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Preface

Biological membranes display a wealth of physical phenomena including
phase transitions, propagating voltage pulses, variable permeability, struc-
tural transitions (as seen in endo- and exocytosis), and domain formation that
is thought to have an important influence on signal cascades. The title of this
book “Thermal Physics of Membranes” indicates that it deals in particular
with the thermodynamics of such systems. Thermodynamics is always true
because it is based on only two basic and intuitive laws: the conservation of
energy and the maximum entropy principle. Beyond that it is free of any ap-
proximations and assumptions. One therefore finds thermodynamics as a ba-
sis for physics on all length scales from atomic dimensions up to cosmological
scales. Naturally, thermodynamics is also true on the level of biological mem-
branes. We wish to introduce the reader to some of these principles and their
consequences concerning the behavior of membranes. Important topics in this
book are “phase diagrams” including domain formation and rafts, elasticity
and the related changes in vesicular shape, pulse propagation, permeability
as well as protein binding and electrostatics.

Biology deals with complex ensembles of organic molecules including pro-
teins, nucleic acids, and lipids, but also salts and water. Proteins often display
unique molecular surfaces that give rise to specific interactions. Much of bio-
physical research therefore has been dedicated to the study of structures and
interactions between individual molecules. Cells and their compartments are
defined by a large variety of membranes that not only surround the cell as
a whole but also each organelle as the nucleus, mitochondria, or the endo-
plasmic reticulum. On average 50% of the biomembrane mass stems from
proteins. The human genome contains about 30,000 genes encoding at least as
many proteins, many or most of those being membrane proteins.

The major building blocks of membranes, however, are hundreds or thou-
sands of different lipid species. The human body contains several kg of mem-
brane lipids with a total surface on the order of 0.4 km2 per kg. The plasma
membranes of one eucariot cell contains about 1010 lipid molecules. Although
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the diversity of lipids is seemingly smaller than that of proteins, lipid mem-
branes contain many molecules and are thus large ensembles.

Biological molecules usually do not only interact with one specific bind-
ing partner but also with the abundant lipid surfaces, with protons (because
macromolecules contain protonable groups), ions and, very importantly, with
water. Therefore one typically deals not with one interaction but rather with
many. Even if only a few of these interactions have a strength that is of inter-
est and even if one takes into account that one cell usually does not express all
the proteins that are encoded in the genome, it is immediately obvious that it
is a impossible to investigate all possible interactions. One further has to take
into account that the molecules may have different orientations and different
conformations further increasing the complexity. We leave it to the reader to
figure out how many different arrangements of, say, 200 lipid species in vari-
able concentrations and conformations in an ensemble of 1010 molecules are
possible—but the number is beyond any range that can ever be accessed by
computers. One must come to the conclusion that life will never be under-
stood on the basis of binary molecular interactions alone. In particular, many
cooperative phenomena such as the melting of lipid membranes are beyond
the scope of single molecule physics.

Thermodynamics is a fundamental discipline of physics that describes the
behavior of assemblies of molecules. It solely relies on two basic principles:
the law of the conservation of energy (first law) and the seemingly tautolog-
ical principle that a most likely state exists that is assumed with the highest
probability (second law). The latter principle is also known as the principle
of maximum entropy. These two principles are so general and universal that
the thermodynamic relations that are derived from them are also fundamen-
tally true. In the case of biological systems, the variety of proteins, lipids,
and ions is taken into account by their chemical potentials that are a function
of the concentrations of other molecules as well as of temperature, pressure,
voltage, or other intensive variables. In thermal equilibrium a multimolecular
ensemble like a membrane fluctuates around the state of maximum entropy.
If the system is not in equilibrium, the first derivative of the entropy consti-
tutes the thermodynamic forces, which are the forces that drive a system back
to equilibrium. The second derivatives of the entropy are related to suscep-
tibilities, for example, to the heat capacity or the elastic constants of mem-
branes. These properties of membranes are often easier to measure, for exam-
ple with calorimeters (heat capacity), ultrasonic velocity measurements (vol-
ume compressibility) or by vesicular shape fluctuations (bending elasticity).
Even though in thermal equilibrium the thermodynamics forces are zero, the
susceptibilities generally assume nonzero values. Since the different suscep-
tibilities are all second derivatives of the same thermodynamic function (the
entropy), they are not independent of each other, but one can find surprising
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relationships between various thermodynamic susceptibilities that can pro-
vide insights into the behavior of membranes that one would never be able to
predict on the basis of single molecule interactions. Many such relations stem
from the so-called Maxwell relation. We show two examples:(

dS
dp

)
T,ni

= −
(

dV
dT

)
p,ni

(0.1)

where S and V are the entropy and the volume of an ensemble, respectively,
including all their proteins and lipids—and all their conformations. This equa-
tion implies that the term on the left-hand side that is experimentally difficult
to access is identical to the volume expansion coefficient that is very easy to
measure. A second example is(

dμi

dnj

)
S,V,ni �=j

=
(

dμj

dni

)
S,V,nj �=i

(0.2)

This relation couples the chemical potential of one component to the variation
of another and demonstrates the symmetry of the coupling. In biochemical
textbooks such couplings usually do not play a role. This implies that the
findings shown in such books are not necessarily incorrect but definitely in-
complete. However, there are also examples where the molecular textbook
models are clearly in conflict with the laws of thermodynamics. The applica-
tion of thermodynamics therefore should not be considered as a method aver-
aging out the molecular details (and thereby losing information) but rather as
a means to gain considerable insight into all the couplings between seemingly
different processes.

In this textbook we will introduce the reader to the thermodynamic con-
cepts. Overall, our intention is to show the beautiful manner by which ther-
modynamics can link seemingly unrelated membrane processes resulting in a
unified picture of the behavior of membranes as a whole. Our aim therefore
is to present a coherent concept rather than achieving a complete presentation
of the field. This approach takes the risk that important results of respected
colleagues are not presented to the extent that they deserve.

Copenhagen, April 2007 Thomas Heimburg
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1
Membranes—An Introduction

In the second half of the 19th century it became evident that an osmotic bar-
rier separates the inside and the outside of cells (Nägeli and Cramer, 1855;
de Vries, 1871, 1884; Pfeffer, 1877). Plant cell protoplasts were permeable to
water but not to larger macromolecules like sucrose (de Vries, 1871). Pfeffer
was the first to study the osmotic pressure within cells and formulated the
idea that the protoplasm of cells is surrounded by a thin layer, which he called
the plasma membrane. In fact, Pfeffer proposed that this membrane does not
only cover the outer surface of cells but also separates all aqueous environ-
ments of different composition from each other. One may therefore consider
Pfeffer as the father of membrane theory. The developments in biology and
botany coincided with a rapid development in the theory of thermodynam-
ics of solutions. In particular, based on Pfeffer’s work van’t Hoff found the
formal analogy of concentrations of solutes in water and the partial pressures
of ideal gases (van’t Hoff, 1887). Ostwald formulated descriptions for the os-
motic pressure across semipermeable walls and the related electrical proper-
ties (Ostwald, 1887, 1890).1

1.1
Overton (1895)

Charles Ernest Overton is a very important figure in the development of a pic-
ture of cell membranes. He investigated the osmotic properties of cells and no-
ticed in the late 19th century that the permeation of molecules through mem-
branes is related to their partition coefficient between water and oil (Overton,
1895). Overton’s findings led to the hypothesis that the thin membranes sur-
rounding cells have the properties of oil. In his book on anesthesia (Over-
ton, 1901. Jena, Germany. English translation: Studies of Narcosis, Chapman
and Hall, 1991, R. Lipnick, Ed., 1991) he called the layers surrounding cells
“lipoids” made from lipids and cholesterol. The properties of lipids are de-
scribed in detail in Chapter 3 and theory of anesthesia is treated in Chapter 19.

1) The history of biomembrane research is nicely reviewed in Ling
(2001).
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1.2
Langmuir (1917) and Gorter and Grendel (1925)

Langmuir (1917) developed an apparatus in which molecular layers of lipids
were spread at the air–water interface. With this monolayer trough (see Sec-
tion 6.7 and Fig. 6.14) the lateral pressure of the monolayer films could be mea-
sured. Langmuir proposed that in the molecular film the polar head groups
were directed toward the water whereas the hydrophobic hydrocarbons are
pointed toward the air phase.

Gorter and Grendel (1925) experimentally investigated the surface area of
lipids. For this purpose they extracted the lipids from red blood cells of man,
dog, rabbit, sheep, guinea pig, and goat in acetone. The lipids were spread
on a water surface and the area was measured using a Langmuir film balance.
From the same blood preparations they measured the surface area of the red
blood cells from the microscopic images. They found that the surface area of
the monofilms was within error exactly two times that of the cells. They con-
cluded that cell membranes are made of two opposing thin molecular layers,
and they proposed that this double layer is constructed such that two lipid
layers form a bilayer with the polar head groups pointing toward the aqueous
environment (Fig. 1.1). This is the picture of the lipid membrane we know to-
day. As Robertson (1959) noted later, the attractive simplicity of Gorter’s and
Grendel’s pictures is also its greatest weakness since it fails to account for the
manifold of functions attributed to cell membranes.

Fig. 1.1 The cell membrane according to Gorter and Grendel (1925).
They proposed the lipid bilayer structure.

1.3
Danielli and Davson (1935)

The earliest molecular model for the biomembrane structure including pro-
teins was the model from Danielli and Davson (1935). They took into account
that the layers surrounding cells had a significant content of proteins adsorbed
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Fig. 1.2 Danielli and Davson (1935) pro-
posed a membrane model including proteins.
They used their model to interpret the ob-
servation of different membrane permeabili-
ties of ions and hydrocarbons. In particular,
they assumed that the membrane has both a
lipophilic and a hydrophilic character. Water-

containing regions in the membrane give rise
to ion transport depending on water content
of the membrane and its charge; lipophilic
parts are responsible for the transport of
water-insoluble molecules. Figure adapted
from Danielli and Davson (1935) with permis-
sion.

to the layers. It was known that phospholipids have an amphiphilic nature.
Furthermore, proteins investigated were mostly water soluble but neverthe-
less often adsorbed to membranes. Jim Danielli and Hugh Davson thus pro-
posed a model of the cell membrane consisting of a lipid bilayer, with which
a protein layer is tightly associated (Fig. 1.2, left). As in earlier membrane
studies (e.g., by Overton) they were in particular interested in the permeation
properties of membranes. In a theoretical paper they made the following con-
sideration.

• Proteins are adsorbed to the lipophilic layers surrounding cells. The pro-
teins possess hydrophobic interiors and a water-containing outer layer.

• The lipid layer possesses amphiphilic or charged head groups. This im-
plies that the lipid membrane also contains some water.

• The water-containing regions of protein layers adsorped on lipid layers
are permeable for charged solutes, e.g., ions.

• Divalent cations as calcium form complexes with lipids or proteins that
reduce their interaction with water. Therefore membranes containing
calcium are less permeable for ions.

• Hydrophobic molecules such as ether penetrate the membranes through
their lipophilic lipid part.
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They included some theoretical considerations about the different dependen-
cies of the permeabilities of membranes to ions and hydrophobic molecules as
a function of temperature.

Danielli and Davson concluded that the permeabilities of membranes
for solutes are explainable within the concepts of the physical chemistry of
the hydrophilic and lipophilic regions of the cell membranes and that no
particular chemical reactions including the solutes are needed to explain
the transport properties.

Unfortunately, this very sober view is nowadays not in the focus of much
of the biochemical membrane research due to the emphasis of the localized
function of ion- and solute-specific transport channel proteins. In the chapter
on permeability (Chapter 17) we will return to the quite realistic physical view
of Danielli and Davson.

Danielli and Davson did not exclude the possibility that the proteins may
span the membrane such that a “mosaic” of protein-rich and lipid-rich regions
is formed. However, they did restrain themselves from speculating about such
a structure due to the lack of experimental evidence. The term “mosaic mem-
brane” was later used again by Singer and Nicolson (1972).

1.4
Robertson (1958)

So far most evidence about the structure of cell membranes was indirect. The
resolution of light microscopy is restricted to the regime above 200 nm, which
is not sufficient for revealing the bimolecular structure of the biological mem-
brane that is between 5 and 10 nm thick. This changed with the progresses
in electron microscopy. In 1959, J. David Robertson wrote a review in which

Fig. 1.3 Two opposing plasma membranes showing the double-layer
character of the membranes. Picture taken from Bloom and Fawcett
(1994) © Springer. Such images support the view of Gorter and Gren-
del (1925) and of Danielli and Davson (1935).
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Fig. 1.4 Robertson (1959) collected electron microscopy images of
many cells and organelles. His picture of a biological membrane re-
sembles that of Danielli and Davson (1935). However, it is now based
on microscopic evidence. Reproduced with permission from Robertson
(1959) © The Biochemical Society.

he collected his evidence for a unique membrane structure obtained from the
then advanced electron microscopy (Robertson, 1959). He basically confirmed
the models of Gorter and Grendel (1925) and Danielli and Davson (1935). In
his review he carefully described the membrane structures of the different or-
ganelles including the double membrane layers of mitochondria and the cell
nucleus (Fig. 1.3). He also described the membranes of nerve cells and rec-
ognized that the Schwann cells form membrane layers surrounding the nerve
membranes. Robertson’s conclusion was that all evidence points at a common
construction principle for all membranes of biological cells. They form a three-
layered structure and are about 7.5 nm thick. In Robertson’s view two protein
layers are adsorbed to the lipid bilayer (see Fig. 1.4). As he noted himself this
picture is in agreement with that of Danielli and Davson (1935). Remember,
however, that the aim of Danielli was rather to explain selective transport of
ions and apolar molecules. Robertson’s model was sometimes incorrectly in-
terpreted as that all membranes have the same composition. However, Robert-
son’s statement was merely meant to describe a common structure.

1.5
The Fluid Mosaic Model of Singer and Nicolson (1972)

In the 1960s, the structures of a number of soluble proteins were solved by
X-ray crystallography. Lenard and Singer (1966) found that many membrane
proteins have a high α-helical content. Also, electron micrographs revealed
that labeled proteins form isolated spots in some membranes. Furthermore,
they considered the role of hydrophobic amino acids in α-helices. From this
Singer and Nicolson concluded that proteins may also span through mem-
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branes. This led to the famous Singer–Nicolson model (Singer and Nicolson,
1972) also known as the “fluid mosaic model.” This model can be summarized
as follows: Membranes are constructed from lipids and proteins. The proteins
form mainly two classes. Peripheral proteins are those proteins that are only
loosely attached to the membrane surface and can easily be separated from the
membrane by mild treatment (e.g., cytochrome c in mitochondria or spectrin
in erythrocytes). Integral proteins, in contrast, cannot easily be separated from
the lipids. They form the major fraction of membrane proteins. The structure
forming unit (matrix) is the lipid double layer (bilayer). Proteins may be either
adsorbed to the membrane surface or span through the membrane (Fig. 1.5).
The term “fluid mosaic model” used by Singer and Nicolson probably origi-
nates from Danielli and Davson (1935) although their paper was not cited.

Fig. 1.5 The “fluid mosaic model” of Singer and Nicolson (1972). The
left side shows the lipid bilayer including globular proteins intercalated
with the membrane, and transmembrane proteins. The membrane pro-
teins are not all distributed homogeneously. Reprinted with permission
from AAAS.

Singer and Nicolson (1972) underlined that some proteins seem to inter-
act with the surrounding lipids and that protein function may depend on the
presence of specific lipids (see Fig. 1.6). They proposed that the proteins are
surrounded by a layer of strongly interacting lipids while most of the remain-
ing lipids are hardly influenced by the presence of proteins. This implies that
the lipids form a matrix and no long-range order of proteins exists within the
matrix. Short range order due to protein–protein interactions (possibly me-
diated by specific lipids) was considered as a possibility (see Fig. 1.6). Such
interactions are discussed in Chapter 9. It was postulated that the lipid mem-
branes of biological cells are in the fluid lipid state (with exceptions, e.g., the
myelin) in which proteins can freely diffuse. In this respect an interesting
paper by Frye and Edidin (1970) showed that when two different cells with
different proteins are forced to fuse, the proteins redistribute over the whole
surface within 40 min. This finding supports the view of freely diffusing pro-
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Fig. 1.6 Protein distribution in erythrocyte membranes from Singer
and Nicolson (1972). Specific proteins were labeled with antibodies.
The circles indicate protein clusters with a diameter of about 30 nm.
Reprinted with permission from AAAS.

teins in cell membranes. Singer and Nicolson also noted that the fluid mosaic
membrane is most likely asymmetric and displays distinctly different features
on the inside and the outside of cells. Asymmetry of membrane lipids has
in fact been found in experiments (Rothman and Lenard, 1977; Rothman and
Kennedy, 1977). Also, proteins are now known to display preferential orien-
tations in membranes.

The Singer–Nicolson model still is the widely accepted model. In particular,
due to progresses in the crystallization of membrane proteins it is nowadays
known that membrane proteins display α-helical or β-barrel-like membrane
spanning segments of predominantly apolar amino acids.

1.6
The Mattress Model by Mouritsen and Bloom (1984)

The fluid mosaic model of Singer–Nicolson has nowadays experienced some
refinement, which takes into account that lipids and proteins may distribute
inhomogeneously and that domains and clusters may form within the mem-
brane. Without explicitly saying so, the Singer–Nicolson model considered
the lipid membrane as a homogeneous fluid in which the proteins diffuse in
two dimensions. In 1984, Mouritsen and Bloom (1984) proposed the mattress
model (Fig. 1.7) that suggests that proteins and lipids display interactions with
a positive free energy content due to variations in the hydrophobic length of
the molecules (see Section 9.1). The typical thickness of a lipid bilayer is about
5 nm. If the hydrophobic core of a membrane protein is longer or shorter than
this length, either some hydrophobic protein or lipid segments are exposed
to water, or the lipid membrane has to be deformed to compensate for the
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Fig. 1.7 The mattress model from Mouritsen and Bloom (1984). This
model takes into account that the hydrophobic core of proteins may
not match the bilayer thickness. This leads to interfacial tensions and
capillary forces between protein and lipids. With permission from Bio-
phys. J.

unfavorable hydrophobic interactions. This effect is called the “hydrophobic
matching.” The hydrophobic matching gives rise to interfacial tensions be-
tween lipids and proteins. These tensions may result in the accumulation of
certain lipid species around the proteins (see Fig. 1.8), and in the mutual attrac-
tion of proteins due to capillary forces, leading to aggregation and clustering
of proteins.

Fig. 1.8 In the mattress model the proteins may influence the lipids in
their vicinity. Picture courtesy to O. G. Mouritsen.

1.7
Domain Formation and Protein Clusters

Similar arguments as for the matching of lipids and proteins lead to the as-
sumption that also different lipid species may not match perfectly. Biologi-
cal membranes contain hundreds of different lipid species with variable head
group and chain composition (Chapter 3). Most lipids possess two apolar
hydrocarbon chains with variable length. Furthermore, lipid membranes un-
dergo melting transitions, which are accompanied by changes in the effective
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lipid chain length (Chapter 6). Thus, also the lipids within the membrane
plain can form various clusters, domains, and aggregates. A modern view
of biological membranes has to include the phase behavior of the lipid and
protein components (Chapters 7–9).

The phase behavior of membranes becomes especially interesting if one con-
siders cooperative transitions in the biological membrane. Native membranes
show several cooperative events in direct proximity of growth or body tem-
perature. As an example a calorimetric experiment on native E. coli mem-
branes grown at 37◦ is shown in Fig. 1.9. Slightly below growth temperature
a cooperative lipid melting peak is found. Above growth temperature several
protein unfolding peaks can be seen.

Fig. 1.9 A calorimetric experiment on a native E. coli membrane
shows that lipid melting events take place slightly below growth tem-
perature. Above growth temperature a number of protein unfolding
events take place. Adapted from Heimburg and Jackson (2007a).

During lipid melting transitions the thickness of lipid membranes and the
lateral lipid distribution changes. This is of extreme interest for regulation and
signal transduction purposes in such membranes (Section 9.5 and Chapter 10).
The mattress model implied that the matching of the dimensions of lipids
and proteins influences the lipid recruiting around proteins and the lateral
arrangement of proteins due to attractive forces from capillary effects. Thus,
such transitions are linked to the formation of domains and clusters. Some
examples are shown in Fig. 1.10. The left-hand panel shows a fluorescence
microscopy image of a monolayer consisting of one single lipid. The dark re-
gions represent ordered lipid domains while the bright regions represent dis-
ordered chains. The center panel shows domain formation phenomena in the
fluorescence microscopy image of a giant lipid vesicle made from a lipid mix-
ture. Giant vesicles are lipid bilayer vesicles that have similar dimensions to
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Fig. 1.10 Domain formation in lipid mono-
layers, bilayers, and in biological cells. Left:
Domain formation in the phase coexistence
regime of DPPC monolayers. The dimension
of the panel is about 100 μm. From Gud-
mand/Heimburg, NBI Copenhagen. Center:
Confocal fluorescence microscopy image
of domain formation in a giant lipid vesicle

(DLPC:DPPC = 30:70 at room tempera-
ture). The size of the vesicle is about 30 μm
in diameter. From Fidorra/Heimburg, NBI
Copenhagen. Right: Placental alkaline phos-
phatase distribution in fibroblast. The size
of the segment is about 4 μm. From Harder
et al. (1998).

biological cells. The right-hand panel shows the formation of protein clusters
(placental alkaline phosphatase=PLAP) in a fibroblast cell form (Harder et al.,
1998). In this paper it was shown that different proteins species tend to colo-
calize in different regions of the cell membrane. In biomembranes a special
kind of domain called “raft” is presently highly discussed. Rafts are thought
to be microdomains consisting predominantly of sphingolipids, cholesterol
and certain GPI-anchored proteins. These phenomena are discussed in much
more detail in Chapters 8 and 9.

Domain formation is also interesting for the electrostatic properties of mem-
branes. Many membrane components carry charges. Thus, domain formation
leads to inhomogeneities in electrostatic potential and to the preferential bind-
ing of proteins.

1.8
Perspectives of this Book

The biological membrane resembles the picture in Fig. 1.11, showing varia-
tions in the membrane thickness, the presence of peripheral and transmem-
brane proteins, as well as the formation of lipid and protein domains (Chap-
ters 8 and 9). The thermodynamics of such phenomena is an essential part of
this book. Cooperative transitions also influence the elastic constants (Chap-
ter 14). Thus, rearrangement of proteins and lipids is also generally linked
to alterations of membrane elasticity and compressibility. Due to the cou-
plings in the thermodynamic equations these relations go in both directions
meaning that changes in the membrane curvature by necessity have to change
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Fig. 1.11 The modern picture of membranes allows for lateral hetero-
geneities, cluster and domain formation within the membrane plane.
Picture generated by H. Seeger, NBI Copenhagen.

lipid distributions. If the melting of membranes leads to the rearrangement
of proteins and a related change of the elastic constants, then conversely a
change in protein distribution will lead to a change in the physical state of the
membrane, and bending will influence melting and protein distributions. The
elastic constants are responsible for many changes in the geometry of mem-
branes (Chapter 15), for the possibility of mechanical excitations propagating
in membranes (Chapter 18), and for changes in permeability (Chapter 17).
Since some of the membrane components carry charges, generally domain
formation also leads to heterogeneities in the electrostatic potential and to a
coupling of electrostatic fields to the phase behavior of membranes.

The subjects treated in this book include

• composition and structure of biological membranes (Chapters 2 and 3),

• the role of water and the hydrophobic effect (Chapter 5),

• phase behavior and domain formation (Chapters 6–9),

• lipid–protein interactions (Chapter 9) and protein binding to surfaces
(Chapter 12),

• diffusion in membranes containing domains (Chapter 10),

• electrostatics and its influence on protein binding (Chapter 11),

• the elastic constants and how they are influenced by temperature, pres-
sure, protein binding, and other thermodynamic variables (Chapters 13
and 14),
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• changes in membrane geometry due to changes in the elastic constants
(Chapter 15),

• relaxation phenomena (Chapter 16),

• some considerations on the permeability of membranes for ions and
larger molecules and how it is related to the thermodynamics of the
membrane (Chapter 17).

• the propagation of density pulses and a related thermodynamic theory
for the propagation of nerve pulses (Chapter 18),

• a thermodynamic theory for anesthesia (Chapter 19),

The function of the biological membrane cannot be understood without con-
sideration of its thermodynamics. It is a multicomponent system that sensi-
tively responds to changes in temperature, pressure, and the chemical poten-
tials of its components. Therefore, this book also contains a basic introduction
into thermodynamics (Chapter 4). The purpose of this book is to describe the
concepts of thermodynamic couplings of seemingly independent properties of
membranes. It will be shown that all of the above phenomena are intimately
related and fit into a coherent thermodynamic picture.
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1.9
Summary: Key Ideas of Chapter 1

• Biomembranes mainly consist of lipids and proteins. They are macro-
scopic ensembles.

• Lipids are amphiphilic molecules with polar head groups and apolar
chains. Lipids spontaneously form bilayers in water.

• Proteins may be peripherally adsorbed to the lipid bilayer surface, or
they may be integral proteins spanning through the bilayer core.

• The thickness of biological membranes is on the order of about 5–8 nm.

• Due to differences in the size of the different molecules in membranes
capillary forces can exist that influence the distribution of molecules in
the membranes.

• As a consequence, proteins and lipids are not homogeneously dis-
tributed within membranes but form domains, clusters, and aggregates.

• The lateral distribution of the molecules is altered when the thermody-
namic variables of the system change.

• Biological membranes can undergo order transitions.

• These order transitions are coupled to changes in the elastic constants of
the membranes.
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2
Membrane Structure

2.1
Lipid Membrane Structure

Lipids consist of a polar head group and an apolar chain region (Fig. 2.1).
While the head groups usually contain charged groups (phosphate and
choline groups in phosphatidylcholines) and thus like to interact with wa-
ter, the chains are hydrocarbons which do not like to interact with water due
to the hydrophobic effect described in Chapter 5. Lipids therefore tend to
form aggregates that shield the hydrocarbon chains from water and expose
the head groups to water. Lipid dispersions also tend to maximize distribu-
tional entropy. If it were not for the hydrophobic effect distributional entropy
would favor monomeric lipids dissolved in the water phase. The lower the
lipid concentration the larger the entropy contribution per molecule. The
hydrophobic contact of water with hydrocarbon chains results in an entropy
decrease that is not dependent on lipid concentration (Chapter 5). In other
words, the formation of lipid aggregates releases some water and increases

Fig. 2.1 Left: Monomeric lipid showing head group and hydrocarbon
chains. Center: Lipid micelles. Right: Lipid bilayer consisting of two
opposing monolayers..
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the entropy per chain, independent of lipid concentration. From this we have
to conclude that the formation of lipid aggregates must be strongly concen-
tration dependent, and that the formation of larger aggregates becomes more
favorable at higher lipid concentration. Since the hydrophobic effect is highly
temperature dependent one would also expect that the nature of the lipid
aggregate is temperature dependent.

Various lipid phases are found in lipid–water systems. The most prominent
are as follows.

• Monomeric lipids. As a consequence of entropic considerations lipids
have a finite probability to be found as monomers, in particular at very
high dilutions (Fig. 2.1, left).

• Micelles. Above a critical concentration (critical micelle concentration)
the lipids aggregate into micelles. These micelles may have all kinds of
shapes. For a simple spherically symmetric micelle (Fig. 2.1, center) one
may approximate the micelle formation process by a mass action law:

[Ln]
[L]n

= K (2.1)

where [Ln] is the concentration of micelle consisting of n lipids and [L]
is the monomeric lipid concentration.

• Lamellar phases (Fig. 2.1, right): At even higher lipid concentrations, mi-
celles grow into extended two-dimensional sheets, called bilayers. The
bilayer phases can exist in different states listed in the following in or-
der of their occurrence at increasing temperature (Fig. 2.2, Janiak et al.,
1979):

– Lc phase. This is the crystalline lipid phase with order in three
dimensions. The lipids form bilayers which are not separated by
a water layer. The lipid chains are ordered into all-trans chains
(Fig. 2.2).

– Lβ′ phase. This is the so-called gel phase. The lipids arrange in
bilayers. Lipid chains are mostly ordered into the all-trans configu-
ration (see Chapter 6). The prime index “′” indicates that the lipids
are tilted with respect to the membrane normal. The presence of a
tilt depends on the head group of the lipid species (McIntosh, 1980).
Phosphatidylcholines display a tilt angle of about 30◦ while phos-
phatidylethanolamines do not display a tilt at all. The lipids are
arranged on a two-dimensional triangular lattice in the membrane
plane (Janiak et al., 1979). This phase is also called the solid-ordered
phase (Figs. 2.2 and 6.3).
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Fig. 2.2 The lipid membrane phases that occur in lipid membranes
with increasing temperature display a decreasing order of the chains:
Lc phase, Lβ′ phase, Pβ′ phase, and Lα phase.

– Pβ′ phase. This is the ripple phase, showing periodic one-dimen-
sional ripples on the membrane surface (Janiak et al., 1979). This
phase forms prior to main chain melting and consists most likely of
a partially melted lipid phase with lower average degree of chain
ordering than in the Lβ′ phase. The ripples are probably formed
by periodic arrangements of linear gel (Lβ′ ) and fluid (Lα) lipid do-
mains (Fig. 2.2, (Heimburg, 2000a; de Vries et al., 2005)). The ripple
phase will be discussed in more detail in Chapter 15.

– Lα phase. This phase is the so-called fluid phase. The chains are
mostly disordered and the lattice order is lost. This phase is also
called the liquid-disordered phase (Figs. 2.2 and 6.3) since both
chain order and the arrangement on the triangular lattice are lost.

• Cubic phases. The cubic lipid phases are mostly bicontinuous lipid bi-
layer phases with periodic three-dimensional order (Lindblom and Ril-
fors, 1989). They are unilamellar structures. There are in principle 36
possible cubic space groups allowing for the related phases, but only six
cubic phases have been found in crystallographic experiments on lipid
membranes. A cubic phase is shown in Fig. 2.10.

• Inverse hexagonal phase. The inverse hexagonal phase is a high tempera-
ture lipid phase. Due to the associated increase in entropy the chain vol-
ume increases and the lipids form cylinders with the chains directed to
the outside. Since the chains tend to avoid water the cylinders arrange
into two-dimensional hexagonal crystals (Caffrey et al., 1990). Such a
pattern can be seen in Fig. 2.8.
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Fig. 2.3 Multilamellar membranes represents a periodic stacking of
membranes with a repeat spacing of D separated by a water layer
DH2O ≈ 20 Å.

In this context one should mention that the tendency to form planar bilayers
is most pronounced in the lipid phases with ordered chains. Cubic phases
or inverse hexagonal phases display disordered lipid chains and are therefore
phases typically occurring at higher temperatures.

How does one know how these structures look like? The most common
methods to determine lipid membrane structures are X-ray and neutron
diffraction. In the following we briefly outline some principles of X-ray
diffraction.

2.2
X-Ray Diffraction

One of the most important methods to determine the structures of membranes
is X-ray diffraction (Franks and Levine, 1981).

Let us consider a planar coherent wave of X-rays (or neutrons) with wave-
length λ and wave vector k with |k| = 1/λ along the direction of wave prop-
agation. X-rays are predominantly scattered by electrons because they dis-
play a high charge and simultaneously a small mass. Neutron, in contrast,
are scattered by the atomic nuclei. The incoming wave shall be scattered by
two different points within the sample with a spatial separation described by
the vector r. The incoming wave is described by the wave vector ki, and the
scattered wave by ks. This is schematically shown in Fig. 2.4 (left). Incoming
and scattered wave display phase differences 1 that can be determined with
the help of Fig. 2.4. This phase difference creates constructive or destructive
interference in the diffraction pattern:

phase difference = 2πr · (ks − ki) ≡ 2πr · R with R ≡ ks − ki (2.2)

1) Note that in this section the term ‘phase’ is used in two different
contexts.
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Fig. 2.4 X-ray or neutron scattering by two points (left) and by two
planar surfaces (right).

The phase difference of the two scattered waves now is |R| = 2 sin θ/λ. Con-
structive interference is given if r · R is a multiple of 1. For Bragg diffraction
from two planes with distance D (see Fig. 2.3 and Fig. 2.4, right) one obtains
r||R, or

r · R = |r| · |R|
= 2 D · sin θ

λ
= n with n = 1, 2, 3, . . . and |r| = D (2.3)

The vector R is the reciprocal spatial vector (|R| = n/D), and θ is half the
scattering angle. For a general electron distribution ρ(r) one obtains for the
amplitude of the scattered wave with reciprocal vector R

F(R) =
∫

r
ρ(r) exp(2πi r · R) dr (2.4)

Let us now consider a membrane: for the two spatial coordinates within the
plane it displays a near continuous electron distribution (y- and z-direction).
Only perpendicular to the membrane (x-direction) one can resolve the electron
distribution. One therefore obtains

F(R) =
∫

x
ρ(x) exp(2πix R) dx (2.5)

F(R) is the structure factor (or structure amplitude). It is the Fourier trans-
form of the electron density distribution

ρ(x) =
∫

R
F(R) exp(−2πixR) dR (2.6)

In experiments one often finds multilayers (Fig. 2.3). Multilayers display a
periodic repeat spacing. Here we obtain

ρ(x + nD) = ρ(x) 0 ≤ x ≤ D and n = 1, 2, 3, . . . (2.7)
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Fig. 2.5 Diffraction pattern of multilamellar DMPC lipid membrane
adapted from Heimburg et al. (1990).

For multilayers one can reformulate Eq. (2.5):

F(R) =

(
N−1

∑
n=0

exp(2πi R n D)

)
︸ ︷︷ ︸

G(R)

∫ D

x=0
ρ(x) exp(2π i xR) dx︸ ︷︷ ︸

Fu(R)

(2.8)

The term Fu(R) is the structure factor for an individual isolated membrane.
G(R) is the so-called interference function. It is a geometrical series and can
(after short calculation) be written as

G(R) =
N−1

∑
n=0

exp(2πi R n D) = exp(π i R (N − 1) D)
sin(NπRD)
sin(πRD)

(2.9)

The interference function displays extrema when RD = m (m = 0,±1,±2, . . .).
This corresponds to Bragg’s law. The amplitude of the interference function

G(R) at the location of the maxima is given by |G(R)| =
∣∣∣ sin(NπRD)

sin(πRD)

∣∣∣ = N.
One obtains sharp maxima of the interference function for R = m/D, where
G(R)is a real function.

In experiments the intensity of a scattered wave is measured:

I(R) = F∗(R)F(R) = |F(R)|2 (2.10)

In the experiment one therefore only obtains the amplitude of the structure
factor. The phase information is lost. This is a general problem in the scatter-
ing techniques. With this reduced information one therefore cannot deduce
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Fig. 2.6 Left: Diffraction intensities and amplitudes of an experiment
on multilayers. Right: Electron density calculated from the diffraction
experiment. Data adapted from Franks and Levine (1981).

the electron distribution from the experiment. One needs additional informa-
tion.

Let us consider the special case of a symmetric membrane for which the
phase problem is relatively simple. The membrane is symmetrical with re-
spect to its center (very reasonable assumption). Then one obtains for the
structure factor of an isolated membrane:

Fu(R) =
∫ +D/2

−D/2
ρ(x) exp(2πiRx) dx

=
∫ +D/2

−D/2
ρ(x) cos(2πRx) dx + i

∫ +D/2

−D/2
ρ(x) sin(2πRx) dx (2.11)

The term containing the sine function is equal to zero (since sin(x) =
− sin(−x)). The structure factor now is a real function.

We also obtain Fu(R) = |Fu(R)| · exp(iα) = |Fu(R)| · cos(α) + i|Fu(R)| ·
sin(α). Since the imaginary part is equal to zero, α = n · π. The phase factors
therefore display values of ±1. Whether the structure factor has a positive
or negative value cannot be deduced from the data of one single diffraction
experiment. The sign has to be found by “reasonable guess.” This is possi-
ble, e.g., by making a series of experiments where the D-spacing is altered by
changing the water layer between the layers using osmotic agents. A typi-
cal X-ray experiment performed on a linear probe (in a capillary) is shown in
Fig. 2.5. The asymmetric shape of the diffraction peaks is caused by the lin-
ear nature of the probe. One obtains diffraction peaks with periodic distances
1 : 2 : 3 : 4 : . . . on the q-axis (where q = 2πR).
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From the intensities of the diffraction peaks and the proper assignment of
phase factors one can calculate the electron densities along the membrane nor-
mal. Such an electron density profile is shown in Fig. 2.6. One can see that
the electron density is much larger in the outer headgroup region than in the
membrane interior. From such results one can deduce the membrane thick-
ness.

Why are the electron densities at the outer edge of a membrane (adjacent
to the water layer) so different from the electron density in the center of a
membrane? This can be explained by the different electron densities of the
chemical groups within the lipid, e.g., phosphates and hydrocarbons:

• electron density in the head groups: ≈ 0.45 electrons/Å3

• electron density of a −CH3-group of lipid chains: ≈ 0.17 electrons/Å3

Apolar hydrocarbon groups display a much lower electron density than lipid
head groups that contain many oxygen atoms.

Thus, the electron density distribution can help to locate the different chem-
ical groups of the lipids along the bilayer normal. In a more advanced study
combining X-ray and neutron diffraction Wiener and White (1992) explored
the location of different groups in the membrane. As neutrons are scattered

Fig. 2.7 Distribution of different chemical groups of a DOPC mem-
brane obtained from X-ray and neutron diffraction. From Wiener and
White (1992). with permission from Biophys. J.
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differently by different isotopes, chemical modifications using e.g. the ex-
change of hydrogen with deuterium can be used to determine the distribution
of the labeled groups in the membrane. Wiener and White (1992) could give
very good account of the distribution of the different parts of the lipids within
the lipid membrane. This is shown in Fig. 2.7.

2.3
Nonlamellar Lipid Phases

2.3.1
Inverse Hexagonal Phase (HII-Phase)

Some lipid phases do not yield periodic Bragg diffraction peaks as in the
above example. In Fig. 2.8 (left) an example is shown where the diffraction
peaks along the q-axis are not evenly spaced as in the case of multilayered
membranes. This corresponds to the inverse hexagonal phase (HII-phase).
The HII-phase consists of cylindrical lipid tubes with water inside and lipid
chains directed toward the outside (Fig. 2.8, right). Those cylinders arrange
into hexagonal two-dimensional lattices. X-ray reflexes can be found at posi-
tions with relative spacings of

2(h2 + k2 − hk)0.5
√

3a
i.e. at 1,

√
3, 2,

√
7, 3, . . . (2.12)

where a is the distance between the centers of the cylinders.

Fig. 2.8 Left: Diffraction pattern of an inverse hexagonal phase in a
DMPC–myristic acid 1:2 mixture at 80◦, adapted from Heimburg et al.
(1990). Right: Schematic picture of an inverse hexagonal phase.
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In Fig. 2.9 the layers yielding the first two peaks are shown. Due to the tri-
angular/hexagonal arrangement of the lipid cylinders the two peaks display
a 1 :

√
3 spacing. The further reflexes can be found using the above formula,

where h and k are integer numbers (h, k = 0, 1, 2, 3, . . .). Inverse hexagonal
phases are typically high temperature phases because only with unordered
chains one can find a reasonable packing into cylindrical structures. One finds
such cases, for e.g., phosphatidylethanolamines at high temperatures, but also
in lipid mixtures as in Fig. 2.8 (Heimburg et al., 1990).

Fig. 2.9 The first and the second diffraction peaks of an inverse
hexagonal phase are generated by the layers shown on the left and
the right.

2.3.2
Cubic Phases

In cubic phases the membranes arrange in three-dimensional lattices. Diffrac-
tion peaks are found at ratios of

(h2 + k2 + l2)0.5

a
i.e. at 1,

√
2,
√

3, 2,
√

5,
√

6,
√

8, 3, . . . (2.13)

where h, k and l are integer numbers (h, k, l = 0, 1, 2, 3, . . .). There are several
different cubic phases. In Fig. 2.10 a cubic phase of the space group “Im3m”
is shown. The different cubic space groups differ in peak intensity and the
lack of a few reflections is due to symmetry considerations. In general 36
space groups of cubic lattices are possible. They correspond to defined ar-
rangements of lipid compartments on a cubic lattice. In lipid systems so far
six different cubic phases have been identified (Lindblom and Rilfors, 1989).
Many cubic lipid phases are bicontinuous, i.e., they have two independent
connected water volumes. The phase shown in Fig. 2.10 can be imagined as
a cubic packing of lipid vesicles that are connected at points where they have
closest contact. This phase also has two disconnected continuous water vol-
umes.
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Fig. 2.10 Left: Diffraction pattern of a cubic phase in a DMPC–myristic
acid 1:2 mixture at 49◦, adapted from Heimburg et al. (1990). Right:
Schematic picture of one of the possible cubic phases (space group
Im3m, adapted from Lindblom and Rilfors (1989) with permission from
Elsevier).

2.3.3
Sponge Phases

Topologically sponge phases resemble cubic phases, but they lack the peri-
odic three-dimensional structure (Fig. 2.11). For this reason the sponge phase
does not display Bragg peaks. Sponge phases usually display a very high wa-
ter content and have first been identified in detergent systems (Strey et al.,
1990a,b). They are optically transparent and viscous, in contrast to vesicular
structures that are opalescent and of low viscosity. It has been proposed that

Fig. 2.11 Schematic drawing of a sponge phase (from Schneider et al.
(1999)).
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the extended lipid phases occurring in the phase transitions of charged lipid
membranes (e.g., dimyristoyl phosphatidylglycerol, DMPG) may be sponge
phases. They are discussed further in Chapter 15.
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2.4
Summary: Key Ideas of Chapter 2

1. Lipids form many different phases, e.g., micelles, bilayers, and multilay-
ers.

2. The geometry and the distribution of chemical groups within the phase
can be investigated using X-ray or neutron diffraction that yields infor-
mation on electron densities.

3. Together with neutron diffraction one can localize the phosphate groups
at the interface with water while the hydrocarbon tails are located in the
membrane interior.

4. In multilayers the individual bilayers are separated by a water layer that
in the case of phosphatidylcholines is about 2 nm thick. Multilayers dis-
play a periodic diffraction peak spacing typical for such lamellar struc-
tures with periodicity in only one dimension.

5. In X-ray diffraction one also finds phases that do not display periodic
spacings in one dimension, for example the inverse hexagonal phase
that consists of inverted lipid cylinders. These cylinders pack into a

two-dimensional triangular lattice.

6. Cubic phases display crystal packing in three dimensions and yield typi-
cal diffraction peaks. In total 36 cubic space groups exist but only six dif-
ferent cubic lipid phases have been found so far. They often display very
large spacings corresponding to the packing of vesicle-like subunits.

7. Some cubic phases are bicontinuous. The continuous lipid membrane
surface separates two different continuous water volumes.

8. In detergent systems and possibly in some lipid membrane systems
sponge phases exist. Topologically, they resemble cubic phases. How-
ever, they do not display crystal symmetry and sharp diffraction peaks
in X-ray or neutron experiments.
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3
The Composition of Biological Membranes

Biological membranes display complex compositions with hundreds of dif-
ferent lipids and proteins. This chapter introduces the chemical nature of the
lipids and some principles of their distribution. It will be shown that the
lipid composition varies between different cells and even between different
organelles of the same cell. They are also distributed asymmetrically between
the two monolayers. It will also be demonstrated that the lipid composition
changes as a function of growth conditions, i.e., if ambient temperature, pres-
sure, or the polarity of the aqueous medium are changed.

3.1
Composition of Membranes

Lipids are small amphiphilic molecules with a hydrophobic hydrocarbon re-
gion and a hydrophilic head group (Fig. 3.1). In water they spontaneously

Fig. 3.1 Most lipids possess a polar head group that is exposed to
water and an apolar chain region forming the membrane interior.



30 3 The Composition of Biological Membranes

form aggregates, mostly bilayer membranes. The structure of membranes was
introduced in more detail in Chapter 2. The lipids of biological organelles dis-
play a rich wealth of chemical structures. Even though most lipids possess
two hydrocarbon chains and one hydrophilic head group, the composition of
the chains and the head group can vary significantly. Interestingly, the lipid
composition is very different in different cell types of the same organism, or
even in different organelles of the same cell. Seemingly, the lipid composition
responds to changes in intensive thermodynamic variables (see Chapter 4)
such as temperature, pressure, pH, or the concentration of solvents. The rea-
son for this is not completely clear. However, the physical rationale is a key
issue of this tutorial.

3.2
Head Group Composition

In Figs. 3.2 and 3.3 various lipids with different head groups are shown. Fig-
ure 3.2 shows the phospholipids that are the most abundant kind of lipids.

Fig. 3.2 Head group structures of some phospholipids with palmitic
fatty acid chains: phosphatidylcholine (DPPC), phosphatidylethanol-
amine (DPPE), phosphatidylglycerol (DPPG), phosphatidylserine
(DPPS), phosphatidic acid (DPPA), and cardiolipin (with four chains
and two phosphate groups).
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Fig. 3.3 Some lipids without phosphate groups: sphingomyelin, ce-
ramide, dipalmitoylglycerol (DPG), palmitic acid (PA), and the three
sterols cholesterol, ergosterol, and lanosterol.

Phospholipids are typically glycero lipids, i.e., they have two fatty acids
bound to the first and second positions of a glycerol molecule, while the
phosphate-containing head group is bound to the third position. Therefore,
a lipid with a phosphatidylcholine head group and two palmitoyl chains is
called 1,2 palmitoyl-glycero-sn-3-phosphocholine—or simpler—dipalmitoyl
phosphatidylcholine (DPPC). Most lipids display chirality and the chiral cen-
ter is the center carbon of the glycerol backbone. In monolayers, this chirality
leads to the formation of chiral domains that can be seen in light microscopy
(see Chapter 6, Fig. 13.6). Among the lipids shown in Fig. 3.2, cardiolipin is
special because it is a dimer of two phospholipids. It is found in high concen-
trations in mitochondrial membranes. While phosphatidylcholine and phos-
phatidylethanolamine are zwitterionic (i.e., they do not carry a net charge at
neutral pH) the other four lipid species are negatively charged. Cardiolipin
even carries two negative charges. Positively charged lipids do not occur in
nature. However, some synthesized positively charged lipids are used for
drug delivery purposes since they bind DNA (Rädler et al., 1997) and other
negatively charged molecules.
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The lipids shown in Fig. 3.3 are not phospholipids. Sphingomyelin and
ceramide do not have a glycerol backbone. These lipids often occur with
long saturated chains and are claimed to be relevant for the formation of mi-
crodomains in biological cells (rafts, see Section 9.5). Diacyl glycerols have
only a very small head group consisting of an –OH group. Such lipids seem
to play a role in tumor growth activation. Membranes also contain small frac-
tion of monomeric fatty acids of which palmitic acid is shown. Further im-
portant lipids not shown in Figs. 3.2 and 3.3 are glycolipids, gangliosides and
lipopolysaccharides.

Very important are the sterols. Shown here is cholesterol that forms up to 20
wt.% of erythrocyte membranes and other plasma membranes. Ergosterol and
lanosterol are very similar to cholesterol. While cholesterol is mainly found in
animal cells, ergosterol is an important component in fungal plasma mem-
branes (Hsueh et al., 2005), and lanosterol is the sterol of procaryotes and the
chemical precursor of the other two sterols (Henriksen et al., 2006). The sex
hormones,, e.g., testosterone and progesterone, are derivatives of cholesterol
(not shown).

The lipid head group distribution of various cells and organelles is given in
Table 3.1 (Jamieson and Robinson, 1977). It can be seen that different mem-
branes also display different lipid compositions. One of the main themes of
this book is to show that these differences influence the physical features of
membranes. For instance, mitochondria contain about 14% cardiolipin (with
two net negative charges) while no other organelle contains more than minute
amounts of this lipid. This makes mitochondrial membranes highly charged
(Chapter 11). The myelin sheet of nerves has a three times larger cholesterol
concentration than the neuronal membranes. Cholesterol is known to abolish
chain melting transitions above about 10–15 mol% while up to 10 mol% the
influence is very small (see Chapter 7)

Tab. 3.1 Head group composition of the membranes of some mammalian liver cells, erythro-
cytes , and nerve cells in weight percent. Adapted from Jamieson and Robinson (1977). Ab-
breviations: PC = phosphatidylcholines, PE = phosphatidylethanolamines, PS = phosphatidyl-
serines, PI = phosphatidylinositols, SM = sphingomyelin, CL = cardiolipin.

Membrane PC PE PS PI SM CL Glycolipid Cholesterol Others

Erythrocyte (human) 20 18 7 3 18 – 3 20 11
Plasma (rat liver) 18 12 7 3 12 – 8 19 21
ER 48 19 4 8 5 – tr 6 10
Golgi 25 9 3 5 7 – 0 8 43
Lysosome 23 13 – 6 23 ≈ 5 – 14 16
Nuclear membrane 44 17 4 6 3 1 tr 10 15
Mitochondria 38 29 0 3 0 14 tr 3 13
Neurons 48 21 5 7 4 – 3 11 1
Myelin 11 17 9 1 8 – 20 28 6



3.3 Hydrocarbon Chain Composition 33

3.3
Hydrocarbon Chain Composition

The hydrocarbon chain composition of lipid membranes is also very diverse.
They vary in chain length and the degree of saturation. The most abundant
fatty acids are shown in Fig. 3.4. The corresponding trivial names are ex-
plained in Table 3.2. A chain denoted with 18:1 denotes a chain with 18 car-
bons with one double bond, while 18:0 denotes a chain without double bond.
Lipids containing double bonds in their chains are called unsaturated lipids
and lipids without double bonds are saturated lipids.

Fig. 3.4 A selection of saturated and unsaturated fatty acids that form
the hydrocarbon chains of lipids.

Tab. 3.2 Trivial names of some common fatty acids.

Trivial name Chain length: Position of
number of double bonds unsaturations

Lauric 12:0
Myristic 14:0
Myristoleic 14:1
Palmitic 16:0
Palmitoleic 16:1 9-cis
Stearic 18:0
Oleic 18:1 9-cis
Linoleic 18:3 6-cis, 9-cis, 12-cis
Arachidic 20:0
Aracidonic 20:4 5-cis, 8-cis, 11-cis, 14-cis
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In biological membranes, the chain composition is different for lipids with
different head groups. In Table 3.3 we show the distribution of different hy-
drocarbon chains among lipids of erythrocytes with different head groups
(Jamieson and Robinson, 1977). It can be seen, for instance, that in this cell
type phosphatidylcholines tend to have relatively short chains between 16 and
18 carbons. The sphingomyelins tend to have long chains with 24 carbons.

Tab. 3.3 Distribution of fatty acid chains of erythrocyte for different head group lipids given in
weight percent. Taken from Jamieson and Robinson (1977).

Lipid head 16:0 18:0 18:1 18:2 20:3 20:4 22:0 22:4 22:5 22:6 24:0 24:1
group

PC 31 12 19 22 2 7 – – 2 – – –
PE 13 12 18 7 2 24 2 8 4 8 – –
PS+PI 3 37 8 – 3 24 3 4 3.5 10 – –
SPHM 24 6 – 3 – 1.4 9.5 – – – 23 24
Total 20 17 13 9 1.5 13 2 3 2 4 5 4

The chain composition is also different in different organelles of the same
cell. In Table 3.4 this is shown for liver cells (White, 1973). It can be seen that
the abundance of 15:0 carbon chains is about 37 wt.% in the plasma membrane
while it is about 27% in the mitochondrial membranes. 16:1 chains form about
31% of the chains in the plasma membrane and only 18% of the mitochondrial
membranes. Lipid compositions of subcellular membranes have also been
studied by Zinser et al. (1991). The relation between composition and function
has been reviewed by Spector and Yorek (1985). For further reading the article
by Sackmann (1995) is recommended.

Tab. 3.4 Fatty acid compositions of the membranes of some organelles from rat liver in weight
percent. Taken from White (1973) and Gennis (1989).

Membrane 14:0 15:0 16:0 16:1 17:0 18:0 18:1 18:2 20:3 22:4 22:6

Mitochondria (outer) 0.4 27.0 4.1 21.0 13.5 13.5 – – 1.1 15.7 3.5
Mitochondria (inner) 0.3 27.1 3.6 18.0 16.2 15.8 – – 1.0 18.5 3.8
Plasma 0.9 36.9 – 31.2 6.4 12.9 tr tr – 11.1 –
Smooth ER 0.4 28.6 3.1 26.5 10.6 14.9 – – 1.4 14.0 0.7
Rough ER 0.5 22.7 3.6 22.0 11.1 16.1 – – 1.8 19.7 2.9
Golgi 0.9 34.7 – 22.5 8.7 18.1 tr tr – 14.5 –

3.4
Asymmetry Across Membranes

The lipid composition is not only different in different cell types and or-
ganelles but also within the two leaflets of the same membrane. This is shown
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in Fig. 3.5 for erythrocyte membranes (Rothman and Lenard, 1977). Many cells
display voltage or pH gradients across their plasma membranes. The resting
potential of a nerve cell is around −70 mV. These voltage differences are re-
flected in the distribution of the charged lipid on the inner and outer mem-
brane. Further, there are ATP-consuming active processes that influence the
lipid distribution. In Fig. 3.5 it can be seen that negatively charged phospha-
tidylserines are predominantly located on the inner leaflet of the erythrocytes.
The same is true for the phosphatidylethanolamine. Phosphatidylcholines
and sphingomyelins are rather found on the outer leaflet. This indicates that
physical properties are different on the two sides of the membranes and that
thermodynamic forces act across membranes, e.g., by electrostatic field gradi-
ents or by differences in chemical potential.

Fig. 3.5 The composition of membranes may be different in the outer
and the inner leaflet of the membrane. In erythrocytes phosphatidyl-
cholines and sphingomyelin are found mostly on the outside (exoplas-
mic) leaflet while phosphatidylethanolamine and phosphatidylserine
are found on the inside (cytoplasmic) leaflet. Data adapted from Roth-
man and Lenard (1977).

It will be shown later that the lipid composition is not even homogeneous
within one monolayer leaflet. Lipids tend to segregate into domains due to
phase separation phenomena (see Chapters 7 and 8).

3.5
Dependence of Lipid Composition on Growth Temperature

Lipid membranes display melting transitions. Such transitions depend on the
chain length and the degree of saturation (i.e., the number of double bonds
in the chain). The longer the chains the higher the melting point. However,
double bonds in a chain drastically lower the melting temperature. DOPC has
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a melting temperature around −20 ◦C while DSPC has a melting tempera-
ture of about 53 ◦C. The only difference between these lipids is a double bond
between carbons 9 and 10 in the oleoyl chains of DOPC. Much of this book
is dedicated to the melting phenomenon. It is assumed that many biologi-
cal phenomena can be understood on the basis of such transitions—including
nerve pulse propagation (Chapter 18), anesthesia (Chapter 19), and membrane
permeability (Chapter 17).

The likely important role of temperature-dependent transitions leads imme-
diately to the question how cells and organisms respond to changes in physi-
cal conditions that influence such transitions. In fact, the lipid composition of
biomembranes responds sensitively to changes in temperature and pressure
(see the next section). This is shown in Table 3.5 for the example of trouts
raised at two different temperatures, 5 ◦C and 20 ◦C. The data in this table are
a selection of much more detailed data from Hazel (1979). The lipid composi-
tion of trout livers changes with growth temperature. The general trend in the
data is that saturated chains are more abundant in trout livers from the 20 ◦C
experiment, while the poly-unsaturated chains are more abundant in the 5 ◦C
experiments. This reflects the trend of the melting temperatures of such lipids.
Unsaturated lipids melt at significantly lower temperatures than lipids with
saturated chains.

Tab. 3.5 Lipid composition as a function of growth temperature: Fatty acid compositions of the
membranes of trout livers are given in weight percent of the respective head group species.
The trouts were acclimated at 5 ◦C and 20 ◦C. Some especially strong changes are highlighted
in bold letters. Data are a selection from Hazel (1979).

Fatty Total Total PC PC PE PE SM SM CL CL
Acid 5◦C 20◦C 5 ◦C 20 ◦C 5 ◦C 20 ◦C 5 ◦C 20 ◦C 5 ◦C 20 ◦C

16:0 16.52 22.37 18.19 27.50 9.57 11.09 18.15 26.34 16.58 23.90
18:0 7.62 6.10 3.86 3.51 5.81 9.66 5.44 4.72 4.55 5.22
18:1 12.75 14.67 12.39 14.26 18.01 18.74 9.21 13.56 12.96 12.15
20:5 4.06 2.24 3.35 2.72 8.46 2.34 25.76 0.77 1.27 0.12
22:6 35.20 33.43 40.95 32.83 32.90 32.41 3.17 9.04 15.38 5.54

Avery et al. (1995) reported changes in lipid composition of amoebae upon
changes in growth temperature. They found that the order within the mem-
brane chains correlated with the changes in composition. A further study on
temperature effects in bacillus subtilis membranes was made by van de Vossen-
berg et al. (1999). In these experiments the lipid composition changed sig-
nificantly with the growth temperature. Simultaneously the chain melting
transition of the extracted lipids changed such that bacteria grown at lower
temperatures also display melting transitions of their lipids at lower temper-
atures (data not shown). A very similar observation can be made when in-
vestigating the membranes of E. coli. In Fig. 3.6 the melting profiles of the
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Fig. 3.6 The membranes of E. coli display different lipid melting prop-
erties when grown at different temperatures. The lipid melting transi-
tion, shaded gray in this heat capacity profile, is always found slightly
below growth temperature. The peaks at high temperature are protein
unfolding peaks. Unpublished data from T. Heimburg, D. Pollakowski
and M. Konrad/MPI Göttingen.

isolated membranes of E. coli grown at 37 ◦C and at 15 ◦C are shown. The na-
tive membranes are intact, i.e., they contain all their proteins and are not lipid
extracts from those membranes. It can be seen that the melting transition in
such membranes can be found slightly below growth temperature. The lipid
composition in these membranes has changed in order to accommodate for
new environmental conditions. This is very similar to the above case with
bacillus subtilis membranes. It therefore seems as if the changes in membrane
composition follow a very rational purpose in adjusting the physical state of
the membrane to the ambient environmental conditions.

The thermal adaptation of lipid composition and its possible physicochem-
ical role has also been reviewed in Hazel (1995).

3.6
Dependence of Lipid Composition on Pressure

Phase transitions in membranes depend on more variables than just tempera-
ture. Among those are also pressure, pH, and the chemical potentials of ions
such as Ca2+. Pressure, as an example, shifts melting temperatures towards
higher temperatures (see Chapter 6). Changes in pressure change the physical
state of lipid membranes (Chapter 6) and it seems likely that the membranes
of the organisms have to adapt to pressure changes.
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Tab. 3.6 Lipid composition in weight% as a function of growth pressure: fatty acid compo-
sitions of membranes from the barophilic marine bacterium CNPT3 at 2 ◦C. Growth pres-
sures were 1, 172, 345, 517, and 690 bar, respectively. Data are a selection from DeLong
and Yayanos (1985).

Fatty 1 bar 172 bar 345 bar 517 bar 690 bar
acid

14:1 20.0 19.6 17.4 13.7 11.5
14:0 7.5 5.7 5.2 4.8 3.5
16:1 40.2 44.0 47.9 46.8 56.3
16:0 25.2 22.2 20.7 18.7 18.5
18:1 5.5 5.9 6.6 11.0 7.3
18:0 1.5 2.5 2.1 4.9 2.8

In an experiment by DeLong and Yayanos (1985) the dependence of the lipid
composition of deep-sea bacteria on the hydrostatic pressure during growth
has been investigated. The pressure dependence of lipid membrane states is
not very pronounced and it needs relatively high pressures to see reasonable
changes. Typically, 40 bar of pressure changes melting transitions by about 1 K
(see Section 6.3). Therefore, to see similar changes as in the trout experiment
above (15 K temperature difference) one requires about 600 bar. This is the
pressure range investigated by DeLong and Yayanos (1985). In Table 3.6 the
results of the pressure study are shown. The result is most clearly seen when
comparing the abundance of 16:0 chains and 16:1 chains at different pressures.
While increasing pressure is accompanied by an increase of the concentration

Fig. 3.7 The ratio of unsaturated to saturated fatty acid chains of the
deep sea bacterium CNPT3 is linearly dependent on the hydrostatic
pressure at which they were cultivated (cf. also values in Table 3.6).
Adapted from DeLong and Yayanos (1985).
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of unsaturated chains, the abundance of saturated chains is lowered. This is
also reflected in Fig. 3.7 where the pressure dependence of the ratio between
unsaturated and saturated chains is given. As mentioned above unsaturated
chains lower melting point (thus compensating the pressure increase) while
saturated chains increase melting points and are predominantly found at low
pressures.

A comparable study by Kaneshiro and Clark (1995) came to the conclu-
sion that pressure shifted the temperature dependence of lipid fluidity by ca.
10 K/500 bar toward more ordered states. This corresponds well with the
above-mentioned pressure dependence of transitions of about 1 K/40 bar.

3.7
Dependence of Lipid Composition on Changes in Other Thermodynamic
Variables

Pressure and temperature are not the only intensive variables in thermody-
namics. There are also other variables such as the electrostatic potential,
and the chemical potentials of all components of the biological systems. The
presence of ethanol lowers melting temperatures (see Chapter 19) Therefore
ethanol should result in a similar change in lipid composition to those caused
by temperature increase. In a careful study Ingram (1977) investigated the
influence of a large number of solvents and other chemicals present in the
growth medium (in total 23 substances) on the lipid composition of E. coli
membranes. It was shown that both head group and chain composition are
affected. When grown in a medium containing 48 mM acetone the cardiolipin
concentration changes 5-fold from 1.3% to 8.4%. When grown in 38 mM ani-
line the concentration of 18:1 chains drops from 31.9% to 6.7%. In the pres-
ence of 20 mM sodium benzoate the fraction of 12:0 chains increased from 4%
to 52% while simultaneously the fraction of 16:1 chains drops from 34.1% to
5.9%. These are drastic changes. Interestingly, the effect of anesthetics follows
the same dependences on changes in the thermodynamic variables as does the
lipid composition, meaning the increase in solvent concentration and increase
in hydrostatic pressure act on the anesthetic potency in the opposite direction.
This will be used in Chapter 19 to put forward a thermodynamic explanation
of anesthesia.

It is likely that changes in other thermodynamic variables will result in com-
parable changes. The lowering of ambient pH is expected to result in changes
similar to those of pressure increase. This is because a certain fraction of the
lipids are negatively charged and can be protonated. Protonation of charged
lipids increases their melting temperature (this is explained in detail in Chap-
ter 11).
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3.8
Summary: Key Ideas of Chapter 3

• Most lipids in biological membranes are phospholipids with glycerol
backbone that possess a phosphate-containing head group and two hy-
drocarbon chains. One also finds sphingomyelin, ceramide, fatty acids,
and other lipids in smaller quantities. A special case is the sterols, e.g.,
cholesterol and lanosterol. Their abundance in some membranes can be
up to 20 wt.%.

• Lipid head groups differ in their net charge, their size, and their polarity.

• Lipid chains differ in length and the degree of unsaturation, i.e., in the
number of double bonds. Lipid chains are apolar.

• The lipid composition (and also the protein composition) of different
biological membranes is specific for different cell types and even for the
different organelles within one cell and it varies considerably. This is
true for both head group composition and the chain composition.

• The lipid composition is strongly influenced by growth temperature and
by ambient pressure. The chain composition adapts such that the melt-
ing point of membranes shift in the same direction as the change in either
temperature or pressure.

• The change in other thermodynamic variables also influences the lipid
composition, e.g., the chemical potentials of solvents.

• Lipid compositions change in a coherent manner as a response to
changes in the environmental conditions that can be expressed in terms
of intensive thermodynamic variables. Even though this is not under-
stood so far in all aspects, this book provides numerous examples that
demonstrate the physical rationale behind such changes.
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4
Introduction Into Thermodynamics

Thermodynamics is one of the fundamental disciplines in physics. It provides
the basic definition of functions of state, e.g., internal energy and entropy, or
intensive or extensive variables such as temperature, pressure, and volume.
One can divide thermodynamics into subdisciplines, which are equilibrium
thermodynamics, and linear and nonlinear nonequilibrium thermodynam-
ics. Equilibrium thermodynamics defines relationships between functions of
state and the variables, which are strictly true in all fields of physics of equili-
brated systems, from particle physics and quantum mechanics to cosmology.
Naturally it is also true for all biological matter that does not undergo rapid
changes. Since it is a theory based on first principles without approximations,
one can derive surprising relations between various observables.

Thermodynamics is a macroscopic theory and is therefore in particular con-
structed to describe the behavior of ensembles of many molecules, or of single
molecules observed over long time intervals. The latter case relies on the er-
godic theorem stating that averages over long time are similar to averages
over many identical systems. Practically this means that instead of observing,
for instance, many lipid vesicles of identical size at a given time (as it is usu-
ally done in most experiments), one can also observe one single vesicle over
a long period of time, as it is usually done in simulations of membranes. We
will make use of the ergodic theorem in Chapter 8 when we introduce Monte
Carlo simulations.

Below we will provide an introduction those thermodynamic terms that are
important for membranes and the topics discussed in this book.

4.1
Functions of State

A common experience of everyday lab work is that the preparation of sam-
ples for experiments requires experience and the knowledge of experts. Many
lipid membrane preparations require organic solvents in the preparation pro-
cess, which are removed in a later stage of the sample preparation by drying
the sample in a desiccator. Sometimes, result seems to depend on the use of
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a specific solvent during the preparation, and another solvent seems less suit-
able. Now it is a fundamental requirement of physics that the outcome of an
experiment should neither depend on the person who is performing the ex-
periment, nor on the preparation history of the sample, as long as the samples
are identical. This fundamental requirement is expressed in thermodynamics
by the introduction of the term “function of state.” Let us assume a function,
Z, that describes the state of the membrane system at given values of the ther-
modynamic variables. Z is called a function of state if the following relation
is fulfilled:∫ b

a
dZ independent of integration path (4.1)

meaning that the integral over dZ only depends on the start and the end
points, a and b, but not on the particular way how the system shifted from a
to b. In practical terms this means that if we start with a dry powder of lipids
and we end with vesicles of this lipid in an aqueous dispersion, the value of
the function Z should not depend on which organic solvent was used during
an intermediate process of the sample preparation. Equation (4.1) can also be
expressed as∮

dZ = 0 independent of integration path (4.2)

One of the most important functions of state is the internal energy, E.

4.2
First Law of Thermodynamics

Thermodynamics relies on two fundamental laws of physics. The first is con-
servation of the internal energy, E, expressed through the relation

dE = dQ + dW (4.3)

where dE is the change of internal energy, dQ is the change of heat of the
system, and dW is the work performed on the system. Heat and work are the
only two contributions to the internal energy. The work can act on a system in
many ways, e.g.,

−p dV work to change the volume (4.4)

is the work needed to change the volume, for instance of a lipid membrane,
against the bulk pressure, p. This term becomes important later when the
compressibility of a membrane is introduced. Very similar contributions are

−Π dA work to change the area (4.5)
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with membrane area, A, and lateral pressure, Π, and

− f dl work to change the length of a spring (4.6)

with the force, f , and the length, l. Expression 4.5 relates to the work necessary
to change the area, which becomes important in the lateral compressibility
and the bending elasticity, and expression (4.6) relates to the work necessary
to stretch, for instance, a membrane cylinder.

