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PREFACE 

This book is a beginner's introduction to chemical thermodynamics for engineers. According 

to the author's experience in teaching physical chemistry, chemical thermodynamics is the 

most difficult part for junior students to understand. Quite a number of students tend to lose 

their interest in the subject when the concept of entropy has been introduced in the lecture of 

chemical thermodynamics. Having had the practice of chemical technology after their 
graduation, however, they realize acutely the need of physical chemistry and begin studying 

chemical thermodynamics again. 

The difficulty in learning chemical thermodynamics stems mainly from the fact that it 

appears too conceptual and much too complicated with many formulae. In this textbook 

efforts have been made to visualize as clearly as possible the main concepts of thermodynamic 

quantities such as enthalpy and entropy, thus making them more perceivable. Furthermore, 

intricate formulae in thermodynamics have been discussed as functionally unified sets of 

formulae to understand their meaning rather than to mathematically derive them in detail. 

Most textbooks in chemical thermodynamics place the main focus on the equilibrium of 
chemical reactions. In this textbook, however, the affinity of irreversible processes, defined 

by the second law of thermodynamics, has been treated as the main subject. The concept of 

affinity is applicable in general not only to the processes of chemical reactions but also to all 
kinds of irreversible processes. 

This textbook also includes electrochemical thermodynamics in which, instead of the 

classical phenomenological approach, molecular science provides an advanced understanding 
of the reactions of charged particles such as ions and electrons at the electrodes. 

Recently, engineering thermodynamics has introduced a new thermodynamic potential 

called exergy, which essentially is related to the concept of the affinity of irreversible processes. 
This textbook discusses the relation between exergy and affinity and explains the exergy 

balance diagram and exergy vector diagram applicable to exergy analyses in chemical 

manufacturing processes. 

This textbook is written in the hope that the readers understand in a broad way the 

fundamental concepts of energy and exergy from chemical thermodynamics in practical 

applications. Finishing this book, the readers may easily step forward further into an advanced 

text of their specified line. 
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CHAPTER 1 

T H E R M O D Y N A M I C  STATE V A R I A B L E S  

Chemical thermodynamics deals with the physicochemical state of substances. 

All physical quantities corresponding to the macroscopic property of a physico- 

chemical system of substances, such as temperature, volume, and pressure, 

are thermodynamic variables of the state and are classified into intensive and 

extensive variables. Once a certain number of the thermodynamic variables 

have been specified, then all the properties of the system are fixed. This 

chapter introduces and discusses the characteristics of intensive and extensive 

variables to describe the physicochemical state of the system. 

1.1. Thermodynamic Systems. 
In physics and chemistry we call an ensemble of substances a thermodynamic system 

consisting of atomic and molecular particles. The system is separated from the surroundings 

by a boundary interface. The system is called isolated when no transfer is allowed to occur of 

substances, heat, and work across the boundary interface of the system as shown in Fig. 1.1. 

The system is called closed when it allows both heat and work to transfer across the interface 

but is impermeable to substances. The system is called open if it is completely permeable to 

substances, heat, and work. The open system is the most general and it can be regarded as a 

part of a closed or isolated system. For instance, the universe is an isolated system, the earth 

is regarded as a closed system, and a creature such as a human being corresponds to an open 

system. 

Ordinarily, the system may consist of several phases, whose interior in the state of 

equilibrium is homogeneous throughout its extent. The system, if composed for instance of 

only liquid water, is a single phase; and if made up for instance of liquid water and water 

vapor, it is a two phase system. The single phase system is frequently called a homogeneous 
system, and a multiphase system is called heterogeneous. 
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heat and work 

substances 

heat and work 

Fig. 1.1. Physicochemical systems of substance ensembles. 

1.2.  Variables of the State. 

All observable quantities of the macroscopic property of a thermodynamic system, such 

as the volume V ,  the pressure p, the temperature T, and the mass m of the system, are called 

variables of  the state, or thermodynamic variables. In a state of the system all observable 

variables have their specified values. In principle, once a certain number of variables of the 

state are specified, all the other variables can be derived from the specified variables. The 

state of a pure oxygen gas, for example, is determined if we specify two freely chosen 

variables such as temperature and pressure. 

These minimum number of variables that determine the state of a system are called the 

independent variables, and all other variables which can be functions of the independent 

variables are dependent variables or thermodynamic functions. For a system where no external 

force fields exists such as an electric field, a magnetic field and a gravitational field, we 

normally choose as independent variables the combination of pressure-temperature-composition 

or volume-temperature-composition. 

In chemistry we have traditionally expressed the amount of a substance i in a system of 

substances in terms of the number of moles n~ - m~]M~ instead of its mass m~, where M~ 

denotes the gram molecular mass of the substance i. The composition of the system of 

substances is expressed accordingly by the molar fraction xi as defined in Eq. 1.1: 

n_.__...~ = ni 
x,= z~ni n , z~, x ~ - l .  (1.1) 

t 

In the case of solutions (liquid or solid mixtures), besides the molar fraction, we frequently 

use for expressing the solution composition the molar concentration (or molarity) c i , the 

number of moles for unit volume of the solution, and the molality mi, the number of moles 

for unit mass of the solvent (main component substance of the solution): 

ni -3 ni -1 
ci _ m mo le .m  , mi = mol "kg , (1.2) 

v Ms 

where V is the volume of 1 m 3 of the solution and M s is the mass of 1 kg of the solvent. 
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1.3. Extensive and Intensive Variables. 

The variables whose values are proportional to the total quantity of substances in the 

system are called extensive variables or extensive properties,  such as the volume V and the 

number of moles n. The extensive variables, in general, depend on the size or quantity of the 

system. The masses of parts of a system, for instance, sum up to the total mass of the system, 

and doubling the mass of the system at constant pressure and temperature results in doubling 

the volume of the system as shown in Fig. 1.2. 

On the contrary, the variables that are independent of the size and quantity of the system 

are called intensive variables or intensive properties, such as the pressure p, the temperature 

T, and the mole fraction xi of a substance i. Their values are constant throughout the whole 

system in equilibrium and remain the same even if the size of the system is doubled as shown 

in Fig. 1.2. 

2 V  

Extensive variable V 

P 

Intensive variable p 

Fig. 1.2. Extensive and intensive variables in a physicochemical system. 

1.4. Partial Molar Quantities. 

An extensive variable may be converted into an intensive variable by expressing it per 

one mole of a substance, namely, by partially differentiating it with respect to the number of 

moles of a substance in the system. This partial differential is called in chemical thermodynamics 

the partial molar quantity. For instance, the volume vi for one mole of a substance i in a 

homogeneous mixture is given by the derivative (partial differential) of the total volume V 

with respect to the number of moles of substance i as shown in Eq. 1.3: 

T,p, nj 

where the subscripts T, p and nj on the right hand side mean that the temperature T, pressure 

p, and all nj's other than n i are kept constant in the system. The derivative v i is the partial 

molar volume of substance i at constant temperature and pressure and expresses the increase 

in volume that results from the addition of one mole of substance i into the system whose 

initial volume is very large. 

In general, the partial molar volume v i of substance i in a homogeneous multiconstituent 

mixture differs from the molar volume v ~ - V[n i of the pure substance i .  When we add one 
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mole of pure substance i into the mixture, its volume changes from the molar volume v ~ of 

the pure substance i to the partial molar volume v~ of substance i in the mixture as shown in 

Fig. 1.3(a). In a system of a single substance, by contrast, the partial molar volume vi is 

obviously equal to the molar volume v ~ of the pure substance i. 

;a 

A binary system 

~ [ 
0 x2 1 

(a) (b) 

Fig. 1.3. Partial molar volume: (a) the molar volume v ~ of a pure substance i and the 

partial molar volume v~ of substance i in a homogeneous mixture; (b) graphical 

determination of the partial molar volumes of constituent substances in a homogeneous 

binary system by the Bakhuis-Rooseboom Method: v - V/(nl + n2) = the mean molar 

volume of a binary mixture; x2= the molar fraction of substance 2; v I - 

"r X2(OgV/3X2) = the partial molar volume of substance 1" v2 = v - ( I -  Xz)(Ov]3 x2) 

= the partial molar volume of substance 2. [Ref. 1.] 

In a system of a homogeneous mixture containing multiple substances the total volume V 

is given by the sum of the partial molar volumes of all the constituent substances each 

multiplied by the number of moles as shown in Eq. 1.4: 

V -  Z i n i vi. (1.4) 

The partial molar volume v i of a substance i is of course not identical with the molar volume 

v = V[Zi n~ of the mixture. 

Considering that the volume V of a system is a homogeneous function of  the first degree 
ni, [Euler' s theorem; f ( loh,kn2)-kf(r6,n2) ], we can write through differen- 

[ , , ,  

in the variables 

tiation of Eq. 1.4 with respect to n~ at constant temperature and pressure the equation expressed 

by: 

n,(Ovi/On~)~, p= O . (1.5) 
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For a homogeneous binary mixture consisting of substance 1 and substance 2, we then have 

Eq. 1.6: 

( ) ( ) 02V = O, x 1 + x2 ~ On2 Jr, = O. (1.6) 02V + n2 On 2 On2 ~, On2 Jr, p e nl OniOn2 r, p r , p  

Furthermore, Eq. 1.6 gives Eq. 1.7: 

( Ovx ] ( Ov2 ] 
x ' !  Ox2 Jr, + Xzl Ox2 Jr, = O. (1.7) p p 

From the molar  volume v =  V/(n 1 a t - n 2 ) - ( 1 - x 2 ) v  1 +x z v z and its derivat ive (Ov/OX2)r, p = 

(v2- Vl) multiplied by x z , we obtain Eq. 1.8: 

Vl - V - Xz ( O@x2 ) . (1.8) 
T,p 

This equation 1.8 can be used to estimate the partial molar volume of a constituent substance 

in a binary mixture from the observed curve of the molar volume v against the molar fraction 

x 2 as shown in Fig. 1.3(b). 

1.5.  The Extent of a Chemical  Reaction. 

Let us consider a chemical reaction that occurs in a closed system. According to the law 

of the conservation o f  mass, the total sum of the mass of all the chemical substances remains 

constant in the system whatever the chemical reactions taking place. 

The chemical reaction may be expressed by a formula shown in Eq. 1.9: 

V 1 R1 + v2 R2 ~ v3 1='3 + v41'4, (1.9) 

where R 1 and R z are the chemical species being consumed (reactants), 1:'3 and P4 are the 

chemical species being produced (products), and v l . . . v  4 are the stoichiometrical coefficients 

of the reactants and products in the reaction, respectively. The stoichiometrical coefficient is 

negative for the reactants and positive for the products. The conservation of mass in the 

reaction is expressed by Eq. 1.10: 

V3 343 + V4 M4 + vl M1 + V2 M2 - O, ~ viMi - O, (1.10) 

where M~ denotes the relative molecular mass of species i. 

We express the change in the number of moles n i of each species as follows: 

n, - n[ = vl ~, n 2 -  n ~ -  v2 ~, n3 - n ~ -  v3 ~, n 4 -  n] - v4 ~, (1.11) 
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where n ~ "-.n4 ~ denote the initial number of moles of the reaction species at the beginning of 

the reaction. The symbol ~ represents the degree of advancement of the reaction. In chemical 

thermodynamics it is called the extent o f  reaction. 

The initial state of a reaction is defined by ~ - 0, and the state at which ~-- 1 corresponds 

to the final state where all the reactants (vl moles of R 1 and v z moles of Rz) have been 

converted to the products (v 3 moles of I'3 and v 4 moles of P4 ) as shown in Fig. 1.4. We say 

one equivalent  o f  reaction has occurred when a system undergoes a chemical reaction from 

the state of ~ = 0 to the state of ~ = 1. 

'-0.5 vl R1 + 0.5 vz R:L~ 
t R ~ + v 2 R  ~ ~ P3+v4 

~----~ 0.5 vs P3 + 0.5 v4 P 9 

 =o.5 1 

Fig. 1.4. The extent of a chemical reaction. 

Equation 1.11 gives us the differential of the extent of reaction d~ shown in Eq. 1.12: 

dn_____L_~ = dn____Lz = dn 3 _ dn_____L 4 _ d~ (1 12) 
V 1 V 2 V 3 - V 4  - 

To take an instance, we consider the following two reactions in a system consisting of a solid 

phase of carbon and a gas phase containing molecular oxygen, carbon monoxide and carbon 

dioxide: 

2 C(~ond) + O2(gas ) ~ 2 CO(g,), Reaction 1, 

C(solio) + O2(g~) -~ CO2(g~) , Reaction 2. 

For these two reactions the following equations hold between the extents of reactions ~ and 

the number of moles of reaction species ni: 

dn c = -  2 d ~ , -  d~z , dno2 = - d ~ l -  d~2 , dnco -  2 d~,, dnco2 = d~2. 

The reaction rate v is expressed by the differential of the extent of reaction ~(t) with respect 

to time t as shown in Eq. 1.13: 

d (t) 
v - ~ .  (1.13) 
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The reaction rate may also be expressed by the time-differential of the mass or the number of 

moles of reaction species. For a single reaction the reaction rate in terms of the extent of 

reaction is related with the reaction rate in terms of the mass m i or the number of moles n i of 

reaction species as shown in Eq. 1.14: 

dni drni 
dt = v, v, dt = v, Mi v. (1.14) 

The extent of reaction is an extensive property, and it can apply not only to chemical 

reactions but also as the extent of change to all physicochemical processes such as diffusion, 

melting, boiling, and solid state transformation. 



CHAFFER 2 

CONSERVATION OF ENERGY 

The first law of thermodynamics provides the concept of energy, which is 

defined based on empirical knowledge as a physical quantity of the state of 

thermodynamic systems. In reality energy presents itself in various forms such 

as thermal, mechanical, chemical, electrical, magnetic, photonic energy, etc. 

These various forms of energy can be converted into one another with some 

restriction in thermal energy. The first law also expresses the empirical principal 

that the total amount of energy is conserved whatever energy conversion may 

take place. Moreover, thermodynamics introduces two energy functions called 

the internal energy and the enthalpy depending on the choice of independent 

variables. This chapter discusses the characteristics of these two energy 

functions. 

2. 1. Energy as a Physical Quantity of the State. 

Thermodynamics has provided in its first law the concept of energy, which is a self-evident 

quantity empirically defined for the capacity that a thermodynamic system possesses of doing 

physicochemical work (energy = en+erg). The first law of thermodynamics indicates that the 

energy of an isolated system is constant and that the change in the energy of a closed system 

is equal to the amount of energy received from or released out of the system (the principal of 

the conservation of energy). Energy is an extensive property and its recommended SI unit is 

joule J whose dimension is kg. m z .s -2. 

Energy may be classified into varieties such as mechanical, thermal, chemical, photonic, 

electric, and magnetic energy. These different forms of energy, however, can theoretically be 

converted one to one in each other, except for thermal energy whose conversion is restricted 

by the second law of thermodynamics as will be mentioned in the following chapter. If the 

system undergoes nuclear reactions, the mass of substances converts into what is called the 

nuclear energy. We won't discuss nuclear reactions in this book, however. 
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In general, mechanical energy or work is expressed by the product of the force f 

affecting a body and the distance Al over which the body moves in the direction of the force: 

f .  Al. A change in the volume of a system causes mechanical work done by the system or 

performed on the system, whose magnitude corresponds to the product of the pressure p and 

the volume change AV: p. AV. Further, electric energy is represented by the product of the 

voltage and the electric charge. Furthermore, thermal energy reversibly received by a system 

equals the product of the absolute temperature T and the change in thermal entropy AS in the 

system:entropy will be described in the following chapter. We may hence conceptually 

assume the following relation in Eq. 2.1: 

Energy = Intensive variable x Conjugate extensive variable. (2.1) 

where energy is formally expressed by the product of conjugated intensive and extensive 

variables. 

2. 2. Conservation of Energy. 

Let us consider a closed system which can exchange heat and work but not substances 

with its surroundings. The exchange of heat and work takes place through the boundary 

interface of the system. The energy of the system then increases by an amount equal to the 

heat and work absorbed from the surroundings. We define the internal energy U of the 

system as a state property whose infinitesimal change dU is equal to the sum of infinitesimal 

heat dQ and infinitesimal work dW received by the system as shown in Eq. 2.2: 

dU = dQ + dW, (2.2) 

where the heat and work received by the system are positive quantities, while those released 

out of the system are negative as shown in Fig. 2.1. The integral of internal energy 

fdU = fdQ +faW from a certain initial state to a certain final state of the system is always 

independent of the route followed, though each of f dQ andfdW may depend on the rout. 

The internal energy is hence defined as a state property. We also call the heat dQ and the 

work dW the energy transferred across l~he boundary between the system and the surroundings. 

Internal energy, heat, and work must of course be measured in the same unit. 

Work can have different forms such as compression-expansion-, electric-, magnetic work 

and other forms. The amount of work done by these different forms can be measured in the 

same scale of joule that we normally use for measuring heat and energy. Work, heat, and 

internal energy thus present themselves in the same category of energy. Thermodynamics 

however shows us that the heat differs somehow in its quality from the other forms of energy 

in that the energy of heat (thermal energy) can not be completely converted one to one into 

the other forms of energy as will be discussed in the following chapter. 
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If the work done by the system is only due to a change in volume of the system under the 

pressure p, we obtain dW = - p  dV. Then, Eq. 2.2 yields Eq. 2.3: 

dU = d Q -  p dV, (2.3) 

where p is the internal pressure of the system. In thermodynamics we usually assume an ideal 

process called reversible in which all changes take place in quasi-equilibrium. The external 

pressure then is equal to the internal pressure of the system. We thus assume for the reversible 

process that the pressure p in Eq. 2.3 is equal to the internal pressure of the system itself. 

- I d W l  - I d Q I  +ldWl +ldQl 

Fig. 2.1. Conservation of energy in a closed system. 

2. 3. Internal Energy U with Independent Variables T, V, and ~. 

We now consider a homogeneous closed system containing c species of substances in 

which a chemical reaction occurs in a reversible way. The internal energy, U, is a function of 

the state of the system, and hence may be expressed in terms of the independent variables 

that characterize the state. If the state of the system is determined by the independent variables 

temperature T, volume V, and extent of reaction ~ as shown in Fig. 2.2, we have U = 

U(T, V, n~ ... n~ where ~ . . .n  ~ are the initial number of moles of the species of substances. 

The total differential of the internal energy U is then given by Eq. 2.4: 

au  ( a u ~  dV au  (2.4) 

From Eqs. 2.3 and 2.4 we obtain Eq. 2.5 for transferred heat dQ: 

OU OU + OU (2.5) 

Equation 2.5 can also be expressed by Eq. 2.6: 

dQ = Cv, ~ dT + 1T, ~ dV + Ur, v d~, (2.6) 

where Cv, ~,/r,~, and ur, v are the thermal coefficients for the variables T, V, and ~. 
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The coefficient, Cv, ~ -(OQ/OT)v,~ = (OU] OT)v,~, is the amount of heat required to raise 

the temperature of the system by unit degree at constant V and ~" it is called the heat 
capacity of the system at constant volume and composition. The coefficient, lr, ~ = 

/ -  

- t(OU/OV)r,~ + P t '  is the heat that must be supplied to the system for unit 
% J 

increase in volume at constant temperature, and may be called the latent heat o f  volume 
change of the system. For an ideal gas, whose internal energy is independent of the volume 

(3U/OV)r,~ = 0, we have lr, ~ = p .  

The coefficient of ur, v = (OQ/O~)r,v = (OU/O~)r,v is the heat received by the system when 

the reaction proceeds by an extent of reaction d~ at constant temperature and volume, and its 

integral from ~ = 0 to ~ = 1 is the heat ofreaction at constant volume and temperature, Qr,v" 

f0 
1 

Qr, v - Ur, v d~. (2.7) 

In particular, if Ur, v is independent of ~e, Qr,v is given by Qr,v -UT,V(~I- ~o), and for one 

equivalent extent of reaction (~1 -~0 = 1) we obtain the heat of reaction Qr,v - Ur,v at constant 

volume. 

The reaction is called exothermic if the heat of reaction is negative; whereas, the reaction 

is endothermic if it is positive. 

Variables 7", V, Variables T,p, 

Fig. 2.2. Thermodynamic energy functions: (a) Internal energy U, (b) Enthalpy H. 

2. 4. Enthalpy H with Independent Variables T, p, and ~. 

If we choose T, p, and ~ as independent variables, the total differential of U is given by 

Eq. 2.8: 

OU (2.8) 

Volume V is no longer an independent variable but a function of T, p, and ~" V(T,p,~) .  The 

total differential dV(T,p,~)in Eq. 2.3 can then be expressed by Eq. 2.9: 

OV (2.9) 
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By writing dQ from Eq. 2.3 explicitly and using Eqs. 2.8 and 2.9, we thus obtain Eq. 2.10: 

OU OV OU OV 

OU OV 

We realize in Eq. 2.10 that, for the independent variables T, p, and ~, it is advantageous to 

use the thermodynamic energy function H called enthalpy as defined in Eq. 2.11: 

H = U + p V, (2.11) 

which may also be called the heat content or heat function in the field of engineering 

thermodynamics. The word of enthalpy means "heating up" in Greek. 

Using this energy function H, we obtain from Eq. 2.3 the expression of the heat received 

by the system as shown in Eq. 2.12: 

dQ = d H -  p d V -  V dp + p dV = d H -  V dp, (2.12) 

which then yields Eq. 2.13: 

+( a/4~ dQ - [ OH ] dT + OH - V~ dp Cir. 

Equation 2.13 may be expressed as follows: 

(2. 13) 

dQ= Cp,~dT + hr,~dp+ hr, pd~, (2.14) 

where Cp,~, hr, ~ , and hr, p are the thermal coefficients for the variables T, p, and ~. Comparing 

Eq. 2.13 with Eq. 2.14, we realize that; Cp,~ = (OH/OT)p,~ is the heat capacity of the system at 

constant pressure and composition; hr,~ = {(OH/Op)r, ~- V} may be called the latent heat of  
pressure change, and hr, e-(OH/O~)r,p is the heat of  reaction at constant pressure and 
temperature: 

Cp,~=( OH - - V ,  hr _ (  OH ~ ) p , ,  hr,~ ( OH 'P - ~  )r," (2.15) 

The heat capacity Cp,~ is an extensive property and, for a mixture of substances i, is 

given as the sum of the partial molar heat capacity cp, i of all the constituent substances each 

multiplied by the number of moles n i of i as shown in Eq. 2.16: 

(oc..~ ) 
cp.r ~ ni cp.i , Cp.i- Oni r.p. i" (2.16) 
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The latent heat of pressure change hr, ~ , which is usually negative, is the amount of heat 

that must be removed from the system for unit increase in pressure to maintain constant 

temperature when the system is compressed at constant composition. For an ideal gas in 

which p V  = n R T  and (OU/Op)r,~ = 0, the second term on the right hand side of Eq. 2.10 gives 

us hr,~=(OU/Op)r,~ + p(OV/Op)r,~. We then obtain the latent heat of pressure change as 

shown in Eq. 2.17: 

hr, ~ - + p = - ~ = - V, ideal gas, (2.17) 
r,~ r,~ P 

indicating that for an ideal gas hr, ~ equals - V .  From Eq. 2.15 we thus have the enthalpy of 

an ideal gas as follows: 

OH ] _ O; ideal (2.18) 
- ~ T , ~  

gas, 
) 

which indicates that the enthalpy of an ideal gas is independent of the pressure of the gas. 

The coefficient hr, p = (OH/O~)T, p is the differential of the amount of heat that must be 

added to or extracted from the system for unit change in the extent of reaction at constant p 

and T, and its integral from ~ = 0 to ~ = 1 is the heat o f  reaction at constant pressure and 

temperature: 

1 
Qr, p -  hr, p d{. (2.19) 

If hr, p is independent of ~, the heat of reaction Qr,p then is equal to hT, p. 

Figure 2.3 shows the relation between enthalpy H and each of the variables of T, p, and 

for an ideal gas reaction, in which we assume that the heat of reaction is constant irrespective 

of the extent of reaction. 

aZ 

.=,, 

Temperature T Pressure p Extent of reaction 

Fig. 2.3. Enthalpy as a function of temperature, pressure, and extent of reaction for 

an ideal gas reaction. 
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From Eqs. 2.5, 2.6, 2.10, 2.13 and 2.14 we obtain the following three equations 2.20, 2.21 

and 2.22, which show the relationship between the thermal coefficients Ce, ~ , hr.~, and hr, p 

for the variables T, p, and ~, and the thermal coefficients Cv, ~, 17.~, and Ur, p for the variables 

T, V, and ~" 

OV 

OV 

h T, p -- liT, v + IT, ~ 
p,T 

(2.20) 

(2.21) 

(2.22) 

If we take, as an example, a closed system of a mixture of ideal gases in which a chemical 

reaction is occurring, then we have Eq. 2.23" 

OV _ R . T  On v T (2.23) 

where v = ~Vy i is the sum of stoichiometrical coefficients in the reaction. Furthermore, since 

lr, ~ = p  for ideal gases as described in the foregoing in connection with Eq. 2.6, we obtain 

Eqs. 2.24 and 2.25 from Eqs. 2.20, 2.21, and 2.22: 

Cp, ~ - Cv, ~ - n R, (2.24) 

T,p T,V 

Thus for a gas reaction such as Nz(g~ ) +3H2(g~)=2NH3(g~) for which v = - 2 ,  we obtain 

(OH/O~)r, p -  (OU/O~)r, v - -  2 RT .  This shows the relationship between the heat of the reaction 

at constant volume and that at constant pressure. 

2. 5. Enthalpy and Heat of Reaction. 

To describe the energy of a physicochemical system in which a chemical reaction takes 

place, it is convenient to make use of the internal energy U if the reaction proceeds at 

constant volume or the enthalpy H if the reaction proceeds at constant pressure. The system 

at constant volume undergoes no mechanical work and hence the change in internal energy is 

equal to the heat of the reaction. The system at constant pressure, in contrast, can receive 

work from or give off work to the surroundings as it changes its volume, so that the heat of 

reaction is not equivalent to the change in internal energy U but to the change in enthalpy 

H -  U + p V  of the system. 

The heat of a reaction at constant temperature and pressure is normally defined as the 

change in enthalpy of the reaction system when the reactants are completely transformed into 
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the products. The heat of a reaction, (OH/O~)r,p, can thus be expressed in terms of the partial 

molar enthalpy, h i, of reaction species i given by Eq. 2.26 as shown in Eq. 2.27: 

h i - , (2.26) 
T , p , j  

- ~7/ ~ r,,,, O{ = ~r/ vi hi ' (2.27) 

where vi is the stoichiometrical coefficient of substance i in the reaction. From Eq. 2.27 we 

obtain, as an example, Eq. 2.28 for the heat of reaction for the formation of a compound AB 

from its constituent elements A and B, such as S(~oad) + O2(g~) ~ SOz(ga~): 

( - ~  )r,p-- hAB--(hg+ hB )-- h~, (2.28) 

where h~  represents the heat of the formation of compound AB at constant p and T. 

Recalling O(OH/O~)/OT-O(OH/OT)/O~, we have from Eq. 2.15 the heat of reaction at 

constant pressure as a function of the heat capacities, Cp, of all the reaction species. The 

temperature dependence of the heat of reaction at constant pressure is thus determined by the 

partial molar heat capacities, Cp, i, of the reaction species as shown in Eq. 2.29: 

oT - ~  r,p- O~ ~ -~v i ce ' i "  (2.29) 

This equation enables us to calculate the heat of a reaction at any temperature, provided that 

we know the value of the heat of the reaction at a specified temperature and that we know the 

partial molar heat capacities Cp,~ of all the species taking part in the reaction: Cp,~ may be 

equated to the molar heat capacities of the pure species in the case of gas reactions. By 

integrating Eq. 2.29 with respect to temperature we obtain Eq. 2.30 for the temperature 

dependence of the heat of reaction: 

T2, P TI, P 1 

This equation is used for estimating the heat of a reaction (OH / O~)r2,p at a temperature T z 
when we know the value of the heat of the reaction (OH / O~)rl, p at a specified temperature T~ 

and the partial molar heat capacities Cp,, of the reactants and products. 

2. 6. Enthalpy of Pure Substances. 
We now examine the enthalpy of a pure substance. Equation 2.15 shows that the enthalpy 

of a pure substance i is a function of temperature T and pressure p. A pure substance i 

increases its enthalpy H when it absorbs heat Q at constant pressure. The differential of the 
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molar enthalpy dh~ is equivalent to the heat absorbed, dq = dQ/dn~, for one mole of i at 

constant pressure, and hence can be expressed in terms of the molar heat capacity Cp.~. The 

molar enthalpy also depends on the pressure of the system. The general equation to estimate 

the molar enthalpy of a substance can be derived from Eqs. 2.15 and 3.37, and we obtain Eq. 

2.31: 

fo r fo p OH h -  hlo,o)+ c lr, ol + dp, (2.31) 

where h(0,0) is the enthalpy extrapolated to p = 0 and T = 0, cp(T, 0) is the heat capacity 

extrapolated to p = 0 at temperature T. If the substance undergoes any phase transformations 

in the temperature range concerned, the thermal and other energy changes associated with the 

phase transformations have to be taken into account. 

In this equation 2.31 the second term on the right hand side is the thermal part and the 

third term is the pressure-dependent part. Normally, the pressure-dependent part is very small 

compared with the thermal part as shown in Eq. 2.18 for ideal gases, in which (OH/Op)r= O, 
and Eq. 7.27 for liquids and solids. For most purposes then the enthalpy may be regarded as 

independent of pressure and is given by Eq. 2.32 

f0 T h - h(0,0)+ cp(T, O)dT, (2.32) 

The enthalpy of a chemical substance at the standard state (298 K, 101.3 kPa) is called 

the standard enthalpy. In chemical thermodynamics, the standard enthalpy values of chemical 

elements in their stable states are all set zero, and hence the standard enthalpy of a chemical 

compound is represented by the heat of formation of the compound from its constituent 

elements at the standard state. Numerical values of the standard enthalpy of various chemical 

compounds thus obtained are tabulated in handbooks of chemistry. 



CHAFFER 3 

ENTROPY AS A STATE PROPERTY 

The second law of thermodynamics provides a physical state property called 

entropy as an extensive variable relating to the capacity of energy distribution 

over the constituent particles in a physicochemical system. Also provided are 

two state properties called free energy (Helmholtz energy) and free enthalpy 
(Gibbs energy) both representing the available energy that the system possesses 

for physicochemical processes to occur in itself. This chapter discusses the 

creation of entropy due to the advancement of an irreversible process in a 

system, and elucidates the change in entropy caused by heat transfer, gas 

expansion, and mixing of substances. Also discussed is the affinity 

thermodynamically defined as the driving force of an irreversible process. 

3. 1. Introduction to Entropy. 
The energy of a physicochemical system is dependent on the substances that make the 

system. The substances, though macroscopically forming phases, are microscopically 

comprised of particles such as atoms, ions, and molecules constituting a particle ensemble. 

The energy of the system is distributed among individual particles in the ensemble, and the 

energy distribution over the constituent particles plays an important role in determining the 

property of the physicochemical system. 

