Eq. 10.25 relative to the atmospheric air of the composition
Xo,0 =021 and x , =0.79:

— 0.30 0.70 \ _
eE=RT, (0.30 In o1+ 0.70 In 079 )— 0.0223 R T,. (10.25)

Furthermore, pure oxygen gas, whose molar entropy is lower by an amount of
RIn0.2034 than that of gaseous oxygen molecules in the atmospheric wet air (x,, =0.2034)
at the standard temperature and pressure, possesses its standard molar exergy 832 given by
Eq. 10.26 relative to the atmospheric wet air:

€3, = RT,In (;1—) =-298.2 x R x In 0.2034 =3.97 J'mol ™, (10.26)
1,0

where the superscript O indicates a pure substance at the standard state (pressure 101.3 kPa,

temperature 298.2 K) and subscript O indicates the exergy reference state.

In the case of non-ideal mixtures (e.g. liquid and solid solutions), the activity a, =y x,
has to be used instead of the molar fraction x, of substance i after the logarithmic sign in Eq.
10.23 to express the mixing term of the exergy at the exergy reference temperature 7, and
pressure P, as shown in Eq. 10.27:

fa)=2 x (a=1)+ X RT,xIna,= 3 x,ea=1)+ X RT,x1Iny,x, (10.27)

where ¢/(a=1) is the unitary exergy at unit activity of i and y, is the activity coefficient of i.
The unitary exergy ¢, is equivalent to the exergy of each of the pure substances i in the
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mixture when the reference system for the unitary quantities is symmetrical (vid. section
83).

When the mixture is at a temperature 7" different from the reference temperature T, the
exergy ¢ for one mole of a non-ideal mixture is given by Eq. 10.28:

dln q,

T, a)=X x €T, a=1)+ X RT,x,Ina,- X RT(T -T,)x, (6—T) . (1028)
i i i pox;

where the third term is related with the temperature-dependence of the activity.

10. 7. Chemical Exergy of Substances.

A chemical substance has its chemical energy in terms of the chemical potential and has
its chemical exergy as well. Let us consider a chemical substance present at unit activity in
the normal environment at temperature T, and pressure p, and examine its chemical exergy in
relation with the exergy reference species in the atmospheric air, in seawater, and in lithospheric
solids (Refs. 9 and 11).

Typical exergy reference species in the atmospheric air are oxygen O,(x,, = 0.21 in air),
nitrogen N, (x,, = 0.78 in air), carbon dioxide CO,, and water vapor H,O at their respective
concentrations. The chemical exergy €3, of oxygen O, at the unit activity (unit fugacity or
unit atmospheric pressure), then, arises from its mixing exergy as shown by Eq. 10.26 in the
preceding section: we call it the standard molar chemical exergy of pure oxygen gas:

€3, =—RT,Inx,, (10.29)

where X, is the molar fraction of oxygen moles in the atmospheric air.

We next consider metallic iron whose exergy reference species are oxygen molecules in
the atmospheric air and solid iron oxide Fe,O,, which is the most stable existence of iron in
the top layer of the lithosphere. In the atmospheric air metallic iron reacts with oxygen gas to
form iron oxide (corrosion of metallic iron). The reaction at the standard state (unit activity,
standard pressure 101.3 kJ, and standard temperature 298 K) is expressed in Eq. 10.30:

2 Fegq + % Os4ga5) = F€,05 10, Afey0, = 742.6 kJ-mol ™, (10.30)

where A;’M 1s the standard affinity of the reaction and, as described in chapter 4 and 5, it is

expressed by the difference in the standard free enthalpy, G’ , between the product and the
reactants; Ag, o, =-AG" = —(AH° - TOASO) =2pp +(3/2)ug, - uz o
standard chemical potential of species i. If advancing reversibly in the standard state, the

reaction holds the following exergy balance:

with u being the

26, + %—882 = ERey05 + Abey0y: (1031)
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where 8;’5203 is zero with Fe,O;being one of the exergy reference species and sgz is given by
Eq. 10.26. We, hence, obtain the standard exergy of metallic iron as shown in Eq. 10.32:

. = 4 {0+ 742.6 - (3-) x3.97} = 3683 kI mol™ (1032)

In the same way as Eqgs. 10.31 and 10.32, we also obtain the standard exergy of gaseous
hydrogen and that of solid carbon, e;’h and &2, as shown in Eqs. 10.33 and 10.34, respectively:

e, + %882 = &h,0 + Ang, (10.33)

€2+ €3, = &2, + Alo,, (10.34)

where A,(;ZO is the standard affinity of the reaction, H +0.50 gy = Hy O jiquiay » Ago2 is the

3}0{20 is the standard molar exergy

2(gas)
standard affinity of the reaction, Cyq) + Oy gy = COy ()3
of liquid water H,0O ,e}ohoz—RZ:, Inxy g, and 8302 is the standard molar exergy of CO,,
sgol =-RI,In xy,, o, With x, , , and xg, , being the molar fractions of H,0andCO, in the
wet atmospheric air, respectively.

From the foregoing discussion, it follows that the standard exergy of one of the reactants
can be estimated by use of the standard affinity of the reaction, provided that we know the
values of the standard exergy of the other reactants and products. The numerical values of the
molar exergy thus obtained of various chemical substances in the standard state (temperature
T° =298 K, pressure p° = 1013 kPa, activity a; = 1) are tabulated as the standard chemical
exergy ¢, of chemical substances in the literature on engineering thermodynamics [Ref. 9 .].

Furthermore, in analogy to the partial molar quantities of thermodynamic functions, the
partial molar chemical exergy, €,.m.;» €an be defined for a substance i in a gaseous mixture,
in a liquid sofution, and in a solid solution as shown in Eq. 10.35:

aEc m
Echem,i = ( anhe

) s (10.35)
To, Po g i)

where E,__ is the total chemical exergy of the mixture or solution under consideration at the

environmental temperature 7, and pressure p,. The partial molar chemical exergy of substance

0
chem i

i at temperature T, can be expressed in terms of the standard molar chemical exergy ¢
and the activity a, of the substance i as follows:

Eem,i = Eohem,i + RTpIn a; . (10.36)
Then, the exergy E .., of the mixture at the standard temperature and pressure is obtained:

B =2 0, € ;= 2 1, 8%, .+ RT,Y nIna, (1037)
T g 7 g 04 ™
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This equation 10.37 is equivalent to Eq. 10.27.
We now consider a chemical reaction that occurs at a temperature 7' and pressure p other
than the standard state (T°, p°, and unit activity):

R—P, reaction affinity A (10.38)
where R denotes the reactants, P denotes the products, and A is the affinity of the chemical
reaction at temperature T. The reaction exergy, AE,,, , ,, dissipated during the reaction is
equivalent to the reaction affinity and is given by Eq. 10.39 and in Fig. 10.6:

AE

chem,T ,p = Ereact,T,p -

E urp =4, (10.39)
where E,,, . ,and E,,, ;. , are the amounts of exergy of the reactants and products, respectively.
The reaction affinity can be estimated thermodynamically so that by calculation we obtain
the change in exergy associated with the chemical reaction.