A further contribution to the work performed on a system is

Ψ dq work to charge a capacitor (4.7)

with Ψ being the electrostatic potential of a membrane, and dq being the
change of the charge on the membrane. This term is important in electrostatic
theory, but also in the theory of nerves, where the membrane is considered
to be a capacitor that is charged in a time-dependent electrostatic field. There
are many other contributions to the work, like dipolar orientation in electric
or magnetic fields, etc., which do not play an important role here.

We can summarize that the work performed on a thermodynamics system
(e.g., a membrane) is

dW = −p dV − Π dA − f dl + Ψ dq + · · · (4.8)

In the epochal work of Carnot (1796–1832) (Carnot, 1824) it was shown that
neither the heat Q nor the work W are functions of state. This leads to the pos-
sibility of the construction of heat engines that transform heat into work, and
it is probably not by accident that Carnot’s work was written after the revo-
lutionary success of the heat engines first built by Henry Watt. The fact that
heat and work are not functions of state leads to the finding that the efficiency
of a heat engine (or a motor) depends on the construction principle of the en-
gine. Carnot could derive that the efficiency of the heat engine only depends
on the temperature differences, making engines with large temperature dif-
ferences more efficient than engines with small temperature differences. This
maximum efficiency, however, is only obtained when every single step in the
Carnot cycle is fully reversible. This is generally not the case, due to friction
or losses of heat into the environment. Many processes in biology convert the
free energy contained in ATP into biological function, e.g., into the movement
of myosin molecules on actin filaments in a muscle. This conversion of the free
energy in ATP into physical work can also be considered as an engine with an
efficiency that depends on the experimental conditions.

The differential of the internal energy is the sum of the products of intensive
variables with the differentials of extensive variables. Intensive variables
are those thermodynamics variables that are independent of system size (e.g.,
pressure p, temperature T, electrostatic field Ψ, . . . ) while extensive variables
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are defined as being proportional to system size (e.g., entropy S, volume V,
charge q, . . . ).

4.3
Second Law of Thermodynamics

A major step in understanding the fundamental functions of thermodynam-
ics was made by Rudolf Clausius (1822–1888) by stating that for the fully re-
versible steps in the heat engine

dSr ≡ dQ
T

(4.9)

is a function of state meaning that∮
dSr ≡

∮ dQ
T

= 0 (4.10)

The function Sr was called the entropy (the index r stands for reversibility).
In other words, the entropy is the function of state that relates the changes of
heat, dQ, to the temperature, T. As W. Thompson (Lord Kelvin, 1824–1907))
later indicated, the above statement also involves a fundamental definition of
the nature of temperature. To his honor, the absolute temperature scale now
carries the unit K (Kelvin).

As mentioned, the efficiency of a realistic heat engine is usually smaller than
that of the ideal engine due to losses of heat that cannot be used to reversibly
perform work. These losses must always be larger than zero. The part of
the entropy change of a system that cannot be used to perform work is now
defined to be dSi (the index i stands for irreversible). Equation (4.9) can now
be rewritten as

dSr + dSi ≥ dQ
T

with dSi ≥ 0 (4.11)

The irreversible part of the entropy induces changes in the state of the sys-
tem until no further spontaneous changes occur. This final state is called the
thermodynamic equilibrium. In thermal equilibrium the function S is in a
maximum, and dSi = 0. The irreversible part of the entropy is linked to all
spontaneous processes inside a system, which do not lead to heat exchange
with the environment or the performance of work on an external system.

With the help of Eq. (4.9) the first law of thermodynamics (for reversible
changes) of the system can now be rewritten as

dE = T dSr − p dV (−Π dA − f dl + Ψ dq + · · · ) (4.12)

In most parts of this book we will consider reversible processes and omit the
index “r.” Reversible means that a process that converts heat into work can
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Fig. 4.1 Left: The entropy, S, depends on the irreversible contribu-
tion, Si, that displays close to the thermal equilibrium approximately
a quadratic dependence on a reaction variable. The maximum of this
function corresponds to thermal equilibrium. Right: If one considers
two states of the system, a and b, they may display different maxima of
the entropy at different values of the reaction variable, ξ.

be reversed such that the application of the same amount of work leads to
a heat release of identical magnitude. Also, to simplify the writing we will
often denote the differential of the internal energy as dE = TdS − pdV and
tacitly omit all the other contributions to the work (i.e. the terms in brackets
in Eq. (4.12) ). But it goes without saying the all the contributions to the work
have to be taken into account.

4.4
Other Functions of State

The internal energy, E and the entropy, S, are functions of state. The products
pV and the TS are also functions of state. Now, the following combinations
are also functions of state:

F ≡ E − TS Helmholtz free energy

H ≡ E + pV enthalpy

G ≡ E + pV − TS Gibbs free energy

(4.13)
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Of course, there are many more functions of state that could be defined, but
the three functions above are especially useful. The differentials of these func-
tions are

dF = dE − d(TS) = · · · = −S dT − p dV

dH = dE + d(pV) = · · · = T dS + V dp

dG = dE + d(pV) − d(TS) = · · · = −S dT + V dp

(4.14)

Now it can be immediately seen that

dF = 0 for T, V = const.

dG = 0 for T, p = const.
(4.15)

This means that under conditions of constant temperature and constant vol-
ume the Helmholtz free energy is either in a minimum or in a maximum. Since
the entropy in thermal equilibrium is in a maximum, the Helmholtz free en-
ergy is in a minimum. Thus, the introduction of the Helmholtz free energy is
a very useful tool to determine the thermodynamic equilibrium under condi-
tions of constant volume and constant temperature.

Similarly, in thermal equilibrium the Gibbs free energy is in a minimum
under conditions of constant pressure and constant temperature. The free en-
ergies describe the directions of spontaneous processes. The internal energy
does not do that. Reactions in general approach free energy minima and not
internal energy minima. The internal energy under no conditions can indicate
the direction of a spontaneous process. Therefore, the physical contents of the
first law and the second law are very different.

In contrast to the internal energy E and the enthalpy H the two free ener-
gies F and G can be used to determine where the thermal equilibrium can be
found. If one is undecided which of the two free energies to use for calcula-
tions related to a given experiment, one has to look at what kind of experi-
ment one intends to perform. In biophysics, under nearly all conditions the
experiments are performed at constant temperature (e.g., room temperature)
and at constant pressure (usually at atmospheric pressure). Under these cir-
cumstances, the Gibbs free energy is the function that determines the thermal
equilibrium. The enthalpy H plays a similar role for the Gibbs free energy, as
the internal energy E does for the Helmholtz free energy.

The Helmholtz free energy is a useful quantity for experiments performed
under conditions of constant temperature and volume, for example in a closed
container. Usually, this is not the case in biophysical experiments.

But what if during an experiment temperature and pressure do not stay con-
stant? Well, under these conditions the Gibbs free energy is no useful property
and cannot be used to determine the thermal equilibrium. Thus, one should
always be careful to define experimental conditions properly, for example by



4.5 The Chemical Potential 47

using an external temperature control (water bath) and by not closing reaction
chambers.

4.5
The Chemical Potential

Equation (4.12) showed that the internal energy changes depend on changes in
entropy, volume, area, etc. No mention was so far of the number of particles.
Let us consider a systems with many different particle species (e.g., different
lipids in a membrane) with quantity ni. One should expect that the internal
energy also depends on the number of particles, or the size of the system. To
account for the system size, the chemical potential has been introduced such
that

μi =
(

∂E
∂ni

)
S,V,nj,...

(4.16)

The chemical potential thus is an intensive quantity while the number of par-
ticles is an extensive variable. It follows that the full expression for the differ-
ential of the internal energy and the free energies is

dE = T dS − p dV + · · ·+ ∑
i

μidni

dF = −S dT − p dV + · · ·+ ∑
i

μidni

dG = −S dT + V dp + · · ·+ ∑
i

μidni

(4.17)

and

μi =
(

∂E
∂ni

)
S,V,nj...

=
(

∂F
∂ni

)
T,V,nj,...

=
(

∂G
∂ni

)
T,p,nj,...

(4.18)

The chemical potential is a quantity that is very important in chemical reac-
tions where the number of particles does not stay constant (Section 4.7). The
number of particles of a given species (or state) also changes in lipid melting
(Chapter 7) and in protein unfolding. Under conditions of constant pressure
and constant temperature the chemical potential is identical to the Gibbs free
energy of a standard amount of substance (in chemistry one usually takes a
quantity of 1 mol). It should be added that the chemical potential is a function
of pressure, temperature, and other intensive variables.
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4.6
The Gibbs–Duhem Equation

As mentioned in the previous section, during chemical reaction the number of
particles changes.

The Gibbs free energy is, as entropy S, volume V, enthalpy H, and internal
energy E an extensive quantity (they depend on the system size). For given
values of the intensive variables it is proportional to the size of the system,
e.g., to volume and to the number of particles. Let us now consider a system
with many species of particles of quantity ni, which is the number of moles of
the substance with index i. From integration of Eq. (4.17) at constant pressure
and temperature we obtain

G(p, T, n) = ∑
i

ni · μi(p, T) (4.19)

One can see that the chemical potential μ is identical to the Gibbs free energy
at constant pressure and temperature for 1 mol of substance. The chemical
potential therefore depends on pressure and temperature (and the other in-
tensive variables that have been omitted), but is independent of the number
of particles. The differential of the Gibbs free energy is now given by

dG(p, T, n) = ∑
i

ni · dμi(p, T) + ∑
i

μi(p, T) · dni (4.20)

Since at constant pressure and temperature dG = ∑i μidni (Eq. (4.17)) it fol-
lows that

∑
i

nidμi = 0 (4.21)

This is the Gibbs–Duhem relation. This relation will be used in Section 7.2.1
to derive Gibbs’ phase rule.

4.7
Chemical Equilibrium in Solutions

For 1 mol of noninteracting particles of species i the ideal gas law holds:
pi · V = R · T. A pressure change (as induced by a change in volume per par-
ticle) at constant temperature and constant number of particles results in a
change of the chemical potential (i.e., the Gibbs free energy for 1 mol of parti-
cles):

μi = μi,0 +
∫ pi

pi,0

Vdpi = μi,0 + RT ln
pi

pi,0
≡ μi,0 + RT ln

ci

ci,0
(4.22)
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(cf. Eq. (4.17)). Here the concentrations ci = ni/V = (ni pi/RT) were intro-
duced. The equivalence of partial pressures, pi, and concentrations in solu-
tions, ci, has first been expressed by van’t Hoff (1887). The standard state po-
tential μ0 is the Gibbs free energy of 1 mol of particles under standard condi-
tions (c0 = 1 mol/l). In thermal equilibrium the Gibbs free energy at constant
pressure and constant temperature is at minimum,

∑
i

μidni = 0 (4.23)

In a unimolecular reaction of the form A −⇀↽− B, with dnA = −dnB, we obtain
the following equilibrium:

μAdnA + μBdnB = (μA − μB) dnA = 0 −→ μA = μB (4.24)

Such a unimolecular reaction could for instance be the thermal unfolding of a
protein. In thermal equilibrium the chemical potentials of species A and B are
therefore equal. From this follows

μA,0 + RT ln
cA

c0
= μB,0 + RT ln

cB

c0
→ cB

cA
= exp

⎛
⎜⎜⎜⎝−

Δμ0︷ ︸︸ ︷
μB,0 − μA,0

RT

⎞
⎟⎟⎟⎠ (4.25)

In chemical reactions the probability that a randomly chosen particle belongs
to a given species can now be linearly related to the concentration.

Similarly, for a bimolecular reaction A + B −⇀↽− C

cC

cA · cB
=

1
c0

exp

⎛
⎜⎜⎜⎝−

Δμ0︷ ︸︸ ︷
μC,0 − μA,0 − μB,0

RT

⎞
⎟⎟⎟⎠ =

1
c0

exp
(
−Δμ0

RT

)
(4.26)

Another way of writing this equation is

[C]
[A] · [B]

=
1
c0

exp
(
−ΔG0

RT

)
(4.27)

where c0 is the standard state concentration of 1 mol/l. The chemical equi-
libria treated in the section are also known as “mass action law.” With ΔG0

we always mean the difference between the standard chemical potentials Δμ0
after and before the reaction. The standard potentials cannot be derived. They
are material properties, which must be obtained experimentally.
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4.8
Statistical Interpretation of Entropy

The statistical interpretation of the entropy is one of the most profound pro-
gresses in the development of physics. The first to point out the relationship
between entropy and statistics was Ludwig Boltzmann (1866).

Let us consider the canonical ensemble. The canonical ensemble consists
of a thermally isolated system with N compartments containing an identi-
cal number of molecules (Fig. 4.2). The compartments are in thermal contact.
However, no molecules may exchange between the compartments. Further-
more, the system is supposed to be in thermal equilibrium, assuming that
thermal equilibrium corresponds to the most likely state of the system. A
further constraint shall be that either the volume or the pressure of each com-
partment shall be a constant. Which of the two variables is constant depends
on the choice of experimental conditions. If, as usual in biophysics, the pres-
sure is constant, then we choose a constant pressure condition. Under such
conditions, each compartment possesses a defined enthalpy, Hi.

Fig. 4.2 Left: Schematic picture of a thermally isolated canonical en-
semble with N = 100. Right: A dispersion of equally sized unilamellar
vesicles can also be considered as a canonical ensemble.

Typical canonical ensembles are

• a dispersion of equally sized unilamellar vesicles,

• a diluted solution of noninteracting proteins of one species, and

• a series of simulation matrices of Monte Carlo simulation (see Sec-
tion 8.1)

In the canonical ensemble at constant pressure there shall be ni compartments
with identical enthalpy, Hi. Due to the overall boundary conditions of con-
stant total enthalpy (at constant pressure this is identical to constant total heat)
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Fig. 4.3 Left: Enthalpy states of the canonical ensemble. The num-
bers ni denote the degeneracy of each enthalpy state, Hi. Right: In
the microcanonical there is only one enthalpy state, with degeneracy
n ≡ Ω.

we find

∑ ni Hi = Htot

∑ ni = N
(4.28)

This situation is shown in Fig. 4.3 (left panel). For the canonical ensemble it
is possible to derive a relation for the probability P1 of finding a compartment
with enthalpy H1, relative to the probability P0 of finding it in the ground state
with enthalpy H0,

p1 =
P1

P0
= exp

(
−H1 − H0

kT

)
(4.29)

This is the famous Boltzmann distribution. We do not derive it here, but
derivations can be found in standard statistical thermodynamics books, e.g.,
in Hill (1960). The derivation is exclusively based on the assumptions in
Eq. (4.28) and the search for that distribution of the ni that has the highest
degeneracy (≡ probability). The probabilities in Eq. (4.29) are given relative
to the ground state with index “0.” The absolute probabilities, Pi, are given by

Pi =
pi

∑i pi
=

exp (−(Hi − H0)/kT)
∑i exp (−(Hi − H0)/kT)

(4.30)

The denominator ∑i exp (−(Hi − H0)/kT) is called the partition function, Q.
The absolute probabilities fulfill the necessary requirement that ∑i Pi = 1.

If there are many different enthalpy states (see Fig. 4.3, left), the entropy is
given by

S = −k ∑
i

Pi ln Pi (4.31)

This is also not derived here. It follows from the above considerations and
correspondence considerations with classical thermodynamics (Hill (1960)).
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Here, the index i refers to summation over each of the N individual compart-
ments.

In the microcanonical ensemble there is only one enthalpy state, H, and the
probability for each of the individual states is P = 1/N ≡ 1/Ω, where Ω is
the degeneracy of the state. The entropy is now given by

S = −k ∑
i

Pi ln Pi = −k ∑
1
Ω

ln
1
Ω

= k ln Ω (4.32)

using the Boltzmann constant k = 1.381 × 10−23 J/K. This formula is written
on Boltzmann’s gravestone (even though it was first formulated in this form
by Planck). If there is a situation where there are only two enthalpy states with
different degeneracies, Ω0 and Ω1, one can calculate the entropy difference of
the two microcanonical ensembles

ΔS = k ln
Ω1

Ω0
(4.33)

4.9
Statistical Averages

In a biophysical experiment one usually cannot directly measure the volumes,
Vi, areas, Ai, and enthalpies, Hi, of the individual states, but rather the ther-
modynamics averages over all states, each of them weighted by its Boltzmann
probability given by Eq. (4.29). We obtain for the mean enthalpy

〈H〉 = ∑
i

HiPi = ∑i Hi exp (−Hi/RT)
∑i exp (−Hi/RT)

(4.34)

Similarly, if one wants to measure the specific volume of the lipids in a vesicle
dispersion, or the area per vesicle, one in fact measures the thermodynamic
averages for volume and area given by

〈V〉 = ∑
i

ViPi = ∑i Vi exp (−Hi/RT)
∑i exp (−Hi/RT)

〈A〉 = ∑
i

AiPi = ∑i Ai exp (−Hi/RT)
∑i exp (−Hi/RT)

(4.35)

For every observable, X , we can therefore write

〈X 〉 = ∑
i
XiPi (4.36)
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4.10
Heat Capacity and Elastic Constants

Two thermodynamic quantities that are relatively easy to measure are the heat
capacity and the compressibility. These functions can in fact be used to exper-
imentally determine enthalpy and entropy changes.

4.10.1
Heat Capacity

The most direct way to measure the enthalpy of an experimental sample is
calorimetry (see Fig. 6.1 and Section 6.1.1). In a calorimeter, the heat capacity
of the sample is measured, which is defined as the uptake of heat per temper-
ature increment, usually obtained under constant pressure conditions,

cp =
(

dQ
dT

)
p

(4.37)

Since dH = dQ + Vdp, we obtain at constant pressure

cp =
(

dH
dT

)
p

(4.38)

Since also dQ = TdS, the heat capacity at constant pressure is given by

cp = T
(

dS
dT

)
p

(4.39)

From this it follows that one can determine changes in enthalpy, ΔH, and
entropy, ΔS, with temperature from the heat capacity:

ΔH =
T1∫

T0

cpdT (4.40)

ΔS =
T1∫

T0

cp

T
dT (4.41)

This is very nice since now the calorimetric determination of the heat capaci-
ties provides us with the necessary information to determine a lot of important
properties of thermodynamics systems. In this book these are basically lipid
membranes.

In the next chapters we will intensively treat lipid melting transitions. These
are transitions in membranes where a lot of enthalpy is absorbed over a tem-
perature interval much smaller than 1 K. Such transitions are described by
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their transition temperature, Tm, and the melting enthalpy. One can approxi-
mate the entropy change in such sharp transitions by

ΔS =
Tm+Δ∫

Tm−Δ

cp

T
dT ≈ 1

Tm

Tm+Δ∫
Tm−Δ

cpdT =
ΔH
Tm

(4.42)

where Δ is a small interval below and above the melting transition. This rela-
tion will be used frequently in many chapters in this book.

The heat capacity, cp, is the temperature derivative of the enthalpy at con-
stant pressure. If we perform experiments with a 10 mM (concentration of
single lipids) dispersion containing large unilamellar lipid vesicles (each vesi-
cle containing about 105 lipids), we have about 1013 vesicles/cm3. This is a
macroscopic number. Each vesicle and even each lipid will display a fixed
enthalpy at a given moment. The average enthalpy is given by Eq. (4.34), and
therefore the heat capacity is given by

cp =
d 〈H〉

dT
= . . . short calculation . . . =

〈
H2〉− 〈H〉2

R T2 (4.43)

This important relationship is called the “fluctuation theorem” and is closely
related to fluctuation dissipation (Kubo, 1966). It can easily be derived by cal-
culating the analytical derivative of Eq. (4.34). It means that the heat capacity
is proportional to the fluctuations in the system. In our example with the lipid
vesicles, the heat capacity would be given by the mean square deviation of
the vesicle enthalpy from the mean enthalpy. The existence of fluctuations in
a state around one most likely state is one of the most fundamental features
of thermodynamics. One should therefore more correctly state that the maxi-
mum entropy state corresponds to a most likely distribution of states.

4.10.2
Isothermal Volume and Area Compressibility

The heat capacity, cP, is the response function that describes how much heat
a sample takes up upon a small temperature increase at constant pressure.
Similarly, the isothermal volume compressibility is the quantity that describes
the change of the specific volume as a response of a small change in pressure
at constant temperature. It is given by

κV
T = − 1

〈V〉
(

d 〈V〉
d p

)
T

(4.44)

The mean volume is given by Eq. (4.35), which can be rewritten as

〈V〉 = ∑i Vi exp (−(Ei + p Vi)/RT)
∑i exp (−(Ei + p/, Vi)/RT)

(4.45)
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by letting Hi = Ei + p Vi at constant pressure. Therefore, the isothermal com-
pressibility is given by

κV
T = . . . short calculation . . . =

〈
V2〉− 〈V〉2

〈V〉 R T
(4.46)

This means that the isothermal volume compressibility is related to the vol-
ume fluctuations. We will later see that this leads to functional relationships
between compressibility and heat capacity that can explain a number of in-
teresting phenomena in membranes close to melting transitions, for example
ripple phase formation and the formation of extended phases in charged lipid
membranes.

Similarly, one finds for the area compressibility

κA
T = − 1

〈A〉
(

d 〈A〉
d Π

)
T

(4.47)

with the lateral pressure, Π. The same arguments as for the volume compress-
ibility can be made for the isothermal area compressibility in two dimensions
by letting Hi = Ei + Π Ai at constant lateral pressure Π. This leads to

κA
T = . . . short calculation . . . =

〈
A2〉− 〈A〉2

〈A〉 R T
(4.48)

Thus, the isothermal area compressibility of membranes is proportional to the
fluctuations in area.

4.11
Maxwell Relations

In the previous section, we have calculated the isothermal compressibilities,
κV

T and κA
T . These are the elastic constants, if the membrane is compressed

infinitely slowly, and the heat exchange between the sample and the environ-
ment is complete. However, in many important cases, a compression is so fast
that no heat exchange can take place. Such conditions are called adiabatic.
The adiabatic compressibility is an important quantity in sound propagation.
Before we derive the adiabatic compressibility, we first introduce some very
useful thermodynamics relations, the so-called Maxwell relations.

Remember that the differentials of the thermodynamic functions of state
were given by

dE = TdS − pdV + ∑
i

μidni dH = TdS − Vdp + ∑
i

μidni

dF = −SdT − pdV + ∑
i

μidni dG = −SdT + Vdp + ∑
i

μidni
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From the first relation we obtain

T =
(

∂E
∂S

)
V,ni

p = −
(

∂E
∂V

)
S,ni

and μi =
(

∂E
∂ni

)
S,V,nj �=i

and therefore also(
∂T
∂V

)
S

=
∂2E

∂S∂V
= −

(
∂p
∂S

)
V

In a similar way more expressions can be derived from dH, dF, and dG, some
of which are(

∂T
∂V

)
S

= −
(

∂p
∂S

)
V

(a)(
∂V
∂S

)
p

= +
(

∂T
∂p

)
S

(b)(
∂S
∂V

)
T

= +
(

∂p
∂T

)
V

(c)(
∂S
∂p

)
T

= −
(

∂V
∂T

)
p

(d)

(4.49)

These are the famous Maxwell relations. These equations can be used to
replace functions that cannot be measured or are difficult to measure (e.g.,
(∂S/∂p)T) by functions that can be measured (e.g., (∂V/∂T)p, which is the
volume expansion coefficient).

Some other important Maxwell relations are(
dμi

dnj

)
S,V,ni �=j

=
(

dμj

dni

)
S,V,nj �=i

(4.50)

These relations are also known as the linkage relations (Wyman and Gill,
1990). They imply a symmetric coupling between changes of the chemical
potential of species i with the change in the concentration of species j. An
example may be the chemical potential of a lipid membrane interacting with
a protein. The influence of the protein on the chemical potential of the lipid
membrane equals the influence of the lipid membrane on the chemical poten-
tial of the proteins. Such relationships can generated between all molecules
in biological cells, which indicates the mutual coupling of the activities of all
molecular species.

4.12
Adiabatic Compressibility

The adiabatic compressibility is the compressibility in the absence of heat ex-
change, dQ = 0. Since for reversible processes dQ = SdT, this also means
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dS = 0. The adiabatic compressibility, κS, therefore is given by

κS = − 1
V

(
∂V
∂p

)
S

(4.51)

In this equation we have two extensive variables, V and S, and two intensive
variables, p and T. We can write

dV =
(

∂V
∂p

)
T

dp +
(

∂V
∂T

)
p

dT (4.52)

and

dS =
(

∂S
∂p

)
T

dp +
(

∂S
∂T

)
p

dT (4.53)

If we consider constant entropy (dS = 0), we can eliminate dT from Eq. (4.53)

dT = −
(

∂S
∂p

)
T(

∂S
∂T

)
p

dp for S = const (4.54)

which can now be inserted into Eq. (4.52)

dV =
(

∂V
∂p

)
T

dp −
(

∂V
∂T

)
p

(
∂S
∂p

)
T(

∂S
∂T

)
p

dp for S = const (4.55)

(
∂V
∂p

)
S

=
(

∂V
∂p

)
T
−
(

∂V
∂T

)
p

(
∂S
∂p

)
T(

∂S
∂T

)
p

(4.56)

Due to one of the Maxwell relations, (∂S/∂p)T = −(∂V/∂T)p, and
T · (∂S/∂T)p = cp, which can be inserted into Eq. (4.56) and we obtain

(
∂V
∂p

)
S

=
(

∂V
∂p

)
T

+
T
cp

(
∂V
∂T

)2

p
(4.57)

and the adiabatic compressibility can be written as

κS = − 1
V

[(
∂V
∂p

)
T

+
T
cp

(
∂V
∂T

)2

p

]

= κT − T
V · cp

(
∂V
∂T

)2

p

(4.58)
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Thus, the adiabatic compressibility can be calculated when isothermal com-
pressibility, heat capacity, and volume expansion coefficient are known. In
particular, the adiabatic compressibility is always smaller than the isothermal
compressibility: κS ≤ κT . We will make use of these relations in Chapters 14
and 18 in the context of sound propagation in membranes and nerves.

4.13
Thermodynamic Forces and Fluxes

Let us now consider the entropy as a potential that depends on thermody-
namic variables, ξi. Since the entropy is in a maximum, it can be developed
around the maximum as a function of the variables ξi,

S = S0 + ∑
i

(
∂S
∂ξi

)
ξ0

(ξi − ξ0
i )

+
1
2 ∑

i
∑

j

(
∂2S

∂ξi∂ξ j

)
ξ0

i ,ξ0
j

(ξi − ξ0
i )(ξ j − ξ0

j ) + · · ·

≈ S0 +
1
2 ∑

i
∑

j

(
∂2S

∂ξi∂ξ j

)
ξ0

i ,ξ0
j

(ξi − ξ0
i )(ξ j − ξ0

j )

(4.59)

The variable, ξ, could for instance be the reaction variable of a chemical reac-
tion, or the internal energy of the system, E. The terms

(
∂2S/∂ξi∂ξ j

)
ξ0

i ,ξ0
j

are

constants. The harmonic function given in Eq. (4.12) is shown in Fig. 4.1 (left
panel).

Reversible changes in the state of a system are changes between two states,
a and b, in thermal equilibrium. The change in entropy between these two
states, ΔSr, is shown in Fig. 4.1 (right panel). It corresponds to a change of the
reaction variable, Δξ.

If the system is not in thermal equilibrium, the entropy changes sponta-
neously with time, i.e.,

σ =
dS
dt

> 0 entropy production (4.60)

To be more precise, one typically uses the entropy density rather than the
entropy for the definition of the forces. If there are several reaction variables,
ξi, one can write

dS
dt

= ∑
i

∂S
∂ξi︸︷︷︸

forces

· ∂ξi

∂t︸︷︷︸
fluxes

≡ ∑
i

Xi Ji (4.61)
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introducing the thermodynamic forces Xi and the thermodynamic fluxes Ji.
The fluxes are the time-dependent changes of the variable ξi. The forces Xi
are derivatives of the entropy with respect to the variables. They correspond
to the slope of the entropy profile in Fig. 4.1 (left). This transforms the en-
tropy into a potential. The above approach has been introduced by Lars
Onsager. Forces and fluxes play a very important role in nonequilibrium
thermodynamics—and later in Chapter 16 on relaxation processes in mem-
branes. Onsager has phenomenologically introduced linear relations of fluxes
and forces

J1 = L11X1 + L12X2 + · · ·
J2 = L21X2 + L22X2 + · · ·
J3 = L31X1 + L32X2 + · · ·
· · · = · · ·

where the Lij are phenomenological coefficients that have to be determined by
experiment. In Chapter 16 the time course of heat release from a lipid sample
(relaxation time) will be calculated on the basis of the above equation.

Onsager found following relations for systems close to equilibrium:

Lii > 0

Lij = Lji reciprocal relations

L2
ij

LiiLjj
≤ 1

(4.62)

These equations have following important implications:

1. The time dependence of the fluxes can be determined when the entropy
potential is known.

2. Fluxes may depend on more than one force.

3. Due to the reciprocal relations, surprising relations between different
fluxes can be found.

We will use this kind of treatment in Chapter 16 to determine the relaxation
properties of lipid membranes.
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4.14
Summary: Key Ideas of Chapter 4

• The first law of thermodynamics states that internal energy changes con-
sist of changes in heat, dQ, and work, dW. It implies that internal energy
is conserved.

• Functions of state are those functions that only depend on the values of
the thermodynamic variables but not on the way how this state has been
obtained. The internal energy, E, is a function of state, but the heat, Q,
and the work, W, are not.

• The second law of thermodynamics states that for reversible processes
dQ = TdSr introducing the entropy, S. The entropy is a function of state.

• For irreversible processes the differential entropy is given by dS = dSr +
dSi, where dSi ≥ 0. This implies that for closed systems the entropy
always increases.

• Other functions of state are the enthalpy H = E + pV, the Helmholtz
free energy, F = E − TS, and the Gibbs free energy G = H − TS. In an
equilibrated system at constant volume and temperature the Helmholtz
free energy assumes a minimum. At constant pressure and temperature
the Gibbs free energy assumes a minimum.

• The chemical potential at constant pressure and temperature is equal to
the Gibbs free energy of 1 mol of substance.

• The mass action law describes the balance of concentrations at chemical
equilibrium. It is related to the differences of the standard state chemical
potentials.

• The statistical interpretation of the entropy implies that S = −k ∑i Pi ln Pi
+const, where the Pi are the probabilities of individual states of the sys-
tem. The maximum entropy state therefore is identical to the most likely
state.

• The most likely state is surrounded by slightly less likely states. Due to
thermal collisions, these states have a finite probability to be found. The
variance of the states around the most likely state is called fluctuations.

• The heat capacity is the incremental uptake of heat when the tempera-
ture is increased. At constant pressure it is proportional to the fluctua-
tions of the enthalpy. The isothermal compressibility is proportional to
the fluctuations in volume.
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• The Maxwell relations are important couplings between different ther-
modynamic functions and variables.

• The adiabatic compressibility is the compressibility when heat exchange
is forbidden.

• The change of entropy with time in a closed system is called entropy
production. The entropy production is related to thermodynamic forces
and thermodynamic fluxes that define time-dependent changes of a sys-
tem. The thermodynamic forces are derivatives of the entropy potential.

• Onsager’s phenomenological equations allow us to write the fluxes as a
linear combination of the forces.
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5
Water

Water is the most abundant molecule in living organisms. The human body
consists of about 70% water and the typical water content of cells is between
55% and 90%. At low temperatures water forms ice (Fig. 5.1) that displays
crystalline order. The ice structure is a consequence of the formation of hy-
drogen bonds that are interactions of predominantly dipolar nature. While ice
has a perfect hydrogen bonding network, water vapor is a gas and does not
possess hydrogen bonds. The intermediate phase is liquid water. In Table 5.1
some water properties are listed. The enthalpy of fusion (i.e. the formation of
liquid water from ice at 0 ◦C) is about 6.01 kJ/mol = 333.5 J/g. The enthalpy of
vaporization (formation of water vapor from liquid water at 100 ◦C) is about
40.66 kJ/mol = 2.256 kJ/g. The enthalpy of sublimation (ice to water vapor
at 0 ◦C) is 51.06 kJ/mol = 2.833 kJ/g. Only about 13.4% of this enthalpy can
be attributed to movement of molecules (Tanford, 1980). Since ice or water is
kept together by hydrogen bonds one has to conclude that

1. upon melting of ice only about 13% of the hydrogen bonds are broken,

2. about 79% of hydrogen bonds are broken upon vaporization, and

Fig. 5.1 Left: Structure and hydrogen bonds of ice. Right: Hydrogen
bonding network around a crystalline Cl2. Such structures are often
called clathrate structures. From Pauling (1939). Copyright © by Cor-
nell University. Used by permission of the publisher, Cornell University
Press.
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3. the remaining 8% of hydrogen bonds are broken upon heating liquid
water from 0 ◦C to 100 ◦C.

This means that water still contains most hydrogen bonds (compared to ice)
and is highly ordered. The fact that the number of hydrogen bonds changes
between 0 ◦C and 100 ◦C gives rise to a heat capacity different from zero. At
25 ◦C it is about 75 J/mol K. Since the heat capacity is always positive, the
enthalpy of water is an increasing function of temperature (H =

∫
cP dT, Sec-

tion 4.10.1). Since the heat capacity is not zero, the entropy also increases upon
increasing the temperature (because S =

∫
(cP/T) dT).

Tab. 5.1 Properties of water at standard pressure of 1 bar.

Property Value

Molar mass 18.02 g/mol
Melting point 0 ◦C=273.15 K
Boiling point 100 ◦C=373.15 K
Thermal conductivity 0.610 W/m K (25 ◦C)
Thermal diffusivity 1.46×10−7 m2/s (25 ◦C)
Diffusion coeff. 2.272 ×10−9 m2/s (25 ◦C)
Density (water) 997.05 kg/m3 (25 ◦C)
Density (ice) 916.8 kg/m3 (0 ◦C)
Enthalpy of fusion 6.0095 kJ/mol (0 ◦C)
Enthalpy of vaporization 40.657 kJ/mol (100 ◦C)
Enthalpy of sublimation 51.059 kJ/mol (0 ◦C)
Specific heat, cp 75.327 J/mol K (25 ◦C)
Speed of sound 1496.7 m/s (25 ◦C)

5.1
The Electrostatic Potential

The electrostatic potential of a charge, q, in a solvent is given by

Ψ(r) =
q

4πε0ε · r
(5.1)

with the permittivity ε0 = 8.854 × 10−12 C2/J m and the dielectric constant
(relative permittivity ) ε = 80.4 for water at 20 ◦C. Thus, the potential depends
on the dielectric constant and the distance r from the charge. In Table 5.2 the
dielectric constants for various solvents of different polarity are listed.

The dielectric constant of vacuum is εvacuum = 1, and that of water at room
temperature is εH2O ≈ 80; in oils, fats, and other hydrocarbons one finds εhc ≈
2–4.1

Ψhc ≈ 20 − 40 · ΨH2O (5.2)

1) The index “hc” stands for hydrocarbon.
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Tab. 5.2 Dielectric constants, ε, for various solvents

Solvent Temperature (◦C) ε Solvent Temperature (◦C) ε

Water 0 88.0 Octanol 20 10.3
20 80.4 Dichloromethane 20 9.1
100 55.3 Chloroform 20 4.8

Glycerol 25 42.5 Olive oil 20 3.1
Methanol 25 32.6 Oleic acid 20 2.5
Ethanol 25 24.3 Benzene 20 2.3
Acetone 25 20.7 Petroleum oil 20 2.1
Ammonia 20 16.5 Cyclohexane 20 2.0
Hexanol 25 13.3 Octane 20 2.0

For this reason the free energy (Gel =
∫

Ψdq) of placing a charge in water
is much lower than that in a hydrocarbon (oily) environment. The charged
head groups of lipids and the charged amino acids are usually located at the
interface with water. Charges can be influenced by pH. Negatively charged
lipid can be protonated which naturally drastically changes the free energy of
this molecular group.

5.2
The Electrostatic Potential in Electrolytes

In the presence of salts the electrostatic potentials are shielded. This is due
to the fact that negatively charged particles display an enhanced likelihood
to have positively charged ions in their proximity (and vice versa). Debye
and Hückel (1923) derived a famous relation for the electrostatic potential in
electrolytes:

Ψ(r) =
q

4πε0ε · r
exp (−κ r) (5.3)

The underlying theory is called the Debye–Hückel theory. The constant κ in
Eq. (5.3) is given by

κ =
(

2
e2

ε0εkT
c0

)0.5

(5.4)

It is called the “Debye constant.” As apparent from Eq. (5.4), it is a function of
the ionic strength, c0. The ionic strength is given by

c0 ≡ ionic strength =
1
2 ∑

i
z2

i ci,0 (5.5)

where ci,0 is the concentration of ion species i at an infinite distance from the
central charge, and zi is the valency of the respective ion, e.g. z = +1 for Na+,
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z = +2 for Ca+, and z = −1 for Cl−. The inverse of the Debye constant is
the Debye length. It gives the typical screening length of charges in solutions
containing salts. Some values for the Debye length are given in Table 11.1.
At 100 mM NaCl it is about 9.7 Å whereas it is about 97 Å at 1 mM. Thus,
the length scale of electrostatic screening under physiological conditions is
on the same length scale as the typical dimensions of macromolecules (the
radius of cytochrome c is about 15 Å and the cross-sectional diameter of a
lipid is on the order of 7 Å). Changes in charge (e.g. by protonation or calcium
binding) are therefore expected to strongly contribute to the physical state of
the macromolecules. It is also expected that divalent ions (e.g. Ca2+) display
a much larger influence on the electrostatics than monovalent ions.

We did not derive the above expressions here. However, the theory of
charged surfaces (Gouy–Chapman theory) is very similar to the Debye–
Hückel theory. The Gouy–Chapman theory is described in detail in Chap-
ter 11. The derivation of the Debye–Hückel theory is analogous and can be
found in many textbooks (e.g. Hill (1960)).

5.3
The Hydrophobic Effect

For the understanding of lipid melting, protein folding, and lipid–protein in-
teractions, it is of great importance to understand the principles that deter-
mine the Gibbs free energy of the boundary between hydrophobic groups and
water. One can measure such free energies by investigating the distribution
of hydrophobic substances (e.g. amino acids) between a phase with a low di-
electric constant (e.g. octanol or olive oil) and a water phase. One of the first
to investigate this carefully was Kauzmann (1959). Table 5.3 shows the Gibbs
free energy of the transfer of ethane from an apolar (organic) solvent into a po-
lar solvent (H2O). This free energy mainly depends on the size of the interface
of the apolar molecule with the solvent. Therefore one finds a linear relation
between the number of CH2 and CH3 groups (Fig. 5.2).

Tab. 5.3 Entropy, enthalpy, and Gibbs free energy of transfer of ethane from an apolar into a
polar solvent.

T = 298 K ΔStr ΔHtr ΔGtr

(J/mol K) (kJ/mol) (kJ/mol)

C2H6 (ethane) −83.7 −9.4 +15.9
from benzine into water

C2H6 (ethane) −75.3 −7.1 +15.5
from chloroform into water
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Fig. 5.2 Chain length dependence of the Gibbs free energy of transfer
of alkanes, alkenes, and alkadienes from oil into water. Adapted from
Tanford (1980).

For hydrocarbons one finds for the transfer from an apolar into a polar en-
vironment (Tanford, 1980)

ΔGtr ≈ 105
J

mol Å
2 (5.6)

and following from that for alkanes (CH3–(CH2)n–CH3):

ΔGalkane
tr ≈ 8795

J
mol

· nCH3 + 3799
J

mol
· nCH2 (5.7)

As can be seen in Fig. 5.2 the introduction of double bonds slightly reduces
this transfer free energy. Apart from this slight modification the interaction of
hydrophobic residues depends mainly on their size or length, respectively.

Correspondingly, one can list experimental values for the transfer of amino
acids from oil to water (Table 5.4). This is important for protein folding be-
cause upon denaturation hydrophobic residues are exposed to water. There-
fore, the hydrophobic effect is a key element of protein stability. Furthermore,
the insertion of integral proteins into lipid bilayers is largely dominated by
hydrophobic interactions.

5.3.1
Temperature Dependence of the Hydrophobic Effect

The Gibbs free energy (ΔGtr = ΔHtr − TΔStr) of the transfer from an apolar
to a polar solvent has an enthalpic and an entropic contribution. It was ex-
perimentally observed that both ΔH and ΔS are very temperature dependent:
ΔH = ΔH(T) and ΔS = ΔS(T).
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Tab. 5.4 Gibbs free energy, ΔGtr = GH2O − Ghc, of the transfer of apolar amino acids from
hydrocarbon environment to water (given relative to glycine: –HN–CH2–CO–).

Amino acid side chain ΔGtr = GH2O − Ghc
kJ/mol

Tryptophane −14.2
Norleucine −10.9
Phenylalanine −10.5
Tyrosine −9.6
Leucine −7.5
Valine −6.3
Methionine −5.4
Alanine −2.1

Enthalpy and entropy can both be derived from the heat capacity (Sec-
tion 4.10.1)

ΔH(T) =
∫

cP dT ΔS(T) =
∫ cP

T
dT (5.8)

Since both ΔH and ΔS of the transfer are temperature dependent it follows
that the heat capacity cP changes upon the transfer from an apolar to a polar
solvent. The interface of an apolar molecule contributes to the heat capacity
with Δcp �= 0.

If one develops the temperature dependence of the free energy of the trans-
fer into a Taylor series (Brandts, 1964):

ΔGtr(T) ≈ A0 + A1T + A2T2 + A3T3 + · · · (5.9)

one obtains for entropy and heat capacity changes

−ΔStr =
(

dGtr

dT

)
p

≈ A1 + 2 · A2T + 3 · A3T2 → cp ≈ −2 · A2T − 6 · A3T2
(5.10)

The coefficients Ai for some amino acids are given in Table 5.5 and the cor-
responding free energies of the transfer are given in Fig. 5.3 (left). Similar to
the transfer of amino acids (Fig. 5.3, right), the transfer of hydrocarbon also

Tab. 5.5 Transfer of amino acid side chains from an apolar into a polar solvent.

A0 (J/mol), T = 0◦ A1 (J/mol K) A1 (J/mol K2) A3 (J/mol K3)

Tyrosyl 13305 420.3 −2.247 0.00326
Norleucyl 8075 −104.2 0.849 −0.00130
Valyl 4665 −103.6 0.770 −0.00113
Alanyl 1946 −79.5 0.556 −0.00088
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Fig. 5.3 Left: Temperature dependence of the Gibbs free energy of
the transfer of the four different amino acid side chains from water to
organic solvent (relative to the free energy of the transfer of glycine).
Adapted from Brandts (1964). Right: Temperature dependence of the
Gibbs free energy of the transfer of ethane from water to either C6H6
or CCl4. Adapted from Tanford (1980).

displays a pronounced temperature dependence. Thus, the transfer of hy-
drocarbons from oil to water is also linked to an overall increase in the heat
capacity.

Why is the above important? Both proteins and lipid membranes display
cooperative order transitions. For proteins this is called thermal unfolding or
denaturation. In Fig. 5.4 one can see that the unfolding of the globular protein
cytochrome c displays a stepwise change in heat capacity from below to above
the unfolding transition at ≈ 83 ◦C. This step indicates that apolar amino acids
were transferred from the inside of the protein into the aqueous solvent upon
unfolding. The difference in heat capacity between folded and unfolded pro-
teins causes the interesting phenomenon of cold unfolding. It has been shown
that many globular proteins unfold when temperature is lowered from room
temperature (Privalov, 1990). A similar effect is found in some detergent solu-
tions where micelles desolve at low and high temperature (Majhi and Blume,
2001).

Lipid melting (see Chapters 2 and 6) is not linked to a change in heat capac-
ity from below to above the melting transition. This indicates that during the
melting transition no apolar chain segments were transferred into the aqueous
environment and that the interaction of the fluid lipid phase with water is sim-
ilar to that of the gel phase. We will see later that during melting hydrophobic
interactions at phase boundaries are important (Chapter 8).
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Fig. 5.4 Left: Melting of large unilamellar
vesicles of lipid membranes made of DPPC.
Right: Denaturation of cytochrome c at pH
7.5. The lipid melting profile does not display
a difference in heat capacity below and above
the melting temperature. Cytochrome c dis-

plays an increase of the heat capacity above
the unfolding temperature. This indicates that
the hydrophobic effect does not provide a
significant contribution to the melting of lipid
membranes, but it plays a major role in the
unfolding of proteins.

5.4
The Wimley–White Hydrophobicity Scale

The membrane interior mainly consists of hydrocarbon chains. The lipid head
groups, in contrast, are polar groups that interact well with water. Peripheral
proteins adsorb to lipid membrane surfaces while integral proteins insert to
the hydrophobic membrane core. Many peptides exist in an equilibrium be-
tween inserted and surface adsorbed species. Such an equilibrium is expected
to depend sensitively on hydrophobic interactions and therefore on the amino
acid composition. Further, the mode of interaction and the orientation of pro-
teins in the membrane sensitively depend on the arrangement of amino acids
along the chain. Some amino acids display affinities towards the hydrophobic
membrane core, while others prefer aqueous environments. A third class of
amino acids prefers the membrane–water interface. These are in particular the
aromatic amino acids (Wimley et al., 1996; Wimley and White, 1996). Wimley
and White (1996) showed that the transfer free energies between membrane
interfaces and water are a linear function of the transfer free energies between
octanol and water.
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5.5
Hydrophobic Matching

Hydrophobic matching as a principle regulating lipid–protein interactions
was already mentioned by Mouritsen and Bloom (1984) in their paper on the
mattress model (Section 1.6). Following the observations outlined above one
has to state that

• the transfer of apolar amino acids from the membrane interior into water
is unfavorable,

• aromatic amino acids are preferentially located in the membrane head
group region (following the hydrophobicity scale shown in Fig. 5.5), and

• polar amino acids prefer the aqueous environment. This is due to huge
differences in the dielectric constants of hydrocarbons and water (see
Section 5.2).

Fig. 5.5 Transfer free energies of amino acids from lipid interfaces
into water around neutral pH, adapted from Wimley and White (1996).
While the charged residues display a pronounced affinity to the water
phase, the aromatic residues (in particular tryptophane) display a pref-
erence for the membrane interface. Histidine shows up two times since
it has a pKA close to neutral pH. The charged and the uncharged form
display different transfer free energies.

Thus, interactions of integral proteins with membranes are favorable if their
primary and tertiary structure allow us to place the respective amino acids
in their most preferred environment: chain region, head group region or an
aqueous medium. This is shown schematically in Fig. 5.6. If the membrane
and protein dimensions do not match, one expects significant free energy con-
tributions due to unfavorable interactions between amino acids and water (or
chains).
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Fig. 5.6 Principle of hydrophobic matching between a membrane
and an integral protein. The free energy is minimized when the apo-
lar membrane chain region and the apolar part of the integral protein
match. Furthermore, the membrane interface interacts preferentially
with the aromatic amino acids.

5.6
Hofmeister Series

Franz Hofmeister was a professor at Prague University in the second half of
the 19th century. He and his collaborators published a series of six papers with
the collective title “Zur Lehre von der Wirkung der Salze” (About the science
of the effect of salts) (Lewith, 1887; Hofmeister, 1888a,b; von Limbeck, 1888;
Hofmeister, 1890, 1891). These papers treated the effects of various ions on the
precipitation of proteins. Two of these papers were recently translated into
English (Kunz et al., 2004b). Hofmeister observed that proteins as lysozyme
precipitate in salt solutions, and that this depends on the nature of the ion.
Different ions can be ranked according to their ability to precipitate proteins.
This so-called Hofmeister series is shown in Fig. 5.7. Today, it is rather mea-
sured in terms of their ability to stabilize or destabilize proteins (e.g., on the
denaturation temperature).

Fig. 5.7 Cations and anions display different effects on the ordering
of water and the precipitation of proteins. Kosmotropes enhance water
structure and precipitate proteins. Chaotropes break water structure
and destabilize proteins. The ions are listed in the order of their effect
on water from kosmotropic to chaotropic. Adapted from Cacace et al.
(1997)
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The exact reason of the effect of ions on protein stability is not clear in all
details. However, it seems as if it is closely related to the affinity of the ions for
water (Hofmeister, 1888b; Kunz et al., 2004a) or their influence on water activ-
ity. If the ions bind a lot of water molecules, the effective amount of free water
decreases and protein concentrations effectively increase. It is also assumed
that the hydrogen-bonding patterns in water (the clathrate structures) are in-
fluenced by ions such that some ions can be considered as water-structure
enhancers. Such ions are called “kosmotropes.” They bind water stronger
than other water molecules. Other ions reduce the hydrogen bonding and
are called “chaotropes.” They interact with water weaker than other water
molecules. In some respect the chaotropes make water more liquid (corre-
sponding to a higher temperature state of water). It seems thus clear that all
ions affect water properties, in particular at high concentrations. This includes
the head groups of lipids and amino acids. Many phenomena in biology seem
to be related to the Hofmeister series. The ion conductances of some pep-
tide pores and the permeabilities of the lipid pores described in Chapter 17
(Antonov et al., 2005) seem to follow the Hofmeister series. It should be ex-
pected that salts such as KCl, NaCl, and LiCl do not display the same influ-
ence on lipid membranes and protein stability since they are found at different
positions in the Hofmeister series.

There are speculations that the water-ordering effect of all the macro-
molecules in cells is so strong (due to the large overall concentration of
macromolecules) that effectively no water can be considered as being to-
tally free (Ling, 2001; Pollack, 2001). The cytosol of cells thus may rather be
a cytogel (consider, for instance, the egg white of a chicken egg). The com-
petition of macromolecules for water thus introduces all kinds of couplings
between seemingly different biochemical or biophysical properties. This is an
attractive hypothesis with potentially enormous implications for biological
functions. The common investigation of biological molecules at low concen-
trations may be quite misleading. The notion of a free ion concentrations
may be flawed and the chemical potentials of the ions may deviate strongly
from kT ln(c/c0). Under these conditions, the mass action law derived in
Section 4.7 is not valid.

A nice comprehensive Web site on water in general, and Hofmeister series,
kosmotropes and chaotropes, is maintained by Martin Chaplin from London
South Bank University.2

2) http://www.lsbu.ac.uk/water/
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5.7
Summary: Key Ideas of Chapter 5

• Charged groups of lipids and proteins prefer aqueous environments be-
cause the dielectric constant of water is 20–40 times larger than that of
a hydrocarbon environment. Therefore, the electrostatic free energy is
lower in water.

• In electrolytes the characteristic length of the electrostatic potential is
largely reduced. This is described by the Debye–Hückel theory. At
100 mM NaCl the screening length (Debye length) is about 9.8 Å.

• Apolar groups, e.g., lipid chains and apolar amino acids, prefer an en-
vironment with low dielectric constant. Their interaction with water
is unfavorable. This is the “hydrophobic effect.” The hydrophobic ef-
fect (describing the free energy difference of the interface between hy-
drocarbons and water) is very temperature dependent and increases at
higher temperatures. It is proportional to the hydrophobic surfaces of
the molecules. For lipid chains it is proportional to their length.

• Apolar amino acids like to partition in the hydrophobic core of lipid
membranes, while charged and polar residues prefer the aqueous envi-
ronment. Aromatic residues (in particular tryptophane) partition pref-
erentially in the head group region of membranes. The amino acid pref-
erences for different membrane regions are described by the Wimley–
White hydrophobicity scale.

• These preferences largely determine the interaction and the orientation
of proteins in lipid membranes. Proteins have the most favorable inter-
action with membranes if the hydrophobic lengths of the polypeptide
chains and the lipid membrane are similar. This effect is called “hy-
drophobic matching.”

• Charged groups of lipids and proteins interact with water. These inter-
actions depend on the activity of water that is influenced by ions in the
aqueous buffer. The effect of ions on water activity is described by the
Hofmeister series.
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6
Lipid Melting

6.1
Lipid Melting

Lipid membranes may undergo order or melting transitions. This has already
been discussed in Chapters 2 and 3. For biological membranes these transi-
tions are typically found in the range 10–25 ◦C (see Fig. 6.13). Most lipids that
are extracted from such membranes melt in the temperature regime between
−20◦ (some lipids with unsaturations in their chains as dioleoyl phosphatidyl-
choline) and +60 ◦C (lipids with a long saturated long chain, e.g., some sphin-
golipids and ceramides). Such melting transitions can be measured with
many means, including differential scanning calorimetry (DSC) and various
spectroscopic methods. Calorimetry has the advantage that it directly yields
important thermodynamic information (e.g., enthalpy and entropy changes)
not available (without interpretation) from spectroscopy.

6.1.1
Calorimetry and Heat Capacity

Calorimeters record the heat capacity of a sample (Section 4.10). All sub-
stances possess a heat capacity and (as shown later in Section 6.4) it always as-
sumes positive values. There are various types of calorimeters that record heat
releases under different conditions. Calorimeters that are built for solid state
applications usually display a very large range of temperatures. Calorime-
ters in biosciences only require temperatures between 0 and 100 ◦C but si-
multaneously must be very sensitive since material is often precious. The
most interesting calorimeter types for biophysicists are differential scanning
calorimeters (measuring heat uptake upon temperature increase) and titration
calorimeters, measuring the heat release or uptake in binding reactions.

In Fig. 6.1 a schematic drawing of a differential calorimeter is shown. It
consists of two cells (one sample cell and one reference cell that usually filled
with water or buffer) with a volume of 0.5–1 cm3. Both cells are heated with
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Fig. 6.1 Schematic drawing of a calorimeter containing a sample and
a reference cell. Both cells are heated at a constant rate. The power
necessary to maintain the rate for both cells is recorded. The heat
capacity is obtained by dividing this power with the scan rate.

Peltier heaters at a constant scan rate. The temperature difference between the
two cells is kept constant. In a melting transition the sample cells absorb more
heat which is compensated by the heaters. The power of the two heaters is
finely adjusted such that both the scan rate is constant and the temperature
difference of the two cells is zero. The power difference of the two heaters is
recorded as a function of temperature. It has the units Watts = J/s. The scan
rate has the units K/s. If one divides power by the scan rate one obtains the
units J/K, which is the unit of the heat capacity. In a differential scanning
calorimeter (DSC) only the difference between the sample and reference cell is
recorded, meaning that the heat capacity of the aqueous buffer is subtracted
automatically.

The raw heat capacity profiles display an offset and often a slope of the
baseline. The primary source of the baseline offset is the different heat capacity
of water and lipids. Since the lipid displaces some water volume and water
has a very high heat capacity (of 4.183 J/g K at 14 ◦C), the baseline normally
assumes negative values. If the experiment is performed very carefully, from
this offset the absolute heat capacity of the lipids outside the transition regime
can be obtained. Blume has found it to be of the order of 1600 J/mol K for
dipalmitoyl phosphatidylcholine (DPPC) (Blume, 1983). As can be seen in
Fig. 6.2 the baseline has approximately the same value below and above the
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Fig. 6.2 Calorimetric scan of large unilamellar vesicles of dipalmitoyl
phosphatidylcholine (DPPC). The top row shows the raw heat capacity
data. From these data a suitable baseline can determined (top panel).
After subtraction the enthalpy of the transition can be determined by
integrating the excess heat capacity profile (bottom panel).

transition. This means that the interaction of the membranes with water stays
about constant and that the hydrophobic effect does not play a major role for
the melting transition (see Chapter 5). To be more precise, it does not affect
the melting point but most likely affects the transition halfwidth due to the
hydrophobic matching condition.

The area under the heat capacity peak is the melting enthalpy. The correct
determination of the baseline is very important. Sometimes this turns out to
be quite difficult if the melting profile is very broad. Then one has to make a
somewhat subjective choice of where the limits of the excess melting events
are. The accurate determination of the baseline is essential to obtain the cor-
rect values for the melting enthalpy. If one compares the literature data of
lipid melting enthalpies one finds a large variation in the results. Much of
this scattering is related to the different choice of the baseline. Especially the
melting enthalpies of broad transitions, e.g., in the presence of cholesterol or
proteins, are notoriously underestimated. In the example shown in Fig. 6.2,
however, the baseline determination is easy.
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6.1.2
Melting of Membranes Consisting of One Lipid Species

At low temperatures lipids are arranged on a triangular lattice (Janiak et al.,
1979). At high temperatures, they do not display lateral order. Instead, they
are randomly organized and represent a liquid in the language of solid state
physics. For this reason the transition is called solid–liquid transition (Fig. 6.3,
bottom). Furthermore, the lipid chains of the individual molecules simultane-
ously also display order–disorder transitions. Whereas at low temperatures
the lipids display predominantly all-trans configurations, at high tempera-
tures they show a rather random chain order with many trans-, gauche−,
and gauche+ isomerizations in their C–C bonds in the hydrocarbon chain
(Fig. 6.3 (top) and Fig. 6.7). Lipid membranes therefore display at least two
different phases: the solid-ordered phase often called the “gel phase” and the
liquid-disordered phase that is often called the “fluid phase.” These terms de-
scribe the two different ordering processes in membranes. One may suspect
that the solid-liquid transition of the head group arrangement and the order-
disorder transition of the chains do not necessarily have to occur at the same
temperature, and that possibly solid-disordered and liquid-ordered phases
are possible. While the solid-disordered phase has so far not been identified
in lipid membranes, the liquid-ordered phase has been proposed to exist in
cholesterol-containing membranes (see Fig. 7.14), possibly due to the size of
the cholesterol molecule that disturbs the formation of lateral lattices and its
hydrogen bonding to carbonyl oxygens. The liquid-ordered phase is a kind of
gel phase (i.e., with low enthalpy) without the lateral packing order.

Fig. 6.3 Schematic picture of lipid melting from a solid-ordered to a
liquid-disordered phase. Top: The order within the lipid chains is lost
upon melting. Bottom: The crystalline order of the lipid head groups is
also lost and the matrix undergoes a solid–liquid transition.
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A membrane represents a two-dimensional matrix embedded into three-
dimensional space, which usually consists of an aqueous medium. While the
transitions mentioned above exclusively take place within the plane of the
membrane, there is the possibility of the formation of further lipid phases that
make use of curvature changes involving the third dimension normal to the bi-
layer surface. They will play a major role in Chapter 15. Such phenomena are
particularly important close to the melting of the lipid membrane because the
elastic constants in this temperature regime are largely altered (Chapter 14).
One example is the pretransition of lipid membranes (Figs. 6.4 and 6.5), which
is discussed in detail in Section 15.6.

Fig. 6.4 Calorimetric melting profile of dimyristoyl phosphatidylcholine
(DMPC). The melting curve displays two peaks called pretransition
(TP) and main transition (Tm). Below the pretransition one finds the
solid-ordered phase (gel phase), between pretransition and main tran-
sition the ripple phase is found (see the text). Above the main tran-
sition one finds the liquid-disordered state (fluid phase). The ripple
phase most likely is an intermediate between the gel and fluid phase.

The pretransition is a transition with low cooperativity that is found a few
degrees below the main transition. From electron microscopy and atomic force
microscopy it is known that between the pretransition and the main transition
the membrane surface displays periodical undulations (ripples) with length
scales between 13 and 30 nm, in some cases even longer (compare this to the
thickness of a membrane of 5 nm, and a typical lipid cross section of 0.7 nm).
It will be argued in Chapter 15 that the pretransition and the main transition
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Fig. 6.5 Left: Heat capacity profiles of three
different diacyl phosphatidylcholines: dimyris-
toyl phosphatidylcholine (DMPC), dipalmitoyl
phosphatidylcholine (DPPC) , and distearoyl
phosphatidylcholine (DSPC). The total area
of the melting peak increases with increasing
chain length. Simultaneously, the temperature

interval between the pretransition and main
transition becomes smaller (indicated be the
rectangular brackets). Right: Amplified ΔcP
profile of DSPC. The excess heat capacity
does not return to the baseline between the
two transitions. They probably do not repre-
sent independent events.

are related phenomena and both are caused by the chain melting process of
the lipids. It will be shown that the splitting into two peaks is a consequence
of simultaneous changes in the lipid order and membrane curvature. This is
the case for the formation of the ripples, too.

Figure 6.5 (left) shows the melting profiles of three different diacyl phos-
phatidyl cholines, with 14, 16, and 18 carbons in the two hydrocarbon chains,
respectively. The trivial names for these lipids are dimyristoyl-, dipalmitoyl,
and distearoyl phosphatidyl choline (Table 3.2). It can be seen in Fig. 6.5 that
increasing chain length leads to an increase of the melting temperatures, and
that the temperature difference between pretransition and main transition de-
creases. In particular, it can be seen that the heat capacity (actually, here and
in the following we talk about the excess heat capacity, ΔcP associated with
the cooperative melting events) between the two transitions does not com-
pletely return to the baseline such that one has to consider the whole inter-
val between the pretransition and main transition as one continuous melting
regime (Fig. 6.5, right). Under such conditions it is obviously difficult to de-
fine a melting temperature. The heat capacity is given by cP = c0

P + ΔcP where
DeltacP refers to the cooperative melting events. In the literature, the melting
temperature is usually defined as the maximum of the ΔcP curve of the main
transition. More accurately, one should rather consider the temperature where
the excess enthalpy is 50% (and the number of gel and fluid lipids is equal) be-
cause there the free energy difference between the two lipid states is zero.
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Fig. 6.6 Left: Melting enthalpy, ΔH, and melting entropy, ΔS, as a
function of the chain length. Both curves can be approximated by a
linear function. Right: Melting temperature, Tm, as a function of the
chain length. The relation is not linear. Values are given in Table 6.1.

The enthalpy of the melting curve can be determined from the excess heat
capacity by integration.

ΔH =
∫ T1

T0

ΔcP dT (6.1)

In practice, the excess enthalpy depends on where the integration limits are
defined, and how the baseline has been determined. Considering the cP data
in Fig. 6.5 (right), it seems reasonable to integrate from below the pretran-
sition to above the main transition to get one enthalpy value for the whole
melting regime. This is not done by most authors, giving rise to a wide spread
of different enthalpy values for the different lipids in the databases (e.g., the
lipid database “LIPIDAT” that can be found at http://www.lipidat.chemistry.
ohio-state.edu/). As discussed earlier in this chapter, incorrect baseline deter-
minations are a significant source of error. For various phosphatidylcholines,
the enthalpy values are given in Fig. 6.6. It is recommended to the reader to
take the literature values as a recommendation and to cross-check the values
in controlled experiments.

The melting entropy is given by

ΔS =
∫ T1

T0

ΔcP

T
dT (6.2)

or, if the melting peak is reasonably sharp (i.e., if cP/T ≈ cP/Tm) one can
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simplify to

ΔS =
ΔH
Tm

(6.3)

These values in molar units are also given in Fig. 6.6 for a series of phos-
phatidylcholines.

One can recognize that both excess enthalpy and entropy values fall on a
straight line that does not pass through the origin. The functional behavior as
extracted from Fig. 6.6 is given by

ΔH(nC) = −64.58 + 2 ∗ nC · 3.2
kJ

mol

ΔS(nC) = −170.59 + 2 ∗ nC · 9.053
J

mol K

(6.4)

Let us consider, instead, enthalpy and entropy as functions of the number
of bonds nB in the hydrocarbon chain that is fixed at the glycerol backbone,
around which rotations change the chain configuration. In total one finds
n − 1 bonds between n carbons. Rotations around the bond linked to the
terminal methyl group do not result in changes of the configuration. Thus,
nB = nC − 2. It follows that

ΔH(nC) = −51.78 + 2 · (nC − 2) · 3.20
kJ

mol

ΔS(nC) = −134.38 + 2 · (nC − 2) · 9.05
J

mol K

(6.5)

In the next paragraph we will explain why it is very reasonable to expect an
approximately linear dependence of both functions on the chain length. Sur-
prising, however, is the fact that both curves intersect the chain length axis at
a value of nC ≈ 9–10. How is this possible? One reason for this may be that
not only the lipid chains but also the lipid head groups contribute to the melt-
ing enthalpy. In fact, lipids with different head groups, e.g., diacyl ethanola-
mines, display a similar dependence of the melting entropies and enthalpies
on the chain length. However, the absolute numbers are different, and so is
the interpolated chain length of zero enthalpy and entropy. This suggests that
the interaction of the lipid head groups with the aqueous medium provides
a negative contribution to the melting enthalpy and entropy that depends on
the head group. For the phosphatidylcholines this is

ΔHhead group = −51.78 kJ/mol ΔShead group = −134.38 J/mol (6.6)

while the contribution from the two chains is given by

ΔHchain(nC) = 2 · (nC − 2) · 3.20
kJ

mol

ΔSchain(nC) = 2 · (nC − 2) · 9.05
J

mol K

(6.7)
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For DPPC which has 16 carbons and 14 bonds in each chain, this also im-
plies that the total melting enthalpy associated with the chains is 89.6 kJ/mol
(rather than the experimentally determined one, 37 kJ/mol), compensated by
a head group contribution of −51.78 kJ/mol. Per CH2 group in a single hydro-
carbon chain that corresponds to about 3.2 kJ/mol. Similarly, the total chain
entropy of DPPC is 253.50 J/mol K, partially compensated by a head group
entropy contribution of −134.38 J/mol K. The numerical values of enthalpy,
entropy, and melting temperature given in Table 6.1 are the experimental val-
ues that are close to the values above.

Tab. 6.1 Melting enthalpies and entropies, and melting temperatures of some common lipids.
Enthalpies are given as the integral of the heat capacity including both pretransition and main
transition (see the text). The melting points given are actually the heat capacity maxima.
DLPC displays several peaks over a broad range. The two major maxima are given. DMPG
shows several peaks if not measured at high ionic strength. Thanks to Heiko Seeger and Ka-
trine R. Laub, Copenhagen.

Lipid ΔH ΔS Tm Comments
(kJ/mol) (J/mol K) (◦C)

DLPC 12.8 47.5 −3.8 (+3.9) Broad transition range (−5 ◦C and 5 ◦C)
DMPC 23.9 80.5 23.6
DPPC 38.1 121.2 41.3
DSPC 50.7 154.7 54.7
DMPE 31.5 97.4 49.8 After annihilating metastability
DPPE 63.9
DMPG 23.0 77.4 23.8 At 500 mM NaCl, pH 7
DPPG 32.5 103.6 40.3 At 500 mM NaCl, pH 7

Equation (6.4) leads to the prediction of negative values for the melting en-
thalpy for chain lengths smaller than 10 carbons. Negative melting enthalpies,
however, are thermodynamically not possible (for a proof see Section 6.4).
One has to conclude that lipids do not display transitions at all for those chain
lengths. Also, melting entropies must always be larger than zero. This can
be easily concluded from the fluctuation theorem. In Chapter 19 we show
that only alcohols with chain length shorter than 10 carbons act as anesthetics.
Only those molecules are expected to not display phase behavior of their own
in lipid membranes which is a requirement for anesthesia.