The second law of thermodynamics defines a state property called entropy as an extensive 

variable relating to the capacity of energy distribution over the constituent particles. The 

name of entropy comes from Greek meaning "progress or development". The energy of a 

system is not uniformly shared among the individual constituent particles but unevenly 

generating high and low energy particles. The distribution of energy among atomic and 

molecular particles is known to obey the Boltzmann statistics, which gives the most probable 

number of particles, N~,, at an energy e i in Eq. 3.1: 
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N~3 Ei 
i e - - k T  

= z~e ~ '  (3.1) 

where N--Yi N~, is the total number of particles, k is the Boltzmann constant, T is the 

absolute temperature. The exponential factor, e -~'tkr, on the right hand side of Eq. 3.1 is 

well-known as the Boltzmannfactor. 
The denominator of the fight hand side of Eq. 3.1 is relevant to the total number of the 

microscopic energy states of the system and is called the particle partition function z: 

Ei 
Z-  ,~' e- k-r. (3.2) 

Eqs. 3.1 and 3.2 give us an expression for the average intemal energy U/N of a particle in 

the system as shown in Eq. 3.3: 

U_Z~,  e,N,,_z~, e,e-kr _ Olnz 
- ~' OT V,N" N ~---~N~, ~---~e k~ 

(3.3) 

Statistical thermodynamics has defined, in addition to the particle partition function z, the 

canonical ensemble partition function Z as follows: 

gi 
Z -  Z e ~ ,  (3.4) 

where Ui is one of the allowed amounts of energy for a component system of the canonical 

system ensemble. The average internal energy U of the ensemble is then obtained in the 

form similar to Eq. 3.3 as shown in Eq. 3.5: 

U_ k T2 ( O ln Z ) (3.5) 
\ OT v,N" 

For a system consisting of the total number of particles N and maintaining its total energy 

U and volume V constant, statistical thermodynamics defines the entropy, S, in terms of the 

logarithm of the total number of microscopic energy distribution states Y2(N,V,U) in the 

system as shown in Eq. 3.6: 

S -  k In .Q (N, V, U). (3.6) 

The number of microscopic energy distribution states f2(N, V, U) in the system is also related 

with the ensemble partition function Z. According to statistical mechanics, the entropy S 

has been connected with the ensemble partition function Z in the form of Eq. 3.7: 

d S -  k dln g2- k d(ln Z + --~T ), S -  k In Z + @ + constant, (3.7) 
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where the absolute temperature Tis defined by the second law of thermodynamics (thermo- 

dynamic temperature scale, Kelvin's temperature). Equation 3.7 gives us the unit of the 

entropy to be J - K  -1 . The entropy is obviously one of the extensive variables to specify the 

state of the system. 

d~v 

Fig. 3.1. Entropy change due to a reversible transfer of heat into a closed system at 
constant volume and temperature: dQ~ = reversible heat transfer. 

The classical definition of entropy based on the second law of thermodynamics has given 

the total differential of entropy in the form of dQrev/T. With a reversible heat transfer into a 

closed system receiving a differential amount of heat dQrev, the system changes its entropy 

by the differential amount of dS as shown in Eq. 3.8: 

dQrev dU-dWrev (3.8) 
d S - ~ =  T ' 

where dQTev is the heat reversibly absorbed by the system, dWre ~ is the work reversibly done 

to the system, and dU is the change in the internal energy of the system. This classical 

equation 3.8 is equivalent to the statistical equation 3.7 for the entropy. Figure 3.1 shows the 

change in entropy due to a reversible transport of heat into a closed system. 

In conclusion, entropy is the physical quantity that represents the capacity of distribution 

of energy over the energy levels of the individual constituent particles in the system. The 

extensive variable entropy S and the intensive variable the absolute temperature T are conjugated 

variables, whose product TdS represents the heat reversibly transferred into or out of the 

system. In other words, the reversible transfer of heat into or out of the system is always 

accompanied by the transfer of entropy. 

3. 2. Reversible and Irreversible Processes. 

A physicochemical change is said to be reversible, if it occurs at an infinitesimally small 

rate without any friction and if both system and surroundings remain in a state of quasi 

equilibrium: the variables characterizing the system go and return through the same values in 

the forward and backward changes at an infinitesimally small rate. No change that occurs in 

nature is reversible, though some real processes can be brought as close as possible to 
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reversible processes. The reversible change is thus regarded as an ideal change which real 

processes can possibly approach and to which equilibrium thermodynamics can apply. All 

changes other than the reversible changes are termed irreversible; such as changes in volume 

under a pressure gradient, heat transfer under a temperature gradient, and chemical reactions, 

all of which take place at a rate of finite magnitude. 

In an advancing irreversible process such as a mechanical movement of a body, dissipation 

of energy for instance from a mechanical form to a thermal form (frictional heat) takes place. 

The second law of thermodynamics defines the energy dissipation due to irreversible processes 

in terms of the creation ofentropy S,r ~ or the creation of uncompensated heat Q~r. 

In a closed system a reversible process creates no entropy so that any change dS in 

entropy is caused only by an amount dQr~v of heat reversibly transferred from the surroundings 

as shown in Eqs. 3.8 and 3.9: 

dQ.~ev 
d S -  ---7-- ,  reversible processes. (3.9) 

An irreversible process, by contrast, creates an amount of entropy so that the total change dS 

in entropy in a closed system consists not only of an entropy change dSr~v due to reversible 

heat transfer dQ~, from the surroundings but also of an amount of entropy dS~r ~ created by 

the irreversible process as shown in Eq. 3.10: 

dQrev d Q i ~ r  dQ~e~ dQirr 
d S -  ~ + ------T-- = ~ + dS~r , -----T--- = dSirr, irreversible processes. (3.10) 

This equation 3.10 defines the creation o f  uncompensated heat Q~, and the creation o f  

entropy Si~ r : 

dQ,rr d Q r e ~  
ds,.---- T -  =as---y-->0, irreversible processes. (3.11) 

Distinguishing the created entropy deSre~ from the transferred entropy diSir, we express the 

total change in entropy as the sum of the two parts shown in Fig. 3.2 and Eq. 3.12: 

dS = deSre v + dfii,, r. (3.12) 

For a closed system with reversible transfer of heat dQr~v where an irreversible process occurs 

creating uncompensated heat Q_4rr, these transferred and created parts of entropy are thus 

given, respectively, in Eq. 3.13: 

dearer dQrev dQ,r~ - T ' diSir~- T >0" (3.13) 

In an isolated system where no heat transfer occurs into or out of it (deS = 0), the entropy 

increases itself whenever the system undergoes irreversible processes: this is one of the 
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expressions of the second law of classical thermodynamics that entropy increases in an 

isolated system when irreversible processes occur in the system. In a closed system where the 

transferring entropy can be positive or negative, the total entropy does not necessarily increase 

with irreversible processes. This is also the case for an open system where the transfer of 

both heat and substances is allowed to occur into or out of the system. In any type of system, 

isolated, closed, or open systems, however, the advancement of irreversible processes always 

causes the creation of entropy in the system. 

Transferre~entr~ v 

Created entropy deSr~v -< T 

Fig. 3.2. Entropy deSr~ reversibly transferred from the outside and entropy dflzr~ 
created by irreversible processes in a closed system. 

3. 3. The Creation of Entropy and Uncompensated Heat. 
As an irreversible process advances in a closed system, the creation of entropy inevitably 

occurs dissipating a part of the energy of the system in the form of uncompensated heat. The 

irreversible energy dissipation can be observed, for instance, with the generation of frictional 

heat in mechanical processes and with the rate-dependent heat generation in chemical reactions 

different from the reversible heat of reaction. In general, the creation of entropy is always 

caused by the presence of resistance against the advancement in irreversible processes 

We consider a simple chemical reaction, AB ~ A + B, such as CO 2 ~ CO + 0.502 , in 

which reacting particles (molecules) distribute their energy among themselves in accord with 

Boltzmann's distribution law. In order for the reaction to occur, the reacting molecules have 

to leap over an energy barrier (activation energy) that normally exists along the reaction path 

from the initial state to the final state of the reaction as shown in Fig. 3.3: this is a flow of 

reacting molecules through an activated state required for the reaction to proceed. 

In the case that the process is reversible in which the initial and the final states are in the 

same energy level, as shown in Fig. 3.3(a), the energy absorbed by the reacting molecules 

rising up from the initial state to the activated state equals the energy released when the 

molecules fall from the activated state down to the final state of the reaction, and hence no 

net energy dissipation occurs during the reaction. 

In the case in which the reaction occurs irreversibly at a finite rate, however, there exists 

an energy gap between the initial state and the final state of the reaction as shown in Fig. 

3.3(b). As the reaction proceeds, then, the amount of energy equivalent to the energy gap 
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dissipates, thereby producing an amount of uncompensated heat and creating an amount of 
entropy. Usually, the energy diagram of a chemical reaction at constant T and p is expressed 
in terms of free enthalpy (Gibbs energy) which will be introduced in the following sections. 
It follows from Fig. 3.3(b) that the energy equivalent to the uncompensated heat created as a 
result of an irreversible reaction corresponds to the driving force (affinity A = the difference 
in free enthalpy between the initial and the final states) of the irreversible reaction. 

Activated state Activated state 

t ~ Activation energy ~ ] 
| I ~ Energy discharge I " J  ~ Energy discharge 

Activation energy/ ~J  ] ~ , ~  ~ ] 

~ Initial state Energy gap ~ ~ . ~  

Initial state Final state Final state 
(a) (b) 

Fig. 3.3. Energy diagrams for (a) reversible process and (b) irreversible process. 

According to irreversible thermodynamics [Ref. 2.], the rate of the creation of uncom- 
pensated heat, which equals the rate of the creation of entropy times the absolute temperature, 
is equivalent to the driving force A times the rate v -  d~/d t  of the irreversible reaction as 
shown in Eq. 3.14 (vid. Eq. 3.39): 

dQi~ dSi,  
dt = T dt -Av>-0"  (3.14) 

In the range in which a linear relationship v = k A holds between the driving force A and the 
rate v of the reaction, Eq. 3.14 yields Eq. 3.15: 

dQi~r dSi~r A 2 _ 
dt = T dt - k > 0, (3.15) 

where l[k is a reaction resistance. Equation 3.15 indicates that the rate of the creation of 
uncompensated heat is proportional to the square of the driving force A, the energy gap 
between the initial state and the final state of the processes. Note that linear reaction kinetics 
v - k A is valid only in the regime close to the reaction equilibrium, beyond which non-linear 
exponential kinetics usually predominates. 
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3. 4. The Creation of Entropy and Thermodynamic Potentials. 
From Eq. 2.3 of the conservation of energy, dQrev = dU "~" p d V ,  and Eq. 3.10 of the 

creation of entropy, dQ~ = T d S -  TdS~ r , we obtain Eq. 3.16 for an infinitesimal advancement 
of an irreversible process in a closed system: 

dU + p d V  = T d S -  T dS~r, (3.16) 

where dS = d S ~  + dS~, is the differential of the total entropy dS consisting of the entropy 

dS~  reversibly transferred and the entropy dSi,  irreversibly created in the system. The 

entropy created by an irreversible process is always positive (plus) dS,~ > 0. The differential 
of the internal energy U is then given by Eq. 3.17: 

dU = T d S -  p d V -  T dS~ . (3.17) 

We thus see that an irreversible process, if occurring at constant entropy and volume (dS = 0 

and dV = 0), is accompanied by a decrease in the internal energy of the system as shown in 

Eq. 3.18: 

T dSir r : - d U  > O, -(U:,~, - U~,~= 1 )> 0" at constant S and V, (3.18) 

where ( U : ~  - Ui,~ l) is the change in internal energy between the initial state and the final 
state of the irreversible process. 

Similarly, for the energy function enthalpy H - -  U + p V  defined in the foregoing chapter 
we have Eq. 3.19 from Eq. 3.17: 

a l l =  r a s  + v a p -  r a s , ,  , (3.19) 

which yields Eq. 3.20 for an irreversible process at constant entropy S and pressure p: 

T dSi,  = - dH > 0, - ( H : ~  - H i , ~  l)> 0" at constant S and p .  (3.2o) 

This indicates that any irreversible process, if occurring at constant entropy S and pressure p, 

is accompanied by a decrease in the enthalpy from the initial high level ~ l  toward the 

final low level H:,~ of the system. From the foregoing we see that the internal energy and 

enthalpy may play the role of thermodynamic potentials for an irreversible process if occurring 

under the condition of constant entropy S. This condition of constant entropy, however, is 

unrealistic because entropy S contains both created entropy Sir ~ and transferred entropy S~.  

We then introduce two new energy functions called f ree  energy F (Helmholtz energy) for 

the independent variables temperature T and volume V, and f ree  enthalpy G (Gibbs energy) 

for the independent variables temperature T and pressure p as defined, respectively, in Eqs. 

3.21 and 3.22: 
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F = U - T S ,  (3.21) 

G -  U - T S +  p V = H - T S .  (3.22) 

Inserting F and G into Eq. 3.17 yields Eqs. 3.23 and 3.24: 

d F = - S d T -  p d V -  T dSir,., (3.23) 

dG = -  S d T  + V d p -  T dSi,. r. (3.24) 

For an irreversible process in an isothermal system at constant V, we then obtain Eq. 3.25: 

as, --aF > o, )> o, (3.25) 

while in an isothermal system at constant pressure p, Eq. 3.26 holds: 

T dSi,. , - - d G  > O, - ( G  ~,~, - Gin~ )> 0. (3.26) 

Obviously, the energy functions of free energy F and free enthalpy G play the role of 

thermodynamic potentials for an irreversible process to occur in isothermal systems at constant 

volume and constant pressure, respectively. In general, the energy functions of F, and G can 

be used as the thermodynamic potentials to indicate the direction of an irreversible processes 

to occur under the condition that their respective characteristic variables remain constant. 

As mentioned above, free energy F is occasionally called the Helmholtz energy, and free 

enthalpy G is frequently called the Gibbs energy. These two energy functions F and G 

correspond to the amounts of energy that are freed from the restriction of entropy and hence 

can be fully utilized for irreversible processes to occur at constant temperature. 

3. 5. Affinity of Irreversible Processes. 

We now consider a simple system in which equilibrium is already established with 

respect to temperature and pressure and in which, on the other hand, equilibrium is not 

attained with respect to the redistribution of substances susceptible to chemical reactions, nor 

with respect to any changes being characterized by the parameter ~, the extent of reaction 

shown in Eq. 1.11. Let us first consider a system in which a single chemical reaction takes 

place in an irreversible way. Suppose that in an infinitesimal time interval the value of 

changes by an amount d~, producing then an amount of uncompensated heat dQ~,~ and hence 

an amount of created entropy dSi,~. We now introduce a new energy function called the 

affinity A of an irreversible process defined by the relation shown in Eq. 3.27. Namely, the 

differential of the irreversibly dissipated energy (uncompensated heat) dQ~r equals the affinity 

A times the differential of the extent of reaction d~: 
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dQ~,. r = T dSir r = A d{  > O. (3.27) 

Equation 3.27 is called De Donder's  inequality. 
The affinity is expressed as a function of independent variables such as A(T, V,~) and 

a(T ,p ,~) .  For the characteristic variables T, V, and ~, we obtain from Eqs. 2.5 (where 

Q = Q~ ), 3.11 and 3.27 the following equation 3.28 for the affinity A of the reaction: 

- A  =( OU OS 
V ~ V' 

(3.28) 

while for the characteristic variables of T, p, and ~, we further obtain from Eqs. 2.14 (where 

Q = Qr~ ), 3.11 and 3.27 the following Eq. 3.29 for the affinity A of the reaction at constant 
temperature and pressure: 

- A - (  OH (3.29) 

These two equations show that the affinity depends not only on the internal energy U or the 

enthalpy Hbut also on the entropy S. 

Combining Eq. 3.27 with Eqs. 3.17, 3.19, 3.23, and 3.24, we obtain the following four 

equations: 

d U -  T d S -  p d V -  A d~, (3.30) 

d H =  T dS + V d p - A  d{, (3.31) 

dE = - S d T -  p d V -  A d~, (3.32) 

d a = -  s a r  + v a p -  a a~. (3.33) 

These four thermodynamic energy functions of state U-- U(S,V,~) ,  H--  I- l(S,p,~),  F -  

b-(T, V, ~), and G -- G(T, p, ~) are called the thermodynamic potentials for the characteristic 
variables S and V; S and p; T and V; and T and p; respectively. 

An irreversible process advances, if its affinity is positive (A > 0), and it finally reaches 

the equilibrium state where the affinity becomes zero ( A - 0 ) .  This indicates that the 

advancement in an irreversible process is accompanied by decreasing thermodynamic potentials. 

As shown in Fig. 3.4, an irreversible process proceeds in the direction in which the 

thermodynamic potentials of the process decrease. In principle, the affinity decreases as the 

irreversible process proceeds. 

The affinity of irreversible processes, as mentioned above, is related to the thermodynamic 

potentials U, H, F, and G under the conditions that their respective characteristic variables 

are kept constant. From Eqs. 3.30, 3.31, 3.32, and 3.33, we obtain the partial differentials of 
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these thermodynamic potentials with respect to their respective characteristic variables as 

shown in Eqs. 3.34, 3.35, 3.36, and 3.37: 

OU 

OH O H - - V  (-~--~)s. - - A, (3.35) 

OF 

OG OG ( - ~ T ) p - - S ,  (--ff-ff)r,-V, ( - - ~ ) r , - - A .  (3.37) 

In these equations we see the regularity that the partial differential of these four thermodynamic 

potentials with respect to their respective extensive variables gives us their conjugated intensive 

variables and vice versa. We thus obtain minus the affinity of an irreversible process in terms 

of the partial differentials of U, H, F, and G with respect to the extent of reaction; affinity is 

an extensive variable. 

Non - equilibrium state 

A= - A  U, - AH, - AF, - AG 

Equilibrium state 
A - 0  

Fig. 3.4. An irreversible process occurs reducing its affinity from a state of high 
thermodynamic potentials to an equilibrium state of low thermodynamic potentials. 

The differentials of the energy functions are complete differentials with the property that 

the mixed second order differentials are equal to each other. This leads to important relations 

as exemplified for the free enthalpy by Eq. 3.38 as obtained from Eq. 3.37: 

OS OA OV OS OV (3.38) 

From Eq. 3.27 we have for an irreversible process the rate of energy dissipation 

dQi~/dt = TdSi ,[dt  equal to the affinity a times the rate d~[dt = v as shown in Eq. 3.39: 
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dQ,~ T dS,. d~ 
dt = d---t~ = A ~ - A v > 0. (3.39) 

We thus see that the affinity always has the same sign as the rate of the process. If the affinity 

is positive A > 0,  the rate must be positive v > 0 indicating that the irreversible process 

proceeds in the forward direction; whereas, if the affinity is negative A < 0, the rate must be 

negative v < 0 meaning that the process proceeds in the backward direction. When the 

affinity decreases to zero A = 0, the rate of process also decreases to zero and the process is 

in equilibrium. This property of affinity is characteristic of all kinds of irreversible processes 

such as the transfer of heat under a gradient of temperature and chemical reactions under a 

gradient of thermodynamic potentials. 

Equation 3.39 holds valid for the system in which only a single process or reaction is 

occurring. In a system in which multiple chemical reactions are simultaneously occurring, 

Eq. 3.27 for the uncompensated heat can be expressed by the sum of the products of all 

independent affinities and their conjugated reaction rates as given in Eq. 3.40: 

dQi,, T dS,. d~ 
d-m-t - = dt = z~, A~ - - ~  = z~, A~ v, > 0, (3.40) 

where 4 is the affinity of the ith reaction and ~i is the corresponding extent of reaction. 

A v 1 > 0 

A I >  0 

A(~AZ v2>0 

2 < 0  

C + 0.5 0 2 --~ C O ~ . ~ . ~ I  C + 0 . 5 0  2 ~ CO 

~ . ~  F e O + C - - - , F e + C O  

AIV 1 > 0 

A1v I -'1- A2v 2 > 0 

A2v 2 > 0 

Fig. 3.5. Energy transfer from a coupling reaction C + 0 .5  0 2 --'- CO to a coupled 
reaction FeO ---- Fe + 0 . 5 0  z for a combined reaction FeO + C ---, Fe + CO. 

We also notice that the creation of entropy in various reactions occurring simultaneously 

is positive as a whole, though it may be positive or negative for individual reactions. Thus, in 

a system in which two chemical reactions occur, it is possible that ,41v 1 > 0 for one reaction 

and Azv 2 < 0 for the other, provided that A~v I + Azv 2 > 0. In such a case we call reaction 1 

the coupling reaction which proceeds producing an amount of created entropy (uncompensated 

heat) under its positive affinity, and reaction 2 is the coupled reaction which proceeds 

absorbing the created entropy (uncompensated heat) under its negative affinity. We thus see 

that the transfer of energy from the coupling reaction 1 to the coupled reaction 2 makes it 
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possible for the latter to proceed even though its affinity is negative. The rate of a coupled 

reaction, however, must be within the limit that v 2 <(A~vllAz) shown in Eq. 3.40. As an 

example of the thermodynamic coupling of chemical reactions, we have the combination of 

carbon oxidation and iron oxide reduction as shown in Fig. 3.5. Such coupling-and-coupled 

reactions will again be discussed in terms of exergy in chapter 11. 

3. 6. Entropy of Pure Substances. 

The entropy of a pure substance is a function of temperature T and pressure p. Equations 

2.13 and 3.9 yield the total differential of the molar entropy ds of a pure substance: 

dh - v  dp cp v 
ds - W = T dW - --ff dp, (3.41) 

where C p, h, and v are the molar heat capacity at constant pressure, the molar enthalpy, and 

the molar volume of the pure substance, respectively. We then obtain Eq. 3.42 for the 

entropy of a pure substance: 

I f0 Cp(T, O) P v 
s(T, p ) -  s(O, O)+ T d T -  --ff dp, (3.42) 

where s(O, O) is the molar entropy of the pure substance extrapolated to p = 0 and T = O. The 

third law of thermodynamics, called the Nernst heat theorem, assumes that the entropy of the 

condensed phase of a perfect crystal may be equated with zero at the zero absolute temperature, 
s(0, 0)----0: No energy fluctuation occurs at T =0  giving g2(N,V,U)-  1 in Eq. 3.6 and 

hence entropy is zero. 

On the right hand side of Eq. 3.42, the second term is the thermal part and the third term 

is the pressure-dependent part of the molar entropy. The entropy of a pure substance thus 

consists of the thermal part and the pressure-dependent part. Under ordinary conditions, 

however, the latter is so small compared with the former that we may regard the entropy as 

independent of pressure for condensed substances particularly (vid. Eqs. 7.29 and 7.30). For 

gaseous substances a slight change in entropy results from a change in pressure, s(T, p)= 
s'(T, pO) _ R In (p / p0) where p0 is a reference pressure, as will be shown in section 3.8. 

From Eq. 3.42 we obtain the molar entropy of a pure substance in the gas state at constant 

pressure as shown in Eq. 3.43: 

s g -  - ~ d T + - ~ f +  -~dT+ - - ~ +  - ~ d T - R l n  - 7 ,  (3.43) 

g l s where Cp, Cp, and Cp are the molar heat capacities of the substance at constant pressure in the 

gas, liquid, and solid states, respectively; A1h and Avh are the heat of fusion and the heat of 
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evaporation, respectively" and T I and T v are the melting temperature and the boiling temper- 

ature, respectively. In Eq. 3.43 the first term on the fight hand side is the thermal part of the 

molar entropy for the solid state, the second term is for the melting, the third term is for the 

liquid state, the fourth term is for the boiling, the fifth term is for the thermal part of the gas 

state, and the last term is the pressure-dependent part of the molar entropy in the ideal gas 

state. 

Figure 3.6 shows schematically the molar entropy of a pure substance as a function of 

temperature. If a structural transformation occurs in the solid state, an additional increase in 

the molar entropy comes from the heat of the transformations. As shown in the figure, the 

molar entropy of a pure substance increases with increasing temperature. In chemical handbooks 

we see the tabulated numerical values of the molar entropy calculated for a number of pure 

substances in the standard state at temperature 298 K and pressure 101.3 kPa. A few of them 

will be listed as the standard molar entropy, s ~ , in Table 5.1. Note that the molar entropy 

thus calculated based on the third law of thermodynamics is occasionally called "absolute" 
entropy. 

y Boiling 

"~'-Solid~ Melting 

Absolute temperature T 

Fig. 3.6. Molar entropy of a pure substance as a function of temperature. 

3. 7. Entropy of Heat Transfer. 

Let us now consider a steady flow of heat dQ(irr) that occurs irreversibly between a 

phase at a high temperature T 1 and a phase at a low temperature T 2 in a closed system as 

shown in Fig. 3.7. The phase 1 continuously receives heat dQ -T~dS 1 in a reversible way 

from the surroundings at temperature T~ and the phase 2 continuously releases heat 

dQ = T2dS 2 into the surroundings at temperature T 2. In the steady state no change occurs in 

the state property of the system except an increase in entropy dSi~ r due to the irreversible heat 

transfer dQ (07") = dQ : 

dSi~-  d S z - d S l - ( ~ z  - ~ ) d Q ( i r r ) > O ,  Ta T~ dS,,, 
dQ(irr)-  I"1 - T2 (3.44) 
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where dS 1 and dS 2 are the entropy at T~ and the entropyat T 2 due to the steady flow of heat 

dQ (= dQ(irr)) in a reversible way between the system and the surroundings, respectively. 

Equation 3.44 shows the relation between the amount of heat dQ(irr) irreversibly transferred 

and the amount of entropy dSir , irreversibly created in the steady flow of heat between the 

two different temperatures. In this case the irreversibly created entropy is continuously released 

from the low temperature phase to the surroundings so that no accumulation of created 

entropy occurs in the system. 

d Q  m 
Phase 1 dQ(irr Phase 2 

L /'2 
m _ _ ~  dQ 

Fig. 3.7. Irreversible steady flow of heat from phase 1 at high temperature 7"1 to phase 

2 at low temperature T 2 in a closed system. 

Heat transfer between two different temperatures can be carried out in a reversible way 

by using a reversible heat engine or heat pump. In this case, however, a part of the transferring 

heat converts into work or a part of the transferring heat is created by work. The heat engine 
is a closed system of a gas, in which a quantity of heat dQl is absorbed from an outside heat 

source at a high temperature T 1 and preforms a quantity of work dW to the exterior of the 

system releasing a quantity of heat dQ2 less than dQ1 into an outside heat reservoir at a low 

temperature T2. On the other hand, a closed system of a gas is called a heat pump or an 
inverse heat engine, when it receives a quantity of work dW from the outside and takes up a 

quantity of heat dQ2 from an outside heat reservoir at a low temperature T 2 bringing a 
quantity of heat dQ1 more than dQ2 into an outside heat reservoir at a high temperature T 1 . 

Figure 3.8 shows the processes that occur in a heat engine and a heat pump. One of the ideal 

heat engines operating in a reversible way is known as Carnot's heat engine, in which two 

adiabatic and two isothermal processes constitute what is called the Carnot cycle. 

From the first law (energy conservation) of thermodynamics we have dQ1 = dW + dQ2, 
and the second law (entropy creation) of thermodynamics gives us (dQ1/T1)+ (dQz/Tz)~ O, 
where equality is for a reversible heat engine and inequality for an irreversible one. We then 

have the efficiency ~a--, 2 = (dW/dQ~) for the reversible heat engine and the efficiency 
~,2--, 1 = (dQ]dW) for the reversible heat pump as shown, respectively, in Eq. 3.45: 

[dWI T~ - T2 IdQ11 T1 (3.45) 
-,2 = d Q-----f- = T 1  ' ~,2 - - .1  = d---W- "- T 1 - T ~  2 " 

No creation of entropy and uncompensated heat occurs in the reversible heat engine and 

pomp, and hence Eq. 3.45 gives the maximum efficiency theoretically attainable for heat 

engines and heat pumps. This equation also shows that thermal energy (heat) can not be 
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wholly converted into work and that its conversion efficiency depends on the temperature at 

which the thermal energy is reserved. 

High Low High Low 
temperature temperature 

i!i ii!!iii!i 

iiii !iii!i i 
dW 

temperature temperature 

iii!iiiiiii!ii i! i i!!!iiiii! i 

dW 

Heat engine Heat pump 

- . - . - . - . - , - .  
, , - , . , - , - , , .  
. . - . . , - . - . , .  
. . , . . . . . . . . .  
�9 . ,  - , . . . .  :.-.-.-.:.-. 
:i:i:i:i:i:i 

. . . . . .  

. . .  . . . .  

�9 . , . . , ,  . , ,  

Fig 3.8. Processes occurring in a heat engine and in a heat pump 

This type of reversible heat transfer by means of a heat engine has its affinity A, which is 

equivalent to the maximum work W obtainable with the engine as expressed by Eq. 3.46: 

A-W= T,-T2 7-I Q1- (3.46) 

This is the maximum available energy that we can obtain from an amount of heat Q1 at a 

temperature T 1 

sl $2 

PD VI 
Z~ - s z - s l ~  

p2, v2 

Fig. 3.9. Isothermal expansion of one mole of an ideal gas resulting in an entropy 

increase. 

3. 8. Entropy of Gas Expansion. 
Let us now discuss the entropy of gas expansion in a closed system. Equation 3.42 gives 

us the molar entropy of an ideal gas at constant temperature T as shown in Eq. 3.47: 

v , s ' ( T ) -  s**(T)+ R In RT, (3.47) s(T, p ) -  s*(T, pO)_ R In ~P0, s(T, v ) -  s**(T, v ~ + R In 
7 k' 
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where v is the molar volume of the gas, p is the pressure of the gas, and p0 and v ~ are a 

reference pressure and a reference molar volume, respectively. 

If the gas expansion takes place isothermally as shown in Fig. 3.9, the molar entropy of 

the gas then increases with increasing volume and decreases with increasing pressure as 

shown in Eq. 3.48: 

vz P2 
z l s -  R ln  --v - - R l n  pl , (3.48) 

where A s -  s z - s  1 is the change in the molar entropy of a gas caused by the gas expansion 

from an initial state (Pl, vl) to a final state (pz,v2) at constant temperature. 

3. 9. Entropy  of  Mixing.  
The mixing of substances is an irreversible process that takes place creating entropy in 

the system. The entropy thus created is defined as the entropy of mixing S M. Suppose two 

different ideal gases with different volumes V 1 and V 2 are mixed isothermally at a constant 

pressure p to make a single mixture system with a volume 1/1 + V z as shown in Fig. 3. 10. 

The overall entropy S ~ of both individual systems before the mixing is obtained from Eq. 

3.47 as shown in Eq. 3.49: 

SI(T' P)- ~i n~ (s:(T, Po)- R In p-~-}. (3.49) 

On mixing the gases we obtain the entropy S F of the mixed gases as expressed by Eq. 3.50 as 

a function of the partial pressure p~ (p-~Y~Pi) and the molar fraction x~--pi[p  of the 

constituent gases: 

p 
SF(T, p) - ~ n~ (s~(T, Po)- R In -~o } - ~ n~ (s~(T, Po)- R In rio 

---- SI( T,  p ) -  ~ n, R In x i. 

The entropy of mixing S u is thus given in general in the form of Eq. 3.51: 

- R In x~} 

(3.5o) 

S M = SF(T, p ) -  SI( T, p) = - ,~' n~ R In x~ > 0. (3.51) 
t 

The mixing of gases at constant pressure may also be regarded for each constituent gas as 

an expansion of its volume decreasing its partial pressure (p ~ Pi ), and hence the entropy of 

mixing can also be obtained from Eq. 3.48 for the mixing of two gases as shown in Eq. 3.52: 

Pa Pz _ A S -  S u - - n~ R In --p-- - n2 R In 7 - n~ R In x~ - n2 R In Xl > O. (3.52) 
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The entropy of mixing is generated not only in the gas state (gas mixtures) but also in the 

states of liquids (liquid solutions) and solids (solid solutions). 

S1 S2 S = S~ + S: + S ~ 

p,  Vl, nl p,  Vz, nz 

S M = - nlR In x I - n2R In x 2 > 0 

n = n 1 + n  2 

V =  V~ + V2 

P =  pl + t~ 

Fig. 3.10. Entropy of mixing of two gases to form a gas mixture at constant pressure 

and temperature. 



CHAPTER 4 

AFFINITY IN IRREVERSIBLE PROCESSES 

The affinity of irreversible processes is a thermodynamic function of state 

related to the creation of entropy and uncompensated heat during the processes. 

The second law of thermodynamics indicates that all irreversible processes 

advance in the direction of creating entropy and decreasing affinity. This 

chapter examines the property affinity in chemical reactions and the relation 

between the affinity and various other thermodynamic quantities. 

4. 1. Affinity in Chemical Reactions. 

The concept of affinity introduced in the foregoing chapter (section 3.5) can apply to all 

the physicochemical changes that occur irreversibly. Let us now discuss the physical meaning 

of the affinity of chemical reactions. As mentioned in the foregoing, we have in Eq. 3.27 the 

fundamental inequality in entropy balance of irreversible processes as shown in Eq. 4.1: 

dQi,.r= T dSirr- A d~ > O, A ~ - A v >_ 0. (4.1) 

The inequality in this equation is for irreversible reactions that occur spontaneously, while 

the equality is for reversible reactions in quasi-equilibrium. The inequality equation 4.1 is in 

fact the most important property of the affinity showing that the affinity always has the same 

sign as that of the rate of reaction at any instance during the reaction. 