The reaction exergy is usually assumed to consist of a chemical part at the standard state
(T°, p°, and unit activity) and a physical part associated with the physical state of the

reaction. The chemical part AE’

cemr0 0 1S €quivalent to the standard affinity A° of the

reaction, and the physical part AE,, is due to the change in temperature, pressure, and
concentration of the reactants and products between the standard state and the state at which

the reaction proceeds:

AE AE®

chem,T, p = chem,T o,p

o+ AE, = A"+ AE, . (10.40)

This is a general expression for the reaction exergy of a chemical reaction taking place at
conditions other than the standard state.

Reactants at 7" and p

AEchem,T,p = E A

react,T,p ~ ~ prod, T,p =

Products at Tand p

Fig. 10.6. Chemical exergy AE,,,r , associated with a chemical reaction at temperature
T and pressure p: E,,,,r, and E,,, are the amounts of exergy of the reactants and
products; A is the affinity of the reaction.
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10. 8. Standard Chemical Exergy of Substances.

In chemical thermodynamics the standard chemical potential y; of a compound i is
defined as the molar free enthalpy Agg for the formation of the compound from its constituent
elements j in their stable molecular form in the standard state, and their chemical potential
values are set zero in the standard state: u?::Agg. In exergy engineering the standard molar
exergy ¢, of a compound i is defined as consisting of the molar free enthalpy Ag(/’ for the
formation of the compound in the standard state from its constituent elements and the
stoichiometrical sum of the standard chemical exergy values sf of the constituent elements j
in their stable state at the standard temperature T° and pressure p°: €2 = Agh+ ZJ,‘ v, €]

In calculating the numerical values of the standard molar exergy &, of chemical elements
and compounds, we usually make clear the exergy reference species at zero level of exergy in
our natural environment of the atmosphere, the hydrosphere and the lithosphere.

Table 10.1. Standard molar chemical exergy of a few substances relative to the
reference species in the atmosphere [Refs. 9 and 11.].

Substance O, N, CO, H,O H, C
Gas Gas Gas Gas Gas Solid

e /K -mol™ 3.97 072 19.89 95 23609 41026

Reference

substance 0, N, CO, HOu HOx, co,

in the atmosphere O, O,

Atmospheric H,O is in equilibrium with the ocean.

For gaseous substances such as oxygen O,, nitrogen N,, carbon dioxide CO,, and water
vapor H,O, the standard chemical exergy can be calculated from their concentrations in the
atmospheric air by use of Eq. 10.26. Furthermore, the standard affinity A of the reaction,
Hy ) +(]/2)02( gos) = Hzo(gas), yields through Eq. 10.33 the standard chemical exergy of

gaseous hydrogen H,. Similarly, the standard affinity A° of the reaction, Clasiia) ¥ Oy =
CO,(gus) - Yields the standard chemical exergy of solid carbon C. Table 10.1 shows the standard
molar exergy of these substances relative to the exergy reference species in the atmospheric
air at temperature 298 K and pressure 101.3 kPa.

For substances which are not present in the atmosphere but in the ocean, we can take the
reference species of zero exergy level at the most stable state of their existence in seawater.
For example, metallic sodium takes its reference level at the state of sodium ions in seawater
and the standard chemical exergy eﬁa of metallic sodium is equivalent to the free enthalpy
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required to form solid sodium from sodium ions in seawater: Na_, +0.5H,,,, =
Na_,, + Ho . Taking account of Eq. 9.38 for the chemical potential of a hydrated ion, we
obtain the standard exergy of solid sodium &3, from the free enthalpy change for the formation
of solid sodium from sodium ions in seawater as shown in Eq. 10.41:

& =~ = R T, 10 Cype Y + % &y, - 2303 R T, (pH),, (10.41)

where P‘ONa+ is the standard chemical potential of hydrated sodium ions, sfh is the standard
molar exergy of gaseous hydrogen, (pH)sm is the pH of seawater, and where ¢ . and v
are the concentration and the activity coefficient of sodium ions in seawater, respectively.
Table 10.2 shows the numerical values of the standard chemical exergy of a few substances
relative to their ionic form present in the ocean at the standard temperature and pressure.

Table 10.2. Standard molar chemical exergy of a few substances relative to the
ocean, (Ref. 11)

Substance Na P Cl, S Zn As
Solid Solid Gas Solid Solid Solid
& /&I -mol™ 3359 8653 124.1 6073 3387 486.1
866.0 476.5
Reference
substance Na* H,PO; cr Sor Zn*  HAsOY
in the ocean HPO, HAsOj

Table 10.3. Standard molar chemical exergy of a few substances relative to the
lithosphere (Ref. 11 )

Substance Fe Fe, 0, Fe,0, Si Si0, MnO
gl /KI-mol™ 368.41 0 96.97 8003 0 100.36
Reference

substance Fe, O, Fe,O, Fe,O4 SiO, Si0, MnO,

on the earth
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In the case of solid substances the reference species is often set at the most stable solid
compounds in lithospheric rocks. For example, metallic iron is most stable in the form of its
oxides. The standard chemical exergy of metallic iron can then be obtained from the standard
affinity A}’ of the formation of iron oxide, Fe +0.750, = 0.5F¢,0;: Aj? = ey, +O.75$g2
- O'SSI?eZO; and 81(;203 = 0; hence &g, = A}) —0.75882. Table 10.3 shows the standard molar
chemical exergy of a few substances relative to the solid reference species in the lithosphere
at the standard temperature and pressure.

10. 9. Total Exergy of Substances.

The exergy of substances is arranged as consisting of a physical part and a chemical part.
The chemical part of exergy is conventionally attributed to the chemical formation of the
substances in the standard state from the exergy reference level substances in our environment,
while the physical part of exergy is attributed to the changes in temperature, pressure and
concentration (mixing) of the substances. The overall exergy E of a gaseous mixture of
substances is thus expressed as shown in Eq. 10.42:

E=2ng +RT,2 nIn %

0

+ n‘.c;j'?“(T -T,-T,In %) +RT, Y {niln (

)} (10.42)

In this equation the first term on the right hand side is the chemical exergy (vid. Egs. 10.29
and 10.32), the second term is the pressure exergy for gaseous substances (vid. Eq. 10.7), the
third term is the thermal exergy due to the change in temperature (vid. Egs. 10.11 and 10.15),
the forth term is the mixing exergy due to the change in concentration of the substances (vid.
Eq. 10.21). For mixtures in condensed phases (liquid or solid), the pressure exergy may be

approximated by V, ( p- po) , where V,_ is the volume of the condensed phase at temperature
T.

n;
2n

From the foregoing discussion in this chapter we realize that all the terms in Eq. 10.42
can be expressed in the form (H - Ho) - TO(S - SO). We can therefore express the total exergy
in a simple form as follows:

E=(H -H,) - T, (S -S) (10.43)
This is a general expression for the total exergy of substances.
10. 10. Exergy and Affinity

Exergy of a substance represents the level of available energy of the substance relative to
the exergy reference zero level of the substance in our normal environment: the substance
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undergoes a spontaneous change in the direction in which its exergy decreases as the change
proceeds. On the other hand, the affinity of a process, as mentioned in chapters 3 and 4,
represents the difference in the available energy level (free enthalpy, Gibbs energy) between
the initial state of the substance (reactant) and the final state of the substance (product); the
process spontaneously proceeds in the direction in which its affinity decreases. This situation
is illustrated in Fig. 10.7. We then realize that exergy and affinity resemble each other in that
the two quantities represent available energy and determine the possibility and capacity of
irreversible processes.