6.1.3
Some Simple Considerations on the Melting Enthalpies and Entropies

There are several factors that contribute to the enthalpy increase during the
transition. Marcalja (Marcelja, 1974a,b) pointed out that dispersion forces be-
tween adjacent lipids contribute to the chain melting in a manner comparable
to rigid molecules in a liquid crystal. Such forces partially determine the co-
operativity of the transition.
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Fig. 6.7 The rotation of hydrocarbon chains with at least 4 carbons
by multiples of 120◦ leads to nonequivalent conformations as demon-
strated here for butane. Shown are the side view and the view along
the central C–C bond. Rotation around the central bond leads to three
enthalpy minima: gauche−, trans, and gauche+. The two gauche con-
formations are identical mirror images.The trans-configuration repre-
sents the lowest enthalpy conformation.

For steric reasons, the all-trans configuration of the lipid chains is favored.
Via rotations around carbon–carbon bonds in the hydrocarbon chain one can
generate other conformations, so-called gauche− and gauche+ conformations
(Fig. 6.7). Let us now simplify the assumptions about the formation of dif-
ferent chain conformations. The chain conformation with the maximum dis-
tance between the carbon at position i and the carbon at i + 3 shall be called
the trans-configuration. We assume that each rotation of a chain away from
a trans-conformation around the bond between carbons i + 1 and i + 2 (see
Fig. 6.7) by ±120◦ into either a gauche− or a gauche+ configuration leads to
the change in enthalpy of ΔHrot. The enthalpy of the hydrocarbon chain is a
function of the angle of rotation as shown in Fig. 6.7. The equilibrium between
a trans and the two gauche conformations is given by a Boltzmann law

[gauche− + gauche+]
[trans]

= 2 · exp
(
−ΔHrot

RT

)
≡ exp

⎛
⎜⎜⎜⎝−ΔHrot − T ·

ΔSrot︷ ︸︸ ︷
R ln 2

RT

⎞
⎟⎟⎟⎠

= exp
(
−ΔGrot

RT

)
(6.8)

with ΔGrot = ΔHrot − T · ΔSrot. One can see that for high temperatures (T →
∞) each of the two gauche states and the trans state are equally populated.
This means that at high temperatures 2/3 of all states are gauche conformers
and the mean enthalpy is

Hbond =
2
3

ΔHrot (6.9)
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At high temperatures, the entropy difference between a random configuration
and a trans-configuration associated with the rotation around one bond (as-
suming equal probabilities of gauche−, trans, and gauche+ of 1/3) is given
by

ΔSbond = R ln 3 = 9.134 J/mol K (6.10)

This is nearly exactly the value found experimentally in Eq. (6.7) for the con-
tribution of one carbon to the transition entropy (in this equation a value of
9.05 J/mol K was found). The experimental value for the chain enthalpy from
one bond from Eq. (6.7) was

ΔHbond = 3.2 kJ/mol (6.11)

This corresponds to

ΔHrot =
3
2

ΔHbond = 4.8 kJ/mol (6.12)

For the equilibrium between a two-chain lipid with completely ordered (all-
trans) and totally disordered chains with (n − 2) relevant bonds, we obtain

[disordered]
[ordered]

= exp
(
−2(n − 2) · (ΔHbond − TΔSbond)

RT

)
(6.13)

Thus, one can see that one expects a linear relationship between both melting
enthalpy and melting entropy, and the chain length. This was found exper-
imentally (Fig. 6.6). Of course, this is only a rough estimate because within
a lipid membrane not all lipid conformations can be assumed and the excess
enthalpy and the entropy will be somewhat smaller than for the case where
all conformation can be assumed. However, the values from this rough calcu-
lation are on a very reasonable scale.

6.2
Cooperativity and Cooperative Unit Size

Melting transitions of lipid membranes occur over a very narrow tempera-
ture regime. For instance, DPPC multilayers display a transition half-width of
about 0.05 K while the unfolding of proteins displays a typical half-width of
about 10 K (see Fig. 5.4). The narrow half-width of lipid transitions is surpris-
ing as the following little calculation shows.

Let us assume that all lipids within the membrane melt independently of
each other. The free energy difference of the fluid state lipid and the gel state
lipid, ΔG, describes the equilibrium between the two states of the lipid.
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Fig. 6.8 From left to right: Calculated calorimetric melting profile of
lipid membranes with a melting enthalpy of 30 kJ/mol and a melting
temperature of Tm = 300 K, assuming increasing cooperative unit
sizes (1, 10, 100, and 1000 lipids). Note the different scaling of the two
axes in the four panels.

The equilibrium constant K = exp(−ΔG/RT) is a function of temperature
and depends on ΔH. Van’t Hoff described the temperature dependence of the
equilibrium constant by the following law:

ln K(T) = −ΔH
RT

+
ΔS
R

−→ RT2 d ln K
dT

= ΔH (6.14)

that is called van’t Hoff’s law. The probability of finding a gel state lipid
is given by 1/(1 + K) and the probability of finding a fluid state lipid is
K/(1 + K). The mean enthalpy change per mole of lipid is therefore given
by

〈ΔH(T)〉 = ΔH
K(T)

1 + K(T)
(6.15)

From this one obtains a heat capacity cP = d 〈ΔH〉 /dT of

cP =
( 〈ΔH〉

dT

)
P

=
K(T)

(1 + K(T))2
ΔH2

RT2 (6.16)

For ΔH = 35 kJ/mol one obtains a melting profile with a half width of about
60◦. This is not in agreement with experimental data. In experiments transi-
tion profiles are significantly narrower—less than 1◦ (cf. Fig. 6.8). What could
be the reason for this?

The Boltzmann factor above is given per mole of the unit that undergoes a
transition. Let us assume that lipids do not melt independently of each other
but rather simultaneously in clusters of n lipids. Then we have to consider
these n lipids as the cooperative unit size. We have to replace enthalpy, en-
tropy, and free energy in the above equations by

ΔH −→ nΔH

ΔS −→ nΔS

ΔG −→ nΔG

K = exp(−ΔG/RT) −→ K = exp(−n · ΔG/RT)

(6.17)
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These values have to be used in Eq. (6.16). In Fig. 6.8 the resulting heat ca-
pacity profiles are shown for different cooperative unit sizes. The larger the
cooperative unit size the narrower the transition peak. To explain the transi-
tion half with of DPPC MLV one needs a cooperative unit size of at least 1000
lipids. If the cooperative unit size approaches an infinite number of molecules,
the transition half width also becomes infinitely small. This is the limit of a
first-order transition. Since lipid vesicles always have a finite size, transition
peaks in real systems are never infinitely sharp. Large multilamellar vesicles
display generally much narrower transition preaks than unilamellar vesicles.

The above naturally is based on the somewhat arbitrary assumption that the
cooperative unit size is independent of temperature. This is actually not the
case. A much more sophisticated analysis of such clusters is given in Chap-
ter 8. However, already here is seems obvious that melting of lipid membranes
must be a cooperative phenomenon. The cooperative clusters can actually of-
ten be seen under the microscope as domains (see, e.g., Fig. 8.3).

6.3
Influence of Pressure

The application of pressure has pronounced effects on lipid melting as shown
in Fig. 6.9. In this example we show dimyristoyl phosphatidylcholine (DMPC)
multilamellar vesicles at atmospheric pressure and with applied pressure. The
main transition of DMPC is very cooperative. The transition half width is
less than 0.1 K (slightly depending on buffer conditions). The application of
40 bars bulk pressure leads to a shift of the transition of about 0.92 K. Now

Fig. 6.9 Upon application of pressure heat capacity profiles of lipid
membranes shift to higher temperatures. From this volume changes
can be calculated. Shown is the heat capacity profile of DMPC MLV.
Adapted from Ebel et al. (2001).
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the melting temperature Tm for a given constant pressure p0 is given by (cf.
Eq. (6.3))

Tm =
ΔH0

ΔS
=

ΔE0 + p0ΔV
ΔS

(6.18)

Upon an increase of pressure by Δp the change of the melting enthalpy is

Δ (ΔH) = ΔpΔV (6.19)

It is reasonable to assume that the entropy change in the melting transitions
upon an increase of pressure is unchanged if we consider the same low and
high temperature states outside the transition regime. The resulting change in
melting temperature is

ΔTm =
Δ (ΔH)

ΔS
=

Δp ΔV
ΔS

= Δp Tm
ΔV
ΔH0

(6.20)

In Fig. 6.9 it is shown that the application of an excess pressure of Δp =
40 bar = 4 × 106 Pa results in a shift of the melting transition of DMPC mem-
branes by 0.92◦. From this shift the volume change in the transition can be
calculated:

ΔV =
ΔTm ΔH0

Tm Δp
(6.21)

where ΔH0 and Tm are the values at atmospheric pressure. The pressure de-
pendence of lipid phase behavior has been investigated in much detail by
Winter and colleagues (Winter and Pilgrim, 1989; Landwehr and Winter, 1994;
Czeslik et al., 1998). They found that the shift of the melting temperature as
a function of pressure is linear up to more than 1000–2000 bar (Böttner et al.
(1994)).

It has been found experimentally by Ebel et al. (2001) that ΔTm/Tm at a
given pressure change Δp, is within experimental error, the same for various
lipids. This also means that ΔV/ΔH0 is roughly independent of the nature of
the lipid. Let us consider the earlier result that the melting enthalpy depends
approximately linearly on the chain length. In the next section we further
show that melting enthalpies can never become negative. It therefore follows
that for lipid membranes the volume change is also never negative.

Volume changes can be indirectly measured in a pressure calorimetry
(Fig. 6.9). More directly they can be obtained from differential densitom-
etry (see the Kratky balance in Fig. 14.3). In such an experiment the lipid
dispersion is filled into a vibrating capillary The eigen-frequency of the cap-
illary is related to the density of the dispersion. The specific volume of the
dispersion can be deduced from careful measurement of the vibrational fre-
quency. A densitometry experiment is shown in Fig. 6.10. Here, density,
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Fig. 6.10 Some thermodynamic functions of a 10mM DMPC LUV
dispersion. Left: Density, ρ, obtained in a differential densitometer,
specific volume, V, and volume expansion coefficient, dV/dT, as a
function of temperature. Right: The volume expansion coefficient is
proportional to the heat capacity. The profile shown displays two max-
ima. This is probably a consequence of shape changes of the vesicles
in the melting regime. Adapted from Ebel et al. (2001).

specific volume, and volume expansion coefficient (defined as the tempera-
ture dependence of the specific volume, dV/dT) are plotted as a function of
temperature. Interestingly, the volume expansion coefficient and excess heat
capacity are proportional functions. This statement is much stronger than that
made above in Eq. (6.20). The proportional relation between the heat capacity
and volume expansion coefficient will play an important role in Chapters 14
and 15, where we will use this fact to calculate elastic constants from the heat
capacity.

The melting of the lipid membrane depends on the lateral pressure, ΔΠ, in
a similar manner as on the bulk hydrostatic pressure:

Tm =
ΔH0

ΔS
and ΔH0 = ΔΠ ΔA

ΔTm =
ΔΠ ΔA

ΔS
= Π Tm

ΔA
ΔH0

(6.22)

This will be discussed below in the context of monolayer experiments.
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6.4
Metastable States

According to (4.43) the heat capacity is given by

cP =
d 〈H〉

dT
=

〈
H2〉− 〈H〉2

R T2 =
〈H − 〈H〉〉2

R T2 ≥ 0 (6.23)

The heat capacity therefore can never assume negative values. Making use of
Eq. (6.23) this implies that the enthalpy is a monotonically increasing function
of temperature:

ΔH =
∫ T2

T1

cPdT ≥ 0 if T2 > T2 (6.24)

The same is generally true for the entropy:

ΔS =
∫ T2

T1

cP

T
dT ≥ 0 if T2 > T2 (6.25)

Therefore, during a heat capacity up-scan the enthalpy can never decrease.
However, examples can be found where exactly this happens. How is this pos-
sible? The example in Fig. 6.11 shows a mixture of dimyristoyl phosphatidyl-

Fig. 6.11 Calorimetric scan of a mixture of DMPC and dimyristoyl
glycerol (10:90 mol%:mol%). The first scan and the second scan
display a very different shape. In the first scan a transition from a
metastable state Cα to a stable state Cβ with a lower enthalpy occurs.
Adapted from Heimburg et al. (1992).
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choline (DMPC) and dimyristoyl glycerol (DMG). DMG does not form mem-
branes on its own but rather forms crystals. At high temperatures it forms
an oil melt. Two different crystal structures exist. The lower enthalpy crystal
structure, Cβ, has a much lower rate of formation. The higher enthalpy crystal
structure, Cα, displays a fast rate of formation. Thus, upon cooling usually
the Cα phase forms, although the Cβ phase is thermodynamically stable. The
two crystal structures display different melting points. The Cα phase melts at
about 37 ◦C, whereas the Cβ phase rather melts at about 55 ◦C. Therefore, if
the Cα phase is present after cooling the oil phase, at 37 ◦C it spontaneously
converts into the more stable Cβ phase. This means that in fact the Cα phase
is a metastable phase. During this process heat is released. If the sample is
cooled from 37 ◦C to lower temperatures and the scan is performed again, the
spontaneous process at 37 ◦C disappears. Similar behavior can be found in the
heating scans of dimyristoyl phosphatidylethanolamine (DMPE).

One should always be suspicious if one observes spontaneous heat releases
upon heating a lipid sample. Usually such processes indicate that the sam-
ple is not in thermodynamic equilibrium. The sample can, however, often be
equilibrated by partial heating or by storing the sample for a long time.

6.5
Melting of Membranes Consisting of Lipid Mixtures

Biological membranes consist of a complex mixture of lipids with very differ-
ent melting enthalpies and different melting points. How does melting occur
in such mixtures?

Fig. 6.12 Melting of a 60:40 mixture of DMPC and DSPC. The melting
regime displays a half width on the order of 15 K.
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In Fig. 6.12 the melting of a mixture of DMPC and DSPC is shown. It shows
a melting regime with a half width of about 15 K. The profile displays two
maxima, at 28.8 ◦C and 41.6 ◦C, respectively. These values are different from
the melting points of the individual lipid components (23.6 ◦C and 54.7 ◦C, re-
spectively). From this it has to be concluded that the different lipid species do
not melt independently but rather influence each other in the melting process.
In the next chapter (Chap. 7) we will investigate the phase behavior of lipid
mixtures in much more detail.

6.6
Melting in Biological Membranes

All of the above is likely to play an important role in biology because biolog-
ical membranes can also melt. Typically, such melting transitions are found
10–15 K below body or growth temperature. In Fig. 6.13 three biological sam-
ples are shown, which are as follows.

1. Bovine lung surfactant. This is a lipid film containing in particular the
surfactant protein C (SP-C). It exists in a monolayer–bilayer equilibrium
on the lung surface. Its purpose is to reduce the surface tension of the
air–water interface of the lungs. Since the lung possesses a total surface
area corresponding to the size of a tennis court the lung would collapse
without the surface tension reduction caused by lung surfactant. Lung
surfactant displays a lipid melting peak about 10–15 ◦C below body tem-
perature. At higher temperatures above body temperature one can rec-
ognize the unfolding peak of the SP-C protein.

2. E. coli membranes. The isolated membranes of these cells display a pro-
nounced lipid melting peak about 10–15 ◦C below growth temperature.
Above growth temperature one can recognize a number of different pro-
tein unfolding peaks.

3. Bacillus subtilis membranes. As the membranes of E.coli the isolated mem-
branes of bacillus subtilis display a pronounced lipid melting peak about
10–15 ◦C below growth temperature. Above growth temperature one
finds protein unfolding events.

It has been shown that these membranes respond in a similar manner to pres-
sure changes as the artificial membranes in Section 6.3 (Ebel et al., 2001; He-
imburg and Jackson, 2007b).

It seems that biological membranes adapt their lipid composition such that
the temperature distance between ambient temperature and melting transi-
tion is maintained (Chapter 3). When such organisms are grown at different
temperature, different pressure, or in the presence of solvents they change
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Fig. 6.13 Melting of artificial and biological membranes. From top
to bottom: DPPC unilamellar vesicles, bovine lung surfactant, E. coli
membranes, and bacillus subtilis membranes (from Heimburg and
Jackson (2005)). The three biological samples also display protein
unfolding peaks above body (or growth) temperature. The lipid melting
in these membranes is represented by the broad peak below 37 ◦C.

their lipid composition. In Chapter 14 we derive that the heat capacity max-
ima are closely coupled to maxima in the elastic constants such that structural
changes are easier (Chapter 15). Also, there is the possibility of mechanical
excitations (Chapter 18). Thus, it seems likely that such transitions serve a
purpose in the biological cell. Slight variation of the thermodynamic variables
can move the membranes transiently into the transition regime. Variation of
pH is possibly the easiest way to achieve this.

6.7
Lipid Monolayers

Many scientific groups investigate the phase behavior of lipid monofilms on
water surfaces. This method has been introduced by Langmuir (1917) and is
schematically shown in Fig. 6.14. Lipids spread on an air–water interface with
the hydrocarbon tails being exposed to air and the lipid head groups being
exposed to water. The area of the film can be altered by moving some teflon
barriers and the lateral pressure is measured with a Wilhelmy balance that
practically is a little metal rod (or thin paper sheet) sensing the surface tension
of the film.
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Fig. 6.14 Schematic drawing of a Langmuir trough with which the
pressure in a lipid monofilm can be measured. A lipid monofilm
spreads on the air-water interface. The area of the film can be altered
moving two teflon barriers. The lateral pressure is recorded via the
force acting on the metal rod hanging in the center. Domain forma-
tion can be imaged through a microscope objective from below. Image
courtesy Martin Gudmand, NBI Copenhagen.

For two-dimensional systems at constant number of molecules the differen-
tial of the Helmholtz free energy is given by

dF = −SdT − ΠdA (6.26)

Thus, it follows that at constant temperature(
dF
dA

)
T

= −Π (6.27)

The lateral pressure can be plotted as a function of the molecular area of
the monofilm. Figure 6.15 (left) shows four isotherms of DPPC monofilms
recorded at different temperatures. At three of those temperatures one can
recognize a plateau region in the range about 50–75 2. This region displays
a different width at different temperatures and completely disappears above
40 ◦C. The isotherms where area changes as a function of pressure have a for-
mal correspondence to the change of enthalpy with respect to temperature.
The region where small pressure changes result in large area changes corre-
sponds to the chain melting regime. The two phases at low and high pressure
are called the liquid-expanded and liquid-condensed phase. In the plateau
region of the pressure-area isotherms the monolayer is very compressible and
one finds co-existence of liquid and solid state domains (Fig. 6.16). This be-
come more obvious if we consider the isothermal area compressibility, κA

T ,
that is defined by

κA
T = − 1

A

(
dA
dΠ

)
T

(6.28)

The compressibilities are shown in Fig. 6.15 (right). In the chain melting
regime one finds pronounced maxima of the compressibility as a function of
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Fig. 6.15 Langmuir isotherms of DPPC monofilms recorded at four dif-
ferent temperatures. Left: Isotherms displaying plateau regime around
a molecular area of 65 Å. Right: The lateral compressibility calculated
from the data in the left-hand panel. They display pronounced max-
ima that shift with increasing ambient temperature. Compare this to
the pressure-dependent heat capacity data shown in Fig. 6.9. Data by
Gudmand and Heimburg, NBI Copenhagen.

pressure. These maxima are shifted toward higher pressures and higher tem-
peratures.

The formal correspondence with the heat capacity profiles is obvious:

• The heat capacity displays maxima in the chain melting regime.

• The heat capacity maxima shift to higher temperatures if the bulk (or the
lateral) pressure increases.

• The lateral compressibility displays a maximum in the chain melting
regime.

• The compressibility maxima shift to higher pressures if the ambient tem-
perature increases.

The similarity is also evident when comparing the right-hand panel of
Fig. 6.15 with Fig. 6.9. For this reason heat capacity measurements and
monolayer experiments are complementary. The two figures show distinct
aspects of the same membrane phenomena by variation of different inten-
sive variables (temperature and lateral pressure, respectively). In contrast to
the heat capacity measurements, where hydrostatic pressure is maintained
while the membrane area and volume are allowed to change, in monolayer
experiments the area is kept constant and lateral pressure is allowed to vary.
This makes monolayer experiments suitable for protein and drug adsorption
experiments.
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Fig. 6.16 Monolayer during compression through the plateau region
(the region of high compressibility) of DPPC at room temperature
showing domain formation. Bright regions are liquid regions containing
a fluorescence marker. The dark regions are liquid-condensed do-
mains without fluorescence marker. Data by Gudmand and Heimburg,
NBI Copenhagen.

The transition in the lipid monolayers can be monitored by using fluores-
cence microscopy. Figure 6.16 shows a series of images of DPPC monofilms
recorded at increasing monolayer pressure. The liquid-condensed domains
(corresponding approximately to gel regions) show up in dark shades, while
liquid-expanded regions (corresponding approximately to fluid regimes)
show up as bright areas. The domains display chirality and increasingly
complex shapes. Such chiral shapes are typically not found in bilayer vesicles
(compare with Fig. 8.8).
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6.8
Summary: Key Ideas of Chapter 6

• Lipid bilayers display melting transitions. Typically, the lipid mem-
branes change their state from solid ordered to liquid disordered. One
good way to measure such transitions is the calorimetric determination
of the heat capacity, cP = (dH/dT)P.

• These transitions are associated with a change in enthalpy and entropy.

• The melting transition consists of a pretransition of low enthalpy and a
main transition of high enthalpy. Between pretransition and main tran-
sition the membrane is periodically undulated (ripple phase). The pre-
transition and main transition probably represent one single continuous
melting event (explained in more detail in Chapter 15).

• Enthalpy and entropy changes depend on both the head group and the
chain length of the lipid. The head groups give a constant head-group
specific negative contribution to the enthalpy while the chains add a
positive enthalpy and entropy contribution that depends linearly on the
chain length.

• The linear dependence on the chain length can be understood on the
basis of chain isomerizations between trans and gauche configurations.

• Lipid membrane melting occurs over a very narrow temperature regime.
This can only be understood if single lipids do not melt independently
but in cooperative units. This will lead to cluster and domain formation.

• Hydrostatic pressure shifts melting points toward higher temperatures.

• Heat capacity peaks cannot be negative for equilibrated systems. Neg-
ative peaks are generally an indication for metastability or a nonequi-
librated system. Such events can be found in the melting of DMG and
DMPE membranes.

• Lipid melting transitions are also found in lipid mixtures and in bio-
logical membranes. In such systems they typically span over a larger
temperature interval.

• Lipid melting can also be investigated by compressing lipid monofilms.
Here, the lateral pressure is recorded as a function of area. This corre-
sponds to the measurement of the compressibility as a function of pres-
sure.
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7
Phase Diagrams

In the previous chapter we have shown that single lipid membranes can melt
and lipid melting depends on chain length, head group, protonation (charge),
and pressure. However, biological membranes consist of many, probably hun-
dreds of different lipids (see Chapter 3). In the Introduction we have seen that
biological membranes show melting reactions slightly below body tempera-
ture that display a broad transition half-width. How can one understand the
melting of complex lipid mixtures?

Since biological membranes are complex mixtures of many lipids with in-
dividually different melting temperatures and different melting enthalpies,
a complex melting behavior is expected. The various lipid species in mix-
tures are not likely to melt independently. First—as already mentioned in
Section 6.2, lipid melting displays cooperativity, i.e., the individual molecules
do not melt independently. In mixtures they are influenced by the melting be-
havior of neighboring lipids of different chemical nature. Furthermore, since
the lipids are all dissolved in a matrix (the membrane), they possess chemical
potentials closely related to the concentrations (or molar fractions) of the re-
spective lipids. The chemical potentials of the various lipids will be different
in the gel and the fluid phase. Thus, a more advanced description of mixing
and melting has to be developed.

In the following sections we introduce the theory of lipid phase diagrams,
in particular ideal and regular solution theory. The interested reader may
also consider reading the excellent article by Lee (1977).

7.1
Ideal Mixture

We will first treat the special case that the free energy of the interaction be-
tween all lipids in a phase is the same. Exchanging lipids within the gel phase
or the fluid phase will not change the free energy of the lipid matrix. This
means that the lipids will randomly distribute in each of the lipid phases. This
is called “ideal mixing.”
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Let us assume two lipid species, A and B. The interaction free energy of each
lipid of species A with each lipid of species B is the same as with another lipid
of species A. Furthermore, the lipid membrane shall exist in two states: gel
state (g) and fluid state ( f ). The melting points, Tm,A and Tm,B of the individual
components, as well as the corresponding melting enthalpies, ΔHA and ΔHB,
are allowed to be different. What happens when the two lipids mix well and
the temperature is in between Tm,A and Tm,B?

The melting of a lipid resembles a unimolecular reaction of kind: gel �
fluid. The differential of the free energy can be written as (see Section 4.7)

dG = (μ f − μg)dn f (7.1)

where μg and μ f are the chemical potentials of gel and fluid phase lipids,
respectively, and n f is the fraction of fluid lipids. Since in thermal equilibrium
dG/dn f = 0 it follows that

μg = μf (7.2)

For each of the components we can therefore write

μ
g
A = μ

f
A and μ

g
B = μ

f
B (7.3)

where the index g denotes the gel state, and the index f denotes the fluid state.
In membranes we consider the distribution of lipids in two dimensions. The

aqueous buffer is the three-dimensional medium into which the membrane is
embedded. Therefore, it is convenient to use relative fractions of the individ-
ual components instead of concentrations. Instead of writing the chemical po-
tential as μ = μ0 + RT ln(c/c0), we will now write it as μ = μ0 + RT ln(x/x0)
with x0 = 1. This means that now our standard state is a lipid fraction of x0.
xi is the fraction of lipid species i, and ∑ xi = 1.

Let us now consider two lipids that display different melting temperatures,
Tm,A and Tm,B. In a temperature interval between the two melting points one
may expect that some of the lipids are in the gel phase and some are in the
fluid phase. Due to the different melting points one further expects that the
concentration of the different lipid species in gel and fluid phase are different.
Thus, the chemical potentials of the components in the gel and the fluid phase
may assume different values.

The chemical potentials of the lipids of species A and B in gel and fluid
phase are given by:

μ
g
A = μ

g
A,0 + RT ln xg

A and μ
f
A = μ

f
A,0 + RT ln x f

A

μ
g
B = μ

g
B,0 + RT ln xg

B and μ
f
B = μ

f
B,0 + RT ln x f

B

(7.4)
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where xg
A is the fraction of species A in the gel phase (similarly for x f

A, xg
B,

and x f
B). It follows that

x f
A

xg
A

= exp

⎛
⎝−μ

f
A,0 − μ

g
A,0

RT

⎞
⎠ = exp

(
−ΔHA,0

R

(
1
T
− 1

Tm,A

))
≡ e−A (7.5)

where it has been used that ΔμA = ΔHA,0 − TΔSA,0 and ΔSA,0 = ΔHA,0/Tm,A.
Correspondingly, one obtains for lipid species B

x f
B

xg
B

= exp

⎛
⎝−μ

f
B,0 − μ

g
B,0

RT

⎞
⎠ = exp

(
−ΔHB,0

R

(
1
T
− 1

Tm,B

))
≡ e−B (7.6)

Furthermore, the fractions of the different lipids in each phase must add to
one:

xg
A + xg

B = 1 and x f
A + x f

B = 1 (7.7)

One has four unknowns, xg
A, x f

A, xg
B, and x f

B, and four equations, Eqs. (7.5),
(7.6), and (7.7). The composition of the fluid and the gel phase are therefore
uniquely defined.

If one solves these equations for the fractions of the two lipid species in the
gel and the fluid phase, one obtains the following relations:

xg
A =

e−B − 1
e−B − e−A

xg
B =

e−A − 1
e−A − e−B

(7.8)

and

x f
A =

e−A(e−B − 1)
e−B − e−A

x f
B =

e−B(e−A − 1)
e−A − e−B

(7.9)

Some examples for the phase boundaries given by Eqs. (7.8) and (7.9) are
shown in (see Fig. 7.1). Of course, for all fractions 0 ≤ xg

A, x f
A, xg

B, x f
B ≤ 1

has to be fulfilled. Equations (7.8) and (7.9) therefore are only meaningful in a
temperature interval Tm,A and Tm,B. Below this temperature interval one finds
all lipids in the gel phase, whereas above this interval all lipids are in the fluid
phase.

The amounts of the gel phase, xg, and the fluid phase, x f , depend on the rel-
ative amounts of the lipid of species A, xA, and of species B, xB. Furthermore,
xg + x f = 1 and

xB = x f · x f
B + xg · xg

B = x f · x f
B + (1 − x f ) · xg

B = x f (x f
B − xg

B) + xg
B (7.10)
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Fig. 7.1 Phase diagrams of ideal mixtures: The profiles of the func-

tions xg
B and x f

B are plotted versus temperature for different sets of pa-
rameters. Left: Tm,A = 296 K, Tm,B = 314 K, ΔHA = 12 kJ/mol,
and ΔHB = 36 kJ/mol. Center: Tm,A = 296 K, Tm,B = 314 K,
ΔHA = 24 kJ/mol, and ΔHB = 24 kJ/mol. Right: Tm,A = 296 K,
Tm,B = 314 K, ΔHA = 36 kJ/mol, and ΔHB = 12 kJ/mol. The shaded
gray regions are gel/fluid phase coexistence regions.

x f =
xg

B − xB

xg
B − x f

B

and xg = 1 − x f lever rule (7.11)

This equation can also be written as

x f

xg =
xg

B − xB

xB − x f
B

(7.12)

In this equation the linguistic origin of the term “lever rule” can easily be
recognized (compare also Fig. 7.2). The lever rule (see Fig. 7.2) allows us to
calculate the fractions of gel and fluid phase as a function of the fraction of
component B and the temperature.

Now we can also calculate the enthalpy and the heat capacity as a function
of temperature:

ΔH(T) =
xg

B − xB

xg
B − x f

B

· (x f
B · ΔHB + (1 − x f

B) · ΔHA) (7.13)

and the heat capacity is given by cp = d ΔH(T)/d T. For the phase diagram
in Fig. 7.2 and a molar fraction of lipid B of xB = 0.5 enthalpy and heat capac-
ity are shown in Fig. 7.3. The sharp peaks at the upper and lower temperature
limits of the heat capacity profile are due to the assumption that the pure com-
ponents display an infinitely sharp transition. In real lipid mixtures the edges
of the profiles are smoother.
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Fig. 7.2 The relative amounts and the compositions of gel phase, xg
B,

and fluid phase, x f
B for given xB and temperature can be obtained from

using the lever rule. The diagram was calculated for Tm,A = 296 K,
Tm,B = 314 K, ΔHA = 24 kJ/mol and ΔHB = 24 kJ/mol.

In analogy with this calculated melting profile one can determine phase
boundaries from experimental profiles. The calculated heat capacity profile in
Fig. 7.3 displays sharp edges that correspond to the phase boundaries for this
particular lipid mixture. Experimental profiles hardly ever show such sharp

Fig. 7.3 Enthalpy and heat capacity as a function of temperature cal-
culated for xB = 0.5. The diagram was calculated for Tm,A = 296 K,
Tm,B = 314 K, ΔHA = 24 kJ/mol and ΔHB = 24 kJ/mol.
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edges because they are not infinitely cooperative. Therefore, one often uses
a tangent construction where the intersections of tangents to the profile and
the baseline are considered as phase boundaries (see Fig. 7.4). One should,
however, be aware that this is an analogy that is based on the fact that the as-
sumptions made for the construction of the theoretical phase diagram are also
true for the real system. One of these assumptions is that the melting process
is infinitely cooperative, i.e. phase separation is macroscopic. In many real
systems, however, one finds finite size domains. The choice of the tangents is
also somewhat subjective and therefore not a precise measure.

Fig. 7.4 Tangent construction to determine the phase boundaries from
an experimental heat capacity profile. Such a construction is made in
analogy with the calculated heat capacity profile in Fig. 7.3 (right). The
experimental sample shown is a DMPC:DSPC (60:40) mixture.

7.2
On the Number of Coexisting Phases

By investigation of the phase diagram in Fig. 7.2, one can identify three differ-
ent regions

1. Only one gel phase exists. One can freely vary the concentration and the
temperature without leaving this region of the phase diagram.

2. A coexistence of the gel and fluid phase is found. One can only vary
either temperature or composition freely. The respective other variable
is determined by the lever rule (7.11).

3. Only one fluid phase exists. One can freely vary the concentration and
the temperature without leaving this region of the phase diagram.
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One therefore only finds one- and two-phase coexistence regions. However,
that has been already assumed during the derivation of the equations for one-
and two-phase regions. Could there also be more phases?

Question: How many phases can exist simultaneously?

7.2.1
Gibbs’ Phase Rule

To consider systems with more than two lipids let us start with some general
thermodynamical consideration. Let us assume a lipid mixture in which we
find

• K different components (e.g., different lipid species)

• J different phases that coexist (e.g., in different gel and fluid phases, but
also inverse hexagonal or other phases)

According to Eq. (4.21) one obtains in the thermal equilibrium

K

∑
k=1

njkdμjk = 0 Gibbs–Duhem (7.14)

for each phase with index j. In this equation k is the running index for the
different components. There are j such equations. The chemical potential of
a component is the same in all coexisting phases. Therefore one obtains K
different chemical potentials, and the concentrations of these components are
variables. The pressure, p, and the temperature, T, are also system variables.
In total we therefore have K + 2 variables. They are not all independent. Since
there are J Gibbs–Duhem equations, one finds

F = K + 2 − J Gibbs’ phase rule (7.15)

independent variables. At constant pressure one obtains

F = K + 1 − J Gibbs’ phase rule at constant pressure (7.16)

F can be considered as the number of degrees of freedom. The number of
degrees of freedom is the number of parameters that we can change externally
and thereby influence the state of the phases. For the ideal mixture at constant
pressure that means

• In the fluid phase, J = 1 and K = 2, therefore F = 2. This means that
variables xB and T can be freely varied without leaving the fluid phase
regime.
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• In the coexistence region, J = 2 and K = 2, therefore F = 1. x f
B and T

cannot be varied independently from each other. One therefore obtains
phase boundaries. If the temperature is fixed, we cannot influence the
composition of the fluid and the gel phase by changing the fraction of
the lipid B. The composition of the two phases is also fixed.

• In the gel phase one again finds J = 1, K = 2, and F = 2.

In principle, however, it is possible that at one point within the phase dia-
gram (F = 0) and therefore J = 3. In the ideal solution, however, this never
happens.

In general, the number of the degrees of freedom can never be smaller than
zero. Therefore, one has only three different possibilities in two-component
mixtures: J = 1, J = 2, or J = 3.

7.2.2
The Role of Water as a Component

So far we have left out one important factor: the role of the aqueous medium.
Water also has to be considered as a component. In the previous considera-
tions, however, we have ignored it. Can this generally be done, or if not, are
there conditions when this simplification is allowed?

To be precise, the role of water cannot be ignored. Most lipids, in particular
the zwitterionic lipids, have a finite interaction with water. Typically, 20–30
water molecules are sufficient to completely hydrate one single uncharged
lipid. Thus, any further addition of water does not influence the physical
behavior of the lipids. All additional water forms a separated aqueous phase.
This means that in Eq. (7.16), we find one more component (water) and one
more phase (the aqueous solution). It follows that nothing changes in our
considerations about the number of lipid phases.

This line of argument breaks down in the limit of low water concentration.
If less water is available than necessary to fully hydrate the lipids, one may
induce phase transitions due to changes of the amount of water available. For
zwitterionic lipids this happens if the mass ratio between water and lipid is
less than 1, i.e., under conditions of extremely high lipid concentrations. In a
typical test tube experiment, these conditions are not fulfilled.

Why should one nevertheless worry about the role of water? Seemingly it
is abundant in biological cells.

Two factors require a thorough consideration

1. Some lipids, in particular charged lipids such as dimyristoyl phos-
phatidylglycerol, require large quantities of water to be fully hydrated
(cf. Chapter 15). Even if the lipid concentration is as low as 1 mM there
is no free water in the system. This can be recognized from calorimet-
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ric measurements that demonstrate that the heat capacity profiles are
dependent on the lipid concentration even at very low concentrations
(Schneider et al., 1999).

2. A growing community of scientists believes that in biological cells all
the other macromolecules (proteins, nucleic acids, sugars, and ions) in-
teract so strongly with the water that in fact there is no free water in
biological cells. If true, this would strongly influence the phase behavior
of lipid membranes (and of all other transitions such as conformational
changes of proteins, or their unfolding reactions). For further reading
on this topic it is recommended to read the interesting and thought pro-
voking books by Ling (2001) and Pollack (2001) on the role of hydro-gels
in biology.

Of course, in the limit of very low lipid concentrations (below the critical mi-
celle concentration) the lipids will form monomers. Thus it is obvious that for
the above considerations to be true one should keep the total lipid concentra-
tion above the critical micelle concentration.

The role of water cannot generally be neglected because the amount of
water available in biological cells may be small, and because some lipids
need high amounts of water to fully hydrate.

In the following, however, we will assume that experiments are done under
excess water conditions such that one of the components is water and one of
the phases is the aqueous medium.

7.2.3
What Exactly is a Phase?

When deriving the phase boundaries for the ideal mixture and Gibbs’ phase
rule we tacitly made the assumption that the phase boundaries do not play a
role, i.e. they do not contribute to the free energy. This implies that the phases
are macroscopically separated. Is that assumption allowed?

In general the interface between two phases always carries a free energy
contribution. The interface between water and oil is accompanied by water
orientation phenomena that contribute both to enthalpy and entropy of the
system (see Chapter 5). However, if the phase is macroscopic, the interfacial
area may be small. If the system size x of two macroscopic phases increases,
the volume V changes V ∝ x3 while the interfacial area A changes by A ∝ x2.
Thus, the ratio between the interface and volume is A/V ∝ 1/x. The larger the
system size the smaller is the relative contribution of the interface to the free
energy of the system as a whole. This argument can easily be translated into
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the two-dimensional situation of a membrane containing one-dimensional in-
terfaces between the phases. Therefore, if the phases separate macroscopi-
cally, the interface can readily be ignored and all of our above considerations
are correct, at least in the limit of infinitely large systems.

What, however, if the phases are not macroscopic? This can happen un-
der different circumstances: The membrane of a biological cell is not infinitely
large—thus phase boundaries are unavoidable. Also, under many circum-
stances microscopic experiments show that domains of finite size exist. If do-
mains have finite sizes, increasing the total membrane area does not change
the relative contribution of the domain interface. A system that is 10 times as
large just contains 10 times as many domains. The ratio of the domain inter-
face to the domain area is unaffected. Therefore under these conditions the
contribution of the domain interface to the free energy of the system cannot
be ignored. Further, the length of the domain interface obviously is a system
variable. This means that when comparing with the statements made in Sec-
tion 7.2.1, in the coexistence regime one can change the fraction of lipid B and
the size of the domains can change. Thus, the physical appearance of the lipid
membrane changes and thus the relative contribution of the interface to the
free energy. This would also automatically influence the lipid composition
within the phases. This has frequently been observed in confocal microscopy
images of lipid vesicles. One has to conclude that Gibbs’ phase rule cannot be
applied for systems containing domains of finite size!

• Gibbs’ phase rule can only be applied if the lipid phases separate
macroscopically. It is not valid for systems containing small domains.

• A lipid system containing small domains does not necessarily corre-
spond to a phase coexistence regime. They may constitute a one phase
regime with microscopic heterogeneities.

Let us try to understand the second statement. An aqueous solution con-
taining lipid micelles is usually considered as one phase. This is because mi-
celles and water do not macroscopically separate. Small domains in a lipid
matrix generate a similar situation. But why should one bother about such a
distinction between domains and phases? The distinction between domains
and phases is important because of the fluctuations in composition and state.
This become more obvious in Chapters 8 and 14. In these chapters the dif-
ference between first-order and continuous transitions will be discussed. A
phase has a fixed and well-defined physical state. Coexisting domains may
have fluctuating compositions and sizes. This influences their physical prop-
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erties. In particular for the elastic constants of lipid systems this turns out
to be a relevant distinction (Chapter 14). This will also be discussed in the
context of the ongoing debate on the physical reality of domains in biological
membranes called “rafts” (see Section 9.5).

7.3
Regular Solution

In general the mixture between two components is not ideal, i.e., the interac-
tion εij between two molecules of species A and B cannot be ignored. It shall
be given by

εAA �= εAB �= εBB (7.17)

For the ideal mixture we had

G = xA · μA + xB · μB

= xA · μ0
A + xA · RT ln xA + (1 − xA) · μ0

B + (1 − xA) · RT ln(1 − xA)
(7.18)

The Gibbs free energy of the mixing process therefore was

Gmix = RT(xA · ln(xA) + (1 − xA) · ln(1 − xA)) (7.19)

Due to Eq. (4.17) the entropy is given by

S = −
(

∂G
∂T

)
p,ni

(7.20)

and consequently the mixing entropy is given by

Smix = −R · (xA · ln(xA) + (1 − xA) · ln(1 − xA)) and Hmix = 0 (7.21)

For a nonideal mixture (real mixture) we shall have

μA = μ0
A + RT ln(xA · jA) (7.22)

where the “activity coefficient” jA �= 1 describes the nonideality. The nonide-
ality contributes to the chemical potential with μR

A (R for regular):

μR
A = RT ln(jA) (7.23)

and the free energy contribution is

GR = xA · μR
A + xB · μR

B (7.24)

In general the activity coefficient j can be a function of x.
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7.3.1
Simple Eutectic Phase Diagram

The most simple example for a nonideal system is an ideal mixture in the fluid
phase and immiscibility in the gel phase (this is a limiting case).

One obtains for component A

μ
g
A = μ

g
A,0

μ
f
A = μ

f
A,0 + RT ln(x f

A)
(7.25)

Since the chemical potentials of component A in the two phases are similar

ln(x f
A) = −μ

f
A,0 − μ

g
A,0

RT
= −ΔHA,0

R

(
1
T
− 1

Tm,A

)
(7.26)

and correspondingly for component B (xB = 1 − xA)

μ
g
B = μ

g
B,0

μ
f
B = μ

f
B,0 + RT ln(1 − x f

A)
(7.27)

ln(1 − x f
A) = −μ

f
B,0 − μ

g
B,0

RT
= −ΔHB,0

R

(
1
T
− 1

Tm,B

)
(7.28)

The two functions for x f
A can be plotted into a phase diagram (Fig. 7.5). One

calls such mixtures eutectic. In the center a triple point exists (coexistence of
the gel phase of component A, gel phase of component B, and a fluid phase

Fig. 7.5 Simple eutectic phase diagram, calculated for dHA = dHB =
24 kJ/mol, TA

m = 296 K, and TA
m = 314 K. Note the triple point at

xB = 0.36.
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which is an ideal mixture of components A and B). The triple point is also
called eutectic point. At the triple point the number of degrees of freedom is
F = 0.

7.3.2
Melting Point Depression and the Effect of Anesthetics

Let us assume a small molecule that dissolves in the membrane. It should
not display a melting behavior of its own. Furthermore, it should ideally mix
with the fluid phase and not mix at all with the gel phase. A typical example
for such a behavior would be an anesthetic such as octanol or halothane.

The above problem can be described using Eqs. (7.25) and (7.26).

ln(x f
A) = −μ

f
A,0 − μ

g
A,0

RT
= −ΔHA,0

R

(
1
T
− 1

Tm,A

)

With x f
A = 1 − x f

B = 1 − xB (for T ≥ Tm,A)

ln(1 − xB) = −ΔHA,0

R

(
Tm,A − T

Tm,AT

)
(7.29)

If the added amount xB of the small molecule is small and consequently also
the shift in melting point, one can write ln(1− xB) ≈ −xB and Tm,A · T ≈ T2

m,A

xB =
ΔHA,0

R

(
Tm,A − T

T2
m,A

)
(7.30)

ΔTm = Tm,A − T =

(
R T2

m,A

ΔHA,0

)
xB (7.31)

The phase boundary given by Eq. (7.30) is shown in Fig. 7.6. Again, we
can now determine the enthalpy and the heat capacity as a function of tem-
perature through (cf. Eq. (7.13) with Tm,B → 0 and therefore xg

B = 0 and

x f
B = 1 − e−A)

ΔH(T) =
xB exp

(
−ΔHA,0

R

(
1
T − 1

Tm,A

))
1 − exp

(
−ΔHA,0

R

(
1
T − 1

Tm,A

)) · ΔHA,0 (7.32)

and the heat capacity is given by cp = d ΔHA(T)/d T (see Fig. 7.7).
Here, it is assumed that the shift is always towards lower temperatures.

The melting point depression has been shown for the example of the anes-
thetic octanol in DPPC membranes in Fig. 19.3, resulting in a lowering of the
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Fig. 7.6 Freezing point depression calculated for a lipid membrane
with Tm = 314 K and a melting enthalpy of ΔH = 35 kJ/mol. xB
denotes the fraction of a solute without melting behavior, e.g., of anes-
thetics.

melting temperature of −0.6 K at critical anesthetic dose. Obviously, the ac-
tion of anesthetics on lipid melting can be well described if one assumes that
the anesthetics dissolve well in the fluid phase and that they do not mix at
all with the gel phase. Since anesthetics usually have a residual solubility in
water, the fraction xB of anesthetics may change as a function of temperature.

In Chapter 19 we will make use of these relations to explain the action of
general anesthetics.

Fig. 7.7 Enthalpy (left) and heat capacity (right) for a lipid membrane
with Tm = 314 K and ΔH = 35 kJ/mol and a solute (anesthetics)
fraction of xB = 0.02 in the membrane. The melting point depression is
ΔTm = −0.47 K. Note that this temperature corresponds to the upper
melting temperature and that the whole melting profile extends over a
large temperature interval.
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7.3.3
Regular Solution Theory

The components in each phase are assumed to mix randomly (ideally) as in
the ideal solution theory (ΔSR = 0). The nearest neighbor interaction shall,
however, contribute to the enthalpy:

ΔHR ≡ ρ0 · xA · xB (7.33)

where ρ0 = Z · (2εAB − (εAA + εBB)) describes the energy required to trans-
form ZAA- and BB-pairs into 2ZAB-pairs. Z is the coordination number (the
number of nearest neighbors per lipid). The number of unlike pairs is propor-
tional to xA and xB in the phase under consideration. In this (simplified) view
we obtain

μR
A = ρ0 · x2

B

μR
B = ρ0 · x2

A

(7.34)

One can easily test this by inserting Eq. (7.34) into Eq. (7.24). This leads to
Eq. (7.33). From this one obtains the chemical potentials of the two compo-
nents in the two phases

μ
f
A = μ

f
A,0 + RT ln x f

A + ρ
f
0 · (1 − x f

A)2

μ
f
B = μ

f
B,0 + RT ln(1 − x f

A) + ρ
f
0 · (x f

A)2

μ
g
A = μ

g
A,0 + RT ln xg

A + ρ
g
0 · (1 − xg

A)2

μ
g
B = μ

g
B,0 + RT ln(1 − xg

A) + ρ
g
0 · (xg

A)2

(7.35)

In thermodynamic equilibrium we furthermore find μ
g
A = μ

f
A and μ

g
B = μ

f
B,

and we obtain
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) (7.36)

These are two transcendent equations that can be solved with a computer by
iteration. They can have more than one solution (namely two).

The above considerations allow for a calculation of the mixing properties
within the gel phase and the fluid phase:

ΔGg
mix = RT

(
xg

A ln(xg
A) + (1 − xg

A) ln(1 − xg
A)
)

+ ρ
g
0 xg

A(1 − xg
A)

ΔG f
mix = RT

(
x f

A ln(x f
A) + (1 − x f

A) ln(1 − x f
A)
)

+ ρ
f
0 x f

A(1 − x f
A)

(7.37)
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Fig. 7.8 Free energy of mixing in the gel phase. Left: For ρ
g
0 =

1192 J/mol and various temperatures. Right: For T = 300 K and vari-
ous values for ρ

g
0 . With decreasing temperature and increasing ρ

g
0 two

minima in the mixing free energy form. They correspond to a mixing
gap with two gel phases that have the compositions corresponding to
the compositions at the minima.

Inspection shows that these two equations may have one or two minima. If
there are two minima in the first equation it may be (dependent on lipid mix-
ture and temperature) more favorable if the lipids demix into two gel phases
with different compositions. Between these two concentrations a mixing gap
exists (Fig. 7.8). Depending on the choice of the mixing parameters ρ

g
0 and ρ

f
0

one can generate a manifold of different phase diagrams (see Fig. 7.9 and 7.10).
With ρ

g
0 = 0 and ρ

f
0 = 0 one again obtains the ideal mixture. The fraction of

the respective phases can be calculated with the lever rule. The Gibbs phase
rule must be obeyed. Mixing gaps can also occur between fluid phases.

The minima of the mixing gap are obtained for

d(ΔGmix)
dxA

= RT [ln xA − ln(1 − xA)] + ρ(1 − xA)− ρxA = 0 (7.38)

With increasing temperatures the entropic contribution to ΔGmix dominates,
such that the mixing gap closes progressively (Fig. 7.8). At a critical temper-
ature Tc one finds only one gel or one fluid phase. This happens when the
minimum of the free energy is a turning point with dΔGmix/dx2

A = 0:

d2ΔGmix

dx2
A

=
RTc

xA(1 − xA)
− 2ρ0 = 0 (7.39)

Since Eq. (7.39) is symmetric in xA, one obtains at Tc: xA = xB = 0.5. There-
fore, at

Tc =
ρ0

2R
xA = xB = 0.5 (7.40)

we find a critical point. Practically we find it only if ρ > 0.
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Fig. 7.9 Phase diagrams calculated using the regular solution and
ΔHA = 24 kJ/mol, ΔHB = 36 kJ/mol, Tm,A = 296 K, Tm,B = 314 K.
Left: Here a mixing gap at low temperatures (in the gel phase) is
found. Right: Eutectic phase diagram. The dotted line corresponds
to the phase boundary of the gel phase mixing gap from Eq. (7.37).
The regions shaded in gray are phase coexistence regions.

The two phase diagrams shown in Fig. 7.9 are examples for the case of un-
favorable mixing in the gel phase and ideal mixing in the fluid phase. In the
regions shaded in gray one finds phase separation that obeys the lever rule in
Eq. (7.11). The first diagram (Fig. 7.9, left) displays a mixing gap in the gel re-

Fig. 7.10 Some other phase diagrams calculated using the regu-
lar solution theory using ΔHA = 24 kJ/mol, ΔHB = 36 kJ/mol,
Tm,A = 296 K, Tm,B = 314 K. The nonideality parameters ρ

g
0 and

ρ
f
0 are given in the panels. The gray-shaded regions are phase coexis-

tence regimes.
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gions. If the interaction parameter increases, the gel mixing gap overlaps with
the gel–fluid coexistence regions (Fig. 7.9, right). Here one obtains a eutectic
phase diagram with a eutectic triple point. The dotted line in this diagram
shows the hypothetical gel–gel demixing curves from Eq. (7.38) extended to
high temperatures.

Summarizing: The theory of the regular solution allows a quantitative
description of complicated experimental phase diagrams. However, the
assumption is always that the components mix ideally within the respec-
tive phases. In many cases this represents an over-simplification.

7.4
Experimental Phase Diagrams

The literature is full with experimental phase diagrams of various lipid mix-
tures. In this section we show a few examples.

7.4.1
Mixtures of Phospholipids

In the following, we show some phase diagrams of phospholipid mixtures.
They have been obtained by calorimetry using the tangent construction shown
in Fig. 7.4. The heat capacity profiles of two binary mixtures of lipids with
phosphatidylcholine head groups are shown in Fig. 7.11. These are DLPC–
DPPC and DMPC–DSPC mixtures. The two lipids in both phase diagrams
differ in chain length by two carbons. For this reason the two lipids display
also different melting points (cf. Fig. 6.6 and table 6.1). Both the phase dia-
grams display one gel–fluid coexistence region of similar shape. The solidus
line is has a smaller slope than the liquidus line indicating that ω

g
0 > ω

f
0 . The

DMPC–DSPC phase diagram is treated again in Chapter 8.
Figure 7.12 shows the phase diagram of DMPC-DMPE mixtures. Such mix-

tures are important because about 80% of all lipids in mammalian cells are
phosphatidylcholines and phosphatidylethanolamines. DMPC and DMPE
possess identical chains but different head groups. The melting points are
quite different (Table 6.1). The solidus line is nearly horizontal in most parts
of the phase diagram indicating a high numerical value of ω

g
0 .

An important special case is the mixtures of DMPC and DMPG (phase dia-
gram not shown). Both lipids have nearly identical melting points and melt-
ing enthalpies. The resulting phase diagram at neutral pH consists in a hor-
izontal line just as if two identical lipids are mixed (Garidel et al., 1997). For
this reason it is assumed that DMPC and DMPG mix ideally in both phases
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Fig. 7.11 Phase diagrams of DLPC–DPPC mixtures (left) and DMPC–
DSPC mixtures (right). The bottom panels show the heat capacity
profiles from which the phase boundaries were deduced using the
tangent construction. Adapted from Seeger et al. (2005).

and ρ
g
0 = ρ

f
0 = 0. Therefore, these mixtures of PCs and PGs are good

model systems for studies involving electrostatic interactions of membranes
with ligands. Interestingly, at low pH the phase diagram completely changes.
Charged lipids that are protonated display higher melting temperatures than

Fig. 7.12 Phase diagram of DMPC–DMPE mixtures. T. Heimburg,
unpublished data.
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their charged form (see Chapter 11 for an explanation). The very important
consequence is that it is very likely that the phase behavior of biological mem-
branes is a very sensitive function of pH.

7.4.2
Mixtures of Phospholipids with Other Lipids

Not all lipids are phospholipids. Mixtures of phospholipids with other lipids
are often more complex, probably due to the large difference of the nature
of the molecules. Diacylglycerols, for example, have only an –OH group as
a head group. Thus, this lipid has a very small head group that is not very
polar. Diacylglycerols alone do not form membranes but rather crystals at
low temperatures and oil-like isotropics at high temperatures. There are two
crystal forms. One of them, the α-form, is metastable but forms very fast while
the β-form is thermodynamically stable but forms slowly (see Section 6.4).
Diacylglycerols are thought to be second messenger molecules related to the
activation of the enzyme protein kinase c (Boni and Rando, 1985).

Figure 7.13 shows the phase diagram of DMPC with dimyristoyl glyc-
erol (DMG) (Heimburg et al., 1992). It displays four different solid phases:
a pure DMPC gel phase, a lamellar DMPC:DMG=1:1 complex, a lamellar
DMPC:DMG=1:2 complex and pure DMG crystals. Furthermore, it shows
three different liquid phases: a fluid Lα phase, an inverse hexagonal phase
(HI I), and an isotropic oily phase. The identification of the phases was made
using solid state NMR and X-ray diffraction.

Fig. 7.13 Mixtures of DMPC with dimyristoylglycerol (DMG). There are
three solid bilayer phases: G, C1, and C2. Pure DMG forms metastable
α and stable β crystals. In the high temperature regime one finds the
lamellar Lα phase, inverse hexagonal HII phase , and an oily isotropic I
phase. From Heimburg et al. (1992).
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Up to 30% of the lipids of some membranes (e.g., erythrocyte membranes,
cf. Chapter 3) consist of cholesterol. Like diacylglycerols cholesterol does not
form bilayers on its own but rather forms crystals. It is a highly important
sterol that is different from most other lipid types. It is quite apolar and has a
very rigid hydrophobic part with only a short chain segment. Cholesterol has
generally the effect of increasing the chain order parameters. In Fig. 7.14 we
show the binary phase diagram of DPPC–cholesterol mixtures. This is a good
example for eutectic phase diagrams. In the left-hand panel the experimen-
tal diagram is shown (Sankaram and Thompson, 1991). One can recognize
a large liquid–liquid coexistence regime (LD and LO phases) ranging up to
about 35% cholesterol. The right-hand panel shows an earlier theoretical pre-
diction of the phase diagram (Ipsen et al., 1989). This diagram qualitatively
looks very similar to the experimental diagram, but the absolute number are
different. This theoretical diagram was used to interpret the experimental di-
agram. Interestingly, the influence of cholesterol on the melting transition of
DPPC is quite small at low concentrations, but is huge at 30%. The calorimet-
ric phase transitions are nearly impossible to detect at these high cholesterol
contents. Therefore it is often reported that cholesterol lowers the transition
enthalpy of phospholipids. This is probably not true. It rather seems that the
baseline of the transition cannot accurately be determined.

Fig. 7.14 Phase diagram of binary mixtures of DPPC with cholesterol.
Left: Experimental phase diagram from Sankaram and Thompson
(1991). Right: Theoretical prediction from Ipsen et al. (1989). SO is
the solid-ordered phase, LO the liquid-ordered phase and LD the liquid
disordered phase.
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7.4.3
Ternary Phase Diagrams: Mixtures of Three Lipids

In Section 9.5 we discuss the formation of domains in biological membranes
that are often called rafts. Using a somewhat dubious method called “deter-
gent extraction” one often finds detergent insoluble lipid–protein complexes
rich in sphingomyelin and cholesterol after treating biological membranes
with detergents such as triton (cf. Section 9.5). It is speculated that domains in
biological membranes are also rich in these lipids (Simons and Ikonen, 1997).
Therefore in the recent decade ternary lipid mixtures of phosphatidylcholines,
sphingolipids, and cholesterol have often been investigated. Ternary lipid
phase diagrams are much more difficult to investigate. First of all, they typi-
cally display a larger variety of phases. According to the phase rule, in excess
water at constant pressure up to four phases can coexist simultaneously. Sec-
ond, the phase diagrams are more difficult to display on paper because they
possess two concentration axis and one temperature axis. Third, it is less ob-
vious how to apply the lever rule. To apply the lever rule the orientation of
the levers along the so-called tie-lines has to be known. This is clearly an ad-
ditional complication.

In Fig. 7.15 the phase diagram of N-palmitoyl-D- sphingomyelin, POPC
and cholesterol is shown (de Almeida et al., 2003) in cross-sections at two
temperatures. One can recognize different liquid-ordered (LO) and liquid-
disordered (LD) phases and phase boundaries that change as a function of
temperature. The tie-lines in these diagrams (along which the lever rule can
be applied) are shown as solid lines. For the purposes of this book it is not
important to go into the details of the interpretation of this particular phase
diagram. The interested reader may consider reading the original article.

Fig. 7.15 Cross sections through the ternary phase diagrams of mix-
tures of N-palmitoyl-D-sphingomyelin, POPC , and cholesterol at
two different temperatures. From de Almeida et al. (2003). The solid
lines represent tentative tie-lines. For details see the original article.
Reprinted with permission from Biophys. J.
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7.5
Conclusions

Summarizing, it must be concluded that finding the phase diagram of a
ternary mixture is already a difficult and time consuming undertaking. The
phase diagrams of real biological membranes containing hundreds of differ-
ent lipids and proteins (of course, proteins are also components in phase di-
agrams) will probably always be impossible to find. But, of course, biologi-
cal membranes possess phase behavior and the macroscopic behavior of such
membranes cannot be understood without taking this into account! One fur-
ther has to realize that the assumption of macroscopic phase separation is not
true in biological systems and one can therefore wonder whether the con-
cept of phase separation is a meaningful concept for biological membranes.
In Chapter 14 we will therefore rather work with the concept of fluctuations
that allow more general statements on membranes even when the composi-
tion of the membrane and its phase behavior are not known. This concept will
turn out to be very useful.

In the next chapter, we will try to extend the theory of phase behavior to the
case where phases (domains) do not macroscopically separate.
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7.6
Summary: Key Ideas of Chapter 7

• In lipid mixtures various phases may coexist. The diagrams showing the
phases as a function of concentration and temperature are called phase
diagrams

• In the phase coexistence regime one can find a geometrical construction
(lever rule) that allows us to calculate the compositions and the relative
quantities of each phase.

• The simplest way to understand phase diagrams consists of the ideal
solution theory where lipid–lipid interactions are ignored but the en-
tropy of mixing of two components is taken into account. This theory
correctly predicts that there are concentration and temperature regimes
where two different phases may coexist.

• Gibbs’ phase rule allows us to calculate the number of phases that can
coexist. At constant pressure and excess water one finds F = K + 1 − J,
where K is the number of components, J is the number of coexisting
phases, and F is the number of degrees of freedom (i.e., the number of
independent variables).

• Under many conditions water has to be counted as one of the compo-
nents, and the aqueous medium has to be counted as a phase. At low
water concentrations this has a significant influence on many phase dia-
grams.

• In regular solution theory one takes the interactions of lipids in each
phase into account. This allows us to describe more complex phase dia-
grams, including eutectic mixtures with coexistence of three phases.

• The addition of small molecules to lipid mixtures lowers their melting
points. This effect is called “freezing point depression’.

• In contrast to ideal solution theory, regular solution theory allows us to
calculate phase separation in the gel and in the fluid regimes.

• In regular solution theory the mixing behavior of the lipids in each phase
is still considered to be ideal. This is not generally correct.

• Many experimental phase diagrams can at least qualitatively be under-
stood on the basis of regular solution theory.
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8
Statistical Models for Lipid Melting

In the models for melting of lipid chains discussed so far we tacitly assumed
that lipids are either in gel or fluid state and that no intermediate states ex-
ist. Furthermore, it was assumed that there is no interface between gel and
fluid lipids, because the equations for the regular solution do not contain the
possibility of interfaces. Instead, it was assumed that a fluid lipid is always in
fluid environment, and that a gel lipid is always in a gel environment. What,
if this is not true? Let us assume the possibility that with a finite possibility a
fluid state lipid may be located in a gel environment and vice versa. Then, the
models for melting of mixed lipid systems from the previous chapter must be
modified. A further shortcoming of the regular solution theory described in
Chapter 7 is that the entropy of component mixing is not taken into account
correctly. In the derivation of the regular solution theory it was assumed that
in a lipid mixture the lipids in the two phases mix ideally, meaning that the
interaction of the lipids does not change the entropy. This resulted in a purely
enthalpic contribution of the nonideality (see Eq. (7.33)) expressed by

ΔHR ≡ ρ0 · xA · xB (8.1)

In the following we will employ an extension of the regular solution theory
that correctly treats the presence of interfaces and the entropic contributions
in nonideal mixtures. This will be done on the basis of computer models in
which each lipid is placed on a lattice site.

Lattice models are models like the famous “Ising” model (Ising, 1925) for
transitions in ferromagnets. In such models molecules are placed on an lat-
tice. Each lipid has a defined state at a given time. Lipids interact via nearest
neighbor (and sometimes next-nearest neighbor) interactions. The statistical
properties of such models usually are numerically calculated with the help of
Monte Carlo simulations. These simulations can yield solutions for relatively
complex problems. Since they are based on equilibrium thermodynamics they
do generally not contain information on the time scales of the investigated
processes. For some problems (such as the one-dimensional Ising model, or
the two-dimensional Ising model in the absence of a field) one can find an-
alytical solutions. As a simplification, the Ising model (and its applications
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to membranes) only considers two states of each molecule. Such models are
sometimes also called “coarse grain” models, because they do not consider
the atomistic detail of the molecules.

8.1
Monte Carlo Simulations

The complete description of a problem (e.g., the determination of the state of
a membrane) requires that all possible states of a system are generated, the
Gibbs free energy is determined, and the probability of this configuration is
determined using the respective Boltzmann factors and a statistical thermo-
dynamics averaging. Problem: there are quite many configurations.

The chain of a single lipid with N carbons has 3N−2 configurations; each
lipid therefore has 32(N−2) configurations. A typical lipid vesicle with radius
100 nm consists of 105 lipids. A vesicle of the lipid dimyristoyl phosphatidyl-
choline (DMPC, chain length N = 14) in total has

n =
(

32(N−2)
)100000

= 102400000 configurations (8.2)

It will never be possible to generate all these configurations in a computer. For
this reason one can in principle never exactly determine the partition function.
The same problem arises if one wants to calculate protein folding. The prob-
lem is dramatically increased if one wants to use a time evolution in an MD
simulation, where all the atomic details are taken into account.

In computer simulations one tries to approximate the partition function
by only averaging over some representative configurations. The question re-
mains, however, how a representative configuration is defined.

8.1.1
Simple Monte Carlo Procedure

One simple-minded approach may be to determine some random configura-
tions using a random number generator. Of each of these configurations the
enthalpy is determined and weighted with a Boltzmann factor exp(−H/kT).
Then, statistical averages are calculated. The disadvantage of this procedure
is that most randomly chosen configurations are very unlikely. In a large en-
semble (as the lipid membrane) it is very unlikely to find the relevant con-
figurations by random choice . Therefore, it cannot be expected that one can
obtain reasonable mean values for a complex system.

If one wants to calculate statistical averages, one needs a method to select
only relevant configurations of the thermodynamic system. Such a method is
the Metropolis algorithm.
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8.1.2
Metropolis Algorithm

The Metropolis algorithm is named after the first author of the paper by Me-
tropolis et al. (1953). This procedure works differently from the previous
method. One begins with a random start configuration (in our case, random
positions and states of lipids on a lattice). This configuration is saved in a
computer. If for each lipid the location and conformation are known, one can
also calculate the enthalpy of the membrane. Now one allows the system to
undergo a small change, e.g., by changing the state of one single lipid. This
alters the enthalpy of the system. The system undergoes a change from state A
into state B. The enthalpy difference is ΔH = HB − HA. With the probability

PB =
exp(−ΔH/RT)

1 + exp(−ΔH/RT)
≡ K

1 + K
(8.3)

the new configuration is accepted, and with the probability

PA =
1

1 + exp(−ΔH)/RT
≡ 1

1 + K
(8.4)

the new configuration is rejected. K = exp(−ΔH/RT) is a Boltzmann factor
This is practically done by using the random number generator of the com-
puter program. The random numbers typically assume values between 0 and
1, as do the probabilities PA and PB. Thus, if the random number is larger than
PB, the new configuration is rejected and otherwise it is accepted. Since this
is based on an equilibrium constant between two states, the total number of
changes from A to B and backwards from B to A is equal. The rate from A
to B shall be given by kAB, and the rate of changes from B to A shall be kBA.
Then PA · kAB = PB · kBA. This principle is called the “detailed balance,” with
kBA/kAB ≡ K. It expresses that all substates of the system are in equilibrium
with each other.

The equilibrium between the old and the new configuration is now deter-
mined by

PB

PA
= exp

(
−ΔH

kT

)
(8.5)

exactly as expected from a Boltzmann distribution. Thus, the change of the
configuration of the membrane is more likely if the new state has a higher
likelihood according to the Boltzmann distribution.

The ordered and the disordered state of a lipid display a very different de-
generacy, i.e. a very different number of states with equal enthalpy. This can
be taken into account by including the entropy difference of each state such
that K = exp(−ΔG/RT). As indicated by the use of the gas constant, R,



126 8 Statistical Models for Lipid Melting

the enthalpy and the Gibbs free energy differences are given per mole of the
system under consideration (e.g., per mole of a membrane). The simulations
using the Metropolis algorithm are called “Monte Carlo” simulations. Each
decision to accept or reject a new configuration is called a Monte Carlo step.

After the first Monte Carlo step a new configuration is determined using
the random number generator. Now, one chooses a new lipid with a random
number generator and generates a new configuration, repeating the steps de-
scribed above. Each new configuration is generated (accepted) with a proba-
bility K/(1 + K). This means that states with a lower Gibbs free energy occur
more often than states with a high Gibbs free energy. In general, after infinite
time each state occurs with its intrinsic probability. In a Monte Carlo simula-
tion one therefore generates in principle all states of the phase space. How-
ever, the more likely states are generated with much larger probability such
that after finite time only the “most relevant” configurations are generated.