In Eqs. 3.30 to 3.33, we have seen a series of equations for the various thermodynamic 

potentials as functions of the affinity as follows: 

dU = T d S -  p d V -  A dr (4.2) 

d H -  T dS + V d p -  A d~, (4.3) 
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dF = - S d T -  p d V -  A d~, (4.4) 

dG= - S dT  + V d p -  A d~. (4.5) 

These equations give us the affinity as the partial differential of the thermodynamic potentials 

with respect to the extent of reaction as shown in Eq. 4.6: 

A - - (  OU OH (4.6) 

This equation indicates that the affinity corresponds to the thermodynamic potentials of U 

and H under the conditions of constant entropy S and to the thermodynamic potentials of F 

and G under the conditions of constant temperature T. 

Irreversible reaction 

(  ffi ty 

Fig. 4.1. Affinity in a chemical reaction. 

If the affinity is zero A -  0, no irreversible reaction advances and the system is in 

equilibrium. Then the equations from 4.2 to 4.5, if excluding the third terms on their fight 

hand side, represent the fundamental properties of thermodynamic potentials U, H, F, and G 

in the state of reaction equilibrium, i.e. the state in which no physicochemical change occurs. 

4. 2. Affinity and Heat of Reaction. 

Equations 3.28 and 3.29 have shown the relationship between the affinity A and the heats 

of reaction OU[O~ at constant volume and OH]O~ at constant pressure as shown in Eq. 4.7: 

a u  os  OH OS 
- 

In the case in which the second entropy term on the right hand side of the above equations is 

significantly small compared with the first energy or enthalpy term (i.e. the system is at very 
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low temperature), the affinity is nearly equal to the heat of reaction: A~.-(3U/3~)7.,v or 

Z---(3H/3~)7.p.  If an irreversible reaction (A > 0) has the enthalpy term larger than the 

(3H/O~)7. p > T(3S[3~)7. p, the enthalpy term is negative (3H/3~)~,p < 0 and entropy term, 

hence the reaction is exothermic. 

Reminding that for the independent state variables p, T, and ~ the following relations 

hold: 

, , a r 1 7 6  ' 

a aS a OS 

and that the similar equations also hold for the independent variables V, T, and ~, we obtain 

Eq. 4.8 from Eq. 4.7 [Ref. 1.]: 

OU [ 04(v-)Iv v' = 1 ( O H )  (4.8) 

Integrating the second equation of Eq. 4.8 yields Eq. 4.9: 

A(T ,p ,~ )  A(To, p , ~ ) ]  _fT.i 1 [ O H ]  dT 
T - To p, ~ - - ~  ~ T ~  jr, p . (4.9) 

We can make use of this equation 4.9 to estimate the affinity A(T,p,~) as a function of 

temperature T from a known affinity value A(T o, p, ~) at a specified temperature T 0, provided 

that we know the molar heat capacities of the reactants and products. 

From Eqs. 3.38 and 4.8 we obtain the total differential of A(T,p ,~) /T  shown in Eq. 4.10: 

OA (4.10) 

Using the three symbols (3A/O~)T, p =aT, p , (3V[O~)7.,e = vT, e, and (3HIde)T, v = hT, e , we may 

put Eq. 4.10 into the alternative form shown in Eq. 4.11: 

A + hr, e dT dp + a~, d~ (4.11) dA - --.--..-~--- -- VT, p e " 

Equations 4.10 and 4.11 hold valid for a single reaction. For multiple reactions occurring 

simultaneously in the system the third term on the right hand side of Eq. 4.11 consists not 

only of the sum of individual reactions but also of the sum of the interactions among the 

reactions. Since the interaction between reaction i and reaction j is given in Eq. 4.12: 
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OA, ] ( aA i ] ] 
~-  Jr, - (4.12) 

we have in place of Eq. 4.10 Eq. 4.13 for simultaneous multiple reactions: 

1 OH OV OAi 
P 

(4.13) 

This equation 4.13 can be used for studying the stability of chemical equilibria of multiple 

chemical reactions. 

4. 3. The Average  Heat  of  Reaction.  

The heat Q(~) absorbed in or released out of a closed system in which a chemical 

reaction occurs is in principle a function of the extent of reaction ~, temperature T, and 

pressure p (or volume V) of the reaction system. If we fix the condition at which the reaction 

occurs, all the variables defining the state of the reaction system will be definite functions of 

~. We now introduce a symbol q(~) denoting the heat received by the system when the 

reaction proceeds by an extent d~ as defined in Eq. 4.14: 

dQ(~) 
q(~)-  d~ " (4.14) 

The function of q(~) is the heat of reaction relative to the chemical reaction under consideration 

[Ref. 1.]. We further define the average heat of reaction for the change from ~0 to ~1 as 
expressed by Eq. 4.15. Integrating Eq. 4.14 for one equivalent extent of the reaction, we 

obtain the average heat of reaction Qme~ for the chemical change as shown in Eq. 4.15: 

Q . . . .  = 1 ; | l  q(~)d~. 
~, - ~o Jo 

(4.15) 

We usually call Qrnean the average heat ofreaction when the chemical change occurs as much 

as one equivalent extent of reaction, ~1 -~0 = 1. 

For a system at constant temperature and volume, as described in Eqs. 2.5. 2.6 and 2.7, 

the differential (OU[O~)r,vd ~ -- Ur,vd ~ gives us the average heat of reaction at constant T and 

V as shown in Eq. 4.16: 

c~-'~ - 0U 
Y-,T, V 

T, V f0 
1 

(4.16) 

jc~meall This equation indicates that the average heat of reaction ,,:,r,v at constant Tand V equals the 

change in the internal energy (AU)r,v for one equivalent extent of the reaction. 
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Similarly, from Eqs. 2.13 and 2.19 we obtain Eq. 4.17 for the average heat of reaction at 

constant T and p: 

T,p - ~  T, =1 p p, 
(4.17) 

indicating that the average heat of reaction Q~,p" at constant T and p is equivalent to the 

decrease in the enthalpy for one equivalent extent of the reaction. 

The reaction is exothermic (heat-releasing) when the heat of reaction is negative, while it 

is endothermic (heat-absorbing) when the heat of reaction is positive. 

4. 4. The Average Affinity of Reaction 
The affinity of a reaction, A(~), is also a function of the extent of reaction ~. On 

integrating the reaction affinity A(~) for one equivalent extent of the reaction from ~ 0 - 0  to 

~1 = 1, we define the average affinity of reaction, A me" , as shown in Eq. 4.18: 

A mean _. 1 L 1 ~1 - ~------~ a(~:) du e . (4.1 S) 

For a chemical reaction at constant temperature and volume, Eqs. 3.21, 4.7 and 4.18 give 

the average affinity of the reaction as shown in Eq. 4.19: 

= -  - = -  (4.19) 

indicating that the average affinity a me" "-r,v at constant temperature T and volume V is equal to 
the decrease -(ddT)r,v in the free energy (Helmholtz energy) that occurs during the advancement 

of one equivalent extent of the reaction. 

Similarly, for a chemical reaction at constant temperature T and pressure p Eqs. 3.22, 4.7 

and 4.18 give the average affinity of the reaction as shown in Eq. 4.20: 

Ar'T = - 
T,p 

(4.20) 

Equation 4.20 indicates that the average affinity A~, 7 at constant T and p is equivalent to the 

decrease -(AG)r,p in the free enthalpy (Gibbs energy) that occurs during the advancement of 

one equivalent extent of the reaction. 

The physical quantity that we usually call the affinity of a reaction corresponds to the 

average affinity of the reaction. Generally, the affinity of a reaction at constant T and V 

differs numerically from that at constant Tand p, as compared to the heat of reaction whose 
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numerical value depends on whether the reaction occurs at constant V or at constant p. 

Integrating Eq. 4.7 from ~ = 0 to ~ = 1 yields Eq. 4.21: 

_ (  OH d ~ - T  OS d~. r A(T, p, ~ d ~ -  - ~  - - ~  
Jr =0 =0 T,p =0 T,p 

(4.21) 

By introducing the entropy change (AS)T,p shown in Eq. 4.22 for one equivalent extent of 

reaction at constant T and V: 

d~- - (S~ . - , -S~=o)r , :  (4.22) 

we then obtain from Eq. 4.21 the average affinity of the reaction at constant Tand p as shown 

in Eq. 4.23: 

m c a i 1  ~ ~ - AT, p = (AH)T,p T (AS)T,p Q~,7 T (AS)~,~. ( 4 . 2 3 )  

Similarly, we obtain the average affinity of the reaction at constant T and V: 

m e a n  

- -  zimean (AU)T, v -- Q T , V  --  T ( A S ) T  V" "'T, V = -- T (AS)T ' v ( 4 . 2 4 )  

On taking account of Eqs. 4.16, 4.17, 4.19 and 4.20, we rewrite Eqs. 4.23 and 4.24 in the 

form shown in Eqs 4. 25 and 4.26, respectively: 

m e a n  . _  

- -  A T ,  p - -  (AG)T  ' p ( t ~ - / ) T  ' p T ( A S ) T  ' p, (4.25) 

- AT~,V - (AF)T, v - (AU)T, v - T (AS)T, v. ( 4 . 2 6 )  

These equations 4.25 and 4.26 are of great importance and are frequently used to estimate the 
ame~=- (AG)  from the average affinity of a chemical reaction, ame~=--(Z~)T,V or "~T,p T,V "~T,V 

average heat of the reaction, (AU)T,V or (AH)T,p, and the entropy changes of the reaction, 

(aS)r,v or (AS)r,p. 

Furthermore, from Eq. 4.8 we have Eq. 4.27: 

\ T JJv- T 2 , TTP p= T 2 (4.27) 

This is the direct relation connecting the average affinity and the average heat of reaction. 

Equation 4.27 enables the average affinity to be calculated at a temperature T, if its value 

at some specified temperature T o is known. If we integrate Eq. 4.27 between T o and T, we 

have at constant pressure: 
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Am-- 
~ 0  _ (a/-/),,,~ 
To - T2 dT,  

(4.28) 

where the heat of r e a c t i o n  (,dJ-I)r,p is a linear function of the partial molar heat capacity of 

substances taking part in the reaction as shown in Eq. 2.30. We have usually to assume that 

the partial molar capacities of substances in the reaction system are equal to the molar heat 

capacities in the pure state. From Eq. 2.30 we have: 

+ i 2 '  d r  (4.29) 

which on substitution in Eq. 4. 28 gives Eq. 4.30: 

m - - A m - -  A r _ r0 (AH)r0,p (ZlH)r0,p r d T  
-- ~ - - - ' - - " " ~ ~  "+ ~ + ~i 'Vi - - ~  C p, i a T  (4.30) 

We see that the average affinity A~'~ of a reaction at a temperature T can be calculated, if 

we know: (a) the average affinity A mean r0 at one specified temperature T O at the pressure p (b) 

the heat of reaction (AH)r0, p at To; and (c) the partial molar heat capacities of the constituent 

substances as a function of temperature throughout the whole range from T O to T. 

At temperature T o, we have from Eq. 4.25,-a~o,~=(z]J-t)To, p - To(AS)To, p ,  which on 

insertion in Eq. 4.30 gives Eq. 4.31: 

A~ ~-~ (AH)r0, p 
- m  

T - T + (AS)To'p + ~i Vi ~ Cp, i d W .  (4.31) 

The double integral may be transformed by integration by part to Eq. 4.32: 

--TT- c p, i d T  = d T  --T-- d T  = ---if- d T -  cp, i dT.  (4.32) 

Thus, Eq. 4.31 may be expressed in the alternative form: 

1 mean C p, i T 
A T - - ( Z ~ t ) T o ,  p + T (AS)To, p -.F ~i Vi T T d T -  Cp, i d T  �9 (4.33) 

With the aid of tables of molar heat capacities in physicochemical handbooks we can evaluate 

the third term on the right hand side of this equation for each constituent substances taking 

part in the reaction. 



CHAPTER 5 

CHEMICAL POTENTIAL 

The chemical potential is defined as an intensive energy function to represent 

the energy level of a chemical substance in terms of the partial molar quantity 

of free enthalpy of the substance. For open systems permeable to heat, work, 

and chemical substances, the chemical potential can be used more conveniently 

to describe the state of the systems than the usual extensive energy functions. 

This chapter discusses the characteristics of the chemical potential of substances 

in relation with various thermodynamic energy functions. In a mixture of 

substances the chemical potential of an individual constituent can be expressed 

in its unitary part and mixing part. 

5. 1. Thermodynamic Potentials in Open Systems. 
We have introduced in the foregoing chapters energy functions (thermodynamic potentials) 

of extensive properties such as U, H, F, and G to describe the thermodynamic state of a 

closed system which forbids the exchange of substances with its surroundings. For an open 

system which allows the exchange of substances to occur with the surroundings, it is often 

convenient to use energy functions of intensive properties such as the partial molar quantities 

of energy rather than thermodynamic energy functions of extensive properties. 

For a closed system the first law of thermodynamics has defined an energy function 

called internal energy U, which is expressed as a function of the temperature, volume, and 

number of moles of the constituent substances in the system; U - U(T, V, n 1 ... no). Furthermore, 

the second law has defined a state property, called entropy S, of the system, which is also 

expressed as a function of state variables" S = S(T,V,n~...nc). Thermodynamics presumes 

that the functions U(T,V, nl.. .nc) and S(T,V, n l" .nc)  exist independent of whether the 

system is closed or open. The energy functions of U, H, F, and G, then, apply not only to 

closed systems but also to open systems. 
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The total differential of the internal energy U of a system can be written as a function of 

independent state variables such as the temperature, volume and composition of the system 

as shown in Eq. 5.1: 

OU d T  + ~ d V  + dni , (5.1) 
d U  = ~ v, n i T, n i " T, V, . j  

where n i is the number of moles of every constituent i and nj is the number of moles of all 

constituents j other than i. The total differentials of the other energy functions H, F, and G 

can also be expressed in the form similar to Eq. 5.1. 

5. 2. The Partial Molar Quantity of Energy and the Chemical Potential. 

We shall now choose S, V, n l . . . n  i . . .  as independent variables. The internal energy of an 

open system then yields its total differential d U  expressed as a function of these independent 

variables as shown in Eq. 5.2: 

OU OU OU dn~ (5.2) 

By substituting (OU/OS)v,n -- T and (3U]OV)s,n - - p  into Eq. 5.2 as shown in Eq. 3.34, we 

obtain Eq. 5.3 for the total differential of U. For all energy functions U, H, F, and G, a series 

of fundamental equations in a form similar to Eq. 5.3 with different characteristic variables 

can thus be obtained as follows: 

,n.. 
S,V, nj 

S, V, nj 

T, V, nj 

T, V, nj 

(5.3) 

(5.4) 

(5.5~ 

(5.6) 

Recall ing the definit ion of these energy functions H -  U + p V ,  F -  U -  T S ,  and 

G = U + p V  - TS ,  we realize that the third terms on the right hand side of these equations are 

equal to one another as shown in Eq. 5.7: 

S, V, nj S, p, nj T, V, nj T, p, nj 

Equation 5.7 defines the chemica l  po ten t ia l  l~ i of a constituent substance i in the system. 

We then obtain a series of the fundamental equations for the total differential of the 
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thermodynamic energy functions as shown in the following equations: 

dU - T d S -  p dV  + ~ la, dn,, (5.8) 
| 

d H  = T dS + V dp+  ~ la~ dn~, (5.9) 

dF - - S dT  - p dV  + ~ ~i dni, (5.10) 
! 

d G - -  S d T  + V dp + , ~  l~,dn~. (5.11) 
z 

Obviously, the chemical potential of a substance is the partial molar quantity of the principal 

energy functions with respect to the number of moles of the substance at constant values of 

their respective independent variables in the system as shown in Fig. 5.1. 

One mole of substance i 

OH ~F ~)G 

Fig. 5.1. The chemical potential of a substance in a system. 

5. 3. Chemical Potentials and the Affinity of Reaction. 
The affinity of a chemical reaction is in general expressed as a function of the extent of 

reaction ~ and hence of the number of moles of the chemical substances in the reaction as 

shown in Eq. 5.12: 

( ) A =  - ~  T, p " 
(5.12) 

where n~ is the number of moles of substance i and v~ is the stoichiometrical coefficient of i 

in the reaction. We thus obtain Eq. 5.13 for the affinity of the reaction as a function of the 

chemical potentials of the chemical substances taking part in the reaction: 

A - - z~ vi/.t,. (5.13) 
i 

This simple form of expression has extensively been used for the calculation of the affinity of 

chemical reactions. 
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Consider for instance the reduction of iron oxide to metallic iron by gaseous molecular 

hydrogen: 

F e 2 0 3  (solid) + 3 H2(gas ) ~ 2 F%ond) + 3 H2Otgas  ) . 

The affinity of this reaction is then given by the following equation: 

A - ]'~Fe203 -I- 3 ,t/i-i2 - 2/-/F~ -- 3/-/rI2O. 

As the reaction reaches its equilibrium, the affinity of the reaction decreases to zero as 

shown in Eq. 5.14: 

, ~  v, ~t,- o, (5.14) 

Equation 5.14 thus represents the state of equilibrium of the reaction A = 0. 

The most important property of the chemical potential is that the affinity of a reaction is 

expressed by the difference in the chemical potential between the reactants and the products 

as shown in Eq. 5.13 and that the condition of reaction equilibrium is also expressed in terms 

of the chemical potentials of these reactants and products as shown in Eq. 5.14. 

5.4 Chemical Potentials and Thermodynamic Energy Functions. 
Among the four principal thermodynamic energy functions, U, H, F, and G, the free 

enthalpy G (Gibbs energy) associated with the intensive variables T and p is a homogeneous 

function of  the first degree with respect to the extensive independent variable of the number 

of moles ni of the constituent substances present in the system considered, so that it can be 

expressed as the sum of the chemical potentials of all constituent substances at constant 

temperature and pressure: 

G - , ~  n,/&. (5.15) 

From this equation we can derive the other energy functions, U = G + T S -  p V ,  H = G + TS, 

and F - - G - p V ,  in terms of the chemical potentials of all constituent substances in the 

system as shown in the following equations: 

U - , ~  n, #, + T S -  p V, (5.16) 

H -  ~,  n, I.z~ + T S, (5.17) 
t 

F - ~ ni ~t;- p V. (5.18) 
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Comparing these four equations from 5.15 to 5.18, we realize that the free enthalpy G (Gibbs 

energy) is the most convenient in that it is directly proportional to the chemical potentials of 

the constituent substances and is a function of the characteristic intensive variables T and p. 

5. 5. Chemical Potentials in Homogeneous Mixtures: The Gibbs-Duhem Equation. 

From Eq. 5.15 we have Eq. 5.19 for the total differential of the free enthalpy in a 

homogeneous mixture containing multiple substances: 

d G  = ~,  n, dlu, + ~,  l~i dn,, (5.19) 
i t 

which, on combination with Eq. 5.11, yields Eq. 5.20: 

S d T  - V dp  + ~ n i dla i - O. (5.2o) 

This equation 5.20, called the Gibbs-Duhem equation, is unique among a variety of the 

thermodynamic equations of state in that the characteristic variables are all intensive quantities, 

each multiplied by its conjugate extensive quantity. 

At a constant temperature and pressure we then obtain Eq. 5.21 for the relation between 

the chemical potentials and the numbers of moles of the constituent substances: 

~ '  n~ d ~  = 0. (5.21) 
! 

Equation 5.21 shows the interrelationship among the chemical potentials of the constituent 

substances in a homogeneous mixture and is often used for the determination of the chemical 

potential of solute constituents in solutions. 

5.6. Chemical Potentials of Substances in Ideal Mixtures. 

The chemical potential of a substance i in a homogeneous mixture depends on the 

temperature, pressure, and concentrations of constituent substances, la i = l ~ i ( T , p , x l . . . x  i �9 ..)" 

whereas, that of a pure substance is a function of temperature and pressure only. As mentioned 

in the foregoing chapters, the mixing of substances causes an increase in entropy of the 

system and hence changes the chemical potentials of the substances 

Generally, the chemical potential of a constituent substance i in a mixture consists of a 

un i tary  par t ,  which is inherent to the pure substance i and independent of its concentration, 

and a c o m m u n a l  p a r t ,  which depends on the concentration of constituent i [Ref. 3.]. The 

communal part of the chemical potential of a constituent i in a mixture arises from the 

entropy of mixing of i: For an ideal mixture the molar entropy of mixing of i, sff, is given 

from Eq. 3.51 by s ~ -  -Rln  xi, and hence the communal part of the chemical potential is 

expressed by ~ff = - T s ~  - R T l n x  i at constant temperature, where xi is the molar fraction of 
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constituent i in the mixture: G -  H - T S  gives l~i- hi-  Tsi and hence /~ f f - -Ts f f  for an 
M ideal mixture in which h i -- 0 (vid. section 5.9.). We then express the chemical potential of 

substance i in a mixture as shown in Eq. 5. 22: 

[~i(T, p ) -  [~;(T, p)+ RT In xi, (5.22) 

where Is is the unitary part of the chemical potential o f / i n  the mixture. The unitary 

part l~;(T,p) is a function of temperature and pressure only. We call I~(T,p) the unitary 
value of the chemical potential or simply the unitary chemical potential of i. The communal 

part, RTln x i , on the right hand side of Eq. 5.22 is called the chemical potential ofmixing. In 

general, as described above, the chemical potential of constituent i consists of the unitary 
term l~ and the mixing term t ~  as shown in Eq. 5.23: 

~"(T, p), unitary term. ~t~ = RT In xi, mixing term. (5.23) 

Equation 5.22 holds valid only in the case in which the mixture is an ideal mixture. A 
mixture can thus be called ideal, if the chemical potential of the constituent substances, i, in 

the system varies linearly with the logarithm of the molar fraction of i at the ratio of RT. 
If this linear relation between the chemical potential and the logarithm of the molar 

fraction of i holds valid in the whole concentration range extending from x~ = 0 to x i - 1, the 

unitary part of the chemical potential I~(T,p) is identical with the chemical potential 

~ of the pure substance i. The linear relation of Eq. 5.22, however, is not necessarily 

valid over the whole range of concentrations but in the range of dilute concentrations only. In 

such a case the unitary part o f / s  (T,p) is usually set at the value estimated by extrapolation 

from the dilute concentration range to the mole fraction of x i - 1. 

Two cases then arise with respect to the ideality of mixtures: One is the case in which the 

mixture is ideal for all values of x~ and for all constituent substances. This type of mixture is 

thermodynamically called the perfect mixture, for which the Raoult's law (a linear relation 

between/~i and In xi in the whole range of concentrations) holds valid and in which the 
* 0 unitary chemical potential l~,(T,p) of / equa l s  the chemical potential ~i (T,p) of pure 

substance i for all the substances in the system as shown in Eq. 5.24: 

~t;(r, p)= ~~ p). (5.24) 

The other is the case in which the mixture is ideal when all substances but one (solvent) 

are at very dilute concentrations. Such mixtures are called ideal dilute solutions, for which 

the Henry's law (a linear relation between/~ and In x~ in a limited range of dilute concentrations) 

holds valid and in which the equality of Eq. 5.24 is realized only for the main substance 

present in excess as solvent and not for the solute substances as minor constituents: 

~ (T ,  p)~: ~t~ p), for solutes. (5.25) 
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In this case the unitary value of the chemical potential of solute substance i can be estimated, 

as mentioned above, by extrapolating the chemical potential of dilute constituent i to x~ = 1 

from the dilute concentration range in which the linear relation of Eq. 5.22 holds. 

If we use the concentration scale of molality m instead of mole fraction x, the chemical 

potential of a solute constituent i is expressed by Eq. 5.26: 

~,(T, p)= B;"(T, p)+ RT In m~, (5.26) 

where/~ '(T,  p) is called the chemical potential of i at temperature T and pressure p and at the 

unit concentration in the molality scale. In the case of aqueous dilute solutions we obtain the 
*x T following relation between the unitary value of chemical potential g~ ( , p) in the molar 

fraction scale and that g~m(T, p) in the molality scale: 

~;'n(T, p)= ~x(T, p ) -  RT In 55.51, 

where 55.51 is the number of moles of water for one kilogram of water. 

5. 7. Activity and Activity Coefficient. 
For a non-ideal mixture in which Eq. 5.22 is not valid, we use a physical quantity called 

activity a~ in place of the molar fraction xi. We then have Eq. 5.27 in place of Eq. 5.22 for 

the chemical potential of i in a non-ideal mixture: 

~(T, p)= ~(T, p)+ RT In a,. (5.27) 

The second term on the right hand side of this equation, as in the case of Eq. 5.22, represents 

the communal part of the chemical potential, / f f  - RT In a~. 

The ratio of the activity a~ to the molar fraction x~ is called the activity coefficient Y i : 

a i 7 , -  �9 (5.28) 
xi 

Substitution of ai from Eq. 5.28 in Eq. 5.27 gives Eq. 5.29 for the chemical potential of 

substance i in the non-ideal mixture: 

l~i(T, p)= l~(T, p)+ RT In xi Yi = pt;(T, p)+ RT In xi + RT In y~. (5.29) 

The third term RTln ?'i on the right hand side of Eq. 5.29 is called the excess chemical 
potential of i. 
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Chemical  thermodynamics also provides the concept of absolute activity ai defined by: 

(/.ti ]. (5.30) 
a i -  exp I~RT ] 

By contrast, the activity introduced in Eq. 5.27 is the relative activity expressed by Eq. 5.31: 

a 

5 .8 .  Chemical  Potentials of Pure Substances. 

The chemical  potential of  a pure substance i indicates the thermodynamic energy level of 

the substance relative to the energy level of the chemical elements that make up the substance 

i. In chemical thermodynamics  the chemical potentials of elements are convent ional ly  all set 

zero in the stable state of them at the standard temperature 298 K and pressure 101.3 kPa. 

The chemical  potential of a substance (a chemical  compound)  i at the standard state, as a 

result, is equal to the free enthalpy (Gibbs energy) required to form one mole of the substance 

i from its constituent elements in their stable standard state. 

Table 5.1. Standard chemical potentials p0, standard molar enthalpy h ~ , and standard 

molar absolute entropy values s ~ of substances in the standard state of 298 K and 

101.3 kP. 

Substance State /~~ mol-'  hi~ mol -' sOi/J" K-lmo1-1 

Fe Solid 0 0 27.2 

FeO Solid - 244.5 - 266.6 54.0 

Fe304 Solid - 741.3 - 822.6 90.0 

1-I2 Gas 0 0 130.6 

I-/zO Gas - 228.7 - 242.0 188.8 

I-IzO Liquid - 237.7 - 286.0 70.0 

N z Gas 0 0 191.6 

C Solid (Graphite) 0 0 5.7 

CO Gas - 137.3 - 110.6 198.0 

CO 2 Gas - 394.6 - 393.7 213.7 

CH 4 Gas - 50.80 - 74.88 186.4 

CI-IsOH Gas - 162.0 - 201.4 237.8 

CH3OH Liquid - 166.4 - 238.8 126.8 
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For a chemical reaction the stoichiometrical sum of the chemical potentials of the reactants 

relative to that of the products is important in thermodynamic examination of the reaction. 

Let us consider a chemical reaction of solid carbon and gaseous oxygen to form gaseous 

carbon dioxide: 

C(soUd) + O2 (g~) ~ CO2 (ga~)" (5.32) 

From Eqs. 5.13 and 5.22 we obtain the unitary part of the affinity of the reaction as a 
* pure * pure * . pure 

function of the unitary chemical potentials, /~c = ~c , #o2 = #o~ , and #co2 = ~co~, of the 

reactants and product as shown in Eq. 5.33: 

A* - - (  ~tco~- r -/-to~ ). (5.33) 

We call this quantity A* the unitary affinity o f  the reaction. Since the chemical potentials of 

solid carbon C and of gaseous molecular  oxygen 02 are set zero in the standard state 
( �9 0 �9 0 ) ~c - ~c = O, ~o~ = ~o2 = 0 , the unitary affinity of the reaction in the standard state equals 

�9 pure . * * 0 
minus the standard chemical potential of carbon dioxide /~co2 -/~c-2 A --- -/~co2 - -/~co2. 

As mentioned above, the standard chemical potential of carbon dioxide ~t~o 2 is often called 

the standard molar free enthalpy o f  formation of CO2. 
0 

It follows, in general, that the standard chemical potential ,L~ i of a chemical compound i 

corresponds to the free enthalpy of formation for one mole of the compound substance i at 

the standard state, the value of which is tabulated in chemical handbooks as shown for a few 

compounds in Table 5.1. For ions in electrolytic solutions the chemical potential in their pure 

state can not be defined, but we may use the standard state of an ion in which the ionic 

activity is equal to unity (a~ = 1) to define the unitary chemical potential of the ion as will be 

discussed in chapter 9. 

5 . 9 .  T h e r m o d y n a m i c  Po ten t ia l s  in Ideal  M i x t u r e s  

Starting from the definition 5.22 we now establish several important  properties of 

thermodynamic potentials (partial molar quantities of thermodynamic energy functions) for 

an ideal system of mixture. Differentiating G = H - T S  with respect to n~ with T and p 

constant, we have l~ = h, - Ts~ and furthermore [0(/~i/T) / OT]p, nj - (1 / T) (Ol~i / OT)-  (t~i / T 2) 
= - [ ( T  si + ~)  / T z] - - h i / T  2. From this equation we obtain Eq. 5.34 for the partial molar 

enthalpy h ia of a constituent i in an ideal mixture: i 

i d -  0 / - ~ )  [ __ 0 + 0 x, = = h7 . (5.34) 
h T z -  OT ]p,i ~,T e,i p,j T lp T 2 

Since the unitary chemical potential /~ is a function of T and p only, the partial molar 

enthalpy hii ~ of each constituent i of an ideal system is independent of the composition of the 
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system. We also see that in an ideal mixture the partial molar enthalpy hii a equals the unitary 

partial molar enthalpy h~ in the whole range of composition. 

The partial molar volume v~ d of the constituents of an ideal system also have this same 

property as above as shown in Eq. 5.35: 

0.7) 
op v;  , (5.35) 

where v~" is the unitary partial molar volume. 
id The partial molar entropy si, however, depends on the composition as follows: 

( ) �9 sl a = O tt~ R In xi - s~ R In x i 
OT p 

(5.36) 

where s7 is the unitary partial molar entropy of constituent i in the ideal system. 

From Eqs. 5.34 and 2.27 we obtain the heat of reaction, (0H id ] 0~)r.e, for a reaction in an 

ideal system as written in Eq. 5.37: 

(0/Td/ - -  T 2,~' v~ (5.37) 

indicating that the heat of reaction in an ideal system is independent of the concentrations 

and depends only on the temperature and pressure. 

Similarly, from Eq. 5.35 and (ovid~ O~)r,p- ~ v, v i, the volume change (ovid/ O~)r,p due 

to the advancement of a reaction, for an ideal system, is given by: 

( 0Vid~ (0~'t* / (5.38) 

and hence the volume change due to a reaction is independent of the composition. 

Furthermore, from Eq. 5.36 and (0sid / 0~)r, p - X Vi Si, the partial derivative of entropy 

(0S ia / O~)r,p for a reaction in an ideal system is given by Eq. 5.39: 

(0/z~) _ R ~ v, In x i (5.39) 

indicating that the entropy change due to a reaction depends on the composition of the 

system. 

5. 10. The Unitary and Mixing Terms of Thermodynamic Potentials. 
The concept of the unitary and mixing terms described above can apply, in general, not 

only to the chemical potential of substances in a mixture but also to the other thermodynamic 
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functions such as the partial molar enthalpy h i, the partial molar entropy s i, and the partial 

molar volume v i of substances in the mixture. These thermodynamic functions can be derived 

from the chemical potential #i by partially differentiating it with respect to temperature and 

pressure. From Eq. 3.37 we have si = 0kt~ / OT and vi - 0#i /Op.  From Eq. 5.34 we also have 

hi = -  T 20(l.zi ] T) / OT. 

For the chemical potential #~-/~7 + #~' in a non-ideal system; 

/.t~' -/.tT(T, p), unitary term. (5.40) 

t , t~ -  R T  In xi7',, mixing term. (5.41) 

If the system is ideal, then we have #~  = R T  In x~. 