If we consider a physicochemical process in which reactant substances change from their
initial state to their final state of product substances which is in equilibrium with the exergy-
reference substances in the normal environment, the affinity of the process is represented in
general by Eq. 10.43 in terms of enthalpy and entropy:

A=(H; ,— Hj,

[

vpo) -1, (S;»P - SI;Oy Po)’ (10.43)
where Hy , and Sr , are the enthalpy and the entropy of the initial state of the substances
under consideration at temperature 7 and pressure p; Hfo p, and Sﬁo _n, @re the enthalpy and the
entropy of the final state of the substances in equilibrium with the exergy-reference substances
in the normal environment at temperature T;, and pressure p,, respectively. This equation
10.43 is, in fact, equivalent to the general equation of exergy of the initial state of the
substances under consideration as shown in Fig. 10.8:

E={(H;,—Hy ,)-T,(S; ,- 57 ,)=A. (10.44)

Ty po

We then realize that exergy is in principle the same energy function as affinity.

Initial state

@

finity A
Exergy E

"
_/

Final state

)
-/

Reference state in natural environment

Fig. 10.7. Exergy and affinity
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Initial state

7

Affinity A = Exergy E

Final state = Reference state in natural environment

Fig. 10.8. Exergy equivalent to affinity when the final state of reaction is in equilibrium
with the exergy-reference state.



CHAPTER 11

EXERGY DIAGRAM

The effective use of energy in a chemical plant results from employing the
combination of processes that consumes the least amount of exergy as a whole
in manufacturing the products. To examine the flow of exergy the diagram
that visualizes the exergy balance in manufacturing processes has practically
been used for the purpose of improving the exergy efficiency in the plants.
Furthermore, a novel concept of exergy vectors has recently been brought
forth to evaluate the exergy efficiency of various processes on an enthalpy-exergy
diagram. By means of exergy vectors the minimum exergy thermodynamically
required for a manufacturing process may be estimated in the diagram. This
chapter describes the principle of exergy vector diagrams and their application
to basic processes such as heating-cooling, compression-expansion, separation-
mixing, and chemical reactions.

11. 1. Efficiency in the Use of Energy.

In chemical manufacturing processes there are a flow of substances (materials) 2 n, a
flow of work W, and a flow of heat Q, which are all accompanied by a flow of exergy E.
The inlet flow of exergy dE,/dt (positive sign) into and the outlet flow of exergy dE_/dt
(negative sign) out of an open system of chemical processes at a temperature T are given by
Egs. 11.1 and 11.2, respectively:

dE, dn,  dw, T—To) 4o,
T a et g +( T ) dr ath
GE._sidn_  dW. (T-T,)do.

@%@ Bt *( T ) dar (11.2)

where n, is the number of moles, ¢, is the molar exergy of substance i, and T is the exergy
reference temperature. On the right hand side in Egs. 11.1 and 11.2 the first term is the
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exergy flow of substances, the second term is the exergy flow of work, and the third term is
the exergy flow of heat. Figure 11.1 shows the flow of exergy through an open system at a
temperature 7 in which physical and chemical processes are taking place in irreversible
modes. Since exergy decreases with the advancement of irreversible processes in the system,
the outlet flow dE /dt is less than the inlet flow dE,/dI of exergy:

dE,(, > dE_ dE+ _ dE_ +T de'rr _ dE— dElass
at = dt a ~ dt "7 -

@ a T dt (13)
where T, is the exergy reference temperature of 298 K, dS,,/dt is the creatjon of entropy, and
T, (dS,,/dt) = dE,,Jdt is the loss of exergy due to the irreversible processes occurring in the
system.

Equation 11.3 is occasionally called the law of exergy loss or the Gouy-Stodola’s relation
(G. Gouy and A. Stodola) who first discovered independently of each other in the late
nineteenth century the loss of maximum work due to the irreversibility of thermal processes
[Ref.9.].

~

Open system
dE, _ 5 dn, . (Chemical plant) dE. _ < dn_
dte % dr —> [Exergy consumption] ——éw TR

+ dw, ) ) dw_

di Chemical reaction *Ta
N (T -7, ) dQ, Pressure change s (T _ To) fl_Q;

T dt Heat transfer T dt
Mixing
e J

Fig. 11.1. Flow of exergy through an open system at temperature 7.

The efficiency of exergy utilization in an open system (chemical reactor) is then defined
by Eq. 11.4:

dE. dE,,

_dat ., at

n=—fg—=1-—fg— (11.4)
d di

where dE,./dt is the rate of the loss of exergy (consumption of exergy) due to the irreversible
processes occurring in the open system: this is also called the rate of internal exergy loss in
the system. Reducing the loss of exergy obviously leads to improving the exergy utilization
in chemical plants.
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11. 2. Exergy Balance Diagram.

Let us consider a physicochemical process occurring in an irreversible way in a chemical
reactor, which receives raw materials with enthalpy H, and entropy S, together with an
amount of heat @, at temperature 7, ; and generates a useful product expressed by enthalpy
H, , and entropy S, giving off enthalpy H, and entropy S, as effluent materials, and
discharging an amount of waste heat Q, at the environmental temperature T, as shown in
Fig. 11.2. The product may be useful work or useful substances, both being represented in
terms of H,,, and §, ;. The effluent materials may be waste or reusable. For the energy

balance (the enthalpy balance) of the process we have Eq. 11.5:
H1+Q1=H2+Q0+Hprod' (115)

If the process occurs in a reversible way instead of an irreversible way, a greater amount
of products, expressed by H, and § and a smaller amount of waste heat, Q, ., .
will be yielded than those in the irreversible process; the energy balance is then given by Eq.
11.6:

rod ;rev prod,rev *

Hl +Ql =H2+Q0,rev +Hprod,rzv' (116)
From Eqs. 11.5 and 11.6 we obtain Eq. 11.7:

Hprod,rev - Hprod = QO - Qo,m > (1 17)

which indicates that the decreased amount of products in the irreversible process compared
to the reversible process is accompanied with an increased amount of waste heat.