Definition: A system that accesses all states of the phase space after infin-
itely large time is called ergodic. In an ergodic system all configurations are
assumed with their respective probability.

Ergodic theorem: The averaging over very long times (t → ∞) leads to
the same statistical average value as the averaging over a very large system
(N → ∞). This means that instead of averaging over a large number of sys-
tems one can also average one single system over long times.

This statement is not trivial, because one can easily imagine situations
where different states of the system are separated by large free energy bar-
riers such that only a part of the system is sampled.

A thorough description of computer simulations and their application to
phase transitions is given in Mouritsen (1984).

8.2
Magnitude of Fluctuations

During a Monte Carlo simulation the enthalpy of a system does not stay con-
stant but fluctuates around an average value (Fig. 8.1). This is obvious because
at each Monte Carlo step a decision between two states of different enthalpy
is made.

The average value of the enthalpy (of the membrane) can be calculated by
averaging over all configurations:

〈H〉 =
∑i Hi exp

(
− Gi

RT

)
∑i exp

(
− Gi

RT

)
=

1
Q ∑

i
Hi exp

(
− Gi

RT

)
p = const., Π = const. (8.6)
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Fig. 8.1 Enthalpy fluctuations during a simulation around the mean
enthalpy value.

where Gi = Ei + pVi(+ΠAi) − TSi, with the volume Vi, the area Ai of the
state i, the bulk pressure p and the lateral pressure Π. Q = ∑ exp(−Gi/RT) is
called the partition function.

The heat capacity at constant pressure is defined as

cp =
( 〈H〉

dT

)
p

(8.7)

From Eq. (8.6) it follows that

d 〈H〉
dT

=
d

dT

(
1
Q ∑

i
Hi exp

(
− Gi

RT

))

= . . . some algebra . . .

=
1

RT2

⎛
⎝ 1

Q ∑
i

H2
i exp

(
− Gi

RT

)
−
[

1
Q ∑

i
Hi exp

(
− Gi

RT

)]2
⎞
⎠

(8.8)

or

cp =
〈

H2〉− 〈H〉2

RT2 fluctuation theorem (8.9)

This equation also follows from fluctuation dissipation theory (Kubo, 1966). It
should be noted that

〈
(H − 〈H〉)2〉 =

〈
H2〉− 〈H〉2, such that the statement of

the fluctuation theorem is that the magnitude of the heat capacity is propor-
tional to the mean square deviation of the enthalpy from its mean value. This
theorem is generally true (not only for membranes). This also means that the
heat capacity at constant pressure can be determined from the mean square
fluctuations around the mean value from Monte Carlo simulations.

Similarly one obtains in analogy with Eq. (8.9) for constant volume condi-
tions

cV =
d 〈E〉

dT
=

〈
E2〉− 〈E〉2

RT2 (8.10)

It will be shown in Chapter 14 that the elastic constants can also be ex-
pressed by similar fluctuation relations.
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8.3
Simple Statistical Thermodynamics Model

Transitions in solid state physics are often well described by a simple class
of models named after Ernst Ising and his model for ferromagnetism that he
used in his Ph.D. thesis (Ising, 1925). With slight modifications this model can
also be used to describe transitions in lipids (Sugar et al., 1994; Heimburg and
Biltonen, 1996; Ivanova and Heimburg, 2001).

The assumptions are essentially the following: each lipid molecule shall
only possess two states:

• a gel state with enthalpy Hg and low entropy Sg and

• a fluid state with enthalpy Hf and high entropy Sf .

Additionally there are interactions with neighboring lipids, which are essen-
tially dispersion interactions with a distance dependence of 1/R5. However,
also pairwise interactions between the lipids and water play a role that de-
pend on the nature of lipid states.

Simplification. In a first approximation only nearest neighbor interactions
shall be considered. In a triangular lattice each lipid has z = 6 neighboring
lipids (z ≡coordination number). It has been shown experimentally that the
lipids in gel membranes display triangular packing.

There are now three different interactions between the lipids:

• interactions between two gel lipids with energy εgg,

• interactions between a gel lipid and a fluid lipid with energy εg f , and

• interactions between two fluid lipids with energy ε f f .

The Gibbs free energy Gg in the gel phase (all lipids are in the gel state) is now
given by

Gg = N
[
(H0,g − T S0,g) +

z
2

εgg

]
(8.11)

where the enthalpy H0,g and the entropy S0,g are defined per lipid and N is
the total number of lipids. Correspondingly, for the fluid phase one obtains

Gf = N
[
(H0, f − T S0, f ) +

z
2

ε f f

]
(8.12)

For a general distribution with Nf fluid lipids and Ng = N − Nf gel lipids one
obtains

• Ngg contacts between two gel state lipids,
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• Ng f contacts between gel and fluid state lipids, and

• Nf f contacts between two fluid state lipids.

Here also Ngg = (z Ng − Ng f )/2 and Nf f = (z Nf − Ng f )/2 hold. The total
Gibbs free energy is now given by

G = Ng(H0,g − T S0,g) + Nf (H0, f − T S0, f )

+ Nggεgg + Ng f εg f + Nf f ε f f
(8.13)

G = Ng(H0,g − T S0,g) + Nf (H0, f − T S0, f ) +
(zNg − Ng f )

2
εgg

+ Ng f εg f +
(zNf − Ng f )

2
ε f f

(8.14)

By rearranging the terms, and using the definitions ΔH ≡ H0, f − H0,g and
ΔS ≡ S0, f − S0,g one obtains

G = Gg + Nf (ΔH − TΔS) + Ng f

(
εg f −

εgg + ε f f

2

)
≡ Gg + Nf (ΔH − TΔS) + Ng f ωg f

(8.15)

In this model ωg f is a cooperativity parameter. It is the only free parameter
of the system, because the other two parameters, ΔH and ΔS, can be obtained
from the calorimetric experiment.

The partition function is now given by

Q = ∑
Ng f

N

∑
Nf =0

Ω(Nf , Ng f ) exp

(
−Nf (ΔH − TΔS) + Ng f ωg f

RT

)
(8.16)

It is not possible to calculate the degeneracy factor Ω(Nf , Ng f ) in two dimen-
sions for the problem formulated above. (For the experts, the above descrip-
tion corresponds formally to the Ising model in an external magnetic field,
here set by the temperature. At Tm = ΔH/ΔS the field is zero and both lipid
states are equally probable. At low temperature, the gel states are favored and
at high temperature the fluid states are favored, corresponding to the two field
orientations.)

8.4
Monte Carlo Simulations

In practice, a simulation is performed as follows:

1. A matrix with m · n lipids is generated in a computer. Each lipid is either
in gel or fluid state. The number and position of gel and fluid lipids
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are determined using a random number generator. Periodic boundary
conditions are chosen. This means that the lipids at the left edge of the
membrane are neighbors to those at the right edge. The lipids at the top
are neighbors to those at the bottom.

2. One lipid is selected with a random number generator. Further, the state
of the six nearest neighbors is determined.

3. The Gibbs free energy of the lipid matrix is determined and compared
to the free energy it would have after changing the state of the selected
lipid.

4. The probability that the selected lipid is found in a gel or the fluid state
is given by

Pgel =
1

1 + K
K = exp

(
−ΔH − TΔS + Δng f · ωg f

RT

)
(8.17)

Pfluid =
K

1 + K
(8.18)

Δng f is the change in the number of unlike nearest neighbors for the
selected lipid when changing its state. With the help of a random num-
ber generator the lipid is chosen to be a gel lipid with the probability
Pgel, and a fluid lipid with the probability Pfluid. The enthalpy of the to-
tal matrix (sum of the enthalpies of the individual lipids and all nearest
neighbor interactions) is saved into an array in the computer.

5. This procedure is repeated from step 2 as often as possible (typically
several million times, depending on the size of the matrix and the mag-
nitude of the fluctuations).

During this procedure the enthalpy does not remain constant, but fluctuates
around an average value (see Fig. 8.1). With the help of the fluctuation theo-
rem (Eq. (8.9)) one can calculate the heat capacity. If the Monte Carlo simula-
tion is repeated for each temperature one can calculate a heat capacity profile
(Fig. 8.2).

p The fluctuations at the melting point are larger when ωg f gets larger. The
melting profile gets narrower for small ωg f (Fig. 8.2). Therefore, the parameter
ωg f can be determined from the magnitude of experimental heat capacity at
the cP-maximum and the half-width of the cP-profile.

The values of the lipid states from the computed matrix at a given time can
be plotted into a graph. Such a plot is called a Monte Carlo snapshot. In
Fig. 8.3 the Monte Carlo snapshot is compared to an atomic force microscopy
experiment at the melting point of a DPPC membrane. An important observa-
tion is that domains are formed. This means that the lipid matrix is neither in
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Fig. 8.2 Heat capacity profiles during melting of single lipid mem-
branes for different cooperativity parameters ωg f . The larger is the
ωg f the narrower is the melting peak.

Fig. 8.3 Domain formation in lipid mem-
branes in the melting transition. Left: Snap-
shot from a Monte Carlo simulation at the
melting point of a membrane. Dark points
represent gel state lipids, bright points rep-
resent fluid lipids. The parameters of the
simulation were ΔH = 36.4 kJ/mol, Tm =

310.3 ◦C, ΔS = ΔH/Tm = 0.117 J/mol K,
ωg f = 1.3 kJ/mol ≈ 0.5 kT. Right: Atomic
force microscopy experiments of a DPPC
monolayer at the melting point (from Nielsen
et al. (2000)). The Monte Carlo simulations
are able to correctly reproduce the experi-
mental situation.

the gel phase nor in the fluid phase but there may be coexisting domains of the
two states. The larger the cooperativity parameter ωg f the larger the domains
at the melting point. Only if ωg f gets very large there are lipid matrices that
exclusively are gel or fluid. In this situation one obtains macroscopic phase
separation. At low values of the cooperativity parameter, ωg f ≤ 1/2RT, one
obtains finite size domains and no macroscopic phase separation occurs. Such
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phenomena could not be described with the regular solution theory (Chap-
ter 7) where domain boundaries were not considered.

8.5
Derivation of the Partition Function for a Known Distribution of all States: The
Ferrenberg–Swendsen Method

The partition function of the model in the two previous sections is

Q = ∑
Ng f

N

∑
Nf =0

Ω(Nf , Ng f ) exp

(
−Nf (ΔH − TΔS) + Ng f ωg f

RT

)
(8.19)

Each individual state of the membrane with given Nf and Ng f has the proba-
bility

P(Nf , Ng f ) =
1
Q

Ω(Nf , Ng f ) exp

(
−Nf (ΔH − TΔS) + Ng f ωg f

RT

)
(8.20)

The unknown quantity in this equation is the degeneracy of each membrane
state, Ω(Nf , Ng f ). It can only be determined by Monte Carlo simulations. It
is purely a combinatorial term and thus independent of ΔH, ΔS, ωg f , and T.
Therefore one does not have to recalculate it for each set of parameters. If
one has performed a simulation for the set of parameters (ΔH, ΔS,ωg f , T),
one can derive the distribution of states for a different set of parameters
(ΔH′, ΔS′, ω′

g f , T′), from the first distribution using the method of Ferrenberg
and Swendsen (1988, 1989).

Q(ΔH′, ΔS′, ω′
g f , T′) = Q(ΔH, ΔS, ωg f , T)

· ∑
Ng f

∑
Nf

P(Nf , Ng f , ΔH, ΔS, ωg f , T)

· exp
(
−

Nf (ΔH′ − TΔS′) + Ng f ω′
g f

RT′

+
Nf (ΔH − TΔS) + Ng f ωg f

RT

)
(8.21)

The probability of each state is given by

P(Nf , Ng f , ΔH′, ΔS′, ω′
g f , T′) =

P(Nf , Ng f , ΔH, ΔS, ωg f , T)
Q(ΔH′, ΔS′, ω′

g f , T′)

· exp
(
−

Nf (ΔH′ − TΔS′) + Ng f ω′
g f

RT′

+
Nf (ΔH − TΔS) + Ng f ωg f

RT

)
(8.22)
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In this equation the degeneracy Ω(Nf , Ng f ) does not show up explicitly (note
that the function Q(ΔH′, ΔS′, ω′

g f , T′) serves as a normalization constant
only). Therefore, if one has determined P(Nf , Ng f , ΔH, ΔS, ωg f , T) once, one
does not have to repeat the MC simulation for other sets of parameters. De-
tails for the application of this model to lipid membranes are given in Ivanova
and Heimburg (2001).

Fig. 8.4 Distribution of states as a function of the fluid fraction, f, and
the mean number of unlike nearest neighbor contacts, 〈ng f 〉, for two
different values of ωg f at various temperatures. The left-hand side
corresponds to a continuous transition, whereas the right-hand side
shows first-order behavior. At Tm two maxima of the distribution can be
seen, typical for macroscopic phase separation.
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In Fig. 8.4 the distribution of states (i.e., the density of states) at the melting
point Tm is shown for two different values of ωg f and different temperatures
below and above the melting point. These distributions have been calculated
using the above formalism. One can easily recognize that this distribution
may have one or two maxima at the melting point. If it has two maxima, this is
a transition of first order with two coexisting macroscopic phases (correspond-
ing to the two peaks). If the distribution displays only one maximum, this
is called a continuous transition and no macroscopic phase transition occurs.
For the enthalpy and the melting point of DPPC, the critical point between
these two regimes can be found for ωcrit

g f ≈ 1360 J/mol = 0.52RT.
In Fig. 8.5 experimental heat capacity profiles of multilamellar vesicles

(MLV) , large unilamellar vesicles (LUV) , and small unilamellar vesicles
(SUV) of DPPC are shown. They display different transition half-widths and
thus different cooperative behavior. The LUV profiles are theoretically well
described by ωg f = 1257 J/mol. This value is smaller than that of ωcrit

g f . This
finding leads to the notion that unilamellar lipid membrane transitions are
close to the critical point but most likely in the continuous regime (not first
order). However, so far there is no final agreement about this hypothesis. The
melting profile of multilamellar vesicles is much sharper than that of unil-
amellar vesicles and can be described with ωg f = 1595 J/mol. This is larger
than ωcrit

g f . Such vesicles may therefore be in a first order regime (Ivanova
and Heimburg, 2001). There is no doubt that phospholipid vesicles are lo-
cated very close to critical behavior as found also in Nielsen et al. (2000) (see
Fig. 8.3). In this paper it has been shown that the domains display scaling
invariance, typical for critical behavior.

Fig. 8.5 Experimental melting profiles (solid lines) of multilamellar
vesicles (MLV), large unilamellar vesicles (LUV), and small unilamellar
vesicles (SUV) of DPPC. The simulations are given as dotted lines.
Adapted from Ivanova and Heimburg (2001).



8.6 Two-Component Membranes 135

8.6
Two-Component Membranes

With Ising models and Monte Carlo simulations one can also describe mem-
branes with several components. In a two-component membrane one has two
melting enthalpies and entropies. Furthermore, there are six nearest neighbor
interaction parameters: between gel and fluid lipids of species A, between gel
and fluid lipids of species B, between gel lipids of species A and B, between
fluid lipids of species A and B, between gel A and fluid B, and between gel B
and fluid A. The Gibbs free energy of such a configuration is then given by

ΔG = NfA
(ΔHA − TΔSA) + NfB(ΔHB − TΔSB)

+ NgA, fA
ωgA, fA

+ NgB, fB ωgB, fB + NgA,gB ωgA,gB

+ NfA, fB ω fA , fB + NgA, fB ωgA, fB + NfA ,gB ω fA ,gB

(8.23)

One can now apply the same Monte Carlo procedure as in the one-component
system described in Section 8.3. However, additional to a Monte Carlo step
deciding to change a lipid state one has to include a second Monte Carlo step
that exchanges the sites of two lipids. This step introduces diffusion. With
the help of the fluctuation theorem one can determine the heat capacity dur-
ing simulation. For the two-component system of dimyristoyl phosphatidyl-
choline (DMPC) and distearoyl phosphatidylcholine (DSPC) a series of heat
capacity profiles from experiment and MC simulations is shown in Fig. 8.6.

Fig. 8.6 Melting profiles of different mixtures of the two lipids, DMPC
and DSPC. The solid lines represent experimental curves, and the
symbols are Monte Carlo simulations with properly chosen parameters
ωi,j (Sugar et al., 1999; Seeger, 2002; Hac et al., 2005).
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Fig. 8.7 Left: Phase diagram for the melting of DMPC–DSPC mixtures
determined from lower and upper limits of the heat capacity anomalies.
Filled circles are from experiments and open circles are from Monte
Carlo simulations. Right: Snapshots of a Monte Carlo simulation of a
DMPC–DSPC mixture at different temperatures. One recognizes the
formation of domains.

The nearest neighbor interaction parameters ωij are determined by fitting the
cP-profiles (see Sugar et al. (1999) and Hac et al. (2005) for details and the
choice of parameters).

The upper and lower limits of the heat capacity profile are often used to
determine a phase diagram (Fig. 8.7) using the so-called tangent construction
(described in Section 7.1 and Fig. 7.4). Such a diagram, however, has to be seen
with caution, because as mentioned in Chapter 7, the Gibbs phase rule has
been determined without taking possible domain boundaries into account—
and if the distribution of states has only one maximum, one may not even
have distinguishable phases. During the simulation one also obtains typical
snapshots (configurations) that depend on the mixing ratios and on the tem-
perature (Fig. 8.7). One often finds in such simulations that no macroscopic

Fig. 8.8 Confocal fluorescence microscopy images of giant lipid vesi-
cles (GUV) of various lipid mixtures showing the formation of domains.
Adapted from Seeger et al. (2005).
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phase separation occurs, but that one rather obtains many domains of various
sizes and compositions. This is also found in experiments. In Fig. 8.8 several
confocal fluorescence microscopy images of two lipid mixtures are shown that
display domain formation in the lipid melting regime. The sizes of the do-
mains range from small to very large. Small domains are an indication for
that the nature of the transition is not of first order.

8.7
Local Fluctuations at Domain Boundaries

The simulations can be used to improve the intuition for the behavior of real
lipid membranes. One obvious prediction from the simulations is that of do-
main formation. Domains have been found in simulations long before they
have been seen in experiments (see e.g., Mouritsen and Jorgensen (1995)). The
simulations can also be used to visualize the local nature of fluctuations in
membranes. This can be done by introducing a local state variable Sxy, where
x and y are the lateral coordinates of the lipid. If S = 0 for a gel lipid and
S = 1 for a fluid lipid, one can also define a local fluctuation strength, Φ:

Φxy =
〈

S2
xy

〉
− 〈

Sxy
〉2 (8.24)

It can easily been shown that the largest value of Φxy = 0.25. In the pure fluid
and pure gel domains Φxy approaches zero. In Fig. 8.9 the snapshots from
Fig. 8.7 are shown in the top panel and are compared with images showing
the local fluctuations. It can be seen, that such fluctuations are maximum at

Fig. 8.9 Melting of a DMPC:DSPC=50:50
mixtures as obtained by Monte-Carlo simu-
lations that are based on parameters from
experimental heat capacity profiles. Top row:
Melting of the membranes. Dark region corre-
spond to gel state domains while grey regions
correspond to fluid state domains. Bottom

row: Local fluctuation calculated for the sim-
ulation snapshots show in the top row. Bright
regions correspond to large fluctuations while
dark regions corrspond to small fluctuations.
The largest fluctuations are found at the do-
main interfaces. Adapted from Seeger et al.
(2005).
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the domain interfaces, as one might have expected. Later in this book it will be
shown that the degree of fluctuations is closely related to the elastic constants,
relaxation times, and permeability (see Chapters 14, 16, and 17). Therefore, it
has to be expected that the domain boundaries display very pronounced max-
ima in the response functions. For example, one expects that the membranes
are very permeable at the domain interfaces.

8.8
The 10-State Pink Model

The two-state model is very successful in describing phase behavior and coop-
erative fluctuations. However, it is clearly an over-simplification at the molec-
ular level. Lipid molecules consist of a head group and hydrocarbon chains
with internal degrees of freedom. The implicit assumption of the Ising model
is that intermediate lipid states can be neglected. This assumption is, to a cer-
tain degree, reasonable if one looks at large scale domain formation. Further-
more, in the thermal average, intermediate values for enthalpy of a molecule
are of course possible (e.g., a lipid at a domain boundary being 50% of the
time in the fluid state).

If one wants to make statements on the molecular level, e.g., if one wants
to calculate the order parameter profile along a lipid chain, one needs models
with more states.

In 1980, Pink and collaborators (Pink and Chapman, 1979; Pink et al., 1980)
developed a model to describe order parameters and Raman scattering data
obtained from lipid membranes in the melting transition. They, too, used a
simplified model with 10 lipid states (rather than ≈ 32·(N−2) states). Here, 1
state is the ground state and 1 state is the completely fluid state, whereas the 8
other states are intermediate states with partially ordered chains. This model
has been excessively used and extended by Mouritsen (University of Southern
Denmark, Odense) and his group, and Zuckermann (Simon Fraser University,
Vancouver) (Mouritsen et al., 1983) and has been applied to lipid–cholesterol
mixtures (Ipsen et al., 1989; Mouritsen, 1990; Mouritsen et al., 1992), lipid mix-
tures (Mouritsen and Jorgensen, 1995), and lipid–protein mixtures (Sperotto
et al., 1989). With this model, order parameter profiles (corresponding to mean
orientations of chain segments along the lipid chain) can be described. In
agreement with experiments it was found that the chains become more and
more disordered toward the center of the membrane.

Overall, however, the outcomes of two-state Ising models and 10-state Pink
models are very similar as discussed in detail in Mouritsen et al. (1983). The
reason is that the molecular details, which are clearly relevant on molecular
dimensions, are not of major importance on the length scale of domains. Thus,
increasing detail in simulations must not necessarily be an advantage. This
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applies in particular to the molecular dynamics simulations discussed briefly
in the next section.

8.9
Molecular Dynamics

In “molecular dynamics (MD)” the vibrations of the atoms of molecules are
calculated on the basis of Newton’s laws of motion. Bond elongations and
rotations are modeled as springs and approximated by Hooke’s law. For each
degree of freedom and each kind of chemical bond the force constants are ob-
tained, e.g., by quantum-chemical calculations. The set of parameters needed
to make an MD simulation is called a “force field.” The correct determination
of force fields is crucial.

If the force fields are determined accurately, MD simulations lead to the
most accurate molecular information on the membrane structure, e.g., on or-
der parameters and even on local diffusion, and is clearly useful. The method
has, however, an important disadvantage: it is very slow. A simulation that re-
flects the time evolution of states of a membrane with several 100 lipids over
about 100 ns may take several weeks to months on an up-to-date computer
cluster (2006). Most biological processes take significantly longer (μs to s). In
particular, cooperative processes such as lipid melting and the related domain
formation takes place on large length and time scales (many μm and millisec-
onds). For instance, the relaxation time scales in lipid melting transitions may
be up to 1 min (Chapter 16). Thus, in the foreseeable future such processes
have to be calculated using different methods, e.g., by the lattice models de-
scribed here.
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8.10
Summary: Key Ideas of Chapter 8

1. The regular solution theory, described in Chapter 7, describes the mixing
entropy of components in a phase incorrectly and does not allow for
finite-size domain.

2. One can extend regular solution theory by applying statistical thermo-
dynamics simulations that include nearest neighbor interactions of in-
dividual lipids. These simulations are called Monte Carlo simulations.
They correctly predict the occurrence of finite size domains.

3. Monte-Carlo simulations are a valuable tool to interpret heat capacity
profiles.

4. Simulations indicate that the melting of lipid membranes is close to crit-
ical behavior. However, in unilamellar systems most likely no disconti-
nuity in the thermodynamics occurs, meaning that the melting is proba-
bly not of first-order nature.

5. First-order transitions and continuous melting can be distinguished in
the distribution of states obtained from Monte-Carlo simulations in the
melting regime.

6. Phase diagrams of lipid mixtures can be described with Monte Carlo
methods. They lead to a self-consistent picture that links the heat ca-
pacity profiles with the sizes of domains. The findings are in agreement
with confocal fluorescence microscopy measurements.

7. Statistical thermodynamic simulations can be used to determine the fluc-
tuations at the domain boundaries. In Chapter 14 it will be shown that
large fluctuations correspond to high bending elasticity and compress-
ibility. The values of these functions are enhanced at domain bound-
aries, leading, e.g., to higher permeabilities in these regions.
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9
Lipid–Protein Interactions

9.1
Hydrophobic Matching

Many proteins called integral proteins or transmembrane proteins span
through the lipid membrane. Some examples are rhodopsin, bacteriorho-
dopsin, cytochrome c oxidase, but also pore-forming peptides as alamethicin
or gramicidin A. The integral part of the proteins typically contains a large
fraction of hydrophobic amino acids. The contact of hydrophobic surfaces
with water is unfavorable both for entropic and enthalpic reasons (cf. Chap-
ter 5). Thus, the lipid–protein system tries to minimize the contact between
hydrophobic regions of both lipids and proteins with water.

Fig. 9.1 Left: Hydrophobic matching illustrated for integral proteins.
If the protein has a different hydrophobic length than the lipid mem-
brane one finds attractive forces between them that resemble capillary
forces. After Mouritsen et al. (1983). Right: An example for unfavorable
hydrophobic matching is gramicidin A in DPPC membranes (Ivanova
et al., 2003).
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Lipids may have very different chain lengths. Membranes consisting of dif-
ferent lipids therefore have different hydrophobic thicknesses. If proteins are
embedded into membranes of different hydrophobic thicknesses one may ex-
pect that some of the hydrophobic lipid of protein surface may get exposed
to water. As an example, in Fig. 9.1 (right) we show the antimicrobial pep-
tide gramicidin A that is short as compared to the hydrophobic thickness of
a DMPC membrane in the gel phase. In this image one would expect some
of the lipid surface close to the peptide to get exposed to water. However,
this is not likely to happen. The lipid–protein system has some possibilities to
reduce the free energy costs of the hydrophobic mismatch:

• Protein molecules may aggregate such that only molecules of similar
hydrophobic length are in contact. Only the interface between protein
clusters and the lipid membrane would contribute to the free energy
costs. The overall distributional entropy of the proteins is reduced and
thus, aggregation is linked to an increase of the free energy.

• The membrane can melt into a fluid annulus surrounding the proteins.
The fluid membrane is thinner than the gel membrane. Therefore, the
hydrophobic matching is more favorable. However, there is some com-
pensating free energy cost for local melting some lipids. Such a behavior
has been reported for bacteriorhodopsin in lipid membranes (Harroun
et al., 1999).

• In a mixed lipid membrane, the proteins can recruit lipids of similar
hydrophobic length around them. An example is bacteriorhodopsin in
lipids of various lengths (Dumas et al., 1997). This will result in a re-
duction of the entropy of the lipids and an increase in free energy. If
there is domain formation in mixed systems, which is very likely, the
hydrophobic matching will lead to a segregation of the proteins into dif-
ferent regions of the membrane. This will result in a major influence
on signal cascades between various membrane proteins, and thus in a
change of the overall function of the biological membrane.

• Proteins can change their conformation to adjust to the hydrophobic
thickness of the membrane. Typically, a change in protein structure
is also linked to changes in their function. It has been shown that
the light-activated bacteriorhodopsin mixes differently with lipid mem-
branes than the dark non-activated form (Kahya et al., 2002).

All of these phenomena occur in real membranes. The hydrophobic match-
ing principle has been shown to be of quite some relevance for lipid–protein
interactions (Dumas et al., 1999). Here, we will show examples for aggrega-
tion, changes in function, and changes in lipid state below. There is a sub-
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tle balance between increasing distributional entropy, the configurational en-
tropy of the molecules, and the hydrophobic effect. Since the hydrophobic
effect is very temperature dependent, all of these effects will also display a
pronounced temperature dependence.

9.2
Integral Proteins

In the following section we will introduce into the statistical thermodynamics
of integral proteins embedded into the membrane. The contact of molecules
(including the hydrophobic effect) can be taken into account by considering
nearest neighbor interactions. We will consider the interaction of integral pro-
teins with lipid membranes consisting of one species and allow for lipid melt-
ing. The simulations will yield insights into the distribution of proteins in the
matrix and how it is influenced by lipid melting.

9.2.1
Ising Model for the Interaction with Integral Proteins

One can describe the melting of lipid membranes in the presence of integral
proteins in a manner similar to that of the two-component lipid membrane
described by Eq. (8.23). If one considers peptides with a cross-sectional area
similar to that of a lipid one can consider the protein as the second component
in this equation, with the difference that it does not display melting transitions
comparable to those of lipids (Ivanova et al., 2003). This reduces the number
of unlike nearest neighbor interactions from six to three. The free energy can
be written as

ΔG = Nf (ΔH − TΔS) + Ng f ωg f + Ngp ωgp + Nf p ω f p (9.1)

where ωg f is the interaction parameter for gel–fluid contacts of the lipid, ωgp

and ω f p are the interaction parameters for the contact of a gel lipid with a
peptide, and of a fluid lipid with a peptide. The Ng f , Ngp, and Nf p are the
respective number of contacts. The phase space can be explored by the Monte
Carlo simulations as introduced in the previous chapter.

In the following we will consider some special cases that demonstrate some
principles of the interaction of peptides with lipid membranes.

9.2.1.1 Integral proteins that mix ideally with fluid lipid phases

Let us assume that the peptides mix ideally with the fluid state lipids, but
unfavorably with the gel state membrane. In such a case one may expect that
the peptides aggregate in the gel membrane but not in the fluid phase. This
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case is very similar to that discussed in the context of freezing point depression
in Section 7.4.

As an example we have chosen DPPC membranes (ΔH = 36.4 kJ/mol,
Tm = 41.2 ◦C and ωg f = 1326 J/mol). We further assume that ω f p = 0 (i.e., the
interaction between fluid lipids and peptides is ideal), and the gel–peptide in-
teraction is ωgp = 1673 J/mol), i.e., it is less favorable than gel–fluid contacts.

In Fig. 9.2 we show the outcome of Monte Carlo simulation (described in
more detail in Ivanova et al. (2003)). In the left-hand panel one can see the
calculated heat capacity profiles in the absence of peptides, and in the pres-
ence of 5 mol% and 10 mol% of peptides. One can see that the heat capacity
maximum shifts to lower temperatures and that the profile is asymmetrically
broadened toward the low temperature end of the cP-profile. The Monte Carlo
snapshots indicate that the peptides aggregate below the heat capacity maxi-
mum in the remaining fluid lipid domains. Above the heat capacity maximum
the peptides mix ideally and do not aggregate. A shift of cP-profiles to lower
temperatures, in general, has to be taken as an evidence for better miscibility
of the peptide in the fluid phase.

Fig. 9.2 Left: Heat capacity profiles in the
absence of peptides, and in the presence
of two different concentrations of a peptide
that mixes ideally with the fluid lipid phase
only. Center: Monte Carlo snapshots of two
temperatures below and above the heat ca-
pacity maximum. Light points represent fluid
lipids, gray dots are gel lipids, and black dots

represent peptides. It can be seen that the
peptides aggregate at low temperatures in
the remaining fluid domains. Monte Carlo
data adapted from Ivanova et al. (2003) (see
text for parameters). Right: An experimental
example for the behavior of the left-hand pan-
els is cytochrome b5 in DPPC membranes
(adapted from Freire et al. (1983)).

One experimental example stems from Freire et al. (1983) who described the
calorimetric profiles of cytochrome b5 embedded in DPPC membranes. Here,
one can nicely recognize the shift of the cP-profile to lower temperatures, ac-
companied by an asymmetric broadening toward the low temperature side of
the profile. One has to expect in this case that cytochrome b5 mixes reasonably
well with the fluid membranes, but aggregates in the gel phase. The reason
for the shift in the cP-profile lies in the difference in the entropy of the protein
distribution in the two lipid phases.
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9.2.1.2 Integral proteins that mix ideally with gel lipid phases

The case when proteins dissolve ideally into gel phases but display unfavor-
able interactions with the fluid phase is just the mirror image of the previous
case.

As an example serves again DPPC membranes (ΔH = 36.4 kJ/mol, Tm =
41.2 ◦C and ωg f = 1326 J/mol). We assume that ωgp = 0 J/mol (i.e., the
interaction between gel lipids and peptides is ideal), and the fluid–peptide
interaction is ω f p = 1673 J/mol.

In Fig. 9.3 the results of Monte Carlo simulations are shown. In contrast to
the previous figure the heat capacity profiles shift to higher temperatures. The
profiles are asymmetrically broadened toward the high temperature end. The
Monte Carlo snapshots show that the proteins aggregate in the fluid phase.

Fig. 9.3 Left: Heat capacity profiles in the
absence of peptides, and in the presence
of two different concentrations of a peptide
that mixes ideally with the gel lipid phase
only. Center: Monte Carlo snapshots of two
temperatures below and above the heat ca-
pacity maximum. Light points represent fluid
lipids, gray dots are gel lipids, and black dots

represent peptides. It can be seen that the
peptides aggregate at high temperatures
in the remaining gel domains. Monte Carlo
data adapted from Ivanova et al. (2003) (see
text for parameters). Right: An experimental
example is band 3 protein of erythrocytes re-
constituted into DMPC. Data adapted from
Morrow et al. (1986).

Such a behavior can for example be found in the interaction of the band 3
protein of erythrocytes with DMPC membranes described by Morrow et al.
(1986).

One would expect that this behavior is rather an exception. The gel mem-
brane is crystalline with triangular packing. Typically, molecules of different
sizes do not mix well in crystals. The fluid membrane, in contrast, is a liquid
(no crystalline packing) and it seems more likely that proteins may mix well
with fluid phases, if hydrophobic matching is favorable.

9.2.1.3 Integral proteins that mix ideally with both gel and fluid lipid phases

Another limiting case is when peptides mix ideally with both lipid phases.
This is an unlikely scenario since the hydrophobic matching of a peptide
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would be different in both phases due to different hydrophobic lengths of the
lipids. Let us assume, however, that such a situation is possible. The nearest
neighbor interaction parameters between peptides and lipids are zero for both
gel and fluid. This leads to an accumulation of peptides at the gel–fluid do-
main interfaces because there the interfacial free energy can be lowered. An
effective lowering of the interfacial tension of the domains leads to a decrease
in cooperativity and thereby a broadening of the heat capacity profiles. As
an example serve DPPC membranes (ΔH = 36.4 kJ/mol, Tm = 41.2 ◦C, and
ωg f = 1326 J/mol). We further assume that ωgp = ω f p = 0 J/mol. Results of
the Monte Carlo simulations are shown in Fig. 9.4. Since the interaction of the
peptides is identical with both lipid states, the cP-maxima are not shifted.

Fig. 9.4 Proteins that mix ideally with both
lipid phases (see text for parameters). Left:
Heat capacity in the absence and in the
presence of two different concentrations
of peptides. Right: Monte Carlo snapshots
at two temperatures below and above the
cP-maximum. The mean domain sizes are
reduced because the peptides effectively

lower the tension at the domain interfaces.
Monte Carlo data adapted from Ivanova et al.
(2003). Light points represent fluid lipids, gray
dots are gel lipids, and black dots represent
peptides. It can be seen that the peptides ag-
gregate at low temperatures in the remaining
fluid domains.

9.2.1.4 Integral proteins that have unfavorable interactions with both gel and
fluid lipid phases

A fourth limiting case is found when peptides (proteins) do not mix with both
lipid phases. This results in the aggregation of peptides in both gel and fluid
phase. Since a macroscopic clustering of peptides leads to a reduction of the
overall interface between peptides and lipids, the effect of the peptides on
the heat capacity profiles is very small. As an example we again chose DPPC
membranes (ΔH = 36.4 kJ/mol, Tm = 41.2 ◦C and ωg f = 1326 J/mol). We
further assume that ωgp = ω f p = 2029 J/mol. Results of the Monte Carlo
simulations are shown in Fig. 9.5. Since the interaction of the peptides is iden-
tical with both lipid states, the cP-maxima are not shifted. The effect of the
peptides on the melting profiles is very similar to the previous case of ideal
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Fig. 9.5 Proteins with unfavorable lipid–
proteins interactions in both lipid phases (see
text for parameters). Left: Heat capacity in
the absence and in the presence of two differ-
ent concentrations of peptides. Right: Monte
Carlo snapshots at two temperatures below
and above the cP-maximum. The peptides
aggregate into macroscopic peptide clusters

in both lipid phases, thereby reducing the
overall interface between peptides and lipids.
Monte Carlo data adapted from Ivanova et al.
(2003). Light points represent fluid lipids, gray
dots are gel lipids, and black dots represent
peptides. It can be seen that the peptides ag-
gregate at low temperatures in the remaining
fluid domains.

miscibility of peptides in both phases. An example for this behavior is grami-
cidin A described below in Section 9.2.1.6.

9.2.1.5 Experimental example 1: Lipid chain length dependence of
peptide–lipid interactions

The hydrophobic matching depends on the hydrophobic length of both pep-
tides and lipids. It therefore has to be expected that the mixing of peptides
in lipid membranes and their effect on heat capacity profiles depends on the
number of hydrocarbons of the lipid chains. Zhang et al. (1995) made a care-
ful study of the artificial peptide Ac-K2-(LA)12-K2-amide. This peptide forms
transmembrane helices in membranes consisting of short chain lipids. The
heat capacity profiles shown in Fig. 9.6 indicate that the effect of this pep-
tide on heat capacity profiles of membranes of different phosphatidylcholines
is a function of lipid chain length. The maximum shift in Tm caused by the
reference amount of peptide was 7.1 K toward lower temperatures in DPPC
membranes. For di-(C13) phosphatidylcholine the shift was only −2.4 K. For
di-(C22) phosphatidylcholine ΔTm ≈ −1.3 K was found. Thus, clearly the in-
teractions of the lipid with the peptides are a function of chain length. The
largest shift is expected when the interaction with the fluid membrane is close
to zero (perfect hydrophobic matching with the fluid phase) and the degree
of peptide redistribution upon going through the phase transition is maxi-
mum. Zhang et al. (1995) found evidence that for the very long chain lipids
the peptide conformation deviated from the simple α-helical conformation.
The hydrophobic length of the peptide (31–32 Å) corresponds approximately
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Fig. 9.6 Heat capacity profiles of the artificial peptide Ac-K2-(LA)12-
K2-amide in lipid membranes of different chain lengths, ranging from
C13 to C22. Heat capacity profiles for various peptide fractions be-
tween 0 and 0.17 are shown. They resemble the theoretical profiles
described in the previous section. This plot demonstrates the impor-
tance of the hydrophobic matching concept. Data adapted from Zhang
et al. (1995). With permission.

to the thickness of the gel phase of di-(C15) phosphatidylcholine and to the
fluid phase of somewhat longer lipids. For the long chain lipids, both fluid
and gel phase of the lipids display larger hydrophobic cores than the length
of the peptide. Thus, it is not surprising that for di-(C22) phosphatidylcholine
the heat capacity profiles approach the behavior described in Section 9.2.1.4,
while it is close to that described in Section 9.2.1.1 for lipids with C16 or C17
chains. The right bottom panel shows the shift of the cP-maximum at the high-
est peptide concentrations as a function of lipid chain length.

9.2.1.6 Experimental example 2: Gramicidin A in lipid membranes

Another experimental example is gramicidin A embedded into DMPC mem-
branes. This antimicrobial transmembrane peptide has a very short hy-
drophobic length (cf. Fig. 9.1). It is shorter than DMPC in both, gel and
fluid phase. Thus, one may expect a mixing behavior similar to that described
in Section 9.2.1.4, where the peptides segregate into clusters and aggregates in



9.2 Integral Proteins 149

both lipid phases. One would further expect that mixing is more unfavorable
in the gel phase than in the fluid phase due to larger hydrophobic mismatch
of gel lipids and gramicidin A. In Fig. 9.7 heat capacity profiles of gramicidin
A in DPPC membranes are shown. Increasing amounts of peptide have only
a minor impact on the cP-profiles. This is typical for peptide aggregation
in both lipid phases as described in Section 9.2.1.4 and in Fig. 9.5. If the
heat capacity profiles are fitted with the use of Monte Carlo simulations one
obtains Monte Carlo snapshots that indicate large scale aggregation of pep-
tides in the gel phase and small aggregates in the fluid phase (Fig. 9.7, right
top). The slight preference of gel phase aggregation results from the minor
shift and asymmetric broadening of the heat capacity profiles toward lower
temperatures. In fact, aggregation of gramicidin A in DPPC gel membranes
and DMPC fluid membranes is found by atomic force microscopy. In the gel
phase of DPPC membranes gramicidin A forms line-like aggregates, high-
lighted by the arrows in Fig. 9.7 (right, bottom). The same line like pattern of
peptide aggregates (WALP peptides) was described by Rinia et al. (2000). In
this publication the peptides even formed well-ordered striated patterns. In
the fluid phase of DMPC gramicidin A forms small aggregates with diameter
of ≈5–10 nm, corresponding to 40–160 gramicidin molecules. The line-like

Fig. 9.7 Gramicidin A embedded into DMPC
bilayers. Left: Heat capacity profiles in the
absence and the presence of two different
concentrations of gramicidin A. The profiles
resemble those in Fig. 9.5. Right, top: Monte
Carlo snapshots below and above the melt-
ing transition. The large gray dots represent
peptides occupying four lipid sites each (see
Ivanova et al. (2003) for details). The pep-
tides aggregate in both phases. However,

peptide clusters are big in the gel phase
and small in the fluid phase. Monte Carlo
snapshots have been obtained by fitting the
experimental cP-profiles. Bottom: AFM ex-
periments show that peptide aggregates can
be found in both gel and fluid phase mem-
branes (see arrows). In the gel phase they
form line-like aggregates, whereas they form
small spherical clusters in the fluid phase
(see text for details).
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pattern of the peptide aggregates in the gel-phase was not predicted by the
Monte Carlo simulation. The simulations cannot do that when it is not built-in
into the algorithm. Nevertheless, one has to conclude that the thermodynamic
analysis of the heat capacity profiles by simulations correctly predicted the
aggregation of peptides in both phases, and that aggregates would tend to be
small in the fluid phase.

9.2.2
Lipid Fluctuations at Protein Interfaces

In Section 8.7, we defined the local fluctuations in the lipid matrix. These are
the fluctuations in lipid state between gel and fluid lipid state at each point
of the lipid matrix (defined by Φxy = 〈S2

xy〉 − 〈Sxy〉2). Large fluctuations cor-
respond, e.g., to increased permeability (see Chapter 17) and higher elasticity
(Chapter 14). The Monte Carlo simulations provide such information. If the
nearest-neighbor interactions are different from zero, the lipid states will be in-
fluenced by the presence of proteins. In Fig. 9.8 it is shown that gramicidin A
aggregates influence the fluctuations in the proximity of the protein clusters.
Considerations of this kind suggest that parts of the function of transmem-
brane proteins could consist in their local influence on the elastic constants of
the surrounding lipid membrane.

Fig. 9.8 Local fluctuations as defined in Section 8.7 for the DPPC–
gramicidin A mixtures simulated in the previous figure. Close to the
peptide aggregates one can recognize regions of larger fluctuations
(indicated by the bright regions). Such regions tend to be softer and
more permeable. Data from Ivanova et al. (2003).
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9.2.3
Pore Formation

Some amphiphilic peptides form pores in membranes. Examples are alame-
thicin, melittin , and margainin. The modes of interaction are discussed in
more detail in Chapter 12. Typically, they expose their hydrophilic side to
the aqueous inside of the pore whereas the hydrophobic side of the peptide
is exposed to the membrane interior. Here, as an example we show the pep-
tide alamethicin dissolved in DPPC membranes in the gel phase (Fig. 9.9) as
measured by atomic force microscopy (AFM). While in the literature alame-
thicin pores are typically thought to consist only of some 10 lipids (Gennis,
1989), it can be seen here that the peptide can also induce large defects in
the membrane that are of the order of 100 nm in diameter. The size of such
pores roughly depends on the peptide content of the membrane. The height
difference at the pore interfaces corresponds to the thickness of one DPPC
membrane.

The structure of membranes can also be analyzed by using the tapping
mode of the AFM. In this mode one monitors the oscillations of a vibrating
AFM cantilever and the corresponding phase shifts between the cantilever ex-

Fig. 9.9 Pore formation by alamethicin in
lipid membranes adsorbed on mica. Left:
Crystal structure of alamethicin (cf. Fox and
Richards (1982)). Center: Surface height
AFM plot of alamethicin pores in gel phase
DPPC membranes. Dark regions correspond
to the mica surface. The height profile at the

bottom shows the membrane thickness mea-
sured along with the line in the surface plot.
Right: The same region of the membrane in a
phase image. Bright regions represent espe-
cially soft membranes segments. They occur
at the pore interface close to the peptides.
Data adapted from Oliynyk et al. (2006).
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citation and the actual movement of the response. If the surface consists of a
viscoelastic fluid a large phase shift would correspond to the softer material
while the phase shift on hard surfaces is small. The details of the coupling
between phases and the properties of surfaces are not well explored. Thus,
we can use phase images here only to demonstrate relative changes in the
elastic constants of the surface. Phase images of membranes with alamethicin
pores can be seen in Fig. 9.9 (right). The mica surface shows up in dark gray
shades indicating that this part of the surface is hard. The lipids show up in
light gray shades. They are softer than the mica surface. Interestingly, the
interface between the pores induced by alamethicin and the lipid membrane
appears as white shades, indicating that the softest part of the membrane can
be found close to the alamethicin peptides. This suggests that peptides can in
fact change the elastic properties in the vicinity, as theoretically predicted in
Section 9.2.2. Details of the alamethicin study can be found in Oliynyk et al.
(2006).

9.2.4
Hydrophobic Matching and Integral Protein Function

We have shown above that peptides and proteins can influence the physi-
cal state of the lipid membranes. However, each thermodynamic force act-
ing between lipids and proteins has the potential to alter the state of proteins
as well. There are numerous examples in the literature for the influence of
lipids on protein function. Here, we show the results of experiments on meli-
biose permease investigated by Dumas et al. (2000). Melibiose permease is a
cation/sugar symporter from E. coli which catalyzes the cell accumulation of
α-galactosides as melibiose.

In Fig. 9.10 the activity (measured by counterflow or ΔΨ driven transport)
of melibiose permease is shown as a function of the chain length of the sur-
rounding phosphatidylcholine lipids. It can be clearly seen that maximum ac-
tivity is achieved for C16:1 chains. Taking all data together Dumas et al. (2000)
concluded that maximum activity of the sugar symporter was achieved when
the hydrophobic thickness of the protein matched that of the lipid membrane.

9.3
Binding of Peripheral Proteins to One-Component Membranes

9.3.1
Ising Model for the Interaction with Peripheral Proteins

Peripheral proteins are proteins that bind to the surfaces of membranes. Often,
the binding of peripheral proteins is supported by electrostatic interactions.
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Fig. 9.10 Melibiose permease activity measured by voltage-driven
transport or counterflow activity in lipid membranes of various chain
compositions. The activity shows a clear maximum for phosphatidyl-
cholines with C16:1 chains. For these chains the hydrophobic match-
ing between lipids and proteins is optimum. Figures adapted from
Dumas et al. (2000). With permission.

Such interactions are described, in detail, in Chapters 11 and 12. Upon pro-
tein binding one observes that the melting profiles of lipid membranes change.
Usually, the heat capacity profiles shift to higher or lower temperatures (de-
pending on the nature of the proteins). If the interaction is of purely electro-
static origin (between a basic protein and a negatively charged membrane) the
shift will generally be toward higher temperatures because the charge density
of gel membranes is higher than that of the fluid membrane. Therefore, elec-
trostatic binding to gel phases is stronger.

An example for this is the binding of cytochrome c to dimyristoyl phos-
phatidylglycerol (DMPG, which is charged at neutral pH). Cytochrome c is
a protein of 12.384 kDa (1 kilo Dalton = 1000 proton masses). It is positively
charged and binds to negatively charged surfaces. When it binds to DMPG
membranes, the transition peak shifts by about 5◦ to higher temperatures (see
Fig. 9.11).

Let us consider the binding of peripheral proteins to gel or fluid lipid mem-
branes. This implies four different states: a free gel binding site (G) and free
protein (P), a gel binding site occupied by a bound protein (GP), a free fluid
binding site (F), and a fluid binding site occupied by a bound protein (FP).
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Fig. 9.11 Binding of cytochrome c to a charged lipid membrane. Left:
Schematic image using the crystal structure of cytochrome c from
Bushnell et al. (1990). Center: Calorimetric profiles, showing the cy-
tochrome c-induced shift of the heat capacity profiles toward higher
temperatures. Right: Monte Carlo simulations reproducing a similar
behavior.

One obtains the following binding scheme:

G + P
K1,ΔG1−−−−⇀↽−−−− F + P

K2,ΔG2 ↑↓ ↑↓ K3,ΔG3

GP −−−−⇀↽−−−−
K4,ΔG4

FP

(9.2)

K1 and K4 are the melting equilibrium constants, whereas K2 and K3 describe
the binding equilibria. Since the Gibbs free energy is a function of state, it
follows:

ΔG1 + ΔG3 = ΔG2 + ΔG4 (9.3)

meaning that in a cyclic process through the above diagram the total free en-
ergy change is zero. This implies that

K1 · K3 = K2 · K4 (9.4)

Upon binding of proteins the melting equilibria change because the cP profiles
change. Therefore,

K1 �= K4 (9.5)

From Eq. (9.3) it immediately follows

K2 �= K3 or ΔG2 �= ΔG3 (9.6)
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One has to conclude that the shift in the melting profile implies that the protein
binds with a different affinity to the two lipid phases.

We obtain

ΔG4 − ΔG1 = ΔG3 − ΔG2 ≡ ΔGP = ΔHP − TΔSP (9.7)

This is the difference of the Gibbs free energy of the protein interaction with
the fluid and gel membrane. The shift of the melting point can be calculated
as follows:

ΔTm =
ΔH + ΔHp

ΔS + ΔSP
− ΔH

ΔS
(9.8)

The experiment also allows us to determine both the binding enthalpy differ-
ence ΔHP and the binding entropy difference ΔSP. ΔH, ΔS = ΔH/Tm and
ΔHP are directly obtained from experiment.

9.3.2
Monte Carlo Simulations on the Binding of Proteins to Membranes

We outline here a model described in detail in Heimburg and Biltonen (1996).
One can perform Monte Carlo simulations if one assumes two lattices:

• One lattice containing the lipids.

• A second lattice on top of the first lattice contains the proteins. The pro-
teins are allowed to diffuse.

The state of each lipid is determined from the enthalpy and entropy of the
lipid transition, the nearest neighbor interactions with other lipids, and the in-
teraction with adjacent proteins. For each lipid one has (following the deriva-
tion of the Ising model in the absence of proteins in Chapter 8) the following
equilibrium constant for a transition of a lipid assuming that a protein is lo-
cated on top of the lipid:

K = exp
(
−ΔH − TΔS + Δng f + ΔGP

RT

)
(9.9)

and

K = exp
(
−ΔH − TΔS + Δng f

RT

)
(9.10)

if there is no protein on top of the lipid. The probability to find a fluid lipid is

Pf =
K

1 + K
(9.11)



156 9 Lipid–Protein Interactions

and the probability to find a gel state lipid is

Pg =
1

1 + K
(9.12)

With these probabilities the states of the lipids are simulated along the lines
described in Chapter 8.

In a second Monte Carlo step, the proteins are allowed to move on the sec-
ond lattice. Depending on whether the proteins are located on top of gel or
fluid lipids, they have different Gibbs free energies. During the Monte Carlo
simulation it is now allowed that the proteins can move by one lattice site in
one of the six directions, i, on a triangular lattice. If the number of fluid lipids
under the protein changes, this influences the probability to diffuse. The deci-
sion to move in one of the six directions on the lattice is governed by

Pm(i) =
Km(i)

1 + Km(i)
Km(i) = exp

(
−Δn f (i)ΔGp

RT

)
(9.13)

where Δn f (i) is the change in the number of fluid lipids underneath the pro-
tein upon moving in direction i (i = 1, 2, . . . , 6). With such a model one can
calculated the cP-profiles for a peripheral protein with similar parameters as
cytochrome c and DMPG lipids (see Fig. 9.11, right). One can also plot snap-
shot from the simulation from below, within and above the melting transition
(Fig. 9.12).

Fig. 9.12 Monte Carlo snapshots for protein distributions at three
different temperatures, below, within and above the transition. The
lipid–protein parameter ΔGP was determined such that the effect of
cytochrome c binding to DMPC membranes found in calometry is re-
produced. One recognizes the aggregation of proteins in the transition
regime. Adapted from Heimburg and Biltonen (1996).

From Fig. 9.12 one can see that the proteins tend to aggregate within the
lipid melting transition, because they have different affinities to gel and fluid
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domains. Since the binding of cytochrome c to gel lipids is stronger, the pro-
teins accumulate on the shrinking gel domains with increasing temperature.
At high temperatures, gel domains completely disappear and the proteins are
again statistically arranged. Therefore, the proteins are distributed statistically
in both gel and fluid phases and only accumulate in the transition regime.
This behavior is distinctly different from the integral proteins described in
Section 9.2. Interestingly, both tertiary structure and the redox potential of
membrane-associated cytochrome c changes in the membrane melting regime
(Heimburg et al., 1991; Heimburg and Marsh, 1993) indicating that the lipid
state is important for the protein function.

9.4
Action of Phospholipases on Membrane Domains

Phospholipase A2 (PLA2) is an enzyme from pancreas and from bee or snake
venoms that hydrolyzes the hydrocarbon chains of phospholipids at the sn-2
position. The hydrolysis products of PLA2 action are lysolipids and fatty acids
and protons (Fig. 9.13, left). The action of the enzyme can easily be monitored
by keeping the pH constant by adding measurable quantities of bases. The ac-
tion of phospholipases, and in particular that of PLA2, is strongly dependent
on the phase state of the membrane. Typically, after addition of the enzyme
to phospholipid membranes, some time progresses before the enzyme reaches
maximum activity. This time is called the lag time (Biltonen, 1990). The shorter
the lag time the larger the activity of the protein. If the lag times are plotted
as a function of temperature one finds that the enzyme activity is strongly
correlated with the heat capacity of the membrane. At the cP-maximum of
DPPC membranes the lag times display a pronounced minimum indicating
maximum activity.

The reason for this activity maximum is only partially understood but it
seems clear that it is related to the degree of fluctuations in the membrane
plane and the presence of lateral phase separation (Burack et al., 1993). Possi-
bly, in the presence of large fluctuations in state and position it is easier for the
enzyme to get access to the hydrolysis site on the lipid that is typically buried
within the membrane surface. Such a behavior seems evident in monolayer
experiments of DPPC lipids in the phase coexistence regime. In Fig. 9.14 the
activity of the enzyme at gel–fluid domain interfaces can be followed easily.
The dark domains are slowly hydrolyzed by PLA2 at the domain interfaces.
Such studies have been first performed by Grainger et al. (1989). It can also
be seen in Fig. 9.15 that the proteins sit preferentially at the domain interfaces.
One can recognize bright edges of the domains originating from fluorescently
labeled PLA2 (Dahmen-Levison et al., 1998).
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Fig. 9.13 Left: Schematic action of phospholipase A2 (PLA2), which
hydrolyzes phospholipids at the sn-2 position of the glycerol backbone.
Right: The time until maximum activity (lag time) plotted as a function
of temperature for two different PLA2 concentrations acting on DPPC
membranes (Tm ≈ 314.2 K). At the heat capacity maximum the en-
zyme activity is also maximum. Adapted from Biltonen (1990).

Fig. 9.14 Action of PLA2 on DPPC monolayers monitored by fluores-
cence microscopy. The image diameters are of the order of 20 μm.
Dark shades correspond to gel domains. Bright regions correspond to
fluid regimes. The different snapshots were taken after different time.
The increased hydrolysis activity of the enzyme at the domain inter-
faces can be clearly seen. Data from M. Gudmand and T. Heimburg,
NBI Copenhagen. For reference see also Grainger et al. (1989).

9.5
Domains and “Rafts” in Biological Membranes

Biological cell membranes are multicomponent systems made of a variety of
lipids and proteins. Naturally, both lipids and proteins display phase behav-
ior. The examples in this chapter also indicate that proteins are components in
the phase diagram and contribute to domain formation. The phase behavior
of such systems, however, is not well understood. While it is practically un-
avoidable that domains and aggregation phenomena are present in biomem-
branes there are many unanswered questions.

Presently, the investigation of domains in membranes is a hot topic in bio-
physics and cell biology. In particular, the investigation of a very specific kind
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Fig. 9.15 Domains on DPPC monolayers in the phase coexistence
regime in the presence of fluorescently labeled PLA2. The protein is
preferentially located at the domain interfaces as obvious from the
bright shades. Image from Dahmen-Levison et al. (1998).

of domains, called rafts, caught some interest. Rafts are thought to be isolated
domains consisting of predominantly cholesterol, saturated long-chain sphin-
golipids , and some proteins (see Fig. 9.16). It is believed that this domain for-
mation influences signaling cascades and trafficking within biomembranes
(Simons and Ikonen, 1997; Bagnat et al., 2000). If one assumes that for sig-
nalling several proteins have to interact, it is obvious that the efficiency of the
signal exchange depends on whether the proteins are found in the same or
in different domains. A number of good reviews exist on this topic (Brown
and London, 1998; Simons and Toomre, 2000; Simons and Ikonen, 2000; Lon-
don, 2002; Edidin, 2003a,b; Simons and Vaz, 2004). The sphingolipids will pre-
dominantly form ordered or gel-phases. Since artificial lipids in the presence
of high fractions of cholesterol form liquid-ordered phases it is also believed
that rafts may be of liquid-ordered nature. However, one should not imag-
ine these domains as fluids. A liquid-ordered domain is rather a glass state,
i.e., rigid but without crystalline order. Glasses typically melt gradually with
temperature and do not display well-defined melting points. The existence of
such “rafts” has been postulated because one can isolate the respective lipid
and protein fractions when washing the biomembranes with detergents (e.g.,
triton) at low temperature (4 ◦C). One obtains detergent-resistant domains
(DRMs) or lipid–protein aggregates that are enriched in cholesterol, sphingo-
lipids , and some proteins. All other proteins and lipids are washed away by
the detergent.

The detergent-extraction method has to be considered with high scepticism.
From all that has been written in Chapters 7 and 8 the phase behavior is a
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Fig. 9.16 Schematic drawing of raft formation in biological membranes
as imagined by Bagnat and Simons (2002). Left: Organization of sat-
urated glycosphingolipids and cholesterol into lipid rafts lipids in a fluid
environment of unsaturated lipids. Right: Proposed preferential associ-
ation of some proteins to lipid rafts.

pronounced function of temperature, in particular if lipids with high melt-
ing points are present (here the sphingolipids). Thus, at 4 ◦C one expects a
very different phase behavior than at 37 ◦C and it is not a surprise that long
chain lipids and cholesterol remain in the DRMs at low temperature. This,
however, is no indication that this would also happen at physiological tem-
perature. Similarly important is that detergents are also components in the
phase diagrams and it seems obvious that high quantities of such detergents
do not leave the mixing properties of the other components untouched. In a
beautiful paper by Heerklotz (2002) it has been shown that triton can produce
phase separation phenomena that are not present or much less likely in the
absence of the detergent. It has to be concluded that the detergent-extraction
method cannot serve as a reliable tool to draw conclusions upon the formation
of domains of rafts in biomembranes. Domain formation can be influenced
by temperature, pH, calcium, and other thermodynamic variables. It seems,
therefore, unavoidable that the phase behavior of biomembranes is studied
under physiological conditions, i.e., on the intact biomembranes at natural
pH, temperature, and buffer conditions. No components (neither lipids nor
proteins) shall be extracted and detergents should be avoided. However, un-
der physiological conditions it does not seem certain whether “rafts” actually
exist. If they exist they are smaller than microscope resolution, i.e., they are
probably smaller than 100 nm.

The discussion on raft is closely related to domain formation, which is the
more general phenomenon. As said above, domain formation generally has
to be expected in multicomponent systems. Only very few membrane sys-
tems actually display ideal mixing. Mixtures of phosphatidylcholines and
phosphatidylglycerols mix near ideally (Garidel et al., 1997). In Chapter 19 it
will be shown that anesthetics mix nearly ideally with fluid lipid membranes
and that this forms the basis for the famous Meyer–Overton rule. Such cases,
however, have to be considered as exceptions. Clearly, domain formation phe-
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Fig. 9.17 Protein distribution in fibroblast
BHK cells adapted from Harder et al. (1998).
Left: Fibroblast BHK cell. Right, top: Segment
of the cell in the left-hand panel showing the
distribution of placental alkaline phosphatase
(PLAP) in BHK cells. Right, bottom: distribu-

tion of human transferrin receptor (hTfR) in
the same membrane segment. Bright regions
contain the fluorescently labeled proteins.
One can recognize that the proteins are not
homogeneously distributed and that PLAP
and hTfR are not colocalized.

nomena must take place. Cholesterol shows interesting phase behavior with
saturated phospholipids (cf. Chapter 7). It is likely to be an important player
but it must not be the only one. Most saturated long-chain lipids are puta-
tively forming ordered domains. Such domains are not expected to generally
display well-defined compositions and sizes. More likely, a large diversity
of fluctuating domain compositions and sizes have to be expected. In this
respect it is interesting to consider segregation of proteins. Protein cluster-
ing could already be seen in the classical paper on the fluid mosaic model
by Singer and Nicolson (1972) (cf. Fig. 1.6). In the sections above we have
discussed the general principles of protein clustering for both integral and pe-
ripheral proteins in ordered and disordered lipid phases. Harder et al. (1998)
have shown that one can obtain lateral segregation of proteins in fibroblast
cell membranes. More specifically, they labeled over expressed and cross-
linked glycosyl-phosphatidylinositol (GPI)-anchored proteins, placental alka-
line phosphatase (PLAP), hemagglutinin, human transferrin receptor (hTfR)
and other proteins with fluorescence markers (Fig. 9.17). It was seen that these
proteins were not found at the same positions in the membranes; indicating
phase separation phenomena and clustering. In this figure the distributions
of PLAP and hTfR are shown. The crosslinking of proteins was necessary to
obtain domains of detectable size.
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9.6
Summary: Key Ideas of Chapter 9

1. Integral proteins possess a hydrophobic core that may or may not match
the thickness of the hydrocarbon region of the lipid membranes. In the
latter case the unfavorable hydrophobic matching leads to capillary ef-
fects and long-range protein–protein interactions resulting in aggrega-
tion.

2. Hydrophobic matching is different in the gel and the fluid lipid phase.
Therefore, the lateral distribution of proteins may be different in gel and
fluid membranes. Such differences can be detected in heat capacity pro-
files of lipid–protein mixtures. An example is bacteriorhodopsin in dif-
ferent membranes.

3. Heat capacity profiles shifted to lower temperatures indicate a favorable
interaction of proteins with the fluid phase. Proteins will aggregate in
the gel phase but mix much better with the fluid phase. The shift of the
cP-profile reflects the changes in protein mixing entropy. An example is
cytochrome b5 in DPPC membranes.

4. Heat capacity profiles shifted to higher temperatures indicate a favor-
able interaction with the gel phase. Proteins will aggregate in the fluid
phase but mix much better with the gel phase. An example is the band
3 protein of erythrocytes in DMPC membranes.

5. Proteins that mix ideally with both lipid phases do not shift heat capac-
ity profiles. They accumulate at the domain interfaces and effectively
lower the surface tension of the domains. Thereby they lower the co-
operativity. This case is not likely to exist in real membranes because
hydrophobic matching cannot be ideal with both lipid phases.

6. Proteins with unfavorable hydrophobic matching with both gel and
fluid membranes will always tend to aggregate. In this case the pro-
teins hardly influence calorimetric melting profiles due to the largely
reduced interface between proteins and lipids. An example for this case
is gramicidin A in DMPC and DPPC membranes.

7. The enzymatic function of integral proteins can be influenced by the de-
gree of hydrophobic matching with the surrounding lipid matrix. An
example is melibiose permease.

8. When binding of peripheral proteins is dominated by electrostatic inter-
actions proteins tend to aggregate in the phase coexistence regime. Due
to the higher charge density in the gel phase, protein binding is stronger
to gel lipids. In the melting regime peripheral proteins accumulate on
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gel domains. An example for this behavior is cytochrome c binding to
charged lipid membranes.

9. Some peripherally bound enzymes display maximum activity in the
lipid melting regime. An example is phospholipase A2 activity on phos-
phatidylcholine membranes. This enzymes preferentially hydrolyzes
domain interfaces.

10. In biological membranes the coupling between protein localization and
the formation of cholesterol-sphingolipid domains has been proposed.
Such domains are called ‘rafts’. The nature of these rafts is yet under
debate. Phase separation phenomena in biomembranes are still not well
understood.

11. Detergent extraction leads to an accumulation of raft lipids and some
proteins in DRMs (detergent resistant membranes). Such a preparation
method, however, is unlikely to yield reliable information on domain
formation in biological membranes.
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10
Diffusion

Much of this book is dedicated to membranes in thermal equilibrium. Dy-
namic behavior is treated in Chapters 16 and 18 where the relaxation kinetics
and the propagation of density pulses (solitons) are discussed—both are fea-
tures of nonequilibrated systems. Even though diffusion describes the change
of particle positions over time it nevertheless can be considered as a property
of equilibrium systems. Thermodynamics considers the most likely state of an
ensemble and the thermal fluctuations around this state. In fact, the thermal
equilibrium rather describes the most likely distribution of states rather than
just one most likely state.

The concept of fluctuations is intimately related to diffusion as shown in the
classic paper of Albert Einstein on Brownian motion (Einstein, 1905). Brown-
ian motion is the stochastic motion of objects in viscous fluids due to thermal
collisions with the solvent particles. Based on statistical thermodynamics Ein-
stein showed that this motion is well described by〈

r2
〉

∝ Dt (10.1)

This law states that the mean square of the translation distance of a particle
is linear in time. This law can be verified by following the trajectory of one
particle over time, or by averaging the diffusion paths of many particles. The
constant D is the diffusion constant and it is inversely related to the viscosity
of the surrounding fluid. In two dimensions the diffusion law assumes the
form〈

r2
〉

= 4Dt (10.2)

The basic concepts for diffusion are well understood for homogeneous and
continuous systems. In artificial and biological membranes, however, the ma-
trix is not necessarily homogeneous. Due to domain and possibly “raft” for-
mation (Chapter 9) the viscosity of the lipid matrix will display local varia-
tions that must influence the diffusion of both lipids and proteins. The concept
of domains in biological membranes is in particular interesting because they
influence diffusion pathways and thereby reaction kinetics. Since domain for-
mation can be affected by changing the intensive thermodynamic variables
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of the system (temperature, composition, pressure, pH, . . . ), reaction kinetics
will now be sensitively linked to the physics of the membrane. It is very likely
that nature makes use of this putatively very powerful control mechanism
(that cannot be understood on the single molecule level).

10.1
Percolation

Let us assume a matrix that contains regions with high diffusion constant (e.g.,
a liquid) and other regions where diffusion is strongly inhibited (e.g., a solid).
Then it is obvious that the diffusion of the overall system is influenced by the
heterogeneity of the matrix.