For the partial molar enthalpy h i -  h~ + him in a non-ideal system: 

OT ' unitary term. (5.42) 

h i m  = - R T  2 01n xi Yi mixing term. (5.43) 
OT " 

If the system is ideal, we have h, u - 0 and h i -  hi. 

For the partial molar entropy s i -  s~ + s~ in a non-ideal system: 

s~ - OT ' unitary term. (5.44) 

Oln xi y~ 
s~ - - R In xi Y i -  R T  O--------T----' mixing term. (5.45) 

If the system is ideal, then we have s~ = - R In x i. 

For the partial molar volume vi - v~" + v~' in a non-ideal system: 

, Okt~ unitary term. (5.46) v i -  Op '  

Oln x i Yi 
vim- R T  0---------~--' mixing term. (5.47) 

If the system is ideal, we have v~' - 0 and vi - v~'. 

In conclusion, the partial molar quantity in thermodynamics functions consists of its 

unitary term and its mixing term as shown above. 



CHAPTER 6 

UNITARY AFFINITY AND EQUILIBRIUM 

A chemical reaction proceeds in the direction of decreasing its affinity and 

reaches equilibrium at which the affinity vanishes. The equilibrium is thus the 

state at which the unitary affinity of the reaction equals minus the affinity of 

mixing of the reaction system. The equilibrium constant of a reaction is 

accordingly an exponential function of the unitary affinity of the reaction. 

This chapter discusses the role of the unitary affinity in reaction equilibrium 

6. 1. Affinity and Equilibrium in Chemical Reactions. 

Let us consider a chemical reaction in which reactants R i change into products Pi as 

shown in Eq. 6.1: 

vl R1 + v2 R2 -"  v31'3 + v4 P4, or ,~'v~ R i + ,~'vi Pi = 0 (6.1) 

where v i is the stoichiometrical coefficient. Equations. 5.13 and 5.27 give us the affinity 

shown in Eq. 6.2: 

* -A*  A M. A - - "~i 'vi [Lgi (T, p ) -  ~. vi R T  In a i + (6.2) 

In the summations, the stoichiometrical coefficient v i is negative for the reactants and positive 

for the products. In Eq. 6.2 the first term on the right hand side is the unitary affinity A*, 

which comprises of the stoichiometrical sum of the unitary chemical potentials of the reactants 

and products, and the second term is the affinity o f  mix ing A M , which comprises of the 

stoichiometrical sum of the chemical potentials of mixing for the reactants and products. By 

substituting the unitary affinity A* for the first term on the right hand side of Eq. 6.2 and 

defining this to be equal to R T  In K(T,  p), we obtain Eq. 6.3: 
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A* - - ~,  v, ~';(T, p)=- RT In K(T, p). 
i 

(6.3) 

Substitution of Eq. 6.3 in Eq. 6.2 then gives Eq. 6.4: 

A - RT In 
K(T, p) 

alq a~'2 a~3 a~4 (6.4) 

Since A -  0 at equilibrium, Eq. 6.4 yields Eq. 6.5 when the reaction is at equilibrium: 

K(T, p ) -  a'(~ a~2 a~3 a~4. (6.5) 

We call K(T, p) the equilibrium constant of the reaction. As realized from Eq. 6.2, the 

reaction equilibrium is established at which the unitary affinity A* becomes equal to minus 

the affinity of mixing A M of the reaction. 

The unitary affinity of a reaction in the standard state (298 K, 101.3 kPa, and unit 

activities) is normally called the standard affinity A ~ 

6. 2. The Unitary  Affinity. 

From Eq. 6.3 we have the relation between the unitary affinity A* and the equilibrium 
constant K( T, p) of a reaction as shown in Eq. 6.6: 

[A'] 
K(T, p ) -  exp -R-T" (6.6) 

The unitary affinity of a reaction can be obtained, as mentioned in the foregoing chapter 5, 
from the unitary chemical potentials of the reactants and products. 

Let us consider a reaction of gaseous molecular hydrogen with solid iodine to form 

gaseous hydrogen iodide as shown in Eq. 6.7: 

1 
2 Hz(gas) + + I2(8~ '-" HI(gas)" (6.7) 

The standard affinity of this reaction at the standard temperature and pressure is expressed by 

Eq. 6.8: 

 0+0 
- t~h2 + ~i2 (6.8) 

0 0 With P~a2 - 0, /A2 = 0, and ~ - -1.3 kJ .mo1-1 found in chemical handbooks, we then 

obtain the standard affinity equal to A ~ - - / o  __ 1.3 kJ. mo1-1 . If the gas phase is an ideal 

gas, the activities are equal to the molar fraction of gaseous substances. Further, if solid 12 is a 

pure substance, the activity of 12 is unity. The equilibrium constant K in the standard state 

will then be expressed by the molar fractions of gaseous constituents as shown in Eq. 6.9: 
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xm = 0.593, (6.9) K = - i -  H 
~tH 2 

Equation 6.9 gives the molar fractions of gaseous molecular hydrogen and hydrogen iodide 

Xn, = 0.558 and XHt = 0.442, respectively, in the reaction equilibrium at the standard state. 

6. 3. Equilibrium Constants and Concentration Units. 

The equilibrium constant K of a reaction is dimensionless but we can express concentration 

in different units. For a gaseous mixture, in addition to the molar fraction x~, two other 

concentration units may be used: One is the partial pressure Pi = x~p, which is proportional 

to the molar fraction x~ and the total pressure p; and the other is the molar concentration 
(molafity) c~ = ni/V,  which is inversely proportional to the volume V of the gaseous mixture. 

In terms of these concentration units the equilibrium constant of a gas reaction is expressed 

in three different formulas shown, respectively, in Eq. 6.10: 

Kx(T, p)= x~, x~2 x~3 x~4, Kp(T)= p~, p{2 p3"3 p,~4 ' Kc(T)= c';, c;2 c~3 cg,. (6.10) 

For an ideal gas in which the equation of state Pi = ciRT holds valid, we have Eqs. 6.11, 

6.12, and 6.13 as the relation of the unitary affinity A* with either of the equilibrium 

constants, Kx(T, p), Kp(T), and Kc(T), expressed in the three different concentration units: 

A* = RT In Kx(T, p), (6.11) 

A* = RT In Kp(T)- v RT In p, (6.12) 

A* = RT In Kc(T)- v RT In p + v RT In RT, (6.13) 

where v = Zy~ is the sum of the stoichiometrical coefficients of the reactants and products. 

We hence obtain the relationship among the three different expressions of the equilibrium 

constant of the reaction, Kx, Kp, and K c , as shown in Eqs. 7.14 and 7. 15: 

Kx(T, p)= p-V Kp(T), (6.14) 

K~(T) - [RT] -v Kp(T). (6.15) 

Let us take, for example, a reaction decomposing water vapor into gaseous molecular 

hydrogen and oxygen in which vH2 o - -2 ,  Vn2 = +2, and Vo~ = +1 as shown in Eq. 6.16: 

2 H20(g~) ---" 2 H2,(g~) + O2,(g~) �9 (6.16) 
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Since v = Zyi = + 1, we obtain Eq. 6.17: 

Ke(T ) RT Kc(T), (6.17) 
Iqr ,  p ) -  ---V-- = P 

which shows that Kx(T, p) is inversely proportional to the pressure p, while Kp(T) and 

Kc(T ) are independent of the pressure p of the system. It is then advantageous to use Kp(T) 
and Kc(T ) rather than K x (T, p) for the reactions involving gaseous substances. 

6. 4. Equilibrium Constants as a Function of Pressure and Temperature. 

We now discuss the partial differential with respect to pressure p and temperature T of 

the equilibrium constant Kx(T,p) in terms of the molar fraction. From the definition in Eq. 6.3 

we obtain immediately Eq. 6.18 for the partial differential of the logarithm of K~ with respect 

to pressure p: 

(Oln Kx(r,p)/_ 1 (O~i*(T, p)) 
Op Jr-- ~ ~i vi ~ Op r" (6.18) 

where vi is the stoichiometrical coefficient of i in the reaction. From Eq. 5.46 v~* = O~i/Op, the 

fight hand side of Eq. 6.18 contains the stoichiometrical sum of the unitary partial molar 

volume v[ of the reactants and products: ~ vi v~'. For an ideal reaction system v[ is equal to 
i 

the partial molar volume vi of substance i: ,r v, v~ - ~ v, v~- (OV/O~)r. p, where V is the 

volume of the reaction system. 

In the case of an ideal reaction system therefore we have Eq. 6.19: 

(O~4(T, p)) 
(6.19) 

which can also be derived from Eqs. 3.38 and 5.37. We hence obtain Eq. 6.20 for the 

pressure-dependence of the reaction equilibrium constant: 

(alnKJT,p)) 1 (OV) 
Op r =- -KT  -~ r,p (6.20) 

Thus the partial differential of the logarithm of Kx with respect to pressure p is equal to 

minus the molar expansion, OV/O~, divided by RT. We see then that an increase in pressure 

increases the equilibrium constant Kx if the reaction is accompanied by a decrease in volume 

(OV/O~ < 0), and conversely if OV/O~ > 0 the equilibrium constant is decreased. 

Similarly, the partial differential of In Kx with respect to temperature is given by Eq. 6.21: 

(OlnK~T,p)~ _ 1 OH 
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which can be derived from Eqs. 6.3, 5.36, and 4.10 for an ideal reaction system in which the 
M mixing term of the partial molar enthalpy h i is zero. Thus the partial differential of the 

logarithm of Kx with respect to temperature T is equal to minus the heat of reaction OH/O~ 
divided by RT 2 . If the reaction is accompanied by an absorption of heat (OH/O~ > 0) the 

equilibrium constant increases with increasing temperature, whereas for an exothermic reaction 

(OH/O~ < 0) it decreases with increasing temperature. 

By integrating Eq. 6.21 and assuming that (OH/O~)r, p is independent of T, we obtain for 

Kp(T) Eq. 6.22: 

OH ln Kp(T)-- R-~T- (--~ )r,p+ C, (6.22) 

where C is an integral constant. This equation, called van't Hoff's equation, indicates that a 

linear relation between In Kp(T) and the reciprocal absolute temperature 1/T holds as shown 

in Fig. 6.1. The slope of van' t  Hoff 's plot can be used for an estimation of the heat of 

reaction (OHIO,)T, p. 

1A 
Fig. 6.1. van't Hoff' s linear relation between the equilibrium constant and the reciprocal 
absolute temperature for a chemical reaction. 



CHAPTER 7 

GASES, LIQUIDS, AND SOLIDS 

A gaseous substance at dilute density normally is in the state of an ideal gas 

and it turns into a non-ideal gas as the density increases. A further increase in 

the density leads to the condensation of a gas into a liquid or solid phase. In 

the ideal gaseous state the chemical potential of a substance changes linearly 

with the logarithm of the density, and a deviation from the linearity occurs in 

the non-ideal state. For a condensed substance in the liquid or solid state its 

chemical potential hardly changes with the density. This chapter concerns the 

equations of state and the calculation of thermodynamic potentials of gaseous 

and condensed substances. 

7. 1. Perfect and Ideal Gases. 

For an ideal gas the internal energy U depends on the temperature T only (Joule's law) 

and the volume V is inversely proportional with the pressure p at constant temperature 

(Boyle's law). Equation 7.1 shows the equation of state for an ideal gas: 

p V = n RT,  (7.1) 

where n is the number of moles in the gas and R is the gas constant ( R -  8.314J " K  -1 -mol-1). 

The gas for which Eq. 7.1 holds is called the perfect  gas or the ideal gas: The two terms 

perfect and ideal mean the same for gases, but they do not mean the same for liquid solutions 

as will be mentioned in chapter 8. 

We shall first consider a perfect or ideal gas of a single substance and discuss its molar 

enthalpy, molar entropy, and chemical potential as a function of temperature and pressure. 

From Eqs. 2.31 and 2.32 we obtain the molar enthalpy h of an ideal gas as shown in Eq. 7.2: 

h(T) - h(T ~ + o cp(T) dT, (7.2) 
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where h(T ~ is the molar enthalpy at a reference temperature T O (the standard temperature) 

and %(T) is the molar heat capacity of the ideal gas: the molar enthalpy of an ideal gas is 
independent of pressure as shown in Eq. 2.32. We further obtain Eq. 7.3 for the molar 
entropy s from its differential ds = ( dh - vdp) /T= ( % I T ) a l l ' - (  v]T)dp shown in Eq. 3.41: 

s(r, p)= f[  c~(T) s(r~176 T dr 
o 

P = s(r,  pO)_ R In ~ .  - R  ln-p-~ (7.3) 

Equations 7.2 and 7.3 then give us the chemical potential # = h -  Ts as follows: 

~T,  p)= f: / :  c.(r) h(T o) _ Ts(r o, pO) + o %(T) dr - T T dr 
o 

+ RT In pP---6, (7.4) 

which is also expressed as Eq. 7.5: 

p(T, p ) -  p(T, pO)+ RT In ~ ,  (7.5) 

where s(T, pO) and NT, pO) are the molar entropy and the chemical potential of an ideal gas at 

temperature T and at the standard pressure p0, respectively. Equation 7.4 is frequently used 
for calculating the chemical potential of a gaseous substance from its molar heat capacity 
C p( T) . 

With an ideal gas mixture we also have the same equation as Eq. 7.5 for the chemical 
potential #,(T,p) of one of the constituent substances, i, in the ideal gas mixture at the total 
pressurep and at temperature Tas shown in Eq. 7.6: 

Pi #,(r, l~)- #~,'~ pO)+ RT In -25, 
Pi 

(7.6) 

where p~ is the partial pressure of i, and N'~(T, pO) is the chemical potential of pure substance 
i at the standard pressure po. The chemical potential #i(T, p, x) in terms of the molar fraction 
x i = p i p  is then obtained as follows: 

. .(T. p. x) = ~;(T. p) + RT In x~. (7.7) 

#~(T, p)= #p'~e(T, po)+ RT In (~-~), (7.8) 

where the first term #~(T, p) on the fight hand side of Eq. 7.7 shows the unitary chemical 

potential of i at temperature T and total pressure p, and the first term N'*~ pO) on the fight 

hand side of Eq. 7.8 is the chemical potential of pure gaseous substance i at the standard 
pressure p0 and at temperature T. The chemical potential of pure substance i, ~P"re(T~ p0), at 

the standard temperature T O and pressure p0 is called the standard chemical potential. 
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7 . 2 .  Non-ideal  Gases.  

Real gases are usually non-ideal. Thermodynamics describes both ideal and non-ideal 

gases with the same type of formulas, except that for non-ideal gas mixtures the fugacity f is 

substituted in place of the pressure p~ and that the activity a i is substituted in place of the 

molar fraction xi or concentration c~ of constituent substance i. We have already seen that in 

the ideal gas of a pure substance the chemical potential is expressed by Eq. 7.5. By analogy, 

we write Eq. 7.9 for the non-ideal gas of a pure substance i: 

~T,  p ) -  l~~ fo)+ RT In f(T, p) f0 , (7.9) 

where/~~ f0) is the chemical potential of i at the standard fugacity fo and at temperature T. 

The fugacity f (T ,p )  is a function of Tand p, and it approaches p as the pressure decreases 

toward zero, i.e. as the state of the gas approaches the ideal gas state: 

lim f(r, P ) -  - 1. (7.10) 
p~O p 

This ratio of f to p for a non-ideal gas of a pure substance may be calculated from the 

equation of state for real gases such as the virial equation and the van der Waals equation. 
In a mixture of non-ideal gases, similarly, the chemical potential l~i(T, p, Pi) of one of the 

constituent substances i is expressed by Eq. 7.11 in the same form as Eq. 7.6: 

tt,(T, p, p~)- la~(T, f~)+ RT In f~(T, p, pi) f0 , (7.11) 

where we have substituted the fugacity f~(T, p, pi) for the partial pressure p~ in Eq. 7.6. The 

term/~(T,  f0) is the unitary chemical potential of s u b s t a n c e / i n  the gas mixture at the 

standard fugacity f o and at temperature T. 

If we use instead of the partial pressure p~ the molar fraction x~ to express the concentration 

of i, the activity a~ can be substituted for x~ to obtain Eq. 7.12 for the chemical potential of i 

in a non-ideal gas mixture: 

l.[i(T, p, x ) -  ].['(T, p, a O) + RT In a,(T, p, x) a o , (7.12) 

where the term ~*(T,p,a ~ is the unitary chemical potential o f / a t  the standard unit activity 
0 ai - 1 at the total pressure p and at temperature T. Equation 7.12 for a non-ideal gas mixture 

is equivalent to Eq. 7.7 for an ideal gas mixture. If the pressure of the gas mixture approaches 

zero, the activity ai approaches the molar fraction xi: 

lim ai(T' p' x) p-, 0 x, = 1 . (7.13) 
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The ratio of the activity ai to the molar fraction xi is called the activity coefficient y~: 

a, (7.14) 7i= xi" 

We also define the fugacity coefficient qgi as the ratio of fugacity f~ to partial pressure pi: 

f~ (7.15) qgi= p ,  

whose value is not the same as that of the activity coefficient ~'i- 

7. 3. Liquids and Solids. 

Liquids and solids are in the condensed state in which chemical substances are very dense 

and hardly undergo any volume change with changing pressure in the range of ordinary 

pressures. Let us now consider a condensed system of a pure substance. The coefficient of 
thermal expansion a and the compressibility r are defined in terms of the molar volume v by 

the following two equations, respectively: 

Ov Ov 

These coefficients in general are extremely small; a ~. 10-SK -1 and r ~ l O - 1 1 p a  -1 for metallic 

copper at room temperature. The compressibility r is one hundred times as large for liquids 

as that for solids and is some thousand times as large for gases as that for liquids. 

Besides a a n d  1r we also make use of the pressure coefficient/3 defined by Eq. 7.17: 

Op 

From the mathematical identity (Ov / OT)p + (Ov / Op)r(Op / OT)v = 0 (the partial differential of 

an implicit function), we obtain the relationship between these three coefficients as shown in 

Eq. 7.18: 

1 a (7.18) 

which enables us to calculate fl if the values of a and r are known.. 

Normally, the coefficient of thermal expansion a of a solid approaches a certain constant 

value at high temperatures and falls steeply as the temperature is lowered. This follows from 

(dV[dT)p = -(dS]dp) r obtained by the differentiation of V and - S  in Eq. 3.37. The third law 

of thermodynamics assumes that the entropy S falls toward zero as the temperature approaches 

zero in the absolute temperature scale, and hence both (dS]dp) v and (dV]dT)p must be close 

to zero at sufficiently low temperatures. 
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The coefficient of thermal expansion a of a condensed substance is related to the molar 

heat capacities cp at constant pressure. The above equation (Ov/OT)p --(Os]Op)r for one 

mole can be differentiated with respect to T and combined with (Os]OT)p =Cp/T to obtain 

the following equation: 

( _ o,s )_  (oc,] 
Op ]r--- T . (7.19) 

Then, Eq. 7.16 give us Eq. 7.20 [Ref. 1.]: 

Ocp] _ Oa 
O p )~ - TV ~ ol + c ? l ' -  Tv (7.20) OT' 

where a z is negligibly small compared with Oa/OT. The variation of the molar heat capacity 

Cp with pressure is thus related to the variation of a with temperature. Since Oa/OT has 

always a positive sign, Cp decreases with increased pressure, but the effect is known to 

become small at high temperatures since Oct[ OT falls off more rapidly than the temperature T 

increases [Ref. 1.]. 

7. 4. The State Equation and Thermodynamic Functions of Condensed Substances. 
In the case where the external pressure is not too high (< 100 atm.) and the compressibility 

remains independent of pressure, the second equation of 7.16 can be integrated with respect 

to pressure p to obtain Eq. 7.21 for the molar volume v(T, p) of a condensed substance: 

v(T, p ) -  v(T, 0)exp (- 1r v(T, 0)(1 - rp), (7.21) 

where v(T, 0) is the molar volume extrapolated to zero pressure at constant temperature T. 

Equation 7.21 is the equation of state of a condensed substance at ordinary pressures and 

remains valid provided that rp  << 1. If we extend the equation of state to cover a wide range 

of pressures, a series expansion of the equation may be made as shown in Eq. 7.22: 

v(T, p ) -  v(O, 0)(1 + a o + alp +'" "), (7.22) 

where v(0,0) is the molar volume extrapolated to T - 0  and p = 0, and a 0, a~,.., are 

functions of temperature only. The volume v(T,O) in Eq. 7.21 is for zero pressure p = 0 at a 

temperature T so that it is expressed by v(T, 0)= v(0, 0)(1 + a0) , where ao(T) must be zero 

when T =0.  At ordinary temperatures ao(T) is very small compared with one because the 

coefficient of thermal expansion is very small. We thus obtain from Eq. 7.21 with v(T,O) 
given above the equation ofstate of a condensed substance as shown in Eq. 7.23: 

v(T, p) = v(O, 0)(1 + a0)(1 - ~r (7.23) 
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We next discuss the molar enthalpy h, the molar entropy s, and the chemical potential kt 

of a condensed pure substance as a function of temperature and pressure. For molar enthalpy 

h Eqs. 2.15 and 3.37 yield Eq. 7.24 through a little complicated derivation [Ref. 1.]: 

0v 

In this derivation Eq. 3.37 gives (Os[OT)p,~ =-(0v/0P)r, ~, Eq. 2.15 gives the latent heat of 

pressure change for one mole hr, ~ = (Oh[ OP)r~ - v, and hr, ~ is also given by hr, ~ = T( Os[Op)r~ 
from the definition of entropy. These equations yield Eq. 7.24. As mentioned in section 2.6, 

(Oh/Op)r = 0 in the case of an ideal gas, since v = T (Ov/OT)p. 
Equation 7.24 provides the dependence of temperature and pressure on the molar enthalpy. 

The molar enthalpy h is then obtained upon integration of Eq. 7.24 with respect to Tand p to 

give Eq. 7.25 equivalent to Eq. 2.31: 

r fo ~' Ov (7.25) 

where cp(T,O) is the molar heat capacity extrapolated to p = 0 and h (0,0) is the molar 

enthalpy extrapolated to T = 0 and p = 0. In Eq. 7.25 the second term is the thermal part of 

enthalpy and the third term is the pressure-dependent part of enthalpy. Taking Eqs. 7.16 and 

7.23 into account, we obtain the pressure-dependent part of enthalpy as follows: 

P Ov (7.26) 

The molar enthalpy h( T, p) is thus given by Eq. 7.27: 

_ 1  (7.27) 

Since ~cp << 1 at ordinary temperatures, the molar enthalpy h( T, p) varies linearly with the 

pressure and the magnitude of the variation is given by the term pv(T,O) ,  which is usually 

very small compared with the first and second terms in Eq. 7.27. To most purposes, then, the 

enthalpy may be taken as independent of the pressure. 

For the molar entropy of a condensed substance, we obtain Eq. 7.28 from (ds/dT)p = 

cp/T and (Os[ Op) r = -(Ov[OT)p of Eq. 3.37: 

fo 0) s(r, p)- s(O, o)+ T 

where s(0, 0) extrapolated toT - 0 and p -- 0 is zero based on the third law of thermodynamics. 

Substituting Eq. 7.23 in Eq. 7.28 and assuming a to be independent of pressure, we obtain: 



The State Equation and Thermodynamic Functions of Condensed Substances 69 

i ~ c~(~. o) 
s(r. p)-- s(O. 0)+ r ~ d T - a p v ( T , O ) ( 1 - - - ~ t c p ) ,  (7.29) 

which indicates that the molar entropy decreases linearly with increasing pressure. The third 
term in Eq. 7.29, however, is very small compared with the second term so that we may 

regard the molar entropy s of liquids or solids as independent of the pressure. 

fo ~ c~(r. o) s(r. p)- s(0. 0)+ dT, condensed substances. (7.30) 

Finally, for chemical potential la = h -  Ts we have Eq. 7.31: 

f0 ~ f0 ~ c,(r. o) ,(r. p)- h(0. 0)- rs(0. 0)+ c~(r. 0 )a t -  r dT 

+ pv(T, 0)(1--~-- top), (7.31) 

which can also be expressed by replacing the two integrals with a double integral as follows: 

o'  s,0 0, J0 l - K  fo ~ c,(r, o)~r + pv(r, o) ~p). (7.32) 

We thus have the chemical potential p (T ,p)  of a condensed substance at temperature T and 

pressure p in the formula shown in Eq. 7.33: 

o/(,-+ (7.33) 

where p(T, 0) is the chemical potential extrapolated to p - 0 at temperature /~ Normally, 

(1-0.5~cp) = 1. The chemical potential l~(liquid or solid) of a liquid or solid substance is 
thus seen to change linearly with the product of p and v in contrast with the chemical 
potential /~(gas) of a gas which varies linearly with the logarithm of p as shown in Eq. 7.5. 

Since the second term pv( T,0)( 1-  0.5xp) on the fight hand side of Eq. 7.33 is negligibly 

small at ordinary pressures, the chemical potential of a condensed substance hardly depends 

on the pressure of the system: 

,(r. p)- . ( r ) .  condensed substances. (7.34) 



CHAPTER 8 

SOLUTIONS 

Solutions are thermodynamically classified into perfect, ideal, and non-ideal 

solutions. This chapter discusses the characteristics of these solutions and 

define the excess functions of non-ideal solutions. Also examined are electrolytic 

solutions which contain dissociated ions. 

8. 1. Ideal and Non-ideal Solutions. 

A solution is defined as a condensed phase (liquid or solid) containing several substances. 

The main substance of the solution is called solvent and the other constituent substances 

dissolved in the solvent are solutes. Solutions are classified into ideal solutions and non-ideal 
solutions. For an ideal solution the chemical potential of a constituent substance i is given by: 

I.t, - #;(T, p)+ RT In xi. 

From Eq. 7.32 we have the unitary chemical potential N~(T,p) as follows: 

(8.1) 

k~'~(T, p ) -  k~'~*(T, O)+ p vi(T, 0 ) ( 1 -  @ xi p), (8.2) 

where ~ (T,0) is the unitary chemical potential of constituent i at temperature Tand at zero 

pressure, and v~(T,0) is the partial molar volume of i extrapolated to zero pressure. A 

parameter r~ in Eq. 8.2 is defined as a coefficient of compressibility, ~c~-- -(1/v~ )(Ov~ [Op) r , 
for each constituent substance i in the ideal solution. 

Equation 8.1 is valid for ideal solutions only. In the case of non-ideal concentrated 

solutions, an activity coefficient t'~ is inserted as an adjusting coefficient to keep the expression 

of chemical potential kt~ in the same form as Eq. 8.1: 

~t,- #~(T, p) + RT In x~ 7,- (8.3) 
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We bear in mind however that the values of /+~(T,p) and ~,~ depend upon the choice of the 

ideal reference system. If we choose for the solvent a reference system in which y~becomes 

unity as x i approaches unity, the unitary chemical potential /~(T,p) is given by the chemical 
* 0 potential l~?(T,p) of the pure solvent/" l~(T,p)= l~, (T,p). On the other hand, if we choose 

for the solute substances a reference system in which y i becomes unity as x i approaches zero, 

the unitary chemical potential l~(T,p) is given by the chemical potential l~ (T ,p )  of the 

solute i at infinite dilution: /~(T,p) = l~(T,p) .  
Instead of characterizing the deviation from ideality for the solvent 1 in terms of its 

activity coefficient Y1, we may introduce the osmotic coefficient q defined by q = 

(ln XlY 1)/lnxl as shown in Eq. 8.4: 

I l l -  ll~(T, p) + $ RT In xl. (8.4) 

Since In 21 = ln(1 - ~ixi) = -~ixi  when Z+x i < 1, where xi is the molar fraction of solute i, we 

have an approximate equation for Eq. 8.4 as follows: 

,u~ = ,u;(T, p ) -  $ RT,~  x+. (8.5) 

We then lose some of the formal resemblance to Eq. 8.1 of ideal solutions, but on the other 

hand the use of q is advantageous in that it is much more sensitive to characterize the 

deviation from ideality than ~'1. The osmotic coefficient q) is, in fact, the same coefficient as 

what is called the boiling or freezing point coefficient. 

8. 2. Perfect Solutions and Ideal Solutions. 

A solution is called perfect, if Eq. 8.1 is valid over the whole range of concentration for 

all constituent substances. The perfect solution is realized if the molecules of the solvent and 

the solutes are similar to one another in their nature. In perfect solutions the unitary chemical 

potential #~(T,p) of a constituent substance/equals  the chemical potential #?(T,p) of the 

pure substance i for all the constituent substances: Raoult's law. 

Let us consider for simplification a binary perfect solution consisting of solvent 1 and 

solute 2. The free enthalpy (Gibbs energy) for one mole of a binary mixture g~xt~ is then 

given by Eq. 8.6: 

o 
gmixture = Xl l'tl + X2 ~ = gmean + R T  x 1 In x 1 + R T  x 2 In x2, (8.6) 

where o gme~a is the mean molar free enthalpy prior to the mixing of nt moles of solvent 1 and 

moles of solute 2; that is 0 ( 0)/( 0 0 gmean = nlg ~ + n2g2 nl + ~ )  = Xtgl + x2g2" The molar free n 2 

enthalpy of mixing gM and the molar entropy of mixing sMare thus expressed, respectively, 

in Eq. 8.7: 
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g ~ -  R T  x a In x~ + R T  x 2 In xz, 

73 

s ~ = - Og M 
= - R x 1 In Xl - R x z In x 2. (8.7) 

0T 

These simple equations for the mixing terms of the molar free enthalpy and entropy are 

characteristic for perfect solutions and are identical with those for ideal gas mixtures. 

Further, the enthalpy of mixing of a perfect solution derived from Eq. 8.7 is zero as 

shown in Eq. 8.8 (vid. sections 5.9 and 5.10 ): 

T = OW = 0, (8.8) 

indicating that the mixing of two constituents to form a perfect solution takes place at 

constant enthalpy, thus causing no absorption or evolution of heat at constant pressure. 

The volume of mixing for a perfect solution is also zero from Eq. 8.9 (vid. sections 5.9 

and 5.10): 

vM= Og u Op = 0, (8.9) 

indicating that the process of mixing to make a perfect solution is accompanied by neither 

expansion nor contraction of the solution. If we write v~ and v~ as the molar volume of the 

pure constituents 1 and 2, the mean molar volume v of the solution is expressed by: 

v = Xl v~ + XlV ~. The mean molar volume v of a perfect solution is thus a linear function of 

molar fraction as shown in Fig. 8.1. 

In contrast to a perfect solution, a solution is called an ideal solution, if Eq. 8.1 is valid 

for solute substances in the range of dilute concentrations only. Moreover, the unitary chemical 
0 potential /~(T,p) of solute substance 2 is not the same as the chemical potential la z ( T , p )  of 

solute 2 in the pure substance: l ~ ( T , p ) ~  la~ �9 Henry's law. For the main constituent 

solvent, on the other hand, the unitary chemical potential ~ (T,p) is normally set to be equal 

to k ~ ( T , p )  in the ideal dilute solution: t ~ ( T , p ) =  l~~ The free enthalpy per mole of an 

ideal binary solution of solvent 1 and solute 2 is thus given by Eq. 8.10: 

g ~  - x,  ~[~1 + x2 ~ - (Xl ~10 + x2 ~J~) + R T  x 1 In  x 1 + R T  xz In x2 

"-(X 1 ~U 0 "[" X 2 j[~)q-X 2 (J[~ -- ~,~)4" R T  x 1 In x,  + R T  xz In x z ,  (8.10) 

in which an extra term xz(/t z - / ~ )  for solute 2 emerges as a difference in the unitary free 

enthalpy of solute 2 between an ideal binary solution and a comparative perfect binary 

solution. 

We further note that the entropy of mixing of two pure substances to form an ideal dilute 

solution is not equal to the so-called ideal entropy of mixing but contains an extra term 

x z ( s ~ - s  ~ as shown in Eq. 8.11" 
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s M - x 2 (s 2 - s~) -  R (x, In x 1 - x 2 In x2). (8.11) 

* 0 
where s 2 and s 2 are the unitary partial molar  entropy of solute 2 in an ideal dilute solution 

and the molar  entropy of solute 2 in the pure substance, respectively. 