Temperature 77
\Q
1
~Sa Product H, S,

Raw mterials

H, S, Process

\Q Effluent H,, S,

Environmental temperature 7,

Fig. 11.2. Physicochemical irreversible flow process.
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In the reversible process no entropy creation occurs:

.8 = o +5,+8

1 prod rev ?
T T

(11.8)

whereas, in the irreversible process an amount of entropy creation AS,, occurs as shown in

Eq. 11.9:

%+SI+ASI.”=%+SZ+SPM. (11.9)
0

1

We then obtain Egs. 11.10 and 11.11 from Eqgs. 11.7, 11.8and 11.9:

Q= Qo = L(AS, +S 0t = Sprat) > (11.10)

YZ)ASirr = Hprod,rev _Hprod_YZ)(Sprod,mv _Sprod)' (11.11)
Equation 11.11 gives the difference in exergy between the reversible and the irreversible
process and hence the loss of exergy, AE, , due to the irreversibility of the process:

AE,, - T,AS,, . (11.12)

This equation is equivalent to Eq. 11.3 representing the law of exergy loss.
The exergy balance is then given as follows::

E,=E_+AE,, (11.13)

where the inlet exergy E, is

E, -{H, —HLO—TO(SI—SLO)}+Q1(1~%], (11.14)

and the outlet exergy is

T,
1-;). (11.15)

E— = {Hpr _Hprod,O - ];(Sprod - Sprod,o)} +{H2 - HZ,O - T(‘)(SZ - SZ,O)} + QO(
0

In Egs. 11.4 and 11.5 the subscript zero indicates the exergy reference state; i.e. the state at

the atmospheric temperature and pressure. On the right hand side of Eq. 11.15 the first term

is the useful exergy, E, ., obtainable from the product, the second term is the rejected

P
exergy, E which may be waste or reusable, and the third term is the zero exergy for the

reject >
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prod Hprad,O - T;)(Spr - Sprodo)’
the external exergy loss in contrast to

discharged heat at the atmospheric temperature: E_, =

E uw =H,~ Hyo - T,(S, ~ S,,). We may call E
AE,  which is called the internal exergy loss.
We further define the exergy efficiency, 1., as Eq. 11.16:

reject

Eprod — 1 _ AEIoss _ Euject
E E E

+ + +

7, = , (11.16)

where AE,/E, is the relative internal exergy loss and AE,_,/E, is the relative external
exergy loss. Another exergy efficiency called the intrinsic exergy efficiency has recently been
defined by Eq. 11.17 [Ref. 13.], which takes into account the transiting exergy E, ., (the
rejected exergy E

reject ):

Eprod 'Eprod
Wiy = —— o = =22 11.17),
e E+ - Etrans ECWIS ( )

where E,, , is the exergy for the product and E_, is the exergy actually used for the process
itself. The transiting exergy E, . is the part of exergy that enters and traverses the manufacturing
process without undergoing any transformation and thereby is not consumed by the process.
The intrinsic exergy efficiency usually increases with increasing conversion ratio of the raw

material to the product in the process [Ref. 13.].

System boundary

Fig. 11.3. Schematic band diagram of exergy balance for a simple process from a
raw material and heat to a product and waste.

Figure 11.3 shows in a schematic way the exergy balance in an irreversible process in the
form of a band diagram, where the bandwidth is proportional to the exergy value. For
complex physicochemical processes operating in industrial manufacturing plants, the exergy
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balance diagram is much more complicated than the simple diagram shown in Fig. 11.3, but
the exergy analyses in the form of the band diagram is essentially the same no matter how
intricate the processes may be. The band diagram of the exergy balance, which is called the
Grassmann diagram [Ref. 14.], has widely been used in the exergy analyses of various
thermal, mechanical, and physicochemical processes [Refs. S and 12.].

11. 3. Exergy Vector Diagram.

In order to illustrate the exergy loss in a combination of irreversible physicochemical
processes in an open system, Ishida [Ref. 15.] has brought forth the concept of exergy vectors
for physical and chemical processes in the form of an enthalpy-exergy diagram. The diagram
consists of the ordinate (y-axis) indicating the amount of exergy and the abscissa (x-axis)
indicating the amount of enthalpy of the processes in the system, which we shall call in this
book the exergy vector diagram. In the following we shall discuss the principle of the exergy
vector diagram and its application.

4 N\
dAH,
. dt
aH, | 1—————- dH,,
& T dAE, TP g
dr
dE, |~ A dE,,
dt D — it —— —— - dt
dAE,
L di
J

Fig. 11.4. Flows of enthalpy and exergy through an open system in which two
processes 1 and 2 are advancing at constant temperature: H = enthalpy flow, E =
exergy flow, AH = enthalpy change, AE = exergy change in the system.

Let us consider a simple open system in which two irreversible processes 1 and 2 are
occurring in a stationary state as shown in Fig. 11.4. The rates of the enthalpy flow and of the
exergy flow between the system and the surroundings are expressed by dH/dr and dEl/dr,
respectively. Further, the rates of the enthalpy change and of the exergy change within the
system are expressed by dAH/dt and dAE/dt, respectively. The enthalpy and exergy include
not only those of substances but also those of work W and heat (. For the transfer of
enthalpy Eq. 11.18 holds:

H,=W, H =0, (11.18)
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where H,, and H, are the amounts of enthalpy due to work W and heat Q, respectively. For
the transfer of exergy, in contrast, Eq. 11.19 holds:

L

E,=W, E, =(1- -

)Q, (11.19)

where E,, and E, are the amounts of exergy due to work W and heat Q, respectively.
In accordance with the law of energy conservation (the first law of thermodynamics) Eq.
11.20 is valid for the enthalpy flow and the enthalpy change in the stationary state:
dHin _

dH,

out  _

daH, dAH, o
dt a dt a7

(11.20)

For the exergy flow and the exergy consumption, however, the law of exergy consumption or
entropy creation (the second law of thermodynamics) yields Eq. 11.21:

dE, dE dAE,  dAE,
i T out > O + —— S 0 .
a  a = T a a o (1.21)

indicating that any irreversible processes consume some amounts of exergy in the system

Figure 11.5 shows a framework of the exergy-enthalpy diagram. The regime of vectors
on the left side of the ordinate is for exothermic processes where AH <0, while the regime
on the right side of it is for endothermic processes where AH > 0. Furthermore, the regime of
vectors on the upper side of the abscissa is for non-spontaneous processes where AE> 0,
while the regime on the lower side of it is for spontaneous processes where AE<O.

I
Exothermic

Spontaneous

Fig. 11.5. Regimes for exothermic, endothermic, spontaneous, and non-spontaneous
processes in exergy-enthalpy diagrams.

Any process that occurs in an open system can be represented on an exergy-enthalpy
diagram by a vector starting from the origin of the coordinate axes. A non-spontancous and
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endothermic reaction (AH>0, AE >0) such as Fe,O, otid) — 2P jquia) + 1.50, (4, fOr
example, makes its exergy vector appearing in the regime on the upper and right side of the
diagram as shown in Fig. 11.6(a). In this regime, obviously, the enthalpy AH of the vector is
the thermal energy that has to be received, and the exergy AE is the exergy that has to be
supplied into the system for the reaction to occur.

The reaction, Fe,0; (g4) = 25 jiquia) + 150, gus)»
sign, can not spontaneously proceed. But this reaction may be made to proceed, if coupled
with an exergy-releasing spontaneous chemical reaction such as H, (gus) +O.502(xas) -
H,0 sy OF Cigagy + Oy gy = CO; (4 1 the reaction system. This 1s due to the transfer of
exergy from a spontaneous reaction to a non-spontaneous reaction, in which an amount of
exergy is released from the spontaneous reaction (an exergy donor) and it is then absorbed by
the non-spontaneous reaction (an exergy acceptor). The transferred exergy makes the non-
spontaneous reaction proceed. Figure 11.6(b) shows the exergy vectors for a pair of coupling
and coupled reactions consisting of a vector for an exergy-releasing process 2 (coupling
process) on the lower-left side, a vector for an exergy-absorbing process 1 (coupled process)
on the upper-right side, and a composite vector for the combined process of 1 and 2 on the
y-axis.

whose exergy change AE has a positive

AE AE
+ +
Process 1 Process 1
- 9 + AH - + AH
~<— Exergy loss
Process 2
(@) (b)

Fig. 11.6. Reaction vectors in exergy-enthalpy diagrams: (a) a non-spontaneous
process giving a single reaction vector, (b) coupling and coupled processes leading to
a composite reaction vector.