Let us consider a triangular lattice and occupy some of the sites with hard
particles by using a random number generator. Such a situation is shown in
Fig. 10.1. The left-hand panel is 40% filled, the center panel is 50% filled while
the right-hand panel is 70% filled. It is easy to see that in the left-hand panel
a continuous path of empty sites from one side of the panel to the other can
be found, while in the right-hand panel continuous paths of solid particles are
seen. This indicates that the first matrix would be permeable for, say, water,
while the second may be electrically conducting due to a continuous path of
conducting particles. Such connected paths are also called percolating paths.
Percolation theory is an important field in mathematics that finds a wide range
of applications. For example it is used to predict whether forest fires can prop-
agate and how many trees one has to cut to prevent spreading of fires. It can
also be applied to problems where signals propagate in membranes via diffu-
sion.

Fig. 10.1 Triangular lattices with different fractions of occupied lattice
sites. The sites were randomly filled. Left: 40%. Center: 50%, Right:
70%. The left-hand panel displays a connected (percolating) path of
empty sites from one side of the lattice to the other. The right-hand
panel, in contrast, shows a continuous path of occupied sites. The
center panel is close to the “percolation threshold” between the two
other cases. Courtesy Andreas Blicher, NBI Copenhagen.
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The center panel of Fig. 10.1 is close to the situation where both the white
and the black networks get disconnected. This point is called the percolation
threshold. For randomly filled triangular lattices it is found when 50% of the
sites are filled. For different lattices one also finds other values.

If we consider a case where diffusion of small particles is possible in the
white regions of this matrix but not possible in the black regions one imme-
diately recognizes the importance of percolation theory and percolating paths
for diffusion. Close to the percolation threshold one finds continuous paths
through the whole matrix but they may be difficult to find and the diffusion
time will approach very large values.

Diffusion in the gel phase of lipid membranes is much slower than in the
fluid phase (see Table 10.1). Typically, the diffusion constants are different
by 2–3 orders of magnitude (as judged from fluorescence correlation spec-
troscopy). Thus, membranes with coexisting domains can display features
resembling the percolation problem in Fig. 10.1. Artificial and biological
membranes, however, are not randomly filled lattices. Gel molecules can be
changed into fluid molecules by changing temperature (or other variables).
Due to cooperative interactions one finds domain formation. Such a situation
has been described by Monte Carlo simulations in the previous two chapters
and a result of such simulations is shown in Fig. 10.2. Even though the situ-
ation in Fig. 10.2 is different from that in Fig. 10.1 one also finds percolating
paths. In the left-hand panel of Fig. 10.2 a percolating path of gel lipids can
be found, while the right-hand panel displays a near continuous fluid matrix
without obstacles. It should also be mentioned that about 50 wt.% of biologi-
cal membranes are proteins which naturally can also create diffusion obstacles
or percolating paths.

Fig. 10.2 Monte Carlo snapshots of the simulation of DMPC-DSPC
membranes at different temperatures, extracted from Fig. 8.7 (details
are given in the legend to that figure). In the left-hand panel there is no
percolating path of fluid regions. Thus, diffusion is partially confined.



168 10 Diffusion

10.2
Diffusion Models

Diffusion in membranes has been described theoretically by various authors.
In single component membranes one has used hydrodynamic theory (Saffman
and Delbrück, 1975) and free volume theory (Galla et al., 1979). These mod-
els make predictions about numerical values of diffusion constants in mem-
branes. Here, we will use experimental values and refer the reader to the two
articles above for technical details of the individual diffusion steps.

As long as the matrix is laterally homogeneous diffusion is described by
Eq. (10.1). The situation is more complicated when lateral heterogeneities are
expected. Some simple cases are shown in Fig. 10.3. Besides diffusion in a pure
fluid, the lipid matrix can contain spherical or odd-shaped diffusion obstacles,
or the membrane can contain finite regions where diffusion follows normal
diffusion behavior. Many such cases have been investigated by M. Saxton.
(Saxton, 1987, 1990, 1993, 1994, 1995, 1999, 2001). Below we list the three most
relevant examples.

Fig. 10.3 Four limiting cases for diffusion. Left: Homogeneous sur-
face. Center, left: Heterogeneous system close to percolation point.
Center, right: Matrix with spherical domains serving as diffusion ob-
stacles. Right: Confined diffusion in local fluid domains. Grey shades
indicate regions where diffusion is not possible (diffusion obstacles).

Complex cases as shown in the two center panels of Fig. 10.3 are often de-
scribed well by the so-called anomalous subdiffusion:〈

r2
〉

= 4Dtα α < 1 (10.3)

In the diffusion equation one finds a critical exponent, α < 1. This equation
could be written as〈

r2
〉

= 4
(

Dtα−1
)

t = 4
∼
D (t) t α < 1 (10.4)

with
∼
D (t) = Dtα−1 being a time-dependent diffusion constant. One way to

interpret this equation is that the diffusion constant depends on length and
time scales and thereby on the characteristic length of the method that is used
to determine it. If one finds diffusion behavior that follows this equation one
can conclude that the matrix is not laterally homogeneous and that it may
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contain obstacles of some kind. The diffusion experiment alone cannot predict
the nature of the obstacles. It has been shown by Hac et al. (2005) that the
exponent α has no physically clear meaning as long as the microscopic details
of the diffusion process are not known. Nevertheless, the finding of α < 1 can
help to characterize the membrane system.

If diffusion takes place in a membrane in which a steady molecular flow of
velocity v exists one obtains〈

r2
〉

= 4Dt + (vt)2 (10.5)

Such cases can happen when directed transport takes place in the membrane.
It can also be the consequence of experimental artifacts when the membrane
sample is floating. In fluorescence correlation spectroscopy, directed transport
leads to autocorrelation curves that strongly differ from the correlation profile
of a random walk.

A very important case is that of isolated regions in which diffusion is normal
surrounded by connected diffusion obstacles (e.g., in Fig. 10.2, left, or Fig. 10.3,
right). Such a case is called corralled diffusion or confinement. The mean
square displacement can never be larger than the dimension of the corral. For
spherical corrals one finds

〈
r2
〉

=
〈

r2
c

〉 [
1 − exp

(
−4Dt
〈r2

c 〉
)]

(10.6)

For short time scales, 4Dt � 〈
r2

c
〉
, one can expand the exponential term

and Eq. (10.6) simplifies to Eq. (10.1). This is expected as long as the mean
diffusion path r is shorter than the radius rc of the corral.

Some further examples for percolating and corraled lipid membranes are
shown in Figs. 8.3, 8.7, and 8.8.

10.3
Diffusion of Lipids and Proteins

The diffusion behavior of various molecules have been studied by many meth-
ods. The most important are:

• Fluorescence recovery after photobleaching (FRAP). In this method the dif-
fusion of labeled particles is monitored in a microscope. Fluorescent
markers can be bleached by high intensities of light in their absorp-
tion frequency regime. In FRAP, the fluorescence intensity is bleached
in the microscope focus, and the recovery of the signal due to particle
diffusion back into the focal spot is monitored. FRAP has in particu-
lar been used by Almeida, Vaz, and Thompson to study phase behavior
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in membranes. FRAP has been especially useful to investigate diffu-
sion in the melting regime of lipid mixtures (Vaz et al., 1989, 1990; Vaz
and Almeida, 1991; Almeida et al., 1992; Almeida and Vaz, 1995). One
can show that FRAP often is not complete when measured in the melt-
ing regime of binary or ternary lipid mixtures. From this one concludes
that the diffusion obstacles in such membranes percolate such that one
obtains corralled diffusion (Eq. 10.6). Under such conditions, diffusion
does not lead to a complete recovery of the fluorescence. The diffusion
obstacles in this case are percolating gel domains, while the matrix in
which the lipids diffuse are the fluid domains. In FRAP, the diffusion
constants within the gel phase are found to be so small that it practically
can be ignored. Incomplete FRAP indicates that the fluid domains must
be smaller than the fluorescence focus.

• Fluorescence correlation spectroscopy (FCS). When fluorescent particles dif-
fuse through an illuminated spot they emit a light pulse that displays a
characteristic time scale on the order of the mean dwell time of the label
in the focus. An ensemble of diffusing particles generates fluorescent
noise. The mean dwell time that is related to the diffusion constant can
be obtained from an autocorrelation analysis of the fluorescence noise
(Eigen and Rigler, 1994). FCS has been used by many authors to deter-
mine diffusion constants in artificial and biological membranes (Korlach
et al., 1999; Schwille et al., 1999b,a; Pramanik et al., 2000; Feigenson and
Buboltz, 2001; Böckmann et al., 2003). It has been shown by Hac et al.
(2005) that in lipid mixtures in the phase coexistence regime one finds
anomalous diffusion that can be explained on the basis of statistical ther-
modynamic simulations. While diffusion constants in fluid lipid phases
are very similar to those found by FRAP, diffusion in the gel phase yields
larger values. This may be due to some confined motion that cannot be
resolved by this method.

• Single particle tracking (SPT). Instead of studying ensemble fluctuations
one can also follow the diffusion behavior of individual particles labeled
with fluorescence or gold markers (Schmidt et al., 1995, 1996; Schütz
et al., 1997; Sonnleitner et al., 1999; Harms et al., 1999, 2001). With this
method one can actually see the diffusion path and the corralled struc-
ture of the membranes. In biological membranes one finds confined dif-
fusion of proteins (Kusumi et al., 1993).

• Nuclear magnetic resonance in field gradients. Here, the diffusion can be
seen when the particles diffuse out of the regime of their resonance fre-
quency (Fisher, 1978; Kuo and Wade, 1999; Oradd et al., 2002).
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• Neutron scattering. (Tabony and Perly, 1990; König et al., 1992, 1995).
Since the scattering time scale is in the picosecond regime, neutron scat-
tering can only see particle movements on length scales much shorter
than the lipid or protein diameters. The diffusion constants measured
by this method are usually much larger than those found by other meth-
ods (Vaz and Almeida, 1991). On the length scale of domains in mem-
branes, the diffusion constants obtained by neutron scattering cannot be
applied.

In Table 10.1 some representative numbers for protein and lipid diffusion
are shown. For a more detailed overview see the reviews by Saxton and Ja-
cobson (1997); Saxton (1999).

Tab. 10.1 Diffusion constants of selected lipids and proteins in artificial and biological mem-
branes. Data partially taken from a collection in Saxton and Jacobson (1997). References:
1—Fries et al. (1998), 2—Hac et al. (2005), 3—Korlach et al. (1999), 4—Fein et al. (1993),
5—Lee et al. (1993), 6—Scheets and Jacobson (1996). Methods were FCS (fluorescence cor-
relation spectroscopy), SPT (single particle tracking) and FRAP (fluorescence recovery after
photobleaching.)

Diffusing component System D Technique Reference
(10−10 cm2/s)

Rhodamine 6G Water 30000 FCS 1

Lipids
artificial membranes
Di18 Fluid DMPC 400 (390) FCS 2 (3)
Di18 Gel DMPC 5 (2) FCS 2 (3)
Biotin-PE 80% egg PC 25 SPT 4

20% cholest.

GPI-linked proteins
artificial membranes
DAF (CD55) 80% egg PC 25 SPT 4

20% cholesterol FCS
FcγRIIIB (CD16) Same 56 SPT 4

Lipids
biological membranes
Fi-PE Fibroblasts 12 (54) SPT (FRAP) 5

GPI-linked proteins
biological membranes
Thy-1 Fibroblasts Fast (69%):7.2 SPT 6

Slow (31%): 0.2 SPT 6
MHCI (Qa2) HEPA-OVA 2.1(2–4) SPT (FRAP) 6
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10.4
Summary: Key Ideas of Chapter 10

• Diffusion in a homogenous two- dimensional membrane is described by〈
r2〉 = 4Dt.

• In the presence of diffusion obstacles the diffusion laws are less simple.
Such obstacles can be protein networks, gel lipid domains or rafts. Con-
nected obstacles may form percolating paths. Diffusion pathways are
disrupted and diffusion laws change.

• In the presence of obstacles one often finds “anomalous diffusion” de-
scribed by

〈
r2〉 = 4Dtα.

• When obstacles are connected and isolated regions are formed, one finds
confined diffusion. This is a frequent situation in lipid phase transition
regimes were the fluid domains become disconnected.

• Confined diffusion influences reaction and signalling networks.
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11
Electrostatics

Approximately 10–40% of the naturally occurring lipids carry a charge (de-
pending on the nature of the membrane)—usually one or two negative
charges. The rest of the lipids is neutral or zwitterionic. Positively charged
lipids are not found in nature. They can, however, be chemically synthesized
for gene delivery purposes and for studies on the interactions between DNA
and membranes (Rädler et al., 1997; Salditt et al., 1997). Lipid membranes
strongly interact with proteins many of which also carry charges. The water
soluble protein cytochrome c carries nine positive charges. Thus, proteins
may bind to the negatively charged lipid membranes. A typical value for
the ion concentration in biological cells is 150 mM NaCl, but it varies largely.
Inside the squid axon one finds about 400 mM KCl.

In this chapter we address the following questions:

• What is the influence of the ionic strength on the electrostatic potentials?

• What is the spatial distribution of ions?

• What is the electrostatic free energy of the membrane?

• How is the binding of proteins influenced by the ionic strength and the
charge density of the membrane?

• What is the lateral pressure induced by charging the membrane?

11.1
Diffuse Double Layer—Gouy–Chapman Theory

The electrostatic potential Ψ(r) of a charge distribution ρ(r) at location r is
given by a Poisson equation:

ΔΨ(r) = −ρ(r)
ε0ε

(11.1)

with the permittivity ε0 = 8.854 × 10−12C2/J m and the relative permittiv-
ity (dielectric constant) ε = 80.4 for water at 20 ◦C (see Table 5.2 for a list of
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dielectric constants). The concentration ci of an ion of species i with charge
zi · e (e = 1.602 × 10−19C) at location r is given according to the Boltzmann
distribution:

ci(r) = ci,0 exp
(
− zi · eΨ(r)

kT

)
(11.2)

Here, c0,i is the concentration of ion species i at the location with the zero
potential Ψ = 0 (at infinite distance from the membrane). zi may be positive
or negative. The charge density is given by

ρ(r) = ∑
i

zi · e · ci(r) (11.3)

To be consistent with the units, the concentrations ci,0 have to be given in
molecules/m3. If Eq. (11.2) is inserted into Eq. (11.3), and the result is then
inserted into Eq. (11.1), one obtains

ΔΨ(r) = − 1
ε0ε ∑

i
zi · e · ci,0 exp

(
− zi · e · Ψ(r)

kT

)
(11.4)

This equation is called the “Poisson–Boltzmann equation.” One can solve it
numerically for given boundary conditions, e.g., with fixed charges on a mem-
brane surface. For this there are programs available in the Internet1, which
have now also been implemented into some protein viewer programs.

For the simple geometry of a planar membrane one can simplify this equa-
tion such that it can be solved analytically. This will be shown in the following
paragraphs.

At infinite distance from the charged surface (potential Ψ = 0) the charge
density must be zero (electro-neutrality). This leads to the boundary condi-
tion:

∑
i

zi · e · ci,0 = 0 (11.5)

For small potentials Ψ (i.e., for zieΨ � kT) one can develop Eq. (11.4) into a
Taylor series and linearize

ΔΨ(r) =

(
2

e2

ε0εkT

[
1
2 ∑

i
z2

i ci,0

])
· Ψ(r)

≡
(

2
e2

ε0εkT
c0

)
· Ψ(r) ≡ κ2 · Ψ(r)

(11.6)

1) Delphi by Barry Honig and collaborators (http://lipid.bioc.
columbia.edu/∼xu/).
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In this equation we have introduced the ionic strength, c0 and the Debye con-
stant, κ. The ionic strength is defined as

c0 ≡ ionic strength =
1
2 ∑

i
z2

i ci,0 (11.7)

For a monovalent salt like NaCl the ionic strength is identical to the salt con-
centration. 1/κ is called the Debye length. It can be considered as the screen-
ing distance of an electrostatic charge. It depends on the ionic strength. The
Debye constant κ is given by

κ =
(

2
e2

ε0εkT
c0

)0.5

(11.8)

κ has units of an inverse length (1/m). The concentrations in this and the
previous equations carry the units “molecules/m3” (i.e., 1 M ≡ 6.0223 ×
1026/m3).

The inverse of the Debye constant, 1/κ, has the units of a distance. It is
called the Debye length. It can be considered as the screening distance of an
electrostatic charge. This becomes obvious in Eq. (11.10), given below. It de-
pends on the ionic strength such that the electrostatic screening length de-
creases if the ionic strength is increased.

If the ionic strength, c0, is given in units of (mol/l), then at T = 300 K

Debye length (nm) = κ−1 = 0.3082/
√

c0 (11.9)

Some values are given in Table 11.1.

It is interesting to note that the typical screening length at biological ionic
strength (≈ 150 mM) is on the order of a lipid diameter or the diameter of

Tab. 11.1 Debye length for various NaCl concentrations at T = 300 K. The Debye length is
the screening length of the electrostatic potential, cf. Eq. (11.10).

Ionic strength Debye length Ionic strength Debye length
κ−1 (nm) κ−1 (nm)

100 μM 30.82 20 mM 2.18
200 μM 21.79 50 mM 1.38
500 μM 13.78 100 mM 0.97

1 mM 9.75 200 mM 0.69
2 mM 6.89 500 mM 0.44
5 mM 4.36 1 M 0.31

10 mM 3.08 2 M 0.22
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an α-helix. Thus, it is on the order of the length scale of biological macro-
molecules. Changes in ionic strength (or pH) therefore significantly influence
the electrostatic forces within charged macromolecules under physiological
conditions. The Debye length has already been used in Section 5.2 to describe
the electrostatic screening of a central charge but was not derived there.

Let us now consider an infinitely extended planar membrane with homoge-
neous charge density. Then, there is only an ion concentration gradient along
the x-axis (defined here as being perpendicular to the membrane plane), and
the Laplace operator can be replaced by Δ → d2/dx2. Under such conditions
the differential equation (11.6) that has been obtained for low potentials has
the simple solution

Ψ(x) = Ψ0 exp (−κ x) (11.10)

Obviously, the potential decreases at increasing distance from the membrane
and is maximum at its surface (see Fig. 11.1). In the following we determine
the surface potential, Ψ0. After multiplying Eq. (11.4) with 2dΨ/dx we obtain

(
2

dΨ(x)
dx

)
d2Ψ(x)

dx2

= −
(

2
dΨ(x)

dx

)
· 1

ε0ε ∑
i

zi · e · ci,0 exp
(
− zieΨ(x)

kT

)
(11.11)

Using the boundary conditions (Ψ → 0 and dΨ/dx → 0 for x → ∞) this can
be easily integrated from ∞ to x and one obtains(

dΨ(x)
dx

)2

=
2kT
ε0ε ∑

i
ci,0

[
exp

(
− zieΨ(x)

kT

)
− 1

]
(11.12)

In the simplifying case of an electrolyte solution (salt solution) of univalent
ions (z = ±1, e.g., NaCl → Na+ + Cl−, but not CaCl2 → Ca2+ + 2Cl−).
Equation (11.12) becomes

dΨ(x)
dx

= −
√

2kT · c0

ε0ε

[
exp

(
eΨ(x)
2kT

)
− exp

(
− eΨ(x)

2kT

)]
(11.13)

The membrane surface shall carry a surface charge density of σ. Due to electro
neutrality one finds

σ = −
∫ ∞

0
ρ(x)dx

Eq.(11.1)
= +

∫ ∞

0
ε0ε

d2Ψ(x)
dx2 dx = −ε0ε

(
dΨ(x)

dx

)
x=0

(11.14)

By using Eq. (11.13) (dΨ/dx)x=0 can be expressed as a function of Ψ(0) ≡ Ψ0,
which is the potential at the membrane surface. Using Eq. (11.13), Eq. (11.14)
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Fig. 11.1 Distribution of sodium and chloride ions and the electro-
static potential close a lipid surface with 10% charged lipids and an
ionic strength corresponding to 150 mM NaCl. Under these conditions,
the surface potential is −36 mV and the Debye length is 0.8 nm. The
sodium concentration is increased close to the lipid head groups. Cal-
culated using Eqs. (11.10) and (11.16). The lipid size in this graph is
on realistic scale.

transforms into

σ =
√

2ε0ε c0kT ·
[

exp
(

eΨ0

2kT

)
− exp

(
− eΨ0

2kT

)]

=
√

8ε0ε c0kT sinh
(

eΨ0

2kT

) (11.15)

or

Ψ0 =
2kT

e
sinh−1

(√(
1

8ε0εkT

)
σ√
c0

)
(11.16)

The surface potential for three different charge densities is shown in Fig. 11.2
as a function of ionic strength. At physiological conditions (c0 ≈ 150 mM)
it is not very dependent on the ionic strength. The potential varies signifi-
cantly at low ionic strength. Scientists measuring at low ionic strength or in
distilled water should be warned! A membrane similar to a biological mem-
brane with about 10% negatively charged lipids (area per lipid ≈ 0.5 nm2,
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Fig. 11.2 Surface potential of a planar membrane as a function of
ionic strength with 100%, with 10% and with 1% of the lipids being
negatively charged. Calculated using Eq. (11.16).

charge density ≈ 0.32C/m2) displays a surface potential of Ψ0 = −36 mV.
This is the order of magnitude that has been found experimentally. Biological
membranes are usually asymmetrically charged. While the outer monolayer
contains high amounts of uncharged lipids, the inner monolayer is enriched
in charged lipids. Nerve membranes typically possess potential differences of
−70 mV between inside and outside Johnston and Wu (1995).

For low surface potentials (|eΨ0| � 2kT, i.e., |Ψ| < 50 mV) this can be
approximated by

σ =
√

2ε0ε c0kT · eΨ0

kT
= ε0εκΨ0 cf. Eq. (11.8) (11.17)

or

Ψ0 =
1

ε0εκ
σ low potential approximation (11.18)

using the Debye constant κ. As can be seen in Fig. 11.3 the conditions for low
potentials are only fulfilled at very high ionic strength and low fractions of
charged lipid.
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Fig. 11.3 Surface potential of a planar membrane as a function of
ionic strength in the case where 10% of the lipids are negatively
charged. Also shown are the high and low potential approxima-
tions. The high potential approximation yields good values above
|Ψ0| = 50 mV and fails at lower potentials. The low potential approxi-
mation yields good values for |Ψ0| < 50 mV.

For large surface potentials (|eΨ0| � 2kT or |Ψ0| > 50 mV) one can approx-
imate Eq. (11.15) by

Ψ0 =
2kT

e
ln

(√
1

2ε0ε c0kT
σ

)
for σ > 0 high potential approx.

Ψ0 = −2kT
e

ln

(
−
√

1
2ε0ε c0kT

σ

)
for σ < 0 (11.19)

For the example of an lipid membrane with 10% charged lipid the low and
high potential approximations are plotted as a function of ionic strength in
Fig. 11.3. The high potential approximation leads to good values only if
|Ψ0| > 50 mV. The low potential approximation leads to reasonable values for
|Ψ0| < 50 mV.
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11.2
Potential and Free Energy of Membranes

A lipid membrane with N negatively charged lipids has the charge q = −N · e.
A single lipid has an area of AL, taken here as AL ≈ 0.5 nm2. For a fully
charged membrane the charge density is then given by σ = −e/AL. Let us
assume the membrane as a two-dimensional system under conditions of con-
stant area, i.e., AL = const. For such systems the equilibrium is described by
the Helmholtz free energy, F.

Fig. 11.4 Electrostatic free energy of a lipid membrane consisting of
100% negatively charged lipids as a function of lipid area. Calculation
for four different ionic strengths using Eq. (11.22)

The differential of the Helmholtz free energy of a charged system is given
by

dF = −SdT + ΠdA + Ψdq
A,T=const.= Ψdq (11.20)

The contribution of electrostatics to the free energy per mole of lipid is then
given by

Fel,L =
∫ e

q=0
Ψ0dq = AL

∫ σ

σ′=0
Ψ0dσ′ (11.21)
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By integrating Eq. (11.16) one obtains for the free energy

Fel,L = AL

∫ σ

σ′=0
Ψ0 dσ′

= AL

(
σΨ0 − (4ε0ε)

(
kT
e

)2

κ

[
cosh

(
eΨ0

2kT

)
− 1

]) (11.22)

This expression can be checked by inspection: differentiation of the term in
brackets yields Ψ0. The molar electrostatic free energy is obtained by multi-
plying with Avogadro’s number.

The electrostatic contribution to the free energy is dependent on the area
per lipid and on the ionic strength. Fel is shown as a function of lipid area in
Fig. 11.4.

11.3
Influence of Electrostatics on Melting Temperatures of Membranes

Upon lipid melting the area per lipid increases. Therefore, the electrostatic
potential of a charged membrane will also change. In the following we want to
determine the influence of the potential on the melting points of membranes.

The areas of gel and fluid lipids shall be given by AL,gel and AL,fluid, respec-
tively. ΔAL is the area difference between gel and fluid lipids. Let us take
the areas of DPPC as an example. The parameters for this lipids are given in
Table 11.2. The area of the lipid membrane increases upon melting, thus the
electrostatic free energy decreases. Since we talk about constant area condi-
tions, in the following we will use the internal energy of lipids rather than the
enthalpy. The values for ΔE and ΔS can be assumed to be constant.

Tab. 11.2 Internal energy, entropy, and Tm of a lipid without electrostatics (values are those of
DPPC). Further, the electrostatic free energy found under the assumption that the lipids carry
one net negative charge is given.

ΔE0 35 kJ/mol
ΔS0 111.3 J/mol· K
ΔT0

m 314.3 K
AL,gel 0.474 nm2

AL,fluid 0.629 nm2

Ionic strength (mM) Fgel
el,L (kJ/mol) Ffluid

el,L (kJ/mol) ΔFel,L (kJ/mol)

1 20.9708 19.577 −1.394
10 15.3444 13.9888 −1.356

100 9.96519 8.72326 −1.242
1000 5.28414 4.33364 −0.950
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Intuitively one would predict that the melting temperature of a charged
lipid membrane is lower than that of a neutral membrane, since the charges
on the head groups repel each other, favoring the fluid state with larger area.

Let us assume that the membrane undergoes a change from gel to fluid. In
the absence of electrostatics one finds

F0
gel = E0

gel − T · S0
gel

F0
fluid = E0

fluid − T · S0
fluid

ΔF0 = ΔE0 − TΔS0

(11.23)

At the melting temperature, Tm, ΔF0 = 0 and we obtain

T0
m =

ΔE0

ΔS0 (11.24)

In the presence of electrostatics we obtain

Fgel = E0
gel − T · S0

gel + Fgel
el,L

Ffluid = E0
fluid − T · S0

fluid + Ffluid
el,L

(11.25)

Again, at the melting temperature, Tm the free energies of the two phases are
equal. This leads to

ΔE0 − TmΔS0 = −ΔFel,L (11.26)

and the melting temperature, Tm is given by

Tm =
ΔE0

ΔS0︸︷︷︸
T0

m

+
ΔFel,L

ΔS0 = T0
m

(
1 +

ΔFel,L

ΔE0

)
(11.27)

using ΔS0 = ΔE0/T0
m. Thus, in the presence of electrostatics the transition

shifts by

ΔTm = T0
m

ΔFel,L

ΔE0 (11.28)

Inserting the values from Table 11.2 one obtains the shifts of transition tem-
peratures given in Table 11.3.

At low ionic strength the shift is ΔTm ≈ −12.5 K. For lipids with shorter
chains and lower transition enthalpies, the shift would be significantly higher.
The change in transition temperature of MPA (methylphosphatidic acid)
shown in Fig. 11.5 was induced by protonation (lowering of pH). It was found
to be about ΔTm ≈ −14 K. One can further see that the melting temperature
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Tab. 11.3 Shift in transition temperature of a lipid upon charging with the parameters of Ta-
ble 11.2 at four different ionic strengths.

Ionic strength (mM) ΔTm (K)

1 −12.5
10 −12.2

100 −11.2
1000 −8.5

Fig. 11.5 Titration of methylphosphatidic acid (MPA) membranes with
protons at different ionic strength conditions. Lower ionic strength
leads to larger surface potentials and a shift of the titration profile to
higher pH values. At low ionic strength the membranes are right in the
transition regime at neutral pH. Data adapted from Träuble et al. (1976)

of charged lipids shows a slight dependence on ionic strength. At 100 mM salt
the transition temperature is about 1.3 K higher than at 1 mM.

11.4
Titration of Charged Lipid Membranes with Protons

The pKA of a charged membrane corresponds to that pH value at which 50%
of all charged head groups are protonated. Figure 11.5 demonstrates that the
pKA of the membrane increases for lower ionic strengths. This is discussed
below. The effect has been carefully investigated by Träuble, Jähnig, and col-
laborators (Träuble et al., 1976; Jähnig, 1976).

On the basis of calculations similar to those in the previous paragraph, Träu-
ble and coworkers calculated the ionic strength dependence of the protonation
of a charged lipid membrane with a protonable head group. At low pH the
free proton concentration is high, and the charges on the lipids are neutralized
by binding of protons. At high pH, the free proton concentration is low, the
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protons dissociate and the lipids are charged. In Fig. 11.5 it can be seen that an
uncharged membrane of methyl phosphoric acid (MPA) has a melting point of
about 32 ◦C at low pH. If the pH is increased the melting point is about 46 ◦C.
When going from low to high pH one can see that the melting point decreases
with pH. For zwitterionic lipids this happens at a pH of about 1.5. The half
value of the titration curve is called the pKA of the membrane.

When the ionic strength is increased, the pKA shifts to lower values. At an
ionic strength of 200 mM the pKA is at about 5. This means that at physiologi-
cal ionic strength the membrane is close to the pKA. At low ionic strength the
pKA may well be at neutral pH. Therefore, one should be very careful when
investigating charged lipids. At low ionic strength one may be in a two-phase
coexistence regime. Therefore, experimental pH and ionic strength should be
chosen with care.

11.5
Binding of Charged Proteins

When positively charged (basic) proteins bind to negatively charged mem-
branes, they reduce the effective charge on the surface in a way compara-
ble to the protonation of the surface. The protein cytochrome c possesses
a net effective positive charge of +4e and covers about 12 lipids. At com-
plete saturation of a lipid surface consisting of negatively charged lipids with
a charge of q = −e, the charge density is therefore reduced by 33%. Un-
der these conditions and taking the parameters in Table 11.2 one arrives at
ΔFel,L = 0.885 kJ/mol at 10 mM salt. Without the adsorption of protein,
ΔFel,L = −1.356 kJ/mol, respectively.

Thus, the binding of cytochrome c to a negatively charged lipid membrane
changes the transition temperature by

ΔTm = T0
m

ΔFel,L

ΔE0 ≈ 4.2 K (11.29)

This shift compares well with that seen in the calorimetric experiment with
cytochrome c and DMPG membranes (Heimburg and Biltonen, 1996) (see
Fig. 11.6). Therefore, the electrostatics of membranes and of protein binding
can be reasonably well understood on the basis of relatively simple approxi-
mations, i.e., the Gouy–Chapman equations.

The adsorption of proteins to membranes will be studied in more detail in
Chapter 12.
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Fig. 11.6 Influence of the binding of cytochrome c (net charge ≈ 4)
to DMPG membres at high lipid concentrations. The transition maxi-
mum shifts to higher temperatures. Data adapted from Heimburg and
Biltonen (1996)

11.6
Lateral Pressure Induced by Charges

One can interpret the influence of an electrostatic field on a membrane transi-
tion also in terms of a lateral pressure generated by the field. This implies that
lateral pressure changes must not necessarily be caused by external mechani-
cal forces. In Chapter 18 the propagation of lateral density pulses is described.
They can in principle be generated by changes in the field.

We now want to calculate the lateral pressure generated by the electrostatics
of the membrane.

Πel = −
(

dFel,L

dAL

)
T,q

(11.30)

From Eq. (11.22) it follows that2

Πel = σΨ0 − Fel,L

AL
(11.31)

2) Let us abbreviate the free energy given in Eq. (11.22) as
Fel,L = AL · Y. Then dFel,L/dAL = AL · dY/dAL + Y. dY/dAL
can be written as dY/dσ · dσ/dAL. dY/dσ, however, is equal to Ψ0.
From this follows Eq. (11.31).
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Tab. 11.4 Pressure created by the electrostatics for a fully charged membrane with the pa-
rameters in Table 11.2.

Ionic strength (mM) Πg (N/m) Π f (N/m) ΔTm (K)

1 0.0907 0.0646 −12.64
10 0.0706 0.0495 −12.64

100 0.0157 0.0081 −12.55
1000 0.0124 0.0059 −11.73

Taking AL = 0.5 nm2 and Ψ0 = −150 mV (for c0 = 100 mM and a fully
charged membrane) one obtains a lateral pressure of 0.0481 N/m (see Ta-
ble 11.4).

To get a feeling for what these pressures mean it is helpful to relate them to
the membrane cross section, which is about 5 nm. A lateral pressure of 0.0907
N/m then corresponds to 181 bar. These pressures are significant.

From Chapter 6 it is known that melting temperatures change upon pres-
sure. One can also calculate the resulting shift in transition temperature using

ΔTm = Tm
Δ(ΠAL)

ΔH0
= Tm

(Π f A f − Πg Ag)
ΔH0

(11.32)

where ΔH0 is the enthalpy change in the absence of electrostatics. Values cal-
culated with this approximation are given in Table 11.4. They are nearly iden-
tical to those from Table 11.3 calculated from the electrostatics directly. Thus,
the changes in electrostatic free energy correspond to the work done against a
lateral pressure created by the charging of the membrane.
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11.7
Summary: Key Ideas of Chapter 11

1. A charged lipid membrane creates an electrostatic potential that can be
calculated using the Gouy–Chapman theory.

2. The potential contributes to the free energy of the membrane.

3. The electrostatic free energy is lower in the fluid phase than in the gel
phase of a lipid membrane. As a consequence the charged membrane
displays lower melting points. The shift is on the order of ΔTm = −15 K,
depending on the chain melting enthalpy and the lipid areas.

4. Negatively charged membranes become neutral upon protonation. For
this reason lowering of the pH has a significant influence on the melting
temperatures, typically leading to an increase of the melting point by
≈ 15 K.

5. The pKA of a charged membrane is strongly influenced by ionic strength.
The lower the ionic strength the higher the pKA. At an ionic strength of
1 mM the pKA of a fully charged membrane is in the neutral pH regime.

6. Similarly, when basic proteins bind to negatively charged membranes
the melting temperatures increase.

7. From the area dependence of the electrostatic free energy a lateral pres-
sure can be calculated.
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12
Adsorption, Binding, and Insertion of Proteins

As discussed in Chapter 11 biological membranes are negatively charged.
Therefore, there are many basic proteins that bind to membranes, e.g., the mi-
tochondrial protein cytochrome c that was already discussed in Chapter 11.
This protein is a prototypical globular protein of nearly exactly spherical
shape. Its binding properties are well studied. Other proteins also bind to
uncharged membranes. Examples include some pore-forming peptides as
alamethicin, margainin, and melittin. At low concentrations, these proteins
bind peripherally to the membranes, while they insert into the membranes at
higher concentrations. In the following, we will first introduce into surface
adsorption of global proteins. Further, we discuss the electrostatics of protein
binding. Later, we will also treat elongated proteins and their insertion into
membranes, as well as protein binding to mixed lipid membranes.

12.1
The Langmuir Isotherm

The simplest case of surface adsorption is binding to independent lattice sites.
Let us first consider a vesicle with only one binding site (Fig. 12.1, left). The

binding equilibrium between one binding site and a free protein is given by

Fig. 12.1 Binding of spherical proteins to a lattice. Left: The lattice has
only one site (n = 1). Right: This lattice has 64 binding sites (n = 64).
Nine of these sites are occupied (i = 9).
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the mass action law (Section 4.7):

[Pb]
[Pf ][Sf ]

= K0 or
[Pb]
[Sf ]

= [Pf ] · K0 (12.1)

where [Pb] is the concentration of bound protein, [Pf ] is the concentration of
free protein, and [Sf ] is the concentration of free binding sites. Let us rename
the concentration of bound proteins by [Pb] ≡ [S1], the concentration of vesi-
cles with one protein bound. The concentration of free sites shall be renamed
by [Sf ] ≡ [S0], the concentration of vesicles without any bound proteins.

[S1]
[S0]

= [Pf ] · K0 (12.2)

Let us now consider a vesicle with two binding sites. Two facts must be ac-
counted for:

1. There are two possibilities to bind one ligand. We will therefore introduce
the degeneracy Ωi, the number of ways to arrange i bound proteins on the
surface with n binding sites. For two sites it is equal to two.

2. There is one case where two proteins bind and one possibility of having
zero proteins bound.

To take the binding of the second ligand into account, one can consider the
equilibrium between a vesicle with one protein bound and a vesicle with two
proteins bound

[S2]
[Pf ][S1]

= K0 or [S2] = [Pf ] · K0 · [S1] (12.3)

or by using Eq. (12.2)

[S2] = [Pf ] · K0[S1] = [Pf ]2 · K2
0 [S0] or

[S2]
[S0]

= [Pf ]2 · K2
0 (12.4)

The mean number of bound ligands, 〈i〉, is now given by

〈i〉 = ∑2
i=1 i · Ωi[Si]/[S0]

∑2
i=0 Ωi[Si]/[S0]

=
∑2

i=1 i · Ωi[Pf ]iKi
0

∑2
i=0 Ωi[Pf ]iKi

0

(12.5)

where Ωi is the degeneracy. For a vesicle with n = 2, Ω0 = 1, Ω1 = 2, and
Ω2 = 1.

For a membrane with a total of n binding sites and (n− i) free binding sites,
we obtain

〈i〉 =
∑n

i=1 i · Ωi[Pf ]iKi
0

∑n
i=0 Ωi[Pf ]iKi

0
(12.6)
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with the degeneracy Ωi

Ωi =
n!

(n − i)! · i!
(12.7)

To make the degeneracy more transparent, let us consider the drawing in
Fig. 12.1 (right), where we have n = 64 binding sites and i = 9 bound pro-
teins. For the first protein we have 64 possible binding sites, for the second
protein 64 − 1 = 63 sites, and so on. For the nine proteins we therefore have
64 · 63 · 62 · . . . · 57 · 56 = 64!/55! = 64!/(64 − 9)! possibilities. However,
of these configurations, 9 · 8 · 7 · · · · · 2 · 1 = 9! are identical, because in any
given arrangement one can exchange bound proteins with each other without
creating a new configuration. Therefore the number of different configura-
tions is Ω9 = 64!/(55! · 9!). The number of distinguishable configurations,
Ωi = n!/(n − i)! · i!), is called the binomial coefficient.

Let us abbreviate the denominator of Eq. (12.6) with

Q ≡
n

∑
i=0

n!
(n − i)! · i!

[Pf ]iKi
0 (12.8)

This function is called the partition function. Equation (12.5) can be rewritten
as:

〈i〉 =
1
Q

n

∑
i=1

i · n!
(n − i)! · i!

[Pf ]iKi
0

= [Pf ]K0
1
Q

·
n

∑
i=1

(n − i + 1) · n!
(n − i + 1)! · (i − 1)!

[Pf ]i−1Ki−1
0

j≡(i−1)
= [Pf ]K0

1
Q

·
n

∑
j=1

(n − j) · n!
(n − j)! · j!

[Pf ]jKj
0︸ ︷︷ ︸

n−〈i〉
= [Pf ]K0(n − 〈i〉)

(12.9)

or finally:

〈i〉
[Pf ] · (n − 〈i〉) = K0 (12.10)

which corresponds to the mass action law in Eqs. (12.1) and (12.2). It can be
seen that it is independent of the number of binding sites on the membrane.
This is not surprising, since the binding sites are independent, and basically do
not “know” that they are all on the same surface. If one defines the fractional
occupancy θ = 〈i〉/n, Eq. (12.10) becomes
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[Pf ] =
1

K0

θ

(1 − θ)
Langmuir isotherm (12.11)

This binding equilibrium is called the Langmuir isotherm. The constant K0
has to be determined by experiment. Since the Langmuir isotherm basically
corresponds to a mass action law, it seems as if Eq. (12.11) is trivial and the
effort to derive this equation was not necessary. However, this was a good
exercise for the derivation of the more general isotherms in the next section.
The constant K0 has to be determined by experiment.

12.2
The Adsorption to a Continuous Surface

Proteins are usually significantly larger than lipids. Therefore one can con-
sider the biological membrane surface as a continuous plane. Proteins may
bind to any point on the surface. No defined binding sites exist (Fig. 12.2).
For such a system, the Langmuir isotherm is not a good description. It rather
applies to macromolecules with locally separated binding sites (e.g., oxygen
binding sites in hemoglobin). If a membrane is continuous, each protein has
an excluded volume (Fig. 12.2, right). Consider a surface with area Atot. A
protein with area AP can bind anywhere on that surface. However, a second
protein has only Atot − 4 · AP available, which means that in contrast to the
Langmuir isotherm the surface available for the binding of proteins is smaller
than the total surface minus the occupied surface. Therefore, one needs to
make a better model.

Fig. 12.2 Left: Binding of spherical proteins to a surface without local-
ized binding sites. Instead, the surface is continuous. Right: Each
bound protein displays an excluded volume of 4 times the protein
cross-sectional area.



12.2 The Adsorption to a Continuous Surface 193

12.2.1
The Protein Adsorbate as a Two-Dimensional Gas

Let us assume that the adsorbed proteins form a two-dimensional gas. If more
proteins bind to the surface, the gas has to be compressed, and work has to be
performed

ΔF(i) = ΔW(i) = −
∫ A

A0

Π(i) dA (12.12)

using a lateral pressure Π of the 2D gas. Similarly to Eq. (12.9) one can calcu-
late the adsorption isotherm for an adsorbed lateral gas

〈i〉 =
∑n

i=1 i · 1
i! [Pf ]iKi

0 exp
(
−ΔF(i)

kT

)
∑n

i=0
1
i! [Pf ]iKi

0 exp
(
−ΔF(i)

kT

) (12.13)

where the term n!
(n−i)! is now replaced by exp(−ΔF(i)

kT ). We do not know yet
what function of the number of bound proteins ΔF is. For this we will use a
model below. For now, we will simplify Eq. (12.13) using an approach similar
to that in Eq. (12.9).

〈i〉 = [Pf ]K0
∑n

i=1
1

(i−1)! [Pf ]i−1Ki−1
0 exp

(
−ΔF(i−1)

kT

)
exp

(
−ΔF(i)−ΔF(i)

kT

)
∑n

i=0
1
i! [Pf ]iKi

0 exp
(
−ΔF(i)

kT

)

= [Pf ]K0
∑n−1

i=0
1
i! [Pf ]iKi

0 exp
(
−ΔF(i)

kT

)
exp

(
− d

di
ΔF(i)

kT

)
∑n

i=0
1
i! [Pf ]iKi

0 exp
(
−ΔF(i)

kT

) (12.14)

If the vesicle is very large (n −→ ∞), one of the terms in the sum represents
a pronounced maximum (for i ≈ 〈i〉), and Eq. (12.14) can be simplified to
(Heimburg and Marsh, 1995)

〈i〉 = [Pf ]K0 exp
(
− d

di
ΔF(i)

kT

)
(12.15)

This equation is important, because it generally describes the binding of
ligands to surfaces for all possible forms of ΔF(i). We call this equation the
“Gibbs” isotherm and will make heavy use of it in the following. The function
dΔF/di is equal to the chemical potential of the surface adsorbed proteins,
Δμsurf. Equation (12.15) could therefore also be written as

〈i〉 = [Pf ]K0 exp
(
−Δμsurf(i)

kT

)
(12.16)

However, let us stick to the first version of this equation.
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12.2.2
The van der Waals Adsorption Isotherm

To calculate the value for 〈i〉 in Eq. (12.15) one needs to find an expression for
the lateral pressure in Eq. (12.12). As a first approximation let us take the van
der Waals equation of state for a real gas. If the proteins do not interact, the
equation of state is given by

Π(i) · (n · ΔA − i · ΔA) = ikT −→ Π(i) =
ikT

(n − i)ΔA
(12.17)

where ΔA is the hard core area of one protein, n · ΔA is the total area of the
membrane and i · ΔA is the area occupied by proteins. Therefore, ΔF(i) is
given by

ΔF = −
∫ ikT

(n − i)ΔA
dA = −

∫ ikT
(n − i)

d n = −ikT ln(n − i) (12.18)

using dA = ΔAdn.

d
di

ΔF(i)
kT

= −kT ln(n − i) +
ikT

n − i
(12.19)

Fig. 12.3 Comparison of Langmuir isotherm, van der Waals isotherm
and the isotherm derived from the scaled particle theory (SPT). The
scaled particle isotherm is most realistic. It can be seen that binding is
strongly suppressed at higher degrees of surface coverage.
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Now the binding isotherm is given by

〈i〉 = [Pf ]K0(n − i) exp
(
− i

n − i

)
(12.20)

[Pf ] =
1

K0

θ

1 − θ
exp

(
θ

1 − θ

)
(12.21)

This isotherm we shall call the “van der Waals” isotherm (Fig. 12.3).

12.2.3
Scaled Particle Theory

The van der Waals equation of state (Eq. (12.17)) is a pretty rough approxima-
tion for a two-dimensional gas. A better approximation for the lateral pressure
of the two-dimensional protein gas is derived from the scaled particle theory.
If one assumes proteins that are hard spheres in cross section, the free energy
of compressing the lateral gas (work performed) is

ΔFSPT(i) = −ikT[ln(n − i) + 1] +
inkT
n − i

(12.22)

We did not derive this expression here. For details the reader should refer to
Helfand et al. (1961) and Chatelier and Minton (1996). The resulting binding
isotherm has the form

[Pf ] =
1

K0

θ

1 − θ
exp

(
3θ

1 − θ
+
(

θ

1 − θ

)2
)

(12.23)

This isotherm is the most realistic one for spherical proteins that do not
interact, i.e., it compares very well with Monte Carlo simulations for that sit-
uation. One can see that the Langmuir isotherm, the van der Waals (vdW)
isotherm and the scaled-particle (SPT) isotherm are similar only at low de-
grees of surface coverage (Fig. 12.3). At higher degrees of surface coverage,
further binding is strongly suppressed in both, vdW and SPT isotherm. Prac-
tically, it is impossible to fill the complete available surface. The Langmuir
isotherm, in contrast, allows for a practically complete surface coverage if
K0 · Pf > 102. One has to conclude that the Langmuir isotherm is not suit-
able to describe binding of proteins to surfaces. The entropic “costs” are too
high. Unfortunately the Langmuir isotherm is still often used in the literature.
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It should be mentioned that the work to compress a gas is very small at low
surface coverage, such that in the limit of very low degrees of binding one has
the approximate result

θ

[Pf ]
≈ K0 (12.24)

which implies that the degree of binding is simply proportional to the free
protein concentration. From experiments at low protein concentrations one
can thereby determine the intrinsic binding constant, K0.

12.3
Aggregation Equilibria of Adsorbed Proteins

The van der Waals equation of state for a real gas allows for the interaction of
particles with finite volume. In two dimensions, the expression for the lateral
pressure is (cf. Eq. (12.17)).

Π(i) =
ikT

(n − i)ΔA
− a

(
kT
ΔA

)(
i
n

)2

(12.25)

where a is a parameter describing interactions between proteins on the sur-
face. Insertion of the result in Eqs. (12.12) and (12.15) yields

[Pf ] =
1

K0
· θ

1 − θ
exp

(
θ

1 − θ
− 2aθ

)
(12.26)

This isotherm has been derived originally by Hill (1946).
In analogy, one can insert the phenomenological interaction term of the van

der Waals equation of state, −2aθ, into the SPT isotherm (Eq. (12.27))

[Pf ] =
1

K0

θ

1 − θ
exp

(
3θ

1 − θ
+
(

θ

1 − θ

)2

− 2aθ

)
(12.27)

If the parameter a is positive, attractive interactions between proteins are
present and aggregation may occur. This can be seen in Fig. 12.4. In the right-
hand panel of this figure it can be seen that the binding isotherms may become
biphasic. This indicates an equilibrium between monomeric and aggregated
proteins in a defined regime of protein concentrations. The tendency of a pro-
tein to aggregate on surfaces can drastically increase the binding capacity of
the membrane for this protein, because protein aggregation creates free con-
nected surface area.

One of the cases where such an aggregation equilibrium has been observed
is the denaturation of surface adsorbed cytochrome c (Heimburg and Marsh,
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Fig. 12.4 Left: Schematic drawing of an aggregation equilibrium
on a membrane surface. Right: Comparison of the scaled particle
isotherm in the absence and in the presence of protein–protein inter-
actions (Eqs. (12.23) and (12.27)). If aggregation occurs, the binding
isotherms become biphasic. The interaction parameter was chosen to
be a = 0, a = 6 and a = 9, respectively.

1995). Unfolded proteins tend to aggregate to avoid the contact of hydropho-
bic amino acids with water. Other cases are the aggregation of lytic peptides
into pores, described in a later section.

12.4
Binding of Asymmetric Proteins

But what happens for nonspherical proteins? In Fig. 12.5 it is shown that elon-
gated proteins may hinder each other in rotation, thereby affecting the free
energy. In 1996, Chatelier and Minton (1996) derived an isotherm that takes
the shape of a ligand into account:

[Pf ] =
1

K0
· θ

1 − θ
exp

(
θ

1 − θ
− ε +

ε

(1 − θ)2

)
(12.28)

Here, ε is a parameter that depends on shape. For instance, ε = 1 for a hard
sphere, and ε = 25

4π for a rectangular protein cross section with axial ratio of
four (Chatelier and Minton, 1996). For the spherical case, Eq. (12.28) reduces
to Eq. (12.23).
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Fig. 12.5 In the case of elongated proteins bound to the surface, the
spacial dimensions of the protein start playing a role. At high concen-
trations the rotation of the ligands is restricted.

Fig. 12.6 Left: Asymmetric proteins may adsorb in different orienta-
tions on the surface (states 1 and 2). Which orientation dominates
depends on the surface concentration of proteins. Right: If there are
aggregation equilibria, one of the orientations may aggregate pref-
erentially. Thus, there are three different states on the protein on the
surface. Figures from Minton (1999) with permission from Biophys. J.

Tab. 12.1 Values for ε used in Eq. (12.28) for different shapes of the protein cross section.
From Chatelier and Minton (1996).

Shape ε

circle 1
Regular polygon (n/π) · tan(π/n)
(n sides)
Rectangle (L/π) · (1 + 1/L)2

(axial ratio L ≥ 1)

Ellipse 4L
π2 ·

[∫ π/2
0

(
sin2 θ

L2 + cos2 θ
)0.5

dθ

]2

(axial ratio L ≥ 1)

Minton (1999) also discussed the case that asymmetric proteins may adsorb
with different orientations, and how the equilibrium is affected by surface
coverage (Fig. 12.6, left). Clearly, at higher occupancy the protein orientation
with the smaller cross section is favored. Also, aggregation equilibria may be
influenced by the orientational rearrangements.
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12.5
Binding in the Presence of Electrostatic Interactions

In Chapter 11 we derived expressions for the electrostatic free energy. Let us
consider the binding of positively charged proteins to negatively charged lipid
membranes at low ionic strength. In this case we can use the high potential
approximation for the electrostatic free energy per lipid (Eq. (11.22)).

Fel,L = AL

(
σΨ0 − (4ε0ε)

(
kT
e

)2

κ

[
cosh

(
eΨ0

2kT

)
− 1

])

high pot.
= AL

(
−2kT

e
σ

[
ln

(
−
√

1
2ε0εKTc0

σ

)
+ 1

])
(12.29)

+4ε0ε

(
kT
e

)2
√

2e2

ε0εkT
c0

The last term is independent of σ.
Let us consider a positively charged protein with cross-sectional area AP,

corresponding to the molecular area of α lipids, such that α · AL = AP. Let us
further assume that the effective charge of the protein is +Z · e. The membrane
is defined to have a total area corresponding to the n protein areas, i.e., n ·
AP = n · αAL. Each lipid carries one negative charge. This means that protein
binding reduces the mean charge density of the membrane. A membrane with
i protein molecules bound displays a charge density of

σ = − (n α − iZ)
n AP

e (12.30)

After inserting Eq. (12.30) into Eq. (12.29) one obtains the electrostatic free
energy for the total membrane, Fel

Fel(i) = nαFel,L = −2kT(nα − iZ) ln

⎛
⎝
√

e2

2ε0εkTc0

(
nα − iZ

nAp

)
+ 1

⎞
⎠ (12.31)

According to Eq. (12.15) we can generally write the binding isotherm as

〈i〉 = [Pf ]K0 exp
(
− d

di

[
ΔFSPT(i) + ΔFel(i)

kT

])
(12.32)

where ΔFSPT(i) refers to the compression of the uncharged 2D protein gas
on the surface, and ΔFel(i) = Fel(i) − Fel(0) is the additional change of the
electrostatic free energy resulting from protein binding.

Differentiation of ΔFel(i)/kT (see Eq. (12.31)) with respect to i yields

1
kT

d ΔFel(i)
di

= −2Z ln

⎛
⎝ 1

AL

√
e2

2ε0εkT c0

⎞
⎠− 2Z ln

(
1 − iZ

nα

)
(12.33)
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Let us now first describe the limit of very low surface coverage with i/n → 0.
Combining Eq. (12.33) in this limit with Eq. (12.24) leads to

θ

[Pf ]
≈ K0

⎛
⎝ 1

AL

√
e2

2ε0εkT c0

⎞
⎠2Z

≡ K(0) (12.34)

where θ = i/n is the fractional coverage of the lipid surface with protein.
Thus, we can define an intrinsic binding constant K(0) which is a function
of the ionic strength, c0. Equation (12.34) describes the binding at very low
protein concentrations. The intrinsic binding constant can easily be deter-
mined experimentally, for example by ultracentrifugation assays (Heimburg
and Marsh, 1995). In such experiments, lipid vesicles are added to an aqueous
buffer containing proteins. Some of the proteins bind to the membranes. The
membranes with the bound proteins are removed by ultracentrifugation and
the remaining proteins in solution can be obtained by determination of the
spectral absorption coefficient in a photospectrometer. From Eq. (12.34) it is
obvious that at very low degrees of surface coverage

ln K(0) = −Z ln(c0) + const. (12.35)

If one measures the initial degree of binding as a function of ionic strength,
c0, one can now determine the charge of the protein, Z. This is shown
in Fig. 12.7 for the example of cytochrome c binding to dimyristoyl phos-
phatidylglycerol membranes.

Combining Eqs. (12.23), and (12.32)–(12.34) one arrives at the overall bind-
ing isotherm in the presence of electrostatics:

[Pf ] =
1

K(0)

(
1 − θ

Z
α

)−2Z θ

1 − θ
exp

(
3θ

1 − θ
+
(

θ

1 − θ

)2
)

(12.36)

This means that a determination of the binding isotherms as a function of
ionic strength requires three parameters to be known: the ionic strength de-
pendent intrinsic binding constant, K(0), the effective charge of the protein, Z,
and the number of lipids covered by one protein, α. A good example of how
to use this formalism is the binding of the water-soluble protein cytochrome
c to charged lipid membranes (Heimburg and Marsh, 1995) and (Heimburg
et al., 1999).
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Fig. 12.7 Binding of cytochrome c to dioleoyl
phosphatidylglycerol (DOPG) membranes.
Left: Double-logarithmic plot of the intrinsic
binding constant versus the ionic strength
(K(0) in (l/mol) and c0 in (mol/l)). One ob-
tains a straight line with slope −4. Therefore,
the effective charge of the protein is Z = 4.

Right: Binding isotherms for cytochrome c
binding to DOPG membranes at two differ-
ent ionic strengths. The solid lines are fits
using Eq. (12.36) and the K(0) values of
the straight line in the left-hand panel. Data
adapted from (Heimburg et al., 1999)

12.6
Lateral Pressure Changes Induced by Protein Binding

Let us now go back one step and consider the binding in the absence of electro-
static interactions. If we consider the adsorbed proteins on a membrane sur-
face as a two-dimensional gas with a lateral pressure it would be interesting to
calculate the pressure generated by absorption. The free energy of the protein
gas is given in Eq. (12.22). The lateral pressure is given by Π = −dF/dA. If
we let dA = αALdn, i.e., we express the area in terms of lipid areas, then

Π =
1

αAL

θ

(1 − θ)2 kT (12.37)

We considered a very similar problem in Section 11.6. The lateral pressure of
the protein gas as a function of fractional occupancy of the membrane surface
is shown in Fig. 12.8. To give a better feeling for the numbers we relate it to
a pressure per membrane cross section in units of bars. Thus, at 70% surface
coverage and α = 1 the lateral pressure corresponds to 0.0193 N/m ≡ 38.7 bar.
This pressure can shift lipid transitions to lower temperatures, cf. Eq. (11.32).
Taking the values of DPPC (ΔH = 35 kJ/mol, Tm = 314.2 K, the area differ-
ence between gel and fluid lipid ΔAL = 1.5 × 10−19 m2) the shift of Tm is on
the order ΔTm = −7 K. It is significant.

Protein binding to charged membranes has two opposing effects on the
melting temperature of membranes. The shielding of the electrostatics moves
melting temperatures to higher values. The lateral pressure of the protein gas
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Fig. 12.8 Lateral pressure of a two-dimensional protein gas with α = 1
as a function of the fractional occupancy of the membrane, θ. On the
right-hand axis, the corresponding pressure on the membrane cross
section is given.

moves the transition temperature to lower temperatures. It can therefore be
expected that binding of proteins to surfaces raises the transition temperature
at low degrees of binding and lowers it at higher degrees of binding.

12.7
Protein Insertion and Pore Formation

The fact the adsorbed proteins generate a lateral pressure on lipid membranes
can lead to protein insertion. Let us assume that a protein binds strongly to
membrane surfaces. Then the protein generates a large lateral pressure. If one
takes a look at the derivation of the isotherms in the previous sections one can
see that such a pressure is also generated if proteins do not bind to surfaces
but rather penetrate the membrane. There is, however, one major difference
between a surface adsorbed protein and an inserted protein: Upon protein
adsorption the total membrane surface stays constants, whereas it increases
upon protein insertion. On the other hand, protein insertion leads to interac-
tions between the hydrophobic lipid chains and the peptides and may thus be
less favorable than insertion at low concentrations.

Based on what has been said so far one can predict that peptides that ad-
sorb to surfaces at low concentrations but insert into the membranes at higher
concentrations may exist. Such adsorption insertion equilibria therefore occur
mostly with peptides that are partially hydrophobic and partially hydrophilic,
i.e., amphiphilic. Many of such polypeptides form pores. These pores are ag-
gregates of several peptides. Prominent examples are melittin, alamethicin
(Fig. 12.9), margainin, the α5-helix of endotoxin and pardaxin (see Zucker-
mann and Heimburg (2001) for a discussion). The alamethicin pore is thought
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Fig. 12.9 Crystal structures of two pore-forming lytic peptides. Left:
Melittin from bee venom. Right: Alamethicin.

Fig. 12.10 Left: An alamethicin pore, after Fox and Richards (1982).
Right: AFM image of 1% alamethicin in DMPC membranes, showing
pores on the length scale of several 10 nm. From Oliynyk et al. (2006)

to consist of about 10 peptides (Gennis, 1989), but AFM images indicate that
such pores can also be much larger (Fig. 12.10).

In principle, both adsorption and insertion can be described using a for-
malism similar to that described above (Zuckermann and Heimburg, 2001).
For both surface adsorbed proteins and inserted proteins, the free energies
and therefore also the equilibria between the two adsorption states can be
determined. We will not do this here because the calculation is somewhat
lengthy. We will, however, outline the essential features of such thermody-
namic considerations. Upon adsorption of proteins the following chain of
events is found:

1. Soluble proteins adsorb to the lipid membrane interface and form a two-
dimensional gas on the surface.

2. This gas exerts a lateral pressure on the membrane. If the intrinsic bind-
ing constant is large these pressures can be substantial. This pressure
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could ultimately lead to the rupture of the membrane at a critical pres-
sure.

3. Instead of membrane rupture it may be favorable that proteins insert in
the membrane. Insertion has two consequences: 1. The surface concen-
tration of proteins is reduced leading to a lowering of the lateral pres-
sure. 2. The total area increase leads to a further reduction in pressure of
the protein gas. Therefore, insertion of proteins lowers the free energy
of the protein gas.

4. Inserted proteins display an interaction with the hydrophobic core of the
lipid membrane. If these interactions are unfavorable, protein insertion
will only happen at very high protein concentrations (or never). If the
interaction is favorable, the proteins may readily insert into the mem-
brane.

5. The most interesting case is obviously the intermediate situation where
the interactions between proteins (or peptides) and lipid chains are nei-
ther favorable nor especially unfavorable, i.e., for amphiphilic peptides
like melittin. For such proteins one expects that the proteins adsorb to
the membrane surface at lower concentrations to avoid contact with the
chains. At high concentrations the proteins insert into the membrane to
reduce the lateral pressure of the protein gas. Such a case has been found
for the α5-helix of endotoxin and for pardaxin (Fig. 12.12) discussed be-
low.

In the previous section we have outlined most of what is necessary in order
to calculate such a situation. However, such a calculation requires a num-
ber of additional parameters describing for example shape of the proteins,
lipid–protein interactions and number of peptides in a pore. The interested
reader should therefore refer to Zuckermann and Heimburg (2001). The fol-
lowing description is rather meant to describe the principle, which is outlined
in Fig. 12.11.

Proteins accumulate on the surface and generate a lateral pressure. This
leads to insertion of proteins, either monomeric (Fig. 12.11, left) or as pores
(Fig. 12.11, center). The corresponding isotherms take a form that resembles
the profiles in Fig. 12.11 (right). In the example shown proteins start to insert
at a critical fraction of θ = 0.3. The binding isotherm displays a drastic in-
crease in binding. Below that surface coverage the proteins just adsorb to the
surface and look like the SPT isotherm given in Fig. 12.3. The dotted line in
this figure shows how binding would progress if proteins would only adsorb
to the surface.

Such kind of adsorption behavior has in fact been found experimentally.
Shai and coworkers (Rapaport and Shai, 1991; Gazit et al., 1998; Shai, 1999)
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Fig. 12.11 Two scenarios for protein inser-
tion. Left: Proteins first adsorb to the sur-
face. At a critical protein concentration some
proteins insert into the membrane. Center:
Same situation but proteins consequently
form pores within the membrane. Right: Bind-
ing isotherm of a pore-forming peptide. The
dotted line is the isotherm calculated with-

out insertion. If insertion occurs the binding
isotherm shows a largely increased protein
association at a critical free peptide concen-
tration. This sudden increase is due to pore
formation. This is a cooperative process.
Figures adapted from Zuckermann and Heim-
burg (2001) with permission.

have shown for different antimicrobial peptides as δ-endotoxin or pardaxin.
δ-endotoxin is a highly potent pore-forming insecticidal toxin produced by
bacillus thuringiensis. Gazit et al. (1998) especially investigated the central α5-
helix. Pardaxin is a neurotoxic peptide acting as shark repellant in certain fish.
Both peptides form pores and display binding isotherms to zwitterionic mem-
branes as described in Fig. 12.12. Such binding isotherms can be described by
using an equilibrium between surface adsorbed peptides and inserted pep-
tides that shifts toward the inserted pore-forming fraction at higher concen-
trations of peptide as described in Fig. 12.12 for the case of pardaxin.

To summarize, one can state that if peptides tend to increase their binding
affinity drastically above a certain value of surface coverage, θ, this is an in-
dication for protein insertion. Further, if this increase in affinity is very steep
it also indicates pore formation or other types of aggregation of the inserted
peptides.

12.7.1
Insertion Triggered by the Binding of Secondary Proteins

The description of binding processes given in this chapter relies on thermody-
namics of the adsorbed protein gas and, in particular, on its lateral pressure.
The pressure depends on the number and size of the proteins but not on their
chemical nature. Therefore, it is also interesting to consider the case where
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Fig. 12.12 An experimental example for the insertion of peptides into
membranes is the binding of pardaxin to phosphatidylcholine mem-
branes. The solid line represents the theoretical description including
surface adsorption and insertion of the peptides. The individual con-
tributions of surface adsorption and inserted proteins are given as
dotted lines. The data are taken from Shai (1999) and were analyzed
by Zuckermann and Heimburg (2001). Reproduced with permission.

a second species of proteins adsorbs to the surface. Further, we assume that
this second species does not insert into the membrane because it displays an
unfavorable interaction with the membrane core. This protein, nevertheless,
contributes to the lateral pressure of the surface protein gas (now consisting
of two species). Thus, it has the potential of affecting the surface-insertion
equilibrium of the first protein species, even if the two protein species do not
interact at all! Such a situation is schematically shown in Fig. 12.13.

It can generally be stated that thermodynamics often creates a coupling be-
tween seemingly independent variables, as for example the concentrations of
two noninteraction protein species that both contribute to the pressure.
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Fig. 12.13 The equilibrium between surface adsorbed and inserted
species depends on the lateral pressure of the surface adsorbed gas.
It can therefore be altered when other proteins adsorb to the mem-
brane that cannot insert. This means that pore formation of peptides
can be triggered by other proteins that have no direct connection to the
insertion process. Adapted from Zuckermann and Heimburg (2001)
with permission.

12.8
Binding to Mixed Lipid Membranes

Biological membranes are made of many lipid species, some of which are
charged and others that are uncharged. As we have learned in a previous
chapter, lipids are not in general distributed homogeneously within the mem-
brane plane (Chapter 7). Typically, lipids can diffuse and rearrange after per-
turbations. They may form domains and clusters. How would the response
of the lipid distribution to protein binding look like and what influence does
this redistribution have on the binding constant of the protein?

In the following we discuss three limiting cases of a membrane composed
of two different lipid species with molar fractions fA and fB:

1. The two lipid species are homogeneously distributed in the membrane.
Their distribution does not change upon protein binding (Fig. 12.14,
top). This could happen when both lipids have the same affinity to the
protein, or when the lipids are linked to each other. A further possibility
is that the diffusion constant is so low that the lipids do not redistribute
within the experimental time frame.

2. The two lipids are homogeneously distributed and mix ideally. They are,
however, free to diffuse. If one lipid species binds stronger to the pro-
tein than the second species, lipids will redistribute and the lipid with
stronger affinity will accumulate within the binding site of the protein.
This scenario is fulfilled when one of the two lipids is charged and the
protein binds primarily by electrostatic interactions (Fig. 12.14, center).
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Fig. 12.14 Protein binding to two-component
lipid membranes. If the protein has different
affinities to two lipid species several binding
modes may result. Top: For rigid membranes
with no diffusion the lipid distribution does
not alter when the protein binds. Center: The
lipids with higher affinity to the protein accu-

mulate underneath the protein binding site.
This in turn alters the binding affinity of the
protein. Bottom: If the two lipids macroscop-
ically phase separate the binding to the two
different domain types is independent of the
presence of the second species.

3. The two lipid species do not mix at all and phase separate (Fig. 12.14,
bottom).

Cases 1 and 3 can be treated very easily with the equations in the previous
sections.

Case 1 describes a homogenous membrane and all binding sites are equiv-
alent. If the binding is dominated by electrostatics the charge density has to
adjusted accordingly in Eq. (12.30). Taking fA to be the charged lipid fraction,
the charge density of a membrane with n lipids and i proteins bound is now

σ = − (n α fA − iZ)
n AP

e (12.38)

This has to be considered in the derivations of Section 12.5.
Case 3 is even simpler. Since the two lipid phases separate macroscopically

one can consider the two lipid systems as independent and just treat them
according to Eqs. (12.23) or (12.36).