Similarly,  we also see a difference in the enthalpy or vo lume per mole  between a binary 

perfect solution and a binary dilute ideal solution. In a perfect binary solution the enthalpy h 

or vo lume v per mole  of the solution is identical with the mean sum in the molar  enthalpy or 

vo lume of the const i tuent  substances in their pure state, and no change in the enthalpy or 

vo lume  thus occurs when  we make  up a perfect  solution from its const i tuent  substances: 

h = xlh~ ~ + x2hz ~ or v = xlv ~ + x2v ~ In the case of an ideal dilute binary solution, on the other 

hand, an extra term is required to equate the enthalpy or vo lume per mole  of the solution to 

the m e a n  sum in the mola r  en tha lpy  or  v o l u m e  of the pure cons t i tuen t  substances:  

, 0 for the h ~ xlha ~ + x2hz ~ and v ~ x~v ~ + x2v ~ In a dilute binary solution ha* = h~ ~ and v 1 = v~ 
0 id 0 id * id solvent,  while for the solute h 2 ~ h z = h~ and v z ~ v z = v 2, where  h2 and vi2 d are the partial 

molar  enthalpy and volume of solute 2 and are equal to the unitary partial molar  enthalpy and 

volume h 2 and v2 of solute 2 in an ideal binary solution, respectively (vid. section 5.9). We 

hence observe an increase or decrease in the enthalpy (heat of mixing)  or in the vo lume 

(expansion or contract ion) ,  when  we produce a dilute binary solut ion from its const i tuent  

substances. This extra quanti ty is the enthalpy of mixing h M or the vo lume of mixing v u i n  

an ideal binary solution and is given by Eq. 8.12: 

h "  = v "  - (8.12) 

where  h ~ and v ~ are the molar  enthalpy and volume of solute 2 in the pure substance. Note 

that in this sect ion we have defined for the ideal dilute solut ion the uni tary quanti t ies of 

the rmodynamic  potentials with respect to the u n s y m m e t r i c a l  re ference  s y s t em  for which we 

refer to the following section 8.3. 

, . . . ,  

_= 

7. 

Perfect solution 

Molar fraction x 2 

> 

Dilute ideal solution I 

Molar fraction X 2 

Fig. 8.1 Volume per mole as a function of the molar fraction x2 of solute 2 in a 

binary perfect solution and in an ideal dilute solution: v 2 = the unitary partial molar 

volume of solute 2 extrapolated to x 2 ~ 1. 
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The enthalpy and volume per mole of a binary solution both vary linearly with the molar 

fraction x 2 of solute 2 in the whole range of x 2 for a perfect solution and in a limited dilute 

range of x 2 for a dilute ideal solution, as schematically shown for the volume per mole of a 

binary solution in Fig. 8.1. 

8. 3. Reference Systems for Thermodynamic Unitary Quantity 
As mentioned in section 8.1, the value of the unitary chemical potential /~i depends on 

the choice of the reference system. There are two reference systems which are commonly 

used; one is unsymmetrical and the other is symmetrical. In discussing the reference systems 

we shall for convenience limit ourselves to a binary solution. 

We first take as a reference system an infinitely dilute solution of solute 2 in solvent 1. 

The chemical potentials of solvent 1 and solute 2, then, are given in the form of Eq. 8.13 for 

an ideal solution and in the form of Eq. 8.14 for a non-ideal solution: 

~1 = ~ + R T  In xl, kt2 - / ~  + R T  In x2, ideal solution, (8.13) 

[ l ~  1 - -  ll,~ -t- R T  In x 1 Y1, ~2 - ~ + R T  In x2 t 'z, non-ideal solution, (8.14) 

w h e r e / ~  is the chemical potential of pure solvent 1 (equal to the unitary chemical potential 

kt~ of solvent 1 in the solution) a n d / ~  is the unitary chemical potential of solute 2 defined by 

the chemical po ten t i a l /h  ~176 of solute 2 extrapolated from the infinitely dilute concentration 

range to the unit molar fraction x 2 - 1" /~2 - / - ~  " / ~ .  We have then taken the infinitely 

dilute solution as the reference system not only for a dilute ideal solution but also for a less 

dilute non-ideal solution. As the solution becomes more dilute, Eq. 8.14 approaches Eq. 8.13, 

which means that as x I ---, 1 and x 2 ---, 0 ,  then ]/1 ~ 1 and I'2 ---" 1. We see that these properties 

are unsymmetrical,  since the two constituents 1 and 2 have not been treated in the same way. 

The other choice is to define each unitary chemical potential /~ as being equal to the 

chemical potential kt ~ in the pure state for both solvent 1 and solute 2: ~ (T ,  p ) -  kt~ p). 

We then obtain Eqs. 8.15 and 8.16 for the chemical potentials of solvent 1 and solute 2 in 

both an ideal and a non-ideal solution: 

[1~ 1 - -  [l~ -I- R T  In x1, ~2 =/-~ + R T  In x2, ideal solution, (8.15) 

i~l = l~ + R T  In x 1 ]/1, ~2 = / ~  + R T  In x 2 ]/2, non-ideal solution, (8.16) 

This symmetrical reference system gives us the activity coefficient that becomes unity as the 

molar fraction approaches unity for all constituent substances: )'i --" 1 when xi ---, 1. 

The symmetrical reference system is based on Raoult 's  law in a perfect solution, while 

the unsymmetrical reference system is based on Henry's  law in an ideal dilute solution. 
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8. 4. Thermodynamic Excess Functions in Non-ideal Solutions. 

For a perfect binary solution the free enthalpy (Gibbs energy) of mixing per mole has 

been given in Eq. 8.7. We extend this equation 8.7 to a non-ideal binary solution by using the 

activity coefficients )'1 and )'2 as shown in Eq. 8.17: 

gM_ R T  x 1 In x 1 7'1 "t- R T  x 2 In x 2 7'2. (8.17) 

In this section we shall always define the activity coefficients with respect to the symmetrical 

reference system. Comparing Eq. 8.7 and Eq. 8.17, we define the excess free enthalpy (excess 

Gibbs energy) gE per mole of a non-ideal binary solution as Eq. 8.18: 

ge = R T  (x  1 In )'1 "b X 2 In Y2). (8.18) 

The difference in thermodynamic functions between a non-ideal solution and a comparative 

perfect solution is called in general the thermodynamic excess function.  In addition to the 

excess free enthalpy gE, other excess functions may also be defined such as excess entropy 

s E, excess enthalpy hE, excess volume vE, and excess free energy fE per mole of a non-ideal 

binary solution. These excess functions can be derived as partial derivatives of the excess 

free enthalpy gE in the following. 

For excess entropy s E" 

s E OgE (x Olny~ Oln 7'2 ) 
- s E - - R T  + x2 . - R  (xl In 7'1 + x2 In 7"2).  (8.19) OT ' 1 OT 07 

For excess enthalpy h e" 

0In )'2 ). h e - - T 2  o( g-~w ) h~-  - RT2 ( xl O~IYI + x2 191 
OT ' " " 

(8.20) 

This excess enthalpy h e corresponds to the heat of mixing of the non-ideal binary solution at 

constant pressure. Namely, h e -  Xlh~ u + x2h2 M with h f f -  h, -h i~  where 
M 

h i is the partial molar heat of mixing of substance i, h i is the partial molar enthalpy of i in 

the non-ideal binary solution, and h ~ is the molar enthalpy of pure substance i. Remind 

ourselves that the reference system for the activity coefficients is symmetrical. 

For excess volume v E we obtain Eq. 8.21: 

v E O g E  ( 01n7'1 Oln y2 ) (8.21) 
= ~'Op v E -  R T  xl 0--------~ + xz Op " 

This excess volume v E is the difference between the mean molar volume of the non-ideal 

binary solution, v "~ - vn~176 + n2), and the mean molar volume of the perfect binary 

solution v per/-- Xl v~ + x2v ~ (the sum of the volume of the two pure substances before mixing 
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0 to form one mole of the solution): i.e. v e = v n~ - v ~ r  = 1,2 n ~  X l  VO - X21. 20 , where v 1 

and v ~ are the molar volumes of pure solvent 1 and pure solute 2, respectively. 

Furthermore, for excess heat capacity c~ at constant pressure we obtain Eq. 8.22: 

Oln y, 0 021n Y~ + x2 (8.22) e _ Oh e e _  2 R T  x I ~ 4" X 2 2 -- R T  z Xl O T  2 
C p -  O T  ' cp - O T  O T  2]" 

This excess heat capacity Cp E is the difference between the mean molar heat capacity of the 
non/den/ 

non-ideal binary solution, Cp ~~ - C p  /(n a + n2), and the mean molar heat capacity of 

the perfect binary solution ~per: _ Xa ~ + x2cO (the sum of the heat capacities of the two pure t,p 
~perf nonideal 0 0 nonideal 

constituent substances): i.e. c~  = C p  "~al - % = Cp - XlCp, 1 - x2cp, 2 , where C e and 
nonideal 

Cp are the heat capacity and the molar heat capacity of the non-ideal binary solution at 

constant pressure, respectively. 

In the foregoing the excess function has been defined for one mole of the non-ideal 

solution. For the whole system of n moles of substances present, we then obtain Eq. 8.23" 

G e - n gE, H E - n h e, S e -  n s e. ( 8 . 2 3 )  

We also see that the excess free enthalpy G E is differentiated with respect to the temperature 

and the number of moles of the solution to give the excess entropy S e and the partial molar 

excess free energy of mixing R T l n  Y i as follows: 

O G e  - - S e, OG-----~ = R T  In y,. (8.24) 
O T  - O n  i 

A discrepancy in free enthalpy between the perfect solution and the non-ideal solution, if 

the reference system is symmetrical, is generally expressed by the excess free enthalpy G E, 

which consists of the enthalpy term H e and the entropy term - T S e ;  i.e. G e - H e - T S  e .  

Two situations arise accordingly in non-ideal solutions depending on which of the two terms, 

H E and - T S  e ,  is dominant. The non-ideal solution is called r e g u l a r ,  if its deviation from the 

perfect solution is caused mostly by the excess enthalpy (heat of mixing) He: 

IH >> ITsq, G = H e .  regular solutions. (8.25) 

On the other hand, the solution is called a t h e r m a l ,  if its deviation from the perfect solution is 

caused mostly by the excess entropy - T S  e as shown in Eq. 8.26: 

~/E I << I T SEI, G e = - T  S e" athermal solutions. (8.26) 

8. 5. Units  of  the Concentrat ion .  

To express the concentration of a solution we frequently use, besides the molar fraction, 
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the molality m,, which represents the number of moles of solute i in one kilogram of the 

solvent, and the molar concentration (molarity) c,, which is the number of moles of solute i 

per unit volume of the solution. 

Of a solution containing n, moles of solute i and n t moles of the solvent 1 the molality 

m i of solute i is related to the molar fraction xi of solute i as shown in Eq. 8.27: 

1000 n, 1000 x, (8.27) 
m, = nl M----------~ = xl M---------~' 

where M~ is the molecular mass of solvent 1. For a dilute solution where X 1 ~ 1, we have an 

approximate equation shown in Eq. 8.28: 

x~ (8.28) m, - 1000 M1 " 

The chemical potential of i is expressed using the molality scale as shown in Eq. 8.29: 

I t , -  It~ re(T, p) + RT In m, 7',, (8.29) 

where the unitary chemical potential of kt, Z(T,p) on the molality scale is related with that of 

#, X(T,p) on the molar fraction scale as follows: 

* m  * p, - It, X(T, p) + RT In M ,  
1 0 0 0  " 

(8.3o) 

Similarly, with the molar concentration scale we obtain Eqs. 8.31 and 8.32: 

It, = It~ C(T, p) + RT In c, 7,, (8.31) 

#; C(T, p ) -  #;X(T, p)+ RT In v~ p), (8.32) 

0 where v 1 (T, p) is the molar volume of the pure solvent 1 at temperature T and pressure p. 

The molar concentration q can be approximated with x,/v ~ in dilute solutions. 

8 . 6 .  O s m o t i c  P r e s s u r e .  

Let us consider a semipermeable membrane separating a pure liquid solvent 1 from a 

solution containing solvent 1 and solute substances as shown in Fig. 8.2. The chemical 

potentials of solvent 1 in the pure solvent and in the solution, /~ and p~', are given by Eqs. 

8.33 and 8.34, respectively: 

~',- .0(r, p'), (a.33~ 
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g~' - g~ p")  + ~ R T  In x,, (8.34) 

where d ( T , p )  is the chemical potential of the pure solvent 1 and ~ is the osmotic coefficient 

defined in Eq. 8.4. In the osmot ic  equ i l ibr ium state the pressure p' on the pure solvent side is 

usually higher than the pressure p on the solution side. 

u~ e iiiiiii!i ~,; p ~, 

Pure solvent 1 ~ Solution: 

iijliiiii Solwntl + Sol.t~s 

Fig. 8.2 Permeation of solvent 1 through a semipermeable membrane between a pure 

solvent 1 and its solution. 

The driving force for osmotic permeation across the membrane is given by the affinity A 

of the flow of solvent molecules from the pure solvent to the solution as shown in Eq. 8.35: 

t t t  ~ t t )  ~ . 
A - g , -  g, = g~ p') g~ p r R T  In Xl (8.35) 

From Eq. 7.33 we have the chemical potentials of solvent 1 in the pure solvent and in the 

solution as shown in Eqs. 8.36a and 8.36b, respectively: 

0/+ v (1- (8.36a) 

(8.36b) 

0 is the molar volume of pure solvent 1, and where ~c is the compressibility of the solution, V 1 

v 1 is the partial molar volume of solvent 1 in the solution. Under ordinary conditions we have 

v, ~, v ~ Taking the molar volume of the pure solvent as v-~- v ~ { 1 - ( 1 / 2 ) ~ c  (p'+ p")) at the 

average pressure (p'+ p")/2,  we obtain Eq. 8.37 for the o s m o t i c  p r e s s u r e  ~ at osmotic 

equilibrium (A - 0 in Eq. 8.35): 

rc - p"  - p ' ,  ~ - - ~ RT_ln xl .  (8.37) 
v o 

This equation enables the osmotic pressure to be calculated as a function of 9, Xl, 110, and T. 

In the case of an ideal solution in which ~ - 1, Eq. 8.37 yields Eq. 8.38: 
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RT In x 1 
z~ id = - - (8.38) 

vo , 

which shows that the osmotic pressure ~ 17id of the ideal solution is independent of the nature of 

the dissolved solute. If we neglect the compressibility of the pure solvent, the average molar 

volume v ~ for solvent 1 may be replaced by the usual molar volume v~ of pure solvent 1 in 

Eqs. 8.37 and 8.38. 

For very dilute and ideal solutions, since In x 1 - I n  (1 - ,~' x i ) = -  ,~' xi and c i ~ X 1 / V~, 

where i denotes solute substances, Eq. 8.38 with v ~ - v ~ yields Eq. 8.39: 

91~ id - -  RT ,~, G" (8.39) 
i 

This is known as the van't Hoff's law showing that, independent of the kinds of solvents, the 

osmotic pressure in dilute solutions is a function of the concentration of the solutes only. 

8. 7. E lec tro ly t i c  So lut ions .  

Electrolytic solutions contain not only neutral molecules but also charged ions which are 

formed by dissociation of neutral molecules such as acetic acid shown in Eq. 8.40: 

H A c -  H § + Ac-. (8.40) 

An ion charged positive is called a cation and an ion charged negative is called an anion. The 

total charge of cations is of course equal to the total charge of anions in any electrolytic 

solution which is electrically neutral as a whole. 

Since an ion has an electric charge, the partial molar free enthalpy gi of an ion i consists 

not only of the chemical potential ~i but also of the electrostatic energy ziFgp of the ion; 

where z~ is the ionic valence, F is the Faraday constant, and ~ is the electrostatic inner 

potential of the solution. This partial molar free enthalpy g~ defines the electrochemical 
potential ~l~ of an ion in an electrolyte solution as shown in Eq. 8.38: 

g , -  r h -  I& + z~ F(p. (8.41) 

Let us now consider the reaction of acetic acid dissociation shown in Eq. 8.37. By using 

the electrochemical potential of ions, the equilibrium of the reaction is expressed in Eq. 8.42: 

/2i-a~ - r/H+ + r/Ar ,t/W + F~+//A~--- F ~ -  Pw +//A~-, (8.42) 

which indicates that the sum of the electrochemical potentials of dissociated cations and 

anions is equal to the chemical potential of the undissociated molecules at equilibrium. 

In an electrolyte solution the chemical potentials of a cation and an anion can not be 
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measured separately. Accordingly, we define the mean chemical potential k*• of the cation 

and anion by Eq. 8.43: 

+ (8.43) 

If in an electrolyte solution a molecule dissociates into v+ pieces of cations each with a 

valence z§ and v_ pieces of anions each with a valence z_, the relation of z+v+ + z_v_ =0 

holds. We can then define the mean chemical potential /,~ of the dissociated ions in general 

by Eq. 8.44: 

v+ #+ + v_ #_ (8.44) 
12+-= v +  + v _  " 

The mean chemical potential of a pair of cations and anions can be estimated from the 

ionic dissociation equilibrium shown as an example in Eqs. 8.42 and 8.45: 

ktHAc- 2 ~_+(H +, Ac-)' (8.45) 

which enables us to estimate ~t_.(H+ ' Ac-), if ktHA c is known. 



CHAPTER 9 

ELECTROCHEMICAL ENERGY 

Electrochemical energy concerns electrochemical processes in which charged 

particles are involved besides neutral molecules. The energy level of a charged 

particle is expressed by its electrochemical potential, which consists of a 

chemical potential and an electrostatic potential. The electrode potential 

frequently used in describing electrochemical energy conversion is a physical 

intensive variable corresponding to the energy level of electrons or ions in 

electrodes. This chapter discusses the energy level of charged particles, the 

electrode potential, the electromotive force, and the equilibrium of charge 

transfer reactions. Also examined is the chemical potential of hydrated ions. 

9. 1. Electrochemical Potential of Charged Particles. 

Charged particles such as ions and electrons play an important role in what is called 

electrochemical processes. We shall now discuss the energy level of ions and electrons in an 
electrochemical system. The partial molar free enthalpy (partial molar Gibbs energy) of a 

charged particle i, as described in the foregoing chapter (section 8.7), is represented by the 

electrochemical potential rli shown in Eq. 9.1: 

r/, =/& + z, Fr (9.1) 

where/~i is the chemical potential of i, z~ is the number of elemental charge of i, and r is the 

electrostatic inner potential of the electrochemical system. In physics the reference level of 

the electrostatic potential is usually set zero at infinite distance in vacuum. 

The electrostatic inner potential r in a condensed phase (liquid or solid) consists of the 

outer potential ~p and the surface potential Z as shown in Fig. 9.1 and Eq. 9.2: 

r = ~ + Z. (9.2) 
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The outer potential ~p is an electrostatic potential at the closest distance (=  1 x 10-3mm) to 

the surface that a charged particle can approach without being affected by any image force 

from the condensed phase. 

Condensed phase �9 -< o.,( - -  - -  --Infinity 

Fig. 9.1. Inner potential $, outer potential ~p, and surface potential X of a condensed 
phase. 

The electrochemical potential r/, of a charged particle i is then expressed by Eq. 9.3: 

rl, = t.t, + zi Fdp = l.t, + zi F Z  + z, F g r  = a,  + z, F V .  (9.3) 

The outer potential ~p depends on the electric charge on the condensed phase, while both the 

chemical potential #, and the surface potential X remain constant irrespective of the electric 

charge. The electrochemical potential r/, of a charged particle i thus varies depending upon 

the amount of charge on the condensed phase, and consequently, it can not  reasonably 

specify the energy level of the charged particle i in the condensed phase. 

Condensed phase 

Charged particle i o ,~ - - - - 0~  e.~---Z~ F ~ -- - -  ~ Infinity 

- -  - -  - -  Infinity 

Fig. 9.2. Chemical potential/~, real potential c~, and electrochemical potential r/, 

of a charged particle i in a condensed phase. 

On the other hand, if we take as a criterion for defining the energy level of a charged 

particle i in a condensed phase the sum of the chemical potential #, and the electrostatic 

energy of z~Fx due to the surface potential X, this gives a uniquely defined energy level ai 

of the charged particle i in the condensed phase whatever the amount of electric charge on 

the phase is: 

a, = kt~ + e, F X .  (9.4) 
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In electrochemistry this energy level ct/ is called the real potential of charged particle i in a 

condensed phase. For electrons the real potential ct e is equivalent to what is called in physics 

the work function ~ of electrons: - a e  - tD;  the work function is the energy required for 

electron emission from a solid. Figure 9.2 shows schematically the relations between ~ ,  ct/, 

and r/i of a charged particle i in a condensed phase. 

9. 2. Transfer of Charged Particles Between Two Condensed Phases. 

If the transfer of a charged particle i takes place reversibly at the interface between two 

condensed phases 1 and 2 as shown in Fig. 9.3, the electrochemical potentials of i in the two 

phases are equilibrated to each other: r//0)= ~t)  + z~F4~I = ~.2) + ziF~2 =///(2). A difference 

in the inner potential Aq~uz = 4~1 - r  consequently arises between the two phases as given by 

Eq. 9.5: 

A ~ / 2  = r  - r  - ~ '  (2) - t~, (~) 
zi F ' (9.5) 

which may be called the interfacial inner potential or simply the interfacialpotential. 
Furthermore, as shown in Fig. 9.3, there arises between the two phases a difference in the 

outer potential A~pl/z - ~ P l -  ~P2, which is equivalent to what in physics called the contact 
potential. In electrochemistry we may call A~u z the interfacial outer potential. The relation 

of Ar 2 to A~P~t2 is given by Eq. 9.6: 

A(j~I/2 -" A1//I/2 .-t- ( /~1-  X2), (9.6) 

where Z1 and X2 are the surface potentials of phase 1 and phase 2, respectively. Note that the 

interfacial outer potential A~pu 2 can be measured; whereas, the interfacial inner potential 

Ar 2 can not be measured by ordinary methods because of the immeasurable surface potentials 
not equal to each other of the two phases.. 

Phase 1 

V/j 
fA ~1/2"""'~ gt2 

Phase 2 
P/(1) i ~ i 1,l/(2) 

~17i(I ) T~i(1) = Hi(Z) T~i(2) 
I 

Fig. 9.3. Transfer equilibrium of charged particle i across an interface between a 
condensed phase 1 and a condensed phase 2. 
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9. 3. Electrode and Electrode Potential. 

Electrochemical reactions usually occur at the interface between a solid electrode and a 

liquid electrolyte. The electrode is an electron conductor, such as metals and semiconductors, 

and is immersed in an electrolyte. In practice the electrode is partially immersed in an 

electrolyte, but in theory it is convenient to define that the electrode is a multiphase system in 

which an electronic conductor is fully immersed in an electrolyte as shown in Fig. 9.4. 

I 
I 

Electrolyt 

Fig. 9.4. An electrode system. 

An electrode is called an electronic electrode when the transfer of electrons occurs, while 

it is called an ionic electrode when the transfer of ions occurs at the electrode interface. 

Although electrons and ions are in the same category of charged particles, they are different 

in electrochemical behavior due to a difference in the type of statistics that governs them. 

Electrons are Fermi particles which obey the Fermi statistics, whereas ions are Boltzmann 

particles which obey the Boltzmann statistics. 

In electrochemistry we frequently refer to a technical term electrode potential. The electrode 

potential means in its physical sense the energy level, i.e. the electrochemical potential, of 

electrons in an electrode. It is however  convenient, as described in the foregoing (Eqs. 9.3 

and 9.4), to define the electrode potential in terms of the real potential a e rather than the 

electrochemical potential r L of electrons in the electrode. 

Vacuum V 
- Fl/t~vs ~ 

_ I / /  I 

(~, ~ Electrolyte S 

Fig. 9.5. Real potential ae(~Vsro of electrons in an electrode. 
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The real potential a4~vsrv ) of an electron in an electrode is equivalent to the energy 

required to transfer an electron from the position of the outer potential of the electrode 

system to the interior of the electrode as shown in Fig. 9.5 and is given by Eq. 9.7: 

O ~ e ( M / S N )  - -  O~e (SN) + ~e  (M/S) -- l'/e ( M ) -  FA~,vs - FZsm, (9.7) 

where a4srv ) is the real potential of an electron in the electrolyte, ct4v~s ) is the energy 

required to transfer an electron from the electrolyte to the electrode, #e(M) is the chemical 

potential of an electron in the electrode M, A ~ s  is the interfacial potential of the electrode 

(M/S), and XsN is the surface potential of the electrolyte (S/V). We now define the electrode 

potential E as shown in Eq. 9.8 (Ref. 4 and 5): 

E -  ae(M/S/V) = A ~ s  + Xsrv- # e ~  (9.8) 
- F  F 

The second and third terms on the right hands side of Eq. 9.8 remain constant for a given 

electrode-electrolyte system, and hence the electrode potential is a linear function of the 

interfacial potential A~ws of the electrode. This definition of the electrode potential holds 

valid for all electronic and ionic electrodes, whether the electrode reaction is in equilibrium 

or non-equilibrium. The potential defined by Eq. 9.8 is called the absolute electrode potential. 

In electrochemistry we have customarily employed, instead of the absolute electrode 

potential Eabs, s~ e , a relative scale of the electrode potential, Ehrd~o, scale, referred to the standard 

or normal hydrogen electrode potential ~ at which the hydrogen electrode reaction, 
+ 

2Haq + 2%dox -- H2(g~), is at equilibrium in the standard state; unit activity of the hydrated 

proton, the standard pressure of 101.3 kPa for hydrogen gas, and room temperature of 298 K. 

Since ~ is + 4.44 V (or + 4.5 V) in the absolute electrode potential scale, we obtain Eq. 

9.9 for the relation between Eabs, scale a n d  ghydro, scale [Refs. 4 and 5.]: 

Ehydrogen scale--" Eabsolute scale- 4.44 V.  (9.9) 

In the case that an electron transfer reaction (redox reaction) such as shown in Eq. 9.10 is 

in equilibrium at the interface of an electrode: 

RED ~-- OX + e~-m~Dox); for example, Fe 2* ~-  Fe 3* + eFe3+/Fe2+ " (9.10) 

the electron e~,a) in the electrode and the redox electron e ~ o x )  of the redox particles in the 

electrolyte are at the same energy level so that a , ~ s  ) = 0, and hence ae(rws/v)--a4~ )" no 

energy is required for the electron transfer between the electrode M and the electrolyte S. The 

electrode potential Eeq thus corresponds to the real potential ae(Pa~DOX ) of the redox electron 

in the electrolyte as shown in Eq. 9.11: 
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~ e  (M]SN) - -  O~e (SN)  = O~e(REDOX ) "-" ][~e(REDOX ) - -  F Xsrv, 
a~ ~s/v) ~e(aZDOX) 

Eo,= ~ = X s / v - ~ ,  (9.11) 

where/*~(R~mox) is the chemical potential of the redox electron in the electrolyte. The electrode 

potential E~ is called the equ i l ib r ium po t en t i a l  of the redox reaction or simply the redox  

potent ial .  It follows that the redox potential is determined by the energy level of the redox 

electron which is independent of the electrode material. Note that the interfacial potential, 

however, depends on the electrode material, since it is a function of the chemical potential of 

electrons in the electrode material. 

In the case of an ionic electrode at which the transfer of ions, such as metal ions shown in 

Eq. 9.12, is in equilibrium across the electrode interface: 

+ + 
M~) ~ M(s), (9.12) 

+ + 
where M(M ) is the metallic ion in the metallic bonding state and M(s ) is the solvated or 

hydrated metallic ion in the electrolyte, the ionic transfer equilibrium determines the interfacial 

potential A~w s of the metallic electrode, yielding A4~vsY =/~M~s) -/~M}~M) ' where /aM?s) and 

/~M) are the chemical potentials of metal ions in the solvated state in the electrolyte and in 

the metallic bonding state in the electrode metal, respectively. We then obtain the real 

potential of electrons a, (M/Sty) in the electrode as shown in Eq. 9.13: 

ae ~vs/v) -/-6 ~) - F A ~ , s  - FZsN - (!-,6 ~ )  + btM?M) - /-tM~'s, ) -- FXs/v, 

= (,UMr ,UM~-s,)- FXs/v - /a~ IM,~+ KS ) -- FXs/v - a~ IM/M+ I(S ), (9.13) 

where (~M~M~-/~s~) is equal to the chemical potential ~elM/M+I(S)of the hypothetical electron 
el-~+l(s) in the electrolyte, and a,l~a+~s ) is the real potential of the hypothetical electron 

er~w+ iis) in the electrolyte; e ~ +  Ks) is equilibrated with the electrodic electron e ~  in equilibrium 

with the ionic reaction formally expressed by M~I) + e~) ~ M ~  ~ M(*s) + ei-~+l(s ). The 

equilibrium potential E~ for the metallic ion transfer is thus equivalent to the real potential 

aelM/M+l(S) of the hypothetical equilibrium electron for the metallic ion transfer as shown in Eq. 

9.14: 

O~e (M/SN)  a e l  M+/M I(S) ~e l  M+/M I(S) 
Eeq = ----S-F-- = ~ = Xsrv--------ff~. (9.14) 

Since no electrons that pass through the electrode interface are involved in any ion transfer 

reactions, the hypothetical equilibrium electron for an ion transfer is virtual, and the equilibrium 

potential of the ion transfer reaction therefore corresponds to the energy level of that hypothetical 

electron in the electrolyte. 
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The electrode potential of an ionic electrode can also be defined by the ionic level rather 

than by the electronic level in the electrode. For instance, the electrode potential of a metallic 

electrode may be given by the real potential aM~§ ~sN) of metallic ion in the electrode as 

shown in Eq. 9.15: 

Eion_ aMZ+ (M]SN) __ IUMZ+(M) 
- z ~ -  z---if- + Aq~ws + Xsrv, (9.15) 

where ~MZ+(M) is the chemical potential of metallic ion in the electrode metal and z is the ionic 

valency of the metal ion. If the transfer of metal ion is in equilibrium at the electrode 

interface, aMZ§ ~SN) is equilibrated with the real potential aMZ§ (/sty) of solvated metal ion in the 

electrolyte, and hence the equilibrium potential of the metallic ion transfer is equivalent to 

the energy level of the solvated or hydrated metallic ion in the electrolyte. 

We may call the electrode potential defined by the ionic energy level the ionic electrode 

potential, and the electrode potential defined by the electronic energy level may be called the 

electronic electrode potential. In the case in which the electrode has no electronic level in the 

energy range of our interest such as certain membrane electrodes, it is convenient to describe 

the system in terms of the ionic electrode potential rather than the electronic electrode 

potential [Refs. 4 and 5.]. 

f e - - - - ~  

| 
f 

< 
Electrode ( ~  Electrode 

Electrolyte 

| 

Electrode Q Electrode 

Electrolyte 

(b) 

Fig. 9.6. Electrochemical cell: (a) non-equilibrium cell, (b) equilibrium cell; EEMr= 
electromotive force. 

9. 4. Electrochemical Cells. 

Two electrodes, if connected, constitute an electrochemical cell as shown in Fig. 9.6. 

When the electrode potentials of the two electrodes differ from each other, a current flows 

through the cell with each electrode undergoing an electrochemical reaction, i.e. the transfer 

of electrons or ions. An electrode is called an anode at which the electrochemical reaction 

carries positively charged particles from the electrode to the electrolyte and negatively charged 
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particles in the reverse direction; while on the other hand an electrode is called a cathode if it 

carries negatively charged particles from the electrode to the electrolyte and positively charged 

particles in the reverse direction. 

The anodic reaction is an oxidation reaction producing electrons in the anode, while the 

cathodic reaction is a reduction reaction consuming electrodic electrons at the cathode interface. 

We shall consider, as an example, an electrochemical cell consisting of a metallic zinc 

electrode and a metallic copper electrode, in which the anodic reaction of zinc ion transfer 

(zinc dissolution) is coupled with the cathodic reaction of copper ion transfer (copper deposition) 

as shown in the following processes: 

Zn ~ Zna2q + 2 e-, anodic reaction (oxidation reaction). 

CUa2q + 2 e- --~ Cu, cathodic reaction (reduction reaction). 

These reactions compose a whole cell reaction given as follows: 

2+ 2+ 
Z n  + Cuaq ~ C u  + Znaq. 

In order to make the cell current zero we need to put an electrostatic voltage ~ in the cell 

circuit; Fig. 9.6. This electrostatic voltage ~ is called the electromotive force of the cell. 