The law of energy conservation makes the composite vector lie on the y-axis where
AH = 0. Furthermore, the law of exergy consumption (entropy creation) for irreversible
processes makes the composite vector of the two reactions emerge on the lower side of the y
axis where AE < 0. The composite vector therefore indicates the amount of exergy consumed
(exergy loss) AE,, during the combined process of the coupling and coupled reactions.
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If all the processes were occurring reversibly, there would be no consumption of exergy
in the system and, hence, the composite vector would vanish at the origin of the coordinates.
In order to reduce the exergy consumption, we should therefore make use of such an exergy-
releasing reaction so as to reduce the composite vector of the coupling and coupled reactions
as close as possible to the origin on the y axis.

In general, a chemical plant manufactures product materials of high exergy levels form
raw materials of low exergy levels through exergy-absorbing reactions by using suitable
exergy-donating processes. To meet this purpose, we need to use high exergy materials for
the coupling reactions and design the manufacturing processes so as to consume the least
amount of exergy. The exergy vector diagram shows the losses in exergy and hence serves
the purpose of minimizing the consumption of exergy by using the most suitable physical and
chemical coupling processes that thermodynamically consume the least amount of exergy in
manufacturing the target products.

11. 4. Principles in Exergy Vector Diagrams.
The exergy vector of a process in an exergy-enthalpy diagram has a slope A indicating
the ratio of the exergy change AE to the enthalpy change AH during the process:

_AE | TAS
A=A =l-—ag e

(11.22)

where AS is the entropy change in the process: AE = AH - 1) AS.

AE AE
+ +

A>1 /
A<0 >/

Q _ .
7 O0<A<l Cold- absorbing Heat - absorbing

Separating

»
- 0 +AH — + AH
O<i<l Heat - releasing Q

A<O

2
»
A>1 / Mixing

Cold - releasing

Fig. 11.7. Processes in various regimes in an exergy-enthalpy diagram: A = the
energy-availability, line AS = O correspondsto AH = AE .
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This ratio A represents the availability of energy in the process. The exergy vector with
the energy-availability at A =1 is on the straight line going through the coordinate origin at
an angle of 45" as shown in Fig. 11.7. On this line the change AH in enthalpy is equal to the
change AE in exergy and hence no entropy change (AS = 0) results during the process,
indicating that all the energy change is utilized at 100 % efficiency in the form of exergy.

The reversible exchange of work (mechanical, electrical, and other forms of work), in
which AE, = AH,,, gives an energy-availability A, equal to one:

Ay =1, (11.23)

which corresponds to a straight line going through the coordinate origin at an angle of 45°.
On the other hand, the exchange of heat (thermal energy), in which AE, = AH, even in
reversible heat exchange, gives an energy-availability A, less than one as follows from Eq.
11.24

Ay - (1 —%) , (11.24)
indicating that the slope of the exergy vector of thermal processes depends on the temperature
T at which heat transfer occurs.

There are three vector regimes in the exergy-enthalpy diagram as described in the following:

(1) The regime in which the energy-availability is in the range of 0 < A <1 and in which
the changes in entropy AS and in enthalpy AH have the same sign (positive or negative),
1>T,AS/AH > O: Since an increase or a decrease in both enthalpy and entropy means heat
absorption into or heat release from the system, respectively, a non-spontaneous process
(AE > 0) with positive T,AS and AH is in the regime of heat-absorbing processes, while a
spontaneous process (AE < 0) with negative T,AS and AH is in the regime of heat-releasing
processes.

(2) The regime in which the energy-availability is greater than one A > 1 and in which the
changes in entropy AS and in enthalpy AH have always the opposite sign (one positive and
the other negative), T,AS/AH < O: The process, in which the enthalpy change is positive
AH >0 and the entropy change is negative AS <0, is heat-absorbing, but yet entropy is
decreasing despite heat absorption into the system. The decrease in entropy can not result
from heat absorption but from separation of the constituent substances in the system; i.e. a
decrease in the entropy of mixing. The regime in which AH >0 and AS <0, hence, is for
separating processes, which absorb heat and decrease entropy of the system. On the other
hand, the regime in which AH <0 and AS >0 is for mixing processes, which release heat
and increase the entropy of the system.

(3) The regime in which the energy-availability is less than zero A < 0 and in which the
changes in entropy AS and in enthalpy AH have always the same sign (positive sign or
negative sign) and T, AS is larger than AH ; T,AS/AH > 1: The process, in which the changes
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in enthalpy and in entropy are both positive (AH >0 and AS >0) and in which the change in
exergy is negative (AE < 0), is a spontaneous process releasing negative heat (cold); i.e. a
cold-releasing process. On the other hand, the process, in which the changes in enthalpy and
in entropy are both negative (AH <0 and AS <0) while the change in exergy is positive
(AE > 0), is a non-spontaneous process absorbing negative heat; i.e. a cold-absorbing process.

The term “process” we have used in the foregoing includes physical and chemical changes
in general. For example, increasing the temperature of a system from the atmospheric
temperature to a high temperature is a heat-absorbing process; decreasing the temperature of
a system from a high temperature to the atmospheric temperature is a heat-releasing process;
extracting pure oxygen and pure nitrogen from the atmospheric air is a separating process;
mixing gaseous oxygen with gaseous nitrogen to produce atmospheric air is a mixing process;
cooling a system from the atmospheric temperature down to a low temperature is a cold-
absorbing process; and increasing the temperature of a system from a low temperature to the
atmospheric temperature is a cold-releasing process.

(a) (b)

Fig. 11.8. Schematic exergy vector diagrams for exergy transfer between an exergy-
absorbing process and an exergy-releasing process: (a) the combined process is not
feasible, (b) the combined process is feasible.

11. 5. Exergy Transfer between Two Processes.

Manufacturing processes in chemical plants involve the exchange of exergy among various
physical and chemical processes. Let us now consider a simple case in which an exergy-
absorbing process 1 is coupled with an exergy-releasing process 2.

In the case shown in Fig. 11.8(a) where the composite vector, that is the vector sum of the
two component vectors of the exergy-absorbing and exergy-releasing processes 1 and 2,
points in the direction of exergy increase (AE > 0), the resultant process of the coupled and
coupling processes is thermodynamically impossible to occur in the system under consideration.
On the other hand, in the case shown in Fig. 11.8(b) where the composite vector points in the
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direction of exergy decrease (AE < 0), the resultant process is allowed to proceed consuming
part of the exergy in the system.