Case 2 is a bit more complicated. When a positively charged protein binds to
a mixture of negatively charged and uncharged lipids, the charged lipids will
have a tendency to accumulate underneath the protein. To what degree this
occurs depends on the number of adsorbed protein molecules and the fraction
of charged lipids. Such a case has been treated by Heimburg et al. (1999). They
have considered the binding of the positively charged protein cytochrome c to
mixtures of dioleoyl phosphatidylcholine and dioleoyl phosphatidylglycerol.
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Fig. 12.15 Binding of cytochrome c to ideal
mixtures of the negatively charged lipid
DOPG and the uncharged lipid DOPC. Left:
Binding isotherms to four different mixing
ratios. The solid lines represent the theoret-
ical description outlined in Heimburg et al.
(1999) assuming that the charged lipids can

accumulate underneath the bound proteins
(Fig. 12.14, center). Right: Binding to the
60:40 mixture. The solid and dotted curves
show how the isotherms would look like as-
suming the three different cases described
in Fig. 12.14. Adapted from Heimburg et al.
(1999).

The latter lipid carries one net negative charge. Further, diacyl phosphatidyl-
cholines and diacyl phosphatidylglycerols are known to mix ideally at neutral
pH (Garidel et al., 1997). Some results of membranes with different fractions
of charged lipid are shown in Fig. 12.15 (left). Since the charge density is
smaller, the initial binding constant, K(0), must obviously be smaller. The
binding isotherms are shown in Fig. 12.15. The solid lines are the theoretical
curves using a refined binding model that takes lipid reordering into account,
cf. Heimburg et al. (1999). In the right panel of Fig. 12.15 the isotherm for
the 60:40 DOPG/DOPC mixture is shown again. Additionally, the calculated
isotherms for cases 1 (no lipid rearrangements) and 3 (macroscopic phase sep-
aration) are displayed. It can be seen that the diffusion properties and the
lateral organization of the lipids is important for the binding properties.

Under most conditions, binding of proteins will lead to reordering of lipid
molecules. Since the neutralization of charges can lead to changes in the phase
behavior of lipids (Garidel et al., 1997) one can expect that protein binding
in general will influence the mixing behavior of lipids, too. Protein binding
leads to changes of lipid composition in the binding site. If lipids mix ideally,
however, protein binding cannot induce domains larger than the binding site.
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12.9
Summary: Key Ideas of Chapter 12

1. The binding of ligands to independent binding sites is described by the
Langmuir isotherm. It basically corresponds to a mass action law. It
consists of an equilibrium between free binding sites, occupied binding
sites, and free ligands.

2. The Langmuir adsorption isotherm is not a good description of the bind-
ing process of ligands to continuous surfaces. The binding sites are not
independent of each other and hard core interactions between ligands
start playing a role. One has to consider the adsorbed proteins as a two-
dimensional gas. Such a binding behavior can generally be described by
using a “Gibbs” isotherm.

3. When the lateral pressure of a protein gas is approximated by a real gas
as described by the “van der Waals” equation of state one obtains the
“van der Waals” isotherm. This isotherm can also describe aggregation
equilibria of bound proteins.

4. Better is the use of an equation of state from the scaled particle the-
ory (SPT). Here, the corresponding binding isotherm is called the “SPT”
isotherm.

5. The general description of binding processes by a “Gibbs” isotherm can
also include the electrostatics of the binding process as introduced in
Chapter 11.

6. The lateral pressure of the protein gas exerts a lateral pressure on the
membrane.

7. From the area dependence of the electrostatic free energy a lateral pres-
sure can be calculated. At 70% surface coverage the lateral pressure cor-
responds to 0.0193 N/m which is equivalent to 38.7 bar relative to the
cross section of the membrane.

8. This pressure can be sufficient to rupture the membrane or to facilitate
the insertion of proteins. Thus, proteins that adsorb to membrane sur-
faces tend to insert into the membrane at higher degrees of surface cov-
erage.

9. Pore formation processes of a number of antimicrobial peptides can be
understood that way.

10. When proteins bind to mixed lipid membranes, lipid rearrangement
takes place that influences the binding process.



211

13
Elasticity and Curvature

13.1
Liquid Crystalline Phases

Lipid membranes are closely related to liquid crystals. Liquid crystals are
phases of axial molecules that influence each other in their orientation. This
is clearly the case for a lipid membrane since the lipid molecules display a
preferential orientation within the membrane.

Before we describe the theory of membrane elasticity, we start by describing
the more general case of liquid crystals in three dimensions. One can mainly
distinguish four different classes of liquid crystals:

1. Nematic liquid crystals.
Most cylindrical molecules do not display spacial order, but an order in
orientation since next nearest neighbor molecules influence each other
in orientation (Fig. 13.1, left).

2. Smectic liquid crystals.
Additional to a preferential orientation of molecules one finds an ar-
rangement of molecules in layers. Smectic phases are more ordered than
the nematic phases and therefore in most cases display a higher viscos-
ity. (Fig. 13.1, center left).

Fig. 13.1 Different liquid crystalline phases. Left: nematic. Center, left:
smectic. Center, right: cholesteric. Right: lyotropic.
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3. Cholesteric liquid crystals.
Such phases occur in derivatives of cholesterol. One finds a rotation
(twist) of the molecules perpendicular to the molecular axis. All nematic
phases with strong twist are called cholesteric (Fig. 13.1, center right).

4. Lyotropic liquid crystals.
Polar molecules with one hydrophilic and one hydrophobic side form
membranes. The lyotropic liquid crystals are related to smectic phases
(Fig. 13.1, right). Lipid multilayers are lyotropic liquid crystals.

A multilayered lipid membrane is a lyotropic liquid crystal (Fig. 13.1, right). A
single lipid membrane can be considered as liquid crystal in two dimensions.

13.2
Elastic Theory of Incompressible Liquid Crystalline Phases

In the following we outline the theory of liquid crystals by Frank (1958) who
himself based his work on earlier publications by Friedel (1922) and Oseen
(1933). In liquid crystalline phases an equilibrium order of molecules exists,
which can be altered by performing work. This leads to a distortion of the liq-
uid crystal (Fig. 13.2). The distortion is usually given in relation to a unit vec-
tor L(x, y, z) that indicates the preferred orientation at a given point (x, y, z).
One can distinguish between different distortions.

• Splay: s1 = ∂Lx/∂x s2 = ∂Ly/∂y (Fig. 13.3, left)

Splay describes curvature as one finds it for instance on the surface of a
balloon.

• Twist: t1 = −∂Ly/∂x t2 = ∂Lx/∂y (Fig. 13.3, center)

Twist rather describes torsion within the surface in the x–y plane.

Fig. 13.2 Vector field of the orientation of molecules in a liquid crystal.
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• Bending: b1 = ∂Lx/∂z b2 = ∂Ly/∂z (Fig. 13.3, right)

Bending would then be a property only occurring in a three-dimensional
medium that extends into the z-direction. Thus, bending (as defined
by Frank (1958)) applies to lipid multilayers, but not to purely two-
dimensional systems.

Fig. 13.3 Different distortions in a vector field. Left: splay. Center:
twist. Right: bending.

Let us now define: a1 ≡ s1, a2 ≡ t2, a3 ≡ b1, a4 ≡ −t1, a5 ≡ s2, a6 ≡ b2.
We now introduce a vector L(x, y, z) of unit length 1 that describes the ori-

entation of molecules in the liquid crystal (see Fig. 13.2). We choose a local co-
ordinate system such that L(0, 0, 0) shall be parallel to the z-axis (L(0, 0, 0) =
(0, 0, 1)). The distortion of the liquid crystalline matrix at a small distance
(x, y, z) from the origin is now described by

Lx = a1x + a2y + a3z + O(r2)

Ly = a4x + a5y + a6z + O(r2) (13.1)

Lz = 1 + O(r2) r2 = x2 + y2 + z2

This is a linearization of the distortion valid at small x, y and z.
To deform the liquid crystal one has to change its free energy. Let us assume

that the Gibbs free energy G of a liquid crystal in a configuration deviating
from equilibrium is given by

G =
∫

v
g dv (13.2)

with a free energy density g = g(x, y, z). For small distortions of the liquid
crystal one can approximate the free energy density by a harmonic potential:

g = ∑
i

kiai +
1
2 ∑

i
∑

j
kijaiaj i, j, = 1, 2, . . . , 6 kij = kji (13.3)
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where ki and kij are the elastic constants. This is done in analogy to Hooke’s
law in the mechanics of springs. The first linear terms are due to the fact that
in the minimum free energy configuration molecules do not necessarily have
to be all parallel. The cholesteric phase in Fig. 13.1 is an example, but the ori-
entational distribution shown in Fig. 13.2 could also represent an undistorted
crystal. For a liquid crystal where all molecules are parallel in the configura-
tion of lowest free energy, the constants k1, k2, . . . , k6 = 0. In the next para-
graph we will relate the linear constants ai to the “spontaneous curvature.”

Equation (13.3) yields six constants ki and 36 constants kij. Since aiaj = ajai
it follows that kij = kji. Thus, one only has 21 different kij. The total number
of elastic constants from linear and quadratic terms is therefore 27.

In the following it shall be demonstrated that many of these constants are
not independent of each other.

13.2.1
Using Symmetries

The free energy density is a scalar (it has no “direction”) and may therefore
not depend on the orientation of the coordinate system. One can therefore
choose another coordinate system (x′, y′, z′) (letting here z = z′, resulting in
an effective rotation or the rotation of the mirror image around the z-axis), in
which one finds

g = ∑
i

kia
′
i +

1
2 ∑

i
∑

j
kija

′
ia
′
j (13.4)

It has been shown by Frank (1958) that by rotating the coordinate system by an
arbitrary angle around the z-axis one can significantly reduce the number of
independent moduli ki and kij (see Fig. 13.4). We do not perform the lengthy
calculation here. Of the six constants ki two are equal to zero and only two are
independent (k1 and k2) such that the vector (ki) is given by

(ki) = (k1 k2 0 − k2 k1 0) (13.5)

Fig. 13.4 Symmetry operations in a vector field: Rotation of the coor-
dinate system around the z-axis by an angle α.
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Only five of the kij are independent (which are k11, k22, k33, k12, and k24) and
the matrix (kij) is given by

(
kij
)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

k11 k12 0 −k12 (k11 − k22 − k24) 0
k12 k22 0 k24 k12 0
0 0 k33 0 0 0

−k12 k24 0 k22 −k12 0
(k11 − k22 − k24) k12 0 −k12 k11 0

0 0 0 0 0 k33

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(13.6)

This is the general case of a three-dimensional liquid crystal with molecules
of arbitrary shape. It is described by seven constants.

For special classes of molecules one can apply further symmetry operation
if molecules display certain properties.

13.2.2
Apolar Molecules

If the molecules are apolar (in respect to a favored orientation) or polar with
an equal probability of both orientations (this case is given in the case of a
symmetric membrane), one can apply further symmetry arguments. One ob-
tains

(ki) = (0 k2 0 − k2 0 0) (13.7)

and for (kij) one finds

(
kij
)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

k11 0 0 0 (k11 − k22 − k24) 0
0 k22 0 k24 0 0
0 0 k33 0 0 0
0 k24 0 k22 0 0

(k11 − k22 − k24) 0 0 0 k11 0
0 0 0 0 0 k33

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(13.8)

Thus, the total number of constants is further reduced to five (k2, k11, k22, k33,
and k24).

13.2.3
Achiral and Apolar Molecules

Chirality is the handedness of molecules. It implies that a molecule is different
from its mirror image. If a molecule is identical to its mirror image one can
apply further symmetry operations and obtains

(ki) = (0 0 0 0 0 0) (13.9)
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and the matrix (kij) is identical to that in Eq. (13.8). The total number of re-
maining constants is four (k11, k22, k33, and k24). Most lipid molecules are chi-
ral. However, if one uses racemates in which right-handed and left-handed
molecules are equally probable one can apply these simplifications.

13.2.4
Spontaneous Curvature

The case described in Section 13.2.1 is the general case, whereas the cases de-
scribed in Sections 13.2.2 and 13.2.3 are special cases.

Remember that a1 ≡ s1, a2 ≡ t2, a3 ≡ b1, a4 ≡ −t1, a5 ≡ s2, and a6 ≡ b2.
Using the information contained in Eqs. (13.5) and (13.6) of the general liq-

uid crystal one can write

g = k1(s1 + s2) + k2(t1 + t2)

+
1
2

k11(s1 + s2)2 +
1
2

k22(t1 + t2)2 +
1
2

k33(b2
1 + b2

2)

+ k12(s1 + s2)(t1 + t2)− 1
2
(k22 + k24)(s1s2 + t1t2)

(13.10)

If one additionally introduces the abbreviations

s0 ≡ − k1

k11
t0 ≡ − k2

k22
g′ = g +

1
2

k11s2
0 +

1
2

k22t2
0 (13.11)

where s0 and t0 are called the spontaneous splay and the spontaneous twist,
respectively. They are intrinsic properties of the liquid crystal molecules.
1
2 k11s2

0 + 1
2 k22t2

0 only defines a constant offset of the Gibbs free energy. Since
one is usually only interested in Gibbs free energy differences, this choice of an
offset can always be done without affecting free energy differences. Therefore,
g and g′ are equivalent.

Using the definitions in Eq. (13.11) one can transform Eq. (13.10) into

g′ = +
1
2

k11(s1 + s2 − s0)2 +
1
2

k22(t1 + t2 − t0)2 +
1
2

k33(b2
1 + b2

2)

+ k12(s1 + s2)(t1 + t2)− 1
2
(k22 + k24)(s1s2 + t1t2)

(13.12)

The meaning of the spontaneous splay and the spontaneous tilt now become
obvious: If s1 + s2 = s0, and t1 + t2 = t0, the Gibbs free energy density is in its
minimum. Thus, in equilibrium the crystal displays a natural splay and tilt.
For apolar molecules the spontaneous splay is zero. For apolar and achiral
molecules the spontaneous twist is also zero.
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13.3
Elastic Theory of Membrane Bending

We will now apply the elastic theory to a planar membrane. Let us consider a
single membrane. Let us also assume that the membrane can be considered as
a (nearly) infinitely thin film such that it has no extension into the z-direction.
We can therefore omit the terms containing the z-axes (b1 and b2). The free
energy density can therefore be written as

g′ =
1
2

k11(s1 + s2 − s0)2 +
1
2

k22(t1 + t2 − t0)2

+ k12(s1 + s2)(t1 + t2)− 1
2
(k22 + k24)(s1s2 + t1t2)

(13.13)

This equation contains four elastic constant (k11, k22, k12, and k24). Spon-
taneous twist is a consequence of chirality of molecules. Typically, lipid
molecules are chiral. This, as a consequence, leads to twist distortions of mem-
branes and chirality within the membrane.

13.3.1
Membranes Without Twist

Let us now discuss a special case of this equation: L shall be parallel to the
membrane normal and the spontaneous twist shall be zero (see Fig. 13.5).
This can be achieved by either using racemic mixtures of lipids (with equal
amounts of left- and right-handed molecules) or by considering molecules

Fig. 13.5 Top: curved membrane with splay. Bottom, left: saddle point
structure. Bottom, right: Membrane surface with twist.
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without chirality. Further, let us ignore twist distortions all together. The
above equation for the free energy (Eq. (13.13)) then simplifies to

g′ =
1
2

KB (s1 + s2 − s0)2 + KG s1s2 (13.14)

with KB ≡ k11 and KG ≡ −(k22 + k24). This equation contains only two con-
stants: KB, which is often called “bending modulus” even though it is techni-
cally rather a “splay modulus.” KG is called the “Gaussian modulus.” In the
following we will denote KB as the bending modulus.

Fig. 13.6 In monolayer experiments on a wa-
ter surface one can see that chirality of lipids
plays a role on long length scales. This image
shows a section of 100 μm × 100 μm in the
liquid-expanded (fluid)/liquid-condensed (gel)
coexistence regime of a DPPC monolayer.
Domains can be distinguished due to a tiny

concentration of fluorescence markers that
dissolve better in the fluid phase. The gel do-
mains, shown in dark shades, show a distinct
handedness. Gel-like domains display chi-
ral shapes indicating twist of the molecules.
Courtesy M. Gudmand, NBI Copenhagen.

Equation 13.14 was derived by Wolfgang Helfrich in a highly cited paper.
He used a somewhat more elegant differential geometry approach (Helfrich,
1973).

Monolayer experiments as shown in Fig. 13.6, indicate, however, that chiral-
ity of lipids cannot generally be ignored, in particular not in the solid-ordered
(gel) phase. Liquid condensed domains in monolayers display a pronounced
handedness on length scale of a few 10 μm. Equation (13.14) is very often
used, but one should be aware of its limitations and the underlying assump-
tions.

13.3.2
Radii of Curvature

The splay of the membrane surface is related to the radius of curvature of the
membrane segment. Let us consider a curved surface with a curvature in the
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x-direction described by a radius of curvature, Rx. Similarly, the radius of
curvature in the y-direction shall be described by the radius Ry. In Fig. 13.7
this is demonstrated. If one considers a displacement dx of the vector |L| along
the x-axis of the membrane surface and the surface displays curvature, one
also obtains a relative change of the angle α. This change can also be expressed
in a change of the x-component of the vector |L|, dLx:

dx
Rx

= sin(α) and
dLx

|L| = sin(α) (13.15)

with |L| = 1. From this follows that

1
Rx

=
dLx

dx
= sx (= s1) (13.16)

This situation is shown in Fig. 13.7 (left). An equivalent situation is shown
in Fig. 13.7 (right) with the only difference that the curvature points in the
other direction. For this situation, the displacement dLx points in the opposite
direction, such that

− 1
Rx

=
−|dLx|

dx
= sx (13.17)

Thus, one obtains a radius of curvature that carries a negative sign. The choice
of the sign of the radius of curvature depends on the arbitrary choice of the
direction of the membrane normal. Similarly, the radius of curvature in the
y-direction can be related to the splay in the y-direction

± 1
Ry

=
dLy

dy
= sy (= s2) (13.18)

The arbitrary choice of the direction of the membrane normal only plays a role
when the two radii of curvature, Rx and Ry point in the opposite direction.

Fig. 13.7 Illustration of the connection of splay distortions with the
radius of curvature.
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13.3.3
Topology of Vesicles and Saddle Points

A vesicle is a closed structure in itself. Since this creates a topological bound-
ary condition, the elastic free energy must not be necessarily in a free energy
minimum. If the vesicle is spherical |Rx| = |Ry| = |R|. If the membrane itself
is made of the same lipids on both sides and is thus symmetric, the sponta-
neous radius of curvature is zero. The total elastic free energy is then given
by

Gvesicle =
KB

2

∮
A

(
4

R2

)
dA + KG

∮ 1
R2 dA (13.19)

Since the surface of a spherical vesicle is 4πR2, we obtain

Gvesicle = 8πKB + 4πKG (13.20)

independent of the radius of the vesicle.
A typical value for the bending modulus in a fluid phase lipid membrane

is KB = 10−19 J and the Gaussian modulus is of similar magnitude. These
values differ slightly depending on the method used. A careful review on
measurements of both quantities as obtained by different methods is given by
Marsh (2006). The elastic free energy of a vesicle is independent of radius but
not independent of shape. If the vesicle is deformed, Gvesicle changes.

One can show that the integrated Gaussian term is independent of vesicular
shape such that generally one obtains for a closed vesicle without topological
defects

KG

∮
A

s1s2dA = 4π · KG (13.21)

Thus, when calculating the changes of the integrated curvature free energy
of vesicle deformation one can ignore the Gaussian term.

The Gaussian term becomes especially important for saddle point structures
as shown in Fig. 13.5. Such saddle points can be found in cubic phases and in
sponge phases, but also in fusion pores of vesicles.

Let us first make the simplifying assumption that in the saddle point the two
radii of curvature have the same value but opposite sign (R1 = −R2). Let us
furthermore assume a symmetric membrane where the spontaneous radius of
curvature, s0, is zero. Then we find for the “bending” term 1/2 KB(s1 + s2)2 =
0. Surfaces where (s1 + s2)2 is zero at any point of the surface are called min-
imal surfaces. Cubic lipid phases are often considered to represent minimal
surfaces. However, the Gaussian term KGs1s2 assumes a value different from
zero and the entire elastic free energy is described by the Gaussian term.
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13.3.4
Vesicles with Fixed Volume/Area Ratio

For closed vesicles the integrated Gaussian term is constant and does not have
to be considered. For symmetric membranes the “bending” term obviously
approaches a minimum if the vesicle is spherical, because the curvature terms
enter the equation quadratically. The volume-to-area ratio is given by V/A =
R/3.

Membranes display a water permeability that is highly dependent on the
excess heat capacity of the membranes (see Chapter 17). Outside of the tran-
sition regime one may assume that for short periods of time the membrane
can be considered as impermeable for water. This implies that a spherical
vesicle cannot be deformed, because the volume-to-area ratio would decrease.
This is impossible for a water-impermeable membrane. On the other hand, if
V/A < R/3 the vesicles cannot assume spherical shapes because no water
can flow into the vesicles. For such situations one has to find the minimum
of the elastic free energy of a vesicle by assuming a fixed volume/area ratio.
In Fig. 13.8 this is shown both experimentally and theoretically for a series of
different volume/area ratios.

Fig. 13.8 Shapes of lipid vesicles different ambient temperatures, as
found in a light microscope. Top row: experimentally found vesicle
shapes for various volume/area ratios of the vesicles. Bottom: Calcu-
lated vesicle shapes for different ratios reproducing the shapes from
the experiment. From Lipowsky (1995) with permission from Elsevier.

13.3.5
Fusion Pores

In biological cells one of the most frequent membrane processes is secretion,
meaning the fusion or fission of vesicular membranes. In exocytosis, for in-
stance, synaptic vesicles are thought to fuse with the presynaptic membrane
with the subsequent release of neurotransmitters into the synaptic gap. Dur-
ing the fusion process so-called fusion pores are formed that display regions
of high curvature. Since such fusion pores contain saddle point structures and
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display a bending and a Gaussian term. Since two vesicles fuse to one vesicle,
the Gaussian contribution to the free energy reduces from 2 × 4πKG to 4πKG
(Fig. 13.9). Thus, the Gaussian contribution cannot be neglected when calcu-
lating the elastic free energy of a fusion pore. Values for the Gaussian bending
modulus KG are on the order of 10−19J (Marsh, 2006). It is not unreasonable
to assume that there are particular lipids or lipid mixtures that have elastic
constants that stabilize fusion pores. The cubic phase shown in Fig. 2.10 can
be seen as a network of vesicles linked by fusion pores.

Fig. 13.9 Two membrane fusion events that change the Gaussian
contribution to the total elastic free energy. Events of this nature are
thought to play a role in synaptic exo- and endocytosis, and in many
secretion processes.

Kozlovsky and Kozlov (2002) have calculated the elastic free energy of fu-
sion pores to find out whether such pores can spontaneously be created on
the basis of thermal fluctuations (which are on the order of kT). During this
calculation they assumed that the membrane is homogeneous and isotropic.
They further assumed that the bending modulus κ is a constant with a value
on the order of 10−19 J, and they neglected the contribution of Gaussian cur-
vature. With such calculations they arrived at an elastic free energy on the
order of 40kT for one fusion pore. This is a very high value which makes it
very unlikely that such a process would occur spontaneously.

Calculating elastic free energies using such simplifying assumptions may
be dangerous. It is likely that in curved regions lipid membranes display a
different lipid composition because some lipids tend to induce curved struc-
tures. Thus, the elastic free energy would couple to the chemical potentials of
the membrane components - including the membrane proteins. Furthermore,
the elastic constants cannot be considered as universal constants. As shown in
Chapter 14 they are highly dependent on temperature, pH, and other system
variables that can be influenced by the biological organism.
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13.4
Summary: Key Ideas of Chapter 13

1. Liquid crystals are made of elongated molecules that display correlated
orientations in space.

2. The elastic free energy can be derived by using quadratic approxima-
tions (Hooke’s law) for the different distortions that are possible in
space.

3. The elastic free energy of incompressible liquid crystals can be described
with seven elastic constants, related to the different splay, twist, and
bending distortions.

4. If the liquid crystal consists of apolar molecules, the free energy can be
described by using five elastic constants.

5. If the liquid crystal consists of apolar and achiral molecules, 4 elastic
constants are sufficient to calculate the elastic free energy.

6. If the liquid crystal displays splay and twist in equilibrium (no work
performed), it possesses spontaneous splay and twist.

7. A lipid membrane can be considered as a two-dimensional liquid crys-
tal. Thus, bending modes do not have to be considered. If the membrane
does not display twist distortions (achiral molecules) three elastic con-
stants are sufficient to calculate the elastic free energy of the membrane:
The ‘bending’ modulus KB, the Gaussian modulus KG, and the spon-
taneous curvature, s0. Major contributions to the elastic free energy of
membranes have been made by Wolfgang Helfrich.

8. The Gaussian contribution to the Gibbs free energy of closed vesicular
shapes is a constant.

9. Fusion events imply a change in the Gaussian contribution to the elastic
free energy.

10. The elastic theory derived in this chapter is only valid for homogeneous
and isotropic membranes. It does not cover membranes with domain
formation and lateral heterogeneities.

11. Typically the elastic constants are functions of temperature, pH, ionic
strength, and membrane asymmetry (see the next chapter).
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14
Thermodynamics of the Elastic Constants

In Chapter 13 we have described the elastic constants for liquid crystals and
membranes that are incompressible. This implies that hydrostatic pressure
does not change the volume and lateral pressure does not change the area of a
membrane. For real membranes this is not the case. Lipid membranes, both of
artificial and biological origin are compressible. Further, the elastic constants
turn out to be the functions of temperature, pressure, and other intensive sys-
tem variables.

Liquids usually are not very compressible. On the other hand, in melting
transitions lipid membranes change their volume by about 4% and the area
by about 25%. At the melting point of a lipid membrane the Gibbs free energy
difference between gel- and fluid phase is zero. Therefore, the free energy
that has to be provided to melt the membrane is zero. It seems therefore that
membranes should be very compressible close to the melting events. In this
chapter we show that the elastic constants are highly temperature dependent.
Since melting events change as a function of pH, pressure, ionic strength, etc.,
the elastic constants will be a function of all these intensive variables.

In a population of lipid vesicles with identical number of lipids (a canonical
ensemble), each vesicle may display a different internal energy Hi, a different
area, Ai, and a different lipid volume, Vi. Following Section 4.9, the enthalpy
Hi of vesicle i is given by

Hi = Ei + p · Vi + Π · Ai (14.1)

with the hydrostatic pressure p and the lateral pressure Π. The partition func-
tion for a monolayer at constant pressure and constant lateral pressure is given
by

Q = ∑
i

Ωi exp
(
− Hi

RT

)
(14.2)

where the sum is over all states of different enthalpy, and Ωi is the degeneracy
of the state with enthalpy Hi The mean enthalpy, averaged over all vesicles, is
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given by

〈H〉 =
1
Q ∑

i
HiΩi exp

(
− Hi

RT

)
(14.3)

The mean volume, averaged over all vesicles, is given by

〈V〉 =
1
Q ∑

i
ViΩi exp

(
− Hi

RT

)
(14.4)

The mean area, averaged over all vesicles, is given by

〈A〉 =
1
Q ∑

i
AiΩi exp

(
− Hi

RT

)
(14.5)

14.1
Heat Capacity

The heat capacity of a vesicular dispersion is given by Eq. (4.43)

cp =
d 〈H〉

dT
=

〈
H2〉− 〈H〉2

R T2 (14.6)

The heat capacity is proportional to the fluctuations in enthalpy. What does
this mean? Let us consider a dispersion with large unilamellar vesicles of ra-
dius 100 nm. If one assumes a lipid area of about 0.5 nm2 this corresponds to
about 100,000 lipids per vesicle. 1 ml of a 10 mM lipid dispersion then con-
tains about 6× 1013 vesicles. Enthalpy fluctuations imply that each vesicle has
a slightly different enthalpy, and that the values scatter around the mean en-
thalpy per vesicle. The difference in the enthalpy of individual vesicles can for
example arise from slightly different fractions of fluid lipid, or from slightly
different vibrational excitations in the lipid chains. Obviously, when the heat
capacity is large, also the fluctuations are large. One can easily understand
this. At the melting point of the lipid membrane the free energy difference be-
tween gel and fluid lipids is zero, meaning the free energy necessary to change
the enthalpy of a vesicle is very small. Therefore, thermal fluctuations of order
kT are sufficient to cause large changes in vesicle state.

If one separates the intrinsic heat capacity (originating for intramolecular
degrees of freedom) of the individual lipid molecules, cp,0, from the excess
heat capacity related to the cooperative melting events, Δcp, one can easily
show that these two quantities can be added. One finds

cp = cp,0 + Δcp =
〈

H2
0
〉− 〈H0〉2

RT2 +
〈
ΔH2〉− 〈ΔH〉2

RT2 (14.7)
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meaning that the enthalpy fluctuations of different parts of the system are
additive and can be considered independently of other. This separation of
intrinsic heat capacity and excess heat capacity plays an important role later
in this chapter.

14.2
Volume and Area Compressibility

Lipid membranes are to a certain degree compressible. One can distinguish
the volume compressibility measured by applying hydrostatic pressure to an
aqueous lipid dispersion, and area compressibility measured by compressing
or stretching membranes in the membrane plane via the application of lateral
pressure or tension.

14.2.1
Volume Compressibility

Volume compressibilities of lipid membranes can be measured with ultra-
sonic velocity measurements, which are described below. Briefly, the speed of
sound in a lipid dispersion depends on the compressibility of the lipid mem-
branes (and the compressibility of water). Thus, in ultrasonic resonators, one
can deduce the volume compressibility from the wavelength of a standing
wave (Fig. 14.10).

Let us now consider a lipid membrane being compressed at constant tem-
perature. This usually means that the heat released upon compression is ab-
sorbed by a large external water bath. For lipid vesicles in an aqueous en-
vironment this is fulfilled if the compression is performed very slowly (much
slower than the relaxation processes in the membrane). With volume we mean
the volume of the lipid membrane, but not the aqueous volume of the lipid
vesicles.

The hydrostatic pressure change Δp in the liquid is proportional to the rela-
tive change in volume, ΔV/V0, at constant temperature

Δp = −KV

(
ΔV
V0

)
(14.8)

Here, KV is the modulus of compression used in a similar manner as the elastic
moduli in the previous chapter and V0 is the volume at zero pressure. At
constant temperature the Gibbs free energy density change upon change in
volume as the integral

∫
Vdp:

gV =
∫ ΔV

V0
dp = −KV

∫ ΔV
V0

d
(

ΔV
V0

)
= +

1
2

KV

(
ΔV
V0

)2

(14.9)

in equivalence to Hooke’s law.
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On the other hand, the isothermal volume compressibility κV
T is given by

κV
T = − 1

V0

(
dV
dp

)
T

(14.10)

By comparison with Eq. (14.8) one can see that the compressibility is the in-
verse of the compression modulus

κV
T =

1
KV

(14.11)

To be more precise, the compressibility of the membrane is that of the canon-
ical ensemble average (e.g., of the large number of vesicles in a vesicular dis-
persion). Therefore, the compressibility in Eq. (14.10) should rather be ex-
pressed by using the thermal average of the membrane volume.

κV
T = − 1

〈V0〉
(

d 〈V〉
dp

)
T

(14.12)

In Section 4.10.2 (or by forming the pressure derivative of Eq. (14.4)) we have
shown that in fact the isothermal compressibility can be written as

κV
T =

〈
V2〉− 〈V〉2

〈V〉 R T
(14.13)

The volume compressibility is proportional to the fluctuations in volume. The
physical origin of this relation is similar to the relation between heat capacity
and enthalpy fluctuation.

As for the heat capacity (Eq. (14.7)), one can immediately show that

κV
T = κV

T,0 + ΔκV
T

=
1

〈V〉 · RT

[(〈
V2

0

〉
− 〈V0〉2

)
+

(〈
ΔV2

〉
− 〈ΔV〉2

)] (14.14)

meaning that the volume compressibility of the chains and that originating
from the cooperative fluctuations are additive and can be considered inde-
pendently of other.

14.2.2
Area Compressibility

While applying hydrostatic pressure is easy applying lateral pressure or lat-
eral tension is much more difficult. One possibility is the pipette aspiration
technique schematically shown in Fig. 14.1. In this technique developed by
Evans and Kwok (1982) one applies suction to a giant unilamellar vesicle us-
ing a very thin glass pipette. During such an experiment the volume/area
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Fig. 14.1 Pipette aspiration technique to measure the lateral com-
pressibility of membranes. From the dimensions of the vesicle, of the
pipette, and the pressure difference between the bulk medium and the
pipette one can calculate the lateral compressibility.

ratio changes as a function of pressure difference between external medium
and the interior of the pipette. By this mean area compressibilities can be
measured.

The theoretical considerations for the area compressibility are very similar
to those made for the volume compressibility in the previous section. The
Gibbs free energy density of area compression is

gA =
1
2

KA

(
ΔA
A0

)2

(14.15)

The area compressibility is given by

κA
T = − 1

〈A0〉
(

d 〈A〉
dΠ

)
T

(14.16)

where Π is the lateral pressure. The compressibility is again the inverse of the
lateral compression modulus.

κA
T =

1
KA

(14.17)

The isothermal area compressibility can be written as

κA
T =

〈
A2〉− 〈A〉2

〈A〉 R T
(14.18)

The area compressibility is proportional to the fluctuations in area. Again,
following Eq. (14.7)

κA
T = κA

T,0 + ΔκA
T

=
1

〈A〉 · RT

[(〈
A2

0

〉
− 〈A0〉2

)
+

(〈
ΔA2

〉
− 〈ΔA〉2

)] (14.19)
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meaning that the lateral compressibility of the chains and that of the coopera-
tive fluctuations are additive and can be considered independently of other.

14.3
The Coupling Between Area Compressibility and Curvature Elasticity

The bending elasticity can be calculated from the lateral area compressibility.
Let us assume that the Gibbs free energy density of a bilayer is given by

ΔgA =
1
2

KA

(
Δ 〈A〉
〈A〉

)2

≡ 1
2κA

T

(
Δ 〈A〉
〈A〉

)2

(14.20)

with the compression modulus KA = 1/κA
T , and κA

T is the area compressibility.

Fig. 14.2 Schematic drawing of a curved membrane. The outer mono-
layer is stretched and the inner monolayer is compressed. This creates
a relation between bending elasticity and lateral compressibility.

If one considers the lipid monolayer as half a bilayer, we obtain

Δgmono =
1

4κA
T

(
ΔA
A

)2

(14.21)

assuming that the free energy density of a monolayer compressed by ΔA is
only half of that of a bilayer.

If we bend a membrane segment along one coordinate with radius of cur-
vature R (assuming that the second principle curvature is zero) the bending
free energy density of the curved membrane segment is given by

ΔgB =
1
2

KB

(
1
R

)2

≡ 1
2κB

(
1
R

)2

(14.22)
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If a membrane is curved, the outer monolayer has to be stretched by the area
increment ΔA, whereas the inner monolayer is compressed by the area incre-
ment ΔA (see Fig. 14.2). The radius R shall be defined from the center of the
membrane, the center of the outer monolayer lies at R + D/4, where D is the
membrane thickness. The center of the inner monolayer lies at R − D/4 (cf.
Fig. 14.2). Now, for geometrical reasons

A + ΔA
R + D/4

=
A − ΔA
R − D/4

(14.23)

or

1
R

=
4ΔA
A · D

(14.24)

Equation (14.24) can be inserted into Eq. (14.22) to yield

ΔgB =
1

2κB

(
4ΔA
A · D

)2

(14.25)

The free energy should also correspond to that of one monolayer expanded by
ΔA and a second one compressed by ΔA. Therefore,

2 · Δgmono = ΔgB −→ κB = κA
T · 16

D2 (14.26)

with the units (J−1). Therefore, one can calculate the bending elasticity (and
the bending modulus) from the lateral compressibility. This expression has
been derived earlier by Evans (1974). Taking literature values for DMPC mem-
branes (D = 3.55 nm (Marsh, 1990), κA

T = 7.5 m/N (Evans and Kwok, 1982))
yields κB = 9.52 × 1018J−1 or KB = 1.05 × 10−19 J, which is close to the exper-
imental value of the bending modulus in the fluid phase (KB = 1.1 × 10−19 J
at Tm + 2.5K, (Meleard et al., 1997)).

It can also be concluded that the bending elasticity is a linear function of the
curvature fluctuations and that the curvature fluctuations can be related to the
area fluctuations.

14.4
The Temperature Dependence of the Elastic Constants

In the following we show that the temperature dependence of enthalpy, vol-
ume, and area are intimately related to each other. We show a number of rela-
tionships between the various elastic constants that depend on experimental
findings.
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14.4.1
Proportionality Between Enthalpy and Volume Changes

As mentioned earlier, during melting transitions enthalpy, volume, and area
change. While enthalpy changes can be measured by calorimetry, volume
changes can be obtained using a so-called Kratky balance (Kratky et al., 1969,
1973). Such a balance consists in a vibrating capillary. The vibration is excited
with a small magnet at the tip of the capillary (Fig. 14.3).

Fig. 14.3 Schematic drawing of a Kratky balance. It consists of a vi-
brating capillary. The eigenfrequency of the capillary filled with a lipid
dispersion depends on the mass of the resonator. Larger frequency
corresponds to smaller densities of the dispersion. The little magnet is
used to excite the capillary in a feedback loop.

Let us now look at an interesting densitometric experiment (Fig. 14.4). For
extruded large unilamellar vesicles of DMPC, the density and the heat capac-
ity were measured as a function of temperature. The specific volume, V, is
the inverse of the density, ρ. From the specific volume one can determine the
volume expansion coefficient, dV/dT (see Fig. 14.4).

When plotted in the same figure one can see that the change of the volume
expansion coefficient, and the excess heat capacity, cp, are proportional func-
tions in the transition regime. The heat capacity profile in Fig. 14.5 (left panel)
displays two sharp maxima for reasons that are discussed in Chapter 15. It is
obvious that the volume expansion coefficient displays exactly the same fine
structure (Ebel et al., 2001). The same behavior has been found for various
lipids, lipid mixtures (Fig. 14.5, right panel), and even biological membranes
as bovine lung surfactant (Ebel et al., 2001) or native E. coli membranes.

This finding means that

d
dT

〈ΔV(T)〉 ∝
d

dT
〈ΔH(T)〉 (14.27)

or

d
dT

〈ΔV(T)〉 = γV
d

dT
〈ΔH(T)〉 (14.28)

where γV is a constant with units m3/J. It shall be noted that this is only
true for the excess volume changes and the excess heat capacity obtained in
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Fig. 14.4 Volume expansion coefficient of extruded DMPC vesicles
and heat capacity of the same sample. The two functions are propor-
tional, leading to the relation dΔV

dT = γV
dΔH
dT . From Ebel et al. (2001).

the transition regime. By integrating Eq. (14.28) one easily sees that this also
means that

〈ΔV(T)〉 = γV · 〈ΔH(T)〉 (14.29)

The value of γV = 7.8± 0.1× 10−10 m3/J is within experimental error always
the same for different lipids.

Due to Eqs. (14.4) and (14.29) we can now write

〈ΔV〉 =
1
Q ∑

i
ΔViΩi exp

(
− Hi

RT

)
=

γV

Q ∑
i

ΔHiΩi exp
(
− Hi

RT

)
(14.30)

〈ΔV〉 =
1
Q ∑

i
γVΔHiΩi exp

(
− Hi

RT

)
(14.31)

Consequently, we also obtain (Heimburg, 1998)

ΔV2
i = (γVΔHi)

2 (14.32)

Our finding means that the proportional relation between volume and en-
thalpy changes in the transition regime is also true for all available enthalpy
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Fig. 14.5 Left: Excess heat capacity and volume expansion coeffi-
cient of extruded DMPC vesicles as a function of temperature. Right:
Excess heat capacity and volume expansion coefficient for a mixture
of DMPC:DPPC = 50:50 mol%. One can see that both functions are
superimposable even in minute details of the profile. From Ebel et al.
(2001).

substates (with index i) of the lipid system. With this relation we can relate
the fluctuations of the volume to the fluctuations in enthalpy

〈
ΔV2

〉
=

1
Q ∑(γVΔHi)2Ωi exp

(
− Hi

RT

)
= γ2

V

〈
ΔH2

〉
(14.33)

The fluctuations in volume are proportional to the fluctuations in enthalpy.
This finding is not at all trivial. It is exclusively based on the experimental
finding that the volume changes of lipid membranes in their melting transition
are proportional to the corresponding enthalpy changes. While this is true for
lipids, it is not likely to be generally true. The above finding is not based
on first principles, and the reason why the heat capacity of lipids changes
proportional to the volume expansion coefficient still requires a theoretical
justification.

14.4.2
Proportionality Between Enthalpy and Volume Changes by Pressure
Calorimetry

The finding that volume fluctuations and enthalpy fluctuations are propor-
tional functions is crucial for everything that follows below.

For some samples densitometric experiments are not easy, in particular not
if the sample has a tendency to sediment due to a density that is higher than
that of water, or for samples where the changes extend over a large tempera-
ture interval. Therefore, we develop in the following an independent and very
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sensitive test of the relationship ΔV(T) = γVΔH(T) that is based on pressure
calorimetry.

The calorimetry experiment can be performed with the application of hy-
drostatic pressure; applied for instance by using high pressure nitrogen. The
application of pressure leads to shifts in the transition as shown in Section 6.3
and also in Fig. 14.6.

Let us now assume that the finding ΔV(T) = γV ΔH(T) also ΔVi = γV ΔHi
for all available substates is correct.

The enthalpy of each substate at pressure p0 can be written as

ΔHi,0 = ΔEi,0 + p0ΔVi (14.34)

Typically, we will assume that p0 = 1 bar, which corresponds to atmospheric
pressure. If an excess hydrostatic pressure of Δp is applied to the lipid disper-
sion, the enthalpy of each substate changes to

ΔHi,Δp = ΔEi,0 + (p0 + Δp)ΔVi (14.35)

Using ΔVi = γV ΔHi we obtain from this

ΔHi,Δp = (1 + γV Δp) ΔHi,0 (14.36)

Using Eq. (14.3) we obtain for the enthalpy change at pressure p0 + Δp

〈
ΔHΔp(T)

〉
= ∑i(1 + γV Δp)Hi,0Ωi exp (−(1 + γV Δp)Hi,0/kT)

∑i Ωi exp (−(1 + γV Δp)Hi,0/kT)
(14.37)

Let us now introduce a new temperature scale

T∗ =
T

(1 + γV · Δp)
(14.38)

With this definition we can rewrite Eq. (14.37)

〈
ΔHΔp(T)

〉
= (1 + γV Δp)∑i Hi,0Ωi exp (−Hi,0/kT∗)

∑i Ωi exp (−Hi,0/kT∗)
(14.39)

or〈
ΔHΔp(T)

〉
= (1 + γV Δp) · 〈ΔH0(T∗)〉 (14.40)

This equation indicates that one can obtain the profile measured at pressure
p0 from the profile measured at p0 + Δp by rescaling the temperature axis by
a factor (1 + γV Δp) and dividing the amplitude by the same factor. How this
is done can be seen in Fig. 14.6, where this operation has been performed for
extruded vesicles of DMPC and for bovine lung surfactant.
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Fig. 14.6 Pressure calorimetry. Left: Heat capacity at 1 bar and at
176 bar hydrostatic pressure (top panel). If the curve obtained at
176 bar is rescaled to 1 bar it is superimposable with the curve mea-
sured at 1 bar (bottom panel). Right: The same experiment for bovine
lung surfactant measured at 1 bar and at 196 bar hydrostatic pressure.
The dotted line indicates bovine body temperature. From Ebel et al.
(2001).

Equation (14.40) was derived by assuming that ΔVi = γV ΔHi. Only if this
relation is true, one can transform the heat capacities measured at different
pressures into each other. Figure 14.6 shows that this can be done to a sur-
prising accuracy. The proportional relation is true even for complex biological
systems as lung surfactant.

We obtain the shift in the melting transition from

T∗
m = (1 + γV Δp)Tm (14.41)

This equation is valid for all lipids that have been investigated (different
phosphatidylcholines and lung surfactant). Since γV = 7.8 × 10−10 m3/J
= 7.8 × 10−10 (m2/N), an applied pressure of 200 bars results in a shift of
the transition temperature of DMPC from Tm = 293.85 K to T∗

m = 301.48 K,
or a shift of ΔTm = 4.63 K. This means that a pressure of 43.2 bar shifts the
transition by 1 K.

The above findings are quite remarkable. They mean that one can derive
general laws for the elastic constants even if we do not know the exact lipid
composition as is usually the case for biological membranes. We can now
also immediately relate findings from model lipid mixtures to biological mem-
branes.
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14.4.3
Proportionality Between Isothermal Volume Compressibility and Heat Capacity
Changes

Let us now accept the finding that both 〈ΔV〉 = γV · 〈ΔH〉 and ΔVi = γV ·ΔHi
for all available enthalpy substates with index i. These two relations lead to〈

ΔV2
〉
− 〈ΔV〉2 = γ2

V

(〈
ΔH2

〉
− 〈ΔH〉

)
(14.42)

meaning that the excess volume fluctuations are exactly proportional to the
excess enthalpy fluctuations. This gives us now the possibility to express the
relation of the excess volume compressibility, ΔκV

T , to the heat capacity:

ΔκV
T =

γ2
V T
〈V〉 Δcp (14.43)

Our final result is that the isothermal excess volume compressibility is exactly
proportional to the excess heat capacity.

14.4.4
Proportionality Between Enthalpy and Area Changes

Let us now assume that the excess area change in the melting transition, 〈ΔA〉
and the excess enthalpy change, 〈ΔH〉 obey a similar relationship as the vol-
ume changes.

〈ΔA〉 = γA · 〈ΔH〉 (14.44)

There are so far no sufficiently exact experiments that prove that this rela-
tionship is true. In the following we can demonstrate, however, that this
relationship leads to correct predictions of the bending elasticity modulus.
Therefore, we will assume that there is also a proportional relationship be-
tween excess area change and excess enthalpy change. For DPPC one finds
γA = 0.893 m2/J. Since the corresponding constant for volume changes was
universal, we also assume that γA has approximately the same value for all
lipids.

14.4.5
Proportionality Between Isothermal Compressibility, Bending Elasticity and
Heat Capacity Changes

Based on the previous considerations one can make a similar argument for the
relationship between area compressibility and heat capacity,

ΔκA
T =

γ2
AT
〈A〉 Δcp (14.45)
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In Eq. (14.26) we derived the relation between area compressibility and
bending elasticity, κB = κA

T · 16
D2 . Using Eq. (14.45) we can rewrite this into

ΔκB =
16

〈D〉2
γ2

AT
〈A〉 Δcp (14.46)

14.4.6
The Relations Between Heat Capacity and the Elastic Constants

We can summarize the findings from above to

cp(T) = cp,0(T) + Δcp(T)

κV
T (T) = κV

T,0(T) +
γ2

V T
〈V〉 Δcp(T)

κA
T (T) = κA

T,0(T) +
γ2

A T
〈A〉 Δcp(T)

κB(T) = κB,0(T) +
16

〈D〉2
γ2

AT
〈A〉 Δcp(T)

(14.47)

The values for cp,0, κV
T,0, κA

T,0, and κB,0 may assume different numerical values
for the gel and the fluid lipid phase. It may therefore be a good approximation
to assume that

cp,0(T) = (1 − f ) · cgel
p,0 + f · cfluid

p,0

κV
T,0(T) = (1 − f ) · κ

V,gel
T,0 + f · κV,fluid

T,0

κA
T,0(T) = (1 − f ) · κ

A,gel
T,0 + f · κA,fluid

T,0

κB,0(T) = (1 − f ) · κ
gel
B,0 + f · κfluid

B,0

(14.48)

where f = f (T) is the fraction of fluid lipids calculated from the heat capacity

f (T) =

∫ T
Ta

ΔcpdT∫ Tb
Ta

ΔcpdT
(14.49)

Here, Ta is a temperature far below the melting events, Tb is a temperature far
above the melting events, and Ta < T < Tb.

The constants in Eq. (14.48) are listed in Table 14.1. Typical changes in the
isothermal volume and area compressibilities are given in Fig. 13.7.

The temperature dependence of isothermal volume and area compressibili-
ties for DPPC unilamellar vesicles are shown in Fig. 14.7. Since they are linear
functions of the heat capacity they both display pronounced maxima at the
transition maximum.



14.4 The Temperature Dependence of the Elastic Constants 239

Fig. 14.7 Volume and area compressibility of extruded vesicles, cal-
culated using Eqs. 14.47, and the values in Table 14.1.

14.4.7
Proportionality Between Bending Elasticity and Heat Capacity

In Eq. (14.26) it has been shown that the bending elasticity can be expressed
as a simple function of the lateral compressibility, κB = κA

T · 16
D2 . Therefore, it

is also a function of the heat capacity. Since lateral area compressibility dis-
plays a maximum at the melting transition the bending elasticity also displays
a maximum. Membranes in the transition become very elastic. The bend-
ing modulus, KB = 1/κB, displays a pronounced minimum (see Fig. 14.8).
The data in Fig. 14.8 have been calculated from the heat capacity profiles of
unilamellar DPPC vesicles. They have been compared to experimental data
obtained for giant DMPC vesicles by Dimova et al. (2000) using optical tweez-
ers, and by data from Fernandez-Puente et al. (1994) and Meleard et al. (1997).
Similar findings were reported by Lee et al. (2001). At the heat capacity max-
imum the bending rigidity is about a factor of 10 smaller than in the fluid
phase. This is a remarkable change and it leads to all kinds of structural re-
arrangements in the proximity of the chain melting transition, e.g., the forma-
tion of the ripple phase and the formation of extended bilayer network. In
Chapter 15 we will focus on such transitions.
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Tab. 14.1 Constants related to heat capacity, isothermal volume, and area compressibility for
DPPC membranes (adapted from the values in Heimburg (1998); Halstenberg et al. (1998);
Ebel et al. (2001); Schrader et al. (2002) and references therein.)

Constant Gel phase Fluid phase

cp,0 (J/mol· K) 1600 1600
κV

T (m3/J) 5.2 × 10−10 7.8 × 10−10

κA
T (m2/J) 1 6.9

Specific volume (cm3/g) 0.947 0.999
Specific area (cm2/g) 1.9 × 106 2.52 × 106

Area/lipid (nm2) 0.474 0.629
Volume expansion coefficient 0.00088 0.001
V−1(dV/dT) (K−1)
Area expansion coefficient 0.0026 0.0042
A−1(dA/dT) (K−1)
Thickness (nm) 4.79 6.29

γV(m2/N) 7.8 × 10−10

γA (m/N) 0.893
ΔV/V 0.0406 (Pβ′ → Lα)
ΔA/A 0.246 (Pβ′ → Lα)

Fig. 14.8 Elastic bending modulus of DPPC LUV, calculated from the
heat capacity (solid line) (Heimburg, 2000b), compared to experimen-
tal values for DMPC vesicles, from Dimova et al. (2000).
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14.5
Adiabatic Volume Compressibility

The adiabatic compressibility is the compressibility under conditions where
no heat is exchanged with the environment. Therefore, it is also called isen-
tropic compressibility (dQ = 0 is equivalent to dS = 0). Typically one consid-
ers the adiabatic compressibility for short term phenomena like sound propa-
gation. If a reversible compression lasts only for a short time the heat has no
time to dissipate into the bulk environment. In Section 4.12 it has been shown
that the adiabatic compressibility is given by

κS = κT − T
V · cp

(
∂V
∂T

)2

p
(14.50)

In a homogeneous system this is easy to interpret because the adiabatic com-
pressibility is a function of isothermal compressibility, heat capacity and vol-
ume expansion coefficient, all of which can be determined from the heat ca-
pacity of a lipid system. Problems arise when the system is heterogeneous.
A vesicular lipid dispersion is a mixture of bulk water and lipid membranes.
The isothermal compressibility of water and the lipids are additive. A prob-
lem arises for the heat capacity that shows up in the denominator on the
right-hand side. The reason why a heat capacity shows up in this equation
is because the heat that is released during compression is stored in the heat
capacity of the system. Now we have to ask the question to what degree the
water surrounding the membranes contributes to buffering of the heat during
a transient compression.

Let us consider a periodic perturbation of the lipid dispersion, for instance
by a sound wave with frequency ω. If the frequency of the excitation is
very low, the heat released from the lipid membranes during compression
has enough time to be absorbed by a large water volume. Thus, the heat ca-
pacity in Eq. (14.50) obviously assumes large values and we obtain in the limit
of very low frequencies

lim
ω→0

κV
S = κV

T (14.51)

Thus, the adiabatic compressibility approaches the isothermal compressibility
for low frequencies. This is the case if the periodic perturbation is slower than
the slowest relaxation process. Both isothermal and adiabtic compressibility
assume a maximum at the melting point of the membrane (Fig. 14.9).

On the other hand, if the frequency approaches very large values the adia-
batic compressibility approaches zero

lim
ω→∞

κV
S = 0 (14.52)

This is obviously the case if the periodic perturbations are faster than the
fastest relaxation process.
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Fig. 14.9 Isothermal and adiabatic volume compressibility calculated
from the heat capacity of unilamellar DPPC vesicles.

For lipid systems the sound velocity is often measured with a ultrasonic
resonator in a frequency regime of a few MHz. We now make a crucial as-
sumption that can only be justified by its success. Let us assume in the follow-
ing that in the MHz regime heat can not exchange between the membranes
and the bulk water. Under these conditions, one can just add the adiabatic
compressibility of water and the lipid membranes

κV
S,dispersion = fH2O · κV

S,lipid + flipid · κV
S,lipid (no heat exchange) (14.53)

where fH2O and flipid are the volume fractions of water and lipids, respec-
tively. The adiabatic compressibility of water can be calculated using the data
for isothermal compressibility, heat capacity, and volume expansion coeffi-
cients that can be found in the Handbook of Chemistry and Physics (Lide and
Frederikse, 1996). The adiabatic compressibility of the lipid membranes can
be calculated using the heat capacity of the lipid membranes and the values
in Table 14.1. We will not address the question how it is possible that no heat
is exchanged between lipids and water even though heat conduction is very
fast in water. However, we will see in the next section that this approach
is quite successful and that therefore the heat exchange between membranes
and aqueous environment must be negligible in the Megahertz regime.



14.6 Sound Propagation in Vesicle Dispersions 243

14.6
Sound Propagation in Vesicle Dispersions

The sound velocity c0 of a three-dimensional liquid or gas is given by

c0 =

√
1

κS · ρ
(14.54)

where ρ is the mass density. For lipid dispersions, the sound velocity can be
calculated using Eq. (14.53). The sound velocity can also be measured in a
resonator experiment (Fig. 14.10). Since the frequency, the wavelength, and
the sound velocity are related by

ν · λ = c0 (14.55)

one can obtain the sound velocity from an experiment where the wavelength
of a standing wave at constant frequency is measured. This usually happens
in the 5 MHz regime with wavelength in the 0.3 mm regime. Lipid vesicles
typically have sizes between 100 nm and a few μm and are much smaller than
the wavelength. The periodic perturbation can be considered to be that of
a homogenous medium because the small scale heterogeneities are averaged
out over the wavelength of the standing sound wave. In an aqueous solution
of lipid vesicles, the sound velocity will depend on the lipid concentration. To

Fig. 14.10 Schematic drawing of an ultra sound cavity. It typical has a
resonator length of a few centimeters. Depending on the exact dimen-
sions of the resonator, two piezotransducers generate a standing wave
in the lipid dispersion.
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Fig. 14.11 Heat capacity and ultrasonic sound velocity number of
large unilamellar vesicles of DPPC. The ultrasound velocity numbers
calculated from the heat capacity are in good agreement with the ex-
perimental data, measured at 5 MHz.

obtain a normalized value for the sound velocity, the sound velocity number
u is introduced,

u =
cdispersion

0 − cH2O
0

cH2O
0 · [L]

(14.56)

where [L] is the lipid concentration in units of (mg/ml). In Fig. 14.11 we show
the experimental sound velocity numbers of DPPC LUV, measured in a 5 MHz
resonator (Halstenberg et al., 1998; Schrader et al., 2002). The numbers calcu-
lated from the heat capacity are nearly identical. From the experimental sound
velocity data the adiabatic compressibility can be deduced .

The sound velocity in two dimensions will play a major role in Chapter 18
when we describe density pulse propagation in biomembranes and nerves.
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14.7
Curvature Fluctuations and Critical Swelling of Multilayers

14.7.1
Curvature Fluctuations

Close to the melting transitions in lipid bilayers the fluctuations in enthalpy,
volume, and area are high. High enthalpy fluctuations lead to a high heat
capacity (Eq. (14.7)), high volume fluctuations lead to a high volume com-
pressibility (Eq. (14.13)), and high area fluctuations lead to a high area com-
pressibility (Eq. (14.13)). Furthermore, according to Eq. (14.24) the curvature is
related to the area difference between outer and inner monolayers. Therefore
by necessity, area fluctuations lead to curvature fluctuations and the bending
elasticity can be expressed as a function of the fluctuations in curvature. Let
us repeat the calculations in Section 14.3 with a slightly different nomencla-
ture. Let us consider a curved membrane segment with thickness D, an outer
monolayer area of Ao and an inner monolayer area of Ai (Fig. 14.12).

Fig. 14.12 Curved membrane segment with different areas Ao and Ai
on outer and inner monolayer, respectively. The two monolayers are
assumed to fluctuate independently.

Then the curvature of the membrane segment can be expressed as

Ao

(
R − D

4

)
= Ai

(
R +

D
4

)
(14.57)

c =
1
R

=
4 · (Ao − Ai)
D · (Ao + Ai)

≈ 2 · (Ao − Ai)
D · 〈A〉 (14.58)
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The fluctuations in curvature are consequently given by
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(14.59)

assuming that the fluctuations on the outer monolayer have the same value
than those on the inner monolayer. The fluctuations in curvature are obvi-
ously proportional to the area fluctuations in a monolayer. We can now ex-
press the curvature elasticity as a function of curvature fluctuations, if we
recall that the area compressibility of a monolayer is given by κA,mono

T (〈A〉 ·
kT)−1(〈A2〉 − 〈A〉2) and κA,mono

T = 2 · κA
T , and by using Eq. (14.26)

〈
c2〉− 〈

c
〉2 =

16kT
〈A〉 D2 (14.60)

κB =
〈

A
〉 〈c2〉− 〈

c
〉2

kT
(14.61)

According to this equation the curvature fluctuations are larger, if larger area
segments are considered. Since the bending elasticity is a simple function of
the heat capacity, the curvature fluctuations are also a function of the heat
capacity, meaning that they are very high close to the chain melting transition.

14.7.2
Critical Swelling of Multilayered Membranes

A free standing bilayer will display curvature fluctuations, and such fluctua-
tions are high close to the chain melting transition (Fig. 14.13 A). If the mem-
brane is multilayered, one may wonder whether the curvature fluctuations
will affect the spacing between the membranes. It seems straightforward to
expect an increase in the mean distance of the membrane if the vertical height

Fig. 14.13 A. Curvature fluctuations in a free standing bilayer seg-
ment. B. Multilayer stack of membranes in the absence of curvature
fluctuations. C. Multilayer stack of membranes in the presence of cur-
vature fluctuations leading to an increase in the mean bilayer spacing.
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fluctuations induced by the curvature fluctuations are on a length scale com-
parable to the distance.

Such a problem has been considered by Helfrich (1978) who called the cur-
vature fluctuations undulations. Helfrich concluded that the undulation free
energy density gu of a membrane in a bilayer stack takes the form

gu =
3π

128
(kT)2κB

d2 (14.62)

where d is the spacing between the membranes (for a derivation of this equa-
tion refer to Helfrich (1978)). If the membranes are soft and the bending elas-
ticity κB assumes a high value, also the undulation free energy density in-
creases. In particular one finds that the free energy density can be lowered
by increasing the bilayer spacing in a multilayer stack. Thus an increase in
spacing can compensate the increase in κB close to the melting transition.

Hønger et al. (1994) observed this effect, which is called critical swelling, by
using small angle neutron scattering (SANS) experiments (see Fig. 14.14). In
such experiments they find the multilayer stack spacing increases significantly
in the proximity of the lipid phase transition.

Fig. 14.14 Critical swelling of lipid multilayers. Left: Bilayer repeat
distance in DPPC and DMPC multilayers display a maximum in the
chain melting regime. Adapted from Hønger et al. (1994). Right: The
elastic bending modulus KB derived from the repeat spacing of DMPC
multilayers displays a pronounced minimum at the chain melting tem-
perature (cf. Fig. 14.8). Adapted from Chu et al. (2005).

Helfrich’s undulation equation can be used to extract the bending elastic-
ity (or the bending modulus, KB = 1/κB) as a function of temperature. The
bending modulus for DMPC multilayer membranes has been calculated by
Chu et al. (2005). They found that the KB decreases significantly if one ap-
proaches the melting temperature, in agreement with the calculations made
in Section 14.4.7
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14.8
Local Fluctuations at Domain Interfaces

In the following we discuss an interesting consequence of the finding in this
chapter. In Chapter 8 we showed by Monte Carlo simulations and by atomic
force microscopy that the fluctuations close to domain interfaces may be very
high. This is shown again in Fig. 14.15 for gel–fluid interfaces in DMPC–DSPC
mixtures (Seeger et al., 2005) and in Fig. 14.16 for the interface between gram-
icidin A aggregates and DPPC membranes (Ivanova et al., 2003).

Fig. 14.15 Monte Carlo snapshots of a
DMPC:DSPC=50:50 mixture at 36.9 ◦C. Left:
distribution of lipids. Dark gray regions corre-
spond to gel domains and light gray regions
to fluid domains. Right: The same snapshot,
but now the strength of the local fluctuations

is shown. Bright shades correspond to large
fluctuations and dark shades to small fluc-
tuations. By comparison with the left-hand
panel one can recognize that the fluctuations
are especially strong at the domain interface.
Adapted from Seeger et al. (2005)

The intensity of the local fluctuations is given in different gray shades. The
brightest regions correspond to the regions with the highest fluctuations in en-
thalpy, volume, and area. In Fig. 14.15 one can see that the fluctuations in the
gel domains are lower than in the fluid domains, but that they are by far the
strongest directly at the domain interface. Taking into account what has been
derived in this chapter it seems as if the domain interfaces are very interesting
regions, with the highest lateral area compressibility and the highest bending
elasticity. In Chapter 17 we will use this finding to relate the permeability of
lipid membranes to the fluctuations at the domain interfaces. In brief one can
assume that the likelihood of forming a spontaneous pore increases if the lat-
eral compressibility is higher, because to form a pore in the lipid membrane
one has to compress the surrounding lipids environment.

According to the mattress model (Mouritsen and Bloom, 1984) described in
Chapter 1, integral proteins may have extensions of the hydrophobic core that
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Fig. 14.16 DPPC membrane containing
gramicidin A molecules at T = 40.2 ◦C
(slightly below the heat capacity maximum).
10% of the lattice sites are filled with pep-
tides. Left: Monte Carlo snapshot showing
gel domains (dark gray), fluid domains (light

gray), and protein clusters (black). Right:
Same snapshot as in the left-hand panel, but
now showing local fluctuations in different
gray shades. White regions correspond to the
strongest fluctuations. Adapted from Ivanova
et al. (2003)

are different from the bilayer thickness. Gramicidin A is a pore forming dimer
that is much shorter than the typical membrane. This means two things: 1. the
hydrophobic matching between the proteins is not ideal and 2. the free en-
ergy of the lipid protein interface is affected. Under such conditions one may
obtain attractive forces between proteins that lead to aggregation and clus-
ters, but also to altered fluctuations at the protein interface. In Fig. 14.16 one
can see gramicidin A aggregates (in black) in a simulated DPPC membrane at
313.3 K. The fluctuations are much stronger close to the proteins than further
away. This means that proteins can locally alter the elastic constants if the
membranes are close to the chain melting transition. Thus, proteins may not
only induce local changes in permeability but also may induce local curvature
fluctuations.

The finding that the elastic constants, curvature fluctuations, and perme-
abilities are affected close to domain boundaries may especially play a role
in respect to the ongoing discussion about small domains in biomembranes,
called rafts (see discussion in Section 9.5). These rafts are usually rich in sphin-
golipids with long saturated chains and in cholesterol. Thus, rafts are most
likely gel domains and their interfaces with the rest of the membranes must
display large fluctuations. Therefore, the existence of small domains of this
kind will affect many physical properties of membranes including permeabil-
ity and curvature fluctuations.
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14.9
Summary: Key Ideas of Chapter 14

1. The heat capacity is proportional to the enthalpy fluctuations, the
isothermal volume compressibility is proportional to the volume fluctu-
ations, and the area compressibility is proportional to the area fluctua-
tions.

2. One can relate the bending elasticity to the lateral compressibility.

3. The changes in heat capacity close to chain melting transitions are pro-
portional to the changes in both volume and area compressibility. Thus,
membranes close to melting transitions are very compressible and are
soft.

4. As a consequence, the bending elasticity is very high close to transitions.

5. The adiabatic volume compressibility is a simple function of the heat ca-
pacity changes. It is always smaller than the isothermal compressibility.

6. The sound propagation velocities in lipid dispersions (and as we see in
Chapter 18) the lateral sound propagation velocity along lipid cylinders
can be calculated from the heat capacity changes.

7. Close to melting transitions, the curvature fluctuations and the bending
elasticity are high. One can relate the bending elasticity to the fluctua-
tions in curvature.

8. Due to the high curvature fluctuations, membrane multilayers display a
critical swelling close to the melting transitions.

9. Fluctuations are generally high close to domain interfaces, e.g., the inter-
faces between gel and fluid domains in lipid mixtures, or the interface
between proteins and lipids.

10. As a consequence biomembranes display altered physical properties
close to rafts and to proteins, that may lead among others to changes
in permeability or to curvature fluctuations.

11. Elastic constants are strongly coupled to the heat capacity—in fact, they
all are just different aspects of the same phenomenon: Fluctuations
around the entropy maximum.
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15
Structural Transitions

The previous chapter dealt with the changes of the elastic constants in the
chain melting regime. It has been shown that these changes can be significant.
The bending modulus for unilamellar DPPC vesicles changes by a factor of
10 as compared to the fluid phase. One may ask the question whether these
obviously large changes influence the equilibrium of shapes of lipid vesicles.
In this chapter we present examples and theoretical considerations concerning
transition-induced changes in vesicular shape.

Fig. 15.1 Confocal microscopy image of a giant lipid vesicle (20:80
mixture of DLPC and DPPC at room temperature). Bright regions cor-
respond to fluid domains, dark gray regions to gel domains. It can be
seen that the regions of the highest curvature are at the interface be-
tween gel and fluid domains. Adapted from Fidorra (2004).