The electrochemical cell is often described by a cell diagram such as shown in Eq. 9.16: 

Z n l Z n  ~+ i Cu2+ i Cu, (9.16) 

where two vertical lines indicate the electrode interfaces and a vertical dotted line shows the 

contact of two electrolytes. From left to fight this diagram is built up such that positively 

charged particles are transported from the electrode (anode) on the left hand side through the 

electrolyte to the electrode (cathode) on the fight hand side, according to IUPAC recom- 

mendation. Furthermore, the electromotive force takes its reference level at the electrode 

potential of the electrode on the left hand side. 

Let us consider an electrochemical cell shown in Eq. 9.17: 

Pt ] Hz(g~)[ H20, H(+q) " H20, OH(aq)] O 2(gas) ] Pt, (9.17) 

whose overall cell reaction is given by Eq. 9.18: 

H2 (gas) + -~- O2 (gas)- H20 (aq). (9.18) 

The anodic reaction on the left electrode and the cathodic reaction on the fight electrode are 

then expressed by Eqs. 9.19 and 9.20, respectively: 
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+ 
H2 (gas)- 2 H(aq) + 2 e~), left electrode. (9.19) 

1 0 2  + 2 + + 2 - H20 2 (gas) H(aq) e~) (~q), right electrode. (9.20) 

If the electrochemical reactions at the two electrodes are both in equilibrium, the electrochemical 

potentials of electrons in the two electrodes are given by Eqs. 9.21 and 9.22, respectively: 

(9.21) 

(9.22) 

In any electrochemical cell the outer potentials of the electrolyte for the two electrodes 

are identical so long as the two electrodes are immersed in a homogeneous electrolyte. The 

difference in the electrochemical potential of electrons consequently becomes equal to the 

difference in the real potential of electrons between the two electrodes: that is (r/e(R)- r/e(L/) = 

(ae(R)- %L))- The electromotive force En2/o ~ of the electrochemical cell is thus given by Eq. 

9.23: 

1 
_ - 1  (o~ e _ ae ) = l (fill2 ~ _ _ ~  ,/,/O 2 _ l/,/H2(gas))" E. - - 2 / o 2  _ F " OR) 0~). _ 2 F Can) ~a~) (9.23) 

The parenthesis on the right hand side of Eq. 9.23 is equal to minus the affinity An,/o: of the 

overall cell reaction 9.18 as shown in Eq. 9.24: 

1 
(/'/H20 (aq) -- -2/'/O2 (gas) -- ~['/H2 (gas)) -" -- AH2/02 �9 (9.24) 

The electromotive force En~/o ' is thus related to the reaction affinity: 

ArI2 /O 2 

EH2/O2 = 2 F " (9.25) 

The affinity of the reaction, as has been shown in the foregoing chapters 5 and 6, consists 

of the unitary affinity A~2/o ' and the affinity of mixing A ~t - H2/O 2 RT In (Pa2 ,,1/2a ~'o2 j" We see then 

that the electromotive force En2/o 2 also consists of the unitary electromotive force E~2/o 2 and 

the mixing term (1/2)(RT/F)In (/N2 P ~ ) a s  shown in Eq. 9.26: 

RT 
En2/o2- E~2/02 + ~ In (Pn2 --1/2' Po21, (9.26) 

where E~2/o 2 is the unitary term at the standard pressure for both hydrogen and oxygen gas. 

The unitary electromotive force in the standard state is usually called the standard electromotive 
force, 0 ~I2/O2, whose value is given by o F~2/o ~ - 1.23 V. 
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In general, the electromotive force EE~ of an electrochemical cell is given by Eq. 9.27: 

A cell n - ~  EEMF- n F = E~vtF + RT z~,, Vi In a, ,  (9.27) 

where Aceil is the affinity of the cell reaction, n is the number of elemental charges involved 

in the reaction, v i is the stoichiometrical coefficient of particle i, and ai is the activity of 

particle i taking part in the reaction. 

The temperature dependence of the reaction affinity is given by Eq. 4.8, and the result for 

the hydrogen-oxygen cell is shown in Eq. 9.28: 

AH2/O2 ) 
AH2/O 2 - -  -- ~/H2/O 2 -t" T OT p" (9.28) 

We then obtain from Eqs. 9.25 and 9. 28 the relation between the electromotive force En2/o 2 

and the enthalpy change AHn2/o ~ of the cell reaction as shown in Eq. 9.29: 

AHH2/o2 = 2 F T - - 2 F E~I2/o2" 
p 

This equation indicates that, if the electromotive force has a positive sign and the temperature 

coefficient of the electromotive force of the reaction has a negative sign, the reaction enthalpy 

will be negative: AHH~/O ~ < 0 and hence the reaction is exothermic. 

The reaction of the hydrogen-oxygen fuel cell shown in Eq. 9.18 is exothermic with the 
0 reaction enthalpy equal t o  AHxhlo ~ - -47.3 kJ" mo1-1at the standard temperature and pressure. 

The heat of reaction for gaseous hydrogen oxidation at room temperature amounts to 

-284.7 kJ. mo1-1, in which 237.3 kJ-mo1-1 is used for producing the electromotive force of 

1.23 V and 47.3 kJ.  mo1-1 is exhausted as heat. On the other hand, the reaction of water 

electrolysis, which is the reverse reaction of the hydrogen-oxygen fuel cell reaction, absorbs 

an amount of energy of 237.3 kJ.  mo1-1 equivalent to the electromotive force of 1.23 V from 

an electric source and an amount of 47.3 kJ. mol -l from the environment to obtain the total 

amount of energy 284.7 kJ �9 mo1-1 required for the dissociation of one mole of water. During 

water electrolysis both enthalpy and entropy increase, in which the increase in the entropy is 

provided for by heat absorption from the environment. 

9. 5. Equilibrium Electrode Potential of Electronic Transfer Reactions. 

Let us consider an electronic transfer reaction of the redox couple of ferrous-ferric ions: 

3+ 2+ Fe(aq) ) + e-= Fe(aq) ). (9.30) 

Connecting this redox reaction in a half cell (an electrode) on the fight hand side with the 
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+ 
standard hydrogen electrode reaction H,q + e - -  0.5 H2(~) in another half cell on the left side, 

we make up the cell shown in Fig. 9.7 and represent it in the cell diagram of Eq. 9.31: 

+ " Fe 3+ Fe2+ Pt[ H2(ga~)IH20'H(~) - I~)' (~) IP t '  (9.31) 

whose total cell reaction is given by Eq. 9.32: 

1 H e  + 3 +  + 2+ 2 (g~) Fe(aq) H(aq) + Fe(,q). (9.32) 

The electromotive force ~ of this cell is equivalent to the redox potential EFe3+/Fe2+ of 

the reaction referred to the standard hydrogen electrode, i.e. the equilibrium potential of the 

redox reaction, and it is given by Eq. 9.33 at the standard temperature and pressure: 

EFe3+/Fe2+ -- AFe3+mez'-"""""'~+-F -- i F  (~Fe3+(aq) "t" @ J'~O2(g as)- J'~Fe2+(aq ) -- J'~O('aq)) 

0 3 o o o -- /1~ (i[.~Fe +(aq)+ @ [.~Fi2(gas)--.Fe2+(aq)-- j[.~i~-aq)) + RFT ln(  aFe2 +aFe3+ ) 

where EF0e3+/Fe2+ is the unitary redox potential at the standard state and is called the standard 
redox potential of the reaction. 

PH~ = 101.3 kPa, T = 298 K 

I 

0 .5  H 2 [ F e  3+ I 
H20 

H § I Fe 2*H [ [ 
= 1 Electrolyte 

1 

Fig. 9.7. An electrochemical cell consisting of a redox electrode reaction of hydrated 
ferric-ferrous ions and the standard hydrogen electrode reaction. 

Table 9.1 shows the numerical values of the standard redox potentials for a few reactions 

of electronic transfer at electrodes. Electrochemical handbooks provide the standard redox 

potentials for various other transfer reactions of redox electrons. As mentioned in section 9.3, 

the redox potential is independent of the electrode materials. 
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Table 9.1. Standard redox potentials E~ox of electronic electrode reactions: E~x  is 
referred to the standard hydrogen electrode potential and e T~x is the redox electron 

in equilibrium. 

Redox reaction Standard redox potential E~ 

+ 
2 Haq + 2 ereaox- H2(g.) 0.0 
CURE + eLdox- CUaq + 0.153 
Fe3q + ereaox- Fe]q + 0.771 

+ 
O2(g,) + 4 Haq + 4 er~x -- 2 H2Oaq + 1.229 
Cea4~ + eredo x -- Cea3q + 1.74 

9.6.  Equilibrium Electrode Potential of Ionic Transfer Reactions. 

Let us now consider a transfer reaction of iron ions F e ~  from the lattice site in a metallic 
2+ iron electrode to the hydrated state of iron ion Fe~aq) in an aqueous solution at the standard 

temperature 298 K and pressure 101.3 kPa as shown in Eq. 9.34: 

2+  2+ Fe(aq)- F e ~ .  (9.34) 

Connecting this ionic transfer reaction with the standard hydrogen electrode reaction 

H(*,q) + eiM ) = (1/2)Hz(g,) gives the cell shown in Fig. 9.8 and in Eq. 3.35: 

2 +  
pt l  H21ga~) I HzO, HI~) " Fe/~) I Fe �9 (9.35) 

The total reaction in this cell is given by Eq. 9.36: 

'+ - + (Fe2 + H2~g.) + Fe(aq) 2 H(aq)+ 2 e~) .  (9.36) 

Pt 

2e-<--  

Electrode 

PH2 - 101.3 kPa, T = 298 K 

i 
H2 I 

HzO Fc 

2 H  + I 
I 

an. = 1 Electrolyte 
I 

Fe 2+ 

Fe 

2 e  

-~. Fe 2§ 

Electrode 

Fig. 9.8. An electrochemical cell consisting of an electrode reaction of iron ion 

transfer and the hydrogen electrode reaction both in equilibrium. 
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The electromotive force ~ of this cell is equivalent to the equilibrium potential EFp~e 
of the transfer reaction of divalent iron ions referred to the standard hydrogen electrode, and 
it is given by Eq. 9.37 at the standard temperature and pressure : 

EF~2+a~e_ AFo~§ _ 1 (#Fo~;O + #~ 2 0 _ 2 #~ ) 
2-'-----if-- - 2--F- (g~)-/~,(M) 

1 (/~p~q)+ 0 _ o _ o ~ 
2 F ~['[~I2(gas) #~(M) 2 ~[J~i~-aq))-l- In aFo?4 ) 

o R T In a~e2+ (9.37) 
= E ~ p ~  + 2 F ~ (aq)' 

where E~ is the standard equilibrium potential of the iron ion transfer reaction at metallic 

iron electrodes, i.e. metallic iron dissolution and deposition. 

Table 9.2 shows the numerical values of the standard equilibrium potentials for a few 

reactions of ion transfer at ionic electrodes. Electrochemical handbooks provide us with the 

standard equilibrium potential for a number of ionic transfer reactions. 

Table 9.2. Standard equilibrium potential ~ .  of ionic electrode reactions: ~ is 
referred to the standard hydrogen electrode potential and e ~  is the equilibrium 
electron in the ion transfer reactions. 

Ionic transfer reaction Standard equilibrium potential E~ V. 

Fea2q + 2 el-on- F%oaa) 
+ 

NiO(~oHd) + 2 Haq + 2 e~-on -- Ni(~oad) + HzO~q 
A gCl(~o~d) + el-on = Ag(~oHd)+ Claq 
Cu~ + 2 el-o~ = CU(~ond) 
A U~q + 3 e;o~- A U(~oaa) 

-0.44 
+0.132 
+0.132 
+ 0.337 
+ 1.50 

9 .  7 .  C h e m i c a l  P o t e n t i a l  o f  H y d r a t e d  I o n s .  

0 2 2+ Equation 9.37 gives us the chemical potential #~e<~q) of hydrated ferrous ion Fe(a~ in the 

standard state as a function of the standard equilibrium potential E~Fe2W~ of the dissolution- 

deposition reaction of metallic iron as shown in Eq. 9.38: 

#o ~;q) _ 2 F Evp~ --  i~h20 (~ + #~o(M)~ + 2 o i[~I~'aq)" (9.38) 

In chemical thermodynamics the standard chemical potentials P2a2(,~ and #~ ) of hydrogen 

molecules and metallic iron are set zero, so that if the standard chemical potential p2<a e of 
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0 2 hydrogen  ions is known,  we can est imate the standard chemical  potential  ~t~e&) of  the hydrated 

ferrous ion from the standard equi l ibr ium potential  E~ 

In e lectrochemistry  we make it a rule that the standard chemical  potential ~t~ of  hydrogen 

ions is set zero as the level of  reference for the chemical  potentials of  all other  hydra ted  ions. 

The  s tandard  chemica l  po ten t ia l s  o f  var ious  hydra ted  ions t abu la ted  in e l ec t rochemica l  

h a n d b o o k s  are thus re la t ive  to the s tandard  chemica l  potent ia l  of  h y d r o g e n  ions at unit  

act ivi ty in aqueous  solutions. Table  9.3 shows the numerical  values of  the standard chemical  
0 0 

potential  /~i, the s tandard partial molar  en tha lpy  h i , and the standard partial mola r  entropy 
0 

s i for a few of  hydrated ions. 

Table 9.3. Standard chemical potential p0, standard partial molar enthalpy ~0, and 

standard partial molar entropy s ~ for a few hydrated ions: Standard state" 101.3 kPa, 

298 K, unit activity in molality scale. 

Ion State /&o/kJ" mo1-1 ~o / kJ-mo1-1 s ~ ] J .  K -1- mo1-1 

COl- 
c1- 
Fe z* 

Fe 3§ 

H § 

Na § 

OH- 

S O 4  2- 

HS- 

Zn 2+ 

hydrated ion 

hydrated ion 

hydrated ion 

hydrated ion 

hydrated ion 

hydrated 1on 

hydrated ion 

hydrated ion 

hydrated ion 

hydrated 1on 

- 527.9 - 677.1 - 56.9 

- 131.2 - 167.2 56.5 

- 78.9 - 89.1 - 137.7 

- 4 . 7  - 4 8 . 5  - 137.7 

0.0 0.0 0.0 

- 261.9 - 240.1 59.0 

- 157.3 - 230.0 -10.7 

- 744.6 - 909.3 20.1 

12.06 - 17.6 63.8 

- 147.1 - 153.9 - 112.1 



CHAPTER 10 

EXERGY 

The law of conservation of energy indicates that energy never disappears, 

while the second law of thermodynamics sets forth that thermal energy can 

not be fully utilized so far as we are in our atmospheric environment. Engineering 

thermodynamics has recently introduced a new energy quantity called exergy 
to figure out how much work or power we can utilize from a given amount of 

energy with respect to the natural environment. Energy is conserved in any 

processes; whereas, exergy is dissipated in spontaneous processes. Exergy 

analyses are thus effective in improving the energy efficiency in practical 

manufacturing processes. This chapter examines the concept and property of 

exergy in thermodynamic systems and shows that exergy losses are in principle 

related to the affinity (the free enthalpy change) of irreversible processes. Also 

discussed are various examples of exergy evaluation for heat transfer, gas 

expansion, substance mixing, and chemical reactions. 

10. 1. The Concept of Exergy. 
The first law of thermodynamics has provided the concept of internal energy and enthalpy 

which are conserved in a physicochemical system, and the second law has defined entropy, 

free energy (Helmholtz energy) and free enthalpy (Gibbs energy) as thermodynamic energy 

functions to indicate the possibility and capacity of advancing irreversible processes. Recently 

(1950's), engineering thermodynamics has introduced, from a practical point of view, a new 

energy function called "exergy" to express; the amount of available energy; its ability to be 

converted into other kinds of energy; and especially the capacity for doing work that we can 

utilize with a given system of energy carriers in our normal environment on the earth [Refs. 6 

and 7.]. The term of exergy was first introduced by Rant [Ref. 8.]; it means the amount of 

work (-erg) that is released (ex-). 

Energy is defined by Szargut [Ref. 9.] as the maximum amount of work obtainable when 

an energy carrier is brought from its initial state to a state of thermodynamic equilibrium (an 
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inert state) with the common substances of the natural environment by means of reversible 

processes, involving interaction only with the above-mentioned substances of nature. In other 

words, exergy is the maximum amount of work that we can obtain if a substance or a form of 

energy is converted to its inert reference state. Exergy can thus be also the minimum amount 

of work to be supplied if a substance or a form of energy has to be produced from its inert 

reference state. Exergy is expressed in terms of state functions alone as far as it is defined by 

means of reversible processes, and then it is a state function. Furthermore, as will be shown 

later, exergy bears a close resemblance to the energy function of affinity (free enthalpy 

change) which, as mentioned in chapter 4, represents the maximum work (available energy) 

that we can draw out from a physical or chemical process of energy carriers when advancing 

reversibly from its initial state toward its final equilibrium state. In contrast to affinity, 

however, the exergy of energy carriers fixes its final reference level at the state of the most 

stable existence (the dead state, the inert reference state) that the energy carriers can reach in 

the ordinary natural environment on the earth [Refs. 7 and 9.]; the dead state or the inert 

reference state is the state of chemical elements in which they are in "unlimited supply" 

without expenditure of work from our natural environment that is in equilibrium with the 

exergy reference substances. The exergy of any material is then the minimum expenditure of 

work required to obtain this material from the reference level substances in our natural 

environment [Ref. 10.]. 

Exergy therefore results from a difference in free enthalpy (Gibbs energy) between the 

energy carriers under consideration and the common reference substances in the natural 

environment: exergy is thus a function of the thermodynamic state of the substances under 

consideration and of the thermodynamic state of the common reference substances in the 

natural environment. In other words, exergy arises from an interaction between the substances 

under consideration and the common reference substances in the environment. 

Seawater on the earth is well known to possess a huge amount of internal energy or 

enthalpy, which we can not utilize on the earth in global equilibrium with the ocean, however. 

In other words, the affinity of seawater toward the global earth environment is zero, and 

seawater thus possesses no exergy. On the other hand, substances at a temperature higher or 

lower than the atmospheric temperature on the earth contain an amount of available energy 

for work, and they hence have an exergy value greater than zero. Analogously, gases at a 

pressure higher or lower than the atmospheric pressure also possess an amount of exergy. 

Gaseous molecular oxygen in the atmospheric air holds itself at the molar fraction of 

Xo2 --0.21, and it is at this concentration that the exergy of gaseous oxygen is zero. In order 

to produce pure oxygen gas from air, then, an amount of free enthalpy is required equivalent 

to minus the chemical potential of mixing for oxygen molecules in air, so that the pure 

oxygen gas possesses an amount of exergy greater than zero. Similarly, pure metallic iron 

possesses an amount of exergy equivalent to the affinity of the chemical reaction to form iron 

oxide from metallic iron and oxygen gas in air, since metallic iron spontaneously corrodes 

changing into iron oxide that is the most stable existence of iron in the natural environment (a 

top layer of the lithosphere). 
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Any spontaneous change of substances that occurs in the natural environment advances 

with a decrease in exergy of the substances: this is the law of exergy decrease in spontaneous 

processes in analogy to the law of affinity decrease in spontaneous processes. In contrast to 

energy which is always conserved in any processes due to the first law of thermodynamics, 

exergy is exempt from the law of conservation and so is the affinity. 

The exergy of a substance is conventionally classified into two parts: physical exergy 
associated with changes in temperature (thermal exergy), changes in pressure (pressure exergy, 

dynamic exergy), and changes in concentration (mixing exergy); and chemical exergy associated 

with changes in chemical composition of substances. 

In this book we shall use the symbol epsilon, E and e, in Greek to express total exergy 

and molar exergy (or specific exergy), respectively. 

10. 2. Exergy and Heat. 

Thermal energy (heat), as has been mentioned in the foregoing (e.g. section 3.7), can be 

converted only partly into work, whereas the other forms of energy are theoretically all 

convertible into one another. We now consider the amount of work generated from an 

amount of thermal energy at a high temperature level T with respect to our environment at 

temperature T O . An ideal reversible heat engine (section 3.7) converts thermal energy into 

work as shown in Fig. 10.1, generating the maximum amount of work, Wre ~ , that can be 

obtained from an amount of thermal energy Q received by a working substance (an ideal 

gas) in the engine from an outside heat source at a high temperature T and releasing an 

amount of thermal energy Q0 into an outside heat reservoir at a low temperature T O in the 

absolute temperature scale: 

Wrev_Q_Qo= Q T-To T " (10.1) 

If T O is set at the temperature of our natural environment to which exergy is referred, Wre ~ 

becomes equivalent to the exergy of the thermal energy at temperature T. The exergy, E, of 

an amount of heat Q at a high temperature T is thus evaluated at Eq. 10.2: 

T - T o  
E =  W~,,,= Q T ' (10.2) 

which is the maximum amount of work that we can gain reversibly from an amount of 

thermal energy, Q, at temperature T. 

The thermal energy, Q0 = Q -  E = Q(To[T ) , released from the engine to the environment 

at temperature T O can not be used and is called anergy in terms of engineering thermodynamics. 

In general, anergy is defined as the difference in amount between energy and exergy: 

Anergy - Ene rgy-  Exergy. (10.3) 
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The efficiency of the reversible heat engine, ~.~,v = (w~,JQ) as given in Eq. 3.45, represents 

the energy availability ~ of an amount of heat Q at a constant temperature T: 

Wr, v _ E = I  To ZQ= Q - Q - ~ .  (10.4/ 

When the heat engine is operated not in a reversible but in an irreversible way, the 

amount of work, W~r, that we obtain from the amount of thermal energy Q is less than the 

maximum amount of work, W~, and hence it is less than the exergy, E, of the thermal 

energy Q at temperature T as shown in Eq. 105: 

Wir r -- E -  A E i r  r < Wrev, (10.5) 

where AEi~r is the amount of exergy that has been lost in the irreversible heat engine and is 

called exergy loss due to the irreversibility in the energy transformation. In other words, to 

obtain the same amount of work we need a greater amount of driving exergy in irreversible 

processes than in the reversible process. 

Heat source 
at high temperature T 

. @  Work done 

E=W,  e v = Q ~  

Environment @ " -  
at low temperature T o 

T-T0 

Fig. 10.1. Conversion of heat Q into work W~ through a reversible heat engine 
between a high temperature T and the temperature T O of our environment. 

10. 3 Exergy and Pressure. 

Let us now consider a gas phase of volume V and pressure p that expands itself reversibly 

at constant temperature T O toward the state of volume V o at pressure P0 in equilibrium with 

the atmosphere. The reversible work done by the gas is then given by Eq. 10.6: 

fp 
P0 

Wrev = p dV. (10.6) 

Since the work done against the atmospheric pressure P0 of the outside environment, i.e. the 

work done for removing a volume of atmospheric gas, can not be utilized, the available work 
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equivalent to exergy E will be less than W~ev as shown in Fig. 10.2. If p is much greater than 

Po, however, we may assume that W~e~ approximately equals E. From the equation of state for 

an ideal gas, pV =nRT o, with n being the number  of moles of the gas, we obtain 

pdV + Vdp--- 0 and dV = -  (V / p)dp = -  (n R To/p2)dp. Substituting these equations into 

Eq. 10.6, then, yields Eq. 10.7 for the exergy of an ideal gas expressed as a function of its 

pressure: 

f 
.o@ p 

E = Wrev- - n R To ~ - n R To ln Po " (10.7) 

From Eqs. 10.7 and 3.47 the pressure-dependent molar exergy e of an ideal gas is: 

P - R To In ~ - - To ( s -  So), (10.8) 

where s and So are the molar entropy values of the gas at pressure p and P0, respectively (vid. 

Eq. 7.3). We see in Eqs. 10.7 and 10.8 that exergy is zero E = 0 if p = P0, while exergy is 

greater than zero E > 0 if p ,, P0; i.e. expansion will occur, p ---, P0 or P0 ---" P- The pressure- 

dependent exergy of a gas have thus a positive value when the gas pressure is higher or lower 

than the atmospheric pressure: namely, a gas at a pressure higher or lower than the atmospheric 

pressure possesses an amount of exergy. 

Pressure p ,  volume V 
, i i  

, 

Environmental pressure Po, volume 1/o 

Fig. 10.2. Exergy of a gas at a high pressure p expanding toward a low pressure P0. 

at constant temperature T O of our environment. 

10. 4. Thermal Exergy of High Temperature Substances. 
Let us consider a certain substance at a high temperature T from which a reversible heat 

engine receives an amount of heat dQ(= dH) and performs an amount of reversible work 

dWr~ releasing an amount of heat dQo (= dH o) into the environment at room temperature To 

as shown in Fig. 10.3. The substance continues supplying heat to the engine until its temperature 

is equal to the environmental  temperature To. During the heat supply dQ the substance 

decreases its temperature by dT as shown in Eq. 10.9 and decreases its exergy by dE equal 

to the reversible work done, dWrev, by the engine as shown in Eq. 10.10: 
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dQ = d H  = Cp dT,  

d E  - dWre,, - T -  To dQ > 0 
T 

where Cp is the heat capacity of the substance at constant pressure. 

(10.9) 

(10.10) 

High temperature T 
E = ( H -  r/0)- ~0 (s-So) H , S  

I-to, So 
Environmental temperature To 

Fig. 10.3. Exergy of a substance at a high temperature T releasing heat in decreasing 
its temperature from T toward environmental temperature T O at atmospheric pressure. 

The thermal exergy E of a high temperature substance, which decreases its temperature 

from T to T O at constant atmospheric pressure P0, is hence given by Eq. 10.11: 

E -  Wrev- T - T o  
T 

dQ - T -  T To d H -  Cp 1 - d T -  Cp d T -  To --T-- d T  

fs s = C e d T  - T O --T-- - Cp d T -  To dS - ( H -  H o ) -  T o ( S -  So) > O, 
o 

(10.11) 

where H and H 0 are the enthalpy of the substance at temperature T and To; S and S O are 

the entropy of the substance at temperature T and T 0, respectively. We notice in Eqs. 10.10 

and 10.11 that the exergy E of a high temperature substances has always a positive quantity 

so that work can be obtained from it with respect to the environment. 

Equation 10.11 yields the exergy e for one mole of the substance in terms of its molar 

enthalpy h and molar entropy s as shown in Eq. 10.12: 

e = (h - h0) - T O (s -So). (10.12) 

In fact, this equation 10.12 defines the thermal exergy of a high temperature substance. 

When any phase transformation such as condensation or solidification occurs in the 

temperature fall, an additional exergy Ae of the latent heat of the phase transformation takes 

part in the available energy as shown in Eq. 10.13: 
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(10.13) 

where q, is the molar latent heat of the phase transformation at the transformation temperature 

Tt. On decreasing the temperature (condensation and solidification) the latent heat is negative 

q, < 0; and hence if T t > T 0, then an amount of exergy is released Ae < 0. On increasing the 

temperature (melting and vaporization) the latent heat is positive q, > 0; and hence if T t > T 0, 

then an amount of exergy is taken up Ae > 0 ; however, if T t < T 0, then an amount of exergy 

is released Ae < 0. The numerical values of the molar exergy of substances and of their 

phase transformations are tabulated in the literature on engineering thermodynamics [Refs. 9 

and 11.]. 

The fall in temperature from T to the environmental temperature T o releases an amount 

of enthalpy ( h -  h0), of which however only the exergy part can be used for the available and 

transformable energy to obtain useful work or products by means of reversible processes. We 

then define the energy  avai labi l i ty  3. of a high temperature substance as in Eq. 10.14: 

c 
~ ' -  h -  h-------~ " (10.14) 

The molar exergy of a high temperature substance in Eq. 10.11, if no phase transformation 

is involved in the temperature range considered, can be expressed by Eq. 10.15 in terms of 
mean. the mean molar heat capacity Cp 

mean d T  mean ( T -  To) mean To In W m ~  d T  - To Cp., - Cp,h --Cp., To F., "-" Cp, h (10.15) 

c 
mean 
p,h 

c p d T  -T  d T  
(.mean = 

T -  To ' -p,s In T -  In To 

where cp is the molar heat capacity of the substance and is usually a function of temperature. 
c . . . .  cme . . . .  mean c mean This molar exergy is We normally assume that ,~p,"m~anh is equal to vp . . . .  p,s ~p,h = vp . 

compared with the molar enthalpy given by Eq. 10.16: 

fT I mean mean h - h o -  Cp d T -  c e ( T - T o ) .  (10.16) 

We thus obtain the energy availability 3, of the thermal energy of a substance at a high 

temperature T as shown in Eq. 10.17: 

~ _  e _ 1 -  To In T .  (10.17) 
h -  ho T - T o  T o 

This equation however is valid only when no phase transformation is involved. 
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10. 5. Thermal Exergy of Low Temperature Substances. 

If the temperature T of a substance is lower than the temperature T o of the environment, 

a heat engine can be operated between the environment (heat source) and the low temperature 

substance (heat sink). Let us consider a reversible heat engine as shown in Fig 10.4 in which 

the engine gas receives an amount of heat dQ from the environment at atmospheric temperature 

T O and performs an amount of reversible work dW~ releasing an amount of heat into the 

low temperature substance at temperature T, whose enthalpy is then increased by an amount 

dH =dQ - dW~ > 0. From the efficiency of the reversible engine we have Eq. 10.18: 

dW,.ev- To- T dQ-  To- T (dH + dWre,, ), dW To- T To ~ "~" = ~ dH > O. (10.18) 

The reversible heat engine continues operating until the temperature of the substance 

becomes equal to the atmospheric temperature. The thermal exergy E of the substance at a 

low temperature T is thus given by Eq. 10.19: 

E _  Wrev_ f /~ TO- d H - -  dH + To T ~ = H - H o - T o ( S - S o ) > O ,  (10.19) 

This equation indicates that the thermal exergy of a low temperature substance has a positive 

sign and hence that the low temperature substance possesses an amount of available exergy 

relative to the same substance at the atmospheric reference temperature. 

The molar exergy of a low temperature substance is then given by Eq. 10.20: 

e = h - h 0 -  To ( s -  So), (10.20) 

which is in the same form as Eq. 10.13 for a high temperature substance. With low temperature 

substances ( h -  h0)<0 and ( s -  So)<0,  but the balance, as shown in Eq. 10.18, gives us 

e > 0 as a whole indicating that they can release exergy to do an amount of work. 

E -  ( H -  Ho)- T O (S-So) 

H , S  

Low temperature T 

Environmental temperature To 

Ho, So 

Fig. 10.4. Exergy of a substance at a low temperature receiving heat and increasing 

its temperature toward environmental temperature Te 
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10. 6. Exergy in Mixing Substances. 
In the foregoing section 5.10 we have discussed the thermodynamic functions of mixing 

which arise in the mixing of substances. At temperature To and pressure P0 the exergy g~ due 

to the mixing of substances for one mole of the mixture is given by the free enthalpy 

gU= h M- To s ~ for the mixing of substances, where h M and s M are the enthalpy and the 

entropy for the mixing of substances for one mole of the mixture; h M is zero if the mixture is 

a perfect system defined by the symmetrical reference system shown in section 8.3, such as 

an ideal gas mixture and a perfect solution. For a perfect mixture consisting of molar fraction 

& of each of the substances present, the entropy of mixing s M for one mole of the mixture is 

given, from Eq. 5.45, by Eq. 10.21: 

s M  - -  - -  X X i ( S ~  ixture - -  sPure) - -  - -  X Xi R In  x , .  ( 1 0 . 2 1 )  
i 

mixture where sip "re and si are the partial molar entropy of each of the substances i in the pure state 

and in the mixture, respectively. The molar exergy for the mixing of substances in the ideal 

mixture at temperature To is then expressed by Eq. 10.22" 

d ~ -  h M- To s u -  h M + X x~ ToR In x~ =,~' x, ToR In&. 
i 1 

(10.22) 

As mentioned in sections 5.9 and 8.4 the enthalpy of mixing is zero h M- 0 for perfect 

mixtures, while it is not zero hM~ 0 for non-ideal mixtures. In the case of an ordinary gas 

mixture we may assume h M- 0. 