The feasibility of the resultant process depends on the slopes A4, and A, of the two
vectors of processes 1 and 2; A is the energy-availability discussed in section 11.4. In the
case where the slope A, of the vector of exergy-absorbing process 1 is greater than the slope
A, of the vector of exergy-releasing process 2, no transfer of exergy can occur between the
two processes and hence the resultant process is not feasible; whereas, in the reverse case
where A, is smaller than A, the transfer of exergy is allowed to occur from process 2 to
process 1 and then the resultant process may occur spontancously. The exergy transfer
therefore requires that the energy-availability A, of the exergy-releasing process should be
greater than the energy-availability A of the exergy-absorbing process:

‘acceptor

Ao

1o}

)

‘acceptor *

(11.25)

This is the criterion for the transfer of exergy between the donor and the acceptor process.

11. 6. Exergy Vectors of Heating-cooling Processes.

Heating and cooling are commonly occurring processes in chemical plants. Let us consider
a thermal process in which an amount of heat, Q, is transferred into or out of a system at a
constant temperature 7. Equation 10.24 gives us the energy-availability A, in heating and
cooling processes as shown in Eq. 11.26:

/\Qzl—%, (11.26)
where T > T, for heat-absorbing processes, while T < 7 for cold-absorbing (heat-releasing)
processes. The energy-availability A, equals the slope of the exergy vector of the process.

The exergy vectors of heating-cooling processes, as shown in Fig. 11.9, are exemplified
by a vector with the energy-availability of A, =1 (vector slope 45", AS=0, AH = AE) for
heat transfer at apparently unlimited high temperature 7 = K (e.g. electrical heating); by a
vector with the slope of A, = 0.5 for heat transfer at 7 =5% K in the heat-absorbing regime
on the upper right hand side and in the heat-releasing regime on the lower left hand side of
the diagram; by a vector on the abscissa (enthalpy axis) with the slope of A, = O for heat
transfer at the atmospheric temperature 7 = T, where heat possesses no exergy; by a vector
with the slope of A, =~ 0.5 for cold transfer (inverse heat transfer) at T =199 K in the
cold-absorbing regime on the upper left side and in the cold-releasing regime on the lower
right hand side of the diagram; by a vector with the slope of A, = - 1.5 for cold transfer at
T =119K in the cold-absorbing and -releasing regimes; and by a vector on the ordinate
(exergy axis) with the slope of 4, = —  for cold transfer at the temperature 7 =0 K. In the
heating and cooling processes the energy-availability 4,, thus, increases with increasing
temperature from 4, = ~ % at the temperature zeroT =0 K through 4, = 0 at the atmospheric
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temperature T = 7; up to A, = 1 at apparently unlimited high temperature 7" — .
We notice in Fig. 11.9 that no vector of thermal processes can occupy the separating and
mixing regimes in the exergy vector diagram.

T =+O K Separating

A=1

Heat - adsorbing
A=05

T=119K
Cold - adsorbing

- — T =298K A =0— AH— +

T=5%K A=-05
Heat - releasing Cold - releasing
A=-15

Fig. 11. 9. Exergy vectors for heating and cooling processes at constant temperature.

Table 11.1. Energy availability of heating-cooling processes at constant temperature.

Temperature K Energy Availability A,
o +10
2980 +09
1490 0.8
59 +0.5
298 0.0
199 -05
149 -1.0
119 -15
0 -

Table 11.1 shows the energy availability A, of heating and cooling processes as a
function of the temperature at which the heat transfer occurs. The positive sign of A, denotes
the transfer of heat and the negative sign of A, denotes the transfer of cold. It is a matter of
course that the enthalpy component AH of the vector for heating and cooling processes is the
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amount of heat Q received by or released from the system. The exergy component of the
vector represents the absorption or release of available energy during the heat or cold transfer
at constant temperature.

11. 7. Exergy Vectors of Compression-expansion Processes.

We have examined in section 10.3 the exergy associated with a mechanical work of
compression and expansion of gases. The process of isentropic compression-expansion
(adiabatic compression-expansion) is represented by an exergy vector lying on the line of
A, =1 that passes through the origin of the coordinates with the slope of 45" (A4S =0) as
shown in Fig. 11.10(a); the vector points in the positive direction for compression and in the
negative direction for expansion. The enthalpy component AH,, of the exergy vector of
isentropic compression-cxpansion represents the amount of work received (AHy, >0) by or
released (AH,, <0) from the system.

In contrast to isentropy, the process of isothermal compression-expansion, which is
accompanied by heat release or heat absorption, is represented by an exergy vector with the
slope of A4, <1 in the regimes of heat absorption and heat release as shown in Fig. 11.10(a).

AE sx,Q AE
bvg +
/
Isentropic compression /,Q

. S

Isothermal compression b
Isothermal expansion 0
- N + AH - AH—+

0

\ . .
Isentropic expansion
Isenthalpic expansion

(@) (b)

Fig. 11.10. Exergy vectors for gaseous compression and expansion processes.

There is another mode of gaseous expansion called the Joule-Thomson expansion, in
which the change in gas volume occurs at constant enthalpy AH,, = O without any change in
energy. The vector of the isenthalpic expansion then stands perpendicular to the abscissa on
the ordinate and points in the negative direction (exergy consumption) as is shown in Fig.
11.10(b).
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11. 8. Exergy Vectors of Separating-mixing Processes.

We have discussed in section 10.6 exergy changes associated with the processes of
separating and mixing the constituent substances in a mixture. Separating and mixing of
substances in a perfect mixture, such as an ideal gas mixture and a perfect solution, are
accompanied by no change in enthalpy (AH =O) so that their exergy vectors lie on the
ordinate (y-axis) pointing in the positive direction (AE > O) for the separating process and in
the negative direction (AE < 0) for the mixing process as shown in Fig. 11.11(a).

In a non-ideal solution, however, the separating process absorbs an amount of heat into
the solution and the mixing process releases an amount of heat out of the solution. Their
exergy vectors consequently emerge in the separating regime (AH > 0) and in the mixing
regime (AH < O), respectively, as shown in Fig. 11.11(b).

AE AE
+ + .
Separating Separating
regime regime
Ideal separation A Nonideal separation
- 9 +AH - AH— +

S~

Ideal mixing Nonideal mixing

Mixing Mixing

regime

(@ (b)

regime

Fig. 11.11. Exergy vectors for separating and mixing processes.

11.9. Exergy Vectors of Chemical Reactions.

We have discussed the exergy of chemical substances in chapter 10. The exergy associated
with a chemical reaction is given by the difference in exergy between the reactants and the
products and hence by the difference in free enthalpy between the reactants and the products,
while the enthalpy of the chemical reaction is given by the heat of the reaction.

In general, the exergy vector of an exergy-absorbing reaction (AE > O) stands in the
heat-absorbing regime or in the separating regime where the enthalpy of the reaction is
positive (AH > 0, endothemic reaction) . Figure 11.12 shows, as examples, the exergy vectors
for the following exergy-absorbing reactions at the standard temperature (298 K) and pressure
(101.3 kPa):
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H,0g0 = Hifgay + 0.5 Oy »
FeO(soﬁd) — Fe(soh'd) +0.5 Oz(gas) s

Cratigy + HyOpgy = COppy + Hiygu -

AEK]
H,O0->H,+
2001
FeO—>Fe+%O2
100f
C+H,0—-CO+H,
/’ 00 200 300 A

Fig. 11.12. Exergy vectors for exergy-absorbing reactions [Ref. 15.].