15.1
Coupling of Curvature and Domain Distribution

In Chapter 14 it was concluded that in the chain melting regime the bend-
ing elasticity is much higher. Furthermore, it was also discussed that in the
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chain melting regime coexistence of gel and fluid domains can be found. We
concluded that the fluctuations in enthalpy, area, and curvature must be en-
hanced at the interface between gel and fluid domains (Section 14.8, Figs. 14.15
and 14.16). If giant vesicles of lipid mixtures are investigated by confocal
microscopy one sometimes finds vesicles that adopt crumpled shapes in the
chain melting regime (Fig. 15.1). With selected fluorescence markers one can
label gel and fluid domains. In Fig. 15.1 the fluid domains appear in brighter
shades than the gel domains. The highly curved regions obviously occur at
the interface between gel and fluid domains. Thus, it seems as if the chain
melting transition can affect the shapes of vesicles and membranes.

15.2
Secretion, Endo- and Exocytosis in the Chain Melting Regime

In biological cells the fusion and fission of vesicles is a very common process.
As mentioned earlier (Section 13.3.5), the fusion of a vesicle with a bilayer
membrane is linked to the formation of a fusion pore. These pores display
relatively high free energies of the intermediate state. Assuming a constant
value for the bending modulus Kozlovsky and Kozlov (2002) calculated a free
energy on the order of 40kT. This value for the fusion intermediate is very high
and it is thus unlikely that fusion is triggered by thermal activation. However,
if the bending modulus changes by a factor of 10 during chain melting, the
free energy of a fusion pore would drop to 4kT, making thermal activation of
the fusion pore a relatively likely event. Such processes are shown in Figs. 15.2
and 15.3.

Fig. 15.2 Change in vesicular structure of giant DPPC vesicles during
a rapid change of temperature from 30 to 45 ◦C. One can recognize
the transient formation of buds resembling events in secretion. The
duration of the whole process was about 10 seconds. Unpublished
data, courtesy to C. Leirer and M. Schneider (Augsburg).

Let us consider a giant vesicle made of DPPC with a diameter on the order of
30 μm undergoing a rapid change of temperature from 30 to 40 ◦C while pass-
ing through the chain melting transition. Such a case is shown in Fig. 15.2,
where several snapshots during this process are shown. At the lowest tem-
perature one can recognize that during the temperature change some vesic-
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Fig. 15.3 Change in vesicular structure of giant vesicles of a
DMPC:DPPC = 50:50 mixture during a rapid change of temperature
from 30 to 45 ◦C. The top row shows the complete vesicle at different
times during a rapid change in temperature, whereas the bottom row
displays an amplified section showing the formation of a vesicle. Such
changes can obviously be triggered by melting transitions. Unpub-
lished data, courtesy to C. Leirer and Dr. M. Schneider (Augsburg).

ular buds appear on the surface, directed toward outside of the vesicle. The
vesicular buds mostly disappear again at the highest temperature.

A similar experiment is shown in Fig. 15.3. This time a giant vesicle of
a DMPC:DPPC = 50:50 (mol:mol) mixture undergoes the same temperature
change. The main difference in appearance is that in this example the vesicular
buds form inside of the vesicle. In the bottom row of Fig. 15.3 one can even
see a complete endocytotic event involving the formation of a new vesicle.

We can summarize these findings by stating that

• During the passage through a chain melting transition endocytotic and
exocytotic fusion and fission events can spontaneously occur without
the control by proteins.

• Whether these events occur inside or outside of vesicles depends on
their composition.

One should add here that an experiment during a fast change in temperature
is not very well controlled. Additional forces occur, in particular caused by
the rapid changes in the volume/surface area ratio of the vesicles. Thus, the
experiments shown in this section rather serve as a prove of principle.

15.3
Curvature and the Broadening of the Melting Transition

The curvature of a lipid membrane must have an influence in the chain melt-
ing profile. Gel and fluid lipids have a surface area that is different by
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Fig. 15.4 Schematic drawings of bilayers in the chain melting regime.
(A) a free standing lipid bilayer with curvature fluctuations. (B) A mem-
brane on a flat support with near equal likelihood of finding fluid lipids
on both monolayers. (C) A membrane on a curved support with a
higher likelihood to find fluid lipids on the outer monolayer. Adapted
from Ivanova and Heimburg (2001).

about 25%. Let us consider a membrane with equal number of lipids on both
monolayers at the melting point Tm with a 50% probability to find a fluid
lipid. Upon curvature the area of the outer monolayer increases, whereas it
decreases on the inner monolayer (cf. Fig. 14.2). Thus, a logical consequence
of curvature would be a redistribution of gel and fluid lipid states on the two
monolayers. Such redistributions are shown in Fig. 15.4 for different geome-
tries. In particular, for a lipid bilayer on a flat support the likelihood of finding
a fluid lipid must be very similar on both monolayers, whereas it should be
very different for a membrane on a curved support. In the latter case one ex-
pects a higher probability to find fluid lipids on the outer monolayer because
their area is larger.

In a very simple-minded manner one may consider the increased likelihood
of finding a gel lipids on the inner monolayer as a consequence of compres-
sion, whereas the increased likelihood of finding a fluid lipid on the outer
monolayer may be seen as a consequence of stretching the monolayer. Ac-
cording to the findings in Section 14.4.2, compression leads to a shift of tran-
sition events to higher temperatures whereas stretching would lead to a shift
to lower temperatures. Thus one would expect that the melting events on the
two monolayers display a different temperature dependence, and thus curva-
ture leads to a broadening of the transition half width.

Figure 15.5 shows the melting profiles of vesicles of three different sizes
(this Figure was shown before, Fig. 8.5 in the context of computer simulations
of curved membranes). Multilamellar vesicles are typically large with sizes
about 500 nm. Due to their multilayer structure and large size they are as-
sumed to have approximately flat bilayers. The transition half width is very
narrow and is on the order of less than 0.1 K (in fact, the narrowest transi-
tion half width of DPPC in distilled water was found to be about 0.05 K, e.g.,
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Fig. 15.5 The melting profiles of lipid vesi-
cles from DPPC with different radius display
a very different transition half width. Left: The
transition half width of multilamellar vesicles
is typically below 0.1 K. Center: The transi-
tion half width of large unilamellar vesicles
(LUV) with diameter on the order of 140 nm
(made by ultrasonication and subsequent
fusion at low temperatures) is on the order

of 1.5 K. Right: The transition half width of
small unilamellar vesicles (SUV) with diame-
ter on the order of 20 nm is about 2.7 K. The
gray shaded area in this curve represents a
small fraction of LUV that form by fusion of
the SUV. These changes in transition half
width are most likely a consequence of dif-
ferent curvatures. Adapted from Ivanova and
Heimburg (2001).

Biltonen (1990)). Unilamellar vesicles of diameters of about 140 nm display a
transition half width of about 1.5 K, whereas small unilamellar vesicles dis-
play a transition half width of 2.7 K. A consequence of these changes in heat
capacity naturally is also a different temperature dependence of the elastic
constants for the different vesicular shapes.

Brumm et al. (1996) have measured the melting profiles of membranes sup-
ported by glass beads of different diameters. These results are shown in
Fig. 15.6 (right panel). It can be seen that the larger the radius of the sup-
porting glass bead the smaller the transition half width. Similar results are
obtained using Monte Carlo simulations as described in Chapter 8 for sup-
ported membranes with identical number of lipids on both monolayers of the
lipid membrane (Fig. 15.6, left panel). These profiles were calculated using the
histogram algorithm described in Chapter 8.

In the following we will see that these differences result in the possibility of
the transition between vesicular geometries in the chain melting regime.

15.4
Structural Transitions of Vesicles in the Melting Regime

The occurrence of geometry changes in the vicinity of chain melting transi-
tions often results in occurrence of several heat capacity maxima. Examples
are the two peaks found in the chain melting regime of extruded DMPC vesi-
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Fig. 15.6 Melting profiles of lipid vesicles of different radius. Left: Tran-
sition profiles for supported vesicles of different radius calculated on
the basis of Monte Carlo simulations using the histogram algorithm
described in Chapter 8 and Ivanova and Heimburg (2001). Left: DPPC
membranes on curved supports using silica beads with different ra-
dius. The transition profiles broaden and shift to lower temperatures.
Adapted from Brumm et al. (1996).

cles, the splitting of the melting transition of multilamellar vesicles into pre-
transition and main transition, and the complex melting profiles of charged
lipid membranes (see Fig. 15.7).

To understand the occurrence of complex melting profiles let us make some
general simplifying assumptions. First, let us assume that the melting profile

Fig. 15.7 Heat capacity profiles of three dif-
ferent lipid dispersions displaying several heat
capacity maxima in the chain melting regime.
Left: Multilamellar vesicles of DMPC showing
pretransition and main transition. In the tem-
perature regime between the two maxima the
ripple phase, Pβ′ , is found. Center: Extruded
lipid vesicles display splitting into two peaks.
The origin of this splitting is unknown, but is

most likely due to a different vesicular geom-
etry in the regime between the two peaks.
Right: Melting profiles of DMPG at low ionic
strength. Three maxima can be seen. In the
whole transition regime the viscosity of the
lipid dispersion is largely increased indicating
the formation of connected membrane phase
with correlations over large length scales.
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is broadened by curvature and that we consider the equilibrium between ex-
actly two geometrical structures of different curvatures, for instance one being
flat and the other one being curved with a radius of 60 nm (Fig. 15.8). We use
here the melting profiles calculated in Monte Carlo simulations (Chapter 8),
but all the following considerations can be made using experimental profiles
of vesicles with different radius without loss of generality.

Fig. 15.8 Equilibrium between two membrane segments of different
curvatures described by a Gibbs free energy difference, Δ(ΔG).

As indicated above, vesicles of different curvatures display different transi-
tion half widths. The enthalpy, H, and the entropy, S, as a function of temper-
ature can be calculated by integration of the heat capacity profiles,

H = H0 +
Tm+ΔT∫

Tm−ΔT

ΔcpdT

S = S0 +
Tm+ΔT∫

Tm−ΔT

Δcp

T
dT

(15.1)

Since the two different curvatures display different heat capacity profiles they
also consequently possess a different temperature dependence of the Gibbs
free energy. It is given by

G = G0 + ΔH − T · ΔS (15.2)

The calculation for two different radii of curvature is shown in Fig. 15.9.
The Gibbs free energy difference between the two geometries yields

ΔG = ΔG0 + Δ(ΔG) = (Gcurv
0 − Gflat

0 )︸ ︷︷ ︸
ΔGsolv

+
∫ (

Δccurv
p − Δcflat

p

)
dT − T ·

∫ (
Δccurv

p − Δcflat
p

T

)
dT

︸ ︷︷ ︸
ΔGelast

(15.3)

This equation contains two terms, ΔG0 and ΔGbend. The first term, ΔG0, re-
flects that two states of different curvatures may display different interaction
with the environment, in particular with the solvent, and may therefore be
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Fig. 15.9 Free energy difference between
different curvatures. Left: Heat capacity pro-
files of flat and of curved lipid membranes
obtained in Monte Carlo simulations. Center:
Enthalpy and entropy changes, ΔH and ΔS in
the transition calculated from the integration

of the cp profiles. Right: Gibbs free energy,
ΔG, of the two different curved states and
the free energy difference between these two
states Δ(ΔG). The free energy difference be-
tween the two geometries is minimum at the
transition maximum.

denoted with ΔGsolv. The second term, Δ(ΔG) reflects that the temperature
dependence of the free energies of states with different curvatures is different.
Therefore, the second term yields the Gibbs free energy of bending related to
the transition events and may therefore be denoted with ΔGbend.

For symmetric membranes with no spontaneous curvature, ΔGbend is al-
ways positive, as shown in Fig. 15.9. The value for ΔGsolv depends on the
interactions with the solvent, e.g., on ionic strength, and on the charge density
of the membrane.

15.5
Charged Lipid Membranes

About 10–40% of the lipids of biological membranes are negatively charged.
Positively charged lipids only exist as synthesized chemicals. The main dif-
ference between uncharged and charged lipids is the interaction between the
membrane, water and the ions. At an ionic strength of 100 mM the screening
length of the electrostatic potential is about 0.9 nm, whereas it is about 9 nm
at 1 mM ionic strength. In the latter case this is much larger than the typical
bilayer spacing in multilayer vesicles (MLV). Repulsive interactions between
opposing bilayers that are a function of ionic strength. Therefore, charged
lipids usually do not form MLVs at low ionic strength. In the following we
show that in charged lipid membranes transitions may occur that couple to
the chain melting reaction.
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15.5.1
DMPG

During the melting process of charged lipid membranes, in particular of
dimyristoyl phosphatidylglycerol (DMPG) membranes, one observes a pe-
culiar melting behavior (Fig. 15.10). The heat capacity profile extends over
a width of several degrees and displays three distinct maxima. The optical
appearance of the dispersion is opalescent below and above the transition
regime, while it is completely transparent in the transition regime. The vis-
cosity of the dispersion is similar to that of the aqueous medium outside of
the transition range, while the dispersion becomes very viscous in the chain
melting regime. We define the relative viscosity as the ratio between the shear
viscosity of the dispersion and that of distilled water at the same temperature.

Fig. 15.10 Left: In the melting regime of
DMPG one finds a transition profile with
three maxima. In this temperature interval
the viscosity increases dramatically indicating
changes in the bilayer arrangements. Ac-
cording to electron microscopy experiments
vesicles are found below and above the melt-
ing events, while a 3-dimensionally connected
bilayer phase exists in the melting regime (top
row). Adapted from Schneider et al. (1999).
Right: In Fig. 15.9 one can see the different

free energy profiles for different curvatures.
If the curved structure has a more favorable
interaction with the solvent (Gcurv

solv < Gflat
solv)

the free energy profiles can intersect such
that the curved structure is the most proba-
ble structure in the phase transition regime.
Under these conditions one obtains a chain
melting profile with three maxima. Between
the two outer peaks the curved structure ex-
ists, whereas outside of the melting regime
the flat structure can be found.
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Shown in Fig. 15.10 (left) is the relative viscosity, given by ηdispersion/ηH2O.
The drastic changes in viscosity indicate changes in vesicular geometry. As
described in more detail in Heimburg and Biltonen (1994) and Schneider et al.
(1999), electron micrographs show that the dispersion undergoes a transition
from large vesicles in the gel phase to a continuous bilayer network in the
transition regime back to vesicles of smaller size. The change of vesicular
size indicates further that membrane fusion events took place in the melting
regime. This change in bilayer structure is remarkable because it is completely
reversible and obviously solely triggered by temperature changes. As shown
above, similar changes already happen to a smaller degree in giant vesicles of
uncharged lipids after a temperature jump (Figs. 15.2 and 15.3). Thus, in this
case the reversible fusion and fission is controlled by macroscopic thermody-
namic parameters rather than by the local action of drugs.

As can be seen in Fig. 15.12 (left) the splitting of the heat capacity profile into
several maxima nearly disappears in uncharged membranes of DMPC. Simi-
larly, the width of the splitting and the changes in viscosity for the DMPG dis-
persion continuously decrease when the ionic strength is increased (Fig. 15.11,
left). Also, the increase in chain length weakens the effect, i.e., in a charged
lipid with 13 carbons in the fatty acid chains the width of the chain melt-
ing regime is larger than in DMPG (C-14) and the effect is practically gone
in DPPG (C-16).

Summarizing, factors influencing the probability to find structural changes
in the melting regime are

• charge and consequently lowering of ionic strength or increasing pH (cf.
Fig. 15.11, left),

• chain length, making the change in geometry more likely with shorter
chain length (cf. Fig. 15.11, right),

• as shown in the next paragraph, the adsorption of charged drugs (cf.
Fig. 15.12, right),

• temperature, inducing the geometry changes in the chain melting
regime where the membranes become soft and flexible (Section 14.9),
and

• head group (see the next section).

15.5.2
Geometry Changes Introduced by Charged Drugs

Since the change in vesicular geometry is obviously strongly influenced by the
charge of the membrane; it is interesting to note that the binding of charged



15.5 Charged Lipid Membranes 261

Fig. 15.11 Left: The range of the chain melting transition increases
with decreasing ionic strength; indicating that the electrostatic potential
plays an important role. Right: The melting range increases with de-
creasing chain length, quite similar to the findings for the pretransition
later in this chapter.

drugs can induce such a behavior. The drug Losartan© (this is a brand name
of Merck) is an angiotensin receptor antagonist. This means that it antago-
nizes the contraction of arteries and thus lowers blood pressure. The chemical
structure can be seen in Fig. 15.12 (right). It consists of a number of rings and
it carries a net positive charge in solution. Now, from Chapter 5 we know
that aromatic amino acids tend to partition well in the bilayer interface. We
suspect the same property for the drug Losartan, namely that it binds to the
interfacial region of the membrane bilayer. As can be seen in Fig. 15.12 (right)
Losartan also broadens the transition, induces three peaks and increases the
viscosity in the chain melting regime (see Theodoropoulou and Marsh (1999)
and Theodoropoulou and Marsh (2000) for details about the thermal behav-
ior). DMPC membranes in the presence of Losartan (admittedly in a high
concentration of 15 mM in the aqueous solution) behave very much the same
than DMPG membranes at low ionic strength. Thus, the tendency to change
vesicular geometry can be influenced by drugs.

The experiments shown in Fig. 15.12 (right) was in the presence of 15 mM
Losartan. Although this seems high one has to consider that the concentra-
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Fig. 15.12 Left: A dispersion of extruded DMPC vesicles shows a nar-
row melting profile with no significant changes in relative viscosity in
the transition regime. Right: The same dispersion in the presence of
the drug Losartan (©Merck) changes the heat capacity profile such
that it resembles the DMPG profiles of Fig. 15.10. The viscosity sim-
ilarly shows big changes in the melting regime indicating structural
transitions. Adapted from Grabitz et al. (2002).

tion of neurotransmitters in synaptic vesicles is usually in the range of several
100 mM. Therefore, at the site of neurotransmitter release during exocytosis
the concentration may transiently be very high. This in fact refers to all con-
centration changes in biology. Usually they are transient and may be locally
very strong even though macroscopically concentration may seem very low.
This especially relates to changes in pH that often occur due to the action of
enzymes in the local environment of the protein.

Theodoropoulou and Marsh (2000) have shown that the effect of Losartan
on phosphatidyl-ethanolamine membrane is much lower indicating that not
only charge but also the nature of the head group play a role.

15.6
The Ripple Phase

Another structural transition in the vicinity of the chain melting transition is
the pretransition slightly below the main chain melting transition. Between
the pretransition and the main transition the ripple phase is found. The ripple
phase consists in periodic undulations, as shown in the atomic force micro-
scope images shown in Fig. 15.13 which are taken from Kaasgaard et al. (2003).
The pretransition is best described in lipid multilayers but probably also ex-
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Fig. 15.13 AFM measurements on ripple phase formation in sup-
ported DPPC membranes show periodic height undulations. Three
different periodicities can be called Λ/2, Λ, and 2Λ/2. Here,
Λ = 28 nm. From Kaasgaard et al. (2003) with permission from Bio-
phys. J.

ist in single bilayer systems (Lichtenberg et al., 1984; Meyer, 1996) where it is
broader and less separated from the main transition.

The pretransition is much less cooperative than the main transition. Its half
width typically is on the order of 1–2 ◦C. The main transition, in contrast,
can be as narrow as 0.05 ◦C in multilamellar DPPC vesicles. The tempera-
ture interval between pretransition and main transition is chain length de-
pendence, similar to the multipeak transition in charge lipids (see above). In
phosphatidylcholines, it is about 10 ◦C for DMPC, 7 ◦C for DPPC, 3.1 ◦C for
DSPC , and 1.2 ◦C for DC20PC (Jorgensen, 1995), see Fig. 15.21.

The formation of the ripple phase is dependent on the head group. Phos-
phatidylethanolamines (McIntosh, 1980; Kodama and Miyata, 1996), and gly-
colipids (Hinz et al., 1985) do not display a pretransition, but is readily found
in phosphatidylcholines and phosphatidyl glycerols (Rand et al., 1975). This
fact indicates that the interaction with the solvent may play a role in the for-
mation of such phases. More details can be found in Heimburg (2000a).

In this section we explore the possibility that the formation of the ripple
phase can be described by the coupling of chain melting and the formation of
periodic ripples. In Fig. 15.14 the pretransition, the enthalpy change, the vol-
ume change, and the chain mobility as measured in an electron spin resonance
are shown. It is obvious that enthalpy, volume and chain mobility change in
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Fig. 15.14 Pretransition and main transition of DMPC in different ex-
periments: Heat capacity, enthalpy, specific volume, and the chain
mobility as measure in an electron spin resonance experiment (cf. He-
imburg et al. (1992)). One can recognize that enthalpy, volume and
mobility change in both, pretransition and main transition, indicating
that similar events occur in both transitions.

both, pretransition and main transition to a comparable degree (Heimburg,
2000a). Since both transitions display very similar feature one may indeed
wonder whether they are coupled in a similar manner than the complex tran-
sition events described in the previous sections. In other words: Pretransition
and main transition are both part of the chain melting transition with the split-
ting into two peaks being the consequence of the change in membrane geome-
try during the melting events (i.e., transitions between planar membranes and
rippled membranes.)

15.6.1
Geometrical Considerations

Heimburg (2000a) described in detail how the formation of the ripple phase
can be understood on the basis of Monte Carlo simulations. Even though we
do not intend to describe the model here in all details, we will introduce the
underlying idea. It has been shown by X-ray crystallography that lipids in
the gel and in the ripple phase are packed into a triangular lattice, whereas
they are disordered in the fluid phase. Simultaneously, as mentioned already



15.6 The Ripple Phase 265

in previous chapters, the area of lipids increases by about 25% in the chain
melting transition. From this a major geometrical problem arises. How is the
melting of individual lipids initiated if it happens within a crystal lattice? This
situation is shown in Fig. 15.15. Admittedly, the melting of individual lipids in
one step from gel to fluid state is a simplification that according to Chapter 8
is useful for cooperative events but nevertheless only a rough approximation
to reality on the molecular scale. However, let us for now keep that picture
even on small scales. Obviously, each lipid with disordered chains gives rise
to a major distortion of the lattice and therefore by necessity is associated with
a considerable elastic free energy. However, if the same number of disordered
lipids pack along the principle axes of the lattice and form a linear defect, the
distortion of the lattice is much reduced.

Fig. 15.15 It is known that the lipids in the gel phase adopt a crys-
talline triangular packing. Since the lipid area increase upon melting,
it is much easier to melt the lipids in a linear defect than melting many
lipids independently.

Following these considerations, we conclude from the above that the for-
mation of linear defects of disordered lipids is favored over the individual
melting of lipids. Therefore, we now assume that the onset of melting in lipid
membranes leads to the formation of linear defects consisting of fluid lipids
with disordered chains, ignoring the melting of individual lipids for conve-
nience. The occurrence of linear defect of fluid lipids with larger area by ne-
cessity lead to curved membranes as shown in Fig. 15.16. We explore in the
following whether the formation of the ripple phase in lipid membranes is a
consequence of the existence of linear fluid defects in gel membranes. If this
would be a good approximation of the truth, it immediately explains why the
ripples may form 120◦ angles (Fig. 15.13) because these angles are the angles
between the principle axes in triangular lattices. It also explains why in the
pretransition volume and chain order parameter change in a similar manner
as in the main transition (Fig. 15.14).
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Fig. 15.16 Curved segments arise from different populations of gel
and fluid lipids on both sides. In lipid multilayers the bilayers are sep-
arated by a water layer of about 2 nm. This means that curved seg-
ments can only have a maximum extension that is superimposed by
the bilayer spacing. This means that periodic arrangements of curved
segments are superimposed when fluid and gel domains become
large.

15.6.2
Modeling the Pretransition

We now want to model the ripple formation on the basis of two coupled mono-
layers. We take into account the following experimental findings:

1. The pretransition is linked to the formation of linear defects of disor-
dered chains.

2. Pretransition and main transition are more cooperative for longer chain
lipids.

3. The membrane in the ripple phase is curved. Ripples may be oriented
toward each other in 120◦ angles (Fig. 15.13).

4. Ripple formation is affected by interactions with the solvent.

5. The pretransition is much more pronounced in multilamellar lipid bi-
layers.

6. The ripples in the Pβ′ -phase display a periodicity. Typically one finds
periods of 15–30 nm length.

Let us assume that the membrane is a m × n lattice.
Condition 1 is taken into account by approximating the membrane by a one-

dimensional array with extension n. Variations of the m lipids in the second
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dimension are ignored, i.e., all lipid with given n are assumed to have the
same state (see Fig. 15.15).

Condition 2 is considered by introducing nearest neighbor interactions be-
tween gel and fluid lipids similar to those used in the Ising models of Chap-
ter 8. This is shown in Fig. 15.17 (left).

Condition 3 is taken into account by considering two opposing lattices, A
and B. If the states of the lipids on both sides is different, the membrane is
locally curved.

Condition 4 is taken into account by adding an interaction term with the
solvent that depends on the local curvature. Gel–fluid contacts are therefore
given a different interaction free energy on the outside of a curved segment
than on the inside, Fig. 15.17 (right).

Fig. 15.17 Schematic drawing of the nearest neighbor interactions in
the one-dimensional lattice, and how it depends on local curvature.
Left: gel-fluid contacts with the interaction parameter ωg f . Right: Un-
like nearest neighbor interactions are given a higher value on the outer
side of a curved membrane than on the inner side. This difference
is due to interaction with the solvent, ωsolv. Adapted from Heimburg
(2000a).

Condition 5 can be modeled by assuming that in a multilayer stack the
neighboring membranes constitute walls that inhibit curvature fluctuations
of the membranes. We assume here that this corresponds to a melting in a
confined space limited by neighboring bilayers. The neighboring bilayers are
approximated by walls.

The periodicity of the ripples (condition 6) originates from the distance of
the bilayers (Fig. 15.16). In the model we vary the forces acting on these walls
(weak and strong confinement). This will lead to less or more mean deviations
from exact periodicities.

The Hamiltonian of such a membrane now consists of the following terms:

H = Hchain + HNN + Hsolv + Hgeom (15.4)

where Hchain is the energy of the chains, HNN is the energy in the nearest
neighbor interactions, Hsolv is the energy arising from the interaction with the
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solvent, and Hgeom represents the geometrical confinement of the membrane
and in particular the work done on these walls. These four terms are now
described in more detail.

Let us assume that the lipids on the two monolayers carry the indices A
and B. A line of m gel lipids at position i shall be associate by a state variable
σA

i = 0 or σB
i = 0, and a fluid lipid by σA

i = 1 or σB
i = 1 (depending on

whether monolayer A or B is considered). Now

Hchain = m · ΔH ·∑
i
(σA

i + σB
i ) (15.5)

with the melting enthalpy ΔH.
The nearest neighbor interaction part of the Hamiltonian is given by

HNN = m · ωg f · ∑
i

(∣∣∣σA
i − σA

i−1

∣∣∣ + ∣∣∣σB
i − σB

i−1

∣∣∣) (15.6)

where ωg f is the nearest neighbor interaction parameter defined as in Chap-
ter 8.

As shown in Fig. 15.17 (right) gel–fluid contacts can be located outside or
inside of a curved segment. These configurations are given a different inter-
action with the solvent such that

Hsolv = m · ωsolv · ∑
i

δsolv
i

δsolv
i =

⎧⎪⎨
⎪⎩

= +1 if σA
i−1 + σB

i−1 + σA
i + σB

i = 1

= −1 if σA
i−1 + σB

i−1 + σA
i + σB

i = 3

= 0 else

(15.7)

where ωsolv is an interaction parameter describing the interaction of locally
curved membrane regions with the solvent and δsolv

i indicates the local cur-
vature state at position i. Only three different curvatures at a site can occur:
positive or negative curvature, or a flat membrane. The magnitude of cur-
vature is exclusively determined by the area difference between gel and fluid
lipids (about 25% for DPPC), and the thickness of the membrane (about 5 nm).

If one compares with Fig. 15.17 (right) one can recognize that this definition
describes gel–fluid contacts on the outer side (δsolv

i = +1), on the inner side
(δsolv

i = −1) or a flat membrane (δsolv
i = 0).

The periodicity of the membrane can be superimposed by defining a corre-
lation length 2l + 1. If the typical ripple period is given by 2.8 nm, and each
lipid has a diameter of 0.7 nm, it is convenient to adjust l to a value of 20
(meaning that the ripple period corresponds to 41 lipid diameters). We intro-
duce therefore

Hgeom = m · α ·∑
i

(
i+l

∑
i−l

(σA
i − σB

i )

)2

(15.8)
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Here, α is an interaction parameter that describes how energy costly it is to
violate the periodicity restriction. One can see immediately that Hgeom = 0 if
σA

i − σB
i is zero in all intervals i − l to i + l, indicating perfect periodicity. This

condition is fulfilled both for flat gel or fluid membranes, and for perfectly
rippled membranes with a period of 2l + 1.

The Hamiltonian described above can now be used in Monte Carlo simula-
tions as described in Chapter 8. For details on these simulations the reader is
also encouraged to refer to Heimburg (2000a). The result of such a simulation
as a function of temperature is given in Fig. 15.18. The simulation results in a
splitting of the heat capacity profile into two peaks. In between the two transi-
tions the excess heat capacity is slightly larger than zero. In between these two
peaks, the membrane displays periodic ripples. Outside of the two peaks, the
membrane is a flat gel or fluid lattice. Thus, we identify the two peaks with
the pretransition and the main transition, respectively. The ripple phase con-
sists in periodic domains of gel and fluid phase that alternate on both sides
and result in periodically curved regions.

Fig. 15.18 Left: Heat capacity profile calculated using Monte Carlo
simulations showing pretransition and main transition. Right: Snap-
shots of a Monte Carlo simulation showing ripple formation in the tem-
perature regime between pretransition and main transition. Adapted
from Heimburg (2000a).

The parameter ωg f affects the sharpness of the transition. The larger its
value the sharper both peaks. The parameter ωsolv creates an asymmetry in
peak width. The larger its value, the broader the pretransition and the nar-
rower the main transition. Changes in α (i.e., the strength of the potential that
enforces the periodicity) leads to a fusing of pretransition and main transition
if its value becomes smaller. The simulation in Fig. 15.18 has been performed
using the following values:

• m · ΔH = 209.2 kJ/mol

• m · ωg f = 4.184 kJ/mol

• m · ωsolv = −1.569 kJ/mol
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• 2l+1=41

• m · α = 40 kT = 104.6 kJ/mol

With these parameters one obtains a melting profile very similar to that found
in real DPPC membranes. The potential described by the parameter α can be
seen as being related to a force acting on two walls, between which the mem-
brane undergoes curvature fluctuations. If that force is zero, the membrane is
free to adopt any curvature states. If it is infinite, only periodic solutions are
allowed. As mentioned, the periodicity of these solutions is set by the distance
between the two walls (Fig. 15.16).

If the strength of the potential is lowered one also lowers the constraint to
only allow for periodic solutions. In Fig. 15.19 simulations using different val-
ues for α are compared to experiments. It can be seen that in the absence of
a constraint (α = 0kT) the simulated profile looks very comparable to that
of large unilamellar vesicles obtained by sonication (diameter ≈ 140 nm). For
α = 40kT the profile resembles that of extruded unilamellar vesicles (diameter
≈ 100 nm) whereas for α = 50kT the cp profile is similar to that of multilamel-
lar vesicles. Clearly, curvature fluctuations on large unilamellar vesicles are
less restricted than in multilamellar vesicles.

From this one may predict the following behavior of the ripple formation:

• ripple formation is more pronounced in multilamellar vesicles. In giant
or large unilamellar vesicles the constraint is weaker. It only consists
in the existence of a closed spherical geometry. One expects that ripples
are less periodic. In the limit of free standing bilayer segments with-
out geometric constraints the curvature undulations are expected to be
random.

• The top bilayer in a multilayer stack has a constraint from only one side.
It may therefore happen that one ripple segment turns in the opposite
direction leading to period doubling (cf. Fig. 15.13).

• molecules that have an affinity to fluid domains, e.g., anesthetics and
small peptides, will accumulate in the most highly curved regions of the
ripple phase.

15.7
Peculiarities in the Melting of Zwitterionic Lipids

The pretransition is not the only melting peak additional to the main transi-
tions. Both in unilamellar vesicles of short chain diacyl phosphatidylcholines
and in multilamellar vesicles of long chain diacyl phosphatidylcholines one
finds additional peaks. The origin of these peaks is less obvious than in



15.7 Peculiarities in the Melting of Zwitterionic Lipids 271

Fig. 15.19 Comparison between theoreti-
cal and experimental heat capacity profiles.
Top: Heat capacity profiles for four different
interactions of the membranes with the neigh-
boring walls. Stronger confinement leads to
sharper peaks for pretransition and main tran-
sition. Bottom: Experimental heat capacity
profiles of DPPC vesicles. From left to right:

Large unilamellar vesicles produced by ul-
trasonication and subsequent equilibration,
large unilamellar vesicles produced by ex-
trusion (diameter 100 nm), and multilamellar
vesicles. It can be seen that the heat capacity
profiles strongly resemble those from simula-
tion. Adapted from Heimburg (2000a).

the case of the ripple phase formation and the extended bilayer networks of
charged lipids.

15.7.1
Short Chains

As shown earlier (Section 14.4.1, Fig. 14.5) extruded DMPC vesicles with C-14
chains display two peaks in the chain melting regime. Extruded vesicles of
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Fig. 15.20 Left: Unilamellar vesicles of diacyl phospholipid vesi-
cles with short chains display two or more peaks. These peaks are
more separated with decreasing chain length - similar to the behavior
of charge phospholipids but less pronounced. Right: In the melting
regime one finds a slightly increased viscosity of the aqueous disper-
sion. Adapted from Schneider et al. (1999).

DPPC with C-16 chains, in contrast, do not show a similar behavior. Mul-
tilamellar vesicles of DLPC with C-12 chains, however, display a melting
regime over several degrees with three maxima, much more extended than
the DMPC vesicles (Fig. 15.20). The origin of this behavior is unclear. How-
ever, following the line of argument of the previous sections, it is likely that
changes in local or macroscopic curvature of the membranes is the reason be-
hind these findings. Dispersions of extruded unilamellar vesicles (diameter ≈
100 nm) display a small increase in the relative viscosity in the melting regime.
This indicates changes in the vesicular geometry. So far, no electron micro-
graphs of such changes have been reported. However, it seems likely that
such changes in vesicular geometry can be found. A further indication that
geometry changes are involved is the pronounced chain length dependence
that follows the same trend than both, the transition of charged vesicles from
vesicles to extended networks, and the pretransition. For all of these transi-
tions the distance between the outer transition peaks increases with decreas-
ing chain length. The same is also true for the sub-main transition described
in the next section.

15.7.2
The Sub-Main Transition

In 1995, Jorgensen (1995) described a small enthalpy transition peak in long
chain phosphatidylcholines with chain length larger than C-16, which he



15.7 Peculiarities in the Melting of Zwitterionic Lipids 273

Fig. 15.21 Multilamellar diacyl phosphatidylcholines with chain lengths
longer than 16 display a small sharp peak slightly below the main tran-
sition, which was called the ‘sub-main transition’. At slightly lower tem-
peratures one can recognize the pretransition. Reprinted from Jor-
gensen (1995) with permission from Elsevier. This figure also shows
the chain length dependence of the pretransition.

called the sub-main transition. In Chapter 6 we showed that during chain
melting both chain order and lateral order on a lattice is lost (Fig. 6.3). Re-
ferring to an earlier paper by Mouritsen and Zuckermann (1985), Jorgensen
suggested that the sub-main transition may be due to a transition between
a lipid matrix with both lattice order and ordered chains to a phase where
lattice order is lost but chain order still persists. The main transition in this
picture is then the subsequent loss in chain order. The distance between sub-
main transition and main transition decreases with increasing chain length,
just as in all other examples in this chapter. There is no direct evidence for
whether this interpretation is correct or not. Based on the evidence provided
in this chapter, however, we propose another explanation. In this chapter we
showed that chain melting is linked to an increase of the elastic constants, and
that the likelihood to find membrane states with curvature is increased in this
temperature interval. Thus, one obtains the possibility of curvature transi-
tions linked to melting. This generally leads to transitions with three peaks,
as shown in Fig. 15.10. The central peak in this chain of events corresponds to
the melting of the intermediate phase with different curvatures. Therefore, it
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seems reasonable to propose the following chain of events:

state 1, gel −→︸︷︷︸
pretransition

state 2, solid −→︸︷︷︸
sub-main

state 2, liquid −→︸︷︷︸
main transition

state 1, fluid

Here, the sub-main transition rather corresponds to a melting transition of
the ripple-phase.

It seems very likely that a careful search will reveal many more transitions
that couple chain melting and curvature transitions, possibly also induced by
secondary components as salts, peptides, and other molecules.
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15.8
Summary: Key Ideas of Chapter 15

1. In the melting regime membranes become soft and the possibility of ge-
ometry changes of vesicles arises. Thus, structural changes in membrane
can be induced by chain melting.

2. Curvature changes are more likely close to domain interfaces.

3. The melting process can induce events that resemble fusion and fission
events as in secretion, endo- and exocytosis. The elastic free energy of
fusion pores is reduced in the chain melting regime.

4. The coupling of geometry changes with chain melting can lead to tran-
sitions that display three peaks in a heat capacity profile.

5. Such changes can be found in charged lipid membranes (in particular
DMPG). In both gel and fluid phase lipid vesicles are found. In the chain
melting regime one finds a three-dimensionally connected lipid phase
with high viscosity.

6. Structural transitions similar to those in charged lipid membranes can
be induced in neutral membranes if charged drugs like Losartan©bind
to the surface.

7. In many membranes one finds a low enthalpy transition slightly be-
low the main transition, which is called pretransition. The intermedi-
ate phase is the ripple phase that consists of periodic undulations of the
membrane surface. Typical repeat lengths are 15–30 nm.

8. The pretransition can be explained if one assumes that it is also the con-
sequence of the coupling between geometry changes and chain melting,
with the ripple phase being the intermediate phase.

9. In long chain lipids one can resolve a third transition peak additional to
pretransition and main transition. It has been called sub-main transition.
It is possibly linked to the melting of the ripple phase.

10. The temperature regime of the intermediate phase generally increases
with decreasing chain length (for all transitions described in this chap-
ter).
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16
Relaxation Processes in Membranes

This chapter is dedicated to relaxation phenomena of membranes. If a system,
in our case a biomembrane, is perturbed by a sudden change in one or sev-
eral of the intensive thermodynamic variables , e.g., temperature, pH, calcium
concentration, pressure, . . . , it will assume a new equilibrium position within
a certain timescale that depends on the nature of the perturbation. Under
some conditions the equilibration of the state variables (e.g. enthalpy) occurs
as a single exponential function of time, i.e.

dξi

dt
= ξi,0 exp

(
− t

τi

)
(16.1)

where τi is the relaxation time. Generally, however, one finds many relaxation
processes. Sometimes they can be seen as independent relaxation processes
but usually these processes are coupled and do not follow simple exponential
processes.

According to Onsager (1931) each fluctuation of the system, induced by
thermal collisions, can also be seen as a perturbation of the equilibrium with
a subsequent relaxation process. Therefore, the timescale of the thermal fluc-
tuations and the timescale of relaxation processes after small perturbations
are identical. For lipid membranes one finds relaxation processes on all
timescales, for example vibrational modes in the femtosecond range, trans-
gauche isomerization processes in the nanosecond range, diffusion timescales
on the order of 0.1–10 μs for a nearest neighbor exchange between lipids.
There are all kinds of other relaxation phenomena, for example head group
rearrangements linked to changes in dipole potential and—most importantly
for this chapter—relaxation of domain sizes due to fluctuations in enthalpy.
Since the fluctuations become large within lipid melting transitions one ex-
pects also dramatic changes in the relaxation behavior of membranes in this
temperature regime. The relaxation behavior of lipid membranes has been
studied by many authors by various techniques (Tsong and Kanehisa, 1977;
Elamrani and Blume, 1983; Blume and Hillmann, 1986; van Osdol et al., 1989,
1991). They all found dramatic changes in the phase transition regime. The
theory for such changes is outlined below.
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Fig. 16.1 For small deviations of a thermodynamic variable, ξ, from
equilibrium the entropy can be approximated by a harmonic poten-
tial. At equilibrium the system fluctuates around the maximum of the
entropy.

16.1
Thermodynamic Forces and Fluxes and Their Relation to Relaxation

According to Section 4.13 the entropy of any thermodynamic system close to
equilibrium can be written as

S − S0 =
1
2 ∑

i
∑

j

(
∂2S

∂ξi∂ξ j

)
ξ0

i ,ξ0
j︸ ︷︷ ︸

≡−αij

(ξi − ξ0
i )(ξ j − ξ0

j ) + · · ·

≈ −1
2 ∑

i
∑

j
αij(ξi − ξ0

i )(ξ j − ξ0
j )

(16.2)

where the ξi are the thermodynamic variables and S0 is the entropy at equilib-
rium. The αij are constants with positive values. This means that the entropy
can be seen as a potential which can be approximated by quadratic functions
of the thermodynamic variables (see Fig. 16.1). For a spatially homogeneous
system the equilibration process is described by the time derivative of the en-
tropy
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d(S − S0)
dt

= ∑
i

⎛
⎜⎜⎜⎜⎜⎝

∂(ξi − ξ0
i )

∂t︸ ︷︷ ︸
Ji

∑
j
(−αij(ξ j − ξ0

j )︸ ︷︷ ︸
Xi

)

⎞
⎟⎟⎟⎟⎟⎠

≡ ∑
i

JiXi

(16.3)

Here, as described earlier (Section 4.13) the thermodynamic fluxes, Ji = ∂(ξi −
ξ0

i )/∂t, and the thermodynamic forces, Xi = ∑j(−αij(ξi − ξ0
i )), have been

introduced. The fluxes are defined as the change of the variables in time. The
forces are proportional to the deviation from equilibrium. It should be noted
that this also applies to the classical mechanical spring. One can also easily
see that

Xi =
∂(S − S0)
∂(ξi − ξ0

i )
and

d(S − S0)
dt

= ∑
i

∂(S − S0)
∂(ξi − ξ0)

∂(ξi − ξ0)
∂t

(16.4)

i.e., the thermodynamic force is the derivative of the entropy with respect to
the conjugated thermodynamic variable. If we consider a system with only
one thermodynamic variable ξ one has to consider only one flux, J, and one
thermodynamic force, X.

d(S − S0)
dt

= − ∂(ξ − ξ0)
∂t

α(ξ − ξ0) = J X (16.5)

In a viscous medium the fluxes are proportional to the forces (Onsager, 1931).
A typical example is Stoke’s law where the force on a spherical particle in a
viscous solution is proportional to its velocity. Accordingly, one can write the
thermodynamic flux as a linear combination of the forces

Ji = ∑
j

LijXj (16.6)

where the Lij are constants called the phenomenological coefficients. The set
of equations is called the “phenomenological equations.” Due to the lineariza-
tion this approach is called “linear nonequilibrium thermodynamics.” It relies
on the assumption that the entropy can be approximated by a harmonic po-
tential. Using Eq. (16.3) this can be written as

Ji =
∂(ξi − ξ0

i )
∂t

= −∑
j

Lij ∑
k

αjk(ξk − ξ0
k) = ∑

j
LijXj (16.7)

For the simple case in Eq. (16.5) one obtains

J =
d(ξ − ξ0)

dt
= −Lα(ξ − ξ0) = L X (16.8)
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This equation can be solved for ξ

(ξ − ξ0)(t) = (ξ − ξ0)0 exp(−L · α t) ≡ (ξ − ξ0)0 exp(− t
τ

) (16.9)

where τ = (L · α)−1 is the relaxation time of the equilibration process.
If in Eq. (16.7) all phenomenological coefficients Lij with i �= j are zero

(Lij = 0 for i �= j), one obtains a simple exponential relaxation for each thermo-
dynamic variable, with relaxation times τi = (Liiαii)−1. For such a system one
therefore expects a multi-exponential relaxation process after a perturbation.
However, if generally Lij �= 0, relaxation processes can be more complex. Dif-
ferent relaxations processes couple to each other and it becomes less obvious
how to assign experimental timescales to individual processes. As an exam-
ple we may serve the reorientation of lipid head groups after a perturbation,
which is a fast process. The lipid head group orientation is different in the
gel and the fluid phase. Therefore, a sudden change in temperature or pres-
sure may result in changes in head group orientation. If during head group
relaxation simultaneously also the domain sizes change, by necessity the head
group relaxation must couple to the domain size relaxations and vice versa.

16.2
Relaxation Times of Domain Formation Processes

In the chain melting transition several variables of the membrane change, in-
cluding enthalpy, volume, and area. Let us consider phenomenological equa-
tions of the relaxation processes in which these three variables change:

JH = LHHXH + LHVXV + LHAXA

JV = LVHXH + LVV XV + LVAXA

JA = LAHXH + LAVXV + LAAXA

(16.10)

In Chapter 14 we have shown that enthalpy, volume, and area are proportional
functions of the temperature, T:

ΔV(T) = γVΔH(T) and ΔA(T) = γAΔH(T) (16.11)

with the constants γV = 7.8 × 10−10 (m2/N) and γA = 0.893 m2/J which
have been obtained experimentally from various experiments (cf. Sec-
tions 14.4.2 and 14.4.4). Further, the fluctuations in H, V, and A are also
proportional functions of the temperature:〈

ΔV(T)2〉− 〈
ΔV(T)

〉2 = γ2
V

(〈
ΔH(T)2〉− 〈

ΔH(T)
〉2
)

〈
ΔA(T)2〉− 〈

ΔA(T)
〉2 = γ2

A

(〈
ΔH(T)2〉− 〈

ΔH(T)
〉2
) (16.12)
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It seems obvious that the three thermodynamic variables are so tightly cou-
pled that they cannot be changed independently (at least if the perturbations
are small). Therefore, one can reduce the relaxation process described by
Eq. (16.10) to one term,

JH = L · XH

d (H − H0)
d t

= L · XH = −L · α (H − H0)
(16.13)

In this equation we have not yet determined the thermodynamic force driving
the membrane back to equilibrium. It depends on α = (d2S/dH2)H0 . How-
ever, we will show in the following that one can obtain it from the excess heat
capacity.

16.2.1
Coupling Between Relaxation Times and Excess Heat Capacity

Grabitz et al. (2002) have shown that the relaxation times can be deduced from
the heat capacity profile. Their derivation is demonstrated in the following.
The excess heat capacity cP = T · dS/dT is a function of the entropy. Simul-
taneously, it is a function of the fluctuations in enthalpy (see Fig. 16.2). As
described above, the thermodynamic forces can be derived from the entropy
potential.

Fig. 16.2 Entropy as a function of the enthalpy of a lipid membrane.
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It has been shown in Chapter 8 that in a continuous lipid transition the
fluctuations (i.e., the distribution of states) of the enthalpy around the equi-
librium assume a Gaussian form. This is not the case for the first-order tran-
sitions where distribution of states displays two maxima. Let us assume that
our lipid melting transition is not of the first order but rather a continuous
transition. Then the distribution of states with enthalpy H and entropy S is
given by

P(H − H0) =
1

σ
√

2π
exp

(
− (H − H0)2

2σ2

)
=

1
Q

exp
(
− G

kT

)
(16.14)

Here, σ is the width of distribution of states and Q is the partition function
that serves as a normalization constant. By comparison it follows that the two
exponential terms must be equal (except for a constant factor). Therefore,

− (H − H0)2

2σ2 = − G
kT

+ const. (16.15)

and

G(H − H0) = kT
(H − H0)2

2σ2 + const. (16.16)

The entropy is given by S = (H − G)/T and thus

S(H − H0) = (H − H0)− k
(H − H0)2

2σ2 − const.
T

(16.17)

Since we now know the dependence of the entropy on the enthalpy we con-
clude that the coefficient α in Eq. (16.13) is given by

α = −
(

d2 S
d(H − H0)2

)
H0

=
k

σ2 (16.18)

We do not yet know the value of σ but we show now that it is a function of
the heat capacity. As shown in Chapter 4 the heat capacity is directly related
to the fluctuations in enthalpy which correspond to the width of the Gaussian
distribution of states:

cP =
〈

H2〉− 〈H〉2

kT2 =
σ2

kT2 (16.19)

Now we can express α as a function of the heat capacity such that

α =
1

T2cP
(16.20)

The final kinetic equation follows from combining Eqs. (16.13) and (16.20):

d (H − H0)
d t

= − L
T2cP

(H − H0) (16.21)
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with the solution

(H − H0)(t) = (H − H0)0 exp
(
− L

T2cP
t
)

(16.22)

The phenomenological constant L is unknown and has to be determined ex-
perimentally. The relaxation time is given by

τ =
T2

L
cP (16.23)

This result is valid for continuous lipid melting transitions provided that the
proportional relations between enthalpy, volume, and, area are fulfilled.

In lipid melting transitions the relaxation times are proportional to the
heat capacity

τ ∝ cP

Relaxation processes are therefore slow close to the heat capacity maxi-
mum. This effect is known as “critical slowing down.”

Since the excess heat capacity is linked to the fluctuations in domain sizes
this relaxation time basically reflects the cooperative processes of domain
growth. Other relaxation process not directly linked to the lipid melting pro-
cess and to large changes in heat are likely to be also present. As mentioned
before, many fast relaxation processes have been described in the literature
(for reference see Grabitz et al. (2002)).

According to Onsager (1931) the relaxation of thermal fluctuations fol-
lows the same thermodynamic forces as those of macroscopic perturbations.
Therefore, the analysis of fluctuation noise by autocorrelation also yields re-
laxation times. In Chapter 8 we have already shown how heat capacity pro-
files can be determined from the enthalpy fluctuations obtained by Monte
Carlo simulations. The very same fluctuations can be used to obtain the re-
laxation times by autocorrelation

G(τ) =

∫ ∞
0 (H(t) − H0)(H(t + τ) − H0)dt∫ ∞

0 (H(t) − H0)2dt
(16.24)

where G(τ) is the autocorrelation function.
The autocorrelation analysis is shown in Fig. 16.3 for a simulated lipid sys-

tem. In the left-hand panel the enthalpy fluctuations at three different tem-
peratures are shown. At the melting point, Tm, where 50% of the lipids are
fluid the fluctuations not only display maximum amplitude (and therefore
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Fig. 16.3 Relaxation times extracted from the fluctuations of the en-
thalpy. Left: Enthalpy fluctuations at three temperatures below, within,
and above Tm. Center: Autocorrelation of the enthalpy fluctuations at
three temperatures below, within, and above Tm. At Tm the correlation
time is at maximum. Right: Comparison of calculated heat capacities
and calculated relaxation times reveal the linear relationship between
these two functions. Data adapted from Grabitz et al. (2002)

maximum heat capacity), but also the slowest fluctuation timescale. The au-
tocorrelation curves for such enthalpy traces are shown in the center panel.
A fit of these profiles with an exponential function yields the correlation time
which corresponds to the relaxation time of the system. In the panel on the
right-hand side the heat capacity calculated from the amplitude of the fluc-
tuations is compared with the relaxation time calculated from autocorrelation
of the same traces. One can see that the two profiles overlap. Since Monte
Carlo simulations are not able to generate physically meaningful timescales,
relaxation timescales are given in units of Monte Carlo cycles. This means
that the proportional relation between relaxation times and heat capacities are
proportional is also found in experiments as shown in the next paragraph.
Figure 16.3 serves as a theoretical proof of principle.

16.2.2
Relaxation Experiments

The theoretical prediction that relaxation times are simply related to the heat
capacity has been demonstrated in experiments. Figure 16.4 shows the relax-
ation times of DPPC multilamellar vesicles in comparison to the heat capacity.
Since what we describe here are the slow cooperative fluctuations in the melt-
ing process that contain a low of heat; the use of calorimetric means is most
suitable. With spectroscopic methods that are not quantitative it is often diffi-
cult to distinguish molecular and cooperative processes.

At the cP-maximum the heat capacity is nearly 50 s, i.e., for the very coop-
erative systems the relaxation times are long. If one adds small amounts of
cholesterol to the same lipid system the maximum heat capacity is reduced
by about 4-fold and the heat capacity profile is simultaneously broadened. In-
terestingly, the profile of the relaxation times is also broadened and the maxi-
mum relaxation time is reduced by 4-fold. Thus, addition of small molecules
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Fig. 16.4 Relaxation times (measured by
pressure perturbation calorimetry) and heat
capacity for DPPC multilamellar vesicles (left)
and DPPC multilamellar vesicles in the pres-
ence of 1 ml% cholesterol (right). It can be
seen that the changes in the heat capacity
are reflected in the changes of the relaxation

times. Cholesterol lowers the cP-maximum
by about 4-fold. The same is observed for
the relaxation time. The proportional factor
between relaxation time and heat capacity is

found to be T2

L ≈ 1.16 × 10−4 s mol K
J . Data

adapted from Grabitz et al. (2002).

to lipid systems may have a significant influence the relaxation times. Most
importantly, the proportional factor T2

L ≈ 1.16 × 10−4 s mol K
J in Eq. (16.23)

seems to be nearly constant for different membranes.
In Fig. 16.5 further examples for the influence of small molecules on the

relaxation process are shown. The heat capacity profiles and simultaneously
the relaxation times of multilamellar DMPC membranes (left) are significantly
influenced by the anesthetic octanol (right, top), by the neurotransmitter sero-
tonin (right, center) and the antibiotic peptide gramicidin A (right, bottom).
These seemingly so different molecules classes all reduce the relaxation times
of the pure lipid membrane in a coherent manner, yielding a proportional fac-
tor between relaxation time and heat capacity of T2

L ≈ 1.34 × 10−4 s mol K
J ,

roughly identical to the DPPC system in Fig. 16.4.

16.2.3
Relaxation Times of Biomembranes

Little is known about the relaxation times of the cooperative processes in
biomembranes. However, let us be courageous and assume that the linear
relation between heat capacity and relaxation times is the same for biomem-
branes as it is for model membranes. Let us further assume that the pro-
portionality factor T2/L is the same as in model systems (≈ 1.2× 10−4 s mol K

J ).
Then one can estimate the order of magnitude of the relaxation times in bio-
logical membranes. As an example let us take bovine lung surfactant (BLES)
that displays a cooperative melting transition just below body temperature.
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Fig. 16.5 Relaxation times (measured by
pressure perturbation calorimetry) and
heat capacity for 50 mM DMPC multilamel-
lar vesicles (left) and DMPC multilamellar
vesicles in the presence of 0.1 wt.% of the
anesthetic octanol (relative to lipid weight)
(right, top), 0.5 mM of the neurotransmit-
ter serotonin (right, center) and 1 mol%

of the antibiotic peptide gramicidin A. The
changes in the heat capacity are again re-
flected in the changes of the relaxation
times. The proportional factor between re-
laxation time and heat capacity is found to be
T2

L ≈ 1.34 × 10−4 s mol K
J . Data adapted from

Seeger (2006).

Fig. 16.6 Normalized heat capacity profile of bovine lung surfactant
(BLES) with a transition maximum at 29.2 ◦C and a transition half-
width of about 10 K. The relaxation times, τ, are estimated by assum-
ing the same proportionality factor between τ and ΔcP than for the
model systems (T2/L ≈ 1.2 × 10−4 s mol K

J ). The estimated relaxation
time at maximum is ≈ 120 ms.

The heat capacity profile and the tentative estimates of the relaxation times
are given in Fig. 16.6. The melting profiles of biological membranes are sig-
nificantly broadener than those of pure lipid systems. Therefore, the absolute
heat capacities at the cP-maximum is much lower. For bovine lung surfactant
this is about 1 kJ/mol K resulting in a relaxation time of about 120 ms.
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Since at physiological temperatures one is typically slightly above the melt-
ing point, one expects relaxation times of the cooperative membrane processes
of a few milliseconds up to a few 10 ms. This is interestingly exactly the
timescale of the opening and closing events of spontaneous ion channels in
lipid membranes and those of protein ion channels (cf. Chapter 17). It is very
unlikely that this is a coincidence. Rather, it is likely that the physics behind
the relaxation of the domain formation and the timescales of important bio-
logical function are intimately related to each other.

The relaxation times of cooperative domain forming processes in
biomembranes are expected to be of the order of a few milliseconds up
to a few 10 ms. This is exactly the timescale of ion channel opening and
closing processes.
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16.3
Summary: Key Ideas of Chapter 16

1. At equilibrium the entropy is at maximum. A perturbation leads to a
lowering of the entropy and the system relaxes back to the equilibrium.

2. The equilibration process can be described by using concepts of thermo-
dynamics fluxes and thermodynamics forces. The fluxes are the changes
of a thermodynamic variable in time, and the conjugated forces consist
of the derivative of the entropy with respect to the thermodynamics vari-
able. Such variables can, for example, be enthalpy, volume, and heat.

3. In general the different relaxation processes in a thermodynamics sys-
tem cannot be investigated independently since they are coupled.

4. Close to the lipid melting transition the relaxation time is proportional
to the heat capacity. This process is known as critical slowing down.
The general finding is that τ ≈ 1.2 × 10−4 s mol/J · ΔcP for many lipid
systems.

5. For multilamellar lipid vesicles the maximum relaxation times are up to
one minute.

6. These slow relaxation processes correspond to the fluctuations in do-
main size (i.e., domain growth). Relaxation processes on molecular scale
have also been observed but they are considerably faster.

7. If the heat capacity is affected by the addition of drugs, e.g., steroids,
anesthetics, neurotransmitters, or antibiotics, the relaxation times are
affected correspondingly. For example, 1 mol% cholesterol lowers the
maximum relaxation time by a factor of 4.

8. The estimated relaxation times for biomembranes are on the order of a
few milliseconds to a few 10 ms. This is exactly the time scale of many
biological processes including the opening and closing of ion channels
(see Chapter 17).
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17
Permeability

Lipid membranes are very thin. The typical thickness is 5 nm. Nevertheless,
in the biological literature the lipid membranes are often considered as perfect
isolators. This is in particular true for the nerve conduction theories where the
ion conductance is attributed exclusively to protein ion channels (see Chap-
ter 18). This implies the permeability of the membranes for ions and larger
molecules is usually neglected. On the other hand, it is obvious that in ther-
modynamics there is always a finite probability of solutes to cross membranes.
For instance, it is known that pure lipid membranes display a significant per-
meability for water (Fettiplace and Haydon, 1980; Finkelstein, 1987). We will
show in the following that the permeability of lipid membranes can be sig-
nificant, in particular close to phase transitions. One finds ion-channel-like
events even in the complete absence of proteins. In this chapter we mainly
focus on the permeability of lipid membranes. Some protein conductances
that are influenced by the phase behavior of the surrounding lipid membrane
are discussed in Section 17.4. The reader interested in the huge literature on
protein conductances may rather refer to Hille (1992).

17.1
Permeability of Lipid Membranes in the Melting Transition

Several different permeation mechanisms can play a role in biomembranes:

1. diffusion through the hydrocarbon part of the membrane,

2. permeation through pores within the lipid membrane, and

3. permeation through protein pores, i.e., ion channel proteins.

In a classic paper by Papahadjopoulos et al. (1973) the permeation rate of ra-
dioactive sodium, 22Na, through DPPG membranes was investigated. It was
shown that the permeability of ions through lipid bilayers largely changes
in the phase transition region (Fig. 17.1, left). It was suggested by the same
authors that the anomaly in the transition regime is related to the formation
of domains. The increase in permeability, P, was suggested to be caused
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Fig. 17.1 Permeability close to lipid melting
transitions. Left: Permeation of 22Na through
DPPG lipid membranes with a heat capac-
ity maximum at 41 ◦C, adapted from Papa-
hadjopoulos et al. (1973). The NaCl con-
centration was 100 mM. Right: Permeation

of a dithionite through DMPC vesicles. Un-
published data from J. S. Andersen, K. Jør-
gensen, and O. G. Mouritsen (University of
Southern Denmark, Odense) with permission.
The solid curve represents the heat capacity
profile of a dispersion of DMPC LUV.

by defects at the domain boundaries. This view has later been adopted by
Cruzeiro-Hansson and Mouritsen (1988) in a publication where the domain
boundaries were described in statistical thermodynamics simulations as in-
troduced in Chapter 8. A more general view was taken by Nagle and Scott
(1978) by attributing the permeability to the temperature dependent changes
in the lateral compressibility, κA

T —and to the fluctuations in area, respectively.
They semiempirically described the permeability as

P = C0 + C2 · κA
T (17.1)

where C0 and C2 are constants. According to our earlier statements (Eq. (14.47))
the lateral compressibility can be expressed as a linear function of the heat ca-
pacity such that one arrives at

P = α0 + α2 · ΔcP (17.2)

where α0 and α2 are constants that are not significantly influenced by the melt-
ing process. Such an understanding of the pore formation process seems to be
able to reasonably well describe the experimental observations. In Fig. 17.1
(right) the permeability of a DMPC membrane for dithionite is compared to
the heat capacity profile of the lipid dispersions (unpublished data from J. S.
Andersen, K. Jørgensen, and O. G. Mouritsen, University of Southern Den-
mark). The maximum of the heat capacity profile is identical to the maximum
in permeability.



17.2 Lipid Pores 291

17.2
Lipid Pores

Diffusion of solutes through the hydrophobic core of the membrane probably
cannot explain the anomaly of the permeation at the transition point that is
somehow related to the lateral compressibility of the lipid membrane. Thus,
it is more likely that pores in the membrane exist. The formation of pores in
the membrane requires that work against the lateral pressure of the bilayer
is performed. This work is a function of the lateral compressibility. The for-
mation of spontaneous pores induced by thermal motion is therefore much
more likely close to the transition where the compressibility is high. Thus, the
work required to form a pore is smaller in the transition range. Pore forma-
tion will be especially likely close to domain interfaces and protein clusters
(cf. Figs. 14.15 and 14.16).

Ion currents across membrane segments are often measured by using the
black lipid membrane technique where a membrane spans over a tiny hole
in a teflon film (typically with a diameter of several 10 μm) (Müller et al.,
1962). If a voltage across pure lipid membranes is applied one often finds
current fluctuations in discrete steps that are mostly of similar time and con-
ductance scales than those found for ion channel proteins (i.e., milliseconds
and picoamperes, see Section 17.4).

The first report about conductance fluctuations in pure lipid membranes
was by Yafuso et al. (1974). This was prior to the first reports of quantized
currents through proteins measured by patch clamp (Neher and Sakmann,
1976). In this paper the authors investigated the conductance of black lipid
membranes made of cholesterol (a quite exotic synthetic system). Ever since
then there has been a number of reports demonstrating such quantized cur-
rents through lipid membranes (Boheim et al., 1980; Antonov et al., 1980; Kauf-
mann and Silman, 1983a,b; Gögelein and Koepsell, 1984; Antonov et al., 1985;
Yoshikawa et al., 1988; Woodbury, 1989; Antonov et al., 2005). In Fig. 17.1 (left)
the permeability of sodium through a synthetic lipid membrane is shown.
Fig. 17.2 (top) displays some typical data by Antonov et al. (1980). In black
lipid membranes made of DSPC, they found quantized conductance steps of
about one picoampere close to the melting transition of these membranes. At
temperatures different from the melting point no such currents were found.
The current histogram shows that the currents occur in discrete steps. In
their paper Antonov et al. (1980) also indicated that the conductance of this
pure lipid membrane displays some ion specificity. For example, they found
that negatively charged membranes are conductors for cations. Figure 17.2
(bottom) shows quantized currents through a soybean lecithin membrane
(Gögelein and Koepsell, 1984). The authors of this study suggested that those
currents are caused by impurities. However, this must not be the case since
such currents can also be found in synthetic lipid membranes as seen in the
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Fig. 17.2 Top, left: Quantized currents
through a planar DSPC membrane at 59 ◦C
(close to the phase transition temperature)
in 1 M KCl at pH 7.4. The quantized currents
disappear above and below the chain melting
range. Top, right: Current histogram analy-
sis of the current trace showing the discrete

conductance levels. Data from Antonov et al.
(1980). Bottom: Quantized currents through a
planar bilayer made of soybean phosphatidyl-
choline and cholesterol (6:1) in 150 mM NaCl
at pH 7.4. Data from Gögelein and Koepsell
(1984).

top panel of Fig. 17.2. Similar currents were also found through membranes
of egg-yolk phosphatidylcholine (Antonov et al., 1980; Gögelein and Koepsell,
1984).

The finding of quantized discrete currents through pure lipid membranes is
surprising and so far has not found a convincing explanation. It seems as if in
a given membrane pores of very well defined sizes can be formed.

17.3
Quantized Currents in Pure Lipid Membranes and Their Dependence on
Thermodynamic Variables

The main theme of this book is the dependence of the physical properties of
membranes as a function of the thermodynamic variables. The differential of
the internal energy can be written as

dE = TdS − p dV − ΠdA − f dl + Ψdq + · · ·+ ∑
i

μidni (17.3)

where T, p, Π, f, Ψ, . . . μi are the intensive variables. The chemical poten-
tials, μi, are related to the concentrations of the components of the membrane.
It is important to note that this includes the chemical potentials of the ion
channel proteins that are also intensive variables of the membrane system.
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Other chemical potentials are related to proton or calcium concentrations. The
physics of the system under consideration (i.e., the membrane) will depend on
the value of all the variables. Thus, it should generally be the aim in biological
studies (including the studies of ion channel proteins) to study the depen-
dence of the effect one wants to investigate on changing these variables. In
the following we will show that the spontaneous currents in lipid membranes
react on the variation of these variables.

17.3.1
Temperature

In their seminal paper Antonov et al. (1980) found that the conductance in-
creases in the melting transition range of the DSPC lipid membranes. Twenty-
five years later, the same authors reported conductance data on DPPC mem-
branes (Fig. 17.3) giving further evidence for the induction of quantized cur-
rents in lipid membranes by temperature. In Fig. 17.3 one can see that quan-
tized currents are observed in planar membranes of DPPC when measuring
close to the phase transition temperature. At temperatures outside of the tran-
sition regime no such events were found. Antonov et al. (2005) showed that
upon varying the voltage across the membrane they obtained linear current–
voltage relations that depended on the nature of the salt in the aqueous
medium:

I = g · U (17.4)

where I is the current, U is the transmembrane voltage, and g is the conduc-
tance of the membrane. They found that the conductance was largest for
lithium. For different cations the conductance followed the decreasing se-
ries gLi > gNa > gK > gRb > gCs. This order is in agreement with the
Hofmeister series indicating the degree to which different ions interact with
water (Hofmeister, 1888b; Kunz et al., 2004b,a), see also Section 5.6. It should
be noted that the magnitude of the quantized currents in the DPPC transi-
tion was higher than in most other lipid membrane preparations (nanoampere
regime) and the life times are very long (several seconds).

In Chapter 16 it was shown that fluctuations of domain sizes display a sim-
ilar time scale in the transition regime. In unilamellar DPPC membranes they
are of the order of a few seconds at Tm (Grabitz et al., 2002; Seeger et al., 2007).
It is very likely that the time scale of the current fluctuations displays the same
dependence on temperature as the relaxation time scales of the domain size
(that are proportional to the excess heat capacity, see Chapter 16) and the
area fluctuations. The heat capacity of DPPC LUV at Tm is approximately
46 kJ/mol K while the channel lifetimes are about 1–10 s.