Pure substance 1 Pure substance 2 

- RTo (xl In Xl + x2 In x2) 

A binary mixture 

Fig. 10.5. Exergy of mixing for one mole of a binary ideal gas mixture at our 
environmental temperature T O and pressure pe 

The molar exergy e of an ideal gas mixture (hM= 0) at the environmental temperature 

T o and pressure Po is hence obtained from Eq. 10.22 as given by Eq. 10 23: 

- Y~ x, ~"~ + ~ -  X x, ~u~. + hM_ ~o s ~' 
l i 

= ,~' xi e p"re + ~ '  R To xi In xi, (10.23) 
! t 
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where e~ 'ure is the molar exergy of each of the pure substances i. In Eq. 10 23 the first term is 

the unitary quantities of exergy and the second term is the quantities of exergy of mixing. We 

notice that the exergy of mixing e M has always a negative sign and hence that mixing reduces 

exergy of the system. Equation 10.23 can apply not only to gaseous ideal mixtures but also to 

perfect solutions in condensed phases (liquid or solid). For dilute-ideal and non-ideal solutions 

however the enthalpy of mixing is not zero h u ~ 0,  and hence it has to be taken into account 

in evaluating the exergy of mixing. Figure 10.5 shows the molar exergy of mixing in a binary 

ideal gas mixture at the environmental temperature T o and pressure P0. 

Consider now at the environmental conditions of temperature To and pressure P0 a gas 

mixture whose compositional values x~ are different from those values &0 of the stable 

atmospheric air. For this stable atmospheric air each of the partial molar exergy values of the 

constituents are zero. From Eq. 10.23 we then obtain the exergy of the gas mixture as shown 

in Eq. 10.24: 

e = . ~  R To x, In x, . (10.24) 
z Xi,  0 

A gas of oxygen-rich air of the composition Xo2 = 0.30 and xN2 = 0.70, for example, possesses 

the exergy for one mole shown in Eq. 10.25 relative to the atmospheric air of the composition 

Xo2,0 = 0.21 and xN2,0 = 0.79" 

{ 0.30 0.70 
e - R To ~/0"30 In '~.21u + 0.70 In 0.79 !, - 0.0223 R r0. (10.25) 

Furthermore, pure oxygen gas, whose molar entropy is lower by an amount of 

Rln 0.2034 than that of gaseous oxygen molecules in the atmospheric wet air (Xo2 - 0.2034) 

0 given by at the standard temperature and pressure, possesses its standard molar exergy %2 

Eq. 10.26 relative to the atmospheric wet air: 

e g E - R T o l n ( x ~ , o ) = - 2 9 8 . 2  x R x In 0.2034 - 3.97 J'mol-1, (10.26) 

where the superscript 0 indicates a pure substance at the standard state (pressure 101.3 kPa, 

temperature 298.2 K) and subscript 0 indicates the exergy reference state. 

In the case of non-ideal mixtures (e.g. liquid and solid solutions), the activity a~ = r  ~x~ 

has to be used instead of the molar fraction x i of substance i after the logarithmic sign in Eq. 

10.23 to express the mixing term of the exergy at the exergy reference temperature T O and 

pressure P0 as shown in Eq. 10.27: 

e(a,)- ~ x i e~(a~=l)+ ~ R To x~ In a,-  ~, x~ e;(a,= 1)+ z~ R T o x, In y, xi, 
l l 

(10.27) 

where e~'(ai=l) is the unitary exergy at unit activity of i and ri is the activity coefficient of i. 

The unitary exergy e~ is equivalent to the exergy of each of the pure substances i in the 
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mixture when the reference system for the unitary quantities is symmetrical (vid. section 

8.3). 
When the mixture is at a temperature T different from the reference temperature T 0, the 

exergy e for one mole of a non-ideal mixture is given by Eq. 10.28: 

01n ai) 
4 T ' a ' ) - X x ~ e ; ( T ' a ' = l ) + ~  R T ~  ~-~ , OT e,x,' (10.28) 

where the third term is related with the temperature-dependence of the activity. 

10. 7. Chemical Exergy of Substances. 

A chemical substance has its chemical energy in terms of the chemical potential and has 

its chemical exergy as well. Let us consider a chemical substance present at unit activity in 

the normal environment at temperature T O and pressure P0 and examine its chemical exergy in 

relation with the exergy reference species in the atmospheric air, in seawater, and in lithospheric 

solids (Refs. 9 and 11). 

Typical exergy reference species in the atmospheric air are oxygen 0 2 ( Xo~ = 0.21 in air), 

nitrogen N2( xN, = 0.78 in air), carbon dioxide CO 2 , and water vapor H20 at their respective 

concentrations. The chemical exergy e~ of oxygen 0 2 at the unit activity (unit fugacity or 

unit atmospheric pressure), then, arises from its mixing exergy as shown by Eq. 10.26 in the 

preceding section: we call it the standard molar chemical exergy of pure oxygen gas: 

e~ = - R T o In Xo2,0, (10.29) 

where Xo~.o is the molar fraction of oxygen moles in the atmospheric air. 

We next consider metallic iron whose exergy reference species are oxygen molecules in 

the atmospheric air and solid iron oxide Fe 203, which is the most stable existence of iron in 

the top layer of the lithosphere. In the atmospheric air metallic iron reacts with oxygen gas to 

form iron oxide (corrosion of metallic iron). The reaction at the standard state (unit activity, 

standard pressure 101.3 kJ, and standard temperature 298 K) is expressed in Eq. 10.30: 

2 Fe(soUa) + -~- 02,(gas) ~ Fe2O3.(solid), A ~ - 742.6 kJ' mo1-1, Fe203 (10.30) 

0 where AFo2O ~ is the standard affinity of the reaction and, as described in chapter 4 and 5, it is 

expressed by the difference in the standard free enthalpy, G o , between the product and the 

0 with #~ being the reactants" A~~ - - A G  O - - (AH ~ - ToAS ~ - 2ktF ~ + (3 /2 )g~  - ktF~O 3 

standard chemical potential of species i. If advancing reversibly in the standard state, the 

reaction holds the following exergy balance: 

2e~e + -~--e~2- e0 + A ~ Fe 203 Fe 203, (10.31) 
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o is given by 0 is zero with Fe z O3 being one of the exergy reference species and eo~ where CFe203 

Eq. 10.26. We, hence, obtain the standard exergy of metallic iron as shown in Eq. 10.32: 

e~o- ~ ( 0 +  7 4 2 . 6 - ( @ ) x  3 . 9 7 } -  368.3 kJ'mol -a (10.32) 

In the same way as Eqs. 10.31 and 10.32, we also obtain the standard exergy of gaseous 
0 

hydrogen and that of solid carbon, e~ and e c, as shown in Eqs. 10.33 and 10.34, respectively: 

e~ +-~1 e g 2 z  e~ o H2 -- H20 + AH20, (10.33) 

e ~ + e~  e~ + A~ (10.34) 

where A~ is the standard affinity of the reaction, H2,(gas ) + 0 . 5 0 2 , ( g a s  ) -- I-'I20(liquid) " a~o, is the 

�9 e ~ is the standard molar exergy standard affinity of the reaction, C(soUd) + Oz,(ga~ ) = CO2.(~ ) H2O 

. 0 is the standard molar  exergy of CO 2 of liquid water H20 e ~ - - R T  0 In XH20. 0 and eco 2 ' H20 

0 =-RTolnxco~, o, with X.~o, 0 and Xco~, 0 being the molar fractions of H2OandCO2in the E(9O2 

wet atmospheric air, respectively. 

From the foregoing discussion, it follows that the standard exergy of one of the reactants 

can be estimated by use of the standard affinity of the reaction, provided that we know the 

values of the standard exergy of the other reactants and products. The numerical values of the 

molar exergy thus obtained of various chemical substances in the standard state (temperature 

T o - 298 K, pressure p0 _ 101.3 kPa, activity a ~ - 1) are tabulated as the standard chemical 
0 

exergy e~ of chemical substances in the literature on engineering thermodynamics [Ref. 9 .]. 

Furthermore, in analogy to the partial molar quantities of thermodynamic functions, the 

partial molar chemical exergy, e~h~.,, can be defined for a substance i in a gaseous mixture, 

in a liquid solution, and in a solid solution as shown in Eq. 10.35: 

O Ech~m ] ( 10.35) 
ec~,,,, i = Oni ]To, PO, n j ( j .  i)' 

where Ech~ is the total chemical exergy of the mixture or solution under consideration at the 

environmental temperature T O and pressure P0. The partial molar chemical exergy of substance 

i at temperature T O can be expressed in terms of the standard molar chemical exergy o E chem ,i 

and the activity a i of the substance i as follows: 

_ o R T  o In a i . F'chem, i Echem, i + (10.36) 

Then, the exergy Ech~m of the mixture at the standard temperature and pressure is obtained: 

_ ~ o RTo,~----~ n, ai. Eche,,,- ~ n i  I?,c~m,i . n i e chem, i q- In 
l l 

(10.37) 
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This equation 10.37 is equivalent to Eq. 10.27. 

We now consider a chemical reaction that occurs at a temperature T and pressure p other 

than the standard state (T o , p0, and unit activity): 

R ---- P, reaction affinity A (10.38) 

where R denotes the reactants, P denotes the products, and A is the affinity of the chemical 

reaction at temperature T. The reaction exergy, AEch~m,r,p, dissipated during the reaction is 

equivalent to the reaction affinity and is given by Eq. 10.39 and in Fig. 10.6: 

AEchem,r ,p  = Ereact,T,p - -  E pro~,r,p = A ,  (10.39) 

where Ereo~,,r, p and Epro~,r,p are the amounts of exergy of the reactants and products, respectively. 

The reaction affinity can be estimated thermodynamically so that by calculation we obtain 

the change in exergy associated with the chemical reaction. 

The reaction exergy is usually assumed to consist of a chemical part at the standard state 

(T 0, p0, and unit activity) and a physical part associated with the physical state of the 

reaction. The chemical part AE~ is equivalent to the standard affinity A ~ of the 

reaction, and the physical part AEphy is due to the change in temperature, pressure, and 

concentration of the reactants and products between the standard state and the state at which 

the reaction proceeds: 

0 
AE~h,~,r,p = ZlE~u~,ro po + zlEphr = A ~ + AEphy. (10.40) 

This is a general expression for the reaction exergy of a chemical reaction taking place at 

conditions other than the standard state. 

Reactants at T and p 
, , p  = E r e a c t , T ,  p - -  Eero~,r,p = A 

Products at T and p 

Fig. 10.6. Chemical exergy AEa~,.r,p associated with a chemical reaction at temperature 

T and pressure p: Ere~,,r,p and E~oa, r,p are the amounts of exergy of the reactants and 

products; A is the affinity of the reaction. 
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10. 8. Standard Chemical Exergy of Substances. 
In chemical thermodynamics the standard chemical potential /0 of a compound i is 

0 defined as the molar free enthalpy Ag/ for  the formation of the compound from its constituent 

elements j in their stable molecular form in the standard state, and their chemical potential 
0 0 

values are set zero in the standard state: /~i-Agf.  In exergy engineering the standard molar 
0 0 

exergy e i of a compound i is defined as consisting of the molar free enthalpy Ag ! for the 

formation of the compound in the standard state from its constituent elements and the 

stoichiometrical sum of the standard chemical exergy values e ~ of the constituent elements j 

in their stable state at the standard temperature T O and pressure p0. eo = Ag~ + ~ vj e~. 
0 

In calculating the numerical values of the standard molar exergy e, of chemical elements 

and compounds, we usually make clear the exergy reference species at zero level of exergy in 

our natural environment of the atmosphere, the hydrosphere and the lithosphere. 

Table 10.1. Standard molar chemical exergy of a few substances relative to the 
reference species in the atmosphere [Refs. 9 and 11.]. 

Substance 02 N 2 CO 2 H20 H 2 C 

Gas Gas Gas Gas Gas Solid 

e~ 3.97 0.72 19.89 9.5 236.09 410.26 

Reference 

substance 

in the atmosphere 

Oz N2 CO2 H20(~ ) H20(g.) CO2 

02 02 

Atmospheric H 20 is in equilibrium with the ocean. 

For gaseous substances such as oxygen 02, nitrogen N 2, carbon dioxide CO 2, and water 

vapor H 2 O , the standard chemical exergy can be calculated from their concentrations in the 

atmospheric air by use of Eq. 10.26. Furthermore, the standard affinity A ~ of the reaction, 

H 2 ~ )  +(1/2)O2/~)-  H20/g~), yields through Eq. 10.33 the standard chemical exergy of 

gaseous hydrogen H 2. Similarly, the standard affinity A ~ of the reaction, Ctsoua) + O2C~) = 

CO2tg~), yields the standard chemical exergy of solid carbon C. Table 10.1 shows the standard 

molar exergy of these substances relative to the exergy reference species in the atmospheric 

air at temperature 298 K and pressure 101.3 kPa. 

For substances which are not present in the atmosphere but in the ocean, we can take the 

reference species of zero exergy level at the most stable state of their existence in seawater. 

For example, metallic sodium takes its reference level at the state of sodium ions in seawater 
0 

and the standard chemical exergy eNa of metallic sodium is equivalent to the free enthalpy 
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requi red  to form solid sod ium from sodium ions in seawater :  N a ~  +0.5H2~g~)= 

Nas~id + H ~ .  Taking account of Eq. 9.38 for the chemical potential of a hydrated ion, we 
0 obtain the standard exergy of solid sodium eNa from the free enthalpy change for the formation 

of solid sodium from sodium ions in seawater as shown in Eq. 10.41: 

0 + 0 _ 2.303 R To (pH) .... eN,-  -- #~a* -- R To In CNa + 'YNa + d" eriE (10.41) 

where 0 0 is the standard i[~Na+ is the standard chemical potential of hydrated sodium ions, •H2 

molar exergy of gaseous hydrogen, (pH)~ is the pH of seawater, and where CNa§ and ~'Sa + 

are the concentration and the activity coefficient of sodium ions in seawater, respectively. 

Table 10.2 shows the numerical values of the standard chemical exergy of a few substances 

relative to their ionic form present in the ocean at the standard temperature and pressure. 

Table 10.2. Standard molar chemical exergy of a few substances relative to the 

ocean. (Ref. 11) 

Substance Na P CI 2 S Zn As 

Solid Solid Gas Solid Solid Solid 

e ~ / kJ- mo1-1 335.9 865.3 124.1 607.3 338.7 486.1 

866.0 476.5 

Reference 

substance Na § H2PO 4 C1- SO 2- Zn 2+ HAsO]- 

in the ocean HPO 4 HAsO 4 

Table 10.3. Standard molar chemical exergy of a few substances relative to the 
lithosphere (Ref. 11 ) 

Substance Fe Fe203 Fe304 Si SiO 2 MnO 

e~ 368.41 0 %.97 800.3 0 100.36 

Reference 

substance 

on the earth 

Fe203 Fe203 Fe203 S i O  2 S i O  2 M n O  2 
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In the case of solid substances the reference species is often set at the most stable solid 

compounds in lithospheric rocks. For example, metallic iron is most stable in the form of its 

oxides�9 The standard chemical exergy of metallic iron can then be obtained from the standard 
�9 0 0.75eo2 affinity A~ of the formation of iron oxide, Fe +0.750 2 -0.5FeEO 3 A~-  eFe + 

0 0 - 0" hence 0 0 0 -0.5eFe2O 3 and eF~2o 3 eF~ = A~ -0.75eo . Table 10.3 shows the standard molar 

chemical exergy of a few substances relative to the solid reference species in the lithosphere 

at the standard temperature and pressure. 

10. 9. Total Exergy of Substances. 
The exergy of substances is arranged as consisting of a physical part and a chemical part. 

The chemical part of exergy is conventionally attributed to the chemical formation of the 

substances in the standard state from the exergy reference level substances in our environment, 

while the physical part of exergy is attributed to the changes in temperature, pressure and 

concentration (mixing) of the substances. The overall exergy E of a gaseous mixture of 

substances is thus expressed as shown in Eq. 10.42: 

Pi 
E -  Xi nie~ + RT~ ni In if00 

( ( ( n ) )  ,1 +Zn~cp~,~ T-ro-roln-~o +RTog n,ln Z.n, 

In this equation the first term on the fight hand side is the chemical exergy (vid. Eqs. 10.29 

and 10.32), the second term is the pressure exergy for gaseous substances (vid. Eq. 10.7), the 

third term is the thermal exergy due to the change in temperature (vid. Eqs. 10.11 and 10.15), 

the forth term is the mixing exergy due to the change in concentration of the substances (vid. 

Eq. 10.21). For mixtures in condensed phases (liquid or solid), the pressure exergy may be 

approximated by V m ( p -  P0), where V m is the volume of the condensed phase at temperature 

T. 

From the foregoing discussion in this chapter we realize that all the terms in Eq. 10.42 

can be expressed in the form ( H -  H0) -  T0(S- S 0). We can therefore express the total exergy 

in a simple form as follows: 

E = ( H - H 0 ) -  T O (S-So) (10.43) 

This is a general expression for the total exergy of substances. 

10. 10. Exergy and Affinity 
Exergy of a substance represents the level of available energy of the substance relative to 

the exergy reference zero level of the substance in our normal environment: the substance 
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undergoes a spontaneous change in the direction in which its exergy decreases as the change 

proceeds. On the other hand, the affinity of a process, as mentioned in chapters 3 and 4, 

represents the difference in the available energy level (free enthalpy, Gibbs energy) between 
the initial state of the substance (reactant) and the final state of the substance (product); the 

process spontaneously proceeds in the direction in which its affinity decreases. This situation 

is illustrated in Fig. 10.7. We then realize that exergy and affinity resemble each other in that 

the two quantities represent available energy and determine the possibility and capacity of 

irreversible processes. 

If we consider a physicochemical process in which reactant substances change from their 
initial state to their final state of product substances which is in equilibrium with the exergy- 

reference substances in the normal environment, the affinity of the process is represented in 

general by Eq. 10.43 in terms of enthalpy and entropy: 

H x p -  H F S I p - S F A - (  r, ro, po) -To(  r, ro, po), (10.43) 

where H z and S I r,p r,p are the enthalpy and the entropy of the initial state of the substances 
under consideration at temperature T and pressure p" H F and S F r0, p0 to, p0 are the enthalpy and the 
entropy of the final state of the substances in equilibrium with the exergy-reference substances 

in the normal environment at temperature To and pressure P0, respectively. This equation 
10.43 is, in fact, equivalent to the general equation of exergy of the initial state of the 

substances under consideration as shown in Fig. 10.8: 

H I p -  H F S I p - S F _ E - (  r, ro, po)- To( r, ro, po) A. (10.44) 

We then realize that exergy is in principle the same energy function as affinity. 

Initial state 

~ ~ ? f f i n i t y  A 
Exergy E ~ . . . . . ~ ~  

~.~-.. Final state 

Reference state in natural environment 

Fig. 10.7. Exergy and affinity 



114 EXERGY 

Initial state 

Affinity A -  Exergy E 

Final state - Reference state in natural environment 

Fig. 10.8. Exergy equivalent to affinity when the final state of reaction is in equilibrium 

with the exergy-reference state. 
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EXERGY DIAGRAM 

The effective use of energy in a chemical plant results from employing the 

combination of processes that consumes the least amount of exergy as a whole 

in manufacturing the products. To examine the flow of exergy the diagram 

that visualizes the exergy balance in manufacturing processes has practically 

been used for the purpose of improving the exergy efficiency in the plants. 

Furthermore, a novel concept of exergy vectors has recently been brought 

forth to evaluate the exergy efficiency of various processes on an enthalpy-exergy 

diagram. By means of exergy vectors the minimum exergy thermodynamically 

required for a manufacturing process may be estimated in the diagram. This 

chapter describes the principle of exergy vector diagrams and their application 

to basic processes such as heating-cooling, compression-expansion, separation- 

mixing, and chemical reactions. 

11.1. Efficiency in the Use of Energy. 

In chemical manufacturing processes there are a flow of substances (materials) Z n i , a 

flow of work W, and a flow of heat Q, which are all accompanied by a flow of exergy E .  

The inlet flow of exergy dE+/dt (positive sign) into and the outlet flow of exergy dE/dt 
(negative sign) out of an open system of chemical processes at a temperature T are given by 

Eqs. 11.1 and 11.2, respectively: 

dE+ dn~+ dW§ ( T To) dQ+ 
dt = ~'+ -dT  e'+ + --d~ + T dr' (11.1) 

dE_ dn, dW (T dQ_ (11.2) 
a , '  

where n i is the number of moles, ei is the molar exergy of substance i, and T O is the exergy 

reference temperature. On the right hand side in Eqs. 11.1 and 11.2 the first term is the 
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exergy flow of substances, the second term is the exergy flow of work, and the third term is 

the exergy flow of heat. Figure 11.1 shows the flow of exergy through an open system at a 

temperature T in which physical and chemical processes are taking place in irreversible 

modes. Since exergy decreases with the advancement of irreversible processes in the system, 

the outlet flow d E / d t  is less than the inlet flow dE+/dt of exergy: 

dE+ dE_ dE+ dE_ dSi~r dE_ dE, o,, 
dt > d---T" d-----i- = d-----~ + T~ ----d-t-- = ~ + d-----i--' (11.3) 

where T O is the exergy reference temperature of 298 K, d S J d t  is the creation of entropy, and 

To (dSirr/dt)= dElosJdt is the loss of exergy due to the irreversible processes occurring in the 

system. 
Equation 11.3 is occasionally called the law of  exergy loss or the Gouy-Stodola's relation 

(G. Gouy and A. Stodola) who first discovered independently of each other in the late 

nineteenth century the loss of maximum work due to the irreversibility of thermal processes 

[Ref. 9.]. 

dE+ dn,+ 
dt = ~ - d - i -  ~* 

dW. . . ] - ~  
(It 

Open system 

(Chemical plant) 

~.- [Exergy consumption] - -  

Chemical reaction 

Pressure change 

Heat transfer 

Mixing 

dE_ = ~ dn,_ 
dt i- ~ ~'i- 

dW_ 
dt 

+ T dt 

Fig. 11.1. Flow of exergy through an open system at temperature T. 

The efficiency of exergy utilization in an open system (chemical reactor) is then defined 

by Eq. 11.4: 

dE_ dElos, 
dt = 1 -  dt 

O -  dE+ dE+ ' (11.4) 

dt dt 

where dEloss/dl is the rate of the loss of exergy (consumption of exergy) due to the irreversible 

processes occurring in the open system: this is also called the rate of internal exergy loss in 

the system. Reducing the loss of exergy obviously leads to improving the exergy utilization 

in chemical plants. 
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11.2. Exergy Balance Diagram. 
Let us consider a physicochemical process occurring in an irreversible way in a chemical 

reactor, which receives raw materials with enthalpy H 1 and entropy S 1 together with an 

amount of heat Q1 at temperature T~ ; and generates a useful product expressed by enthalpy 

Hproa and entropy Sp~oa giving off enthalpy /-/2 and entropy S 2 as effluent materials, and 

discharging an amount of waste heat Q0 at the environmental temperature T o as shown in 

Fig. 11.2. The product may be useful work or useful substances, both being represented in 

terms of Hp~o~ and Sp~o~. The effluent materials may be waste or reusable. For the energy 

balance (the enthalpy balance) of the process we have Eq. 11.5: 

/41 +Q,  +Oo + �9 (11.5) 

If the process occurs in a reversible way instead of an irreversible way, a greater amount 

of products, expressed by Hpro~,re~ and S proa,, ~ , and a smaller amount of waste heat, Qo . . . .  

will be yielded than those in the irreversible process; the energy balance is then given by Eq. 

11.6: 

Hi  + Q1 = n 2  -]- Qo,rev + nprod,rev . 

From Eqs. 11.5 and 11.6 we obtain Eq. 11.7: 

(11.6) 

nprod,rev - nprod = Qo - Qo,rev, (11.7) 

which indicates that the decreased amount of products in the irreversible process compared 

to the reversible process is accompanied with an increased amount of waste heat. 

Raw mterials 
H1, $1 

Temperature T1 

Product Hprod , Sprod 

Process 

~Qo,,,,,~ Effluent /-/2, $2 

Environmental temperature To 

Fig. 11.2. Physicochemical irreversible flow process. 
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In the reversible process no entropy creation occurs: 

QI + 81 --- Qo,__==~ + $2 + Sp,o a . . . .  (11.8) 

whereas, in the irreversible process an amount of entropy creation AS~r r occurs as shown in 

Eq. 11.9: 

Q~ as,~- T0 +s~ + (11.9) 

We then obtain Eqs. 11.10and 11.11 from Eqs. 11.7, 11.8and 11.9: 

Qo - Qo,~o = To ( ~ + S~,o~,~ - S~o~ ) , (11.10) 

ro S,. = - - ro(Sp o ,o - (11.11) 

Equation 11.11 gives the difference in exergy between the reversible and the irreversible 

process and hence the loss of exergy, AE~s, due to the irreversibility of the process: 

AE~o,, = T o AS~ r . (11.12) 

This equation is equivalent to Eq. 11.3 representing the law of exergy loss. 

The exergy balance is then given as follows:: 

E§ = E_ + AE~,, (11.13) 

where the inlet exergy E+ is 

(11.14) 

and the outlet exergy is 

(111 > 

In Eqs. 11.4 and 11.5 the subscript zero indicates the exergy reference state; i.e. the state at 

the atmospheric temperature and pressure. On the right hand side of Eq. 11.15 the first term 

is the useful exergy, Epro~, obtainable from the product, the second term is the rejected 

exergy, Ereject, which may be waste or reusable, and the third term is the zero exergy for the 
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discharged heat at the atmospheric temperature: Ep~oa = Hproa- Hproa.o- To(Sprod- S prod, O ) " 

Ereject = n 2 - n2,  0 - To(S 2 - $2, 0 ). W e  may call Ereject the external exergy loss in contrast to  

AE~, which is called the internal exergy loss. 
We further define the exergy efficiency, tie, as Eq. 11.16: 

E prod A E toss E reject 
t i e -  - 1 , (11.16) 

E§ E§ E+ 

where kE~osJE+ is the relative internal exergy loss and kE~ejeJE+ is the relative external 

exergy loss. Another exergy efficiency called the intrinsic exergy efficiency has recently been 

defined by Eq. 11.17 [Ref. 13.], which takes into account the transiting exergy E , ~  (the 

rejected exergy E~eje a ): 

E prod E prod 
r/in,,~,~ic = -- (11.17), 

E+-E,  .... E , ~ '  

where Eproa is the exergy for the product and Ec~ is the exergy actually used for the process 

itself. The transiting exergy E,r~ is the part of exergy that enters and traverses the manufacturing 

process without undergoing any transformation and thereby is not consumed by the process. 

The intrinsic exergy efficiency usually increases with increasing conversion ratio of the raw 

material to the product in the process [Ref. 13.]. 

System boundary 

QlI1-T11) I AEb~ ToAS~ 
1 

I = I E ~,c, 

I I 
.~Iij~ijH!iiii!~iH~IDE~1II~jiijijji~!iii~i~i~!i~ii~i~~iiHi~Hi~iiii! 

i-i, -14,o -To(S1- ~iiii~i~i~i~!ii~ii~i!iii!iii!ii!!iiii!i~iiiiiii~iii~ii~iiii~iiiiiiii!ii[~iiiiiiiiiii~i ................ 
' ~ ' ~i~ii~ii~i~iiiiii~iiiii~uiii!i~i!~!~!!~iiiiiiiiiiiiii~iiiiiiiiii~i~ii~E'-~ 

Fig. 11.3. Schematic band diagram of exergy balance for a simple process from a 
raw material and heat to a product and waste. 

Figure 11.3 shows in a schematic way the exergy balance in an irreversible process in the 

form of a band diagram, where the bandwidth is proportional to the exergy value. For 

complex physicochemical processes operating in industrial manufacturing plants, the exergy 
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balance diagram is much more complicated than the simple diagram shown in Fig. 11.3, but 

the exergy analyses in the form of the band diagram is essentially the same no matter how 

intricate the processes may be. The band diagram of the exergy balance, which is called the 

Grassmann diagram [Ref. 14.], has widely been used in the exergy analyses of various 

thermal, mechanical, and physicochemical processes [Refs. 9 and 12.]. 

11.3. Exergy Vector Diagram. 
In order to illustrate the exergy loss in a combination of irreversible physicochemical 

processes in an open system, Ishida [Ref. 15.] has brought forth the concept of exergy vectors 

for physical and chemical processes in the form of an enthalpy-exergy diagram. The diagram 

consists of the ordinate (y-axis) indicating the amount of exergy and the abscissa (x-axis) 

indicating the amount of enthalpy of the processes in the system, which we shall call in this 

book the exergy vector diagram. In the following we shall discuss the principle of the exergy 

vector diagram and its application. 

dH~n ~, 
dt 

dEi, 
tb, 

dt 

dAHI 
dt 

~ ~ . . . _  ~ ~ 

dAEl 
dt 

dAH2 
dt 

, . _ _ ~  ~ ~ . .  ~ 

dAE2 
dt 

dH o., 
dt 

dE o., 
- -~"  dt 

J 

Fig. 11.4. Flows of enthalpy and exergy through an open system in which two 
processes 1 and 2 are advancing at constant temperature: H = enthalpy flow, E = 
exergy flow, zlH = enthalpy change, AE = exergy change in the system. 

Let us consider a simple open system in which two irreversible processes 1 and 2 are 

occurring in a stationary state as shown in Fig. 11.4. The rates of the enthalpy flow and of the 

exergy flow between the system and the surroundings are expressed by dH/dt and dE/dt, 

respectively. Further, the rates of the enthalpy change and of the exergy change within the 

system are expressed by dM-I/dt and dAE/dt, respectively. The enthalpy and exergy include 

not only those of substances but also those of work W and heat Q. For the transfer of 

enthalpy Eq. 11.18 holds: 

H w - W ,  H Q - Q ,  (11.18) 
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where H w and H e are the amounts of enthalpy due to work W and heat Q, respectively. For 

the transfer of exergy, in contrast, Eq. 11.19 holds: 

E w =  W, EQ = (1- - -~)Q,  (11.19) 

where E W and EQ are the amounts of exergy due to work W and heat Q, respectively. 

In accordance with the law of energy conservation (the first law of thermodynamics) Eq. 

11.20 is valid for the enthalpy flow and the enthalpy change in the stationary state: 

dHin dHout _ 0,  dAH1 dAH2 
- 4 = O. ( 1 1 . 2 0 )  

dt dt dt dt 

For the exergy flow and the exergy consumption, however, the law of exergy consumption or 

entropy creation (the second law of thermodynamics) yields Eq. 11.21: 

dEin dEou, dAE1 dAE2 
>0,  ~ +  <0,  (11.21) 

dt dt - dt dt - 

indicating that any irreversible processes consume some amounts of exergy in the system 

Figure 11.5 shows a framework of the exergy-enthalpy diagram. The regime of vectors 

on the left side of the ordinate is for exothermic processes where AH < 0, while the regime 

on the right side of it is for endothermic processes where AH > 0. Furthermore, the regime of 

vectors on the upper side of the abscissa is for non-spontaneous processes where AE > 0, 

while the regime on the lower side of it is for spontaneous processes where AE < 0. 

+ 
AE ::::::::::::::: . . . . . . .  

. , . . . . - , , . , , - . -  
�9 . . . . . . . . , , . .  �9 

.~ :::::::: 

o 

�9 . . - . , . . . . .  �9 

. . . . . . , . . . . . . ~ 1 7 6  

�9 . . ~ 1 7 6  

+ 

!i!ii!:i:i!2~.':i!i!!!!!i:ii!: 

i', i i', i!i',', !j !', i :!:?:i~w p an :i:?: :::::::::::::::::::::::::::::::::::::::::::::::::::::::: 

Spontaneous 

Fig. 11.5. Regimes for exothermic, endothermic, spontaneous, and non-spontaneous 

processes in exergy-enthalpy diagrams. 

Any process that occurs in an open system can be represented on an exergy-enthalpy 

diagram by a vector starting from the origin of the coordinate axes. A non-spontaneous and 
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endothermic reaction (AH > 0, zlE > 0) such as Fe 203 (,oua) ---" 2Fe(tiquid) + 1.502(g~), for 
example, makes its exergy vector appearing in the regime on the upper and right side of the 

diagram as shown in Fig. 11.6(a). In this regime, obviously, the enthalpy AH of the vector is 

the thermal energy that has to be received, and the exergy AE is the exergy that has to be 

supplied into the system for the reaction to occur. 