On the other hand, the exergy vector of an exergy-releasing reaction (AE < 0) stands in
the heat-releasing regime or in the mixing regime where the enthalpy of the reaction is
negative (AH <0, exothemic reaction). Figure 11.13 shows, for examples, the exergy vectors
of the following exergy-releasing reactions at the standard temperature (298 K) and pressure
(101.3 kPa):

Hy(gag + 0.5 Oy = Hy Oy »
C(soﬁd) +0.5 02(@) —>CO(gas) R

Creatiy + Ozges) = COyppy »

gas)

COpgay + 0.5 Oy = COppny »

gas)

CO\gu + 2 Hiyguy = CH;OH, .
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AEKJ
400 -300 —200 —100
T I I 1 AHkJ
CO + 2 H, - CH,OH
. 41-100
CO+§OZ——>CO2
C+%02—>CO
1-200
0, - H,0
4-300
A 400

Fig. 11.13. Exergy vector for exergy-releasing reactions [Ref. 15.1.

+
242.45k] /

AE
FeO — Fe +

_ -272.14 K]

AH— A

—242.45k]

/ T

Fig. 11.14. Exergy vector diagram for an iron oxide reduction, FeO — Fe +0.50,,
coupled with a heating process at 2800 K [Ref. 15.]

11. 10. Exergy Transfer in Chemical Reactions.
We now consider, as an example, the non-spontaneous reaction of iron oxide reduction,
FeO i)~ Feaiq +0-5 O (4u), in Which the heat of reaction is AH =272.14 kJ (endothermic)
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and the exergy of reaction isAE =242.45 kJ (exergy-absorbing) at the standard temperature
(298 K) and pressure (101.3 kPa). In Fig. 11.14 the exergy vector of this reaction is shown
whose energy-availability (the slope of the vector ) is A =0.895. As mentioned in the foregoing
(section 11.5), in order to make iron oxide reduced, we need to couple this reduction reaction
with an exergy-releasing process whose energy-availability is greater than 0.895.

To a first approximation, recalling the heat of chemical reactions almost independent of
temperature, we assume that AH and AE of the iron oxide reduction do not change much
with temperature in the temperature range considered. If we make use of a thermal process to
supply an adequate amount of exergy toward the reduction of FeO, a heating process is
needed whose energy-availability is greater than A = 0.895, namely heating at a temperature
higher than 2800 K, with a supply of thermal energy more than AH, ., = 272.14 kJ for one
mole of the iron oxide as shown in Fig, 11.14: (T - T,)T = A= 0.895 gives us T ~2800K .

+
242.45K] L
AE
FeO — Fe + % O,
272.14 k] Bz
ST 0 AH—raa *

| s/

s
| .
Lz H,+10,=H0
| 4 2

______ ~242.45K)

Fig. 11.15. Exergy vector diagram for an iron oxide reduction, FeO — Fe + 0.50,,
coupled with a hydrogen oxidation, H, + 0.50, — H,O, and a thermal heating process
at 584 K [Ref. 15.].

As an alternative to the thermal exergy for reducing FeO at 2800 K , we may use as an
exergy donor the oxidation of hydrogen gas, Hygag + 0.5 Oy = HyOypy This reaction of
hydrogen oxidation provides us with an amount of enthalpy AH = —241.83 kJ and an amount
of exergy AE = AE =-228.59k]J giving the energy availability (the slope of the exergy
vector) at A =0.945. This slope A =0.945 of the exergy vector for the hydrogen oxidation is
greater than the slope A =0.895 of the exergy vector for the iron oxide reduction so that the
transfer of exergy from the former to the latter is thermodynamically possible. Hydrogen
oxidation with AH = -241.83 kJ, however, is unable to donate the enough energy AH =
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272.14 kJ required for the reduction of the iron oxide. To make up for a deficit in energy
AH, = -30.31 kJ for one mole of FeO, an additional thermal process is needed such as a
heating process at a temperature 584 K to be able to reduce FeO as estimated by the exergy
vector analysis shown in Fig. 11.15. The overall reaction is then given by FeO) + H; (o) =
Feuiq) + HyO\gs We note that, employing the oxidation of hydrogen as an exergy-donating
process, we may reduce the temperature of the thermal energy required for reducing FeO
from 2800 K to 584 K, which is the theoretical lowest temperature for the reaction to
proceed: We need in reality the heating process at least higher than 800 K for the hydrogen
reduction of iron oxides to occur.

We may also make use of the reaction of carbon monoxide formation, Cq) + (1/2) Oy
—> COy, This reaction provides us with an amount of enthalpy AH = -110.52 kJ and an
amount of exergy AE = -137.27kJ, giving the energy availability (the slope of the exergy
vector) at A =1.242. This slope A =1.242 of the exergy vector for the carbon monoxide
formation is greater than the slope A =0.895 of the exergy vector for the iron oxide reduction
so that the transfer of exergy from the former to the latter is thermodynamically possible.
Carbon monoxide formation with AH = -110.52 kJ , however, is unable to donate the enough
amount of energy AH =272.14k] required for the reduction of FeO. To supply a deficit
amount of energy AH, = -161.62 kJ for the iron oxide reduction, an additional thermal
process such as a heating process at temperatures higher than 869 K is needed as estimated
by the exergy vector analyses shown in Fig. 11.16. The overall reaction then is expressed by:
FeOpia) + Ciootiay = Fesotiay + COlgay

+

242.45kJ 4

AE

FeO—)Fe+%Oz

869 K

- 27%. 14 kJ AH .
272.14 kJ

’
L, N c+lo,5c0

A 2
I& ————— —242.45K)

Fig. 11.16. Exergy vector diagram for an iron oxide reduction, FeO — Fe + 0.50,,
coupled with a carbon oxidation , C +0.50, — CO ,and a thermal heating process at
869 K [Ref. 15.].
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The oxidation of carbon to carbon monoxide, as shown in Figs. 11.13 and 11.16, has an
energy availability A greater than one, and accordingly the exergy vector takes its position in
the regime of mixing, indicating that the reaction includes a mixing process which donates as
a whole the greater amount of exergy than the heat of the reaction. We note that the greater
the energy availability and hence the greater the slope of the exergy vector of an exergy-donating
process is, then the more effective the exergy transfer becomes.

11. 11. Exergy Vector Diagrams of Methanel Synthesis.

We examine, as an example, the exergy vector diagram for methanol synthesis to estimate
the minimum exergy loss thermodynamically required for the synthesis reaction of methanol
from methane [Ref. 16.]. First, we consider a direct (single step) synthesis of methanol from
methane through a coupled-and-coupling reaction consisting of the oxidation of methane
(objective reaction) and the dissociation of water molecule (coupled reaction) shown,
respectively, as follows:

CH, +0.50, = CH,OH, AH=-12638kJl/mol, AE=-110.80kJ/mol,
H,0, ->H,+0.50,, AH=28599kl/mol, AE=23730kJ/mol,

liq

where AH and AE are the enthalpy change and the exergy change of the reactions, respectively.