The finding that spontaneous currents occur in the phase transition regime
was also supported by our lab (Fig. 17.4, unpublished data from Fidorra and
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Fig. 17.3 Introduction of quantized cur-
rents through planar DPPC membranes by
changes in temperature, from Antonov et al.
(2005). Left: At three different temperatures
(top: 50 ◦C), Right, top: 43 ◦C, bottom: 35 ◦C
in 1 M LiCl and 50 mV. The corresponding
current histograms are also shown. Center:
Quantized currents at different voltages and

the characteristic current–voltage relation for
1 M LiCl. Right, bottom: Voltage–current rela-
tions for five different monovalent salts (LiCl,
NaCl, KCl, RbCl, and CsCl) demonstrate
different conductances for different cations.
They follow the well known Hofmeister se-
ries (Hofmeister, 1888b; Kunz et al., 2004b,a)
(see Section 5.6).

Heimburg in collaborations with Professor M. Winterhalter, Bremen). We
investigated DOPC:DPPC mixtures at different temperatures and found ion
channel-like events at the heat capacity maximum and no spontaneous chan-
nels in the fluid phase outside of the transition regime. The heat capacity at
this temperature is approximately 2.6 kJ/mol·K. The opening times of the ion
channels at 17 ◦C are on the order of 10–50 ms. They are thus much faster than
in the pure lipid system, as expected from the much lower heat capacity.

17.3.2
Calcium and Protons

In Chapter 11 we have shown that the melting temperature of negatively
charged lipid membranes increases when neutralizing the charges by pro-
tons, proteins, or divalent ions. In fact, melting points are even drastically in-
creased in zwitterionic membranes (unpublished data from our group). Thus,
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Fig. 17.4 Introduction of quantized currents
through DOPC:DPPC=75:25 mixtures (syn-
thetic lipids, 50 mM KCl, pH 7) by changes
in temperature. Left: Heat capacity profiles.
Center: Currents through planar membranes
made of this mixture at temperatures of 30 ◦C
(top trace) and 17 ◦C (bottom trace). Record-

ings were performed at 40 mV and 150 mV.
Quantized currents occur at the cP-maximum.
No spontaneous currents are seen in the
fluid phase. Right: Current histograms of the
traces in the center. Unpublished data from
M. Fidorra, M. Winterhalter, and T. Heimburg,
2006.

Fig. 17.5 Introduction of quantized currents by changes in calcium
concentration. Single channel fluctuations through planar membranes
of bovine brain phosphatidylserine and the inhibition by calcium ions.
Data from Gögelein and Koepsell (1984).

it is not unexpected that the presence of calcium influences the occurrence of
spontaneous currents through lipid membranes. Figure 17.5 shows how the
currents through bovine brain phosphatidylserine membranes are blocked by
calcium chloride. Since there are no proteins present this cannot be explained
by a stoichiometric binding of calcium. In general, one should be very care-
ful in biological studies not to postulate a binding event when the function
is altered. As seen in this example this must not be the case. The opposite
case—quantized currents being induced by calcium—has been documented
by Antonov et al. (1985) using synthetic dipalmitoyl phosphatidic acid (DPPA)
membranes. Naturally, if calcium (or another ion or molecule) increases or
lowers the permeability depends on the thermodynamic state of the mem-
brane, i.e., on the other thermodynamic variables.

The concentration of protons (i.e., pH) is another variable in a thermody-
namic system. Similar to the calcium concentration it influences the melting
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Fig. 17.6 Introduction of quantized currents through soybean phos-
phatidylcholine membranes by pH changes. Top: Proton concentration
on one side adjusted to 0.3 μm (≈ pH 6.5) 1 M KCl, 40 mV . Bottom:
Proton concentration on one side adjusted to 110 mM (≈ pH 1), 1 M
KCl, −72 mV. Data adapted from Kaufmann and Silman (1983b).

points of lipid membranes by binding to the phosphate groups of the lipids.
Kaufmann and Silman (1983b) have reported that the change in pH induces
spontaneous fluctuations in lipid membranes (Fig. 17.6). In these experiments
planar lipid membranes of soybean phosphatidylcholine were studied and
the pH was changed on one side of the membrane from 6.5 to 1. At pH 1 cur-
rents through the membrane can be seen that are absent at pH 6.5. This effect
was reversible meaning that the membrane staid intact and the channel events
disappear after reversing the pH to 6.5.

This book at many places dealt with changes in temperature. Often organ-
isms do not control their temperature in a rapid manner, meaning that temper-
ature is roughly constant over the time scale of molecular processes. However,
pH is highly variable in biological cell. While many body liquids have a pH
between 6 and 7, in synaptic vesicles it can be below 5, and it is below 2 in the
stomach. Many catalytic reactions, in particular hydrolysis reaction including
those of ATPases, change the pH locally. These changes have the potential to
influence the permeability of membranes.

17.3.3
Lateral Pressure and Mechanosensitivity

Lateral pressure is another of the intensive variables in thermodynamics.
Many protein channels are reported to be mechanosensitive (Perozo, 2006).
But also ion channels in pure lipid membranes react to changes in lateral pres-
sure. Kaufmann et al. (1989) show how quantized conductance events can be
generated in soybean phosphatidylcholine membranes (at the relatively high
voltage of 500 mV). In this investigation the lateral pressure was changed by
applying suction in patch pipettes (Fig. 17.7).
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Fig. 17.7 Introduction of quantized currents by changes in lateral pres-
sure, Π. Soybean phosphatidylcholine membranes were investigated
by patch clamp (1 M NaCl, 500 mV). Traces without (top) and with ap-
plied suction (bottom) are shown. Suction corresponds to a reduction
of the lateral pressure in the membrane. Data adapted from Kaufmann
et al. (1989).

17.4
The Coupling of Lipid Phase Behavior and Ion Channels Proteins

Much of the permeation of ions through biological membranes has been attrib-
uted to proteins called ion channels. Currents through such molecules have
been identified by Neher and Sakmann (1976) in patch-clamp recordings (No-
bel prize 1991). Figure 17.8 shows the discrete currents related to the acetyl
choline receptor from the original paper of Neher and Sakmann (1976).

The conductance of such proteins seems to be highly dependent on the
lipid environment. In Fig. 17.9 one can see the conductance of the sarcoplas-
mic reticulum calcium channel protein reconstituted into different mixtures

Fig. 17.8 Current recordings from the original paper by Neher and
Sakmann (1976) on the channel associated to the acetyl choline re-
ceptor measured by patch clamp. Currents into a denervated frog
muscle fiber in the presence of suberyldicholine and the corresponding
histogram of the distribution of currents are shown. Drug dependent
quantized currents on the order of picoamperes were found.
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Fig. 17.9 The activity of the sarcoplasmic
reticulum calcium channel is strongly influ-
enced by the composition of the lipid mem-
brane. The three panels show the protein
reconstituted into mixtures of POPE and
POPC. Top: POPE:POPC = 41:59. Center:
POPE:POPC = 81:19. Bottom: POPE:POPC

= 90:10. The activity displays a pronounced
maximum at the phase boundary at about
80% POPE. The open times of the channels
reach a maximum. The scale bars for current
and time are 10 pA and 50 ms, respectively.
From Cannon et al. (2003) with permission
from Biophys. J..

of POPE and POPC (Cannon et al., 2003). It was found that the total open
time and the dwell time of open events depends on the lipid mixture. They
approach maximum values at the phase boundary of the POPE–POPC phase
diagram (at 80% POPE) where also the excess heat capacity is expected to be
at maximum. The effect of lipid on the potassium channel has been investi-
gated by Turnheim et al. (1999) and Schmidt et al. (2006). Clear dependences
of channel activity on the lipid composition have been demonstrated and it
has been proposed that lipids regulate the channel gating. Schmidt et al. (2006)
showed that the voltage dependent potassium channel (KvAP) displays a con-
ductance in negatively charged lipid membranes but not in positively charged
membranes. Thus, the function of such proteins is often not independent of
the surrounding lipid matrix and its thermodynamics. The typical current
amplitudes and open times are very comparable to those in the lipid mixtures
(Fig. 17.4).

Finally it seems worth noting that quantized currents in the picoampere
regime and lifetime in the 10 ms range were also found when patch pipettes
were brought in contact with silicon rubber surfaces (Sachs and Qin, 1993).
The authors of this study found these currents indistinguishable from those
found in biological membranes. They further noted that they displayed se-



17.4 The Coupling of Lipid Phase Behavior and Ion Channels Proteins 299

lectivity for different ions very similar to the nicotinic actylcholine receptor. A
similar finding on polyethylene terephthalate filters was reported by Lev et al.
(1993). The similarity of currents through proteins, lipid membranes, and at
the edge of patch pipettes on hydrophobic surfaces is striking. This may hint
at that the spontaneous currents have a relation to organized water at inter-
faces. Ordered interfacial water is the only feature that proteins embedded
in membranes, pure lipid membranes, and rubber surfaces in water have in
common. Clearly, there is an urgent need to investigate the origin of such
findings.
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17.5
Summary: Key Ideas of Chapter 17

1. Lipid membranes display maximum in their conductance for ions and
larger molecules close to the lipid melting transition.

2. This increase is possibly directly related to the changes in the lateral
compressibility, i.e., to area fluctuations.

3. It is so far not understood how the quantized currents through pure lipid
membranes can be explained. Seemingly, pores of well-defined diameter
are stable in such membranes.

4. The occurrence of lipid ion channels depends on the relevant intensive
thermodynamic variables, e.g., temperature, hydrostatic pressure, lat-
eral pressure, voltage, pH, calcium concentration, . . . .

5. The opening times of the lipid channels are likely to be related to the
relaxation times.

6. Some ion channel proteins are influenced by the thermodynamic behav-
ior of the surrounding lipid matrix, e.g., by the charge of the membrane
lipids or the presence of phase boundaries at which the excess heat ca-
pacity is high.
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18
Nerve Pulse Propagation

The last two chapters of this book are dedicated to two phenomena of bio-
logical relevance: nerve pulse propagation and anesthesia. It will be shown
that both phenomena are related to the thermodynamics of cell membranes.
In particular it will be shown that nerve pulses display mechanical properties
that are related to the temperature dependence of the elastic constants. These
phenomena find their expression in characteristic heat changes, in thickness
and other changes in the state of the nerve membranes. It is shown that the
nerve pulse resembles in many aspects of a piezoelectric pulse.

To be able to introduce into the thermodynamics of nerve pulses we first
introduce into the textbook model of nerve pulse conduction as formulated
by Alan L. Hodgkin and Andrew F. Huxley in 1952.

Fig. 18.1 Nerve may assume different shapes and sizes. Some
nerves are myelinated whereas others are not. The myelin sheet is
formed by Schwann cells that wrap around the axon.

18.1
The Hodgkin–Huxley Model

In Nature one finds about 10,000 different kinds of nerves . In principle nerve
cells are not different to other cells, i.e., they have a plasma membrane, a nu-
cleus, mitochondria, and so on (Fig. 18.1). However, they possess long ex-
tended regions called axons and dendrites along which voltage pulses can
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be transmitted (Fig. 18.2). Some nerves are surrounded by another cell type
called Schwann cell. The membranes of the Schwann cell form the so-called
myelin layer. Myelinated nerves transmit pulses much faster than nonmyeli-
nated nerves. The conduction velocity in a myelinated nerve is around 100
m/s, whereas it is rather 1–5 m/s in a nonmyelinated nerve. Myelinated
nerves can be very long (longer than a meter). In typical nerves the ion con-
centration of sodium and potassium is very different inside and outside. In
the squid axon, one finds 400 mM K+ inside and only 20 mM K+ outside. For
sodium the ratio is just reversed (400 mM Na+ outside and only 20 mM Na+

inside).

Fig. 18.2 Action potentials are transient voltage changes that prop-
agate along an axon. Shown is the voltage change during the action
potential in a squid axon adapted from the original papers of Cole and
Curtis (1939) and Hodgkin and Huxley (1952).

The accepted textbook model1 of nerve pulses (action potential) is the
model by Hodgkin and Huxley (1952). In the following we will give a brief
introduction into the essentials of the model. We will, however, not review all
its details. There are excellent textbooks that can be used as a reference, e.g.,
Johnston and Wu (1995).

The Hodgkin–Huxley model relies on proteins called ion channels. In fact,
the model itself rather speaks abstract about membrane conductances for dif-
ferent ions but it is clear that this aimed at specific protein channels. Ion
channels are membrane proteins that open and close in a complex time- and
voltage-dependent manner and allow for selective conduction of different
ions. If ions flow through the channels they change the voltage across the
membrane. In particular, the ion currents influence the charges on the mem-

1) One should in general distinguish between models and theories.
While a theory is based on first principles a model is rather a picture
that intends to help the intuition.
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brane surface. This can be taken into account by considering the membrane
as a capacitor with a capacitance of Cm ≈ 1 μF/cm2.

Many early measurements on nerves have been performed on squid axons
because they are big (diameter > 1 mm) and it is easy to insert electrodes.
Further, it turned out that they only contain two major classes of proteins and
the description is therefore simpler. Hodgkin and Huxley described, in much
detail, the properties of ion conduction through squid axon membranes. They
found complicated time and voltage-dependent currents through the mem-
branes that they attributed to sodium and potassium channels and to capaci-
tive currents. If ion channels open, ions flow from the side of high concentra-
tion to the side of low concentration (Fig. 18.3) following the gradient in the
electrochemical potential.

Fig. 18.3 Top: The nerve membrane is thought to be made of pro-
teins (potassium and sodium channel) that conduct ions. Bottom:
the picture in the top panel can be translated into equivalent cir-
cuits. The ion channel proteins display a resistance RK and RNa (or
conductances,gK and gNa, respectively). The membrane is considered
as an isolator and simultaneously as a capacitor with capacitance Cm.
RL and gL indicate leak currents through the membrane.

Experiments on nerves often are voltage clamp experiments meaning that
one does not investigate the propagating pulse but rather the conductance
through the membrane at constant voltage after a sudden voltage change. The
current through a membrane containing Na+- and K+-channels is described
by

Im = Cm
dU
dt

+ gK(U − EK) + gNa(U − ENa) (18.1)
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where EK ≈ −70 mV and ENa ≈ +30 mV are resting potentials for potassium
and sodium. At these potentials the flows of the respective ions change direc-
tion. They are dependent on the overall concentration differences of the ions
across the membrane. gK and gNa are voltage- and time-dependent conduc-
tances for potassium and sodium, respectively.

gK = gK(U, t) and gNa = gNa(U, t) (18.2)

The origins of the complex behavior of the conductances is not known and has
rather been determined by empirical fitting of this behavior. This introduces
many parameters into the above equation (in total these are 12 empirical pa-
rameters only to describe the two channels, for details see Johnston and Wu
(1995) or the original paper by Hodgkin and Huxley (1952)). Conductances
are the inverse of the resistances RK and RNa of the membrane. The voltage,
U, is a function of time and remains constant a few milliseconds after a sud-
den voltage change. The first term on the right-hand side is the capacitive
current assuming that the membrane surface acts as a capacitor. The charge
on a capacitor, Q, is described by

Q = Cm · U (18.3)

and the capacitive current is the derivative

Ic =
dQ
dt

= Cm
dU
dt

+ U
dCm

dt
(18.4)

To derive Eq. (18.1) it was assumed by Hodgkin and Huxley that dCm/dt = 0
(Cm = const.). This is an assumption that will be shown to be not quite correct
(Section 18.2.2).

The Hodgkin–Huxley picture of the propagating pulse can be summarized
as follows: Many sodium and potassium channels are homogeneously dis-
tributed in a long nerve membrane (Fig. 18.4). When they locally open af-
ter a voltage pulse, they influence the electric potential in their environment
and thereby also induce opening of channels in their neighborhood. By these

Fig. 18.4 To describe the propagation of a nerve pulse along the
nerve axon, many equivalent circuits along the axon membrane are
in parallel.
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means, the voltage pulse can propagate. The differential equation describing
the propagation of the voltage pulse is given by

a
2Ri

· ∂2U
∂x2 = Cm

∂U
∂t

+ gK(U − EK) + gNa(U − ENa) (18.5)

The voltage, U, is now a function of space and time. Here, Ri is the specific
intracellular resistivity (of the cytosol inside the axon) and a is the radius of
the axon. With this equation, (containing many parameters from the conduc-
tances) Hodgkin and Huxley could successfully describe action potentials as
shown in Fig. 18.2. However, Hodgkin and Huxley were quite careful in their
original publication from 1952. They summarized

The agreement must not be taken as evidence that our equations are any-
thing more than an empirical description of the time-course of the changes
in permeability to sodium and potassium. An equally satisfactory de-
scription of the voltage clamp data could no doubt have been achieved
with equations of very different form, which would probably have been
equally successful in predicting the electrical behavior of the membrane.
. . . the success of the equations is no evidence in favor of the mechanism of
permeability change that we tentatively had in mind when formulating
them.

We will show below that one can in fact derive similar propagation equa-
tions that are based on completely different physics.

In the mid-70s, Neher and Sakmann developed the patch clamp technique
with which they found quantized currents in biological membranes that were
equated with these protein ion channels (see e.g., (Neher and Sakmann, 1976)
or (Hille, 1992)). This work was rewarded the Nobel prize in 1991. In 1998,
MacKinnon and collaborators published the crystal structure of the potassium
channel (Doyle et al., 1998) and they proposed a mechanism for how the ions
are conducted. The channel-based concepts for the nerve pulse gained con-
siderable respect in the community and are seemingly quite successful. In the
next section we will nevertheless discuss some shortcommings of this model.

18.2
Thermodynamics of the Nerve Pulse

Electrophysiology is the discipline of measuring voltage, current, and capac-
itance changes across biological membranes. The Hodgkin–Huxley model is
based on equivalent circuits and on Kirchhoff’s laws. Thus, it is not a ther-
modynamical model since it does not explicitly contain temperature, entropy,
pressure, etc. Such data, however, are necessary to make a complete thermo-
dynamic description of the nerve pulse (and, of course, of any other physical
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system). The search for thermodynamic data on nerve pulses has not been
extensive but there are some data that deserve recognition. Here, we focus on
data shown in Figs. 18.5–18.7. They show

1. temperature or heat changes,

2. thickness changes, and

3. forces

generated during the action potential. One also finds changes in the state of
lipid membranes in optical experiments, e.g., in fluorescence and turbidity.
The Hodgkin–Huxley model does not contain a language for these changes.
This does not necessarily mean that it is in conflict with these findings. Resis-
tors dissipate heat in a circuit. Even though heat dissipation is not explicitly
mentioned in Ohm’s law it does not contradict the electrical description. In
the next paragraph, however, we demonstrate that some of the findings in
nerves are in fact in a fundamental conflict with the Hodgkin–Huxley model.

18.2.1
Heat Changes During the Action Potential

Several groups have measured temperature and heat changes during the ac-
tion potential. It has been found that during the action potential the tempera-
ture of the nerve increases and decreases back to baseline in the second phase
of the action potential. By heat block analysis also the heat changes have been
determined. During the action potential the nerve releases heat and reabsorbs
it in the second phase such that integrated over the nerve pulse no or only
little net heat is dissipated (Fig. 18.5).

One of the first authors studying this effect was A. V. Hill. He was rewarded
the Nobel prize in 1922 for his studies on heat production in muscle. He also
published a large number of articles on the heat production in nerves un-
der the influence of the action potential (summarized in (Abbott et al., 1958)).
Other authors have been Keynes and coworkers (Howarth et al., 1968; Ritchie
and Keynes, 1985) and coworkers as well as Tasaki and coworkers (Tasaki,
1988; Tasaki et al., 1989; Tasaki and Byrne, 1992). Further reports are listed in
Ritchie and Keynes (1985). Measurements on many nerve systems including
nonmyelinated nerves from Maia (crab), rabbit vagus nerves, pike olfactory
nerves, and myelinated nerves from bullfrog were performed. It has been
clearly demonstrated by control experiments that the reabsorption of heat is
not an artifact related to conduction of heat into the aqueous medium (see e.g.,
(Ritchie and Keynes, 1985)). All authors came to similar conclusions: during
the action potential no significant net heat is produced. Transient heat releases
are mostly reabsorbed in the second phase of the action potential. These find-
ings have been made for both nonmyelinated and myelinated nerves (Tasaki
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Fig. 18.5 Heat release in garfish olfactory nerve. Left: During the ac-
tion potential one finds an initial phase of heat release that is followed
by a phase of heat absorption. Right: Integration of the rate of heat
release reveals that within error no net heat is released. Data adapted
from Ritchie and Keynes (1985).

and Byrne, 1992). Abbott et al. (1958) found that the heat release is most like
proportional to the area of the nerve membrane indicating that the heat is
generated by a physical process related to the membranes themselves. Fur-
ther, for myelinated nerves they found that the heat release occurs along the
whole nerve rather than just at the nodes of Ranvier (which are nonisolated
segments of the myelinated nerve). From that they concluded that the whole
nerve is active and not just the nonisolated nerve segments as required for the
saltatory conduction in the models for myelinated nerves.

One further result concerning the reversible heat uptake is shown in
Fig. 18.7 (left). In this figure two curves can be seen: the integrated heat
released during the action potential, and the calculated energy of the nerve
membrane capacitor (Ec = 0.5CmU2). One finds that

ΔQ(t) ∝
1
2

CmU(t)2 (18.6)

i.e., the reversible heat release is approximately proportional to the energy of
the membrane capacitor. Simultaneously it was found that the heat energy is
much larger than the internal energy stored in the capacitor (Howarth et al.,
1968; Ritchie and Keynes, 1985). This means that the charging of the mem-
brane during the action potential cannot explain the magnitude of the heat
changes. Most importantly, a reversible heat change (no net release of heat)
means that the action potential is isentropic (constant total heat also means
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Fig. 18.6 Reversible heat change during the action potential. The
square of the voltage (i.e., the energy of charging a capacitor) is pro-
portional to the heat of the nerve pulse. The heat, however, is much
larger than the capacitor energy. The heat during the nerve pulse re-
turns to the baseline indicating that the nerve pulse is adiabatic (does
not generate net heat after completion of the action potential). Data on
garfish olfactory nerve adapted from Ritchie and Keynes (1985).

that the entropy is conserved since dQ = TdS). After a careful examination of
the origin of the reversible heat Howarth et al. (1968) concluded that

It seems probable that the greater part of the initial heat results from
changes in the entropy of the nerve membrane when it is depolarized and
repolarized.

Isentropic (or adiabatic) processes imply that the essential physics on which
the respective process is based must be reversible. However, the Hodgkin–
Huxley theory is not reversible. It is based on the equilibration of ion gradients
that increase the entropy of the system. If the equivalent circuit picture of
Figs. 18.3 and 18.4 is to be maintained one has to conclude that the conduction
of ions through the nerve membrane should produce a heat that is related to
the transmembrane voltage and current through

dQ
dt

= U · Im = g U2 > 0 (18.7)

Additionally, the charging of the capacitor and the currents along the nerve
have to be accounted for. According to the model by Hodgkin and Huxley
(Hodgkin and Huxley, 1952) the heat generation during the action potential
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is a consequence of the currents through resistors. This heat production is
always positive since resistors heat up independent of the direction of the cur-
rent. Heat changes are only reversible if the work performed by the system is
also reversible, i.e., the flux of the ions is reversed by the change in capacitance
in the second phase of the pulse. This is in fact not the case in the Hodgkin–
Huxley model. One has to conclude that

The finding of a reversible heat release during the action potential of
nerves is a striking and very fundamental fact. It is inconsistent with the
Hodgkin–Huxley model. The physics underlying the nervous impulse
must rather be based on reversible processes.

This has also been noticed by the authors that measured the reversible heats
(typically it was mentioned that the heat response lacks a satisfactory expla-
nation). Hodgkin himself wrote in his book “The conduction of the nervous
impulse” (Hodgkin, 1964):

In thinking about the physical basis of the action potential perhaps the
most important thing to do at the present moment is to consider whether
there are any unexplained observations which have been neglected in an
attempt to make the experiments fit into a tidy pattern. . . . perhaps the
most puzzling observation is one made by A.V. Hill and his collaborators
Abbott and Howarth (1958). . . . Hill and his colleagues found that it was
diphasic and that an initial phase of heat liberation was followed by one of
heat absorption. . . . a net cooling on open-circuit was totally unexpected
and has so far received no satisfactory explanation.

18.2.2
Mechanical Changes During the Action Potential

One important researcher in the study of thermodynamic data on nerves is
Ishiji Tasaki (NIH, USA). He and his collaborators contributed considerably
to measuring of the reversible heat in nerve membranes. He further recorded
various mechanical changes in nerves. It was found that during the action
potential a dislocation of the membrane surface can be observed that is strictly
coupled to the potential changes of the surface (Fig. 18.6, right), (Iwasa and
Tasaki, 1980; Iwasa et al., 1980; Tasaki, 1988; Tasaki et al., 1989; Tasaki and
Byrne, 1990). Simultaneously, one can also measure a force on a piston that is
in contact with the nerve (Fig. 18.7).

A change of the membrane surface during the nerve pulse and the simul-
taneous change of the thickness must have an influence on the capacitance of
the membrane (because Cm = ε0ε A

D ). Therefore, one has to conclude that the
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Fig. 18.7 Mechanical changes during the action potential. Left: Force
on a piston during the action potential in a squid axon. The solid line
represents the voltage changes and the dotted curve the force. Right:
During the nerve pulse in a squid axon the thickness of the nerve
changes proportional to the voltage. Data adapted from Iwasa and
Tasaki (1980).

approximation made to derive Eqs. (18.1) and (18.4), namely that dCm/dt = 0
is probably not correct.

Tasaki and collaborators also reported that during the action potential in
nerves various optical properties change, including changes in the lipid mem-
brane fluorescence and turbidity (Tasaki et al., 1968, 1969b,a). It was also
shown that the fluorescence anisotropy changes during the action poten-
tial (Tasaki et al., 1969b; Kobatake et al., 1971). A change in fluorescence
anisotropy indicates changes in the rotational mobility of the fluorescence
markers typical for changes in lipid state.

18.2.3
Are There Phase Transitions During the Action Potential?

The changes in fluorescence intensity and anisotropy briefly mentioned in the
previous section were taken as evidence for the occurrence of a phase tran-
sition during the nerve pulse (Kobatake et al., 1971; Kinnunen and Virtanen,
1986; Tasaki, 1999). If one changes the lipid state from fluid to gel one ex-
pects: heat release, increase in membrane thickness, reduction of area, and
lowering of rotational mobility of the lipids. If one reversibly goes through
the transition one would expect exactly those changes that were reported in
the previous section.

If that were so then the thermodynamics of the lipid phase transition should
very sensitively affect the action potential, which is in fact the case. Kobatake
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et al. (1971) reported that a sudden decrease in temperature can induce nerve
pulses, while an increase in temperature does inhibit it. The data mentioned
above should be taken as a hint toward the existence of transitions during the
nerve pulse but not as a final proof. In the following, however, we explore the
possibility that the action potential in nerves is in fact coupled to lipid phase
transitions.

18.3
Isentropic Pulse Propagation

In this section we want to outline a description for the propagation of entropic
pulses that is based on the thermodynamics of biological membranes as out-
lined in Chapter 14 and the fact that biomembranes are situated slightly above
melting transitions.

Overall, the action potential is isentropic, meaning that the entropy that is a
function of state is the same before and after the pulse. Further, no net heat is
released means that

∮
dQ =

∮
TdS ≈ 0, which is only possible for reversible

processes. The action potential is also accompanied by mechanical changes
and most likely by changes in lipid state.

The Hodgkin–Huxley model is no thermodynamic model. This means that
it does not make a complete treatment of the total energy change, but it only
considers closed electrical circuits in cable theory. In the framework of this
theory Ohmic currents flow through resistors which dissipates heat due to
friction, no matter in which direction the ion currents flow. Both friction
and concentration equilibration are irreversible processes! The quantities “en-
tropy” and “temperature” do not play a role in the Hodgkin–Huxley model.
The Hodgkin–Huxley model therefore is not based on isentropic (adiabatic)
processes. For this reason it is not possible to understand the temperature re-
sponse of the neuron within the framework of this model. It must at least be
incomplete: the thermodynamics is not correctly included. From experiments
it is obvious that thickness and density changes occur in nerve membrane, ac-
companied by changes in lipid state. Reversible processes clearly play a role
that are not included in the HH model.

However, there is another phenomenon in physics that shares a lot of sim-
ilarities with the mechanical pulse accompanying the action potential. This
is the propagation of sound. A sound wave is isentropic. Whether a simi-
lar process is possible in a two-dimensional membrane depends on whether
the energy of a sound wave is dissipated into the aqueous medium (as some
people believe) or not. If the energy dissipates a mechanical wave cannot
propagate. Experiments like those from Hill, Howarth, Keynes, Tasaki, and
others are critical for such a decision. In real systems no process is perfectly
adiabatic (completely reversible) and always some of the energy is dissipated.
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If the dissipation is small, however, sound propagation can occur over long
distances.

In the following we want to outline a model that includes the thermody-
namic findings described in the previous paragraphs (Heimburg and Jackson,
2005). In particular, we show that the thermodynamic state of biological mem-
branes in the proximity of the phase transition allows for the propagation of
localized isentropic pulses called solitons. We will loosely refer to such pulses
as solitons. Since biomembranes are charged the soliton resembles a piezo-
electric pulse where voltage is caused by electromechanical coupling.

18.3.1
Solitons

Solitons are localized pulses that propagate without attenuation, and without
changes in shape. The formal requirement for the existence of solitons is the
existence of nonlinear elastic constants upon density changes. The second
requirement is dispersion, i.e., a frequency dependence of the sound velocity.

As mentioned at various places in this textbook biological membranes of-
ten display melting transitions slightly below body temperature (Fig. 18.8).
This implies that slightly below body temperature the elastic constants also
change (see Chapter 14). If one lowers the temperature one moves the phys-
ical state of the membrane through the lipid melting transition. During this
transition the lateral area of the membrane decreases by about 25%. This in
turn means that instead of lowering the temperature one could also increase
the lateral pressure to move the system through its melting transition. During
this process the lateral compressibility increases. This is indeed a remarkable
situation: when membranes under physiological conditions are compressed
(until the system is moved into its melting transitions) it becomes softer. They
resemble a spring that becomes softer upon compression. If the membrane is
compressed further until it is in the gel state, it becomes rigid. This is exactly
what was meant by nonlinear elastic constants. Therefore, the first require-
ment for solitons is fulfilled. Furthermore, it has been found experimentally
that the adiabatic compressibility is frequency dependent (Mitaku and Date,
1982), i.e., the membranes display dispersion. Therefore, the second require-
ment for solitons is also fulfilled. In Fig. 18.9 it is shown that the adiabatic
lateral compressibility displays lower values at 5 MHz than at very low fre-
quencies. In fact, at low frequencies, the adiabatic compressibility approaches
the isothermal compressibility for a membrane system. This has been justified
in Section 14.5 (see also (Heimburg, 1998)). We summarize

κA
S (ω) < κA

T for ω > 0

κA
S = κA

T for ω = 0
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Fig. 18.8 Melting of a lipid membranes in an artificial system and in
various biological systems. From Heimburg and Jackson (2005)

.

where ω is the frequency of a periodic perturbation. It is related to the time
scale of the change in area, i.e., on the time scale of a pulse.

In Fig. 18.9, we show the heat capacity for a lipid membrane (DPPC unil-
amellar vesicles). Following the concepts in Chapter 14 one can calculate the
changes in density and in compressibility (left panels in Fig. 18.9). Let us now
recall that the speed of sound, c0, is given by c2

0 = (κA
S ρ)−1. Thus, using

the data in the left-hand panels one can plot the square of the sound velocity
versus the change in density as compared to the equilibrium state of the mem-
brane slightly above the transition (Fig. 18.9, right). This figure clearly shows
that not only does the heat capacity and the lateral compressibility display a
maximum below body temperature, but also the speed of sound displays a
minimum (cf. also Fig. 14.11) upon compression. In the following we make
use of this.

We now consider one-dimensional sound propagation along a cylindrical
membrane with coordinate x that shall represent the long axis of the nerve
axon. During a propagating sound pulse the lateral density ρA of the mem-
brane changes. Therefore we express the following equations as functions of
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Fig. 18.9 Left: Heat capacity of DPPC LUV
(top), the lateral area density, ρA, and the
corresponding isothermal area compressibil-
ity (bottom, solid curve, corresponding to a
low frequency case) and adiabatic area com-
pressibility (bottom, dotted line, correspond-

ing to a 5 MHz ultrasonic experiment), as
calculated from the heat capacity. Right: The
lateral sound velocity c2 = 1/κA

S ρA (m2/s2)
for the low frequency and the 5 MHz case,
as a function of membrane area density,
ρA (g/m2) at T = 45 ◦C.

the lateral density. If the membrane is a long and narrow cylinder, we can
reduce the problem to propagation in one direction, x. In the absence of dis-
persion, sound propagation is governed by the equation

∂2

∂t2 ΔρA =
∂

∂x

(
1

κA
S · ρA

(
∂

∂x
ΔρA

))
(18.8)

where ΔρA = ρA − ρA
0 is a function of x and t. This equation originates from

the Euler equation in fluid hydrodynamics. If the compressibility is approxi-
mately constant and if ΔρA � ρA

0 , this reduces to

∂2

∂t2 ΔρA = c2
0

∂2

∂x2

(
ΔρA

)
(18.9)

where c0 = 1/
√

ρA
0 κA

S is the velocity of small amplitude sound. This well-
known equation for the propagation of sound governs, for example, the
sound propagation in air. Recall, however, that the lateral compressibility
κA

S depends strongly on ΔρA if one is close to a transition in the membrane
(Fig. 14.7). We thus expand the data shown in Fig. 18.9 (right) for the sound
velocity as a function of the density change

c2 =
1

ρAκA
S

= c2
0 + pΔρA + q(ΔρA)2 + · · · (18.10)
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where ΔρA = ρA − ρA
0 with ρA

0 the equilibrium lateral density. Here we
neglected higher orders than quadratic terms. The values for the parame-
ters p and q are obtained by fitting the experimental values of c2. For the
data for unilamellar DPPC vesicles shown in Fig. 18.9 (low frequency case),
we obtain c0 = 176.6 m/s, p = −16.6 c2

0/ρA
0 and q = 79.5 c2

0/(ρA
0 )2 with

ρA
0 = 4.035 × 10−3 g/m2, assuming a bulk temperature slightly above the

melting temperature of T = 45 ◦C. In Heimburg and Jackson (2005) the corre-
sponding parameters for biological examples have also been calculated using
an equilibrium temperature of 37 ◦C. The results are comparable to the DPPC
model system.

Higher frequencies result in higher propagation velocities, v, because the
isentropic compressibility is a decreasing function of frequency as shown in
Fig. 18.9. We will approximate the dispersive effects discussed above by intro-
ducing a dispersive term, −h∂4ΔρA/∂z4 with h > 0. The introduction of this
term is justified by the dispersion relation in Eq. (18.12) that follows from the
introduction of this term (see below).

The equation governing sound propagation is then

∂2

∂t2 ΔρA =
∂

∂x

[(
c2

0 + pΔρA + q(ΔρA)2
) ∂

∂x
ΔρA

]
− h

∂4

∂x4 ΔρA (18.11)

(For experts, this equation is closely related to the Boussinesq equation). For
periodic low amplitude solutions (i.e., we neglect the nonlinearity of the
sound velocity) with ΔρA = ρA

0 sin(ωt − k x), we thus obtain the dispersion
relation

v2 =
ω2

k2 = c2
0 + hk2 ≈ c2

0 +
hω2

c2
0

(18.12)

The sound velocity thus increases with increasing frequency as required by
the experimental observation of decreasing compressibility with increasing
frequency. It should nevertheless be added that the assumption of the disper-
sion term is ad hoc because the exact form of the frequency dependence in the
millisecond time regime (the time scale of the nerve pulse) is not yet known.

We now consider the possibility of propagating solitons and seek solitonic
solutions of the form ΔρA(z) with z = x − vt . Equation (18.11) can now be
rewritten as

v2 ∂2

∂z2 ΔρA =
∂

∂z

[(
c2

0 + pΔρA + q(ΔρA)2
) ∂

∂z
ΔρA

]
− h

∂4

∂z4 ΔρA (18.13)

It has been shown by Lautrup et al. (2005) that this equation has an exact
solution for each given value of the velocity v. This solution has the following
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form:

ΔρA =
p
q

1 −
(

v2−v2
min

c02−v2
min

)

1 +
(

1 + 2
√

v2−v2
min

c02−v2
min

)
cosh

(
c0√

h
z
√

1 − v2

c2
0

) (18.14)

where

vmin =

√
c2

0 −
p2

6q

c0 ≥ v ≥ vmin (18.15)

is the minimum velocity of a soliton that can propagate in the membrane cylin-
der (note that the above equation has no solutions for v < vmin). For the DPPC
system vmin ≈ 0.649851 × c0 = 115 m/s. It turns out that depending on the
total energy of the soliton (depending on the strength of the excitation) each
soliton has a different velocity. The larger the energy in the pulse the slower
the propagation velocity approaching vmin. A representative profile is shown
in Fig. 18.10. As can be seen from Eq. (18.15) the soliton also approaches a
maximum amplitude given by

Δρmax =
|p|
q

(18.16)

approaching the minimum velocity, vmin.
What can also be seen from the analytical solution in Eq. (18.15) is that the

dispersion parameter h does not play a role in the shape of the profile other
than defining the length scale in the pulse. If h is four times larger, the pulse
width changes by a factor of 2.

18.3.2
Energy of the Solitons

18.3.2.1 Total energy

Each of the solitons has an associated energy. The precise soliton shape de-
pends on the energy of the excitation. For sufficiently large excitation ener-
gies, only maximum amplitude solitons will propagate. They correspond to
21% area density change at maximum for both DPPC LUV and lung surfac-
tant (the lung surfactant data have not been shown). The total area change in
the transition of DPPC is 24.6% (experimental findings). This means that, at
the peak maximum, the soliton forces the membrane about 85% through the
lipid melting transition. The energy density of a soliton has both potential and
kinetic energy contributions and can be calculated using a Lagrangian formal-
ism. Here, only the result of such a calculation is shown (see (Heimburg and
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Fig. 18.10 Representative soliton for the DPPC system. The solitons
approach a maximum amplitude corresponding to ≈ 0.21ρA

0 . This is
close to the area density change from fluid to gel.

Jackson, 2007b)). The energy density is given by

esol =
c2

0

ρA
0

(ΔρA)2 +
p

3 ρA
0

(ΔρA)3 +
q

6 ρA
0

(ΔρA)4 (18.17)

The total soliton energy is the integral over dz, i.e., over the length of the pulse.
The transient heat release of the soliton during the nerve pulse is equivalent
to the potential energy in the pulse, which is about half of the energy change
in Eq. (18.17). The other half is the kinetic energy.

18.3.2.2 Capacitive energy

Membranes are asymmetrically charged. This gives rise to a transmembrane
voltage. At physiological conditions the potential is approximately propor-
tional to the charge density (cf. Eq. (11.17)):

Ψ0 =
1

ε0εκ
σ =

1
ε0εκ

· qL · ρA (18.18)

where qL is the mean number of charges per lipid. This couples the lateral
density with the charge density. During the density pulse the charge density
changes by about 20% and thus it can be expected that the density pulse is
accompanied by a voltage change. This is called electromechanical coupling.
This effect has been well described in literature. The membrane behaves like
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a piezoelectric crystal. Upon the exertion of a force it changes its transmem-
brane voltage. The magnitude of this pulse will strongly depend on the value
of the charge densities on the two sides of the membrane. It is known that
the concentration of negatively charged lipids in the inner membrane layer
is larger than in the outer layer (Rothman and Lenard, 1977). This charge
imbalance is partially compensated by basic residues of membrane proteins.
It is shown in Heimburg and Jackson (2007b) that one can generate voltage
changes of the order of 50 mV upon going from fluid to gel phase, assuming
that the inner monolayer contains 40% charged lipid and the outer monolayer
is uncharged. Thus, the orders of magnitude of the observed voltage changes
are close to those obtained by simple electrostatic considerations. There is
little known about the exact charge distribution on the two sides of the mem-
brane, and therefore our line of argument in the following will be based on
the known transmembrane voltage changes.

The potential difference across the nerve axon membrane is about −70 mV.
During the pulse a transient voltage change of about +100 mV takes place
such that the voltage at the peak maximum is about +30 mV.

We assume that the capacitive energy of a membrane is a consequence of
compression and the accompanying voltage change. In the low potential limit
of the Gouy–Chapman theory (relevant for medium to high ionic strength con-
ditions and a small fraction of charged lipids), the membrane potential is pro-
portional to the charge density and hence to the density change, ΔρA. We
assume that the capacitive energy density is given by

ecap =
1
2

C

(
V0 ΔρA

ΔρA
max,limit

)2

(18.19)

The result of a detailed calculation of the total soliton energy and the capac-
itive energy are given in Fig. 18.11. The result is that the expected reversible
heat release from the membrane is expected to be about 20 times larger than
the capacitive energy. Experiments on real nerves resulted in similar findings.
Howarth et al. (1968) made a careful analysis of the heat release in nerve. They
concluded that the observed heat changes cannot be explained by a reversible
charging of the membrane capacitor. Further one should mention that the
charging of the capacitor in Hodgkin–Huxley is not reversible because the
work performed is provided by irreversible fluxes of ions along their gradi-
ents.

18.3.3
Thickness Changes

Volume changes in lipid transitions are significantly smaller than area
changes. Since the membrane density changes in the soliton, the membrane
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Fig. 18.11 Left: Calculated total energy and capacitive energy den-
sities stored in the soliton during the passage. Both functions dis-
play similar time dependence. Compare with the experimental data
in Fig. 18.7. Right: Calculated thickness changes of a membrane cylin-
der (displacement) and corresponding voltage changes. Both functions
display identical time dependence. Compare with the experimental
data in Fig. 18.7.

thickness must also change. For lipid membranes, the area change is propor-
tional to the volume change and to the thickness change. The volume change
when going through the transition is 4.7% for DPPC, the corresponding area
change is 24.6%, and the thickness change is −16% (corresponding to −7.4 Å).
If the solitons at maximum display a area density change of 21% (correspond-
ing to 85% of the transition) the thickness change must be of order −6.4 Å.
This results in a change in the thickness of a membrane cylinder of −12.8 Å.
Voltage changes and thickness changes should be proportional.

18.4
Consequences of the Isentropic Theory

We have discussed the influence of the melting transition on the propagation
of sound and isentropic waves in the plane of the membrane. If a membrane
is slightly above the melting temperature, the response to compression is an
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initial lowering of the elastic modulus, followed by a steep increase. Soli-
tons exist as a consequence of a balance between nonlinear and dispersive
effects. Nonlinearities are clearly present in the empirical compression mod-
ulus (Fig. 18.9). Dispersion effects, approximated here by −h∂4ΔρA/∂z4, are
related to the experimental frequency dependence of sound velocities. Both
the form and magnitude of this term can be checked experimentally by inves-
tigating the velocity of small amplitude sound. The value of h adopted here
and the dispersion relation ω2 = c2

0k2 + hk4 suggest an increase in the sound
velocity of approximately 4% at a frequency of 5 kHz. In 3D experiments,
the sound velocity is known to be approximately constant well above and be-
low the transition. Within the transition, the compression modulus at 5 MHz
is drastically reduced in comparison with the isothermal (or low frequency)
case. While there are propagating mechanical aspects of the nerve pulse that
have been found in experiments it has not been discussed here whether there
can be dissipation due to friction. The experimental fact that most of the heat
is reversible, however, indicates that possible friction effects are small.

Our calculations were performed for a quasi-one-dimensional cylinder
slightly above the cooperative melting transition. This is a simplification that
does not include possible dependences of the propagation phenomena on the
radius of the axon. As biological examples we chose lung surfactant (which
exists as a surface film lungs in a bilayer/monolayer equilibrium) as well as
E. coli and bacillus subtilis membranes, which display similar lipid melting
features slightly below body or growth temperature. Although we have no
direct data on the melting of nerve axon membranes, the biological implica-
tions of such a phenomenon seem to be particularly striking regarding the
propagation of the action potential. It is of major importance to obtain reli-
able data on the cooperative behavior of biological membranes, in particular
of nerve membranes. Summarizing, the soliton model is able to explain the
thermodynamic data obtained from experiments on nerves. In Chapter 19
it will be shown that such a model may also imply a satisfactory model for
anesthesia.
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18.5
Summary: Key Ideas of Chapter 18

1. The nerve pulse is accompanied by changes in various thermodynamics
variables including electrostatic potential (voltage), density and temper-
ature.

2. The Hodgkin–Huxley theory describes the propagation of voltage
pulses along nerves on the basis of ion fluxes through ion channel
proteins (K+ and Na+-channels). The theoretical description is based
on electrical circuits. In such a description the currents should produce
heat.

3. Experimental data show that during the action potential a transient heat
release followed by reabsorption of the heat can be found. Thus, inte-
grated over the nerve pulse no net heat is released. The action potential
is a mostly isentropic (adiabatic) phenomenon. This is not in agreement
with a picture exclusively based on electrical currents.

4. During the action potential the thickness of the nerve changes and forces
are exerted on the environment.

5. Fluorescence changes of lipid membrane markers can be found during
the action potential. They indicate that the nerve pulse is accompanied
by changes in the physical state of the lipid membrane. Further, turbid-
ity changes are found.

6. Biological membranes exist slightly above the melting temperature of
their lipid membranes. Under these conditions in hydrodynamic the-
ory stable density pulses called solitons can propagate. They are con-
sequences of the nonlinear features of the compression modulus close
to transitions. Those pulses would be consistent with the finding of a
reversible heat, thickness, and state changes.

7. The action potential in nerves shares many similarities with a piezoelec-
tric pulse.
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19
Anesthesia

It has long been known that ethanol and certain herbs as opium and cannabis
have the ability to reduce pain. In the late 18th century and in the early 19th
century nitrous oxide (laughing gas) and carbon dioxide were shown to have
anesthetic effects. In the 1840s nitrous oxide (laughing gas) and diethylether
were used for painless tooth extraction. On October 1846 the American dentist
William T .G. Morton performed the first public surgery on a neck tumor. In
a letter to Morton the writer Oliver W. Holmes coined the word anesthesia
in 1846. Later in the 19th century also ether, chloroform, and cocaine were
used to induce anesthesia. Overton (1901. Jena, Germany. English translation:
Studies of Narcosis, Chapman and Hall, 1991, R. Lipnick, Ed.) points out that
anesthetics influence all organisms to a similar degree, and that also plants
can be anesthetized (as evident from the motion of particles in plant cells).

A surprising variety of different substances cause anesthesia (Fig. 19.1), in-
cluding noble gases like xenon. The origin of the anesthetic effect is still not
understood. In the literature theories one finds competing theories relating
anesthesia to their effect on lipid membranes or on their effect on proteins. In
particular the local anesthetics are believed to function via their influence on
sodium channels. The function of a number of other proteins are influenced
by anesthetics including proteins that are probably unrelated to anesthesia as
the firefly luciferase. It should also be noted right that anesthetics also al-
ter a number of other properties of lipid membranes as are permeability or
hemolysis. This fact indicates that the action of anesthetics may be of much
more general origin than just being explained by their effect on nerves. In the
following we will mostly discuss lipid models. Since some general physical-
chemistry features of the behavior of anesthetics have been found; this is for a
very good reason. In the light of Chapter 18 we will especially investigate the
effect of anesthetics on the thermodynamic properties of membranes. The fact
that anesthesia is caused by a large variety of different molecules including
noble gases speak against mechanisms based on the binding of anesthetics to
proteins.
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Fig. 19.1 Left: Hans Meyer and Charles E. Overton, 1910. Photo
courtesy Dag Lundberg (Lund). Right: Structure of various volatile and
liquid anesthetics. From ? with permission.

19.1
The Meyer–Overton Rule

In 1901 Overton (1901. Jena, Germany. English translation: Studies of Narco-
sis, Chapman and Hall, 1991, R. Lipnick, Ed.) published a classic monograph
written in German with the title “Studien der Narkose (Studies of narcosis)”
in which he summarized the findings of his extensive studies on anesthetics.
He found that the anesthetic potency is directly proportional to their partition
coefficient between water and olive oil. Overton proposed that the solubility
of such molecules in olive oil reflects the solubility in the lipid membranes of
the cells, in particular of the nerve cells. Overton’s book was rated so highly
that it was translated into English in 1991. Some of the English quotes below
are taken from the translated version. More or less simultaneously with Over-
ton, Meyer (1899) came to very similar conclusions. Meyer summarized his
findings as follows:

• All substances that are predominantly chemically nonreactive and that
are soluble in fat or fatty substances must have a narcotic effect on living
protoplasm to the extent to which they are able to be distributed in it.

• Their action must occur first and strongest within those cells with a
chemical composition consisting mainly of fatty substances and which
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are particularly good bearers of cell functions: primarily, therefore, the
nerve cells.

• The relative strength of action of these narcotics must be dependent
upon both their mechanical affinity to fatty substances, and to other cell
constituents; i.e., mainly water for the latter. Therefore, it must depend
upon the partition coefficient, which determines its distribution in a mix-
ture of water and fatty substance.

Overton added to this a number of further findings and statements that
were in agreement with Meyer’s ideas, including the additivity of the action
of different anesthetics.

The Meyer–Overton can be summarized as follows:

The partition coefficient, P, defined as the ratio of the concentrations of
the drug between oil (or the membrane hydrocarbon region) and water
is inversely proportional to the critical anesthetic dose (ED50) in water at
which anesthesia occurs for this drug,

[CH2O]
[Cmembrane]

≡ P−1 ∝ [ED50] (19.1)

and

P · ED50 = const. (19.2)

From this also follows by letting [CH2O] = [ED50] that the critical anesthetic
dose (concentration)

[Cmembrane] = const.
at critical anesthesia concentration,
independent of drug

(19.3)

meaning that at critical anesthetic concentration the concentration of the anes-
thetic dissolved in the membrane is independent of the chemical nature of the
anesthetic molecule. These finding are summarized for a number of anesthetic
molecules in Fig. 19.2. It is found that both for volatile anesthetics and liquid
anesthetics this general rule is obeyed. The slope of the partition coefficient
as a function of ED50 is −1 within error. It should be noted that (according to
van’t Hoff) pressures and concentrations are equivalent. In practice, the par-
tition coefficient is often given as the relative concentrations of the anesthetic
between octanol and water. The values of the partition coefficient are slightly
different for different hydrocarbon reference systems, as are olive oil, octanol,
or PC membranes.
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In Fig. 19.2 (right) some literature data for anesthesia of tadpoles are given.
The partition coefficients are given with respect to three different reference
systems: octanol, phosphatidylcholine membranes, and erythrocyte (or other
cholesterol-containing) membranes, respectively. If one assumes that the main
target of anesthetics are nerve membranes which have a low cholesterol con-
tent, one should consider the phosphatidylcholine membranes as the appro-
priate reference system for determination of the partition coefficient. The ex-
perimental finding is that

P · ED50 = 0.0341
mol

l
for PC membranes (19.4)

Fig. 19.2 The Meyer–Overton rule: The par-
tition coefficient is inversely related to the ef-
fective anesthetic dose [ED50]. Data adapted
from Overton (1991). Left: For volatile anes-
thetics. Instead of a critical concentration a
critical partial pressure is given. According
to van’t Hoff partial pressure and concentra-
tion are equivalent. Right: For a number of

different liquid anesthetics, shown for three
different reference systems—octanol, PC
membranes, and cholesterol containing mem-
branes/erythrocytes, respectively. Under all
conditions one finds a linear relationship with
slope −1. Data taken from Firestone et al.
(1987)

The concluding statements of Overton (1901. Jena, Germany. English trans-
lation: Studies of Narcosis, Chapman and Hall, 1991, R. Lipnick, Ed.)

• . . . there can hardly be any doubt that the action of nonspecific nar-
cotics depends upon the fact that these compounds dissolve in the brain
lipoids. This property generally leads to the accumulation of . . . narcotics
in the brain with changes in the physical state of the brain lipoids in-
duced by their presence. The brain lipoids can no longer fulfill their
functions in the nerve cell . . . or they somehow disturb the functions of
other components of the neurons.
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• It is not unlikely that the brain lipoids have a role in defining the physical
properties of the protoplasm that is equal to or even greater than that
of the cell proteins themselves. The modification in the physical state of
brain lipoids in response to the absorption of foreign compounds, occurs
in addition, regardless of how this change affects the normal workings
of the cell.

These statements by Overton are still valid. In the following we are therefore
in search for physical mechanisms of anesthesia.

19.2
The Effect of Anesthetics on the Lipid Melting Points

In the previous chapter we have learned about a mechanism of the nerve pulse
that is intimately related to the melting of lipid membranes. It is therefore of
interest to investigate the effect that such anesthetics have on melting transi-
tions.

Let us assume the following: Small molecules like anesthetics dissolve per-
fectly in fluid lipid membranes but do not dissolve at all in gel lipid mem-
branes. We will see below that this seems to be a valid assumption. What in-
fluence will this have on the melting points of lipid membranes? In Section 7.4
we have already treated this case. We have shown there that one obtains an
effect called freezing point depression. It is a consequence of the mixing en-
tropy of anesthetics in the fluid phase. We obtained the following equation of
the freezing point depression:

ΔTm =
(

R T2
m

ΔH

)
xA (19.5)

where ΔH and Tm are enthalpy and melting temperature of the lipid mem-
branes, respectively, and xA is the molar fraction of the anesthetic molecules.

In Section 7.4 (Eqs. (7.31) and (7.32)) it was also shown how to calculate the
corresponding heat capacity profiles. In Fig. 19.3 we show a further example
for the anesthetic octanol (all simple alcohols from ethanol to decanol have to
be considered as anesthetics). It can be seen that the experimental profiles are
well reproduced using simple regular solution theory.

In fact, the linear dependence of the melting point on anesthetics concen-
tration is a general feature that can be linked to the critical anesthetic dose.
Kharakoz (2001) has collected data for various organisms and many anesthet-
ics. In Fig. 19.4 the dependence of the melting point on the anesthetic concen-
tration (a series of alkanols) in the bulk medium has been plotted as a function
of temperature. One obtains a straight line in a double-log plot with the slope
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Fig. 19.3 Influence of anesthetics on the melting transition of DPPC
membranes. Bottom: Experimental profiles at four different octanol
concentrations in the fluid bilayer. Top: Calculated heat capacity
profiles for the same concentrations as in the experiment (using
Eqs. (7.31) and (7.32)). For the calculation it was assumed that the
aqueous phase is small and the total amount of anesthetics in the
membrane stays approximately constant during melting.

of −1, meaning that

ln
dTm

dCanesth
= α − ln ED50 (19.6)

with α = −0.627. Since the shift of the melting temperature is a linear function
of the amount of anesthetic in the membrane, which is again a linear function
of the partition coefficient it follows that

ΔTm

ΔCanesth
=

β

ED50
(19.7)

with β = exp(α) = −0.534 K. If the free concentration of anesthetics, Canesth
is equal to the critical anesthetic dose, ED50, one obtains from Fig. 19.4 that the
empirical shift of Tm at ED50 is given by

ΔTm = −0.53 K (19.8)

Thus, the result is that the shift of the melting point of lipid membranes at
critical anesthetic dose is always the same and it is independent of the drug.
One can also calculate this from the data in Fig. 19.2. The critical molar fraction
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Fig. 19.4 Concentration dependence of the melting point of DPPC
membranes plotted versus the critical anesthetic dose, ED50. Data
show a series of alkanols and the anesthesia of tadpoles. Adapted
from Kharakoz (2001).

of anesthetics in the membrane is

xA = P · ED50 · VL (19.9)

where VL is the molar volume of the lipids. For a DPPC membrane VL =
0.734 l/mol and we take this value as being close to the mean value in biolog-
ical membranes. From the data in Fig. 19.2 we show that P · ED50 = 0.0341
(Eq. (19.4)) and as a consequence the molar fraction of anesthetics in the mem-
brane is

xA = 0.026 independent of drug (19.10)

Inserting this into Eq. (19.5) one finally obtains

ΔTm = −0.6 K (19.11)

very similar to the data of Kharakoz given in Eq. (19.8).

The molar fraction of anesthetics at critical dose is xA ≈ 0.026. The cor-
responding shift of the melting transition is ΔTm ≈ −0.6 K, independent
of the chemical nature of the anesthetic drug.
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The thermodynamic theory of anesthesia has been treated in detail in He-
imburg and Jackson (2007b) and the connection with nerve pulse propagation
is reviewed in Heimburg and Jackson (2007a).

19.3
The Lateral Pressure Profile

We have seen in previous chapters that the melting transition is dependent
on pressure. One may therefore wonder whether the shift of the transition
temperature caused by anesthetics can be translated into a lateral pressure.

As above we assume that the anesthetics molecules are readily soluble in
the fluid phase but insoluble in the gel phase. The free energy is related to the
concentration of molecules in the fluid phase, given per total area of the fluid
membrane, f · A f . This concentration changes as the molar fraction of fluid
phase, f , changes in the transition regime.

F = F0 + nkT ln x f
A x f

A =
n

f · A f
(19.12)

where n is here the number of anesthetics molecules per lipid (which can be
smaller than one). The x0

A and x f
A are molar fractions of anesthetics. The lateral

pressure in the membrane induced by anesthetics is given by

Π = − dF
dA

= − dF
A f d f

= −kT
n

f · A f
= −kT x f

A (19.13)

The pressure in the fluid phase is

Π = −kT
n

A f

= −0.00723 · x f
A

[
N
m

]
T = 314 K, A f = 0.6 × 10−18 m2 (19.14)

The pressure approaches ∞ if f → 0. Therefore, it is impossible under the
above assumptions to move the system completely into the gel phase. This is
in agreement with the heat capacity profiles shown in Fig. 19.3. The melting
temperature in the presence of anesthetics, TA

m , is given by

TA
m =

ΔH + ΠA f

ΔS
= Tm +

ΠA f

ΔH
Tm

ΔTm =
ΠA f

ΔH
Tm = −0.00723A f · x f

A

ΔH
Tm

(19.15)

At the critical anesthetic concentration x0
A = 0.026 (see Eq. (19.10)). Taking

the parameters of a DPPC membrane (Tm = 314.2 K, ΔH = 35 kJ/mol) one
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Fig. 19.5 Lateral pressure profile across the
membrane, adapted from Cantor (1997a).
Bottom, left: A membrane protein may experi-
ence different lateral pressures (indicated by
arrows) at different depth in the membrane.
Bottom, right: Calculated lateral pressure
p(z) as a function of position z in the mem-

brane. Top, left: Schematic picture of how the
lateral pressure can influence the equilibrium
of two conformations of a protein. To, right:
Cross-sectional area A(z) of the two protein
conformations as a function of position z in
the membrane.

arrives at

ΔTm = −0.6 K (19.16)

which is exactly the number obtained in Eq. (19.11). Thus, it is completely
reasonable to consider the effect of anesthetics as the generation of a lateral
pressure within the membrane plane.

Anesthetics change the lateral pressure distribution within the mem-
brane. Thereby, they lower melting points and simultaneously potentially
influence protein structures.

Since in equilibrium the area assumes a constant value the net lateral pres-
sure (surface tension), of course, is zero. This means that the different con-
tributions to the surface tension by lipid chains, head groups, electrostatics,
anesthetics . . . add to a net zero tension. The repulsive pressure term caused
by the anesthetics must be compensated by attractive terms such that inte-
grated over the membrane diameter the net pressure is zero. Cantor (1997a,b,
1999a) applied statistical thermodynamics means in a lattice model to calcu-
late the attractive and the repulsive pressure contributions in the membrane as



332 19 Anesthesia

a function of the depth in the membrane. He arrived at a lateral pressure pro-
files that is shown in Fig. 19.5. It can be seen that the repulsive forces within
the membrane are compensated by attractive forces in the head group region
such that the integral over the lateral pressure amounts to zero, which is the
equilibrium condition. Cantor pointed out that this pressure may well influ-
ence conformational equilibria of membrane proteins (Cantor, 1997b, 1999b).
Since anesthetics influence the lateral pressure profile Cantor argues that this
may be the mechanism by which anesthetics regulate protein function.

19.4
Dependence of Anesthesia on Hydrostatic Pressure

Hydrostatic pressure shifts transitions to higher temperatures according to

ΔTm = γVΔpTm γV = 7.8 × 10−10 m2

N
(19.17)

If we assume that the shift in the transition temperature is of biological rele-
vance, the application of hydrostatic pressure should have the potential to re-
verse anesthesia. As mentioned above, the lowering of the transition tempera-
ture at critical anesthetic dose is of the order ΔTm = −0.6 K. Using Eq. (19.17)
one can calculate the pressure necessary to reverse anesthesia. One obtains
that

Δp = 24.6 · 105 N
m2 = 24.6 bar (19.18)

Anesthesia can be reversed by hydrostatic pressure on the order larger
than 25 bar.

This has in fact be measured. Johnson and Flagler (1950) have reported that
tadpoles anesthetized in 3− 6 vol% ethanol solutions awake upon application
of 140–350 bar of hydrostatic pressure. The critical anesthetic concentration
for ethanol in water is 1.1 vol%. Thus, Johnson and Flagler used 3–6 times the
anesthetic dose. To reverse the effect of such high amounts of anesthetics one
obviously needs 3–6 times the bulk pressure of 25 bar, i.e., 75–150 bar. That is
relatively close to the range of pressures found by Johnson and Flagler (1950).
Thus, the pressure reversal of anesthesia is in agreement with the picture that
explains anesthesia by the thermodynamic effects of anesthetic drugs.
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19.5
pH Dependence of Anesthesia

In Chapter 11, we have shown that pH changes can significantly change the
melting points of charged lipid membranes. Lowering of pH typically in-
creases the melting temperature due to protonation of negatively charged
phosphate groups. In Fig. 19.6 the effect of pH changes on E. coli membranes is
shown. The change in transition temperature of these native biological mem-
branes (including all proteins) is quite significant, i.e., the shift of pH from 9
to 5 changes the transition midpoint by about 7.3 K to higher temperatures,
approximately linear in pH. Lacking other reliable data for the time being, let
us assume that this is a behavior typical for biological membranes. We thus
conclude that the shift in Tm is ΔTm ≈ −1.8 K/pH unit. To reverse the effect
of anesthetics one therefore requires a lowering of the pH by ΔpH = −0.33.
Interestingly, it is known that inflamed tissue cannot be anesthetized with the
typical dose. Some groups believe that this is somehow related to the observed
lowering of the pH observed in inflamed tissue, which is on the order of 0.5
pH units (Punnia-Moorthy, 1987). This is exactly the range of pH changes
required for the above considerations.

Inflamed tissue cannot be anesthetized. Simultaneously, the pH in such
tissue is by about 0.5 pH units lower than in healthy tissue. This pH
change is sufficient to reverse anesthesia.

In general, all salts that increase melting temperatures should display the
potency to reverse anesthesia, in particular divalent cations as Ca2+.

Fig. 19.6 pH dependence of the melting transition of native E. coli
membranes. Adapted from Heimburg and Jackson (2007b).
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19.6
Neurotransmitters

Neurotransmitters are substances that are believed to regulate the signal
transmission in across the synapses by binding to specific receptor proteins.
They are not typically recognized as anesthetics. However, anesthetics also
bind to lipid membranes and lower their melting points. Remember the state-
ment by Meyer (1899) that all substances soluble in membranes act as anes-
thetics.

In Fig. 19.7 the action of the neurotransmitter serotonin on DMPC vesicles
is shown. The lipid concentration is 50 mM and the total neurotransmitter
concentration was 0 mM, 1 mM, and 2.5 mM. Total means that the free and
bound concentration counted together. These concentrations are much lower
than the concentration of neurotransmitters in synaptic vesicles, which is of
the order of 100 mM. It can be seen that such relatively low neurotransmit-
ter concentrations have a significant effect on the melting behavior that is of
the same order than that of anesthetics. Other neurotransmitters as dopamine
have similar effects. Findings of such kind have lead to the question first asked
by Cantor (2003) on whether neurotransmitters besides their specific proper-
ties also display unspecific anesthetic effects.

Fig. 19.7 Influence of the neurotransmitter serotonin on DMPC mem-
branes (50 mM) at three concentrations: 0 mol%, 2 mol% and 5 mol%
(referring to the overall molar ratio of neurotransmitter and lipids, i.e.,
0, 1, and 2.5 mM total serotonin concentration). From Seeger (2006).

Due to the findings of Meyer and Overton one has to ask this question
quite generally about all membrane interacting substances that lower melt-
ing temperatures including neurotransmitters and peptides. Everything that
increases melting temperatures has the potential to reverse anesthesia, includ-
ing protons and divalent cations.



19.7 Summary: Key Ideas of Chapter 19 335

19.7
Summary: Key Ideas of Chapter 19

1. The partition coefficient, P, and the potency of an anesthetic are di-
rectly proportional to each other for a large class of molecules. Even
noble gases can act as anesthetics. If the critical anesthetic concentration
is [ED50], then P · [ED50] = const. This empirical finding is called the
Meyer–Overton rule.

2. This means that the molar fraction, xA, of all anesthetics in the mem-
brane at critical concentration is generally the same. It is xA = 0.026.

3. Anesthetics lower the melting points of lipid membranes in a simple
linear manner. At [ED50] the lowering of Tm is 0.6 K for all anesthetics
(that obey the Meyer–Overton rule).

4. The effect of anesthetics on the melting temperatures can be explained
by “freezing-point depression.” The anesthetics dissolve ideally in the
fluid lipid membrane but are insoluble in the gel membrane. The lower-
ing of the melting point is a consequence of the solution entropy of the
anesthetic in the fluid phase.

5. The effect of anesthetics can also be understood in terms of a lateral pres-
sure that is induced within the fluid membrane. Such pressures have a
putative effect on conformational equilibria of membrane proteins.

6. Anesthesia can be reversed by hydrostatic pressure. A pressure of
25 bars is necessary to completely reverse the effect at [ED50]. The pres-
sure reversal can be quantitatively explained by the pressure effect on
phase transitions.

7. Similarly, divalent cations should have the potency to reverse anesthesia
since they increase melting temperatures.
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Appendix A
Abbreviations Used in this Book

Abbreviations of Lipid Names

CL cardiolipin
DLPC 1,2-dilauroyl-sn-3-phosphatidylcholine
DMG 1,2-dimyristoyl-sn-3-glycerol
DMPC 1,2-dimyristoyl-sn-3-phosphatidylcholine
DMPE 1,2-dimyristoyl-sn-3-phosphatidylethanolamine
DMPG 1,2-dimyristoyl-sn-3-phosphatidylglycerol
DOPC 1,2-dioleoyl-sn-3-phosphatidylcholine
DPPA 1,2-dipalmitoyl-sn-3-phosphatidic acid
DPPC 1,2-dipalmitoyl-sn-3-phosphatidylcholine
DPPE 1,2-dipalmitoyl-sn-3-phosphatidylethanolamine
DPPG 1,2-dipalmitoyl-sn-3-phosphatidylglycerol
DSPC 1,2-distearoyl-sn-3-phosphatidylcholine
POPC 1-palmitoyl-2-oleoyl-sn-3-phosphatidylcholine
SM sphingomyelin

Abbreviations of Techniques

DSC differential scanning calorimetry
FCS fluorescence correlation spectroscopy
FRAP fluorescence recovery after photobleaching
ITC isothermal titration calorimetry
NMR nuclear magnetic resonance
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