The reaction, Fe 203 (~o~a) -~ 2Fe(~q~d) + 1.502(~), whose exergy change AE has a positive 

sign, can not spontaneously proceed. But this reaction may be made to proceed, if coupled 

with an exergy-releasing spontaneous chemical reaction such as H2(~) +0.502(~) --, 

H20(g~) or C(~) + O2(~) --, CO2(g~) in the reaction system. This is due to the transfer of 

exergy from a spontaneous reaction to a non-spontaneous reaction, in which an amount of 
exergy is released from the spontaneous reaction (an exergy donor) and it is then absorbed by 

the non-spontaneous reaction (an exergy acceptor). The transferred exergy makes the non- 

spontaneous reaction proceed. Figure 11.6(b) shows the exergy vectors for a pair of coupling 
and coupled reactions consisting of a vector for an exergy-releasing process 2 (coupling 

process) on the lower-left side, a vector for an exergy-absorbing process 1 (coupled process) 

on the upper-fight side, and a composite vector for the combined process of 1 and 2 on the 

y-axis. 

AE AE + + 
I / 

Process 1 I / . ~ , ,  Process 1 
I / . ~ 7 "  

_ 0 + z l / 4  _ ~ , / l  . . . .  + z l / - /  

Process2//~ ~ "~''- Exergy lOss 

u 

(~) (b) 

Fig. 11.6. Reaction vectors in exergy-enthalpy diagrams: (a) a non-spontaneous 
process giving a single reaction vector, (b) coupling and coupled processes leading to 
a composite reaction vector. 

The law of energy conservation makes the composite vector lie on the y-axis where 

AH = 0. Furthermore, the law of exergy consumption (entropy creation) for irreversible 

processes makes the composite vector of the two reactions emerge on the lower side of the y 

axis where AE < 0. The composite vector therefore indicates the amount of exergy consumed 

(exergy loss) AE~s during the combined process of the coupling and coupled reactions. 
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If all the processes were occurring reversibly, there would be no consumption of exergy 

in the system and, hence, the composite vector would vanish at the origin of the coordinates. 

In order to reduce the exergy consumption, we should therefore make use of such an exergy- 

releasing reaction so as to reduce the composite vector of the coupling and coupled reactions 

as close as possible to the origin on the y axis. 

In general, a chemical plant manufactures product materials of high exergy levels form 

raw materials of low exergy levels through exergy-absorbing reactions by using suitable 

exergy-donating processes. To meet this purpose, we need to use high exergy materials for 

the coupling reactions and design the manufacturing processes so as to consume the least 

amount of exergy. The exergy vector diagram shows the losses in exergy and hence serves 

the purpose of minimizing the consumption of exergy by using the most suitable physical and 

chemical coupling processes that thermodynamically consume the least amount of exergy in 

manufacturing the target products. 

11.4. Principles in Exergy Vector Diagrams. 
The exergy vector of a process in an exergy-enthalpy diagram has a slope & indicating 

the ratio of the exergy change AE to the enthalpy change A H  during the process: 

~ _ AE = 1 T~ AS (11.22) 
AH AH ' 

where AS is the entropy change in the process: A E  -- z t H -  T O AS.  

AE  
+ 

~ > 1 / / /  

< 0 ~3 Cold- absorbing 
~ / /  0 < X <  1 

+ A H  - / 
0 < Heat- releasing ~3 

~ < 0  ~ / /  

Mixing 

m 

AE 
+ 

S e p a r a t i n g  . 

~ H e a t  - absorb in g 

Cold- releasing 

Fig. 11.7. Processes in various regimes in an exergy-enthalpy diagram: ~, = the 
energy-availability, line AS -- 0 corresponds to A H -  Ad~. 
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This ratio 3. represents the availability of energy in the process. The exergy vector with 

the energy-availability at 3. = 1 is on the straight line going through the coordinate origin at 

an angle of 45 ~ as shown in Fig. 11.7. On this line the change AH in enthalpy is equal to the 

change BE in exergy and hence no entropy change (AS= 0) results during the process, 

indicating that all the energy change is utilized at 100 % efficiency in the form of exergy. 

The reversible exchange of work (mechanical, electrical, and other forms of work), in 

which BE W = AH w, gives an energy-availability 3.w equal to one: 

3.w = 1, (11.23) 

which corresponds to a straight line going through the coordinate origin at an angle of 45 ~ . 

On the other hand, the exchange of heat (thermal energy), in which AEQ ~ AHQ even in 

reversible heat exchange, gives an energy-availability 3.Q less than one as follows from Eq. 

11.24: 

,11 4, 

indicating that the slope of the exergy vector of thermal processes depends on the temperature 

Tat which heat transfer occurs. 

There are three vector regimes in the exergy-enthalpy diagram as described in the following: 

(1) The regime in which the energy-availability is in the range of 0 < 3. < 1 and in which 

the changes in entropy AS and in enthalpy AH have the same sign (positive or negative), 

1 > ToAS/AH > 0: Since an increase or a decrease in both enthalpy and entropy means heat 
absorption into or heat release from the system, respectively, a non-spontaneous process 

(AE > 0) with positive ToAS and AH is in the regime of heat-absorbing processes, while a 

spontaneous process (AE < 0) with negative ToAS and AH is in the regime of heat-releasing 
processes. 

(2) The regime in which the energy-availability is greater than one 3. > 1 and in which the 

changes in entropy AS and in enthalpy AH have always the opposite sign (one positive and 

the other negative), ToAS/AH < 0: The process, in which the enthalpy change is positive 

AH > 0 and the entropy change is negative AS < 0, is heat-absorbing, but yet entropy is 

decreasing despite heat absorption into the system. The decrease in entropy can not result 

from heat absorption but from separation of the constituent substances in the system; i.e. a 

decrease in the entropy of mixing. The regime in which AH > 0 and AS < 0, hence, is for 

separating processes, which absorb heat and decrease entropy of the system. On the other 

hand, the regime in which AH < 0 and AS > 0 is for mixing processes, which release heat 

and increase the entropy of the system. 

(3) The regime in which the energy-availability is less than zero 3. < 0 and in which the 

changes in entropy AS and in enthalpy AH have always the same sign (positive sign or 

negative sign) and ToAS is larger than AH; ToAS/AH > 1: The process, in which the changes 
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in enthalpy and in entropy are both positive (AH > 0 and AS > 0 ) and in which the change in 

exergy is negative (AE < 0), is a spontaneous process releasing negative heat (cold); i.e. a 

cold-releasing process. On the other hand, the process, in which the changes in enthalpy and 

in entropy are both negative (AH < 0 and AS < 0 )  while the change in exergy is positive 

(AE > 0), is a non-spontaneous process absorbing negative heat; i.e. a cold-absorbing process. 
The term "process" we have used in the foregoing includes physical and chemical changes 

in general. For example, increasing the temperature of a system from the atmospheric 

temperature to a high temperature is a heat-absorbing process; decreasing the temperature of 

a system from a high temperature to the atmospheric temperature is a heat-releasing process; 

extracting pure oxygen and pure nitrogen from the atmospheric air is a separating process; 

mixing gaseous oxygen with gaseous nitrogen to produce atmospheric air is a mixing process; 

cooling a system from the atmospheric temperature down to a low temperature is a cold- 

absorbing process; and increasing the temperature of a system from a low temperature to the 

atmospheric temperature is a cold-releasing process. 

7 
f 

+ + 

2,4""~-/ I v 

(a) (b) 

AH 

Fig. 11.8. Schematic exergy vector diagrams for exergy transfer between an exergy- 
absorbing process and an exergy-releasing process: (a) the combined process is not 
feasible, (b) the combined process is feasible. 

11.5. Exergy Transfer between Two Processes. 

Manufacturing processes in chemical plants involve the exchange of exergy among various 

physical and chemical processes. Let us now consider a simple case in which an exergy- 

absorbing process 1 is coupled with an exergy-releasing process 2. 

In the case shown in Fig. 11.8(a) where the composite vector, that is the vector sum of the 

two component vectors of the exergy-absorbing and exergy-releasing processes 1 and 2, 

points in the direction of exergy increase (AE > 0), the resultant process of the coupled and 

coupling processes is thermodynamically impossible to occur in the system under consideration. 

On the other hand, in the case shown in Fig. 11.8(b) where the composite vector points in the 
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direction of exergy decrease (AE < 0), the resultant process is allowed to proceed consuming 

part of the exergy in the system. 

The feasibility of the resultant process depends on the slopes ;q and ~-2 of the two 

vectors of processes 1 and 2; ~, is the energy-availability discussed in section 11.4. In the 

case where the slope ~a of the vector of exergy-absorbing process 1 is greater than the slope 

~,z of the vector of exergy-releasing process 2, no transfer of exergy can occur between the 

two processes and hence the resultant process is not feasible; whereas, in the reverse case 

where ~ is smaller than ~,2 the transfer of exergy is allowed to occur from process 2 to 

process 1 and then the resultant process may occur spontaneously. The exergy transfer 

therefore requires that the energy-availability )~do~ of the exergy-releasing process should be 

greater than the energy-availability ~'o~cep, or of the exergy-absorbing process: 

~donor > ~'acceptor" (11.25) 

This is the criterion for the transfer of exergy between the donor and the acceptor process. 

11.6. Exergy Vectors of Heating-cooling Processes. 
Heating and cooling are commonly occurring processes in chemical plants. Let us consider 

a thermal process in which an amount of heat, Q, is transferred into or out of a system at a 

constant temperature T. Equation 10.24 gives us the energy-availability ~ in heating and 

cooling processes as shown in Eq. 11.26: 

~,Q - 1 To (11.26) 
T ' 

where T > T O for heat-absorbing processes, while T < T O for cold-absorbing (heat-releasing) 

processes. The energy-availability ,~Q equals the slope of the exergy vector of the process. 

The exergy vectors of heating-cooling processes, as shown in Fig. 11.9, are exemplified 

by a vector with the energy-availability of ~,~ = 1 (vector slope 45 ~ AS = 0, A H -  AE) for 

heat transfer at apparently unlimited high temperature T = ~ K (e.g. electrical heating); by a 

vector with the slope of ~ -- 0.5 for heat transfer at T = 596 K in the heat-absorbing regime 

on the upper fight hand side and in the heat-releasing regime on the lower left hand side of 

the diagram; by a vector on the abscissa (enthalpy axis) with the slope of ~,Q --- 0 for heat 

transfer at the atmospheric temperature T = T O where heat possesses no exergy; by a vector 

with the slope of ~,~ = -  0.5 for cold transfer (inverse heat transfer) at T = 199 K in the 

cold-absorbing regime on the upper left side and in the cold-releasing regime on the lower 

fight hand side of the diagram; by a vector with the slope of ~,~ = - 1.5 for cold transfer at 

T = 119 K in the cold-absorbing and -releasing regimes; and by a vector on the ordinate 

(exergy axis) with the slope of ~,Q = - ~ for cold transfer at the temperature T = 0 K. In the 

heating and cooling processes the energy-availability &e, thus, increases with increasing 

temperature from 3,Q -- - ~ at the temperature zero T - 0 K through Z~ = 0 at the atmospheric 
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temperature T = T O up to ~'o = 1 at apparently unlimited high temperature T ---- m. 

We notice in Fig. 11.9 that no vector of thermal processes can occupy the separating and 

mixing regimes in the exergy vector diagram. 

T - 0 K Separating 

T = 1 1 9  ,a,-1 

Cold- adsorbin Heat- adsorbing 

T =  199 =0.5 

T - 298 = 0 z l H - -  + 

T -  596 = - 0 . 5  

Heat- releasin~ Cold - releasing 

T = ~ K  = -  1.5 
Mixing za~z 

I 

Fig. 11.9. Exergy vectors for heating and cooling processes at constant temperature. 

Table 11.1. Energy availability of heating-cooling processes at constant temperature. 

Temperature K Energy Availability ~,a 

oo +1.0 

2980 + 0.9 

1490 0.8 
596 + 0.5 

298 0.0 
199 -0 .5  

149 - 1.0 

1 1 9  - 1.5 
0 - o o  

Table 11.1 shows the energy availability ~,Q of heating and cooling processes as a 

function of the temperature at which the heat transfer occurs. The positive sign of &Q denotes 

the transfer of heat and the negative sign of ~'a denotes the transfer of cold. It is a matter of 

course that the enthalpy component AH of the vector for heating and cooling processes is the 
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amount of heat Q received by or released from the system. The exergy component of the 

vector represents the absorption or release of available energy during the heat or cold transfer 

at constant temperature. 

I I. 7. Exergy Vectors of Compression-expansion Processes. 
We have examined in section 10.3 the exergy associated with a mechanical work of 

compression and expansion of gases. The process of isentropic compression-expansion 
(adiabatic compression-expansion) is represented by an exergy vector lying on the line of 

~,vr --1 that passes through the origin of the coordinates with the slope of 45 ~ (AS=0) as 

shown in Fig. 11.10(a); the vector points in the positive direction for compression and in the 

negative direction for expansion. The enthalpy component AH w of the exergy vector of 

isentropic compression-expansion represents the amount of work received (AH w > 0) by or 

released (AH w < 0 ) from the system. 

In contrast to isentropy, the process of isothermal compression-expansion, which is 

accompanied by heat release or heat absorption, is represented by an exergy vector with the 

slope of 3, W < 1 in the regimes of heat absorption and heat release as shown in Fig. 11.10(a). 

(3 AE /,, AE 

Isentropic compression 
L ~  Isothermal compression ~/" 

Isothermal expansion 0 AH- -  
- 0 + A l l  - + 

tropic expansion 
ansion 

(a) (b) 

Fig. 11.10. Exergy vectors for gaseous compression and expansion processes. 

There is another mode of gaseous expansion called the Joule-Thomson expansion, in 

which the change in gas volume occurs at constant enthalpy AH W - 0 without any change in 

energy. The vector of the isenthalpic expansion then stands perpendicular to the abscissa on 

the ordinate and points in the negative direction (exergy consumption) as is shown in Fig. 

11.10(b). 
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11.8 .  Exergy Vectors of Separating-mixing Processes. 

We have discussed in section 10.6 exergy changes associated with the processes of 

separating and mixing the constituent substances in a mixture. Separating and mixing of 
substances in a perfect mixture, such as an ideal gas mixture and a perfect solution, are 

accompanied by no change in enthalpy ( A H - 0 )  so that their exergy vectors lie on the 

ordinate (y-axis) pointing in the positive direction (AE > 0) for the separating process and in 

the negative direction (AE < 0) for the mixing process as shown in Fig. 11.1 l(a). 

In a non-ideal solution, however, the separating process absorbs an amount of heat into 

the solution and the mixing process releases an amount of heat out of the solution. Their 

exergy vectors consequently emerge in the separating regime (AH > 0) and in the mixing 

regime (AH < 0), respectively, as shown in Fig. 11.1 l(b). 

AE 
4- 

Separating / 
regime~ 

Ideal s e p a r ~  

- + d / ~  

mixing 

AE 
4- Separating 

Nonideal s e p a r a ~  

- -  Z ~ / m  -4- 

deal �9 mixing 

(a) (b) 

Fig. I 1.11. Exergy vectors for separating and mixing processes. 

11.9 .  Exergy Vectors of Chemical  Reactions.  

We have discussed the exergy of chemical substances in chapter 10. The exergy associated 
with a chemical reaction is given by the difference in exergy between the reactants and the 

products and hence by the difference in free enthalpy between the reactants and the products, 

while the enthalpy of the chemical reaction is given by the heat of the reaction. 

In general, the exergy vector of an exergy-absorbing reaction (AE > 0) stands in the 

heat-absorbing regime or in the separating regime where the enthalpy of the reaction is 

positive (AH > 0, endothemic reaction). Figure 11.12 shows, as examples, the exergy vectors 

for the following exergy-absorbing reactions at the standard temperature (298 K) and pressure 

(101.3 kPa): 
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H20(gas  ) ---> H2(gas ) + 0 . 5  O2(gas) , 

FeO(solid ) ~ Fe(~oUd) + 0 . 5  02(gas) , 

C(solid ) "~- H20(gas ) ~ CO(gas ) + H2(gas) �9 

AE kJ 

200 

100 

H20 -~ H z + 

�9 �89 
F e O - - ) F e +  O z 

/ 
"C + HzO--o CO + H 2 

I I | AH kJ 
100 200 300 

Fig. 11.12. Exergy vectors for exergy-absorbing reactions [Ref. 15.]. 

On the other hand, the exergy vector of an exergy-releasing reaction (AE < 0) stands in 

the heat-releasing regime or in the mixing regime where the enthalpy of the reaction is 

negative (AH < 0, exothemic reaction). Figure 11.13 shows, for examples, the exergy vectors 

of the following exergy-releasing reactions at the standard temperature (298 K) and pressure 

(101.3 kPa)" 

H2(gas ) + 0 . 5  O2(gas ) --> H20(gas ) , 

C(~oua) + 0.5 O2(g. ) --~CO(g.), 

C(solid ) "}" O2(gas ) ~ CO2(gas) , 

CO(g.) + 0.5 O2(g.) --~ CO2(g. ) , 

CO(g.) + 2 H2(g.) -~ CH3OH(g~) �9 
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- 40O 
I 

- 300 - 200 - 100 
I '  " I I' ' 

,,a 

CO + 2 H z ---> CH3OH 

A H k J  

CO + � 8 9  z ---> CO s 
C +  

- 100  

02 -->CO 

- 200 

C + 0 z ----> C02 

Oz ~ H z O - J -  300 

_ 400 

Fig. 11.13. Exergy vector for exergy-releasing reactions [Ref. 15.]. 

+ 

242.45  kJ 

AE 

_ - 2 7 2 . 1 4 k J  . O �9 AH ___ + 
272.14  h l  

- 242.45 kJ 
/ - 

Fig. 11.14. Exergy vector diagram for an iron oxide reduction, FeO ---, Fe + 0.50 2 , 

coupled with a heating process at 2800 K [Ref. 15.]. 

1 1 . 1 0 .  E x e r g y  T r a n s f e r  in C h e m i c a l  R e a c t i o n s .  

W e  now consider ,  as an example ,  the non-spon taneous  react ion of  iron oxide  reduct ion,  

FeO(solid ) ----> Fe(soUd)+0.5 O2(gas), in which  the heat  of  react ion is AH---272.14 kJ (endothermic)  
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and the exergy of reaction is AE = 242.45 kJ (exergy-absorbing) at the standard temperature 

(298 K) and pressure (101.3 kPa). In Fig. 11.14 the exergy vector of this reaction is shown 

whose energy-availability (the slope of the vector ) is 3. = 0.895. As mentioned in the foregoing 

(section 11.5), in order to make iron oxide reduced, we need to couple this reduction reaction 

with an exergy-releasing process whose energy-availability is greater than 0.895. 

To a first approximation, recalling the heat of chemical reactions almost independent of 

temperature, we assume that AH and BE of the iron oxide reduction do not change much 

with temperature in the temperature range considered. If we make use of a thermal process to 

supply an adequate amount of exergy toward the reduction of FeO, a heating process is 

needed whose energy-availability is greater than 3. = 0.895, namely heating at a temperature 

higher than 2800 K, with a supply of thermal energy more than A ~ r , , ,  + = 272.14 kJ for one 

mole of the iron oxide as shown in Fig. 11.14: (T - To)/T - & = 0.895 gives us T -- 2800 K .  

+ 

242.45 kJ / r  

AE 

- 272.14 kJ 584~. ~ 1 F e  + 1  ~ 
zlH + 

14 

I ~ ~l , , ,r162 , ~ ~  " ~  H z + -- O z - HzO 

l , d i r  I - 
~ 7  "l - 242"45 kJ 

Fig. 11.15. Exergy vector diagram for an iron oxide reduction, FeO ---, Fe + 0.502 , 

coupled with a hydrogen oxidation, H 2 + 0.502 --- H 20, and a thermal heating process 
at 584 K [Ref. 15.]. 

As an alternative to the thermal exergy for reducing FeO at 2800 K ,  we may use as an 

exergy donor the oxidation of hydrogen gas, H2(g~)+ 0.5 O2(g~) ~ H20(g~). This reaction of 

hydrogen oxidation provides us with an amount of enthalpy AH = -241.83 kJ and an amount 

of exergy AE = A E - - 2 2 8 . 5 9  kJ giving the energy availability (the slope of the exergy 

vector) at 3. -0 .945 .  This slope 2, -0 .945  of the exergy vector for the hydrogen oxidation is 

greater than the slope 2, -0 .895  of the exergy vector for the iron oxide reduction so that the 

transfer of exergy from the former to the latter is thermodynamically possible. Hydrogen 

oxidation with A H =  -241.83 kJ,  however, is unable to donate the enough energy A H =  
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272.14 kJ required for the reduction of the iron oxide. To make up for a deficit in energy 

AHQ - -30.31 kJ for one mole of FeO, an additional thermal process is needed such as a 

heating process at a temperature 584 K to be able to reduce FeO as estimated by the exergy 

vector analysis shown in Fig. 11.15. The overall reaction is then given by FeOisoUd) + H2(g~) ---" 

F%oud) + H2OIg~). We note that, employing the oxidation of hydrogen as an exergy-donating 

process, we may reduce the temperature of the thermal energy required for reducing FeO 

from 2800 K to 584 K, which is the theoretical lowest temperature for the reaction to 

proceed: We need in reality the heating process at least higher than 800 K for the hydrogen 

reduction of iron oxides to occur. 

We may also make use of the reaction of carbon monoxide formation, C(~ono) + (1/2) O2(g~/ 

---, COig~). This reaction provides us with an amount of enthalpy A H =  -110.52  kJ and an 

amount of exergy AE -- -137.27  kJ ,  giving the energy availability (the slope of the exergy 

vector) at 3. - 1 . 2 4 2 .  This slope ~. --1.242 of the exergy vector for the carbon monoxide 

formation is greater than the slope ~, - 0.895 of the exergy vector for the iron oxide reduction 

so that the transfer of exergy from the former to the latter is thermodynamical ly possible. 

Carbon monoxide formation with AH - -110.52 kJ ,  however, is unable to donate the enough 

amount of energy A H =  272.14 kJ required for the reduction of FeO. To supply a deficit 

amount of energy AHe - -161.62 kJ for the iron oxide reduction, an additional thermal 

process such as a heating process at temperatures higher than 869 K is needed as estimated 

by the exergy vector analyses shown in Fig. 11.16. The overall reaction then is expressed by: 

FeO(~o~d) + C(~oHd) ---" F%o~d) + CO(g~). 

+ 

242.45 kJ[ 

AE 

869 K 
- 272.14 kJ \ ~  

I 

I ~ 

I / 

FeO ---) Fe + � 8 9  z 

4- 
272.14 kJ 

C + 1 0 z  --->CO 

- 242.45 kJ 

Fig. 11.16. Exergy vector diagram for an iron oxide reduction, FeO ---, Fe+ 0.50 2 , 

coupled with a carbon oxidation, C + 0.50 2 ---, CO ,and a thermal heating process at 

869 K [Ref. 15.]. 
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The oxidation of carbon to carbon monoxide, as shown in Figs. 11.13 and 11.16, has an 

energy availability X greater than one, and accordingly the exergy vector takes its position in 

the regime of mixing, indicating that the reaction includes a mixing process which donates as 

a whole the greater amount of exergy than the heat of the reaction. We note that the greater 

the energy availability and hence the greater the slope of the exergy vector of an exergy-donating 

process is, then the more effective the exergy transfer becomes. 

11.11. Exergy Vector Diagrams of Methanol Synthesis. 
We examine, as an example, the exergy vector diagram for methanol synthesis to estimate 

the minimum exergy loss thermodynamically required for the synthesis reaction of methanol 

from methane [Ref. 16.]. First, we consider a direct (single step) synthesis of methanol from 

methane through a coupled-and-coupling reaction consisting of the oxidation of methane 

(objective reaction) and the dissociation of water molecule (coupled reaction) shown, 

respectively, as follows: 

C H  4 + 0 . 5 0 2  "-> CHsOH , AH = -126.38 kJ/mol, AE = -110.89 kJ/mol, 

H 20 nq --> H 2 + 0.502, AH = 285.99 kJ/mol, AE = 237.30 kJ/mol, 

where AH and AE are the enthalpy change and the exergy change of the reactions, respectively. 

-126.38 kJ 

Objective process . , ~  "l  " ~  Exergy loss 
CH 4 + 0.5 = --6.02 

u~"-/  . . . . .  110.89 
/ 

AE 

104.87 kJ 

/ . ~ "  Coupled process 

. ~ / / /  (H~O~q ~ H2 + 0.502)x0.44 

dH 
126.3810 

Fig. 11.17. Exergy diagram for a direct synthesis of methanol showing the theoretical 
minimum exergy consumption [Ref. 16.]. 
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Based on the law of energy conservation, the enthalpy changes of the two reactions must 

be balanced in the stationary state so that the stoichiometrical ratio in energy of the two 

reactions is 0.44: The enthalpy of methane oxidation C H  4 + 0 . 5 0 2  ~ CH3OH is 0.44 times 

as much as the enthalpy of water dissociation H2Ona ---- H 2 + 0.50 2 . Furthermore, the law of 
exergy decrease predicts that the composite exergy vector of the two reactions must be on the 

exergy axis (ordinate) pointing to the negative direction. The exergy vector diagram thus 

obtained is shown in Fig. 11.17. We thus estimate the theoretical minimum exergy loss 

AEtheo,  los s required for the direct synthesis of methanol is A E t h ~ o , ~  s --- 6.02 kJ/mol - CH3OH : 

Direct methanol synthesis, AE, h,o.~ s = 6.02 kJ/mol -CH3OH(0.19 GJ/t - methanol). 

Methanol manufacturing processes in current use have been reported to consume forty four 

times as much exergy as the theoretical minimum exergy loss estimated above for the direct 

methanol synthesis [Ref. 16.]. 

Methanol can also be produced through a two-step process comprising of steam reforming 

of methane and methanol synthesis from carbon monoxide and hydrogen. The first step of 

steam reforming of methane consists of the following two reactions: 

C H  4 + H20 --> CO + 3H 2, AH = 250.28 kJ/mol, AE = 150.9510/mol, 

H 2 + 0.502 --> H20gas , AH = -241.95 kJ/mol, AE = -228.7210/mol.  

The enthalpy of methane reforming, C H  4 + H20 ---, CO + 3 H 2 ,  is balanced against 0.88 times 

the enthalpy of hydrogen oxidation, H 2 + 0.502 ---, H20 ~ . In the same way as is used for the 

single step methanol synthesis, we obtain the theoretical minimum exergy loss required for 

the steam reforming to be AE~o,~s = 52.60 kJ/mol -CH3OH as shown in Fig. 11.8. 

The second step of methanol synthesis from carbon monoxide consists of the following 

two reactions: 

CO + 2H 2 - - -  C H 3 O H  , AH = -90.67 kJ/mol, AE = -24.53 kJ/mol, 

H2Oli q --> H20 ~ , AH = 44.04 kJ/mol, AE = 8.58 kJ/mol. 

The enthalpy of the hydrogenation of carbon monoxide, CO + 2 H  2 --> C H 3 O H ,  is balanced 

against 2.06 times the enthalpy of water evaporation, H2OHq ---> H20gas. For this step of 

methanol synthesis from carbon monoxide the theoretical minimum exergy loss is 

AE;2eo, - 6.86 kJ/mol-CH3OH as shown in Fig. 11.8. We hence obtain AE~heo Zoss 
/ o s s  - -  , ~--" 

59.46 kJ/mol - CH3OH as a whole for the theoretical minimum exergy loss thermodynamically 

required for producing methanol by means of the two-step synthesis from methane: 

Two-step methanol synthesis, AE, heo.~ s - 59.46 kJ/mol - CH3OH(1.86 GJ/t - methanol). 
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[First step] AE Objective process 
CH4 + HzO ~ CO + 3H2 

142.37 kJ 

- 206.24 kJ _ _ u p "  / 

I ~ J ' l  / 206.24 kJ 
Coupled process / 
(H2 + 0.502 Exergy loss= 52.60 kJ 

r /  1- 194.97 kJ 

dl-t 

[Second step] 

17.67 kJ 

- 90.67 kJ 

Objective process ~ 

CO + 2H2 ---" CH3OH ~ 

AE / 
Coupled process 

[ (H20,iq ~ H20,~lx2.06 

~ . ~  90.67 kJ 
Exergy loss= 6.86 kJ 

- 24.53 kJ 

zlH 

Fig. 11.18. Schematic exergy diagram for theoretical minimum exergy consumption 
in a two-step synthesis of methanol [Ref. 16. ]. 

The foregoing estimation of the theoretical minimum exergy loss AEtheo,~ s shows that the 

value ofAEtheo,~ ~ of the direct methanol synthesis is one-tenth that of the two-step methanol 
synthesis. It then follows that the direct synthesis of methanol is advantageous over the 

two-step synthesis in the efficient use of exergy. 
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11.12. Exergy Vectors for Electrochemical Reactions. 

We now examine the exergy vectors of electrochemical reactions for water electrolysis 

and hydrogen-oxygen fuel cells at the atmospheric temperature. The electrochemical reaction 

of water electrolysis is expressed as follows: 

H2Oli q --~ H2,g ~ + 0.5 O2,ga~, A H -  285.83 kJ/mol, d E -  237.18 kJ/mol �9 

and the reverse of this reaction is the hydrogen-oxygen fuel cell reaction: 

H z,g ~ + 0 . 5 0  z,g~ "-'> H2Oliq, A H -  -285.83 kJ/mol, A E - - 2 3 7 . 1 8  kJ/mol �9 

where AH and AE are the enthalpy change and the exergy change of the reactions at the 

standard state (the atmospheric temperature and pressure), respectively; AE being equal to 

the free enthalpy change AG of the reaction. 

H20 ~ E l e c t r i t i c  Cell 

Electric energy He 

Heat Q ~ 

H2 

0.502 

Fuel Cell 

v 

h ~  

"- H v 2 

~.- 0.5 0 2 

H20 

Electric energy He 

Heat Q 

Fig. 11.19. Schematic processes of water electrolysis cells and hydrogen-oxygen 
fuel cells at room temperature. 

Figure 11.19 shows the processes that occur in the electrolytic cell and in the fuel cell. 

Electric energy contains no entropy when it provides for the cell or extracts from the cell an 

amount of electrical work, and hence its energy-availability Xweequals one; X~v e = 1. The 

exergy vector of electric energy consequently is located on the straight line going through the 

coordinate origin at an angle of 45 ~ . On the other hand, the heat transfer at the atmospheric 

temperature, if occurring reversibly, produces no exergy change and its exergy vector therefore 

appears on the abscissa (enthalpy axis). 
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Figure 11.20 shows the exergy vector diagram for the reversible process of water electrolysis. 

The exergy vector of electric energy Hwe supplied at the energy-availability Aweequal to one 

and the exergy vector of reversible heat transfer Q supplied at the energy-availability Ae 

equal to zero are combined together to make a composite exergy vector of the decomposition 

of water molecules into molecular hydrogen and oxygen gases. 

AE 

237.18 kJ/mol H20---,H2+0.5 O: 

Electric energy HwE supplied 

L=l 

/ 

/ / /  

/ 

285.83 kJ/mol 

Heat Q absorbed 

ZlH 

Fig. 11.20. Exergy vector diagram of water electrolysis reaction at room temperature. 

Heat Q produced 

-285.83 kJ/mol 

/ 

AE 

J 
A=I 

zlH 

Electric energy Hwy " produced 

H2+0.5 O2--~H20 -237.18 kJ/mol 

Fig. 11.21. Exergy vector diagram of hydrogen-oxygen fuel cell reaction at room 

temperature. 
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The exergy vector diagram for the reversible process of a hydrogen-oxygen fuel cell is 

shown in Fig. 11.21, in which the exergy vector of the formation of water molecules from 

gaseous hydrogen and oxygen molecules electrochemically decomposes into both an exergy 

vector of electric energy /-/we produced and an exergy vector of reversible heat transfer Q 

released from the cell at the atmospheric temperature. When the heat transfer Q occurs 

irreversibly at temperature higher than the atmospheric temperature, the exergy vector of heat 

transfer Q deviates from the abscissa, and hence the exergy vector of electric energy Hwe 

produced by the cell is reduced causing an internal exergy loss in the cell. 
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