AE

104.87kJ

7
7 /Coupled process
7 (H,O4q = H, + 0.50,)x0.44
-126.38 kJ 7
o /\ 126.38 kJ AH
Objective process 7 Exergy loss
CH, + 0.50, — CH,0H /7 =-6.02kJ

-110.89kJ

Fig. 11.17. Exergy diagram for a direct synthesis of methanol showing the theoretical
minimum exergy consumption [Ref. 16.].
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Based on the law of energy conservation, the enthalpy changes of the two reactions must
be balanced in the stationary state so that the stoichiometrical ratio in energy of the two
reactions is 0.44: The enthalpy of methane oxidation CH, +0.50, — CH,OH is 0.44 times
as much as the enthalpy of water dissociation H,0, = H, +0.50,. Furthermore, the law of
exergy decrease predicts that the composite exergy vector of the two reactions must be on the
exergy axis (ordinate) pointing to the negative direction. The exergy vector diagram thus
obtained is shown in Fig. 11.17. We thus estimate the theoretical minimum exergy loss
AE,,, ., required for the direct synthesis of methanol is AE,,, .., =6.02 klJ/mol - CH,OH :

Direct methanol synthesis, AE,,, . =6.02 kl/mol - CH,OH(0.19 GJ/t - methanol).

Methanol manufacturing processes in current use have been reported to consume forty four
times as much exergy as the theoretical minimum exergy loss estimated above for the direct
methanol synthesis [Ref. 16.].

Methanol can also be produced through a two-step process comprising of steam reforming
of methane and methanol synthesis from carbon monoxide and hydrogen. The first step of
steam reforming of methane consists of the following two reactions:

CH, +H,0—CO+3H,, AH=25028kJ/mol, AE=150.95kl}/mol,

H,+0.50,—=H,0 AH = -24195k]/mol, AE=-22872kJ/mol.

gas »
The enthalpy of methane reforming, CH, + H,O — CO +3H,, is balanced against 0.88 times
the enthalpy of hydrogen oxidation, H, +0.50, = H,0,,,. In the same way as is used for the
single step methanol synthesis, we obtain the theoretical minimum exergy loss required for
the steam reforming to be AE;W, s = 52.60 kJ/mol - CH,OH as shown in Fig. 11.8.

The second step of methanol synthesis from carbon monoxide consists of the following
two reactions:

CO+2H, »CH,OH, AH=-90.67kJ/mol, AE=-2453kJ/mol,

H,0,, —> H,0 AH = 44.04kJ/mol, AE =858 kJ/mol.

gas >
The enthalpy of the hydrogenation of carbon monoxide, CO +2H, — CH,OH, is balanced
against 2.06 times the enthalpy of water evaporation, H,0, — H,0,, . For this step of
methanol synthesis from carbon monoxide the theoretical minimum exergy loss is
AE;M,’M = 6.86 kJ/mol -CH;OH as shown in Fig. 11.8. We hence obtain AE,,, .. =
59.46 kJ/mol - CH,OH as a whole for the theoretical minimum exergy loss thermodynamically
required for producing methanol by means of the two-step synthesis from methane:

Two-step methanol synthesis, AE,,, ., =59.46 kJ/mol - CH,OH(1.86 GJ/t - methanol ).
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[First step] AE Objective process
CH,+H,0—=CO+3H,
/

142.37 kJ

-2006.24kJ AH
Coupled process ~ 7 206.24 kI
{(H, + 0.50, — H,0)x0.88 “<— Exergy loss= 52.60 kJ
e
/ —194.97 kJ
[Second step] AE ,
Coupled process
(H,04 = H,0,,,)x2.06
17.67kJ
-90.67KJ
Z
Z 50.67K7 AH
<~ Exergy loss= 6.86 kJ
Objective process —24.53kJ
CO + 2H, — CH,0H

Fig. 11.18. Schematic exergy diagram for theoretical minimum exergy consumption
in a two-step synthesis of methanol [Ref. 16.].

The foregoing estimation of the theoretical minimum exergy loss AE,, . shows that the
value of AE,,, . of the direct methanol synthesis is one-tenth that of the two-step methanol
synthesis. It then follows that the direct synthesis of methanol is advantageous over the
two-step synthesis in the efficient use of exergy.
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11. 12. Exergy Vectors for Electrochemical Reactions.

We now examine the exergy vectors of electrochemical reactions for water electrolysis
and hydrogen-oxygen fuel cells at the atmospheric temperature. The electrochemical reaction
of water electrolysis is expressed as follows:

H,0,, —> H, ,, + 050 AH=28583kJ/mol,  AE=237.18 kJ/mol ;

2,ga8 >

and the reverse of this reaction is the hydrogen-oxygen fuel cell reaction:

H,,, +050,,, —HO0,, AH=-2858klJ/mol, AE=-237.18kJ/mol;

2,gas 2,gas

where AH and AE are the enthalpy change and the exergy change of the reactions at the
standard state (the atmospheric temperature and pressure), respectively; AE being equal to
the free enthalpy change AG of the reaction.

H,0 \ Electritic Cell
—~4—» H,

Electric energy Hy

/ T
Heat Q

Fuel Cell H,0

wr

H ————

/ 1\

—® Electric energy Hy
030 > \
Heat Q

Fig. 11.19. Schematic processes of water electrolysis cells and hydrogen-oxygen
fuel cells at room temperature.

Figure 11.19 shows the processes that occur in the electrolytic cell and in the fuel cell.
Electric energy contains no entropy when it provides for the cell or extracts from the cell an
amount of electrical work, and hence its energy-availability A, equals one; Ay, =1. The
exergy vector of electric energy consequently is located on the straight line going through the
coordinate origin at an angle of 45°. On the other hand, the heat transfer at the atmospheric
temperature, if occurring reversibly, produces no exergy change and its exergy vector therefore
appears on the abscissa (enthalpy axis).
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Figure 11.20 shows the exergy vector diagram for the reversible process of water electrolysis.
The exergy vector of electric energy H,, supplied at the energy-availability A, equal to one
and the exergy vector of reversible heat transfer Q supplied at the energy-availability A,
equal to zero are combined together to make a composite exergy vector of the decomposition
of water molecules into molecular hydrogen and oxygen gases.

AE /
237.18 kJ/mol H,0~H,+0.5 O,

Electric energy Hy; su
—]

285.83 kJ/mol

=1 Heat Q absorbed

Fig. 11.20. Exergy vector diagram of water electrolysis reaction at room temperature.

Heat @ produced A=1

~285.83 kJ/mol
AH

Electric energy Hy; produced
L

—237.18 kJ/mol

H,+0.5 0,—H,0 /

Fig. 11.21. Exergy vector diagram of hydrogen-oxygen fuel cell reaction at room
temperature.
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The exergy vector diagram for the reversible process of a hydrogen-oxygen fuel cell is
shown in Fig. 11.21, in which the exergy vector of the formation of water molecules from
gaseous hydrogen and oxygen molecules electrochemically decomposes into both an exergy
vector of electric energy H,, produced and an exergy vector of reversible heat transfer Q
released from the cell at the atmospheric temperature. When the heat transfer Q occurs
irreversibly at temperature higher than the atmospheric temperature, the exergy vector of heat
transfer Q deviates from the abscissa, and hence the exergy vector of electric energy H,,
produced by the cell is reduced causing an internal exergy loss in the cell.
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